Science.gov

Sample records for air biological challenge

  1. A Challenge to Biology

    ERIC Educational Resources Information Center

    Trumbull, Richard

    1975-01-01

    Cautions biology instructors to be aware of the possible overproduction of life science scholars whose future may include unemployment or underemployment. Urges that these instructors provide their students with knowledge for employment outside the traditional educational and research fields. (MLH)

  2. The Challenge of Clean Air

    ERIC Educational Resources Information Center

    Turner, John M.

    1974-01-01

    The country's first two-year education program in Air Pollution Technology trains students to work for industry or government. Although two to three jobs are available for each graduate, attracting interested students remains a challenge. (AJ)

  3. Grand challenges for biological engineering.

    PubMed

    Yoon, Jeong-Yeol; Riley, Mark R

    2009-09-22

    Biological engineering will play a significant role in solving many of the world's problems in medicine, agriculture, and the environment. Recently the U.S. National Academy of Engineering (NAE) released a document "Grand Challenges in Engineering," covering broad realms of human concern from sustainability, health, vulnerability and the joy of living. Biological engineers, having tools and techniques at the interface between living and non-living entities, will play a prominent role in forging a better future. The 2010 Institute of Biological Engineering (IBE) conference in Cambridge, MA, USA will address, in part, the roles of biological engineering in solving the challenges presented by the NAE. This letter presents a brief outline of how biological engineers are working to solve these large scale and integrated problems of our society.

  4. Dealing with the Biological Challenge

    NASA Astrophysics Data System (ADS)

    Schultz, Emeric

    1996-05-01

    The bio-technological revolution presents a real challenge to the chemical education community. This challenge is two-fold: 1) the necessity of teaching students the underlying chemical principles and other skills necessary for sucess in the expanding biotechnological workplace and 2) ensuring and enhancing respect from the biological community for the first two years of the chemistry curriculum. In the opinion of the author, we are not doing a particularly good job of meeting this challenge, although progress is being made. As the "doing" of chemistry becomes easier for biologists, there is the real danger that the knowledge of a significant portion of the underlying chemistry will increasingly be viewed as less valuable, and perhaps even superfluous. The three "Trojan Horses" are: synthetic, analytical, and "process" kits; instrumentation coupled with computer "interpretation"; and molecular modeling. The author believes that in order to address the biological challenge head on, we should give serious consideration to the following: 1) reversing the "learning arrow"; 2) embedding molecular and other modeling; 3) incorporating instrumental analysis and chemistry-by-kit. Reversing the learning arrow approaches the chemistry curriculum by starting with large biomolecules first and working toward smaller fundamental units. The author believes that this approach and a more proactive stance on establishing what is in the domain of chemistry is the means by which the biological challenge, spawned by the bio-technological revolution, can most forcefully be addressed.

  5. Biological air filter for air-quality control

    NASA Astrophysics Data System (ADS)

    van Ras, Niels; Krooneman, Janneke; Ogink, Nico; Willers, Hans; D'Amico, Arnaldo; di Natale, Corrado; Godia, F.; Albiol, J.; Perez, J.; Martinez, N.; Dixon, Mike; Llewellyn, David; Eckhard, Fir; Zona, G.; Fachecci, L.; Kraakman, Bart; Demey, Dries; Michel, Noelle; Darlington, Alan

    2005-10-01

    Biological air filtration is a promising technique for air-quality control in closed environments in space and on Earth, and it offers several advantages over existing techniques. However, to apply it in these environments, specific criteria have to be met. A concept for biological air filtration in closed environments was developed and tested by an international team of specialists. Several model systems for closed environments in space and on Earth were used as a source of contaminated air. Conventional and new analytical techniques were used to determine odour composition and removal efficiency of the filter, including an "electronic nose". The results show that the developed biological air filter is suitable for treating contaminated air in closed environments. The developed electronic nose was shown to be a promising method for air-quality monitoring.

  6. Grand challenges in space synthetic biology

    PubMed Central

    Montague, Michael G.; Cumbers, John; Hogan, John A.

    2015-01-01

    Space synthetic biology is a branch of biotechnology dedicated to engineering biological systems for space exploration, industry and science. There is significant public and private interest in designing robust and reliable organisms that can assist on long-duration astronaut missions. Recent work has also demonstrated that such synthetic biology is a feasible payload minimization and life support approach as well. This article identifies the challenges and opportunities that lie ahead in the field of space synthetic biology, while highlighting relevant progress. It also outlines anticipated broader benefits from this field, because space engineering advances will drive technological innovation on Earth. PMID:26631337

  7. Grand challenges in space synthetic biology.

    PubMed

    Menezes, Amor A; Montague, Michael G; Cumbers, John; Hogan, John A; Arkin, Adam P

    2015-12-06

    Space synthetic biology is a branch of biotechnology dedicated to engineering biological systems for space exploration, industry and science. There is significant public and private interest in designing robust and reliable organisms that can assist on long-duration astronaut missions. Recent work has also demonstrated that such synthetic biology is a feasible payload minimization and life support approach as well. This article identifies the challenges and opportunities that lie ahead in the field of space synthetic biology, while highlighting relevant progress. It also outlines anticipated broader benefits from this field, because space engineering advances will drive technological innovation on Earth.

  8. Opportunities and challenges in biological lignin valorization

    SciTech Connect

    Beckham, Gregg T.; Johnson, Christopher W.; Karp, Eric M.; Salvachúa, Davinia; Vardon, Derek R.

    2016-12-01

    Lignin is a primary component of lignocellulosic biomass that is an underutilized feedstock in the growing biofuels industry. Despite the fact that lignin depolymerization has long been studied, the intrinsic heterogeneity of lignin typically leads to heterogeneous streams of aromatic compounds, which in turn present significant technical challenges when attempting to produce lignin-derived chemicals where purity is often a concern. In Nature, microorganisms often encounter this same problem during biomass turnover wherein powerful oxidative enzymes produce heterogeneous slates of aromatics compounds. Some microbes have evolved metabolic pathways to convert these aromatic species via ‘upper pathways’ into central intermediates, which can then be funneled through ‘lower pathways’ into central carbon metabolism in a process we dubbed ‘biological funneling’. This funneling approach offers a direct, biological solution to overcome heterogeneity problems in lignin valorization for the modern biorefinery. Coupled to targeted separations and downstream chemical catalysis, this concept offers the ability to produce a wide range of molecules from lignin. This perspective describes research opportunities and challenges ahead for this new field of research, which holds significant promise towards a biorefinery concept wherein polysaccharides and lignin are treated as equally valuable feedstocks. In particular, we discuss tailoring the lignin substrate for microbial utilization, host selection for biological funneling, ligninolytic enzyme–microbe synergy, metabolic engineering, expanding substrate specificity for biological funneling, and process integration, each of which presents key challenges. Ultimately, for biological solutions to lignin valorization to be viable, multiple questions in each of these areas will need to be addressed, making biological lignin valorization a multidisciplinary, co-design problem.

  9. Opportunities and challenges in biological lignin valorization.

    PubMed

    Beckham, Gregg T; Johnson, Christopher W; Karp, Eric M; Salvachúa, Davinia; Vardon, Derek R

    2016-12-01

    Lignin is a primary component of lignocellulosic biomass that is an underutilized feedstock in the growing biofuels industry. Despite the fact that lignin depolymerization has long been studied, the intrinsic heterogeneity of lignin typically leads to heterogeneous streams of aromatic compounds, which in turn present significant technical challenges when attempting to produce lignin-derived chemicals where purity is often a concern. In Nature, microorganisms often encounter this same problem during biomass turnover wherein powerful oxidative enzymes produce heterogeneous slates of aromatics compounds. Some microbes have evolved metabolic pathways to convert these aromatic species via 'upper pathways' into central intermediates, which can then be funneled through 'lower pathways' into central carbon metabolism in a process we dubbed 'biological funneling'. This funneling approach offers a direct, biological solution to overcome heterogeneity problems in lignin valorization for the modern biorefinery. Coupled to targeted separations and downstream chemical catalysis, this concept offers the ability to produce a wide range of molecules from lignin. This perspective describes research opportunities and challenges ahead for this new field of research, which holds significant promise towards a biorefinery concept wherein polysaccharides and lignin are treated as equally valuable feedstocks. In particular, we discuss tailoring the lignin substrate for microbial utilization, host selection for biological funneling, ligninolytic enzyme-microbe synergy, metabolic engineering, expanding substrate specificity for biological funneling, and process integration, each of which presents key challenges. Ultimately, for biological solutions to lignin valorization to be viable, multiple questions in each of these areas will need to be addressed, making biological lignin valorization a multidisciplinary, co-design problem.

  10. Synthetic biology and biosecurity: challenging the "myths".

    PubMed

    Jefferson, Catherine; Lentzos, Filippa; Marris, Claire

    2014-01-01

    Synthetic biology, a field that aims to "make biology easier to engineer," is routinely described as leading to an increase in the "dual-use" threat, i.e., the potential for the same scientific research to be "used" for peaceful purposes or "misused" for warfare or terrorism. Fears have been expressed that the "de-skilling" of biology, combined with online access to the genomic DNA sequences of pathogenic organisms and the reduction in price for DNA synthesis, will make biology increasingly accessible to people operating outside well-equipped professional research laboratories, including people with malevolent intentions. The emergence of do-it-yourself (DIY) biology communities and of the student iGEM competition has come to epitomize this supposed trend toward greater ease of access and the associated potential threat from rogue actors. In this article, we identify five "myths" that permeate discussions about synthetic biology and biosecurity, and argue that they embody misleading assumptions about both synthetic biology and bioterrorism. We demonstrate how these myths are challenged by more realistic understandings of the scientific research currently being conducted in both professional and DIY laboratories, and by an analysis of historical cases of bioterrorism. We show that the importance of tacit knowledge is commonly overlooked in the dominant narrative: the focus is on access to biological materials and digital information, rather than on human practices and institutional dimensions. As a result, public discourse on synthetic biology and biosecurity tends to portray speculative scenarios about the future as realities in the present or the near future, when this is not warranted. We suggest that these "myths" play an important role in defining synthetic biology as a "promissory" field of research and as an "emerging technology" in need of governance.

  11. India's Computational Biology Growth and Challenges.

    PubMed

    Chakraborty, Chiranjib; Bandyopadhyay, Sanghamitra; Agoramoorthy, Govindasamy

    2016-09-01

    India's computational science is growing swiftly due to the outburst of internet and information technology services. The bioinformatics sector of India has been transforming rapidly by creating a competitive position in global bioinformatics market. Bioinformatics is widely used across India to address a wide range of biological issues. Recently, computational researchers and biologists are collaborating in projects such as database development, sequence analysis, genomic prospects and algorithm generations. In this paper, we have presented the Indian computational biology scenario highlighting bioinformatics-related educational activities, manpower development, internet boom, service industry, research activities, conferences and trainings undertaken by the corporate and government sectors. Nonetheless, this new field of science faces lots of challenges.

  12. Test Results of Air-Permeable Charcoal Impregnated Suits to Challenge by Chemical and Biological Warfare Agents and Simulants. Executive Summary and Summary Report

    DTIC Science & Technology

    2003-05-01

    proteCt in a "CW ( chemical warfare ) and BW (biological warfare )" agents environment. Swatches of material from each suit design were tested for...factors were determined for each suit. 14. SUBJECT TERMS 15. NUMBER OF PAGES HD Swatch testing Permeation testing 63 GB Chemical protective suits... Testing Procedures This testing was conducted to measure the permeation of chemical agents GB

  13. Systems biology solutions for biochemical production challenges.

    PubMed

    Hansen, Anne Sofie Lærke; Lennen, Rebecca M; Sonnenschein, Nikolaus; Herrgård, Markus J

    2017-03-16

    There is an urgent need to significantly accelerate the development of microbial cell factories to produce fuels and chemicals from renewable feedstocks in order to facilitate the transition to a biobased society. Methods commonly used within the field of systems biology including omics characterization, genome-scale metabolic modeling, and adaptive laboratory evolution can be readily deployed in metabolic engineering projects. However, high performance strains usually carry tens of genetic modifications and need to operate in challenging environmental conditions. This additional complexity compared to basic science research requires pushing systems biology strategies to their limits and often spurs innovative developments that benefit fields outside metabolic engineering. Here we survey recent advanced applications of systems biology methods in engineering microbial production strains for biofuels and -chemicals.

  14. Synthetic biology: navigating the challenges ahead.

    PubMed

    Bhutkar, Arjun

    2005-01-01

    The emerging field of synthetic biology is broadly defined as the area of intersection of biology and engineering that focuses on the modification or creation of novel biological systems that do not have a counterpart in nature. Potential applications of this technology range from creating systems for environmental cleanup tasks, for medical diagnosis and treatment, to economical generation of hydrogen fuel. This technology is in tis nascent state and there are a number of concerns surrounding its potential applications and the nature of research being performed. With the potential to create hitherto unknown "living organisms", it raises a number of challenges along different dimensions. This article reviews the current state of the technology and analyzes synthetic biology using different lenses: patentability, ethics, and regulation. It proposes a classification system for the products of synthetic biology and provides recommendations in each of the above areas (patentability, ethics, and regulation) in the context of this classification system. These recommendations include an improved framework for patentability testing, ethical principles to guide work in this area, a controlled approval process, and reference frameworks for regulation.

  15. Air Force Research Laboratory’s Focused Long Term Challenges

    DTIC Science & Technology

    2008-04-01

    Air Force Research Laboratory ( AFRL ) mission is to provide support to the Air Force (AF) and the warfighters with... Air Force Research Laboratory’s Focused Long Term Challenges Leo J Rose Munitions Directorate, Air Force Research Laboratory , 101 W Eglin Blvd...This technology vision, which was born in our Air Force Research Laboratory , builds on the Air Force’s traditional kill

  16. Applying evolutionary biology to address global challenges.

    PubMed

    Carroll, Scott P; Jørgensen, Peter Søgaard; Kinnison, Michael T; Bergstrom, Carl T; Denison, R Ford; Gluckman, Peter; Smith, Thomas B; Strauss, Sharon Y; Tabashnik, Bruce E

    2014-10-17

    Two categories of evolutionary challenges result from escalating human impacts on the planet. The first arises from cancers, pathogens, and pests that evolve too quickly and the second, from the inability of many valued species to adapt quickly enough. Applied evolutionary biology provides a suite of strategies to address these global challenges that threaten human health, food security, and biodiversity. This Review highlights both progress and gaps in genetic, developmental, and environmental manipulations across the life sciences that either target the rate and direction of evolution or reduce the mismatch between organisms and human-altered environments. Increased development and application of these underused tools will be vital in meeting current and future targets for sustainable development.

  17. Applying evolutionary biology to address global challenges

    PubMed Central

    Carroll, Scott P.; Jørgensen, Peter Søgaard; Kinnison, Michael T.; Bergstrom, Carl T.; Denison, R. Ford; Gluckman, Peter; Smith, Thomas B.; Strauss, Sharon Y.; Tabashnik, Bruce E.

    2014-01-01

    Two categories of evolutionary challenges result from escalating human impacts on the planet. The first arises from cancers, pathogens and pests that evolve too quickly, and the second from the inability of many valued species to adapt quickly enough. Applied evolutionary biology provides a suite of strategies to address these global challenges that threaten human health, food security, and biodiversity. This review highlights both progress and gaps in genetic, developmental and environmental manipulations across the life sciences that either target the rate and direction of evolution, or reduce the mismatch between organisms and human-altered environments. Increased development and application of these underused tools will be vital in meeting current and future targets for sustainable development. PMID:25213376

  18. Biological grand universality and its physical challenge

    NASA Astrophysics Data System (ADS)

    Azbel‧, Mark Ya.

    1999-12-01

    Presented quantitative laws of metabolism, mortality and evolution are valid for animals from bacteria to mammals and demonstrate grand universality in biology. Its microscopic origin may be a physical and mathematical challenge. Natural evolution is accurately reduced to the continuous one, “weak” and “strong” Gould-Eldredge spurts. The discovery of writing, i.e. non-genetic, long range, collective information transfer from generation to generation with human rather than natural selection, leads to post-evolution. Technological post-evolution is exponentially rapid and may lead to the extinction of a civilization. This might resolve the Fermi-Hart paradox: if extra-terrestrial intelligence exists, why it cannot be contacted?

  19. Physical Biology : challenges for our second decade

    NASA Astrophysics Data System (ADS)

    Levine, Herbert

    2014-06-01

    It is quite an honor to be asked to become the third editor-in-chief of Physical Biology . I am following in the footsteps of Tim Newman, who served with energy and enthusiasm. Hopefully, the entire community fully appreciates his contributions to moving the field forward. Thank you, Tim! With the honor, however, goes a clear responsibility. Our journal has survived its birth pangs and emerged as a serious venue for publishing quality research papers using physical science to address the workings of living matter. With the support of scientists in this field and with the ongoing commitment of the IOP, we have successfully reached adolescence. Yet, there is clearly much room to grow and there are clear challenges in defining and maintaining our special niche in the publishing landscape. In this still-developing state, the journal very much mimics the state of the field of physical biology itself. Few scientists continue to question the relevance of physical science for the investigation of the living world. But, will our new perspective and the methods that come with it really lead to radically new principles of how life works? Or, will breakthroughs continue to come from experimental biology (perhaps aided by the traditional physicist-as-tool-builder paradigm), leaving us to put quantitative touches on established fundamentals? In thinking about these questions for the field and for the journal, I have tried to understand what is really unique about our joint endeavors. I have become convinced that living matter represents a new challenge to our physical-science based conceptual framework. Not only is it far from equilibrium, as has been generally recognized, but it violates our simple notions of the separability of constituents, their interactions and the resulting large-scale behavior. Unlike, say, atomic physicists who can do productive research while safely ignoring the latest developments in QCD (let alone particle physics at higher energies), we do not yet

  20. Physical Biology : challenges for our second decade.

    PubMed

    Levine, Herbert

    2014-06-01

    It is quite an honor to be asked to become the third editor-in-chief of Physical Biology . I am following in the footsteps of Tim Newman, who served with energy and enthusiasm. Hopefully, the entire community fully appreciates his contributions to moving the field forward. Thank you, Tim! With the honor, however, goes a clear responsibility. Our journal has survived its birth pangs and emerged as a serious venue for publishing quality research papers using physical science to address the workings of living matter. With the support of scientists in this field and with the ongoing commitment of the IOP, we have successfully reached adolescence. Yet, there is clearly much room to grow and there are clear challenges in defining and maintaining our special niche in the publishing landscape. In this still-developing state, the journal very much mimics the state of the field of physical biology itself. Few scientists continue to question the relevance of physical science for the investigation of the living world. But, will our new perspective and the methods that come with it really lead to radically new principles of how life works? Or, will breakthroughs continue to come from experimental biology (perhaps aided by the traditional physicist-as-tool-builder paradigm), leaving us to put quantitative touches on established fundamentals? In thinking about these questions for the field and for the journal, I have tried to understand what is really unique about our joint endeavors. I have become convinced that living matter represents a new challenge to our physical-science based conceptual framework. Not only is it far from equilibrium, as has been generally recognized, but it violates our simple notions of the separability of constituents, their interactions and the resulting large-scale behavior. Unlike, say, atomic physicists who can do productive research while safely ignoring the latest developments in QCD (let alone particle physics at higher energies), we do not yet

  1. Biological waste air treatment in biofilters.

    PubMed

    Deshusses, M A

    1997-06-01

    Recent studies in the area of biological waste air treatment in biofilters have addressed fundamental key issues such as microbial dynamics, microscopical characterization of the process culture and oxygen and nutrient limitations. The results from these studies have provided a deeper insight into the overall biofiltration process. In the coming years, such advances should allow for the design of better reactor controls and the improvement of pollutant removal in gas-phase bioreactors.

  2. Air Pollution: Current and Future Challenges

    EPA Pesticide Factsheets

    Despite the dramatic progress to date, air pollution continues to threaten Americans’ health and welfare. The main obstacles are climate change, conventional air pollution, and ozone layer depletion.

  3. Making Li-air batteries rechargeable: material challenges

    SciTech Connect

    Shao, Yuyan; Ding, Fei; Xiao, Jie; Zhang, Jian; Xu, Wu; Park, Seh Kyu; Zhang, Jiguang; Wang, Yong; Liu, Jun

    2013-02-25

    A Li-air battery could potentially provide three to five times higher energy density/specific energy than conventional batteries, thus enable the driving range of an electric vehicle comparable to a gasoline vehicle. However, making Li-air batteries rechargeable presents significant challenges, mostly related with materials. Herein, we discuss the key factors that influence the rechargeability of Li-air batteries with a focus on nonaqueous system. The status and materials challenges for nonaqueous rechargeable Li-air batteries are reviewed. These include electrolytes, cathode (electocatalysts), lithium metal anodes, and oxygen-selective membranes (oxygen supply from air). The perspective of rechargeable Li-air batteries is provided.

  4. Challenges and opportunities in synthetic biology for chemical engineers

    PubMed Central

    Luo, Yunzi; Lee, Jung-Kul; Zhao, Huimin

    2012-01-01

    Synthetic biology provides numerous great opportunities for chemical engineers in the development of new processes for large-scale production of biofuels, value-added chemicals, and protein therapeutics. However, challenges across all scales abound. In particular, the modularization and standardization of the components in a biological system, so-called biological parts, remain the biggest obstacle in synthetic biology. In this perspective, we will discuss the main challenges and opportunities in the rapidly growing synthetic biology field and the important roles that chemical engineers can play in its advancement. PMID:24222925

  5. Challenges and opportunities in synthetic biology for chemical engineers

    SciTech Connect

    Luo, YZ; Lee, JK; Zhao, HM

    2013-11-15

    Synthetic biology provides numerous great opportunities for chemical engineers in the development of new processes for large-scale production of biofuels, value-added chemicals, and protein therapeutics. However, challenges across all scales abound. In particular, the modularization and standardization of the components in a biological system, so-called biological parts, remain the biggest obstacle in synthetic biology. In this perspective, we will discuss the main challenges and opportunities in the rapidly growing synthetic biology field and the important roles that chemical engineers can play in its advancement. (C) 2012 Elsevier Ltd. All rights reserved.

  6. New directions: Air pollution challenges for developing megacities like Delhi

    NASA Astrophysics Data System (ADS)

    Kumar, Prashant; Khare, Mukesh; Harrison, Roy M.; Bloss, William J.; Lewis, Alastair C.; Coe, Hugh; Morawska, Lidia

    2015-12-01

    Most major cities around the world experience periods of elevated air pollution levels, which exceed international health-based air quality standards (Kumar et al., 2013). Although it is a global problem, some of the highest air pollution levels are found in rapidly expanding cities in India and China. The sources, emissions, transformations and broad effects of meteorology on air pollution are reasonably well accounted in air quality control strategies in many developed cities; however these key factors remain poorly constrained in the growing cities of countries with emerging economies. We focus here on Delhi, one of the largest global population centres, which faces particular air pollution challenges, now and in the future.

  7. Biological Invasions: A Challenge In Ecological Forecasting

    NASA Technical Reports Server (NTRS)

    Schnase, J. L.; Smith, J. A.; Stohlgren, T. J.; Graves, S.; Trees, C.; Rood, Richard (Technical Monitor)

    2002-01-01

    The spread of invasive species is one of the most daunting environmental, economic, and human-health problems facing the United States and the World today. It is one of several grand challenge environmental problems being considered by NASA's Earth Science Vision for 2025. The invasive species problem is complex and presents many challenges. Developing an invasive species predictive capability could significantly advance the science and technology of ecological forecasting.

  8. OPEN PROBLEM: Some nonlinear challenges in biology

    NASA Astrophysics Data System (ADS)

    Mosconi, Francesco; Julou, Thomas; Desprat, Nicolas; Sinha, Deepak Kumar; Allemand, Jean-François; Croquette, Vincent; Bensimon, David

    2008-08-01

    Driven by a deluge of data, biology is undergoing a transition to a more quantitative science. Making sense of the data, building new models, asking the right questions and designing smart experiments to answer them are becoming ever more relevant. In this endeavour, nonlinear approaches can play a fundamental role. The biochemical reactions that underlie life are very often nonlinear. The functional features exhibited by biological systems at all levels (from the activity of an enzyme to the organization of a colony of ants, via the development of an organism or a functional module like the one responsible for chemotaxis in bacteria) are dynamically robust. They are often unaffected by order of magnitude variations in the dynamical parameters, in the number or concentrations of actors (molecules, cells, organisms) or external inputs (food, temperature, pH, etc). This type of structural robustness is also a common feature of nonlinear systems, exemplified by the fundamental role played by dynamical fixed points and attractors and by the use of generic equations (logistic map, Fisher-Kolmogorov equation, the Stefan problem, etc.) in the study of a plethora of nonlinear phenomena. However, biological systems differ from these examples in two important ways: the intrinsic stochasticity arising from the often very small number of actors and the role played by evolution. On an evolutionary time scale, nothing in biology is frozen. The systems observed today have evolved from solutions adopted in the past and they will have to adapt in response to future conditions. The evolvability of biological system uniquely characterizes them and is central to biology. As the great biologist T Dobzhansky once wrote: 'nothing in biology makes sense except in the light of evolution'.

  9. Air pollution in China: Scientific and Public Policy Challenges

    NASA Astrophysics Data System (ADS)

    Zhu, T.

    2014-12-01

    Sever air pollution in China has in recent years caused intensive public, media and governmental attention. Many questions need to be answered about the air pollution in China, such as how harmful is the air pollution, especially PM2.5? Why suddenly so many reports about sever air pollution, is the air in China getting more polluted? How to design a policy that can control the air pollution most efficiently? After updated the national Ambient Air Quality Standards in 2012 and included PM2.5 as one of the critical air pollutants, in 2013, Chinese central government released for the first time the "Air Pollution Prevention and Control Action Plan". The plan has set goals to reduce annual mean concentration of PM2.5 up to 25% in 2017 in different regions in China. If the ambitious goals were achieved, this could be the most significant air pollution reduction in such a short time that affects so many people in human history. To achieve these goals, however, there are enormous scientific and public policy challenges to deal with. For example: Identify the key components, size fraction of PM that have the largest health effects; and identify the sources of PM that has the most harmful effects on human health and ecosystem. Reduce the uncertainty in health risk assessment. Understand complicate chemical transformation processes in air pollution formation with intensive emissions from industry, power plant, vehicles, agriculture. Interactions between air pollution, PBL, and atmospheric circulation at different scales. The accountability, feasibility, effectiveness, and efficiency of air pollution control policies. Integrate multi-pollutant control and achieve co-benefit with climate and energy policy. Regional coordinated air pollution control. The largest challenge in China for air pollution control remains how to strength the link between science and policy.

  10. Biological challenges to effective vaccines in the developing world.

    PubMed

    Grassly, Nicholas C; Kang, Gagandeep; Kampmann, Beate

    2015-06-19

    The reason for holding a meeting to discuss biological challenges to vaccines is simple: not all vaccines work equally well in all settings. This special issue reviews the performance of vaccines in challenging environments, summarizes current thinking on the reasons why vaccines underperform and considers what approaches are necessary to understand the heterogeneity in responses and to improve vaccine immunogenicity and efficacy.

  11. Synthetic biology: a challenge to mechanical explanations in biology?

    PubMed

    Morange, Michel

    2012-01-01

    In their plans to modify organisms, synthetic biologists have contrasted engineering and tinkering. By drawing this contrast between their endeavors and what has happened during the evolution of organisms by natural selection, they underline the novelty of their projects and justify their ambitions. Synthetic biologists are at odds with a long tradition that has considered organisms as "perfect machines." This tradition had already been questioned by Stephen Jay Gould in the 1970s and received a major blow with the comparison made by François Jacob between organisms and the results of "bricolage" (tinkering). These contrasts between engineering and tinkering, synthetic biology and evolution, have no raison d'être. Machines built by humans are increasingly inspired by observations made on organisms. This is not a simple reversal of the previous trend-the mechanical conception of organisms-in which the characteristics of the latter were explained by comparison with human-built machines. Relations between organisms and machines have always been complex and ambiguous.

  12. Air quality management in China: issues, challenges, and options.

    PubMed

    Wang, Shuxiao; Hao, Jiming

    2012-01-01

    This article analyzed the control progress and current status of air quality, identified the major air pollution issues and challenges in future, proposed the long-term air pollution control targets, and suggested the options for better air quality in China. With the continuing growth of economy in the next 10-15 years, China will face a more severe situation of energy consumption, electricity generation and vehicle population leading to increase in multiple pollutant emissions. Controlling regional air pollution especially fine particles and ozone, as well as lowering carbon emissions from fossil fuel consumption will be a big challenge for the country. To protect public health and the eco-system, the ambient air quality in all Chinese cities shall attain the national ambient air quality standards (NAAQS) and ambient air quality guideline values set by the World Health Organization (WHO). To achieve the air quality targets, the emissions of SO2, NOx, PM10, and volatile organic compounds (VOC) should decrease by 60%, 40%, 50%, and 40%, respectively, on the basis of that in 2005. A comprehensive control policy focusing on multiple pollutants and emission sources at both the local and regional levels was proposed to mitigate the regional air pollution issue in China. The options include development of clean energy resources, promotion of clean and efficient coal use, enhancement of vehicle pollution control, implementation of synchronous control of multiple pollutants including SO2, NOx, VOC, and PM emissions, joint prevention and control of regional air pollution, and application of climate friendly air pollution control measures.

  13. Some current challenges in research on air pollution and health.

    PubMed

    Samet, Jonathan M

    2014-01-01

    This commentary addresses some of the diverse questions of current interest with regard to the health effects of air pollution, including exposure-response relationships, toxicity of inhaled particles and risks to health, multipollutant mixtures, traffic-related pollution, accountability research, and issues with susceptibility and vulnerability. It considers the challenges posed to researchers as they attempt to provide useful evidence for policy-makers relevant to these issues. This commentary accompanies papers giving the results from the ESCALA project, a multi-city study in Latin America that has an overall goal of providing policy-relevant results. While progress has been made in improving air quality, driven by epidemiological evidence that air pollution is adversely affecting public health, the research questions have become more subtle and challenging as levels of air pollution dropped. More research is still needed, but also novel methods and approaches to address these new questions.

  14. 2001 DC Lecture Series: The New Biology - Challenges and Opportunities

    SciTech Connect

    2006-04-11

    The Whitehead Institute for Biomedical Research, in collaboration with Center for Strategic and International Studies (CSIS), developed a series of seminars, ''The New Biology: Challenges and Opportunities'', to stimulate dialogue between leaders in science, medicine, law, biotechnology and senior government policymakers on matters that will shape much of the genomic revolution's impact on individuals and institutions in this country.

  15. Current challenges and opportunities in nonclinical safety testing of biologics.

    PubMed

    Kronenberg, Sven; Baumann, Andreas; de Haan, Lolke; Hinton, Heather J; Moggs, Jonathan; Theil, Frank-Peter; Wakefield, Ian; Singer, Thomas

    2013-12-01

    Nonclinical safety testing of new biotherapeutic entities represents its own challenges and opportunities in drug development. Hot topics in this field have been discussed recently at the 2nd Annual BioSafe European General Membership Meeting. In this feature article, discussions on the challenges surrounding the use of PEGylated therapeutic proteins, selection of cynomolgus monkey as preclinical species, unexpected pharmacokinetics of biologics and the safety implications thereof are summarized. In addition, new developments in immunosafety testing of biologics, the use of transgenic mouse models and PK and safety implications of multispecific targeting approaches are discussed. Overall, the increasing complexity of new biologic modalities and formats warrants tailor-made nonclinical development strategies and experimental testing.

  16. Light microscopy applications in systems biology: opportunities and challenges

    PubMed Central

    2013-01-01

    Biological systems present multiple scales of complexity, ranging from molecules to entire populations. Light microscopy is one of the least invasive techniques used to access information from various biological scales in living cells. The combination of molecular biology and imaging provides a bottom-up tool for direct insight into how molecular processes work on a cellular scale. However, imaging can also be used as a top-down approach to study the behavior of a system without detailed prior knowledge about its underlying molecular mechanisms. In this review, we highlight the recent developments on microscopy-based systems analyses and discuss the complementary opportunities and different challenges with high-content screening and high-throughput imaging. Furthermore, we provide a comprehensive overview of the available platforms that can be used for image analysis, which enable community-driven efforts in the development of image-based systems biology. PMID:23578051

  17. Thermostability of Biological Systems: Fundamentals, Challenges, and Quantification

    PubMed Central

    He, Xiaoming

    2011-01-01

    This review examines the fundamentals and challenges in engineering/understanding the thermostability of biological systems over a wide temperature range (from the cryogenic to hyperthermic regimen). Applications of the bio-thermostability engineering to either destroy unwanted or stabilize useful biologicals for the treatment of diseases in modern medicine are first introduced. Studies on the biological responses to cryogenic and hyperthermic temperatures for the various applications are reviewed to understand the mechanism of thermal (both cryo and hyperthermic) injury and its quantification at the molecular, cellular and tissue/organ levels. Methods for quantifying the thermophysical processes of the various applications are then summarized accounting for the effect of blood perfusion, metabolism, water transport across cell plasma membrane, and phase transition (both equilibrium and non-equilibrium such as ice formation and glass transition) of water. The review concludes with a summary of the status quo and future perspectives in engineering the thermostability of biological systems. PMID:21769301

  18. The technical challenge of air transportation - A Government view

    NASA Technical Reports Server (NTRS)

    Roberts, L.

    1977-01-01

    This paper reviews the research and technology that must be conducted, and the facility investments that must be made, in order to assure that the United States is adequately prepared to meet the challenges that air transportation will provide in the future. The technical focal points for the next decade are reviewed in the context of the emerging pattern of air transportation needs for the remainder of the Century and the prospects for satisfying these needs are discussed. Particular attention is given to the responsibility that the Government must assume in aviation R&T and to the relationship that must be encouraged between the Government, the Industry and the University Community.

  19. Methods for biological data integration: perspectives and challenges

    PubMed Central

    Gligorijević, Vladimir; Pržulj, Nataša

    2015-01-01

    Rapid technological advances have led to the production of different types of biological data and enabled construction of complex networks with various types of interactions between diverse biological entities. Standard network data analysis methods were shown to be limited in dealing with such heterogeneous networked data and consequently, new methods for integrative data analyses have been proposed. The integrative methods can collectively mine multiple types of biological data and produce more holistic, systems-level biological insights. We survey recent methods for collective mining (integration) of various types of networked biological data. We compare different state-of-the-art methods for data integration and highlight their advantages and disadvantages in addressing important biological problems. We identify the important computational challenges of these methods and provide a general guideline for which methods are suited for specific biological problems, or specific data types. Moreover, we propose that recent non-negative matrix factorization-based approaches may become the integration methodology of choice, as they are well suited and accurate in dealing with heterogeneous data and have many opportunities for further development. PMID:26490630

  20. Synthetic Biology and Biosecurity: Challenging the “Myths”

    PubMed Central

    Jefferson, Catherine; Lentzos, Filippa; Marris, Claire

    2014-01-01

    Synthetic biology, a field that aims to “make biology easier to engineer,” is routinely described as leading to an increase in the “dual-use” threat, i.e., the potential for the same scientific research to be “used” for peaceful purposes or “misused” for warfare or terrorism. Fears have been expressed that the “de-skilling” of biology, combined with online access to the genomic DNA sequences of pathogenic organisms and the reduction in price for DNA synthesis, will make biology increasingly accessible to people operating outside well-equipped professional research laboratories, including people with malevolent intentions. The emergence of do-it-yourself (DIY) biology communities and of the student iGEM competition has come to epitomize this supposed trend toward greater ease of access and the associated potential threat from rogue actors. In this article, we identify five “myths” that permeate discussions about synthetic biology and biosecurity, and argue that they embody misleading assumptions about both synthetic biology and bioterrorism. We demonstrate how these myths are challenged by more realistic understandings of the scientific research currently being conducted in both professional and DIY laboratories, and by an analysis of historical cases of bioterrorism. We show that the importance of tacit knowledge is commonly overlooked in the dominant narrative: the focus is on access to biological materials and digital information, rather than on human practices and institutional dimensions. As a result, public discourse on synthetic biology and biosecurity tends to portray speculative scenarios about the future as realities in the present or the near future, when this is not warranted. We suggest that these “myths” play an important role in defining synthetic biology as a “promissory” field of research and as an “emerging technology” in need of governance. PMID:25191649

  1. Synthetic biology of cyanobacteria: unique challenges and opportunities

    PubMed Central

    Berla, Bertram M.; Saha, Rajib; Immethun, Cheryl M.; Maranas, Costas D.; Moon, Tae Seok; Pakrasi, Himadri B.

    2013-01-01

    Photosynthetic organisms, and especially cyanobacteria, hold great promise as sources of renewably-produced fuels, bulk and specialty chemicals, and nutritional products. Synthetic biology tools can help unlock cyanobacteria's potential for these functions, but unfortunately tool development for these organisms has lagged behind that for S. cerevisiae and E. coli. While these organisms may in many cases be more difficult to work with as “chassis” strains for synthetic biology than certain heterotrophs, the unique advantages of autotrophs in biotechnology applications as well as the scientific importance of improved understanding of photosynthesis warrant the development of these systems into something akin to a “green E. coli.” In this review, we highlight unique challenges and opportunities for development of synthetic biology approaches in cyanobacteria. We review classical and recently developed methods for constructing targeted mutants in various cyanobacterial strains, and offer perspective on what genetic tools might most greatly expand the ability to engineer new functions in such strains. Similarly, we review what genetic parts are most needed for the development of cyanobacterial synthetic biology. Finally, we highlight recent methods to construct genome-scale models of cyanobacterial metabolism and to use those models to measure properties of autotrophic metabolism. Throughout this paper, we discuss some of the unique challenges of a diurnal, autotrophic lifestyle along with how the development of synthetic biology and biotechnology in cyanobacteria must fit within those constraints. PMID:24009604

  2. Modeling Biology Spanning Different Scales: An Open Challenge

    PubMed Central

    2014-01-01

    It is coming nowadays more clear that in order to obtain a unified description of the different mechanisms governing the behavior and causality relations among the various parts of a living system, the development of comprehensive computational and mathematical models at different space and time scales is required. This is one of the most formidable challenges of modern biology characterized by the availability of huge amount of high throughput measurements. In this paper we draw attention to the importance of multiscale modeling in the framework of studies of biological systems in general and of the immune system in particular. PMID:25143952

  3. Biological control agents: from field to market, problems, and challenges.

    PubMed

    Velivelli, Siva L S; De Vos, Paul; Kromann, Peter; Declerck, Stephane; Prestwich, Barbara D

    2014-10-01

    Global food security is vulnerable due to massive growth of the human population, changes in global climate, the emergence of novel/more virulent pathogens, and demands from increasingly discerning consumers for chemical-free, sustainably produced food products. Bacterium-based biological control agents (BCAs), if used as part of an integrated management system, may satisfy the above demands. We focus on the advantages, limitations, problems, and challenges involved in such strategies.

  4. Miniaturized biological and electrochemical fuel cells: challenges and applications.

    PubMed

    Yang, Jie; Ghobadian, Sasan; Goodrich, Payton J; Montazami, Reza; Hashemi, Nastaran

    2013-09-14

    This paper discusses the fundamentals and developments of miniaturized fuel cells, both biological and electrochemical. An overview of microfluidic fuel cells, miniaturized microbial fuel cells, enzymatic biofuel cells, and implanted biofuel cells in an attempt to provide green energy and to power implanted microdevices is provided. Also, the challenges and applications of each type of fuel cell are discussed in detail. Most recent developments in fuel cell technologies such as novel catalysts, compact designs, and fabrication methods are reviewed.

  5. Challenges and opportunities in Air Forces tactical communications

    NASA Astrophysics Data System (ADS)

    Brick, D. B.; Ellersick, F. W.

    1981-02-01

    During the 1980s, many improvements will be made in the ability of the U.S. Air Force to communicate in a battlefield environment via programs like JTIDS, SEEK TALK, TRI-TAC, and the Ground Mobile Forces satellite communications terminals. Even after these programs have been implemented, however, some important problem areas, or challenges, will remain, especially in our ability to resist determined electronic-warfare and physical attacks. This paper first describes the challenges that will remain after the implementation of the currently planned programs. Some important technology opportunities are then identified that hold promise for meeting some of the challenges in the 1990s. In addition, some system approaches are suggested for exploiting these technology opportunities, and for improving our use of older technologies. These system approaches emphasize adaptive network techniques, network management/control, packet switching, and joint-service common-user systems.

  6. Monitoring biological diversity: strategies, tools, limitations, and challenges

    USGS Publications Warehouse

    Beever, E.A.

    2006-01-01

    Monitoring is an assessment of the spatial and temporal variability in one or more ecosystem properties, and is an essential component of adaptive management. Monitoring can help determine whether mandated environmental standards are being met and can provide an early-warning system of ecological change. Development of a strategy for monitoring biological diversity will likely be most successful when based upon clearly articulated goals and objectives and may be enhanced by including several key steps in the process. Ideally, monitoring of biological diversity will measure not only composition, but also structure and function at the spatial and temporal scales of interest. Although biodiversity monitoring has several key limitations as well as numerous theoretical and practical challenges, many tools and strategies are available to address or overcome such challenges; I summarize several of these. Due to the diversity of spatio-temporal scales and comprehensiveness encompassed by existing definitions of biological diversity, an effective monitoring design will reflect the desired sampling domain of interest and its key stressors, available funding, legal requirements, and organizational goals.

  7. Development of biosensors for the detection of biological warfare agents: its issues and challenges.

    PubMed

    Kumar, Harish; Rani, Renu

    2013-01-01

    This review discusses current development in biosensors for the detection of biological warfare agents (BWAs). BWAs include bacteria, virus and toxins that are added deliberately into air water and food to spread terrorism and cause disease or death. The rapid and unambiguous detection and identification of BWAs with early warning signals for detecting possible biological attack is a major challenge for government agencies particularly military and health. The detection devices--biosensors--can be classified (according to their physicochemical transducers) into four types: electrochemical, nucleic acid, optical and piezoelectric. Advantages and limitations of biosensors are discussed in this review followed by an assessment of the current state of development of different types of biosensors. The research and development in biosensors for biological warfare agent detection is of great interest for the public as well as for governments.

  8. Challenges in Analyzing the Biological Effects of Resveratrol

    PubMed Central

    Erdogan, Cihan Suleyman; Vang, Ole

    2016-01-01

    The suggested health effects (e.g., disease prevention) of dietary bioactive compounds such as resveratrol are challenging to prove in comparison to man-made drugs developed for therapeutic purposes. Dietary bioactive compounds have multiple cellular targets and therefore have a variety of biological effects. Extrapolating the biological effects of dietary compounds from in vitro and in vivo animal experiments to humans may lead to over- or under-estimation of the effect and role of these compounds. The present paper will discuss a few of these challenges and suggest directions for future research. Questions we address include: (1) Is the combinatorial effect of resveratrol and other compounds real? (2) What are the real and relevant doses of resveratrol after administration? and (3) Is it possible to estimate the preventive effect of resveratrol by clinical trials using standard experimental designs? The examples concerning resveratrol taken from the scientific literature are mainly from 2010 and later. The challenges pointed out in this review are similar to most naturally occurring bioactive compounds. PMID:27294953

  9. BIOLOGICAL WASTE AIR TREATMENT IN BIOTRICKLING FILTERS. (R825392)

    EPA Science Inventory

    Abstract

    Recent studies in the area of biological waste air treatment in biotrickling filters have addressed fundamental key issues, such as biofilm architecture, microbiology of the process culture and means to control accumulation of biomass. The results from these s...

  10. Challenges and Opportunities of Air Quality Management in Mexico City

    NASA Astrophysics Data System (ADS)

    Paramo, V.

    2013-05-01

    The Mexico City Metropolitan Area (MCMA) is located in the central plateau of Mexico and is the capital of the country. Its natural characteristics present favorable conditions for air pollution formation and accumulation: mountains surrounding the city, frequent thermal inversions, high isolation all around the year and weak winds. To these natural conditions, a population of more than 20 million inhabitants, a fleet of 4.5 million vehicles and more than 4 thousands industries, make air quality management a real challenge for governments of the region. Intensive air quality improvement actions and programs began at the end of the 1980's and continued nowadays. Since then criteria air pollutants concentrations have decreased in such a way that currently most of pollutants meet the Mexican air quality standards, except for ozone and particulate matter. Applied measures comprised of fuel quality improvements, fuel replacements, regulations for combustion processes, closing of high polluting refineries and industries, regulations of emissions for new and on road vehicles, mandatory I/M programs for vehicles, circulation restrictions for vehicles (Day without car program), alert program for elevated air pollution episodes, improvement of public transportation, among others. Recent researches (MILAGRO 2006 campaign) found that currently it is necessary to implement emissions reduction actions for Volatile Organic Compounds, particulate matter with a diameter of less than 2.5 micrometers PM2.5 and Nitrogen Oxides, in order to reduce concentrations of ozone and fine particulate matter. Among the new measures to be implemented are: regulations for VOCs emissions in the industry and commercial sectors; regulation of the diesel fleet that includes fleets renewal, filters and particulate traps for in use vehicles and regulation of the cargo fleet; new schemes for reducing the number of vehicles circulating in the city; implementation of non-motorized mobility programs; among

  11. Mathematical and Computational Challenges in Population Biology and Ecosystems Science

    NASA Technical Reports Server (NTRS)

    Levin, Simon A.; Grenfell, Bryan; Hastings, Alan; Perelson, Alan S.

    1997-01-01

    Mathematical and computational approaches provide powerful tools in the study of problems in population biology and ecosystems science. The subject has a rich history intertwined with the development of statistics and dynamical systems theory, but recent analytical advances, coupled with the enhanced potential of high-speed computation, have opened up new vistas and presented new challenges. Key challenges involve ways to deal with the collective dynamics of heterogeneous ensembles of individuals, and to scale from small spatial regions to large ones. The central issues-understanding how detail at one scale makes its signature felt at other scales, and how to relate phenomena across scales-cut across scientific disciplines and go to the heart of algorithmic development of approaches to high-speed computation. Examples are given from ecology, genetics, epidemiology, and immunology.

  12. Mathematics and biology: The interface, challenges and opportunities

    SciTech Connect

    Levin, S.A. )

    1992-06-01

    The interface between mathematics and biology has long been a rich area of research, with mutual benefit to each supporting discipline. Traditional areas of investigation, such as population genetics, ecology, neurobiology, and 3-D reconstructions, have flourished, despite a rather meager environment for the funding of such work. In the past twenty years, the kind and scope of such interactions between mathematicians and biologists have changed dramatically, reaching out to encompass areas of both biology and mathematics that previously had not benefited. At the same time, with the closer integration of theory and experiment, and the increased reliance on high-speed computation, the costs of such research grew, though not the opportunities for funding. The perception became reinforced, both within the research community and at funding agencies, that although these interactions were expanding, they were not doing so at the rate necessary to meet the opportunities and needs. A workshop was held in Washington, DC, between April 28 and May 3, 1990 which drew together a broadly based group of researchers to synthesize conclusions from a group of working papers and extended discussions. The result is the report presented here, which we hope will provide a guide and stimulus to research in mathematical and computational biology for at least the next decade. The report identifies a number of grand challenges, representing a broad consensus among the participants.

  13. Biological effects of air pollution in Sao Paulo and Cubatao

    SciTech Connect

    Boehm, G.M.S.; Saldiva, P.H.; Pasqualucci, C.A.; Massad, E.; Martins M de, E.; Zin, W.A.; Cardoso, W.V.; Criado, P.M.; Komatsuzaki, M.; Sakae, R.S. )

    1989-08-01

    Rats were used as biological indicators of air quality in two heavily polluted Brazilian towns: Sao Paulo and Cubatao. They were exposed for 6 months to ambient air in areas where the pollution was known to be severe. The following parameters were studied and compared to those of control animals: respiratory mechanics, mucociliary transport, morphometry of respiratory epithelium and distal air spaces, and general morphological alterations. The results showed lesions of the distal and upper airways in rats exposed in Cubatao, whereas the animals from Sao Paulo showed only alterations of the upper airways but of greater intensity than those observed in the Cubatao group. There are both qualitative and quantitative differences in the pollutants of these places: in Sao Paulo automobile exhaust gases dominate and in Cubatao the pollution is due mainly to particulates of industrial sources. The correlation of the pathological findings with the pollutants is discussed and it is concluded that biological indicators are useful to monitor air pollutions which reached dangerous levels in Sao Paulo and Cubatao.

  14. The bioartificial pancreas (BAP): Biological, chemical and engineering challenges.

    PubMed

    Iacovacci, Veronica; Ricotti, Leonardo; Menciassi, Arianna; Dario, Paolo

    2016-01-15

    The bioartificial pancreas (BAP) represents a viable solution for the treatment of type 1 diabetes (T1D). By encapsulating pancreatic cells in a semipermeable membrane to allow nutrient, insulin and glucose exchange, the side effects produced by islets and whole organ transplantation-related immunosuppressive therapy can be circumvented. Several factors, mainly related to materials properties, capsule morphology and biological environment, play a key role in optimizing BAP systems. The BAP is an extremely complex delivery system for insulin. Despite considerable efforts, in some instances meeting with limited degree of success, a BAP capable of restoring physiological pancreas functions without the need for immunosuppressive drugs and of controlling blood glucose levels especially in large animal models and a few clinical trials, does not exist. The state of the art in terms of materials, fabrication techniques and cell sources, as well as the current status of commercial devices and clinical trials, are described in this overview from an interdisciplinary viewpoint. In addition, challenges to the creation of effective BAP systems are highlighted including future perspectives in terms of component integration from both a biological and an engineering viewpoint.

  15. Detection of biological threats. A challenge for directed molecular evolution.

    PubMed

    Petrenko, Valery A; Sorokulova, Iryna B

    2004-08-01

    The probe technique originated from early attempts of Anton van Leeuwenhoek to contrast microorganisms under the microscope using plant juices, successful staining of tubercle bacilli with synthetic dyes by Paul Ehrlich and discovery of a stain for differentiation of gram-positive and gram-negative bacteria by Hans Christian Gram. The technique relies on the principle that pathogens have unique structural features, which can be recognized by specifically labeled organic molecules. A hundred years of extensive screening efforts led to discovery of a limited assortment of organic probes that are used for identification and differentiation of bacteria. A new challenge--continuous monitoring of biological threats--requires long lasting molecular probes capable of tight specific binding of pathogens in unfavorable conditions. To respond to the challenge, probe technology is being revolutionized by utilizing methods of combinatorial chemistry, phage display and directed molecular evolution. This review describes how molecular evolution methods are applied for development of peptide, antibody and phage probes, and summarizes the author's own data on development of landscape phage probes against Salmonella typhimurium. The performance of the probes in detection of Salmonella is illustrated by a precipitation test, enzyme-linked immunosorbent assay (ELISA), fluorescence-activated cell sorting (FACS) and fluorescent, optical and electron microscopy.

  16. Biological air contamination in elderly care centers: geria project.

    PubMed

    Aguiar, Lívia; Mendes, Ana; Pereira, Cristiana; Neves, Paula; Mendes, Diana; Teixeira, João Paulo

    2014-01-01

    Indoor air quality (IAQ) affects health particularly in susceptible individuals such as the elderly. It has been estimated that the older population spends approximately 19-20 h/d indoors, and the majority of the elderly spend all of their time indoors in elderly care centers (ECC). Older individuals may be particularly at risk of exposure to detrimental effects from pollutants, even at low concentrations, due to common and multiple underlying chronic diseases that increase susceptibility. This study, aimed to assess the impact of indoor biological agents in 22 ECC located in Porto, was conducted during summer and winter from November 2011 to August 2013 at a total of 141 areas within dining rooms, drawing rooms, medical offices, and bedrooms (including the bedridden). Air sampling was carried out with a microbiological air sampler (Merck MAS-100) and using tryptic soy agar for bacteria and malt extract agar for fungi. The results obtained were compared with the recently revised Portuguese standards. In winter, mean fungi concentration exceeded reference values, while bacteria concentrations were within the new standards in both seasons. The main fungi species found indoors were Cladosporium (73%) in summer and Penicillium (67%) in winter. Aspergillus fumigatus, Aspergillus niger, and Aspergillus flavus, known potential pathogenic/toxigenic species, were also identified. Although the overall rate and mean values of bacteria and fungi found in ECC indoor air met Portuguese legislation, some concern is raised by the presence of pathogenic microorganisms. Simple measures, like opening windows and doors to promote air exchange and renewal, may improve effectiveness in enhancing IAQ.

  17. THE CHALLENGES OF AIR POLLUTION AND RESIDUAL RISK ASSESSMENT (EDITORIAL)

    EPA Science Inventory

    The Clean Air Act (CAA), a comprehensive federal law that regulates air pollution from stationary and mobile sources, was first passed in 1963. The act has provided the primary framework for protecting human health and the environment. The CAA divides air pollutants into "criteri...

  18. Indoor air problems in hospitals: a challenge for occupational health.

    PubMed

    Hellgren, Ulla-Maija; Reijula, Kari

    2011-03-01

    Indoor air problems, caused by moisture damage and limited ventilation, have been detected in Finnish hospital buildings. A recent survey found that hospital personnel experience indoor air-related symptoms more often than office workers. The aim of this study was to assess the role, capabilities, and methods of hospital occupational health professionals in handling indoor air problems. Data were generated through semi-structured interviews. Representatives of occupational health, occupational safety, and infection control were interviewed in seven central hospitals. The data were analyzed using qualitative methods. According to interviewed professionals, indoor air problems are difficult to tackle. The evaluation of health risks and risk communication were considered particularly difficult. A uniform action model for resolving indoor air problems should be created. An interprofessional indoor air group to handle indoor air problems should be created in all hospitals.

  19. Export controls and biological weapons: new roles, new challenges.

    PubMed

    Roberts, B

    1998-01-01

    This article considers the value of export controls in reducing the threat of biological weapons. It concludes that export control through export licensing is an essential element in the overall strategy to limit the spread of biological weapons. Modifications to existing export control systems can maximize the usefulness of export controls for limiting the threat of biological warfare and bioterrorism. Export controls are useful only within a broader strategy that includes both an arms control dimension and military defensive preparedness.

  20. Air pollution and population health: a global challenge.

    PubMed

    Chen, Bingheng; Kan, Haidong

    2008-03-01

    "Air pollution and population health" is one of the most important environmental and public health issues. Economic development, urbanization, energy consumption, transportation/motorization, and rapid population growth are major driving forces of air pollution in large cities, especially in megacities. Air pollution levels in developed countries have been decreasing dramatically in recent decades. However, in developing countries and in countries in transition, air pollution levels are still at relatively high levels, though the levels have been gradually decreasing or have remained stable during rapid economic development. In recent years, several hundred epidemiological studies have emerged showing adverse health effects associated with short-term and long-term exposure to air pollutants. Time-series studies conducted in Asian cities also showed similar health effects on mortality associated with exposure to particulate matter (PM), sulfur dioxide (SO(2)), nitrogen dioxide (NO(2)) and ozone (O(3)) to those explored in Europe and North America. The World Health Organization (WHO) published the "WHO Air Quality Guidelines (AQGs), Global Update" in 2006. These updated AQGs provide much stricter guidelines for PM, NO(2), SO(2) and O(3). Considering that current air pollution levels are much higher than the WHO-recommended AQGs, interim targets for these four air pollutants are also recommended for member states, especially for developing countries in setting their country-specific air quality standards. In conclusion, ambient air pollution is a health hazard. It is more important in Asian developing countries within the context of pollution level and population density. Improving air quality has substantial, measurable and important public health benefits.

  1. Mathematical and numerical challenges in living biological materials

    NASA Astrophysics Data System (ADS)

    Forest, M. Gregory; Vasquez, Paula A.

    2013-10-01

    The proclaimed Century of Biology is rapidly leading to the realization of how starkly different and more complex biological materials are than the materials that underpinned the industrial and technological revolution. These differences arise, in part, because biological matter exhibits both viscous and elastic behavior. Moreover, this behavior varies across the frequency, wavelength and amplitude spectrum of forcing. This broadclass of responsesin biological matter requires multiple frequency-dependent functions to specify material behavior, instead of a discrete set of parameters that relate to either viscosity or elasticity. This complexity prevails even if the biological matter is assumed to be spatially homogeneous, which is rarely true. However, very little progress has been made on the characterization of heterogeneity and how to build that information into constitutive laws and predictive models. In addition, most biological matter is non-stationary, which motivates the term "living". Biomaterials typically are in an active state in order to perform certain functions, and they often are modified or replenished on the basis of external stimuli. It has become popular in materials engineering to try to duplicate some of the functionality of biomaterials, e.g., a lot of effort has gone into the design of self-assembling, self-healing and shape shifting materials. These distinguishing features of biomaterials require significantly more degrees of freedom than traditional composites and many of the molecular species and their roles in functionality have yet to be determined. A typical biological material includes small molecule biochemical species that react and diffuse within larger species. These large molecular weightspecies provide the primary structural and biophysical properties of the material. The small molecule binding and unbinding kinetics serves to modulate material properties, and typical small molecule production and release are governed by

  2. Persulfides: Current Knowledge and Challenges in Chemistry and Chemical Biology

    PubMed Central

    Park, Chung-Min; Weerasinghe, Laksiri; Day, Jacob J.; Fukuto, Jon M.; Xian, Ming

    2015-01-01

    Recent studies conducted in hydrogen sulfide (H2S) signaling have revealed potential importance of persulfides (RSSH) in redox biology. The inherent instability of RSSH makes these species difficult to study and sometimes controversial results are reported. In this review article we summarize known knowledge about both small molecule persulfides and protein persulfides. Their fundamental physical and chemical properties such as preparation/formation and reactivity are discussed. The biological implications of persulfides and their detection methods are also discussed. PMID:25969163

  3. The Center for Computational Biology: resources, achievements, and challenges.

    PubMed

    Toga, Arthur W; Dinov, Ivo D; Thompson, Paul M; Woods, Roger P; Van Horn, John D; Shattuck, David W; Parker, D Stott

    2012-01-01

    The Center for Computational Biology (CCB) is a multidisciplinary program where biomedical scientists, engineers, and clinicians work jointly to combine modern mathematical and computational techniques, to perform phenotypic and genotypic studies of biological structure, function, and physiology in health and disease. CCB has developed a computational framework built around the Manifold Atlas, an integrated biomedical computing environment that enables statistical inference on biological manifolds. These manifolds model biological structures, features, shapes, and flows, and support sophisticated morphometric and statistical analyses. The Manifold Atlas includes tools, workflows, and services for multimodal population-based modeling and analysis of biological manifolds. The broad spectrum of biomedical topics explored by CCB investigators include the study of normal and pathological brain development, maturation and aging, discovery of associations between neuroimaging and genetic biomarkers, and the modeling, analysis, and visualization of biological shape, form, and size. CCB supports a wide range of short-term and long-term collaborations with outside investigators, which drive the center's computational developments and focus the validation and dissemination of CCB resources to new areas and scientific domains.

  4. Clinical challenges of persistent pulmonary air-leaks--case report.

    PubMed

    van Zeller, M; Bastos, P; Fernandes, G; Magalhães, A

    2014-01-01

    Air leaks are a common problem after pulmonary resection and can be a source of significant morbidity and mortality. The authors describe the case of a 68-year-old male patient who presented with a persistent air-leak after pulmonary resection. Watchful waiting, surgical procedures, as well as medical therapy like pleurodesis and implantation of endobronchial one-way valves on the bronchial segments identified using systematic occlusion of the bronchial segments, were all tried unsuccessfully. During that time the patient remained hospitalized with a chest tube. The instillation of methylene blue through the chest tube was used to identify the segments leading to the persistent air-leak; this enabled successful endobronchial valve placement which sufficiently reduced the size of the air-leak so that the chest tube could be removed. Nonsurgical approaches seem promising and, for some patients may be the only treatment option after all conventional treatments have failed or are considered too high risk.

