Science.gov

Sample records for air biological challenge

  1. Sex differences in panic-relevant responding to a 10% carbon dioxide-enriched air biological challenge.

    PubMed

    Nillni, Yael I; Berenz, Erin C; Rohan, Kelly J; Zvolensky, Michael J

    2012-01-01

    The current study examined sex differences in psychological (i.e., self-reported anxiety, panic symptoms, and avoidance) and physiological (i.e., heart rate and skin conductance level) response to, and recovery from, a laboratory biological challenge. Participants were a community-recruited sample of 128 adults (63.3% women; M(age)=23.2 years, SD=8.9) who underwent a 4-min 10% CO(2)-enriched air biological challenge. As predicted, women reported more severe physical panic symptoms and avoidance (i.e., less willingness to participate in another challenge) and demonstrated increased heart rate as compared to men above and beyond the variance accounted for by other theoretically relevant variables (recent panic attack history, neuroticism, and anxiety sensitivity). Additionally, women demonstrated a faster rate of recovery with respect to heart rate compared to men. These results are in line with literature documenting sex-specific differences in panic psychopathology, and results are discussed in the context of possible mechanisms underlying sex differences in panic vulnerability. PMID:22115836

  2. The Challenge of Clean Air

    ERIC Educational Resources Information Center

    Turner, John M.

    1974-01-01

    The country's first two-year education program in Air Pollution Technology trains students to work for industry or government. Although two to three jobs are available for each graduate, attracting interested students remains a challenge. (AJ)

  3. Grand challenges for biological engineering

    PubMed Central

    Yoon, Jeong-Yeol; Riley, Mark R

    2009-01-01

    Biological engineering will play a significant role in solving many of the world's problems in medicine, agriculture, and the environment. Recently the U.S. National Academy of Engineering (NAE) released a document "Grand Challenges in Engineering," covering broad realms of human concern from sustainability, health, vulnerability and the joy of living. Biological engineers, having tools and techniques at the interface between living and non-living entities, will play a prominent role in forging a better future. The 2010 Institute of Biological Engineering (IBE) conference in Cambridge, MA, USA will address, in part, the roles of biological engineering in solving the challenges presented by the NAE. This letter presents a brief outline of how biological engineers are working to solve these large scale and integrated problems of our society. PMID:19772647

  4. Dealing with the Biological Challenge

    NASA Astrophysics Data System (ADS)

    Schultz, Emeric

    1996-05-01

    The bio-technological revolution presents a real challenge to the chemical education community. This challenge is two-fold: 1) the necessity of teaching students the underlying chemical principles and other skills necessary for sucess in the expanding biotechnological workplace and 2) ensuring and enhancing respect from the biological community for the first two years of the chemistry curriculum. In the opinion of the author, we are not doing a particularly good job of meeting this challenge, although progress is being made. As the "doing" of chemistry becomes easier for biologists, there is the real danger that the knowledge of a significant portion of the underlying chemistry will increasingly be viewed as less valuable, and perhaps even superfluous. The three "Trojan Horses" are: synthetic, analytical, and "process" kits; instrumentation coupled with computer "interpretation"; and molecular modeling. The author believes that in order to address the biological challenge head on, we should give serious consideration to the following: 1) reversing the "learning arrow"; 2) embedding molecular and other modeling; 3) incorporating instrumental analysis and chemistry-by-kit. Reversing the learning arrow approaches the chemistry curriculum by starting with large biomolecules first and working toward smaller fundamental units. The author believes that this approach and a more proactive stance on establishing what is in the domain of chemistry is the means by which the biological challenge, spawned by the bio-technological revolution, can most forcefully be addressed.

  5. Grand challenges in migration biology.

    PubMed

    Bowlin, Melissa S; Bisson, Isabelle-Anne; Shamoun-Baranes, Judy; Reichard, Jonathan D; Sapir, Nir; Marra, Peter P; Kunz, Thomas H; Wilcove, David S; Hedenström, Anders; Guglielmo, Christopher G; Åkesson, Susanne; Ramenofsky, Marilyn; Wikelski, Martin

    2010-09-01

    Billions of animals migrate each year. To successfully reach their destination, migrants must have evolved an appropriate genetic program and suitable developmental, morphological, physiological, biomechanical, behavioral, and life-history traits. Moreover, they must interact successfully with biotic and abiotic factors in their environment. Migration therefore provides an excellent model system in which to address several of the "grand challenges" in organismal biology. Previous research on migration, however, has often focused on a single aspect of the phenomenon, largely due to methodological, geographical, or financial constraints. Integrative migration biology asks 'big questions' such as how, when, where, and why animals migrate, which can be answered by examining the process from multiple ecological and evolutionary perspectives, incorporating multifaceted knowledge from various other scientific disciplines, and using new technologies and modeling approaches, all within the context of an annual cycle. Adopting an integrative research strategy will provide a better understanding of the interactions between biological levels of organization, of what role migrants play in disease transmission, and of how to conserve migrants and the habitats upon which they depend. PMID:21558203

  6. Biology and Art: Interdisciplinary Challenges.

    ERIC Educational Resources Information Center

    McCormack, Alan J.

    1982-01-01

    Presents five activities that combine art and biology skills: (1) creating a work of art based upon microscopic observations; (2) collecting patterns found in or on or produced by organisms; (3) making bio-sculptures; (4) creating a creature; and (5) visually expressing an organism or biological concept. (DC)

  7. Grand challenges in space synthetic biology.

    PubMed

    Menezes, Amor A; Montague, Michael G; Cumbers, John; Hogan, John A; Arkin, Adam P

    2015-12-01

    Space synthetic biology is a branch of biotechnology dedicated to engineering biological systems for space exploration, industry and science. There is significant public and private interest in designing robust and reliable organisms that can assist on long-duration astronaut missions. Recent work has also demonstrated that such synthetic biology is a feasible payload minimization and life support approach as well. This article identifies the challenges and opportunities that lie ahead in the field of space synthetic biology, while highlighting relevant progress. It also outlines anticipated broader benefits from this field, because space engineering advances will drive technological innovation on Earth. PMID:26631337

  8. Grand challenges in space synthetic biology

    PubMed Central

    Montague, Michael G.; Cumbers, John; Hogan, John A.

    2015-01-01

    Space synthetic biology is a branch of biotechnology dedicated to engineering biological systems for space exploration, industry and science. There is significant public and private interest in designing robust and reliable organisms that can assist on long-duration astronaut missions. Recent work has also demonstrated that such synthetic biology is a feasible payload minimization and life support approach as well. This article identifies the challenges and opportunities that lie ahead in the field of space synthetic biology, while highlighting relevant progress. It also outlines anticipated broader benefits from this field, because space engineering advances will drive technological innovation on Earth. PMID:26631337

  9. [New challenges in the biological weapons convention].

    PubMed

    Sissonen, Susanna; Raijas, Tiina; Haikala, Olli; Hietala, Heikki; Virri, Markku; Nikkari, Simo

    2012-01-01

    Microbes and their toxins are biological weapons that can cause disease in humans, animals or plants, and which can be used with hostile intent in warfare and terrorism. Biological agents can be used as weapons of mass destruction and therefore, immense human and social and major economical damage can be caused. Rapid development of life sciences and technologies during the recent decades has posed new challenges to the Biological Weapons Convention. The Convention states that the States Parties to the BWC strive to ensure that the Convention remains relevant and effective, despite changes in science, technology or politics. PMID:22428382

  10. Challenges for nanomechanical sensors in biological detection.

    PubMed

    Calleja, Montserrat; Kosaka, Priscila M; San Paulo, Álvaro; Tamayo, Javier

    2012-08-21

    Nanomechanical biosensing relies on changes in the movement and deformation of micro- and nanoscale objects when they interact with biomolecules and other biological targets. This field of research has provided ever-increasing records in the sensitivity of label-free detection but it has not yet been established as a practical alternative for biological detection. We analyze here the latest advancements in the field, along with the challenges remaining for nanomechanical biosensors to become a commonly used tool in biology and biochemistry laboratories. PMID:22810853

  11. Synthetic biology and biosecurity: challenging the "myths".

    PubMed

    Jefferson, Catherine; Lentzos, Filippa; Marris, Claire

    2014-01-01

    Synthetic biology, a field that aims to "make biology easier to engineer," is routinely described as leading to an increase in the "dual-use" threat, i.e., the potential for the same scientific research to be "used" for peaceful purposes or "misused" for warfare or terrorism. Fears have been expressed that the "de-skilling" of biology, combined with online access to the genomic DNA sequences of pathogenic organisms and the reduction in price for DNA synthesis, will make biology increasingly accessible to people operating outside well-equipped professional research laboratories, including people with malevolent intentions. The emergence of do-it-yourself (DIY) biology communities and of the student iGEM competition has come to epitomize this supposed trend toward greater ease of access and the associated potential threat from rogue actors. In this article, we identify five "myths" that permeate discussions about synthetic biology and biosecurity, and argue that they embody misleading assumptions about both synthetic biology and bioterrorism. We demonstrate how these myths are challenged by more realistic understandings of the scientific research currently being conducted in both professional and DIY laboratories, and by an analysis of historical cases of bioterrorism. We show that the importance of tacit knowledge is commonly overlooked in the dominant narrative: the focus is on access to biological materials and digital information, rather than on human practices and institutional dimensions. As a result, public discourse on synthetic biology and biosecurity tends to portray speculative scenarios about the future as realities in the present or the near future, when this is not warranted. We suggest that these "myths" play an important role in defining synthetic biology as a "promissory" field of research and as an "emerging technology" in need of governance. PMID:25191649

  12. Synthetic biology: navigating the challenges ahead.

    PubMed

    Bhutkar, Arjun

    2005-01-01

    The emerging field of synthetic biology is broadly defined as the area of intersection of biology and engineering that focuses on the modification or creation of novel biological systems that do not have a counterpart in nature. Potential applications of this technology range from creating systems for environmental cleanup tasks, for medical diagnosis and treatment, to economical generation of hydrogen fuel. This technology is in tis nascent state and there are a number of concerns surrounding its potential applications and the nature of research being performed. With the potential to create hitherto unknown "living organisms", it raises a number of challenges along different dimensions. This article reviews the current state of the technology and analyzes synthetic biology using different lenses: patentability, ethics, and regulation. It proposes a classification system for the products of synthetic biology and provides recommendations in each of the above areas (patentability, ethics, and regulation) in the context of this classification system. These recommendations include an improved framework for patentability testing, ethical principles to guide work in this area, a controlled approval process, and reference frameworks for regulation. PMID:16538811

  13. India's Computational Biology Growth and Challenges.

    PubMed

    Chakraborty, Chiranjib; Bandyopadhyay, Sanghamitra; Agoramoorthy, Govindasamy

    2016-09-01

    India's computational science is growing swiftly due to the outburst of internet and information technology services. The bioinformatics sector of India has been transforming rapidly by creating a competitive position in global bioinformatics market. Bioinformatics is widely used across India to address a wide range of biological issues. Recently, computational researchers and biologists are collaborating in projects such as database development, sequence analysis, genomic prospects and algorithm generations. In this paper, we have presented the Indian computational biology scenario highlighting bioinformatics-related educational activities, manpower development, internet boom, service industry, research activities, conferences and trainings undertaken by the corporate and government sectors. Nonetheless, this new field of science faces lots of challenges. PMID:27465042

  14. Applying evolutionary biology to address global challenges

    PubMed Central

    Carroll, Scott P.; Jørgensen, Peter Søgaard; Kinnison, Michael T.; Bergstrom, Carl T.; Denison, R. Ford; Gluckman, Peter; Smith, Thomas B.; Strauss, Sharon Y.; Tabashnik, Bruce E.

    2014-01-01

    Two categories of evolutionary challenges result from escalating human impacts on the planet. The first arises from cancers, pathogens and pests that evolve too quickly, and the second from the inability of many valued species to adapt quickly enough. Applied evolutionary biology provides a suite of strategies to address these global challenges that threaten human health, food security, and biodiversity. This review highlights both progress and gaps in genetic, developmental and environmental manipulations across the life sciences that either target the rate and direction of evolution, or reduce the mismatch between organisms and human-altered environments. Increased development and application of these underused tools will be vital in meeting current and future targets for sustainable development. PMID:25213376

  15. Applying evolutionary biology to address global challenges.

    PubMed

    Carroll, Scott P; Jørgensen, Peter Søgaard; Kinnison, Michael T; Bergstrom, Carl T; Denison, R Ford; Gluckman, Peter; Smith, Thomas B; Strauss, Sharon Y; Tabashnik, Bruce E

    2014-10-17

    Two categories of evolutionary challenges result from escalating human impacts on the planet. The first arises from cancers, pathogens, and pests that evolve too quickly and the second, from the inability of many valued species to adapt quickly enough. Applied evolutionary biology provides a suite of strategies to address these global challenges that threaten human health, food security, and biodiversity. This Review highlights both progress and gaps in genetic, developmental, and environmental manipulations across the life sciences that either target the rate and direction of evolution or reduce the mismatch between organisms and human-altered environments. Increased development and application of these underused tools will be vital in meeting current and future targets for sustainable development. PMID:25213376

  16. Physical Biology : challenges for our second decade

    NASA Astrophysics Data System (ADS)

    Levine, Herbert

    2014-06-01

    It is quite an honor to be asked to become the third editor-in-chief of Physical Biology . I am following in the footsteps of Tim Newman, who served with energy and enthusiasm. Hopefully, the entire community fully appreciates his contributions to moving the field forward. Thank you, Tim! With the honor, however, goes a clear responsibility. Our journal has survived its birth pangs and emerged as a serious venue for publishing quality research papers using physical science to address the workings of living matter. With the support of scientists in this field and with the ongoing commitment of the IOP, we have successfully reached adolescence. Yet, there is clearly much room to grow and there are clear challenges in defining and maintaining our special niche in the publishing landscape. In this still-developing state, the journal very much mimics the state of the field of physical biology itself. Few scientists continue to question the relevance of physical science for the investigation of the living world. But, will our new perspective and the methods that come with it really lead to radically new principles of how life works? Or, will breakthroughs continue to come from experimental biology (perhaps aided by the traditional physicist-as-tool-builder paradigm), leaving us to put quantitative touches on established fundamentals? In thinking about these questions for the field and for the journal, I have tried to understand what is really unique about our joint endeavors. I have become convinced that living matter represents a new challenge to our physical-science based conceptual framework. Not only is it far from equilibrium, as has been generally recognized, but it violates our simple notions of the separability of constituents, their interactions and the resulting large-scale behavior. Unlike, say, atomic physicists who can do productive research while safely ignoring the latest developments in QCD (let alone particle physics at higher energies), we do not yet

  17. Making Li-air batteries rechargeable: material challenges

    SciTech Connect

    Shao, Yuyan; Ding, Fei; Xiao, Jie; Zhang, Jian; Xu, Wu; Park, Seh Kyu; Zhang, Jiguang; Wang, Yong; Liu, Jun

    2013-02-25

    A Li-air battery could potentially provide three to five times higher energy density/specific energy than conventional batteries, thus enable the driving range of an electric vehicle comparable to a gasoline vehicle. However, making Li-air batteries rechargeable presents significant challenges, mostly related with materials. Herein, we discuss the key factors that influence the rechargeability of Li-air batteries with a focus on nonaqueous system. The status and materials challenges for nonaqueous rechargeable Li-air batteries are reviewed. These include electrolytes, cathode (electocatalysts), lithium metal anodes, and oxygen-selective membranes (oxygen supply from air). The perspective of rechargeable Li-air batteries is provided.

  18. The challenge for improved air cargo capability

    NASA Technical Reports Server (NTRS)

    Vaughan, J.

    1976-01-01

    Requirements for a strategic air cargo capability are considered. Practical national resource investment considerations dictate that future military strategic airlift planners regard civil capabilities as an integral part of the solution. Attention is given to the military needs for airlift, the civil-military airlift commonality, the present air cargo business, growth projections for civil air cargo, future air cargo business, the introduction date for a dedicated airfreighter, and the demands for transport aircraft.

  19. Challenges and opportunities in synthetic biology for chemical engineers

    SciTech Connect

    Luo, YZ; Lee, JK; Zhao, HM

    2013-11-15

    Synthetic biology provides numerous great opportunities for chemical engineers in the development of new processes for large-scale production of biofuels, value-added chemicals, and protein therapeutics. However, challenges across all scales abound. In particular, the modularization and standardization of the components in a biological system, so-called biological parts, remain the biggest obstacle in synthetic biology. In this perspective, we will discuss the main challenges and opportunities in the rapidly growing synthetic biology field and the important roles that chemical engineers can play in its advancement. (C) 2012 Elsevier Ltd. All rights reserved.

  20. Challenges and opportunities in synthetic biology for chemical engineers

    PubMed Central

    Luo, Yunzi; Lee, Jung-Kul; Zhao, Huimin

    2012-01-01

    Synthetic biology provides numerous great opportunities for chemical engineers in the development of new processes for large-scale production of biofuels, value-added chemicals, and protein therapeutics. However, challenges across all scales abound. In particular, the modularization and standardization of the components in a biological system, so-called biological parts, remain the biggest obstacle in synthetic biology. In this perspective, we will discuss the main challenges and opportunities in the rapidly growing synthetic biology field and the important roles that chemical engineers can play in its advancement. PMID:24222925

  1. New directions: Air pollution challenges for developing megacities like Delhi

    NASA Astrophysics Data System (ADS)

    Kumar, Prashant; Khare, Mukesh; Harrison, Roy M.; Bloss, William J.; Lewis, Alastair C.; Coe, Hugh; Morawska, Lidia

    2015-12-01

    Most major cities around the world experience periods of elevated air pollution levels, which exceed international health-based air quality standards (Kumar et al., 2013). Although it is a global problem, some of the highest air pollution levels are found in rapidly expanding cities in India and China. The sources, emissions, transformations and broad effects of meteorology on air pollution are reasonably well accounted in air quality control strategies in many developed cities; however these key factors remain poorly constrained in the growing cities of countries with emerging economies. We focus here on Delhi, one of the largest global population centres, which faces particular air pollution challenges, now and in the future.

  2. Biological Invasions: A Challenge In Ecological Forecasting

    NASA Technical Reports Server (NTRS)

    Schnase, J. L.; Smith, J. A.; Stohlgren, T. J.; Graves, S.; Trees, C.; Rood, Richard (Technical Monitor)

    2002-01-01

    The spread of invasive species is one of the most daunting environmental, economic, and human-health problems facing the United States and the World today. It is one of several grand challenge environmental problems being considered by NASA's Earth Science Vision for 2025. The invasive species problem is complex and presents many challenges. Developing an invasive species predictive capability could significantly advance the science and technology of ecological forecasting.

  3. OPEN PROBLEM: Some nonlinear challenges in biology

    NASA Astrophysics Data System (ADS)

    Mosconi, Francesco; Julou, Thomas; Desprat, Nicolas; Sinha, Deepak Kumar; Allemand, Jean-François; Croquette, Vincent; Bensimon, David

    2008-08-01

    Driven by a deluge of data, biology is undergoing a transition to a more quantitative science. Making sense of the data, building new models, asking the right questions and designing smart experiments to answer them are becoming ever more relevant. In this endeavour, nonlinear approaches can play a fundamental role. The biochemical reactions that underlie life are very often nonlinear. The functional features exhibited by biological systems at all levels (from the activity of an enzyme to the organization of a colony of ants, via the development of an organism or a functional module like the one responsible for chemotaxis in bacteria) are dynamically robust. They are often unaffected by order of magnitude variations in the dynamical parameters, in the number or concentrations of actors (molecules, cells, organisms) or external inputs (food, temperature, pH, etc). This type of structural robustness is also a common feature of nonlinear systems, exemplified by the fundamental role played by dynamical fixed points and attractors and by the use of generic equations (logistic map, Fisher-Kolmogorov equation, the Stefan problem, etc.) in the study of a plethora of nonlinear phenomena. However, biological systems differ from these examples in two important ways: the intrinsic stochasticity arising from the often very small number of actors and the role played by evolution. On an evolutionary time scale, nothing in biology is frozen. The systems observed today have evolved from solutions adopted in the past and they will have to adapt in response to future conditions. The evolvability of biological system uniquely characterizes them and is central to biology. As the great biologist T Dobzhansky once wrote: 'nothing in biology makes sense except in the light of evolution'.

  4. Introducing the scanning air puff tonometer for biological studies

    NASA Astrophysics Data System (ADS)

    Fleury, Vincent; Al-Kilani, Alia; Boryskina, Olena P.; Cornelissen, Annemiek J. M.; Nguyen, Thi-Hanh; Unbekandt, Mathieu; Leroy, Loïc; Baffet, Georges; Le Noble, Ferdinand; Sire, Olivier; Lahaye, Elodie; Burgaud, Vincent

    2010-02-01

    It is getting increasingly evident that physical properties such as elastoviscoplastic properties of living materials are quite important for the process of tissue development, including regulation of genetic pathways. Measuring such properties in vivo is a complicated and challenging task. In this paper, we present an instrument, a scanning air puff tonometer, which is able to map point by point the viscoelastic properties of flat or gently curved soft materials. This instrument is an improved version of the air puff tonometer used by optometrists, with important modifications. The instrument allows one to obtain a direct insight into gradients of material properties in vivo. The instrument capabilities are demonstrated on substances with known elastoviscoplastic properties and several biological objects. On the basis of the results obtained, the role of the gradients of elastoviscoplastic properties is outlined for the process of angiogenesis, limb development, bacterial colonies expansion, etc. which is important for bridging the gaps in the theory of the tissue development and highlighting new possibilities for tissue engineering, based on a clarification of the role of physical features in developing biological material.

  5. Pesticides in Air: New Challenges in Agricultural Air Quality Research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    As agricultural and urban communities have become more intertwined, and the average size of agricultural production operations have increased substantially, issues of air quality have emerged as an area of increasing regulatory pressure for farmers in many countries. The science of measuring emissi...

  6. Biological challenges to effective vaccines in the developing world

    PubMed Central

    Grassly, Nicholas C.; Kang, Gagandeep; Kampmann, Beate

    2015-01-01

    The reason for holding a meeting to discuss biological challenges to vaccines is simple: not all vaccines work equally well in all settings. This special issue reviews the performance of vaccines in challenging environments, summarizes current thinking on the reasons why vaccines underperform and considers what approaches are necessary to understand the heterogeneity in responses and to improve vaccine immunogenicity and efficacy. PMID:25964451

  7. Biological challenges to effective vaccines in the developing world.

    PubMed

    Grassly, Nicholas C; Kang, Gagandeep; Kampmann, Beate

    2015-06-19

    The reason for holding a meeting to discuss biological challenges to vaccines is simple: not all vaccines work equally well in all settings. This special issue reviews the performance of vaccines in challenging environments, summarizes current thinking on the reasons why vaccines underperform and considers what approaches are necessary to understand the heterogeneity in responses and to improve vaccine immunogenicity and efficacy. PMID:25964451

  8. Air pollution in China: Scientific and Public Policy Challenges

    NASA Astrophysics Data System (ADS)

    Zhu, T.

    2014-12-01

    Sever air pollution in China has in recent years caused intensive public, media and governmental attention. Many questions need to be answered about the air pollution in China, such as how harmful is the air pollution, especially PM2.5? Why suddenly so many reports about sever air pollution, is the air in China getting more polluted? How to design a policy that can control the air pollution most efficiently? After updated the national Ambient Air Quality Standards in 2012 and included PM2.5 as one of the critical air pollutants, in 2013, Chinese central government released for the first time the "Air Pollution Prevention and Control Action Plan". The plan has set goals to reduce annual mean concentration of PM2.5 up to 25% in 2017 in different regions in China. If the ambitious goals were achieved, this could be the most significant air pollution reduction in such a short time that affects so many people in human history. To achieve these goals, however, there are enormous scientific and public policy challenges to deal with. For example: Identify the key components, size fraction of PM that have the largest health effects; and identify the sources of PM that has the most harmful effects on human health and ecosystem. Reduce the uncertainty in health risk assessment. Understand complicate chemical transformation processes in air pollution formation with intensive emissions from industry, power plant, vehicles, agriculture. Interactions between air pollution, PBL, and atmospheric circulation at different scales. The accountability, feasibility, effectiveness, and efficiency of air pollution control policies. Integrate multi-pollutant control and achieve co-benefit with climate and energy policy. Regional coordinated air pollution control. The largest challenge in China for air pollution control remains how to strength the link between science and policy.

  9. A snapshot of biologic drug development: Challenges and opportunities.

    PubMed

    Andrews, L; Ralston, S; Blomme, E; Barnhart, K

    2015-12-01

    Since the approval of insulin as the first recombinant therapeutic protein, the prominence of biologic therapies in drug development has grown significantly. Many modalities beyond traditional biologics are now being developed or explored for various indications with significant unmet medical needs. From early traditional replacement proteins to more recent, highly engineered antibodies, oligonucleotides, fusion proteins, and gene constructs, biologic agents have delivered life-changing therapies, despite often having scientifically and technically challenging development programs. This brief review outlines some of the major biotherapeutic classes and identifies the advantages and challenges with the development of these products. PMID:26614816

  10. Diffusion of synthetic biology: a challenge to biosafety.

    PubMed

    Schmidt, Markus

    2008-06-01

    One of the main aims of synthetic biology is to make biology easier to engineer. Major efforts in synthetic biology are made to develop a toolbox to design biological systems without having to go through a massive research and technology process. With this "de-skilling" agenda, synthetic biology might finally unleash the full potential of biotechnology and spark a wave of innovation, as more and more people have the necessary skills to engineer biology. But this ultimate domestication of biology could easily lead to unprecedented safety challenges that need to be addressed: more and more people outside the traditional biotechnology community will create self-replicating machines (life) for civil and defence applications, "biohackers" will engineer new life forms at their kitchen table; and illicit substances will be produced synthetically and much cheaper. Such a scenario is a messy and dangerous one, and we need to think about appropriate safety standards now. PMID:19003431

  11. Challenges and approaches for the development of safer immunomodulatory biologics.

    PubMed

    Sathish, Jean G; Sethu, Swaminathan; Bielsky, Marie-Christine; de Haan, Lolke; French, Neil S; Govindappa, Karthik; Green, James; Griffiths, Christopher E M; Holgate, Stephen; Jones, David; Kimber, Ian; Moggs, Jonathan; Naisbitt, Dean J; Pirmohamed, Munir; Reichmann, Gabriele; Sims, Jennifer; Subramanyam, Meena; Todd, Marque D; Van Der Laan, Jan Willem; Weaver, Richard J; Park, B Kevin

    2013-04-01

    Immunomodulatory biologics, which render their therapeutic effects by modulating or harnessing immune responses, have proven their therapeutic utility in several complex conditions including cancer and autoimmune diseases. However, unwanted adverse reactions--including serious infections, malignancy, cytokine release syndrome, anaphylaxis and hypersensitivity as well as immunogenicity--pose a challenge to the development of new (and safer) immunomodulatory biologics. In this article, we assess the safety issues associated with immunomodulatory biologics and discuss the current approaches for predicting and mitigating adverse reactions associated with their use. We also outline how these approaches can inform the development of safer immunomodulatory biologics. PMID:23535934

  12. Foreword: Follow-on Biologics: Implementation Challenges and Opportunities.

    PubMed

    Paradise, Jordan

    2011-01-01

    This Book of the Seton Hall Law Review presents the contributions to Follow-On Biologics: Implementation Challenges and Opportunities, a one-day roundtable event hosted by Seton Hall University School of Law in the fall of 2010. The roundtable fostered an international dialogue regarding the future of follow-on biologics in the United States resulting from the Patient Protection and Affordable Care Act of March 2010. THE BIOLOGIC PRICE COMPETITION AND INNOVATION ACT OF 2010. The March 23, 2010, enactment of the Patient Protection and Affordable Care Act (PPACA) and the companion Health Care and Education Affordability Reconciliation Act of 2010 ushered in landmark reform of the American health care system. Along with sweeping overhauls of the health care system generally, PPACA also provides a new regulatory challenge for the Food and Drug Administration (FDA). A subtitle within PPACA, the Biologics Price Competition and Innovation Act (BPCIA), bestows upon FDA broad authority to implement an abbreviated approval route to market for biological products (also known as biologics) that are "biosimilar" to an existing marketed product. The brief introduction will provide a basic comparison of biologics and conventional pharmaceutical drugs that will prove central to the FDA's development of this follow-on biologic pathway as well as specifically examine the content and scope of the BPCIA provisions and identify future challenges for the FDA. It will conclude by highlighting details of presentations during the roundtable held at the Seton Hall University School of Law and introduce the two resulting articles contained with this Book of the Seton Hall Law Review. PMID:21739728

  13. 2001 DC Lecture Series: The New Biology - Challenges and Opportunities

    SciTech Connect

    2006-04-11

    The Whitehead Institute for Biomedical Research, in collaboration with Center for Strategic and International Studies (CSIS), developed a series of seminars, ''The New Biology: Challenges and Opportunities'', to stimulate dialogue between leaders in science, medicine, law, biotechnology and senior government policymakers on matters that will shape much of the genomic revolution's impact on individuals and institutions in this country.

  14. Current challenges and opportunities in nonclinical safety testing of biologics.

    PubMed

    Kronenberg, Sven; Baumann, Andreas; de Haan, Lolke; Hinton, Heather J; Moggs, Jonathan; Theil, Frank-Peter; Wakefield, Ian; Singer, Thomas

    2013-12-01

    Nonclinical safety testing of new biotherapeutic entities represents its own challenges and opportunities in drug development. Hot topics in this field have been discussed recently at the 2nd Annual BioSafe European General Membership Meeting. In this feature article, discussions on the challenges surrounding the use of PEGylated therapeutic proteins, selection of cynomolgus monkey as preclinical species, unexpected pharmacokinetics of biologics and the safety implications thereof are summarized. In addition, new developments in immunosafety testing of biologics, the use of transgenic mouse models and PK and safety implications of multispecific targeting approaches are discussed. Overall, the increasing complexity of new biologic modalities and formats warrants tailor-made nonclinical development strategies and experimental testing. PMID:23942260

  15. Avoidant coping in panic disorder: a yohimbine biological challenge study.

    PubMed

    Kaplan, Johanna S; Arnkoff, Diane B; Glass, Carol R; Tinsley, Ruth; Geraci, Marilla; Hernandez, Elisa; Luckenbaugh, David; Drevets, Wayne C; Carlson, Paul J

    2012-07-01

    Few studies have addressed whether the use of avoidance-oriented coping strategies is related to the development of panic in patients with panic disorder(PD). Self-report, clinician-rated, and physiological data were collected from 42 individuals who participated in a yohimbine biological challenge study, performed under double-blind, placebo-controlled conditions. Participants included 20 healthy controls and 22 currently symptomatic patients who met DSM-IV-TR diagnostic criteria for PD. Consistent with prediction, patients with PD who had higher perceived efficacy of avoidance-oriented strategies in reducing anxiety-related thoughts reported increased severity in panic symptoms during the yohimbine challenge condition as compared to the placebo. Further, patients with PD who had more fear of cognitive dyscontrol, cardiovascular symptoms, and publicly observable anxiety also reported increased severity in panic symptoms during the challenge. Healthy controls who had more fear of cardiovascular symptoms similarly reported increased severity in panic symptoms during the challenge. No effects were found for heart rate response to the challenge agent. These results provide support for the role of avoidance-oriented coping strategies and fear of anxiety-related symptoms as risk and maintenance factors in the development of panic symptoms, particularly within a biological challenge model. PMID:21864204

  16. New challenges and opportunities in nonclinical safety testing of biologics.

    PubMed

    Baumann, Andreas; Flagella, Kelly; Forster, Roy; de Haan, Lolke; Kronenberg, Sven; Locher, Mathias; Richter, Wolfgang F; Theil, Frank-Peter; Todd, Marque

    2014-07-01

    New challenges and opportunities in nonclinical safety testing of biologics were discussed at the 3rd European BioSafe Annual General Membership meeting in November 2013 in Berlin: (i)Approaches to refine use of non-human primates in non-clinical safety testing of biologics and current experience on the use of minipigs as alternative non-rodent species.(ii)Tissue distribution studies as a useful tool to support pharmacokinetic/pharmacodynamic (PKPD) assessment of biologics, in that they provide valuable mechanistic insights at drug levels at the site of action.(iii)Mechanisms of nonspecific toxicity of antibody drug conjugates (ADC) and ways to increase the safety margins.(iv)Although biologics toxicity typically manifests as exaggerated pharmacology there are some reported case studies on unexpected toxicity.(v)Specifics of non-clinical development approaches of noncanonical monoclonal antibodies (mAbs), like bispecifics and nanobodies. PMID:24755365

  17. Thermostability of Biological Systems: Fundamentals, Challenges, and Quantification

    PubMed Central

    He, Xiaoming

    2011-01-01

    This review examines the fundamentals and challenges in engineering/understanding the thermostability of biological systems over a wide temperature range (from the cryogenic to hyperthermic regimen). Applications of the bio-thermostability engineering to either destroy unwanted or stabilize useful biologicals for the treatment of diseases in modern medicine are first introduced. Studies on the biological responses to cryogenic and hyperthermic temperatures for the various applications are reviewed to understand the mechanism of thermal (both cryo and hyperthermic) injury and its quantification at the molecular, cellular and tissue/organ levels. Methods for quantifying the thermophysical processes of the various applications are then summarized accounting for the effect of blood perfusion, metabolism, water transport across cell plasma membrane, and phase transition (both equilibrium and non-equilibrium such as ice formation and glass transition) of water. The review concludes with a summary of the status quo and future perspectives in engineering the thermostability of biological systems. PMID:21769301

  18. Light microscopy applications in systems biology: opportunities and challenges

    PubMed Central

    2013-01-01

    Biological systems present multiple scales of complexity, ranging from molecules to entire populations. Light microscopy is one of the least invasive techniques used to access information from various biological scales in living cells. The combination of molecular biology and imaging provides a bottom-up tool for direct insight into how molecular processes work on a cellular scale. However, imaging can also be used as a top-down approach to study the behavior of a system without detailed prior knowledge about its underlying molecular mechanisms. In this review, we highlight the recent developments on microscopy-based systems analyses and discuss the complementary opportunities and different challenges with high-content screening and high-throughput imaging. Furthermore, we provide a comprehensive overview of the available platforms that can be used for image analysis, which enable community-driven efforts in the development of image-based systems biology. PMID:23578051

  19. Synthetic Biology and Biosecurity: Challenging the “Myths”

    PubMed Central

    Jefferson, Catherine; Lentzos, Filippa; Marris, Claire

    2014-01-01

    Synthetic biology, a field that aims to “make biology easier to engineer,” is routinely described as leading to an increase in the “dual-use” threat, i.e., the potential for the same scientific research to be “used” for peaceful purposes or “misused” for warfare or terrorism. Fears have been expressed that the “de-skilling” of biology, combined with online access to the genomic DNA sequences of pathogenic organisms and the reduction in price for DNA synthesis, will make biology increasingly accessible to people operating outside well-equipped professional research laboratories, including people with malevolent intentions. The emergence of do-it-yourself (DIY) biology communities and of the student iGEM competition has come to epitomize this supposed trend toward greater ease of access and the associated potential threat from rogue actors. In this article, we identify five “myths” that permeate discussions about synthetic biology and biosecurity, and argue that they embody misleading assumptions about both synthetic biology and bioterrorism. We demonstrate how these myths are challenged by more realistic understandings of the scientific research currently being conducted in both professional and DIY laboratories, and by an analysis of historical cases of bioterrorism. We show that the importance of tacit knowledge is commonly overlooked in the dominant narrative: the focus is on access to biological materials and digital information, rather than on human practices and institutional dimensions. As a result, public discourse on synthetic biology and biosecurity tends to portray speculative scenarios about the future as realities in the present or the near future, when this is not warranted. We suggest that these “myths” play an important role in defining synthetic biology as a “promissory” field of research and as an “emerging technology” in need of governance. PMID:25191649

  20. Methods for biological data integration: perspectives and challenges

    PubMed Central

    Gligorijević, Vladimir; Pržulj, Nataša

    2015-01-01

    Rapid technological advances have led to the production of different types of biological data and enabled construction of complex networks with various types of interactions between diverse biological entities. Standard network data analysis methods were shown to be limited in dealing with such heterogeneous networked data and consequently, new methods for integrative data analyses have been proposed. The integrative methods can collectively mine multiple types of biological data and produce more holistic, systems-level biological insights. We survey recent methods for collective mining (integration) of various types of networked biological data. We compare different state-of-the-art methods for data integration and highlight their advantages and disadvantages in addressing important biological problems. We identify the important computational challenges of these methods and provide a general guideline for which methods are suited for specific biological problems, or specific data types. Moreover, we propose that recent non-negative matrix factorization-based approaches may become the integration methodology of choice, as they are well suited and accurate in dealing with heterogeneous data and have many opportunities for further development. PMID:26490630

  1. Synthetic biology of cyanobacteria: unique challenges and opportunities

    PubMed Central

    Berla, Bertram M.; Saha, Rajib; Immethun, Cheryl M.; Maranas, Costas D.; Moon, Tae Seok; Pakrasi, Himadri B.

    2013-01-01

    Photosynthetic organisms, and especially cyanobacteria, hold great promise as sources of renewably-produced fuels, bulk and specialty chemicals, and nutritional products. Synthetic biology tools can help unlock cyanobacteria's potential for these functions, but unfortunately tool development for these organisms has lagged behind that for S. cerevisiae and E. coli. While these organisms may in many cases be more difficult to work with as “chassis” strains for synthetic biology than certain heterotrophs, the unique advantages of autotrophs in biotechnology applications as well as the scientific importance of improved understanding of photosynthesis warrant the development of these systems into something akin to a “green E. coli.” In this review, we highlight unique challenges and opportunities for development of synthetic biology approaches in cyanobacteria. We review classical and recently developed methods for constructing targeted mutants in various cyanobacterial strains, and offer perspective on what genetic tools might most greatly expand the ability to engineer new functions in such strains. Similarly, we review what genetic parts are most needed for the development of cyanobacterial synthetic biology. Finally, we highlight recent methods to construct genome-scale models of cyanobacterial metabolism and to use those models to measure properties of autotrophic metabolism. Throughout this paper, we discuss some of the unique challenges of a diurnal, autotrophic lifestyle along with how the development of synthetic biology and biotechnology in cyanobacteria must fit within those constraints. PMID:24009604

  2. Miniaturized biological and electrochemical fuel cells: challenges and applications.

    PubMed

    Yang, Jie; Ghobadian, Sasan; Goodrich, Payton J; Montazami, Reza; Hashemi, Nastaran

    2013-09-14

    This paper discusses the fundamentals and developments of miniaturized fuel cells, both biological and electrochemical. An overview of microfluidic fuel cells, miniaturized microbial fuel cells, enzymatic biofuel cells, and implanted biofuel cells in an attempt to provide green energy and to power implanted microdevices is provided. Also, the challenges and applications of each type of fuel cell are discussed in detail. Most recent developments in fuel cell technologies such as novel catalysts, compact designs, and fabrication methods are reviewed. PMID:23503374

  3. BIOLOGICAL WASTE AIR TREATMENT IN BIOTRICKLING FILTERS. (R825392)

    EPA Science Inventory

    Abstract

    Recent studies in the area of biological waste air treatment in biotrickling filters have addressed fundamental key issues, such as biofilm architecture, microbiology of the process culture and means to control accumulation of biomass. The results from these s...

  4. Challenges in Analyzing the Biological Effects of Resveratrol.

    PubMed

    Erdogan, Cihan Suleyman; Vang, Ole

    2016-01-01

    The suggested health effects (e.g., disease prevention) of dietary bioactive compounds such as resveratrol are challenging to prove in comparison to man-made drugs developed for therapeutic purposes. Dietary bioactive compounds have multiple cellular targets and therefore have a variety of biological effects. Extrapolating the biological effects of dietary compounds from in vitro and in vivo animal experiments to humans may lead to over- or under-estimation of the effect and role of these compounds. The present paper will discuss a few of these challenges and suggest directions for future research. Questions we address include: (1) Is the combinatorial effect of resveratrol and other compounds real? (2) What are the real and relevant doses of resveratrol after administration? and (3) Is it possible to estimate the preventive effect of resveratrol by clinical trials using standard experimental designs? The examples concerning resveratrol taken from the scientific literature are mainly from 2010 and later. The challenges pointed out in this review are similar to most naturally occurring bioactive compounds. PMID:27294953

  5. Challenges in Analyzing the Biological Effects of Resveratrol

    PubMed Central

    Erdogan, Cihan Suleyman; Vang, Ole

    2016-01-01

    The suggested health effects (e.g., disease prevention) of dietary bioactive compounds such as resveratrol are challenging to prove in comparison to man-made drugs developed for therapeutic purposes. Dietary bioactive compounds have multiple cellular targets and therefore have a variety of biological effects. Extrapolating the biological effects of dietary compounds from in vitro and in vivo animal experiments to humans may lead to over- or under-estimation of the effect and role of these compounds. The present paper will discuss a few of these challenges and suggest directions for future research. Questions we address include: (1) Is the combinatorial effect of resveratrol and other compounds real? (2) What are the real and relevant doses of resveratrol after administration? and (3) Is it possible to estimate the preventive effect of resveratrol by clinical trials using standard experimental designs? The examples concerning resveratrol taken from the scientific literature are mainly from 2010 and later. The challenges pointed out in this review are similar to most naturally occurring bioactive compounds. PMID:27294953

  6. Development of biosensors for the detection of biological warfare agents: its issues and challenges.

    PubMed

    Kumar, Harish; Rani, Renu

    2013-01-01

    This review discusses current development in biosensors for the detection of biological warfare agents (BWAs). BWAs include bacteria, virus and toxins that are added deliberately into air water and food to spread terrorism and cause disease or death. The rapid and unambiguous detection and identification of BWAs with early warning signals for detecting possible biological attack is a major challenge for government agencies particularly military and health. The detection devices--biosensors--can be classified (according to their physicochemical transducers) into four types: electrochemical, nucleic acid, optical and piezoelectric. Advantages and limitations of biosensors are discussed in this review followed by an assessment of the current state of development of different types of biosensors. The research and development in biosensors for biological warfare agent detection is of great interest for the public as well as for governments. PMID:24244972

  7. Challenges and Opportunities of Air Quality Management in Mexico City

    NASA Astrophysics Data System (ADS)

    Paramo, V.

    2013-05-01

    The Mexico City Metropolitan Area (MCMA) is located in the central plateau of Mexico and is the capital of the country. Its natural characteristics present favorable conditions for air pollution formation and accumulation: mountains surrounding the city, frequent thermal inversions, high isolation all around the year and weak winds. To these natural conditions, a population of more than 20 million inhabitants, a fleet of 4.5 million vehicles and more than 4 thousands industries, make air quality management a real challenge for governments of the region. Intensive air quality improvement actions and programs began at the end of the 1980's and continued nowadays. Since then criteria air pollutants concentrations have decreased in such a way that currently most of pollutants meet the Mexican air quality standards, except for ozone and particulate matter. Applied measures comprised of fuel quality improvements, fuel replacements, regulations for combustion processes, closing of high polluting refineries and industries, regulations of emissions for new and on road vehicles, mandatory I/M programs for vehicles, circulation restrictions for vehicles (Day without car program), alert program for elevated air pollution episodes, improvement of public transportation, among others. Recent researches (MILAGRO 2006 campaign) found that currently it is necessary to implement emissions reduction actions for Volatile Organic Compounds, particulate matter with a diameter of less than 2.5 micrometers PM2.5 and Nitrogen Oxides, in order to reduce concentrations of ozone and fine particulate matter. Among the new measures to be implemented are: regulations for VOCs emissions in the industry and commercial sectors; regulation of the diesel fleet that includes fleets renewal, filters and particulate traps for in use vehicles and regulation of the cargo fleet; new schemes for reducing the number of vehicles circulating in the city; implementation of non-motorized mobility programs; among

  8. Mathematical and Computational Challenges in Population Biology and Ecosystems Science

    NASA Technical Reports Server (NTRS)

    Levin, Simon A.; Grenfell, Bryan; Hastings, Alan; Perelson, Alan S.

    1997-01-01

    Mathematical and computational approaches provide powerful tools in the study of problems in population biology and ecosystems science. The subject has a rich history intertwined with the development of statistics and dynamical systems theory, but recent analytical advances, coupled with the enhanced potential of high-speed computation, have opened up new vistas and presented new challenges. Key challenges involve ways to deal with the collective dynamics of heterogeneous ensembles of individuals, and to scale from small spatial regions to large ones. The central issues-understanding how detail at one scale makes its signature felt at other scales, and how to relate phenomena across scales-cut across scientific disciplines and go to the heart of algorithmic development of approaches to high-speed computation. Examples are given from ecology, genetics, epidemiology, and immunology.

  9. Honeywell's organic air vehicle chemical-biological sensing platform

    NASA Astrophysics Data System (ADS)

    Cole, Barry E.; Krafthefer, Brian; Knee, Daniel; Fulton, Vaughn M.; Law, Kristen

    2004-12-01

    Unmanned air vehicles (UAVs) today are mostly used for reconnaissance and sometimes weapons delivery. Remote sensing of chemical-biological (CB) agents is another beneficial use of UAVs. While remote sensing of CB agents can be done by LIDAR spectroscopy, this technology is less spatially precise and less sensitive than actual measurements on a collected sample. One family of UAVs of particularly unique benefit for CB sampling and in-flight analysis is the Honeywell family of Organic Air Vehicles (OAVs). This vehicle with its ability to hover and stare has the unique ability among UAVs to collect and analyze chem-bio samples from a specific location over extended periods of time. Such collections are not possible with other micro-air-vehicles (MAVs) that only operate in fly-by mode. This paper describes some of the Honeywell OAV features that are conducive to CB detection.

  10. Biological effects of air pollution in Sao Paulo and Cubatao

    SciTech Connect

    Boehm, G.M.S.; Saldiva, P.H.; Pasqualucci, C.A.; Massad, E.; Martins M de, E.; Zin, W.A.; Cardoso, W.V.; Criado, P.M.; Komatsuzaki, M.; Sakae, R.S. )

    1989-08-01

    Rats were used as biological indicators of air quality in two heavily polluted Brazilian towns: Sao Paulo and Cubatao. They were exposed for 6 months to ambient air in areas where the pollution was known to be severe. The following parameters were studied and compared to those of control animals: respiratory mechanics, mucociliary transport, morphometry of respiratory epithelium and distal air spaces, and general morphological alterations. The results showed lesions of the distal and upper airways in rats exposed in Cubatao, whereas the animals from Sao Paulo showed only alterations of the upper airways but of greater intensity than those observed in the Cubatao group. There are both qualitative and quantitative differences in the pollutants of these places: in Sao Paulo automobile exhaust gases dominate and in Cubatao the pollution is due mainly to particulates of industrial sources. The correlation of the pathological findings with the pollutants is discussed and it is concluded that biological indicators are useful to monitor air pollutions which reached dangerous levels in Sao Paulo and Cubatao.

  11. Proteomics: Challenges, Techniques and Possibilities to Overcome Biological Sample Complexity

    PubMed Central

    Chandramouli, Kondethimmanahalli; Qian, Pei-Yuan

    2009-01-01

    Proteomics is the large-scale study of the structure and function of proteins in complex biological sample. Such an approach has the potential value to understand the complex nature of the organism. Current proteomic tools allow large-scale, high-throughput analyses for the detection, identification, and functional investigation of proteome. Advances in protein fractionation and labeling techniques have improved protein identification to include the least abundant proteins. In addition, proteomics has been complemented by the analysis of posttranslational modifications and techniques for the quantitative comparison of different proteomes. However, the major limitation of proteomic investigations remains the complexity of biological structures and physiological processes, rendering the path of exploration paved with various difficulties and pitfalls. The quantity of data that is acquired with new techniques places new challenges on data processing and analysis. This article provides a brief overview of currently available proteomic techniques and their applications, followed by detailed description of advantages and technical challenges. Some solutions to circumvent technical difficulties are proposed. PMID:20948568

  12. Mathematics and biology: The interface, challenges and opportunities

    SciTech Connect

    Levin, S.A. )

    1992-06-01

    The interface between mathematics and biology has long been a rich area of research, with mutual benefit to each supporting discipline. Traditional areas of investigation, such as population genetics, ecology, neurobiology, and 3-D reconstructions, have flourished, despite a rather meager environment for the funding of such work. In the past twenty years, the kind and scope of such interactions between mathematicians and biologists have changed dramatically, reaching out to encompass areas of both biology and mathematics that previously had not benefited. At the same time, with the closer integration of theory and experiment, and the increased reliance on high-speed computation, the costs of such research grew, though not the opportunities for funding. The perception became reinforced, both within the research community and at funding agencies, that although these interactions were expanding, they were not doing so at the rate necessary to meet the opportunities and needs. A workshop was held in Washington, DC, between April 28 and May 3, 1990 which drew together a broadly based group of researchers to synthesize conclusions from a group of working papers and extended discussions. The result is the report presented here, which we hope will provide a guide and stimulus to research in mathematical and computational biology for at least the next decade. The report identifies a number of grand challenges, representing a broad consensus among the participants.

  13. Modelling biological evolution: recent progress, current challenges and future direction

    PubMed Central

    Morozov, Andrew

    2013-01-01

    Mathematical modelling is widely recognized as a powerful and convenient theoretical tool for investigating various aspects of biological evolution and explaining the existing genetic complexity of the real world. It is increasingly apparent that understanding the key mechanisms involved in the processes of species biodiversity, natural selection and inheritance, patterns of animal behaviour and coevolution of species in complex ecological systems is simply impossible by means of laboratory experiments and field observations alone. Mathematical models are so important because they provide wide-ranging exploration of the problem without a need for experiments with biological systems—which are usually expensive, often require long time and can be potentially dangerous. However, as the number of theoretical works on modelling biological evolution is constantly accelerating each year as different mathematical frameworks and various aspects of evolutionary problems are considered, it is often hard to avoid getting lost in such an immense flux of publications. The aim of this issue of Interface Focus is to provide a useful guide to important recent findings in some key areas in modelling biological evolution, to refine the existing challenges and to outline possible future directions. In particular, the following topics are addressed here by world-leading experts in the modelling of evolution: (i) the origins of biodiversity observed in ecosystems and communities; (ii) evolution of decision-making by animals and the optimal strategy of populations; (iii) links between evolutionary and ecological processes across different time scales; (iv) quantification of biological information in evolutionary models; and (v) linking theoretical models with empirical data. Most of the works presented here are in fact contributed papers from the international conference ‘Modelling Biological Evolution’ (MBE 2013), which took place in Leicester, UK, in May 2013 and brought together

  14. Evaluation of biological air filters for livestock ventilation air by membrane inlet mass spectrometry.

    PubMed

    Feilberg, Anders; Adamsen, Anders P S; Lindholst, Sabine; Lyngbye, Merete; Schäfer, Annette

    2010-01-01

    Biological air filters have been proposed as a cost-effective technology for reducing odor emissions from intensive swine production facilities. In this work we present results from the application of membrane inlet mass spectrometry (MIMS) for continuously monitoring the removal of odorous compounds in biological air filters. The sensitivity and selectivity were tested on synthetic samples of selected odorous compounds, and linearity and detection limits in the lower ppb range were demonstrated for all compounds tested (methanethiol, dimethyl sulfide, carboxylic acids, 4-methylphenol, aldehydes, indole, and skatole) except trimethylamine. The method was applied in situ at two full-scale filters installed at swine houses. The results have been compared with analyses by thermal desorption gas chromatography-mass spectrometry (TD-GC/MS), and odor was measured by olfactometry. By comparison with TD-GC/MS, observed MIMS signals were assigned to 4-methylphenol, 4-ethylphenol, indole, skatole, the sum of volatile reduced organic sulfur compounds (ROS), and three subgroups of carboxylic acids. The removal rates were observed to be related to air-water partitioning with removal efficiencies in the range of 0 to 50% for low-soluble organic sulfur compounds and high removal efficiencies (typically 80-100%) for more soluble phenols and carboxylic acids. Based on the results and published odor threshold values, it is estimated that the low removal efficiency of ROS is the main limitation for achieving a higher odor reduction. PMID:20400604

  15. THE CHALLENGES OF AIR POLLUTION AND RESIDUAL RISK ASSESSMENT (EDITORIAL)

    EPA Science Inventory

    The Clean Air Act (CAA), a comprehensive federal law that regulates air pollution from stationary and mobile sources, was first passed in 1963. The act has provided the primary framework for protecting human health and the environment. The CAA divides air pollutants into "criteri...

  16. Biological removal of carbon disulfide from waste air streams

    SciTech Connect

    Hugler, W.; Acosta, C.; Revah, S.