  5. Emotional Avoidance and Panicogenic Responding to a Biological Challenge Procedure

    ERIC Educational Resources Information Center

    Karekla, Maria; Forsyth, John P.; Kelly, Megan M.

    2004-01-01

    Healthy undergraduates high (n = 27) and low (n = 27) in experiential avoidance underwent twelve 20 s inhalations of 20% carbon dioxide-enriched air, while physiological (e.g., skin conductance, heart rate, EMG, and end-tidal CO[subscript 2]) and subjective (e.g., subjective units of distress, evaluative ratings, number and severity of panic…

  6. A decade of molecular cell biology: achievements and challenges.

    PubMed

    Akhtar, Asifa; Fuchs, Elaine; Mitchison, Tim; Shaw, Reuben J; St Johnston, Daniel; Strasser, Andreas; Taylor, Susan; Walczak, Claire; Zerial, Marino

    2011-09-23

    Nature Reviews Molecular Cell Biology celebrated its 10-year anniversary during this past year with a series of specially commissioned articles. To complement this, here we have asked researchers from across the field for their insights into how molecular cell biology research has evolved during this past decade, the key concepts that have emerged and the most promising interfaces that have developed. Their comments highlight the broad impact that particular advances have had, some of the basic understanding that we still require, and the collaborative approaches that will be essential for driving the field forward.

  7. Electrically Rechargeable Zinc-Air Batteries: Progress, Challenges, and Perspectives.

    PubMed

    Fu, Jing; Cano, Zachary Paul; Park, Moon Gyu; Yu, Aiping; Fowler, Michael; Chen, Zhongwei

    2017-02-01

    Zinc-air batteries have attracted much attention and received revived research efforts recently due to their high energy density, which makes them a promising candidate for emerging mobile and electronic applications. Besides their high energy density, they also demonstrate other desirable characteristics, such as abundant raw materials, environmental friendliness, safety, and low cost. Here, the reaction mechanism of electrically rechargeable zinc-air batteries is discussed, different battery configurations are compared, and an in depth discussion is offered of the major issues that affect individual cellular components, along with respective strategies to alleviate these issues to enhance battery performance. Additionally, a section dedicated to battery-testing techniques and corresponding recommendations for best practices are included. Finally, a general perspective on the current limitations, recent application-targeted developments, and recommended future research directions to prolong the lifespan of electrically rechargeable zinc-air batteries is provided.

  8. Ethical and regulatory challenges posed by synthetic biology.

    PubMed

    Rager-Zisman, Bracha

    2012-01-01

    Synthetic biology is a relatively new science with tremendous potential to change how we view and know the life sciences, but like many developing technologies, it has provoked ethical concerns from the scientific community and the public and confronts demands for new regulatory measures. The concerns raised involve the danger of "dual use," in which results for improving human well-being and the environment may be misappropriated for bioterror. To counteract these dangers, many governments, but the United States and Israel in particular, have introduced new laws and redoubled measures for biosafety and biosecurity. In the United States, the recent H5N1 results achieved by two groups of NIH-funded investigators highlighted the dilemma of balancing the risk of dual-use research and the freedom of science. In Israel, concern for unconventional terrorism is long-standing, and the country is constantly engaged in improving biosecurity and biodefense measures. In 2008, the Israeli parliament passed the Regulation of Research into Biological Disease Agents Law, a legislative framework for safeguarding research into biological disease agents. This article summarizes and analyzes the current state of affairs in the United States and Israel, ethical attitudes, and regulatory responses to synthetic biology.

  9. Developing Nontraditional Biology Labs to Challenge Students & Enhance Learning

    ERIC Educational Resources Information Center

    Cherif, Abour H.; Siuda, JoElla E.; Movahedzadeh, Farahnaz

    2013-01-01

    Laboratory experience and skills are not only essential for success in science studies, but are the most exciting and rewarding aspects of science for students. As a result, many biology teachers have become critical of the efficacy of cookbook-type laboratory activities as well as the purposes, practices, and learning outcomes of lab experiments…

  10. Biological removal of carbon disulfide from waste air streams

    SciTech Connect

    Hugler, W.; Acosta, C.; Revah, S.

    1999-09-30

    A pilot-scale biological control system for the treatment of 3,400 m{sup 3} h{sup {minus}1} of a gaseous stream containing up to 7.8 g CS{sub 2} m{sup {minus}3} and trace amounts of hydrogen sulfide (H{sub 2}S) was installed in a cellulose sponge manufacturing facility. The objective was to demonstrate the capability of the process to attain sustained removal efficiencies of 90% for CS{sub 2} and 99% for H{sub 2}S. The system consisted of two sequential biotrickling reactors, which had been previously inoculated with an adapted microbial consortium. During the pilot test, stable removal efficiency and elimination capacity of +90% and 220g CS{sub 2} m{sup {minus}3} h{sup {minus}1}, respectively, were attained with an empty bed residence time (EBTR) of 33 seconds for a period of several weeks. Efficiencies greater than 99% were always obtained for H{sub 2}S. Based on the results, the system was determined to be an effective process to remediate waste air streams containing reduced sulfur compounds generated at cellulose sponge facilities.

  11. New challenges to air/gas cleaning systems

    SciTech Connect

    Kovach, J.L.

    1997-08-01

    This paper discusses the need for changes in the design and manufacturing of air and gas cleaning systems to meet waste management and site remediation requirements. Current design and manufacturing practices are primarily directed toward evaluating operational problems with existing systems in nuclear reactor facilities. However, nuclear waste management needs have developed which are much broader in scope and have different processing conditions. Numerous examples of air cleaning needs for waste management activities are provided; the major differences from operating facility needs are the requirement for continuous effluent treatment under widely different processing conditions. Related regulatory issues are also discussed briefly. 1 ref.

  12. Challenges in assessing biological recovery from acidification in Swedish lakes.

    PubMed

    Holmgren, Kerstin

    2014-01-01

    Since the 1980s, Swedish lakes have in general become less acidified. Assessment of biological recovery is, however, hampered by poor pre-acidification data, confounding effects of climate change, and few lakes with annual sampling of fish and other organisms. Only three critically acidified, but non-limed, lakes had two decades of fish monitoring. The lakes had not yet recovered to pre-industrial chemical targets. Fish had low species richness compared to other organism groups. Roach (Rutilus rutilus) and/or European perch (Perca fluviatilis) were the dominant fish species, and the acid-sensitive roach had been lost from one of the lakes. Calcium decreased, possibly approaching pre-acidification concentrations, but exceeded minimum levels needed to sustain some Daphnia species. High or increasing levels of total organic carbon, likely due to reduced acidification and climate change, might influence the biological communities in unexpected ways, for example, facilitating more frequent occurrence of the invasive algae Gonyostomum semen.

  13. Biological Stability of Drinking Water: Controlling Factors, Methods, and Challenges.

    PubMed

    Prest, Emmanuelle I; Hammes, Frederik; van Loosdrecht, Mark C M; Vrouwenvelder, Johannes S

    2016-01-01

    Biological stability of drinking water refers to the concept of providing consumers with drinking water of same microbial quality at the tap as produced at the water treatment facility. However, uncontrolled growth of bacteria can occur during distribution in water mains and premise plumbing, and can lead to hygienic (e.g., development of opportunistic pathogens), aesthetic (e.g., deterioration of taste, odor, color) or operational (e.g., fouling or biocorrosion of pipes) problems. Drinking water contains diverse microorganisms competing for limited available nutrients for growth. Bacterial growth and interactions are regulated by factors, such as (i) type and concentration of available organic and inorganic nutrients, (ii) type and concentration of residual disinfectant, (iii) presence of predators, such as protozoa and invertebrates, (iv) environmental conditions, such as water temperature, and (v) spatial location of microorganisms (bulk water, sediment, or biofilm). Water treatment and distribution conditions in water mains and premise plumbing affect each of these factors and shape bacterial community characteristics (abundance, composition, viability) in distribution systems. Improved understanding of bacterial interactions in distribution systems and of environmental conditions impact is needed for better control of bacterial communities during drinking water production and distribution. This article reviews (i) existing knowledge on biological stability controlling factors and (ii) how these factors are affected by drinking water production and distribution conditions. In addition, (iii) the concept of biological stability is discussed in light of experience with well-established and new analytical methods, enabling high throughput analysis and in-depth characterization of bacterial communities in drinking water. We discussed, how knowledge gained from novel techniques will improve design and monitoring of water treatment and distribution systems in order

  14. Biological Stability of Drinking Water: Controlling Factors, Methods, and Challenges

    PubMed Central

    Prest, Emmanuelle I.; Hammes, Frederik; van Loosdrecht, Mark C. M.; Vrouwenvelder, Johannes S.

    2016-01-01

    Biological stability of drinking water refers to the concept of providing consumers with drinking water of same microbial quality at the tap as produced at the water treatment facility. However, uncontrolled growth of bacteria can occur during distribution in water mains and premise plumbing, and can lead to hygienic (e.g., development of opportunistic pathogens), aesthetic (e.g., deterioration of taste, odor, color) or operational (e.g., fouling or biocorrosion of pipes) problems. Drinking water contains diverse microorganisms competing for limited available nutrients for growth. Bacterial growth and interactions are regulated by factors, such as (i) type and concentration of available organic and inorganic nutrients, (ii) type and concentration of residual disinfectant, (iii) presence of predators, such as protozoa and invertebrates, (iv) environmental conditions, such as water temperature, and (v) spatial location of microorganisms (bulk water, sediment, or biofilm). Water treatment and distribution conditions in water mains and premise plumbing affect each of these factors and shape bacterial community characteristics (abundance, composition, viability) in distribution systems. Improved understanding of bacterial interactions in distribution systems and of environmental conditions impact is needed for better control of bacterial communities during drinking water production and distribution. This article reviews (i) existing knowledge on biological stability controlling factors and (ii) how these factors are affected by drinking water production and distribution conditions. In addition, (iii) the concept of biological stability is discussed in light of experience with well-established and new analytical methods, enabling high throughput analysis and in-depth characterization of bacterial communities in drinking water. We discussed, how knowledge gained from novel techniques will improve design and monitoring of water treatment and distribution systems in order

  15. Challenges in vaccinating infants born to mothers taking immunoglobulin biologicals during pregnancy.

    PubMed

    Ling, Juejing; Koren, Gideon

    2016-01-01

    While immunoglobulin biologicals are increasingly used during pregnancy, there have been concerns on the immune function and vaccination of infants born to mothers taking immunoglobulin biologicals. In addition to the detection of biologicals in cord blood, cases of severe neonatal neutropenia and fatal dissemination of Bacillus Calmette-Guérin (BCG) have been reported. With increasing number of infants exposed to immunoglobulin biologicals in utero, there is a need to address the challenges in vaccinating these infants. This review summarizes the available evidence to discuss the issues of immunoglobulin biological exposure in utero, neonatal immune function, long-term immune development, and the challenges and strategies of vaccinating newborns and infants who were born to mothers taking biologicals during pregnancy.

  16. Organism, machine, artifact: The conceptual and normative challenges of synthetic biology.

    PubMed

    Holm, Sune; Powell, Russell

    2013-12-01

    Synthetic biology is an emerging discipline that aims to apply rational engineering principles in the design and creation of organisms that are exquisitely tailored to human ends. The creation of artificial life raises conceptual, methodological and normative challenges that are ripe for philosophical investigation. This special issue examines the defining concepts and methods of synthetic biology, details the contours of the organism-artifact distinction, situates the products of synthetic biology vis-à-vis this conceptual typology and against historical human manipulation of the living world, and explores the normative implications of these conclusions. In addressing the challenges posed by emerging biotechnologies, new light can be thrown on old problems in the philosophy of biology, such as the nature of the organism, the structure of biological teleology, the utility of engineering metaphors and methods in biological science, and humankind's relationship to nature.

  17. Dealing with Creationist Challenges. What European Biology Teachers Might Expect in the Classroom

    ERIC Educational Resources Information Center

    Blancke, Stefaan; Boudry, Maarten; Braeckman, Johan; De Smedt, Johan; De Cruz, Helen

    2011-01-01

    Creationists are becoming more active in Europe. We expect that European biology teachers will be more frequently challenged by students who introduce creationist misconceptions of evolutionary theory into the classroom. Moreover, research suggests that not all teachers are equally prepared to deal with them. To make biology teachers aware of what…

  18. The year's new drugs & biologics 2014 - Part II: trends & challenges.

    PubMed

    Graul, A I; Serebrov, M; Cruces, E; Tracy, M; Dulsat, C

    2015-02-01

    2014 was a year of continued high activity in the pharma and biotech industry, as evidenced in part I of this annual two-part review article published last month in this journal (1). As of December 23, 2014, a total of 55 new chemical and biological entities had reached their first markets worldwide, together with another 29 important new line extensions. Another 19 products were approved for the first time during the year but not yet launched by December 23. Furthermore, during the now-traditional year-end sprint, several regulatory agencies issued last-minute approvals for other compounds that missed the deadline for inclusion in that article, bringing the total of new approvals for the year to a somewhat higher number. In addition to the successful development, registration and launch of new drugs and biologics, there are various other trends and tendencies that serve as indicators of the overall health and status of the industry. These include the pursuit of novel programs designed by regulators to stimulate the development of drugs for diseases that are currently under-treated; the regular and pragmatic culling by companies of their R&D pipelines; and the decision to unify pipelines, portfolios and sales forces through mergers and acquisitions.

  19. Interfacing DNA nanodevices with biology: challenges, solutions and perspectives

    NASA Astrophysics Data System (ADS)

    Vinther, Mathias; Kjems, Jørgen

    2016-08-01

    The cellular machinery performs millions of complex reactions with extreme precision at nanoscale. From studying these reactions, scientists have become inspired to build artificial nanosized molecular devices with programmed functions. One of the fundamental tools in designing and creating these nanodevices is molecular self-assembly. In nature, deoxyribonucleic acid (DNA) is inarguably one of the most remarkable self-assembling molecules. Governed by the Watson-Crick base-pairing rules, DNA assembles with a structural reliability and predictability based on sequence composition unlike any other complex biological polymer. This consistency has enabled rational design of hundreds of two- and three-dimensional shapes with a molecular precision and homogeneity not preceded by any other known technology at the nanometer scale. During the last two decades, DNA nanotechnology has undergone a rapid evolution pioneered by the work of Nadrian Seeman (Kallenbach et al 1983 Nature 205 829-31). Especially the introduction of the versatile DNA Origami technique by Rothemund (2006 Nature 440 297-302) led to an efflorescence of new DNA-based self-assembled nanostructures (Andersen et al 2009 Nature 459 73-6, Douglas et al 2009 Nature 459 414-8, Dietz et al 2009 Science 325 725-30, Han et al 2011 Science 332 342-6, Iinuma et al 2014 Science 344 65-9), and variations of this technique have contributed to an increasing repertoire of DNA nanostructures (Wei et al 2012 Nature 485 623-6, Ke et al 2012 Science 338 1177-83, Benson et al 2015 Nature 523 441-4, Zhang et al 2015 Nat. Nanotechnol. 10 779-84, Scheible et al 2015 Small 11 5200-5). These advances have naturally triggered the question: What can these DNA nanostructures be used for? One of the leading proposals of use for DNA nanotechnology has been in biology and biomedicine acting as a molecular ‘nanorobot’ or smart drug interacting with the cellular machinery. In this review, we will explore and examine the perspective of

  20. Current challenges and approaches for the synergistic use of systems biology data in the scientific community.

    PubMed

    Ahrens, Christian H; Wagner, Ulrich; Rehrauer, Hubert K; Türker, Can; Schlapbach, Ralph

    2007-01-01

    Today's rapid development and broad application of high-throughput analytical technologies are transforming biological research and provide an amount of data and analytical opportunities to understand the fundamentals of biological processes undreamt of in past years. To fully exploit the potential of the large amount of data, scientists must be able to understand and interpret the information in an integrative manner. While the sheer data volume and heterogeneity of technical platforms within each discipline already poses a significant challenge, the heterogeneity of platforms and data formats across disciplines makes the integrative management, analysis, and interpretation of data a significantly more difficult task. This challenge thus lies at the heart of systems biology, which aims at a quantitative understanding of biological systems to the extent that systemic features can be predicted. In this chapter, we discuss several key issues that need to be addressed in order to put an integrated systems biology data analysis and mining within reach.

  1. Meeting the future challenges of air quality management in the United States.

    PubMed

    Bradley, Michael J

    2008-01-01

    The U.S. Clean Air Act (CAA, or the Act) and its amendments has achieved substantial progress in cleaning up the nation's air. Over the past 30 years, the CAA reduced emissions of the 6 principal ("criteria") pollutants by over 25%, even while gross domestic product (GDP) has increased over 150% and population and energy consumption rose by nearly 40%. However, despite the tremendous gains the Act has brought, the country's air quality management (AQM) system still faces substantial challenges. In response to a congressional request for an independent evaluation of the overall effectiveness of the CAA, the National Research Council formed the Committee on Air Quality Management. Composed of 25 members with diverse areas of air quality expertise, the committee was charged with developing scientific and technical recommendations for strengthening the nation's AQM system. In 2004, the National Academies published their recommendations in a text entitled Air Quality Management in the United States (National Research Council, 2004).

  2. [Quality of interior air: biological contaminants and their effects on health; bioaerosols and gathering techniques].

    PubMed

    Bălan, Gabriela

    2007-01-01

    Indoor Air Quality: biological contaminants and health effects; airborne organisms and sampling instruments. Biological contaminants include bacteria, molds, viruses, animal dander and cat saliva, house dust, mites, cockroaches and pollen. Symptoms of health problems caused by biological pollutants include sneezing, watery eyes, coughing, shortness of breath, dizziness, lethargy, fevers. Children, elderly people with breathing problems, allergies and lung diseases are particularly susceptible to disease-causing biological agents in the indoor air. It is convenient to consider microbiological samplers for collecting organisms in air as falling into several broad categories. Many popular microbiological air samplers use the principle of impaction to trap the organisms by impacting them directly on to agar. Further distinct groups are the impingers, which operate by impinging organisms into liquid.

  3. Air-sea interactions a techno-political history and future challenges

    NASA Astrophysics Data System (ADS)

    Geernaert, G.

    2003-04-01

    Air-sea interaction research has its origins in early inquiry into wave suppression and fisheries. These led to efforts designed to model current systems, predict risks and threats to commercial and exploit fisheries for economic benefit. A new set of national goals emerged about a century ago: exploit the physics of air-sea interactions for military superiority; to be followed a half century later with efforts to understand air-sea interactions to address water quality, offshore energy and climate challenges. In most part, sociopolitical events precipitated new scientific discoveries, through agency financed networks and targeted research programs. There are also examples of science driving the agency process. In this presentation, a brief history of political and scientific challenges will be given, to be followed by a summary of our greatest upcoming challenges.

  4. Addressing the Grand Challenge of atmospheric carbon dioxide: geologic sequestration vs. biological recycling

    PubMed Central

    2011-01-01

    On February 15, 2008, the National Academy of Engineering unveiled their list of 14 Grand Challenges for Engineering. Building off of tremendous advancements in the past century, these challenges were selected for their role in assuring a sustainable existence for the rapidly increasing global community. It is no accident that the first five Challenges on the list involve the development of sustainable energy sources and management of environmental resources. While the focus of this review is to address the single Grand Challenge of "develop carbon sequestration methods", is will soon be clear that several other Challenges are intrinsically tied to it through the principles of sustainability. How does the realm of biological engineering play a role in addressing these Grand Challenges? PMID:22047501

  5. Biological approaches for addressing the grand challenge of providing access to clean drinking water

    PubMed Central

    2011-01-01

    The U.S. National Academy of Engineering (NAE) recently published a document presenting "Grand Challenges for Engineering". This list was proposed by leading engineers and scientists from around the world at the request of the U.S. National Science Foundation (NSF). Fourteen topics were selected for these grand challenges, and at least seven can be addressed using the tools and methods of biological engineering. Here we describe how biological engineers can address the challenge of providing access to clean drinking water. This issue must be addressed in part by removing or inactivating microbial and chemical contaminants in order to properly deliver water safe for human consumption. Despite many advances in technologies this challenge is expanding due to increased pressure on fresh water supplies and to new opportunities for growth of potentially pathogenic organisms. PMID:21453515

  6. Biological approaches for addressing the grand challenge of providing access to clean drinking water.

    PubMed

    Riley, Mark R; Gerba, Charles P; Elimelech, Menachem

    2011-03-31

    The U.S. National Academy of Engineering (NAE) recently published a document presenting "Grand Challenges for Engineering". This list was proposed by leading engineers and scientists from around the world at the request of the U.S. National Science Foundation (NSF). Fourteen topics were selected for these grand challenges, and at least seven can be addressed using the tools and methods of biological engineering. Here we describe how biological engineers can address the challenge of providing access to clean drinking water. This issue must be addressed in part by removing or inactivating microbial and chemical contaminants in order to properly deliver water safe for human consumption. Despite many advances in technologies this challenge is expanding due to increased pressure on fresh water supplies and to new opportunities for growth of potentially pathogenic organisms.

  7. The Diamond Light Source and the challenges ahead for structural biology: some informal remarks

    PubMed Central

    Ramakrishnan, V.

    2015-01-01

    The remarkable advances in structural biology in the past three decades have led to the determination of increasingly complex structures that lie at the heart of many important biological processes. Many of these advances have been made possible by the use of X-ray crystallography using synchrotron radiation. In this short article, some of the challenges and prospects that lie ahead will be summarized. PMID:25624524

  8. The Diamond Light Source and the challenges ahead for structural biology: some informal remarks.

    PubMed

    Ramakrishnan, V

    2015-03-06

    The remarkable advances in structural biology in the past three decades have led to the determination of increasingly complex structures that lie at the heart of many important biological processes. Many of these advances have been made possible by the use of X-ray crystallography using synchrotron radiation. In this short article, some of the challenges and prospects that lie ahead will be summarized.

  9. [Experimental research on combined water and air backwashing reactor technology for biological activated carbon].

    PubMed

    Xie, Zhi-Gang; Qiu, Xue-Min; Zhao, Yan-Ling

    2012-01-01

    To proper control the backwashing process of biological activated carbon (BAC) reactor and improve the overall operation performance, the evaluative indexes such as backwashing wastewater turbidity, organic pollutants removal rate of pre and post-backwashing, and the variation of biomass and biological activity in carbon column are used to compare and analyze the effect of three different combined water and air backwashing methods on the operation of BAC reactor. The result shows that intermittent combined water and air backwashing method is most suitable to BAC reactor. The biological activaty obviously increases by 62.5% after intermittent combined water and air backwashing process. While, the biological activaty using the backwashing method of air plus water and the backwashing method of water and air compounded plus water washing increases by 55.6%, 38.5%, respectively. After backwashing 308h, the reactor recovered to its normal function after intermittent combined water and air backwashing process with the removal rate of UV254 reaching to 60.0%. The fulvic-like fluorescence peak of backwashing water are very weak, and are characterized by low-excitation wavelength tryptophan like (peak S) and high excitation wavelength of tryptophan (peak T), which are caused by the microbial debris washed down. The three-dimensional fluorescence spectra also show that microbial fragments are easy to be washed clean with intermittent combined water and air backwashing.

  10. The Challenge of Proteomic Data from Molecular Signals to Biological Networks and Disease

    SciTech Connect

    Webb-Robertson, Bobbie-Jo M.; Cannon, William R.; Adkins, Joshua N.; Gracio, Deborah K.

    2006-12-31

    Mass spectrometry (MS) based proteomics is a rapidly advancing field that has great promise for both understanding biological systems as well as advancing the identification and treatment of disease. Breakthroughs in science and medicine due to proteomics, however, are coupled with our ability to overcome significant challenges in the field. These challenges are multi-scalar, spanning the range from the statistics of molecules and molecular signals, to the phenomenological characterization of disease. The papers presented in this section are a representative snapshot of these challenges that span scale and scientific disciplines.

  11. Air monitoring and detection of chemical and biological agents

    SciTech Connect

    Leonelli, J.; Althouse, M.L.

    1999-06-01

    This volume contains the proceedings of SPIE`s remote sensing symposium which was held November 2--3, 1998 in Boston, Massachusetts. Topics of discussion include the following: system simulations, atmospheric modeling, and performance prediction studies of chemical warfare remote sensing technologies; ultraviolet laser-induced fluorescence and aerosol detection methods for remote sensing of biological warfare agents; passive detection methods for remote detection of chemical warfare agents; and lidar-based system performance assessments, demonstrations, and new concepts for chemical warfare/biological warfare detection.

  12. Towards a Rigorous Assessment of Systems Biology Models: The DREAM3 Challenges

    PubMed Central

    Prill, Robert J.; Marbach, Daniel; Saez-Rodriguez, Julio; Sorger, Peter K.; Alexopoulos, Leonidas G.; Xue, Xiaowei; Clarke, Neil D.; Altan-Bonnet, Gregoire; Stolovitzky, Gustavo

    2010-01-01

    Background Systems biology has embraced computational modeling in response to the quantitative nature and increasing scale of contemporary data sets. The onslaught of data is accelerating as molecular profiling technology evolves. The Dialogue for Reverse Engineering Assessments and Methods (DREAM) is a community effort to catalyze discussion about the design, application, and assessment of systems biology models through annual reverse-engineering challenges. Methodology and Principal Findings We describe our assessments of the four challenges associated with the third DREAM conference which came to be known as the DREAM3 challenges: signaling cascade identification, signaling response prediction, gene expression prediction, and the DREAM3 in silico network challenge. The challenges, based on anonymized data sets, tested participants in network inference and prediction of measurements. Forty teams submitted 413 predicted networks and measurement test sets. Overall, a handful of best-performer teams were identified, while a majority of teams made predictions that were equivalent to random. Counterintuitively, combining the predictions of multiple teams (including the weaker teams) can in some cases improve predictive power beyond that of any single method. Conclusions DREAM provides valuable feedback to practitioners of systems biology modeling. Lessons learned from the predictions of the community provide much-needed context for interpreting claims of efficacy of algorithms described in the scientific literature. PMID:20186320

  13. Medical and biological engineering in the next 20 years: the promise and the challenges.

    PubMed

    2013-07-01

    In 2011, the American Institute for Medical and Biological Engineering (AIMBE) (www.aimbe.org) celebrated its 20th anniversary by undertaking to identify major societal challenges to which medical and biological engineers can contribute solutions in the next 20 years. This report is a summary of the six major challenges that were identified. The report also discusses some specific areas within these high-level challenges that can form the basis for policy action, provides a brief rationale for pursuing those areas, and discusses roadblocks to progress. The six overarching challenges are: 1) engineering safe and sustainable water and food supply, 2) engineering personalized health care, 3) engineering solutions to injury and chronic diseases, 4) engineering global health through infectious disease prevention and therapy, 5) engineering sustainable bioenergy production, and 6) engineering the 21st century US economy. While arrived at independently by AIMBE, many of the elements overlap with similar challenges identified by other bodies. The similarities highlight the central mission of medical and biological engineers, working with other experts, which is to solve important problems central to human health and welfare.

  14. Airborne pathogens inside automobiles for domestic use: Assessing in-car air decontamination devices using Staphylococcus aureus as the challenge.

    PubMed

    Sattar, Syed A; Zargar, Bahram; Wright, Kathryn E; Rubino, Joseph R; Ijaz, M Khalid

    2017-04-07

    Family cars represent ∼74% of the yearly global output of motorized vehicles. With the life-expectancy of ∼8 decades in many countries, one spends >100 minutes daily inside the confined and often shared space of the car with exposure to a mix of potentially harmful microbes. Can commercial in-car air microbial decontamination devices mitigate the risk? Three such devices (designated as Device #s1-3) with HEPA filters were tested in the modified passenger cabin (3.25 m3) of a four-door sedan housed within a biosafety level 3 containment facility. Staphylococcus aureus (ATCC 6538) was suspended in a soil load to simulate the presence of body fluids and aerosolized into the car's cabin with a 6-jet Collison nebulizer. A muffin fan (80 mm X 80 mm, with an output of 0.17 cubic meter/minute) circulated the air inside. Plates (150 mm diam.) of Trypticase-soy agar, placed inside a programmable slit-to-agar sampler, were held at 36±1°C for 18-24 h and examined for CFU. The input dose of the test bacterium, its rate of biological decay and the log10 reductions by the test devices were analyzed. The arbitrarily-set performance criterion was the time in h a device took for a 3-log10 reduction in the level of airborne challenge bacterium. On average, the level of S. aureus challenge in the air varied between 4.2 log10CFU/m(3)and 5.5 log10 CFU/m(3), and its rate of biological decay was -0.0213±0.0021 log10CFU/m3/min. Devices #1-3, took 2.3, 1.5, and 9.7 h, respectively, to meet the performance criterion. While the experimental set-up was tested using S. aureus as an archetypical airborne pathogen, it can be readily adapted to test other types of pathogens and technologies.Importance: This is the first study designed to test the survival of airborne pathogens in the confined and shared space of a family automobile as well as to assess claims of devices marketed for in-car air decontamination. The basic experimental set-up and the test protocols reported are versatile

  15. Challenges and Prospect of Non-aqueous Non-alkali (NANA) Metal-Air Batteries.

    PubMed

    Gelman, Danny; Shvartsev, Boris; Ein-Eli, Yair

    2016-12-01

    Non-aqueous non-alkali (NANA) metal-air battery technologies promise to provide electrochemical energy storage with the highest specific energy density. Metal-air battery technology is particularly advantageous being implemented in long-range electric vehicles. Up to now, almost all the efforts in the field are focused on Li-air cells, but other NANA metal-air battery technologies emerge. The major concern, which the research community should be dealing with, is the limited and rather poor rechargeability of these systems. The challenges we are covering in this review are related to the initial limited discharge capacities and cell performances. By comprehensively reviewing the studies conducted so far, we show that the implementation of advanced materials is a promising approach to increase metal-air performance and, particularly, metal surface activation as a prime achievement leading to respectful discharge currents. In this review, we address the most critical areas that need careful research attention in order to achieve progress in the understanding of the physical and electrochemical processes in non-aqueous electrolytes applied in beyond lithium and zinc air generation of metal-air battery systems.

  16. Using global aerosol models and satellite data for air quality studies: Challenges and data needs

    NASA Technical Reports Server (NTRS)

    Chin, Mian

    2006-01-01

    Aerosol particles, also known as PM2.5 (particle diameter less than 2.5 pm) and PM10 (particle diameter less than 10 pm), are one of the key atmospheric components that determines air quality. Yet, air quality forecasts for PM are still in their infancy and remain a challenging task. It is difficult to simply relate PM levels to local meteorological conditions, and large uncertainties exist in regional air quality model emission inventories and initial and boundary conditions. Especially challenging are periods when a significant amount of aerosol comes from outside the regional modeling domain through long-range transport. In the past few years, NASA has launched several satellites with global aerosol measurement capabilities, providing large-scale chemical weather pictures. NASA has also supported development of global models which simulate atmospheric transport and transformation processes of important atmospheric gas and aerosol species. I will present the current modeling and satellite capabilities for PM2.5 studies, the possibilities and challenges in using satellite data for PM2.5 forecasts, and the needs of future remote sensing data for improving air quality monitoring and modeling.

  17. Study of Air Pollution from Space Using TOMS: Challenges and Promises for Future Missions

    NASA Technical Reports Server (NTRS)

    Bhartia, Pawan K.

    2002-01-01

    A series of TOMS instruments built by NASA has flown on US, Russian, and Japanese satellites in the last 24 years. These instruments are well known for producing spectacular maps of the ozone hole that forms over Antarctica each spring. However, it is less well known that these instruments also provided first evidence that space-based measurements in UV of sufficiently high precision and accuracy can provide valuable information to study global air quality. We will use the TOMS experience to highlight the promises and challenges of future space-based missions designed specifically for air quality studies.

  18. Grand Challenges for Biological and Environmental Research: A Long-Term Vision

    SciTech Connect

    Arkin, A.; Baliga, N.; Braam, J.; Church, G.; Collins, J; Cottingham, R.; Ecker, J.; Gerstein, M.; Gilna, P.; Greenberg, J.; Handelsman, J.; Hubbard, S.; Joachimiak, A.; Liao, J.; Looger, L.; Meyerowitz, E.; Mjolness, E.; Petsko, G.; Sayler, G.; Simpson, M.; Stacey, G.; Sussman, M.; Tiedje, J.; Bader, D.; Cessi, P.; Collins, W.; Denning, S.; Dickinson, R.; Easterling, D.; Edmonds, J.; Feddema, J.; Field, C.; Fridlind, A.; Fung, I.; Held, I.; Jackson, R.; Janetos, A.; Large, W.; Leinen, M.; Leung, R.; Long, S.; Mace, G.; Masiello, C.; Meehl, G.; Ort, D.; Otto-Bliesner, B.; Penner, J.; Prather, M.; Randall, D.; Rasch, P.; Schneider, E.; Shugart, H.; Thornton, P.; Washington, W.; Wildung, R.; Wiscombe, W.; Zak, D.; Zhang, M.; Bielicki, J.; Buford, M.; Cleland, E.; Dale, V.; Duke, C.; Ehleringer, J.; Hecht, A.; Kammen, D.; Marland, G.; Pataki, D.; Riley, M. Robertson, P.; Hubbard, S.

    2010-12-01

    The interactions and feedbacks among plants, animals, microbes, humans, and the environment ultimately form the world in which we live. This world is now facing challenges from a growing and increasingly affluent human population whose numbers and lifestyles are driving ever greater energy demand and impacting climate. These and other contributing factors will make energy and climate sustainability extremely difficult to achieve over the 20-year time horizon that is the focus of this report. Despite these severe challenges, there is optimism that deeper understanding of our environment will enable us to mitigate detrimental effects, while also harnessing biological and climate systems to ensure a sustainable energy future. This effort is advanced by scientific inquiries in the fields of atmospheric chemistry and physics, biology, ecology, and subsurface science - all made possible by computing. The Office of Biological and Environmental Research (BER) within the Department of Energy's (DOE) Office of Science has a long history of bringing together researchers from different disciplines to address critical national needs in determining the biological and environmental impacts of energy production and use, characterizing the interplay of climate and energy, and collaborating with other agencies and DOE programs to improve the world's most powerful climate models. BER science focuses on three distinct areas: (1) What are the roles of Earth system components (atmosphere, land, oceans, sea ice, and the biosphere) in determining climate? (2) How is the information stored in a genome translated into microbial, plant, and ecosystem processes that influence biofuel production, climate feedbacks, and the natural cycling of carbon? (3) What are the biological, geochemical, and physical forces that govern the behavior of Earth's subsurface environment? Ultimately, the goal of BER science is to support experimentation and modeling that can reliably predict the outcomes and

  19. New paradigms and future challenges in Radiation Oncology: An Update of Biological Targets and Technology*

    PubMed Central

    Liauw, Stanley L.; Connell, Philip P.; Weichselbaum, Ralph R.

    2013-01-01

    The primary objective of radiation oncology is to exploit the biological interaction of radiation within tissue to promote tumor death while minimizing damage to surrounding normal tissue. The clinical delivery of radiation relies on principles of radiation physics that define how radiation energy is deposited in the body, as well as technology that facilitates accurate tumor targeting. This review will summarize the current landscape of recent biological and technological advances in radiation oncology, describe the challenges that exist, and offer potential avenues for improvement. PMID:23427246

  20. Incorporating bioinformatics into biological science education in Nigeria: prospects and challenges.

    PubMed

    Ojo, O O; Omabe, M

    2011-06-01

    The urgency to process and analyze the deluge of data created by proteomics and genomics studies worldwide has caused bioinformatics to gain prominence and importance. However, its multidisciplinary nature has created a unique demand for specialist trained in both biology and computing. Several countries, in response to this challenge, have developed a number of manpower training programmes. This review presents a description of the meaning, scope, history and development of bioinformatics with focus on prospects and challenges facing bioinformatics education worldwide. The paper also provides an overview of attempts at the introduction of bioinformatics in Nigeria; describes the existing bioinformatics scenario in Nigeria and suggests strategies for effective bioinformatics education in Nigeria.

  1. Overcoming Chemical, Biological, and Computational Challenges in the Development of Inhibitors Targeting Protein-Protein Interactions

    PubMed Central

    Laraia, Luca; McKenzie, Grahame; Spring, David R.; Venkitaraman, Ashok R.; Huggins, David J.

    2015-01-01

    Protein-protein interactions (PPIs) underlie the majority of biological processes, signaling, and disease. Approaches to modulate PPIs with small molecules have therefore attracted increasing interest over the past decade. However, there are a number of challenges inherent in developing small-molecule PPI inhibitors that have prevented these approaches from reaching their full potential. From target validation to small-molecule screening and lead optimization, identifying therapeutically relevant PPIs that can be successfully modulated by small molecules is not a simple task. Following the recent review by Arkin et al., which summarized the lessons learnt from prior successes, we focus in this article on the specific challenges of developing PPI inhibitors and detail the recent advances in chemistry, biology, and computation that facilitate overcoming them. We conclude by providing a perspective on the field and outlining four innovations that we see as key enabling steps for successful development of small-molecule inhibitors targeting PPIs. PMID:26091166

  2. Overcoming Chemical, Biological, and Computational Challenges in the Development of Inhibitors Targeting Protein-Protein Interactions.

    PubMed

    Laraia, Luca; McKenzie, Grahame; Spring, David R; Venkitaraman, Ashok R; Huggins, David J

    2015-06-18

    Protein-protein interactions (PPIs) underlie the majority of biological processes, signaling, and disease. Approaches to modulate PPIs with small molecules have therefore attracted increasing interest over the past decade. However, there are a number of challenges inherent in developing small-molecule PPI inhibitors that have prevented these approaches from reaching their full potential. From target validation to small-molecule screening and lead optimization, identifying therapeutically relevant PPIs that can be successfully modulated by small molecules is not a simple task. Following the recent review by Arkin et al., which summarized the lessons learnt from prior successes, we focus in this article on the specific challenges of developing PPI inhibitors and detail the recent advances in chemistry, biology, and computation that facilitate overcoming them. We conclude by providing a perspective on the field and outlining four innovations that we see as key enabling steps for successful development of small-molecule inhibitors targeting PPIs.

  3. Interactions of physical, chemical, and biological weather calling for an integrated approach to assessment, forecasting, and communication of air quality.

    PubMed

    Klein, Thomas; Kukkonen, Jaakko; Dahl, Aslög; Bossioli, Elissavet; Baklanov, Alexander; Vik, Aasmund Fahre; Agnew, Paul; Karatzas, Kostas D; Sofiev, Mikhail

    2012-12-01

    This article reviews interactions and health impacts of physical, chemical, and biological weather. Interactions and synergistic effects between the three types of weather call for integrated assessment, forecasting, and communication of air quality. Today's air quality legislation falls short of addressing air quality degradation by biological weather, despite increasing evidence for the feasibility of both mitigation and adaptation policy options. In comparison with the existing capabilities for physical and chemical weather, the monitoring of biological weather is lacking stable operational agreements and resources. Furthermore, integrated effects of physical, chemical, and biological weather suggest a critical review of air quality management practices. Additional research is required to improve the coupled modeling of physical, chemical, and biological weather as well as the assessment and communication of integrated air quality. Findings from several recent COST Actions underline the importance of an increased dialog between scientists from the fields of meteorology, air quality, aerobiology, health, and policy makers.

  4. The challenges for molecular nutrition research 4: the "nutritional systems biology level".

    PubMed

    van Ommen, Ben; Cavallieri, Duccio; Roche, Helen M; Klein, Ulla I; Daniel, Hannelore

    2008-12-01

    Nutritional systems biology may be defined as the ultimate goal of molecular nutrition research, where all relevant aspects of regulation of metabolism in health and disease states at all levels of its complexity are taken into account to describe the molecular physiology of nutritional processes. The complexity spans from intracellular to inter-organ dynamics, and involves iterations between mathematical modelling and analysis employing all profiling methods and other biological read-outs. On the basis of such dynamic models we should be enabled to better understand how the nutritional status and nutritional challenges affect human metabolism and health. Although the achievement of this proposition may currently sound unrealistic, many initiatives in theoretical biology and biomedical sciences work on parts of the solution. This review provides examples and some recommendations for the molecular nutrition research arena to move onto the systems level.

  5. Biologically Based Methods for Pest Management in Agriculture under Changing Climates: Challenges and Future Directions

    PubMed Central

    Chidawanyika, Frank; Mudavanhu, Pride; Nyamukondiwa, Casper

    2012-01-01

    The current changes in global climatic regimes present a significant societal challenge, affecting in all likelihood insect physiology, biochemistry, biogeography and population dynamics. With the increasing resistance of many insect pest species to chemical insecticides and an increasing organic food market, pest control strategies are slowly shifting towards more sustainable, ecologically sound and economically viable options. Biologically based pest management strategies present such opportunities through predation or parasitism of pests and plant direct or indirect defense mechanisms that can all be important components of sustainable integrated pest management programs. Inevitably, the efficacy of biological control systems is highly dependent on natural enemy-prey interactions, which will likely be modified by changing climates. Therefore, knowledge of how insect pests and their natural enemies respond to climate variation is of fundamental importance in understanding biological insect pest management under global climate change. Here, we discuss biological control, its challenges under climate change scenarios and how increased global temperatures will require adaptive management strategies to cope with changing status of insects and their natural enemies. PMID:26466733

  6. Biologically Based Methods for Pest Management in Agriculture under Changing Climates: Challenges and Future Directions.

    PubMed

    Chidawanyika, Frank; Mudavanhu, Pride; Nyamukondiwa, Casper

    2012-11-09

    The current changes in global climatic regimes present a significant societal challenge, affecting in all likelihood insect physiology, biochemistry, biogeography and population dynamics. With the increasing resistance of many insect pest species to chemical insecticides and an increasing organic food market, pest control strategies are slowly shifting towards more sustainable, ecologically sound and economically viable options. Biologically based pest management strategies present such opportunities through predation or parasitism of pests and plant direct or indirect defense mechanisms that can all be important components of sustainable integrated pest management programs. Inevitably, the efficacy of biological control systems is highly dependent on natural enemy-prey interactions, which will likely be modified by changing climates. Therefore, knowledge of how insect pests and their natural enemies respond to climate variation is of fundamental importance in understanding biological insect pest management under global climate change. Here, we discuss biological control, its challenges under climate change scenarios and how increased global temperatures will require adaptive management strategies to cope with changing status of insects and their natural enemies.

  7. Environmental Learning Workshop: Lichen as Biological Indicator of Air Quality and Impact on Secondary Students' Performance

    ERIC Educational Resources Information Center

    Samsudin, Mohd Wahid; Daik, Rusli; Abas, Azlan; Meerah, T. Subahan Mohd; Halim, Lilia

    2013-01-01

    In this study, the learning of science outside the classroom is believe to be an added value to science learning as well as it offers students to interact with the environment. This study presents data obtained from two days' workshop on Lichen as Biological Indicator for Air Quality. The aim of the workshop is for the students to gain an…

  8. An eQTL biological data visualization challenge and approaches from the visualization community.

    PubMed

    Bartlett, Christopher W; Cheong, Soo Yeon; Hou, Liping; Paquette, Jesse; Lum, Pek Yee; Jäger, Günter; Battke, Florian; Vehlow, Corinna; Heinrich, Julian; Nieselt, Kay; Sakai, Ryo; Aerts, Jan; Ray, William C

    2012-01-01

    In 2011, the IEEE VisWeek conferences inaugurated a symposium on Biological Data Visualization. Like other domain-oriented Vis symposia, this symposium's purpose was to explore the unique characteristics and requirements of visualization within the domain, and to enhance both the Visualization and Bio/Life-Sciences communities by pushing Biological data sets and domain understanding into the Visualization community, and well-informed Visualization solutions back to the Biological community. Amongst several other activities, the BioVis symposium created a data analysis and visualization contest. Unlike many contests in other venues, where the purpose is primarily to allow entrants to demonstrate tour-de-force programming skills on sample problems with known solutions, the BioVis contest was intended to whet the participants' appetites for a tremendously challenging biological domain, and simultaneously produce viable tools for a biological grand challenge domain with no extant solutions. For this purpose expression Quantitative Trait Locus (eQTL) data analysis was selected. In the BioVis 2011 contest, we provided contestants with a synthetic eQTL data set containing real biological variation, as well as a spiked-in gene expression interaction network influenced by single nucleotide polymorphism (SNP) DNA variation and a hypothetical disease model. Contestants were asked to elucidate the pattern of SNPs and interactions that predicted an individual's disease state. 9 teams competed in the contest using a mixture of methods, some analytical and others through visual exploratory methods. Independent panels of visualization and biological experts judged entries. Awards were given for each panel's favorite entry, and an overall best entry agreed upon by both panels. Three special mention awards were given for particularly innovative and useful aspects of those entries. And further recognition was given to entries that correctly answered a bonus question about how a

  9. Integrating silicon nanowire field effect transistor, microfluidics and air sampling techniques for real-time monitoring biological aerosols.

    PubMed

    Shen, Fangxia; Tan, Miaomiao; Wang, Zhenxing; Yao, Maosheng; Xu, Zhenqiang; Wu, Yan; Wang, Jindong; Guo, Xuefeng; Zhu, Tong

    2011-09-01

    Numerous threats from biological aerosol exposures, such as those from H1N1 influenza, SARS, bird flu, and bioterrorism activities necessitate the development of a real-time bioaerosol sensing system, which however is a long-standing challenge in the field. Here, we developed a real-time monitoring system for airborne influenza H3N2 viruses by integrating electronically addressable silicon nanowire (SiNW) sensor devices, microfluidics and bioaerosol-to-hydrosol air sampling techniques. When airborne influenza H3N2 virus samples were collected and delivered to antibody-modified SiNW devices, discrete nanowire conductance changes were observed within seconds. In contrast, the conductance levels remained relatively unchanged when indoor air or clean air samples were delivered. A 10-fold increase in virus concentration was found to give rise to about 20-30% increase in the sensor response. The selectivity of the sensing device was successfully demonstrated using H1N1 viruses and house dust allergens. From the simulated aerosol release to the detection, we observed a time scale of 1-2 min. Quantitative polymerase chain reaction (qPCR) tests revealed that higher virus concentrations in the air samples generally corresponded to higher conductance levels in the SiNW devices. In addition, the display of detection data on remote platforms such as cell phone and computer was also successfully demonstrated with a wireless module. The work here is expected to lead to innovative methods for biological aerosol monitoring, and further improvements in each of the integrated elements could extend the system to real world applications.

  10. Long-term exposure to air pollution is associated with biological aging

    PubMed Central

    Ward-Caviness, Cavin K.; Nwanaji-Enwerem, Jamaji C.; Wolf, Kathrin; Wahl, Simone; Colicino, Elena; Trevisi, Letizia; Kloog, Itai; Just, Allan C.; Vokonas, Pantel; Cyrys, Josef; Gieger, Christian; Schwartz, Joel; Baccarelli, Andrea A.; Schneider, Alexandra; Peters, Annette

    2016-01-01

    Long-term exposure to air pollution is associated with age-related diseases. We explored the association between accelerated biological aging and air pollution, a potential mechanism linking air pollution and health. We estimated long-term exposure to PM10, PM2.5, PM2.5 absorbance/black carbon (BC), and NOx via land-use regression models in individuals from the KORA F4 cohort. Accelerated biological aging was assessed using telomere length (TeloAA) and three epigenetic measures: DNA methylation age acceleration (DNAmAA), extrinsic epigenetic age acceleration (correlated with immune cell counts, EEAA), and intrinsic epigenetic age acceleration (independent of immune cell counts, IEAA). We also investigated sex-specific associations between air pollution and biological aging, given the published association between sex and aging measures. In KORA an interquartile range (0.97 μg/m3) increase in PM2.5 was associated with a 0.33 y increase in EEAA (CI = 0.01, 0.64; P = 0.04). BC and NOx (indicators or traffic exposure) were associated with DNAmAA and IEAA in women, while TeloAA was inversely associated with BC in men. We replicated this inverse BC-TeloAA association in the Normative Aging Study, a male cohort based in the USA. A multiple phenotype analysis in KORA F4 combining all aging measures showed that BC and PM10 were broadly associated with biological aging in men. Thus, we conclude that long-term exposure to air pollution is associated with biological aging measures, potentially in a sex-specific manner. However, many of the associations were relatively weak and further replication of overall and sex-specific associations is warranted. PMID:27793020

  11. Preclinical magnetic resonance imaging and systems biology in cancer research: current applications and challenges.

    PubMed

    Albanese, Chris; Rodriguez, Olga C; VanMeter, John; Fricke, Stanley T; Rood, Brian R; Lee, YiChien; Wang, Sean S; Madhavan, Subha; Gusev, Yuriy; Petricoin, Emanuel F; Wang, Yue

    2013-02-01

    Biologically accurate mouse models of human cancer have become important tools for the study of human disease. The anatomical location of various target organs, such as brain, pancreas, and prostate, makes determination of disease status difficult. Imaging modalities, such as magnetic resonance imaging, can greatly enhance diagnosis, and longitudinal imaging of tumor progression is an important source of experimental data. Even in models where the tumors arise in areas that permit visual determination of tumorigenesis, longitudinal anatomical and functional imaging can enhance the scope of studies by facilitating the assessment of biological alterations, (such as changes in angiogenesis, metabolism, cellular invasion) as well as tissue perfusion and diffusion. One of the challenges in preclinical imaging is the development of infrastructural platforms required for integrating in vivo imaging and therapeutic response data with ex vivo pathological and molecular data using a more systems-based multiscale modeling approach. Further challenges exist in integrating these data for computational modeling to better understand the pathobiology of cancer and to better affect its cure. We review the current applications of preclinical imaging and discuss the implications of applying functional imaging to visualize cancer progression and treatment. Finally, we provide new data from an ongoing preclinical drug study demonstrating how multiscale modeling can lead to a more comprehensive understanding of cancer biology and therapy.

  12. Challenges and Future Prospects for the Delivery of Biologics: Oral Mucosal, Pulmonary, and Transdermal Routes.

    PubMed

    Morales, Javier O; Fathe, Kristin R; Brunaugh, Ashlee; Ferrati, Silvia; Li, Song; Montenegro-Nicolini, Miguel; Mousavikhamene, Zeynab; McConville, Jason T; Prausnitz, Mark R; Smyth, Hugh D C

    2017-02-13

    Biologic products are large molecules such as proteins, peptides, nucleic acids, etc., which have already produced many new drugs for clinical use in the last decades. Due to the inherent challenges faced by biologics after oral administration (e.g., acidic stomach pH, digestive enzymes, and limited permeation through the gastrointestinal tract), several alternative routes of administration have been investigated to enable sufficient drug absorption into systemic circulation. This review describes the buccal, sublingual, pulmonary, and transdermal routes of administration for biologics with relevant details of the respective barriers. While all these routes avoid transit through the gastrointestinal tract, each has its own strengths and weaknesses that may be optimal for specific classes of compounds. Buccal and sublingual delivery enable rapid drug uptake through a relatively permeable barrier but are limited by small epithelial surface area, stratified epithelia, and the practical complexities of maintaining a drug delivery system in the mouth. Pulmonary delivery accesses the highly permeable and large surface area of the alveolar epithelium but must overcome the complexities of safe and effective delivery to the alveoli deep in the lung. Transdermal delivery offers convenient access to the body for extended-release delivery via the skin surface but requires the use of novel devices and formulations to overcome the skin's formidable stratum corneum barrier. New technologies and strategies advanced to overcome these challenges are reviewed, and critical views in future developments of each route are given.

  13. Data Integration for Dynamic and Sustainable Systems Biology Resources: Challenges and Lessons Learned

    PubMed Central

    Gabbard, Joseph L.; Shukla, Maulik; Sobral, Bruno

    2010-01-01

    Systems biology and infectious disease (host-pathogen-environment) research and development is becoming increasingly dependent on integrating data from diverse and dynamic sources. Maintaining integrated resources over long periods of time presents distinct challenges. This paper describes experiences and lessons learned from integrating data in two five-year projects focused on pathosystems biology: the Pathosystems Resource Integration Center (PATRIC, http://patric.vbi.vt.edu/), with a goal of developing bioinformatics resources for the research and countermeasures development communities based on genomics data, and the Resource Center for Biodefense Proteomics Research (RCBPR, http://www.proteomicsresource.org/), with a goal of developing resources based on the experiment data such as microarray and proteomics data from diverse sources and technologies. Some challenges include integrating genomic sequence and experiment data, data synchronization, data quality control, and usability engineering. We present examples of a variety of data integration problems drawn from our experiences with PATRIC and RBPRC, as well as open research questions related to long term sustainability, and describe the next steps to meeting these challenges. Novel contributions of this work include (1) an approach for addressing discrepancies between experiment results and interpreted results and (2) expanding the range of data integration techniques to include usability engineering at the presentation level. PMID:20491070

  14. Advantages and challenges of using physics curricula as a model for reforming an undergraduate biology course.

    PubMed

    Donovan, D A; Atkins, L J; Salter, I Y; Gallagher, D J; Kratz, R F; Rousseau, J V; Nelson, G D

    2013-06-01

    We report on the development of a life sciences curriculum, targeted to undergraduate students, which was modeled after a commercially available physics curriculum and based on aspects of how people learn. Our paper describes the collaborative development process and necessary modifications required to apply a physics pedagogical model in a life sciences context. While some approaches were easily adapted, others provided significant challenges. Among these challenges were: representations of energy, introducing definitions, the placement of Scientists' Ideas, and the replicability of data. In modifying the curriculum to address these challenges, we have come to see them as speaking to deeper differences between the disciplines, namely that introductory physics--for example, Newton's laws, magnetism, light--is a science of pairwise interaction, while introductory biology--for example, photosynthesis, evolution, cycling of matter in ecosystems--is a science of linked processes, and we suggest that this is how the two disciplines are presented in introductory classes. We illustrate this tension through an analysis of our adaptations of the physics curriculum for instruction on the cycling of matter and energy; we show that modifications of the physics curriculum to address the biological framework promotes strong gains in student understanding of these topics, as evidenced by analysis of student work.

  15. The Air Force "In Silico" -- Computational Biology in 2025

    DTIC Science & Technology

    2007-11-01

    modeling economic systems or global weather can be problematic, modeling of biological systems faces the paradox of “garbage-in, garbage- out.” A...Promises and Pitfalls Network Warfare Operations: Unleashing the Potential Richard A. Lipsey Network-centric Operations: Challenges and Pitfalls

  16. Systems Health Monitoring — From Ground to Air — The Aerospace Challenges

    NASA Astrophysics Data System (ADS)

    Austin, Mary

    2007-03-01

    The aerospace industry and the government are significantly investing in jet engine systems health monitoring. Government organizations such as the Air Force, Navy, Army, National Labs and NASA are investing in the development of state aware sensing for health monitoring of jet engines such as the Joint Strike Fighter, F119 and F100's. This paper will discuss on-going work in systems health monitoring for jet engines. Topics will include a general discussion of the approaches to engine structural health monitoring and the prognosis of engine component life. Real-world implementation challenges on the ground and in the air will be reviewed. The talk will conclude with a prediction of where engine health monitoring will be in twenty years.

  17. The challenging definition of naïve patient for biological drug use.

    PubMed

    Biggioggero, Martina; Danova, Marco; Genovese, Umberto; Locatelli, Francesco; Meroni, Pier Luigi; Pane, Fabrizio; Scaglione, Francesco

    2015-06-01

    Biosimilar is defined by The European Medical Agency as a biological medicinal product, which is similar but not identical to the biological drug already authorized. The biosimilar and its reference product are expected to display the same safety and efficacy profile and are generally used to treat the same conditions. The Italian Medicines Agency considers biosimilars as a valid therapeutic option with an economic advantage, especially in primary naïve patients with no previous exposure to the originator or with a sufficiently long wash-out period ("secondary naïve"). The identification of "secondary naïve" is not well defined and can be subjected to different variables, mainly the drug biologic effect and its immunogenicity. The first one depends on the type of biologics and on their mechanism of action. The second one is related to the fact that biologicals may be immunogenic and can trigger an anti-drug antibody response (ADA). ADA may behave as neutralizing antibodies blocking the active site of the biological but can also recognize other epitopes favoring the formation of immune-complexes that eventually affect the pharmacodynamics. Moreover, the concomitant immune-suppressive treatment can affect the immunogenicity, even if the exact mechanism remains unknown. In conclusion, the development and use of biosimilars represent a tool for increasing health system sustainability. However it is of paramount importance to distinguish between the pharmacodynamics of a given drug and its immunogenicity being the two aspects unrelated. Thus a detailed definition of "secondary naïve" patients is challenging, and may be related to both the two parameters.

  18. Biological basis of cancer health disparities: resources and challenges for research

    PubMed Central

    Deshmukh, Sachin K; Azim, Shafquat; Ahmad, Aamir; Zubair, Haseeb; Tyagi, Nikhil; Srivastava, Sanjeev K; Bhardwaj, Arun; Singh, Seema; Rocconi, Rodney P; Singh, Ajay P

    2017-01-01

    Last few decades have witnessed remarkable progress in our understanding of cancer initiation and progression leading to refinement of prevention and treatment approaches. Although these advances have improved the survival of cancer patients in general, certain racial/ethnic groups have benefited only partially. Footprints of cancer-associated racial disparities are very much evident in cancers of the prostate, breast, cervical, colorectal, endometrium, liver and lung. These health inequalities are mostly attributed to socioeconomic differences among races, but there is a growing realization that these may actually be due to inherent biological differences as well. Indeed, significant data now exist to support the biological basis of racial disparities in cancer, warranting basic research investigations, using appropriate tools and model systems. In this article, we have aimed to succinctly review the literature supporting the biological bases of racial disparities in cancer, along with available resources, databases and model systems that will be of interest to researchers. Moreover, we have highlighted the specific areas that need attention in terms of development of resources and/or tools, and discuss the opportunities and challenges in basic biological research in cancer health disparities. PMID:28123843

  19. Prospects and challenges of quantitative phase imaging in tumor cell biology

    NASA Astrophysics Data System (ADS)

    Kemper, Björn; Götte, Martin; Greve, Burkhard; Ketelhut, Steffi

    2016-03-01

    Quantitative phase imaging (QPI) techniques provide high resolution label-free quantitative live cell imaging. Here, prospects and challenges of QPI in tumor cell biology are presented, using the example of digital holographic microscopy (DHM). It is shown that the evaluation of quantitative DHM phase images allows the retrieval of different parameter sets for quantification of cellular motion changes in migration and motility assays that are caused by genetic modifications. Furthermore, we demonstrate simultaneously label-free imaging of cell growth and morphology properties.

  20. Synthetic biology as it relates to CAM photosynthesis: challenges and opportunities.

    PubMed

    DePaoli, Henrique C; Borland, Anne M; Tuskan, Gerald A; Cushman, John C; Yang, Xiaohan

    2014-07-01

    To meet future food and energy security needs, which are amplified by increasing population growth and reduced natural resource availability, metabolic engineering efforts have moved from manipulating single genes/proteins to introducing multiple genes and novel pathways to improve photosynthetic efficiency in a more comprehensive manner. Biochemical carbon-concentrating mechanisms such as crassulacean acid metabolism (CAM), which improves photosynthetic, water-use, and possibly nutrient-use efficiency, represent a strategic target for synthetic biology to engineer more productive C3 crops for a warmer and drier world. One key challenge for introducing multigene traits like CAM onto a background of C3 photosynthesis is to gain a better understanding of the dynamic spatial and temporal regulatory events that underpin photosynthetic metabolism. With the aid of systems and computational biology, vast amounts of experimental data encompassing transcriptomics, proteomics, and metabolomics can be related in a network to create dynamic models. Such models can undergo simulations to discover key regulatory elements in metabolism and suggest strategic substitution or augmentation by synthetic components to improve photosynthetic performance and water-use efficiency in C3 crops. Another key challenge in the application of synthetic biology to photosynthesis research is to develop efficient systems for multigene assembly and stacking. Here, we review recent progress in computational modelling as applied to plant photosynthesis, with attention to the requirements for CAM, and recent advances in synthetic biology tool development. Lastly, we discuss possible options for multigene pathway construction in plants with an emphasis on CAM-into-C3 engineering.

  1. Plasma flame for mass purification of contaminated air with chemical and biological warfare agents

    SciTech Connect

    Uhm, Han S.; Shin, Dong H.; Hong, Yong C.

    2006-09-18

    An elimination of airborne simulated chemical and biological warfare agents was carried out by making use of a plasma flame made of atmospheric plasma and a fuel-burning flame, which can purify the interior air of a large volume in isolated spaces such as buildings, public transportation systems, and military vehicles. The plasma flame generator consists of a microwave plasma torch connected in series to a fuel injector and a reaction chamber. For example, a reaction chamber, with the dimensions of a 22 cm diameter and 30 cm length, purifies an airflow rate of 5000 lpm contaminated with toluene (the simulated chemical agent) and soot from a diesel engine (the simulated aerosol for biological agents). Large volumes of purification by the plasma flame will free mankind from the threat of airborne warfare agents. The plasma flame may also effectively purify air that is contaminated with volatile organic compounds, in addition to eliminating soot from diesel engines as an environmental application.

  2. Plasma flame for mass purification of contaminated air with chemical and biological warfare agents

    NASA Astrophysics Data System (ADS)

    Uhm, Han S.; Shin, Dong H.; Hong, Yong C.

    2006-09-01

    An elimination of airborne simulated chemical and biological warfare agents was carried out by making use of a plasma flame made of atmospheric plasma and a fuel-burning flame, which can purify the interior air of a large volume in isolated spaces such as buildings, public transportation systems, and military vehicles. The plasma flame generator consists of a microwave plasma torch connected in series to a fuel injector and a reaction chamber. For example, a reaction chamber, with the dimensions of a 22cm diameter and 30cm length, purifies an airflow rate of 5000lpm contaminated with toluene (the simulated chemical agent) and soot from a diesel engine (the simulated aerosol for biological agents). Large volumes of purification by the plasma flame will free mankind from the threat of airborne warfare agents. The plasma flame may also effectively purify air that is contaminated with volatile organic compounds, in addition to eliminating soot from diesel engines as an environmental application.

  3. Proteomic Challenges: Sample Preparation Techniques for Microgram-Quantity Protein Analysis from Biological Samples

    PubMed Central

    Feist, Peter; Hummon, Amanda B.

    2015-01-01

    Proteins regulate many cellular functions and analyzing the presence and abundance of proteins in biological samples are central focuses in proteomics. The discovery and validation of biomarkers, pathways, and drug targets for various diseases can be accomplished using mass spectrometry-based proteomics. However, with mass-limited samples like tumor biopsies, it can be challenging to obtain sufficient amounts of proteins to generate high-quality mass spectrometric data. Techniques developed for macroscale quantities recover sufficient amounts of protein from milligram quantities of starting material, but sample losses become crippling with these techniques when only microgram amounts of material are available. To combat this challenge, proteomicists have developed micro-scale techniques that are compatible with decreased sample size (100 μg or lower) and still enable excellent proteome coverage. Extraction, contaminant removal, protein quantitation, and sample handling techniques for the microgram protein range are reviewed here, with an emphasis on liquid chromatography and bottom-up mass spectrometry-compatible techniques. Also, a range of biological specimens, including mammalian tissues and model cell culture systems, are discussed. PMID:25664860

  4. Challenges of diatom-based biological monitoring and assessment of streams in developing countries.

    PubMed

    Bere, Taurai

    2016-03-01

    Stream biomonitoring tools are largely lacking for many developing countries, resulting in adoption of tools developed from other countries/regions. In many instances, however, the applicability of adopted tools to the new system has not been explicitly evaluated. The objective of this study was to test the applicability of foreign diatom-based water quality assessment indices to streams in Zimbabwe, with the view to highlight challenges being faced in diatom-based biological monitoring in this developing country. The study evaluated the relationship between measured water quality variables and diatom index scores and observed some degree of concordance between water quality variables and diatom index scores emphasising the importance of diatom indices in characterisation and monitoring of stream ecological conditions in developing countries. However, ecological requirements of some diatom species need to be clarified and incorporated in a diatom-based water quality assessment protocol unique to these regions. Resources should be channelled towards tackling challenges associated with diatom-based biological monitoring, principally taxonomic studies, training of skilled labour and acquiring and maintaining the necessary infrastructure. Meanwhile, simpler coarse taxonomy-based rapid bioassessment protocol, which is less time and resource consuming and requires less specialised manpower, can be developed for the country.

  5. Synthetic Biology and the U.S. Biotechnology Regulatory System: Challenges and Options

    SciTech Connect

    Carter, Sarah R.; Rodemeyer, Michael; Garfinkel, Michele S.; Friedman, Robert M.

    2014-05-01

    Synthetic Biology and the U.S. Biotechnology Regulatory System: Challenges and Options Sarah R. Carter, Ph.D., J. Craig Venter Institute; Michael Rodemeyer, J.D., University of Virginia; Michele S. Garfinkel, Ph.D., EMBO; Robert M. Friedman, Ph.D., J. Craig Venter Institute In recent years, a range of genetic engineering techniques referred to as “synthetic biology” has significantly expanded the tool kit available to scientists and engineers, providing them with far greater capabilities to engineer organisms than previous techniques allowed. The field of synthetic biology includes the relatively new ability to synthesize long pieces of DNA from chemicals, as well as improved methods for genetic manipulation and design of genetic pathways to achieve more precise control of biological systems. These advances will help usher in a new generation of genetically engineered microbes, plants, and animals. The JCVI Policy Center team, along with researchers at the University of Virginia and EMBO, examined how well the current U.S. regulatory system for genetically engineered products will handle the near-term introduction of organisms engineered using synthetic biology. In particular, the focus was on those organisms intended to be used or grown directly in the environment, outside of a contained facility. The study concludes that the U.S. regulatory agencies have adequate legal authority to address most, but not all, potential environmental, health and safety concerns posed by these organisms. Such near-term products are likely to represent incremental changes rather than a marked departure from previous genetically engineered organisms. However, the study also identified two key challenges for the regulatory system, which are detailed in the report. First, USDA’s authority over genetically engineered plants depends on the use of an older engineering technique that is no longer necessary for many applications. The shift to synthetic biology and other newer genetic

  6. The Air Transportation Policy of Small States: Meeting the Challenges of Globalization

    NASA Technical Reports Server (NTRS)

    Antoniou, Andreas

    2001-01-01

    The air transport policies of small states are currently at a crossroad. Policy makers in these countries are facing a difficult dilemma: either follow the general trend of liberalization and pay the high cost of the resulting restructuring or maintain the existing regulatory and ownership structures at the risk of isolation thus undermining the viability and sustainability of their air transport sector and their economies in general. This paper proposes to explore the broad issues raised by this difficult dilemma, to outline its special significance in the context of small states and to delineate the options opened to the economic policymakers; in these states. After a brief note on the method of research, we sketch the main elements of the international air transport industry in which the airlines of small states are called upon to act. We then propose to review the main features of the analytical framework of this debate as it pertains to the special circumstances of these states. Then we focus on the challenges facing the airlines of Small States, while the next section proposes a number of the alternative policy options open to the policy makers in these states. The main conclusions are drawn in the final section.

  7. Recognizing the Challenges of Ambient Air Monitoring in the Persian Gulf

    NASA Astrophysics Data System (ADS)

    Meade, T. G.; Nicodemus, M. A.; Howard, J. M.

    2011-12-01

    In an effort to better estimate environmental exposure, the U.S. Army Public Health Command has been operating an ambient air monitoring station in Shuaiba Port, Kuwait since 2002. The focus has primarily been on monitoring criteria pollutants at a busy sea port where local industry (oil refineries, cement plant, petrochemical production, etc.) heavily impacts air quality. To compound the issues associated with day to day monitoring at a busy sea port, the region often experiences sand storms and temperatures up to 60°C. Average daily particulate matter concentrations at Shuaiba Port are an order of magnitude higher than similar industrial areas in the U.S. On days when sand storms occur ambient PM concentrations can be two or three orders higher than average daily U.S. concentrations. For example, 24-hour average PM10 concentrations from 2004-2010 for the month of June were 395 μg/m3. During sand storms, 24-hour average concentrations can reach as high as 4,000 μg/m3. This poster presents 2004-2010 particulate matter data collected at Shuaiba Port, Kuwait and outlines logistical and environmental challenges associated with air monitoring in the region.

  8. The NYC native air sampling pilot project: using HVAC filter data for urban biological incident characterization.

    PubMed

    Ackelsberg, Joel; Leykam, Frederic M; Hazi, Yair; Madsen, Larry C; West, Todd H; Faltesek, Anthony; Henderson, Gavin D; Henderson, Christopher L; Leighton, Terrance

    2011-09-01

    Native air sampling (NAS) is distinguished from dedicated air sampling (DAS) devices (eg, BioWatch) that are deployed to detect aerosol disseminations of biological threat agents. NAS uses filter samples from heating, ventilation, and air conditioning (HVAC) systems in commercial properties for environmental sampling after DAS detection of biological threat agent incidents. It represents an untapped, scientifically sound, efficient, widely distributed, and comparably inexpensive resource for postevent environmental sampling. Calculations predict that postevent NAS would be more efficient than environmental surface sampling by orders of magnitude. HVAC filter samples could be collected from pre-identified surrounding NAS facilities to corroborate the DAS alarm and delineate the path taken by the bioaerosol plume. The New York City (NYC) Native Air Sampling Pilot Project explored whether native air sampling would be acceptable to private sector stakeholders and could be implemented successfully in NYC. Building trade associations facilitated outreach to and discussions with property owners and managers, who expedited contact with building managers of candidate NAS properties that they managed or owned. Nominal NAS building requirements were determined; procedures to identify and evaluate candidate NAS facilities were developed; data collection tools and other resources were designed and used to expedite candidate NAS building selection and evaluation in Manhattan; and exemplar environmental sampling playbooks for emergency responders were completed. In this sample, modern buildings with single or few corporate tenants were the best NAS candidate facilities. The Pilot Project successfully demonstrated that in one urban setting a native air sampling strategy could be implemented with effective public-private collaboration.

  9. Biological network extraction from scientific literature: state of the art and challenges.

    PubMed

    Li, Chen; Liakata, Maria; Rebholz-Schuhmann, Dietrich

    2014-09-01

    Networks of molecular interactions explain complex biological processes, and all known information on molecular events is contained in a number of public repositories including the scientific literature. Metabolic and signalling pathways are often viewed separately, even though both types are composed of interactions involving proteins and other chemical entities. It is necessary to be able to combine data from all available resources to judge the functionality, complexity and completeness of any given network overall, but especially the full integration of relevant information from the scientific literature is still an ongoing and complex task. Currently, the text-mining research community is steadily moving towards processing the full body of the scientific literature by making use of rich linguistic features such as full text parsing, to extract biological interactions. The next step will be to combine these with information from scientific databases to support hypothesis generation for the discovery of new knowledge and the extension of biological networks. The generation of comprehensive networks requires technologies such as entity grounding, coordination resolution and co-reference resolution, which are not fully solved and are required to further improve the quality of results. Here, we analyse the state of the art for the extraction of network information from the scientific literature and the evaluation of extraction methods against reference corpora, discuss challenges involved and identify directions for future research.

  10. Discovery informatics in biological and biomedical sciences: research challenges and opportunities.

    PubMed

    Honavar, Vasant

    2015-01-01

    New discoveries in biological, biomedical and health sciences are increasingly being driven by our ability to acquire, share, integrate and analyze, and construct and simulate predictive models of biological systems. While much attention has focused on automating routine aspects of management and analysis of "big data", realizing the full potential of "big data" to accelerate discovery calls for automating many other aspects of the scientific process that have so far largely resisted automation: identifying gaps in the current state of knowledge; generating and prioritizing questions; designing studies; designing, prioritizing, planning, and executing experiments; interpreting results; forming hypotheses; drawing conclusions; replicating studies; validating claims; documenting studies; communicating results; reviewing results; and integrating results into the larger body of knowledge in a discipline. Against this background, the PSB workshop on Discovery Informatics in Biological and Biomedical Sciences explores the opportunities and challenges of automating discovery or assisting humans in discovery through advances (i) Understanding, formalization, and information processing accounts of, the entire scientific process; (ii) Design, development, and evaluation of the computational artifacts (representations, processes) that embody such understanding; and (iii) Application of the resulting artifacts and systems to advance science (by augmenting individual or collective human efforts, or by fully automating science).

  11. Using chemical biology to assess and modulate mitochondria: progress and challenges

    PubMed Central

    Murphy, Michael P.

    2017-01-01

    Our understanding of the role of mitochondria in biomedical sciences has expanded considerably over the past decade. In addition to their well-known metabolic roles, mitochondrial are also central to signalling for various processes through the generation of signals such as ROS and metabolites that affect cellular homeostasis, as well as other processes such as cell death and inflammation. Thus, mitochondrial function and dysfunction are central to the health and fate of the cell. Consequently, there is considerable interest in better understanding and assessing the many roles of mitochondria. Furthermore, there is also a growing realization that mitochondrial are a promising drug target in a wide range of pathologies. The application of interdisciplinary approaches at the interface between chemistry and biology are opening up new opportunities to understand mitochondrial function and in assessing the role of the organelle in biology. This work and the experience thus gained are leading to the development of new classes of therapies. Here, we overview the progress that has been made to date on exploring the chemical biology of the organelle and then focus on future challenges and opportunities that face this rapidly developing field. PMID:28382206

  12. Airborne biological hazards and urban transport infrastructure: current challenges and future directions.

    PubMed

    Nasir, Zaheer Ahmad; Campos, Luiza Cintra; Christie, Nicola; Colbeck, Ian

    2016-08-01

    Exposure to airborne biological hazards in an ever expanding urban transport infrastructure and highly diverse mobile population is of growing concern, in terms of both public health and biosecurity. The existing policies and practices on design, construction and operation of these infrastructures may have severe implications for airborne disease transmission, particularly, in the event of a pandemic or intentional release of biological of agents. This paper reviews existing knowledge on airborne disease transmission in different modes of transport, highlights the factors enhancing the vulnerability of transport infrastructures to airborne disease transmission, discusses the potential protection measures and identifies the research gaps in order to build a bioresilient transport infrastructure. The unification of security and public health research, inclusion of public health security concepts at the design and planning phase, and a holistic system approach involving all the stakeholders over the life cycle of transport infrastructure hold the key to mitigate the challenges posed by biological hazards in the twenty-first century transport infrastructure.

  13. Advantages and Challenges of Using Physics Curricula as a Model for Reforming an Undergraduate Biology Course

    PubMed Central

    Donovan, D. A.; Atkins, L. J.; Salter, I. Y.; Gallagher, D. J.; Kratz, R. F.; Rousseau, J. V.; Nelson, G. D.

    2013-01-01

    We report on the development of a life sciences curriculum, targeted to undergraduate students, which was modeled after a commercially available physics curriculum and based on aspects of how people learn. Our paper describes the collaborative development process and necessary modifications required to apply a physics pedagogical model in a life sciences context. While some approaches were easily adapted, others provided significant challenges. Among these challenges were: representations of energy, introducing definitions, the placement of Scientists’ Ideas, and the replicability of data. In modifying the curriculum to address these challenges, we have come to see them as speaking to deeper differences between the disciplines, namely that introductory physics—for example, Newton's laws, magnetism, light—is a science of pairwise interaction, while introductory biology—for example, photosynthesis, evolution, cycling of matter in ecosystems—is a science of linked processes, and we suggest that this is how the two disciplines are presented in introductory classes. We illustrate this tension through an analysis of our adaptations of the physics curriculum for instruction on the cycling of matter and energy; we show that modifications of the physics curriculum to address the biological framework promotes strong gains in student understanding of these topics, as evidenced by analysis of student work. PMID:23737629

  14. Environmental Technology Verification: Supplement to Test/QA Plan for Biological and Aerosol Testing of General Ventilation Air Cleaners; Bioaerosol Inactivation Efficiency by HVAC In-Duct Ultraviolet Light Air Cleaners

    EPA Science Inventory

    The Air Pollution Control Technology Verification Center has selected general ventilation air cleaners as a technology area. The Generic Verification Protocol for Biological and Aerosol Testing of General Ventilation Air Cleaners is on the Environmental Technology Verification we...

  15. Indoor Air Nuclear, Biological, and Chemical Health Modeling and Assessment System

    SciTech Connect

    Stenner, Robert D.; Hadley, Donald L.; Armstrong, Peter R.; Buck, John W.; Hoopes, Bonnie L.; Janus, Michael C.

    2001-03-01

    Indoor air quality effects on human health are of increasing concern to public health agencies and building owners. The prevention and treatment of 'sick building' syndrome and the spread of air-borne diseases in hospitals, for example, are well known priorities. However, increasing attention is being directed to the vulnerability of our public buildings/places, public security and national defense facilities to terrorist attack or the accidental release of air-borne biological pathogens, harmful chemicals, or radioactive contaminants. The Indoor Air Nuclear, Biological, and Chemical Health Modeling and Assessment System (IA-NBC-HMAS) was developed to serve as a health impact analysis tool for use in addressing these concerns. The overall goal was to develop a user-friendly fully functional prototype Health Modeling and Assessment system, which will operate under the PNNL FRAMES system for ease of use and to maximize its integration with other modeling and assessment capabilities accessible within the FRAMES system (e.g., ambient air fate and transport models, water borne fate and transport models, Physiologically Based Pharmacokinetic models, etc.). The prototype IA-NBC-HMAS is designed to serve as a functional Health Modeling and Assessment system that can be easily tailored to meet specific building analysis needs of a customer. The prototype system was developed and tested using an actual building (i.e., the Churchville Building located at the Aberdeen Proving Ground) and release scenario (i.e., the release and measurement of tracer materials within the building) to ensure realism and practicality in the design and development of the prototype system. A user-friendly "demo" accompanies this report to allow the reader the opportunity for a "hands on" review of the prototype system's capability.

  16. MALDI-MS drug analysis in biological samples: opportunities and challenges.

    PubMed

    Steuer, Andrea E; Poetzsch, Michael; Kraemer, Thomas

    2016-09-01

    Drug analysis represents a large field in different disciplines. Plasma is commonly considered to be the biosample of choice for that purpose. However, concentrations often do not represent the levels present within deeper compartments and therefore cannot sufficiently explain efficacy or toxicology of drugs. MALDI-MS in drug analysis is of great interest for high-throughput quantification and particularly spatially resolved tissue imaging. The current perspective article will deal with challenges and opportunities of MALDI-MS drug analysis in different biological samples. A particular focus will be on hair samples. Recent applications were included, reviewed for their instrumental setup and sample preparation and pros and cons as well as future perspectives are critically discussed.

  17. Toxins as biological weapons for terror-characteristics, challenges and medical countermeasures: a mini-review.

    PubMed

    Berger, Tamar; Eisenkraft, Arik; Bar-Haim, Erez; Kassirer, Michael; Aran, Adi Avniel; Fogel, Itay

    2016-01-01

    Toxins are hazardous biochemical compounds derived from bacteria, fungi, or plants. Some have mechanisms of action and physical properties that make them amenable for use as potential warfare agents. Currently, some toxins are classified as potential biological weapons, although they have several differences from classic living bio-terror pathogens and some similarities to manmade chemical warfare agents. This review focuses on category A and B bio-terror toxins recognized by the Centers for Disease Control and Prevention: Botulinum neurotoxin, staphylococcal enterotoxin B, Clostridium perfringens epsilon toxin, and ricin. Their derivation, pathogenesis, mechanism of action, associated clinical signs and symptoms, diagnosis, and treatment are discussed in detail. Given their expected covert use, the primary diagnostic challenge in toxin exposure is the early detection of morbidity clusters, apart from background morbidity, after a relatively short incubation period. For this reason, it is important that clinicians be familiar with the clinical manifestations of toxins and the appropriate methods of management and countermeasures.

  18. Branching out of single-molecule fluorescence spectroscopy: challenges for chemistry and influence on biology.

    PubMed

    Tinnefeld, Philip; Sauer, Markus

    2005-04-29

    In the last decade emerging single-molecule fluorescence-spectroscopy tools have been developed and adapted to analyze individual molecules under various conditions. Single-molecule-sensitive optical techniques are now well established and help to increase our understanding of complex problems in different disciplines ranging from materials science to cell biology. Previous dreams, such as the monitoring of the motility and structural changes of single motor proteins in living cells or the detection of single-copy genes and the determination of their distance from polymerase molecules in transcription factories in the nucleus of a living cell, no longer constitute unsolvable problems. In this Review we demonstrate that single-molecule fluorescence spectroscopy has become an independent discipline capable of solving problems in molecular biology. We outline the challenges and future prospects for optical single-molecule techniques which can be used in combination with smart labeling strategies to yield quantitative three-dimensional information about the dynamic organization of living cells.

  19. Climate change and alpine stream biology: progress, challenges, and opportunities for the future.

    PubMed

    Hotaling, Scott; Finn, Debra S; Joseph Giersch, J; Weisrock, David W; Jacobsen, Dean

    2017-01-20

    In alpine regions worldwide, climate change is dramatically altering ecosystems and affecting biodiversity in many ways. For streams, receding alpine glaciers and snowfields, paired with altered precipitation regimes, are driving shifts in hydrology, species distributions, basal resources, and threatening the very existence of some habitats and biota. Alpine streams harbour substantial species and genetic diversity due to significant habitat insularity and environmental heterogeneity. Climate change is expected to affect alpine stream biodiversity across many levels of biological resolution from micro- to macroscopic organisms and genes to communities. Herein, we describe the current state of alpine stream biology from an organism-focused perspective. We begin by reviewing seven standard and emerging approaches that combine to form the current state of the discipline. We follow with a call for increased synthesis across existing approaches to improve understanding of how these imperiled ecosystems are responding to rapid environmental change. We then take a forward-looking viewpoint on how alpine stream biologists can make better use of existing data sets through temporal comparisons, integrate remote sensing and geographic information system (GIS) technologies, and apply genomic tools to refine knowledge of underlying evolutionary processes. We conclude with comments about the future of biodiversity conservation in alpine streams to confront the daunting challenge of mitigating the effects of rapid environmental change in these sentinel ecosystems.

  20. Urban air quality: the challenge of traffic non-exhaust emissions.

    PubMed

    Amato, Fulvio; Cassee, Flemming R; Denier van der Gon, Hugo A C; Gehrig, Robert; Gustafsson, Mats; Hafner, Wolfgang; Harrison, Roy M; Jozwicka, Magdalena; Kelly, Frank J; Moreno, Teresa; Prevot, Andre S H; Schaap, Martijn; Sunyer, Jordi; Querol, Xavier

    2014-06-30

    About 400,000 premature adult deaths attributable to air pollution occur each year in the European Region. Road transport emissions account for a significant share of this burden. While important technological improvements have been made for reducing particulate matter (PM) emissions from motor exhausts, no actions are currently in place to reduce the non-exhaust part of emissions such as those from brake wear, road wear, tyre wear and road dust resuspension. These "non-exhaust" sources contribute easily as much and often more than the tailpipe exhaust to the ambient air PM concentrations in cities, and their relative contribution to ambient PM is destined to increase in the future, posing obvious research and policy challenges. This review highlights the major and more recent research findings in four complementary fields of research and seeks to identify the current gaps in research and policy with regard to non-exhaust emissions. The objective of this article is to encourage and direct future research towards an improved understanding on the relationship between emissions, concentrations, exposure and health impact and on the effectiveness of potential remediation measures in the urban environment.

  1. Resources and Recommendations for Using Transcriptomics to Address Grand Challenges in Comparative Biology.

    PubMed

    Mykles, Donald L; Burnett, Karen G; Durica, David S; Joyce, Blake L; McCarthy, Fiona M; Schmidt, Carl J; Stillman, Jonathon H

    2016-12-01

    High-throughput RNA sequencing (RNA-seq) technology has become an important tool for studying physiological responses of organisms to changes in their environment. De novo assembly of RNA-seq data has allowed researchers to create a comprehensive catalog of genes expressed in a tissue and to quantify their expression without a complete genome sequence. The contributions from the "Tapping the Power of Crustacean Transcriptomics to Address Grand Challenges in Comparative Biology" symposium in this issue show the successes and limitations of using RNA-seq in the study of crustaceans. In conjunction with the symposium, the Animal Genome to Phenome Research Coordination Network collated comments from participants at the meeting regarding the challenges encountered when using transcriptomics in their research. Input came from novices and experts ranging from graduate students to principal investigators. Many were unaware of the bioinformatics analysis resources currently available on the CyVerse platform. Our analysis of community responses led to three recommendations for advancing the field: (1) integration of genomic and RNA-seq sequence assemblies for crustacean gene annotation and comparative expression; (2) development of methodologies for the functional analysis of genes; and (3) information and training exchange among laboratories for transmission of best practices. The field lacks the methods for manipulating tissue-specific gene expression. The decapod crustacean research community should consider the cherry shrimp, Neocaridina denticulata, as a decapod model for the application of transgenic tools for functional genomics. This would require a multi-investigator effort.

  2. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  3. Challenges in modeling the impact of biomass burning on air quality in megacities

    NASA Astrophysics Data System (ADS)

    Lei, W.; Li, G.; Molina, L. T.

    2013-05-01

    Biomass burning (BB) is the largest source of primary carbonaceous aerosols and the second largest source of trace gases in the global troposphere. The trace gases and particulates emitted by or formed in the biomass burning plumes adversely affect human health and have important impacts on atmospheric chemistry, air quality, and climate change in megacities. Chemical transport models provide an independent tool to assess the BB impacts, and more importantly they can be used to assess the impacts during periods when and with large spatial coverage where measurements are not available. However due to the high variable nature of the BB impacts, the uncertainties in the BB emission estimates arising from the emission factors, biomass assumption estimates, spatial and temporal distributions, the bias in predicted dynamic mixing and transport, and the limited availability of measurements, a modeling evaluation of the BB impacts is a difficult and challenging task. In this study we use Mexico City as a case study to illustrate the challenges in simulating the impacts from open fires, biofuel use and trash burning.

  4. [Progress of biological air filter (BAF) development in manned spacecraft cabin].

    PubMed

    Tang, Yong-kang; Guo, Shuang-sheng; Ai, Wei-dang

    2005-06-01

    The contaminants originating from human metabolism, material off-gassing and waste processing, may influence human health and the growth and development of higher plants when they accumulate at some degree in the spacecraft cabin. So the contaminants concentrations must be controlled below the spacecraft maximum allowable concentration (SMAC). For the long manned space missions and planetary habitation, biological technique is available for the removal of the contaminants. The biological air filter, BAF, is a system that degrades the contaminants into carbon dioxide, water and salts. It holds many advantages such as small weight and volume, low power consumption, easy maintenance and good working performance under the condition of microgravity. Its wide application will be seen in the space field in near future.

  5. Integrated catalytic wet air oxidation and biological treatment of wastewater from Vitamin B 6 production

    NASA Astrophysics Data System (ADS)

    Kang, Jianxiong; Zhan, Wei; Li, Daosheng; Wang, Xiaocong; Song, Jing; Liu, Dongqi

    This study investigated the feasibility of coupling a catalytic wet air oxidation (CWAO), with CuO/Al 2O 3 as catalyst, and an anaerobic/aerobic biological process to treat wastewater from Vitamin B 6 production. Results showed that the CWAO enhanced the biodegradability (BOD 5/COD) from 0.10 to 0.80. The oxidized effluents with COD of 10,000 mg l -1 was subjected to subsequent continuous anaerobic/aerobic oxidation, and 99.3% of total COD removal was achieved. The quality of the effluent obtained met the discharge standards of water pollutants for pharmaceutical industry Chemical Synthesis Products Category (GB21904-2008), and thereby it implies that the integrated CWAO and anaerobic/aerobic biological treatment may offer a promising process to treat wastewater from Vitamin B 6 production.

  6. The Learning-Focused Transformation of Biology and Physics Core Courses at the U.S. Air Force Academy

    ERIC Educational Resources Information Center

    Sagendorf, Kenneth; Noyd, Robert K.; Morris, D. Brent

    2009-01-01

    An institution-wide focus on deep learning has made significant changes in the biology and physics core course curriculum at the U.S. Air Force Academy. The biology course director has reworked course objectives to reflect the learning-focused approach to teaching, while the physics curriculum has adopted new learning outcomes and ways to…

  7. Sea surface microlayers: A unified physicochemical and biological perspective of the air-ocean interface

    NASA Astrophysics Data System (ADS)

    Cunliffe, Michael; Engel, Anja; Frka, Sanja; Gašparović, Blaženka; Guitart, Carlos; Murrell, J. Colin; Salter, Matthew; Stolle, Christian; Upstill-Goddard, Robert; Wurl, Oliver

    2013-02-01

    The sea surface microlayer (SML) covers more than 70% of the Earth's surface and is the boundary layer interface between the ocean and the atmosphere. This important biogeochemical and ecological system is critical to a diverse range of Earth system processes, including the synthesis, transformation and cycling of organic material, and the air-sea exchange of gases, particles and aerosols. In this review we discuss the SML paradigm, taking into account physicochemical and biological characteristics that define SML structure and function. These include enrichments in biogenic molecules such as carbohydrates, lipids and proteinaceous material that contribute to organic carbon cycling, distinct microbial assemblages that participate in air-sea gas exchange, the generation of climate-active aerosols and the accumulation of anthropogenic pollutants with potentially serious implications for the health of the ocean. Characteristically large physical, chemical and biological gradients thus separate the SML from the underlying water and the available evidence implies that the SML retains its integrity over wide ranging environmental conditions. In support of this we present previously unpublished time series data on bacterioneuston composition and SML surfactant activity immediately following physical SML disruption; these imply timescales of the order of minutes for the reestablishment of the SML following disruption. A progressive approach to understanding the SML and hence its role in global biogeochemistry can only be achieved by considering as an integrated whole, all the key components of this complex environment.

  8. Review: domestic animal forensic genetics - biological evidence, genetic markers, analytical approaches and challenges.

    PubMed

    Kanthaswamy, S

    2015-10-01

    This review highlights the importance of domestic animal genetic evidence sources, genetic testing, markers and analytical approaches as well as the challenges this field is facing in view of the de facto 'gold standard' human DNA identification. Because of the genetic similarity between humans and domestic animals, genetic analysis of domestic animal hair, saliva, urine, blood and other biological material has generated vital investigative leads that have been admitted into a variety of court proceedings, including criminal and civil litigation. Information on validated short tandem repeat, single nucleotide polymorphism and mitochondrial DNA markers and public access to genetic databases for forensic DNA analysis is becoming readily available. Although the fundamental aspects of animal forensic genetic testing may be reliable and acceptable, animal forensic testing still lacks the standardized testing protocols that human genetic profiling requires, probably because of the absence of monetary support from government agencies and the difficulty in promoting cooperation among competing laboratories. Moreover, there is a lack in consensus about how to best present the results and expert opinion to comply with court standards and bear judicial scrutiny. This has been the single most persistent challenge ever since the earliest use of domestic animal forensic genetic testing in a criminal case in the mid-1990s. Crime laboratory accreditation ensures that genetic test results have the courts' confidence. Because accreditation requires significant commitments of effort, time and resources, the vast majority of animal forensic genetic laboratories are not accredited nor are their analysts certified forensic examiners. The relevance of domestic animal forensic genetics in the criminal justice system is undeniable. However, further improvements are needed in a wide range of supporting resources, including standardized quality assurance and control protocols for sample

  9. Assessing isocyanate exposures in polyurethane industry sectors using biological and air monitoring methods.

    PubMed

    Creely, K S; Hughson, G W; Cocker, J; Jones, K

    2006-08-01

    Isocyanates, as a chemical group, are considered to be the biggest cause of occupational asthma in the UK. Monitoring of airborne exposures to total isocyanate is costly, requiring considerable expertise, both in terms of sample collection and chemical analysis and cannot be used to assess the effectiveness of protection from wearing respiratory protective equipment (RPE). Biological monitoring by analysis of metabolites in urine can be a relatively simple and inexpensive way to assess exposure to isocyanates. It may also be a useful way to evaluate the effectiveness of control measures in place. In this study biological and inhalation monitoring were undertaken to assess exposure in a variety of workplaces in the non-motor vehicle repair sector. Companies selected to participate in the survey included only those judged to be using good working practices when using isocyanate formulations. This included companies that used isocyanates to produce moulded polyurethane products, insulation material and those involved in industrial painting. Air samples were collected by personal monitoring and were analysed for total isocyanate content. Urine samples were collected soon after exposure and analysed for the metabolites of different isocyanate species, allowing calculation of the total metabolite concentration. Details of the control measures used and observed contamination of exposed skin were also recorded. A total of 21 companies agreed to participate in the study, with exposure measurements being collected from 22 sites. The airborne isocyanate concentrations were generally very low (range 0.0005-0.066 mg m(-3)). A total of 50 of the 70 samples were <0.001 mg m(-3), the limit of quantification (LOQ), therefore samples below the LOQ were assigned a value of 1/2 LOQ (0.0005 mg m(-3)). Of the 70 samples, 67 were below the current workplace exposure limit of 0.02 mg m(-3). The highest inhalation exposures occurred during spray painting activities in a truck manufacturing

  10. Environmental and biological monitoring of arsenic in outdoor workers exposed to urban air pollutants.

    PubMed

    Ciarrocca, Manuela; Tomei, Gianfranco; Palermo, Paola; Caciari, Tiziana; Cetica, Carlotta; Fiaschetti, Maria; Gioffrè, Pier Agostino; Tasciotti, Zaira; Tomei, Francesco; Sancini, Angela

    2012-11-01

    The aim of this study is to evaluate personal exposure to As in urban air in two groups of outdoor workers (traffic policemen and police drivers) of a big Italian city through: (a) environmental monitoring of As obtained by personal samples and (b) biological monitoring of total urinary As. The possible influence of smoking habit on urinary As was evaluated. We studied 122 male subjects, all Municipal Police employees: 84 traffic policemen and 38 police drivers exposed to urban pollutants. Personal exposure to As in air was significantly higher in traffic policemen than in police drivers (p=0.03). Mean age, length of service, alcohol drinking habit, number of cigarettes smoked/day and BMI were comparable between the groups of subjects studied. All subjects were working in the same urban area where they had lived for at least 5 yrs. Dietary habits and consumption of water from the water supply and/or mineral water were similar in traffic policemen and in police drivers. The values of total urinary As were significantly higher in traffic policemen (smokers and non smokers) than in police drivers (smokers and non smokers) (p=0.02). In the subgroup of non-smokers the values of total urinary As were significantly higher in traffic policemen than in police drivers (p=0.03). In traffic policemen and in police drivers total urinary As values were significantly correlated to the values of As in air (respectively r=0.9 and r=0.8, p<0.001). This is the first research in literature studying the exposure to As in outdoor workers occupationally exposed to urban pollutants, such as traffic policemen and police drivers. Personal exposure to As in the air, as well as the urinary excretion of As, is significantly higher in traffic policemen compared to drivers. These results can provide information about exposure to As in streets and in car for other categories of outdoor workers similarly exposed.

  11. Real-time sensors for indoor air monitoring and challenges ahead in deploying them to urban buildings.

    PubMed

    Kumar, Prashant; Skouloudis, Andreas N; Bell, Margaret; Viana, Mar; Carotta, M Cristina; Biskos, George; Morawska, Lidia

    2016-08-01

    Household air pollution is ranked the 9(th) largest Global Burden of Disease risk (Forouzanfar et al., The Lancet 2015). People, particularly urban dwellers, typically spend over 90% of their daily time indoors, where levels of air pollution often surpass those of outdoor environments. Indoor air quality (IAQ) standards and approaches for assessment and control of indoor air require measurements of pollutant concentrations and thermal comfort using conventional instruments. However, the outcomes of such measurements are usually averages over long integrated time periods, which become available after the exposure has already occurred. Moreover, conventional monitoring is generally incapable of addressing temporal and spatial heterogeneity of indoor air pollution, or providing information on peak exposures that occur when specific indoor sources are in operation. This article provides a review of new air pollution sensing methods to determine IAQ and discusses how real-time sensing could bring a paradigm shift in controlling the concentration of key air pollutants in billions of urban houses worldwide. We also show that besides the opportunities, challenges still remain in terms of maturing technologies, or data mining and their interpretation. Moreover, we discuss further research and essential development needed to close gaps between what is available today and needed tomorrow. In particular, we demonstrate that awareness of IAQ risks and availability of appropriate regulation are lagging behind the technologies.

  12. Challenges and Opportunities for Learning Biology in Distance-Based Settings

    ERIC Educational Resources Information Center

    Hallyburton, Chad L.; Lunsford, Eddie

    2013-01-01

    The history of learning biology through distance education is documented. A review of terminology and unique problems associated with biology instruction is presented. Using published research and their own teaching experience, the authors present recommendations and best practices for managing biology in distance-based formats. They offer ideas…

  13. Biological challenges and technological opportunities for respiratory syncytial virus vaccine development.

    PubMed

    Graham, Barney S

    2011-01-01

    Respiratory syncytial virus (RSV) is an important cause of respiratory disease causing high rates of hospitalizations in infants, significant morbidity in children and adults, and excess mortality in the elderly. Major barriers to vaccine development include early age of RSV infection, capacity of RSV to evade innate immunity, failure of RSV-induced adaptive immunity to prevent reinfection, history of RSV vaccine-enhanced disease, and lack of an animal model fully permissive to human RSV infection. These biological challenges, safety concerns, and practical issues have significantly prolonged the RSV vaccine development process. One great advantage compared to other difficult viral vaccine targets is that passively administered neutralizing monoclonal antibody is known to protect infants from severe RSV disease. Therefore, the immunological goals for vaccine development are to induce effective neutralizing antibody to prevent infection and to avoid inducing T-cell response patterns associated with enhanced disease. Live-attenuated RSV and replication-competent chimeric viruses are in advanced clinical trials. Gene-based strategies, which can control the specificity and phenotypic properties of RSV-specific T-cell responses utilizing replication-defective vectors and which may improve on immunity from natural infection, are progressing through preclinical testing. Atomic level structural information on RSV envelope glycoproteins in complex with neutralizing antibodies is guiding design of new vaccine antigens that may be able to elicit RSV-specific antibody responses without induction of RSV-specific T-cell responses. These new technologies may allow development of vaccines that can protect against RSV-mediated disease in infants and establish a new immunological paradigm in the host to achieve more durable protection against reinfection.

  14. Challenges

    ERIC Educational Resources Information Center

    Moore, Thomas R.

    1975-01-01

    Domestic and international challenges facing the National Society for the Prevention of Blindness are discussed; and U.S. and Russian programs in testing and correcting children's vision, developing eye safety programs in agriculture and industry, and disseminating information concerning the detection and treatment of cataracts are compared. (SB)

  15. Challenger

    ERIC Educational Resources Information Center

    Allday, Jonathan

    2002-01-01

    The events that led to the spectacular destruction of the Space Shuttle "Challenger" in 1986 are detailed here. They show how NASA should have heeded engineers' worries over materials problems resulting from a launch in cold weather. Suggestions are made of how pupils could also learn from this tragedy. (Contains 4 figures and 2 footnotes.)

  16. Biological treatment of carbon disulfide laden air from sponge manufacturing facility

    SciTech Connect

    Hugler, W.; Acosta, C.M.; Benavente, J.L.; Revah, S.

    1998-12-31

    While several different biological techniques have been developed to eliminate hydrogen sulfide (H2S) from air, there are only few examples of successful results with high concentrations of carbon disulfide (CS2). A pilot-scale biological control system for the treatment of 2,000 ACFM of a gaseous stream containing up to 2,500 ppmv of carbon disulfide, was installed in a cellulose sponge manufacturing facility. The project`s objective was to evaluate the ability of the system to attain continuous removal efficiency levels of 90% for CS{sub 2} and 99% for H{sub 2}S. During the pilot test, the two-unit sequential biotrickling filter reached stable average removal efficiency and rate of 90% and 185 g S/m3-h (based on CS{sub 2} load); individual data analysis for each unit showed that first tower reached a maximum performance of 86% efficiency and 350 g S/m3-h removal rate. Removal efficiencies greater than 99% were obtained for H{sub 2}S during most test period. Furthermore, the system was evaluated for the treatment of a similar waste stream with high fluctuations on CS{sub 2} concentration (in order to assess the need for a dampening unit). New waste gas conditions had a negative impact on performance, which eventually improved reaching an efficiency of 77%; due to time constraints an steady-state was not attained during this test phase. Based on results, the BIOCYD technology demonstrated to be an effective process to remediate waste air streams generated at cellulose sponge facilities.

  17. Dissolved air flotation primary clarifier improves performance of biological waste treatment at a latex manufacturing facility

    SciTech Connect

    Miller, D.R.; Kerecz, B.J.; Davis, M.N.

    1996-12-31

    Air Products and Chemicals, Inc. operates a chemical manufacturing facility in Piedmont, SC which generates a high strength COD emulsion wastewater from latex manufacturing. The on-site wastewater treatment facility consisted of flow equalization, activated sludge treatment and gravity clarification. The inability of the biological system to assimilate the high strength emulsion wastwater loadings led to incomplete conversion within the activated sludge process and poor settling waste sludge with turbid final effluent high in COD, BOD and TSS. The facility installed a dissolved air flotation (DAF) clarifier to effectively remove greater than 99 percent of the wastewater emulsion solids ahead of the activated sludge system. An organic coagulant is used for emulsion destabilization instead of iron or aluminum metal coagulants, improving DAF clarifier performance and minimizing operational cost and system complexity. An innovative DAF float solids collection and handling system produces disposal solids concentrations of 50 - 60% total solids resulting in further waste disposal cost savings. By removing more than 99 percent of the emulsion solids with the DAF clarifier ahead of the activated sludge process, the waste-water treatment facility now consistently produces a high quality effluent low in COD, BOD, TSS and turbidity. Wastewater treatment performance improved dramatically, as evident by the facility receiving the Western Carolina Regional Sewer Authority`s {open_quotes}Best Pollution Prevention Program{close_quotes} award. In addition, the wastewater treatment facility can now process three times the pre-DAF waste loads.

  18. The challenge of follow-on biologics for treatment of multiple sclerosis.

    PubMed

    Reingold, S C; Steiner, J P; Polman, C H; Cohen, J A; Freedman, M S; Kappos, L; Thompson, A J; Wolinsky, J S

    2009-08-18

    Intellectual property protections for biologic medicinals for multiple sclerosis (MS) are beginning to expire, opening the possibility of development, regulatory approval, and marketing of so-called follow-on biologics, biosimilars, or subsequent entry biologics that might be offered at lower price to consumers and third-party payers, as has been the case for generic drugs. Determining the comparability of a follow-on biologic to its innovator product is more difficult than for small-molecule drugs because of the greater complexity of biologics and the possibility that manufacturing differences can introduce differences in biologic activity and immunogenicity that could result in unpredictable differences in safety or efficacy. We provide a perspective on issues surrounding development, regulatory approval, and potential use of follow-on biologics, with an emphasis on disease-modifying agents for MS.

  19. Epidemiology of fine particulate air pollution and human health: biologic mechanisms and who's at risk?

    PubMed Central

    Pope, C A

    2000-01-01

    This article briefly summarizes the epidemiology of the health effects of fine particulate air pollution, provides an early, somewhat speculative, discussion of the contribution of epidemiology to evaluating biologic mechanisms, and evaluates who's at risk or is susceptible to adverse health effects. Based on preliminary epidemiologic evidence, it is speculated that a systemic response to fine particle-induced pulmonary inflammation, including cytokine release and altered cardiac autonomic function, may be part of the pathophysiologic mechanisms or pathways linking particulate pollution with cardiopulmonary disease. The elderly, infants, and persons with chronic cardiopulmonary disease, influenza, or asthma are most susceptible to mortality and serious morbidity effects from short-term acutely elevated exposures. Others are susceptible to less serious health effects such as transient increases in respiratory symptoms, decreased lung function, or other physiologic changes. Chronic exposure studies suggest relatively broad susceptibility to cumulative effects of long-term repeated exposure to fine particulate pollution, resulting in substantive estimates of population average loss of life expectancy in highly polluted environments. Additional knowledge is needed about the specific pollutants or mix of pollutants responsible for the adverse health effects and the biologic mechanisms involved. PMID:10931790

  20. Biological Sciences for the 21st Century: Meeting the Challenges of Sustainable Development in an Era of Global Change

    SciTech Connect

    Joel Cracraft; Richard O'Grady

    2007-05-12

    The symposium was held 10-12 May, 2007 at the Capitol Hilton Hotel in Washington, D. C. The 30 talks explored how some of today's key biological research developments (such as biocomplexity and complex systems analysis, bioinformatics and computational biology, the expansion of molecular and genomics research, and the emergence of other comprehensive or system wide analyses, such as proteomics) contribute to sustainability science. The symposium therefore emphasized the challenges facing agriculture, human health, sustainable energy, and the maintenance of ecosystems and their services, so as to provide a focus and a suite of examples of the enormous potential contributions arising from these new developments in the biological sciences. This symposium was the first to provide a venue for exploring how the ongoing advances in the biological sciences together with new approaches for improving knowledge integration and institutional science capacity address key global challenges to sustainability. The speakers presented new research findings, and identified new approaches and needs in biological research that can be expected to have substantial impacts on sustainability science.

  1. Biology's Challenge to Social Work: Embodying the Person-in-Environment Perspective.

    ERIC Educational Resources Information Center

    Saleebey, Dennis

    1992-01-01

    Notes that, although social work credits itself for using biopsychosocial perspective, "bio" is virtually absent from profession's knowing and doing. Review of areas in which biological knowledge is growing ("biology of hope"--psychoneuroimmunology, for example--and the new biomedical approach to mental health) yields some ideas about how theory…

  2. Getting to Evo-Devo: Concepts and Challenges for Students Learning Evolutionary Developmental Biology

    ERIC Educational Resources Information Center

    Hiatt, Anna; Davis, Gregory K.; Trujillo, Caleb; Terry, Mark; French, Donald P.; Price, Rebecca M.; Perez, Kathryn E.

    2013-01-01

    To examine how well biology majors have achieved the necessary foundation in evolution, numerous studies have examined how students learn natural selection. However, no studies to date have examined how students learn developmental aspects of evolution (evo-devo). Although evo-devo plays an increasing role in undergraduate biology curricula, we…

  3. Release and distribution of Lilioceris cheni (Coleoptera: Chrysomelidae), a biological control agent of air potato (Dioscorea bulbilfera: Dioscoreaceae), in Florida

    Technology Transfer Automated Retrieval System (TEKTRAN)

    From 2012 to 2015, 429,668 Lilioceris cheni Gressit and Kimoto (Coleoptera: Chrysomelidae) were released in Florida for biological control of air potato [Dioscorea bulbilfera L. (Dioscoreaceae)]. The spatial distribution of releases was highly aggregated, with several areas of high density releases ...

  4. Optogenetic characterization methods overcome key challenges in synthetic and systems biology.

    PubMed

    Olson, Evan J; Tabor, Jeffrey J

    2014-07-01

    Systems biologists aim to understand how organism-level processes, such as differentiation and multicellular development, are encoded in DNA. Conversely, synthetic biologists aim to program systems-level biological processes, such as engineered tissue growth, by writing artificial DNA sequences. To achieve their goals, these groups have adapted a hierarchical electrical engineering framework that can be applied in the forward direction to design complex biological systems or in the reverse direction to analyze evolved networks. Despite much progress, this framework has been limited by an inability to directly and dynamically characterize biological components in the varied contexts of living cells. Recently, two optogenetic methods for programming custom gene expression and protein localization signals have been developed and used to reveal fundamentally new information about biological components that respond to those signals. This basic dynamic characterization approach will be a major enabling technology in synthetic and systems biology.

  5. Identification and elucidation of the biology of adverse events: the challenges of safety assessment and translational medicine.

    PubMed

    Turteltaub, Kenneth W; Davis, Myrtle A; Burns-Naas, Leigh Ann; Lawton, Michael P; Clark, Adam M; Reynolds, Jack A

    2011-11-01

    There has been an explosion of technology-enabled scientific insight into the basic biology of the causes of adverse events. This has been driven, in part, by the development of the various "omics" tools (e.g., genomics, proteomics, and metabolomics) and associated bioinformatics platforms. Meanwhile, for decades, changes in preclinical testing protocols and guidelines have been limited. Preclinical safety testing currently relies heavily on the use of outdated animal models. Application of systems biology methods to evaluation of toxicities in oncology treatments can accelerate the introduction of safe, effective drugs. Systems biology adds insights regarding the causes and mechanisms of adverse effects, provides important and actionable information to help understand the risks and benefits to humans, focuses testing on methods that add value to the safety testing process, and leads to modifications of chemical entities to reduce liabilities during development. Leveraging emerging technologies, such as genomics and proteomics, may make preclinical safety testing more efficient and accurate and lead to better safety decisions. The development of a U.S. Food and Drug Administration guidance document on the use of systems biology in clinical testing would greatly benefit the development of drugs for oncology by communicating the potential application of specific methodologies, providing a framework for qualification and application of systems biology outcomes, and providing insight into the challenges and limitations of systems biology in the regulatory decision-making process.

  6. Scientific perspectivism: A philosopher of science's response to the challenge of big data biology.

    PubMed

    Callebaut, Werner

    2012-03-01

    Big data biology-bioinformatics, computational biology, systems biology (including 'omics'), and synthetic biology-raises a number of issues for the philosophy of science. This article deals with several such: Is data-intensive biology a new kind of science, presumably post-reductionistic? To what extent is big data biology data-driven? Can data 'speak for themselves?' I discuss these issues by way of a reflection on Carl Woese's worry that "a society that permits biology to become an engineering discipline, that allows that science to slip into the role of changing the living world without trying to understand it, is a danger to itself." And I argue that scientific perspectivism, a philosophical stance represented prominently by Giere, Van Fraassen, and Wimsatt, according to which science cannot as a matter of principle transcend our human perspective, provides the best resources currently at our disposal to tackle many of the philosophical issues implied in the modeling of complex, multilevel/multiscale phenomena.

  7. Reverse engineering and identification in systems biology: strategies, perspectives and challenges.

    PubMed

    Villaverde, Alejandro F; Banga, Julio R

    2014-02-06

    The interplay of mathematical modelling with experiments is one of the central elements in systems biology. The aim of reverse engineering is to infer, analyse and understand, through this interplay, the functional and regulatory mechanisms of biological systems. Reverse engineering is not exclusive of systems biology and has been studied in different areas, such as inverse problem theory, machine learning, nonlinear physics, (bio)chemical kinetics, control theory and optimization, among others. However, it seems that many of these areas have been relatively closed to outsiders. In this contribution, we aim to compare and highlight the different perspectives and contributions from these fields, with emphasis on two key questions: (i) why are reverse engineering problems so hard to solve, and (ii) what methods are available for the particular problems arising from systems biology?

  8. Beyond efficacy: Challenges in the selection of safe bacterial biological control agents

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The search for new biological control agents often begins with screening in vitro for activity against target pathogens, followed by greenhouse or field assays. Physiological, biochemical, and phylogenetic analyses frequently are not undertaken until much later, after considerable investment already...

  9. Reverse engineering and identification in systems biology: strategies, perspectives and challenges

    PubMed Central

    Villaverde, Alejandro F.; Banga, Julio R.

    2014-01-01

    The interplay of mathematical modelling with experiments is one of the central elements in systems biology. The aim of reverse engineering is to infer, analyse and understand, through this interplay, the functional and regulatory mechanisms of biological systems. Reverse engineering is not exclusive of systems biology and has been studied in different areas, such as inverse problem theory, machine learning, nonlinear physics, (bio)chemical kinetics, control theory and optimization, among others. However, it seems that many of these areas have been relatively closed to outsiders. In this contribution, we aim to compare and highlight the different perspectives and contributions from these fields, with emphasis on two key questions: (i) why are reverse engineering problems so hard to solve, and (ii) what methods are available for the particular problems arising from systems biology? PMID:24307566

  10. Bioaccumulation Potential Of Air Contaminants: Combining Biological Allometry, Chemical Equilibrium And Mass-Balances To Predict Accumulation Of Air Pollutants In Various Mammals

    SciTech Connect

    Veltman, Karin; McKone, Thomas E.; Huijbregts, Mark A.J.; Hendriks, A. Jan

    2009-03-01

    In the present study we develop and test a uniform model intended for single compartment analysis in the context of human and environmental risk assessment of airborne contaminants. The new aspects of the model are the integration of biological allometry with fugacity-based mass-balance theory to describe exchange of contaminants with air. The developed model is applicable to various mammalian species and a range of chemicals, while requiring few and typically well-known input parameters, such as the adult mass and composition of the species, and the octanol-water and air-water partition coefficient of the chemical. Accumulation of organic chemicals is typically considered to be a function of the chemical affinity forlipid components in tissues. Here, we use a generic description of chemical affinity for neutral and polar lipids and proteins to estimate blood-air partition coefficients (Kba) and tissue-air partition coefficients (Kta) for various mammals. This provides a more accurate prediction of blood-air partition coefficients, as proteins make up a large fraction of total blood components. The results show that 75percent of the modeled inhalation and exhalation rate constants are within a factor of 2 from independent empirical values for humans, rats and mice, and 87percent of the predicted blood-air partition coefficients are within a factor of 5 from empirical data. At steady-state, the bioaccumulation potential of air pollutants is shown to be mainly a function of the tissue-air partition coefficient and the biotransformation capacity of the species and depends weakly on the ventilation rate and the cardiac output of mammals.

  11. Systems infection biology: a compartmentalized immune network of pig spleen challenged with Haemophilus parasuis

    PubMed Central

    2013-01-01

    Background Network biology (systems biology) approaches are useful tools for elucidating the host infection processes that often accompany complex immune networks. Although many studies have recently focused on Haemophilus parasuis, a model of Gram-negative bacterium, little attention has been paid to the host's immune response to infection. In this article, we use network biology to investigate infection with Haemophilus parasuis in an in vivo pig model. Results By targeting the spleen immunogenome, we established an expression signature indicative of H. parasuis infection using a PCA/GSEA combined method. We reconstructed the immune network and estimated the network topology parameters that characterize the immunogene expressions in response to H. parasuis infection. The results showed that the immune network of H. parasuis infection is compartmentalized (not globally linked). Statistical analysis revealed that the reconstructed network is scale-free but not small-world. Based on the quantitative topological prioritization, we inferred that the C1R-centered clique might play a vital role in responding to H. parasuis infection. Conclusions Here, we provide the first report of reconstruction of the immune network in H. parasuis-infected porcine spleen. The distinguishing feature of our work is the focus on utilizing the immunogenome for a network biology-oriented analysis. Our findings complement and extend the frontiers of knowledge of host infection biology for H. parasuis and also provide a new clue for systems infection biology of Gram-negative bacilli in mammals. PMID:23339624

  12. Do-it-yourself biology: challenges and promises for an open science and technology movement.

    PubMed

    Landrain, Thomas; Meyer, Morgan; Perez, Ariel Martin; Sussan, Remi

    2013-09-01

    The do-it-yourself biology (DIYbio) community is emerging as a movement that fosters open access to resources permitting modern molecular biology, and synthetic biology among others. It promises in particular to be a source of cheaper and simpler solutions for environmental monitoring, personal diagnostic and the use of biomaterials. The successful growth of a global community of DIYbio practitioners will depend largely on enabling safe access to state-of-the-art molecular biology tools and resources. In this paper we analyze the rise of DIYbio, its community, its material resources and its applications. We look at the current projects developed for the international genetically engineered machine competition in order to get a sense of what amateur biologists can potentially create in their community laboratories over the coming years. We also show why and how the DIYbio community, in the context of a global governance development, is putting in place a safety/ethical framework for guarantying the pursuit of its activity. And finally we argue that the global spread of DIY biology potentially reconfigures and opens up access to biological information and laboratory equipment and that, therefore, it can foster new practices and transversal collaborations between professional scientists and amateurs.

  13. Challenges of Achieving 2012 IECC Air Sealing Requirements in Multifamily Dwellings

    SciTech Connect

    Klocke, S.; Faakye, O.; Puttagunta, S.

    2014-10-01

    While previous versions of the International Energy Conservation Code (IECC) have included provisions to improve the air tightness of dwellings, for the first time, the 2012 IECC mandates compliance verification through blower door testing. Simply completing the Air Barrier and Insulation Installation checklist through visual inspection is no longer sufficient by itself. In addition, the 2012 IECC mandates a significantly stricter air sealing requirement. In Climate Zones 3 through 8, air leakage may not exceed 3 ACH50, which is a significant reduction from the 2009 IECC requirement of 7 ACH50. This requirement is for all residential buildings, which includes low-rise multifamily dwellings. While this air leakage rate requirement is an important component to achieving an efficient building thermal envelope, currently, the code language doesn't explicitly address differences between single family and multifamily applications. In addition, the 2012 IECC does not provide an option to sample dwellings for larger multifamily buildings, so compliance would have to be verified on every unit. With compliance with the 2012 IECC air leakage requirements on the horizon, several of Consortium for Advanced Residential Building's (CARB’s) multifamily builder partners are evaluating how best to comply with this requirement. Builders are not sure whether it is more practical or beneficial to simply pay for guarded testing or to revise their air sealing strategies to improve compartmentalization to comply with code requirements based on unguarded blower door testing. This report summarizes CARB's research that was conducted to assess the feasibility of meeting the 2012 IECC air leakage requirements in 3 multifamily buildings.

  14. Challenges of Achieving 2012 IECC Air Sealing Requirements in Multifamily Dwellings

    SciTech Connect

    Klocke, S.; Faakye, O.; Puttagunta, S.

    2014-10-01

    ​While previous versions of the International Energy Conservation Code (IECC) have included provisions to improve the air tightness of dwellings, for the first time, the 2012 IECC mandates compliance verification through blower door testing. Simply completing the Air Barrier and Insulation Installation checklist through visual inspection is no longer sufficient by itself. In addition, the 2012 IECC mandates a significantly stricter air sealing requirement. In Climate Zones 3 through 8, air leakage may not exceed 3 ACH50, which is a significant reduction from the 2009 IECC requirement of 7 ACH50. This requirement is for all residential buildings, which includes low-rise multifamily dwellings. While this air leakage rate requirement is an important component to achieving an efficient building thermal envelope, currently, the code language doesn't explicitly address differences between single family and multifamily applications. In addition, the 2012 IECC does not provide an option to sample dwellings for larger multifamily buildings, so compliance would have to be verified on every unit. With compliance with the 2012 IECC air leakage requirements on the horizon, several of CARB's multifamily builder partners are evaluating how best to comply with this requirement. Builders are not sure whether it is more practical or beneficial to simply pay for guarded testing or to revise their air sealing strategies to improve compartmentalization to comply with code requirements based on unguarded blower door testing. This report summarizes CARB's research that was conducted to assess the feasibility of meeting the 2012 IECC air leakage requirements in 3 multifamily buildings.