    1999-09-30

    A pilot-scale biological control system for the treatment of 3,400 m{sup 3} h{sup {minus}1} of a gaseous stream containing up to 7.8 g CS{sub 2} m{sup {minus}3} and trace amounts of hydrogen sulfide (H{sub 2}S) was installed in a cellulose sponge manufacturing facility. The objective was to demonstrate the capability of the process to attain sustained removal efficiencies of 90% for CS{sub 2} and 99% for H{sub 2}S. The system consisted of two sequential biotrickling reactors, which had been previously inoculated with an adapted microbial consortium. During the pilot test, stable removal efficiency and elimination capacity of +90% and 220g CS{sub 2} m{sup {minus}3} h{sup {minus}1}, respectively, were attained with an empty bed residence time (EBTR) of 33 seconds for a period of several weeks. Efficiencies greater than 99% were always obtained for H{sub 2}S. Based on the results, the system was determined to be an effective process to remediate waste air streams containing reduced sulfur compounds generated at cellulose sponge facilities.

  17. BIOLOGICAL CONSIDERATIONS IN MARINE ENCLOSURE EXPERIMENTS: CHALLENGES AND REVELATIONS

    EPA Science Inventory

    Logistical considerations have usually dictated that components of estuarine systems be considered in isolation from one another whether in the laboratory or field. ence, biological disciplines usually have specialized to a single area or process. y contrast, enclosure or mesocos...

  18. Persulfides: Current Knowledge and Challenges in Chemistry and Chemical Biology

    PubMed Central

    Park, Chung-Min; Weerasinghe, Laksiri; Day, Jacob J.; Fukuto, Jon M.; Xian, Ming

    2015-01-01

    Recent studies conducted in hydrogen sulfide (H2S) signaling have revealed potential importance of persulfides (RSSH) in redox biology. The inherent instability of RSSH makes these species difficult to study and sometimes controversial results are reported. In this review article we summarize known knowledge about both small molecule persulfides and protein persulfides. Their fundamental physical and chemical properties such as preparation/formation and reactivity are discussed. The biological implications of persulfides and their detection methods are also discussed. PMID:25969163

  19. Modularity and emergence: biology's challenge in understanding life.

    PubMed

    Lüttge, U

    2012-11-01

    This essay juxtaposes modularity and emergence in the consideration of biological systems at various scalar levels of spatio-temporal organisation. It is noted that reductionism, specialisation and modularity are basic prerequisites for understanding life. It is realised that increased progress of scientific biology in elucidating mechanisms at the level of modular components supports the accusation that the more it advances in materialistic description of details, the more it diverts from understanding the innate properties of life. It is clear that modularity, by taking the whole as the sum of its parts, is insufficient for understanding living systems. At the same time, however, there is emergence, as advocated by Robert Laughlin. Emergence after the integration of modules leads to completely new properties of individual organisms as unique unitary entities, and also of systems of organisms with synergistic and antagonistic interactions of the integrated species. The discussion is predominantly based on examples from plant biology. At hierarchically higher scalar levels emergent biological systems are networks integrating species, biotopes, ecosystems and the entire biosphere of Earth, also named Gaia by James Lovelock, in a natural scientific respect. While investigating modules remains essential, biology as a nature science needs to merge and integrate such information to be able to unfold emergence. Through efforts towards visualising and understanding emergent diversity and complexity, the research discipline of biology will provide invaluable contributions to understanding life, and thus refute the accusation that it diverts from embracing the innate properties of life. PMID:23016697

  20. Clinical challenges of persistent pulmonary air-leaks--case report.

    PubMed

    van Zeller, M; Bastos, P; Fernandes, G; Magalhães, A

    2014-01-01

    Air leaks are a common problem after pulmonary resection and can be a source of significant morbidity and mortality. The authors describe the case of a 68-year-old male patient who presented with a persistent air-leak after pulmonary resection. Watchful waiting, surgical procedures, as well as medical therapy like pleurodesis and implantation of endobronchial one-way valves on the bronchial segments identified using systematic occlusion of the bronchial segments, were all tried unsuccessfully. During that time the patient remained hospitalized with a chest tube. The instillation of methylene blue through the chest tube was used to identify the segments leading to the persistent air-leak; this enabled successful endobronchial valve placement which sufficiently reduced the size of the air-leak so that the chest tube could be removed. Nonsurgical approaches seem promising and, for some patients may be the only treatment option after all conventional treatments have failed or are considered too high risk. PMID:24268518

  1. Biological physics in México: Review and new challenges.

    PubMed

    Hernández-Lemus, Enrique

    2011-03-01

    Biological and physical sciences possess a long-standing tradition of cooperativity as separate but related subfields of science. For some time, this cooperativity has been limited by their obvious differences in methods and views. Biological physics has recently experienced a kind of revival (or better a rebirth) due to the growth of molecular research on animate matter. New avenues for research have been opened for both theoretical and experimental physicists. Nevertheless, in order to better travel for such paths, the contemporary biological physicist should be armed with a set of specialized tools and methods but also with a new attitude toward multidisciplinarity. In this review article, we intend to somehow summarize what has been done in the past (in particular, as an example we will take a closer look at the Mexican case), to show some examples of fruitful investigations in the biological physics area and also to set a proposal of new curricula for physics students and professionals interested in applying their science to get a better understanding of the physical basis of biological function. PMID:22379227

  2. Challenges to acellular biological scaffold mediated skeletal muscle tissue regeneration.

    PubMed

    Corona, Benjamin T; Greising, Sarah M

    2016-10-01

    Volumetric muscle loss (VML) injuries present a complex and heterogeneous clinical problem that results in a chronic loss of muscle tissue and strength. The primary limitation to muscle tissue regeneration after VML injury is the frank loss of all native muscle constituents in the defect, especially satellite cells and the basal lamina. Recent advancements in regenerative medicine have set forth encouraging and emerging translational and therapeutic options for these devastating injuries including the surgical implantation of acellular biological scaffolds. While these biomaterials can modulate the wound environment, the existing data do not support their capacity to promote appreciable muscle fiber regeneration that can contribute to skeletal muscle tissue functional improvements. An apparent restriction of endogenous satellite cell (i.e., pax7(+)) migration to acellular biological scaffolds likely underlies this deficiency. This work critically evaluates the role of an acellular biological scaffold in orchestrating skeletal muscle tissue regeneration, specifically when used as a regenerative medicine approach for VML injury. PMID:27472161

  3. Emotional Avoidance and Panicogenic Responding to a Biological Challenge Procedure

    ERIC Educational Resources Information Center

    Karekla, Maria; Forsyth, John P.; Kelly, Megan M.

    2004-01-01

    Healthy undergraduates high (n = 27) and low (n = 27) in experiential avoidance underwent twelve 20 s inhalations of 20% carbon dioxide-enriched air, while physiological (e.g., skin conductance, heart rate, EMG, and end-tidal CO[subscript 2]) and subjective (e.g., subjective units of distress, evaluative ratings, number and severity of panic…

  4. A decade of molecular cell biology: achievements and challenges

    PubMed Central

    Akhtar, Asifa; Fuchs, Elaine; Mitchison, Tim; Shaw, Reuben J.; St Johnston, Daniel; Strasser, Andreas; Taylor, Susan; Walczak, Claire; Zerial, Marino

    2012-01-01

    Nature Reviews Molecular Cell Biology celebrated its 10-year anniversary during this past year with a series of specially commissioned articles. To complement this, here we have asked researchers from across the field for their insights into how molecular cell biology research has evolved during this past decade, the key concepts that have emerged and the most promising interfaces that have developed. Their comments highlight the broad impact that particular advances have had, some of the basic understanding that we still require, and the collaborative approaches that will be essential for driving the field forward. PMID:21941276

  5. New challenges to air/gas cleaning systems

    SciTech Connect

    Kovach, J.L.

    1997-08-01

    This paper discusses the need for changes in the design and manufacturing of air and gas cleaning systems to meet waste management and site remediation requirements. Current design and manufacturing practices are primarily directed toward evaluating operational problems with existing systems in nuclear reactor facilities. However, nuclear waste management needs have developed which are much broader in scope and have different processing conditions. Numerous examples of air cleaning needs for waste management activities are provided; the major differences from operating facility needs are the requirement for continuous effluent treatment under widely different processing conditions. Related regulatory issues are also discussed briefly. 1 ref.

  6. Developing Nontraditional Biology Labs to Challenge Students & Enhance Learning

    ERIC Educational Resources Information Center

    Cherif, Abour H.; Siuda, JoElla E.; Movahedzadeh, Farahnaz

    2013-01-01

    Laboratory experience and skills are not only essential for success in science studies, but are the most exciting and rewarding aspects of science for students. As a result, many biology teachers have become critical of the efficacy of cookbook-type laboratory activities as well as the purposes, practices, and learning outcomes of lab experiments…

  7. Near-source air quality assessment: challenges and collaboration

    EPA Science Inventory

    This presentation is to give a general overview of near-source air pollution concerns and recent EPA projects (near-road, near-rail, near-port), as well as explaining how these projects were implemented through collaboration internally and externally.

  8. Local therapy, systemic benefit: challenging the paradigm of biological predeterminism.

    PubMed

    Kurtz, J M

    2006-04-01

    This paper briefly reviews the historical evolution of paradigms that have been purported to characterise the clinical behaviour of breast cancer, with the intention of guiding treatment approaches. Results from randomised clinical trials and the explosion of knowledge in the area of cancer biology have discredited the monolithic paradigms that had dominated thinking about breast cancer in the past. Contemporary notions of breast cancer biology recognise that, although some cancers disseminate well before becoming clinically detectable, acquisition of a metastatic phenotype can occur at any point (or not at all) in the local evolution of the tumour. As a consequence, both systemic and timely local--regional therapies can be expected to influence disease dissemination and patient survival. This is consistent with results observed in clinical trials, overviews of which indicate that prevention of four local recurrences will, on the average, prevent one death from breast cancer. Optimisation of local-regional treatment is an important goal in breast cancer management. PMID:16605046

  9. Biological Stability of Drinking Water: Controlling Factors, Methods, and Challenges.

    PubMed

    Prest, Emmanuelle I; Hammes, Frederik; van Loosdrecht, Mark C M; Vrouwenvelder, Johannes S

    2016-01-01

    Biological stability of drinking water refers to the concept of providing consumers with drinking water of same microbial quality at the tap as produced at the water treatment facility. However, uncontrolled growth of bacteria can occur during distribution in water mains and premise plumbing, and can lead to hygienic (e.g., development of opportunistic pathogens), aesthetic (e.g., deterioration of taste, odor, color) or operational (e.g., fouling or biocorrosion of pipes) problems. Drinking water contains diverse microorganisms competing for limited available nutrients for growth. Bacterial growth and interactions are regulated by factors, such as (i) type and concentration of available organic and inorganic nutrients, (ii) type and concentration of residual disinfectant, (iii) presence of predators, such as protozoa and invertebrates, (iv) environmental conditions, such as water temperature, and (v) spatial location of microorganisms (bulk water, sediment, or biofilm). Water treatment and distribution conditions in water mains and premise plumbing affect each of these factors and shape bacterial community characteristics (abundance, composition, viability) in distribution systems. Improved understanding of bacterial interactions in distribution systems and of environmental conditions impact is needed for better control of bacterial communities during drinking water production and distribution. This article reviews (i) existing knowledge on biological stability controlling factors and (ii) how these factors are affected by drinking water production and distribution conditions. In addition, (iii) the concept of biological stability is discussed in light of experience with well-established and new analytical methods, enabling high throughput analysis and in-depth characterization of bacterial communities in drinking water. We discussed, how knowledge gained from novel techniques will improve design and monitoring of water treatment and distribution systems in order

  10. Biological Stability of Drinking Water: Controlling Factors, Methods, and Challenges

    PubMed Central

    Prest, Emmanuelle I.; Hammes, Frederik; van Loosdrecht, Mark C. M.; Vrouwenvelder, Johannes S.

    2016-01-01

    Biological stability of drinking water refers to the concept of providing consumers with drinking water of same microbial quality at the tap as produced at the water treatment facility. However, uncontrolled growth of bacteria can occur during distribution in water mains and premise plumbing, and can lead to hygienic (e.g., development of opportunistic pathogens), aesthetic (e.g., deterioration of taste, odor, color) or operational (e.g., fouling or biocorrosion of pipes) problems. Drinking water contains diverse microorganisms competing for limited available nutrients for growth. Bacterial growth and interactions are regulated by factors, such as (i) type and concentration of available organic and inorganic nutrients, (ii) type and concentration of residual disinfectant, (iii) presence of predators, such as protozoa and invertebrates, (iv) environmental conditions, such as water temperature, and (v) spatial location of microorganisms (bulk water, sediment, or biofilm). Water treatment and distribution conditions in water mains and premise plumbing affect each of these factors and shape bacterial community characteristics (abundance, composition, viability) in distribution systems. Improved understanding of bacterial interactions in distribution systems and of environmental conditions impact is needed for better control of bacterial communities during drinking water production and distribution. This article reviews (i) existing knowledge on biological stability controlling factors and (ii) how these factors are affected by drinking water production and distribution conditions. In addition, (iii) the concept of biological stability is discussed in light of experience with well-established and new analytical methods, enabling high throughput analysis and in-depth characterization of bacterial communities in drinking water. We discussed, how knowledge gained from novel techniques will improve design and monitoring of water treatment and distribution systems in order

  11. Uncertainty, ensembles and air quality dispersion modeling: applications and challenges

    NASA Astrophysics Data System (ADS)

    Dabberdt, Walter F.; Miller, Erik

    The past two decades have seen significant advances in mesoscale meteorological modeling research and applications, such as the development of sophisticated and now widely used advanced mesoscale prognostic models, large eddy simulation models, four-dimensional data assimilation, adjoint models, adaptive and targeted observational strategies, and ensemble and probabilistic forecasts. Some of these advances are now being applied to urban air quality modeling and applications. Looking forward, it is anticipated that the high-priority air quality issues for the near-to-intermediate future will likely include: (1) routine operational forecasting of adverse air quality episodes; (2) real-time high-level support to emergency response activities; and (3) quantification of model uncertainty. Special attention is focused here on the quantification of model uncertainty through the use of ensemble simulations. Application to emergency-response dispersion modeling is illustrated using an actual event that involved the accidental release of the toxic chemical oleum. Both surface footprints of mass concentration and the associated probability distributions at individual receptors are seen to provide valuable quantitative indicators of the range of expected concentrations and their associated uncertainty.

  12. Organism, machine, artifact: The conceptual and normative challenges of synthetic biology.

    PubMed

    Holm, Sune; Powell, Russell

    2013-12-01

    Synthetic biology is an emerging discipline that aims to apply rational engineering principles in the design and creation of organisms that are exquisitely tailored to human ends. The creation of artificial life raises conceptual, methodological and normative challenges that are ripe for philosophical investigation. This special issue examines the defining concepts and methods of synthetic biology, details the contours of the organism-artifact distinction, situates the products of synthetic biology vis-à-vis this conceptual typology and against historical human manipulation of the living world, and explores the normative implications of these conclusions. In addressing the challenges posed by emerging biotechnologies, new light can be thrown on old problems in the philosophy of biology, such as the nature of the organism, the structure of biological teleology, the utility of engineering metaphors and methods in biological science, and humankind's relationship to nature. PMID:23810468

  13. Dealing with Creationist Challenges. What European Biology Teachers Might Expect in the Classroom

    ERIC Educational Resources Information Center

    Blancke, Stefaan; Boudry, Maarten; Braeckman, Johan; De Smedt, Johan; De Cruz, Helen

    2011-01-01

    Creationists are becoming more active in Europe. We expect that European biology teachers will be more frequently challenged by students who introduce creationist misconceptions of evolutionary theory into the classroom. Moreover, research suggests that not all teachers are equally prepared to deal with them. To make biology teachers aware of what…

  14. The year's new drugs & biologics 2014 - Part II: trends & challenges.

    PubMed

    Graul, A I; Serebrov, M; Cruces, E; Tracy, M; Dulsat, C

    2015-02-01

    2014 was a year of continued high activity in the pharma and biotech industry, as evidenced in part I of this annual two-part review article published last month in this journal (1). As of December 23, 2014, a total of 55 new chemical and biological entities had reached their first markets worldwide, together with another 29 important new line extensions. Another 19 products were approved for the first time during the year but not yet launched by December 23. Furthermore, during the now-traditional year-end sprint, several regulatory agencies issued last-minute approvals for other compounds that missed the deadline for inclusion in that article, bringing the total of new approvals for the year to a somewhat higher number. In addition to the successful development, registration and launch of new drugs and biologics, there are various other trends and tendencies that serve as indicators of the overall health and status of the industry. These include the pursuit of novel programs designed by regulators to stimulate the development of drugs for diseases that are currently under-treated; the regular and pragmatic culling by companies of their R&D pipelines; and the decision to unify pipelines, portfolios and sales forces through mergers and acquisitions. PMID:25756068

  15. Biological Augmentation of Flexor Tendon Repair: A Challenging Cellular Landscape.

    PubMed

    Loiselle, Alayna E; Kelly, Meghan; Hammert, Warren C

    2016-01-01

    Advances in surgical technique and rehabilitation have transformed zone II flexor tendon injuries from an inoperable no-man's land to a standard surgical procedure. Despite these advances, many patients develop substantial range of motion-limiting adhesions after primary flexor tendon repair. These suboptimal outcomes may benefit from biologic augmentation or intervention during the flexor tendon healing process. However, there is no consensus biological approach to promote satisfactory flexor tendon healing; we propose that insufficient understanding of the complex cellular milieu in the healing tendon has hindered the development of successful therapies. This article reviews recent advances in our understanding of the cellular components of flexor tendon healing and adhesion formation, including resident tendon cells, synovial sheath, macrophages, and bone marrow-derived cells. In addition, it examines molecular approaches that have been used in translational animal models to improve flexor tendon healing and gliding function, with a specific focus on progress made using murine models of healing. This information highlights the importance of understanding and potentially exploiting the heterogeneity of the cellular environment during flexor tendon healing, to define rational therapeutic approaches to improve healing outcomes. PMID:26652792

  16. Interfacing DNA nanodevices with biology: challenges, solutions and perspectives

    NASA Astrophysics Data System (ADS)

    Vinther, Mathias; Kjems, Jørgen

    2016-08-01

    The cellular machinery performs millions of complex reactions with extreme precision at nanoscale. From studying these reactions, scientists have become inspired to build artificial nanosized molecular devices with programmed functions. One of the fundamental tools in designing and creating these nanodevices is molecular self-assembly. In nature, deoxyribonucleic acid (DNA) is inarguably one of the most remarkable self-assembling molecules. Governed by the Watson–Crick base-pairing rules, DNA assembles with a structural reliability and predictability based on sequence composition unlike any other complex biological polymer. This consistency has enabled rational design of hundreds of two- and three-dimensional shapes with a molecular precision and homogeneity not preceded by any other known technology at the nanometer scale. During the last two decades, DNA nanotechnology has undergone a rapid evolution pioneered by the work of Nadrian Seeman (Kallenbach et al 1983 Nature 205 829–31). Especially the introduction of the versatile DNA Origami technique by Rothemund (2006 Nature 440 297–302) led to an efflorescence of new DNA-based self-assembled nanostructures (Andersen et al 2009 Nature 459 73–6, Douglas et al 2009 Nature 459 414–8, Dietz et al 2009 Science 325 725–30, Han et al 2011 Science 332 342–6, Iinuma et al 2014 Science 344 65–9), and variations of this technique have contributed to an increasing repertoire of DNA nanostructures (Wei et al 2012 Nature 485 623–6, Ke et al 2012 Science 338 1177–83, Benson et al 2015 Nature 523 441–4, Zhang et al 2015 Nat. Nanotechnol. 10 779–84, Scheible et al 2015 Small 11 5200–5). These advances have naturally triggered the question: What can these DNA nanostructures be used for? One of the leading proposals of use for DNA nanotechnology has been in biology and biomedicine acting as a molecular ‘nanorobot’ or smart drug interacting with the cellular machinery. In this review, we will explore and

  17. Coding ethical behaviour: the challenges of biological weapons.

    PubMed

    Rappert, Brian

    2003-10-01

    Since 11 September 2001 and the anthrax attacks that followed in the US, public and policy concerns about the security threats posed by biological weapons have increased significantly. With this has come an expansion of those activities in civil society deemed as potential sites for applying security controls. This paper examines the assumptions and implications of national and international efforts in one such area: how a balance or integration can take place between security and openness in civilian biomedical research through devising professional codes of conduct for scientists. Future attempts to establish such codes must find a way of reconciling or at least addressing dilemmatic and tension-ridden issues about the appropriateness of research; a topic that raises fundamental questions about the position of science within society. PMID:14652899

  18. [High content screening in chemical biology: overview and main challenges].

    PubMed

    Brodin, Priscille; DelNery, Elaine; Soleilhac, Emmanuelle

    2015-02-01

    The last two decades have seen the development of high content screening (HCS) methodology and its adaptation for the evaluation of small molecules as drug candidates or their use as chemical tools for research purpose. HCS was initially set-up for the understanding of the mechanism of action of compounds by testing them on cell based-assays for pharmacological and toxicological studies. Since the last decade, the use of HCS has been extended to academic research laboratories and this technology has become the starting point for numerous projects aiming at the identification of molecular targets and cellular pathways for a given disease on which novel type of drugs could act. This screening approach relies on image capture of fluorescently labeled cells therefore generating a large amount of data that must be handled by appropriate automated image analysis methods and storage instrumentation. These latter in addition to the integration and data sharing are current challenges that HCS must still tackle. PMID:25744266

  19. [Quality of interior air: biological contaminants and their effects on health; bioaerosols and gathering techniques].

    PubMed

    Bălan, Gabriela

    2007-01-01

    Indoor Air Quality: biological contaminants and health effects; airborne organisms and sampling instruments. Biological contaminants include bacteria, molds, viruses, animal dander and cat saliva, house dust, mites, cockroaches and pollen. Symptoms of health problems caused by biological pollutants include sneezing, watery eyes, coughing, shortness of breath, dizziness, lethargy, fevers. Children, elderly people with breathing problems, allergies and lung diseases are particularly susceptible to disease-causing biological agents in the indoor air. It is convenient to consider microbiological samplers for collecting organisms in air as falling into several broad categories. Many popular microbiological air samplers use the principle of impaction to trap the organisms by impacting them directly on to agar. Further distinct groups are the impingers, which operate by impinging organisms into liquid. PMID:18441954

  20. Air emission control equipment - the new challenge for equpiment suppliers

    SciTech Connect

    Lobb, F.H.

    1997-12-31

    The combination of Title V, the CAM Rule and the Credible Evidence Rule demand industrial sites view the selection and operation of emission control devices in a whole new light. No longer can users see these devices as detached end of pipe pieces of equipment essentially purchased off lowest bid. These regulatory changes force plants to fully integrate the operation of these devices into their process control systems and instrumentation. And this is specifically EPA`s stated intent. EPA believes that by forcing sites to exercise the same knowledge and attention to air emissions that they do to operate their production processes, emissions will undergo a natural reduction across the country. Process and operational data that historically has been the sole province of sites becomes public. And compliance with state defined requirements must be demonstrated essentially continuously. This paper explores the new approach to compliance and provides insight through specific field examples/installations of emission control equipment. The author seeks to promote understanding through discussion of these significant regulatory changes.

  1. Air monitoring and detection of chemical and biological agents

    SciTech Connect

    Leonelli, J.; Althouse, M.L.

    1999-06-01

    This volume contains the proceedings of SPIE`s remote sensing symposium which was held November 2--3, 1998 in Boston, Massachusetts. Topics of discussion include the following: system simulations, atmospheric modeling, and performance prediction studies of chemical warfare remote sensing technologies; ultraviolet laser-induced fluorescence and aerosol detection methods for remote sensing of biological warfare agents; passive detection methods for remote detection of chemical warfare agents; and lidar-based system performance assessments, demonstrations, and new concepts for chemical warfare/biological warfare detection.

  2. [Experimental research on combined water and air backwashing reactor technology for biological activated carbon].

    PubMed

    Xie, Zhi-Gang; Qiu, Xue-Min; Zhao, Yan-Ling

    2012-01-01

    To proper control the backwashing process of biological activated carbon (BAC) reactor and improve the overall operation performance, the evaluative indexes such as backwashing wastewater turbidity, organic pollutants removal rate of pre and post-backwashing, and the variation of biomass and biological activity in carbon column are used to compare and analyze the effect of three different combined water and air backwashing methods on the operation of BAC reactor. The result shows that intermittent combined water and air backwashing method is most suitable to BAC reactor. The biological activaty obviously increases by 62.5% after intermittent combined water and air backwashing process. While, the biological activaty using the backwashing method of air plus water and the backwashing method of water and air compounded plus water washing increases by 55.6%, 38.5%, respectively. After backwashing 308h, the reactor recovered to its normal function after intermittent combined water and air backwashing process with the removal rate of UV254 reaching to 60.0%. The fulvic-like fluorescence peak of backwashing water are very weak, and are characterized by low-excitation wavelength tryptophan like (peak S) and high excitation wavelength of tryptophan (peak T), which are caused by the microbial debris washed down. The three-dimensional fluorescence spectra also show that microbial fragments are easy to be washed clean with intermittent combined water and air backwashing. PMID:22452199

  3. Addressing the Grand Challenge of atmospheric carbon dioxide: geologic sequestration vs. biological recycling

    PubMed Central

    2011-01-01

    On February 15, 2008, the National Academy of Engineering unveiled their list of 14 Grand Challenges for Engineering. Building off of tremendous advancements in the past century, these challenges were selected for their role in assuring a sustainable existence for the rapidly increasing global community. It is no accident that the first five Challenges on the list involve the development of sustainable energy sources and management of environmental resources. While the focus of this review is to address the single Grand Challenge of "develop carbon sequestration methods", is will soon be clear that several other Challenges are intrinsically tied to it through the principles of sustainability. How does the realm of biological engineering play a role in addressing these Grand Challenges? PMID:22047501

  4. Biological approaches for addressing the grand challenge of providing access to clean drinking water

    PubMed Central

    2011-01-01

    The U.S. National Academy of Engineering (NAE) recently published a document presenting "Grand Challenges for Engineering". This list was proposed by leading engineers and scientists from around the world at the request of the U.S. National Science Foundation (NSF). Fourteen topics were selected for these grand challenges, and at least seven can be addressed using the tools and methods of biological engineering. Here we describe how biological engineers can address the challenge of providing access to clean drinking water. This issue must be addressed in part by removing or inactivating microbial and chemical contaminants in order to properly deliver water safe for human consumption. Despite many advances in technologies this challenge is expanding due to increased pressure on fresh water supplies and to new opportunities for growth of potentially pathogenic organisms. PMID:21453515

  5. The Diamond Light Source and the challenges ahead for structural biology: some informal remarks

    PubMed Central

    Ramakrishnan, V.

    2015-01-01

    The remarkable advances in structural biology in the past three decades have led to the determination of increasingly complex structures that lie at the heart of many important biological processes. Many of these advances have been made possible by the use of X-ray crystallography using synchrotron radiation. In this short article, some of the challenges and prospects that lie ahead will be summarized. PMID:25624524

  6. The Challenge of Proteomic Data from Molecular Signals to Biological Networks and Disease

    SciTech Connect

    Webb-Robertson, Bobbie-Jo M.; Cannon, William R.; Adkins, Joshua N.; Gracio, Deborah K.

    2006-12-31

    Mass spectrometry (MS) based proteomics is a rapidly advancing field that has great promise for both understanding biological systems as well as advancing the identification and treatment of disease. Breakthroughs in science and medicine due to proteomics, however, are coupled with our ability to overcome significant challenges in the field. These challenges are multi-scalar, spanning the range from the statistics of molecules and molecular signals, to the phenomenological characterization of disease. The papers presented in this section are a representative snapshot of these challenges that span scale and scientific disciplines.

  7. Challenges for micro-scale flapping-wing micro air vehicles

    NASA Astrophysics Data System (ADS)

    Wood, Robert J.; Finio, Benjamin; Karpelson, Michael; Pérez-Arancibia, Nestor O.; Sreetharan, Pratheev; Whitney, John P.

    2012-06-01

    The challenges for successful flight of insect-scale micro air vehicles encompass basic questions of fabrication, design, propulsion, actuation, control, and power - topics that have in general been answered for larger aircraft. When developing a flying robot on the scale of flies and bees, all hardware must be developed from scratch as there are no "off-the-shelf" sensors, actuators, or microcontrollers that can satisfy the extreme mass and power limitations imposed by such vehicles. Similar challenges exist for fabrication and assembly of the structural and aeromechanical components of insect-scale micro air vehicles that neither macro-scale techniques nor MEMS can adequately solve. With these challenges in mind, this paper presents progress in the essential technologies for micro-scale flapping-wing robots.

  8. Using global aerosol models and satellite data for air quality studies: Challenges and data needs

    NASA Technical Reports Server (NTRS)

    Chin, Mian

    2006-01-01

    Aerosol particles, also known as PM2.5 (particle diameter less than 2.5 pm) and PM10 (particle diameter less than 10 pm), are one of the key atmospheric components that determines air quality. Yet, air quality forecasts for PM are still in their infancy and remain a challenging task. It is difficult to simply relate PM levels to local meteorological conditions, and large uncertainties exist in regional air quality model emission inventories and initial and boundary conditions. Especially challenging are periods when a significant amount of aerosol comes from outside the regional modeling domain through long-range transport. In the past few years, NASA has launched several satellites with global aerosol measurement capabilities, providing large-scale chemical weather pictures. NASA has also supported development of global models which simulate atmospheric transport and transformation processes of important atmospheric gas and aerosol species. I will present the current modeling and satellite capabilities for PM2.5 studies, the possibilities and challenges in using satellite data for PM2.5 forecasts, and the needs of future remote sensing data for improving air quality monitoring and modeling.

  9. Electrocatalysts for Nonaqueous Lithium–Air Batteries: Status, Challenges, and Perspective

    SciTech Connect

    Shao, Yuyan; Park, Seh Kyu; Xiao, Jie; Zhang, Jiguang; Wang, Yong; Liu, Jun

    2012-05-04

    Li-air battery has recently emerged as a potentially transformational energy storage technology for both transportation and stationary energy storage applications due to its very high specific energy. However, its practical application is currently limited by the poor power capability, poor cyclability and low energy efficiency, all of which are largely determined by interfacial reactions on oxygen electrocatalysts in air electrode. In this article, we review the fundamental understanding of oxygen electrocatalysis in nonaqueous electrolytes, the status and challenges of oxygen electrocatalysts, and provide a perspective on new electrocatalysts design and development.

  10. Study of Air Pollution from Space Using TOMS: Challenges and Promises for Future Missions

    NASA Technical Reports Server (NTRS)

    Bhartia, Pawan K.

    2002-01-01

    A series of TOMS instruments built by NASA has flown on US, Russian, and Japanese satellites in the last 24 years. These instruments are well known for producing spectacular maps of the ozone hole that forms over Antarctica each spring. However, it is less well known that these instruments also provided first evidence that space-based measurements in UV of sufficiently high precision and accuracy can provide valuable information to study global air quality. We will use the TOMS experience to highlight the promises and challenges of future space-based missions designed specifically for air quality studies.

  11. Grand Challenges for Biological and Environmental Research: A Long-Term Vision

    SciTech Connect

    Arkin, A.; Baliga, N.; Braam, J.; Church, G.; Collins, J; Cottingham, R.; Ecker, J.; Gerstein, M.; Gilna, P.; Greenberg, J.; Handelsman, J.; Hubbard, S.; Joachimiak, A.; Liao, J.; Looger, L.; Meyerowitz, E.; Mjolness, E.; Petsko, G.; Sayler, G.; Simpson, M.; Stacey, G.; Sussman, M.; Tiedje, J.; Bader, D.; Cessi, P.; Collins, W.; Denning, S.; Dickinson, R.; Easterling, D.; Edmonds, J.; Feddema, J.; Field, C.; Fridlind, A.; Fung, I.; Held, I.; Jackson, R.; Janetos, A.; Large, W.; Leinen, M.; Leung, R.; Long, S.; Mace, G.; Masiello, C.; Meehl, G.; Ort, D.; Otto-Bliesner, B.; Penner, J.; Prather, M.; Randall, D.; Rasch, P.; Schneider, E.; Shugart, H.; Thornton, P.; Washington, W.; Wildung, R.; Wiscombe, W.; Zak, D.; Zhang, M.; Bielicki, J.; Buford, M.; Cleland, E.; Dale, V.; Duke, C.; Ehleringer, J.; Hecht, A.; Kammen, D.; Marland, G.; Pataki, D.; Riley, M. Robertson, P.; Hubbard, S.

    2010-12-01

    The interactions and feedbacks among plants, animals, microbes, humans, and the environment ultimately form the world in which we live. This world is now facing challenges from a growing and increasingly affluent human population whose numbers and lifestyles are driving ever greater energy demand and impacting climate. These and other contributing factors will make energy and climate sustainability extremely difficult to achieve over the 20-year time horizon that is the focus of this report. Despite these severe challenges, there is optimism that deeper understanding of our environment will enable us to mitigate detrimental effects, while also harnessing biological and climate systems to ensure a sustainable energy future. This effort is advanced by scientific inquiries in the fields of atmospheric chemistry and physics, biology, ecology, and subsurface science - all made possible by computing. The Office of Biological and Environmental Research (BER) within the Department of Energy's (DOE) Office of Science has a long history of bringing together researchers from different disciplines to address critical national needs in determining the biological and environmental impacts of energy production and use, characterizing the interplay of climate and energy, and collaborating with other agencies and DOE programs to improve the world's most powerful climate models. BER science focuses on three distinct areas: (1) What are the roles of Earth system components (atmosphere, land, oceans, sea ice, and the biosphere) in determining climate? (2) How is the information stored in a genome translated into microbial, plant, and ecosystem processes that influence biofuel production, climate feedbacks, and the natural cycling of carbon? (3) What are the biological, geochemical, and physical forces that govern the behavior of Earth's subsurface environment? Ultimately, the goal of BER science is to support experimentation and modeling that can reliably predict the outcomes and

  12. New paradigms and future challenges in Radiation Oncology: An Update of Biological Targets and Technology*

    PubMed Central

    Liauw, Stanley L.; Connell, Philip P.; Weichselbaum, Ralph R.

    2013-01-01

    The primary objective of radiation oncology is to exploit the biological interaction of radiation within tissue to promote tumor death while minimizing damage to surrounding normal tissue. The clinical delivery of radiation relies on principles of radiation physics that define how radiation energy is deposited in the body, as well as technology that facilitates accurate tumor targeting. This review will summarize the current landscape of recent biological and technological advances in radiation oncology, describe the challenges that exist, and offer potential avenues for improvement. PMID:23427246

  13. Environmental Learning Workshop: Lichen as Biological Indicator of Air Quality and Impact on Secondary Students' Performance

    ERIC Educational Resources Information Center

    Samsudin, Mohd Wahid; Daik, Rusli; Abas, Azlan; Meerah, T. Subahan Mohd; Halim, Lilia

    2013-01-01

    In this study, the learning of science outside the classroom is believe to be an added value to science learning as well as it offers students to interact with the environment. This study presents data obtained from two days' workshop on Lichen as Biological Indicator for Air Quality. The aim of the workshop is for the students to gain an…

  14. Overcoming Chemical, Biological, and Computational Challenges in the Development of Inhibitors Targeting Protein-Protein Interactions.

    PubMed

    Laraia, Luca; McKenzie, Grahame; Spring, David R; Venkitaraman, Ashok R; Huggins, David J

    2015-06-18

    Protein-protein interactions (PPIs) underlie the majority of biological processes, signaling, and disease. Approaches to modulate PPIs with small molecules have therefore attracted increasing interest over the past decade. However, there are a number of challenges inherent in developing small-molecule PPI inhibitors that have prevented these approaches from reaching their full potential. From target validation to small-molecule screening and lead optimization, identifying therapeutically relevant PPIs that can be successfully modulated by small molecules is not a simple task. Following the recent review by Arkin et al., which summarized the lessons learnt from prior successes, we focus in this article on the specific challenges of developing PPI inhibitors and detail the recent advances in chemistry, biology, and computation that facilitate overcoming them. We conclude by providing a perspective on the field and outlining four innovations that we see as key enabling steps for successful development of small-molecule inhibitors targeting PPIs. PMID:26091166

  15. Overcoming Chemical, Biological, and Computational Challenges in the Development of Inhibitors Targeting Protein-Protein Interactions

    PubMed Central

    Laraia, Luca; McKenzie, Grahame; Spring, David R.; Venkitaraman, Ashok R.; Huggins, David J.

    2015-01-01

    Protein-protein interactions (PPIs) underlie the majority of biological processes, signaling, and disease. Approaches to modulate PPIs with small molecules have therefore attracted increasing interest over the past decade. However, there are a number of challenges inherent in developing small-molecule PPI inhibitors that have prevented these approaches from reaching their full potential. From target validation to small-molecule screening and lead optimization, identifying therapeutically relevant PPIs that can be successfully modulated by small molecules is not a simple task. Following the recent review by Arkin et al., which summarized the lessons learnt from prior successes, we focus in this article on the specific challenges of developing PPI inhibitors and detail the recent advances in chemistry, biology, and computation that facilitate overcoming them. We conclude by providing a perspective on the field and outlining four innovations that we see as key enabling steps for successful development of small-molecule inhibitors targeting PPIs. PMID:26091166

  16. Biologically Based Methods for Pest Management in Agriculture under Changing Climates: Challenges and Future Directions

    PubMed Central

    Chidawanyika, Frank; Mudavanhu, Pride; Nyamukondiwa, Casper

    2012-01-01

    The current changes in global climatic regimes present a significant societal challenge, affecting in all likelihood insect physiology, biochemistry, biogeography and population dynamics. With the increasing resistance of many insect pest species to chemical insecticides and an increasing organic food market, pest control strategies are slowly shifting towards more sustainable, ecologically sound and economically viable options. Biologically based pest management strategies present such opportunities through predation or parasitism of pests and plant direct or indirect defense mechanisms that can all be important components of sustainable integrated pest management programs. Inevitably, the efficacy of biological control systems is highly dependent on natural enemy-prey interactions, which will likely be modified by changing climates. Therefore, knowledge of how insect pests and their natural enemies respond to climate variation is of fundamental importance in understanding biological insect pest management under global climate change. Here, we discuss biological control, its challenges under climate change scenarios and how increased global temperatures will require adaptive management strategies to cope with changing status of insects and their natural enemies. PMID:26466733

  17. An eQTL biological data visualization challenge and approaches from the visualization community

    PubMed Central

    2012-01-01

    In 2011, the IEEE VisWeek conferences inaugurated a symposium on Biological Data Visualization. Like other domain-oriented Vis symposia, this symposium's purpose was to explore the unique characteristics and requirements of visualization within the domain, and to enhance both the Visualization and Bio/Life-Sciences communities by pushing Biological data sets and domain understanding into the Visualization community, and well-informed Visualization solutions back to the Biological community. Amongst several other activities, the BioVis symposium created a data analysis and visualization contest. Unlike many contests in other venues, where the purpose is primarily to allow entrants to demonstrate tour-de-force programming skills on sample problems with known solutions, the BioVis contest was intended to whet the participants' appetites for a tremendously challenging biological domain, and simultaneously produce viable tools for a biological grand challenge domain with no extant solutions. For this purpose expression Quantitative Trait Locus (eQTL) data analysis was selected. In the BioVis 2011 contest, we provided contestants with a synthetic eQTL data set containing real biological variation, as well as a spiked-in gene expression interaction network influenced by single nucleotide polymorphism (SNP) DNA variation and a hypothetical disease model. Contestants were asked to elucidate the pattern of SNPs and interactions that predicted an individual's disease state. 9 teams competed in the contest using a mixture of methods, some analytical and others through visual exploratory methods. Independent panels of visualization and biological experts judged entries. Awards were given for each panel's favorite entry, and an overall best entry agreed upon by both panels. Three special mention awards were given for particularly innovative and useful aspects of those entries. And further recognition was given to entries that correctly answered a bonus question about how a

  18. Challenges for the identification of biological systems from in vivo time series data.

    PubMed

    Voit, Eberhard O; Marino, Simeone; Lall, Raman

    2005-01-01

    Modern methods of high-throughput molecular biology render it possible to generate time series of metabolite concentrations and the expression of genes and proteins in vivo. These time profiles contain valuable information about the structure and dynamics of the underlying biological system. This information is implicit and its extraction is a challenging but ultimately very rewarding task for the mathematical modeler. Using a well-suited modeling framework, such as Biochemical Systems Theory (BST), it is possible to formulate the extraction of information as an inverse problem that in principle may be solved with a genetic algorithm or nonlinear regression. However, two types of issues associated with this inverse problem make the extraction task difficult. One type pertains to the algorithmic difficulties encountered in nonlinear regressions with moderate and large systems. The other type is of an entirely different nature. It is a consequence of assumptions that are often taken for granted in the design and analysis of mathematical models of biological systems and that need to be revisited in the context of inverse analyses. The article describes the extraction process and some of its challenges and proposes partial solutions. PMID:15972008

  19. Data Integration for Dynamic and Sustainable Systems Biology Resources: Challenges and Lessons Learned

    PubMed Central

    Gabbard, Joseph L.; Shukla, Maulik; Sobral, Bruno

    2010-01-01

    Systems biology and infectious disease (host-pathogen-environment) research and development is becoming increasingly dependent on integrating data from diverse and dynamic sources. Maintaining integrated resources over long periods of time presents distinct challenges. This paper describes experiences and lessons learned from integrating data in two five-year projects focused on pathosystems biology: the Pathosystems Resource Integration Center (PATRIC, http://patric.vbi.vt.edu/), with a goal of developing bioinformatics resources for the research and countermeasures development communities based on genomics data, and the Resource Center for Biodefense Proteomics Research (RCBPR, http://www.proteomicsresource.org/), with a goal of developing resources based on the experiment data such as microarray and proteomics data from diverse sources and technologies. Some challenges include integrating genomic sequence and experiment data, data synchronization, data quality control, and usability engineering. We present examples of a variety of data integration problems drawn from our experiences with PATRIC and RBPRC, as well as open research questions related to long term sustainability, and describe the next steps to meeting these challenges. Novel contributions of this work include (1) an approach for addressing discrepancies between experiment results and interpreted results and (2) expanding the range of data integration techniques to include usability engineering at the presentation level. PMID:20491070

  20. Advantages and challenges of using physics curricula as a model for reforming an undergraduate biology course.

    PubMed

    Donovan, D A; Atkins, L J; Salter, I Y; Gallagher, D J; Kratz, R F; Rousseau, J V; Nelson, G D

    2013-06-01

    We report on the development of a life sciences curriculum, targeted to undergraduate students, which was modeled after a commercially available physics curriculum and based on aspects of how people learn. Our paper describes the collaborative development process and necessary modifications required to apply a physics pedagogical model in a life sciences context. While some approaches were easily adapted, others provided significant challenges. Among these challenges were: representations of energy, introducing definitions, the placement of Scientists' Ideas, and the replicability of data. In modifying the curriculum to address these challenges, we have come to see them as speaking to deeper differences between the disciplines, namely that introductory physics--for example, Newton's laws, magnetism, light--is a science of pairwise interaction, while introductory biology--for example, photosynthesis, evolution, cycling of matter in ecosystems--is a science of linked processes, and we suggest that this is how the two disciplines are presented in introductory classes. We illustrate this tension through an analysis of our adaptations of the physics curriculum for instruction on the cycling of matter and energy; we show that modifications of the physics curriculum to address the biological framework promotes strong gains in student understanding of these topics, as evidenced by analysis of student work. PMID:23737629

  1. Plasma flame for mass purification of contaminated air with chemical and biological warfare agents

    SciTech Connect

    Uhm, Han S.; Shin, Dong H.; Hong, Yong C.

    2006-09-18

    An elimination of airborne simulated chemical and biological warfare agents was carried out by making use of a plasma flame made of atmospheric plasma and a fuel-burning flame, which can purify the interior air of a large volume in isolated spaces such as buildings, public transportation systems, and military vehicles. The plasma flame generator consists of a microwave plasma torch connected in series to a fuel injector and a reaction chamber. For example, a reaction chamber, with the dimensions of a 22 cm diameter and 30 cm length, purifies an airflow rate of 5000 lpm contaminated with toluene (the simulated chemical agent) and soot from a diesel engine (the simulated aerosol for biological agents). Large volumes of purification by the plasma flame will free mankind from the threat of airborne warfare agents. The plasma flame may also effectively purify air that is contaminated with volatile organic compounds, in addition to eliminating soot from diesel engines as an environmental application.

  2. Plasma flame for mass purification of contaminated air with chemical and biological warfare agents

    NASA Astrophysics Data System (ADS)

    Uhm, Han S.; Shin, Dong H.; Hong, Yong C.

    2006-09-01

    An elimination of airborne simulated chemical and biological warfare agents was carried out by making use of a plasma flame made of atmospheric plasma and a fuel-burning flame, which can purify the interior air of a large volume in isolated spaces such as buildings, public transportation systems, and military vehicles. The plasma flame generator consists of a microwave plasma torch connected in series to a fuel injector and a reaction chamber. For example, a reaction chamber, with the dimensions of a 22cm diameter and 30cm length, purifies an airflow rate of 5000lpm contaminated with toluene (the simulated chemical agent) and soot from a diesel engine (the simulated aerosol for biological agents). Large volumes of purification by the plasma flame will free mankind from the threat of airborne warfare agents. The plasma flame may also effectively purify air that is contaminated with volatile organic compounds, in addition to eliminating soot from diesel engines as an environmental application.

  3. Use of a massive volume air sampler to collect fly ash for biological characterization

    SciTech Connect

    Cheng, Y.S.

    1984-06-01

    A massive volume air sampler (MVAS) with a flow rate of some 17/SUP/3/min and designed to collect ambient aerosols was modified for the collection of fly ash emissions from the stack mouth of an experimental fluidised bed combustor for physicochemical and biological characterisation. The sampler consisted of 2 impactor stages and an electrostatic precipitator section. High volume filter fly ash samples and laboratory size cascade impactor samples were obtained simultaneously to verify the operation of the MVAS.

  4. Overview of significant challenges in molecular biology amenable to computational methods.

    PubMed

    Glaeser, R M

    1994-01-01

    Many challenging but significant opportunities exist for the development of theoretical approaches in modern Cell and Molecular Biology. The creation of data bases which contain extremely large amounts of information has proven to be an unexpectedly important facto-tin gaining acceptance and respectability for theoretical work that builds on nothing more than what is in the data base itself, such as theoretical work involving the analysis of known protein structures, or the development of more powerful homology searches. Other opportunities, not yet accepted by a broad community, involve work on complex networks (metabolic, genetic, immunologic and neural networks) and work on the "physics of how things work." The DOE National Laboratory System represents the ideal institution that would be well suited to the role of being an "incubator" for the creation of a theoretical and computational discipline within modern biology. PMID:7755540

  5. Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: current perspectives and future challenges.

    PubMed

    Ha, Dinh; Yang, Ningning; Nadithe, Venkatareddy

    2016-07-01

    Exosomes are small intracellular membrane-based vesicles with different compositions that are involved in several biological and pathological processes. The exploitation of exosomes as drug delivery vehicles offers important advantages compared to other nanoparticulate drug delivery systems such as liposomes and polymeric nanoparticles; exosomes are non-immunogenic in nature due to similar composition as body׳s own cells. In this article, the origin and structure of exosomes as well as their biological functions are outlined. We will then focus on specific applications of exosomes as drug delivery systems in pharmaceutical drug development. An overview of the advantages and challenges faced when using exosomes as a pharmaceutical drug delivery vehicles will also be discussed. PMID:27471669

  6. BIOPRESERVATION: HEAT/MASS TRANSFER CHALLENGES AND BIOCHEMICAL/GENETIC ADAPTATIONS IN BIOLOGICAL SYSTEMS

    PubMed Central

    Devireddy, Ram V.

    2013-01-01

    Biopreservation is the science of extending the shelf life (storage time) of biological systems. The scientific field of biopreservation can be broadly classified into three distinct but interrelated research areas: Cryopreservation (storage by freezing), Desiccation (storage by drying) and Freeze-Drying (storage by freezing first and then sublimating the frozen water). Although, both freeze-frying and desiccation create products that are easier to store and transport, they have not, as yet, been successfully applied to store a variety of biological specimens. However, both these technologies have been quite successfully applied in a variety of fields including pharmaceutical sciences and food industry, as demonstrated by the easy availability of shelf-stable drugs and instant mashed potatoes! On the other hand freezing storage has a long and storied history of being used to transport biological specimen, over long distances, as far back as the time of the Pharaohs. However, the lack of portable refrigeration/freezing techniques (and the inviolate second law) limited the use of cryopreservation in every-day life, until the early 19th century. This short review will outline some of the challenges and opportunities in the fields of engineering, heat and mass transfer, biochemical and genetic adaptations in the preservation of biological systems. PMID:24833890

  7. BIOPRESERVATION: HEAT/MASS TRANSFER CHALLENGES AND BIOCHEMICAL/GENETIC ADAPTATIONS IN BIOLOGICAL SYSTEMS.

    PubMed

    Devireddy, Ram V

    2013-01-01

    Biopreservation is the science of extending the shelf life (storage time) of biological systems. The scientific field of biopreservation can be broadly classified into three distinct but interrelated research areas: Cryopreservation (storage by freezing), Desiccation (storage by drying) and Freeze-Drying (storage by freezing first and then sublimating the frozen water). Although, both freeze-frying and desiccation create products that are easier to store and transport, they have not, as yet, been successfully applied to store a variety of biological specimens. However, both these technologies have been quite successfully applied in a variety of fields including pharmaceutical sciences and food industry, as demonstrated by the easy availability of shelf-stable drugs and instant mashed potatoes! On the other hand freezing storage has a long and storied history of being used to transport biological specimen, over long distances, as far back as the time of the Pharaohs. However, the lack of portable refrigeration/freezing techniques (and the inviolate second law) limited the use of cryopreservation in every-day life, until the early 19(th) century. This short review will outline some of the challenges and opportunities in the fields of engineering, heat and mass transfer, biochemical and genetic adaptations in the preservation of biological systems. PMID:24833890

  8. Prospects and challenges of quantitative phase imaging in tumor cell biology

    NASA Astrophysics Data System (ADS)

    Kemper, Björn; Götte, Martin; Greve, Burkhard; Ketelhut, Steffi

    2016-03-01

    Quantitative phase imaging (QPI) techniques provide high resolution label-free quantitative live cell imaging. Here, prospects and challenges of QPI in tumor cell biology are presented, using the example of digital holographic microscopy (DHM). It is shown that the evaluation of quantitative DHM phase images allows the retrieval of different parameter sets for quantification of cellular motion changes in migration and motility assays that are caused by genetic modifications. Furthermore, we demonstrate simultaneously label-free imaging of cell growth and morphology properties.

  9. The NYC native air sampling pilot project: using HVAC filter data for urban biological incident characterization.

    PubMed

    Ackelsberg, Joel; Leykam, Frederic M; Hazi, Yair; Madsen, Larry C; West, Todd H; Faltesek, Anthony; Henderson, Gavin D; Henderson, Christopher L; Leighton, Terrance

    2011-09-01

    Native air sampling (NAS) is distinguished from dedicated air sampling (DAS) devices (eg, BioWatch) that are deployed to detect aerosol disseminations of biological threat agents. NAS uses filter samples from heating, ventilation, and air conditioning (HVAC) systems in commercial properties for environmental sampling after DAS detection of biological threat agent incidents. It represents an untapped, scientifically sound, efficient, widely distributed, and comparably inexpensive resource for postevent environmental sampling. Calculations predict that postevent NAS would be more efficient than environmental surface sampling by orders of magnitude. HVAC filter samples could be collected from pre-identified surrounding NAS facilities to corroborate the DAS alarm and delineate the path taken by the bioaerosol plume. The New York City (NYC) Native Air Sampling Pilot Project explored whether native air sampling would be acceptable to private sector stakeholders and could be implemented successfully in NYC. Building trade associations facilitated outreach to and discussions with property owners and managers, who expedited contact with building managers of candidate NAS properties that they managed or owned. Nominal NAS building requirements were determined; procedures to identify and evaluate candidate NAS facilities were developed; data collection tools and other resources were designed and used to expedite candidate NAS building selection and evaluation in Manhattan; and exemplar environmental sampling playbooks for emergency responders were completed. In this sample, modern buildings with single or few corporate tenants were the best NAS candidate facilities. The Pilot Project successfully demonstrated that in one urban setting a native air sampling strategy could be implemented with effective public-private collaboration. PMID:21793731

  10. Proteomic Challenges: Sample Preparation Techniques for Microgram-Quantity Protein Analysis from Biological Samples

    PubMed Central

    Feist, Peter; Hummon, Amanda B.