  15. Characterization of biological aerosol exposure risks from automobile air conditioning system.

    PubMed

    Li, Jing; Li, Mingzhen; Shen, Fangxia; Zou, Zhuanglei; Yao, Maosheng; Wu, Chang-yu

    2013-09-17

    Although use of automobile air conditioning (AC) was shown to reduce in-vehicle particle levels, the characterization of its microbial aerosol exposure risks is lacking. Here, both AC and engine filter dust samples were collected from 30 automobiles in four different geographical locations in China. Biological contents (bacteria, fungi, and endotoxin) were studied using culturing, high-throughput gene sequence, and Limulus amebocyte lysate (LAL) methods. In-vehicle viable bioaerosol concentrations were directly monitored using an ultraviolet aerodynamic particle sizer (UVAPS) before and after use of AC for 5, 10, and 15 min. Regardless of locations, the vehicle AC filter dusts were found to be laden with high levels of bacteria (up to 26,150 CFU/mg), fungi (up to 1287 CFU/mg), and endotoxin (up to 5527 EU/mg). More than 400 unique bacterial species, including human opportunistic pathogens, were detected in the filter dusts. In addition, allergenic fungal species were also found abundant. Surprisingly, unexpected fluorescent peaks around 2.5 μm were observed during the first 5 min use of AC, which was attributed to the reaerosolization of those filter-borne microbial agents. The information obtained here can assist in minimizing or preventing the respiratory allergy or infection risk from the use of automobile AC system.

  16. Getting to evo-devo: concepts and challenges for students learning evolutionary developmental biology.

    PubMed

    Hiatt, Anna; Davis, Gregory K; Trujillo, Caleb; Terry, Mark; French, Donald P; Price, Rebecca M; Perez, Kathryn E

    2013-01-01

    To examine how well biology majors have achieved the necessary foundation in evolution, numerous studies have examined how students learn natural selection. However, no studies to date have examined how students learn developmental aspects of evolution (evo-devo). Although evo-devo plays an increasing role in undergraduate biology curricula, we find that instruction often addresses development cursorily, with most of the treatment embedded within instruction on evolution. Based on results of surveys and interviews with students, we suggest that teaching core concepts (CCs) within a framework that integrates supporting concepts (SCs) from both evolutionary and developmental biology can improve evo-devo instruction. We articulate CCs, SCs, and foundational concepts (FCs) that provide an integrative framework to help students master evo-devo concepts and to help educators address specific conceptual difficulties their students have with evo-devo. We then identify the difficulties that undergraduates have with these concepts. Most of these difficulties are of two types: those that are ubiquitous among students in all areas of biology and those that stem from an inadequate understanding of FCs from developmental, cell, and molecular biology.

  17. Systems Biology of Cancer: A Challenging Expedition for Clinical and Quantitative Biologists

    PubMed Central

    Korsunsky, Ilya; McGovern, Kathleen; LaGatta, Tom; Olde Loohuis, Loes; Grosso-Applewhite, Terri; Griffeth, Nancy; Mishra, Bud

    2014-01-01

    A systems-biology approach to complex disease (such as cancer) is now complementing traditional experience-based approaches, which have typically been invasive and expensive. The rapid progress in biomedical knowledge is enabling the targeting of disease with therapies that are precise, proactive, preventive, and personalized. In this paper, we summarize and classify models of systems biology and model checking tools, which have been used to great success in computational biology and related fields. We demonstrate how these models and tools have been used to study some of the twelve biochemical pathways implicated in but not unique to pancreatic cancer, and conclude that the resulting mechanistic models will need to be further enhanced by various abstraction techniques to interpret phenomenological models of cancer progression. PMID:25191654

  18. Challenges and opportunities for remote sensing of air quality: Insights from DISCOVER-AQ

    NASA Astrophysics Data System (ADS)

    Crawford, J. H.; Pickering, K. E.; Anderson, B. E.; Beyersdorf, A. J.; Clark, R. D.; Cohen, R. C.; Diskin, G. S.; Ferrare, R. A.; Fried, A.; Holben, B. N.; Herman, J. R.; Hoff, R. M.; Hostetler, C. A.; Janz, S. J.; Szykman, J.; Thompson, A. M.; Weinheimer, A. J.; Wisthaler, A.; Yang, M. M.; Chen, G.; Kleb, M. M.

    2014-12-01

    Improving the remote sensing of air quality has been the primary focus of a series of four field studies conducted by a project called DISCOVER-AQ (Deriving Information on Surface conditions from COlumn and VERtically resolved observations relevant to Air Quality). Operating as an integrated observing system, DISCOVER-AQ has employed multiple aircraft and ground instrumentation to conduct multi-perspective observations of the distribution of gaseous and particulate pollution in the lower atmosphere over contrasting regions of the U.S. that are currently in violation of National Ambient Air Quality Standards. The four study areas include Maryland (Baltimore-Washington corridor), California (southern San Joaquin Valley), Texas (Greater Houston area), and Colorado (Denver/Northern Front Range). The DISCOVER-AQ observations are actively being used to promote improvements in remote sensing in the following ways: Characterizing vertical structure in the atmosphere and its diurnal patterns to develop improved a priori information for satellite retrievals; Examining horizontal variability to assess the spatial scales needed to resolve emissions and photochemistry; Determining correlative relationships between remotely sensed and in situ observations; Assessing the value of ground-based remote sensing to provide information on impact of boundary layer dynamics and mixing on air pollution. Examples of the ongoing analysis of these datasets and their relevance to future geostationary satellite observations as well as augmentation of air quality monitoring networks with ground-based remote sensing will be discussed.

  19. BIOLOGICAL EFFECTS OF OIL FLY ASH AND RELEVANCE TO AMBIENT AIR PARTICULATE MATTER

    EPA Science Inventory

    Epidemiologic studies have demonstrated increased human morbidity and mortality with elevations in the concentration of ambient air particulate matter (PM). Fugitive fly ash from the combustion of oil and residual fuel oil significantly contributes to the ambient air particle bur...

  20. Breaking the Paradigm: The Challenge of Close Air Support in the Future Joint Operating Environment

    DTIC Science & Technology

    2010-07-26

    fact they had no artillery to provide support. The only “artillery” the forces had for support was mortars ranging from 60mm up to 120mm in size...ground forces in 1911. It was in that year the first two way radio was used in, and the first bomb dropped from an aircraft (Gabriel et al, 1992...Army commanders believe the Air Force has neglected the role of CAS and delegated it to a lower priority behind air superiority and strategic bombing

  1. The impact of developmental biology on pluripotent stem cell research: successes and challenges.

    PubMed

    Rossant, Janet

    2011-07-19

    Research on developmental pathways in model organisms provides key information on how to isolate, maintain, and differentiate human pluripotent stem cells. However, details of developmental pathways differ even across mammalian species. Full realization of the potential of stem cells will require more direct studies of human or primate developmental biology.

  2. The species translation challenge-a systems biology perspective on human and rat bronchial epithelial cells.

    PubMed

    Poussin, Carine; Mathis, Carole; Alexopoulos, Leonidas G; Messinis, Dimitris E; Dulize, Rémi H J; Belcastro, Vincenzo; Melas, Ioannis N; Sakellaropoulos, Theodore; Rhrissorrakrai, Kahn; Bilal, Erhan; Meyer, Pablo; Talikka, Marja; Boué, Stéphanie; Norel, Raquel; Rice, John J; Stolovitzky, Gustavo; Ivanov, Nikolai V; Peitsch, Manuel C; Hoeng, Julia

    2014-01-01

    The biological responses to external cues such as drugs, chemicals, viruses and hormones, is an essential question in biomedicine and in the field of toxicology, and cannot be easily studied in humans. Thus, biomedical research has continuously relied on animal models for studying the impact of these compounds and attempted to 'translate' the results to humans. In this context, the SBV IMPROVER (Systems Biology Verification for Industrial Methodology for PROcess VErification in Research) collaborative initiative, which uses crowd-sourcing techniques to address fundamental questions in systems biology, invited scientists to deploy their own computational methodologies to make predictions on species translatability. A multi-layer systems biology dataset was generated that was comprised of phosphoproteomics, transcriptomics and cytokine data derived from normal human (NHBE) and rat (NRBE) bronchial epithelial cells exposed in parallel to more than 50 different stimuli under identical conditions. The present manuscript describes in detail the experimental settings, generation, processing and quality control analysis of the multi-layer omics dataset accessible in public repositories for further intra- and inter-species translation studies.

  3. Meeting the challenge: a survey of capabilities planned to meet future space biology research needs.

    PubMed

    Yost, B; Souza, K; Wade, C; Davies, P

    1999-07-01

    NASA/Ames Research Center Life Sciences has supported a large number of experiments and observations directed at understanding how biological systems perform or change in the microgravity space environment. These campaigns have been accomplished on a wide range of space-based platforms beginning with the Bion/Cosmos unmanned satellites and including the Space Shuttle middeck, Spacelab, SpaceHab, the Russian Space Station Mir and in the near future, the International Space Station (ISS). To further build upon this past experience, and to continue to make contributions towards the goals of the Human Exploration and Development of Space (HEDS) enterprise, a number of experiment systems and infrastructure are in development in an attempt to provide a comprehensive set of opportunities and capabilities to enable research into biological systems in space. Life support systems, or habitats are geared towards the maintenance of a wide range of biological specimens onboard ISS. Augmented with a set of ancillary equipment and sufficient expendable resources and crew time, researchers will have a robust set of tools to continue biological and physiological experiments in space.

  4. Using Grand Challenges to Teach Science: A Biology-Geology Collaboration

    NASA Astrophysics Data System (ADS)

    Lyford, M.; Myers, J. D.

    2012-12-01

    Three science courses at the University of Wyoming explore the inextricable connections between science and society by centering on grand challenges. Two of these courses are introductory integrated science courses for non-majors while the third is an upper level course for majors and non-majors. Through collaboration, the authors have developed these courses to explore the grand challenges of energy, water and climate. Each course focuses on the fundamental STEM principles required for a citizen to understand each grand challenge. However, the courses also emphasize the non-STEM perspectives (e.g., economics, politics, human well-being, externalities) that underlie each grand challenge and argue that creating equitable, sustainable and just solutions to the grand challenges hinges on an understanding of STEM and non-STEM perspectives. Moreover, the authors also consider the multitude of personal perspectives individuals bring to the classroom (e.g., values, beliefs, empathy misconceptions) that influence any stakeholder's ability to engage in fruitful discussions about grand challenge solutions. Discovering Science (LIFE 1002) focuses on the grand challenges of energy and climate. Students attend three one-hour lectures, one two-hour lab and a one-hour discussion each week. Lectures emphasize the STEM and non-STEM principles underlying each grand challenge. Laboratory activities are designed to be interdisciplinary and engage students in inquiry-driven activities to reinforce concepts from lecture and to model how science is conducted. Labs also expose students to the difficulties often associated with scientific studies, the limits of science, and the inherent uncertainties associated with scientific findings. Discussion sessions provide an opportunity for students to explore the complexity of the grand challenges from STEM and non-STEM perspectives, and expose the multitude of personal perspectives an individual might harbor related to each grand challenge

  5. Methodological challenges of optical tweezers-based X-ray fluorescence imaging of biological model organisms at synchrotron facilities.

    PubMed

    Vergucht, Eva; Brans, Toon; Beunis, Filip; Garrevoet, Jan; Bauters, Stephen; De Rijcke, Maarten; Deruytter, David; Janssen, Colin; Riekel, Christian; Burghammer, Manfred; Vincze, Laszlo

    2015-07-01

    Recently, a radically new synchrotron radiation-based elemental imaging approach for the analysis of biological model organisms and single cells in their natural in vivo state was introduced. The methodology combines optical tweezers (OT) technology for non-contact laser-based sample manipulation with synchrotron radiation confocal X-ray fluorescence (XRF) microimaging for the first time at ESRF-ID13. The optical manipulation possibilities and limitations of biological model organisms, the OT setup developments for XRF imaging and the confocal XRF-related challenges are reported. In general, the applicability of the OT-based setup is extended with the aim of introducing the OT XRF methodology in all research fields where highly sensitive in vivo multi-elemental analysis is of relevance at the (sub)micrometre spatial resolution level.

  6. Advances and challenges in the molecular biology and treatment of glioblastoma—is there any hope for the future?

    PubMed Central

    Veliz, Ignacio; Loo, Yong; Castillo, Omar; Karachaliou, Niki; Nigro, Olga

    2015-01-01

    Malignant gliomas, such as glioblastoma multiforme (GBM), present some of the greatest challenges in the management of cancer patients worldwide. Even with aggressive surgical resections and recent advances in radiotherapy and chemotherapy, the prognosis for GBM patients remains dismal and quality of life is poor. Although new molecular pathways crucial to the biology and invasive ability of GBM are coming to light, translation of basic science achievements into clinical practice is slow. Optimal management requires a multidisciplinary approach and knowledge of potential complications arising from both disease and treatment. To help illustrate “where we are going” with GBM, we here include a detailed depiction of the molecular alterations underlying this fatal disease, as well as intensive research over the past two decades that has led to considerable advances in the understanding of basic GBM biology, pathogenesis and therapeutic approaches. PMID:25705639

  7. Coming Out in Class: Challenges and Benefits of Active Learning in a Biology Classroom for LGBTQIA Students

    PubMed Central

    Cooper, Katelyn M.; Brownell, Sara E.

    2016-01-01

    As we transition our undergraduate biology classrooms from traditional lectures to active learning, the dynamics among students become more important. These dynamics can be influenced by student social identities. One social identity that has been unexamined in the context of undergraduate biology is the spectrum of lesbian, gay, bisexual, transgender, queer, intersex, and asexual (LGBTQIA) identities. In this exploratory interview study, we probed the experiences and perceptions of seven students who identify as part of the LGBTQIA community. We found that students do not always experience the undergraduate biology classroom to be a welcoming or accepting place for their identities. In contrast to traditional lectures, active-learning classes increase the relevance of their LGBTQIA identities due to the increased interactions among students during group work. Finally, working with other students in active-learning classrooms can present challenges and opportunities for students considering their LGBTQIA identity. These findings indicate that these students’ LGBTQIA identities are affecting their experience in the classroom and that there may be specific instructional practices that can mitigate some of the possible obstacles. We hope that this work can stimulate discussions about how to broadly make our active-learning biology classes more inclusive of this specific population of students. PMID:27543636

  8. Synthetic biology between challenges and risks: suggestions for a model of governance and a regulatory framework, based on fundamental rights.

    PubMed

    Colussi, Ilaria Anna

    2013-01-01

    This paper deals with the emerging synthetic biology, its challenges and risks, and tries to design a model for the governance and regulation of the field. The model is called of "prudent vigilance" (inspired by the report about synthetic biology, drafted by the U.S. Presidential Commission on Bioethics, 2010), and it entails (a) an ongoing and periodically revised process of assessment and management of all the risks and concerns, and (b) the adoption of policies - taken through "hard law" and "soft law" sources - that are based on the principle of proportionality (among benefits and risks), on a reasonable balancing between different interests and rights at stake, and are oriented by a constitutional frame, which is represented by the protection of fundamental human rights emerging in the field of synthetic biology (right to life, right to health, dignity, freedom of scientific research, right to environment). After the theoretical explanation of the model, its operability is "checked", by considering its application with reference to only one specific risk brought up by synthetic biology - biosecurity risk, i.e. the risk of bioterrorism.

  9. New and improved proteomics technologies for understanding complex biological systems: Addressing a grand challenge in the life sciences

    PubMed Central

    Hood, Leroy E.; Omenn, Gilbert S.; Moritz, Robert L.; Aebersold, Ruedi; Yamamoto, Keith R.; Amos, Michael; Hunter-Cevera, Jennie; Locascio, Laurie

    2014-01-01

    This White Paper sets out a Life Sciences Grand Challenge for Proteomics Technologies to enhance our understanding of complex biological systems, link genomes with phenotypes, and bring broad benefits to the biosciences and the US economy. The paper is based on a workshop hosted by the National Institute of Standards and Technology (NIST) in Gaithersburg, MD, 14–15 February 2011, with participants from many federal R&D agencies and research communities, under the aegis of the US National Science and Technology Council (NSTC). Opportunities are identified for a coordinated R&D effort to achieve major technology-based goals and address societal challenges in health, agriculture, nutrition, energy, environment, national security, and economic development. PMID:22807061

  10. New and improved proteomics technologies for understanding complex biological systems: addressing a grand challenge in the life sciences.

    PubMed

    Hood, Leroy E; Omenn, Gilbert S; Moritz, Robert L; Aebersold, Ruedi; Yamamoto, Keith R; Amos, Michael; Hunter-Cevera, Jennie; Locascio, Laurie

    2012-09-01

    This White Paper sets out a Life Sciences Grand Challenge for Proteomics Technologies to enhance our understanding of complex biological systems, link genomes with phenotypes, and bring broad benefits to the biosciences and the US economy. The paper is based on a workshop hosted by the National Institute of Standards and Technology (NIST) in Gaithersburg, MD, 14-15 February 2011, with participants from many federal R&D agencies and research communities, under the aegis of the US National Science and Technology Council (NSTC). Opportunities are identified for a coordinated R&D effort to achieve major technology-based goals and address societal challenges in health, agriculture, nutrition, energy, environment, national security, and economic development.

  11. Integration of Plant Defense Traits with Biological Control of Arthropod Pests: Challenges and Opportunities

    PubMed Central

    Peterson, Julie A.; Ode, Paul J.; Oliveira-Hofman, Camila; Harwood, James D.

    2016-01-01

    Crop plants exhibit a wide diversity of defensive traits and strategies to protect themselves from damage by herbivorous pests and disease. These defensive traits may be naturally occurring or artificially selected through crop breeding, including introduction via genetic engineering. While these traits can have obvious and direct impacts on herbivorous pests, many have profound effects on higher trophic levels, including the natural enemies of herbivores. Multi-trophic effects of host plant resistance have the potential to influence, both positively and negatively, biological control. Plant defense traits can influence both the numerical and functional responses of natural enemies; these interactions can be semiochemically, plant toxin-, plant nutrient-, and/or physically mediated. Case studies involving predators, parasitoids, and pathogens of crop pests will be presented and discussed. These diverse groups of natural enemies may respond differently to crop plant traits based on their own unique biology and the ecological niches they fill. Genetically modified crop plants that have been engineered to express transgenic products affecting herbivorous pests are an additional consideration. For the most part, transgenic plant incorporated protectant (PIP) traits are compatible with biological control due to their selective toxicity to targeted pests and relatively low non-target impacts, although transgenic crops may have indirect effects on higher trophic levels and arthropod communities mediated by lower host or prey number and/or quality. Host plant resistance and biological control are two of the key pillars of integrated pest management; their potential interactions, whether they are synergistic, complementary, or disruptive, are key in understanding and achieving sustainable and effective pest management. PMID:27965695

  12. Household air pollution from cooking fires: a challenge for nurses globally and a call to action.

    PubMed

    Speaks, Jason Thomas; Thomas, Eileen C; Thompson, Lisa M

    2012-01-01

    The global burden of disease from exposure to household air pollution related to cooking fires is ranked as the 6th leading cause of death, primarily impacting poor women and children in low-income countries. Globally, smoke exposure from household air pollution is attributed to approximately 1/3 of chronic obstructive pulmonary deaths, 1/4 of pneumonia deaths, and 3% of lung cancer deaths. Nurses are increasingly working in global health arenas but are typically ill-prepared to address this complex environmental health problem. Nurses can play a key role in education, practice, and research to develop and support interventions, both in the United States and abroad, which may reduce this substantial burden of disease.

  13. Meeting the Enduring Challenge, United Stated Air Force Basic Doctrine Through 1992

    DTIC Science & Technology

    1993-01-01

    University in partial fulfillment of the requirements for the Degree of Master of Arts DEPARTMENT OF HISTORY Raleigh 1993 APPROVED BY: Co-Chairs of Advisory C...34 comic book," did little to foster an air of professionalism regarding the way the service viewed doctrine. 9 The 1984 edition significantly redressed...reminiscent of the visionary ideas espoused by ACTS, merely substituting thermonuclear weapons for conventional. In keeping with this emphasis on the

  14. Cursor on Target: Addressing the Challenge of Air-to-Ground Communications

    DTIC Science & Technology

    2013-01-30

    G9L BAO Kit CoT CoT CoT GBS Predator CoT FBCB2 CoT ADOCS CoT GCCS CoT ACARS CT-II CoT AFATDS CoT SIRS RAIDER CoT NCCT CoT DLARS...Quest  Many others ISR High Mobility FLIR Litening Pod RAVE video exploitation Constant Hawk UAV Video Scout Raven and Wasp Air RECCE Low

  15. Indoor air pollution in developing countries: a major environmental and public health challenge.

    PubMed Central

    Bruce, N.; Perez-Padilla, R.; Albalak, R.

    2000-01-01

    Around 50% of people, almost all in developing countries, rely on coal and biomass in the form of wood, dung and crop residues for domestic energy. These materials are typically burnt in simple stoves with very incomplete combustion. Consequently, women and young children are exposed to high levels of indoor air pollution every day. There is consistent evidence that indoor air pollution increases the risk of chronic obstructive pulmonary disease and of acute respiratory infections in childhood, the most important cause of death among children under 5 years of age in developing countries. Evidence also exists of associations with low birth weight, increased infant and perinatal mortality, pulmonary tuberculosis, nasopharyngeal and laryngeal cancer, cataract, and, specifically in respect of the use of coal, with lung cancer. Conflicting evidence exists with regard to asthma. All studies are observational and very few have measured exposure directly, while a substantial proportion have not dealt with confounding. As a result, risk estimates are poorly quantified and may be biased. Exposure to indoor air pollution may be responsible for nearly 2 million excess deaths in developing countries and for some 4% of the global burden of disease. Indoor air pollution is a major global public health threat requiring greatly increased efforts in the areas of research and policy-making. Research on its health effects should be strengthened, particularly in relation to tuberculosis and acute lower respiratory infections. A more systematic approach to the development and evaluation of interventions is desirable, with clearer recognition of the interrelationships between poverty and dependence on polluting fuels. PMID:11019457

  16. Air Base Attacks and Defensive Counters: Historical Lessons and Future Challenges

    DTIC Science & Technology

    2015-01-01

    surveillance, and reconnaissance JBB Joint Base Balad MANPADS man-portable air defense system MOB main operating base MRBM medium-range ballistic...power abroad. However, today, it has only a fraction of the large main operating bases ( MOBs ) it maintained during the Cold War.4 Peacetime MOBs remain...USAF MOBs firing fewer than 40 rounds. Second, the NVA and VC were unable to sustain attacks over multiple days. For example, at Da Nang, the most

  17. Blue Moon Rising? Air Force Institutional Challenges to Producing Senior Joint Leaders

    DTIC Science & Technology

    2010-05-20

    in Iraq, Kurdistan , Somalia, Afghanistan, Sudan, and Kosovo during the 1990s, Belote asserts, “common sense argues that when airpower is central to...science) is central to the concept and execution of command and control (C2): The art of commanding Air Force forces lies in the ability to...commander’s ability to understand and visualize the situation ( art ) forms the foundation for describing and directing actions (science) to achieve

  18. High-performance liquid chromatographic determination of histamine in biological samples: the cerebrospinal fluid challenge--a review.

    PubMed

    Wang, Zhaopin; Wu, Juanli; Wu, Shihua; Bao, Aimin

    2013-04-24

    Histamine, a neurotransmitter crucially involved in a number of basic physiological functions, undergoes changes in neuropsychiatric disorders. Detection of histamine in biological samples such as cerebrospinal fluid (CSF) is thus of clinical importance. The most commonly used method for measuring histamine levels is high performance liquid chromatography (HPLC). However, factors such as very low levels of histamine, the even lower CSF-histamine and CSF-histamine metabolite levels, especially in certain neuropsychiatric diseases, rapid formation of histamine metabolites, and other confounding elements during sample collection, make analysis of CSF-histamine and CSF-histamine metabolites a challenging task. Nonetheless, this challenge can be met, not only with respect to HPLC separation column, derivative reagent, and detector, but also in terms of optimizing the CSF sample collection. This review aims to provide a general insight into the quantitative analyses of histamine in biological samples, with an emphasis on HPLC instruments, methods, and hyphenated techniques, with the aim of promoting the development of an optimal and practical protocol for the determination of CSF-histamine and/or CSF-histamine metabolites.

  19. Biological monitoring of non-thermal effects of mobile phone radiation: recent approaches and challenges.

    PubMed

    Gaestel, Matthias

    2010-08-01

    This review describes recent developments in analysing the influence of radio-frequency electromagnetic fields (RF-EMFs ) on biological systems by monitoring the cellular stress response as well as overall gene expression. Recent data on the initiation and modulation of the classical cellular stress response by RF-EMFs, comprising expression of heat shock proteins and stimulation of stress-activated protein kinases, are summarised and evaluated. Since isothermic RF-EMF exposure is assumed rather than proven there are clear limitations in using the stress response to describe non-thermal effects of RF-EMFs. In particular, further experiments are needed to characterise better the threshold of the thermal heat shock response and the homogeneity of the cellular response in the whole sample for each biological system used. Before then, it is proposed that the absence of the classical stress response can define isothermal experimental conditions and qualifies other biological effects of RF-EMFs detected under these conditions to be of non-thermal origin. To minimise the probability that by making this assumption valuable insights into the nature of biological effects of RF-EMFs could be lost, proteotoxic non-thermal RF-EMF effects should also be monitored by measuring activities of labile intracellular enzymes and/or levels of their metabolites before the threshold for the heat shock response is reached. In addition, non-thermal induction of the stress response via promoter elements distinct from the heat shock element (HSE) should be analysed using HSE-mutated heat shock promoter reporter constructs. Screening for non-thermal RF-EMF effects in the absence of a classical stress response should be performed by transcriptomics and proteomics. Recent approaches demonstrate that due to their high-throughput characteristics, these methods inherently generate false positive results and require statistical evaluation based on quantitative expression analysis from a sufficient

  20. Structural biology and bioinformatics in drug design: opportunities and challenges for target identification and lead discovery

    PubMed Central

    Blundell, Tom L; Sibanda, Bancinyane L; Montalvão, Rinaldo Wander; Brewerton, Suzanne; Chelliah, Vijayalakshmi; Worth, Catherine L; Harmer, Nicholas J; Davies, Owen; Burke, David

    2006-01-01

    Impressive progress in genome sequencing, protein expression and high-throughput crystallography and NMR has radically transformed the opportunities to use protein three-dimensional structures to accelerate drug discovery, but the quantity and complexity of the data have ensured a central place for informatics. Structural biology and bioinformatics have assisted in lead optimization and target identification where they have well established roles; they can now contribute to lead discovery, exploiting high-throughput methods of structure determination that provide powerful approaches to screening of fragment binding. PMID:16524830

  1. The evolutionary developmental biology of tinkering: an introduction to the challenge.

    PubMed

    Lieberman, Daniel E; Hall, Brian K

    2007-01-01

    Recent developments in evolutionary biology have conflicting implications for our understanding of the developmental bases of microevolutionary processes. On the one hand, Darwinian theory predicts that evolution occurs mostly gradually and incrementally through selection on small-scale, heritable changes in phenotype within populations. On the other hand, many discoveries in evolutionary developmental biology--quite a few based on comparisons of distantly related model organisms--suggest that relatively simple transformations of developmental pathways can lead to dramatic, rapid change in phenotype. Here I review the history of and bases for gradualist versus punctuationalist views from a developmental perspective, and propose a framework with which to reconcile them. Notably, while tinkering with developmental pathways can underlie large-scale transformations in body plan, the phenotypic effect of these changes is often modulated by the complexity of the genetic and epigenetic contexts in which they develop. Thus the phenotypic effects of mutations of potentially large effect can manifest themselves rapidly, but they are more likely to emerge more incrementally over evolutionary time via transitional forms as natural selection within populations acts on their expression. To test these hypotheses, and to better understand how developmental shifts underlie microevolutionary change, future research needs to be directed at understanding how complex developmental networks, both genetic and epigenetic, structure the phenotypic effects of particular mutations within populations of organisms.

  2. Interaction of Materials and Biology in Total Joint Replacement – Successes, Challenges and Future Directions

    PubMed Central

    Sato, T; Yao, Z; Goodman, SB

    2014-01-01

    Total joint replacement (TJR) has revolutionized the treatment of end-stage arthritic disorders. This success is due, in large part, to a clear understanding of the important interaction between the artificial implant and the biology of the host. All surgical procedures in which implants are placed in the body evoke an initial inflammatory reaction, which generally subsides over several weeks. Thereafter, a series of homeostatic events occur leading to progressive integration of the implant within bone and the surrounding musculoskeletal tissues. The eventual outcome of the operation is dependent on the characteristics of the implant, the precision of the surgical technique and operative environment, and the biological milieu of the host. If these factors and events are not optimal, adverse events can occur such as the development of chronic inflammation, progressive bone loss due to increased production of degradation products from the implant (periprosthetic osteolysis), implant loosening or infection. These complications can lead to chronic pain and poor function of the joint reconstruction, and may necessitate revision surgery or removal of the prosthesis entirely. Recent advances in engineering, materials science, and the immunological aspects associated with orthopaedic implants have fostered intense research with the hope that joint replacements will last a lifetime, and facilitate pain-free, normal function. PMID:25541591

  3. Progress and challenges in using human stem cells for biological and therapeutics discovery: neuropsychiatric disorders

    PubMed Central

    Panchision, David M.

    2016-01-01

    In facing the daunting challenge of using human embryonic and induced pluripotent stem cells (hESCs, hiPSCs) to study complex neural circuit disorders such as schizophrenia (SCZ), mood and anxiety disorders and autism spectrum disorders (ASDs), a 2012 National Institute of Mental Health workshop produced a set of recommendations to advance basic research and engage industry in cell-based studies of neuropsychiatric disorders. This review describes progress in meeting these recommendations, including the development of novel tools, strides in recapitulating relevant cell and tissue types, insights into the genetic basis of these disorders that permit integration of risk-associated gene regulatory networks with cell/circuit phenotypes, and promising findings of patient-control differences using cell-based assays. However, numerous challenges are still being addressed, requiring further technological development, approaches to resolve disease heterogeneity and collaborative structures for investigators of different disciplines. Additionally, since data obtained so far is on small sample sizes, replication in larger sample sets is needed. A number of individual success stories point to a path forward in developing assays to translate discovery science to therapeutics development. PMID:26840228

  4. Resources and Recommendations for Using Transcriptomics to Address Grand Challenges in Comparative Biology

    PubMed Central

    Mykles, Donald L.; Burnett, Karen G.; Durica, David S.; Joyce, Blake L.; McCarthy, Fiona M.; Schmidt, Carl J.; Stillman, Jonathon H.

    2016-01-01

    High-throughput RNA sequencing (RNA-seq) technology has become an important tool for studying physiological responses of organisms to changes in their environment. De novo assembly of RNA-seq data has allowed researchers to create a comprehensive catalog of genes expressed in a tissue and to quantify their expression without a complete genome sequence. The contributions from the “Tapping the Power of Crustacean Transcriptomics to Address Grand Challenges in Comparative Biology” symposium in this issue show the successes and limitations of using RNA-seq in the study of crustaceans. In conjunction with the symposium, the Animal Genome to Phenome Research Coordination Network collated comments from participants at the meeting regarding the challenges encountered when using transcriptomics in their research. Input came from novices and experts ranging from graduate students to principal investigators. Many were unaware of the bioinformatics analysis resources currently available on the CyVerse platform. Our analysis of community responses led to three recommendations for advancing the field: (1) integration of genomic and RNA-seq sequence assemblies for crustacean gene annotation and comparative expression; (2) development of methodologies for the functional analysis of genes; and (3) information and training exchange among laboratories for transmission of best practices. The field lacks the methods for manipulating tissue-specific gene expression. The decapod crustacean research community should consider the cherry shrimp, Neocaridina denticulata, as a decapod model for the application of transgenic tools for functional genomics. This would require a multi-investigator effort. PMID:27639274

  5. Challenge of investigating biologically relevant functions of virulence factors in bacterial pathogens.

    PubMed Central

    Moxon, R; Tang, C

    2000-01-01

    Recent innovations have increased enormously the opportunities for investigating the molecular basis of bacterial pathogenicity, including the availability of whole-genome sequences, techniques for identifying key virulence genes, and the use of microarrays and proteomics. These methods should provide powerful tools for analysing the patterns of gene expression and function required for investigating host-microbe interactions in vivo. But, the challenge is exacting. Pathogenicity is a complex phenotype and the reductionist approach does not adequately address the eclectic and variable outcomes of host-microbe interactions, including evolutionary dynamics and ecological factors. There are difficulties in distinguishing bacterial 'virulence' factors from the many determinants that are permissive for pathogenicity, for example those promoting general fitness. A further practical problem for some of the major bacterial pathogens is that there are no satisfactory animal models or experimental assays that adequately reflect the infection under investigation. In this review, we give a personal perspective on the challenge of characterizing how bacterial pathogens behave in vivo and discuss some of the methods that might be most relevant for understanding the molecular basis of the diseases for which they are responsible. Despite the powerful genomic, molecular, cellular and structural technologies available to us, we are still struggling to come to grips with the question of 'What is a pathogen?' PMID:10874737

  6. Using Mobile Monitoring to Assess Spatial Variability in Urban Air Pollution Levels: Opportunities and Challenges (Invited)

    NASA Astrophysics Data System (ADS)

    Larson, T.

    2010-12-01

    Measuring air pollution concentrations from a moving platform is not a new idea. Historically, however, most information on the spatial variability of air pollutants have been derived from fixed site networks operating simultaneously over space. While this approach has obvious advantages from a regulatory perspective, with the increasing need to understand ever finer scales of spatial variability in urban pollution levels, the use of mobile monitoring to supplement fixed site networks has received increasing attention. Here we present examples of the use of this approach: 1) to assess existing fixed-site fine particle networks in Seattle, WA, including the establishment of new fixed-site monitoring locations; 2) to assess the effectiveness of a regulatory intervention, a wood stove burning ban, on the reduction of fine particle levels in the greater Puget Sound region; and 3) to assess spatial variability of both wood smoke and mobile source impacts in both Vancouver, B.C. and Tacoma, WA. Deducing spatial information from the inherently spatio-temporal measurements taken from a mobile platform is an area that deserves further attention. We discuss the use of “fuzzy” points to address the fine-scale spatio-temporal variability in the concentration of mobile source pollutants, specifically to deduce the broader distribution and sources of fine particle soot in the summer in Vancouver, B.C. We also discuss the use of principal component analysis to assess the spatial variability in multivariate, source-related features deduced from simultaneous measurements of light scattering, light absorption and particle-bound PAHs in Tacoma, WA. With increasing miniaturization and decreasing power requirements of air monitoring instruments, the number of simultaneous measurements that can easily be made from a mobile platform is rapidly increasing. Hopefully the methods used to design mobile monitoring experiments for differing purposes, and the methods used to interpret those

  7. Erziehung in einer biologisch determinierten Welt--Herausforderung fur die Theoriebildung einer Evolutionaren Padagogik aus Biologischer Perspektive (Education in a Biologically Determined World--A Challenge for a Theory of Evolutionary Pedagogics from a Biological Point of View).

    ERIC Educational Resources Information Center

    Voland, Eckart; Voland, Renate

    2002-01-01

    Designates four challenges for a theory of evolutionary pedagogics which result from the theoretical progress made in biological science: (1) subjectively perceived autonomy; (2) teachability; (3) preparation for future life; and (4) the reality norm dilemma. Argues that these confrontations are the theoretical challenges for the further…

  8. Challenges of biological sample preparation for SIMS imaging of elements and molecules at subcellular resolution

    NASA Astrophysics Data System (ADS)

    Chandra, Subhash

    2008-12-01

    Secondary ion mass spectrometry (SIMS) based imaging techniques capable of subcellular resolution characterization of elements and molecules are becoming valuable tools in many areas of biology and medicine. Due to high vacuum requirements of SIMS, the live cells cannot be analyzed directly in the instrument. The sample preparation, therefore, plays a critical role in preserving the native chemical composition for SIMS analysis. This work focuses on the evaluation of frozen-hydrated and frozen freeze-dried sample preparations for SIMS studies of cultured cells with a CAMECA IMS-3f dynamic SIMS ion microscope instrument capable of producing SIMS images with a spatial resolution of 500 nm. The sandwich freeze-fracture method was used for fracturing the cells. The complimentary fracture planes in the plasma membrane were characterized by field-emission secondary electron microscopy (FESEM) in the frozen-hydrated state. The cells fractured at the dorsal surface were used for SIMS analysis. The frozen-hydrated SIMS analysis of individual cells under dynamic primary ion beam (O 2+) revealed local secondary ion signal enhancements correlated with the water image signals of 19(H 3O) +. A preferential removal of water from the frozen cell matrix in the Z-axis was also observed. These complications render the frozen-hydrated sample type less desirable for subcellular dynamic SIMS studies. The freeze-drying of frozen-hydrated cells, either inside the instrument or externally in a freeze-drier, allowed SIMS imaging of subcellular chemical composition. Morphological evaluations of fractured freeze-dried cells with SEM and confocal laser scanning microscopy (CLSM) revealed well-preserved mitochondria, Golgi apparatus, and stress fibers. SIMS analysis of fractured freeze-dried cells revealed well-preserved chemical composition of even the most highly diffusible ions like K + and Na + in physiologically relevant concentrations. The high K-low Na signature in individual cells

  9. Current Trends and New Challenges of Databases and Web Applications for Systems Driven Biological Research

    PubMed Central

    Sreenivasaiah, Pradeep Kumar; Kim, Do Han

    2010-01-01

    Dynamic and rapidly evolving nature of systems driven research imposes special requirements on the technology, approach, design and architecture of computational infrastructure including database and Web application. Several solutions have been proposed to meet the expectations and novel methods have been developed to address the persisting problems of data integration. It is important for researchers to understand different technologies and approaches. Having familiarized with the pros and cons of the existing technologies, researchers can exploit its capabilities to the maximum potential for integrating data. In this review we discuss the architecture, design and key technologies underlying some of the prominent databases and Web applications. We will mention their roles in integration of biological data and investigate some of the emerging design concepts and computational technologies that are likely to have a key role in the future of systems driven biomedical research. PMID:21423387

  10. Biological hydrogen production by dark fermentation: challenges and prospects towards scaled-up production.

    PubMed

    RenNanqi; GuoWanqian; LiuBingfeng; CaoGuangli; DingJie

    2011-06-01

    Among different technologies of hydrogen production, bio-hydrogen production exhibits perhaps the greatest potential to replace fossil fuels. Based on recent research on dark fermentative hydrogen production, this article reviews the following aspects towards scaled-up application of this technology: bioreactor development and parameter optimization, process modeling and simulation, exploitation of cheaper raw materials and combining dark-fermentation with photo-fermentation. Bioreactors are necessary for dark-fermentation hydrogen production, so the design of reactor type and optimization of parameters are essential. Process modeling and simulation can help engineers design and optimize large-scale systems and operations. Use of cheaper raw materials will surely accelerate the pace of scaled-up production of biological hydrogen. And finally, combining dark-fermentation with photo-fermentation holds considerable promise, and has successfully achieved maximum overall hydrogen yield from a single substrate. Future development of bio-hydrogen production will also be discussed.

  11. Dispersal of marine organisms and the grand challenges in biology: an introduction to the symposium.

    PubMed

    Lindsay, Sara M

    2012-10-01

    Understanding dispersal and its complex variables is critical to understanding the ecology and evolution of life histories of species, but research on dispersal tends to reflect or emphasize particular disciplines, such as population genetics, functional morphology, evolutionary and developmental biology, physiology, and biophysics, or to emphasize a particular clade or functional group (e.g., fish, planktotrophs or lecithotrophs, pelagic or benthic organisms) in marine ecosystems. The symposium on "Dispersal of Marine Organisms" assembled an interdisciplinary group of outstanding young and established speakers to address dispersal in marine organisms in order to foster integration and cross-talk among different disciplines and to identify gaps in our knowledge and suggest areas for future research.

  12. Current trends and new challenges of databases and web applications for systems driven biological research.

    PubMed

    Sreenivasaiah, Pradeep Kumar; Kim, Do Han

    2010-01-01

    Dynamic and rapidly evolving nature of systems driven research imposes special requirements on the technology, approach, design and architecture of computational infrastructure including database and Web application. Several solutions have been proposed to meet the expectations and novel methods have been developed to address the persisting problems of data integration. It is important for researchers to understand different technologies and approaches. Having familiarized with the pros and cons of the existing technologies, researchers can exploit its capabilities to the maximum potential for integrating data. In this review we discuss the architecture, design and key technologies underlying some of the prominent databases and Web applications. We will mention their roles in integration of biological data and investigate some of the emerging design concepts and computational technologies that are likely to have a key role in the future of systems driven biomedical research.

  13. Data integration and systems biology approaches for biomarker discovery: challenges and opportunities for multiple sclerosis.

    PubMed

    Villoslada, Pablo; Baranzini, Sergio

    2012-07-15

    New "omic" technologies and their application to systems biology approaches offer new opportunities for biomarker discovery in complex disorders, including multiple sclerosis (MS). Recent studies using massive genotyping, DNA arrays, antibody arrays, proteomics, glycomics, and metabolomics from different tissues (blood, cerebrospinal fluid, brain) have identified many molecules associated with MS, defining both susceptibility and functional targets (e.g., biomarkers). Such discoveries involve many different levels in the complex organizational hierarchy of humans (DNA, RNA, protein, etc.), and integrating these datasets into a coherent model with regard to MS pathogenesis would be a significant step forward. Given the dynamic and heterogeneous nature of MS, validating biomarkers is mandatory. To develop accurate markers of disease prognosis or therapeutic response that are clinically useful, combining molecular, clinical, and imaging data is necessary. Such an integrative approach would pave the way towards better patient care and more effective clinical trials that test new therapies, thus bringing the paradigm of personalized medicine in MS one step closer.

  14. Biologics industry challenges for developing diagnostic tests for the National Veterinary Stockpile.

    PubMed

    Hardham, J M; Lamichhane, C M

    2013-01-01

    Veterinary diagnostic products generated ~$3 billion US dollars in global sales in 2010. This industry is poised to undergo tremendous changes in the next decade as technological advances move diagnostic products from the traditional laboratory-based and handheld immunologic assays towards highly technical, point of care devices with increased sensitivity, specificity, and complexity. Despite these opportunities for advancing diagnostic products, the industry continues to face numerous challenges in developing diagnostic products for emerging and foreign animal diseases. Because of the need to deliver a return on the investment, research and development dollars continue to be focused on infectious diseases that have a negative impact on current domestic herd health, production systems, or companion animal health. Overcoming the administrative, legal, fiscal, and technological barriers to provide veterinary diagnostic products for the National Veterinary Stockpile will reduce the threat of natural or intentional spread of foreign diseases and increase the security of the food supply in the US.

  15. Topical, Biological and Clinical Challenges in the Management of Patients with Acne Vulgaris

    PubMed Central

    Al-Hammadi, Anwar; Al-Ismaily, Abla; Al-Ali, Sameer; Ramadurai, Rajesh; Jain, Rishi; McKinley-Grant, Lynn; Mughal, Tariq I.

    2016-01-01

    Acne vulgaris is one of the most common chronic inflammatory skin disorders among adolescents and young adults. It is associated with substantial morbidity and, rarely, with mortality. The exact worldwide incidence and prevalence are currently unknown. Current challenges involve improving understanding of the underlying pathophysiology of acne vulgaris and developing a practical treatment consensus. Expert panel discussions were held in 2013 and 2014 among a group of scientists and clinicians from the Omani and United Arab Emirate Dermatology Societies to ascertain the current optimal management of acne vulgaris, identify clinically relevant end-points and construct suitable methodology for future clinical trial designs. This article reviews the discussions of these sessions and recent literature on this topic. PMID:27226905

  16. [A challenge to Peronism's social justice: hydatidosis in the province of Buenos Aires, 1946-1952].

    PubMed

    Valobra, Adriana

    2007-01-01

    This analysis of the sanitary policies enforced in the province of Buenos Aires by Domingo Alfredo Mercante--Juan Domingo Perón's right-hand man--focuses on one of his most fascinating efforts: the eradication of hydatidosis. In exploring an issue largely forgotten by historiography, the article describes how the Mercante administration (1946-52) used statistical, socioeconomic, and symbolic legitimization to place hydatidosis on the State agenda. The administration's strategies are also pinpointed: the passing of regulatory laws against this endemic disease; the creation of specific state anti-hydatidosis institutions; the creation of space for information and for interdisciplinary, interministerial, and even supranational education aimed at achieving greater knowledge of the disease and at the exchange of experiences; and, lastly, the definition of initiatives focused on relief, treatment, and prevention in animals and people.

  17. Biology in the Anthropocene: Challenges and insights from young fossil records

    PubMed Central

    Kidwell, Susan M.

    2015-01-01

    With overwhelming evidence of change in habitats, biologists today must assume that few, if any, study areas are natural and that biological variability is superimposed on trends rather than stationary means. Paleobiological data from the youngest sedimentary record, including death assemblages actively accumulating on modern land surfaces and seabeds, provide unique information on the status of present-day species, communities, and biomes over the last few decades to millennia and on their responses to natural and anthropogenic environmental change. Key advances have established the accuracy and resolving power of paleobiological information derived from naturally preserved remains and of proxy evidence for environmental conditions and sample age so that fossil data can both implicate and exonerate human stressors as the drivers of biotic change and permit the effects of multiple stressors to be disentangled. Legacy effects from Industrial and even pre-Industrial anthropogenic extirpations, introductions, (de)nutrification, and habitat conversion commonly emerge as the primary factors underlying the present-day status of populations and communities; within the last 2 million years, climate change has rarely been sufficient to drive major extinction pulses absent other human pressures, which are now manifold. Young fossil records also provide rigorous access to the baseline composition and dynamics of modern-day biota under pre-Industrial conditions, where insights include the millennial-scale persistence of community structures, the dominant role of physical environmental conditions rather than biotic interactions in determining community composition and disassembly, and the existence of naturally alternating states. PMID:25901315

  18. Biology in the Anthropocene: Challenges and insights from young fossil records.

    PubMed

    Kidwell, Susan M

    2015-04-21

    With overwhelming evidence of change in habitats, biologists today must assume that few, if any, study areas are natural and that biological variability is superimposed on trends rather than stationary means. Paleobiological data from the youngest sedimentary record, including death assemblages actively accumulating on modern land surfaces and seabeds, provide unique information on the status of present-day species, communities, and biomes over the last few decades to millennia and on their responses to natural and anthropogenic environmental change. Key advances have established the accuracy and resolving power of paleobiological information derived from naturally preserved remains and of proxy evidence for environmental conditions and sample age so that fossil data can both implicate and exonerate human stressors as the drivers of biotic change and permit the effects of multiple stressors to be disentangled. Legacy effects from Industrial and even pre-Industrial anthropogenic extirpations, introductions, (de)nutrification, and habitat conversion commonly emerge as the primary factors underlying the present-day status of populations and communities; within the last 2 million years, climate change has rarely been sufficient to drive major extinction pulses absent other human pressures, which are now manifold. Young fossil records also provide rigorous access to the baseline composition and dynamics of modern-day biota under pre-Industrial conditions, where insights include the millennial-scale persistence of community structures, the dominant role of physical environmental conditions rather than biotic interactions in determining community composition and disassembly, and the existence of naturally alternating states.

  19. Biological Monitoring of Air Pollutants and Its Influence on Human Beings.

    PubMed

    Cen, Shihong

    2015-01-01

    Monitoring air pollutants via plants is an economic, convenient and credible method compared with the traditional ways. Plants show different damage symptoms to different air pollutants, which can be used to determine the species of air pollutants. Besides, pollutants mass concentration scope can be estimated by the damage extent of plants and the span of polluted time. Based on the domestic and foreign research, this paper discusses the principles, mechanism, advantages and disadvantages of plant-monitoring, and exemplifies plenty of such plants and the minimum mass concentration and pollution time of the plants showing damage symptoms. Finally, this paper introduced the human health effects of air pollutants on immune function of the body, such as decrease of the body's immune function, decline of lung function, respiratory and circulatory system changes, inducing and promoting human allergic diseases, respiratory diseases and other diseases.

  20. Biologic Effects of Atmospheric Pollutants: Asbestos - The Need For and Feasibility of Air Pollution Controls

    EPA Pesticide Factsheets

    This 1971 report sets forth in a well-organized fashion the currently available information on asbestos as an air pollutant, with special attention to sources health effects, measurements, and feasibility of control.

  1. In Situ Biological Treatment Test at Kelly Air Force Base. Volume 3. Appendices.

    DTIC Science & Technology

    1987-07-01

    UNLIMITED,, ENGINEERING & SERVICES LABORATORYC3 AIR FORCE ENGINEERING & SERVICES CENTER ts TYNDALL AIR FORCE BASE, FLORIDA 32403 9 1 NOTICE PLEASE DO NOT...Drive HQ AFESC/RDVW McLean, Virginia 22101 Tyndall AFB, Florida 32403-6001 1a. NAME OF FUNDING/ SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT...population by the addition of nutrients and an oxygen source to promote degrada- tion of organic contaminants. In situ treatment affects contaminants

  2. Tire Changes, Fresh Air, and Yellow Flags: Challenges in Predictive Analytics for Professional Racing.

    PubMed

    Tulabandhula, Theja; Rudin, Cynthia

    2014-06-01

    Our goal is to design a prediction and decision system for real-time use during a professional car race. In designing a knowledge discovery process for racing, we faced several challenges that were overcome only when domain knowledge of racing was carefully infused within statistical modeling techniques. In this article, we describe how we leveraged expert knowledge of the domain to produce a real-time decision system for tire changes within a race. Our forecasts have the potential to impact how racing teams can optimize strategy by making tire-change decisions to benefit their rank position. Our work significantly expands previous research on sports analytics, as it is the only work on analytical methods for within-race prediction and decision making for professional car racing.

  3. Enabling X-ray free electron laser crystallography for challenging biological systems from a limited number of crystals

    SciTech Connect

    Uervirojnangkoorn, Monarin; Zeldin, Oliver B.; Lyubimov, Artem Y.; Hattne, Johan; Brewster, Aaron S.; Sauter, Nicholas K.; Brunger, Axel T.; Weis, William I.

    2015-03-17

    There is considerable potential for X-ray free electron lasers (XFELs) to enable determination of macromolecular crystal structures that are difficult to solve using current synchrotron sources. Prior XFEL studies often involved the collection of thousands to millions of diffraction images, in part due to limitations of data processing methods. We implemented a data processing system based on classical post-refinement techniques, adapted to specific properties of XFEL diffraction data. When applied to XFEL data from three different proteins collected using various sample delivery systems and XFEL beam parameters, our method improved the quality of the diffraction data as well as the resulting refined atomic models and electron density maps. Moreover, the number of observations for a reflection necessary to assemble an accurate data set could be reduced to a few observations. These developments will help expand the applicability of XFEL crystallography to challenging biological systems, including cases where sample is limited.

  4. Enabling X-ray free electron laser crystallography for challenging biological systems from a limited number of crystals.

    PubMed

    Uervirojnangkoorn, Monarin; Zeldin, Oliver B; Lyubimov, Artem Y; Hattne, Johan; Brewster, Aaron S; Sauter, Nicholas K; Brunger, Axel T; Weis, William I

    2015-03-17

    There is considerable potential for X-ray free electron lasers (XFELs) to enable determination of macromolecular crystal structures that are difficult to solve using current synchrotron sources. Prior XFEL studies often involved the collection of thousands to millions of diffraction images, in part due to limitations of data processing methods. We implemented a data processing system based on classical post-refinement techniques, adapted to specific properties of XFEL diffraction data. When applied to XFEL data from three different proteins collected using various sample delivery systems and XFEL beam parameters, our method improved the quality of the diffraction data as well as the resulting refined atomic models and electron density maps. Moreover, the number of observations for a reflection necessary to assemble an accurate data set could be reduced to a few observations. These developments will help expand the applicability of XFEL crystallography to challenging biological systems, including cases where sample is limited.

  5. Enabling X-ray free electron laser crystallography for challenging biological systems from a limited number of crystals

    DOE PAGES

    Uervirojnangkoorn, Monarin; Zeldin, Oliver B.; Lyubimov, Artem Y.; ...

    2015-03-17

    There is considerable potential for X-ray free electron lasers (XFELs) to enable determination of macromolecular crystal structures that are difficult to solve using current synchrotron sources. Prior XFEL studies often involved the collection of thousands to millions of diffraction images, in part due to limitations of data processing methods. We implemented a data processing system based on classical post-refinement techniques, adapted to specific properties of XFEL diffraction data. When applied to XFEL data from three different proteins collected using various sample delivery systems and XFEL beam parameters, our method improved the quality of the diffraction data as well as themore » resulting refined atomic models and electron density maps. Moreover, the number of observations for a reflection necessary to assemble an accurate data set could be reduced to a few observations. These developments will help expand the applicability of XFEL crystallography to challenging biological systems, including cases where sample is limited.« less

  6. The Challenges of Field Testing the Traffic Management Advisor (TMA) in an Operational Air Traffic Control Facility

    NASA Technical Reports Server (NTRS)

    Hoang, Ty; Swenson, Harry N.

    1997-01-01

    The Traffic Management Advisor (TMA), the sequence and schedule tool of the Center/TRACON Automation System (CTAS), was evaluated at the Fort Worth Center (ZFW) in the summer of 1996. This paper describes the challenges encountered during the various phases of the TMA field evaluation, which included system (hardware and software) installation, personnel training, and data collection. Operational procedures were developed and applied to the evaluation process that would ensure air safety. The five weeks of field evaluation imposed minimal impact on the hosting facility and provided valuable engineering and human factors data. The collection of data was very much an opportunistic affair, due to dynamic traffic conditions. One measure of the success of the TMA evaluation is that, rather than remove TMA after the evaluation until it could be fully implemented, the prototype TMA is in continual use at ZFW as the fully operational version is readied for implementation.

  7. Proteolysis mediated by cysteine cathepsins and legumain-recent advances and cell biological challenges.

    PubMed

    Brix, Klaudia; McInnes, Joseph; Al-Hashimi, Alaa; Rehders, Maren; Tamhane, Tripti; Haugen, Mads H

    2015-05-01

    Proteases play essential roles in protein degradation, protein processing, and extracellular matrix remodeling in all cell types and tissues. They are also involved in protein turnover for maintenance of homeostasis and protein activation or inactivation for cell signaling. Proteases range in function and specificity, with some performing distinct substrate cleavages, while others accomplish proteolysis of a wide range of substrates. As such, different cell types use specialized molecular mechanisms to regulate the localization of proteases and their function within the compartments to which they are destined. Here, we focus on the cysteine family of cathepsin proteases and legumain, which act predominately within the endo-lysosomal pathway. In particular, recent knowledge on cysteine cathepsins and their primary regulator legumain is scrutinized in terms of their trafficking to endo-lysosomal compartments and other less recognized cellular locations. We further explore the mechanisms that regulate these processes and point to pathological cases which arise from detours taken by these proteases. Moreover, the emerging biological roles of specific forms and variants of cysteine cathepsins and legumain are discussed. These may be decisive, pathogenic, or even deadly when localizing to unusual cellular compartments in their enzymatically active form, because they may exert unexpected effects by alternative substrate cleavage. Hence, we propose future perspectives for addressing the actions of cysteine cathepsins and legumain as well as their specific forms and variants. The increasing knowledge in non-canonical aspects of cysteine cathepsin- and legumain-mediated proteolysis may prove valuable for developing new strategies to utilize these versatile proteases in therapeutic approaches.

  8. Purification of retroviral vectors for clinical application: biological implications and technological challenges.

    PubMed

    Rodrigues, Teresa; Carrondo, Manuel J T; Alves, Paula M; Cruz, Pedro E

    2007-01-10

    For centuries mankind led a difficult battle against viruses, the smallest infectious agents at the surface of the earth. Nowadays it is possible to use viruses for our benefit, both at a prophylactic level in the production of vaccines and at a therapeutic level in the promising field of gene therapy. Retroviruses were discovered at the end of the 19th century and constitute one of the most effective entities for gene transfer and insertion into the genome of mammalian cells. This attractive feature has intensified research in retroviral vectors development and production over the past years, mainly due to the expectations raised by the concept of gene therapy. The demand for high quality retroviral vectors that meet standard requisites from the regulatory agencies (FDA and EMEA) is therefore increasing, as the technology has moved into clinical trials. The development of safer producer cell lines that can be used in large-scale production will result in the production of large quantities of retroviral stocks. Cost-efficient and scalable purification processes are essential for production of injectable-grade preparations to achieve final implementation of these vectors as therapeutics. Several preparative purification steps already established for proteins can certainly be applied to retroviral vectors, in particular membrane filtration and chromatographic methods. Nevertheless, the special properties of these complex products require technological improvement of the existing purification steps and/or development of particular purification steps to increase productivity and throughput, while maintaining biological activity of the final product. This review focuses on downstream process development in relation to the retroviral vectors characteristics and quality assessment of retroviral stocks for intended use in gene therapy.

  9. Resource Recovery from Wastewater by Biological Technologies: Opportunities, Challenges, and Prospects

    PubMed Central

    Puyol, Daniel; Batstone, Damien J.; Hülsen, Tim; Astals, Sergi; Peces, Miriam; Krömer, Jens O.

    2017-01-01

    Limits in resource availability are driving a change in current societal production systems, changing the focus from residues treatment, such as wastewater treatment, toward resource recovery. Biotechnological processes offer an economic and versatile way to concentrate and transform resources from waste/wastewater into valuable products, which is a prerequisite for the technological development of a cradle-to-cradle bio-based economy. This review identifies emerging technologies that enable resource recovery across the wastewater treatment cycle. As such, bioenergy in the form of biohydrogen (by photo and dark fermentation processes) and biogas (during anaerobic digestion processes) have been classic targets, whereby, direct transformation of lipidic biomass into biodiesel also gained attention. This concept is similar to previous biofuel concepts, but more sustainable, as third generation biofuels and other resources can be produced from waste biomass. The production of high value biopolymers (e.g., for bioplastics manufacturing) from organic acids, hydrogen, and methane is another option for carbon recovery. The recovery of carbon and nutrients can be achieved by organic fertilizer production, or single cell protein generation (depending on the source) which may be utilized as feed, feed additives, next generation fertilizers, or even as probiotics. Additionlly, chemical oxidation-reduction and bioelectrochemical systems can recover inorganics or synthesize organic products beyond the natural microbial metabolism. Anticipating the next generation of wastewater treatment plants driven by biological recovery technologies, this review is focused on the generation and re-synthesis of energetic resources and key resources to be recycled as raw materials in a cradle-to-cradle economy concept. PMID:28111567

  10. Resource Recovery from Wastewater by Biological Technologies: Opportunities, Challenges, and Prospects.

    PubMed

    Puyol, Daniel; Batstone, Damien J; Hülsen, Tim; Astals, Sergi; Peces, Miriam; Krömer, Jens O

    2016-01-01

    Limits in resource availability are driving a change in current societal production systems, changing the focus from residues treatment, such as wastewater treatment, toward resource recovery. Biotechnological processes offer an economic and versatile way to concentrate and transform resources from waste/wastewater into valuable products, which is a prerequisite for the technological development of a cradle-to-cradle bio-based economy. This review identifies emerging technologies that enable resource recovery across the wastewater treatment cycle. As such, bioenergy in the form of biohydrogen (by photo and dark fermentation processes) and biogas (during anaerobic digestion processes) have been classic targets, whereby, direct transformation of lipidic biomass into biodiesel also gained attention. This concept is similar to previous biofuel concepts, but more sustainable, as third generation biofuels and other resources can be produced from waste biomass. The production of high value biopolymers (e.g., for bioplastics manufacturing) from organic acids, hydrogen, and methane is another option for carbon recovery. The recovery of carbon and nutrients can be achieved by organic fertilizer production, or single cell protein generation (depending on the source) which may be utilized as feed, feed additives, next generation fertilizers, or even as probiotics. Additionlly, chemical oxidation-reduction and bioelectrochemical systems can recover inorganics or synthesize organic products beyond the natural microbial metabolism. Anticipating the next generation of wastewater treatment plants driven by biological recovery technologies, this review is focused on the generation and re-synthesis of energetic resources and key resources to be recycled as raw materials in a cradle-to-cradle economy concept.

  11. AICE Survey of USSR Air Pollution Literature, Volume 15: A Third Compilation of Technical Reports on the Biological Effects and the Public Health Aspects of Atmospheric Pollutants.

    ERIC Educational Resources Information Center

    Nuttonson, M. Y.

    Ten papers were translated: Maximum permissible concentrations of noxious substances in the atmospheric air of populated areas; Some aspects of the biological effect of microconcentrations of two chloroisocyanates; The toxicology of low concentrations of aromatic hydrocarbons; Chronic action of low concentrations of acrolein in air on the…

  12. Municipal waste incinerators: air and biological monitoring of workers for exposure to particles, metals, and organic compounds

    PubMed Central

    Maitre, A; Collot-Fertey, D; Anzivino, L; Marques, M; Hours, M; Stoklov, M

    2003-01-01

    Aims: To evaluate occupational exposure to toxic pollutants at municipal waste incinerators (MWIs). Methods: Twenty nine male subjects working near the furnaces in two MWIs, and 17 subjects not occupationally exposed to combustion generated pollutants were studied. Individual air samples were taken throughout the shift; urine samples were collected before and after. Stationary air samples were taken near potential sources of emission. Results: Occupational exposure did not result in the infringement of any occupational threshold limit value. Atmospheric exposure levels to particles and metals were 10–100 times higher in MWIs than at the control site. The main sources were cleaning operations for particles, and residue transfer and disposal operations for metals. MWI workers were not exposed to higher levels of polycyclic aromatic hydrocarbons than workers who are routinely in contact with vehicle exhaust. The air concentrations of volatile organic compounds and aldehydes were low and did not appear to pose any significant threat to human health. Only the measurement of chlorinated hydrocarbon levels would seem to be a reliable marker for the combustion of plastics. Urine metal levels were significantly higher at plant 1 than at plant 2 because of high levels of pollutants emanating from one old furnace. Conclusion: While biological monitoring is an easy way of acquiring data on long term personal exposure, air monitoring remains the only method that makes it possible to identify the primary sources of pollutant emission which need to be controlled if occupational exposure and environmental pollution are to be reduced. PMID:12883016

  13. Optimal control of systems governed by differential equations with applications in air traffic management and systems biology

    NASA Astrophysics Data System (ADS)

    Raffard, Robin L.

    Differential equations are arguably the most widespread formalism to model dynamical systems in sciences and engineering. In this dissertation, we strive to design a practical methodology which can be used for the optimal control of most systems modeled by differential equations. Namely, the method is applicable to ordinary differential equations (ODEs), partial differential equations (PDEs) and stochastic differential equations (SDEs) driven by deterministic control. The algorithm draws from both optimization and control theory. It solves the Pontryagin Maximum Principle conditions in an iterative fashion via a novel approximate Newton method. We also extend the method to the case in which multiple agents are involved in the optimal control problem. For this purpose, we use dual decomposition techniques which allow us to decentralize the control algorithm and to distribute the computational load among each individual agent. Most of the dissertation is devoted to promoting the applicability of the method to practical problems in air traffic management and systems biology. In air traffic management; we use the technique to optimize a new PDE-based Eulerian model of the airspace; suitable to represent and control air traffic flow at the scale of the US national airspace. We also apply the technique to aircraft coordination problems in the context of formation flight, in which aircraft dynamics are described by ODEs. In systems biology, we use the method to perform fast parameter identification in the analysis of protein networks, which allows us to gain some insights about the biological processes regulating the system. In particular we perform parameter identification for a PDE model of a spatially distributed network of proteins, playing a key role in the planar cell polarity of Drosophila wings. We also study a general representation of intra-cellular genetic networks, described as a stochastic nonlinear regulatory network, in which our control system approach

  14. A review: Potential and challenges of biologically activated carbon to remove natural organic matter in drinking water purification process.

    PubMed

    Korotta-Gamage, Shashika Madushi; Sathasivan, Arumugam

    2017-01-01

    The use of biologically activated carbon (BAC) in drinking water purification is reviewed. In the past BAC is seen mostly as a polishing treatment. However, BAC has the potential to provide solution to recent challenges faced by water utilities arising from change in natural organic matter (NOM) composition in drinking water sources - increased NOM concentration with a larger fraction of hydrophilic compounds and ever increasing trace level organic pollutants. Hydrophilic NOM is not removed by traditional coagulation process and causes bacterial regrowth and increases disinfection by-products (DBPs) formation during disinfection. BAC can offer many advantages by removing hydrophilic fraction and many toxic and endocrine compounds which are not otherwise removed. BAC can also aid the other downstream processes if used as a pre-treatment. Major drawback of BAC was longer empty bed contact time (EBCT) required for an effective NOM removal. This critical review analyses the strategies that have been adopted to enhance the biological activity of the carbon by operational means and summarises the surface modification methods. To maximize the benefit of the BAC, a rethink of current treatment plant configuration is proposed. If the process can be expedited and adopted appropriately, BAC can solve many of the current problems.

  15. Engineering challenges of BioNEMS: the integration of microfluidics, micro- and nanodevices, models and external control for systems biology.

    PubMed

    Wikswo, J P; Prokop, A; Baudenbacher, F; Cliffel, D; Csukas, B; Velkovsky, M

    2006-08-01

    Systems biology, i.e. quantitative, postgenomic, postproteomic, dynamic, multiscale physiology, addresses in an integrative, quantitative manner the shockwave of genetic and proteomic information using computer models that may eventually have 10(6) dynamic variables with non-linear interactions. Historically, single biological measurements are made over minutes, suggesting the challenge of specifying 10(6) model parameters. Except for fluorescence and micro-electrode recordings, most cellular measurements have inadequate bandwidth to discern the time course of critical intracellular biochemical events. Micro-array expression profiles of thousands of genes cannot determine quantitative dynamic cellular signalling and metabolic variables. Major gaps must be bridged between the computational vision and experimental reality. The analysis of cellular signalling dynamics and control requires, first, micro- and nano-instruments that measure simultaneously multiple extracellular and intracellular variables with sufficient bandwidth; secondly, the ability to open existing internal control and signalling loops; thirdly, external BioMEMS micro-actuators that provide high bandwidth feedback and externally addressable intracellular nano-actuators; and, fourthly, real-time, closed-loop, single-cell control algorithms. The unravelling of the nested and coupled nature of cellular control loops requires simultaneous recording of multiple single-cell signatures. Externally controlled nano-actuators, needed to effect changes in the biochemical, mechanical and electrical environment both outside and inside the cell, will provide a major impetus for nanoscience.

  16. Investigating biological traces of traumatic stress in changing societies: challenges and directions from the ESTSS Task Force on Neurobiology

    PubMed Central

    Thomaes, Kathleen; de Kloet, Carien; Wilker, Sarah; El-Hage, Wissam; Schäfer, Ingo; Kleim, Birgit; Schmahl, Christian; van Zuiden, Mirjam

    2016-01-01

    Traumatic stress can have severe consequences for both mental and physical health. Furthermore, both psychological and biological traces of trauma increase as a function of accumulating traumatic experiences. Neurobiological research may aid in limiting the impact of traumatic stress, by leading to advances in preventive and treatment interventions. To promote the possibility for clinical implementation of novel research findings, this brief review describes timely conceptual and methodological challenges and directions in neurobiological trauma research on behalf of the Task Force “Neurobiology of Traumatic Stress” of the European Society for Traumatic Stress Studies (ESTSS). The most important conceptual challenges are the heterogeneity of disorders and existence of subtypes across diagnostic categories: differential latent profiles and trajectories regarding symptom expression and neural correlates are being unraveled; however, similar latent classes’ approaches for treatment response and neurobiological data remain scarce thus far. The key to improving the efficacy of currently available preventive interventions and treatments for trauma-related disorders lies in a better understanding and characterization of individual differences in response to trauma and interventions. This could lead to personalized treatment strategies for trauma-related disorders, based on objective information indicating whether individuals are expected to benefit from them. The most important methodological challenge identified here is the need for large consortia and meta-analyses or, rather, mega-analyses on existent data as a first step. In addition, large multicenter studies, combining novel methods for repeated sampling with more advanced statistical modeling techniques, such as machine learning, should aim to translate identified disease mechanisms into molecular blood-based biomarker combinations to predict disorder vulnerability and treatment responses. PMID:26996535

  17. Challenges in recovery and recycling of refrigerants from Indian refrigeration and air-conditioning service sector

    NASA Astrophysics Data System (ADS)

    Devotta, Sukumar; Asthana, Saroja; Joshi, Rahul

    India is a large producer and user of chlorofluorocarbons (CFCs) in the refrigeration and air-conditioning (RAC) sector. Government of India has taken several steps to restrict the production and consumption of CFCs. Refrigerant conservation through recovery, recycling (R&R) and reclamation is one way of reducing emissions and encouraging timely phase out of CFCs in developing countries. CFC recovery, recycling and reclamation have been mandated in many developed countries. However, this practice is yet to make an impact in India although it is practiced in MAC sector to some extent. India is planning for the final phase out of CFCs in the RAC service sector, in which R&R will be one of the components. A model has been developed to assess the economics of R&R for some typical parameters in developing counties like India. The model suggests that the enterprises recycling 1500 kg/a will break even within 1 year for all scenarios. However, R&R may not be cost effective for small workshops and low volume refrigerant vendors until either the price of CFC goes up or the cost of R&R unit is subsidized. A nationwide survey on RAC service sector revealed that in India, there are very few enterprises handling more than 500 kg/a. Therefore, there is a need to provide the RAC service sector with adequate and innovative financial incentives. This paper attempts to study the issues related to R&R for various sub-sectors of RAC in developing countries with an emphasis on cost effectiveness. India is used as a model for this study.

  18. SMOG CHAMBERS: A TOOL TO EXAMINE EFFECTS OF PHOTOCHEMICALLY AGED AIR POLLUTANTS ON BIOLOGICAL SYSTEMS

    EPA Science Inventory

    Irradiative exposure chambers or 'Smog chambers' have been used at the University of North Carolina for over 30 years to study photochemically active mixtures of volatile organic compounds and their transformation products (a significant sub-set of Hazardous Air Pollutants, HAPs)...

  19. Monitoring global rates of biodiversity change: challenges that arise in meeting the Convention on Biological Diversity (CBD) 2010 goals

    PubMed Central

    Dobson, Andy

    2005-01-01

    By agreeing to strive for ‘a significant reduction in the current rate of loss of biological diversity’ by the year 2010, political leaders at the 2002 World Summit on Sustainable Development (held in Johannesburg, South Africa) presented conservation scientists with a great opportunity, but also one of their most significant challenges. This is an extremely exciting and laudable development, but this reporting process could be made yet more powerful if it incorporates, from the outset, independent scientific assessment of the measures, how they are analysed, and practical ways of plugging key gaps. This input is crucial if the measures are to be widely owned, credible and robust to the vigorous external scrutiny to which they will doubtless be exposed. Assessing how rates of biodiversity loss have changed from current levels by 2010 will require that a given attribute has been measured at least three times; however, most habitats, species, populations and ecosystem services have not been assessed even once. Furthermore, the best data on which to base estimates of biodiversity loss are biased towards the charismatic vertebrate species; unfortunately, these supply minimal services to the human economy. We have to find ways to redress this taxonomic imbalance and expand our analyses to consider the vast diversity of invertebrate, fungal and microbial species that play a role in determining human health and economic welfare. In the first part of this paper I will use examples from local and regional monitoring of biological diversity to examine the desired properties of ‘ideal indicators’. I will then change focus and examine an initial framework that asks how we might monitor changes in the economic goods and services provided by natural ecosystems. I will use this exercise to examine how the set of possible indicators given by the Convention on Biological Diversity might be modified in ways that provide a more critical assay of the economic value of

  20. Integrated Bio-Search: challenges and trends for the integration, search and comprehensive processing of biological information.

    PubMed

    Masseroli, Marco; Mons, Barend; Bongcam-Rudloff, Erik; Ceri, Stefano; Kel, Alexander; Rechenmann, François; Lisacek, Frederique; Romano, Paolo

    2014-01-01

    Many efforts exist to design and implement approaches and tools for data capture, integration and analysis in the life sciences. Challenges are not only the heterogeneity, size and distribution of information sources, but also the danger of producing too many solutions for the same problem. Methodological, technological, infrastructural and social aspects appear to be essential for the development of a new generation of best practices and tools. In this paper, we analyse and discuss these aspects from different perspectives, by extending some of the ideas that arose during the NETTAB 2012 Workshop, making reference especially to the European context. First, relevance of using data and software models for the management and analysis of biological data is stressed. Second, some of the most relevant community achievements of the recent years, which should be taken as a starting point for future efforts in this research domain, are presented. Third, some of the main outstanding issues, challenges and trends are analysed. The challenges related to the tendency to fund and create large scale international research infrastructures and public-private partnerships in order to address the complex challenges of data intensive science are especially discussed. The needs and opportunities of Genomic Computing (the integration, search and display of genomic information at a very specific level, e.g. at the level of a single DNA region) are then considered. In the current data and network-driven era, social aspects can become crucial bottlenecks. How these may best be tackled to unleash the technical abilities for effective data integration and validation efforts is then discussed. Especially the apparent lack of incentives for already overwhelmed researchers appears to be a limitation for sharing information and knowledge with other scientists. We point out as well how the bioinformatics market is growing at an unprecedented speed due to the impact that new powerful in silico

  1. Integrated Bio-Search: challenges and trends for the integration, search and comprehensive processing of biological information

    PubMed Central

    2014-01-01

    Many efforts exist to design and implement approaches and tools for data capture, integration and analysis in the life sciences. Challenges are not only the heterogeneity, size and distribution of information sources, but also the danger of producing too many solutions for the same problem. Methodological, technological, infrastructural and social aspects appear to be essential for the development of a new generation of best practices and tools. In this paper, we analyse and discuss these aspects from different perspectives, by extending some of the ideas that arose during the NETTAB 2012 Workshop, making reference especially to the European context. First, relevance of using data and software models for the management and analysis of biological data is stressed. Second, some of the most relevant community achievements of the recent years, which should be taken as a starting point for future efforts in this research domain, are presented. Third, some of the main outstanding issues, challenges and trends are analysed. The challenges related to the tendency to fund and create large scale international research infrastructures and public-private partnerships in order to address the complex challenges of data intensive science are especially discussed. The needs and opportunities of Genomic Computing (the integration, search and display of genomic information at a very specific level, e.g. at the level of a single DNA region) are then considered. In the current data and network-driven era, social aspects can become crucial bottlenecks. How these may best be tackled to unleash the technical abilities for effective data integration and validation efforts is then discussed. Especially the apparent lack of incentives for already overwhelmed researchers appears to be a limitation for sharing information and knowledge with other scientists. We point out as well how the bioinformatics market is growing at an unprecedented speed due to the impact that new powerful in silico

  2. Tracking Legionella in air generated from a biological treatment plant: a case study of the outbreak of legionellosis in Norway

    NASA Astrophysics Data System (ADS)

    Blatny, Janet M.; Olsen, Jaran S.; Andreassen, Øyvind; Waagen, Viggo; Reif, Bjørn Anders P.

    2011-05-01

    Two outbreaks of legionellosis occurred in the Sarpsborg/Fredrikstad region southeast of Norway in 2005 and 2008 where more than 60 exposed individuals were infected and 10 case patients died. The air scrubber at Borregaard, a wood-based chemical factory, was identified as the outbreak source. High concentration levels of Legionella species, including the etiological agent L. pneumophila SG1 was found in the aeration ponds, which belongs to Borregaard's biological treatment plant. Results showed that these ponds were able to generate Legionella-containing aerosols that were transported by the wind as such aerosols were measured up to 200 meters downwind of the pond. Our studies did not detect L. pneumophila SG1 isolates, only L. pneumophila SG4 during the air sampling measurement campaign. Furthermore, the operational conditions of the air scrubber proved to be harsh for Legionella growth as the outbreak L. pneumophila strains were not able to grow at 45ºC and pH8 (conditions during the outbreaks). These results, together, lead us to suggest that the aeration pond should be regarded as the primary amplifier and disseminator of Legionella and L. pneumophila and thereby most likely being the outbreak source.

  3. Use of ERTS imagery in air pollution and marine biology studies, tasks 1 through 3

    NASA Technical Reports Server (NTRS)

    Copeland, G. E.; Ludwick, J. C.; Marshall, H. G. (Principal Investigator); Bandy, A. R.; Fleischer, P.; Hanna, W. J.; Gosink, T. A.; Bowker, D. W.

    1972-01-01

    There are no author-identified significant results in this report. The general suitability of ERTS imagery in detecting ground originated air pollution has proved to be excellent. The quality and resolution exceeded expectations and has permitted in some instances location of point sources to within a thousand feet. Suitable techniques have not yet been developed for determining or measuring area and line sources of air pollution. A major problem has been cloud cover that has persisted over the area of primary interest, the Chesapeake Bay. Work has been completed on mounting the shipboard transmissometer which will be used for investigations to relate the chlorophyll and suspended sediment content in the waters of the Lower Chesapeake Bay to ERTS-1 imagery. Water sampling, plankton analysis, and preparations for sea collection of water truth along the eastern continental shelf of the U.S. have been completed for use in comparisons with ERTS-1 data.

  4. Ozone and plants: need for a biologically based air quality standard.

    PubMed

    Manning, William J

    2002-02-01

    For the past 10 years, I have spent parts of late July and early August in central Europe, assessing ozone injury symptom expression on native plants in upland meadows and along forest edges. Much of this work has been done with local colleagues in and near the Tatra Mountains in southern Poland and eastern Slovakia and in the Carpathian Mountains in western Ukraine. Active and passive ozone air monitors and samplers were also used at most of the study sites.

  5. A Comprehensive Assessment of Biologicals Contained Within Commercial Airliner Cabin Air

    NASA Technical Reports Server (NTRS)

    LaDuc, Myron T.; Osman, Shariff; Dekas, Anne; Stuecker, Tara; Newcombe, Dave; Piceno, Yvette; Fuhrman, J.; Andersen, Gary; Venkateswaran, Kasthuri; Bearman, Greg

    2006-01-01

    Both culture-based and culture-independent, biomarker-targeted microbial enumeration and identification technologies were employed to estimate total microbial and viral burden and diversity within the cabin air of commercial airliners. Samples from each of twenty flights spanning three commercial carriers were collected via air-impingement. When the total viable microbial population was estimated by assaying relative concentrations of the universal energy carrier ATP, values ranged from below detection limits (BDL) to 4.1 x 106 cells/cubic m of air. The total viable microbial population was extremely low in both of Airline A (approximately 10% samples) and C (approximately 18% samples) compared to the samples collected aboard flights on Airline A and B (approximately 70% samples). When samples were collected as a function of time over the course of flights, a gradual accumulation of microbes was observed from the time of passenger boarding through mid-flight, followed by a sharp decline in microbial abundance and viability from the initiation of descent through landing. It is concluded in this study that only 10% of the viable microbes of the cabin air were cultivable and suggested a need to employ state-of-the art molecular assay that measures both cultivable and viable-but-non-cultivable microbes. Among the cultivable bacteria, colonies of Acinetobacter sp. were by far the most profuse in Phase I, and Gram-positive bacteria of the genera Staphylococcus and Bacillus were the most abundant during Phase II. The isolation of the human pathogens Acinetobacter johnsonii, A. calcoaceticus, Janibacter melonis, Microbacterium trichotecenolyticum, Massilia timonae, Staphylococcus saprophyticus, Corynebacterium lipophiloflavum is concerning, as these bacteria can cause meningitis, septicemia, and a handful of sometimes fatal diseases and infections. Molecular microbial community analyses exhibited presence of the alpha-, beta-, gamma-, and delta- proteobacteria, as well as

  6. Detection of biological particles in ambient air using Bio-Aerosol Mass Spectrometry

    SciTech Connect

    McJimpsey, E L; Steele, P T; Coffee, K R; Fergenson, D P; Riot, V J; Woods, B W; Gard, E E; Frank, M; Tobias, H J; Lebrilla, C

    2006-03-16

    The Bio-Aerosol Mass Spectrometry (BAMS) system is an instrument used for the real time detection and identification of biological aerosols. Particles are drawn from the atmosphere directly into vacuum and tracked as they scatter light from several continuous wave lasers. After tracking, the fluorescence of individual particles is excited by a pulsed 266nm or 355nm laser. Molecules from those particles with appropriate fluorescence properties are subsequently desorbed and ionized using a pulsed 266nm laser. Resulting ions are analyzed in a dual polarity mass spectrometer. During two field deployments at the San Francisco International Airport, millions of ambient particles were analyzed and a small but significant fraction were found to have fluorescent properties similar to Bacillus spores and vegetative cells. Further separation of non-biological background particles from potential biological particles was accomplished using laser desorption/ionization mass spectrometry. This has been shown to enable some level of species differentiation in specific cases, but the creation and observation of higher mass ions is needed to enable a higher level of specificity across more species. A soft ionization technique, matrix-assisted laser desorption/ionization (MALDI) is being investigated for this purpose. MALDI is particularly well suited for mass analysis of biomolecules since it allows for the generation of molecular ions from large mass compounds that would fragment under normal irradiation. Some of the initial results from a modified BAMS system utilizing this technique are described.

  7. Enabling X-ray free electron laser crystallography for challenging biological systems from a limited number of crystals

    PubMed Central

    Uervirojnangkoorn, Monarin; Zeldin, Oliver B; Lyubimov, Artem Y; Hattne, Johan; Brewster, Aaron S; Sauter, Nicholas K; Brunger, Axel T; Weis, William I

    2015-01-01

    There is considerable potential for X-ray free electron lasers (XFELs) to enable determination of macromolecular crystal structures that are difficult to solve using current synchrotron sources. Prior XFEL studies often involved the collection of thousands to millions of diffraction images, in part due to limitations of data processing methods. We implemented a data processing system based on classical post-refinement techniques, adapted to specific properties of XFEL diffraction data. When applied to XFEL data from three different proteins collected using various sample delivery systems and XFEL beam parameters, our method improved the quality of the diffraction data as well as the resulting refined atomic models and electron density maps. Moreover, the number of observations for a reflection necessary to assemble an accurate data set could be reduced to a few observations. These developments will help expand the applicability of XFEL crystallography to challenging biological systems, including cases where sample is limited. DOI: http://dx.doi.org/10.7554/eLife.05421.001 PMID:25781634

  8. Single Cell and Metagenomic Assemblies: Biology Drives Technical Choices and Goals (Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    ScienceCinema

    Stepanauskas, Ramunas [Bigelow Laboratory

    2016-07-12

    DOE JGI's Tanja Woyke, chair of the Single Cells and Metagenomes session, delivers an introduction, followed by Bigelow Laboratory's Ramunas Stepanauskas on "Single Cell and Metagenomic Assemblies: Biology Drives Technical Choices and Goals" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  9. Particulate air pollution and increased mortality: Biological plausibility for causal relationship

    SciTech Connect

    Henderson, R.F.

    1995-02-01

    Recently, a number of epidemiological studies have concluded that ambient particulate exposure is associated with increased mortality and morbidity at PM concentrations well below those previously thought to affect human health. These studies have been conducted in several different geographical locations and have involved a range of populations. While the consistency of the findings and the presence of an apparent concentration response relationship provide a strong argument for causality, epidemiological studies can only conclude this based upon inference from statistical associations. The biological plausibility of a causal relationship between low concentrations of PM and daily mortality and morbidity rates is neither intuitively obvious nor expected based on past experimental studies on the toxicity of inhaled particles. Chronic toxicity from inhaled, poorly soluble particles has been observed based on the slow accumulation of large lung burdens of particles, not on small daily fluctuations in PM levels. Acute toxicity from inhaled particles is associated mainly with acidic particles and is observed at much higher concentrations than those observed in the epidemiology studies reporting an association between PM concentrations and morbidity/mortality. To approach the difficult problem of determining if the association between PM concentrations and daily morbidity and mortality is biologically plausible and causal, one must consider (1) the chemical and physical characteristics of the particles in the inhaled atmospheres, (2) the characteristics of the morbidity/mortality observed and the people who are affected, and (3) potential mechanisms that might link the two.

  10. Biological Chitin-MOF Composites with Hierarchical Pore Systems for Air-Filtration Applications.

    PubMed

    Wisser, Dorothea; Wisser, Florian M; Raschke, Silvia; Klein, Nicole; Leistner, Matthias; Grothe, Julia; Brunner, Eike; Kaskel, Stefan

    2015-10-19

    Metal-organic frameworks (MOFs) are promising materials for gas-separation and air-filtration applications. However, for these applications, MOF crystallites need to be incorporated in robust and manageable support materials. We used chitin-based networks from a marine sponge as a non-toxic, biodegradable, and low-weight support material for MOF deposition. The structural properties of the material favor predominant nucleation of the MOF crystallites at the inside of the hollow fibers. This composite has a hierarchical pore system with surface areas up to 800 m(2)  g(-1) and pore volumes of 3.6 cm(3)  g(-1) , allowing good transport kinetics and a very high loading of the active material. Ammonia break-through experiments highlight the accessibility of the MOF crystallites and the adsorption potential of the composite indicating their high potential for filtration applications for toxic industrial gases.

  11. Challenges of molecular nutrition research 6: the nutritional phenotype database to store, share and evaluate nutritional systems biology studies

    PubMed Central

    Bouwman, Jildau; Dragsted, Lars O.; Drevon, Christian A.; Elliott, Ruan; de Groot, Philip; Kaput, Jim; Mathers, John C.; Müller, Michael; Pepping, Fre; Saito, Jahn; Scalbert, Augustin; Radonjic, Marijana; Rocca-Serra, Philippe; Travis, Anthony; Wopereis, Suzan; Evelo, Chris T.

    2010-01-01

    The challenge of modern nutrition and health research is to identify food-based strategies promoting life-long optimal health and well-being. This research is complex because it exploits a multitude of bioactive compounds acting on an extensive network of interacting processes. Whereas nutrition research can profit enormously from the revolution in ‘omics’ technologies, it has discipline-specific requirements for analytical and bioinformatic procedures. In addition to measurements of the parameters of interest (measures of health), extensive description of the subjects of study and foods or diets consumed is central for describing the nutritional phenotype. We propose and pursue an infrastructural activity of constructing the “Nutritional Phenotype database” (dbNP). When fully developed, dbNP will be a research and collaboration tool and a publicly available data and knowledge repository. Creation and implementation of the dbNP will maximize benefits to the research community by enabling integration and interrogation of data from multiple studies, from different research groups, different countries and different—omics levels. The dbNP is designed to facilitate storage of biologically relevant, pre-processed—omics data, as well as study descriptive and study participant phenotype data. It is also important to enable the combination of this information at different levels (e.g. to facilitate linkage of data describing participant phenotype, genotype and food intake with information on study design and—omics measurements, and to combine all of this with existing knowledge). The biological information stored in the database (i.e. genetics, transcriptomics, proteomics, biomarkers, metabolomics, functional assays, food intake and food composition) is tailored to nutrition research and embedded in an environment of standard procedures and protocols, annotations, modular data-basing, networking and integrated bioinformatics. The dbNP is an evolving enterprise

  12. Evaluation of methylene diphenyl diisocyanate as an indoor air pollutant and biological assessment of methylene dianiline in the polyurethane factories.

    PubMed

    Mirmohammadi, Mirtaghi; Ibrahim, M Hakimi; Ahmad, Anees; Kadir, Mohd Omar Abdul; Mohammadyan, M; Mirashrafi, S B

    2009-04-01

    Today many raw materials used in factories may have a dangerous effect on the physiological system of workers. One of them, which is widely used in the polyurethane factories, is diisocyanates. These compounds are widely used in surface coatings, polyurethane foams, adhesives, resins, elastomers, binders, and sealants. Exposure to diisocyanates causes irritation to the skin, mucous membranes, eyes, and respiratory tract. Methylene dianiline (MDA) is a metabolite of methylene diphenyle diisocyanate (MDI), an excretory material of worker's urine who are exposed to MDI. Around 100 air samples were collected among five factories by the Midget Impinger, which contained DMSO absorbent as a solvent and Tryptamine as a reagent. Samples were analyzed by high-performance liquid chromatography with an EC\\UV detector using the NIOSH 5522 method of sampling and analysis. Also, fifty urine samples were collected from workers by using William's biological analysis method. The concentration of MDI in all air samples was more than 88 mug/m(3), showing a high concentration of the pollutant in the workplaces in comparison with the NIOSH standard, and all the worker's urine was contaminated by MDA. The correlation and regression tests were used to obtain statistical model for MDI and MDA that is useful for prediction of diisocyanates pollution situation in the polyurethane factories.

  13. Indoor air pollution evaluation with emphasize on HDI and biological assessment of HDA in the polyurethane factories.

    PubMed

    Mirmohammadi, Mirtaghi; Hakimi Ibrahim, M; Ahmad, Anees; Kadir, Mohd Omar Abdul; Mohammadyan, M; Mirashrafi, S B

    2010-06-01

    Today, many raw materials used in factories may have a dangerous effect on the physiological system of workers. One of them which is widely used in the polyurethane factories is diisocyanates. These compounds are widely used in surface coatings, polyurethane foams, adhesives, resins, elastomers, binders, and sealants. Exposure to diisocyanates causes irritation to the skin, mucous membranes, eyes, and respiratory tract. Hexamethylene diamine (HDA) is metabolite of hexamethylene diisocyanate (HDI). It is an excretory material by worker's urine who is exposed to HDI. Around 100 air samples were collected from five defined factories by midget impinger which contained dimethyl sulfoxide absorbent as a solvent and tryptamine as reagent. Samples were analyzed by high-performance liquid chromatography with EC\\UV detector using NIOSH 5522 method of sampling. Also, 50 urine samples collected from workers were also analyzed using William's biological analysis method. The concentration of HDI into all air samples were more than 88 microg/m(3), and they have shown high concentration of pollutant in the workplaces in comparison with NIOSH standard, and all of the workers' urine were contaminated by HDA. The correlation and regression test were used to obtain statistical model for HDI and HDA, which is useful for the prediction of diisocyanates pollution situation in the polyurethane factories.

  14. A review of air quality, biological indicators and health effects of second-hand waterpipe smoke exposure

    PubMed Central

    Kumar, Sumit R; Davies, Shelby; Weitzman, Michael; Sherman, Scott

    2015-01-01

    Objective There has been a rapid increase in the use of waterpipe tobacco and non-tobacco based shisha in many countries. Understanding the impact and effects of second-hand smoke (SHS) from cigarette was a crucial factor in reducing cigarette use, leading to clean indoor air laws and smoking bans. This article reviews what is known about the effects of SHS exposure from waterpipes. Data sources We used PubMed and EMBASE to review the literature. Articles were grouped into quantitative measures of air quality and biological markers, health effects, exposure across different settings, different types of shisha and use in different countries. Study selection Criteria for study selection were based on the key words related to SHS: waterpipe, hookah, shisha and third-hand smoke. Data extraction Independent extraction with two reviewers was performed with inclusion criteria applied to articles on SHS and waterpipe/hookah/shisha. We excluded articles related to pregnancy or prenatal exposure to SHS, animal studies, and non-specific source of exposure as well as articles not written in English. Data synthesis A primary literature search yielded 54 articles, of which only 11 were included based on relevance to SHS from a waterpipe/hookah/shisha. Conclusions The negative health consequences of second-hand waterpipe exposure have major implications for clean indoor air laws and for occupational safety. There exists an urgent need for public health campaigns about the effects on children and household members from smoking waterpipe at home, and for further development and implementation of regulations to protect the health of the public from this rapidly emerging threat. PMID:25480544

  15. Biologic surveys for the Sandia National Laboratories, Coyote Canyon Test Complex, Kirtland Air Force Base, Albuquerque, New Mexico

    SciTech Connect

    Sullivan, R.M.; Knight, P.J.

    1994-05-25

    This report provides results of a comprehensive biologic survey performed in Coyote Canyon Test Complex (CCTC), Sandia National Laboratories (SNL), Bernalillo County, New Mexico, which was conducted during the spring and summer of 1992 and 1993. CCTC is sited on land owned by the Department of Energy (DOE) and Kirtland Air Force Base and managed by SNL. The survey covered 3,760 acres of land, most of which is rarely disturbed by CCTC operations. Absence of grazing by livestock and possibly native ungulates, and relative to the general condition of private range lands throughout New Mexico, and relative to other grazing lands in central New Mexico. Widely dispersed, low intensity use by SNL as well as prohibition of grazing has probably contributed to abundance of special status species such as grama grass cactus within the CCTC area. This report evaluates threatened and endangered species found in the area, as well as comprehensive assessment of biologic habitats. Included are analyses of potential impacts and mitigative measures designed to reduce or eliminate potential impacts. Included is a summary of CCTC program and testing activities.

  16. Personal air sampling and biological monitoring of occupational exposure to the soil fumigant cis-1,3-dichloropropene

    PubMed Central

    Brouwer, E; Verplanke, A; Boogaard, P; Bloemen, L; Van Sittert, N J; Christian, F; Stokkentreeff, M; Dijksterhuis, A; Mulder, A; De Wolff, F A

    2000-01-01

    OBJECTIVES—To assess exposure of commercial application workers to the nematocide cis-1,3-dichloropropene (cis-DCP).
METHODS—The study was conducted during the annual application season, August to 15 November, in the starch potato growing region in The Netherlands. 14 Application workers collected end of shift urine samples on each fumigation day (n=119). The mercapturic acid metabolite N-acetyl-S-(cis-3-chloro-2-propenyl)-L-cysteine (cis-DCP-MA) in urine was used for biological monitoring of the cis-DCP uptake. Inhalatory exposure was assessed by personal air sampling during a representative sample (n=37) of the fumigation days. Extensive information was collected on factors of possible relevance to the exposure and the application workers were observed for compliance with the statutory directions for use. The inhalatory exposure during all fumigation days was estimated from the relation between the personal air sampling data and the biological monitoring data. Exposure levels were correlated with the general work practice. The fumigation equipment and procedures were in accordance with the statutory directions of use, with the exception of the antidrip systems. Two antidrip systems were used: antidrip nozzles or a compressed air system.
RESULTS—The geometric mean exposure of the application workers was 2.7 mg/m3 (8 hour time weighted average); range 0.1-9.5 mg/m3. On 25 days (21%) the exposure exceeded the Dutch occupational exposure limit (OEL) of 5 mg/m3. This could mainly be explained by prolonged working days of more than 8 hours. The general work practice of the application workers was rated by the observers as good or poor. No difference in exposure to cis-DCP was found in the use of none, one, or two antidrip systems. Malfunctioning of the antidrip systems and lack of experience with the compressed air system were identified as possible causes for the lack of effectiveness of these antidrip systems. The use of personal protection was not

  17. Monitoring biological impacts of space shuttle launches from Vandenberg Air Force Base: Establishment of baseline conditions

    NASA Technical Reports Server (NTRS)

    Schmaizer, Paul A.; Hinkle, C. Ross

    1987-01-01

    Space shuttle launches produce environmental impacts resulting from the formation of an exhaust cloud containing hydrogen chloride aerosols and aluminum oxide particulates. Studies have shown that most impacts occur near-field (within 1.5 km) of the launch site while deposition from launches occurs far-field (as distant as 22 km). In order to establish baseline conditions of vegetation and soils in the areas likely to be impacted by shuttle launches from Vandenberg Air Force Base (VAFB), vegetation and soils in the vicinity of Space Launch Complex-6 (SLC-6) were sampled and a vegetation map prepared. The areas likely to be impacted by launches were determined considering the structure of the launch complex, the prevailing winds, the terrain, and predictions of the Rocket Exhaust Effluent Diffusion Model (REEDM). Fifty vegetation transects were established and sampled in March 1986 and resampled in September 1986. A vegetation map was prepared for six Master Planning maps surrounding SLC-6 using LANDSAT Thematic Mapper imagery as well as color and color infrared aerial photography. Soil samples were collected form the 0 to 7.5 cm layer at all transects in the wet season and at a subsample of the transects in the dry season and analyzed for pH, organic matter, conductivity, cation exchange capacity, exchangeable Ca, Mg, Na, K, and Al, available NH3-N, PO4-P, Cu, Fe, Mn, Zn, and TKN.

  18. BATMAV: a biologically inspired micro air vehicle for flapping flight: kinematic modeling

    NASA Astrophysics Data System (ADS)

    Bunget, Gheorghe; Seelecke, Stefan

    2008-03-01

    The overall objective of the BATMAV project is the development of a biologically inspired bat-like Micro-Aerial Vehicle (MAV) with flexible and foldable wings, capable of flapping flight. This first phase of the project focuses particularly on the kinematical analysis of the wing motion in order to build an artificial-muscle-driven actuation system in the future. While flapping flight in MAV has been previously studied and a number of models were realized using light-weight nature-inspired rigid wings, this paper presents a first model for a platform that features bat-inspired wings with a number of flexible joints which allows mimicking the kinematics of the real flyer. The bat was chosen after an extensive analysis of the flight physics of small birds, bats and large insects characterized by superior gust rejection and obstacle avoidance. Typical engineering parameters such as wing loading, wing beat frequency etc. were studied and it was concluded that bats are a suitable platform that can be actuated efficiently using artificial muscles. Also, due to their wing camber variation, they can operate effectively at a large range of speeds and allow remarkably maneuverable flight. In order to understand how to implement the artificial muscles on a bat-like platform, the analysis was followed by a study of bat flight kinematics. Due to their obvious complexity, only a limited number of degrees of freedom (DOF) were selected to characterize the flexible wing's stroke pattern. An extended analysis of flight styles in bats based on the data collected by Norberg and the engineering theory of robotic manipulators resulted in a 2 and 4-DOF models which managed to mimic the wingbeat cycle of the natural flyer. The results of the kinematical model can be used to optimize the lengths and the attachment locations of the wires such that enough lift, thrust and wing stroke are obtained.

  19. A Function for Representing the Biological Challenge to Respiration Posed by Ocean Acidification and the Geochemical Consequences Inferred

    NASA Astrophysics Data System (ADS)

    Peltzer, E. T.; Brewer, P. G.

    2008-12-01

    Increasing levels of dissolved total CO2 in the ocean from the invasion of fossil fuel CO2 via the atmosphere are widely believed to pose challenges to marine life on several fronts. This is most often expressed as a concern from the resulting lower pH, and the impact of this on calcification in marine organisms (coral reefs, calcareous phytoplankton etc.). These concerns are real, but calcification is by no means the only process affected, nor is the fossil fuel CO2 signal the only geochemical driver of the rapidly emerging deep-sea biological stress. Physical climate change is reducing deep-sea ventilation rates, and thereby leading to increasing oxygen deficits and concomitant increased respiratory CO2. We seek to understand the combined effects of the downward penetration of the fossil fuel signal, and the emergence of the depleted O2/increased respiratory CO2 signal at depth. As a first step, we seek to provide a simple function to capture the changing oceanic state. The most basic thermodynamic equation for the functioning of marine animals can be written as Corg + O2 → CO2 , and this results in the simple Gibbs free energy equation: ΔG° = - RT * ln [fCO2]/[Corg]*[fO2], in which the ratio of pO2 to pCO2 emerges as the dominant factor. From this we construct a simple Respiration Index: RI = log10 (pO2/pCO2), which is linear in energy and map this function for key oceanic regions illustrating the expansion of oceanic dead zones. The formal thermodynamic limit for aerobic life is RI = 0; in practice field data shows that at RI ~ 0.7 microbes turn to electron acceptors other than O2, and denitrification begins to occur. This likely represents the lowest limit for the long-term functioning of higher animals, and the zone RI = 0.7 to 1 appears to present challenges to basic functioning of many marine species. In addition, there are large regions of the ocean where denitrification already occurs, and these zones will expand greatly in size as the combined

  20. Building America Case Study: Challenges of Achieving 2012 IECC Air Sealing Requirements in Multifamily Dwellings, Upstate New York (Fact Sheet)

    SciTech Connect

    Not Available

    2014-11-01

    While previous versions of the International Energy Conservation Code (IECC) have included provisions to improve the air tightness of dwellings, for the first time, the 2012 IECC mandates compliance verification through blower door testing. Simply completing the Air Barrier and Insulation Installation checklist through visual inspection is no longer sufficient by itself. In addition, the 2012 IECC mandates a significantly stricter air sealing requirement. In Climate Zones 3 through 8, air leakage may not exceed 3 ACH50, which is a significant reduction from the 2009 IECC requirement of 7 ACH50. This requirement is for all residential buildings, which includes low-rise multifamily dwellings. While this air leakage rate requirement is an important component to achieving an efficient building thermal envelope, currently, the code language doesn't explicitly address differences between single family and multifamily applications. In addition, the 2012 IECC does not provide an option to sample dwellings for larger multifamily buildings, so compliance would have to be verified on every unit. With compliance with the 2012 IECC air leakage requirements on the horizon, several of CARB's multifamily builder partners are evaluating how best to comply with this requirement. Builders are not sure whether it is more practical or beneficial to simply pay for guarded testing or to revise their air sealing strategies to improve compartmentalization to comply with code requirements based on unguarded blower door testing. This report summarizes CARB's research that was conducted to assess the feasibility of meeting the 2012 IECC air leakage requirements in 3 multifamily buildings.

  1. NATO Network Enabled Capability (NNEC) challenges: Why NATO Air Command and Control System (ACCS) might be a good case?

    DTIC Science & Technology

    2011-06-01

    Picture ( RAP ), Air Tasking Order (ATO), Air Coordination order (ACO), etc. 2. Non Functional: providing all other functionalities, e.g. IA/security...with their respective characteristics in the project management behavior and environmental parameters. It should be noted that SOA implementation... influence its transformation. The roles and perspectives of the main ACCS transformation actors are described in this section. Several stakeholders

  2. Benefits and technological challenges in the implementation of TiO2-based ultraviolet photocatalytic oxidation (UVPCO) air cleaners

    SciTech Connect

    Hodgson, Al; Destaillats, Hugo; Hotchi, Toshifumi; Fisk, William J.

    2008-10-01

    Heating, ventilating, and cooling classrooms in California consume substantial electrical energy. Indoor air quality (IAQ) in classrooms affects student health and performance. In addition to airborne pollutants that are emitted directly by indoor sources and those generated outdoors, secondary pollutants can be formed indoors by chemical reaction of ozone with other chemicals and materials. Filters are used in nearly all classroom heating, ventilation and air-conditioning (HVAC) systems to maintain energy-efficient HVAC performance and improve indoor air quality; however, recent evidence indicates that ozone reactions with filters may, in fact, be a source of secondary pollutants. This project quantitatively evaluated ozone deposition in HVAC filters and byproduct formation, and provided a preliminary assessment of the extent to which filter systems are degrading indoor air quality. The preliminary information obtained will contribute to the design of subsequent research efforts and the identification of energy efficient solutions that improve indoor air quality in classrooms and the health and performance of students.

  3. Coming out in Class: Challenges and Benefits of Active Learning in a Biology Classroom for LGBTQIA Students

    ERIC Educational Resources Information Center

    Cooper, Katelyn M.; Brownell, Sara E.

    2016-01-01

    As we transition our undergraduate biology classrooms from traditional lectures to active learning, the dynamics among students become more important. These dynamics can be influenced by student social identities. One social identity that has been unexamined in the context of undergraduate biology is the spectrum of lesbian, gay, bisexual,…

  4. Influence of Using Challenging Tasks in Biology Classrooms on Students' Cognitive Knowledge Structure: An Empirical Video Study

    ERIC Educational Resources Information Center

    Nawani, Jigna; Rixius, Julia; Neuhaus, Birgit J.

    2016-01-01

    Empirical analysis of secondary biology classrooms revealed that, on average, 68% of teaching time in Germany revolved around processing tasks. Quality of instruction can thus be assessed by analyzing the quality of tasks used in classroom discourse. This quasi-experimental study analyzed how teachers used tasks in 38 videotaped biology lessons…

  5. Challenges in Implementing Technology-Rich Curricular High School Biology Materials: First Year Findings from the "Exploring Life" Project.

    ERIC Educational Resources Information Center

    Price, Betsy; Cates, Ward M.; Bodzin, Alex

    Eighteen high school biology teachers from a stratified sample of 13 distinct geographical United States regions participated in evaluation of the first year prototypes of Exploring Life, a biology program that includes a textbook with an accompanying Internet component and wet-lab investigations. Web activities explain and reinforce the text and…

  6. The Quest for Relevant Air Power: Continental European Responses to the Air Power Challenges of the Post-Cold War Era

    DTIC Science & Technology

    2011-08-01

    objective in eastern Afghanistan in November 2009. The 335th deployed to Bagram Air Field, Afghanistan, from Seymour Johnson AFB, NC. 38 │ POST–COLD WAR...Abolishes Conscription,” Jane’s Defence Weekly 47, no. 21 (26 May 2010): 10. 49. Mattias Robertson , Communications and Public Affairs Directorate, Swedish

  7. Aconitine Challenge Test Reveals a Single Exposure to Air Pollution Causes Increased Cardiac Arrhythmia Risk in Hypertensive Rats - Abstract

    EPA Science Inventory

    Epidemiological studies demonstrate a significant association between arrhythmias and air pollution exposure. Sensitivity to aconitine-induced arrhythmia has been used repeatedly to examine the factors that increase the risk of such cardiac electrical dysfunction. In this study, ...

  8. Extending the Applicability of the Community Multiscale Air Quality Model to Hemispheric Scales: Motivation, Challenges, and Progress

    EPA Science Inventory

    The adaptation of the Community Multiscale Air Quality (CMAQ) modeling system to simulate O3, particulate matter, and related precursor distributions over the northern hemisphere is presented. Hemispheric simulations with CMAQ and the Weather Research and Forecasting (...

  9. Eliminate the Army and Air Force Reserves: Building a Robust National Guard to Meet 21st Century Operational Challenges

    DTIC Science & Technology

    2016-04-04

    it is imperative the Department of Defense reassess force structure and identify efficiencies. The causative factors for the creation and...reassess force structure and identify efficiencies. The causative factors for the creation and maintenance of dual reserve components within a Service no...reserve component structures of the Army and Air Force Active Components. Eliminating the Army and Air Force Reserves will achieve cost savings

  10. Influence of using challenging tasks in biology classrooms on students' cognitive knowledge structure: an empirical video study

    NASA Astrophysics Data System (ADS)

    Nawani, Jigna; Rixius, Julia; Neuhaus, Birgit J.

    2016-08-01

    Empirical analysis of secondary biology classrooms revealed that, on average, 68% of teaching time in Germany revolved around processing tasks. Quality of instruction can thus be assessed by analyzing the quality of tasks used in classroom discourse. This quasi-experimental study analyzed how teachers used tasks in 38 videotaped biology lessons pertaining to the topic 'blood and circulatory system'. Two fundamental characteristics used to analyze tasks include: (1) required cognitive level of processing (e.g. low level information processing: repetiition, summary, define, classify and high level information processing: interpret-analyze data, formulate hypothesis, etc.) and (2) complexity of task content (e.g. if tasks require use of factual, linking or concept level content). Additionally, students' cognitive knowledge structure about the topic 'blood and circulatory system' was measured using student-drawn concept maps (N = 970 students). Finally, linear multilevel models were created with high-level cognitive processing tasks and higher content complexity tasks as class-level predictors and students' prior knowledge, students' interest in biology, and students' interest in biology activities as control covariates. Results showed a positive influence of high-level cognitive processing tasks (β = 0.07; p < .01) on students' cognitive knowledge structure. However, there was no observed effect of higher content complexity tasks on students' cognitive knowledge structure. Presented findings encourage the use of high-level cognitive processing tasks in biology instruction.

  11. An overview of the challenges in designing, integrating, and delivering BARD: a public chemical biology resource and query portal across multiple organizations, locations, and disciplines

    PubMed Central

    de Souza, Andrea; Bittker, Joshua; Lahr, David; Brudz, Steve; Chatwin, Simon; Oprea, Tudor I.; Waller, Anna; Yang, Jeremy; Southall, Noel; Guha, Rajarshi; Schurer, Stephan; Vempati, Uma; Southern, Mark R.; Dawson, Eric S.; Clemons, Paul A.; Chung, Thomas D.Y.

    2015-01-01

    Recent industry-academic partnerships involve collaboration across disciplines, locations, and organizations using publicly funded “open-access” and proprietary commercial data sources. These require effective integration of chemical and biological information from diverse data sources, presenting key informatics, personnel, and organizational challenges. BARD (BioAssay Research Database) was conceived to address these challenges and to serve as a community-wide resource and intuitive web portal for public-sector chemical biology data. Its initial focus is to enable scientists to more effectively use the NIH Roadmap Molecular Libraries Program (MLP) data generated from 3-year pilot and 6-year production phases of the Molecular Libraries Probe Production Centers Network (MLPCN), currently in its final year. BARD evolves the current data standards through structured assay and result annotations that leverage the BioAssay Ontology (BAO) and other industry-standard ontologies, and a core hierarchy of assay definition terms and data standards defined specifically for small-molecule assay data. We have initially focused on migrating the highest-value MLP data into BARD and bringing it up to this new standard. We review the technical and organizational challenges overcome by the inter-disciplinary BARD team, veterans of public and private sector data-integration projects, collaborating to describe (functional specifications), design (technical specifications), and implement this next-generation software solution. PMID:24441647

  12. Air pollution and detrimental effects on children's brain. The need for a multidisciplinary approach to the issue complexity and challenges.

    PubMed

    Calderón-Garcidueñas, Lilian; Torres-Jardón, Ricardo; Kulesza, Randy J; Park, Su-Bin; D'Angiulli, Amedeo

    2014-01-01

    Millions of children in polluted cities are showing brain detrimental effects. Urban children exhibit brain structural and volumetric abnormalities, systemic inflammation, olfactory, auditory, vestibular and cognitive deficits v low-pollution controls. Neuroinflammation and blood-brain-barrier (BBB) breakdown target the olfactory bulb, prefrontal cortex and brainstem, but are diffusely present throughout the brain. Urban adolescent Apolipoprotein E4 carriers significantly accelerate Alzheimer pathology. Neurocognitive effects of air pollution are substantial, apparent across all populations, and potentially clinically relevant as early evidence of evolving neurodegenerative changes. The diffuse nature of the neuroinflammation and neurodegeneration forces to employ a weight of evidence approach incorporating current clinical, cognitive, neurophysiological, radiological and epidemiological research. Pediatric air pollution research requires extensive multidisciplinary collaborations to accomplish a critical goal: to protect exposed children through multidimensional interventions having both broad impact and reach. Protecting children and teens from neural effects of air pollution should be of pressing importance for public health.

  13. Pochonia chlamydosporia: Advances and Challenges to Improve Its Performance as a Biological Control Agent of Sedentary Endo-parasitic Nematodes

    PubMed Central

    Manzanilla-López, Rosa H.; Esteves, Ivania; Finetti-Sialer, Mariella M.; Hirsch, Penny R.; Ward, Elaine; Devonshire, Jean; Hidalgo-Díaz, Leopoldo

    2013-01-01

    The nematophagous fungus Pochonia chlamydosporia var. chlamydosporia is one of the most studied biological control agents against plant (semi-) endo-parasitic nematodes of the genera Globodera, Heterodera, Meloidogyne, Nacobbus and, more recently, Rotylenchulus. In this paper we present highlights from more than three decades of worldwide research on this biological control agent. We cover different aspects and key components of the complex plant-fungus-nematode tri-trophic interaction, an interaction that needs to be addressed to ensure the efficient use of P. chlamydosporia as a biopesticide as part of an integrated pest management approach. PMID:23589653

  14. Freezing Fog Formation in a Supercooled Boundary Layer: Solving the Winter Fog Forecasting Challenge for Elmendorf Air Force Base, Alaska

    DTIC Science & Technology

    2007-03-01

    vicinity of the base are a wide variety of streams, small lakes and tundra , with large trees along some streams in the valley. The largest stream in the...and dry cA air mass move in from 15 the northwest associated with a Siberian High, while a much warmer and moister mP air mass would move in from...a Siberian High and a Gulf of Alaska Low at the start of the fog event. The low pressure center was nearly 400NM southeast of the base with an

  15. Addressing Health Literacy Challenges with a Cutting-Edge Infectious Disease Curriculum for the High School Biology Classroom

    ERIC Educational Resources Information Center

    Jacque, Berri; Koch-Weser, Susan; Faux, Russell; Meiri, Karina

    2016-01-01

    This study reports the secondary analysis of evaluation data from an innovative high school biology curriculum focused on infectious disease (ID) to examine the health literacy implications of teaching claims evaluation, data interpretation, and risk assessment skills in the context of 21st-Century health science. The curriculum was implemented…

  16. Fundamental challenges of contemporary "personality" research. Comment on "Personality from a cognitive-biological perspective" by Y. Neuman

    NASA Astrophysics Data System (ADS)

    Uher, Jana

    2014-12-01

    The growing interest in "personality" from scientists of ever more diverse fields demands conceptual integrations-and reveals fundamental challenges. For what is "personality" given that "it" is explored in humans and nonhuman species, that people encode "it" in their everyday language, scientists seek "it" in the brain and study "it" primarily with rating scales?

  17. Assessment of Interpersonal Risk (AIR) in Adults with Learning Disabilities and Challenging Behaviour--Piloting a New Risk Assessment Tool

    ERIC Educational Resources Information Center

    Campbell, Martin; McCue, Michael

    2013-01-01

    A new risk assessment tool, "Assessment of Interpersonal Risk" (AIR), was piloted and evaluated to measure risk factors and compatibility between individuals living in an assessment and treatment unit in one NHS area. The adults with learning disabilities in this unit had severe and enduring mental health problems and/or behaviour that is severely…

  18. Response of biological production and air-sea CO2 fluxes to upwelling intensification in the California and Canary Current Systems

    NASA Astrophysics Data System (ADS)

    Lachkar, Zouhair; Gruber, Nicolas

    2013-01-01

    Upwelling-favorable winds have increased in most Eastern Boundary Upwelling Systems (EBUS) in the last decades, and it is likely that they increase further in response to global climate change. Here, we explore the response of biological production and air-sea CO2 fluxes to upwelling intensification in two of the four major EBUS, namely the California Current System (California CS) and Canary Current System (Canary CS). To this end, we use eddy-resolving regional ocean models on the basis of the Regional Oceanic Modeling System (ROMS) to which we have coupled a NPZD-type ecosystem model and a biogeochemistry module describing the carbon cycle and subject these model configurations to an idealized increase in the wind stress. We find that a doubling of the wind-stress doubles net primary production (NPP) in the southern California CS and central and northern Canary CS, while it leads to an increase of less than 50% in the central and northern California CS as well as in the southern Canary CS. This differential response is a result of i) different nutrient limitation states with higher sensitivity to upwelling intensification in regions where nutrient limitation is stronger and ii) more efficient nutrient assimilation by biology in the Canary CS relative to the California CS because of a faster nutrient-replete growth rate and longer nearshore water residence times. In the regions where production increases commensurably with upwelling intensification, the enhanced net biological uptake of CO2 compensates the increase in upwelling driven CO2 outgassing, resulting in only a small change in the biological pump efficiency and hence in a small sensitivity of air-sea CO2 fluxes to upwelling intensification. In contrast, in the central California CS as well as in the southern Canary CS around Cape Blanc, the reduced biological efficiency enhances the CO2 outgassing and leads to a substantial sensitivity of the air-sea CO2 fluxes to upwelling intensification.

  19. LASER BIOLOGY AND MEDICINE: Application of tunable diode lasers for a highly sensitive analysis of gaseous biomarkers in exhaled air

    NASA Astrophysics Data System (ADS)

    Stepanov, E. V.; Milyaev, Varerii A.

    2002-11-01

    The application of tunable diode lasers for a highly sensitive analysis of gaseous biomarkers in exhaled air in biomedical diagnostics is discussed. The principle of operation and the design of a laser analyser for studying the composition of exhaled air are described. The results of detection of gaseous biomarkers in exhaled air, including clinical studies, which demonstrate the diagnostic possibilities of the method, are presented.

  20. Test Results of Level A Suits to Challenge by Chemical and Biological Warfare Agents and Simulants: Summary Report

    DTIC Science & Technology

    1998-06-01

    Agent Permeation of GB and HD Through 25-Mil Chemical Protective Glove 30 3.3 System Test (Aerosol Simulant) 3.3.1 System Test (Aerosol Simulant... Chemical Protective Glove GB Permeation 176 Appendix Q: Commander Brigade F91 Table Q - 3: Commander Brigade F91: System Test (Vapor Simulant) Results No...capability to protect in a chemical agent or biological agent environment. Each

  1. Tapping the Power of Crustacean Transcriptomics to Address Grand Challenges in Comparative Biology: An Introduction to the Symposium.

    PubMed

    Mykles, Donald L; Burnett, Karen G; Durica, David S; Stillman, Jonathon H

    2016-12-01

    Crustaceans, and decapods in particular (i.e., crabs, shrimp, and lobsters), are a diverse and ecologically and commercially important group of organisms. Understanding responses to abiotic and biotic factors is critical for developing best practices in aquaculture and assessing the effects of changing environments on the biology of these important animals. A relatively small number of decapod crustacean species have been intensively studied at the molecular level; the availability, experimental tractability, and economic relevance factor into the selection of a particular species as a model. Transcriptomics, using high-throughput next generation sequencing (NGS, coupled with RNA sequencing or RNA-seq) is revolutionizing crustacean biology. The 11 symposium papers in this volume illustrate how RNA-seq is being used to study stress response, molting and limb regeneration, immunity and disease, reproduction and development, neurobiology, and ecology and evolution. This symposium occurred on the 10th anniversary of the symposium, "Genomic and Proteomic Approaches to Crustacean Biology", held at the Society for Integrative and Comparative Biology 2006 meeting. Two participants in the 2006 symposium, the late Paul Gross and David Towle, were recognized as leaders who pioneered the use of molecular techniques that would ultimately foster the transcriptomics research reviewed in this volume. RNA-seq is a powerful tool for hypothesis-driven research, as well as an engine for discovery. It has eclipsed the technologies available in 2006, such as microarrays, expressed sequence tags, and subtractive hybridization screening, as the millions of "reads" from NGS enable researchers to de novo assemble a comprehensive transcriptome without a complete genome sequence. The symposium series concludes with a policy paper that gives an overview of the resources available and makes recommendations for developing better tools for functional annotation and pathway and network analysis in

  2. Addressing Health Literacy Challenges With a Cutting-Edge Infectious Disease Curriculum for the High School Biology Classroom.

    PubMed

    Jacque, Berri; Koch-Weser, Susan; Faux, Russell; Meiri, Karina

    2016-02-01

    This study reports the secondary analysis of evaluation data from an innovative high school biology curriculum focused on infectious disease (ID) to examine the health literacy implications of teaching claims evaluation, data interpretation, and risk assessment skills in the context of 21st-Century health science. The curriculum was implemented between 2010 and 2013 in Biology II classes held in four public high schools (three in Massachusetts and one in Ohio), plus a private school in Virginia. A quasi-experimental design was used in which student participants (n = 273) were compared to an age-matched, nonparticipant, peer group (N = 125). Participants in each school setting demonstrated increases in conceptual content knowledge (Cohen's d > 1.89) as well as in understanding how to apply scientific principles to health claims evaluation and risk assessment (Cohen's d > 1.76) and in self-efficacy toward learning about ID (Cohen's d > 2.27). Participants also displayed enhanced communication about ID within their social networks relative to the comparison group (p < .05). The data show that integrating the claims evaluation, data interpretation, and risk assessment skills critical for 21st-century health literacy health into high school biology classrooms is effective at fostering both the skills and self-efficacy pertinent to health literacy learning in diverse populations.

  3. Evaluation of Technical and Utility Programmatic Challenges With Residential Forced-Air Integrated Space/Water Heat Systems

    SciTech Connect

    Kingston, Tim; Vadnal, Hillary; Scott, Shawn; Kalensky, Dave

    2016-12-01

    This multi-unit field demonstration of combined space and water heating (combi) systems was conducted to help document combi system installation and performance issues that needed to be addressed through research. The objective of the project was to put commercialized forced-air tankless combi units into the field through local contractors that were trained by manufacturers and GTI staff under the auspices of utility-implemented ETPs.