    2015-01-01

    Proteins regulate many cellular functions and analyzing the presence and abundance of proteins in biological samples are central focuses in proteomics. The discovery and validation of biomarkers, pathways, and drug targets for various diseases can be accomplished using mass spectrometry-based proteomics. However, with mass-limited samples like tumor biopsies, it can be challenging to obtain sufficient amounts of proteins to generate high-quality mass spectrometric data. Techniques developed for macroscale quantities recover sufficient amounts of protein from milligram quantities of starting material, but sample losses become crippling with these techniques when only microgram amounts of material are available. To combat this challenge, proteomicists have developed micro-scale techniques that are compatible with decreased sample size (100 μg or lower) and still enable excellent proteome coverage. Extraction, contaminant removal, protein quantitation, and sample handling techniques for the microgram protein range are reviewed here, with an emphasis on liquid chromatography and bottom-up mass spectrometry-compatible techniques. Also, a range of biological specimens, including mammalian tissues and model cell culture systems, are discussed. PMID:25664860

  11. Challenges of diatom-based biological monitoring and assessment of streams in developing countries.

    PubMed

    Bere, Taurai

    2016-03-01

    Stream biomonitoring tools are largely lacking for many developing countries, resulting in adoption of tools developed from other countries/regions. In many instances, however, the applicability of adopted tools to the new system has not been explicitly evaluated. The objective of this study was to test the applicability of foreign diatom-based water quality assessment indices to streams in Zimbabwe, with the view to highlight challenges being faced in diatom-based biological monitoring in this developing country. The study evaluated the relationship between measured water quality variables and diatom index scores and observed some degree of concordance between water quality variables and diatom index scores emphasising the importance of diatom indices in characterisation and monitoring of stream ecological conditions in developing countries. However, ecological requirements of some diatom species need to be clarified and incorporated in a diatom-based water quality assessment protocol unique to these regions. Resources should be channelled towards tackling challenges associated with diatom-based biological monitoring, principally taxonomic studies, training of skilled labour and acquiring and maintaining the necessary infrastructure. Meanwhile, simpler coarse taxonomy-based rapid bioassessment protocol, which is less time and resource consuming and requires less specialised manpower, can be developed for the country. PMID:26573306

  12. Evaluation of the operator protection factors offered by positive pressure air suits against airborne microbiological challenge.

    PubMed

    Steward, Jackie A; Lever, Mark S

    2012-08-01

    Laboratories throughout the world that perform work with Risk Group 4 Pathogens generally adopt one of two approaches within BSL-4 environments: either the use of positive pressure air-fed suits or using Class III microbiological safety cabinets and isolators for animal work. Within the UK at present, all laboratories working with Risk Group 4 agents adopt the use of Class III microbiological safety cabinet lines and isolators. Operator protection factors for the use of microbiological safety cabinets and isolators are available however; there is limited published data on the operator protection factors afforded by the use of positive pressure suits. This study evaluated the operator protection factors provided by positive pressure air suits against a realistic airborne microbiological challenge. The suits were tested, both intact and with their integrity compromised, on an animated mannequin within a stainless steel exposure chamber. The suits gave operator protection in all tests with an intact suit and with a cut in the leg. When compromised by a cut in the glove, a very small ingress of the challenge was seen as far as the wrist. This is likely to be due to the low airflow in the gloves of the suit. In all cases no microbiological penetration of the respiratory tract was observed. These data provide evidence on which to base safety protocols for use of positive pressure suits within high containment laboratories. PMID:23012620

  13. Evaluation of the Operator Protection Factors Offered by Positive Pressure Air Suits against Airborne Microbiological Challenge

    PubMed Central

    Steward, Jackie A.; Lever, Mark S.

    2012-01-01

    Laboratories throughout the world that perform work with Risk Group 4 Pathogens generally adopt one of two approaches within BSL-4 environments: either the use of positive pressure air-fed suits or using Class III microbiological safety cabinets and isolators for animal work. Within the UK at present, all laboratories working with Risk Group 4 agents adopt the use of Class III microbiological safety cabinet lines and isolators. Operator protection factors for the use of microbiological safety cabinets and isolators are available however; there is limited published data on the operator protection factors afforded by the use of positive pressure suits. This study evaluated the operator protection factors provided by positive pressure air suits against a realistic airborne microbiological challenge. The suits were tested, both intact and with their integrity compromised, on an animated mannequin within a stainless steel exposure chamber. The suits gave operator protection in all tests with an intact suit and with a cut in the leg. When compromised by a cut in the glove, a very small ingress of the challenge was seen as far as the wrist. This is likely to be due to the low airflow in the gloves of the suit. In all cases no microbiological penetration of the respiratory tract was observed. These data provide evidence on which to base safety protocols for use of positive pressure suits within high containment laboratories. PMID:23012620

  14. Indoor Air Nuclear, Biological, and Chemical Health Modeling and Assessment System

    SciTech Connect

    Stenner, Robert D.; Hadley, Donald L.; Armstrong, Peter R.; Buck, John W.; Hoopes, Bonnie L.; Janus, Michael C.

    2001-03-01

    Indoor air quality effects on human health are of increasing concern to public health agencies and building owners. The prevention and treatment of 'sick building' syndrome and the spread of air-borne diseases in hospitals, for example, are well known priorities. However, increasing attention is being directed to the vulnerability of our public buildings/places, public security and national defense facilities to terrorist attack or the accidental release of air-borne biological pathogens, harmful chemicals, or radioactive contaminants. The Indoor Air Nuclear, Biological, and Chemical Health Modeling and Assessment System (IA-NBC-HMAS) was developed to serve as a health impact analysis tool for use in addressing these concerns. The overall goal was to develop a user-friendly fully functional prototype Health Modeling and Assessment system, which will operate under the PNNL FRAMES system for ease of use and to maximize its integration with other modeling and assessment capabilities accessible within the FRAMES system (e.g., ambient air fate and transport models, water borne fate and transport models, Physiologically Based Pharmacokinetic models, etc.). The prototype IA-NBC-HMAS is designed to serve as a functional Health Modeling and Assessment system that can be easily tailored to meet specific building analysis needs of a customer. The prototype system was developed and tested using an actual building (i.e., the Churchville Building located at the Aberdeen Proving Ground) and release scenario (i.e., the release and measurement of tracer materials within the building) to ensure realism and practicality in the design and development of the prototype system. A user-friendly "demo" accompanies this report to allow the reader the opportunity for a "hands on" review of the prototype system's capability.

  15. Flow and performance of an air-curtain biological safety cabinet.

    PubMed

    Huang, Rong Fung; Chou, Chun I

    2009-06-01

    Using laser-assisted smoke flow visualization and tracer gas concentration detection techniques, this study examines aerodynamic flow properties and the characteristics of escape from containment, inward dispersion, and cross-cabinet contamination of a biological safety cabinet installed with an air curtain across the front aperture. The experimental method partially simulates the NSF/ANSI 49 standards with the difference that the biological tracer recommended by these standards is replaced by a mixture of 10% SF(6) in N(2). The air curtain is set up across the cabinet aperture plane by means of a narrow planar jet issued from the lower edge of the sash and a suction flow going through a suction slot installed at the front edge of the work surface. Varying the combination of jet velocity, suction flow velocity, and descending flow velocity reveals three types of characteristic flow modes: 'straight curtain', 'slightly concave curtain', and 'severely concave curtain'. Operating the cabinet in the straight curtain mode causes the air curtain to impinge on the doorsill and therefore induces serious escape from containment. In the severely concave curtain mode, drastically large inward dispersion and cross-cabinet contamination were observed because environmental air entered into the cabinet and a three-dimensional vortical flow structure formed in the cabinet. The slightly concave curtain mode presents a smooth and two-dimensional flow pattern with an air curtain separating the outside atmosphere from the inside space of the cabinet, and therefore exhibited negligibly small escape from containment, inward dispersion, and cross-cabinet contamination. PMID:19398506

  16. Environmental Technology Verification: Supplement to Test/QA Plan for Biological and Aerosol Testing of General Ventilation Air Cleaners; Bioaerosol Inactivation Efficiency by HVAC In-Duct Ultraviolet Light Air Cleaners

    EPA Science Inventory

    The Air Pollution Control Technology Verification Center has selected general ventilation air cleaners as a technology area. The Generic Verification Protocol for Biological and Aerosol Testing of General Ventilation Air Cleaners is on the Environmental Technology Verification we...

  17. Synthetic Biology and the U.S. Biotechnology Regulatory System: Challenges and Options

    SciTech Connect

    Carter, Sarah R.; Rodemeyer, Michael; Garfinkel, Michele S.; Friedman, Robert M

    2014-05-01

    Synthetic Biology and the U.S. Biotechnology Regulatory System: Challenges and Options Sarah R. Carter, Ph.D., J. Craig Venter Institute; Michael Rodemeyer, J.D., University of Virginia; Michele S. Garfinkel, Ph.D., EMBO; Robert M. Friedman, Ph.D., J. Craig Venter Institute In recent years, a range of genetic engineering techniques referred to as “synthetic biology” has significantly expanded the tool kit available to scientists and engineers, providing them with far greater capabilities to engineer organisms than previous techniques allowed. The field of synthetic biology includes the relatively new ability to synthesize long pieces of DNA from chemicals, as well as improved methods for genetic manipulation and design of genetic pathways to achieve more precise control of biological systems. These advances will help usher in a new generation of genetically engineered microbes, plants, and animals. The JCVI Policy Center team, along with researchers at the University of Virginia and EMBO, examined how well the current U.S. regulatory system for genetically engineered products will handle the near-term introduction of organisms engineered using synthetic biology. In particular, the focus was on those organisms intended to be used or grown directly in the environment, outside of a contained facility. The study concludes that the U.S. regulatory agencies have adequate legal authority to address most, but not all, potential environmental, health and safety concerns posed by these organisms. Such near-term products are likely to represent incremental changes rather than a marked departure from previous genetically engineered organisms. However, the study also identified two key challenges for the regulatory system, which are detailed in the report. First, USDA’s authority over genetically engineered plants depends on the use of an older engineering technique that is no longer necessary for many applications. The shift to synthetic biology and other newer genetic

  18. Environmental health in China: challenges to achieving clean air and safe water

    PubMed Central

    Zhang, Junfeng (Jim); Mauzerall, Denise L.; Zhu, Tong; Liang, Song; Ezzati, Majid; Remais, Justin

    2014-01-01

    The health effects of environmental risks, especially those of air and water pollution, remain a major source of morbidity and mortality in China. Biomass fuel and coal are routinely burned for cooking and heating in almost all rural and many urban households resulting in severe indoor air pollution that contributes greatly to the burden of disease. Many communities lack access to safe drinking water and santiation, and thus the risk of waterborne disease in many regions remains high. At the same time, China is rapidly industrializing with associated increases in energy use and industrial waste. While economic growth resulting from industrialization has improved health and quality of life indicators in China, it has also increased the incidence of environmental disasters and the release of chemical toxins into the environment, with severe impacts on health. Air quality in China's cities is among the worst in the world and industrial water pollution has become a widespread health hazard. Moreover, emissions of climate-warming greenhouse gases from energy use are rapidly increasing. Global climate change will inevitably intensify China's environmental health problems, with potentially catastrophic outcomes from major shifts in temperature and precipitation. Facing the overlap of traditional, modern, and emerging environmental problems, China has committed substantial resources to environmental improvement. China has the opportunity to both address its national environmental health challenges and to assume a central role in the international effort to improve the global environment. PMID:20346817

  19. Recognizing the Challenges of Ambient Air Monitoring in the Persian Gulf

    NASA Astrophysics Data System (ADS)

    Meade, T. G.; Nicodemus, M. A.; Howard, J. M.

    2011-12-01

    In an effort to better estimate environmental exposure, the U.S. Army Public Health Command has been operating an ambient air monitoring station in Shuaiba Port, Kuwait since 2002. The focus has primarily been on monitoring criteria pollutants at a busy sea port where local industry (oil refineries, cement plant, petrochemical production, etc.) heavily impacts air quality. To compound the issues associated with day to day monitoring at a busy sea port, the region often experiences sand storms and temperatures up to 60°C. Average daily particulate matter concentrations at Shuaiba Port are an order of magnitude higher than similar industrial areas in the U.S. On days when sand storms occur ambient PM concentrations can be two or three orders higher than average daily U.S. concentrations. For example, 24-hour average PM10 concentrations from 2004-2010 for the month of June were 395 μg/m3. During sand storms, 24-hour average concentrations can reach as high as 4,000 μg/m3. This poster presents 2004-2010 particulate matter data collected at Shuaiba Port, Kuwait and outlines logistical and environmental challenges associated with air monitoring in the region.

  20. Urinary CC16 after challenge with dry air hyperpnoea and mannitol in recreational summer athletes.

    PubMed

    Kippelen, Pascale; Tufvesson, Ellen; Ali, Leena; Bjermer, Leif; Anderson, Sandra D

    2013-12-01

    Airway epithelial injury is regarded as a key contributing factor to the pathogenesis of exercise-induced bronchoconstriction (EIB) in athletes. The concentration of the pneumoprotein club cell (Clara cell) CC16 in urine has been found to be a non-invasive marker for hyperpnoea-induced airway epithelial perturbation. Exercise-hyperpnoea induces mechanical, thermal and osmotic stress to the airways. We investigated whether osmotic stress alone causes airway epithelial perturbation in athletes with suspected EIB. Twenty-four recreational summer sports athletes who reported respiratory symptoms on exertion performed a standard eucapnic voluntary hyperpnoea test with dry air and a mannitol test (osmotic challenge) on separate days. Median urinary CC16 increased from 120 to 310 ρg μmol creatinine(-1) after dry air hyperpnoea (P = 0.002) and from 90 to 191 ρg μmol creatinine(-1) after mannitol (P = 0.021). There was no difference in urinary CC16 concentration between athletes who did or did not bronchoconstrict after dry air hyperpnoea or mannitol. We conclude that, in recreational summer sports athletes with respiratory symptoms, osmotic stress per se to the airway epithelium induces a rise in urinary excretion of CC16. This suggests that hyperosmolarity of the airway surface lining perturbs the airway epithelium in symptomatic athletes. PMID:24120076

  1. The Air Transportation Policy of Small States: Meeting the Challenges of Globalization

    NASA Technical Reports Server (NTRS)

    Antoniou, Andreas

    2001-01-01

    The air transport policies of small states are currently at a crossroad. Policy makers in these countries are facing a difficult dilemma: either follow the general trend of liberalization and pay the high cost of the resulting restructuring or maintain the existing regulatory and ownership structures at the risk of isolation thus undermining the viability and sustainability of their air transport sector and their economies in general. This paper proposes to explore the broad issues raised by this difficult dilemma, to outline its special significance in the context of small states and to delineate the options opened to the economic policymakers; in these states. After a brief note on the method of research, we sketch the main elements of the international air transport industry in which the airlines of small states are called upon to act. We then propose to review the main features of the analytical framework of this debate as it pertains to the special circumstances of these states. Then we focus on the challenges facing the airlines of Small States, while the next section proposes a number of the alternative policy options open to the policy makers in these states. The main conclusions are drawn in the final section.

  2. Biological network extraction from scientific literature: state of the art and challenges.

    PubMed

    Li, Chen; Liakata, Maria; Rebholz-Schuhmann, Dietrich

    2014-09-01

    Networks of molecular interactions explain complex biological processes, and all known information on molecular events is contained in a number of public repositories including the scientific literature. Metabolic and signalling pathways are often viewed separately, even though both types are composed of interactions involving proteins and other chemical entities. It is necessary to be able to combine data from all available resources to judge the functionality, complexity and completeness of any given network overall, but especially the full integration of relevant information from the scientific literature is still an ongoing and complex task. Currently, the text-mining research community is steadily moving towards processing the full body of the scientific literature by making use of rich linguistic features such as full text parsing, to extract biological interactions. The next step will be to combine these with information from scientific databases to support hypothesis generation for the discovery of new knowledge and the extension of biological networks. The generation of comprehensive networks requires technologies such as entity grounding, coordination resolution and co-reference resolution, which are not fully solved and are required to further improve the quality of results. Here, we analyse the state of the art for the extraction of network information from the scientific literature and the evaluation of extraction methods against reference corpora, discuss challenges involved and identify directions for future research. PMID:23434632

  3. Discovery informatics in biological and biomedical sciences: research challenges and opportunities.

    PubMed

    Honavar, Vasant

    2015-01-01

    New discoveries in biological, biomedical and health sciences are increasingly being driven by our ability to acquire, share, integrate and analyze, and construct and simulate predictive models of biological systems. While much attention has focused on automating routine aspects of management and analysis of "big data", realizing the full potential of "big data" to accelerate discovery calls for automating many other aspects of the scientific process that have so far largely resisted automation: identifying gaps in the current state of knowledge; generating and prioritizing questions; designing studies; designing, prioritizing, planning, and executing experiments; interpreting results; forming hypotheses; drawing conclusions; replicating studies; validating claims; documenting studies; communicating results; reviewing results; and integrating results into the larger body of knowledge in a discipline. Against this background, the PSB workshop on Discovery Informatics in Biological and Biomedical Sciences explores the opportunities and challenges of automating discovery or assisting humans in discovery through advances (i) Understanding, formalization, and information processing accounts of, the entire scientific process; (ii) Design, development, and evaluation of the computational artifacts (representations, processes) that embody such understanding; and (iii) Application of the resulting artifacts and systems to advance science (by augmenting individual or collective human efforts, or by fully automating science). PMID:25592607

  4. Airborne biological hazards and urban transport infrastructure: current challenges and future directions.

    PubMed

    Nasir, Zaheer Ahmad; Campos, Luiza Cintra; Christie, Nicola; Colbeck, Ian

    2016-08-01

    Exposure to airborne biological hazards in an ever expanding urban transport infrastructure and highly diverse mobile population is of growing concern, in terms of both public health and biosecurity. The existing policies and practices on design, construction and operation of these infrastructures may have severe implications for airborne disease transmission, particularly, in the event of a pandemic or intentional release of biological of agents. This paper reviews existing knowledge on airborne disease transmission in different modes of transport, highlights the factors enhancing the vulnerability of transport infrastructures to airborne disease transmission, discusses the potential protection measures and identifies the research gaps in order to build a bioresilient transport infrastructure. The unification of security and public health research, inclusion of public health security concepts at the design and planning phase, and a holistic system approach involving all the stakeholders over the life cycle of transport infrastructure hold the key to mitigate the challenges posed by biological hazards in the twenty-first century transport infrastructure. PMID:27318484

  5. Advantages and Challenges of Using Physics Curricula as a Model for Reforming an Undergraduate Biology Course

    PubMed Central

    Donovan, D. A.; Atkins, L. J.; Salter, I. Y.; Gallagher, D. J.; Kratz, R. F.; Rousseau, J. V.; Nelson, G. D.

    2013-01-01

    We report on the development of a life sciences curriculum, targeted to undergraduate students, which was modeled after a commercially available physics curriculum and based on aspects of how people learn. Our paper describes the collaborative development process and necessary modifications required to apply a physics pedagogical model in a life sciences context. While some approaches were easily adapted, others provided significant challenges. Among these challenges were: representations of energy, introducing definitions, the placement of Scientists’ Ideas, and the replicability of data. In modifying the curriculum to address these challenges, we have come to see them as speaking to deeper differences between the disciplines, namely that introductory physics—for example, Newton's laws, magnetism, light—is a science of pairwise interaction, while introductory biology—for example, photosynthesis, evolution, cycling of matter in ecosystems—is a science of linked processes, and we suggest that this is how the two disciplines are presented in introductory classes. We illustrate this tension through an analysis of our adaptations of the physics curriculum for instruction on the cycling of matter and energy; we show that modifications of the physics curriculum to address the biological framework promotes strong gains in student understanding of these topics, as evidenced by analysis of student work. PMID:23737629

  6. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  7. Effects of air pollution on ecosystems and biological diversity in the eastern United States.

    PubMed

    Lovett, Gary M; Tear, Timothy H; Evers, David C; Findlay, Stuart E G; Cosby, B Jack; Dunscomb, Judy K; Driscoll, Charles T; Weathers, Kathleen C

    2009-04-01

    elevated exposure levels or in combination with other stresses such as drought, freezing, or pathogens. The notable exceptions are the acid/aluminum effects on aquatic organisms, which can be lethal at levels of acidity observed in many surface waters in the region. Although the effects are often subtle, they are important to biological conservation. Changes in species composition caused by terrestrial or aquatic acidification or eutrophication can propagate throughout the food webs to affect many organisms beyond those that are directly sensitive to the pollution. Likewise, sublethal doses of toxic pollutants may reduce the reproductive success of the affected organisms or make them more susceptible to potentially lethal pathogens. Many serious gaps in knowledge that warrant further research were identified. Among those gaps are the effects of acidification, ozone, and mercury on alpine systems, effects of nitrogen on species composition of forests, effects of mercury in terrestrial food webs, interactive effects of multiple pollutants, and interactions among air pollution and other environmental changes such as climate change and invasive species. These gaps in knowledge, coupled with the strong likelihood of impacts on ecosystems that have not been studied in the region, suggests that current knowledge underestimates the actual impact of air pollutants on biodiversity. Nonetheless, because known or likely impacts of air pollution on the biodiversity and function of natural ecosystems are widespread in the Northeast and Mid-Atlantic regions, the effects of air pollution should be considered in any long-term conservation strategy. It is recommended that ecologically relevant standards, such as "critical loads," be adopted for air pollutants and the importance of long-term monitoring of air pollution and its effects is emphasized. PMID:19432647

  8. Computational enzyme design approaches with significant biological outcomes: progress and challenges

    PubMed Central

    Li, Xiaoman; Zhang, Ziding; Song, Jiangning

    2012-01-01

    Enzymes are powerful biocatalysts, however, so far there is still a large gap between the number of enzyme-based practical applications and that of naturally occurring enzymes. Multiple experimental approaches have been applied to generate nearly all possible mutations of target enzymes, allowing the identification of desirable variants with improved properties to meet the practical needs. Meanwhile, an increasing number of computational methods have been developed to assist in the modification of enzymes during the past few decades. With the development of bioinformatic algorithms, computational approaches are now able to provide more precise guidance for enzyme engineering and make it more efficient and less laborious. In this review, we summarize the recent advances of method development with significant biological outcomes to provide important insights into successful computational protein designs. We also discuss the limitations and challenges of existing methods and the future directions that should improve them. PMID:24688648

  9. MALDI-MS drug analysis in biological samples: opportunities and challenges.

    PubMed

    Steuer, Andrea E; Poetzsch, Michael; Kraemer, Thomas

    2016-09-01

    Drug analysis represents a large field in different disciplines. Plasma is commonly considered to be the biosample of choice for that purpose. However, concentrations often do not represent the levels present within deeper compartments and therefore cannot sufficiently explain efficacy or toxicology of drugs. MALDI-MS in drug analysis is of great interest for high-throughput quantification and particularly spatially resolved tissue imaging. The current perspective article will deal with challenges and opportunities of MALDI-MS drug analysis in different biological samples. A particular focus will be on hair samples. Recent applications were included, reviewed for their instrumental setup and sample preparation and pros and cons as well as future perspectives are critically discussed. PMID:27524467

  10. Considerations in Starting a Patient with Advanced Frailty on Dialysis: Complex Biology Meets Challenging Ethics

    PubMed Central

    2013-01-01

    Summary Nephrologists have focused on the uremic syndrome as an indication for dialysis. The elderly frail renal patient approaching ESRD represents a complex biologic system that is already failing. This patient phenotype exhibits progressive geriatric disabilities and dependence interspersed with shrinking periods of stability regardless of whether dialysis is started. Consequently, the frail renal patient faces challenging treatment choices underpinned by ethical tensions. Identifying the advanced frail renal patient and optimizing the shared decision-making process will enable him or her to make well informed choices based on an understanding of his or her overall condition and personal values and preferences. This approach will also permit nephrologists to fulfill their ethical obligations to respect patient autonomy, promote patient benefit, and minimize patient harm. PMID:23788617

  11. The Learning-Focused Transformation of Biology and Physics Core Courses at the U.S. Air Force Academy

    ERIC Educational Resources Information Center

    Sagendorf, Kenneth; Noyd, Robert K.; Morris, D. Brent

    2009-01-01

    An institution-wide focus on deep learning has made significant changes in the biology and physics core course curriculum at the U.S. Air Force Academy. The biology course director has reworked course objectives to reflect the learning-focused approach to teaching, while the physics curriculum has adopted new learning outcomes and ways to…

  12. Urban air quality: the challenge of traffic non-exhaust emissions.

    PubMed

    Amato, Fulvio; Cassee, Flemming R; Denier van der Gon, Hugo A C; Gehrig, Robert; Gustafsson, Mats; Hafner, Wolfgang; Harrison, Roy M; Jozwicka, Magdalena; Kelly, Frank J; Moreno, Teresa; Prevot, Andre S H; Schaap, Martijn; Sunyer, Jordi; Querol, Xavier

    2014-06-30

    About 400,000 premature adult deaths attributable to air pollution occur each year in the European Region. Road transport emissions account for a significant share of this burden. While important technological improvements have been made for reducing particulate matter (PM) emissions from motor exhausts, no actions are currently in place to reduce the non-exhaust part of emissions such as those from brake wear, road wear, tyre wear and road dust resuspension. These "non-exhaust" sources contribute easily as much and often more than the tailpipe exhaust to the ambient air PM concentrations in cities, and their relative contribution to ambient PM is destined to increase in the future, posing obvious research and policy challenges. This review highlights the major and more recent research findings in four complementary fields of research and seeks to identify the current gaps in research and policy with regard to non-exhaust emissions. The objective of this article is to encourage and direct future research towards an improved understanding on the relationship between emissions, concentrations, exposure and health impact and on the effectiveness of potential remediation measures in the urban environment. PMID:24837462

  13. Trace element analytical speciation in biological systems: importance, challenges and trends

    NASA Astrophysics Data System (ADS)

    Sanz-Medel, Alfredo

    1998-02-01

    Speciation of trace elements is a relatively new field and it was in toxicology that the relationship between the chemical form of a metal and its harmful effects was first recognized. The present need for chemical speciation information in biochemistry bioinorganic and clinical chemistry is documented in an attempt to justify the present demand for innovative chemical speciation strategies and analytical technologies. The challenge and complexity of speciation is stressed and three different categories of analytical speciation of increasing analytical difficulty are proposed. Analytical strategies developed so far to try to tackle speciation problems (computational approaches, direct species-specific and hybrid techniques) are reviewed and critically assessed for biological materials. It is indisputable these days that in most cases of real-life analytical speciation we have to resort to the development and use of hybrid techniques combining an adequate separation technique for the species physical separation and an element specific detector such as those based in atomic spectrometry. Examples of such strategies, as developed mainly in the author's laboratory and including chromatographic and non-chromatographic type hybrid strategies coupled to flame, plasma and electrothermal vaporization atomic detectors, are discussed in more detail. Finally, in light of the latest trends observed in this new field, the author attempts to cast a forward look into the foreseeable future of analytical speciation research in biological and biomedical sciences. The urgent plea for quality assurance in non-routine analysis and the concept of using complementary analytical techniques and definitive methods to attack the complexity of chemical speciation in biological systems are particularly highlighted.

  14. A SOLAS challenge: How can we test test feedback loops involving air-sea exchange?

    NASA Astrophysics Data System (ADS)

    Huebert, B. J.

    2004-12-01

    It is now well accepted that the Earth System links biological and physical processes in the water, on land, and in the air, creating countless feedback loops and dependencies that are at best difficult to quantify. One example of interest to SOLAS scientists is the suspension and long-range transport of dust from Asia, which may or may not interact with acidic air pollutants, that may increase the biological availability of iron, thereby increasing primary productivity in parts of the Pacific. This could increase DMS emissions and modify the radiative impact of Pacific clouds, affecting the climate and the hydrological system that limits the amount of dust lofted each year. Air-sea exchange is central to many such feedbacks: Variations in productivity in upwelling waters off Peru probably change DMS emissions and modify the stratocumulus clouds that blanket that region, thereby feeding back to productivity. The disparate time and space scales of the controlling processes make it difficult to observationally constrain such systems without the use of multi-year time-series and intensive multiplatform process studies. Unfortunately, much of the infrastructure for funding Earth science is poorly suited for supporting multidisciplinary research. For example, NSF's program managers are organized into disciplines and sub-disciplines, and rely on disciplinary reviewer communities that are protective of their slices of the funding pie. It is easy to find authors of strong, innovative, cross-disciplinary (yet unsuccessful) proposals who say they'll never try it again, because there is so little institutional support for interfacial research. Facility issues also complicate multidisciplinary projects, since there are usually several allocating groups that don't want to commit their ships, airplanes, or towers until the other groups have done so. The result is that there are very few examples of major interdisciplinary projects, even though IGBP core programs have articulated

  15. A hybrid biological process of indoor air treatment for toluene removal.

    PubMed

    Hort, C; Platel, V; Sochard, S; Munoz, Luengas A T; Ondarts, M; Reguer, A; Barona, A; Elias, A

    2014-12-01

    Bioprocesses, such as biofiltration, are commonly used to treat industrial effluents containing volatile organic compounds (VOCs) at low concentrations. Nevertheless, the use of biofiltration for indoor air pollution (IAP) treatment requires adjustments depending on specific indoor environments. Therefore, this study focuses on the convenience of a hybrid biological process for IAP treatment. A biofiltration reactor using a green waste compost was combined with an adsorption column filled with activated carbon (AC). This system treated a toluene-micropolluted effluent (concentration between 17 and 52 μg/m3), exhibiting concentration peaks close to 733 μg/m3 for a few hours per day. High removal efficiency was obtained despite changes in toluene inlet load (from 4.2 x 10(-3) to 0.20 g/m3/hr), which proves the hybrid system's effectiveness. In fact, during unexpected concentration changes, the efficiency of the biofilter is greatly decreased, but the adsorption column maintains the high efficiency of the entire process (removal efficiency [RE] close to 100%). Moreover, the adsorption column after biofiltration is able to deal with the problem of the emission of particles and/or microorganisms from the biofilter. Implications: Indoor air pollution is nowadays recognized as major environmental and health issue. This original study investigates the performance of a hybrid biological process combining a biofilter and an adsorption column for removal of indoor VOCs, specifically toluene. PMID:25562936

  16. Sea surface microlayers: A unified physicochemical and biological perspective of the air-ocean interface

    NASA Astrophysics Data System (ADS)

    Cunliffe, Michael; Engel, Anja; Frka, Sanja; Gašparović, Blaženka; Guitart, Carlos; Murrell, J. Colin; Salter, Matthew; Stolle, Christian; Upstill-Goddard, Robert; Wurl, Oliver

    2013-02-01

    The sea surface microlayer (SML) covers more than 70% of the Earth's surface and is the boundary layer interface between the ocean and the atmosphere. This important biogeochemical and ecological system is critical to a diverse range of Earth system processes, including the synthesis, transformation and cycling of organic material, and the air-sea exchange of gases, particles and aerosols. In this review we discuss the SML paradigm, taking into account physicochemical and biological characteristics that define SML structure and function. These include enrichments in biogenic molecules such as carbohydrates, lipids and proteinaceous material that contribute to organic carbon cycling, distinct microbial assemblages that participate in air-sea gas exchange, the generation of climate-active aerosols and the accumulation of anthropogenic pollutants with potentially serious implications for the health of the ocean. Characteristically large physical, chemical and biological gradients thus separate the SML from the underlying water and the available evidence implies that the SML retains its integrity over wide ranging environmental conditions. In support of this we present previously unpublished time series data on bacterioneuston composition and SML surfactant activity immediately following physical SML disruption; these imply timescales of the order of minutes for the reestablishment of the SML following disruption. A progressive approach to understanding the SML and hence its role in global biogeochemistry can only be achieved by considering as an integrated whole, all the key components of this complex environment.

  17. Assessing isocyanate exposures in polyurethane industry sectors using biological and air monitoring methods.

    PubMed

    Creely, K S; Hughson, G W; Cocker, J; Jones, K

    2006-08-01

    Isocyanates, as a chemical group, are considered to be the biggest cause of occupational asthma in the UK. Monitoring of airborne exposures to total isocyanate is costly, requiring considerable expertise, both in terms of sample collection and chemical analysis and cannot be used to assess the effectiveness of protection from wearing respiratory protective equipment (RPE). Biological monitoring by analysis of metabolites in urine can be a relatively simple and inexpensive way to assess exposure to isocyanates. It may also be a useful way to evaluate the effectiveness of control measures in place. In this study biological and inhalation monitoring were undertaken to assess exposure in a variety of workplaces in the non-motor vehicle repair sector. Companies selected to participate in the survey included only those judged to be using good working practices when using isocyanate formulations. This included companies that used isocyanates to produce moulded polyurethane products, insulation material and those involved in industrial painting. Air samples were collected by personal monitoring and were analysed for total isocyanate content. Urine samples were collected soon after exposure and analysed for the metabolites of different isocyanate species, allowing calculation of the total metabolite concentration. Details of the control measures used and observed contamination of exposed skin were also recorded. A total of 21 companies agreed to participate in the study, with exposure measurements being collected from 22 sites. The airborne isocyanate concentrations were generally very low (range 0.0005-0.066 mg m(-3)). A total of 50 of the 70 samples were <0.001 mg m(-3), the limit of quantification (LOQ), therefore samples below the LOQ were assigned a value of 1/2 LOQ (0.0005 mg m(-3)). Of the 70 samples, 67 were below the current workplace exposure limit of 0.02 mg m(-3). The highest inhalation exposures occurred during spray painting activities in a truck manufacturing

  18. Challenges in modeling the impact of biomass burning on air quality in megacities

    NASA Astrophysics Data System (ADS)

    Lei, W.; Li, G.; Molina, L. T.

    2013-05-01

    Biomass burning (BB) is the largest source of primary carbonaceous aerosols and the second largest source of trace gases in the global troposphere. The trace gases and particulates emitted by or formed in the biomass burning plumes adversely affect human health and have important impacts on atmospheric chemistry, air quality, and climate change in megacities. Chemical transport models provide an independent tool to assess the BB impacts, and more importantly they can be used to assess the impacts during periods when and with large spatial coverage where measurements are not available. However due to the high variable nature of the BB impacts, the uncertainties in the BB emission estimates arising from the emission factors, biomass assumption estimates, spatial and temporal distributions, the bias in predicted dynamic mixing and transport, and the limited availability of measurements, a modeling evaluation of the BB impacts is a difficult and challenging task. In this study we use Mexico City as a case study to illustrate the challenges in simulating the impacts from open fires, biofuel use and trash burning.

  19. Optical acoustic experimental investigation of propagation femtosecond laser radiation in air and biological tissues

    NASA Astrophysics Data System (ADS)

    Bochkarev, N. N.; Kabanov, A. M.; Protasevich, E. S.; Stepanov, A. N.

    2008-01-01

    Using two optical acoustic approaches we experimentally investigated spatial location of filament zone of propagation channel of focused laser radiation. For femtosecond pulses passing in air it was shown that nonlinear focus length had spatial scale of 1/P at initial power P moderate for self-focusing and at optical system focus distance significantly lower than Rayleigh beam length. The results of experimental optical acoustic investigation of femto- and nanosecond pulses attenuation by some biological tissues (muscular tissue, adipose tissue, cutaneous covering, and milk) and optical breakdown thresholds on these one are presented. It was shown that penetration depth of short laser pulse radiation into biological tissues is the same as for longer one. However, amplitude of acoustic response to a process of interaction of femtosecond laser pulse with biological tissue is larger in several times than that to interaction with nanosecond pulses of the same power and spectral distribution. The obtained threshold values can be interesting for tabulation of limit allowable levels of irradiation at work with laser radiation. Such values are unknown for femtosecond laser pulses today.

  20. Review: domestic animal forensic genetics - biological evidence, genetic markers, analytical approaches and challenges.

    PubMed

    Kanthaswamy, S

    2015-10-01

    This review highlights the importance of domestic animal genetic evidence sources, genetic testing, markers and analytical approaches as well as the challenges this field is facing in view of the de facto 'gold standard' human DNA identification. Because of the genetic similarity between humans and domestic animals, genetic analysis of domestic animal hair, saliva, urine, blood and other biological material has generated vital investigative leads that have been admitted into a variety of court proceedings, including criminal and civil litigation. Information on validated short tandem repeat, single nucleotide polymorphism and mitochondrial DNA markers and public access to genetic databases for forensic DNA analysis is becoming readily available. Although the fundamental aspects of animal forensic genetic testing may be reliable and acceptable, animal forensic testing still lacks the standardized testing protocols that human genetic profiling requires, probably because of the absence of monetary support from government agencies and the difficulty in promoting cooperation among competing laboratories. Moreover, there is a lack in consensus about how to best present the results and expert opinion to comply with court standards and bear judicial scrutiny. This has been the single most persistent challenge ever since the earliest use of domestic animal forensic genetic testing in a criminal case in the mid-1990s. Crime laboratory accreditation ensures that genetic test results have the courts' confidence. Because accreditation requires significant commitments of effort, time and resources, the vast majority of animal forensic genetic laboratories are not accredited nor are their analysts certified forensic examiners. The relevance of domestic animal forensic genetics in the criminal justice system is undeniable. However, further improvements are needed in a wide range of supporting resources, including standardized quality assurance and control protocols for sample

  1. Biological treatment of carbon disulfide laden air from sponge manufacturing facility

    SciTech Connect

    Hugler, W.; Acosta, C.M.; Benavente, J.L.; Revah, S.

    1998-12-31

    While several different biological techniques have been developed to eliminate hydrogen sulfide (H2S) from air, there are only few examples of successful results with high concentrations of carbon disulfide (CS2). A pilot-scale biological control system for the treatment of 2,000 ACFM of a gaseous stream containing up to 2,500 ppmv of carbon disulfide, was installed in a cellulose sponge manufacturing facility. The project`s objective was to evaluate the ability of the system to attain continuous removal efficiency levels of 90% for CS{sub 2} and 99% for H{sub 2}S. During the pilot test, the two-unit sequential biotrickling filter reached stable average removal efficiency and rate of 90% and 185 g S/m3-h (based on CS{sub 2} load); individual data analysis for each unit showed that first tower reached a maximum performance of 86% efficiency and 350 g S/m3-h removal rate. Removal efficiencies greater than 99% were obtained for H{sub 2}S during most test period. Furthermore, the system was evaluated for the treatment of a similar waste stream with high fluctuations on CS{sub 2} concentration (in order to assess the need for a dampening unit). New waste gas conditions had a negative impact on performance, which eventually improved reaching an efficiency of 77%; due to time constraints an steady-state was not attained during this test phase. Based on results, the BIOCYD technology demonstrated to be an effective process to remediate waste air streams generated at cellulose sponge facilities.

  2. Challenges of treating incidental synchronous bilateral breast cancer with differing tumour biology.

    PubMed

    Esclovon, Jonathan Walter; Ponder, Melissa; Aydin, Nail; Misra, Subhasis

    2016-01-01

    A 59-year-old woman with right breast mass was diagnosed with invasive ductal carcinoma (IDC). Workup consisted of bilateral diagnostic mammogram and ultrasound (US); both showed a right breast mass with normal left breast. Core biopsy showed IDC with estrogen receptor negative (ER-)/progesterone receptor negative (PR-) and HER2/neu positive receptor status. The patient underwent carboplatin-based chemotherapy with Herceptin. The mass completely resolved. The patient desired to proceed with bilateral total mastectomy with right sentinel lymph node biopsy (SLNB). Pathology showed complete resolution of the right-sided breast mass without malignancy in right SLN. Incidentally, IDC was found in the left breast specimen, which was ER+/PR+ and HER 2/neu negative. Tumour board consensus was to obtain a left axilla US with MRI in 6 months if the US was unremarkable. Biologically different synchronous bilateral breast cancer poses a difficult clinical challenge for management due to differing responses to treatment. Use of MRI may be a diagnostic option in women who choose contralateral prophylactic mastectomy. PMID:27539136

  3. Biological monitoring and allergic sensitization in traffic police officers exposed to urban air pollution.

    PubMed

    Vimercati, L; Carrus, A; Bisceglia, L; Tatò, I; Bellotta, M R; Russo, A; Martina, G; Daprile, C; Di Leo, E; Nettis, E; Assennato, G

    2006-01-01

    Urban air pollution is associated with an increased incidence of allergic respiratory diseases. The aim of this study is to assess the occupational exposure to urban pollution through biological monitoring of PAHs and CO airborne levels in 122 traffic wardens in Bari, Italy and to investigate sensitization to inhaled allergens in a subgroup of workers. After filling in a questionnaire on lifestyle habits and occupational history, a medical examination, spirometry were carried out and blood samples were taken; the measurement of exhaled CO and urinary 1-hydroxypyrene (1-HOP) was performed and data on the air quality of Bari Municipality were obtained. Specific IgE dosage and skin prick tests were done on 18 workers giving altered values of spirometry or anamnestic allergic symptoms. Urinary 1-HOP showed median levels of 0.1 microMol/Mol(creat) (range 0.02-6.68) and was not influenced by smoking habits, work tasks, area of the city and environmental levels of PM10. Exhaled CO, with median value of 1 ppm (range 0-27), was significantly higher in smokers than in non-smokers, while no other variable seemed to play a role in modifying the levels. Specific IgE production versus inhalant allergens was found in 6 cases. Positive skin prick test results were observed in 11 cases. Allergic rhinitis was diagnosed in 6 cases. At least one of the allergometric tests performed was positive in 61 percent of the subjects. In conclusion, our results suggest the importance of introducing allergic status evaluation in this class of workers, exposed to several urban air pollutants. PMID:17291408

  4. Epidemiology of fine particulate air pollution and human health: biologic mechanisms and who's at risk?

    PubMed Central

    Pope, C A

    2000-01-01

    This article briefly summarizes the epidemiology of the health effects of fine particulate air pollution, provides an early, somewhat speculative, discussion of the contribution of epidemiology to evaluating biologic mechanisms, and evaluates who's at risk or is susceptible to adverse health effects. Based on preliminary epidemiologic evidence, it is speculated that a systemic response to fine particle-induced pulmonary inflammation, including cytokine release and altered cardiac autonomic function, may be part of the pathophysiologic mechanisms or pathways linking particulate pollution with cardiopulmonary disease. The elderly, infants, and persons with chronic cardiopulmonary disease, influenza, or asthma are most susceptible to mortality and serious morbidity effects from short-term acutely elevated exposures. Others are susceptible to less serious health effects such as transient increases in respiratory symptoms, decreased lung function, or other physiologic changes. Chronic exposure studies suggest relatively broad susceptibility to cumulative effects of long-term repeated exposure to fine particulate pollution, resulting in substantive estimates of population average loss of life expectancy in highly polluted environments. Additional knowledge is needed about the specific pollutants or mix of pollutants responsible for the adverse health effects and the biologic mechanisms involved. PMID:10931790

  5. Challenges and Opportunities for Learning Biology in Distance-Based Settings

    ERIC Educational Resources Information Center

    Hallyburton, Chad L.; Lunsford, Eddie

    2013-01-01

    The history of learning biology through distance education is documented. A review of terminology and unique problems associated with biology instruction is presented. Using published research and their own teaching experience, the authors present recommendations and best practices for managing biology in distance-based formats. They offer ideas…

  6. Biological challenges and technological opportunities for respiratory syncytial virus vaccine development.

    PubMed

    Graham, Barney S

    2011-01-01

    Respiratory syncytial virus (RSV) is an important cause of respiratory disease causing high rates of hospitalizations in infants, significant morbidity in children and adults, and excess mortality in the elderly. Major barriers to vaccine development include early age of RSV infection, capacity of RSV to evade innate immunity, failure of RSV-induced adaptive immunity to prevent reinfection, history of RSV vaccine-enhanced disease, and lack of an animal model fully permissive to human RSV infection. These biological challenges, safety concerns, and practical issues have significantly prolonged the RSV vaccine development process. One great advantage compared to other difficult viral vaccine targets is that passively administered neutralizing monoclonal antibody is known to protect infants from severe RSV disease. Therefore, the immunological goals for vaccine development are to induce effective neutralizing antibody to prevent infection and to avoid inducing T-cell response patterns associated with enhanced disease. Live-attenuated RSV and replication-competent chimeric viruses are in advanced clinical trials. Gene-based strategies, which can control the specificity and phenotypic properties of RSV-specific T-cell responses utilizing replication-defective vectors and which may improve on immunity from natural infection, are progressing through preclinical testing. Atomic level structural information on RSV envelope glycoproteins in complex with neutralizing antibodies is guiding design of new vaccine antigens that may be able to elicit RSV-specific antibody responses without induction of RSV-specific T-cell responses. These new technologies may allow development of vaccines that can protect against RSV-mediated disease in infants and establish a new immunological paradigm in the host to achieve more durable protection against reinfection. PMID:21198670

  7. Real-time sensors for indoor air monitoring and challenges ahead in deploying them to urban buildings.

    PubMed

    Kumar, Prashant; Skouloudis, Andreas N; Bell, Margaret; Viana, Mar; Carotta, M Cristina; Biskos, George; Morawska, Lidia

    2016-08-01

    Household air pollution is ranked the 9(th) largest Global Burden of Disease risk (Forouzanfar et al., The Lancet 2015). People, particularly urban dwellers, typically spend over 90% of their daily time indoors, where levels of air pollution often surpass those of outdoor environments. Indoor air quality (IAQ) standards and approaches for assessment and control of indoor air require measurements of pollutant concentrations and thermal comfort using conventional instruments. However, the outcomes of such measurements are usually averages over long integrated time periods, which become available after the exposure has already occurred. Moreover, conventional monitoring is generally incapable of addressing temporal and spatial heterogeneity of indoor air pollution, or providing information on peak exposures that occur when specific indoor sources are in operation. This article provides a review of new air pollution sensing methods to determine IAQ and discusses how real-time sensing could bring a paradigm shift in controlling the concentration of key air pollutants in billions of urban houses worldwide. We also show that besides the opportunities, challenges still remain in terms of maturing technologies, or data mining and their interpretation. Moreover, we discuss further research and essential development needed to close gaps between what is available today and needed tomorrow. In particular, we demonstrate that awareness of IAQ risks and availability of appropriate regulation are lagging behind the technologies. PMID:27101450

  8. Release and distribution of Lilioceris cheni (Coleoptera: Chrysomelidae), a biological control agent of air potato (Dioscorea bulbilfera: Dioscoreaceae), in Florida

    Technology Transfer Automated Retrieval System (TEKTRAN)

    From 2012 to 2015, 429,668 Lilioceris cheni Gressit and Kimoto (Coleoptera: Chrysomelidae) were released in Florida for biological control of air potato [Dioscorea bulbilfera L. (Dioscoreaceae)]. The spatial distribution of releases was highly aggregated, with several areas of high density releases ...

  9. Biological Sciences for the 21st Century: Meeting the Challenges of Sustainable Development in an Era of Global Change

    SciTech Connect

    Joel Cracraft; Richard O'Grady

    2007-05-12

    The symposium was held 10-12 May, 2007 at the Capitol Hilton Hotel in Washington, D. C. The 30 talks explored how some of today's key biological research developments (such as biocomplexity and complex systems analysis, bioinformatics and computational biology, the expansion of molecular and genomics research, and the emergence of other comprehensive or system wide analyses, such as proteomics) contribute to sustainability science. The symposium therefore emphasized the challenges facing agriculture, human health, sustainable energy, and the maintenance of ecosystems and their services, so as to provide a focus and a suite of examples of the enormous potential contributions arising from these new developments in the biological sciences. This symposium was the first to provide a venue for exploring how the ongoing advances in the biological sciences together with new approaches for improving knowledge integration and institutional science capacity address key global challenges to sustainability. The speakers presented new research findings, and identified new approaches and needs in biological research that can be expected to have substantial impacts on sustainability science.

  10. Bioaccumulation Potential Of Air Contaminants: Combining Biological Allometry, Chemical Equilibrium And Mass-Balances To Predict Accumulation Of Air Pollutants In Various Mammals

    SciTech Connect

    Veltman, Karin; McKone, Thomas E.; Huijbregts, Mark A.J.; Hendriks, A. Jan

    2009-03-01

    In the present study we develop and test a uniform model intended for single compartment analysis in the context of human and environmental risk assessment of airborne contaminants. The new aspects of the model are the integration of biological allometry with fugacity-based mass-balance theory to describe exchange of contaminants with air. The developed model is applicable to various mammalian species and a range of chemicals, while requiring few and typically well-known input parameters, such as the adult mass and composition of the species, and the octanol-water and air-water partition coefficient of the chemical. Accumulation of organic chemicals is typically considered to be a function of the chemical affinity forlipid components in tissues. Here, we use a generic description of chemical affinity for neutral and polar lipids and proteins to estimate blood-air partition coefficients (Kba) and tissue-air partition coefficients (Kta) for various mammals. This provides a more accurate prediction of blood-air partition coefficients, as proteins make up a large fraction of total blood components. The results show that 75percent of the modeled inhalation and exhalation rate constants are within a factor of 2 from independent empirical values for humans, rats and mice, and 87percent of the predicted blood-air partition coefficients are within a factor of 5 from empirical data. At steady-state, the bioaccumulation potential of air pollutants is shown to be mainly a function of the tissue-air partition coefficient and the biotransformation capacity of the species and depends weakly on the ventilation rate and the cardiac output of mammals.

  11. Challenger

    ERIC Educational Resources Information Center

    Allday, Jonathan

    2002-01-01

    The events that led to the spectacular destruction of the Space Shuttle "Challenger" in 1986 are detailed here. They show how NASA should have heeded engineers' worries over materials problems resulting from a launch in cold weather. Suggestions are made of how pupils could also learn from this tragedy. (Contains 4 figures and 2 footnotes.)

  12. Challenger

    NASA Astrophysics Data System (ADS)

    Allday, Jonathan

    2002-09-01

    The events that led to the spectacular destruction of the Space Shuttle Challenger in 1986 are detailed here. They show how NASA should have heeded engineers' worries over materials problems resulting from a launch in cold weather. Suggestions are made of how pupils could also learn from this tragedy.

  13. Challenges

    ERIC Educational Resources Information Center

    Moore, Thomas R.

    1975-01-01

    Domestic and international challenges facing the National Society for the Prevention of Blindness are discussed; and U.S. and Russian programs in testing and correcting children's vision, developing eye safety programs in agriculture and industry, and disseminating information concerning the detection and treatment of cataracts are compared. (SB)

  14. Understanding the limits of animal models as predictors of human biology: lessons learned from the sbv IMPROVER Species Translation Challenge

    PubMed Central

    Mathis, Carole; Dulize, Rémi H. J.; Ivanov, Nikolai V.; Alexopoulos, Leonidas; Jeremy Rice, J.; Peitsch, Manuel C.; Stolovitzky, Gustavo; Meyer, Pablo; Hoeng, Julia

    2015-01-01

    Motivation: Inferring how humans respond to external cues such as drugs, chemicals, viruses or hormones is an essential question in biomedicine. Very often, however, this question cannot be addressed because it is not possible to perform experiments in humans. A reasonable alternative consists of generating responses in animal models and ‘translating’ those results to humans. The limitations of such translation, however, are far from clear, and systematic assessments of its actual potential are urgently needed. sbv IMPROVER (systems biology verification for Industrial Methodology for PROcess VErification in Research) was designed as a series of challenges to address translatability between humans and rodents. This collaborative crowd-sourcing initiative invited scientists from around the world to apply their own computational methodologies on a multilayer systems biology dataset composed of phosphoproteomics, transcriptomics and cytokine data derived from normal human and rat bronchial epithelial cells exposed in parallel to 52 different stimuli under identical conditions. Our aim was to understand the limits of species-to-species translatability at different levels of biological organization: signaling, transcriptional and release of secreted factors (such as cytokines). Participating teams submitted 49 different solutions across the sub-challenges, two-thirds of which were statistically significantly better than random. Additionally, similar computational methods were found to range widely in their performance within the same challenge, and no single method emerged as a clear winner across all sub-challenges. Finally, computational methods were able to effectively translate some specific stimuli and biological processes in the lung epithelial system, such as DNA synthesis, cytoskeleton and extracellular matrix, translation, immune/inflammation and growth factor/proliferation pathways, better than the expected response similarity between species. Contact

  15. Knowledge Transfer in Biology and Translation across External Representations: Experts' Views and Challenges for Learning

    ERIC Educational Resources Information Center

    Schonborn, Konrad J.; Bogeholz, Susanne

    2009-01-01

    Recent curriculum reform promotes core competencies such as desired "content knowledge" and "communication" for meaningful learning in biology. Understanding in biology is demonstrated when pupils can apply acquired knowledge to new tasks. This process requires the transfer of knowledge and the subordinate process of translation across external…

  16. Getting to Evo-Devo: Concepts and Challenges for Students Learning Evolutionary Developmental Biology

    ERIC Educational Resources Information Center

    Hiatt, Anna; Davis, Gregory K.; Trujillo, Caleb; Terry, Mark; French, Donald P.; Price, Rebecca M.; Perez, Kathryn E.