  4. Tip in-light on: Advantages, challenges, and applications of combining AFM and Raman microscopy on biological samples.

    PubMed

    Prats-Mateu, Batirtze; Gierlinger, Notburga

    2017-01-01

    Scanning probe microscopies and spectroscopies, especially AFM and Confocal Raman microscopy are powerful tools to characterize biological materials. They are both non-destructive methods and reveal mechanical and chemical properties on the micro and nano-scale. In the last years the interest for increasing the lateral resolution of optical and spectral images has driven the development of new technologies that overcome the diffraction limit of light. The combination of AFM and Raman reaches resolutions of about 50-150 nm in near-field Raman and 1.7-50 nm in tip enhanced Raman spectroscopy (TERS) and both give a molecular information of the sample and the topography of the scanned surface. In this review, the mentioned approaches are introduced, the main advantages and problems for application on biological samples discussed and some examples for successful experiments given. Finally the potential of colocated AFM and Raman measurements is shown on a case study of cellulose-lignin films: the topography structures revealed by AFM can be related to a certain chemistry by the colocated Raman scan and additionally the mechanical properties be revealed by using the digital pulsed force mode. Microsc. Res. Tech. 80:30-40, 2017. © 2016 Wiley Periodicals, Inc.

  5. Tip in–light on: Advantages, challenges, and applications of combining AFM and Raman microscopy on biological samples

    PubMed Central

    Gierlinger, Notburga

    2016-01-01

    Abstract Scanning probe microscopies and spectroscopies, especially AFM and Confocal Raman microscopy are powerful tools to characterize biological materials. They are both non‐destructive methods and reveal mechanical and chemical properties on the micro and nano‐scale. In the last years the interest for increasing the lateral resolution of optical and spectral images has driven the development of new technologies that overcome the diffraction limit of light. The combination of AFM and Raman reaches resolutions of about 50–150 nm in near‐field Raman and 1.7–50 nm in tip enhanced Raman spectroscopy (TERS) and both give a molecular information of the sample and the topography of the scanned surface. In this review, the mentioned approaches are introduced, the main advantages and problems for application on biological samples discussed and some examples for successful experiments given. Finally the potential of colocated AFM and Raman measurements is shown on a case study of cellulose‐lignin films: the topography structures revealed by AFM can be related to a certain chemistry by the colocated Raman scan and additionally the mechanical properties be revealed by using the digital pulsed force mode. Microsc. Res. Tech. 80:30–40, 2017. © 2016 Wiley Periodicals, Inc. PMID:27514318

  6. Drug-Like Protein–Protein Interaction Modulators: Challenges and Opportunities for Drug Discovery and Chemical Biology

    PubMed Central

    Villoutreix, Bruno O; Kuenemann, Melaine A; Poyet, Jean-Luc; Bruzzoni-Giovanelli, Heriberto; Labbé, Céline; Lagorce, David; Sperandio, Olivier; Miteva, Maria A

    2014-01-01

    Fundamental processes in living cells are largely controlled by macromolecular interactions and among them, protein–protein interactions (PPIs) have a critical role while their dysregulations can contribute to the pathogenesis of numerous diseases. Although PPIs were considered as attractive pharmaceutical targets already some years ago, they have been thus far largely unexploited for therapeutic interventions with low molecular weight compounds. Several limiting factors, from technological hurdles to conceptual barriers, are known, which, taken together, explain why research in this area has been relatively slow. However, this last decade, the scientific community has challenged the dogma and became more enthusiastic about the modulation of PPIs with small drug-like molecules. In fact, several success stories were reported both, at the preclinical and clinical stages. In this review article, written for the 2014 International Summer School in Chemoinformatics (Strasbourg, France), we discuss in silico tools (essentially post 2012) and databases that can assist the design of low molecular weight PPI modulators (these tools can be found at www.vls3d.com). We first introduce the field of protein–protein interaction research, discuss key challenges and comment recently reported in silico packages, protocols and databases dedicated to PPIs. Then, we illustrate how in silico methods can be used and combined with experimental work to identify PPI modulators. PMID:25254076

  7. Moving from capstones toward cornerstones: successes and challenges in applying systems biology to identify mechanisms of autism spectrum disorders

    PubMed Central

    Kopp, Nathan; Climer, Sharlee; Dougherty, Joseph D.

    2015-01-01

    The substantial progress in the last few years toward uncovering genetic causes and risk factors for autism spectrum disorders (ASDs) has opened new experimental avenues for identifying the underlying neurobiological mechanism of the condition. The bounty of genetic findings has led to a variety of data-driven exploratory analyses aimed at deriving new insights about the shared features of these genes. These approaches leverage data from a variety of different sources such as co-expression in transcriptomic studies, protein–protein interaction networks, gene ontologies (GOs) annotations, or multi-level combinations of all of these. Here, we review the recurrent themes emerging from these analyses and highlight some of the challenges going forward. Themes include findings that ASD associated genes discovered by a variety of methods have been shown to contain disproportionate amounts of neurite outgrowth/cytoskeletal, synaptic, and more recently Wnt-related and chromatin modifying genes. Expression studies have highlighted a disproportionate expression of ASD gene sets during mid fetal cortical development, particularly for rare variants, with multiple analyses highlighting the striatum and cortical projection and interneurons as well. While these explorations have highlighted potentially interesting relationships among these ASD-related genes, there are challenges in how to best transition these insights into empirically testable hypotheses. Nonetheless, defining shared molecular or cellular pathology downstream of the diverse genes associated with ASDs could provide the cornerstones needed to build toward broadly applicable therapeutic approaches. PMID:26500678

  8. Moving from capstones toward cornerstones: successes and challenges in applying systems biology to identify mechanisms of autism spectrum disorders.

    PubMed

    Kopp, Nathan; Climer, Sharlee; Dougherty, Joseph D

    2015-01-01

    The substantial progress in the last few years toward uncovering genetic causes and risk factors for autism spectrum disorders (ASDs) has opened new experimental avenues for identifying the underlying neurobiological mechanism of the condition. The bounty of genetic findings has led to a variety of data-driven exploratory analyses aimed at deriving new insights about the shared features of these genes. These approaches leverage data from a variety of different sources such as co-expression in transcriptomic studies, protein-protein interaction networks, gene ontologies (GOs) annotations, or multi-level combinations of all of these. Here, we review the recurrent themes emerging from these analyses and highlight some of the challenges going forward. Themes include findings that ASD associated genes discovered by a variety of methods have been shown to contain disproportionate amounts of neurite outgrowth/cytoskeletal, synaptic, and more recently Wnt-related and chromatin modifying genes. Expression studies have highlighted a disproportionate expression of ASD gene sets during mid fetal cortical development, particularly for rare variants, with multiple analyses highlighting the striatum and cortical projection and interneurons as well. While these explorations have highlighted potentially interesting relationships among these ASD-related genes, there are challenges in how to best transition these insights into empirically testable hypotheses. Nonetheless, defining shared molecular or cellular pathology downstream of the diverse genes associated with ASDs could provide the cornerstones needed to build toward broadly applicable therapeutic approaches.

  9. Experience and challenges for biologic use in the treatment of moderate-to-severe psoriasis in Africa and the Middle East region.

    PubMed

    Al Hammadi, Anwar; Al-Sheikh, Afaf; Ammoury, Alfred; Ghosn, Samer; Gisondi, Paolo; Hamadah, Issam; Kibbi, Abdul-Ghani; Shirazy, Khalid

    2017-03-01

    The incidence of psoriasis in Africa and the Middle East (AfME) is high as in other regions and represents a significant problem for both dermatologists and patients. Psoriasis co-morbidities such as obesity, cardiovascular disease and psoriatic arthritis (PsA) are also particularly common in these regions and may be under-recognized and under-treated. Despite this, regional guidelines to aid physicians on the appropriate use of biologic agents in their clinical practice are limited. A group of expert dermatologists from across the AfME region were surveyed to help establish best practice across the region, alongside supporting data from the literature. Although biologics have significantly improved patient outcomes since their introduction, the results of this survey identified several unmet needs, including the lack of consensus regarding their use in clinical practice. Discrepancy also exists among AfME physicians concerning the clinical relevance of immunogenicity to biologics, despite increasing data across inflammatory diseases. Significant treatment and management of challenges for psoriasis patients remain, and a move towards individualized, tailored care may help to address these issues. The development of specific local guidelines for the treatment of both psoriasis and PsA could also be a step towards understanding the distinct patient profiles in these regions.

  10. Comparison and Evaluation Methods for the Removal of Ethylene and Other Hydrocarbons from Air for Biological Studies 1

    PubMed Central

    Eastwell, Kenneth C.; Bassi, Pawan K.; Spencer, Mary E.

    1978-01-01

    A random sampling analysis of laboratory air and of air from commercially available cylinders indicated that they contain appreciable amounts of low molecular weight hydrocarbons, viz. methane, ethane, and ethylene, as contaminants. These impurities could lead to erroneous conclusions in studies of plant growth and metabolism. Different methods for removal of these contaminants were compared and evaluated in the present investigation for their suitability in plant studies. Most of the methods currently being used were found inadequate. The use of metal catalysts at high temperature, adapted from gas analysis techniques, provides an inexpensive and efficient method for removing hydrocarbons from air in both closed and continuous flow systems. PMID:16660593

  11. An examination of the relation between traumatic event exposure and panic-relevant biological challenge responding among adolescents.

    PubMed

    Hawks, Erin; Blumenthal, Heidemarie; Feldner, Matthew T; Leen-Feldner, Ellen W; Jones, Rachel

    2011-09-01

    The current study uniquely extended research that has linked traumatic event exposure to panic-spectrum problems among adolescents. It was hypothesized that among 127 adolescents (age range: 10 to 17 years; M = 14.63, SD = 2.24), those who endorsed a history of traumatic event exposure would evidence significantly greater anxious and fearful reactivity to a well-established 3-min voluntary hyperventilation procedure compared to nonexposed individuals. Results were consistent with hypotheses, suggesting traumatic event exposure is associated with anxious and fearful reactivity to abrupt increases in bodily arousal among adolescents. Moreover, consistent with hypotheses, anxiety sensitivity significantly mediated the relations between traumatic event exposure and both self-reported panic symptoms and panic symptoms elicited by the challenge. Future prospective research is now needed to better understand temporal relations between traumatic event exposure and indices of panic and related vulnerability.

  12. X-ray nanoprobes and diffraction-limited storage rings: opportunities and challenges of fluorescence tomography of biological specimens

    PubMed Central

    de Jonge, Martin D.; Ryan, Christopher G.; Jacobsen, Chris J.

    2014-01-01

    X-ray nanoprobes require coherent illumination to achieve optic-limited resolution, and so will benefit directly from diffraction-limited storage rings. Here, the example of high-resolution X-ray fluorescence tomography is focused on as one of the most voracious demanders of coherent photons, since the detected signal is only a small fraction of the incident flux. Alternative schemes are considered for beam delivery, sample scanning and detectors. One must consider as well the steps before and after the X-ray experiment: sample preparation and examination conditions, and analysis complexity due to minimum dose requirements and self-absorption. By understanding the requirements and opportunities for nanoscale fluorescence tomography, one gains insight into the R&D challenges in optics and instrumentation needed to fully exploit the source advances that diffraction-limited storage rings offer. PMID:25177992

  13. EPA Method EMSL-33: Isotopic Determination of Plutonium, Uranium, and Thorium in Water, Soil, Air, and Biological Tissue

    EPA Pesticide Factsheets

    SAM lists this method to provide for the analysis of isotopic plutonium, uranium and thorium, together or individually, in drinking water, aqueous/liquid, soil/sediment, surface wipe and/or air filter samples by alpha spectrometry.

  14. Sustainable soil, water and air quality mankind`s ultimate challenge and opportunity in the 21st Century

    SciTech Connect

    Nicholson, J.P.

    1996-12-31

    The House Agricultural Appropriations Sub-Committee, under the leadership of Chairman Joe Skeen and Minority Leader Marcy Kaptur, has appropriated $600,000 to the U.S. Department of Agriculture to provide demonstration funds to the Rodale Institute, the Compost Council, and N-Viro International Corporation. The demonstration project is showing the ability of compost and N-Viro Soil{trademark} technologies to utilize manure and bio-solids in such a manner as to provide both sustainable soil fertility and reduced non-point source water pollution. The two processes, i.e. compost and N-Viro Soil{trademark}, stabilize and immobilize nutrients and organics so that they are only available through the {open_quotes}slow release{close_quotes} mechanism of mineralization. Moreover, they help reduce the leaching of chemical fertilizers, thus increasing their efficiency and they reduce the need for chemical pesticides. Compost is an established biological technology. N-Viro Soil{trademark} is a new process with an established reference base and significant public recognition, that combines biological, chemical, and physical processes to pasturize organic wastes, and convert to a stable, storable product that is capable of providing {open_quotes}slow release{close_quotes} soil fertility through immobilization and mineralization. A sustainable national program of technology transfer is absolutely vital if such technologies are going to be understood, accepted, and utilized.

  15. The electrolyte challenge for a direct methanol-air polymer electrolyte fuel cell operating at temperatures up to 200 C

    NASA Technical Reports Server (NTRS)

    Savinell, Robert; Yeager, Ernest; Tryk, Donald; Landau, Uziel; Wainright, Jesse; Gervasio, Dominic; Cahan, Boris; Litt, Morton; Rogers, Charles; Scherson, Daniel

    1993-01-01

    Novel polymer electrolytes are being evaluated for use in a direct methanol-air fuel cell operating at temperatures in excess of 100 C. The evaluation includes tests of thermal stability, ionic conductivity, and vapor transport characteristics. The preliminary results obtained to date indicate that a high temperature polymer electrolyte fuel cell is feasible. For example, Nafion 117 when equilibrated with phosphoric acid has a conductivity of at least 0.4 Omega(exp -1)cm(exp -1) at temperatures up to 200 C in the presence of 400 torr of water vapor and methanol vapor cross over equivalent to 1 mA/cm(exp 2) under a one atmosphere methanol pressure differential at 135 C. Novel polymers are also showing similar encouraging results. The flexibility to modify and optimize the properties by custom synthesis of these novel polymers presents an exciting opportunity to develop an efficient and compact methanol fuel cell.

  16. North Atlantic demersal deep-water fish distribution and biology: present knowledge and challenges for the future.

    PubMed

    Bergstad, O A

    2013-12-01

    This paper summarizes knowledge and knowledge gaps on benthic and benthopelagic deep-water fishes of the North Atlantic Ocean, i.e. species inhabiting deep continental shelf areas, continental and island slopes, seamounts and the Mid-Atlantic Ridge. While several studies demonstrate that distribution patterns are species specific, several also show that assemblages of species can be defined and such assemblages are associated with circulatory features and water mass distributions. In many subareas, sampling has, however, been scattered, restricted to shallow areas or soft substrata, and results from different studies tend to be difficult to compare quantitatively because of sampler differences. Particularly, few studies have been conducted on isolated deep oceanic seamounts and in Arctic deep-water areas. Time series of data are very few and most series are short. Recent studies of population structure of widely distributed demersal species show less than expected present connectivity and considerable spatial genetic heterogeneity and complexity for some species. In other species, genetic homogeneity across wide ranges was discovered. Mechanisms underlying the observed patterns have been proposed, but to test emerging hypotheses more species should be investigated across their entire distribution ranges. Studies of population biology reveal greater diversity in life-history strategies than often assumed, even between co-occurring species of the same family. Some slope and ridge-associated species are rather short-lived, others very long-lived, and growth patterns also show considerable variation. Recent comparative studies suggest variation in life-history strategies along a continuum correlated with depth, ranging from shelf waters to the deep sea where comparatively more species have extended lifetimes, and slow rates of growth and reproduction. Reproductive biology remains too poorly known for most deep-water species, and temporal variation in recruitment has

  17. Challenges of climate change: omics-based biology of saffron plants and organic agricultural biotechnology for sustainable saffron production.

    PubMed

    Husaini, Amjad M

    2014-01-01

    Kashmir Valley is a major saffron (Crocus sativus Kashmirianus) growing area of the world, second only to Iran in terms of production. In Kashmir, saffron is grown on uplands (termed in the local language as "Karewas"), which are lacustrine deposits located at an altitude of 1585 to 1677 m above mean sea level (amsl), under temperate climatic conditions. Kashmir, despite being one of the oldest historical saffron-producing areas, faces a rapid decline of saffron industry. Among many other factors responsible for decline of saffron industry the preponderance of erratic rainfalls and drought-like situation have become major challenges imposed by climate change. Saffron has a limited coverage area as it is grown as a 'niche crop' and is a recognized "geographical indication," growing under a narrow microclimatic condition. As such it has become a victim of climate change effects, which has the potential of jeopardizing the livelihood of thousands of farmers and traders associated with it. The paper discusses the potential and actual impact of climate change process on saffron cultivation in Kashmir; and the biotechnological measures to address these issues.

  18. Non-invasive monitoring of glucocorticoid metabolites in banded mongooses (Mungos mungo) in response to physiological and biological challenges.

    PubMed

    Laver, Peter N; Ganswindt, André; Ganswindt, Stefanie B; Alexander, Kathleen A

    2012-11-01

    Free-ranging banded mongooses are infected by the novel pathogen, Mycobacterium mungi in northern Botswana. A reliable method for determining stress-related physiological responses in banded mongooses will increase our understanding of the stress response in M. mungi infection. Therefore, our aim was to examine the suitability of four enzyme immunoassays (EIAs) for monitoring adrenocortical endocrine function in captive and free-ranging banded mongooses based on fecal glucocorticoid metabolite (FGM) analysis. A conducted adrenocorticotropic hormone challenge revealed suitability of a valid measurement of FGM levels in banded mongoose feces for all four tested EIAs, with an 11-oxoetiocholanolone assay detecting 11,17-dioxoandrostanes (11,17-DOA) performing best. Subsequent analyses using only this EIA showed the expected decrease in FGM concentrations 48 h after administering dexamethasone sodium phosphate. Furthermore, captive mongooses showed higher FGM concentrations during reproductive activity, agonistic encounters and depredation events. Finally, a late-stage, tuberculosis-infected moribund mongoose in a free-ranging troop had a 54-fold elevation in FGM levels relative to the rest of the troop. Measurements of gastrointestinal transit times and FGM metabolism post-defecation indicate that the time delay of FGM excretion approximately corresponded with food transit time and that FGM metabolism is minimal up to 8h post-defecation. The ability to reliably assess adrenocortical endocrine function in banded mongoose now provides a solid basis for advancing our understanding of infectious disease and endocrinology in this species.

  19. The challenges of reducing greenhouse gas emissions and air pollution through energy sources: evidence from a panel of developed countries.

    PubMed

    Akhmat, Ghulam; Zaman, Khalid; Shukui, Tan; Sajjad, Faiza; Khan, Muhammad Azhar; Khan, Muhammad Zahir

    2014-06-01

    The objective of the study is to investigate the long-run relationship between climatic factors (i.e., greenhouse gas emissions, agricultural methane emissions, and industrial nitrous oxide emission), air pollution (i.e., carbon dioxide emissions), and energy sources (i.e., nuclear energy; oil, gas, and coal energy; and fossil fuel energy) in the panel of 35 developed countries (including EU-15, new EU member states, G-7, and other countries) over a period of 1975-2012. In order to achieve this objective, the present study uses sophisticated panel econometric techniques including panel cointegration, panel fully modified OLS (FMOLS), and dynamic OLS (DOLS). The results show that there is a long-run relationship between the variables. Nuclear energy reduces greenhouse gases and carbon emissions; however, the other emissions, i.e., agricultural methane emissions and industrial nitrous oxide, are still to increase during the study period. Electricity production from oil, gas, and coal sources increases the greenhouse gases and carbon emissions; however, the intensity to increase emissions is far less than the intensity to increase emissions through fossil fuel. Policies that reduce emissions of greenhouse gases can simultaneously alter emissions of conventional pollutants that have deleterious effects on human health and the environment.

  20. A critical review of macroscopic modeling studies on Li O2 and Li-air batteries using organic electrolyte: Challenges and opportunities

    NASA Astrophysics Data System (ADS)

    Li, Xianglin; Huang, Jing; Faghri, Amir

    2016-11-01

    A comprehensive review of the state-of-the-art macroscopic modeling studies on lithium oxygen (Li O2) and lithium air (Li-air) batteries has been presented. The Li O2 battery is a promising device for energy storage in portable electronics and electric vehicles due to its high specific energy. A number of technical challenges need to be addressed in order to bring this technology from laboratory concept to real products. The multi-scale, multi-physics phenomena in a Li O2 battery encompasses a wide range of scientific disciplines, including electrochemistry, heat and mass transfer, and material science. Modeling study provides a powerful tool to understand the charge-species transport phenomena inside a battery that cannot be captured by experimentation. It offers insight to optimize battery design and fabrication. Macroscopic models that treat battery components as continuous media will be the focus of this review while pore-scale sub-models that are integrated with macroscopic models to describe structural changes of battery components (mainly electrodes) will be presented and compared as well. Recent developments and opportunities for future improvement and advancement are also discussed. Finally, a detailed summary of property data relevant to Li O2 batteries is provided because of their critical role in modeling studies.

  1. Gas transport processes in sea ice: How convection and diffusion processes might affect biological imprints, a challenge for modellers

    NASA Astrophysics Data System (ADS)

    Tison, J.-L.; Zhou, J.; Thomas, D. N.; Rysgaard, S.; Eicken, H.; Crabeck, O.; Deleu, F.; Delille, B.

    2012-04-01

    Recent data from a year-round survey of landfast sea ice growth in Barrow (Alaska) have shown how O2/N2 and O2/Ar ratios could be used to pinpoint primary production in sea ice and derive net productivity rates from the temporal evolution of the oxygen concentration at a given depth within the sea ice cover. These rates were however obtained surmising that neither convection, nor diffusion had affected the gas concentration profiles in the ice between discrete ice core collections. This paper discusses examples from three different field surveys (the above-mentioned Barrow experiment, the INTERICE IV tank experiment in Hamburg and a short field survey close to the Kapisilit locality in the South-East Greenland fjords) where convection or diffusion processes have clearly affected the temporal evolution of the gas profiles in the ice, therefore potentially affecting biological signatures. The INTERICE IV and Barrow experiment show that the initial equilibrium dissolved gas entrapment within the skeletal layer basically governs most of the profiles higher up in the sea ice cover during the active sea ice growth. However, as the ice layers age and cool down under the temperature gradient, bubble nucleation occurs while the concentration in the ice goes well above the theoretical one, calculated from brine equilibrium under temperature and salinity changes and observed brine volumes. This phase change locks the gases within the sea ice structure, preventing "degassing" of the ice, as is observed for salts under the mushy layer brine convection process. In some cases, mainly in the early stages of the freezing process (first 10-20 cm) where temperature gradients are strong and the ice still permeable on its whole thickness, repeated convection and bubble nucleation can actually increase the gas concentration in the ice above the one initially acquired within the skeletal layer. Convective processes will also occur on ice decay, when ice permeability is restored and the

  2. A biological method to monitor early effects of the air pollution caused by the industrial exploitation of geothermal energy.

    PubMed

    Paoli, Luca; Loppi, Stefano

    2008-09-01

    The suitability of a set of ecophysiological parameters, to be used as early warning indicator to detect signs of a worsening environment around geothermal power plants, was tested by comparison with the diversity of epiphytic lichens, a well-established indicator of geothermal air pollution. Samples of the lichen Evernia prunastri were transplanted around a geothermal power plant at Larderello (Tuscany, Italy) and at a control site, and integrity of cell membranes, concentration of chlorophyll a, b and carotenoids, chlorophyll integrity and variations in pH of thalli were measured. The results showed that cell membrane damage, expressed by changes in electrical conductivity, could be used to detect early (exposure periods as short as 1 month) deleterious effects of geothermal air pollution.

  3. LASER BIOLOGY AND MEDICINE: Laser analysis of the 13C/12C isotope ratio in CO2 in exhaled air

    NASA Astrophysics Data System (ADS)

    Stepanov, E. V.

    2002-11-01

    Tunable diode lasers (TDLs) are applied to the diagnostics of gastroenterological diseases using respiratory tests and preparations enriched with the stable 13C isotope. This method of the analysis of the 13C/12C isotope ratio in CO2 in exhaled air is based on the selective measurement of the resonance absorption at the vibrational — rotational structure of 12CO2 and 13CO2. The CO2 transmission spectra in the region of 4.35 μm were measured with a PbEuSe double-heterostructure TDL. The accuracy of carbon isotope ratio measurements in CO2 of exhaled air performed with the TDL was ~0.5%. The data of clinical tests of the developed laser-based analyser are presented.

  4. Environmental Assessment: For Joint Biological Point Detection System (JBPDS) at Multiple Test Ranges, Eglin Air Force Base, Florida

    DTIC Science & Technology

    2003-06-01

    bed. This clay layer restricts the downward migration of pollutants and restricts saline water from Choctawhatchee Bay and the Gulf of Mexico from...Because it is saline , the Lower Limestone unit is not used as a water source (U.S. Air Force, 1995). Groundwater storage and movement in the Upper... purslane , among others. Inland from the produne zone is the “scrub” zone. Vegetation found in this zone is usually stunted and wind/salt sprayed

  5. Occupational Exposure to Mercury: Air Exposure Assessment and Biological Monitoring based on Dispersive Ionic Liquid-Liquid Microextraction

    PubMed Central

    SHIRKHANLOO, Hamid; GOLBABAEI, Farideh; HASSANI, Hamid; EFTEKHAR, Farrokh; KIAN, Mohammad Javad

    2014-01-01

    Abstract Background Exposure to mercury (Hg) as a heavy metal can cause health effects. The objective of this study was to assess occupational exposure to Hg in a chlor-alkali petrochemical industry in Iran by determining of Hg concentrations in air, blood and urine samples. Methods The study was performed on 50 exposed subjects and 50 unexposed controls. Air samples were collected in the breathing zone of exposed subjects, using hopcalite sorbents. Analysis was performed using a cold vapor atomic absorption spectrophotometer (CV-AAS) according to NIOSH analytical method 6009. For all participants, blood and urine samples were collected and then transferred into sterile glass tubes. After micro-extraction with ionic liquid and back extraction with nitric acid, Hg concentrations in blood and urine samples were determined by CV-AAS. Results The mean concentration of air Hg was 0.042± 0.003 mg/m3. The mean concentrations of Hg in blood and urine samples of exposed subjects were significantly higher than unexposed controls (22.41± 12.58 versus 1.19± 0.95 μg/l and 30.61± 10.86 versus 1.99± 1.34 μg/g creatinine, respectively). Correlation of air Hg with blood Hg, urine Hg and blood Hg-urine Hg ratio were significant statistically (P< 0.05). Conclusions The values of Hg in blood and urine samples of chlor-alkali workers were considerably high. Correlation coefficients showed that blood Hg and blood Hg-urine Hg ratio are better indicators than urine Hg for assessing occupationally exposed workers in terms of current exposure assessment. PMID:26110150

  6. HORMONE STUDIES WITH THE ULTRACENTRIFUGE : I. AN IMPROVED AIR-DRIVEN VACUUM ULTRACENTRIFUGE SUITABLE FOR CONCENTRATION WORK IN BIOLOGICAL EXPERIMENTS.

    PubMed

    Chiles, J A; Severinghaus, A E

    1938-06-30

    1. An ultracentrifuge is described in which the rotor is driven by a compressed air turbine, and is spun in an evacuated chamber to minimize friction and heating. The rotating parts are supported by a cushion of air in an air bearing. 2. The centrifuge rotor holds 10 test tubes inclined at 45 degrees to the axis, and has a capacity of 55 cc. It is operated at a maximum speed of 51,000 R.P.M., which develops at the top of the fluid column in the test tubes a centrifugal field of over 100,000 times gravity, and at the bottom of the fluid column a field of over 200,000 times gravity. 3. By means of a reverse turbine, the rotor can be brought to a stop from full speed in a relatively short time. 4. A precession damping device is described, which effectively damps the precession and wobbling of the rotor that usually occurs at certain speeds in machines of this type. 5. A relatively long section of shaft is used between the centrifuge rotor and lower bearings. This prevents vibrations from being appreciably transmitted through the shaft to the lower bearings and driving mechanism, and results in a negligible wear on the bearings. 6. The driving mechanism is designed so that the positions of its parts are adjustable, and so that the driving mechanism may be dismantled without disturbing these adjustments.

  7. Air-Water Exchange of N2 and O2 from In Situ Measurements in the Subarctic and Subtropical Pacific Oceans: Oxygen Flux and Net Biological Production

    NASA Astrophysics Data System (ADS)

    Emerson, S.

    2008-12-01

    In-situ measurements of wind speed, atmospheric pressure, surface-ocean total dissolved gas pressure and oxygen concentration are used to determine the flux of nitrogen and oxygen between the ocean and atmosphere in the subarctic and subtropical Pacific Oceans. Measurements were made hourly over a period of about one year on surface moorings at the Hawaii Ocean Time series (HOT) in 2005 and at Station P in 2007. Gas pressures in the mixed layer were determined using a gas tension device (GTD) and an oxygen sensor calibrated by Winkler O2 titrations. The pressures of nitrogen and oxygen vary smoothly within a few percent of atmospheric saturation in the subtropical Pacific Ocean, but in the subarctic surface waters these values are punctuated by very rapid excursions caused by storms. The primary flux of oxygen in the upper ocean is between the ocean and atmosphere. We use a simple ocean mixed-layer model to determine this flux and estimate the net biological oxygen production at these sites. Assuming that the net biological oxygen and carbon production are stoichiometrically related over an annual cycle, this method provides a measure of the annual carbon export from the mixed layer, an important component of the ocean's role in the global carbon cycle. There is net biological O2 production most of the year in the subtropical ocean; however, little evidence of net O2 production in the wintertime in the subarctic Pacific. This contrasts with earlier 14C primary production measurements which indicate that wintertime production is about half that in summer at both locations. Annual estimates of biologically produced carbon export at these two sites will be contrasted at the presentation in the fall meeting. This research indicates that it should be possible to derive estimates of the net annual air-water oxygen fluxes caused by biological production at any location of the open ocean where there is a surface mooring. Large, abrupt atmospheric pressure changes (up to 50

  8. Chemical analysis and biological testing of a polar fraction of ambient air, diesel engine, and gasoline engine particulate extracts.

    PubMed Central

    Strandell, M; Zakrisson, S; Alsberg, T; Westerholm, R; Winquist, L; Rannug, U

    1994-01-01

    Extracts of gasoline and diesel vehicle exhaust and ambient air particles were fractionated into five fractions according to polarity on a silica gel column. Two medium polar fractions showing high genotoxic activity in the Ames test were further subfractionated, using normal-phase high-performance liquid chromatography. Chemical analyses were performed by means of gas chromatography combined with mass spectrometry and flame ionization and detection. The crude extracts, fractions, and subfractions were assayed with the Ames test, with and without S9, and the most abundant compounds in the subfractions are reported. PMID:7529708

  9. Integrated catalytic wet air oxidation and aerobic biological treatment in a municipal WWTP of a high-strength o-cresol wastewater.

    PubMed

    Suarez-Ojeda, María Eugenia; Guisasola, Albert; Baeza, Juan A; Fabregat, Azael; Stüber, Frank; Fortuny, Agustí; Font, Josep; Carrera, Julián

    2007-02-01

    This study examines the feasibility of coupling a Catalytic Wet Air Oxidation (CWAO), with activated carbon (AC) as catalyst, and an aerobic biological treatment to treat a high-strength o-cresol wastewater. Two goals are pursued: (a) To determine the effect of the main AC/CWAO intermediates on the activated sludge of a municipal WasteWater Treatment Plant (WWTP) and (b) To demonstrate the feasibility of coupling the AC/CWAO effluent as a part of the influent of a municipal WWTP. In a previous study, a high-strength o-cresol wastewater was treated by AC/CWAO aiming to establish the distribution of intermediates and the biodegradability enhancement. In this work, the biodegradability, toxicity and inhibition of the most relevant intermediates detected in the AC/CWAO effluent were determined by respirometry. Also, the results of a pilot scale municipal WWTP study for an integrated AC/CWAO-aerobic biological treatment of this effluent are presented. The biodegradation parameters (i.e. maximum oxygen uptake rate and oxygen consumption) of main AC/CWAO intermediates allowed the classification of the intermediates into readily biodegradable, inert or toxic/inhibitory compounds. This detailed study, allowed to understand the biodegradability enhancement exhibited by an AC/CWAO effluent and to achieve a successful strategy for coupling the AC/CWAO step with an aerobic biological treatment for a high-strength o-cresol wastewater. Using 30%, as COD, of AC/CWAO effluent in the inlet to the pilot scale WWTP, the integrated AC/CWAO-biological treatment achieved a 98% of total COD removal and, particularly, a 91% of AC/CWAO effluent COD removal without any undesirable effect on the biomass.

  10. Implementation of an education-focused PhD program in anatomy and cell biology at Indiana University: lessons learned and future challenges.

    PubMed

    Brokaw, James J; O'Loughlin, Valerie D

    2015-01-01

    In 2008, the Indiana University School of Medicine, in collaboration with the School of Education, admitted its first student to a newly approved PhD program in Anatomy and Cell Biology focusing on educational research rather than biomedical research. The goal of the program is twofold: (1) to provide students with extensive training in all of the anatomical disciplines coupled with sufficient teaching experience to assume major educational responsibilities upon graduation and (2) to train students to conduct rigorous medical education research and other scholarly work necessary for promotion and tenure. The 90 credit hour curriculum consists of biomedical courses taught within the School of Medicine and education courses taught within the School of Education, including courses in health sciences pedagogy, curriculum development, learning theory, quantitative, and qualitative research methods, statistics, and electives. To date, 16 students have entered the program, seven have passed their qualifying examinations, and five have earned their PhD degrees. Four students have received national recognition for their educational research and four graduates have obtained faculty appointments. Going forward, we must adapt the program's biomedical course requirements to incorporate the new integrated curriculum of the medical school, and we must secure additional funding to support more students. Overcoming these challenges will enable us to continue producing a small but stable supply of doctoral-level anatomy educators for a growing academic market.

  11. Application of proton-transfer-reaction mass spectrometry to the assessment of odorant removal in a biological air cleaner for pig production.

    PubMed

    Hansen, Michael J; Liu, Dezhao; Guldberg, Lise Bonne; Feilberg, Anders

    2012-03-14

    There is an urgent need to develop odor reduction technologies for animal production facilities, and this requires a reliable measurement technique for estimating the removal of odorants. The purpose of the present experiment was to investigate the application of proton-transfer-reaction mass spectrometry (PTR-MS) for continuous measurements at a biofilter from SKOV A/S installed at a pig production facility. PTR-MS was able to handle the harsh conditions with high humidity and dust load in a biofilter and provide reliable data for the removal of odorants, including the highly odorous sulfur compounds. The biofilter removed 80-99% of carboxylic acids, aldehydes, ketones, phenols, and indoles and ca. 75% of hydrogen sulfide. However, only ~0-15% of methanethiol and dimethyl sulfide was removed. In conclusion, PTR-MS is a promising tool that can be used to improve the development of biological air cleaning and other odor reduction technologies toward significant odorants.

  12. Long-term biological effects of air ions and D.C. electric fields on Namru mice: First year report

    NASA Astrophysics Data System (ADS)

    Kellogg, E. W.; Yost, M. G.; Reed, E. J.; Krueger, A. P.

    1985-09-01

    This report describes for the first time the effects of long-term continuous exposures of animals to small air ions and D.C. electric fields. In this study we exposed 200 female NAMRU mice (25/cage) to the following conditions: ± high ions (2×105/cm3), ± low ions (2×103/cm3), ± field only and ground (ion depleted, no field). Specially designed cages provided a defined D.C. field of about 2 kV/meter in ionized environments, with somewhat lower values in the field only cages. Detailed mapping of ion flux originating from a tritium foil generating system (multiple sources in an overhead plate) indicated a well defined, but heterogenous pattern with eight peak areas. Using a 100 cm2 probe, ion flux values ranged from 10-12 10-14 A/cm2, with an average flux of 8.7±6.8×10-13 A/cm2 in high negative ion cages, with good reproducibility between cages. Measurements of serum glucose, cholesterol, and urea nitrogen (samples taken every three months) showed a number of small but consistent and statistically significant differences between animals maintained in different environments during the first year of exposure. Serum globulin and whole blood serotonin, however, did not show any significant environmental effects. Interestingly, pairwise comparisons between high negative and low negative ion conditions, or between high positive and low positive ion conditions, or between the two ground conditions, revealed no significant differences between cages. This argues for a similarity of environmental responses for the mice maintained in each of the compared conditions. The results of a multiple classification analysis for the entire first year showed a preponderence of effects for the ionized cages, although other conditions also had highly significant differences as compared to the grand mean value. While this study has shown effects of only small magnitude (compared to normal physiological variations) in the female NAMRU mice studied here, the significance of these results

  13. Ultrasound-air-assisted demulsified liquid-liquid microextraction by solidification of a floating organic droplet for determination of three antifungal drugs in water and biological samples.

    PubMed

    Ezoddin, Maryam; Shojaie, Mehran; Abdi, Khosrou; Karimi, Mohammad Ali

    2017-03-01

    A novel ultrasound-air-assisted demulsified liquid-liquid microextraction by solidification of a floating organic droplet (UAAD-LLM-SFO) followed by HPLC-UV detection was developed for the analysis of three antifungal drugs in water and biological samples. In this method, 1-dodecanol was used as the extraction solvent. The emulsion was rapidly formed by pulling in and pushing out the mixture of sample solution and extraction solvent for 5 times repeatedly using a 10-mL glass syringe while sonication was performed. Therefore, an organic dispersive solvent required in common microextraction methods was not used in the proposed method. After dispersing, an aliquot of acetonitrile was introduced as a demulsifier solvent into the sample solution to separate two phases. Therefore, some additional steps, such as the centrifugation, ultrasonication, or agitation of the sample solution, are not needed. Parameters influencing the extraction recovery were investigated. The proposed method showed a good linearity for the three antifungal drugs studied with the correlation coefficients (R (2) > 0.9995). The limits of detection (LODs) and the limits of the quantification (LOQs) were between 0.01-0.03 μg L(-1) and 0.03-0.08 μg L(-1), respectively. The preconcentration factors (PFs) were in the range of 107-116, respectively. The precisions, as the relative standard deviations (RSDs) (n = 5), for inter-day and intra-day analysis were in the range of 2.1-4.5% and 6.5-8.5%, respectively. This method was successfully applied to determine the three antifungal drugs in tap water and biological samples. The recoveries of antifungal drugs in these samples were 92.4-98.5%. Graphical abstract Ultrasound-air-assisted demulsified liquid-liquid microextraction by solidification of a floating organic droplet for the analysis of three antifungal drugs prior HPLC-UV.

  14. Analysis of specific absorption rate and internal electric field in human biological tissues surrounding an air-core coil-type transcutaneous energy transmission transformer.

    PubMed

    Shiba, Kenji; Zulkifli, Nur Elina Binti; Ishioka, Yuji

    2016-11-21

    In this study, we analyzed the internal electric field E and specific absorption rate (SAR) of human biological tissues surrounding an air-core coil transcutaneous energy transmission transformer. Using an electromagnetic simulator, we created a model of human biological tissues consisting of a dry skin, wet skin, fat, muscle, and cortical bone. A primary coil was placed on the surface of the skin, and a secondary coil was located subcutaneously inside the body. The E and SAR values for the model representing a 34-year-old male subject were analyzed using electrical frequencies of 0.3-1.5 MHz. The transmitting power was 15 W, and the load resistance was 38.4 Ω. The results showed that the E values were below the International Commission on Non-ionizing Radiation Protection (ICNIRP) limit for the general public exposure between the frequencies of 0.9 and 1.5 MHz, and SAR values were well below the limit prescribed by the ICNIRP for the general public exposure between the frequencies of 0.3 and 1.2 MHz.

  15. Microbial monitoring and performance evaluation for H2S biological air emissions control at a wastewater lift station in South Texas, USA.

    PubMed

    Jones, Kim D; Yadavalli, Naga; Karre, Anand K; Paca, Jan

    2012-01-01

    A pilot-scale biological sequential treatment system consisting of a biotrickling filter and two biofilters was installed at Waste Water Lift Station # 64 in Brownsville, Texas, USA to evaluate the performance of the system being loaded with variable concentrations of wastewater hydrogen sulfide (H(2)S) emissions. In this study, the effectiveness of sulfur oxidizing bacteria along with the distribution of various sulfur species and their correlation with the performance of the biofilters was evaluated. The biofilters were packed with engineered media consisting of plastic cylinders with compacted organic material which was supplied by Met-Pro Environmental Air Solutions (formerly Bio·Reaction Industries). The overall performance of the pilot-scale biological sequential treatment system with an Empty Bed Residence Time (EBRT) of 60s and the overall performance of the biofilter unit with an EBRT of 35s developed a removal efficiency of > 99% at H(2)S levels up to 500 ppm. A decrease in performance over time was observed in the first and second sections of the first biofilter unit with the third section of the biofilter unit ultimately becoming the most robust unit removing most of the pollutant. The second biofilter unit was not needed and subsequently removed from the system. The number of CFUs in sulfur oxidizing T.thioparus selective media grew significantly in all four sections of the biofilter over the two months of pilot operation of the biological unit. The sulfur oxidizer growth rates appeared to be highest at low total sulfur content and at slightly acidic pH levels. This study has implications for improving the understanding of the distribution of sulfur oxidizing bacteria throughout the length of the biofilter columns, which can be used to further optimize performance and estimate breakthrough at these very high H(2)S input loadings.

  16. A study of air pollution with heavy metals in Athens city and Attica basin using evergreen trees as biological indicators.

    PubMed

    Sawidis, Thomas; Krystallidis, Panagiotis; Veros, Dimitrios; Chettri, Mukesh

    2012-09-01

    Concentrations of five metals (cadmium, chromium, copper, nickel and lead) were determined in tree leaves collected from 13 areas of the Attica basin and Athens city, Greece. Geographical distribution patterns were investigated, and factors affecting toxic element accumulation in trees were discussed. The mean heavy metal content in the tree leaves is described in the descending order of copper>lead>nickel>chromium>cadmium. Generally, the most damaged areas have been proved to be those near the city center and in the vicinity of the Attica highway. The geomorphological relief of the area plays an important role in the dispersion of airborne particles from pollution sources to the surrounding area. Areas on the NE region are also polluted mainly due to wind directions. In Citrus aurantium leaves, with relatively impermeable cuticle, high chromium, copper and nickel concentration would be possibly caused only by significant stomatal uptake. The conifer tree Pinus brutia providing a rough leaf surface also showed elevated concentrations, especially of cadmium and lead. The thick waxy cuticle of the sclerophyllous broad-leaved Olea europaea forms a smooth sheet increasing the barrier properties of the leaf epidermis and causing a reduction in leaf permeability. The dense trichomes of the abaxial epidermis of Olea europaea also act as a pollution screen keeping away the air particles from the epidermis stomata. The presence of a certain metal within the leaf cells could reduce the uptake or toxicity of some others.

  17. Analysis of biological factors for determination of air pollution tolerance index of selected plants in Yamuna Nagar, India.

    PubMed

    Sharma, Manju; Panwar, Neeraj; Arora, Pooja; Luhach, Jyoti; Chaudhry, Smita

    2013-05-01

    Air pollution tolerance index (APTI) calculated for various plant species growing in vicinity of three different industrial areas (Paper mill, Sugar mill, Thermal Power Plant) and Yamuna River belt of Yamuna Nagar. Studies were carried out to determine the physiological response of ten plant species. The leaf samples collected from these plant species were used to determine their plant APTI by calculating the ascorbic acid, total chlorophyll, pH, and relative water content for all selected sites. Highest pH, relative water content, ascorbic acid and total chlorophyll was observed in Castor (9.86), Parthenium (96.99%), Ficus benghalensis (14.90 mg g(-1)) and Amaranthus (7.08 mg g(-1)) at Yamuna river, Thermal power plant, Yamuna river and paper mill respectively. It was concluded that out of ten species studied only one species (Ficus benghalensis) showed moderately tolerant response in all selected sites, while other species showed sensitive response. According to observed APTI values, Ficus benghalensis showed the highest value (21.65) at sugar mill followed by thermal power plant (19.38), Paper mill (17.65) and Yamuna River (17.61). The lowest APTI values were reported in Oxalis corniculata (6.42) at Yamuna River belt followed by Malvestrum at sugar mill (7.71).

  18. Relation between sources of particulate air pollution and biological effect parameters in samples from four European cities: An exploratory study

    SciTech Connect

    Steerenberg, P.A.; van Amelsvoort, L.; Lovik, M.; Hetland, R.B.; Alberg, T.; Halatek, T.; Bloemen, H.J.T.; Rydzynski, K.; Swaen, G.; Schwarze, P.; Dybing, E.; Cassee, F.R.

    2006-05-15

    Given that there are widely different prevalence rates of respiratory allergies and asthma between the countries of Europe and that exposure to ambient particulate matter (PM) is substantial in urban environments throughout Europe, an EU project entitled 'Respiratory Allergy and Inflammation Due to Ambient Particles' (RAIAP) was set up. The project focused on the role of physical and chemical composition of PM on release of cytokines of cells in vitro, on respiratory inflammation in vivo, and on adjuvant potency in allergy animal models. Coarse (2.5 - 10 {mu}m) and fine (0.15 - 2.5 {mu}m) particles were collected during the spring, summer and winter in Rome ( I), Oslo (N), Lodz (PL), and Amsterdam (NL). Markers within the same model were often well correlated. Markers of inflammation in the in vitro and in vivo models also showed a high degree of correlation. In contrast, correlation between parameters in the different allergy models and between allergy and inflammation markers was generally poor. This suggests that various bioassays are needed to assess the potential hazard of PM. The present study also showed that by clustering chemical constituents of PM based on the overall response pattern in the bioassays, five distinct groups could be identified. The clusters of traffic, industrial combustion and/or incinerators, and combustion of black and brown coal/wood smoke were associated primarily with adjuvant activity for respiratory allergy, whereas clusters of crustal of material and sea spray are predominantly associated with measures for inflammation and acute toxicity. The present study has shown that biological effect of PM can be linked to one or more PM emission sources and that this linkage requires a wide range of bioassays.

  19. Relation between sources of particulate air pollution and biological effect parameters in samples from four European cities: an exploratory study.

    PubMed

    Steerenberg, Peter A; van Amelsvoort, Ludo; Lovik, Martinus; Hetland, Ragna B; Alberg, Torunn; Halatek, Tadeusz; Bloemen, Henk J T; Rydzynski, Konrad; Swaen, Gerard; Schwarze, Per; Dybing, Erik; Cassee, Flemming R

    2006-05-01

    Given that there are widely different prevalence rates of respiratory allergies and asthma between the countries of Europe and that exposure to ambient particulate matter (PM) is substantial in urban environments throughout Europe, an EU project entitled "Respiratory Allergy and Inflammation Due to Ambient Particles" (RAIAP) was set up. The project focused on the role of physical and chemical composition of PM on release of cytokines of cells in vitro, on respiratory inflammation in vivo, and on adjuvant potency in allergy animal models. Coarse (2.5-10 microm) and fine (0.15-2.5 microm) particles were collected during the spring, summer and winter in Rome (I), Oslo (N), Lodz (PL), and Amsterdam (NL). Markers within the same model were often well correlated. Markers of inflammation in the in vitro and in vivo models also showed a high degree of correlation. In contrast, correlation between parameters in the different allergy models and between allergy and inflammation markers was generally poor. This suggests that various bioassays are needed to assess the potential hazard of PM. The present study also showed that by clustering chemical constituents of PM based on the overall response pattern in the bioassays, five distinct groups could be identified. The clusters of traffic, industrial combustion and/or incinerators (TICI), and combustion of black and brown coal/wood smoke (BBCW) were associated primarily with adjuvant activity for respiratory allergy, whereas clusters of crustal of material (CM) and sea spray (SS) are predominantly associated with measures for inflammation and acute toxicity. The cluster of secondary inorganic aerosol and long-range transport aerosol (SIALT) was exclusive associated with systemic allergy. The present study has shown that biological effect of PM can be linked to one or more PM emission sources and that this linkage requires a wide range of bioassays.

  20. Roles of biological and physical processes in driving seasonal air-sea CO2 flux in the Southern Ocean: New insights from CARIOCA pCO2

    NASA Astrophysics Data System (ADS)

    Merlivat, L.; Boutin, J.; Antoine, D.

    2015-07-01

    On a mean annual basis, the Southern Ocean is a sink for atmospheric CO2. However the seasonality of the air-sea CO2 flux in this region is poorly documented. We investigate processes regulating air-sea CO2 flux in a large area of the Southern Ocean (38°S-55°S, 60°W-60°E) that represents nearly one third of the subantarctic zone. A seasonal budget of CO2 partial pressure, pCO2 and of dissolved inorganic carbon, DIC in the mixed layer is assessed by quantifying the impacts of biology, physics and thermodynamical effect on seawater pCO2. A focus is made on the quantification at a monthly scale of the biological consumption as it is the dominant process removing carbon from surface waters. In situ biological carbon production rates are estimated from high frequency estimates of DIC along the trajectories of CARIOCA drifters in the Atlantic and Indian sector of the Southern Ocean during four spring-summer seasons over the 2006-2009 period. Net community production (NCP) integrated over the mixed layer is derived from the daily change of DIC, and mixed layer depth estimated from Argo profiles. Eleven values of NCP are estimated and range from 30 to 130 mmol C m- 2 d- 1. They are used as a constraint for validating satellite net primary production (NPP). A satellite data-based global model is used to compute depth integrated net primary production, NPP, for the same periods along the trajectories of the buoys. Realistic NCP/NPP ratios are obtained under the condition that the SeaWiFS chlorophyll are corrected by a factor of ≈ 2-3, which is an underestimation previously reported for the Southern Ocean. Monthly satellite based NPP are computed over the 38°S-55°S, 60°W-60°E area. pCO2 derived from these NPP combined with an export ratio, and taking into account the impact of physics and thermodynamics is in good agreement with the pCO2 seasonal climatology of Takahashi (2009). On an annual timescale, mean NCP values, 4.4 to 4.9 mol C m- 2 yr- 1 are ≈ 4-5 times

  1. Zymosan-induced immune challenge modifies the stress response of hypoxic air-breathing fish (Anabas testudineus Bloch): Evidence for reversed patterns of cortisol and thyroid hormone interaction, differential ion transporter functions and non-specific immune response.

    PubMed

    Simi, S; Peter, Valsa S; Peter, M C Subhash

    2016-11-18

    Fishes have evolved physiological mechanisms to exhibit stress response, where hormonal signals interact with an array of ion transporters and regulate homeostasis. As major ion transport regulators in fish, cortisol and thyroid hormones have been shown to interact and fine-tune the stress response. Likewise, in fishes many interactions have been identified between stress and immune components, but the physiological basis of such interaction has not yet delineated particularly in air-breathing fish. We, therefore, investigated the responses of thyroid hormones and cortisol, ion transporter functions and non-specific immune response of an obligate air-breathing fish Anabas testudineus Bloch to zymosan treatment or hypoxia stress or both, to understand how immune challenge modifies the pattern of stress response in this fish. Induction of experimental peritonitis in these fish by zymosan treatment (200ngg(-1)) for 24h produced rise in respiratory burst and lysozomal activities in head kidney phagocytes. In contrast, hypoxia stress for 30min in immune-challenged fish reversed these non-specific responses of head kidney phagocytes. The decline in plasma cortisol in zymosan-treated fish and its further suppression by hypoxia stress indicate that immune challenge suppresses the cortisol-driven stress response of this fish. Likewise, the decline in plasma T3 and T4 after zymosan-treatment and the rise in plasma T4 after hypoxia stress in immune-challenged fish indicate a critical role for thyroid hormone in immune-stress response due to its differential sensitivity to both immune and stress challenges. Further, analysis of the activity pattern of ion-dependent ATPases viz. Na(+)/K(+)-ATPase, H(+)/K(+)-ATPase and Na(+)/NH4(+)-ATPase indicates a functional interaction of ion transport system with the immune response as evident in its differential and spatial modifications after hypoxia stress in immune-challenged fish. The immune-challenge that produced differential pattern

  2. Interannual fluctuations of sea-air CO2 fluxes and carbon transport between 1950 and 2000: Biological and temperature effects deduced from OBCMSs

    NASA Astrophysics Data System (ADS)

    Winguth, A.; Dobbel, M.; Maier-Reimer, E.; Wentzel, P.

    2003-04-01

    Factors controlling the interannual variability of air-sea CO2 in response to the changes in temperature, circulation, and phytoplankton or zooplankton are not well known and controversially discussed. A recent analysis of pCO2 data by Takahasi et al. (2002) show the importance of high-latitude northern and southern oceans as a sink for atmospheric CO2. These areas are source areas for deep an intermediate water masses and hence represents a direct connection between the atmosphere and the deep oceans. We are using two coupled ocean general circulation - marine ecosystem models with different resolution, the NPZD-type HAMOCC4 coupled to the LSG and the C-HOPE, to explore how biology, temperature, and circulation changes can explain some of the agreements and discrepancies between the data and the model in these regions. These exploratory sensitivity experiments are designed to be a first step towards a currently developed inverse ecosystem model to quantify large-scale interannual-to-decadal fluctuations of the marine carbon cycle and to provide more accurate predictions of the climate system.

  3. Biological monitoring

    SciTech Connect

    Ho, M.H.; Dillon, H.K.

    1986-02-01

    Biological monitoring is defined as the measurement and assessment of workplace agents or their metabolites in tissues, secreta, excreta, expired air, or any combination of these to evaluate exposure and health risk compared to an appropriate reference. Biological monitoring offers several advantages: it takes into account individual variability in biological activity resulting from a chemical insult. It takes into account the effects of personal physical activity and individual life styles. It is a valuable adjunct to ambient monitoring and health surveillance. The importance of chemical speciation in the toxicity of pollutants is discussed. Basic protocols for lead, aluminum, cadmium, mercury, selenium, and nickel are presented. Basic criteria for biological monitoring methods are presented. 11 references, 1 table.

  4. New Whole-House Solutions Case Study: Challenges of Achieving 2012 IECC Air Sealing Requirements in Multifamily Dwellings, Upstate New York

    SciTech Connect

    2014-11-01

    While previous versions of the International Energy Conservation Code (IECC) have included provisions to improve the air tightness of dwellings, for the first time, the 2012 IECC mandates compliance verification through blower door testing. Simply completing the Air Barrier and Insulation Installation checklist through visual inspection is no longer sufficient; the 2012 IECC mandates a significantly stricter air sealing requirement. In Climate Zones 3 through 8, air leakage may not exceed 3 ACH50, which is a significant reduction from the 2009 IECC requirement of 7 ACH50. This requirement is for all residential buildings, which includes low-rise multifamily dwellings. While this air leakage rate requirement is an important component to achieving an efficient building thermal envelope, currently, the code language doesn't explicitly address differences between single family and multifamily applications. In addition, the 2012 IECC does not provide an option to sample dwellings for larger multifamily buildings, so compliance would have to be verified on every unit. With compliance with the 2012 IECC air leakage requirements on the horizon, several of Building America team Consortium for Advanced Residential Building's (CARB) multifamily builder partners are evaluating how best to comply with this requirement. Builders are not sure whether it is more practical or beneficial to simply pay for guarded testing or to revise their air sealing strategies to improve compartmentalization to comply with code requirements based on unguarded blower door testing. This report summarizes CARB's research that was conducted to assess the feasibility of meeting the 2012 IECC air leakage requirements in three multifamily buildings.

  5. An early work [1910-1913] in Biological Psychology by pioneer psychiatrist, criminologist and philosopher José Ingenieros, M.D. (1877-1925) of Buenos Aires.

    PubMed

    Triarhou, Lazaros C; del Cerro, Manuel

    2006-04-01

    One of the earliest recorded works in Biological Psychology was published in 1910 by Argentine psychiatrist José Ingenieros (1877-1925), Professor of Experimental Psychology at the Faculty of Philosophy and Letters of the University of Buenos Aires. Ingenieros, a multifaceted personality and prolific author and educator famous for his lapidary aphorisms, has been considered a 'luminary' for generations. Trained as a physician, he was the first scientist to establish a comprehensive psychological system in Latin America. His long list of publications includes more than 300 titles generally divided in two periods: studies in mental pathology and criminology (1897-1908) and studies in philosophy, psychology and sociology (1908-1925). His works were never made particularly available to English-speaking audiences, despite the fact that certain of his books are still best-sellers in the Spanish-speaking world. We present an overview of Ingenieros' life and work, and a detailed account of his profoundly interesting work Principios de Psicología Biológica, in which he analyzes the development, evolution and social context of mental functions. We also provide an English translation of the Introduction contributed by Nobel laureate Wilhelm Ostwald (1853-1932) to the 1922 German edition of the work, pertinent to the energetic principles Ingenieros used and the study of Psychology as a natural science. It is a hope, 80 years after Ingenieros' parting, to bibliographically resurrect this champion of reason, who, until now, has not been given his due placement in the international psychological and biomedical literature.

  6. Global sea-air CO 2 flux based on climatological surface ocean pCO 2, and seasonal biological and temperature effects

    NASA Astrophysics Data System (ADS)

    Takahashi, Taro; Sutherland, Stewart C.; Sweeney, Colm; Poisson, Alain; Metzl, Nicolas; Tilbrook, Bronte; Bates, Nicolas; Wanninkhof, Rik; Feely, Richard A.; Sabine, Christopher; Olafsson, Jon; Nojiri, Yukihiro

    Based on about 940,000 measurements of surface-water pCO 2 obtained since the International Geophysical Year of 1956-59, the climatological, monthly distribution of pCO 2 in the global surface waters representing mean non-El Niño conditions has been obtained with a spatial resolution of 4°×5° for a reference year 1995. The monthly and annual net sea-air CO 2 flux has been computed using the NCEP/NCAR 41-year mean monthly wind speeds. An annual net uptake flux of CO 2 by the global oceans has been estimated to be 2.2 (+22% or -19%) Pg C yr -1 using the (wind speed) 2 dependence of the CO 2 gas transfer velocity of Wanninkhof (J. Geophys. Res. 97 (1992) 7373). The errors associated with the wind-speed variation have been estimated using one standard deviation (about±2 m s -1) from the mean monthly wind speed observed over each 4°×5° pixel area of the global oceans. The new global uptake flux obtained with the Wanninkhof (wind speed) 2 dependence is compared with those obtained previously using a smaller number of measurements, about 250,000 and 550,000, respectively, and are found to be consistent within±0.2 Pg C yr -1. This estimate for the global ocean uptake flux is consistent with the values of 2.0±0.6 Pg C yr -1 estimated on the basis of the observed changes in the atmospheric CO 2 and oxygen concentrations during the 1990s (Nature 381 (1996) 218; Science 287 (2000) 2467). However, if the (wind speed) 3 dependence of Wanninkhof and McGillis (Res. Lett. 26 (1999) 1889) is used instead, the annual ocean uptake as well as the sensitivity to wind-speed variability is increased by about 70%. A zone between 40° and 60° latitudes in both the northern and southern hemispheres is found to be a major sink for atmospheric CO 2. In these areas, poleward-flowing warm waters meet and mix with the cold subpolar waters rich in nutrients. The pCO 2 in the surface water is decreased by the cooling effect on warm waters and by the biological drawdown of pCO 2 in

  7. Air pollution and detrimental effects on children’s brain. The need for a multidisciplinary approach to the issue complexity and challenges

    PubMed Central

    Calderón-Garcidueñas, Lilian; Torres-Jardón, Ricardo; Kulesza, Randy J.; Park, Su-Bin; D’Angiulli, Amedeo

    2014-01-01

    Millions of children in polluted cities are showing brain detrimental effects. Urban children exhibit brain structural and volumetric abnormalities, systemic inflammation, olfactory, auditory, vestibular and cognitive deficits v low-pollution controls. Neuroinflammation and blood-brain-barrier (BBB) breakdown target the olfactory bulb, prefrontal cortex and brainstem, but are diffusely present throughout the brain. Urban adolescent Apolipoprotein E4 carriers significantly accelerate Alzheimer pathology. Neurocognitive effects of air pollution are substantial, apparent across all populations, and potentially clinically relevant as early evidence of evolving neurodegenerative changes. The diffuse nature of the neuroinflammation and neurodegeneration forces to employ a weight of evidence approach incorporating current clinical, cognitive, neurophysiological, radiological and epidemiological research. Pediatric air pollution research requires extensive multidisciplinary collaborations to accomplish a critical goal: to protect exposed children through multidimensional interventions having both broad impact and reach. Protecting children and teens from neural effects of air pollution should be of pressing importance for public health. PMID:25161617

  8. Implementation of an Education-Focused PhD Program in Anatomy and Cell Biology at Indiana University: Lessons Learned and Future Challenges

    ERIC Educational Resources Information Center

    Brokaw, James J.; O'Loughlin, Valerie D.

    2015-01-01

    In 2008, the Indiana University School of Medicine, in collaboration with the School of Education, admitted its first student to a newly approved PhD program in Anatomy and Cell Biology focusing on educational research rather than biomedical research. The goal of the program is twofold: (1) to provide students with extensive training in all of the…

  9. A life scientist, an engineer and a social scientist walk into a lab: challenges of dual-use engagement and education in synthetic biology.

    PubMed

    Edwards, Brett; Kelle, Alexander

    2012-01-01

    The discussion of dual-use education is often predicated on a discrete population of practicing life scientists exhibiting certain deficiencies in awareness or expertise. This has lead to the claim that there is a greater requirement for awareness raising and education amongst this population. However, there is yet to be an inquiry into the impact of the 'convergent' nature of emerging techno-sciences upon the prospects of dual-use education. The field of synthetic biology, although often portrayed as homogeneous, is in fact composed of various sub-fields and communities. Its practitioners have diverse academic backgrounds. The research institutions that have fostered its development in the UK often have their own sets of norms and practices in engagement with ethical, legal and social issues associated with scientific knowledge and technologies. The area is also complicated by the emergence of synthetic biologists outside traditional research environments, the so called 'do-it-yourself' or 'garage biologists'. This paper untangles some of the complexities in the current state of synthetic biology and addresses the prospects for dual-use education for practitioners. It provides a short overview of the field and discusses identified dual-use issues. There follows a discussion of UK networks in synthetic biology, including their engagement with ethical, legal, social and dual-use issues and limited educational efforts in relation to these. It concludes by outlining options for developing a more systematic dual-use education strategy for synthetic biology.

  10. ADVANCES AND CHALLENGES IN SUGARCANE BIOTECHNOLOY AND PLANT PATHOLOGY: A REVIEW OF THE IX PLANT PATHOLOGY WORKSHOP AND VI MOLECULAR BIOLOGY WORKSHOP

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The IX Pathology Workshop and VI Molecular Biology Workshop of the International Society of Sugar Cane Technologists (ISSCT) were organised jointly and hosted by the Colombian Sugarcane Research Centre (CENICAÑA) from 23-27 June 2008 at the Radisson Royal Hotel in Cali, Colombia. The Workshop was we...

  11. Drosophila melanogaster and the future of 'evo-devo' biology in space. Challenges and problems in the path of an eventual colonization project outside the earth.

    PubMed

    Marco, Roberto; Husson, David; Herranz, Raul; Mateos, Jesús; Medina, F Javier

    2003-01-01

    Space exploration, especially its future phase involving the International Space Station (ISS) makes possible the study of the effects on living systems of long-term expositions to such a strange environment. This phase is being initiated when Biological Sciences are crossing a no-return line into a new territory where the connection between phenotype and genotype may be finally made. We briefly review the paradoxical results obtained in Space experiments performed during the last third of the XX Century. They reveal that simple unicellular systems sense the absence of gravity changing their cytoskeletal organization and the signal transduction pathways, while animal development proceeds unaltered in these conditions, in spite of the fact that these processes are heavily involved in embryogenesis. Longer-term experiments possible in the ISS may solve this apparent contradiction. On the other hand, the current constraints on the scientific use of the ISS makes necessary the development of new hardware and the modification of current techniques to start taking advantage of this extraordinary technological facility. We discuss our advances in this direction using one of the current key biological model systems, Drosophila melanogaster. In addition, the future phase of Space exploration, possibly leading to the exploration and, may be, the colonization of another planet, will provide the means of performing interesting evolutionary experiments, studying how the terrestrial biological systems will change in their long-term adaptation to new, very different environments. In this way, Biological Research in Space may contribute to the advancement of the new Biology, in particular to the branch known as "Evo-Devo". On the other hand, as much as the Space Adventure will continue involving human beings as the main actors in the play, long-term multi-generation experiments using a fast reproducing species, such as Drosophila melanogaster, capable of producing more than 300

  12. Motivational Interviewing among HIV Health Care Providers: Challenges and opportunities to enhance engagement and retention in care in Buenos Aires, Argentina

    PubMed Central

    Bofill, Lina; Weiss, Stephen M; Lucas, Mar; Bordato, Alejandra; Dorigo, Analia; Fernandez-Cabanillas, Graciela; Aristegui, Ines; Lopez, Maria; Waldrop-Valverde, Drenna; Jones, Deborah

    2016-01-01

    Providers’ response to Motivational Interviewing (MI) to improve engagement and retention in care among challenging patients with HIV in Argentina were evaluated. 12 HIV care physicians participated and video recordings pre- and post-MI training were obtained. One week post-training 11/12 participants were committed to using MI strategies during consult session. 9/12 participants demonstrated appropriate utilization of MI techniques and increased adherence focused discussion and care (t = 3.59, p = .006). MI appears to be a viable strategy to enhance engagement and retention in challenging HIV patients. PMID:26056148

  13. When mothering goes awry: Challenges and opportunities for utilizing evidence across rodent, nonhuman primate and human studies to better define the biological consequences of negative early caregiving☆

    PubMed Central

    Sánchez, Mar M.; Gonzalez, Andrea

    2016-01-01

    Across mammalian species, mothers shape socio-emotional development and serve as essential external regulators of infant physiology, brain development, behavior patterns, and emotional regulation. Caregiving quality, consistency and predictability shape the infant's underlying neurobiological processes. Although the requirements for “optimal” caregiving differ across species, the negative long-term consequences of the absence of needed caregiving (e.g. neglect) or the presence of harmful/aversive caregiving (e.g. physical abuse), are translatable across species. Recognizing the significant potential of cross species comparisons in terms of defining underlying mechanisms, effective translation requires consideration of the evolutionary, ecological, and fundamental biological and developmental differences between and among species. This review provides both an overview of several success stories of cross-species translations in relation to negative caregiving and a template for future studies seeking to most effectively define the underlying biological processes and advance research dedicated to mitigating the lasting negative health consequences of child maltreatment. PMID:26506032

  14. Current challenges in modelling far-range air pollution induced by the 2014-2015 Bárðarbunga fissure eruption (Iceland)

    NASA Astrophysics Data System (ADS)

    Boichu, Marie; Chiapello, Isabelle; Brogniez, Colette; Péré, Jean-Christophe; Thieuleux, Francois; Torres, Benjamin; Blarel, Luc; Mortier, Augustin; Podvin, Thierry; Goloub, Philippe; Söhne, Nathalie; Clarisse, Lieven; Bauduin, Sophie; Hendrick, François; Theys, Nicolas; Van Roozendael, Michel; Tanré, Didier

    2016-08-01

    The 2014-2015 Holuhraun lava-flood eruption of Bárðarbunga volcano (Iceland) emitted prodigious amounts of sulfur dioxide into the atmosphere. This eruption caused a large-scale episode of air pollution throughout Western Europe in September 2014, the first event of this magnitude recorded in the modern era. We gathered chemistry-transport simulations and a wealth of complementary observations from satellite sensors (OMI, IASI), ground-based remote sensing (lidar, sunphotometry, differential optical absorption spectroscopy) and ground-level air quality monitoring networks to characterize both the spatial-temporal distributions of volcanic SO2 and sulfate aerosols as well as the dynamics of the planetary boundary layer. Time variations of dynamical and microphysical properties of sulfate aerosols in the aged low-tropospheric volcanic cloud, including loading, vertical distribution, size distribution and single scattering albedo, are provided. Retrospective chemistry-transport simulations at low horizontal resolution (25 km × 25 km) capture the correct temporal dynamics of this far-range air pollution event but fail to reproduce the correct magnitude of SO2 concentration at ground-level. Simulations at higher spatial resolution, relying on two nested domains with finest resolution of 7.3 km × 7.3 km, improve substantially the far-range vertical distribution of the volcanic cloud and subsequently the description of ground-level SO2 concentrations. However, remaining discrepancies between model and observations are shown to result from an inaccurate representation of the planetary boundary layer (PBL) dynamics. Comparison with lidar observations points out a systematic under-estimation of the PBL height by the model, whichever the PBL parameterization scheme. Such a shortcoming impedes the capture of the overlying Bárðarbunga cloud into the PBL at the right time and in sufficient quantities. This study therefore demonstrates the key role played by the PBL

  15. Challenges associated with the sampling and analysis of organosulfur compounds in air using real-time PTR-ToF-MS and offline GC-FID

    NASA Astrophysics Data System (ADS)

    Perraud, Véronique; Meinardi, Simone; Blake, Donald R.; Finlayson-Pitts, Barbara J.

    2016-03-01

    Organosulfur compounds (OSCs) are naturally emitted via various processes involving phytoplankton and algae in marine regions, from animal metabolism, and from biomass decomposition inland. These compounds are malodorant and reactive. Their oxidation to methanesulfonic and sulfuric acids leads to the formation and growth of atmospheric particles, which are known to influence clouds and climate, atmospheric chemical processes. In addition, particles in air have been linked to negative impacts on visibility and human health. Accurate measurements of the OSC precursors are thus essential to reduce uncertainties in their sources and contributions to particle formation in air. Two different approaches, proton-transfer reaction time-of-flight mass spectrometry (PTR-ToF-MS) and canister sampling coupled to gas chromatography with flame ionization detector (GC-FID), are compared for both laboratory standards (dimethyl sulfide, DMS; dimethyl disulfide, DMDS; dimethyl trisulfide, DMTS; and methanethiol, MTO) and for a complex sample. Results show that both techniques produce accurate quantification of DMS. While PTR-ToF-MS provides real-time measurements of all four OSCs individually, significant fragmentation of DMDS and DMTS occurs, which can complicate their identification in complex mixtures. Canister sampling coupled with GC-FID provides excellent sensitivity for DMS, DMDS, and DMTS. However, MTO was observed to react on metal surfaces to produce DMDS and, in the presence of hydrogen sulfide, even DMTS. Avoiding metal in sampling systems seems to be necessary for measuring all but dimethyl sulfide in air.

  16. Systems Biology of Embryogenesis

    PubMed Central

    Edelman, Lucas B.; Chandrasekaran, Sriram; Price, Nathan D.

    2010-01-01

    The development of a complete organism from a single cell involves extraordinarily complex orchestration of biological processes that vary intricately across space and time. Systems biology seeks to describe how all elements of a biological system interact in order to understand, model, and ultimately predict aspects of emergent biological processes. Embryogenesis represents an extraordinary opportunity – and challenge – for the application of systems biology. Systems approaches have already been used successfully to study various aspects of development, from complex intracellular networks to 4D models of organogenesis. Going forward, great advancements and discoveries can be expected from systems approaches applied to embryogenesis and developmental biology. PMID:20003850

  17. The challenge of regional accents for aviation English language proficiency standards: a study of difficulties in understanding in air traffic control-pilot communications.

    PubMed

    Tiewtrakul, T; Fletcher, S R

    2010-02-01

    Although English has been the international aviation language since 1951, formal language proficiency testing for key aviation personnel has only recently been implemented by the International Civil Aviation Organization (ICAO). It aims to ensure minimum acceptable levels of English pronunciation and comprehension universally, but does not attend to particular regional dialect difficulties. However, evidence suggests that voice transmissions between air traffic controllers and pilots are a particular problem in international airspace and that pilots may not understand messages due to the influence of different accents when using English. This study explores the potential impact of 'non-native English' in pilot-air traffic control transmissions using a 'conversation analysis' technique to examine approach phase recordings from Bangkok International Airport. Results support that communication errors, defined by incidents of pilots not understanding, occur significantly more often when speakers are both non-native English, messages are more complex and when numerical information is involved. These results and their possible implications are discussed with reference to the development of ICAO's new language proficiency standards. Statement of Relevance: This study builds on previous work and literature, providing further evidence to show that the risks caused by language and linguistics in aviation must be explored more deeply. Findings are particularly contemporary and relevant today, indicating that recently implemented international standards would benefit from further exploratory research and development.

  18. Phase II Recommendations by the Air Quality Management Subcommittee to the Clean Air Act Advisory Committee

    EPA Pesticide Factsheets

    The primary charge of the AQM Subcommittee was to develop recommendations to improve the air quality management system and address the air quality challenges in this country expected over the next 10 to 20 years. This report addresses those challenges.

  19. Multidisciplinary investigation of the fate, transport, and remediation of chlorinated solvents in fractured rocks at the former Naval Air Warfare Center (NAWC): Scientific and management challenges, and strategies for a successful research program

    NASA Astrophysics Data System (ADS)

    Tiedeman, C. R.; Goode, D. J.; Shapiro, A. M.; Lacombe, P. J.; Chapelle, F. H.; Bradley, P. M.; Imbrigiotta, T. E.; Williams, J. H.; Curtis, G. P.; Hsieh, P. A.

    2008-12-01

    At the former Naval Air Warfare Center (NAWC) in West Trenton NJ, the U.S. Geological Survey, in cooperation with the U.S. Navy and under support from the Strategic Environmental Research and Development Program (SERDP), is investigating the fate, transport, and remediation of trichloroethylene (TCE) and its daughter products in dipping, fractured mudstones underlying the site. TCE concentrations in ground water are as high as ~100 mg/L. Objectives of multidisciplinary research at the NAWC include (1) understanding the physical, chemical, and microbiological processes and properties affecting the fate, transport, and removal of chlorinated solvents in fractured rocks, (2) assessing the efficiency of different remediation methods (pump and treat, natural and enhanced biodegradation), and (3) transferring the results to help remediate other contaminated fractured rock aquifers. There are numerous scientific and technical challenges to meeting these goals, including the extreme spatial variability of flow and transport properties at the NAWC and the complex distribution of contaminants, geochemical constituents, and microorganisms in fractures and the rock matrix. In addition, there are management challenges that are equally important to address in order to achieve a successful research program. These include balancing the requirements of the many parties involved at the site, including researchers, the site owner, and regulatory agencies; and ensuring that limited research funds are directed towards work that addresses the most important scientific questions as well as stakeholder concerns. Strategies for the scientific challenges at NAWC include developing a carefully planned program to characterize spatial variability in rock properties and groundwater constituents so that the data obtained are applicable to solving research questions focused on remediation. Strategies for the management challenges include fostering open lines of communication among all parties and

  20. Indoor air particles and bioaerosols before and after renovation of moisture-damaged buildings: the effect on biological activity and microbial flora.

    PubMed

    Huttunen, Kati; Rintala, Helena; Hirvonen, Maija-Riitta; Vepsäläinen, Asko; Hyvärinen, Anne; Meklin, Teija; Toivola, Mika; Nevalainen, Aino

    2008-07-01

    Many building-related health problems coincide with moisture damage and mold growth within a building. Their elimination is assumed to improve indoor air quality. The aim of this study was to follow the success of remediation in two individual buildings by analyzing the microbial flora and immunotoxicological activity of filter samples. We compare results from samples collected from indoor air in the moisture-damaged buildings before and after renovation and results from matched reference buildings and outdoor air. The microbial characteristics of the samples were studied by analyzing ergosterol content and determining the composition of fungal flora with quantitative polymerase chain reaction (QPCR). In addition, the concentrations of particles were monitored with optical particle counter (OPC). The immunotoxicological activity of collected particle samples was tested by exposing mouse macrophages (RAW264.7) for 24 h to particle suspension extracted from the filters, and measuring the viability of the exposed cells (MTT-test) and production of inflammatory mediators (nitric oxide, IL-6 and TNF*) in cell culture medium by enzyme-linked immunoassay (ELISA). The results show that for Location 1 the renovation decreased the immunotoxicological activity of the particles collected from damaged building, whereas no difference was detected in the corresponding samples collected from the reference building. Interestingly, only slight differences were seen in the concentration of fungi. In the Location 2, a decrease was seen in the concentration of fungi after the renovation, whereas no effect on the immunotoxicological responses was detected. In this case, the immunotoxicological responses to the indoor air samples were almost identical to those caused by the samples from outdoor air. This indicates that the effects of remediation on the indoor air quality may not necessarily be readily measurable either with microbial or toxicological parameters. This may be associated

  1. Air pollution and society

    NASA Astrophysics Data System (ADS)

    Brimblecombe, P.

    2010-12-01

    Air pollution is as much a product of our society as it is one of chemistry and meteorology. Social variables such as gender, age, health status and poverty are often linked with our exposure to air pollutants. Pollution can also affect our behaviour, while regulations to improve the environment can often challenge of freedom.

  2. Very small embryonic-like stem cells (VSELs) represent a real challenge in stem cell biology: recent pros and cons in the midst of a lively debate.

    PubMed

    Ratajczak, M Z; Zuba-Surma, E; Wojakowski, W; Suszynska, M; Mierzejewska, K; Liu, R; Ratajczak, J; Shin, D M; Kucia, M

    2014-03-01

    The concept that adult tissue, including bone marrow (BM), contains early-development cells with broader differentiation potential has again been recently challenged. In response, we would like to review the accumulated evidence from several independent laboratories that adult tissues, including BM, harbor a population of very rare stem cells that may cross germ layers in their differentiation potential. Thus, the BM stem cell compartment hierarchy needs to be revisited. These dormant, early-development cells that our group described as very small embryonic-like stem cells (VSELs) most likely overlap with similar populations of stem cells that have been identified in adult tissues by other investigators as the result of various experimental strategies and have been given various names. As reported, murine VSELs have some pluripotent stem cell characteristics. Moreover, they display several epiblast/germline markers that suggest their embryonic origin and developmental deposition in adult BM. Moreover, at the molecular level, changes in expression of parentally imprinted genes (for example, Igf2-H19) and resistance to insulin/insulin-like growth factor signaling (IIS) regulates their quiescent state in adult tissues. In several emergency situations related to organ damage, VSELs can be activated and mobilized into peripheral blood, and in appropriate animal models they contribute to tissue organ/regeneration. Interestingly, their number correlates with lifespan in mice, and they may also be involved in some malignancies. VSELs have been successfully isolated in several laboratories; however, some investigators experience problems with their isolation.

  3. Very small embryonic-like stem cells (VSELs) represent a real challenge in stem cell biology: recent pros and cons in the midst of a lively debate

    PubMed Central

    Ratajczak, M Z; Zuba-Surma, E; Wojakowski, W; Suszynska, M; Mierzejewska, K; Liu, R; Ratajczak, J; Shin, D M; Kucia, M

    2014-01-01

    The concept that adult tissue, including bone marrow (BM), contains early-development cells with broader differentiation potential has again been recently challenged. In response, we would like to review the accumulated evidence from several independent laboratories that adult tissues, including BM, harbor a population of very rare stem cells that may cross germ layers in their differentiation potential. Thus, the BM stem cell compartment hierarchy needs to be revisited. These dormant, early-development cells that our group described as very small embryonic-like stem cells (VSELs) most likely overlap with similar populations of stem cells that have been identified in adult tissues by other investigators as the result of various experimental strategies and have been given various names. As reported, murine VSELs have some pluripotent stem cell characteristics. Moreover, they display several epiblast/germline markers that suggest their embryonic origin and developmental deposition in adult BM. Moreover, at the molecular level, changes in expression of parentally imprinted genes (for example, Igf2–H19) and resistance to insulin/insulin-like growth factor signaling (IIS) regulates their quiescent state in adult tissues. In several emergency situations related to organ damage, VSELs can be activated and mobilized into peripheral blood, and in appropriate animal models they contribute to tissue organ/regeneration. Interestingly, their number correlates with lifespan in mice, and they may also be involved in some malignancies. VSELs have been successfully isolated in several laboratories; however, some investigators experience problems with their isolation. PMID:24018851

  4. Challenges associated with the sampling and analysis of organosulfur compounds in air using real-time PTR-ToF-MS and off-line GC-FID

    NASA Astrophysics Data System (ADS)

    Perraud, V.; Meinardi, S.; Blake, D. R.; Finlayson-Pitts, B. J.

    2015-12-01

    Organosulfur compounds (OSC) are naturally emitted via various processes involving phytoplankton and algae in marine regions, from animal metabolism and from biomass decomposition inland. These compounds are malodorant and reactive. Their oxidation to methanesulfonic and sulfuric acids leads to the formation and growth of atmospheric particles, which are known to have negative effects on visibility, climate and human health. In order to predict particle formation events, accurate measurements of the OSC precursors are essential. Here, two different approaches, proton-transfer reaction time-of-flight mass spectrometry (PTR-ToF-MS) and canister sampling coupled with GC-FID are compared for both laboratory standards [dimethyl sulfide (DMS), dimethyl disulfide (DMDS), dimethyl trisulfide (DMTS) and methanethiol (MTO)] and for a complex sample. Results show that both techniques produce accurate quantification of DMS. While PTR-ToF-MS provides real-time measurements of all four OSCs individually, significant fragmentation of DMDS and DMTS occurs, which can complicate their identification in complex mixtures. Canister sampling coupled with GC-FID provides excellent sensitivity for DMS, DMDS and DMTS. However, MTO was observed to react on metal surfaces to produce DMDS and, in the presence of hydrogen sulfide, even DMTS. Avoiding metal in sampling systems seems to be necessary for measuring all but dimethyl sulfide in air.

  5. Laboratory host range testing of Lilioceris sp. near impressa (Coleoptera: Chrysomelidae) – a potential biological control agent of air potato, Dioscorea bulbifera (Dioscoreaceae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Air potato, Dioscorea bulbifera, is an invasive, herbaceous, climbing vine, which dominates invaded native vegetation in Florida. The fortuitous discovery of Lilioceris sp. near impressa defoliating D. bulbifera vines and feeding on the bulbils (aerial tubers) in the Katmandu Valley of Nepal initiat...

  6. Construction and economics of a pilot/full-scale biological trickling filter reactor for the removal of volatile organic compounds from polluted air.

    PubMed

    Deshusses, M A; Webster, T S

    2000-11-01

    The design and the construction of an actual 8.7-m3 pilot/full-scale biotrickling filter for waste air treatment is described and compared with a previous conceptual scale-up of a laboratory reactor. The reactor construction costs are detailed and show that about one-half of the total reactor costs ($97,000 out of $178,000) was for personnel and engineering time, whereas approximately 20% was for monitoring and control equipment. A detailed treatment cost analysis demonstrated that, for an empty bed contact time of 90 sec, the overall treatment costs (including capital charges) were as low as $8.7/1000 m3air in the case where a nonchlorinated volatile organic compound (VOC) was treated, and $14/1000 m3air for chlorinated compounds such as CH2Cl2. Comparison of these costs with conventional air pollution control techniques demonstrates excellent perspectives for more field applications of biotrickling filters. As the specific costs of building and operating biotrickling filter reactors decrease with increasing size of the reactor, the cost benefit of biotrickling filtration is expected to increase for full technical-scale bioreactors.

  7. PRESENTED AT TRIANGLE CONSORTIUM OF REPRODUCTIVE BIOLOGY, CHAPEL HILL, NC: GST M1 GENOTYPE INFLUENCES SPERM DNA DAMAGE ASSOCIATED WITH EXPOSURE TO AIR POLLUTION

    EPA Science Inventory

    Exposure to episodic air pollution in the Czech Republic has been associated with abnormal semen quality and sperm DNA damage (EHP 108:887;2000). A subsequentlongitudinal study evaluated semenfrom 36 men sampled up to 7 times over a period of two years to capture exposures durin...

  8. Air Research

    EPA Pesticide Factsheets

    EPA's air research provides the critical science to develop and implement outdoor air regulations under the Clean Air Act and puts new tools and information in the hands of air quality managers and regulators to protect the air we breathe.

  9. Access and benefit sharing (ABS) under the convention on biological diversity (CBD): implications for microbial biological control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Researchers and implementers of biological control are confronted with a variety of scientific, regulatory and administrative challenges to their biological control programs. One developing challenge will arise from the implementation of provisions of the Convention on Biological Diversity (CBD) co...

  10. A Breath of Fresh Air: Addressing Indoor Air Quality

    ERIC Educational Resources Information Center

    Palliser, Janna

    2011-01-01

    Indoor air pollution refers to "chemical, biological, and physical contamination of indoor air," which may result in adverse health effects (OECD 2003). The causes, sources, and types of indoor air pollutants will be addressed in this article, as well as health effects and how to reduce exposure. Learning more about potential pollutants in home…

  11. Laminar flow: Challenge and potential

    NASA Technical Reports Server (NTRS)

    Kirchner, Mark E.

    1987-01-01

    Commercial air transportation has experienced revolutionary technology advances since WWII. These technology advances have resulted in an explosive growth in passenger traffic. Today, however, many technologies have matured, and maintaining a similar growth rate will be a challenge. A brief history of laminar flow technology and its application to subsonic and supersonic air transportation is presented.

  12. Species biology and potential for controlling four exotic plants (Ammophila arenaria, Carpobrotus edulis, Cortaderia jubata and Gasoul crystallinum) on Vandenberg Air Force Base, California

    NASA Technical Reports Server (NTRS)

    Schmalzer, Paul A.; Hinkle, C. Ross

    1987-01-01

    Invasive exotic plants can displace native flora and modify community and ecosystem structure and function. Ammophila arenaria, Corpobrotus edulis, Cortaderia jubata, and Gasoul crystallinum are invasive plants present on Vandenberg Air Force Base, California, designated for study by the Environmental Task Force because of the perceived threat they represent to the native flora. Each plant's native habitat, how they came to be at Vandenberg, their propagation, and how they can be controlled is discussed.

  13. Indoor air quality and health

    NASA Astrophysics Data System (ADS)

    Jones, A. P.

    During the last two decades there has been increasing concern within the scientific community over the effects of indoor air quality on health. Changes in building design devised to improve energy efficiency have meant that modern homes and offices are frequently more airtight than older structures. Furthermore, advances in construction technology have caused a much greater use of synthetic building materials. Whilst these improvements have led to more comfortable buildings with lower running costs, they also provide indoor environments in which contaminants are readily produced and may build up to much higher concentrations than are found outside. This article reviews our current understanding of the relationship between indoor air pollution and health. Indoor pollutants can emanate from a range of sources. The health impacts from indoor exposure to combustion products from heating, cooking, and the smoking of tobacco are examined. Also discussed are the symptoms associated with pollutants emitted from building materials. Of particular importance might be substances known as volatile organic compounds (VOCs), which arise from sources including paints, varnishes, solvents, and preservatives. Furthermore, if the structure of a building begins to deteriorate, exposure to asbestos may be an important risk factor for the chronic respiratory disease mesothelioma. The health effects of inhaled biological particles can be significant, as a large variety of biological materials are present in indoor environments. Their role in inducing illness through immune mechanisms, infectious processes, and direct toxicity is considered. Outdoor sources can be the main contributors to indoor concentrations of some contaminants. Of particular significance is Radon, the radioactive gas that arises from outside, yet only presents a serious health risk when found inside buildings. Radon and its decay products are now recognised as important indoor pollutants, and their effects are

  14. Teaching about Evolution: Old Controversy, New Challenges.

    ERIC Educational Resources Information Center

    Bybee, Rodger W.

    2001-01-01

    Discusses the place of the topic of evolution in high school biology curricula in history, new challenges and misconceptions about science, and the need for biology education. (Contains 20 references.) (YDS)

  15. Gulf War Air Power Survey.

    DTIC Science & Technology

    1993-01-01

    16 Coalition Strikes against Nuclear, Biological and Chemical Targets ........................ 80 vi p 17 Daily Scud Launches during Desert Storm...against Saudi Arabia and Israel. Since Iraq was known to possess chemical munitions and was believed to have biological weapons, these threats raised...systems; key nuclear, biological , chemical, electrical, military, and oil production facilities; bridges, railroads, and port infrastructure; and air

  16. Air Pollution

    MedlinePlus

    Air pollution is a mixture of solid particles and gases in the air. Car emissions, chemicals from factories, ... Ozone, a gas, is a major part of air pollution in cities. When ozone forms air pollution, it's ...

  17. Phospholipids at the Interface: Current Trends and Challenges

    PubMed Central

    Pichot, Roman; Watson, Richard L.; Norton, Ian T.

    2013-01-01

    Phospholipids are one of the major structural elements of biological membranes. Due to their amphiphilic character, they can adopt various molecular assemblies when dispersed in water, such as bilayer vesicles or micelles, which give them unique interfacial properties and render them very attractive in terms of foam or emulsion stabilization. This article aims at reviewing the properties of phospholipids at the air/water and oil/water interfaces, as well as the recent advances in using these natural components as stabilizers, alone or in combination with other compounds such as proteins. A discussion regarding the challenges and opportunities offered by phospholipids-stabilized structure concludes the review. PMID:23736688

  18. Bioanalytical challenges of biosimilars.

    PubMed

    Islam, Rafiq

    2014-02-01

    Biologics such as monoclonal antibodies and recombinant proteins represent a significant portion of the pharmaceutical market. With many of the first generation biologics' patents expiring, an increasing number of biosimilars will be submitted for approval in the near future. The successful development of a biosimilar requires the demonstration of biosimilarity in terms of efficacy, safety and purity to an innovator-approved product. While regulatory frameworks have been established for the approval of biosimilars in several countries, there is not an established guidance for bioanalytical testing of biosimilars. Although there are regulatory guidances and White Papers on testing requirements for biologics in general, there is a need to address the bioanalytical challenges and solutions that apply specifically to the analysis of biosimilars in biological samples. This paper will focus on components of the PK and immunogenicity assays that are critical to biosimilar drug development.

  19. Influenza Vaccines: Challenges and Solutions

    PubMed Central

    Houser, Katherine; Subbarao, Kanta

    2015-01-01

    Vaccination is the best method for the prevention and control of influenza. Vaccination can reduce illness and lessen severity of infection. This review focuses on how currently licensed influenza vaccines are generated in the U.S., why the biology of influenza poses vaccine challenges, and vaccine approaches on the horizon that address these challenges. PMID:25766291

  20. Challenging High-Ability Students

    ERIC Educational Resources Information Center

    Scager, Karin; Akkerman, Sanne F.; Pilot, Albert; Wubbels, Theo

    2014-01-01

    The existing literature on indicators of an optimal learning environment for high-ability students frequently discusses the concept of challenge. It is, however, not clear what, precisely, constitutes appropriate challenge for these students. In this study, the authors examined an undergraduate honours course, Advanced Cell Biology, which has…

  1. Designing synthetic biology.

    PubMed

    Agapakis, Christina M

    2014-03-21

    Synthetic biology is frequently defined as the application of engineering design principles to biology. Such principles are intended to streamline the practice of biological engineering, to shorten the time required to design, build, and test synthetic gene networks. This streamlining of iterative design cycles can facilitate the future construction of biological systems for a range of applications in the production of fuels, foods, materials, and medicines. The promise of these potential applications as well as the emphasis on design has prompted critical reflection on synthetic biology from design theorists and practicing designers from many fields, who can bring valuable perspectives to the discipline. While interdisciplinary connections between biologists and engineers have built synthetic biology via the science and the technology of biology, interdisciplinary collaboration with artists, designers, and social theorists can provide insight on the connections between technology and society. Such collaborations can open up new avenues and new principles for research and design, as well as shed new light on the challenging context-dependence-both biological and social-that face living technologies at many scales. This review is inspired by the session titled "Design and Synthetic Biology: Connecting People and Technology" at Synthetic Biology 6.0 and covers a range of literature on design practice in synthetic biology and beyond. Critical engagement with how design is used to shape the discipline opens up new possibilities for how we might design the future of synthetic biology.

  2. Challenges to Leadership: Responding to Biological Threats

    DTIC Science & Technology

    2011-10-01

    National Defense University October 2011 Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for the...Information Operations and Reports , 1215 Jefferson Davis Highway, Suite 1204, Arlington VA 22202-4302. Respondents should be aware that...currently valid OMB control number. 1. REPORT DATE OCT 2011 2. REPORT TYPE 3. DATES COVERED 00-00-2011 to 00-00-2011 4. TITLE AND SUBTITLE

  3. Prostate cancer immunology: biology, therapeutics, and challenges.

    PubMed

    Webster, W Scott; Small, Eric J; Rini, Brian I; Kwon, Eugene D

    2005-11-10

    A number of recently developed and promising approaches to antitumoral immunotherapy are being investigated as potential treatments for advanced prostate cancer. These approaches largely revolve around strategies to increase antigen-specific T-cell activation against prostate tumors as well as precise manipulations of critical co-regulatory receptors that help to maintain and prolong the activity of antigen-presenting cells and T cells that are capable of mediating tumor regression. Herein, we describe the experience with the most recent and promising approaches pertaining to prostate cancer immunotherapy. Additionally, we discuss the mechanistic basis for these approaches as well as current limitations that must still be addressed in order to propel immunotherapy into the forefront of prostate cancer treatment.

  4. Challenges in obesity research.

    PubMed

    Palou, Andreu; Bonet, M Luisa

    2013-09-01

    Obesity is the main nutritional problem and one of the most important health problems in developed societies. Central to the challenge of obesity prevention and management is a thoroughly understanding of its determinants. Multiple socio-cultural, socio-economic, behavioural and biological factors--often interrelated and many of them still unknown or poorly understood--can contribute to the establishment and perpetuation of obese phenotypes. Here, we address current research challenges regarding basic aspects of obesity and emerging science for its control, including brown adipose tissue thermogenesis and browning of white fat as possible therapeutic targets for obesity, the influence of the microbioma, and genetics, epigenetics, nutrigenomics and nutrigenetics of obesity. We also highlight hot topics in relation to food and lifestyle as determinants of obesity, including the brain mechanisms underlying environmental motivation to eat, the biological control of spontaneous physical activity, the possible role of concrete foods and food components, and the importance of early life nutrition and environment. Challenges regarding the connections of obesity with other alterations and pathologies are also briefly addressed, as well as social and economical challenges in relation to healthy food production and lifestyle for the prevention of obesity, and technological challenges in obesity research and management. The objective is to give a panoramic of advances accomplished and still ahead relevant to the different stakeholders engaged in understanding and combating obesity.

  5. Air Pollution Monitoring for Communities Grants

    EPA Pesticide Factsheets

    EPA, through its Science to Achieve Results (STAR) grants program is providing funding to six institutions that will advance air monitoring technology while helping communities address unique air quality challenges.

  6. Air Pollution Monitoring for Communities Fact Sheet

    EPA Pesticide Factsheets

    EPA through its Science to Achieve Results (STAR) grants program is providing funding to six institutions that will advance air monitoring technology while helping communities address unique air quality challenges.

  7. Air pollution.

    PubMed

    Le, Nhu D; Sun, Li; Zidek, James V

    2010-01-01

    Toxic air pollutants are continuously released into the air supply. Various pollutants come from chemical facilities and small businesses, such as automobile service stations and dry cleaning establishments. Others, such as nitrogen oxides, carbon monoxide and other volatile organic chemicals, arise primarily from the incomplete combustion of fossil fuels (coal and petroleum) and are emitted from sources that include car exhausts, home heating and industrial power plants. Pollutants in the atmosphere also result from photochemical transformations; for example, ozone is formed when molecular oxygen or nitrogen interacts with ultraviolet radiation. An association between air pollution exposure and lung cancer has been observed in several studies. The evidence for other cancers is far less conclusive. Estimates of the population attributable risk of cancer has varied substantially over the last 40 years, reflecting the limitations of studies; these include insufficient information on confounders, difficulties in characterizing associations due to a likely lengthy latency interval, and exposure misclassification. Although earlier estimates were less than one percent, recent cohort studies that have taken into account some confounding factors, such as smoking and education amongst others, suggest that approximately 3.6% of lung cancer in the European Union could be due to air pollution exposure, particularly to sulphate and fine particulates. A separate cohort study estimated 5-7% of lung cancers in European never smokers and ex-smokers could be due to air pollution exposure. Therefore, while cigarette smoking remains the predominant risk factor, the proportion of lung cancers attributable to air pollution may be higher than previously thought. Overall, major weaknesses in all air-pollution-and-cancer studies to date have been inadequate characterization of long-term air pollution exposure and imprecise or no measurements of covariates. It has only been in the last

  8. Army Air and Missile Defense. Future Challenges

    DTIC Science & Technology

    2002-01-01

    Peace/ Colombia Scenario " Features of this Future "* Spread of democracy eliminates risk of wars "* EU, China, Japan economic, but not political, U.S...multinational effort to restore order to Bogota, Colombia , led by the U.S. Army. This would follow extensive and debilitating urban conflict between...Egypt Civil War Scenario . Features of this Future "* Nation-states destroyed in several regions by overpopulation , environmental degradation, ethnic

  9. Adsorption properties of biologically active derivatives of quaternary ammonium surfactants and their mixtures at aqueous/air interface II. Dynamics of adsorption, micelles dissociation and cytotoxicity of QDLS.

    PubMed

    Rojewska, Monika; Prochaska, Krystyna; Olejnik, Anna; Rychlik, Joanna

    2014-07-01

    The main aim of our study was analysis of adsorption dynamics of mixtures containing quaternary derivatives of lysosomotropic substance (QDLS). Two types of equimolar mixtures were considered: the ones containing two derivatives of lysosomotropic substances (DMALM-12 and DMGM-12) as well as the catanionic mixtures i.e. the systems containing QDLS and DBSNa. Dynamic surface tension measurements of surfactant mixtures were made. The results suggested that the diffusivity of the mixed system could be treated as the average value of rates of diffusion of individual components, micelles and ion pairs, which are present in the mixtures studied. Moreover, an attempt was made to explain the influence of the presence of micelles in the mixtures on their adsorption dynamics. The compounds examined show interesting biological properties which can be useful, especially for drug delivery in medical treatment. In vitro cytotoxic activities of the mixtures studied towards human cancer cells were evaluated. Most of the mixtures showed a high antiproliferative potential, especially the ones containing DMALM-12. Each cancer cell line used demonstrated different sensitivity to the same dose of the mixtures tested.

  10. Featherweight Challenge

    ERIC Educational Resources Information Center

    Love, Tyler S.; Ryan, Larry

    2012-01-01

    As science, technology education, and engineering programs suffer budget cuts, educators continue to seek cost-effective activities that engage students and reinforce standards. The featherweight challenge is a hands-on activity that challenges students to continually refine their design while not breaking the budget. This activity uses one of the…

  11. Data warehousing in molecular biology.

    PubMed

    Schönbach, C; Kowalski-Saunders, P; Brusic, V

    2000-05-01

    In the business and healthcare sectors data warehousing has provided effective solutions for information usage and knowledge discovery from databases. However, data warehousing applications in the biological research and development (R&D) sector are lagging far behind. The fuzziness and complexity of biological data represent a major challenge in data warehousing for molecular biology. By combining experiences in other domains with our findings from building a model database, we have defined the requirements for data warehousing in molecular biology.

  12. Introduction to Indoor Air Quality

    MedlinePlus

    ... Building materials and furnishings as diverse as: Deteriorated asbestos-containing insulation Newly installed flooring, upholstery or carpet ... more about indoor air pollutants and sources of: Asbestos Biological Pollutants Carbon Monoxide (CO) Formaldehyde/Pressed Wood ...

  13. All biology is computational biology

    PubMed Central

    2017-01-01

    Here, I argue that computational thinking and techniques are so central to the quest of understanding life that today all biology is computational biology. Computational biology brings order into our understanding of life, it makes biological concepts rigorous and testable, and it provides a reference map that holds together individual insights. The next modern synthesis in biology will be driven by mathematical, statistical, and computational methods being absorbed into mainstream biological training, turning biology into a quantitative science. PMID:28278152

  14. All biology is computational biology.

    PubMed

    Markowetz, Florian

    2017-03-01

    Here, I argue that computational thinking and techniques are so central to the quest of understanding life that today all biology is computational biology. Computational biology brings order into our understanding of life, it makes biological concepts rigorous and testable, and it provides a reference map that holds together individual insights. The next modern synthesis in biology will be driven by mathematical, statistical, and computational methods being absorbed into mainstream biological training, turning biology into a quantitative science.

  15. Structuring Research Opportunities for All Biology Majors.

    ERIC Educational Resources Information Center

    Lewis, Susan E.; Conley, Lisa K.; Horst, Cynthia J.

    2003-01-01

    Describes a required research experience program for all biology majors instituted in the biology department of Carroll College. Discusses successes and challenges of coordinating a program that involves 20-40 research projects each year. (Author/NB)

  16. Biological Technicians

    MedlinePlus

    ... Biological technicians typically need a bachelor’s degree in biology or a closely related field. It is important ... Biological technicians typically need a bachelor’s degree in biology or a closely related field. It is important ...

  17. Natural Air Purifier

    NASA Technical Reports Server (NTRS)

    1993-01-01

    NASA environmental research has led to a plant-based air filtering system. Dr. B.C. Wolverton, a former NASA engineer who developed a biological filtering system for space life support, served as a consultant to Terra Firma Environmental. The company is marketing the BioFilter, a natural air purifier that combines activated carbon and other filter media with living plants and microorganisms. The filter material traps and holds indoor pollutants; plant roots and microorganisms then convert the pollutants into food for the plant. Most non-flowering house plants will work. After pollutants have been removed, the cleansed air is returned to the room through slits in the planter. Terra Firma is currently developing a filter that will also disinfect the air.

  18. The challenges of big data

    PubMed Central

    2016-01-01

    ABSTRACT The largely untapped potential of big data analytics is a feeding frenzy that has been fueled by the production of many next-generation-sequencing-based data sets that are seeking to answer long-held questions about the biology of human diseases. Although these approaches are likely to be a powerful means of revealing new biological insights, there are a number of substantial challenges that currently hamper efforts to harness the power of big data. This Editorial outlines several such challenges as a means of illustrating that the path to big data revelations is paved with perils that the scientific community must overcome to pursue this important quest. PMID:27147249

  19. Challenges of Physiome Projects

    NASA Astrophysics Data System (ADS)

    Nomura, Taishin

    The integration of knowledge from many disciplines and vast amount of biological data in the post-genome era together with mathematical and information sciences is moving the world towards a new generation of life science where physiological and pathological information from the living human body can be quantitatively described in silico across multiple scales of time and size and through diverse hierarchies of organization. The Physiome Project represents such emerging sciences. The challenge is to understand and quantitatively integrate not only structure and function of biological entities such as ion channel proteins and enzymes on a single spatio-temporal scale, but also functional relationships between entities across multiple scales. This integrative approach is in stark contrast to the linear approach of reductionist life science, and it will allow us to understand the mechanisms underlying biological functions that will emerge through the dynamics of each element and large aggregations of the elements. This article discusses several points of the challenge that are expected to be resolved through the Physiome Project.

  20. Environmental challenge

    SciTech Connect

    Conable, B.; Warford, J.; Partow, Z.; Lutz, E.; Munasinghe, M.

    1991-09-01

    The contents include the following: Development and the Environment: A Global Balance; Evolution of the World Bank's Environmental Policy; Accounting for the Environment; Public Policy and the Environment; Managing Drylands; Environmental Action Plans in Africa; Agroforestry in Sub-Saharan Africa; Irrigation and the Environmental Challenge; Curbing Pollution in Developing Countries; Global Warming and the Developing World; and The Global Environment Facility.

  1. Challenging Behavior.

    ERIC Educational Resources Information Center

    Reichle, Joe, Ed.; DePaepe, Paris, Ed.

    1991-01-01

    The articles in this feature or theme issue describe successful approaches to positive, community-based management of severe challenging behavior. Programs include: a train-the-trainer strategy for inservice training used across the country; the use of student volunteers as community integration facilitators; a school-based intervention project…

  2. Quill Challenge

    ERIC Educational Resources Information Center

    Stevens, Lori

    2006-01-01

    Teaching high school students the "grammar" of art--the principles and elements of art and design--while also teaching them about creativity and concept can be difficult. This author has found that combining beginning lessons in line, shape, value, texture, form, and color with projects requiring innovation and inspiration, though challenging, is…

  3. The expectation of applying IR guidance in medium range air-to-air missiles

    NASA Astrophysics Data System (ADS)

    Li, Lijuan; Liu, Ke

    2016-10-01

    IR guidance has been widely used in near range dogfight air-to-air missiles while radar guidance is dominant in medium and long range air-to-air missiles. With the development of stealth airplanes and advanced electronic countermeasures, radar missiles have met with great challenges. In this article, the advantages and potential problems of applying IR guidance in medium range air-to-air missiles are analyzed. Approaches are put forward to solve the key technologies including depressing aerodynamic heating, increasing missiles' sensitivity and acquiring target after launch. IR medium range air-to-air missiles are predicted to play important role in modern battle field.

  4. Making Plant Biology Curricula Relevant.

    ERIC Educational Resources Information Center

    Hershey, David R.

    1992-01-01

    Reviews rationale, purposes, challenges, and relevance of hands-on, plant biology curricula that have been developed in response to the limited use of plants in biology education. Discusses methods to maintain both instructional rigor and student interest in the following topics: cut flowers, container-growing media, fertilizers, hydroponics,…

  5. Students' Ideas and Attitudes about Air Quality

    ERIC Educational Resources Information Center

    Skamp, Keith; Boyes, Eddie; Stanisstreet, Martin

    2004-01-01

    The results of a large scale (N=1001) cross-sectional (Years 6, 8 and 10) study of students' ideas about the composition of unpolluted air, the nature of air pollution, the biological consequences of air pollution, and about acid rain and the Greenhouse Effect are reported. A range of persistent alternative conceptions were identified, in some…

  6. Federal Air Pollutant Emission Regulations and Preliminary Estimates of Potential-to-Emit from Biorefineries. Pathway #1: Dilute-Acid and Enzymatic Deconstruction of Biomass-to-Sugars and Biological Conversion of Sugars-to-Hydrocarbons

    SciTech Connect

    Zhang, Yimin; Bhatt, Arpit; Heath, Garvin; Thomas, Mae; Renzaglia, Jason

    2016-02-01

    Biorefineries are subject to environmental laws, including complex air quality regulations that aim to protect and improve the quality of the air. These regulations govern the amount of certain types of air pollutants that can be emitted from different types of emission sources. To determine which federal air emission regulations potentially apply to the sugars-to-hydrocarbon (HC) biorefinery, we first identified the types of regulated air pollutants emitted to the ambient environment by the biorefinery or from specific equipment. Once the regulated air pollutants are identified, we review the applicability criteria of each federal air regulation to determine whether the sugars-to-HC biorefinery or specific equipment is subject to it. We then estimate the potential-to-emit of pollutants likely to be emitted from the sugars-to-HC biorefinery to understand the air permitting requirements.

  7. Homosexuality, biology, and ideology.

    PubMed

    Haumann, G

    1995-01-01

    This paper critically examines the complex relationships and interdependencies between biological theories on homosexuality and sociosexual ideologies. It challenges the privileged status of biology as the ultimate authority on homosexuality. This status is based on the belief that biology is a value-free science. On the contrary, this essay shows how unacknowledged assumptions and culturally bound patterns of thinking about sexuality taint biological research. Sociosexual ideologies are defined as principles that organize the ways we express our sexualities and the way we theorize about them in biology. The following ideologies are identified: (1) sexuality-as-heterosexuality, (2) sexuality-as-reproduction, (3) sexual dualism (male vs. female), and (4) the view the homosexuality is a sexual inversion. The process by which these ideologies are incorporated into biology is two-fold: (1) as a projective act from society onto nature and (2) as a reflective act from nature back into society. It is further argued that biological knowledge of homosexuality resulting from that process can be used for diverse political interests. Finally, it is proposed that since biological theories on homosexuality are inseparable from the context of their paradigmatic origin, it is possible that new theories could be derived from new ideologies.

  8. The biological exposure indices: a key component in protecting workers from toxic chemicals.

    PubMed Central

    Morgan, M S

    1997-01-01

    Biological monitoring of exposure to chemicals in the workplace is an important component of exposure assessment and prevention of adverse health effects. It should be employed in conjunction with ambient air monitoring to provide information on the absorbed dose of a chemical agent and the effect of all routes of exposure. Judgments regarding the acceptable level of a chemical or its metabolite in biological samples are facilitated by comparison to a reference value. The American Conference of Governmental Industrial Hygienists has established a series of recommended reference values called the Biological Exposure Indices (BEI). The history and characteristics of the BEI are reviewed, and their suitability for use by occupational health specialists is examined. A number of challenges and stimuli to the continued development and improvement of these reference values are described, and the impact of recent advances in macromolecular biology is assessed. PMID:9114280

  9. Ins and outs of systems biology vis-à-vis molecular biology: continuation or clear cut?

    PubMed

    De Backer, Philippe; De Waele, Danny; Van Speybroeck, Linda

    2010-03-01

    The comprehension of living organisms in all their complexity poses a major challenge to the biological sciences. Recently, systems biology has been proposed as a new candidate in the development of such a comprehension. The main objective of this paper is to address what systems biology is and how it is practised. To this end, the basic tools of a systems biological approach are explored and illustrated. In addition, it is questioned whether systems biology 'revolutionizes' molecular biology and 'transcends' its assumed reductionism. The strength of this claim appears to depend on how molecular and systems biology are characterised and on how reductionism is interpreted. Doing credit to molecular biology and to methodological reductionism, it is argued that the distinction between molecular and systems biology is gradual rather than sharp. As such, the classical challenge in biology to manage, interpret and integrate biological data into functional wholes is further intensified by systems biology's use of modelling and bioinformatics, and by its scale enlargement.

  10. Biological Inspiration for Agile Autonomous Air Vehicles

    DTIC Science & Technology

    2007-11-01

    vehicles in confined airspace will quickly exceed the abilities of a remote human operator, substantial autonomy is essential. The political, ethical ...and Kirschner, 1997 provide an in-depth but accessible discussion on the interplay of biochemistry, genetics and embryology in animal evolution

  11. Air pollution and public health: emerging hazards and improved understanding of risk.

    PubMed

    Kelly, Frank J; Fussell, Julia C

    2015-08-01

    Despite past improvements in air quality, very large parts of the population in urban areas breathe air that does not meet European standards let alone the health-based World Health Organisation Air Quality Guidelines. Over the last 10 years, there has been a substantial increase in findings that particulate matter (PM) air pollution is not only exerting a greater impact on established health endpoints, but is also associated with a broader number of disease outcomes. Data strongly suggest that effects have no threshold within the studied range of ambient concentrations, can occur at levels close to PM2.5 background concentrations and that they follow a mostly linear concentration-response function. Having firmly established this significant public health problem, there has been an enormous effort to identify what it is in ambient PM that affects health and to understand the underlying biological basis of toxicity by identifying mechanistic pathways-information that in turn will inform policy makers how best to legislate for cleaner air. Another intervention in moving towards a healthier environment depends upon the achieving the right public attitude and behaviour by the use of optimal air pollution monitoring, forecasting and reporting that exploits increasingly sophisticated information systems. Improving air quality is a considerable but not an intractable challenge. Translating the correct scientific evidence into bold, realistic and effective policies undisputedly has the potential to reduce air pollution so that it no longer poses a damaging and costly toll on public health.

  12. Nanotechnology: Opportunities and Challenges

    NASA Technical Reports Server (NTRS)

    Meyyappan, Meyya

    2003-01-01

    Nanotechnology seeks to exploit novel physical, chemical, biological, mechanical, electrical, and other properties, which arise primarily due to the nanoscale nature of certain materials. A key example is carbon nanotubes (CNTs) which exhibit unique electrical and extraordinary mechanical properties and offer remarkable potential for revolutionary applications in electronics devices, computing, and data storage technology, sensors, composites, nanoelectromechanical systems (NEMS), and as tip in scanning probe microscopy (SPM) for imaging and nanolithography. Thus the CNT synthesis, characterization, and applications touch upon all disciplines of science and engineering. This presentation will provide an overview and progress report on this and other major research candidates in Nanotechnology and address opportunities and challenges ahead.

  13. Biological Filters.

    ERIC Educational Resources Information Center

    Klemetson, S. L.

    1978-01-01

    Presents the 1978 literature review of wastewater treatment. The review is concerned with biological filters, and it covers: (1) trickling filters; (2) rotating biological contractors; and (3) miscellaneous reactors. A list of 14 references is also presented. (HM)

  14. Air quality risk management.

    PubMed

    Williams, Martin L

    2008-01-01

    Rather than attempt to provide a comprehensive account of air quality risk assessment, as might be found in a textbook or manual, this article discusses some issues that are of current importance in the United Kingdom and the rest of Europe, with special emphasis on risk assessment in the context of policy formulation, and emerging scientific knowledge. There are two pollutants of particular concern and that both pose challenges for risk assessment and policy, and they are particulate matter (PM) and ozone. The article describes some issues for health risk assessment and finally some forward-looking suggestions for future approaches to air quality management.

  15. Air Pollution.

    ERIC Educational Resources Information Center

    Gilpin, Alan

    A summary of one of our most pressing environmental problems, air pollution, is offered in this book by the Director of Air Pollution Control for the Queensland (Australia) State Government. Discussion of the subject is not restricted to Queensland or Australian problems and policies, however, but includes analysis of air pollution the world over.…

  16. Air Pollution

    MedlinePlus

    ... of Climate Change on Children's Health: Session Two: Air Quality Impacts MODERATOR: Susan Anenberg, EPA Meredith McCormack, Johns ... University • Effects of Climate Change on Children’s Health: Air Quality Impacts Frederica Perera, Columbia University • Air quality Impacts ...

  17. Microgravity Fluids for Biology, Workshop

    NASA Technical Reports Server (NTRS)

    Griffin, DeVon; Kohl, Fred; Massa, Gioia D.; Motil, Brian; Parsons-Wingerter, Patricia; Quincy, Charles; Sato, Kevin; Singh, Bhim; Smith, Jeffrey D.; Wheeler, Raymond M.

    2013-01-01

    Microgravity Fluids for Biology represents an intersection of biology and fluid physics that present exciting research challenges to the Space Life and Physical Sciences Division. Solving and managing the transport processes and fluid mechanics in physiological and biological systems and processes are essential for future space exploration and colonization of space by humans. Adequate understanding of the underlying fluid physics and transport mechanisms will provide new, necessary insights and technologies for analyzing and designing biological systems critical to NASAs mission. To enable this mission, the fluid physics discipline needs to work to enhance the understanding of the influence of gravity on the scales and types of fluids (i.e., non-Newtonian) important to biology and life sciences. In turn, biomimetic, bio-inspired and synthetic biology applications based on physiology and biology can enrich the fluid mechanics and transport phenomena capabilities of the microgravity fluid physics community.

  18. The nature of systems biology.

    PubMed

    Bruggeman, Frank J; Westerhoff, Hans V

    2007-01-01

    The advent of functional genomics has enabled the molecular biosciences to come a long way towards characterizing the molecular constituents of life. Yet, the challenge for biology overall is to understand how organisms function. By discovering how function arises in dynamic interactions, systems biology addresses the missing links between molecules and physiology. Top-down systems biology identifies molecular interaction networks on the basis of correlated molecular behavior observed in genome-wide "omics" studies. Bottom-up systems biology examines the mechanisms through which functional properties arise in the interactions of known components. Here, we outline the challenges faced by systems biology and discuss limitations of the top-down and bottom-up approaches, which, despite these limitations, have already led to the discovery of mechanisms and principles that underlie cell function.

  19. Regenerative life support technology challenges for the Space Exploration Initiative

    NASA Technical Reports Server (NTRS)

    Bilardo, Vincent J., Jr.; Theis, Ronald L. A.

    1992-01-01

    Regenerative life support systems have been identified as one of the critical enabling technologies for future human exploration of space. This discipline encompasses processes and subsystems which regenerate the air, water, solid waste, and food streams typical of human habitation so as to minimize the mass and volume of stored consumables which must accompany the humans on a mission. A number of key technology challenges within this broad discipline are described, ranging from the development of new physical, chemical, and biological processes for regenerating the air, water, solid waste, and food streams to the development of improved techniques for monitoring and controlling microbial and trace constituent contamination. A continuing challenge overarching the development of these new technologies is the need to minimize the mass, volume, and electrical power consumption of the flight hardware. More important for long duration exploration missions, however, is the development of highly reliable, long-lived, self- sufficient systems which absolutely minimize the logistics resupply and operational maintenance requirements of the life support system and which ensure human safety through their robust, reliable operating characteristics.

  20. Synthetic biology for therapeutic applications.

    PubMed

    Abil, Zhanar; Xiong, Xiong; Zhao, Huimin

    2015-02-02

    Synthetic biology is a relatively new field with the key aim of designing and constructing biological systems with novel functionalities. Today, synthetic biology devices are making their first steps in contributing new solutions to a number of biomedical challenges, such as emerging bacterial antibiotic resistance and cancer therapy. This review discusses some synthetic biology approaches and applications that were recently used in disease mechanism investigation and disease modeling, drug discovery and production, as well as vaccine development and treatment of infectious diseases, cancer, and metabolic disorders.

  1. Modular analysis of biological networks.

    PubMed

    Kaltenbach, Hans-Michael; Stelling, Jörg

    2012-01-01

    The analysis of complex biological networks has traditionally relied on decomposition into smaller, semi-autonomous units such as individual signaling pathways. With the increased scope of systems biology (models), rational approaches to modularization have become an important topic. With increasing acceptance of de facto modularity in biology, widely different definitions of what constitutes a module have sparked controversies. Here, we therefore review prominent classes of modular approaches based on formal network representations. Despite some promising research directions, several important theoretical challenges remain open on the way to formal, function-centered modular decompositions for dynamic biological networks.

  2. Synthetic Biology for Therapeutic Applications

    PubMed Central

    2015-01-01

    Synthetic biology is a relatively new field with the key aim of designing and constructing biological systems with novel functionalities. Today, synthetic biology devices are making their first steps in contributing new solutions to a number of biomedical challenges, such as emerging bacterial antibiotic resistance and cancer therapy. This review discusses some synthetic biology approaches and applications that were recently used in disease mechanism investigation and disease modeling, drug discovery and production, as well as vaccine development and treatment of infectious diseases, cancer, and metabolic disorders. PMID:25098838

  3. Biological engineering and systems biology--new opportunities for engineers in the pharmaceutical industry.

    PubMed

    Lauffenburger, Douglas A

    2004-01-01

    The consecutive life science revolutions of molecular biology and genomic biology have led to the promise for improving human health by molecular-level interventions--but the accompanying challenge of doing so in a rational, predictive manner. Addressing this challenge, and meeting this promise, requires understanding of complex biological processes with molecular detail but in integrative fashion; the emerging field aimed at this endeavor is now commonly termed 'systems biology'. In many ways, this field is an ideal application area for the biological engineering discipline, and offers tremendous opportunities for biology-based engineers. This talk will present a view of key aspects of this vision.

  4. The soil N cycle: new insights and key challenges

    NASA Astrophysics Data System (ADS)

    van Groenigen, J. W.; Huygens, D.; Boeckx, P.; Kuyper, Th. W.; Lubbers, I. M.; Rütting, T.; Groffman, P. M.