    2013-01-01

    To examine how well biology majors have achieved the necessary foundation in evolution, numerous studies have examined how students learn natural selection. However, no studies to date have examined how students learn developmental aspects of evolution (evo-devo). Although evo-devo plays an increasing role in undergraduate biology curricula, we…

  17. BIOLOGICAL EFFECTS OF OIL FLY ASH AND RELEVANCE TO AMBIENT AIR PARTICULATE MATTER

    EPA Science Inventory

    Epidemiologic studies have demonstrated increased human morbidity and mortality with elevations in the concentration of ambient air particulate matter (PM). Fugitive fly ash from the combustion of oil and residual fuel oil significantly contributes to the ambient air particle bur...

  18. Reverse engineering and identification in systems biology: strategies, perspectives and challenges

    PubMed Central

    Villaverde, Alejandro F.; Banga, Julio R.

    2014-01-01

    The interplay of mathematical modelling with experiments is one of the central elements in systems biology. The aim of reverse engineering is to infer, analyse and understand, through this interplay, the functional and regulatory mechanisms of biological systems. Reverse engineering is not exclusive of systems biology and has been studied in different areas, such as inverse problem theory, machine learning, nonlinear physics, (bio)chemical kinetics, control theory and optimization, among others. However, it seems that many of these areas have been relatively closed to outsiders. In this contribution, we aim to compare and highlight the different perspectives and contributions from these fields, with emphasis on two key questions: (i) why are reverse engineering problems so hard to solve, and (ii) what methods are available for the particular problems arising from systems biology? PMID:24307566

  19. Do-it-yourself biology: challenges and promises for an open science and technology movement.

    PubMed

    Landrain, Thomas; Meyer, Morgan; Perez, Ariel Martin; Sussan, Remi

    2013-09-01

    The do-it-yourself biology (DIYbio) community is emerging as a movement that fosters open access to resources permitting modern molecular biology, and synthetic biology among others. It promises in particular to be a source of cheaper and simpler solutions for environmental monitoring, personal diagnostic and the use of biomaterials. The successful growth of a global community of DIYbio practitioners will depend largely on enabling safe access to state-of-the-art molecular biology tools and resources. In this paper we analyze the rise of DIYbio, its community, its material resources and its applications. We look at the current projects developed for the international genetically engineered machine competition in order to get a sense of what amateur biologists can potentially create in their community laboratories over the coming years. We also show why and how the DIYbio community, in the context of a global governance development, is putting in place a safety/ethical framework for guarantying the pursuit of its activity. And finally we argue that the global spread of DIY biology potentially reconfigures and opens up access to biological information and laboratory equipment and that, therefore, it can foster new practices and transversal collaborations between professional scientists and amateurs. PMID:24432149

  20. Association of allergic asthma emergency room visits with the main biological and chemical air pollutants.

    PubMed

    Makra, László; Matyasovszky, István; Bálint, Beatrix

    2012-08-15

    Joint effect of biological (pollen) and chemical air pollutants on asthma emergency room (ER) visits was analyzed for Szeged region of Southern Hungary. Our database of a nine-year period (1999-2007) includes daily number of asthma emergency room (ER) visits, and daily mean concentrations of CO, PM(10), NO, NO(2), O(3) and SO(2), furthermore two pollen variables (Ambrosia and total pollen excluding Ambrosia), as well. The analysis was performed for ER visits of asthma bronchiale using two age groups (adults and the elderly) of males and females for three seasons. Factor analysis was performed in order to clarify the relative importance of the pollutant variables affecting asthma ER visits. Asthma ER visits denote notably stronger associations with the pollutants in adult male than in adult female patients both for the pollen season of Ambrosia and the pollen-free season. Furthermore, adults are substantially more sensitive to severe asthma attack than the elderly for the season of total pollen excluding Ambrosia pollen. The joint effect of the chemical and pollen variables is the highest for the asthma ER cases in the pollen season of Ambrosia, basically due to the extra impact of the total pollen excluding Ambrosia pollen and partly due to Ambrosia pollen. A nonparametric regression technique was applied to discriminate between events of ER visit-no ER visit using pollen and chemical pollutants as explaining variables. Based on multiple correlations, the strongest relationships between ER visits and pollutants are observed during the pollen-free season. The elderly group with asthma bronchiale is characterized by weaker relationships between ER visits and pollutants compared to adults. Ratio of the number of correct decisions on the events of ER visit-no ER visit is lowest for the season of total pollen excluding Ambrosia pollen. Otherwise, similar conclusions hold as those received by multiple correlations. PMID:22750174

  1. Challenges of Achieving 2012 IECC Air Sealing Requirements in Multifamily Dwellings

    SciTech Connect

    Klocke, S.; Faakye, O.; Puttagunta, S.

    2014-10-01

    ​While previous versions of the International Energy Conservation Code (IECC) have included provisions to improve the air tightness of dwellings, for the first time, the 2012 IECC mandates compliance verification through blower door testing. Simply completing the Air Barrier and Insulation Installation checklist through visual inspection is no longer sufficient by itself. In addition, the 2012 IECC mandates a significantly stricter air sealing requirement. In Climate Zones 3 through 8, air leakage may not exceed 3 ACH50, which is a significant reduction from the 2009 IECC requirement of 7 ACH50. This requirement is for all residential buildings, which includes low-rise multifamily dwellings. While this air leakage rate requirement is an important component to achieving an efficient building thermal envelope, currently, the code language doesn't explicitly address differences between single family and multifamily applications. In addition, the 2012 IECC does not provide an option to sample dwellings for larger multifamily buildings, so compliance would have to be verified on every unit. With compliance with the 2012 IECC air leakage requirements on the horizon, several of CARB's multifamily builder partners are evaluating how best to comply with this requirement. Builders are not sure whether it is more practical or beneficial to simply pay for guarded testing or to revise their air sealing strategies to improve compartmentalization to comply with code requirements based on unguarded blower door testing. This report summarizes CARB's research that was conducted to assess the feasibility of meeting the 2012 IECC air leakage requirements in 3 multifamily buildings.

  2. Challenges of Achieving 2012 IECC Air Sealing Requirements in Multifamily Dwellings

    SciTech Connect

    Klocke, S.; Faakye, O.; Puttagunta, S.

    2014-10-01

    While previous versions of the International Energy Conservation Code (IECC) have included provisions to improve the air tightness of dwellings, for the first time, the 2012 IECC mandates compliance verification through blower door testing. Simply completing the Air Barrier and Insulation Installation checklist through visual inspection is no longer sufficient by itself. In addition, the 2012 IECC mandates a significantly stricter air sealing requirement. In Climate Zones 3 through 8, air leakage may not exceed 3 ACH50, which is a significant reduction from the 2009 IECC requirement of 7 ACH50. This requirement is for all residential buildings, which includes low-rise multifamily dwellings. While this air leakage rate requirement is an important component to achieving an efficient building thermal envelope, currently, the code language doesn't explicitly address differences between single family and multifamily applications. In addition, the 2012 IECC does not provide an option to sample dwellings for larger multifamily buildings, so compliance would have to be verified on every unit. With compliance with the 2012 IECC air leakage requirements on the horizon, several of Consortium for Advanced Residential Building's (CARB’s) multifamily builder partners are evaluating how best to comply with this requirement. Builders are not sure whether it is more practical or beneficial to simply pay for guarded testing or to revise their air sealing strategies to improve compartmentalization to comply with code requirements based on unguarded blower door testing. This report summarizes CARB's research that was conducted to assess the feasibility of meeting the 2012 IECC air leakage requirements in 3 multifamily buildings.

  3. Challenges and opportunities for remote sensing of air quality: Insights from DISCOVER-AQ

    NASA Astrophysics Data System (ADS)

    Crawford, J. H.; Pickering, K. E.; Anderson, B. E.; Beyersdorf, A. J.; Clark, R. D.; Cohen, R. C.; Diskin, G. S.; Ferrare, R. A.; Fried, A.; Holben, B. N.; Herman, J. R.; Hoff, R. M.; Hostetler, C. A.; Janz, S. J.; Szykman, J.; Thompson, A. M.; Weinheimer, A. J.; Wisthaler, A.; Yang, M. M.; Chen, G.; Kleb, M. M.

    2014-12-01

    Improving the remote sensing of air quality has been the primary focus of a series of four field studies conducted by a project called DISCOVER-AQ (Deriving Information on Surface conditions from COlumn and VERtically resolved observations relevant to Air Quality). Operating as an integrated observing system, DISCOVER-AQ has employed multiple aircraft and ground instrumentation to conduct multi-perspective observations of the distribution of gaseous and particulate pollution in the lower atmosphere over contrasting regions of the U.S. that are currently in violation of National Ambient Air Quality Standards. The four study areas include Maryland (Baltimore-Washington corridor), California (southern San Joaquin Valley), Texas (Greater Houston area), and Colorado (Denver/Northern Front Range). The DISCOVER-AQ observations are actively being used to promote improvements in remote sensing in the following ways: Characterizing vertical structure in the atmosphere and its diurnal patterns to develop improved a priori information for satellite retrievals; Examining horizontal variability to assess the spatial scales needed to resolve emissions and photochemistry; Determining correlative relationships between remotely sensed and in situ observations; Assessing the value of ground-based remote sensing to provide information on impact of boundary layer dynamics and mixing on air pollution. Examples of the ongoing analysis of these datasets and their relevance to future geostationary satellite observations as well as augmentation of air quality monitoring networks with ground-based remote sensing will be discussed.

  4. Systems Biology of Cancer: A Challenging Expedition for Clinical and Quantitative Biologists

    PubMed Central

    Korsunsky, Ilya; McGovern, Kathleen; LaGatta, Tom; Olde Loohuis, Loes; Grosso-Applewhite, Terri; Griffeth, Nancy; Mishra, Bud

    2014-01-01

    A systems-biology approach to complex disease (such as cancer) is now complementing traditional experience-based approaches, which have typically been invasive and expensive. The rapid progress in biomedical knowledge is enabling the targeting of disease with therapies that are precise, proactive, preventive, and personalized. In this paper, we summarize and classify models of systems biology and model checking tools, which have been used to great success in computational biology and related fields. We demonstrate how these models and tools have been used to study some of the twelve biochemical pathways implicated in but not unique to pancreatic cancer, and conclude that the resulting mechanistic models will need to be further enhanced by various abstraction techniques to interpret phenomenological models of cancer progression. PMID:25191654

  5. Large, dynamic, multi-protein complexes: a challenge for structural biology.

    PubMed

    Różycki, Bartosz; Boura, Evzen

    2014-11-19

    Structural biology elucidates atomic structures of macromolecules such as proteins, DNA, RNA, and their complexes to understand the basic mechanisms of their functions. Among proteins that pose the most difficult problems to current efforts are those which have several large domains connected by long, flexible polypeptide segments. Although abundant and critically important in biological cells, such proteins have proven intractable by conventional techniques. This gap has recently led to the advancement of hybrid methods that use state-of-the-art computational tools to combine complementary data from various high- and low-resolution experiments. In this review, we briefly discuss the individual experimental techniques to illustrate their strengths and limitations, and then focus on the use of hybrid methods in structural biology. We describe how representative structures of dynamic multi-protein complexes are obtained utilizing the EROS hybrid method that we have co-developed. PMID:25335513

  6. Large, dynamic, multi-protein complexes: a challenge for structural biology

    NASA Astrophysics Data System (ADS)

    Różycki, Bartosz; Boura, Evzen

    2014-11-01

    Structural biology elucidates atomic structures of macromolecules such as proteins, DNA, RNA, and their complexes to understand the basic mechanisms of their functions. Among proteins that pose the most difficult problems to current efforts are those which have several large domains connected by long, flexible polypeptide segments. Although abundant and critically important in biological cells, such proteins have proven intractable by conventional techniques. This gap has recently led to the advancement of hybrid methods that use state-of-the-art computational tools to combine complementary data from various high- and low-resolution experiments. In this review, we briefly discuss the individual experimental techniques to illustrate their strengths and limitations, and then focus on the use of hybrid methods in structural biology. We describe how representative structures of dynamic multi-protein complexes are obtained utilizing the EROS hybrid method that we have co-developed.

  7. New clean air efforts face tough challenges, say senators and former EPA administrators

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2012-02-01

    With the U.S. Environmental Protection Agency (EPA) coming under repeated attack from some members of Congress and others for perceived heavy-handed regulatory actions, two moderate U.S. senators and two former EPA administrators recently noted the need for continued measures to improve air quality. However, they also acknowledged the difficulty in moving forward with new legislative efforts to revise the federal Clean Air Act to further reduce air pollution in the current polarized political climate. "Nobody who wants to see constructive changes [to the act] would dare touch it or propose it in the current climate," said former EPA administrator William Reilly at a 23 January forum sponsored by the World Resources Institute. Reilly, who served as EPA administrator from 1989 to 1992, noted that bipartisan congressional support had been key to addressing many environmental problems up until the mid-1990s.

  8. Challenges to evaluation of eriophyid mites for biological control of invasive plants.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Eriophyid mites have been considered to have a high potential for use as classical biological control agents of weeds. However, in the past 20 years few species have been authorized for introduction, and few have significantly reduced the target plant's population. Natural enemies, resistant plant...

  9. Effectiveness of Eriophyid Mites for Biological Control of Weedy Plants and Challenges for Future Research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Eriophyid mites have been considered to have a high potential for use as classical biological control agents of weeds. However, in the past 20 years few species have been authorized for introduction, and few have significantly reduced the target plant's population. Natural enemies, resistant plant...

  10. Effectiveness of Eriophyid Mites for Biological Control of Weedy Plants and Challenges for Future Research

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Eriophyid mites have been considered to have a high potential for use as classical biological control agents of weeds. In the past 20 years 13 species have undergone some degree of pre-release evaluation but only four have been authorized for introduction. Prior to this, three species were success...

  11. Advances and challenges in the molecular biology and treatment of glioblastoma—is there any hope for the future?

    PubMed Central

    Veliz, Ignacio; Loo, Yong; Castillo, Omar; Karachaliou, Niki; Nigro, Olga

    2015-01-01

    Malignant gliomas, such as glioblastoma multiforme (GBM), present some of the greatest challenges in the management of cancer patients worldwide. Even with aggressive surgical resections and recent advances in radiotherapy and chemotherapy, the prognosis for GBM patients remains dismal and quality of life is poor. Although new molecular pathways crucial to the biology and invasive ability of GBM are coming to light, translation of basic science achievements into clinical practice is slow. Optimal management requires a multidisciplinary approach and knowledge of potential complications arising from both disease and treatment. To help illustrate “where we are going” with GBM, we here include a detailed depiction of the molecular alterations underlying this fatal disease, as well as intensive research over the past two decades that has led to considerable advances in the understanding of basic GBM biology, pathogenesis and therapeutic approaches. PMID:25705639

  12. Advances and challenges in the molecular biology and treatment of glioblastoma-is there any hope for the future?

    PubMed

    Veliz, Ignacio; Loo, Yong; Castillo, Omar; Karachaliou, Niki; Nigro, Olga; Rosell, Rafael

    2015-01-01

    Malignant gliomas, such as glioblastoma multiforme (GBM), present some of the greatest challenges in the management of cancer patients worldwide. Even with aggressive surgical resections and recent advances in radiotherapy and chemotherapy, the prognosis for GBM patients remains dismal and quality of life is poor. Although new molecular pathways crucial to the biology and invasive ability of GBM are coming to light, translation of basic science achievements into clinical practice is slow. Optimal management requires a multidisciplinary approach and knowledge of potential complications arising from both disease and treatment. To help illustrate "where we are going" with GBM, we here include a detailed depiction of the molecular alterations underlying this fatal disease, as well as intensive research over the past two decades that has led to considerable advances in the understanding of basic GBM biology, pathogenesis and therapeutic approaches. PMID:25705639

  13. Coming Out in Class: Challenges and Benefits of Active Learning in a Biology Classroom for LGBTQIA Students

    PubMed Central

    Cooper, Katelyn M.; Brownell, Sara E.

    2016-01-01

    As we transition our undergraduate biology classrooms from traditional lectures to active learning, the dynamics among students become more important. These dynamics can be influenced by student social identities. One social identity that has been unexamined in the context of undergraduate biology is the spectrum of lesbian, gay, bisexual, transgender, queer, intersex, and asexual (LGBTQIA) identities. In this exploratory interview study, we probed the experiences and perceptions of seven students who identify as part of the LGBTQIA community. We found that students do not always experience the undergraduate biology classroom to be a welcoming or accepting place for their identities. In contrast to traditional lectures, active-learning classes increase the relevance of their LGBTQIA identities due to the increased interactions among students during group work. Finally, working with other students in active-learning classrooms can present challenges and opportunities for students considering their LGBTQIA identity. These findings indicate that these students’ LGBTQIA identities are affecting their experience in the classroom and that there may be specific instructional practices that can mitigate some of the possible obstacles. We hope that this work can stimulate discussions about how to broadly make our active-learning biology classes more inclusive of this specific population of students. PMID:27543636

  14. Synthetic biology between challenges and risks: suggestions for a model of governance and a regulatory framework, based on fundamental rights.

    PubMed

    Colussi, Ilaria Anna

    2013-01-01

    This paper deals with the emerging synthetic biology, its challenges and risks, and tries to design a model for the governance and regulation of the field. The model is called of "prudent vigilance" (inspired by the report about synthetic biology, drafted by the U.S. Presidential Commission on Bioethics, 2010), and it entails (a) an ongoing and periodically revised process of assessment and management of all the risks and concerns, and (b) the adoption of policies - taken through "hard law" and "soft law" sources - that are based on the principle of proportionality (among benefits and risks), on a reasonable balancing between different interests and rights at stake, and are oriented by a constitutional frame, which is represented by the protection of fundamental human rights emerging in the field of synthetic biology (right to life, right to health, dignity, freedom of scientific research, right to environment). After the theoretical explanation of the model, its operability is "checked", by considering its application with reference to only one specific risk brought up by synthetic biology - biosecurity risk, i.e. the risk of bioterrorism. PMID:24340832

  15. Coming Out in Class: Challenges and Benefits of Active Learning in a Biology Classroom for LGBTQIA Students.

    PubMed

    Cooper, Katelyn M; Brownell, Sara E

    2016-01-01

    As we transition our undergraduate biology classrooms from traditional lectures to active learning, the dynamics among students become more important. These dynamics can be influenced by student social identities. One social identity that has been unexamined in the context of undergraduate biology is the spectrum of lesbian, gay, bisexual, transgender, queer, intersex, and asexual (LGBTQIA) identities. In this exploratory interview study, we probed the experiences and perceptions of seven students who identify as part of the LGBTQIA community. We found that students do not always experience the undergraduate biology classroom to be a welcoming or accepting place for their identities. In contrast to traditional lectures, active-learning classes increase the relevance of their LGBTQIA identities due to the increased interactions among students during group work. Finally, working with other students in active-learning classrooms can present challenges and opportunities for students considering their LGBTQIA identity. These findings indicate that these students' LGBTQIA identities are affecting their experience in the classroom and that there may be specific instructional practices that can mitigate some of the possible obstacles. We hope that this work can stimulate discussions about how to broadly make our active-learning biology classes more inclusive of this specific population of students. PMID:27543636

  16. New and improved proteomics technologies for understanding complex biological systems: Addressing a grand challenge in the life sciences

    PubMed Central

    Hood, Leroy E.; Omenn, Gilbert S.; Moritz, Robert L.; Aebersold, Ruedi; Yamamoto, Keith R.; Amos, Michael; Hunter-Cevera, Jennie; Locascio, Laurie

    2014-01-01

    This White Paper sets out a Life Sciences Grand Challenge for Proteomics Technologies to enhance our understanding of complex biological systems, link genomes with phenotypes, and bring broad benefits to the biosciences and the US economy. The paper is based on a workshop hosted by the National Institute of Standards and Technology (NIST) in Gaithersburg, MD, 14–15 February 2011, with participants from many federal R&D agencies and research communities, under the aegis of the US National Science and Technology Council (NSTC). Opportunities are identified for a coordinated R&D effort to achieve major technology-based goals and address societal challenges in health, agriculture, nutrition, energy, environment, national security, and economic development. PMID:22807061

  17. Using Grand Challenges to Teach Science: A Biology-Geology Collaboration

    NASA Astrophysics Data System (ADS)

    Lyford, M.; Myers, J. D.

    2012-12-01

    Three science courses at the University of Wyoming explore the inextricable connections between science and society by centering on grand challenges. Two of these courses are introductory integrated science courses for non-majors while the third is an upper level course for majors and non-majors. Through collaboration, the authors have developed these courses to explore the grand challenges of energy, water and climate. Each course focuses on the fundamental STEM principles required for a citizen to understand each grand challenge. However, the courses also emphasize the non-STEM perspectives (e.g., economics, politics, human well-being, externalities) that underlie each grand challenge and argue that creating equitable, sustainable and just solutions to the grand challenges hinges on an understanding of STEM and non-STEM perspectives. Moreover, the authors also consider the multitude of personal perspectives individuals bring to the classroom (e.g., values, beliefs, empathy misconceptions) that influence any stakeholder's ability to engage in fruitful discussions about grand challenge solutions. Discovering Science (LIFE 1002) focuses on the grand challenges of energy and climate. Students attend three one-hour lectures, one two-hour lab and a one-hour discussion each week. Lectures emphasize the STEM and non-STEM principles underlying each grand challenge. Laboratory activities are designed to be interdisciplinary and engage students in inquiry-driven activities to reinforce concepts from lecture and to model how science is conducted. Labs also expose students to the difficulties often associated with scientific studies, the limits of science, and the inherent uncertainties associated with scientific findings. Discussion sessions provide an opportunity for students to explore the complexity of the grand challenges from STEM and non-STEM perspectives, and expose the multitude of personal perspectives an individual might harbor related to each grand challenge

  18. Technology challenges in responding to biological or chemical attacks in the civilian sector.

    PubMed

    Fitch, J Patrick; Raber, Ellen; Imbro, Dennis R

    2003-11-21

    Increasingly sophisticated technologies are needed for counterterrorism responses to biological and chemical warfare agents. Recently developed detection and identification systems are characterized by increased sensitivity, greater automation, and fewer false alarms. Attempts are also under way to reduce the cost and complexity of field-deployable systems. A broad range of decontamination reagents for equipment and personnel is emerging, but decontamination of large buildings, inaccessible spaces, and sensitive equipment remains problematic. PMID:14631029

  19. Naloxone challenge as a biological predictor of treatment outcome in opiate addicts.

    PubMed

    Jacobsen, L K; Kosten, T R

    1989-01-01

    Thirty seven consecutive applicants to methadone maintenance were assessed for depression and for level of opiate dependence using a 0.8-mg naloxone challenge. Nineteen of the applicants met DSM-III-R criteria for current major depression. At 3-month follow-up, high naloxone challenge test (NCT) scores at intake (high levels of opiate addiction) were found to predict poor program retention and elevated symptoms of depression at follow-up. Reports of heavy current drug use at intake were also associated with poor program retention and with high frequencies of positive urine screens for illicit substances during treatment. Level of addiction and reported amount of drug use at intake independently predicted program retention with a multiple correlation of 0.46 (P less than .01). Although NCT predicted depression at follow-up, depression at intake did not significantly predict treatment outcome, and NCT score predicted outcome independently of psychopathology. PMID:2596440

  20. Indoor air pollution in developing countries: a major environmental and public health challenge.

    PubMed Central

    Bruce, N.; Perez-Padilla, R.; Albalak, R.

    2000-01-01

    Around 50% of people, almost all in developing countries, rely on coal and biomass in the form of wood, dung and crop residues for domestic energy. These materials are typically burnt in simple stoves with very incomplete combustion. Consequently, women and young children are exposed to high levels of indoor air pollution every day. There is consistent evidence that indoor air pollution increases the risk of chronic obstructive pulmonary disease and of acute respiratory infections in childhood, the most important cause of death among children under 5 years of age in developing countries. Evidence also exists of associations with low birth weight, increased infant and perinatal mortality, pulmonary tuberculosis, nasopharyngeal and laryngeal cancer, cataract, and, specifically in respect of the use of coal, with lung cancer. Conflicting evidence exists with regard to asthma. All studies are observational and very few have measured exposure directly, while a substantial proportion have not dealt with confounding. As a result, risk estimates are poorly quantified and may be biased. Exposure to indoor air pollution may be responsible for nearly 2 million excess deaths in developing countries and for some 4% of the global burden of disease. Indoor air pollution is a major global public health threat requiring greatly increased efforts in the areas of research and policy-making. Research on its health effects should be strengthened, particularly in relation to tuberculosis and acute lower respiratory infections. A more systematic approach to the development and evaluation of interventions is desirable, with clearer recognition of the interrelationships between poverty and dependence on polluting fuels. PMID:11019457

  1. Structural biology and bioinformatics in drug design: opportunities and challenges for target identification and lead discovery

    PubMed Central

    Blundell, Tom L; Sibanda, Bancinyane L; Montalvão, Rinaldo Wander; Brewerton, Suzanne; Chelliah, Vijayalakshmi; Worth, Catherine L; Harmer, Nicholas J; Davies, Owen; Burke, David

    2006-01-01

    Impressive progress in genome sequencing, protein expression and high-throughput crystallography and NMR has radically transformed the opportunities to use protein three-dimensional structures to accelerate drug discovery, but the quantity and complexity of the data have ensured a central place for informatics. Structural biology and bioinformatics have assisted in lead optimization and target identification where they have well established roles; they can now contribute to lead discovery, exploiting high-throughput methods of structure determination that provide powerful approaches to screening of fragment binding. PMID:16524830

  2. Cryo-electron tomography: The challenge of doing structural biology in situ

    PubMed Central

    Lučić, Vladan; Rigort, Alexander

    2013-01-01

    Electron microscopy played a key role in establishing cell biology as a discipline, by producing fundamental insights into cellular organization and ultrastructure. Many seminal discoveries were made possible by the development of new sample preparation methods and imaging modalities. Recent technical advances include sample vitrification that faithfully preserves molecular structures, three-dimensional imaging by electron tomography, and improved image-processing methods. These new techniques have enabled the extraction of high fidelity structural information and are beginning to reveal the macromolecular organization of unperturbed cellular environments. PMID:23918936

  3. Biological Monitoring of Air Pollutants and Its Influence on Human Beings

    PubMed Central

    Cen, Shihong

    2015-01-01

    Monitoring air pollutants via plants is an economic, convenient and credible method compared with the traditional ways. Plants show different damage symptoms to different air pollutants, which can be used to determine the species of air pollutants. Besides, pollutants mass concentration scope can be estimated by the damage extent of plants and the span of polluted time. Based on the domestic and foreign research, this paper discusses the principles, mechanism, advantages and disadvantages of plant-monitoring, and exemplifies plenty of such plants and the minimum mass concentration and pollution time of the plants showing damage symptoms. Finally, this paper introduced the human health effects of air pollutants on immune function of the body, such as decrease of the body's immune function, decline of lung function, respiratory and circulatory system changes, inducing and promoting human allergic diseases, respiratory diseases and other diseases. PMID:26628931

  4. Interaction of Materials and Biology in Total Joint Replacement – Successes, Challenges and Future Directions

    PubMed Central

    Sato, T; Yao, Z; Goodman, SB

    2014-01-01

    Total joint replacement (TJR) has revolutionized the treatment of end-stage arthritic disorders. This success is due, in large part, to a clear understanding of the important interaction between the artificial implant and the biology of the host. All surgical procedures in which implants are placed in the body evoke an initial inflammatory reaction, which generally subsides over several weeks. Thereafter, a series of homeostatic events occur leading to progressive integration of the implant within bone and the surrounding musculoskeletal tissues. The eventual outcome of the operation is dependent on the characteristics of the implant, the precision of the surgical technique and operative environment, and the biological milieu of the host. If these factors and events are not optimal, adverse events can occur such as the development of chronic inflammation, progressive bone loss due to increased production of degradation products from the implant (periprosthetic osteolysis), implant loosening or infection. These complications can lead to chronic pain and poor function of the joint reconstruction, and may necessitate revision surgery or removal of the prosthesis entirely. Recent advances in engineering, materials science, and the immunological aspects associated with orthopaedic implants have fostered intense research with the hope that joint replacements will last a lifetime, and facilitate pain-free, normal function. PMID:25541591

  5. Using Mobile Monitoring to Assess Spatial Variability in Urban Air Pollution Levels: Opportunities and Challenges (Invited)

    NASA Astrophysics Data System (ADS)

    Larson, T.

    2010-12-01

    Measuring air pollution concentrations from a moving platform is not a new idea. Historically, however, most information on the spatial variability of air pollutants have been derived from fixed site networks operating simultaneously over space. While this approach has obvious advantages from a regulatory perspective, with the increasing need to understand ever finer scales of spatial variability in urban pollution levels, the use of mobile monitoring to supplement fixed site networks has received increasing attention. Here we present examples of the use of this approach: 1) to assess existing fixed-site fine particle networks in Seattle, WA, including the establishment of new fixed-site monitoring locations; 2) to assess the effectiveness of a regulatory intervention, a wood stove burning ban, on the reduction of fine particle levels in the greater Puget Sound region; and 3) to assess spatial variability of both wood smoke and mobile source impacts in both Vancouver, B.C. and Tacoma, WA. Deducing spatial information from the inherently spatio-temporal measurements taken from a mobile platform is an area that deserves further attention. We discuss the use of “fuzzy” points to address the fine-scale spatio-temporal variability in the concentration of mobile source pollutants, specifically to deduce the broader distribution and sources of fine particle soot in the summer in Vancouver, B.C. We also discuss the use of principal component analysis to assess the spatial variability in multivariate, source-related features deduced from simultaneous measurements of light scattering, light absorption and particle-bound PAHs in Tacoma, WA. With increasing miniaturization and decreasing power requirements of air monitoring instruments, the number of simultaneous measurements that can easily be made from a mobile platform is rapidly increasing. Hopefully the methods used to design mobile monitoring experiments for differing purposes, and the methods used to interpret those

  6. Challenges of biological sample preparation for SIMS imaging of elements and molecules at subcellular resolution

    NASA Astrophysics Data System (ADS)

    Chandra, Subhash

    2008-12-01

    Secondary ion mass spectrometry (SIMS) based imaging techniques capable of subcellular resolution characterization of elements and molecules are becoming valuable tools in many areas of biology and medicine. Due to high vacuum requirements of SIMS, the live cells cannot be analyzed directly in the instrument. The sample preparation, therefore, plays a critical role in preserving the native chemical composition for SIMS analysis. This work focuses on the evaluation of frozen-hydrated and frozen freeze-dried sample preparations for SIMS studies of cultured cells with a CAMECA IMS-3f dynamic SIMS ion microscope instrument capable of producing SIMS images with a spatial resolution of 500 nm. The sandwich freeze-fracture method was used for fracturing the cells. The complimentary fracture planes in the plasma membrane were characterized by field-emission secondary electron microscopy (FESEM) in the frozen-hydrated state. The cells fractured at the dorsal surface were used for SIMS analysis. The frozen-hydrated SIMS analysis of individual cells under dynamic primary ion beam (O 2+) revealed local secondary ion signal enhancements correlated with the water image signals of 19(H 3O) +. A preferential removal of water from the frozen cell matrix in the Z-axis was also observed. These complications render the frozen-hydrated sample type less desirable for subcellular dynamic SIMS studies. The freeze-drying of frozen-hydrated cells, either inside the instrument or externally in a freeze-drier, allowed SIMS imaging of subcellular chemical composition. Morphological evaluations of fractured freeze-dried cells with SEM and confocal laser scanning microscopy (CLSM) revealed well-preserved mitochondria, Golgi apparatus, and stress fibers. SIMS analysis of fractured freeze-dried cells revealed well-preserved chemical composition of even the most highly diffusible ions like K + and Na + in physiologically relevant concentrations. The high K-low Na signature in individual cells

  7. Current Trends and New Challenges of Databases and Web Applications for Systems Driven Biological Research

    PubMed Central

    Sreenivasaiah, Pradeep Kumar; Kim, Do Han

    2010-01-01

    Dynamic and rapidly evolving nature of systems driven research imposes special requirements on the technology, approach, design and architecture of computational infrastructure including database and Web application. Several solutions have been proposed to meet the expectations and novel methods have been developed to address the persisting problems of data integration. It is important for researchers to understand different technologies and approaches. Having familiarized with the pros and cons of the existing technologies, researchers can exploit its capabilities to the maximum potential for integrating data. In this review we discuss the architecture, design and key technologies underlying some of the prominent databases and Web applications. We will mention their roles in integration of biological data and investigate some of the emerging design concepts and computational technologies that are likely to have a key role in the future of systems driven biomedical research. PMID:21423387

  8. Current Advances and Future Challenges in Adenoviral Vector Biology and Targeting

    PubMed Central

    Campos, Samuel K.; Barry, Michael A.

    2008-01-01

    Gene delivery vectors based on Adenoviral (Ad) vectors have enormous potential for the treatment of both hereditary and acquired disease. Detailed structural analysis of the Ad virion, combined with functional studies has broadened our knowledge of the structure/function relationships between Ad vectors and host cells/tissues and substantial achievement has been made towards a thorough understanding of the biology of Ad vectors. The widespread use of Ad vectors for clinical gene therapy is compromised by their inherent immunogenicity. The generation of safer and more effective Ad vectors, targeted to the site of disease, has therefore become a great ambition in the field of Ad vector development. This review provides a synopsis of the structure/function relationships between Ad vectors and host systems and summarizes the many innovative approaches towards achieving Ad vector targeting. PMID:17584037

  9. Dispersal of marine organisms and the grand challenges in biology: an introduction to the symposium.

    PubMed

    Lindsay, Sara M

    2012-10-01

    Understanding dispersal and its complex variables is critical to understanding the ecology and evolution of life histories of species, but research on dispersal tends to reflect or emphasize particular disciplines, such as population genetics, functional morphology, evolutionary and developmental biology, physiology, and biophysics, or to emphasize a particular clade or functional group (e.g., fish, planktotrophs or lecithotrophs, pelagic or benthic organisms) in marine ecosystems. The symposium on "Dispersal of Marine Organisms" assembled an interdisciplinary group of outstanding young and established speakers to address dispersal in marine organisms in order to foster integration and cross-talk among different disciplines and to identify gaps in our knowledge and suggest areas for future research. PMID:23001959

  10. Optimal control of systems governed by differential equations with applications in air traffic management and systems biology

    NASA Astrophysics Data System (ADS)

    Raffard, Robin L.

    Differential equations are arguably the most widespread formalism to model dynamical systems in sciences and engineering. In this dissertation, we strive to design a practical methodology which can be used for the optimal control of most systems modeled by differential equations. Namely, the method is applicable to ordinary differential equations (ODEs), partial differential equations (PDEs) and stochastic differential equations (SDEs) driven by deterministic control. The algorithm draws from both optimization and control theory. It solves the Pontryagin Maximum Principle conditions in an iterative fashion via a novel approximate Newton method. We also extend the method to the case in which multiple agents are involved in the optimal control problem. For this purpose, we use dual decomposition techniques which allow us to decentralize the control algorithm and to distribute the computational load among each individual agent. Most of the dissertation is devoted to promoting the applicability of the method to practical problems in air traffic management and systems biology. In air traffic management; we use the technique to optimize a new PDE-based Eulerian model of the airspace; suitable to represent and control air traffic flow at the scale of the US national airspace. We also apply the technique to aircraft coordination problems in the context of formation flight, in which aircraft dynamics are described by ODEs. In systems biology, we use the method to perform fast parameter identification in the analysis of protein networks, which allows us to gain some insights about the biological processes regulating the system. In particular we perform parameter identification for a PDE model of a spatially distributed network of proteins, playing a key role in the planar cell polarity of Drosophila wings. We also study a general representation of intra-cellular genetic networks, described as a stochastic nonlinear regulatory network, in which our control system approach

  11. Municipal waste incinerators: air and biological monitoring of workers for exposure to particles, metals, and organic compounds

    PubMed Central

    Maitre, A; Collot-Fertey, D; Anzivino, L; Marques, M; Hours, M; Stoklov, M

    2003-01-01

    Aims: To evaluate occupational exposure to toxic pollutants at municipal waste incinerators (MWIs). Methods: Twenty nine male subjects working near the furnaces in two MWIs, and 17 subjects not occupationally exposed to combustion generated pollutants were studied. Individual air samples were taken throughout the shift; urine samples were collected before and after. Stationary air samples were taken near potential sources of emission. Results: Occupational exposure did not result in the infringement of any occupational threshold limit value. Atmospheric exposure levels to particles and metals were 10–100 times higher in MWIs than at the control site. The main sources were cleaning operations for particles, and residue transfer and disposal operations for metals. MWI workers were not exposed to higher levels of polycyclic aromatic hydrocarbons than workers who are routinely in contact with vehicle exhaust. The air concentrations of volatile organic compounds and aldehydes were low and did not appear to pose any significant threat to human health. Only the measurement of chlorinated hydrocarbon levels would seem to be a reliable marker for the combustion of plastics. Urine metal levels were significantly higher at plant 1 than at plant 2 because of high levels of pollutants emanating from one old furnace. Conclusion: While biological monitoring is an easy way of acquiring data on long term personal exposure, air monitoring remains the only method that makes it possible to identify the primary sources of pollutant emission which need to be controlled if occupational exposure and environmental pollution are to be reduced. PMID:12883016

  12. Challenges in long-term mechanical circulatory support and biological replacement of the failing heart.

    PubMed

    Lala, Anuradha; Joyce, Emer; Groarke, John D; Mehra, Mandeep R

    2014-01-01

    The burden of advanced heart failure is reaching epidemic proportions. Generally considered for cardiac transplantation, patients often cannot receive this therapy because of their advanced age, comorbidity or the scarcity of donors. Most transplants are concentrated in North America and Europe, with the average center performing fewer than 20 annual transplants. A search for nonbiological means of cardiac support has led to the advent of mechanical circulatory support (MCS), a concept now entrenched as a bridge to transplantation or, for those ineligible for transplantation, as lifetime therapy. In this review we discuss contemporary challenges posed by the changing epidemiology of cardiac transplant and MCS and outline the basis for an understanding of the future of this important therapeutic stance.   PMID:24451651

  13. Physics and the canalization of morphogenesis: a grand challenge in organismal biology

    PubMed Central

    von Dassow, Michelangelo; Davidson, Lance A.

    2011-01-01

    Morphogenesis takes place in a background of organism-to-organism and environmental variation. Therefore, a fundamental question in the study of morphogenesis is how the mechanical processes of tissue movement and deformation are affected by that variability, and in turn, how the mechanics of the system modulates phenotypic variation. We highlight a few key factors, including environmental temperature, embryo size, and environmental chemistry that might perturb the mechanics of morphogenesis in natural populations. Then we discuss several ways in which mechanics – including feedback from mechanical cues – might influence intra-specific variation in morphogenesis. To understand morphogenesis it will be necessary to consider whole-organism, environment, and evolutionary scales because these larger scales present the challenges that developmental mechanisms have evolved to cope with. Studying the variation organisms express and the variation organisms experience will aid in deciphering the causes of birth defects. PMID:21750364

  14. Topical, Biological and Clinical Challenges in the Management of Patients with Acne Vulgaris.

    PubMed

    Al-Hammadi, Anwar; Al-Ismaily, Abla; Al-Ali, Sameer; Ramadurai, Rajesh; Jain, Rishi; McKinley-Grant, Lynn; Mughal, Tariq I

    2016-05-01

    Acne vulgaris is one of the most common chronic inflammatory skin disorders among adolescents and young adults. It is associated with substantial morbidity and, rarely, with mortality. The exact worldwide incidence and prevalence are currently unknown. Current challenges involve improving understanding of the underlying pathophysiology of acne vulgaris and developing a practical treatment consensus. Expert panel discussions were held in 2013 and 2014 among a group of scientists and clinicians from the Omani and United Arab Emirate Dermatology Societies to ascertain the current optimal management of acne vulgaris, identify clinically relevant end-points and construct suitable methodology for future clinical trial designs. This article reviews the discussions of these sessions and recent literature on this topic. PMID:27226905

  15. Physics and the canalization of morphogenesis: a grand challenge in organismal biology

    NASA Astrophysics Data System (ADS)

    von Dassow, Michelangelo; Davidson, Lance A.

    2011-08-01

    Morphogenesis takes place against a background of organism-to-organism and environmental variation. Therefore, fundamental questions in the study of morphogenesis include: How are the mechanical processes of tissue movement and deformation affected by that variability, and in turn, how do the mechanic of the system modulate phenotypic variation? We highlight a few key factors, including environmental temperature, embryo size and environmental chemistry that might perturb the mechanics of morphogenesis in natural populations. Then we discuss several ways in which mechanics—including feedback from mechanical cues—might influence intra-specific variation in morphogenesis. To understand morphogenesis it will be necessary to consider whole-organism, environment and evolutionary scales because these larger scales present the challenges that developmental mechanisms have evolved to cope with. Studying the variation organisms express and the variation organisms experience will aid in deciphering the causes of birth defects.

  16. Topical, Biological and Clinical Challenges in the Management of Patients with Acne Vulgaris

    PubMed Central

    Al-Hammadi, Anwar; Al-Ismaily, Abla; Al-Ali, Sameer; Ramadurai, Rajesh; Jain, Rishi; McKinley-Grant, Lynn; Mughal, Tariq I.

    2016-01-01

    Acne vulgaris is one of the most common chronic inflammatory skin disorders among adolescents and young adults. It is associated with substantial morbidity and, rarely, with mortality. The exact worldwide incidence and prevalence are currently unknown. Current challenges involve improving understanding of the underlying pathophysiology of acne vulgaris and developing a practical treatment consensus. Expert panel discussions were held in 2013 and 2014 among a group of scientists and clinicians from the Omani and United Arab Emirate Dermatology Societies to ascertain the current optimal management of acne vulgaris, identify clinically relevant end-points and construct suitable methodology for future clinical trial designs. This article reviews the discussions of these sessions and recent literature on this topic. PMID:27226905

  17. AICE Survey of USSR Air Pollution Literature, Volume 15: A Third Compilation of Technical Reports on the Biological Effects and the Public Health Aspects of Atmospheric Pollutants.

    ERIC Educational Resources Information Center

    Nuttonson, M. Y.

    Ten papers were translated: Maximum permissible concentrations of noxious substances in the atmospheric air of populated areas; Some aspects of the biological effect of microconcentrations of two chloroisocyanates; The toxicology of low concentrations of aromatic hydrocarbons; Chronic action of low concentrations of acrolein in air on the…

  18. Spectroscopic Challenges in the Modelling and Diagnostics of High Temperature Air Plasma Radiation for Aerospace Applications

    SciTech Connect

    Laux, Christophe O.

    2007-04-06

    State-of-the-art spectroscopic models of the radiative transitions of interest for Earth re-entry and ground-based diagnostic facilities for aerospace applications are reviewed. The spectral range considered extends from the vacuum ultraviolet to the mid-infrared range (80 nm to 5.5 {mu}m). The modeling results are compared with absolute intensity measurements of the ultraviolet-visible-infrared emission of a well-characterized high-temperature air plasma produced with a 50 kW inductively coupled radio-frequency plasma torch, and with high-resolution absorption spectra from the Center for Astrophysics in the vacuum ultraviolet. The Spectroscopic data required to better model the spectral features of interest for aerospace applications are discussed.

  19. Effectiveness of eriophyid mites for biological control of weedy plants and challenges for future research.

    PubMed

    Smith, L; de Lillo, E; Amrine, J W

    2010-07-01

    Eriophyid mites have been considered to have a high potential for use as classical biological control agents of weeds. We reviewed known examples of the use of eriophyid mites to control weedy plants to learn how effective they have been. In the past 13 years, since Rosenthal's 1996 review, 13 species have undergone some degree of pre-release evaluation (Aceria genistae, A. lantanae, Aceria sp. [boneseed leaf buckle mite (BLBM)], A. salsolae, A. sobhiani, A. solstitialis, A. tamaricis, A. thalgi, A. thessalonicae, Cecidophyes rouhollahi, Floracarus perrepae, Leipothrix dipsacivagus and L. knautiae), but only four (A. genistae, Aceria sp. [BLBM], C. rouhollahi and F. perrepae) have been authorized for introduction. Prior to this, three species (Aceria chondrillae, A. malherbae and Aculus hyperici) were introduced and have become established. Although these three species impact the fitness of their host plant, it is not clear how much they have contributed to reduction of the population of the target weed. In some cases, natural enemies, resistant plant genotypes, and adverse abiotic conditions have reduced the ability of eriophyid mites to control target weed populations. Some eriophyid mites that are highly coevolved with their host plant may be poor prospects for biological control because of host plant resistance or tolerance of the plant to the mite. Susceptibility of eriophyids to predators and pathogens may also prevent them from achieving population densities necessary to reduce host plant populations. Short generation time, high intrinsic rate of increase and high mobility by aerial dispersal imply that eriophyids should have rapid rates of evolution. This raises concerns that eriophyids may be more likely to lose efficacy over time due to coevolution with the target weed or that they may be more likely to adapt to nontarget host plants compared to insects, which have a longer generation time and slower population growth rate. Critical areas for future

  20. Biological underpinnings of breastfeeding challenges: the role of genetics, diet, and environment on lactation physiology.

    PubMed

    Lee, Sooyeon; Kelleher, Shannon L

    2016-08-01

    Lactation is a dynamic process that has evolved to produce a complex biological fluid that provides nutritive and nonnutritive factors to the nursing offspring. It has long been assumed that once lactation is successfully initiated, the primary factor regulating milk production is infant demand. Thus, most interventions have focused on improving breastfeeding education and early lactation support. However, in addition to infant demand, increasing evidence from studies conducted in experimental animal models, production animals, and breastfeeding women suggests that a diverse array of maternal factors may also affect milk production and composition. In this review, we provide an overview of our current understanding of the role of maternal genetics and modifiable factors, such as diet and environmental exposures, on reproductive endocrinology, lactation physiology, and the ability to successfully produce milk. To identify factors that may affect lactation in women, we highlight some information gleaned from studies in experimental animal models and production animals. Finally, we highlight the gaps in current knowledge and provide commentary on future research opportunities aimed at improving lactation outcomes in breastfeeding women to improve the health of mothers and their infants. PMID:27354238

  1. Biology in the Anthropocene: Challenges and insights from young fossil records.

    PubMed

    Kidwell, Susan M

    2015-04-21

    With overwhelming evidence of change in habitats, biologists today must assume that few, if any, study areas are natural and that biological variability is superimposed on trends rather than stationary means. Paleobiological data from the youngest sedimentary record, including death assemblages actively accumulating on modern land surfaces and seabeds, provide unique information on the status of present-day species, communities, and biomes over the last few decades to millennia and on their responses to natural and anthropogenic environmental change. Key advances have established the accuracy and resolving power of paleobiological information derived from naturally preserved remains and of proxy evidence for environmental conditions and sample age so that fossil data can both implicate and exonerate human stressors as the drivers of biotic change and permit the effects of multiple stressors to be disentangled. Legacy effects from Industrial and even pre-Industrial anthropogenic extirpations, introductions, (de)nutrification, and habitat conversion commonly emerge as the primary factors underlying the present-day status of populations and communities; within the last 2 million years, climate change has rarely been sufficient to drive major extinction pulses absent other human pressures, which are now manifold. Young fossil records also provide rigorous access to the baseline composition and dynamics of modern-day biota under pre-Industrial conditions, where insights include the millennial-scale persistence of community structures, the dominant role of physical environmental conditions rather than biotic interactions in determining community composition and disassembly, and the existence of naturally alternating states. PMID:25901315

  2. Biology in the Anthropocene: Challenges and insights from young fossil records

    PubMed Central

    Kidwell, Susan M.

    2015-01-01

    With overwhelming evidence of change in habitats, biologists today must assume that few, if any, study areas are natural and that biological variability is superimposed on trends rather than stationary means. Paleobiological data from the youngest sedimentary record, including death assemblages actively accumulating on modern land surfaces and seabeds, provide unique information on the status of present-day species, communities, and biomes over the last few decades to millennia and on their responses to natural and anthropogenic environmental change. Key advances have established the accuracy and resolving power of paleobiological information derived from naturally preserved remains and of proxy evidence for environmental conditions and sample age so that fossil data can both implicate and exonerate human stressors as the drivers of biotic change and permit the effects of multiple stressors to be disentangled. Legacy effects from Industrial and even pre-Industrial anthropogenic extirpations, introductions, (de)nutrification, and habitat conversion commonly emerge as the primary factors underlying the present-day status of populations and communities; within the last 2 million years, climate change has rarely been sufficient to drive major extinction pulses absent other human pressures, which are now manifold. Young fossil records also provide rigorous access to the baseline composition and dynamics of modern-day biota under pre-Industrial conditions, where insights include the millennial-scale persistence of community structures, the dominant role of physical environmental conditions rather than biotic interactions in determining community composition and disassembly, and the existence of naturally alternating states. PMID:25901315

  3. Time-restricted feeding and the realignment of biological rhythms: translational opportunities and challenges.

    PubMed

    Sunderram, Jag; Sofou, Stavroula; Kamisoglu, Kubra; Karantza, Vassiliki; Androulakis, Ioannis P

    2014-01-01

    It has been argued that circadian dysregulation is not only a critical inducer and promoter of adverse health effects, exacerbating symptom burden, but also hampers recovery. Therefore understanding the health-promoting roles of regulating (i.e., restoring) circadian rhythms, thus suppressing harmful effects of circadian dysregulation, would likely improve treatment. At a critical care setting it has been argued that studies are warranted to determine whether there is any use in restoring circadian rhythms in critically ill patients, what therapeutic goals should be targeted, and how these could be achieved. Particularly interesting are interventional approaches aiming at optimizing the time of feeding in relation to individualized day-night cycles for patients receiving enteral nutrition, in an attempt to re-establish circadian patterns of molecular expression. In this short review we wish to explore the idea of transiently imposing (appropriate, but yet to be determined) circadian rhythmicity via regulation of food intake as a means of exploring rhythm-setting properties of metabolic cues in the context of improving immune response. We highlight some of the key elements associated with his complex question particularly as they relate to: a) stress and rhythmic variability; and b) metabolic entrainment of peripheral tissues as a possible intervention strategy through time-restricted feeding. Finally, we discuss the challenges and opportunities for translating these ideas to the bedside. PMID:24674294

  4. SMOG CHAMBERS: A TOOL TO EXAMINE EFFECTS OF PHOTOCHEMICALLY AGED AIR POLLUTANTS ON BIOLOGICAL SYSTEMS

    EPA Science Inventory

    Irradiative exposure chambers or 'Smog chambers' have been used at the University of North Carolina for over 30 years to study photochemically active mixtures of volatile organic compounds and their transformation products (a significant sub-set of Hazardous Air Pollutants, HAPs)...

  5. Enabling X-ray free electron laser crystallography for challenging biological systems from a limited number of crystals

    DOE PAGESBeta

    Uervirojnangkoorn, Monarin; Zeldin, Oliver B.; Lyubimov, Artem Y.; Hattne, Johan; Brewster, Aaron S.; Sauter, Nicholas K.; Brunger, Axel T.; Weis, William I.

    2015-03-17

    There is considerable potential for X-ray free electron lasers (XFELs) to enable determination of macromolecular crystal structures that are difficult to solve using current synchrotron sources. Prior XFEL studies often involved the collection of thousands to millions of diffraction images, in part due to limitations of data processing methods. We implemented a data processing system based on classical post-refinement techniques, adapted to specific properties of XFEL diffraction data. When applied to XFEL data from three different proteins collected using various sample delivery systems and XFEL beam parameters, our method improved the quality of the diffraction data as well as themore » resulting refined atomic models and electron density maps. Moreover, the number of observations for a reflection necessary to assemble an accurate data set could be reduced to a few observations. These developments will help expand the applicability of XFEL crystallography to challenging biological systems, including cases where sample is limited.« less

  6. Enabling X-ray free electron laser crystallography for challenging biological systems from a limited number of crystals

    DOE PAGESBeta

    Uervirojnangkoorn, Monarin; Zeldin, Oliver B.; Lyubimov, Artem Y.; Hattne, Johan; Brewster, Aaron S.; Sauter, Nicholas K.; Brunger, Axel T.; Weis, William I.

    2015-03-17

    There is considerable potential for X-ray free electron lasers (XFELs) to enable determination of macromolecular crystal structures that are difficult to solve using current synchrotron sources. Prior XFEL studies often involved the collection of thousands to millions of diffraction images, in part due to limitations of data processing methods. We implemented a data processing system based on classical post-refinement techniques, adapted to specific properties of XFEL diffraction data. When applied to XFEL data from three different proteins collected using various sample delivery systems and XFEL beam parameters, our method improved the quality of the diffraction data as well as themore » resulting refined atomic models and electron density maps. Moreover, the number of observations for a reflection necessary to assemble an accurate data set could be reduced to a few observations. In conclusion, these developments will help expand the applicability of XFEL crystallography to challenging biological systems, including cases where sample is limited.« less

  7. Enabling X-ray free electron laser crystallography for challenging biological systems from a limited number of crystals

    SciTech Connect

    Uervirojnangkoorn, Monarin; Zeldin, Oliver B.; Lyubimov, Artem Y.; Hattne, Johan; Brewster, Aaron S.; Sauter, Nicholas K.; Brunger, Axel T.; Weis, William I.

    2015-03-17

    There is considerable potential for X-ray free electron lasers (XFELs) to enable determination of macromolecular crystal structures that are difficult to solve using current synchrotron sources. Prior XFEL studies often involved the collection of thousands to millions of diffraction images, in part due to limitations of data processing methods. We implemented a data processing system based on classical post-refinement techniques, adapted to specific properties of XFEL diffraction data. When applied to XFEL data from three different proteins collected using various sample delivery systems and XFEL beam parameters, our method improved the quality of the diffraction data as well as the resulting refined atomic models and electron density maps. Moreover, the number of observations for a reflection necessary to assemble an accurate data set could be reduced to a few observations. These developments will help expand the applicability of XFEL crystallography to challenging biological systems, including cases where sample is limited.

  8. Enabling X-ray free electron laser crystallography for challenging biological systems from a limited number of crystals

    SciTech Connect

    Uervirojnangkoorn, Monarin; Zeldin, Oliver B.; Lyubimov, Artem Y.; Hattne, Johan; Brewster, Aaron S.; Sauter, Nicholas K.; Brunger, Axel T.; Weis, William I.

    2015-03-17

    There is considerable potential for X-ray free electron lasers (XFELs) to enable determination of macromolecular crystal structures that are difficult to solve using current synchrotron sources. Prior XFEL studies often involved the collection of thousands to millions of diffraction images, in part due to limitations of data processing methods. We implemented a data processing system based on classical post-refinement techniques, adapted to specific properties of XFEL diffraction data. When applied to XFEL data from three different proteins collected using various sample delivery systems and XFEL beam parameters, our method improved the quality of the diffraction data as well as the resulting refined atomic models and electron density maps. Moreover, the number of observations for a reflection necessary to assemble an accurate data set could be reduced to a few observations. In conclusion, these developments will help expand the applicability of XFEL crystallography to challenging biological systems, including cases where sample is limited.

  9. The role of biological system other than auditory air-conduction in the emergence of the hypersonic effect.

    PubMed

    Oohashi, Tsutomu; Kawai, Norie; Nishina, Emi; Honda, Manabu; Yagi, Reiko; Nakamura, Satoshi; Morimoto, Masako; Maekawa, Tadao; Yonekura, Yoshiharu; Shibasaki, Hiroshi

    2006-02-16

    Although human beings cannot perceive elastic vibrations in the frequency range above 20 kHz, nonstationary sounds containing a wealth of inaudible high-frequency components (HFC) above the human audible range activate deep-lying brain structures, including the brainstem and thalamus and evoke various physiological, psychological, and behavioral responses. In the previous reports, we have called these phenomena collectively "the hypersonic effect." It remains unclear, however, if vibratory stimuli above the audible range are transduced and perceived solely via the conventional air-conducting auditory system or if other mechanisms also contribute to mediate transduction and perception. In the present study, we have examined the emergence of the hypersonic effect when inaudible HFC and audible low-frequency components (LFC) were presented selectively to the ears, the entrance of an air-conducting auditory system, or to the body surface including the head which might contain some unknown vibratory sensing mechanisms. We used two independent measurements based on differing principles; one physiological (alpha 2 frequency of spontaneous electroencephalogram [alpha-EEG]) and the other behavioral (the comfortable listening level [CLL]). Only when the listener's entire body surface was exposed to HFC, but not when HFC was presented exclusively to the air-conducting auditory system, did both the alpha-EEG and the CLL significantly increase compared to the presentation of LFC alone, that is to say, there was an evident emergence of the hypersonic effect. The present findings suggest that the conventional air-conducting auditory system alone does not bring about the hypersonic effect. We may need to consider the possible involvement of a biological system distinct from the conventional air-conducting auditory nervous system in sensing and transducing high-frequency elastic vibration above the human audible range. PMID:16458271

  10. The Challenges of Field Testing the Traffic Management Advisor (TMA) in an Operational Air Traffic Control Facility

    NASA Technical Reports Server (NTRS)

    Hoang, Ty; Swenson, Harry N.

    1997-01-01

    The Traffic Management Advisor (TMA), the sequence and schedule tool of the Center/TRACON Automation System (CTAS), was evaluated at the Fort Worth Center (ZFW) in the summer of 1996. This paper describes the challenges encountered during the various phases of the TMA field evaluation, which included system (hardware and software) installation, personnel training, and data collection. Operational procedures were developed and applied to the evaluation process that would ensure air safety. The five weeks of field evaluation imposed minimal impact on the hosting facility and provided valuable engineering and human factors data. The collection of data was very much an opportunistic affair, due to dynamic traffic conditions. One measure of the success of the TMA evaluation is that, rather than remove TMA after the evaluation until it could be fully implemented, the prototype TMA is in continual use at ZFW as the fully operational version is readied for implementation.

  11. Evaluating emotional sensitivity and tolerance factors in the prediction of panic-relevant responding to a biological challenge.

    PubMed

    Kutz, Amanda; Marshall, Erin; Bernstein, Amit; Zvolensky, Michael J

    2010-01-01

    The current study investigated anxiety sensitivity, distress tolerance (Simons & Gaher, 2005), and discomfort intolerance (Schmidt, Richey, Cromer, & Buckner, 2007) in relation to panic-relevant responding (i.e., panic attack symptoms and panic-relevant cognitions) to a 10% carbon dioxide enriched air challenge. Participants were 216 adults (52.6% female; M(age)=22.4, SD=9.0). A series of hierarchical multiple regressions was conducted with covariates of negative affectivity and past year panic attack history in step one of the model, and anxiety sensitivity, discomfort intolerance, and distress tolerance entered simultaneously into step two. Results indicated that anxiety sensitivity, but not distress tolerance or discomfort intolerance, was significantly incrementally predictive of physical panic attack symptoms and cognitive panic attack symptoms. Additionally, anxiety sensitivity was significantly predictive of variance in panic attack status during the challenge. These findings emphasize the important, unique role of anxiety sensitivity in predicting risk for panic psychopathology, even when considered in the context of other theoretically relevant emotion vulnerability variables. PMID:19720496

  12. BIOLOGICAL SIGNIFICANCE OF SOME METALS AS AIR POLLUTANTS. PART II. MERCURY

    EPA Science Inventory

    The study was undertaken in order to elucidate the association between low atmospheric mercury levels and changes in some biological parameters likely to react to such exposures. The study covered four populations believed to be exposed to four different levels of atmospheric mer...

  13. Use of ERTS imagery in air pollution and marine biology studies, tasks 1 through 3

    NASA Technical Reports Server (NTRS)

    Copeland, G. E.; Ludwick, J. C.; Marshall, H. G. (Principal Investigator); Bandy, A. R.; Fleischer, P.; Hanna, W. J.; Gosink, T. A.; Bowker, D. W.

    1972-01-01

    There are no author-identified significant results in this report. The general suitability of ERTS imagery in detecting ground originated air pollution has proved to be excellent. The quality and resolution exceeded expectations and has permitted in some instances location of point sources to within a thousand feet. Suitable techniques have not yet been developed for determining or measuring area and line sources of air pollution. A major problem has been cloud cover that has persisted over the area of primary interest, the Chesapeake Bay. Work has been completed on mounting the shipboard transmissometer which will be used for investigations to relate the chlorophyll and suspended sediment content in the waters of the Lower Chesapeake Bay to ERTS-1 imagery. Water sampling, plankton analysis, and preparations for sea collection of water truth along the eastern continental shelf of the U.S. have been completed for use in comparisons with ERTS-1 data.

  14. Tracking Legionella in air generated from a biological treatment plant: a case study of the outbreak of legionellosis in Norway

    NASA Astrophysics Data System (ADS)

    Blatny, Janet M.; Olsen, Jaran S.; Andreassen, Øyvind; Waagen, Viggo; Reif, Bjørn Anders P.

    2011-05-01

    Two outbreaks of legionellosis occurred in the Sarpsborg/Fredrikstad region southeast of Norway in 2005 and 2008 where more than 60 exposed individuals were infected and 10 case patients died. The air scrubber at Borregaard, a wood-based chemical factory, was identified as the outbreak source. High concentration levels of Legionella species, including the etiological agent L. pneumophila SG1 was found in the aeration ponds, which belongs to Borregaard's biological treatment plant. Results showed that these ponds were able to generate Legionella-containing aerosols that were transported by the wind as such aerosols were measured up to 200 meters downwind of the pond. Our studies did not detect L. pneumophila SG1 isolates, only L. pneumophila SG4 during the air sampling measurement campaign. Furthermore, the operational conditions of the air scrubber proved to be harsh for Legionella growth as the outbreak L. pneumophila strains were not able to grow at 45ºC and pH8 (conditions during the outbreaks). These results, together, lead us to suggest that the aeration pond should be regarded as the primary amplifier and disseminator of Legionella and L. pneumophila and thereby most likely being the outbreak source.

  15. Investigating biological traces of traumatic stress in changing societies: challenges and directions from the ESTSS Task Force on Neurobiology

    PubMed Central

    Thomaes, Kathleen; de Kloet, Carien; Wilker, Sarah; El-Hage, Wissam; Schäfer, Ingo; Kleim, Birgit; Schmahl, Christian; van Zuiden, Mirjam

    2016-01-01

    Traumatic stress can have severe consequences for both mental and physical health. Furthermore, both psychological and biological traces of trauma increase as a function of accumulating traumatic experiences. Neurobiological research may aid in limiting the impact of traumatic stress, by leading to advances in preventive and treatment interventions. To promote the possibility for clinical implementation of novel research findings, this brief review describes timely conceptual and methodological challenges and directions in neurobiological trauma research on behalf of the Task Force “Neurobiology of Traumatic Stress” of the European Society for Traumatic Stress Studies (ESTSS). The most important conceptual challenges are the heterogeneity of disorders and existence of subtypes across diagnostic categories: differential latent profiles and trajectories regarding symptom expression and neural correlates are being unraveled; however, similar latent classes’ approaches for treatment response and neurobiological data remain scarce thus far. The key to improving the efficacy of currently available preventive interventions and treatments for trauma-related disorders lies in a better understanding and characterization of individual differences in response to trauma and interventions. This could lead to personalized treatment strategies for trauma-related disorders, based on objective information indicating whether individuals are expected to benefit from them. The most important methodological challenge identified here is the need for large consortia and meta-analyses or, rather, mega-analyses on existent data as a first step. In addition, large multicenter studies, combining novel methods for repeated sampling with more advanced statistical modeling techniques, such as machine learning, should aim to translate identified disease mechanisms into molecular blood-based biomarker combinations to predict disorder vulnerability and treatment responses. PMID:26996535

  16. Investigating biological traces of traumatic stress in changing societies: challenges and directions from the ESTSS Task Force on Neurobiology.

    PubMed

    Thomaes, Kathleen; de Kloet, Carien; Wilker, Sarah; El-Hage, Wissam; Schäfer, Ingo; Kleim, Birgit; Schmahl, Christian; van Zuiden, Mirjam

    2016-01-01

    Traumatic stress can have severe consequences for both mental and physical health. Furthermore, both psychological and biological traces of trauma increase as a function of accumulating traumatic experiences. Neurobiological research may aid in limiting the impact of traumatic stress, by leading to advances in preventive and treatment interventions. To promote the possibility for clinical implementation of novel research findings, this brief review describes timely conceptual and methodological challenges and directions in neurobiological trauma research on behalf of the Task Force "Neurobiology of Traumatic Stress" of the European Society for Traumatic Stress Studies (ESTSS). The most important conceptual challenges are the heterogeneity of disorders and existence of subtypes across diagnostic categories: differential latent profiles and trajectories regarding symptom expression and neural correlates are being unraveled; however, similar latent classes' approaches for treatment response and neurobiological data remain scarce thus far. The key to improving the efficacy of currently available preventive interventions and treatments for trauma-related disorders lies in a better understanding and characterization of individual differences in response to trauma and interventions. This could lead to personalized treatment strategies for trauma-related disorders, based on objective information indicating whether individuals are expected to benefit from them. The most important methodological challenge identified here is the need for large consortia and meta-analyses or, rather, mega-analyses on existent data as a first step. In addition, large multicenter studies, combining novel methods for repeated sampling with more advanced statistical modeling techniques, such as machine learning, should aim to translate identified disease mechanisms into molecular blood-based biomarker combinations to predict disorder vulnerability and treatment responses. PMID:26996535

  17. A Comprehensive Assessment of Biologicals Contained Within Commercial Airliner Cabin Air

    NASA Technical Reports Server (NTRS)

    LaDuc, Myron T.; Osman, Shariff; Dekas, Anne; Stuecker, Tara; Newcombe, Dave; Piceno, Yvette; Fuhrman, J.; Andersen, Gary; Venkateswaran, Kasthuri; Bearman, Greg

    2006-01-01

    Both culture-based and culture-independent, biomarker-targeted microbial enumeration and identification technologies were employed to estimate total microbial and viral burden and diversity within the cabin air of commercial airliners. Samples from each of twenty flights spanning three commercial carriers were collected via air-impingement. When the total viable microbial population was estimated by assaying relative concentrations of the universal energy carrier ATP, values ranged from below detection limits (BDL) to 4.1 x 106 cells/cubic m of air. The total viable microbial population was extremely low in both of Airline A (approximately 10% samples) and C (approximately 18% samples) compared to the samples collected aboard flights on Airline A and B (approximately 70% samples). When samples were collected as a function of time over the course of flights, a gradual accumulation of microbes was observed from the time of passenger boarding through mid-flight, followed by a sharp decline in microbial abundance and viability from the initiation of descent through landing. It is concluded in this study that only 10% of the viable microbes of the cabin air were cultivable and suggested a need to employ state-of-the art molecular assay that measures both cultivable and viable-but-non-cultivable microbes. Among the cultivable bacteria, colonies of Acinetobacter sp. were by far the most profuse in Phase I, and Gram-positive bacteria of the genera Staphylococcus and Bacillus were the most abundant during Phase II. The isolation of the human pathogens Acinetobacter johnsonii, A. calcoaceticus, Janibacter melonis, Microbacterium trichotecenolyticum, Massilia timonae, Staphylococcus saprophyticus, Corynebacterium lipophiloflavum is concerning, as these bacteria can cause meningitis, septicemia, and a handful of sometimes fatal diseases and infections. Molecular microbial community analyses exhibited presence of the alpha-, beta-, gamma-, and delta- proteobacteria, as well as

  18. Detection of biological particles in ambient air using bio-aerosol mass spectrometry

    NASA Astrophysics Data System (ADS)

    McJimpsey, Erica L.; Steele, Paul T.; Coffee, Keith R.; Fergenson, David P.; Riot, Vincent J.; Woods, Bruce W.; Gard, Eric E.; Frank, Matthias; Tobias, Herbert J.; Lebrilla, Carlito

    2006-05-01

    The Bio-Aerosol Mass Spectrometry (BAMS) system is an instrument used for the real time detection and identification of biological aerosols. Particles are drawn from the atmosphere directly into vacuum and tracked as they scatter light from several continuous wave lasers. After tracking, the fluorescence of individual particles is excited by a pulsed 266nm or 355nm laser. Molecules from those particles with appropriate fluorescence properties are subsequently desorbed and ionized using a pulsed 266nm laser. Resulting ions are analyzed in a dual polarity mass spectrometer. During two field deployments at the San Francisco International Airport, millions of ambient particles were analyzed and a small but significant fraction were found to have fluorescent properties similar to Bacillus spores and vegetative cells. Further separation of non-biological background particles from potential biological particles was accomplished using laser desorption/ionization mass spectrometry. This has been shown to enable some level of species differentiation in specific cases, but the creation and observation of higher mass ions is needed to enable a higher level of specificity across more species. A soft ionization technique, matrix-assisted laser desorption/ionization (MALDI) is being investigated for this purpose. MALDI is particularly well suited for mass analysis of biomolecules since it allows for the generation of molecular ions from large mass compounds that would fragment under normal irradiation. Some of the initial results from a modified BAMS system utilizing this technique are described.

  19. Detection of biological particles in ambient air using Bio-Aerosol Mass Spectrometry

    SciTech Connect

    McJimpsey, E L; Steele, P T; Coffee, K R; Fergenson, D P; Riot, V J; Woods, B W; Gard, E E; Frank, M; Tobias, H J; Lebrilla, C

    2006-03-16

    The Bio-Aerosol Mass Spectrometry (BAMS) system is an instrument used for the real time detection and identification of biological aerosols. Particles are drawn from the atmosphere directly into vacuum and tracked as they scatter light from several continuous wave lasers. After tracking, the fluorescence of individual particles is excited by a pulsed 266nm or 355nm laser. Molecules from those particles with appropriate fluorescence properties are subsequently desorbed and ionized using a pulsed 266nm laser. Resulting ions are analyzed in a dual polarity mass spectrometer. During two field deployments at the San Francisco International Airport, millions of ambient particles were analyzed and a small but significant fraction were found to have fluorescent properties similar to Bacillus spores and vegetative cells. Further separation of non-biological background particles from potential biological particles was accomplished using laser desorption/ionization mass spectrometry. This has been shown to enable some level of species differentiation in specific cases, but the creation and observation of higher mass ions is needed to enable a higher level of specificity across more species. A soft ionization technique, matrix-assisted laser desorption/ionization (MALDI) is being investigated for this purpose. MALDI is particularly well suited for mass analysis of biomolecules since it allows for the generation of molecular ions from large mass compounds that would fragment under normal irradiation. Some of the initial results from a modified BAMS system utilizing this technique are described.

  20. Monitoring global rates of biodiversity change: challenges that arise in meeting the Convention on Biological Diversity (CBD) 2010 goals.

    PubMed

    Dobson, Andy

    2005-02-28

    By agreeing to strive for 'a significant reduction in the current rate of loss of biological diversity' by the year 2010, political leaders at the 2002 World Summit on Sustainable Development (held in Johannesburg, South Africa) presented conservation scientists with a great opportunity, but also one of their most significant challenges. This is an extremely exciting and laudable development, but this reporting process could be made yet more powerful if it incorporates, from the outset, independent scientific assessment of the measures, how they are analysed, and practical ways of plugging key gaps. This input is crucial if the measures are to be widely owned, credible and robust to the vigorous external scrutiny to which they will doubtless be exposed. Assessing how rates of biodiversity loss have changed from current levels by 2010 will require that a given attribute has been measured at least three times; however, most habitats, species, populations and ecosystem services have not been assessed even once. Furthermore, the best data on which to base estimates of biodiversity loss are biased towards the charismatic vertebrate species; unfortunately, these supply minimal services to the human economy. We have to find ways to redress this taxonomic imbalance and expand our analyses to consider the vast diversity of invertebrate, fungal and microbial species that play a role in determining human health and economic welfare. In the first part of this paper I will use examples from local and regional monitoring of biological diversity to examine the desired properties of 'ideal indicators'. I will then change focus and examine an initial framework that asks how we might monitor changes in the economic goods and services provided by natural ecosystems. I will use this exercise to examine how the set of possible indicators given by the Convention on Biological Diversity might be modified in ways that provide a more critical assay of the economic value of biological

  1. Monitoring global rates of biodiversity change: challenges that arise in meeting the Convention on Biological Diversity (CBD) 2010 goals

    PubMed Central

    Dobson, Andy

    2005-01-01

    By agreeing to strive for ‘a significant reduction in the current rate of loss of biological diversity’ by the year 2010, political leaders at the 2002 World Summit on Sustainable Development (held in Johannesburg, South Africa) presented conservation scientists with a great opportunity, but also one of their most significant challenges. This is an extremely exciting and laudable development, but this reporting process could be made yet more powerful if it incorporates, from the outset, independent scientific assessment of the measures, how they are analysed, and practical ways of plugging key gaps. This input is crucial if the measures are to be widely owned, credible and robust to the vigorous external scrutiny to which they will doubtless be exposed. Assessing how rates of biodiversity loss have changed from current levels by 2010 will require that a given attribute has been measured at least three times; however, most habitats, species, populations and ecosystem services have not been assessed even once. Furthermore, the best data on which to base estimates of biodiversity loss are biased towards the charismatic vertebrate species; unfortunately, these supply minimal services to the human economy. We have to find ways to redress this taxonomic imbalance and expand our analyses to consider the vast diversity of invertebrate, fungal and microbial species that play a role in determining human health and economic welfare. In the first part of this paper I will use examples from local and regional monitoring of biological diversity to examine the desired properties of ‘ideal indicators’. I will then change focus and examine an initial framework that asks how we might monitor changes in the economic goods and services provided by natural ecosystems. I will use this exercise to examine how the set of possible indicators given by the Convention on Biological Diversity might be modified in ways that provide a more critical assay of the economic value of

  2. Sewage treatment by anaerobic biological process associated with dissolved air flotation.

    PubMed

    Reali, M A; Campos, J R; Penetra, R G

    2001-01-01

    This paper presents the results of a study performed with a lab-scale batch DAF unit fed with previously coagulated (with FeCl3 or cationic polymer) effluent from a pilot scale up-flow anaerobic sludge blanket (UASB) reactor treating domestic sewage. The adequate coagulation/flocculation conditions--chemical dosage, time (Tf) and mean velocity gradient (Gf) in the flocculation step--and air requirements for flotation process were investigated. Best results were achieved for 65 mg.l-1 of FeCl3 at Tf around 15 min and Gf of 80 s-1. In the assays where only polymer was applied, 7 mg.l-1 of cationic polymer dosage gave optimum removals with Tf around 15 min and Gf of 30 s-1. Air requirements ranged from 9.5 to 19.0 g of air.m-3 wastewater. Best TSS (95% and residual of 2 mg.l-1), COD (85% and residual of 20 mg.l-1) and total phosphate (95% and residual of 0.6 mg.l-1) removals were obtained when applying FeCl3, although the use of cationic polymer also produced good level of TSS (74% and residual of 14 mg.l-1) and COD (75% and residual of 45 mg.l-1) removals. For the UASB-DAF (batch) system and FeCl3, global efficiencies would be 97.2% for COD, 97.9% for phosphate and 98.9% for TSS. PMID:11394285

  3. Integrated Bio-Search: challenges and trends for the integration, search and comprehensive processing of biological information

    PubMed Central

    2014-01-01

    Many efforts exist to design and implement approaches and tools for data capture, integration and analysis in the life sciences. Challenges are not only the heterogeneity, size and distribution of information sources, but also the danger of producing too many solutions for the same problem. Methodological, technological, infrastructural and social aspects appear to be essential for the development of a new generation of best practices and tools. In this paper, we analyse and discuss these aspects from different perspectives, by extending some of the ideas that arose during the NETTAB 2012 Workshop, making reference especially to the European context. First, relevance of using data and software models for the management and analysis of biological data is stressed. Second, some of the most relevant community achievements of the recent years, which should be taken as a starting point for future efforts in this research domain, are presented. Third, some of the main outstanding issues, challenges and trends are analysed. The challenges related to the tendency to fund and create large scale international research infrastructures and public-private partnerships in order to address the complex challenges of data intensive science are especially discussed. The needs and opportunities of Genomic Computing (the integration, search and display of genomic information at a very specific level, e.g. at the level of a single DNA region) are then considered. In the current data and network-driven era, social aspects can become crucial bottlenecks. How these may best be tackled to unleash the technical abilities for effective data integration and validation efforts is then discussed. Especially the apparent lack of incentives for already overwhelmed researchers appears to be a limitation for sharing information and knowledge with other scientists. We point out as well how the bioinformatics market is growing at an unprecedented speed due to the impact that new powerful in silico

  4. Integrated Bio-Search: challenges and trends for the integration, search and comprehensive processing of biological information.

    PubMed

    Masseroli, Marco; Mons, Barend; Bongcam-Rudloff, Erik; Ceri, Stefano; Kel, Alexander; Rechenmann, François; Lisacek, Frederique; Romano, Paolo

    2014-01-01

    Many efforts exist to design and implement approaches and tools for data capture, integration and analysis in the life sciences. Challenges are not only the heterogeneity, size and distribution of information sources, but also the danger of producing too many solutions for the same problem. Methodological, technological, infrastructural and social aspects appear to be essential for the development of a new generation of best practices and tools. In this paper, we analyse and discuss these aspects from different perspectives, by extending some of the ideas that arose during the NETTAB 2012 Workshop, making reference especially to the European context. First, relevance of using data and software models for the management and analysis of biological data is stressed. Second, some of the most relevant community achievements of the recent years, which should be taken as a starting point for future efforts in this research domain, are presented. Third, some of the main outstanding issues, challenges and trends are analysed. The challenges related to the tendency to fund and create large scale international research infrastructures and public-private partnerships in order to address the complex challenges of data intensive science are especially discussed. The needs and opportunities of Genomic Computing (the integration, search and display of genomic information at a very specific level, e.g. at the level of a single DNA region) are then considered. In the current data and network-driven era, social aspects can become crucial bottlenecks. How these may best be tackled to unleash the technical abilities for effective data integration and validation efforts is then discussed. Especially the apparent lack of incentives for already overwhelmed researchers appears to be a limitation for sharing information and knowledge with other scientists. We point out as well how the bioinformatics market is growing at an unprecedented speed due to the impact that new powerful in silico

  5. Rapid inactivation of biological species in the air using atmospheric pressure nonthermal plasma.

    PubMed

    Liang, Yongdong; Wu, Yan; Sun, Ke; Chen, Qi; Shen, Fangxia; Zhang, Jue; Yao, Maosheng; Zhu, Tong; Fang, Jing

    2012-03-20

    Here, nonthermal plasma generated by a dielectric barrier discharge (DBD) system was applied to inactivating aerosolized Bacillus subtilis cells and Pseudomonas fluorescens as well as indoor and outdoor bioaerosols. The culturability, viability, and diversity losses of the microorganisms in air samples treated by the plasma for 0.06-0.12 s were studied using culturing, DNA stain as well as polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) methods. In addition, the viable fraction of bacterial aerosols with and without the plasma treatment was also quantified using qPCR coupled with ethidium monoazide (EMA). It was shown that less than 2% of B. subtilis aerosols survived the plasma treatment of 0.12 s, while none of the P. fluorescens aerosols survived. Viability tests, EMA-qPCR results, and Scanning Electron Microscopy (SEM) images demonstrated that both bacterial species suffered significant viability loss, membrane, and DNA damages. Exposure of environmental bacterial and fungal aerosols to the plasma for 0.06 s also resulted in their significant inactivations, more than 95% for bacteria and 85-98% for fungal species. PCR-DGGE analysis showed that plasma exposure of 0.06 s resulted in culturable bacterial aerosol diversity loss for both environments, especially pronounced for indoor environment. The results here demonstrate that nonthermal plasma exposure could offer a highly efficient air decontamination technology. PMID:22385302

  6. Particulate air pollution and increased mortality: Biological plausibility for causal relationship

    SciTech Connect

    Henderson, R.F.

    1995-02-01

    Recently, a number of epidemiological studies have concluded that ambient particulate exposure is associated with increased mortality and morbidity at PM concentrations well below those previously thought to affect human health. These studies have been conducted in several different geographical locations and have involved a range of populations. While the consistency of the findings and the presence of an apparent concentration response relationship provide a strong argument for causality, epidemiological studies can only conclude this based upon inference from statistical associations. The biological plausibility of a causal relationship between low concentrations of PM and daily mortality and morbidity rates is neither intuitively obvious nor expected based on past experimental studies on the toxicity of inhaled particles. Chronic toxicity from inhaled, poorly soluble particles has been observed based on the slow accumulation of large lung burdens of particles, not on small daily fluctuations in PM levels. Acute toxicity from inhaled particles is associated mainly with acidic particles and is observed at much higher concentrations than those observed in the epidemiology studies reporting an association between PM concentrations and morbidity/mortality. To approach the difficult problem of determining if the association between PM concentrations and daily morbidity and mortality is biologically plausible and causal, one must consider (1) the chemical and physical characteristics of the particles in the inhaled atmospheres, (2) the characteristics of the morbidity/mortality observed and the people who are affected, and (3) potential mechanisms that might link the two.

  7. Mapping air pollution by biological monitoring in the metropolitan Tel Aviv area.

    PubMed

    Lavi, Aya; Potchter, Oded; Omer, Itzhak; Fireman, Elizabeth

    2016-06-01

    Conventional environmental monitoring is not surrogate of personal exposure. In contrast, biomonitoring provides information on the presence of substances in the human body, making it highly relevant to the assessment of exposure to toxic substances. Induced sputum (IS) is a noninvasive technique for detecting inflammation and reflecting particulate matter content in the airways. In this study, we mapped particulate matter dispersion in metropolitan Tel Aviv by both biomonitoring techniques employing IS samples and by environmental monitoring. All adults referred to the Pulmonary Lab for respiratory symptom evaluation in 2007 and in 2009 were enrolled. Pulmonary function tests were performed by conventional methods. Particulate size distribution in IS was analyzed, and maps of air pollution were created. Biomonitoring was more informative and enabled mapping of wider areas. Integration of biomonitoring and environmental monitoring should be considered in forming public health policy on containment of airborne particles of toxic substances. PMID:26600473

  8. Evaluation of methylene diphenyl diisocyanate as an indoor air pollutant and biological assessment of methylene dianiline in the polyurethane factories.

    PubMed

    Mirmohammadi, Mirtaghi; Ibrahim, M Hakimi; Ahmad, Anees; Kadir, Mohd Omar Abdul; Mohammadyan, M; Mirashrafi, S B

    2009-04-01

    Today many raw materials used in factories may have a dangerous effect on the physiological system of workers. One of them, which is widely used in the polyurethane factories, is diisocyanates. These compounds are widely used in surface coatings, polyurethane foams, adhesives, resins, elastomers, binders, and sealants. Exposure to diisocyanates causes irritation to the skin, mucous membranes, eyes, and respiratory tract. Methylene dianiline (MDA) is a metabolite of methylene diphenyle diisocyanate (MDI), an excretory material of worker's urine who are exposed to MDI. Around 100 air samples were collected among five factories by the Midget Impinger, which contained DMSO absorbent as a solvent and Tryptamine as a reagent. Samples were analyzed by high-performance liquid chromatography with an EC\\UV detector using the NIOSH 5522 method of sampling and analysis. Also, fifty urine samples were collected from workers by using William's biological analysis method. The concentration of MDI in all air samples was more than 88 mug/m(3), showing a high concentration of the pollutant in the workplaces in comparison with the NIOSH standard, and all the worker's urine was contaminated by MDA. The correlation and regression tests were used to obtain statistical model for MDI and MDA that is useful for prediction of diisocyanates pollution situation in the polyurethane factories. PMID:20165612

  9. Indoor air pollution evaluation with emphasize on HDI and biological assessment of HDA in the polyurethane factories.

    PubMed

    Mirmohammadi, Mirtaghi; Hakimi Ibrahim, M; Ahmad, Anees; Kadir, Mohd Omar Abdul; Mohammadyan, M; Mirashrafi, S B

    2010-06-01

    Today, many raw materials used in factories may have a dangerous effect on the physiological system of workers. One of them which is widely used in the polyurethane factories is diisocyanates. These compounds are widely used in surface coatings, polyurethane foams, adhesives, resins, elastomers, binders, and sealants. Exposure to diisocyanates causes irritation to the skin, mucous membranes, eyes, and respiratory tract. Hexamethylene diamine (HDA) is metabolite of hexamethylene diisocyanate (HDI). It is an excretory material by worker's urine who is exposed to HDI. Around 100 air samples were collected from five defined factories by midget impinger which contained dimethyl sulfoxide absorbent as a solvent and tryptamine as reagent. Samples were analyzed by high-performance liquid chromatography with EC\\UV detector using NIOSH 5522 method of sampling. Also, 50 urine samples collected from workers were also analyzed using William's biological analysis method. The concentration of HDI into all air samples were more than 88 microg/m(3), and they have shown high concentration of pollutant in the workplaces in comparison with NIOSH standard, and all of the workers' urine were contaminated by HDA. The correlation and regression test were used to obtain statistical model for HDI and HDA, which is useful for the prediction of diisocyanates pollution situation in the polyurethane factories. PMID:19444630

  10. Evaluation of methylene diphenyl diisocyanate as an indoor air pollutant and biological assessment of methylene dianiline in the polyurethane factories

    PubMed Central

    Mirmohammadi, Mirtaghi; Ibrahim, M. Hakimi; Ahmad, Anees; Kadir, Mohd Omar Abdul; Mohammadyan, M.; Mirashrafi, S. B.

    2009-01-01

    Today many raw materials used in factories may have a dangerous effect on the physiological system of workers. One of them, which is widely used in the polyurethane factories, is diisocyanates. These compounds are widely used in surface coatings, polyurethane foams, adhesives, resins, elastomers, binders, and sealants. Exposure to diisocyanates causes irritation to the skin, mucous membranes, eyes, and respiratory tract. Methylene dianiline (MDA) is a metabolite of methylene diphenyle diisocyanate (MDI), an excretory material of worker's urine who are exposed to MDI. Around 100 air samples were collected among five factories by the Midget Impinger, which contained DMSO absorbent as a solvent and Tryptamine as a reagent. Samples were analyzed by high-performance liquid chromatography with an EC\\UV detector using the NIOSH 5522 method of sampling and analysis. Also, fifty urine samples were collected from workers by using William's biological analysis method. The concentration of MDI in all air samples was more than 88 μg/m3, showing a high concentration of the pollutant in the workplaces in comparison with the NIOSH standard, and all the worker's urine was contaminated by MDA. The correlation and regression tests were used to obtain statistical model for MDI and MDA that is useful for prediction of diisocyanates pollution situation in the polyurethane factories. PMID:20165612

  11. Design and characterization of a small chamber for chemical and biological evaluation of sources of indoor air contamination

    SciTech Connect

    Mason, M.A.; Roache, N.F.; Guo, Z.; Costa, D.

    1996-12-31

    The potential for emissions from materials used indoors to cause sensory irritation has prompted several researchers to adapt the mouse bioassay, ASTM E 981, for evaluation of irritancy potential of product emissions.Standardized test procedures that produce comparable results are needed if bioassays, such as ASTM E 981, are to be used to rank and compare products based upon the irritation potential of product emissions. The authors designed, constructed, and determined performance characteristics for a 34-L source emissions chamber, which mates directly to the 2.3-L mouse exposure chamber specified by ASTM E 981 and found the glass chamber to be without significant air leaks and background emissions. Reversible adsorption of decane and p-dichlorobenzene was noted. They found it necessary to add a circulation fan inside the chamber to create air velocities that are representative of those found in indoor environments. The well controlled thermal environment and straightforward connection of the chamber to the mouse exposure chamber used in ASTM E 981 are features that may make this chamber useful in development and evaluation of protocols for biological characterization of product emissions.

  12. A review of air quality, biological indicators and health effects of second-hand waterpipe smoke exposure

    PubMed Central

    Kumar, Sumit R; Davies, Shelby; Weitzman, Michael; Sherman, Scott

    2015-01-01

    Objective There has been a rapid increase in the use of waterpipe tobacco and non-tobacco based shisha in many countries. Understanding the impact and effects of second-hand smoke (SHS) from cigarette was a crucial factor in reducing cigarette use, leading to clean indoor air laws and smoking bans. This article reviews what is known about the effects of SHS exposure from waterpipes. Data sources We used PubMed and EMBASE to review the literature. Articles were grouped into quantitative measures of air quality and biological markers, health effects, exposure across different settings, different types of shisha and use in different countries. Study selection Criteria for study selection were based on the key words related to SHS: waterpipe, hookah, shisha and third-hand smoke. Data extraction Independent extraction with two reviewers was performed with inclusion criteria applied to articles on SHS and waterpipe/hookah/shisha. We excluded articles related to pregnancy or prenatal exposure to SHS, animal studies, and non-specific source of exposure as well as articles not written in English. Data synthesis A primary literature search yielded 54 articles, of which only 11 were included based on relevance to SHS from a waterpipe/hookah/shisha. Conclusions The negative health consequences of second-hand waterpipe exposure have major implications for clean indoor air laws and for occupational safety. There exists an urgent need for public health campaigns about the effects on children and household members from smoking waterpipe at home, and for further development and implementation of regulations to protect the health of the public from this rapidly emerging threat. PMID:25480544

  13. Multivariate analysis of respiratory problems and their connection with meteorological parameters and the main biological and chemical air pollutants

    NASA Astrophysics Data System (ADS)

    Matyasovszky, István; Makra, László; Bálint, Beatrix; Guba, Zoltán; Sümeghy, Zoltán

    2011-08-01

    The aim of the study is to analyse the joint effect of biological (pollen) and chemical air pollutants, as well as meteorological variables, on the hospital admissions of respiratory problems for the Szeged region in Southern Hungary. The data set used covers a nine-year period (1999-2007) and is unique in the sense that it includes—besides the daily number of respiratory hospital admissions—not just the hourly mean concentrations of CO, PM 10, NO, NO 2, O 3 and SO 2 with meteorological variables (temperature, global solar flux, relative humidity, air pressure and wind speed), but two pollen variables ( Ambrosia and total pollen excluding Ambrosia) as well. The analysis was performed using three age categories for the pollen season of Ambrosia and the pollen-free season. Meteorological elements and air pollutants are clustered in order to define optimum environmental conditions of high patient numbers. ANOVA was then used to determine whether cluster-related mean patient numbers differ significantly. Furthermore, two novel procedures are applied here: factor analysis including a special transformation and a time-varying multivariate linear regression that makes it possible to determine the rank of importance of the influencing variables in respiratory hospital admissions, and also compute the relative importance of the parameters affecting respiratory disorders. Both techniques revealed that Ambrosia pollen is an important variable that influences hospital admissions (an increase of 10 pollen grains m -3 can imply an increase of around 24% in patient numbers). The role of chemical and meteorological parameters is also significant, but their weights vary according to the seasons and the methods. Clearer results are obtained for the pollination season of Ambrosia. Here, a 10 μg m -3 increase in O 3 implies a patient number response from -17% to +11%. Wind speed is a surprisingly important variable, where a 1 m s -1 rise may result in a hospital admission

  14. Biologic surveys for the Sandia National Laboratories, Coyote Canyon Test Complex, Kirtland Air Force Base, Albuquerque, New Mexico

    SciTech Connect

    Sullivan, R.M.; Knight, P.J.

    1994-05-25

    This report provides results of a comprehensive biologic survey performed in Coyote Canyon Test Complex (CCTC), Sandia National Laboratories (SNL), Bernalillo County, New Mexico, which was conducted during the spring and summer of 1992 and 1993. CCTC is sited on land owned by the Department of Energy (DOE) and Kirtland Air Force Base and managed by SNL. The survey covered 3,760 acres of land, most of which is rarely disturbed by CCTC operations. Absence of grazing by livestock and possibly native ungulates, and relative to the general condition of private range lands throughout New Mexico, and relative to other grazing lands in central New Mexico. Widely dispersed, low intensity use by SNL as well as prohibition of grazing has probably contributed to abundance of special status species such as grama grass cactus within the CCTC area. This report evaluates threatened and endangered species found in the area, as well as comprehensive assessment of biologic habitats. Included are analyses of potential impacts and mitigative measures designed to reduce or eliminate potential impacts. Included is a summary of CCTC program and testing activities.

  15. Enabling X-ray free electron laser crystallography for challenging biological systems from a limited number of crystals

    PubMed Central

    Uervirojnangkoorn, Monarin; Zeldin, Oliver B; Lyubimov, Artem Y; Hattne, Johan; Brewster, Aaron S; Sauter, Nicholas K; Brunger, Axel T; Weis, William I

    2015-01-01

    There is considerable potential for X-ray free electron lasers (XFELs) to enable determination of macromolecular crystal structures that are difficult to solve using current synchrotron sources. Prior XFEL studies often involved the collection of thousands to millions of diffraction images, in part due to limitations of data processing methods. We implemented a data processing system based on classical post-refinement techniques, adapted to specific properties of XFEL diffraction data. When applied to XFEL data from three different proteins collected using various sample delivery systems and XFEL beam parameters, our method improved the quality of the diffraction data as well as the resulting refined atomic models and electron density maps. Moreover, the number of observations for a reflection necessary to assemble an accurate data set could be reduced to a few observations. These developments will help expand the applicability of XFEL crystallography to challenging biological systems, including cases where sample is limited. DOI: http://dx.doi.org/10.7554/eLife.05421.001 PMID:25781634

  16. Monitoring biological impacts of space shuttle launches from Vandenberg Air Force Base: Establishment of baseline conditions

    NASA Technical Reports Server (NTRS)

    Schmaizer, Paul A.; Hinkle, C. Ross

    1987-01-01

    Space shuttle launches produce environmental impacts resulting from the formation of an exhaust cloud containing hydrogen chloride aerosols and aluminum oxide particulates. Studies have shown that most impacts occur near-field (within 1.5 km) of the launch site while deposition from launches occurs far-field (as distant as 22 km). In order to establish baseline conditions of vegetation and soils in the areas likely to be impacted by shuttle launches from Vandenberg Air Force Base (VAFB), vegetation and soils in the vicinity of Space Launch Complex-6 (SLC-6) were sampled and a vegetation map prepared. The areas likely to be impacted by launches were determined considering the structure of the launch complex, the prevailing winds, the terrain, and predictions of the Rocket Exhaust Effluent Diffusion Model (REEDM). Fifty vegetation transects were established and sampled in March 1986 and resampled in September 1986. A vegetation map was prepared for six Master Planning maps surrounding SLC-6 using LANDSAT Thematic Mapper imagery as well as color and color infrared aerial photography. Soil samples were collected form the 0 to 7.5 cm layer at all transects in the wet season and at a subsample of the transects in the dry season and analyzed for pH, organic matter, conductivity, cation exchange capacity, exchangeable Ca, Mg, Na, K, and Al, available NH3-N, PO4-P, Cu, Fe, Mn, Zn, and TKN.

  17. Investigating the extensive air shower properties: Tackling the challenges of the next generation cosmic ray observatory with the CODALEMA experiment

    NASA Astrophysics Data System (ADS)

    Martin, Lilian

    2014-04-01

    Our knowledge on ultra-high energy cosmic rays and their underlying sources and acceleration mechanisms is steadily improving thanks to the large observatories nowadays in operation. However the need for a next generation instrument is emerging from their experimental limitations and the scientific questions currently out of reach within a reasonable time line. Within this scope, the main features of the radio detection of extensive air showers are investigated and confronted to these challenging requirements. CODALEMA is the last experiment currently running in Europe dedicated to the cosmic ray detection using the observation of its induced radio electric field. The latest experimental upgrade and the synthesis of its operation features and the upcoming technical developments are presented. The main results of CODALEMA will be presented with special emphasis put on some of the new aspects of the data analysis offered by the CODALEMA3 autonomous station array. Finally, the opportunities provided by the Nançay observatory for efficient R&D activities and especially the upcoming technical developments are listed.

  18. Single Cell and Metagenomic Assemblies: Biology Drives Technical Choices and Goals (Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    SciTech Connect

    Stepanauskas, Ramunas

    2011-10-13

    DOE JGI's Tanja Woyke, chair of the Single Cells and Metagenomes session, delivers an introduction, followed by Bigelow Laboratory's Ramunas Stepanauskas on "Single Cell and Metagenomic Assemblies: Biology Drives Technical Choices and Goals" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  19. Single Cell and Metagenomic Assemblies: Biology Drives Technical Choices and Goals (Metagenomics Informatics Challenges Workshop: 10K Genomes at a Time)

    ScienceCinema

    Stepanauskas, Ramunas [Bigelow Laboratory

    2013-01-22

    DOE JGI's Tanja Woyke, chair of the Single Cells and Metagenomes session, delivers an introduction, followed by Bigelow Laboratory's Ramunas Stepanauskas on "Single Cell and Metagenomic Assemblies: Biology Drives Technical Choices and Goals" at the Metagenomics Informatics Challenges Workshop held at the DOE JGI on October 12-13, 2011.

  20. Risk-based objectives for the allocation of chemical, biological, and radiological air emissions sensors.

    PubMed

    Lambert, James H; Farrington, Mark W

    2006-12-01

    This article addresses the problem of allocating devices for localized hazard protection across a region. Each identical device provides only local protection, and the devices serve localities that are exposed to nonidentical intensities of hazard. A method for seeking the optimal allocation Policy Decisions is described, highlighting the potentially competing objectives of maximizing local risk reductions and coverage risk reductions. The metric for local risk reductions is the sum of the local economic risks avoided. The metric for coverage risk reductions is adapted from the p-median problem and equal to the sum of squares of the distances from all unserved localities to their closest associated served locality. Three graphical techniques for interpreting the Policy Decisions are presented. The three linked graphical techniques are applied serially. The first technique identifies Policy Decisions that are nearly Pareto optimal. The second identifies locations where sensor placements are most justified, based on a risk-cost-benefit analysis under uncertainty. The third displays the decision space for any particular policy decision. The method is illustrated in an application to chemical, biological, and/or radiological weapon sensor placement, but has implications for disaster preparedness, transportation safety, and other arenas of public safety. PMID:17184404

  1. ENVIRONMENTAL TECHNOLOGY VERIFICATION--GENERIC VERIFICATION PROTOCOL FOR BIOLOGICAL AND AEROSOL TESTING OF GENERAL VENTILATION AIR CLEANERS

    EPA Science Inventory

    Under EPA's Environmental Technology Verification Program, Research Triangle Institute (RTI) will operate the Air Pollution Control Technology Center to verify the filtration efficiency and bioaerosol inactivation efficiency of heating, ventilation and air conditioning air cleane...

  2. Challenges of molecular nutrition research 6: the nutritional phenotype database to store, share and evaluate nutritional systems biology studies

    PubMed Central

    Bouwman, Jildau; Dragsted, Lars O.; Drevon, Christian A.; Elliott, Ruan; de Groot, Philip; Kaput, Jim; Mathers, John C.; Müller, Michael; Pepping, Fre; Saito, Jahn; Scalbert, Augustin; Radonjic, Marijana; Rocca-Serra, Philippe; Travis, Anthony; Wopereis, Suzan; Evelo, Chris T.

    2010-01-01

    The challenge of modern nutrition and health research is to identify food-based strategies promoting life-long optimal health and well-being. This research is complex because it exploits a multitude of bioactive compounds acting on an extensive network of interacting processes. Whereas nutrition research can profit enormously from the revolution in ‘omics’ technologies, it has discipline-specific requirements for analytical and bioinformatic procedures. In addition to measurements of the parameters of interest (measures of health), extensive description of the subjects of study and foods or diets consumed is central for describing the nutritional phenotype. We propose and pursue an infrastructural activity of constructing the “Nutritional Phenotype database” (dbNP). When fully developed, dbNP will be a research and collaboration tool and a publicly available data and knowledge repository. Creation and implementation of the dbNP will maximize benefits to the research community by enabling integration and interrogation of data from multiple studies, from different research groups, different countries and different—omics levels. The dbNP is designed to facilitate storage of biologically relevant, pre-processed—omics data, as well as study descriptive and study participant phenotype data. It is also important to enable the combination of this information at different levels (e.g. to facilitate linkage of data describing participant phenotype, genotype and food intake with information on study design and—omics measurements, and to combine all of this with existing knowledge). The biological information stored in the database (i.e. genetics, transcriptomics, proteomics, biomarkers, metabolomics, functional assays, food intake and food composition) is tailored to nutrition research and embedded in an environment of standard procedures and protocols, annotations, modular data-basing, networking and integrated bioinformatics. The dbNP is an evolving enterprise

  3. A Function for Representing the Biological Challenge to Respiration Posed by Ocean Acidification and the Geochemical Consequences Inferred

    NASA Astrophysics Data System (ADS)

    Peltzer, E. T.; Brewer, P. G.

    2008-12-01

    Increasing levels of dissolved total CO2 in the ocean from the invasion of fossil fuel CO2 via the atmosphere are widely believed to pose challenges to marine life on several fronts. This is most often expressed as a concern from the resulting lower pH, and the impact of this on calcification in marine organisms (coral reefs, calcareous phytoplankton etc.). These concerns are real, but calcification is by no means the only process affected, nor is the fossil fuel CO2 signal the only geochemical driver of the rapidly emerging deep-sea biological stress. Physical climate change is reducing deep-sea ventilation rates, and thereby leading to increasing oxygen deficits and concomitant increased respiratory CO2. We seek to understand the combined effects of the downward penetration of the fossil fuel signal, and the emergence of the depleted O2/increased respiratory CO2 signal at depth. As a first step, we seek to provide a simple function to capture the changing oceanic state. The most basic thermodynamic equation for the functioning of marine animals can be written as Corg + O2 → CO2 , and this results in the simple Gibbs free energy equation: ΔG° = - RT * ln [fCO2]/[Corg]*[fO2], in which the ratio of pO2 to pCO2 emerges as the dominant factor. From this we construct a simple Respiration Index: RI = log10 (pO2/pCO2), which is linear in energy and map this function for key oceanic regions illustrating the expansion of oceanic dead zones. The formal thermodynamic limit for aerobic life is RI = 0; in practice field data shows that at RI ~ 0.7 microbes turn to electron acceptors other than O2, and denitrification begins to occur. This likely represents the lowest limit for the long-term functioning of higher animals, and the zone RI = 0.7 to 1 appears to present challenges to basic functioning of many marine species. In addition, there are large regions of the ocean where denitrification already occurs, and these zones will expand greatly in size as the combined

  4. Building America Case Study: Challenges of Achieving 2012 IECC Air Sealing Requirements in Multifamily Dwellings, Upstate New York (Fact Sheet)

    SciTech Connect

    Not Available

    2014-11-01

    While previous versions of the International Energy Conservation Code (IECC) have included provisions to improve the air tightness of dwellings, for the first time, the 2012 IECC mandates compliance verification through blower door testing. Simply completing the Air Barrier and Insulation Installation checklist through visual inspection is no longer sufficient by itself. In addition, the 2012 IECC mandates a significantly stricter air sealing requirement. In Climate Zones 3 through 8, air leakage may not exceed 3 ACH50, which is a significant reduction from the 2009 IECC requirement of 7 ACH50. This requirement is for all residential buildings, which includes low-rise multifamily dwellings. While this air leakage rate requirement is an important component to achieving an efficient building thermal envelope, currently, the code language doesn't explicitly address differences between single family and multifamily applications. In addition, the 2012 IECC does not provide an option to sample dwellings for larger multifamily buildings, so compliance would have to be verified on every unit. With compliance with the 2012 IECC air leakage requirements on the horizon, several of CARB's multifamily builder partners are evaluating how best to comply with this requirement. Builders are not sure whether it is more practical or beneficial to simply pay for guarded testing or to revise their air sealing strategies to improve compartmentalization to comply with code requirements based on unguarded blower door testing. This report summarizes CARB's research that was conducted to assess the feasibility of meeting the 2012 IECC air leakage requirements in 3 multifamily buildings.

  5. Anxiety sensitivity-physical concerns as a moderator of the emotional consequences of emotion suppression during biological challenge: an experimental test using individual growth curve analysis.

    PubMed

    Feldner, Matthew T; Zvolensky, Michael J; Stickle, Timothy R; Bonn-Miller, Marcel O; Leen-Feldner, Ellen W

    2006-02-01

    Anxiety-related responding to, and recovery from, a 5-min 10% carbon dioxide-enriched air presentation among 80 participants with no history of psychopathology was examined. Half of participants were instructed to suppress challenge-induced emotional responses, whereas their matched counterparts were instructed to observe such responses. Responding from immediately post-challenge through a 10-min recovery period was analyzed as a function of Anxiety Sensitivity-Physical Concerns and experimental condition using individual growth curve modeling. Anxiety Sensitivity-Physical Concerns moderated the effect of suppression only on emotion valence during recovery. In terms of main effects, suppression resulted in increased heart rate during recovery and Anxiety Sensitivity-Physical Concerns was positively associated with post-challenge self-reported anxiety. Results are discussed in terms of the potential role of inhibition-oriented affect regulation processes in the etiology of panic disorder. PMID:16389064

  6. Benefits and technological challenges in the implementation of TiO2-based ultraviolet photocatalytic oxidation (UVPCO) air cleaners

    SciTech Connect

    Hodgson, Al; Destaillats, Hugo; Hotchi, Toshifumi; Fisk, William J.

    2008-10-01

    Heating, ventilating, and cooling classrooms in California consume substantial electrical energy. Indoor air quality (IAQ) in classrooms affects student health and performance. In addition to airborne pollutants that are emitted directly by indoor sources and those generated outdoors, secondary pollutants can be formed indoors by chemical reaction of ozone with other chemicals and materials. Filters are used in nearly all classroom heating, ventilation and air-conditioning (HVAC) systems to maintain energy-efficient HVAC performance and improve indoor air quality; however, recent evidence indicates that ozone reactions with filters may, in fact, be a source of secondary pollutants. This project quantitatively evaluated ozone deposition in HVAC filters and byproduct formation, and provided a preliminary assessment of the extent to which filter systems are degrading indoor air quality. The preliminary information obtained will contribute to the design of subsequent research efforts and the identification of energy efficient solutions that improve indoor air quality in classrooms and the health and performance of students.