    2015-03-01

    The study of soil N cycling processes has been, is, and will be at the centre of attention in soil science research. The importance of N as a nutrient for all biota; the ever-increasing rates of its anthropogenic input in terrestrial (agro)ecosystems; its resultant losses to the environment; and the complexity of the biological, physical, and chemical factors that regulate N cycling processes all contribute to the necessity of further understanding, measuring, and altering the soil N cycle. Here, we review important insights with respect to the soil N cycle that have been made over the last decade, and present a personal view on the key challenges of future research. We identify three key challenges with respect to basic N cycling processes producing gaseous emissions: 1. quantifying the importance of nitrifier denitrification and its main controlling factors; 2. characterizing the greenhouse gas mitigation potential and microbiological basis for N2O consumption; 3. characterizing hotspots and hot moments of denitrification Furthermore, we identified a key challenge with respect to modelling: 1. disentangling gross N transformation rates using advanced 15N / 18O tracing models Finally, we propose four key challenges related to how ecological interactions control N cycling processes: 1. linking functional diversity of soil fauna to N cycling processes beyond mineralization; 2. determining the functional relationship between root traits and soil N cycling; 3. characterizing the control that different types of mycorrhizal symbioses exert on N cycling; 4. quantifying the contribution of non-symbiotic pathways to total N fixation fluxes in natural systems We postulate that addressing these challenges will constitute a comprehensive research agenda with respect to the N cycle for the next decade. Such an agenda would help us to meet future challenges on food and energy security, biodiversity conservation, water and air quality, and climate stability.

  5. Biological imaging software tools.

    PubMed

    Eliceiri, Kevin W; Berthold, Michael R; Goldberg, Ilya G; Ibáñez, Luis; Manjunath, B S; Martone, Maryann E; Murphy, Robert F; Peng, Hanchuan; Plant, Anne L; Roysam, Badrinath; Stuurman, Nico; Stuurmann, Nico; Swedlow, Jason R; Tomancak, Pavel; Carpenter, Anne E

    2012-06-28

    Few technologies are more widespread in modern biological laboratories than imaging. Recent advances in optical technologies and instrumentation are providing hitherto unimagined capabilities. Almost all these advances have required the development of software to enable the acquisition, management, analysis and visualization of the imaging data. We review each computational step that biologists encounter when dealing with digital images, the inherent challenges and the overall status of available software for bioimage informatics, focusing on open-source options.

  6. Biological Imaging Software Tools

    PubMed Central

    Eliceiri, Kevin W.; Berthold, Michael R.; Goldberg, Ilya G.; Ibáñez, Luis; Manjunath, B.S.; Martone, Maryann E.; Murphy, Robert F.; Peng, Hanchuan; Plant, Anne L.; Roysam, Badrinath; Stuurman, Nico; Swedlow, Jason R.; Tomancak, Pavel; Carpenter, Anne E.

    2013-01-01

    Few technologies are more widespread in modern biological laboratories than imaging. Recent advances in optical technologies and instrumentation are providing hitherto unimagined capabilities. Almost all these advances have required the development of software to enable the acquisition, management, analysis, and visualization of the imaging data. We review each computational step that biologists encounter when dealing with digital images, the challenges in that domain, and the overall status of available software for bioimage informatics, focusing on open source options. PMID:22743775

  7. Air entrainment in hairy surfaces

    NASA Astrophysics Data System (ADS)

    Nasto, Alice; Regli, Marianne; Brun, P.-T.; Alvarado, José; Clanet, Christophe; Hosoi, A. E.

    2016-07-01

    Motivated by diving semiaquatic mammals, we investigate the mechanism of dynamic air entrainment in hairy surfaces submerged in liquid. Hairy surfaces are cast out of polydimethylsiloxane elastomer and plunged into a fluid bath at different velocities. Experimentally, we find that the amount of air entrained is greater than what is expected for smooth surfaces. Theoretically, we show that the hairy surface can be considered as a porous medium and we describe the air entrainment via a competition between the hydrostatic forcing and the viscous resistance in the pores. A phase diagram that includes data from our experiments and biological data from diving semiaquatic mammals is included to place the model system in a biological context and predict the regime for which the animal is protected by a plastron of air.

  8. COST ESTIMATES FOR PROVIDING BIOLOGICAL AGENT PROTECTION TO FALLOUT SHELTERS,

    DTIC Science & Technology

    CIVIL DEFENSE , SHELTERS , BIOLOGICAL WARFARE, DECONTAMINATION, COOLING AND VENTILATING EQUIPMENT, AIR FILTERS, BUILDINGS, UNDERGROUND STRUCTURES, CONTROLLED ATMOSPHERES, PRESSURE, CONSTRUCTION, FEASIBILITY STUDIES.

  9. ADDRESSING HUMAN EXPOSURES TO AIR POLLUTANTS AROUND BUILDINGS IN URBAN AREAS WITH COMPUTATIONAL FLUID DYNAMICS MODELS

    EPA Science Inventory

    This paper discusses the status and application of Computational Fluid Dynamics (CFD) models to address challenges for modeling human exposures to air pollutants around urban building microenvironments. There are challenges for more detailed understanding of air pollutant sour...

  10. Air Policing

    DTIC Science & Technology

    2009-05-01

    Iraq. To provide a background for understanding why Britain commenced the policy of air policing, this paper begins with a review of contemporary...7 Omissi, Air Power, XV. 8 policing actions or the pushing home of advantages gained by the air.” Within the context of this paper , the...control operations, and therefore within the context of this paper , the term coercive airpower refers to the threat of harming a population or the threat

  11. Biological Soft Robotics.

    PubMed

    Feinberg, Adam W

    2015-01-01

    In nature, nanometer-scale molecular motors are used to generate force within cells for diverse processes from transcription and transport to muscle contraction. This adaptability and scalability across wide temporal, spatial, and force regimes have spurred the development of biological soft robotic systems that seek to mimic and extend these capabilities. This review describes how molecular motors are hierarchically organized into larger-scale structures in order to provide a basic understanding of how these systems work in nature and the complexity and functionality we hope to replicate in biological soft robotics. These span the subcellular scale to macroscale, and this article focuses on the integration of biological components with synthetic materials, coupled with bioinspired robotic design. Key examples include nanoscale molecular motor-powered actuators, microscale bacteria-controlled devices, and macroscale muscle-powered robots that grasp, walk, and swim. Finally, the current challenges and future opportunities in the field are addressed.

  12. The Specter of an Oily Bear or Geopolitical Challenges of the Modern Russian Petro-State

    DTIC Science & Technology

    2009-02-15

    AIR WAR COLLEGE AIR UNIVERSITY THE SPECTER OF AN OILY BEAR OR GEOPOLITICAL CHALLENGES OF THE MODERN RUSSIAN PETRO-STATE by Gregory S...PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Air War College, Air university Maxwell Air Force Base, Alabama 8. PERFORMING ORGANIZATION REPORT...Lieutenant Colonel Gregory S. Clawson is a student at the Air War College, Maxwell Air Force Base, Alabama. Col Clawson was born in Los Angeles and grew

  13. Is synthetic biology mechanical biology?

    PubMed

    Holm, Sune

    2015-12-01

    A widespread and influential characterization of synthetic biology emphasizes that synthetic biology is the application of engineering principles to living systems. Furthermore, there is a strong tendency to express the engineering approach to organisms in terms of what seems to be an ontological claim: organisms are machines. In the paper I investigate the ontological and heuristic significance of the machine analogy in synthetic biology. I argue that the use of the machine analogy and the aim of producing rationally designed organisms does not necessarily imply a commitment to mechanical biology. The ideal of applying engineering principles to biology is best understood as expressing recognition of the machine-unlikeness of natural organisms and the limits of human cognition. The paper suggests an interpretation of the identification of organisms with machines in synthetic biology according to which it expresses a strategy for representing, understanding, and constructing living systems that are more machine-like than natural organisms.

  14. Biology Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1983

    1983-01-01

    Describes laboratory procedures, demonstrations, and classroom activities/materials, including chi-square tests on a microcomputer, an integrated biology game, microscope slides of leaf stomata, culturing soil nematodes, technique for watering locust egg-laying tubes, hazards of biological chemicals (such as benzene, benzidene, calchicine,…

  15. Biology Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1982

    1982-01-01

    Describes laboratory procedures, demonstrations, and classroom activities/materials, including use of dwarf cichlids (fishes) in secondary school biology, teaching edge effects on stomatal diffusion, computer program on effects of selection on gene frequencies, biological oxidation/reduction reactions, short cuts with Drosophila, computer program…

  16. Biology Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1982

    1982-01-01

    Presents procedures, exercises, demonstrations, and information on a variety of biology topics including labeling systems, biological indicators of stream pollution, growth of lichens, reproductive capacity of bulbous buttercups, a straw balance to measure transpiration, interaction of fungi, osmosis, and nitrogen fixation and crop production. (DC)

  17. Biology Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1978

    1978-01-01

    Presents experiments, demonstrations, activities and ideas relating to various fields of biology to be used in biology courses in secondary schools. Among those experiments presented are demonstrating the early stages of ferns and mosses and simple culture methods for fern prothalli. (HM)

  18. Reactive Air Aluminization

    SciTech Connect

    Choi, Jung-Pyung; Chou, Y. S.; Stevenson, Jeffry W.

    2011-10-28

    Ferritic stainless steels and other alloys are of great interest to SOFC developers for applications such as interconnects, cell frames, and balance of plant components. While these alloys offer significant advantages (e.g., low material and manufacturing cost, high thermal conductivity, and high temperature oxidation resistance), there are challenges which can hinder their utilization in SOFC systems; these challenges include Cr volatility and reactivity with glass seals. To overcome these challenges, protective coatings and surface treatments for the alloys are under development. In particular, aluminization of alloy surfaces offers the potential for mitigating both evaporation of Cr from the alloy surface and reaction of alloy constituents with glass seals. Commercial aluminization processes are available to SOFC developers, but they tend to be costly due to their use of exotic raw materials and/or processing conditions. As an alternative, PNNL has developed Reactive Air Aluminization (RAA), which offers a low-cost, simpler alternative to conventional aluminization methods.

  19. Rotating Biological Contactors (RBC's). Student Manual. Biological Treatment Process Control.

    ERIC Educational Resources Information Center

    Zickefoose, Charles S.

    This student manual provides the textual material for a unit on rotating biological contactors (RBC's). Topic areas considered include: (1) flow patterns of water through RBC installations; (2) basic concepts (shaft and stage); (3) characteristics of biomass; (4) mechanical features (bearings, mechanical drive systems, and air drive systems); (5)…

  20. Evolutionary Design in Biology

    NASA Astrophysics Data System (ADS)

    Wiese, Kay C.

    computational intelligence (CI). While biological systems have helped to develop many of the computational paradigms in CI, CI is now returning the favor to help solve some of the most challenging biological mysteries itself. In many cases these probabilistic methods can produce biologically relevant results where exact deterministic methods fail. For an extensive overview of successful applications of CI algorithms to problems in bioinformatics please refer to [1].

  1. Air Quality Modeling in Support of the Near-Road Exposures and Effects of Urban Air Pollutants Study (NEXUS)

    EPA Science Inventory

    A major challenge in traffic-related air pollution exposure studies is the lack of information regarding pollutant exposure characterization. Air quality modeling can provide spatially and temporally varying exposure estimates for examining relationships between traffic-related a...

  2. Synthetic biology between technoscience and thing knowledge.

    PubMed

    Gelfert, Axel

    2013-06-01

    Synthetic biology presents a challenge to traditional accounts of biology: Whereas traditional biology emphasizes the evolvability, variability, and heterogeneity of living organisms, synthetic biology envisions a future of homogeneous, humanly engineered biological systems that may be combined in modular fashion. The present paper approaches this challenge from the perspective of the epistemology of technoscience. In particular, it is argued that synthetic-biological artifacts lend themselves to an analysis in terms of what has been called 'thing knowledge'. As such, they should neither be regarded as the simple outcome of applying theoretical knowledge and engineering principles to specific technological problems, nor should they be treated as mere sources of new evidence in the general pursuit of scientific understanding. Instead, synthetic-biological artifacts should be viewed as partly autonomous research objects which, qua their material-biological constitution, embody knowledge about the natural world-knowledge that, in turn, can be accessed via continuous experimental interrogation.

  3. Lung cancer: Biology and treatment options.

    PubMed

    Lemjabbar-Alaoui, Hassan; Hassan, Omer Ui; Yang, Yi-Wei; Buchanan, Petra

    2015-12-01

    Lung cancer remains the leading cause of cancer mortality in men and women in the U.S. and worldwide. About 90% of lung cancer cases are caused by smoking and the use of tobacco products. However, other factors such as radon gas, asbestos, air pollution exposures, and chronic infections can contribute to lung carcinogenesis. In addition, multiple inherited and acquired mechanisms of susceptibility to lung cancer have been proposed. Lung cancer is divided into two broad histologic classes, which grow and spread differently: small-cell lung carcinomas (SCLCs) and non-small cell lung carcinomas (NSCLCs). Treatment options for lung cancer include surgery, radiation therapy, chemotherapy, and targeted therapy. Therapeutic-modalities recommendations depend on several factors, including the type and stage of cancer. Despite the improvements in diagnosis and therapy made during the past 25 years, the prognosis for patients with lung cancer is still unsatisfactory. The responses to current standard therapies are poor except for the most localized cancers. However, a better understanding of the biology pertinent to these challenging malignancies, might lead to the development of more efficacious and perhaps more specific drugs. The purpose of this review is to summarize the recent developments in lung cancer biology and its therapeutic strategies, and discuss the latest treatment advances including therapies currently under clinical investigation.

  4. Air transport

    NASA Technical Reports Server (NTRS)

    Page, F Handley

    1924-01-01

    I purpose (sic) in this paper to deal with the development in air transport which has taken place since civil aviation between England and the Continent first started at the end of August 1919. A great deal of attention has been paid in the press to air services of the future, to the detriment of the consideration of results obtained up to the present.

  5. Air Pollution.

    ERIC Educational Resources Information Center

    Fox, Donald L.

    1989-01-01

    Materials related to air pollution are reviewed for the period January 1987, to October 1988. The topics are pollution monitoring, air pollution, and environmental chemistry. The organization consists of two major analytical divisions: (1) gaseous methods; and (2) aerosol and particulate methods. (MVL)

  6. Air Pollution.

    EPA Science Inventory

    Air quality is affected by many types of pollutants that are emitted from various sources, including stationary and mobile. These sources release both criteria and hazardous air pollutants, which cause health effects, ecological harm, and material damage. They are generally categ...

  7. Biological Oceanography

    NASA Astrophysics Data System (ADS)

    Dyhrman, Sonya

    2004-10-01

    The ocean is arguably the largest habitat on the planet, and it houses an astounding array of life, from microbes to whales. As a testament to this diversity and its importance, the discipline of biological oceanography spans studies of all levels of biological organization, from that of single genes, to organisms, to their population dynamics. Biological oceanography also includes studies on how organisms interact with, and contribute to, essential global processes. Students of biological oceanography are often as comfortable looking at satellite images as they are electron micrographs. This diversity of perspective begins the textbook Biological Oceanography, with cover graphics including a Coastal Zone Color Scanner image representing chlorophyll concentration, an electron micrograph of a dinoflagellate, and a photograph of a copepod. These images instantly capture the reader's attention and illustrate some of the different scales on which budding oceanographers are required to think. Having taught a core graduate course in biological oceanography for many years, Charlie Miller has used his lecture notes as the genesis for this book. The text covers the subject of biological oceanography in a manner that is targeted to introductory graduate students, but it would also be appropriate for advanced undergraduates.

  8. BIOLOGICAL WARFARE

    PubMed Central

    Beeston, John

    1953-01-01

    The use of biological agents as controlled weapons of war is practical although uncertain. Three types of agents are feasible, including pathogenic organisms and biological pests, toxins, and synthetic hormones regulating plant growth. These agents may be chosen for selective effects varying from prolonged incipient illness to death of plants, man and domestic animals. For specific preventive and control measures required to combat these situations, there must be careful and detailed planning. The nucleus of such a program is available within the existing framework of public health activities. Additional research and expansion of established activities in time of attack are necessary parts of biological warfare defense. PMID:13059641

  9. Foldit Biology

    DTIC Science & Technology

    2015-07-31

    Report 8/1/2013-7/31/2015 4. TITLE AND SUBTITLE Sa. CONTRACT NUMBER Foldit Biology NOOO 14-13-C-0221 Sb. GRANT NUMBER N/A Sc. PROGRAM ELEMENT...Include area code) Unclassified Unclassified Unclassified (206) 616-2660 Zoran Popović Foldit Biology (Task 1, 2, 3, 4) Final Report...Period Covered by the Report August 1, 2013 – July 31, 2015 Date of Report: July 31, 2015 Project Title: Foldit Biology Contract Number: N00014-13

  10. Air pollution particles and iron homeostasis

    EPA Science Inventory

    Background: The mechanism underlying biological effects of particles deposited in the lung has not been defined. Major Conclusions: A disruption in iron homeostasis follows exposure of cells to all particulate matter including air pollution particles. Following endocytosis, fun...

  11. Air Power’s First Among Equals: Why Air Superiority Still Matters

    DTIC Science & Technology

    2008-04-04

    the inter-war theorists was still the prevailing sentiment in the summer of 1940. The leading inter-war air theorists from Guilio Douhet, Sir Hugh...designed, funded, and implemented by Fighter Command’s Air Officer Commanding, Air Marshal Sir Hugh Dowding, challenged the prevailing strategic...saying “everything is possible if you have air superiority—little is possible if you lose it.”111 110 De Seversky, Alexander , Victory

  12. Bottle Biology.

    ERIC Educational Resources Information Center

    CSTA Journal, 1995

    1995-01-01

    Provides hands-on biology activities using plastic bottles that allow students to become engaged in asking questions, creating experiments, testing hypotheses, and generating answers. Activities explore terrestrial and aquatic systems. (MKR)

  13. Biology Notes

    ERIC Educational Resources Information Center

    School Science Review, 1972

    1972-01-01

    Ten ideas that have been tried out by the authors in schools are presented for biology teachers. The areas covered include genetics, dispersal of seeds, habituation in earthworms, respiration, sensory neurons, fats and oils. A reading list is provided. (PS)

  14. Biology Notes

    ERIC Educational Resources Information Center

    School Science Review, 1972

    1972-01-01

    Twelve new experiments in biology are described by teachers for use in classrooms. Broad areas covered include enzyme action, growth regulation, microscopy, respiration, germination, plant succession, leaf structure and blood structure. Explanations are detailed. (PS)

  15. Biology Notes

    ERIC Educational Resources Information Center

    School Science Review, 1973

    1973-01-01

    Some helpful ideas are proposed for use by biology teachers. Topics included are Food Webs,'' Key to Identification of Families,'' Viruses,'' Sieve Tube,'' Woodlice,'' Ecology of Oak Leaf Roller Moth,'' and Model Making.'' (PS)

  16. Students' Ideas and Attitudes about Air Quality

    NASA Astrophysics Data System (ADS)

    Skamp, Keith; Boyes, Eddie; Stanisstreet, Martin

    2004-06-01

    The results of a large scale (N=1001) cross-sectional (Years 6, 8 and 10) study of students' ideas about the composition of unpolluted air, the nature of air pollution, the biological consequences of air pollution, and about acid rain and the Greenhouse Effect are reported. A range of persistent alternative conceptions were identified, in some instances with increasing frequency across grades. Students' attitudes towards education, obligation, legislation or taxation as a way of reducing air pollution were determined; the first two were the most favoured. Increased attention to particular gas and air pollution concepts is recommended; other pedagogical implications are discussed.

  17. Bustling argon: biological effect

    PubMed Central

    2013-01-01

    Argon is a noble gas in group 18 of the periodic table. Certificated to exist in air atmosphere merely one century ago, discovery of argon shows interesting stories of researching and exploring. It was assumed to have no chemical activity. However, argon indeed present its biological effect on mammals. Narcotic effect of argon in diving operation and neur-protective function of argon in cerebral injury demonstrate that argon has crucial effect and be concentrated on is necessary. Furthermore, consider to be harmless to human, argon clinical application in therapy would be another option. PMID:24088583

  18. Installing Portable Classrooms With Good Air Quality.

    ERIC Educational Resources Information Center

    Godfrey, Ray

    2000-01-01

    Discusses the advantages of modular classrooms and improvements made in indoor air quality, including the pros and cons of portables, challenges districts face when planning and installing portables, and cost considerations. Concluding comments highlight system costs and maintenance required. (GR)

  19. Taking the Hot Air Out of Balloons.

    ERIC Educational Resources Information Center

    Brinks, Virgil L.; Brinks, Robyn L.

    1994-01-01

    Describes how a teacher can give their students the challenge of designing and building model balloons or blimps. The project helps students learn the basics of balloon flight and what it really means to be "lighter than air." (PR)

  20. Strategy Guideline. Compact Air Distribution Systems

    SciTech Connect

    Burdick, Arlan

    2013-06-01

    This guideline discusses the benefits and challenges of using a compact air distribution system to handle the reduced loads and reduced air volume needed to condition the space within an energy efficient home. The decision criteria for a compact air distribution system must be determined early in the whole-house design process, considering both supply and return air design. However, careful installation of a compact air distribution system can result in lower material costs from smaller equipment, shorter duct runs, and fewer outlets; increased installation efficiencies, including ease of fitting the system into conditioned space; lower loads on a better balanced HVAC system, and overall improved energy efficiency of the home.

  1. From systems biology to systems biomedicine.

    PubMed

    Antony, Paul M A; Balling, Rudi; Vlassis, Nikos

    2012-08-01

    Systems Biology is about combining theory, technology, and targeted experiments in a way that drives not only data accumulation but knowledge as well. The challenge in Systems Biomedicine is to furthermore translate mechanistic insights in biological systems to clinical application, with the central aim of improving patients' quality of life. The challenge is to find theoretically well-chosen models for the contextually correct and intelligible representation of multi-scale biological systems. In this review, we discuss the current state of Systems Biology, highlight the emergence of Systems Biomedicine, and highlight some of the topics and views that we think are important for the efficient application of Systems Theory in Biomedicine.

  2. Air Apparent.

    ERIC Educational Resources Information Center

    Harbster, David A.

    1988-01-01

    Explains the principle upon which a barometer operates. Describes how to construct two barometric devices for use in the classroom that show air's changing pressure. Cites some conditions for predicting weather. (RT)

  3. Air Abrasion

    MedlinePlus

    ... information you need from the Academy of General Dentistry Sunday, April 9, 2017 About | Contact InfoBites Quick ... general dentist, who has been trained in restorative dentistry techniques, will perform any procedures that use air- ...

  4. Air pollution injury to plants

    SciTech Connect

    Seibert, R.J.

    1986-01-01

    The injuries to plants by oxidant air pollution can be used as biological indicators of pollution episodes. Bel W3 tobacco is often used as an indicator organism. Dogwood is another potential indicator organism. Specific growing procedures used for indicator organisms are described, as are diagnostic criteria for the type and extent of injuries.

  5. [Sex and gender: five challenges for epidemiologists].

    PubMed

    Doyal, L

    2004-03-01

    This paper explores the challenges posed by sex and gender for epidemiologists as they try to integrate sex and gender concerns into their work in more appropriate and effective ways. The first challenge is one of conceptual clarification with considerable confusion still surrounding the use of the terms sex and gender themselves. The second challenge is to develop a broader understanding of the links between biological sex and health. The third challenge is to create a more comprehensive understanding of the ways in which social gender shapes the health of both women and men. The fourth challenge is to ensure that all research designs are both sex and gender sensitive. And the final challenge is to find a strategy for integrating findings on both sex and gender into wider equality agendas. This paper will examine each of these challenges in turn.

  6. Biological databases for human research.

    PubMed

    Zou, Dong; Ma, Lina; Yu, Jun; Zhang, Zhang

    2015-02-01

    The completion of the Human Genome Project lays a foundation for systematically studying the human genome from evolutionary history to precision medicine against diseases. With the explosive growth of biological data, there is an increasing number of biological databases that have been developed in aid of human-related research. Here we present a collection of human-related biological databases and provide a mini-review by classifying them into different categories according to their data types. As human-related databases continue to grow not only in count but also in volume, challenges are ahead in big data storage, processing, exchange and curation.

  7. Carbon adsorption for indoor air cleaning

    SciTech Connect

    VanOsdell, D.W.; Sparks, L.E.

    1995-02-01

    Gas-phase air filtration equipment (GPAFE) has been applied for many years to control industrial gaseous contaminants. Interest in cleaning recirculation air to provide ventilation without the need to condition excessive outdoor air has promoted increased interest in GPAFE as indoor air control devices. The removal of volatile organic compounds (VOCs) using granular activated carbon (GAC) is the focus of this article. First, the authors present performance measurements for GAC at low challenge VOC concentrations that might be encountered indoors. Unlike previously reported tests, these were continued long enough to directly determine the GAC`s expected lifetime. The results suggest that test results obtained at high challenge concentrations may be extrapolated to low, indoor concentrations. Further study is needed, but these data are encouraging. Second, they will discuss the implications of these performance measurements for the use of GAC to remove VOCs and improve indoor air quality (IAQ) using an indoor air building simulation model.

  8. Ecological Compatibility of GM Crops and Biological Control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insect-resistant and herbicide-tolerant genetically modified (GM) crops pervade many modern cropping systems, and present challenges and opportunities for developing biologically-based pest management programs. Interactions between biological control agents (insect predators, parasitoids, and pathog...

  9. Biology and mathematics: a fruitful merger of two cultures.

    PubMed

    van Hemmen, J Leo

    2007-07-01

    The great promise of biological science is not its 'mathematization' per se, but the creative interaction between experimental biology and what one, in analogy to physics, may simply call theoretical biology. The key to, and also the great challenge in, fulfilling this promise is to find the correct fundamental notions to mathematically describe biological reality.

  10. [Indoor air quality in schools].

    PubMed

    Cartieaux, E; Rzepka, M-A; Cuny, D

    2011-07-01

    Indoor air quality in schools has received particular attention over the past several years. Children are considered as one of the most sensitive groups to atmospheric pollution because their bodies are actively growing and they breathe higher volumes of air relative to their body weights than adults do. They also spend more time in school or group structures (preschools, day nurseries) than in any indoor environments other than the home. The analysis of children's exposure to air pollution at school requires the identification of the main pollutant sources present in these educational institutions. Both a strong contribution of outdoor pollution and a very specific pollution bound to school activities such as the use of paints, markers, glues, and manufactured ink eraser pens, exist. The ventilation in school buildings also plays an important role in air quality. A higher air exchange may improve thermal comfort and air quality. The cause of indoor air pollution is a combinatory effect of physical, chemical, and biological factors, and the adequacy of ventilation in the environment. Several pollutants have been reported to exist in classrooms such as bacteria, molds, volatile organic compounds, persistent organic pollutants and microparticles. There is a correlation between the concentrations of the pollutants and onset of health problems in schoolchildren. We observe predominantly respiratory symptoms as well as a prevalence of respiratory diseases such as asthma and allergies. This study shows that poor indoor air quality affects children's health.

  11. Reducing Air Force Fighter Pilot Shortages

    DTIC Science & Technology

    2015-12-31

    Albert A. Robbert, Anthony D. Rosello, Clarence R. Anderegg, John A. Ausink, James H. Bigelow, William W. Taylor, James Pita Reducing Air Force...Santa Monica, Calif. © Copyright 2015 RAND Corporation R® is a registered trademark. iii Preface The Air Force has faced a persistent challenge in...pilots in the reserve components. This research was sponsored by four elements of the U.S. Air Force: the Deputy Chief of Staff for Operations (AF/A3

  12. The Best and the Worst of Times for Evolutionary Biology.

    ERIC Educational Resources Information Center

    Avise, John C.

    2003-01-01

    Discusses opportunities and challenges for the field of evolutionary biology, particularly in areas related to molecular genetic technologies, the environment, biodiversity, and public education. (Author/KHR)

  13. Biological Oceanography

    NASA Technical Reports Server (NTRS)

    Abbott, M. R.

    1984-01-01

    Within the framework of global biogeochemical cycles and ocean productivity, there are two areas that will be of particular interest to biological oceanography in the 1990s. The first is the mapping in space time of the biomass and productivity of phytoplankton in the world ocean. The second area is the coupling of biological and physical processes as it affects the distribution and growth rate of phytoplankton biomass. Certainly other areas will be of interest to biological oceanographers, but these two areas are amenable to observations from satellites. Temporal and spatial variability is a regular feature of marine ecosystems. The temporal and spatial variability of phytoplankton biomass and productivity which is ubiquitous at all time and space scales in the ocean must be characterized. Remote sensing from satellites addresses these problems with global observations of mesocale (2 to 20 days, 10 to 200 km) features over a long period of time.

  14. Biological preconcentrator

    DOEpatents

    Manginell, Ronald P.; Bunker, Bruce C.; Huber, Dale L.

    2008-09-09

    A biological preconcentrator comprises a stimulus-responsive active film on a stimulus-producing microfabricated platform. The active film can comprise a thermally switchable polymer film that can be used to selectively absorb and desorb proteins from a protein mixture. The biological microfabricated platform can comprise a thin membrane suspended on a substrate with an integral resistive heater and/or thermoelectric cooler for thermal switching of the active polymer film disposed on the membrane. The active polymer film can comprise hydrogel-like polymers, such as poly(ethylene oxide) or poly(n-isopropylacrylamide), that are tethered to the membrane. The biological preconcentrator can be fabricated with semiconductor materials and technologies.

  15. Protocol for a human in vivo model of acute cigarette smoke inhalation challenge in smokers with COPD: monitoring the nasal and systemic immune response using a network biology approach

    PubMed Central

    Ross, Clare L; Galloway-Phillipps, Neil; Armstrong, Paul C; Mitchell, Jane A; Warner, Timothy D; Brearley, Christopher; Ito, Mari; Tunstall, Tanushree; Elkin, Sarah; Kon, Onn Min; Hansel, Trevor T; Paul-Clark, Mark J

    2015-01-01

    Introduction Cigarette smoke contributes to a diverse range of diseases including chronic obstructive pulmonary disease (COPD), cardiovascular disorders and many cancers. There currently is a need for human challenge models, to assess the acute effects of a controlled cigarette smoke stimulus, followed by serial sampling of blood and respiratory tissue for advanced molecular profiling. We employ precision sampling of nasal mucosal lining fluid by absorption to permit soluble mediators measurement in eluates. Serial nasal curettage was used for transcriptomic analysis of mucosal tissue. Methods and analysis Three groups of strictly defined patients will be studied: 12 smokers with COPD (GOLD Stage 2) with emphysema, 12 matched smokers with normal lung function and no evidence of emphysema, and 12 matched never smokers with normal spirometry. Patients in the smoking groups are current smokers, and will be given full support to stop smoking immediately after this study. In giving a controlled cigarette smoke stimulus, all patients will have abstained from smoking for 12 h, and will smoke two cigarettes with expiration through the nose in a ventilated chamber. Before and after inhalation of cigarette smoke, a series of samples will be taken from the blood, nasal mucosal lining fluid and nasal tissue by curettage. Analysis of plasma nicotine and metabolites in relation to levels of soluble inflammatory mediators in nasal lining fluid and blood, as well as assessing nasal transcriptomics, ex vivo blood platelet aggregation and leucocyte responses to toll-like receptor agonists will be undertaken. Implications Development of acute cigarette smoke challenge models has promise for the study of molecular effects of smoking in a range of pathological processes. Ethics and dissemination This study was approved by the West London National Research Ethics Committee (12/LO/1101). The study findings will be presented at conferences and will be reported in peer-reviewed journals

  16. Watching Grass Grow: Biology Explorations Online.

    ERIC Educational Resources Information Center

    Puttick, Gillian

    2002-01-01

    Describes an online biology course for science teachers in a master's degree program that focuses on the adaptation and natural selection of grass under environmental challenges. Provides experience with how biologists use questioning and investigation in their research. (YDS)

  17. Indoor air pollution.

    PubMed

    Gold, D R

    1992-06-01

    This article summarizes the health effects of indoor air pollutants and the modalities available to control them. The pollutants discussed include active and passive exposure to tobacco smoke; combustion products of carbon monoxide; nitrogen dioxide; products of biofuels, including wood and coal; biologic agents leading to immune responses, such as house dust mites, cockroaches, fungi, animal dander, and urine; biologic agents associated with infection such as Legionella and tuberculosis; formaldehyde; and volatile organic compounds. An approach to assessing building-related illness and "tight building" syndrome is presented. Finally, the article reviews recent data on hospital-related asthma and exposures to potential respiratory hazards such as antineoplastic agents, anesthetic gases, and ethylene oxide.

  18. Indoor air pollution

    SciTech Connect

    Gold, D.R. )

    1992-06-01

    This article summarizes the health effects of indoor air pollutants and the modalities available to control them. The pollutants discussed include active and passive exposure to tobacco smoke; combustion products of carbon monoxide; nitrogen dioxide; products of biofuels, including wood and coal; biologic agents leading to immune responses, such as house dust mites, cockroaches, fungi, animal dander, and urine; biologic agents associated with infection such as Legionella and tuberculosis; formaldehyde; and volatile organic compounds. An approach to assessing building-related illness and tight building' syndrome is presented. Finally, the article reviews recent data on hospital-related asthma and exposures to potential respiratory hazards such as antineoplastic agents, anesthetic gases, and ethylene oxide.88 references.

  19. (Biological dosimetry)

    SciTech Connect

    Sega, G.A.

    1990-11-06

    The traveler participated in an International Symposium on Trends in Biological Dosimetry and presented an invited paper entitled, Adducts in sperm protamine and DNA vs mutation frequency.'' The purpose of the Symposium was to examine the applicability of new methods to study quantitatively the effects of xenobiotic agents (radiation and chemicals) on molecular, cellular and organ systems, with special emphasis on human biological dosimetry. The general areas covered at the meeting included studies on parent compounds and metabolites; protein adducts; DNA adducts; gene mutations; cytogenetic end-points and reproductive methods.

  20. Linking marine biology and biotechnology.

    PubMed

    de Nys, Rocky; Steinberg, Peter D

    2002-06-01

    Studies of biological systems in which there is a direct link between the challenges faced by marine organisms and biotechnologies enable us to rationally search for active natural compounds and other novel biotechnologies. This approach is proving successful in developing new methods for the prevention of marine biofouling and for the identification of new lead compounds for the development of ultraviolet sunscreens.

  1. Teaching the Ethics of Biology.

    ERIC Educational Resources Information Center

    Johansen, Carol K.; Harris, David E.

    2000-01-01

    Points out the challenges of educating students about bioethics and the limited training of many biologists on ethics. Discusses the basic principles of ethics and ethical decision making as applied to biology. Explains the models of ethical decision making that are often difficult for students to determine where to begin analyzing. (Contains 28…

  2. Ecological Challenges for Closed Systems

    NASA Astrophysics Data System (ADS)

    Nelson, Mark; Dempster, William; Allen, John P.

    2012-07-01

    Closed ecological systems are desirable for a number of purposes. In space life support systems, material closure allows precious life-supporting resources to be kept inside and recycled. Closure in small biospheric systems facilitates detailed measurement of global ecological processes and biogeochemical cycles. Closed testbeds facilitate research topics which require isolation from the outside (e.g. genetically modified organisms; radioisotopes) so their ecological interactions and fluxes can be studied separate from interactions with the outside environment. But to achieve and maintain closure entails solving complex ecological challenges. These challenges include being able to handle faster cycling rates and accentuated daily and seasonal fluxes of critical life elements such as carbon dioxide, oxygen, water, macro- and mico-nutrients. The problems of achieving sustainability in closed systems for life support include how to handle atmospheric dynamics including trace gases, producing a complete human diet and recycling nutrients and maintaining soil fertility, the sustaining of healthy air and water and preventing the loss of crucial elements from active circulation. In biospheric facilities the challenge is also to produce analogues to natural biomes and ecosystems, studying processes of self-organization and adaptation in systems that allow specification or determination of state variables and cycles which may be followed through all interactions from atmosphere to soils. Other challenges include the dynamics and genetics of small populations, the psychological challenges for small isolated human groups and measures and options which may be necessary to ensure long-term operation of closed ecological systems.

  3. Biologically inspired intelligent robots

    NASA Astrophysics Data System (ADS)

    Bar-Cohen, Yoseph; Breazeal, Cynthia

    2003-07-01

    Humans throughout history have always sought to mimic the appearance, mobility, functionality, intelligent operation, and thinking process of biological creatures. This field of biologically inspired technology, having the moniker biomimetics, has evolved from making static copies of human and animals in the form of statues to the emergence of robots that operate with realistic behavior. Imagine a person walking towards you where suddenly you notice something weird about him--he is not real but rather he is a robot. Your reaction would probably be "I can't believe it but this robot looks very real" just as you would react to an artificial flower that is a good imitation. You may even proceed and touch the robot to check if your assessment is correct but, as oppose to the flower case, the robot may be programmed to respond physical and verbally. This science fiction scenario could become a reality as the current trend continues in developing biologically inspired technologies. Technology evolution led to such fields as artificial muscles, artificial intelligence, and artificial vision as well as biomimetic capabilities in materials science, mechanics, electronics, computing science, information technology and many others. This paper will review the state of the art and challenges to biologically-inspired technologies and the role that EAP is expected to play as the technology evolves.

  4. Bayes in biological anthropology.

    PubMed

    Konigsberg, Lyle W; Frankenberg, Susan R

    2013-12-01

    In this article, we both contend and illustrate that biological anthropologists, particularly in the Americas, often think like Bayesians but act like frequentists when it comes to analyzing a wide variety of data. In other words, while our research goals and perspectives are rooted in probabilistic thinking and rest on prior knowledge, we often proceed to use statistical hypothesis tests and confidence interval methods unrelated (or tenuously related) to the research questions of interest. We advocate for applying Bayesian analyses to a number of different bioanthropological questions, especially since many of the programming and computational challenges to doing so have been overcome in the past two decades. To facilitate such applications, this article explains Bayesian principles and concepts, and provides concrete examples of Bayesian computer simulations and statistics that address questions relevant to biological anthropology, focusing particularly on bioarchaeology and forensic anthropology. It also simultaneously reviews the use of Bayesian methods and inference within the discipline to date. This article is intended to act as primer to Bayesian methods and inference in biological anthropology, explaining the relationships of various methods to likelihoods or probabilities and to classical statistical models. Our contention is not that traditional frequentist statistics should be rejected outright, but that there are many situations where biological anthropology is better served by taking a Bayesian approach. To this end it is hoped that the examples provided in this article will assist researchers in choosing from among the broad array of statistical methods currently available.

  5. Integrative biology of exercise.

    PubMed

    Hawley, John A; Hargreaves, Mark; Joyner, Michael J; Zierath, Juleen R

    2014-11-06

    Exercise represents a major challenge to whole-body homeostasis provoking widespread perturbations in numerous cells, tissues, and organs that are caused by or are a response to the increased metabolic activity of contracting skeletal muscles. To meet this challenge, multiple integrated and often redundant responses operate to blunt the homeostatic threats generated by exercise-induced increases in muscle energy and oxygen demand. The application of molecular techniques to exercise biology has provided greater understanding of the multiplicity and complexity of cellular networks involved in exercise responses, and recent discoveries offer perspectives on the mechanisms by which muscle "communicates" with other organs and mediates the beneficial effects of exercise on health and performance.

  6. Computational biology for ageing.

    PubMed

    Wieser, Daniela; Papatheodorou, Irene; Ziehm, Matthias; Thornton, Janet M

    2011-01-12

    High-throughput genomic and proteomic technologies have generated a wealth of publicly available data on ageing. Easy access to these data, and their computational analysis, is of great importance in order to pinpoint the causes and effects of ageing. Here, we provide a description of the existing databases and computational tools on ageing that are available for researchers. We also describe the computational approaches to data interpretation in the field of ageing including gene expression, comparative and pathway analyses, and highlight the challenges for future developments. We review recent biological insights gained from applying bioinformatics methods to analyse and interpret ageing data in different organisms, tissues and conditions.

  7. Biologically inspired oxidation catalysis.

    PubMed

    Que, Lawrence; Tolman, William B

    2008-09-18

    The development of processes for selective hydrocarbon oxidation is a goal that has long been pursued. An additional challenge is to make such processes environmentally friendly, for example by using non-toxic reagents and energy-efficient catalytic methods. Excellent examples are naturally occurring iron- or copper-containing metalloenzymes, and extensive studies have revealed the key chemical principles that underlie their efficacy as catalysts for aerobic oxidations. Important inroads have been made in applying this knowledge to the development of synthetic catalysts that model enzyme function. Such biologically inspired hydrocarbon oxidation catalysts hold great promise for wide-ranging synthetic applications.

  8. Hazardous Air Pollutants

    MedlinePlus

    ... Air Toxics Website Rules and Implementation Related Information Air Quality Data and Tools Clean Air Act Criteria Air ... Resources Visibility and Haze Voluntary Programs for Improving Air Quality Contact Us to ask a question, provide feedback, ...

  9. Air surveillance

    SciTech Connect

    Patton, G.W.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the air surveillance and monitoring programs currently in operation at that Hanford Site. Atmospheric releases of pollutants from Hanford to the surrounding region are a potential source of human exposure. For that reason, both radioactive and nonradioactive materials in air are monitored at a number of locations. The influence of Hanford emissions on local radionuclide concentrations was evaluated by comparing concentrations measured at distant locations within the region to concentrations measured at the Site perimeter. This section discusses sample collection, analytical methods, and the results of the Hanford air surveillance program. A complete listing of all analytical results summarized in this section is reported separately by Bisping (1995).

  10. Biology Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1981

    1981-01-01

    Presents content information and/or laboratory procedures and experiments on different biology topics including small-scale cultivation of watercress and its use in water-culture experiments, microbiology of the phylloplane, use of mouthbrooders in science class, and the gene. (DC)

  11. Marine Biology

    ERIC Educational Resources Information Center

    Dewees, Christopher M.; Hooper, Jon K.

    1976-01-01

    A variety of informational material for a course in marine biology or oceanology at the secondary level is presented. Among the topics discussed are: food webs and pyramids, planktonic blooms, marine life, plankton nets, food chains, phytoplankton, zooplankton, larval plankton and filter feeders. (BT)

  12. Biology Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1983

    1983-01-01

    Describes laboratory procedures, demonstrations, and classroom activities/materials, including water relation exercise on auxin-treated artichoke tuber tissue; aerobic respiration in yeast; an improved potometer; use of mobiles in biological classification, and experiments on powdery mildews and banana polyphenol oxidase. Includes reading lists…

  13. Cancer Biology

    ERIC Educational Resources Information Center

    Dominiecki, Mary E.

    2004-01-01

    University of Colorado's Virtual Student Fellowship available at and developed by Bakemeier, Richard F. This website is designed to give students applying for a fellowship an overview of basic topics in biology and how they are used by cancer researchers to develop new treatments.

  14. (Biological dosimetry)

    SciTech Connect

    Preston, R.J.

    1990-12-17

    The traveler attended the 1st International Conference on Biological Dosimetry in Madrid, Spain. This conference was organized to provide information to a general audience of biologists, physicists, radiotherapists, industrial hygiene personnel and individuals from related fields on the current ability of cytogenetic analysis to provide estimates of radiation dose in cases of occupational or environmental exposure. There is a growing interest in Spain in biological dosimetry because of the increased use of radiation sources for medical and occupational uses, and with this the anticipated and actual increase in numbers of overexposure. The traveler delivered the introductory lecture on Biological Dosimetry: Mechanistic Concepts'' that was intended to provide a framework by which the more applied lectures could be interpreted in a mechanistic way. A second component of the trip was to provide advice with regard to several recent cases of overexposure that had been or were being assessed by the Radiopathology and Radiotherapy Department of the Hospital General Gregorio Maranon'' in Madrid. The traveler had provided information on several of these, and had analyzed cells from some exposed or purportedly exposed individuals. The members of the biological dosimetry group were referred to individuals at REACTS at Oak Ridge Associated Universities for advice on follow-up treatment.

  15. Bottle Biology.

    ERIC Educational Resources Information Center

    Jager, Peter

    1993-01-01

    Describes activities which utilize plastic drink bottles and are designed to foster the development of a wide range of biological and ecological concepts. Includes instructions for making a model compost column and presents a model that illustrates open versus closed ecosystems. (DDR)

  16. Biology Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1980

    1980-01-01

    Describes equipment, activities, and experiments useful in biology and environmental education instruction, including, among others, sampling in ecology using an overhead projector, the slide finder as an aid to microscopy, teaching kidney function, and teaching wildlife conservation-sand dune systems. (SK)

  17. Scaffolded biology.

    PubMed

    Minelli, Alessandro

    2016-09-01

    Descriptions and interpretations of the natural world are dominated by dichotomies such as organism vs. environment, nature vs. nurture, genetic vs. epigenetic, but in the last couple of decades strong dissatisfaction with those partitions has been repeatedly voiced and a number of alternative perspectives have been suggested, from perspectives such as Dawkins' extended phenotype, Turner's extended organism, Oyama's Developmental Systems Theory and Odling-Smee's niche construction theory. Last in time is the description of biological phenomena in terms of hybrids between an organism (scaffolded system) and a living or non-living scaffold, forming unit systems to study processes such as reproduction and development. As scaffold, eventually, we can define any resource used by the biological system, especially in development and reproduction, without incorporating it as happens in the case of resources fueling metabolism. Addressing biological systems as functionally scaffolded systems may help pointing to functional relationships that can impart temporal marking to the developmental process and thus explain its irreversibility; revisiting the boundary between development and metabolism and also regeneration phenomena, by suggesting a conceptual framework within which to investigate phenomena of regular hypermorphic regeneration such as characteristic of deer antlers; fixing a periodization of development in terms of the times at which a scaffolding relationship begins or is terminated; and promoting plant galls to legitimate study objects of developmental biology.

  18. Biology Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1984

    1984-01-01

    Presents information on the teaching of nutrition (including new information relating to many current O-level syllabi) and part 16 of a reading list for A- and S-level biology. Also includes a note on using earthworms as a source of material for teaching meiosis. (JN)

  19. Biology Excursions

    ERIC Educational Resources Information Center

    Baldock, R. N.

    1973-01-01

    Provides many useful suggestions and cautions for planning and executing a biology field excursion. Specific procedures are outlined for investigating land communities and coastal areas, and a number of follow-up laboratory activities are described. The appendix provides an extensive bibliography with useful comments on the literature. (JR)

  20. Biology Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1979

    1979-01-01

    Organized by topic is a reading list for A- and S-level biology. Described are experiments for measuring rate of water uptake in a shoot; questions to aid students in designing experiments; rise of overhead projection to demonstrate osmosis and blood cell counting; and microbial manufacture of vinegar. (CS)

  1. Biology Notes

    ERIC Educational Resources Information Center

    School Science Review, 1976

    1976-01-01

    Describes nine biology experiments, including osmosis, genetics; oxygen content of blood, enzymes in bean seedlings, preparation of bird skins, vascularization in bean seedlings, a game called "sequences" (applied to review situations), crossword puzzle for human respiration, and physiology of the woodlouse. (CS)

  2. Biology Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1981

    1981-01-01

    Outlines a variety of laboratory procedures, techniques, and materials including construction of a survey frame for field biology, a simple tidal system, isolation and applications of plant protoplasts, tropisms, teaching lung structure, and a key to statistical methods for biologists. (DS)

  3. The biology of cultural conflict

    PubMed Central

    Berns, Gregory S.; Atran, Scott

    2012-01-01

    Although culture is usually thought of as the collection of knowledge and traditions that are transmitted outside of biology, evidence continues to accumulate showing how biology and culture are inseparably intertwined. Cultural conflict will occur only when the beliefs and traditions of one cultural group represent a challenge to individuals of another. Such a challenge will elicit brain processes involved in cognitive decision-making, emotional activation and physiological arousal associated with the outbreak, conduct and resolution of conflict. Key targets to understand bio-cultural differences include primitive drives—how the brain responds to likes and dislikes, how it discounts the future, and how this relates to reproductive behaviour—but also higher level functions, such as how the mind represents and values the surrounding physical and social environment. Future cultural wars, while they may bear familiar labels of religion and politics, will ultimately be fought over control of our biology and our environment. PMID:22271779

  4. Biological Processes for Hydrogen Production.

    PubMed

    van Niel, Ed W J

    Methane is produced usually from organic waste in a straightforward anaerobic digestion process. However, hydrogen production is technically more challenging as more stages are needed to convert all biomass to hydrogen because of thermodynamic constraints. Nevertheless, the benefit of hydrogen is that it can be produced, both biologically and thermochemically, in more than one way from either organic compounds or water. Research in biological hydrogen production is booming, as reflected by the myriad of recently published reviews on the topic. This overview is written from the perspective of how to transfer as much energy as possible from the feedstock into the gaseous products hydrogen, and to a lesser extent, methane. The status and remaining challenges of all the biological processes are concisely discussed.

  5. Biological safety cabinetry.

    PubMed Central

    Kruse, R H; Puckett, W H; Richardson, J H

    1991-01-01

    The biological safety cabinet is the one piece of laboratory and pharmacy equipment that provides protection for personnel, the product, and the environment. Through the history of laboratory-acquired infections from the earliest published case to the emergence of hepatitis B and AIDS, the need for health care worker protection is described. A brief description with design, construction, function, and production capabilities is provided for class I and class III safety cabinets. The development of the high-efficiency particulate air filter provided the impetus for clean room technology, from which evolved the class II laminar flow biological safety cabinet. The clean room concept was advanced when the horizontal airflow clean bench was manufactured; it became popular in pharmacies for preparing intravenous solutions because the product was protected. However, as with infectious microorganisms and laboratory workers, individual sensitization to antibiotics and the advent of hazardous antineoplastic agents changed the thinking of pharmacists and nurses, and they began to use the class II safety cabinet to prevent adverse personnel reactions to the drugs. How the class II safety cabinet became the mainstay in laboratories and pharmacies is described, and insight is provided into the formulation of National Sanitation Foundation standard number 49 and its revisions. The working operations of a class II cabinet are described, as are the variations of the four types with regard to design, function, air velocity profiles, and the use of toxins. The main certification procedures are explained, with examples of improper or incorrect certifications. The required levels of containment for microorganisms are given. Instructions for decontaminating the class II biological safety cabinet of infectious agents are provided; unfortunately, there is no method for decontaminating the cabinet of antineoplastic agents. Images PMID:2070345

  6. 32 CFR 644.516 - Clearance of Air Force lands.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 4 2012-07-01 2011-07-01 true Clearance of Air Force lands. 644.516 Section 644... Excess Land and Improvements § 644.516 Clearance of Air Force lands. The Chief of Engineers has no responsibility for inspecting or clearing excess Air Force land of explosives or chemical/biological...

  7. 32 CFR 644.516 - Clearance of Air Force lands.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 4 2014-07-01 2013-07-01 true Clearance of Air Force lands. 644.516 Section 644... Excess Land and Improvements § 644.516 Clearance of Air Force lands. The Chief of Engineers has no responsibility for inspecting or clearing excess Air Force land of explosives or chemical/biological...

  8. 32 CFR 644.516 - Clearance of Air Force lands.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 4 2013-07-01 2013-07-01 false Clearance of Air Force lands. 644.516 Section... Excess Land and Improvements § 644.516 Clearance of Air Force lands. The Chief of Engineers has no responsibility for inspecting or clearing excess Air Force land of explosives or chemical/biological...

  9. 32 CFR 644.516 - Clearance of Air Force lands.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 4 2011-07-01 2011-07-01 false Clearance of Air Force lands. 644.516 Section... Excess Land and Improvements § 644.516 Clearance of Air Force lands. The Chief of Engineers has no responsibility for inspecting or clearing excess Air Force land of explosives or chemical/biological...

  10. 32 CFR 644.516 - Clearance of Air Force lands.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true Clearance of Air Force lands. 644.516 Section 644... Excess Land and Improvements § 644.516 Clearance of Air Force lands. The Chief of Engineers has no responsibility for inspecting or clearing excess Air Force land of explosives or chemical/biological...

  11. National Drug IQ Challenge

    MedlinePlus

    ... National Drug IQ Challenge 2016 National Drug & Alcohol IQ Challenge Print Get Started! Correct/Total Questions: Score: ... accessible version of the 2016 National Drug & Alcohol IQ Challenge , [PDF, 637KB]. Download an accessible version of ...

  12. /Air Atmospheres

    NASA Astrophysics Data System (ADS)

    Emami, Samar; Sohn, Hong Yong; Kim, Hang Goo

    2014-08-01

    Molten magnesium oxidizes rapidly when exposed to air causing melt loss and handling difficulties. The use of certain additive gases such as SF6, SO2, and CO2 to form a protective MgO layer over a magnesium melt has been proposed. The oxidation behavior of molten magnesium in air containing various concentrations of SF6 was investigated. Measurements of the kinetics of the oxide layer growth at various SF6 concentrations in air and temperatures were made. Experiments were performed using a thermogravimetric analysis unit in the temperature range of 943 K to 1043 K (670 °C to 770 °C). Results showed that a thin, coherent, and protective MgF2 layer was formed under SF6/Air mixtures, with a thickness ranging from 300 nm to 3 μm depending on SF6 concentration, temperature, and exposure time. Rate parameters were calculated and a model for the process was developed. The morphology and composition of the surface films were studied using scanning electron microscope and energy-dispersive spectroscope.

  13. Air Pollution.

    ERIC Educational Resources Information Center

    Scorer, Richard S.

    The purpose of this book is to describe the basic mechanisms whereby pollution is transported and diffused in the atmosphere. It is designed to give practitioners an understanding of basic mechanics and physics so they may have a correct basis on which to formulate their decisions related to practical air pollution control problems. Since many…

  14. BIOLOGY I, NEW APPROACHES AND OBJECTIVES.

    ERIC Educational Resources Information Center

    COKER, ROBERT; AND OTHERS

    THE PRINCIPLES OF MODERN BIOLOGY SHOULD BE PRESENTED IN A DYNAMIC AND CHALLENGING WAY TO CAPABLE STUDENTS TO DEVELOP LASTING INTEREST IN THE SUBJECT AND TO PLACE EMPHASIS UPON THE ROLE OF THE PHYSICAL SCIENCES IN BIOLOGY IN ACCORD WITH NATIONWIDE TENDENCY. THE COURSE IS COMPLETE IN ITSELF BUT PROVIDES A BASIS FOR STUDENTS WHO ELECT ADVANCED WORK.…

  15. The Structure and Function of Biological Networks

    ERIC Educational Resources Information Center

    Wu, Daniel Duanqing

    2010-01-01

    Biology has been revolutionized in recent years by an explosion in the availability of data. Transforming this new wealth of data into meaningful biological insights and clinical breakthroughs requires a complete overhaul both in the questions being asked and the methodologies used to answer them. A major challenge in organizing and understanding…

  16. Biological Life Support Technologies: Commercial Opportunities

    NASA Technical Reports Server (NTRS)

    Nelson, Mark (Editor); Soffen, Gerald (Editor)

    1990-01-01

    The papers from the workshop on Biological Life Support Technologies: Commercial Opportunities are presented. The meeting attracted researchers in environmental and bioregenerative systems. The role of biological support technologies was evaluated in the context of the global environmental challenge on Earth and the space exploration initiative, with its goal of a permanent space station, lunar base, and Mars exploration.

  17. Biologic activities of molecular chaperones and pharmacologic chaperone imidazole-containing dipeptide-based compounds: natural skin care help and the ultimate challenge: implication for adaptive responses in the skin.

    PubMed

    Babizhayev, Mark A; Nikolayev, Gennady M; Nikolayeva, Juliana G; Yegorov, Yegor E

    2012-03-01

    Accumulation of molecular damage and increased molecular heterogeneity are hallmarks of photoaged skin and pathogenesis of human cutaneous disease. Growing evidence demonstrates the ability of molecular chaperone proteins and of pharmacologic chaperones to decrease the environmental stress and ameliorate the oxidation stress-related and glycation disease phenotypes, suggesting that the field of chaperone therapy might hold novel treatments for skin diseases and aging. In this review, we examine the evidence suggesting a role for molecular chaperone proteins in the skin and their inducer and protecting agents: pharmacologic chaperone imidazole dipeptide-based agents (carcinine and related compounds) in cosmetics and dermatology. Furthermore, we discuss the use of chaperone therapy for the treatment of skin photoaging diseases and other skin pathologies that have a component of increased glycation and/or free radical-induced oxidation in their genesis. We examine biologic activities of molecular and pharmacologic chaperones, including strategies for identifying potential chaperone compounds and for experimentally demonstrating chaperone activity in in vitro and in vivo models of human skin disease. This allows the protein to function and traffic to the appropriate location in the skin, thereby increasing protein activity and cellular function and reducing stress on skin cells. The benefits of imidazole dipeptide antioxidants with transglycating activity (such as carcinine) in skin care are that they help protect and repair cell membrane damage and help retain youthful, younger-looking skin. All skin types will benefit from daily, topical application of pharmacologic chaperone antioxidants, anti-irritants, in combination with water-binding protein agents that work to mimic the structure and function of healthy skin. General strategies are presented addressing ground techniques to improve absorption of usually active chaperone proteins and dipeptide compounds, include

  18. Challenges for the aircraft structural integrity program

    NASA Technical Reports Server (NTRS)

    Lincoln, John W.

    1994-01-01

    Thirty-six years ago the United States Air Force established the USAF Aircraft Structural Integrity Program (ASIP) because flight safety had been degraded by fatigue failures of operational aircraft. This initial program evolved, but has been stable since the issuance of MIL-STD-1530A in 1975. Today, the program faces new challenges because of a need to maintain aircraft longer in an environment of reduced funding levels. Also, there is increased pressure to reduce cost of the acquisition of new aircraft. It is the purpose of this paper to discuss the challenges for the ASIP and identify the changes in the program that will meet these challenges in the future.

  19. Crusts: biological

    USGS Publications Warehouse

    Belnap, Jayne; Elias, Scott A.

    2013-01-01

    Biological soil crusts, a community of cyanobacteria, lichens, mosses, and fungi, are an essential part of dryland ecosystems. They are critical in the stabilization of soils, protecting them from wind and water erosion. Similarly, these soil surface communities also stabilized soils on early Earth, allowing vascular plants to establish. They contribute nitrogen and carbon to otherwise relatively infertile dryland soils, and have a strong influence on hydrologic cycles. Their presence can also influence vascular plant establishment and nutrition.

  20. Challenges and opportunities of airborne metagenomics.

    PubMed

    Behzad, Hayedeh; Gojobori, Takashi; Mineta, Katsuhiko

    2015-05-06

    Recent metagenomic studies of environments, such as marine and soil, have significantly enhanced our understanding of the diverse microbial communities living in these habitats and their essential roles in sustaining vast ecosystems. The increase in the number of publications related to soil and marine metagenomics is in sharp contrast to those of air, yet airborne microbes are thought to have significant impacts on many aspects of our lives from their potential roles in atmospheric events such as cloud formation, precipitation, and atmospheric chemistry to their major impact on human health. In this review, we will discuss the current progress in airborne metagenomics, with a special focus on exploring the challenges and opportunities of undertaking such studies. The main challenges of conducting metagenomic studies of airborne microbes are as follows: 1) Low density of microorganisms in the air, 2) efficient retrieval of microorganisms from the air, 3) variability in airborne microbial community composition, 4) the lack of standardized protocols and methodologies, and 5) DNA sequencing and bioinformatics-related challenges. Overcoming these challenges could provide the groundwork for comprehensive analysis of airborne microbes and their potential impact on the atmosphere, global climate, and our health. Metagenomic studies offer a unique opportunity to examine viral and bacterial diversity in the air and monitor their spread locally or across the globe, including threats from pathogenic microorganisms. Airborne metagenomic studies could also lead to discoveries of novel genes and metabolic pathways relevant to meteorological and industrial applications, environmental bioremediation, and biogeochemical cycles.