  7. Studies on the effects of gaseous ions on plant growth. II. The construction and operation of an air purification unit for use in studies on the biological effects of gaseous ions.

    PubMed

    KRUEGER, A P; BECKETT, J C; ANDRIESE, P C; KOTAKA, S

    1962-05-01

    Air pollutants seriously interfere with the maintenance of unipolar ionized atmospheres required in experimenting with the biological effects of gaseous ions. The construction and operation of an air purification unit designed to reduce air pollution to tolerable levels are described; it has functioned satisfactorily in conducting experiments with plants and animals. PMID:14459882

  8. Environmental and biological monitoring of platinum-containing drugs in two hospital pharmacies using positive air pressure isolators.

    PubMed

    Kopp, Bettina; Crauste-Manciet, Sylvie; Guibert, Agnès; Mourier, Wilhelmine; Guerrault-Moro, Marie-Noelle; Ferrari, Sylvie; Jomier, Jean-Yves; Brossard, Denis; Schierl, Rudolf

    2013-04-01

    Environmental and biological monitoring of platinum containing drugs was implemented in two French hospital pharmacies using positive air pressure isolators and having similar working procedures when preparing antineoplastic drugs. Wipe sampling of surfaces, gloves, and vials was performed in the preparation room and in storage areas. All employees involved in the preparation of antineoplastic drugs were tested for urinary platinum on Monday before work and Friday after shift. Only traces of platinum were detected on surfaces in the preparation room outside the isolators (less than 1.61 pg cm(-2)). However, in one center, significant contamination was found in the storage area of the drug vials, which can most likely be linked to the rupture of a platinum vial and due to inefficient cleaning procedures. Surfaces inside the isolators were found to be contaminated (maximum: 198.4 pg cm(-2)). A higher level of contamination was detected in one pharmacy and could be explained by the lack of overgloving with regular changes during the preparation process. Nitrile gloves used during drug handling outside the isolator showed the highest platinum concentration (maximum: 5.86 ng per pair). With regards to platinum urine concentration, no significant difference was found between exposed and unexposed pharmacy personnel. Isolator technology combined with individual protective measures seems to be efficient to protect workers from occupational exposure to antineoplastic drugs, whereas specific individual protective procedures implemented were focussing on the risk of handling vials outside the isolator (e.g. high frequency of glove changing). Moreover, overgloving inside the isolator would contribute to substantially decrease inner surface contamination and should be recommended in order to limit the transfer of chemical contamination to the end products. PMID:23091112

  9. Extending the Applicability of the Community Multiscale Air Quality Model to Hemispheric Scales: Motivation, Challenges, and Progress

    EPA Science Inventory

    The adaptation of the Community Multiscale Air Quality (CMAQ) modeling system to simulate O3, particulate matter, and related precursor distributions over the northern hemisphere is presented. Hemispheric simulations with CMAQ and the Weather Research and Forecasting (...

  10. Aconitine Challenge Test Reveals a Single Exposure to Air Pollution Causes Increased Cardiac Arrhythmia Risk in Hypertensive Rats - Abstract

    EPA Science Inventory

    Epidemiological studies demonstrate a significant association between arrhythmias and air pollution exposure. Sensitivity to aconitine-induced arrhythmia has been used repeatedly to examine the factors that increase the risk of such cardiac electrical dysfunction. In this study, ...

  11. Response of biological production and air-sea CO2 fluxes to upwelling intensification in the California and Canary Current Systems

    NASA Astrophysics Data System (ADS)

    Lachkar, Zouhair; Gruber, Nicolas

    2013-01-01

    Upwelling-favorable winds have increased in most Eastern Boundary Upwelling Systems (EBUS) in the last decades, and it is likely that they increase further in response to global climate change. Here, we explore the response of biological production and air-sea CO2 fluxes to upwelling intensification in two of the four major EBUS, namely the California Current System (California CS) and Canary Current System (Canary CS). To this end, we use eddy-resolving regional ocean models on the basis of the Regional Oceanic Modeling System (ROMS) to which we have coupled a NPZD-type ecosystem model and a biogeochemistry module describing the carbon cycle and subject these model configurations to an idealized increase in the wind stress. We find that a doubling of the wind-stress doubles net primary production (NPP) in the southern California CS and central and northern Canary CS, while it leads to an increase of less than 50% in the central and northern California CS as well as in the southern Canary CS. This differential response is a result of i) different nutrient limitation states with higher sensitivity to upwelling intensification in regions where nutrient limitation is stronger and ii) more efficient nutrient assimilation by biology in the Canary CS relative to the California CS because of a faster nutrient-replete growth rate and longer nearshore water residence times. In the regions where production increases commensurably with upwelling intensification, the enhanced net biological uptake of CO2 compensates the increase in upwelling driven CO2 outgassing, resulting in only a small change in the biological pump efficiency and hence in a small sensitivity of air-sea CO2 fluxes to upwelling intensification. In contrast, in the central California CS as well as in the southern Canary CS around Cape Blanc, the reduced biological efficiency enhances the CO2 outgassing and leads to a substantial sensitivity of the air-sea CO2 fluxes to upwelling intensification.

  12. LASER BIOLOGY AND MEDICINE: Application of tunable diode lasers for a highly sensitive analysis of gaseous biomarkers in exhaled air

    NASA Astrophysics Data System (ADS)

    Stepanov, E. V.; Milyaev, Varerii A.

    2002-11-01

    The application of tunable diode lasers for a highly sensitive analysis of gaseous biomarkers in exhaled air in biomedical diagnostics is discussed. The principle of operation and the design of a laser analyser for studying the composition of exhaled air are described. The results of detection of gaseous biomarkers in exhaled air, including clinical studies, which demonstrate the diagnostic possibilities of the method, are presented.

  13. An Overview of the Challenges in Designing, Integrating, and Delivering BARD: A Public Chemical-Biology Resource and Query Portal for Multiple Organizations, Locations, and Disciplines.

    PubMed

    de Souza, Andrea; Bittker, Joshua A; Lahr, David L; Brudz, Steve; Chatwin, Simon; Oprea, Tudor I; Waller, Anna; Yang, Jeremy J; Southall, Noel; Guha, Rajarshi; Schürer, Stephan C; Vempati, Uma D; Southern, Mark R; Dawson, Eric S; Clemons, Paul A; Chung, Thomas D Y

    2014-06-01

    Recent industry-academic partnerships involve collaboration among disciplines, locations, and organizations using publicly funded "open-access" and proprietary commercial data sources. These require the effective integration of chemical and biological information from diverse data sources, which presents key informatics, personnel, and organizational challenges. The BioAssay Research Database (BARD) was conceived to address these challenges and serve as a community-wide resource and intuitive web portal for public-sector chemical-biology data. Its initial focus is to enable scientists to more effectively use the National Institutes of Health Roadmap Molecular Libraries Program (MLP) data generated from the 3-year pilot and 6-year production phases of the Molecular Libraries Probe Production Centers Network (MLPCN), which is currently in its final year. BARD evolves the current data standards through structured assay and result annotations that leverage BioAssay Ontology and other industry-standard ontologies, and a core hierarchy of assay definition terms and data standards defined specifically for small-molecule assay data. We initially focused on migrating the highest-value MLP data into BARD and bringing it up to this new standard. We review the technical and organizational challenges overcome by the interdisciplinary BARD team, veterans of public- and private-sector data-integration projects, who are collaborating to describe (functional specifications), design (technical specifications), and implement this next-generation software solution. PMID:24441647

  14. An overview of the challenges in designing, integrating, and delivering BARD: a public chemical biology resource and query portal across multiple organizations, locations, and disciplines

    PubMed Central

    de Souza, Andrea; Bittker, Joshua; Lahr, David; Brudz, Steve; Chatwin, Simon; Oprea, Tudor I.; Waller, Anna; Yang, Jeremy; Southall, Noel; Guha, Rajarshi; Schurer, Stephan; Vempati, Uma; Southern, Mark R.; Dawson, Eric S.; Clemons, Paul A.; Chung, Thomas D.Y.

    2015-01-01

    Recent industry-academic partnerships involve collaboration across disciplines, locations, and organizations using publicly funded “open-access” and proprietary commercial data sources. These require effective integration of chemical and biological information from diverse data sources, presenting key informatics, personnel, and organizational challenges. BARD (BioAssay Research Database) was conceived to address these challenges and to serve as a community-wide resource and intuitive web portal for public-sector chemical biology data. Its initial focus is to enable scientists to more effectively use the NIH Roadmap Molecular Libraries Program (MLP) data generated from 3-year pilot and 6-year production phases of the Molecular Libraries Probe Production Centers Network (MLPCN), currently in its final year. BARD evolves the current data standards through structured assay and result annotations that leverage the BioAssay Ontology (BAO) and other industry-standard ontologies, and a core hierarchy of assay definition terms and data standards defined specifically for small-molecule assay data. We have initially focused on migrating the highest-value MLP data into BARD and bringing it up to this new standard. We review the technical and organizational challenges overcome by the inter-disciplinary BARD team, veterans of public and private sector data-integration projects, collaborating to describe (functional specifications), design (technical specifications), and implement this next-generation software solution. PMID:24441647

  15. Air pollution and detrimental effects on children's brain. The need for a multidisciplinary approach to the issue complexity and challenges.

    PubMed

    Calderón-Garcidueñas, Lilian; Torres-Jardón, Ricardo; Kulesza, Randy J; Park, Su-Bin; D'Angiulli, Amedeo

    2014-01-01

    Millions of children in polluted cities are showing brain detrimental effects. Urban children exhibit brain structural and volumetric abnormalities, systemic inflammation, olfactory, auditory, vestibular and cognitive deficits v low-pollution controls. Neuroinflammation and blood-brain-barrier (BBB) breakdown target the olfactory bulb, prefrontal cortex and brainstem, but are diffusely present throughout the brain. Urban adolescent Apolipoprotein E4 carriers significantly accelerate Alzheimer pathology. Neurocognitive effects of air pollution are substantial, apparent across all populations, and potentially clinically relevant as early evidence of evolving neurodegenerative changes. The diffuse nature of the neuroinflammation and neurodegeneration forces to employ a weight of evidence approach incorporating current clinical, cognitive, neurophysiological, radiological and epidemiological research. Pediatric air pollution research requires extensive multidisciplinary collaborations to accomplish a critical goal: to protect exposed children through multidimensional interventions having both broad impact and reach. Protecting children and teens from neural effects of air pollution should be of pressing importance for public health. PMID:25161617

  16. Pochonia chlamydosporia: Advances and Challenges to Improve Its Performance as a Biological Control Agent of Sedentary Endo-parasitic Nematodes.

    PubMed

    Manzanilla-López, Rosa H; Esteves, Ivania; Finetti-Sialer, Mariella M; Hirsch, Penny R; Ward, Elaine; Devonshire, Jean; Hidalgo-Díaz, Leopoldo

    2013-03-01

    The nematophagous fungus Pochonia chlamydosporia var. chlamydosporia is one of the most studied biological control agents against plant (semi-) endo-parasitic nematodes of the genera Globodera, Heterodera, Meloidogyne, Nacobbus and, more recently, Rotylenchulus. In this paper we present highlights from more than three decades of worldwide research on this biological control agent. We cover different aspects and key components of the complex plant-fungus-nematode tri-trophic interaction, an interaction that needs to be addressed to ensure the efficient use of P. chlamydosporia as a biopesticide as part of an integrated pest management approach. PMID:23589653

  17. Pochonia chlamydosporia: Advances and Challenges to Improve Its Performance as a Biological Control Agent of Sedentary Endo-parasitic Nematodes

    PubMed Central

    Manzanilla-López, Rosa H.; Esteves, Ivania; Finetti-Sialer, Mariella M.; Hirsch, Penny R.; Ward, Elaine; Devonshire, Jean; Hidalgo-Díaz, Leopoldo

    2013-01-01

    The nematophagous fungus Pochonia chlamydosporia var. chlamydosporia is one of the most studied biological control agents against plant (semi-) endo-parasitic nematodes of the genera Globodera, Heterodera, Meloidogyne, Nacobbus and, more recently, Rotylenchulus. In this paper we present highlights from more than three decades of worldwide research on this biological control agent. We cover different aspects and key components of the complex plant-fungus-nematode tri-trophic interaction, an interaction that needs to be addressed to ensure the efficient use of P. chlamydosporia as a biopesticide as part of an integrated pest management approach. PMID:23589653

  18. Addressing Health Literacy Challenges with a Cutting-Edge Infectious Disease Curriculum for the High School Biology Classroom

    ERIC Educational Resources Information Center

    Jacque, Berri; Koch-Weser, Susan; Faux, Russell; Meiri, Karina

    2016-01-01

    This study reports the secondary analysis of evaluation data from an innovative high school biology curriculum focused on infectious disease (ID) to examine the health literacy implications of teaching claims evaluation, data interpretation, and risk assessment skills in the context of 21st-Century health science. The curriculum was implemented…

  19. Assessment of Interpersonal Risk (AIR) in Adults with Learning Disabilities and Challenging Behaviour--Piloting a New Risk Assessment Tool

    ERIC Educational Resources Information Center

    Campbell, Martin; McCue, Michael

    2013-01-01

    A new risk assessment tool, "Assessment of Interpersonal Risk" (AIR), was piloted and evaluated to measure risk factors and compatibility between individuals living in an assessment and treatment unit in one NHS area. The adults with learning disabilities in this unit had severe and enduring mental health problems and/or behaviour that is severely…

  20. Fundamental challenges of contemporary "personality" research. Comment on "Personality from a cognitive-biological perspective" by Y. Neuman

    NASA Astrophysics Data System (ADS)

    Uher, Jana

    2014-12-01

    The growing interest in "personality" from scientists of ever more diverse fields demands conceptual integrations-and reveals fundamental challenges. For what is "personality" given that "it" is explored in humans and nonhuman species, that people encode "it" in their everyday language, scientists seek "it" in the brain and study "it" primarily with rating scales?

  1. Challenges and Rewards on the Road to Translational Systems Biology in Acute Illness: Four Case Reports from Interdisciplinary Teams

    PubMed Central

    An, Gary; Hunt, C. Anthony; Clermont, Gilles; Neugebauer, Edmund; Vodovotz, Yoram

    2007-01-01

    Introduction Translational systems biology approaches can be distinguished from mainstream systems biology in that their goal is to drive novel therapies and streamline clinical trials in critical illness. One systems biology approach, dynamic mathematical modeling (DMM), is increasingly used in dealing with the complexity of the inflammatory response and organ dysfunction. The use of DMM often requires a broadening of research methods and a multidisciplinary team approach that includes bioscientists, mathematicians, engineers, and computer scientists. However, the development of these groups must overcome domain-specific barriers to communication and understanding. Methods We present four case studies of successful translational, interdisciplinary systems biology efforts, which differ by organizational level from an individual to an entire research community. Results Case 1 is a single investigator involved in DMM of the acute inflammatory response at Cook County Hospital, in which extensive translational progress was made using agent-based models of inflammation and organ damage. Case 2 is a community-level effort from the University of Witten-Herdecke in Cologne, whose efforts have led to the formation of the Society for Complexity in Acute Illness. Case 3 is an institution-based group, the Biosystems Group at the University of California, San Francisco, whose work has included a focus on a common lexicon for DMM. Case 4 is an institution-based, trans-disciplinary research group (the Center for Inflammation and Regenerative Modeling at the University of Pittsburgh, whose modeling work has led to internal education efforts, grant support, and commercialization. Conclusion A transdisciplinary approach, which involves team interaction in an iterative fashion to address ambiguity and is supported by educational initiatives, is likely to be necessary for DMM in acute illness. Community-wide organizations such as the Society of Complexity in Acute Illness (SCAI) must

  2. Addressing Health Literacy Challenges With a Cutting-Edge Infectious Disease Curriculum for the High School Biology Classroom.

    PubMed

    Jacque, Berri; Koch-Weser, Susan; Faux, Russell; Meiri, Karina

    2016-02-01

    This study reports the secondary analysis of evaluation data from an innovative high school biology curriculum focused on infectious disease (ID) to examine the health literacy implications of teaching claims evaluation, data interpretation, and risk assessment skills in the context of 21st-Century health science. The curriculum was implemented between 2010 and 2013 in Biology II classes held in four public high schools (three in Massachusetts and one in Ohio), plus a private school in Virginia. A quasi-experimental design was used in which student participants (n = 273) were compared to an age-matched, nonparticipant, peer group (N = 125). Participants in each school setting demonstrated increases in conceptual content knowledge (Cohen's d > 1.89) as well as in understanding how to apply scientific principles to health claims evaluation and risk assessment (Cohen's d > 1.76) and in self-efficacy toward learning about ID (Cohen's d > 2.27). Participants also displayed enhanced communication about ID within their social networks relative to the comparison group (p < .05). The data show that integrating the claims evaluation, data interpretation, and risk assessment skills critical for 21st-century health literacy health into high school biology classrooms is effective at fostering both the skills and self-efficacy pertinent to health literacy learning in diverse populations. PMID:26194205

  3. Addressing Health Literacy Challenges With a Cutting-Edge Infectious Disease Curriculum for the High School Biology Classroom

    PubMed Central

    Jacque, Berri; Koch-Weser, Susan; Faux, Russell; Meiri, Karina

    2016-01-01

    This study reports the secondary analysis of evaluation data from an innovative high school biology curriculum focused on infectious disease (ID) to examine the health literacy implications of teaching claims evaluation, data interpretation, and risk assessment skills in the context of 21st-Century health science. The curriculum was implemented between 2010 and 2013 in Biology II classes held in four public high schools (three in Massachusetts and one in Ohio), plus a private school in Virginia. A quasi-experimental design was used in which student participants (n = 273) were compared to an age-matched, nonparticipant, peer group (N = 125). Participants in each school setting demonstrated increases in conceptual content knowledge (Cohen’s d > 1.89) as well as in understanding how to apply scientific principles to health claims evaluation and risk assessment (Cohen’s d > 1.76) and in self-efficacy toward learning about ID (Cohen’s d > 2.27). Participants also displayed enhanced communication about ID within their social networks relative to the comparison group (p < .05). The data show that integrating the claims evaluation, data interpretation, and risk assessment skills critical for 21st-century health literacy health into high school biology classrooms is effective at fostering both the skills and self-efficacy pertinent to health literacy learning in diverse populations. PMID:26194205

  4. Biology and air-sea gas exchange controls on the distribution of carbon isotope ratios (δ13C) in the ocean

    NASA Astrophysics Data System (ADS)

    Schmittner, A.; Gruber, N.; Mix, A. C.; Key, R. M.; Tagliabue, A.; Westberry, T. K.

    2013-09-01

    Analysis of observations and sensitivity experiments with a new three-dimensional global model of stable carbon isotope cycling elucidate processes that control the distribution of δ13C of dissolved inorganic carbon (DIC) in the contemporary and preindustrial ocean. Biological fractionation and the sinking of isotopically light δ13C organic matter from the surface into the interior ocean leads to low δ13CDIC values at depths and in high latitude surface waters and high values in the upper ocean at low latitudes with maxima in the subtropics. Air-sea gas exchange has two effects. First, it acts to reduce the spatial gradients created by biology. Second, the associated temperature-dependent fractionation tends to increase (decrease) δ13CDIC values of colder (warmer) water, which generates gradients that oppose those arising from biology. Our model results suggest that both effects are similarly important in influencing surface and interior δ13CDIC distributions. However, since air-sea gas exchange is slow in the modern ocean, the biological effect dominates spatial δ13CDIC gradients both in the interior and at the surface, in contrast to conclusions from some previous studies. Calcium carbonate cycling, pH dependency of fractionation during air-sea gas exchange, and kinetic fractionation have minor effects on δ13CDIC. Accumulation of isotopically light carbon from anthropogenic fossil fuel burning has decreased the spatial variability of surface and deep δ13CDIC since the industrial revolution in our model simulations. Analysis of a new synthesis of δ13CDIC measurements from years 1990 to 2005 is used to quantify preformed and remineralized contributions as well as the effects of biology and air-sea gas exchange. The model reproduces major features of the observed large-scale distribution of δ13CDIC as well as the individual contributions and effects. Residual misfits are documented and analyzed. Simulated surface and subsurface δ13CDIC are influenced by

  5. [Reduction of livestock-associated methicillin-resistant staphylococcus aureus (LA-MRSA) in the exhaust air of two piggeries by a bio-trickling filter and a biological three-step air cleaning system].

    PubMed

    Clauss, Marcus; Schulz, Jochen; Stratmann-Selke, Janin; Decius, Maja; Hartung, Jörg

    2013-01-01

    "Livestock-associated" Methicillin-resistent Staphylococcus aureus (LA-MRSA) are frequently found in the air of piggeries, are emitted into the ambient air of the piggeries and may also drift into residential areas or surrounding animal husbandries.. In order to reduce emissions from animal houses such as odour, gases and dust different biological air cleaning systems are commercially available. In this study the retention efficiencies for the culturable LA-MRSA of a bio-trickling filter and a combined three step system, both installed at two different piggeries, were investigated. Raw gas concentrations for LA-MRSA of 2.1 x 10(2) cfu/m3 (biotrickling filter) and 3.9 x 10(2) cfu/m3 (three step system) were found. The clean gas concentrations were in each case approximately one power of ten lower. Both systems were able to reduce the number of investigated bacteria in the air of piggeries on average about 90%. The investigated systems can contribute to protect nearby residents. However, considerable fluctuations of the emissions can occur. PMID:23540196

  6. DESIGN AND CHARACTERIZATION OF A SMALL CHAMBER FOR CHEMICAL AND BIOLOGICAL EVALUATION OF SOURCES OF INDOOR AIR CONTAMINATION

    EPA Science Inventory

    The paper discusses exposure generation considerations prior to implementation of sensory irritation bioassays for product emissions. mall chambers are used to generate source emissions from products for chemical and biological evaluation. esign of the source emissions chamber an...

  7. Concise Review: Progress and Challenges in Using Human Stem Cells for Biological and Therapeutics Discovery: Neuropsychiatric Disorders.

    PubMed

    Panchision, David M

    2016-03-01

    In facing the daunting challenge of using human embryonic and induced pluripotent stem cells to study complex neural circuit disorders such as schizophrenia, mood and anxiety disorders, and autism spectrum disorders, a 2012 National Institute of Mental Health workshop produced a set of recommendations to advance basic research and engage industry in cell-based studies of neuropsychiatric disorders. This review describes progress in meeting these recommendations, including the development of novel tools, strides in recapitulating relevant cell and tissue types, insights into the genetic basis of these disorders that permit integration of risk-associated gene regulatory networks with cell/circuit phenotypes, and promising findings of patient-control differences using cell-based assays. However, numerous challenges are still being addressed, requiring further technological development, approaches to resolve disease heterogeneity, and collaborative structures for investigators of different disciplines. Additionally, since data obtained so far is on small sample sizes, replication in larger sample sets is needed. A number of individual success stories point to a path forward in developing assays to translate discovery science to therapeutics development. Stem Cells 2016;34:523-536. PMID:26840228

  8. Moving from capstones toward cornerstones: successes and challenges in applying systems biology to identify mechanisms of autism spectrum disorders

    PubMed Central

    Kopp, Nathan; Climer, Sharlee; Dougherty, Joseph D.

    2015-01-01

    The substantial progress in the last few years toward uncovering genetic causes and risk factors for autism spectrum disorders (ASDs) has opened new experimental avenues for identifying the underlying neurobiological mechanism of the condition. The bounty of genetic findings has led to a variety of data-driven exploratory analyses aimed at deriving new insights about the shared features of these genes. These approaches leverage data from a variety of different sources such as co-expression in transcriptomic studies, protein–protein interaction networks, gene ontologies (GOs) annotations, or multi-level combinations of all of these. Here, we review the recurrent themes emerging from these analyses and highlight some of the challenges going forward. Themes include findings that ASD associated genes discovered by a variety of methods have been shown to contain disproportionate amounts of neurite outgrowth/cytoskeletal, synaptic, and more recently Wnt-related and chromatin modifying genes. Expression studies have highlighted a disproportionate expression of ASD gene sets during mid fetal cortical development, particularly for rare variants, with multiple analyses highlighting the striatum and cortical projection and interneurons as well. While these explorations have highlighted potentially interesting relationships among these ASD-related genes, there are challenges in how to best transition these insights into empirically testable hypotheses. Nonetheless, defining shared molecular or cellular pathology downstream of the diverse genes associated with ASDs could provide the cornerstones needed to build toward broadly applicable therapeutic approaches. PMID:26500678

  9. Success matters: Recasting the relationship among geophysical, biological, and behavioral scientists to support decision making on major environmental challenges

    NASA Astrophysics Data System (ADS)

    Knopman, Debra S.

    2006-03-01

    Coping with global change, providing clean water for growing populations, and disposing of nuclear waste are some of the most difficult public policy challenges of our time. Unknowns in the physical sciences are one source of the difficulty. Real difficulties in meeting these challenges also arise in the behavioral sciences. A potentially rich vein of transdisciplinary research is to integrate the psychology of decision making, known as "judgment and decision making," or JDM, with the development of technical information and decision support tools for complex, long-term environmental problems. Practitioners of JDM conduct research on how individuals and groups respond to uncertainty and ambiguity, hedge against risks, anchor decisions to the status quo, compare relative risks and rewards of alternative strategies, and cope with other classes of decisions. Practitioners use a variety of stimuli, chance devices, hypothetical and real choices involving small stakes, scenarios, and questionnaires to measure (directly and indirectly) preferences under varying conditions. These kinds of experiments can help guide choices about the level of complexity required for different types of decision-making processes, the value of new data collection efforts, and the ways in which uncertainty in model outcomes can be cast to minimize decision-making paralysis. They can also provide a scientific basis for interacting with decision makers throughout the model development process, designing better ways of eliciting and combining opinions and of communicating information relevant to public policy issues with the goal of improving the value of the scientific contribution to the social decision.

  10. Moving from capstones toward cornerstones: successes and challenges in applying systems biology to identify mechanisms of autism spectrum disorders.

    PubMed

    Kopp, Nathan; Climer, Sharlee; Dougherty, Joseph D

    2015-01-01

    The substantial progress in the last few years toward uncovering genetic causes and risk factors for autism spectrum disorders (ASDs) has opened new experimental avenues for identifying the underlying neurobiological mechanism of the condition. The bounty of genetic findings has led to a variety of data-driven exploratory analyses aimed at deriving new insights about the shared features of these genes. These approaches leverage data from a variety of different sources such as co-expression in transcriptomic studies, protein-protein interaction networks, gene ontologies (GOs) annotations, or multi-level combinations of all of these. Here, we review the recurrent themes emerging from these analyses and highlight some of the challenges going forward. Themes include findings that ASD associated genes discovered by a variety of methods have been shown to contain disproportionate amounts of neurite outgrowth/cytoskeletal, synaptic, and more recently Wnt-related and chromatin modifying genes. Expression studies have highlighted a disproportionate expression of ASD gene sets during mid fetal cortical development, particularly for rare variants, with multiple analyses highlighting the striatum and cortical projection and interneurons as well. While these explorations have highlighted potentially interesting relationships among these ASD-related genes, there are challenges in how to best transition these insights into empirically testable hypotheses. Nonetheless, defining shared molecular or cellular pathology downstream of the diverse genes associated with ASDs could provide the cornerstones needed to build toward broadly applicable therapeutic approaches. PMID:26500678

  11. Drug-Like Protein–Protein Interaction Modulators: Challenges and Opportunities for Drug Discovery and Chemical Biology

    PubMed Central

    Villoutreix, Bruno O; Kuenemann, Melaine A; Poyet, Jean-Luc; Bruzzoni-Giovanelli, Heriberto; Labbé, Céline; Lagorce, David; Sperandio, Olivier; Miteva, Maria A

    2014-01-01

    Fundamental processes in living cells are largely controlled by macromolecular interactions and among them, protein–protein interactions (PPIs) have a critical role while their dysregulations can contribute to the pathogenesis of numerous diseases. Although PPIs were considered as attractive pharmaceutical targets already some years ago, they have been thus far largely unexploited for therapeutic interventions with low molecular weight compounds. Several limiting factors, from technological hurdles to conceptual barriers, are known, which, taken together, explain why research in this area has been relatively slow. However, this last decade, the scientific community has challenged the dogma and became more enthusiastic about the modulation of PPIs with small drug-like molecules. In fact, several success stories were reported both, at the preclinical and clinical stages. In this review article, written for the 2014 International Summer School in Chemoinformatics (Strasbourg, France), we discuss in silico tools (essentially post 2012) and databases that can assist the design of low molecular weight PPI modulators (these tools can be found at www.vls3d.com). We first introduce the field of protein–protein interaction research, discuss key challenges and comment recently reported in silico packages, protocols and databases dedicated to PPIs. Then, we illustrate how in silico methods can be used and combined with experimental work to identify PPI modulators. PMID:25254076

  12. Biology and air-sea gas exchange controls on the distribution of carbon isotope ratios (δ13C) in the ocean

    NASA Astrophysics Data System (ADS)

    Schmittner, A.; Gruber, N.; Mix, A. C.; Key, R. M.; Tagliabue, A.; Westberry, T. K.

    2013-05-01

    Analysis of observations and sensitivity experiments with a new three-dimensional global model of stable carbon isotope cycling elucidate the processes that control the distribution of δ13C in the contemporary and preindustrial ocean. Biological fractionation dominates the distribution of δ13CDIC of dissolved inorganic carbon (DIC) due to the sinking of isotopically light δ13C organic matter from the surface into the interior ocean. This process leads to low δ13CDIC values at dephs and in high latitude surface waters and high values in the upper ocean at low latitudes with maxima in the subtropics. Air-sea gas exchange provides an important secondary influence due to two effects. First, it acts to reduce the spatial gradients created by biology. Second, the associated temperature dependent fractionation tends to increase (decrease) δ13CDIC values of colder (warmer) water, which generates gradients that oppose those arising from biology. Our model results suggest that both effects are similarly important in influencing surface and interior δ13CDIC distributions. However, air-sea gas exchange is slow, so biological effect dominate spatial δ13CDIC gradients both in the interior and at the surface, in constrast to conclusions from some previous studies. Analysis of a new synthesis of δ13CDIC measurements from years 1990 to 2005 is used to quantify preformed (δ13Cpre) and remineralized (δ13Crem) contributions as well as the effects of biology (Δδ13Cbio) and air-sea gas exchange (δ13C*). The model reproduces major features of the observed large-scale distribution of δ13CDIC, δ13Cpre, δ13Crem, δ13C*, and Δδ13Cbio. Residual misfits are documented and analyzed. Simulated surface and subsurface δ13CDIC are influenced by details of the ecosystem model formulation. For example, inclusion of a simple parameterization of iron limitation of phytoplankton growth rates and temperature-dependent zooplankton grazing rates improves the agreement with δ13CDIC

  13. Sustainable soil, water and air quality mankind`s ultimate challenge and opportunity in the 21st Century

    SciTech Connect

    Nicholson, J.P.

    1996-12-31

    The House Agricultural Appropriations Sub-Committee, under the leadership of Chairman Joe Skeen and Minority Leader Marcy Kaptur, has appropriated $600,000 to the U.S. Department of Agriculture to provide demonstration funds to the Rodale Institute, the Compost Council, and N-Viro International Corporation. The demonstration project is showing the ability of compost and N-Viro Soil{trademark} technologies to utilize manure and bio-solids in such a manner as to provide both sustainable soil fertility and reduced non-point source water pollution. The two processes, i.e. compost and N-Viro Soil{trademark}, stabilize and immobilize nutrients and organics so that they are only available through the {open_quotes}slow release{close_quotes} mechanism of mineralization. Moreover, they help reduce the leaching of chemical fertilizers, thus increasing their efficiency and they reduce the need for chemical pesticides. Compost is an established biological technology. N-Viro Soil{trademark} is a new process with an established reference base and significant public recognition, that combines biological, chemical, and physical processes to pasturize organic wastes, and convert to a stable, storable product that is capable of providing {open_quotes}slow release{close_quotes} soil fertility through immobilization and mineralization. A sustainable national program of technology transfer is absolutely vital if such technologies are going to be understood, accepted, and utilized.

  14. X-ray nanoprobes and diffraction-limited storage rings: opportunities and challenges of fluorescence tomography of biological specimens

    PubMed Central

    de Jonge, Martin D.; Ryan, Christopher G.; Jacobsen, Chris J.

    2014-01-01

    X-ray nanoprobes require coherent illumination to achieve optic-limited resolution, and so will benefit directly from diffraction-limited storage rings. Here, the example of high-resolution X-ray fluorescence tomography is focused on as one of the most voracious demanders of coherent photons, since the detected signal is only a small fraction of the incident flux. Alternative schemes are considered for beam delivery, sample scanning and detectors. One must consider as well the steps before and after the X-ray experiment: sample preparation and examination conditions, and analysis complexity due to minimum dose requirements and self-absorption. By understanding the requirements and opportunities for nanoscale fluorescence tomography, one gains insight into the R&D challenges in optics and instrumentation needed to fully exploit the source advances that diffraction-limited storage rings offer. PMID:25177992

  15. Near-Field Scanning Optical Microscopy of Soft, Biological, or Rough Objects in Aqueous Environment: Challenges and some Remedies to Circumvent

    NASA Technical Reports Server (NTRS)

    Vikram, C. S.; Witherow, W. K.

    1999-01-01

    Near-field scanning optical microscopy is an established technique for sub-wavelength spatial resolution in imaging, spectroscopy, material science, surface chemistry, polarimetry, etc. A significant amount of confidence has been established for thin hard specimens in air. However when soft, biological, rough, in aqueous environment object, or a combination is involved, the progress has been slow. The tip-sample mechanical interaction, heat effects to sample, drag effects to the probe, difficulty in controlling tip-sample separation in case of rough objects, light scattering from sample thickness, etc. create problems. Although these problems are not even fully understood, there have been attempts to study them with the aim of performing reliable operations. In this review we describe these attempts. Starting with general problems encountered, various effects like polarization, thermal, and media are covered. The roles of independent tip-sample distance control tools in the relevant situations are then described. Finally progress in fluid cell aspect has been summarized.

  16. The electrolyte challenge for a direct methanol-air polymer electrolyte fuel cell operating at temperatures up to 200 C

    NASA Technical Reports Server (NTRS)

    Savinell, Robert; Yeager, Ernest; Tryk, Donald; Landau, Uziel; Wainright, Jesse; Gervasio, Dominic; Cahan, Boris; Litt, Morton; Rogers, Charles; Scherson, Daniel

    1993-01-01

    Novel polymer electrolytes are being evaluated for use in a direct methanol-air fuel cell operating at temperatures in excess of 100 C. The evaluation includes tests of thermal stability, ionic conductivity, and vapor transport characteristics. The preliminary results obtained to date indicate that a high temperature polymer electrolyte fuel cell is feasible. For example, Nafion 117 when equilibrated with phosphoric acid has a conductivity of at least 0.4 Omega(exp -1)cm(exp -1) at temperatures up to 200 C in the presence of 400 torr of water vapor and methanol vapor cross over equivalent to 1 mA/cm(exp 2) under a one atmosphere methanol pressure differential at 135 C. Novel polymers are also showing similar encouraging results. The flexibility to modify and optimize the properties by custom synthesis of these novel polymers presents an exciting opportunity to develop an efficient and compact methanol fuel cell.

  17. North Atlantic demersal deep-water fish distribution and biology: present knowledge and challenges for the future.

    PubMed

    Bergstad, O A

    2013-12-01

    This paper summarizes knowledge and knowledge gaps on benthic and benthopelagic deep-water fishes of the North Atlantic Ocean, i.e. species inhabiting deep continental shelf areas, continental and island slopes, seamounts and the Mid-Atlantic Ridge. While several studies demonstrate that distribution patterns are species specific, several also show that assemblages of species can be defined and such assemblages are associated with circulatory features and water mass distributions. In many subareas, sampling has, however, been scattered, restricted to shallow areas or soft substrata, and results from different studies tend to be difficult to compare quantitatively because of sampler differences. Particularly, few studies have been conducted on isolated deep oceanic seamounts and in Arctic deep-water areas. Time series of data are very few and most series are short. Recent studies of population structure of widely distributed demersal species show less than expected present connectivity and considerable spatial genetic heterogeneity and complexity for some species. In other species, genetic homogeneity across wide ranges was discovered. Mechanisms underlying the observed patterns have been proposed, but to test emerging hypotheses more species should be investigated across their entire distribution ranges. Studies of population biology reveal greater diversity in life-history strategies than often assumed, even between co-occurring species of the same family. Some slope and ridge-associated species are rather short-lived, others very long-lived, and growth patterns also show considerable variation. Recent comparative studies suggest variation in life-history strategies along a continuum correlated with depth, ranging from shelf waters to the deep sea where comparatively more species have extended lifetimes, and slow rates of growth and reproduction. Reproductive biology remains too poorly known for most deep-water species, and temporal variation in recruitment has

  18. Entropic transport in confined media: a challenge for computational studies in biological and soft-matter systems

    NASA Astrophysics Data System (ADS)

    Malgaretti, Paolo; Pagonabarraga, Ignacio; Rubi, J. Miguel

    2013-11-01

    Transport in small-scale biological and soft-matter systems typically occurs under confinement conditions in which particles proceed through obstacles and irregularities of the boundaries that may significantly alter their trajectories. A transport model that assimilates the confinement to the presence of entropic barriers provides an efficient approach to quantify its effect on the particle current and the diffusion coefficient. We review the main peculiarities of entropic transport and treat two cases in which confinement effects play a crucial role, with the appearance of emergent properties. The presence of entropic barriers modifies the mean first-passage time distribution and therefore plays a very important role in ion transport through micro- and nano-channels. The functionality of molecular motors, modeled as Brownian ratchets, is strongly affected when the motor proceeds in a confined medium that may constitute another source of rectification. The interplay between ratchet and entropic rectification gives rise to a wide variety of dynamical behaviors, not observed when the Brownian motor proceeds in an unbounded medium. Entropic transport offers new venues of transport control and particle manipulation and new ways to engineer more efficient devices for transport at the nanoscale.

  19. Challenges of climate change: omics-based biology of saffron plants and organic agricultural biotechnology for sustainable saffron production.

    PubMed

    Husaini, Amjad M

    2014-01-01

    Kashmir Valley is a major saffron (Crocus sativus Kashmirianus) growing area of the world, second only to Iran in terms of production. In Kashmir, saffron is grown on uplands (termed in the local language as "Karewas"), which are lacustrine deposits located at an altitude of 1585 to 1677 m above mean sea level (amsl), under temperate climatic conditions. Kashmir, despite being one of the oldest historical saffron-producing areas, faces a rapid decline of saffron industry. Among many other factors responsible for decline of saffron industry the preponderance of erratic rainfalls and drought-like situation have become major challenges imposed by climate change. Saffron has a limited coverage area as it is grown as a 'niche crop' and is a recognized "geographical indication," growing under a narrow microclimatic condition. As such it has become a victim of climate change effects, which has the potential of jeopardizing the livelihood of thousands of farmers and traders associated with it. The paper discusses the potential and actual impact of climate change process on saffron cultivation in Kashmir; and the biotechnological measures to address these issues. PMID:25072266

  20. Non-invasive monitoring of glucocorticoid metabolites in banded mongooses (Mungos mungo) in response to physiological and biological challenges.

    PubMed

    Laver, Peter N; Ganswindt, André; Ganswindt, Stefanie B; Alexander, Kathleen A

    2012-11-01

    Free-ranging banded mongooses are infected by the novel pathogen, Mycobacterium mungi in northern Botswana. A reliable method for determining stress-related physiological responses in banded mongooses will increase our understanding of the stress response in M. mungi infection. Therefore, our aim was to examine the suitability of four enzyme immunoassays (EIAs) for monitoring adrenocortical endocrine function in captive and free-ranging banded mongooses based on fecal glucocorticoid metabolite (FGM) analysis. A conducted adrenocorticotropic hormone challenge revealed suitability of a valid measurement of FGM levels in banded mongoose feces for all four tested EIAs, with an 11-oxoetiocholanolone assay detecting 11,17-dioxoandrostanes (11,17-DOA) performing best. Subsequent analyses using only this EIA showed the expected decrease in FGM concentrations 48 h after administering dexamethasone sodium phosphate. Furthermore, captive mongooses showed higher FGM concentrations during reproductive activity, agonistic encounters and depredation events. Finally, a late-stage, tuberculosis-infected moribund mongoose in a free-ranging troop had a 54-fold elevation in FGM levels relative to the rest of the troop. Measurements of gastrointestinal transit times and FGM metabolism post-defecation indicate that the time delay of FGM excretion approximately corresponded with food transit time and that FGM metabolism is minimal up to 8h post-defecation. The ability to reliably assess adrenocortical endocrine function in banded mongoose now provides a solid basis for advancing our understanding of infectious disease and endocrinology in this species. PMID:22926328

  1. [Deployment of a mobile RT-PCR laboratory molecular biology to deal with the A(H1N1) challenge in Kaboul].

    PubMed

    Maslin, J; Ducher, P; Fourel, D; Causse Le Dorze, P

    2010-11-01

    Since October 2009, the fear of swine flu spread in Afghanistan and severe cases were observed among NATO soldiers. Two patients were hospitalized in an Intensive Care Unit. To face this new challenge, the French Health Service decided the deployment of a mobile RT-PCR laboratory molecular biology in the Kabul International Military Hospital. We describe the implementation of the mobile RT-PCR laboratory for the diagnosis of A(H1N1). The analysis of the first nasopharyngeal samples confirmed the presence of this virus in Afghanistan. The peak of positive cases was observed in mid-November 2009, and some cluster cases were observed among units deployed on the field. PMID:20650585

  2. The challenges of reducing greenhouse gas emissions and air pollution through energy sources: evidence from a panel of developed countries.

    PubMed

    Akhmat, Ghulam; Zaman, Khalid; Shukui, Tan; Sajjad, Faiza; Khan, Muhammad Azhar; Khan, Muhammad Zahir

    2014-06-01

    The objective of the study is to investigate the long-run relationship between climatic factors (i.e., greenhouse gas emissions, agricultural methane emissions, and industrial nitrous oxide emission), air pollution (i.e., carbon dioxide emissions), and energy sources (i.e., nuclear energy; oil, gas, and coal energy; and fossil fuel energy) in the panel of 35 developed countries (including EU-15, new EU member states, G-7, and other countries) over a period of 1975-2012. In order to achieve this objective, the present study uses sophisticated panel econometric techniques including panel cointegration, panel fully modified OLS (FMOLS), and dynamic OLS (DOLS). The results show that there is a long-run relationship between the variables. Nuclear energy reduces greenhouse gases and carbon emissions; however, the other emissions, i.e., agricultural methane emissions and industrial nitrous oxide, are still to increase during the study period. Electricity production from oil, gas, and coal sources increases the greenhouse gases and carbon emissions; however, the intensity to increase emissions is far less than the intensity to increase emissions through fossil fuel. Policies that reduce emissions of greenhouse gases can simultaneously alter emissions of conventional pollutants that have deleterious effects on human health and the environment. PMID:24584642

  3. A biological method to monitor early effects of the air pollution caused by the industrial exploitation of geothermal energy.

    PubMed

    Paoli, Luca; Loppi, Stefano

    2008-09-01

    The suitability of a set of ecophysiological parameters, to be used as early warning indicator to detect signs of a worsening environment around geothermal power plants, was tested by comparison with the diversity of epiphytic lichens, a well-established indicator of geothermal air pollution. Samples of the lichen Evernia prunastri were transplanted around a geothermal power plant at Larderello (Tuscany, Italy) and at a control site, and integrity of cell membranes, concentration of chlorophyll a, b and carotenoids, chlorophyll integrity and variations in pH of thalli were measured. The results showed that cell membrane damage, expressed by changes in electrical conductivity, could be used to detect early (exposure periods as short as 1 month) deleterious effects of geothermal air pollution. PMID:18155333

  4. LASER BIOLOGY AND MEDICINE: Laser analysis of the 13C/12C isotope ratio in CO2 in exhaled air

    NASA Astrophysics Data System (ADS)

    Stepanov, E. V.

    2002-11-01

    Tunable diode lasers (TDLs) are applied to the diagnostics of gastroenterological diseases using respiratory tests and preparations enriched with the stable 13C isotope. This method of the analysis of the 13C/12C isotope ratio in CO2 in exhaled air is based on the selective measurement of the resonance absorption at the vibrational — rotational structure of 12CO2 and 13CO2. The CO2 transmission spectra in the region of 4.35 μm were measured with a PbEuSe double-heterostructure TDL. The accuracy of carbon isotope ratio measurements in CO2 of exhaled air performed with the TDL was ~0.5%. The data of clinical tests of the developed laser-based analyser are presented.

  5. Occupational Exposure to Mercury: Air Exposure Assessment and Biological Monitoring based on Dispersive Ionic Liquid-Liquid Microextraction

    PubMed Central

    SHIRKHANLOO, Hamid; GOLBABAEI, Farideh; HASSANI, Hamid; EFTEKHAR, Farrokh; KIAN, Mohammad Javad

    2014-01-01

    Abstract Background Exposure to mercury (Hg) as a heavy metal can cause health effects. The objective of this study was to assess occupational exposure to Hg in a chlor-alkali petrochemical industry in Iran by determining of Hg concentrations in air, blood and urine samples. Methods The study was performed on 50 exposed subjects and 50 unexposed controls. Air samples were collected in the breathing zone of exposed subjects, using hopcalite sorbents. Analysis was performed using a cold vapor atomic absorption spectrophotometer (CV-AAS) according to NIOSH analytical method 6009. For all participants, blood and urine samples were collected and then transferred into sterile glass tubes. After micro-extraction with ionic liquid and back extraction with nitric acid, Hg concentrations in blood and urine samples were determined by CV-AAS. Results The mean concentration of air Hg was 0.042± 0.003 mg/m3. The mean concentrations of Hg in blood and urine samples of exposed subjects were significantly higher than unexposed controls (22.41± 12.58 versus 1.19± 0.95 μg/l and 30.61± 10.86 versus 1.99± 1.34 μg/g creatinine, respectively). Correlation of air Hg with blood Hg, urine Hg and blood Hg-urine Hg ratio were significant statistically (P< 0.05). Conclusions The values of Hg in blood and urine samples of chlor-alkali workers were considerably high. Correlation coefficients showed that blood Hg and blood Hg-urine Hg ratio are better indicators than urine Hg for assessing occupationally exposed workers in terms of current exposure assessment. PMID:26110150

  6. An Air-Stripping Packed Bed Combined with a Biofilm-Type Biological Process for Treating BTEX and Total Petroleum Hydrocarbon Contaminated Groudwater

    NASA Astrophysics Data System (ADS)

    Hong, U.; Park, S.; Lim, J.; Lee, W.; Kwon, S.; Kim, Y.

    2009-12-01

    In this study, we examined the removal efficiency of a volatile compound (e.g. toluene) and a less volatile compound [e.g. total petroleum hydrocarbon (TPH)] using an air stripping packed bed combined with a biofilm-type biological process. We hypothesized that this system might be effective and economical to simultaneously remove both volatile and less volatile compounds. The gas-tight reactor has 5.9-inch-diameter and 48.8-inch-height. A spray nozzle was installed at the top cover to distribute the liquid evenly through reactor. The reactor was filled with polypropylene packing media for the increase of volatilization surface area and the growth of TPH degrading facultative aerobic bacteria on the surface of the packing media. In air stripping experiments, 45.6%, 71.7%, 72.0%, and 75.4% of toluene was removed at air injection rates of 0 L/min, 2.5 L/min, 4 L/min, and 6 L/min, respectively. Through the result, we confirmed that toluene removal efficiency increased by injecting higher amounts of air. TPH removal by stripping was minimal. To remove a less volatile TPH by commercial TPH degrading culture (BIO-ZYME B-52), 15-times diluted culture was circulated through the reactor for 2-3 days to build up a biofilm on the surface of packing media with 1 mg-soluble nitrogen source /L-water per 1 ppm of TPH. Experiments evaluating the degree of TPH biodegradation in this system are carrying out.

  7. Long-term biological effects of air ions and D.C. electric fields on Namru mice: First year report

    NASA Astrophysics Data System (ADS)

    Kellogg, E. W.; Yost, M. G.; Reed, E. J.; Krueger, A. P.

    1985-09-01

    This report describes for the first time the effects of long-term continuous exposures of animals to small air ions and D.C. electric fields. In this study we exposed 200 female NAMRU mice (25/cage) to the following conditions: ± high ions (2×105/cm3), ± low ions (2×103/cm3), ± field only and ground (ion depleted, no field). Specially designed cages provided a defined D.C. field of about 2 kV/meter in ionized environments, with somewhat lower values in the field only cages. Detailed mapping of ion flux originating from a tritium foil generating system (multiple sources in an overhead plate) indicated a well defined, but heterogenous pattern with eight peak areas. Using a 100 cm2 probe, ion flux values ranged from 10-12 10-14 A/cm2, with an average flux of 8.7±6.8×10-13 A/cm2 in high negative ion cages, with good reproducibility between cages. Measurements of serum glucose, cholesterol, and urea nitrogen (samples taken every three months) showed a number of small but consistent and statistically significant differences between animals maintained in different environments during the first year of exposure. Serum globulin and whole blood serotonin, however, did not show any significant environmental effects. Interestingly, pairwise comparisons between high negative and low negative ion conditions, or between high positive and low positive ion conditions, or between the two ground conditions, revealed no significant differences between cages. This argues for a similarity of environmental responses for the mice maintained in each of the compared conditions. The results of a multiple classification analysis for the entire first year showed a preponderence of effects for the ionized cages, although other conditions also had highly significant differences as compared to the grand mean value. While this study has shown effects of only small magnitude (compared to normal physiological variations) in the female NAMRU mice studied here, the significance of these results

  8. Analysis of biological factors for determination of air pollution tolerance index of selected plants in Yamuna Nagar, India.

    PubMed

    Sharma, Manju; Panwar, Neeraj; Arora, Pooja; Luhach, Jyoti; Chaudhry, Smita

    2013-05-01

    Air pollution tolerance index (APTI) calculated for various plant species growing in vicinity of three different industrial areas (Paper mill, Sugar mill, Thermal Power Plant) and Yamuna River belt of Yamuna Nagar. Studies were carried out to determine the physiological response of ten plant species. The leaf samples collected from these plant species were used to determine their plant APTI by calculating the ascorbic acid, total chlorophyll, pH, and relative water content for all selected sites. Highest pH, relative water content, ascorbic acid and total chlorophyll was observed in Castor (9.86), Parthenium (96.99%), Ficus benghalensis (14.90 mg g(-1)) and Amaranthus (7.08 mg g(-1)) at Yamuna river, Thermal power plant, Yamuna river and paper mill respectively. It was concluded that out of ten species studied only one species (Ficus benghalensis) showed moderately tolerant response in all selected sites, while other species showed sensitive response. According to observed APTI values, Ficus benghalensis showed the highest value (21.65) at sugar mill followed by thermal power plant (19.38), Paper mill (17.65) and Yamuna River (17.61). The lowest APTI values were reported in Oxalis corniculata (6.42) at Yamuna River belt followed by Malvestrum at sugar mill (7.71). PMID:24617135

  9. Microbial monitoring and performance evaluation for H2S biological air emissions control at a wastewater lift station in South Texas, USA.

    PubMed

    Jones, Kim D; Yadavalli, Naga; Karre, Anand K; Paca, Jan

    2012-01-01

    A pilot-scale biological sequential treatment system consisting of a biotrickling filter and two biofilters was installed at Waste Water Lift Station # 64 in Brownsville, Texas, USA to evaluate the performance of the system being loaded with variable concentrations of wastewater hydrogen sulfide (H(2)S) emissions. In this study, the effectiveness of sulfur oxidizing bacteria along with the distribution of various sulfur species and their correlation with the performance of the biofilters was evaluated. The biofilters were packed with engineered media consisting of plastic cylinders with compacted organic material which was supplied by Met-Pro Environmental Air Solutions (formerly Bio·Reaction Industries). The overall performance of the pilot-scale biological sequential treatment system with an Empty Bed Residence Time (EBRT) of 60s and the overall performance of the biofilter unit with an EBRT of 35s developed a removal efficiency of > 99% at H(2)S levels up to 500 ppm. A decrease in performance over time was observed in the first and second sections of the first biofilter unit with the third section of the biofilter unit ultimately becoming the most robust unit removing most of the pollutant. The second biofilter unit was not needed and subsequently removed from the system. The number of CFUs in sulfur oxidizing T.thioparus selective media grew significantly in all four sections of the biofilter over the two months of pilot operation of the biological unit. The sulfur oxidizer growth rates appeared to be highest at low total sulfur content and at slightly acidic pH levels. This study has implications for improving the understanding of the distribution of sulfur oxidizing bacteria throughout the length of the biofilter columns, which can be used to further optimize performance and estimate breakthrough at these very high H(2)S input loadings. PMID:22486664

  10. Long-term biological effects of air ions and D.C. electric fields on Namru mice: Second year report

    NASA Astrophysics Data System (ADS)

    Kellogg, E. W.; Yost, M. G.; Reed, E. J.; Madin, S. H.

    1985-09-01

    This report describes the second year of long-term continuous exposures of female NAMRU mice to small air ions and D.C. electric fields in the following conditions: ± high ions ((2×105/cm3), ± low ions (2×103/cm3), ± field (2 kV/m) only and ground (ion depleted, no field). Using an isolated anesthesized mouse, whole body ion flux values averaged 1.04±0.63×10-10 A in high ion cages for different positions on the cage floor, with about a hundred-fold reduction for low ion cages. During the second year (sample periods 5 8) of exposure serum chemistry variability increased, due to increased pathology and decreased numbers of animals as our experimental population died off. The fifth sample period yielded results consistent with those seen earlier, but later sample periods had many fewer significant differences between cages than did those of the first year. Nevertheless, MCA statistics for serum glucose for the second year found a pattern remarkably similar to the first, with the low ion cages (LN and LP) having the lowest levels. MCA statistics for both years emphasized this possible “window” effect of low level ionized conditions. Also, a comparison between the combined values for ionized (HN, LN, HP and LP) and ion depleted cages (NF, PF, G1 and G2) showed a highly significant difference (p<10-6) for serum glucose for both years of exposure, with lower glucose values seen for animals in the ionized cages overall. Animals of all conditions also showed a highly significant decrease in serum glucose with age. Comparison of mice in ionized cages vs. the non-ionized cages also resulted in a significant difference (p<.013) for survival characteristics between groups, with ion exposed animals having a shorter lifespan. These statistics argue strongly for significant effects of long-term exposure of NAMRU mice to the ionized environment.

  11. Relation between sources of particulate air pollution and biological effect parameters in samples from four European cities: An exploratory study

    SciTech Connect

    Steerenberg, P.A.; van Amelsvoort, L.; Lovik, M.; Hetland, R.B.; Alberg, T.; Halatek, T.; Bloemen, H.J.T.; Rydzynski, K.; Swaen, G.; Schwarze, P.; Dybing, E.; Cassee, F.R.

    2006-05-15

    Given that there are widely different prevalence rates of respiratory allergies and asthma between the countries of Europe and that exposure to ambient particulate matter (PM) is substantial in urban environments throughout Europe, an EU project entitled 'Respiratory Allergy and Inflammation Due to Ambient Particles' (RAIAP) was set up. The project focused on the role of physical and chemical composition of PM on release of cytokines of cells in vitro, on respiratory inflammation in vivo, and on adjuvant potency in allergy animal models. Coarse (2.5 - 10 {mu}m) and fine (0.15 - 2.5 {mu}m) particles were collected during the spring, summer and winter in Rome ( I), Oslo (N), Lodz (PL), and Amsterdam (NL). Markers within the same model were often well correlated. Markers of inflammation in the in vitro and in vivo models also showed a high degree of correlation. In contrast, correlation between parameters in the different allergy models and between allergy and inflammation markers was generally poor. This suggests that various bioassays are needed to assess the potential hazard of PM. The present study also showed that by clustering chemical constituents of PM based on the overall response pattern in the bioassays, five distinct groups could be identified. The clusters of traffic, industrial combustion and/or incinerators, and combustion of black and brown coal/wood smoke were associated primarily with adjuvant activity for respiratory allergy, whereas clusters of crustal of material and sea spray are predominantly associated with measures for inflammation and acute toxicity. The present study has shown that biological effect of PM can be linked to one or more PM emission sources and that this linkage requires a wide range of bioassays.

  12. Roles of biological and physical processes in driving seasonal air-sea CO2 flux in the Southern Ocean: New insights from CARIOCA pCO2

    NASA Astrophysics Data System (ADS)

    Merlivat, L.; Boutin, J.; Antoine, D.

    2015-07-01

    On a mean annual basis, the Southern Ocean is a sink for atmospheric CO2. However the seasonality of the air-sea CO2 flux in this region is poorly documented. We investigate processes regulating air-sea CO2 flux in a large area of the Southern Ocean (38°S-55°S, 60°W-60°E) that represents nearly one third of the subantarctic zone. A seasonal budget of CO2 partial pressure, pCO2 and of dissolved inorganic carbon, DIC in the mixed layer is assessed by quantifying the impacts of biology, physics and thermodynamical effect on seawater pCO2. A focus is made on the quantification at a monthly scale of the biological consumption as it is the dominant process removing carbon from surface waters. In situ biological carbon production rates are estimated from high frequency estimates of DIC along the trajectories of CARIOCA drifters in the Atlantic and Indian sector of the Southern Ocean during four spring-summer seasons over the 2006-2009 period. Net community production (NCP) integrated over the mixed layer is derived from the daily change of DIC, and mixed layer depth estimated from Argo profiles. Eleven values of NCP are estimated and range from 30 to 130 mmol C m- 2 d- 1. They are used as a constraint for validating satellite net primary production (NPP). A satellite data-based global model is used to compute depth integrated net primary production, NPP, for the same periods along the trajectories of the buoys. Realistic NCP/NPP ratios are obtained under the condition that the SeaWiFS chlorophyll are corrected by a factor of ≈ 2-3, which is an underestimation previously reported for the Southern Ocean. Monthly satellite based NPP are computed over the 38°S-55°S, 60°W-60°E area. pCO2 derived from these NPP combined with an export ratio, and taking into account the impact of physics and thermodynamics is in good agreement with the pCO2 seasonal climatology of Takahashi (2009). On an annual timescale, mean NCP values, 4.4 to 4.9 mol C m- 2 yr- 1 are ≈ 4-5 times

  13. Air Trafficco

    ERIC Educational Resources Information Center

    Kasunic, Kevin

    1970-01-01

    The work of the 14,000 air traffic controllers can be both challenging and nerve-racking. Concentration, steady nerves, and a clear voice are required to remember the routing and identification of the maze of aircraft and to instruct each of them accurately. Controllers must have a high school diploma and three years work experience or a college…

  14. Biology Olympics: A New Department.

    ERIC Educational Resources Information Center

    McCormack, Alan J., Ed.

    1981-01-01

    Presents a new department in this journal titled "Biology Olympics." Presents justification for this department and discusses the first three "challenges" focusing on: (1) model-building, (2) plant biology, and (3) human biology. (DS)

  15. Radiological/biological/aerosol removal system

    DOEpatents

    Haslam, Jeffery J

    2015-03-17

    An air filter replacement system for existing buildings, vehicles, arenas, and other enclosed airspaces includes a replacement air filter for replacing a standard air filter. The replacement air filter has dimensions and air flow specifications that allow it to replace the standard air filter. The replacement air filter includes a filter material that removes radiological or biological or aerosol particles.

  16. An early work [1910-1913] in Biological Psychology by pioneer psychiatrist, criminologist and philosopher José Ingenieros, M.D. (1877-1925) of Buenos Aires.

    PubMed

    Triarhou, Lazaros C; del Cerro, Manuel

    2006-04-01

    One of the earliest recorded works in Biological Psychology was published in 1910 by Argentine psychiatrist José Ingenieros (1877-1925), Professor of Experimental Psychology at the Faculty of Philosophy and Letters of the University of Buenos Aires. Ingenieros, a multifaceted personality and prolific author and educator famous for his lapidary aphorisms, has been considered a 'luminary' for generations. Trained as a physician, he was the first scientist to establish a comprehensive psychological system in Latin America. His long list of publications includes more than 300 titles generally divided in two periods: studies in mental pathology and criminology (1897-1908) and studies in philosophy, psychology and sociology (1908-1925). His works were never made particularly available to English-speaking audiences, despite the fact that certain of his books are still best-sellers in the Spanish-speaking world. We present an overview of Ingenieros' life and work, and a detailed account of his profoundly interesting work Principios de Psicología Biológica, in which he analyzes the development, evolution and social context of mental functions. We also provide an English translation of the Introduction contributed by Nobel laureate Wilhelm Ostwald (1853-1932) to the 1922 German edition of the work, pertinent to the energetic principles Ingenieros used and the study of Psychology as a natural science. It is a hope, 80 years after Ingenieros' parting, to bibliographically resurrect this champion of reason, who, until now, has not been given his due placement in the international psychological and biomedical literature. PMID:16188365

  17. New Whole-House Solutions Case Study: Challenges of Achieving 2012 IECC Air Sealing Requirements in Multifamily Dwellings, Upstate New York

    SciTech Connect

    2014-11-01

    While previous versions of the International Energy Conservation Code (IECC) have included provisions to improve the air tightness of dwellings, for the first time, the 2012 IECC mandates compliance verification through blower door testing. Simply completing the Air Barrier and Insulation Installation checklist through visual inspection is no longer sufficient; the 2012 IECC mandates a significantly stricter air sealing requirement. In Climate Zones 3 through 8, air leakage may not exceed 3 ACH50, which is a significant reduction from the 2009 IECC requirement of 7 ACH50. This requirement is for all residential buildings, which includes low-rise multifamily dwellings. While this air leakage rate requirement is an important component to achieving an efficient building thermal envelope, currently, the code language doesn't explicitly address differences between single family and multifamily applications. In addition, the 2012 IECC does not provide an option to sample dwellings for larger multifamily buildings, so compliance would have to be verified on every unit. With compliance with the 2012 IECC air leakage requirements on the horizon, several of Building America team Consortium for Advanced Residential Building's (CARB) multifamily builder partners are evaluating how best to comply with this requirement. Builders are not sure whether it is more practical or beneficial to simply pay for guarded testing or to revise their air sealing strategies to improve compartmentalization to comply with code requirements based on unguarded blower door testing. This report summarizes CARB's research that was conducted to assess the feasibility of meeting the 2012 IECC air leakage requirements in three multifamily buildings.

  18. Assessing Air Quality.

    ERIC Educational Resources Information Center

    Bloomfield, Molly

    2000-01-01

    Introduces the Science and Math Investigative Learning Experiences (SMILE) program. Presents an air quality problem as an example of an integrated challenge problem activity developed by the SMILE program. Explains the process of challenge problems and provides a list of the National Science Education Standards addressed by challenge problems.…

  19. Air pollution and detrimental effects on children’s brain. The need for a multidisciplinary approach to the issue complexity and challenges

    PubMed Central

    Calderón-Garcidueñas, Lilian; Torres-Jardón, Ricardo; Kulesza, Randy J.; Park, Su-Bin; D’Angiulli, Amedeo

    2014-01-01

    Millions of children in polluted cities are showing brain detrimental effects. Urban children exhibit brain structural and volumetric abnormalities, systemic inflammation, olfactory, auditory, vestibular and cognitive deficits v low-pollution controls. Neuroinflammation and blood-brain-barrier (BBB) breakdown target the olfactory bulb, prefrontal cortex and brainstem, but are diffusely present throughout the brain. Urban adolescent Apolipoprotein E4 carriers significantly accelerate Alzheimer pathology. Neurocognitive effects of air pollution are substantial, apparent across all populations, and potentially clinically relevant as early evidence of evolving neurodegenerative changes. The diffuse nature of the neuroinflammation and neurodegeneration forces to employ a weight of evidence approach incorporating current clinical, cognitive, neurophysiological, radiological and epidemiological research. Pediatric air pollution research requires extensive multidisciplinary collaborations to accomplish a critical goal: to protect exposed children through multidimensional interventions having both broad impact and reach. Protecting children and teens from neural effects of air pollution should be of pressing importance for public health. PMID:25161617

  20. Challenges to obtaining APHIS approval to release classical biological control agents of weeds: the case of the yellow starthistle rosette weevil (Ceratapion basicorne)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The safety and effectiveness of classical biological control of weeds depends on the discovery and evaluation of species of arthropods that are highly host specific. Host specificity is typically evaluated using a combination of no-choice, choice and field experiments. The Technical Advisory Group...

  1. Implementation of an Education-Focused PhD Program in Anatomy and Cell Biology at Indiana University: Lessons Learned and Future Challenges

    ERIC Educational Resources Information Center

    Brokaw, James J.; O'Loughlin, Valerie D.

    2015-01-01

    In 2008, the Indiana University School of Medicine, in collaboration with the School of Education, admitted its first student to a newly approved PhD program in Anatomy and Cell Biology focusing on educational research rather than biomedical research. The goal of the program is twofold: (1) to provide students with extensive training in all of the…

  2. ADVANCES AND CHALLENGES IN SUGARCANE BIOTECHNOLOY AND PLANT PATHOLOGY: A REVIEW OF THE IX PLANT PATHOLOGY WORKSHOP AND VI MOLECULAR BIOLOGY WORKSHOP

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The IX Pathology Workshop and VI Molecular Biology Workshop of the International Society of Sugar Cane Technologists (ISSCT) were organised jointly and hosted by the Colombian Sugarcane Research Centre (CENICAÑA) from 23-27 June 2008 at the Radisson Royal Hotel in Cali, Colombia. The Workshop was we...

  3. Drosophila melanogaster and the future of 'evo-devo' biology in space. Challenges and problems in the path of an eventual colonization project outside the earth.

    PubMed

    Marco, Roberto; Husson, David; Herranz, Raul; Mateos, Jesús; Medina, F Javier

    2003-01-01

    Space exploration, especially its future phase involving the International Space Station (ISS) makes possible the study of the effects on living systems of long-term expositions to such a strange environment. This phase is being initiated when Biological Sciences are crossing a no-return line into a new territory where the connection between phenotype and genotype may be finally made. We briefly review the paradoxical results obtained in Space experiments performed during the last third of the XX Century. They reveal that simple unicellular systems sense the absence of gravity changing their cytoskeletal organization and the signal transduction pathways, while animal development proceeds unaltered in these conditions, in spite of the fact that these processes are heavily involved in embryogenesis. Longer-term experiments possible in the ISS may solve this apparent contradiction. On the other hand, the current constraints on the scientific use of the ISS makes necessary the development of new hardware and the modification of current techniques to start taking advantage of this extraordinary technological facility. We discuss our advances in this direction using one of the current key biological model systems, Drosophila melanogaster. In addition, the future phase of Space exploration, possibly leading to the exploration and, may be, the colonization of another planet, will provide the means of performing interesting evolutionary experiments, studying how the terrestrial biological systems will change in their long-term adaptation to new, very different environments. In this way, Biological Research in Space may contribute to the advancement of the new Biology, in particular to the branch known as "Evo-Devo". On the other hand, as much as the Space Adventure will continue involving human beings as the main actors in the play, long-term multi-generation experiments using a fast reproducing species, such as Drosophila melanogaster, capable of producing more than 300

  4. Challenges associated with the sampling and analysis of organosulfur compounds in air using real-time PTR-ToF-MS and offline GC-FID

    NASA Astrophysics Data System (ADS)

    Perraud, Véronique; Meinardi, Simone; Blake, Donald R.; Finlayson-Pitts, Barbara J.

    2016-03-01

    Organosulfur compounds (OSCs) are naturally emitted via various processes involving phytoplankton and algae in marine regions, from animal metabolism, and from biomass decomposition inland. These compounds are malodorant and reactive. Their oxidation to methanesulfonic and sulfuric acids leads to the formation and growth of atmospheric particles, which are known to influence clouds and climate, atmospheric chemical processes. In addition, particles in air have been linked to negative impacts on visibility and human health. Accurate measurements of the OSC precursors are thus essential to reduce uncertainties in their sources and contributions to particle formation in air. Two different approaches, proton-transfer reaction time-of-flight mass spectrometry (PTR-ToF-MS) and canister sampling coupled to gas chromatography with flame ionization detector (GC-FID), are compared for both laboratory standards (dimethyl sulfide, DMS; dimethyl disulfide, DMDS; dimethyl trisulfide, DMTS; and methanethiol, MTO) and for a complex sample. Results show that both techniques produce accurate quantification of DMS. While PTR-ToF-MS provides real-time measurements of all four OSCs individually, significant fragmentation of DMDS and DMTS occurs, which can complicate their identification in complex mixtures. Canister sampling coupled with GC-FID provides excellent sensitivity for DMS, DMDS, and DMTS. However, MTO was observed to react on metal surfaces to produce DMDS and, in the presence of hydrogen sulfide, even DMTS. Avoiding metal in sampling systems seems to be necessary for measuring all but dimethyl sulfide in air.

  5. When mothering goes awry: Challenges and opportunities for utilizing evidence across rodent, nonhuman primate and human studies to better define the biological consequences of negative early caregiving.

    PubMed

    Drury, Stacy S; Sánchez, Mar M; Gonzalez, Andrea

    2016-01-01

    This article is part of a Special Issue "Parental Care".Across mammalian species, mothers shape socio-emotional development and serve as essential external regulators of infant physiology, brain development, behavior patterns, and emotional regulation. Caregiving quality, consistency and predictability shape the infant's underlying neurobiological processes. Although the requirements for "optimal" caregiving differ across species, the negative long-term consequences of the absence of needed caregiving (e.g. neglect) or the presence of harmful/aversive caregiving (e.g. physical abuse), are translatable across species. Recognizing the significant potential of cross species comparisons in terms of defining underlying mechanisms, effective translation requires consideration of the evolutionary, ecological, and fundamental biological and developmental differences between and among species. This review provides both an overview of several success stories of cross-species translations in relation to negative caregiving and a template for future studies seeking to most effectively define the underlying biological processes and advance research dedicated to mitigating the lasting negative health consequences of child maltreatment. PMID:26506032

  6. Impact of in-barn manure separation on biological air quality in an experimental setup identical to that in swine buildings.

    PubMed

    Lavoie, J; Godbout, S; Lemay, S P; Belzile, M

    2009-07-01

    In-barn manure separation systems are becoming popular due to various environmental pressures on the swine industry. According to the literature, separation of feces and urine directly underneath the slats should have a positive impact on barn air quality. Removal and rapid separation of the two phases (solid/liquid) would reduce the dust and bioaerosol emissions, which would significantly improve the air quality in pig-housing facilities. From an occupational health and safety perspective, the maximum endotoxin and total bacteria concentrations to ensure workers' safety should not exceed 450 endotoxin units per cubic meter of air (EU m(-3)) and 10(4) colony-forming units per cubic meter of air (CFU m(-3)), respectively. In the current study, the effect on air quality of six in-barn manure handling systems was measured. A flat scraper system and four separation systems installed under the slats (a conveyor belt system, a conveyor net system, and a V-shaped scraper operated at two operation frequencies) were evaluated and compared to a conventional pull-plug system (control). The experiment took place in twelve independent and identical rooms housing four grower-finisher pigs each, and air samples were collected and analyzed for total dust, endotoxins, bacteria, and mold counts. The results obtained from this experimental setup show that the separation of feces and urine under the slats would concentrate at least 80% of the phosphorus in the solid phase. The total bacteria and endotoxin concentrations are lower than those found in commercial hog barns but remain higher than the recommended levels. Only the total dust concentrations are approximately 10% of their regulated value. This separation has no impact on dust and bioaerosol concentrations compared to the control. PMID:19728546

  7. PRESENTED AT TRIANGLE CONSORTIUM OF REPRODUCTIVE BIOLOGY, CHAPEL HILL, NC: GST M1 GENOTYPE INFLUENCES SPERM DNA DAMAGE ASSOCIATED WITH EXPOSURE TO AIR POLLUTION

    EPA Science Inventory

    Exposure to episodic air pollution in the Czech Republic has been associated with abnormal semen quality and sperm DNA damage (EHP 108:887;2000). A subsequentlongitudinal study evaluated semenfrom 36 men sampled up to 7 times over a period of two years to capture exposures durin...

  8. Laboratory host range testing of Lilioceris sp. near impressa (Coleoptera: Chrysomelidae) – a potential biological control agent of air potato, Dioscorea bulbifera (Dioscoreaceae)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Air potato, Dioscorea bulbifera, is an invasive, herbaceous, climbing vine, which dominates invaded native vegetation in Florida. The fortuitous discovery of Lilioceris sp. near impressa defoliating D. bulbifera vines and feeding on the bulbils (aerial tubers) in the Katmandu Valley of Nepal initiat...

  9. Population Size, HIV, and Behavior Among MSM in Luanda, Angola: Challenges and Findings in the First Ever HIV and Syphilis Biological and Behavioral Survey

    PubMed Central

    Kendall, Carl; Kerr, Ligia Regina Franco Sansigolo; Mota, Rosa Maria Salani; Cavalcante, Socorro; Macena, Raimunda Hermelinda Maia; Chen, Sanny; Gaffga, Nicholas; Monterosso, Edgar; Bastos, Fransisco I.; Serrano, Dulcelina

    2016-01-01

    Objectives To conduct the first population size estimation and biological and behavioral surveillance survey among men who have sex with men (MSM) in Angola. Design Population size estimation with multiplier method and a cross-sectional study using respondent-driven sampling. Setting Luanda Province, Angola. Study was conducted in a large hospital. Participants Seven hundred ninety-two self-identified MSM accepted a unique object for population size estimation. Three hundred fifty-one MSM were recruited with respondent-driven sampling for biological and behavioral surveillance survey. Methods Interviews and testing for HIV and syphilis were conducted on-site. Analysis used Respondent-Driven Sampling Analysis Tool and STATA 11.0. Univariate, bivariate, and multivariate analyses examined factors associated with HIV and unprotected sex. Six imputation strategies were used for missing data for those refusing to test for HIV. Main Outcome A population size of 6236 MSM was estimated. Twenty-seven of 351 individuals were tested positive. Adjusted HIV prevalence was 3.7% (8.7% crude). With imputation, HIV seroprevalence was estimated between 3.8% [95% confidence interval (CI): 1.6 to 6.5] and 10.5% (95% CI: 5.6 to 15.3). Being older than 25 (odds ratio = 10.8, 95% CI: 3.5 to 32.8) and having suffered episodes of homophobia (odds ratio = 12.7, 95% CI: 3.2 to 49.6) significantly increased the chance of HIV seropositivity. Conclusions Risk behaviors are widely reported, but HIV seroprevalence is lower than expected. The difference between crude and adjusted values was mostly due to treatment of missing values in Respondent-Driven Sampling Analysis Tool. Solutions are proposed in this article. Although concerns were raised about feasibility and adverse outcomes for MSM, the study was successfully and rapidly completed with no adverse effects. PMID:25014130

  10. Air pollution and society

    NASA Astrophysics Data System (ADS)

    Brimblecombe, P.

    2010-12-01

    Air pollution is as much a product of our society as it is one of chemistry and meteorology. Social variables such as gender, age, health status and poverty are often linked with our exposure to air pollutants. Pollution can also affect our behaviour, while regulations to improve the environment can often challenge of freedom.

  11. Multidisciplinary investigation of the fate, transport, and remediation of chlorinated solvents in fractured rocks at the former Naval Air Warfare Center (NAWC): Scientific and management challenges, and strategies for a successful research program

    NASA Astrophysics Data System (ADS)

    Tiedeman, C. R.; Goode, D. J.; Shapiro, A. M.; Lacombe, P. J.; Chapelle, F. H.; Bradley, P. M.; Imbrigiotta, T. E.; Williams, J. H.; Curtis, G. P.; Hsieh, P. A.

    2008-12-01

    At the former Naval Air Warfare Center (NAWC) in West Trenton NJ, the U.S. Geological Survey, in cooperation with the U.S. Navy and under support from the Strategic Environmental Research and Development Program (SERDP), is investigating the fate, transport, and remediation of trichloroethylene (TCE) and its daughter products in dipping, fractured mudstones underlying the site. TCE concentrations in ground water are as high as ~100 mg/L. Objectives of multidisciplinary research at the NAWC include (1) understanding the physical, chemical, and microbiological processes and properties affecting the fate, transport, and removal of chlorinated solvents in fractured rocks, (2) assessing the efficiency of different remediation methods (pump and treat, natural and enhanced biodegradation), and (3) transferring the results to help remediate other contaminated fractured rock aquifers. There are numerous scientific and technical challenges to meeting these goals, including the extreme spatial variability of flow and transport properties at the NAWC and the complex distribution of contaminants, geochemical constituents, and microorganisms in fractures and the rock matrix. In addition, there are management challenges that are equally important to address in order to achieve a successful research program. These include balancing the requirements of the many parties involved at the site, including researchers, the site owner, and regulatory agencies; and ensuring that limited research funds are directed towards work that addresses the most important scientific questions as well as stakeholder concerns. Strategies for the scientific challenges at NAWC include developing a carefully planned program to characterize spatial variability in rock properties and groundwater constituents so that the data obtained are applicable to solving research questions focused on remediation. Strategies for the management challenges include fostering open lines of communication among all parties and

  12. Species biology and potential for controlling four exotic plants (Ammophila arenaria, Carpobrotus edulis, Cortaderia jubata and Gasoul crystallinum) on Vandenberg Air Force Base, California

    NASA Technical Reports Server (NTRS)

    Schmalzer, Paul A.; Hinkle, C. Ross

    1987-01-01

    Invasive exotic plants can displace native flora and modify community and ecosystem structure and function. Ammophila arenaria, Corpobrotus edulis, Cortaderia jubata, and Gasoul crystallinum are invasive plants present on Vandenberg Air Force Base, California, designated for study by the Environmental Task Force because of the perceived threat they represent to the native flora. Each plant's native habitat, how they came to be at Vandenberg, their propagation, and how they can be controlled is discussed.

  13. Very small embryonic-like stem cells (VSELs) represent a real challenge in stem cell biology: recent pros and cons in the midst of a lively debate

    PubMed Central

    Ratajczak, M Z; Zuba-Surma, E; Wojakowski, W; Suszynska, M; Mierzejewska, K; Liu, R; Ratajczak, J; Shin, D M; Kucia, M

    2014-01-01

    The concept that adult tissue, including bone marrow (BM), contains early-development cells with broader differentiation potential has again been recently challenged. In response, we would like to review the accumulated evidence from several independent laboratories that adult tissues, including BM, harbor a population of very rare stem cells that may cross germ layers in their differentiation potential. Thus, the BM stem cell compartment hierarchy needs to be revisited. These dormant, early-development cells that our group described as very small embryonic-like stem cells (VSELs) most likely overlap with similar populations of stem cells that have been identified in adult tissues by other investigators as the result of various experimental strategies and have been given various names. As reported, murine VSELs have some pluripotent stem cell characteristics. Moreover, they display several epiblast/germline markers that suggest their embryonic origin and developmental deposition in adult BM. Moreover, at the molecular level, changes in expression of parentally imprinted genes (for example, Igf2–H19) and resistance to insulin/insulin-like growth factor signaling (IIS) regulates their quiescent state in adult tissues. In several emergency situations related to organ damage, VSELs can be activated and mobilized into peripheral blood, and in appropriate animal models they contribute to tissue organ/regeneration. Interestingly, their number correlates with lifespan in mice, and they may also be involved in some malignancies. VSELs have been successfully isolated in several laboratories; however, some investigators experience problems with their isolation. PMID:24018851

  14. Very small embryonic-like stem cells (VSELs) represent a real challenge in stem cell biology: recent pros and cons in the midst of a lively debate.

    PubMed

    Ratajczak, M Z; Zuba-Surma, E; Wojakowski, W; Suszynska, M; Mierzejewska, K; Liu, R; Ratajczak, J; Shin, D M; Kucia, M

    2014-03-01

    The concept that adult tissue, including bone marrow (BM), contains early-development cells with broader differentiation potential has again been recently challenged. In response, we would like to review the accumulated evidence from several independent laboratories that adult tissues, including BM, harbor a population of very rare stem cells that may cross germ layers in their differentiation potential. Thus, the BM stem cell compartment hierarchy needs to be revisited. These dormant, early-development cells that our group described as very small embryonic-like stem cells (VSELs) most likely overlap with similar populations of stem cells that have been identified in adult tissues by other investigators as the result of various experimental strategies and have been given various names. As reported, murine VSELs have some pluripotent stem cell characteristics. Moreover, they display several epiblast/germline markers that suggest their embryonic origin and developmental deposition in adult BM. Moreover, at the molecular level, changes in expression of parentally imprinted genes (for example, Igf2-H19) and resistance to insulin/insulin-like growth factor signaling (IIS) regulates their quiescent state in adult tissues. In several emergency situations related to organ damage, VSELs can be activated and mobilized into peripheral blood, and in appropriate animal models they contribute to tissue organ/regeneration. Interestingly, their number correlates with lifespan in mice, and they may also be involved in some malignancies. VSELs have been successfully isolated in several laboratories; however, some investigators experience problems with their isolation. PMID:24018851

  15. A Breath of Fresh Air: Addressing Indoor Air Quality

    ERIC Educational Resources Information Center

    Palliser, Janna

    2011-01-01

    Indoor air pollution refers to "chemical, biological, and physical contamination of indoor air," which may result in adverse health effects (OECD 2003). The causes, sources, and types of indoor air pollutants will be addressed in this article, as well as health effects and how to reduce exposure. Learning more about potential pollutants in home…

  16. Challenges associated with the sampling and analysis of organosulfur compounds in air using real-time PTR-ToF-MS and off-line GC-FID

    NASA Astrophysics Data System (ADS)

    Perraud, V.; Meinardi, S.; Blake, D. R.; Finlayson-Pitts, B. J.

    2015-12-01

    Organosulfur compounds (OSC) are naturally emitted via various processes involving phytoplankton and algae in marine regions, from animal metabolism and from biomass decomposition inland. These compounds are malodorant and reactive. Their oxidation to methanesulfonic and sulfuric acids leads to the formation and growth of atmospheric particles, which are known to have negative effects on visibility, climate and human health. In order to predict particle formation events, accurate measurements of the OSC precursors are essential. Here, two different approaches, proton-transfer reaction time-of-flight mass spectrometry (PTR-ToF-MS) and canister sampling coupled with GC-FID are compared for both laboratory standards [dimethyl sulfide (DMS), dimethyl disulfide (DMDS), dimethyl trisulfide (DMTS) and methanethiol (MTO)] and for a complex sample. Results show that both techniques produce accurate quantification of DMS. While PTR-ToF-MS provides real-time measurements of all four OSCs individually, significant fragmentation of DMDS and DMTS occurs, which can complicate their identification in complex mixtures. Canister sampling coupled with GC-FID provides excellent sensitivity for DMS, DMDS and DMTS. However, MTO was observed to react on metal surfaces to produce DMDS and, in the presence of hydrogen sulfide, even DMTS. Avoiding metal in sampling systems seems to be necessary for measuring all but dimethyl sulfide in air.

  17. AIRE-Linux

    NASA Astrophysics Data System (ADS)

    Zhou, Jianfeng; Xu, Benda; Peng, Chuan; Yang, Yang; Huo, Zhuoxi

    2015-08-01

    AIRE-Linux is a dedicated Linux system for astronomers. Modern astronomy faces two big challenges: massive observed raw data which covers the whole electromagnetic spectrum, and overmuch professional data processing skill which exceeds personal or even a small team's abilities. AIRE-Linux, which is a specially designed Linux and will be distributed to users by Virtual Machine (VM) images in Open Virtualization Format (OVF), is to help astronomers confront the challenges. Most astronomical software packages, such as IRAF, MIDAS, CASA, Heasoft etc., will be integrated into AIRE-Linux. It is easy for astronomers to configure and customize the system and use what they just need. When incorporated into cloud computing platforms, AIRE-Linux will be able to handle data intensive and computing consuming tasks for astronomers. Currently, a Beta version of AIRE-Linux is ready for download and testing.

  18. Indoor air quality and health

    NASA Astrophysics Data System (ADS)

    Jones, A. P.

    During the last two decades there has been increasing concern within the scientific community over the effects of indoor air quality on health. Changes in building design devised to improve energy efficiency have meant that modern homes and offices are frequently more airtight than older structures. Furthermore, advances in construction technology have caused a much greater use of synthetic building materials. Whilst these improvements have led to more comfortable buildings with lower running costs, they also provide indoor environments in which contaminants are readily produced and may build up to much higher concentrations than are found outside. This article reviews our current understanding of the relationship between indoor air pollution and health. Indoor pollutants can emanate from a range of sources. The health impacts from indoor exposure to combustion products from heating, cooking, and the smoking of tobacco are examined. Also discussed are the symptoms associated with pollutants emitted from building materials. Of particular importance might be substances known as volatile organic compounds (VOCs), which arise from sources including paints, varnishes, solvents, and preservatives. Furthermore, if the structure of a building begins to deteriorate, exposure to asbestos may be an important risk factor for the chronic respiratory disease mesothelioma. The health effects of inhaled biological particles can be significant, as a large variety of biological materials are present in indoor environments. Their role in inducing illness through immune mechanisms, infectious processes, and direct toxicity is considered. Outdoor sources can be the main contributors to indoor concentrations of some contaminants. Of particular significance is Radon, the radioactive gas that arises from outside, yet only presents a serious health risk when found inside buildings. Radon and its decay products are now recognised as important indoor pollutants, and their effects are

  19. Air Pollution

    MedlinePlus

    Air pollution is a mixture of solid particles and gases in the air. Car emissions, chemicals from factories, dust, ... a gas, is a major part of air pollution in cities. When ozone forms air pollution, it's ...

  20. Air Pollution

    MedlinePlus

    Air pollution is a mixture of solid particles and gases in the air. Car emissions, chemicals from factories, ... Ozone, a gas, is a major part of air pollution in cities. When ozone forms air pollution, it's ...

  1. Biological Threats

    MedlinePlus

    ... Thunderstorms & Lightning Tornadoes Tsunamis Volcanoes Wildfires Main Content Biological Threats Biological agents are organisms or toxins that ... Centers for Disease Control and Prevention . Before a Biological Threat Unlike an explosion, a biological attack may ...

  2. Designing synthetic biology.

    PubMed

    Agapakis, Christina M

    2014-03-21

    Synthetic biology is frequently defined as the application of engineering design principles to biology. Such principles are intended to streamline the practice of biological engineering, to shorten the time required to design, build, and test synthetic gene networks. This streamlining of iterative design cycles can facilitate the future construction of biological systems for a range of applications in the production of fuels, foods, materials, and medicines. The promise of these potential applications as well as the emphasis on design has prompted critical reflection on synthetic biology from design theorists and practicing designers from many fields, who can bring valuable perspectives to the discipline. While interdisciplinary connections between biologists and engineers have built synthetic biology via the science and the technology of biology, interdisciplinary collaboration with artists, designers, and social theorists can provide insight on the connections between technology and society. Such collaborations can open up new avenues and new principles for research and design, as well as shed new light on the challenging context-dependence-both biological and social-that face living technologies at many scales. This review is inspired by the session titled "Design and Synthetic Biology: Connecting People and Technology" at Synthetic Biology 6.0 and covers a range of literature on design practice in synthetic biology and beyond. Critical engagement with how design is used to shape the discipline opens up new possibilities for how we might design the future of synthetic biology. PMID:24156739

  3. Laminar flow: Challenge and potential

    NASA Technical Reports Server (NTRS)

    Kirchner, Mark E.

    1987-01-01

    Commercial air transportation has experienced revolutionary technology advances since WWII. These technology advances have resulted in an explosive growth in passenger traffic. Today, however, many technologies have matured, and maintaining a similar growth rate will be a challenge. A brief history of laminar flow technology and its application to subsonic and supersonic air transportation is presented.

  4. Assessment of exposure to polycyclic aromatic hydrocarbons in police in Florence, Italy, through personal air sampling and biological monitoring of the urinary metabolite 1-hydroxypyrene.

    PubMed

    Perico, A; Gottardi, M; Boddi, V; Bavazzano, P; Lanciotti, E

    2001-01-01

    In this study, the authors evaluated exposure to airborne polycyclic aromatic hydrocarbons (PAHs) in workers exposed to exhaust gas from cars, and they assessed the efficiency of urinary 1-hydroxypyrene as an indicator of exposure to pyrene and PAHs. The authors selected 2 groups of police who worked in 2 areas in the city of Florence: 1 group was highly exposed to high-density traffic emissions during the winter and summer of 1997, and the 2nd group experienced low exposure to traffic emissions during the same period. Ambient monitoring was achieved with personal sampling of airborne PAHs during each workshift. Eight hydrocarbons were used as indicators of pollution caused by PAHs (e.g., pyrene, benzo[a]pyrene, benzo[a]anthracene, dibenzo[a,h]anthracene). Biological monitoring was performed through dosing of 1-hydroxypyrene (pyrene metabolite) in urine samples taken at the end of each workshift. The ambient monitoring revealed that PAH concentrations were influenced by both season of sampling and varying intensities of traffic in the different areas. The median concentration of benzo[a]pyrene in winter was twice as high in the high-density traffic area as in the low-density traffic area (i.e., 4.1 ng/m3 versus 1.8 ng/m3). In summer, the high-density traffic area experienced benzo[a]pyrene concentrations that were 6 times higher than in the low-density traffic area (i.e., 1.2 ng/m3 versus 0.2 ng/m3). Benzo[a]pyrene was also correlated highly (r(s) = .92, p < .0001) with the mixture of total PAHs analyzed, thus confirming its function as a good indicator of exposure to PAHs in an urban environment. Levels of urinary 1-hydroxypyrene appeared to be generally influenced by the intensity of traffic, especially during the winter (i.e., median value in winter was 199.2 ng/gm creatinine in the high-density traffic area and 120.5 ng/gm creatinine in the low-density traffic area). An analysis of the general data revealed that 1-hydroxypyrene was, to some degree, related to

  5. Engineering scalable biological systems

    PubMed Central

    2010-01-01

    Synthetic biology is focused on engineering biological organisms to study natural systems and to provide new solutions for pressing medical, industrial and environmental problems. At the core of engineered organisms are synthetic biological circuits that execute the tasks of sensing inputs, processing logic and performing output functions. In the last decade, significant progress has been made in developing basic designs for a wide range of biological circuits in bacteria, yeast and mammalian systems. However, significant challenges in the construction, probing, modulation and debugging of synthetic biological systems must be addressed in order to achieve scalable higher-complexity biological circuits. Furthermore, concomitant efforts to evaluate the safety and biocontainment of engineered organisms and address public and regulatory concerns will be necessary to ensure that technological advances are translated into real-world solutions. PMID:21468204

  6. Phospholipids at the Interface: Current Trends and Challenges

    PubMed Central

    Pichot, Roman; Watson, Richard L.; Norton, Ian T.

    2013-01-01

    Phospholipids are one of the major structural elements of biological membranes. Due to their amphiphilic character, they can adopt various molecular assemblies when dispersed in water, such as bilayer vesicles or micelles, which give them unique interfacial properties and render them very attractive in terms of foam or emulsion stabilization. This article aims at reviewing the properties of phospholipids at the air/water and oil/water interfaces, as well as the recent advances in using these natural components as stabilizers, alone or in combination with other compounds such as proteins. A discussion regarding the challenges and opportunities offered by phospholipids-stabilized structure concludes the review. PMID:23736688

  7. Influenza Vaccines: Challenges and Solutions

    PubMed Central

    Houser, Katherine; Subbarao, Kanta

    2015-01-01

    Vaccination is the best method for the prevention and control of influenza. Vaccination can reduce illness and lessen severity of infection. This review focuses on how currently licensed influenza vaccines are generated in the U.S., why the biology of influenza poses vaccine challenges, and vaccine approaches on the horizon that address these challenges. PMID:25766291

  8. Challenging High-Ability Students

    ERIC Educational Resources Information Center

    Scager, Karin; Akkerman, Sanne F.; Pilot, Albert; Wubbels, Theo

    2014-01-01

    The existing literature on indicators of an optimal learning environment for high-ability students frequently discusses the concept of challenge. It is, however, not clear what, precisely, constitutes appropriate challenge for these students. In this study, the authors examined an undergraduate honours course, Advanced Cell Biology, which has…

  9. Air Abrasion

    MedlinePlus

    ... delivered directly to your desktop! more... What Is Air Abrasion? Article Chapters What Is Air Abrasion? What Happens? The Pros and Cons Will I Feel Anything? Is Air Abrasion for Everyone? print full article print this ...

  10. Biological aerosol background characterization

    NASA Astrophysics Data System (ADS)

    Blatny, Janet; Fountain, Augustus W., III

    2011-05-01

    To provide useful information during military operations, or as part of other security situations, a biological aerosol detector has to respond within seconds or minutes to an attack by virulent biological agents, and with low false alarms. Within this time frame, measuring virulence of a known microorganism is extremely difficult, especially if the microorganism is of unknown antigenic or nucleic acid properties. Measuring "live" characteristics of an organism directly is not generally an option, yet only viable organisms are potentially infectious. Fluorescence based instruments have been designed to optically determine if aerosol particles have viability characteristics. Still, such commercially available biological aerosol detection equipment needs to be improved for their use in military and civil applications. Air has an endogenous population of microorganisms that may interfere with alarm software technologies. To design robust algorithms, a comprehensive knowledge of the airborne biological background content is essential. For this reason, there is a need to study ambient live bacterial populations in as many locations as possible. Doing so will permit collection of data to define diverse biological characteristics that in turn can be used to fine tune alarm algorithms. To avoid false alarms, improving software technologies for biological detectors is a crucial feature requiring considerations of various parameters that can be applied to suppress alarm triggers. This NATO Task Group will aim for developing reference methods for monitoring biological aerosol characteristics to improve alarm algorithms for biological detection. Additionally, they will focus on developing reference standard methodology for monitoring biological aerosol characteristics to reduce false alarm rates.

  11. Challenges in obesity research.

    PubMed

    Palou, Andreu; Bonet, M Luisa

    2013-09-01

    Obesity is the main nutritional problem and one of the most important health problems in developed societies. Central to the challenge of obesity prevention and management is a thoroughly understanding of its determinants. Multiple socio-cultural, socio-economic, behavioural and biological factors--often interrelated and many of them still unknown or poorly understood--can contribute to the establishment and perpetuation of obese phenotypes. Here, we address current research challenges regarding basic aspects of obesity and emerging science for its control, including brown adipose tissue thermogenesis and browning of white fat as possible therapeutic targets for obesity, the influence of the microbioma, and genetics, epigenetics, nutrigenomics and nutrigenetics of obesity. We also highlight hot topics in relation to food and lifestyle as determinants of obesity, including the brain mechanisms underlying environmental motivation to eat, the biological control of spontaneous physical activity, the possible role of concrete foods and food components, and the importance of early life nutrition and environment. Challenges regarding the connections of obesity with other alterations and pathologies are also briefly addressed, as well as social and economical challenges in relation to healthy food production and lifestyle for the prevention of obesity, and technological challenges in obesity research and management. The objective is to give a panoramic of advances accomplished and still ahead relevant to the different stakeholders engaged in understanding and combating obesity. PMID:24010755

  12. Structuring Research Opportunities for All Biology Majors.

    ERIC Educational Resources Information Center

    Lewis, Susan E.; Conley, Lisa K.; Horst, Cynthia J.

    2003-01-01

    Describes a required research experience program for all biology majors instituted in the biology department of Carroll College. Discusses successes and challenges of coordinating a program that involves 20-40 research projects each year. (Author/NB)

  13. Clinical challenge.

    PubMed

    2016-09-01

    Questions for this month's clinical challenge are based on articles in this issue. The clinical challenge is endorsed by the RACGP Quality Improvement and Continuing Professional Development (QI&CPD) program and has been allocated four Category 2 points (Activity ID:59922). Answers to this clinical challenge are available immediately following successful completion online at http://gplearning.racgp.org.au. Clinical challenge quizzes may be completed at any time throughout the 2014-16 triennium; therefore, the previous months' answers are not published. Each of the questions or incomplete statements below is followed by four suggested answers or completions. Select the most appropriate statement as your answer. PMID:27606376

  14. Biological Technicians

    MedlinePlus

    ... Biological technicians typically need a bachelor’s degree in biology or a closely related field. It is important ... Biological technicians typically need a bachelor’s degree in biology or a closely related field. It is important ...

  15. Featherweight Challenge

    ERIC Educational Resources Information Center

    Love, Tyler S.; Ryan, Larry

    2012-01-01

    As science, technology education, and engineering programs suffer budget cuts, educators continue to seek cost-effective activities that engage students and reinforce standards. The featherweight challenge is a hands-on activity that challenges students to continually refine their design while not breaking the budget. This activity uses one of the…

  16. Natural Air Purifier

    NASA Technical Reports Server (NTRS)

    1993-01-01

    NASA environmental research has led to a plant-based air filtering system. Dr. B.C. Wolverton, a former NASA engineer who developed a biological filtering system for space life support, served as a consultant to Terra Firma Environmental. The company is marketing the BioFilter, a natural air purifier that combines activated carbon and other filter media with living plants and microorganisms. The filter material traps and holds indoor pollutants; plant roots and microorganisms then convert the pollutants into food for the plant. Most non-flowering house plants will work. After pollutants have been removed, the cleansed air is returned to the room through slits in the planter. Terra Firma is currently developing a filter that will also disinfect the air.

  17. Making Plant Biology Curricula Relevant.

    ERIC Educational Resources Information Center

    Hershey, David R.

    1992-01-01

    Reviews rationale, purposes, challenges, and relevance of hands-on, plant biology curricula that have been developed in response to the limited use of plants in biology education. Discusses methods to maintain both instructional rigor and student interest in the following topics: cut flowers, container-growing media, fertilizers, hydroponics,…

  18. The orbiter air data system

    NASA Technical Reports Server (NTRS)

    Hillje, E. R.

    1985-01-01

    Air data parameters are required during Orbiter atmospheric entry for use by the autoguidance, navigation, and flight control systems, and for crew displays. Conventional aircraft calibrations of the Orbiter air data system were not practicable for the Space Shuttle, therefore extensive wind tunnel testing was required to give confidence in the preflight calibrations. Many challenges became apparent as the program developed; in the overall system design, in the wind tunnel testing program, in the implementation of the air data system calibration, and in the use of the flight data to modify the wind tunnel results. These challenges are discussed along with the methods used to solve the problems.

  19. Recent developments in biologically inspired seeker technology

    NASA Astrophysics Data System (ADS)

    McCarley, Paul L.; Massie, Mark A.

    2001-06-01

    As electro-optic sensors increase in size and frame rate, the data transfer and digital processing resource requirements also increase. In many missions, the spatial area of interest is but a small fraction of the available field of view. Choosing the right region of interest, however, is a challenge and still requires an enormous amount of downstream digital processing resources. In order to filter this ever-increasing amount of data, we look at how nature solves the problem. The Advanced Guidance Division of the Munitions Directorate, Air Force Research Laboratory (AFRL/MNG) at Eglin AFB, Florida, has been pursuing research in the area of advanced sensor and image processing concepts based on biologically inspired sensory information processing. A summary of some vertebrate and invertebrate inspired 'neuromorphic' processing efforts will be presented along with a seeker system concept utilizing this innovative technology. Concepts and requirements for future such efforts will also be discussed.

  20. Biological Filters.

    ERIC Educational Resources Information Center

    Klemetson, S. L.

    1978-01-01

    Presents the 1978 literature review of wastewater treatment. The review is concerned with biological filters, and it covers: (1) trickling filters; (2) rotating biological contractors; and (3) miscellaneous reactors. A list of 14 references is also presented. (HM)

  1. Biological Agents

    MedlinePlus

    ... to Z Index Contact Us FAQs What's New Biological Agents This page requires that javascript be enabled ... and Health Topics A-Z Index What's New Biological agents include bacteria, viruses, fungi, other microorganisms and ...

  2. Air resources

    SciTech Connect

    1995-10-01

    This section describes the ambient (surrounding) air quality of the TVA region, discusses TVA emission contributions to ambient air quality, and identifies air quality impacts to human health and welfare. Volume 2 Technical Document 2, Environmental Consequences, describes how changes in TVA emissions could affect regional air quality, human health, environmental resources, and materials. The primary region of the affected environment is broadly defined as the state of Tennessee, as well as southern Kentucky, western Virginia, southern West Virginia, western North Carolina, and northern Georgia, Alabama, and Mississippi. This area represents the watershed of the Tennessee River and the 201 counties of the greater TVA service area. Emissions from outside the Tennessee Valley region contribute to air quality in the Valley. Also, TVA emissions are transported outside the Valley and have some impact on air quality beyond the primary study area. Although the study area experiences a number of air quality problems, overall air quality is good.

  3. Students' Ideas and Attitudes about Air Quality

    ERIC Educational Resources Information Center

    Skamp, Keith; Boyes, Eddie; Stanisstreet, Martin

    2004-01-01

    The results of a large scale (N=1001) cross-sectional (Years 6, 8 and 10) study of students' ideas about the composition of unpolluted air, the nature of air pollution, the biological consequences of air pollution, and about acid rain and the Greenhouse Effect are reported. A range of persistent alternative conceptions were identified, in some…

  4. How uniquely irreducible is consciousness? Defining the limits of biological reductionism. A commentary on Neuroontology, neurobiological naturalism, and consciousness: A challenge to scientific reduction and a solution, by Todd E. Feinberg, MD

    NASA Astrophysics Data System (ADS)

    Edelman, David B.

    2012-03-01

    Emergent properties of biological systems are hard to classify as ‘weak’ or ‘strong.’ Irreducibility of consciousness may not be distinct from that of the rest of biology. Individual development and organismal evolution are similarly irreducible systems. The critical role of historical interactions is not considered in the target review. Consciousness can be characterized in terms of existing physical properties.

  5. Air Pollution.

    ERIC Educational Resources Information Center

    Gilpin, Alan

    A summary of one of our most pressing environmental problems, air pollution, is offered in this book by the Director of Air Pollution Control for the Queensland (Australia) State Government. Discussion of the subject is not restricted to Queensland or Australian problems and policies, however, but includes analysis of air pollution the world over.…

  6. The challenges of big data

    PubMed Central

    2016-01-01

    ABSTRACT The largely untapped potential of big data analytics is a feeding frenzy that has been fueled by the production of many next-generation-sequencing-based data sets that are seeking to answer long-held questions about the biology of human diseases. Although these approaches are likely to be a powerful means of revealing new biological insights, there are a number of substantial challenges that currently hamper efforts to harness the power of big data. This Editorial outlines several such challenges as a means of illustrating that the path to big data revelations is paved with perils that the scientific community must overcome to pursue this important quest. PMID:27147249

  7. The challenges of big data.

    PubMed

    Mardis, Elaine R

    2016-05-01

    The largely untapped potential of big data analytics is a feeding frenzy that has been fueled by the production of many next-generation-sequencing-based data sets that are seeking to answer long-held questions about the biology of human diseases. Although these approaches are likely to be a powerful means of revealing new biological insights, there are a number of substantial challenges that currently hamper efforts to harness the power of big data. This Editorial outlines several such challenges as a means of illustrating that the path to big data revelations is paved with perils that the scientific community must overcome to pursue this important quest. PMID:27147249

  8. Noise in biological circuits

    SciTech Connect

    Simpson, Michael L; Allen, Michael S.; Cox, Chris D.; Dar, Roy D.; Karig, David K; McCollum, James M.; Cooke, John F

    2009-01-01

    Noise biology focuses on the sources, processing, and biological consequences of the inherent stochastic fluctuations in molecular transitions or interactions that control cellular behavior. These fluctuations are especially pronounced in small systems where the magnitudes of the fluctuations approach or exceed the mean value of the molecular population. Noise biology is an essential component of nanomedicine where the communication of information is across a boundary that separates small synthetic and biological systems that are bound by their size to reside in environments of large fluctuations. Here we review the fundamentals of the computational, analytical, and experimental approaches to noise biology. We review results that show that the competition between the benefits of low noise and those of low population has resulted in the evolution of genetic system architectures that produce an uneven distribution of stochasticity across the molecular components of cells and, in some cases, use noise to drive biological function. We review the exact and approximate approaches to gene circuit noise analysis and simulation, and reviewmany of the key experimental results obtained using flow cytometry and time-lapse fluorescent microscopy. In addition, we consider the probative value of noise with a discussion of using measured noise properties to elucidate the structure and function of the underlying gene circuit. We conclude with a discussion of the frontiers of and significant future challenges for noise biology.

  9. [Biological weapons].

    PubMed

    Kerwat, K; Becker, S; Wulf, H; Densow, D

    2010-08-01

    Biological weapons are weapons of mass destruction that use pathogens (bacteria, viruses) or the toxins produced by them to target living organisms or to contaminate non-living substances. In the past, biological warfare has been repeatedly used. Anthrax, plague and smallpox are regarded as the most dangerous biological weapons by various institutions. Nowadays it seems quite unlikely that biological warfare will be employed in any military campaigns. However, the possibility remains that biological weapons may be used in acts of bioterrorism. In addition all diseases caused by biological weapons may also occur naturally or as a result of a laboratory accident. Risk assessment with regard to biological danger often proves to be difficult. In this context, an early identification of a potentially dangerous situation through experts is essential to limit the degree of damage. PMID:20717866

  10. Challenges of Physiome Projects

    NASA Astrophysics Data System (ADS)

    Nomura, Taishin

    The integration of knowledge from many disciplines and vast amount of biological data in the post-genome era together with mathematical and information sciences is moving the world towards a new generation of life science where physiological and pathological information from the living human body can be quantitatively described in silico across multiple scales of time and size and through diverse hierarchies of organization. The Physiome Project represents such emerging sciences. The challenge is to understand and quantitatively integrate not only structure and function of biological entities such as ion channel proteins and enzymes on a single spatio-temporal scale, but also functional relationships between entities across multiple scales. This integrative approach is in stark contrast to the linear approach of reductionist life science, and it will allow us to understand the mechanisms underlying biological functions that will emerge through the dynamics of each element and large aggregations of the elements. This article discusses several points of the challenge that are expected to be resolved through the Physiome Project.

  11. Microgravity Fluids for Biology, Workshop

    NASA Technical Reports Server (NTRS)

    Griffin, DeVon; Kohl, Fred; Massa, Gioia D.; Motil, Brian; Parsons-Wingerter, Patricia; Quincy, Charles; Sato, Kevin; Singh, Bhim; Smith, Jeffrey D.; Wheeler, Raymond M.

    2013-01-01

    Microgravity Fluids for Biology represents an intersection of biology and fluid physics that present exciting research challenges to the Space Life and Physical Sciences Division. Solving and managing the transport processes and fluid mechanics in physiological and biological systems and processes are essential for future space exploration and colonization of space by humans. Adequate understanding of the underlying fluid physics and transport mechanisms will provide new, necessary insights and technologies for analyzing and designing biological systems critical to NASAs mission. To enable this mission, the fluid physics discipline needs to work to enhance the understanding of the influence of gravity on the scales and types of fluids (i.e., non-Newtonian) important to biology and life sciences. In turn, biomimetic, bio-inspired and synthetic biology applications based on physiology and biology can enrich the fluid mechanics and transport phenomena capabilities of the microgravity fluid physics community.

  12. Engineering life through Synthetic Biology.

    PubMed

    Chopra, Paras; Kamma, Akhil

    2006-01-01

    Synthetic Biology is a field involving synthesis of novel biological systems which are not generally found in nature. It has brought a new paradigm in science as it has enabled scientists to create life from the scratch, hence helping better understand the principles of biology. The viability of living organisms that use unnatural molecules is also being explored. Unconventional projects such as DNA playing tic-tac-toe, bacterial photographic film, etc. are taking biology to its extremes. The field holds a promise for mass production of cheap drugs and programming bacteria to seek-and-destroy tumors in the body. However, the complexity of biological systems make the field a challenging one. In addition to this, there are other major technical and ethical challenges which need to be addressed before the field realizes its true potential. PMID:17274769

  13. Ethical Challenges

    ERIC Educational Resources Information Center

    Morris, Michael

    2004-01-01

    All evaluators face the challenge of striving to adhere to the highest possible standards of ethical conduct. Translating the AEA's Guiding Principles and the Joint Committee's Program Evaluation Standards into everyday practice, however, can be a complex, uncertain, and frustrating endeavor. Moreover, acting in an ethical fashion can require…

  14. Quill Challenge

    ERIC Educational Resources Information Center

    Stevens, Lori

    2006-01-01

    Teaching high school students the "grammar" of art--the principles and elements of art and design--while also teaching them about creativity and concept can be difficult. This author has found that combining beginning lessons in line, shape, value, texture, form, and color with projects requiring innovation and inspiration, though challenging, is…

  15. Environmental challenge

    SciTech Connect

    Conable, B.; Warford, J.; Partow, Z.; Lutz, E.; Munasinghe, M.

    1991-09-01

    The contents include the following: Development and the Environment: A Global Balance; Evolution of the World Bank's Environmental Policy; Accounting for the Environment; Public Policy and the Environment; Managing Drylands; Environmental Action Plans in Africa; Agroforestry in Sub-Saharan Africa; Irrigation and the Environmental Challenge; Curbing Pollution in Developing Countries; Global Warming and the Developing World; and The Global Environment Facility.

  16. Synthetic Biology for Therapeutic Applications

    PubMed Central

    2015-01-01

    Synthetic biology is a relatively new field with the key aim of designing and constructing biological systems with novel functionalities. Today, synthetic biology devices are making their first steps in contributing new solutions to a number of biomedical challenges, such as emerging bacterial antibiotic resistance and cancer therapy. This review discusses some synthetic biology approaches and applications that were recently used in disease mechanism investigation and disease modeling, drug discovery and production, as well as vaccine development and treatment of infectious diseases, cancer, and metabolic disorders. PMID:25098838

  17. Systems Biology

    SciTech Connect

    Wiley, H S.

    2006-06-01

    The biology revolution over the last 50 years has been driven by the ascendancy of molecular biology. This was enthusiastically embraced by most biologists because it took us into increasingly familiar territory. It took mysterious processes, such as the replication of genetic material and assigned them parts that could be readily understood by the human mind. When we think of ''molecular machines'' as being the underlying basis of life, we are using a paradigm derived from everyday experience. However, the price that we paid was a relentless drive towards reductionism and the attendant balkanization of biology. Now along comes ''systems biology'' that promises us a solution to the problem of ''knowing more and more about less and less''. Unlike molecular biology, systems biology appears to be taking us into unfamiliar intellectual territory, such as statistics, mathematics and computer modeling. Not surprisingly, systems biology has met with widespread skepticism and resistance. Why do we need systems biology anyway and how does this new area of research promise to change the face of biology in the next couple of decades?

  18. Biological Imaging Software Tools

    PubMed Central

    Eliceiri, Kevin W.; Berthold, Michael R.; Goldberg, Ilya G.; Ibáñez, Luis; Manjunath, B.S.; Martone, Maryann E.; Murphy, Robert F.; Peng, Hanchuan; Plant, Anne L.; Roysam, Badrinath; Stuurman, Nico; Swedlow, Jason R.; Tomancak, Pavel; Carpenter, Anne E.

    2013-01-01

    Few technologies are more widespread in modern biological laboratories than imaging. Recent advances in optical technologies and instrumentation are providing hitherto unimagined capabilities. Almost all these advances have required the development of software to enable the acquisition, management, analysis, and visualization of the imaging data. We review each computational step that biologists encounter when dealing with digital images, the challenges in that domain, and the overall status of available software for bioimage informatics, focusing on open source options. PMID:22743775

  19. Nanotechnology: Opportunities and Challenges

    NASA Technical Reports Server (NTRS)

    Meyyappan, Meyya

    2003-01-01

    Nanotechnology seeks to exploit novel physical, chemical, biological, mechanical, electrical, and other properties, which arise primarily due to the nanoscale nature of certain materials. A key example is carbon nanotubes (CNTs) which exhibit unique electrical and extraordinary mechanical properties and offer remarkable potential for revolutionary applications in electronics devices, computing, and data storage technology, sensors, composites, nanoelectromechanical systems (NEMS), and as tip in scanning probe microscopy (SPM) for imaging and nanolithography. Thus the CNT synthesis, characterization, and applications touch upon all disciplines of science and engineering. This presentation will provide an overview and progress report on this and other major research candidates in Nanotechnology and address opportunities and challenges ahead.

  20. Air Force seal activities

    NASA Technical Reports Server (NTRS)

    Mayhew, Ellen R.

    1994-01-01

    Seal technology development is an important part of the Air Force's participation in the Integrated High Performance Turbine Engine Technology (IHPTET) initiative, the joint DOD, NASA, ARPA, and industry endeavor to double turbine engine capabilities by the turn of the century. Significant performance and efficiency improvements can be obtained through reducing internal flow system leakage, but seal environment requirements continue to become more extreme as the engine thermodynamic cycles advance towards these IHPTET goals. Brush seal technology continues to be pursued by the Air Force to reduce leakage at the required conditions. Likewise, challenges in engine mainshaft air/oil seals are also being addressed. Counter-rotating intershaft applications within the IHPTET initiative involve very high rubbing velocities. This viewgraph presentation briefly describes past and current seal research and development programs and gives a summary of seal applications in demonstrator and developmental engine testing.

  1. Air entrainment in hairy surfaces

    NASA Astrophysics Data System (ADS)

    Nasto, Alice; Regli, Marianne; Brun, P.-T.; Alvarado, José; Clanet, Christophe; Hosoi, A. E.

    2016-07-01

    Motivated by diving semiaquatic mammals, we investigate the mechanism of dynamic air entrainment in hairy surfaces submerged in liquid. Hairy surfaces are cast out of polydimethylsiloxane elastomer and plunged into a fluid bath at different velocities. Experimentally, we find that the amount of air entrained is greater than what is expected for smooth surfaces. Theoretically, we show that the hairy surface can be considered as a porous medium and we describe the air entrainment via a competition between the hydrostatic forcing and the viscous resistance in the pores. A phase diagram that includes data from our experiments and biological data from diving semiaquatic mammals is included to place the model system in a biological context and predict the regime for which the animal is protected by a plastron of air.

  2. Is synthetic biology mechanical biology?

    PubMed

    Holm, Sune

    2015-12-01

    A widespread and influential characterization of synthetic biology emphasizes that synthetic biology is the application of engineering principles to living systems. Furthermore, there is a strong tendency to express the engineering approach to organisms in terms of what seems to be an ontological claim: organisms are machines. In the paper I investigate the ontological and heuristic significance of the machine analogy in synthetic biology. I argue that the use of the machine analogy and the aim of producing rationally designed organisms does not necessarily imply a commitment to mechanical biology. The ideal of applying engineering principles to biology is best understood as expressing recognition of the machine-unlikeness of natural organisms and the limits of human cognition. The paper suggests an interpretation of the identification of organisms with machines in synthetic biology according to which it expresses a strategy for representing, understanding, and constructing living systems that are more machine-like than natural organisms. PMID:26205204

  3. Biological Soft Robotics.

    PubMed

    Feinberg, Adam W

    2015-01-01

    In nature, nanometer-scale molecular motors are used to generate force within cells for diverse processes from transcription and transport to muscle contraction. This adaptability and scalability across wide temporal, spatial, and force regimes have spurred the development of biological soft robotic systems that seek to mimic and extend these capabilities. This review describes how molecular motors are hierarchically organized into larger-scale structures in order to provide a basic understanding of how these systems work in nature and the complexity and functionality we hope to replicate in biological soft robotics. These span the subcellular scale to macroscale, and this article focuses on the integration of biological components with synthetic materials, coupled with bioinspired robotic design. Key examples include nanoscale molecular motor-powered actuators, microscale bacteria-controlled devices, and macroscale muscle-powered robots that grasp, walk, and swim. Finally, the current challenges and future opportunities in the field are addressed. PMID:26643022

  4. Biology Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1978

    1978-01-01

    Presents experiments, demonstrations, activities and ideas relating to various fields of biology to be used in biology courses in secondary schools. Among those experiments presented are demonstrating the early stages of ferns and mosses and simple culture methods for fern prothalli. (HM)

  5. Biology Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1983

    1983-01-01

    Describes laboratory procedures, demonstrations, and classroom activities/materials, including chi-square tests on a microcomputer, an integrated biology game, microscope slides of leaf stomata, culturing soil nematodes, technique for watering locust egg-laying tubes, hazards of biological chemicals (such as benzene, benzidene, calchicine,…

  6. Biology Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1982

    1982-01-01

    Describes laboratory procedures, demonstrations, and classroom activities/materials, including use of dwarf cichlids (fishes) in secondary school biology, teaching edge effects on stomatal diffusion, computer program on effects of selection on gene frequencies, biological oxidation/reduction reactions, short cuts with Drosophila, computer program…

  7. Biology Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1982

    1982-01-01

    Presents procedures, exercises, demonstrations, and information on a variety of biology topics including labeling systems, biological indicators of stream pollution, growth of lichens, reproductive capacity of bulbous buttercups, a straw balance to measure transpiration, interaction of fungi, osmosis, and nitrogen fixation and crop production. (DC)

  8. Air Pollution.

    ERIC Educational Resources Information Center

    Fox, Donald L.

    1989-01-01

    Materials related to air pollution are reviewed for the period January 1987, to October 1988. The topics are pollution monitoring, air pollution, and environmental chemistry. The organization consists of two major analytical divisions: (1) gaseous methods; and (2) aerosol and particulate methods. (MVL)

  9. Air Pollution.

    EPA Science Inventory

    Air quality is affected by many types of pollutants that are emitted from various sources, including stationary and mobile. These sources release both criteria and hazardous air pollutants, which cause health effects, ecological harm, and material damage. They are generally categ...

  10. Reactive Air Aluminization

    SciTech Connect

    Choi, Jung-Pyung; Chou, Y. S.; Stevenson, Jeffry W.

    2011-10-28

    Ferritic stainless steels and other alloys are of great interest to SOFC developers for applications such as interconnects, cell frames, and balance of plant components. While these alloys offer significant advantages (e.g., low material and manufacturing cost, high thermal conductivity, and high temperature oxidation resistance), there are challenges which can hinder their utilization in SOFC systems; these challenges include Cr volatility and reactivity with glass seals. To overcome these challenges, protective coatings and surface treatments for the alloys are under development. In particular, aluminization of alloy surfaces offers the potential for mitigating both evaporation of Cr from the alloy surface and reaction of alloy constituents with glass seals. Commercial aluminization processes are available to SOFC developers, but they tend to be costly due to their use of exotic raw materials and/or processing conditions. As an alternative, PNNL has developed Reactive Air Aluminization (RAA), which offers a low-cost, simpler alternative to conventional aluminization methods.

  11. The challenge

    NASA Astrophysics Data System (ADS)

    Freeman, Roger L.

    1988-01-01

    Radio systems in space are on the brink of achieving throughout data rates in the hundred of megabits. At present, radio systems operate below 60 GHz and are the traditional workhorses of satellite communications. Legal constraints and the laws of physics limit data rates on the systems. It is maintained that the challenge to provide high technology tools to develop viable high-data-rate space transmission systems can be met before the next century if three optical system and technology issues are overcome. In declining order of importance, the issues are: precise optical pointing, acquisition, and tracking; efficient laser diode optical sources producing sufficient output power; and advanced optical detector technology.

  12. Biological post

    PubMed Central

    Kumar, B. Suresh; Kumar, Senthil; Mohan Kumar, N. S.; Karunakaran, J. V.

    2015-01-01

    Anterior tooth fracture as a result of traumatic injuries, is frequently encountered in endodontic practice. Proper reconstruction of extensively damaged teeth can be achieved through the fragment reattachment procedure known as “biological restoration.” This case report refers to the esthetics and functional recovery of extensively damaged maxillary central incisor through the preparation and adhesive cementation of “biological post” in a young patient. Biological post obtained through extracted teeth from another individual–represent a low-cost option and alternative technique for the morphofunctional recovery of extensively damaged anterior teeth. PMID:26538952

  13. BIOLOGICAL WARFARE

    PubMed Central

    Beeston, John

    1953-01-01

    The use of biological agents as controlled weapons of war is practical although uncertain. Three types of agents are feasible, including pathogenic organisms and biological pests, toxins, and synthetic hormones regulating plant growth. These agents may be chosen for selective effects varying from prolonged incipient illness to death of plants, man and domestic animals. For specific preventive and control measures required to combat these situations, there must be careful and detailed planning. The nucleus of such a program is available within the existing framework of public health activities. Additional research and expansion of established activities in time of attack are necessary parts of biological warfare defense. PMID:13059641

  14. Rotating Biological Contactors (RBC's). Student Manual. Biological Treatment Process Control.

    ERIC Educational Resources Information Center

    Zickefoose, Charles S.

    This student manual provides the textual material for a unit on rotating biological contactors (RBC's). Topic areas considered include: (1) flow patterns of water through RBC installations; (2) basic concepts (shaft and stage); (3) characteristics of biomass; (4) mechanical features (bearings, mechanical drive systems, and air drive systems); (5)…

  15. ADDRESSING HUMAN EXPOSURES TO AIR POLLUTANTS AROUND BUILDINGS IN URBAN AREAS WITH COMPUTATIONAL FLUID DYNAMICS MODELS

    EPA Science Inventory

    This paper discusses the status and application of Computational Fluid Dynamics (CFD) models to address challenges for modeling human exposures to air pollutants around urban building microenvironments. There are challenges for more detailed understanding of air pollutant sour...

  16. Restorative biological processes and health

    PubMed Central

    Robles, Theodore F.; Carroll, Judith E.

    2011-01-01

    Research on psychological influences on physiology primarily focuses on biological responses during stressful challenges, and how those responses can become dysregulated with prolonged or repeated exposure to stressful circumstances. At the same time, humans spend considerable time recovering from those challenges, and a host of biological processes involved in restoration and repair take place during normal, non-stressed activities. We review restorative biological processes and evidence for links between psychosocial factors and several restorative processes including sleep, wound healing, antioxidant production, DNA repair, and telomerase function. Across these biological processes, a growing body of evidence suggests that experiencing negative emotional states, including acute and chronic stress, depressive symptoms, and individual differences in negative affectivity and hostility, can influence these restorative processes. This review calls attention to restorative processes as fruitful mechanisms and outcomes for future biobehavioral research. PMID:21927619

  17. Lung cancer: Biology and treatment options.

    PubMed

    Lemjabbar-Alaoui, Hassan; Hassan, Omer Ui; Yang, Yi-Wei; Buchanan, Petra

    2015-12-01

    Lung cancer remains the leading cause of cancer mortality in men and women in the U.S. and worldwide. About 90% of lung cancer cases are caused by smoking and the use of tobacco products. However, other factors such as radon gas, asbestos, air pollution exposures, and chronic infections can contribute to lung carcinogenesis. In addition, multiple inherited and acquired mechanisms of susceptibility to lung cancer have been proposed. Lung cancer is divided into two broad histologic classes, which grow and spread differently: small-cell lung carcinomas (SCLCs) and non-small cell lung carcinomas (NSCLCs). Treatment options for lung cancer include surgery, radiation therapy, chemotherapy, and targeted therapy. Therapeutic-modalities recommendations depend on several factors, including the type and stage of cancer. Despite the improvements in diagnosis and therapy made during the past 25 years, the prognosis for patients with lung cancer is still unsatisfactory. The responses to current standard therapies are poor except for the most localized cancers. However, a better understanding of the biology pertinent to these challenging malignancies, might lead to the development of more efficacious and perhaps more specific drugs. The purpose of this review is to summarize the recent developments in lung cancer biology and its therapeutic strategies, and discuss the latest treatment advances including therapies currently under clinical investigation. PMID:26297204

  18. ENVITEC shows off air technologies

    SciTech Connect

    McIlvaine, R.W.

    1995-08-01

    The ENVITEC International Trade Fair for Environmental Protection and Waste Management Technologies, held in June in Duesseldorf, Germany, is the largest air pollution exhibition in the world and may be the largest environmental technology show overall. Visitors saw thousands of environmental solutions from 1,318 companies representing 29 countries and occupying roughly 43,000 square meters of exhibit space. Many innovations were displayed under the category, ``thermal treatment of air pollutants.`` New technologies include the following: regenerative thermal oxidizers; wet systems for removing pollutants; biological scrubbers;electrostatic precipitators; selective adsorption systems; activated-coke adsorbers; optimization of scrubber systems; and air pollution monitors.

  19. Regenerative life support technology challenges for the Space Exploration Initiative

    NASA Technical Reports Server (NTRS)

    Bilardo, Vincent J., Jr.; Theis, Ronald L. A.

    1992-01-01

    Regenerative life support systems have been identified as one of the critical enabling technologies for future human exploration of space. This discipline encompasses processes and subsystems which regenerate the air, water, solid waste, and food streams typical of human habitation so as to minimize the mass and volume of stored consumables which must accompany the humans on a mission. A number of key technology challenges within this broad discipline are described, ranging from the development of new physical, chemical, and biological processes for regenerating the air, water, solid waste, and food streams to the development of improved techniques for monitoring and controlling microbial and trace constituent contamination. A continuing challenge overarching the development of these new technologies is the need to minimize the mass, volume, and electrical power consumption of the flight hardware. More important for long duration exploration missions, however, is the development of highly reliable, long-lived, self- sufficient systems which absolutely minimize the logistics resupply and operational maintenance requirements of the life support system and which ensure human safety through their robust, reliable operating characteristics.

  20. The soil N cycle: new insights and key challenges

    NASA Astrophysics Data System (ADS)

    van Groenigen, J. W.; Huygens, D.; Boeckx, P.; Kuyper, Th. W.; Lubbers, I. M.; Rütting, T.; Groffman, P. M.

    2015-03-01

    The study of soil N cycling processes has been, is, and will be at the centre of attention in soil science research. The importance of N as a nutrient for all biota; the ever-increasing rates of its anthropogenic input in terrestrial (agro)ecosystems; its resultant losses to the environment; and the complexity of the biological, physical, and chemical factors that regulate N cycling processes all contribute to the necessity of further understanding, measuring, and altering the soil N cycle. Here, we review important insights with respect to the soil N cycle that have been made over the last decade, and present a personal view on the key challenges of future research. We identify three key challenges with respect to basic N cycling processes producing gaseous emissions: 1. quantifying the importance of nitrifier denitrification and its main controlling factors; 2. characterizing the greenhouse gas mitigation potential and microbiological basis for N2O consumption; 3. characterizing hotspots and hot moments of denitrification Furthermore, we identified a key challenge with respect to modelling: 1. disentangling gross N transformation rates using advanced 15N / 18O tracing models Finally, we propose four key challenges related to how ecological interactions control N cycling processes: 1. linking functional diversity of soil fauna to N cycling processes beyond mineralization; 2. determining the functional relationship between root traits and soil N cycling; 3. characterizing the control that different types of mycorrhizal symbioses exert on N cycling; 4. quantifying the contribution of non-symbiotic pathways to total N fixation fluxes in natural systems We postulate that addressing these challenges will constitute a comprehensive research agenda with respect to the N cycle for the next decade. Such an agenda would help us to meet future challenges on food and energy security, biodiversity conservation, water and air quality, and climate stability.

  1. Biology Notes

    ERIC Educational Resources Information Center

    School Science Review, 1972

    1972-01-01

    Ten ideas that have been tried out by the authors in schools are presented for biology teachers. The areas covered include genetics, dispersal of seeds, habituation in earthworms, respiration, sensory neurons, fats and oils. A reading list is provided. (PS)

  2. Biology Notes

    ERIC Educational Resources Information Center

    School Science Review, 1973

    1973-01-01

    Some helpful ideas are proposed for use by biology teachers. Topics included are Food Webs,'' Key to Identification of Families,'' Viruses,'' Sieve Tube,'' Woodlice,'' Ecology of Oak Leaf Roller Moth,'' and Model Making.'' (PS)

  3. Bottle Biology.

    ERIC Educational Resources Information Center

    CSTA Journal, 1995

    1995-01-01

    Provides hands-on biology activities using plastic bottles that allow students to become engaged in asking questions, creating experiments, testing hypotheses, and generating answers. Activities explore terrestrial and aquatic systems. (MKR)

  4. Biology Notes

    ERIC Educational Resources Information Center

    School Science Review, 1972

    1972-01-01

    Twelve new experiments in biology are described by teachers for use in classrooms. Broad areas covered include enzyme action, growth regulation, microscopy, respiration, germination, plant succession, leaf structure and blood structure. Explanations are detailed. (PS)

  5. Air Quality Modeling in Support of the Near-Road Exposures and Effects of Urban Air Pollutants Study (NEXUS)

    EPA Science Inventory

    A major challenge in traffic-related air pollution exposure studies is the lack of information regarding pollutant exposure characterization. Air quality modeling can provide spatially and temporally varying exposure estimates for examining relationships between traffic-related a...

  6. Air Pollution

    MedlinePlus

    ... tobacco smoke. How is air pollution linked to climate change? While climate change is a global process, it ... ozone levels are also a concern. Impacts of Climate Change on Human Health in the United States: A ...

  7. Air Apparent.

    ERIC Educational Resources Information Center

    Harbster, David A.

    1988-01-01

    Explains the principle upon which a barometer operates. Describes how to construct two barometric devices for use in the classroom that show air's changing pressure. Cites some conditions for predicting weather. (RT)

  8. Bustling argon: biological effect

    PubMed Central

    2013-01-01

    Argon is a noble gas in group 18 of the periodic table. Certificated to exist in air atmosphere merely one century ago, discovery of argon shows interesting stories of researching and exploring. It was assumed to have no chemical activity. However, argon indeed present its biological effect on mammals. Narcotic effect of argon in diving operation and neur-protective function of argon in cerebral injury demonstrate that argon has crucial effect and be concentrated on is necessary. Furthermore, consider to be harmless to human, argon clinical application in therapy would be another option. PMID:24088583

  9. Air pollution injury to plants

    SciTech Connect

    Seibert, R.J.

    1986-01-01

    The injuries to plants by oxidant air pollution can be used as biological indicators of pollution episodes. Bel W3 tobacco is often used as an indicator organism. Dogwood is another potential indicator organism. Specific growing procedures used for indicator organisms are described, as are diagnostic criteria for the type and extent of injuries.

  10. Biological databases for human research.

    PubMed

    Zou, Dong; Ma, Lina; Yu, Jun; Zhang, Zhang

    2015-02-01

    The completion of the Human Genome Project lays a foundation for systematically studying the human genome from evolutionary history to precision medicine against diseases. With the explosive growth of biological data, there is an increasing number of biological databases that have been developed in aid of human-related research. Here we present a collection of human-related biological databases and provide a mini-review by classifying them into different categories according to their data types. As human-related databases continue to grow not only in count but also in volume, challenges are ahead in big data storage, processing, exchange and curation. PMID:25712261

  11. Rethinking biologics in lupus nephritis.

    PubMed

    Venuturupalli, S

    2016-09-01

    Lupus nephritis (LN) is a chronic and devastating complication of systemic lupus erythematosus. Despite advances in our understanding of LN and the availability of effective therapies, LN remains a difficult clinical problem, and progression to end stage renal disease remains a significant challenge. Though the advent of biologics has revolutionized the treatment of many rheumatological conditions, and several clinical trials of biologics have been conducted in LN, the promise of biologics remains unfulfilled. The experience gained from these initial clinical trials can help tailor approaches in future clinical trials, and the lessons learned can be applied to find a cure for this condition. PMID:27497255

  12. Biological Databases for Human Research

    PubMed Central

    Zou, Dong; Ma, Lina; Yu, Jun; Zhang, Zhang

    2015-01-01

    The completion of the Human Genome Project lays a foundation for systematically studying the human genome from evolutionary history to precision medicine against diseases. With the explosive growth of biological data, there is an increasing number of biological databases that have been developed in aid of human-related research. Here we present a collection of human-related biological databases and provide a mini-review by classifying them into different categories according to their data types. As human-related databases continue to grow not only in count but also in volume, challenges are ahead in big data storage, processing, exchange and curation. PMID:25712261

  13. Students' Ideas and Attitudes about Air Quality

    NASA Astrophysics Data System (ADS)

    Skamp, Keith; Boyes, Eddie; Stanisstreet, Martin

    2004-06-01

    The results of a large scale (N=1001) cross-sectional (Years 6, 8 and 10) study of students' ideas about the composition of unpolluted air, the nature of air pollution, the biological consequences of air pollution, and about acid rain and the Greenhouse Effect are reported. A range of persistent alternative conceptions were identified, in some instances with increasing frequency across grades. Students' attitudes towards education, obligation, legislation or taxation as a way of reducing air pollution were determined; the first two were the most favoured. Increased attention to particular gas and air pollution concepts is recommended; other pedagogical implications are discussed.

  14. Installing Portable Classrooms With Good Air Quality.

    ERIC Educational Resources Information Center

    Godfrey, Ray

    2000-01-01

    Discusses the advantages of modular classrooms and improvements made in indoor air quality, including the pros and cons of portables, challenges districts face when planning and installing portables, and cost considerations. Concluding comments highlight system costs and maintenance required. (GR)

  15. Ecological Compatibility of GM Crops and Biological Control

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Insect-resistant and herbicide-tolerant genetically modified (GM) crops pervade many modern cropping systems, and present challenges and opportunities for developing biologically-based pest management programs. Interactions between biological control agents (insect predators, parasitoids, and pathog...

  16. Biological Oceanography

    NASA Technical Reports Server (NTRS)

    Abbott, M. R.

    1984-01-01

    Within the framework of global biogeochemical cycles and ocean productivity, there are two areas that will be of particular interest to biological oceanography in the 1990s. The first is the mapping in space time of the biomass and productivity of phytoplankton in the world ocean. The second area is the coupling of biological and physical processes as it affects the distribution and growth rate of phytoplankton biomass. Certainly other areas will be of interest to biological oceanographers, but these two areas are amenable to observations from satellites. Temporal and spatial variability is a regular feature of marine ecosystems. The temporal and spatial variability of phytoplankton biomass and productivity which is ubiquitous at all time and space scales in the ocean must be characterized. Remote sensing from satellites addresses these problems with global observations of mesocale (2 to 20 days, 10 to 200 km) features over a long period of time.

  17. Biological preconcentrator

    DOEpatents

    Manginell, Ronald P.; Bunker, Bruce C.; Huber, Dale L.

    2008-09-09

    A biological preconcentrator comprises a stimulus-responsive active film on a stimulus-producing microfabricated platform. The active film can comprise a thermally switchable polymer film that can be used to selectively absorb and desorb proteins from a protein mixture. The biological microfabricated platform can comprise a thin membrane suspended on a substrate with an integral resistive heater and/or thermoelectric cooler for thermal switching of the active polymer film disposed on the membrane. The active polymer film can comprise hydrogel-like polymers, such as poly(ethylene oxide) or poly(n-isopropylacrylamide), that are tethered to the membrane. The biological preconcentrator can be fabricated with semiconductor materials and technologies.

  18. Toxicology of the air in closed spaces

    NASA Technical Reports Server (NTRS)

    Wands, R. C.

    1975-01-01

    Sources and identification of contaminants in artificial gas atmospheres are discussed. They include biological sources (microflora and man), materials, processes, aerosols, and malfunctions. Acute or chronic toxicity may result from spacecraft air contamination. Air quality standards are presented in tabular form.

  19. Biological rhythms

    NASA Technical Reports Server (NTRS)

    Halberg, F.

    1975-01-01

    An overview is given of basic features of biological rhythms. The classification of periodic behavior of physical and psychological characteristics as circadian, circannual, diurnal, and ultradian is discussed, and the notion of relativistic time as it applies in biology is examined. Special attention is given to circadian rhythms which are dependent on the adrenocortical cycle. The need for adequate understanding of circadian variations in the basic physiological indicators of an individual (heart rate, body temperature, systolic and diastolic blood pressure, etc.) to ensure the effectiveness of prophylactic and therapeutic measures is stressed.

  20. Strategy Guideline. Compact Air Distribution Systems

    SciTech Connect

    Burdick, Arlan

    2013-06-01

    This guideline discusses the benefits and challenges of using a compact air distribution system to handle the reduced loads and reduced air volume needed to condition the space within an energy efficient home. The decision criteria for a compact air distribution system must be determined early in the whole-house design process, considering both supply and return air design. However, careful installation of a compact air distribution system can result in lower material costs from smaller equipment, shorter duct runs, and fewer outlets; increased installation efficiencies, including ease of fitting the system into conditioned space; lower loads on a better balanced HVAC system, and overall improved energy efficiency of the home.

  1. The Best and the Worst of Times for Evolutionary Biology.

    ERIC Educational Resources Information Center

    Avise, John C.

    2003-01-01

    Discusses opportunities and challenges for the field of evolutionary biology, particularly in areas related to molecular genetic technologies, the environment, biodiversity, and public education. (Author/KHR)

  2. Daunting challenges.

    PubMed

    Wirth, T E

    1994-09-01

    Excerpts of a speech on behalf of the United States at the Third Preparatory Meeting of the International Conference on Population and Development on April 5, 1994 are presented. The Draft Program of Action defines an international agenda for the Cairo Conference and for sustained, priority action in the remainder of this century and on into the 21st. 1) Quality voluntary family planning and reproductive health services must be universally available early in the 21st century by broadening the contraceptive choice as well as expanding and improving reproductive health services without coercion. As President Clinton has said, abortion should be safe, legal, and rare. 2) Educating females is a priority because it raises the status of women as well as lowers infant and maternal mortality and poverty. 3) The extent must be assessed of the national unmet need for antenatal care, childbirth care, immunization, and the monitoring of growth and development. 4) Emphasizing to adolescents the responsibilities of sexuality will reinforce health, education, and economic objectives. 5) As women are empowered, so must men be empowered to be responsible in relation to fertility as well as sexual and reproductive health. 6) Responsible mutually respectful sexual behavior must be encouraged among both men and women and the importance of such behavior must be taught to both boys and girls. 7) Any discussion of responsibility must also include emphasis on the family, which is challenged globally as never before. 8) The Cairo conference provides the opportunity to discuss the current unprecedented migrations of human populations around the world; the link between environmental degradation and migration; and the potential effect of development programs on population movements. 9) North-South partnerships must be nurtured, recognizing the mutually reinforcing roles and responsibilities of all countries for sustainable development. PMID:12288264

  3. Watching Grass Grow: Biology Explorations Online.

    ERIC Educational Resources Information Center

    Puttick, Gillian

    2002-01-01

    Describes an online biology course for science teachers in a master's degree program that focuses on the adaptation and natural selection of grass under environmental challenges. Provides experience with how biologists use questioning and investigation in their research. (YDS)

  4. Air surveillance

    SciTech Connect

    Patton, G.W.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the air surveillance and monitoring programs currently in operation at that Hanford Site. Atmospheric releases of pollutants from Hanford to the surrounding region are a potential source of human exposure. For that reason, both radioactive and nonradioactive materials in air are monitored at a number of locations. The influence of Hanford emissions on local radionuclide concentrations was evaluated by comparing concentrations measured at distant locations within the region to concentrations measured at the Site perimeter. This section discusses sample collection, analytical methods, and the results of the Hanford air surveillance program. A complete listing of all analytical results summarized in this section is reported separately by Bisping (1995).

  5. Biologically inspired intelligent robots

    NASA Astrophysics Data System (ADS)

    Bar-Cohen, Yoseph; Breazeal, Cynthia

    2003-07-01

    Humans throughout history have always sought to mimic the appearance, mobility, functionality, intelligent operation, and thinking process of biological creatures. This field of biologically inspired technology, having the moniker biomimetics, has evolved from making static copies of human and animals in the form of statues to the emergence of robots that operate with realistic behavior. Imagine a person walking towards you where suddenly you notice something weird about him--he is not real but rather he is a robot. Your reaction would probably be "I can't believe it but this robot looks very real" just as you would react to an artificial flower that is a good imitation. You may even proceed and touch the robot to check if your assessment is correct but, as oppose to the flower case, the robot may be programmed to respond physical and verbally. This science fiction scenario could become a reality as the current trend continues in developing biologically inspired technologies. Technology evolution led to such fields as artificial muscles, artificial intelligence, and artificial vision as well as biomimetic capabilities in materials science, mechanics, electronics, computing science, information technology and many others. This paper will review the state of the art and challenges to biologically-inspired technologies and the role that EAP is expected to play as the technology evolves.

  6. Biophysics and systems biology.

    PubMed

    Noble, Denis

    2010-03-13

    Biophysics at the systems level, as distinct from molecular biophysics, acquired its most famous paradigm in the work of Hodgkin and Huxley, who integrated their equations for the nerve impulse in 1952. Their approach has since been extended to other organs of the body, notably including the heart. The modern field of computational biology has expanded rapidly during the first decade of the twenty-first century and, through its contribution to what is now called systems biology, it is set to revise many of the fundamental principles of biology, including the relations between genotypes and phenotypes. Evolutionary theory, in particular, will require re-assessment. To succeed in this, computational and systems biology will need to develop the theoretical framework required to deal with multilevel interactions. While computational power is necessary, and is forthcoming, it is not sufficient. We will also require mathematical insight, perhaps of a nature we have not yet identified. This article is therefore also a challenge to mathematicians to develop such insights. PMID:20123750

  7. Biophysics and systems biology

    PubMed Central

    Noble, Denis

    2010-01-01

    Biophysics at the systems level, as distinct from molecular biophysics, acquired its most famous paradigm in the work of Hodgkin and Huxley, who integrated their equations for the nerve impulse in 1952. Their approach has since been extended to other organs of the body, notably including the heart. The modern field of computational biology has expanded rapidly during the first decade of the twenty-first century and, through its contribution to what is now called systems biology, it is set to revise many of the fundamental principles of biology, including the relations between genotypes and phenotypes. Evolutionary theory, in particular, will require re-assessment. To succeed in this, computational and systems biology will need to develop the theoretical framework required to deal with multilevel interactions. While computational power is necessary, and is forthcoming, it is not sufficient. We will also require mathematical insight, perhaps of a nature we have not yet identified. This article is therefore also a challenge to mathematicians to develop such insights. PMID:20123750

  8. Teaching the Ethics of Biology.

    ERIC Educational Resources Information Center

    Johansen, Carol K.; Harris, David E.

    2000-01-01

    Points out the challenges of educating students about bioethics and the limited training of many biologists on ethics. Discusses the basic principles of ethics and ethical decision making as applied to biology. Explains the models of ethical decision making that are often difficult for students to determine where to begin analyzing. (Contains 28…

  9. Linking marine biology and biotechnology.

    PubMed

    de Nys, Rocky; Steinberg, Peter D

    2002-06-01

    Studies of biological systems in which there is a direct link between the challenges faced by marine organisms and biotechnologies enable us to rationally search for active natural compounds and other novel biotechnologies. This approach is proving successful in developing new methods for the prevention of marine biofouling and for the identification of new lead compounds for the development of ultraviolet sunscreens. PMID:12180100

  10. Evolutionary biology of language.

    PubMed Central

    Nowak, M A

    2000-01-01

    Language is the most important evolutionary invention of the last few million years. It was an adaptation that helped our species to exchange information, make plans, express new ideas and totally change the appearance of the planet. How human language evolved from animal communication is one of the most challenging questions for evolutionary biology The aim of this paper is to outline the major principles that guided language evolution in terms of mathematical models of evolutionary dynamics and game theory. I will discuss how natural selection can lead to the emergence of arbitrary signs, the formation of words and syntactic communication. PMID:11127907

  11. Polyhydroxyalkanoates, challenges and opportunities.

    PubMed

    Wang, Ying; Yin, Jin; Chen, Guo-Qiang

    2014-12-01

    Microbial polyhydroxyalkanoates (PHA) have been developed as biodegradable plastics for the past many years. However, PHA still have only a very limited market. Because of the availability of large amount of shale gas, petroleum will not raise dramatically in price, this situation makes PHA less competitive compared with low cost petroleum based plastics. Therefore, two strategies have been adopted to meet this challenge: first, the development of a super PHA production strain combined with advanced fermentation processes to produce PHA at a low cost; second, the construction of functional PHA production strains with technology to control the precise structures of PHA molecules, this will allow the resulting PHA with high value added applications. The recent systems and synthetic biology approaches allow the above two strategies to be implemented. In the not so distant future, the new technology will allow PHA to be produced with a competitive price compared with petroleum-based plastics. PMID:24976377

  12. Biology Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1980

    1980-01-01

    Describes equipment, activities, and experiments useful in biology and environmental education instruction, including, among others, sampling in ecology using an overhead projector, the slide finder as an aid to microscopy, teaching kidney function, and teaching wildlife conservation-sand dune systems. (SK)

  13. Biology Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1984

    1984-01-01

    Presents information on the teaching of nutrition (including new information relating to many current O-level syllabi) and part 16 of a reading list for A- and S-level biology. Also includes a note on using earthworms as a source of material for teaching meiosis. (JN)

  14. Biology Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1981

    1981-01-01

    Presents content information and/or laboratory procedures and experiments on different biology topics including small-scale cultivation of watercress and its use in water-culture experiments, microbiology of the phylloplane, use of mouthbrooders in science class, and the gene. (DC)

  15. Scaffolded biology.

    PubMed

    Minelli, Alessandro

    2016-09-01

    Descriptions and interpretations of the natural world are dominated by dichotomies such as organism vs. environment, nature vs. nurture, genetic vs. epigenetic, but in the last couple of decades strong dissatisfaction with those partitions has been repeatedly voiced and a number of alternative perspectives have been suggested, from perspectives such as Dawkins' extended phenotype, Turner's extended organism, Oyama's Developmental Systems Theory and Odling-Smee's niche construction theory. Last in time is the description of biological phenomena in terms of hybrids between an organism (scaffolded system) and a living or non-living scaffold, forming unit systems to study processes such as reproduction and development. As scaffold, eventually, we can define any resource used by the biological system, especially in development and reproduction, without incorporating it as happens in the case of resources fueling metabolism. Addressing biological systems as functionally scaffolded systems may help pointing to functional relationships that can impart temporal marking to the developmental process and thus explain its irreversibility; revisiting the boundary between development and metabolism and also regeneration phenomena, by suggesting a conceptual framework within which to investigate phenomena of regular hypermorphic regeneration such as characteristic of deer antlers; fixing a periodization of development in terms of the times at which a scaffolding relationship begins or is terminated; and promoting plant galls to legitimate study objects of developmental biology. PMID:27287514

  16. Cancer Biology

    ERIC Educational Resources Information Center

    Dominiecki, Mary E.

    2004-01-01

    University of Colorado's Virtual Student Fellowship available at and developed by Bakemeier, Richard F. This website is designed to give students applying for a fellowship an overview of basic topics in biology and how they are used by cancer researchers to develop new treatments.

  17. Biology Notes

    ERIC Educational Resources Information Center

    School Science Review, 1976

    1976-01-01

    Describes nine biology experiments, including osmosis, genetics; oxygen content of blood, enzymes in bean seedlings, preparation of bird skins, vascularization in bean seedlings, a game called "sequences" (applied to review situations), crossword puzzle for human respiration, and physiology of the woodlouse. (CS)

  18. Biology Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1979

    1979-01-01

    Organized by topic is a reading list for A- and S-level biology. Described are experiments for measuring rate of water uptake in a shoot; questions to aid students in designing experiments; rise of overhead projection to demonstrate osmosis and blood cell counting; and microbial manufacture of vinegar. (CS)

  19. Marine Biology

    ERIC Educational Resources Information Center

    Dewees, Christopher M.; Hooper, Jon K.

    1976-01-01

    A variety of informational material for a course in marine biology or oceanology at the secondary level is presented. Among the topics discussed are: food webs and pyramids, planktonic blooms, marine life, plankton nets, food chains, phytoplankton, zooplankton, larval plankton and filter feeders. (BT)

  20. (Biological dosimetry)

    SciTech Connect

    Preston, R.J.

    1990-12-17

    The traveler attended the 1st International Conference on Biological Dosimetry in Madrid, Spain. This conference was organized to provide information to a general audience of biologists, physicists, radiotherapists, industrial hygiene personnel and individuals from related fields on the current ability of cytogenetic analysis to provide estimates of radiation dose in cases of occupational or environmental exposure. There is a growing interest in Spain in biological dosimetry because of the increased use of radiation sources for medical and occupational uses, and with this the anticipated and actual increase in numbers of overexposure. The traveler delivered the introductory lecture on Biological Dosimetry: Mechanistic Concepts'' that was intended to provide a framework by which the more applied lectures could be interpreted in a mechanistic way. A second component of the trip was to provide advice with regard to several recent cases of overexposure that had been or were being assessed by the Radiopathology and Radiotherapy Department of the Hospital General Gregorio Maranon'' in Madrid. The traveler had provided information on several of these, and had analyzed cells from some exposed or purportedly exposed individuals. The members of the biological dosimetry group were referred to individuals at REACTS at Oak Ridge Associated Universities for advice on follow-up treatment.

  1. Biology Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1981

    1981-01-01

    Outlines a variety of laboratory procedures, techniques, and materials including construction of a survey frame for field biology, a simple tidal system, isolation and applications of plant protoplasts, tropisms, teaching lung structure, and a key to statistical methods for biologists. (DS)

  2. Bottle Biology.

    ERIC Educational Resources Information Center

    Jager, Peter

    1993-01-01

    Describes activities which utilize plastic drink bottles and are designed to foster the development of a wide range of biological and ecological concepts. Includes instructions for making a model compost column and presents a model that illustrates open versus closed ecosystems. (DDR)

  3. Sverdrup's Biology

    NASA Astrophysics Data System (ADS)

    McGowan, J.

    2002-12-01

    Sverdrup's contribution to Biological Oceanography were more than merely substantial, they were of fundamental importance. His plan for the training of graduate students at Scripps did not recognize the traditional division of the basic disciplines into separate categories of physics, chemistry, biology and geology. He insisted that Oceanography was a multi-disciplinary subject and that all entering students should study all four subjects. Today this is not very unusual but it was in the early 50s when I took those courses. We biologists carried away from those courses an appreciation of the importance of both spatial and temporal scale. It was of clear relevance to problems of oceanic population and community biology. But there was still more to his biology. He is responsible for a very simple, but very elegant model of the regulation of oceanic primary productivity. The elements of this model are found today in the ten or so highly derivative models. He also published a map predicting global ocean productivity based on the ideas in the model plus some wonderfully intuitive thinking. This map does not differ strongly from those glorious false color ones being published today.

  4. Biology Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1983

    1983-01-01

    Describes laboratory procedures, demonstrations, and classroom activities/materials, including water relation exercise on auxin-treated artichoke tuber tissue; aerobic respiration in yeast; an improved potometer; use of mobiles in biological classification, and experiments on powdery mildews and banana polyphenol oxidase. Includes reading lists…

  5. The biology of cultural conflict

    PubMed Central

    Berns, Gregory S.; Atran, Scott

    2012-01-01

    Although culture is usually thought of as the collection of knowledge and traditions that are transmitted outside of biology, evidence continues to accumulate showing how biology and culture are inseparably intertwined. Cultural conflict will occur only when the beliefs and traditions of one cultural group represent a challenge to individuals of another. Such a challenge will elicit brain processes involved in cognitive decision-making, emotional activation and physiological arousal associated with the outbreak, conduct and resolution of conflict. Key targets to understand bio-cultural differences include primitive drives—how the brain responds to likes and dislikes, how it discounts the future, and how this relates to reproductive behaviour—but also higher level functions, such as how the mind represents and values the surrounding physical and social environment. Future cultural wars, while they may bear familiar labels of religion and politics, will ultimately be fought over control of our biology and our environment. PMID:22271779

  6. NOVEL MARKERS OF AIR POLLUTION-INDUCED VASCULAR TOXICITY

    EPA Science Inventory

    The results of this project should be a handful of biological markers that can be subsequently used to: 1) identify susceptible individuals, 2) identify causal components of the complex air pollution mixture, and 3) better understand the biological mechanisms involved in air p...

  7. Air Pollution.

    ERIC Educational Resources Information Center

    Scorer, Richard S.

    The purpose of this book is to describe the basic mechanisms whereby pollution is transported and diffused in the atmosphere. It is designed to give practitioners an understanding of basic mechanics and physics so they may have a correct basis on which to formulate their decisions related to practical air pollution control problems. Since many…

  8. /Air Atmospheres

    NASA Astrophysics Data System (ADS)

    Emami, Samar; Sohn, Hong Yong; Kim, Hang Goo

    2014-08-01

    Molten magnesium oxidizes rapidly when exposed to air causing melt loss and handling difficulties. The use of certain additive gases such as SF6, SO2, and CO2 to form a protective MgO layer over a magnesium melt has been proposed. The oxidation behavior of molten magnesium in air containing various concentrations of SF6 was investigated. Measurements of the kinetics of the oxide layer growth at various SF6 concentrations in air and temperatures were made. Experiments were performed using a thermogravimetric analysis unit in the temperature range of 943 K to 1043 K (670 °C to 770 °C). Results showed that a thin, coherent, and protective MgF2 layer was formed under SF6/Air mixtures, with a thickness ranging from 300 nm to 3 μm depending on SF6 concentration, temperature, and exposure time. Rate parameters were calculated and a model for the process was developed. The morphology and composition of the surface films were studied using scanning electron microscope and energy-dispersive spectroscope.

  9. Air Pollution

    PubMed Central

    Clifton, Marjorie

    1964-01-01

    Dr Marjorie Clifton describes the classification of gaseous and nongaseous constituents of air pollution and then outlines the methods of measuring these. The National Survey embraced 150 towns of all sizes throughout England and Wales and provided data on smoke and sulphur dioxide in relation to climate, topography, industrialization, population density, fuel utilization and urban development. Dr W C Turner discusses the relationship between air pollution and mortality from respiratory conditions, and particularly the incidence of chronic bronchitis. He postulates a theory that such respiratory conditions arise as an allergy to the spores of certain moulds, spore formation being encouraged by the air humidity in Greatv Britain and overcrowded and damp living conditions. He describes the results of a twenty-week study undertaken in 1962-3, showing associations between respiratory disease and levels of air pollution. Dr Stuart Carne undertook a survey in general practice to plot the patterns of respiratory illness in London during the winter of 1962-3. There were two peaks of respiratory illnesses coinciding with the fog at the beginning of December and the freeze-up from the end of December until the beginning of March. PMID:14178955

  10. Challenge of biomechanics.

    PubMed

    Volokh, K Y

    2013-06-01

    The application of mechanics to biology--biomechanics--bears great challenges due to the intricacy of living things. Their dynamism, along with the complexity of their mechanical response (which in itself involves complex chemical, electrical, and thermal phenomena) makes it very difficult to correlate empirical data with theoretical models. This difficulty elevates the importance of useful biomechanical theories compared to other fields of engineering. Despite inherent imperfections of all theories, a well formulated theory is crucial in any field of science because it is the basis for interpreting observations. This is all-the-more vital, for instance, when diagnosing symptoms, or planning treatment to a disease. The notion of interpreting empirical data without theory is unscientific and unsound. This paper attempts to fortify the importance of biomechanics and invigorate research efforts for those engineers and mechanicians who are not yet involved in the field. It is not aimed here, however, to give an overview of biomechanics. Instead, three unsolved problems are formulated to challenge the readers. At the micro-scale, the problem of the structural organization and integrity of the living cell is presented. At the meso-scale, the enigma of fingerprint formation is discussed. At the macro-scale, the problem of predicting aneurysm ruptures is reviewed. It is aimed here to attract the attention of engineers and mechanicians to problems in biomechanics which, in the author's opinion, will dominate the development of engineering and mechanics in forthcoming years. PMID:24015479

  11. Biological safety cabinetry.

    PubMed Central

    Kruse, R H; Puckett, W H; Richardson, J H

    1991-01-01

    The biological safety cabinet is the one piece of laboratory and pharmacy equipment that provides protection for personnel, the product, and the environment. Through the history of laboratory-acquired infections from the earliest published case to the emergence of hepatitis B and AIDS, the need for health care worker protection is described. A brief description with design, construction, function, and production capabilities is provided for class I and class III safety cabinets. The development of the high-efficiency particulate air filter provided the impetus for clean room technology, from which evolved the class II laminar flow biological safety cabinet. The clean room concept was advanced when the horizontal airflow clean bench was manufactured; it became popular in pharmacies for preparing intravenous solutions because the product was protected. However, as with infectious microorganisms and laboratory workers, individual sensitization to antibiotics and the advent of hazardous antineoplastic agents changed the thinking of pharmacists and nurses, and they began to use the class II safety cabinet to prevent adverse personnel reactions to the drugs. How the class II safety cabinet became the mainstay in laboratories and pharmacies is described, and insight is provided into the formulation of National Sanitation Foundation standard number 49 and its revisions. The working operations of a class II cabinet are described, as are the variations of the four types with regard to design, function, air velocity profiles, and the use of toxins. The main certification procedures are explained, with examples of improper or incorrect certifications. The required levels of containment for microorganisms are given. Instructions for decontaminating the class II biological safety cabinet of infectious agents are provided; unfortunately, there is no method for decontaminating the cabinet of antineoplastic agents. Images PMID:2070345

  12. Protocol for a human in vivo model of acute cigarette smoke inhalation challenge in smokers with COPD: monitoring the nasal and systemic immune response using a network biology approach

    PubMed Central

    Ross, Clare L; Galloway-Phillipps, Neil; Armstrong, Paul C; Mitchell, Jane A; Warner, Timothy D; Brearley, Christopher; Ito, Mari; Tunstall, Tanushree; Elkin, Sarah; Kon, Onn Min; Hansel, Trevor T; Paul-Clark, Mark J

    2015-01-01

    Introduction Cigarette smoke contributes to a diverse range of diseases including chronic obstructive pulmonary disease (COPD), cardiovascular disorders and many cancers. There currently is a need for human challenge models, to assess the acute effects of a controlled cigarette smoke stimulus, followed by serial sampling of blood and respiratory tissue for advanced molecular profiling. We employ precision sampling of nasal mucosal lining fluid by absorption to permit soluble mediators measurement in eluates. Serial nasal curettage was used for transcriptomic analysis of mucosal tissue. Methods and analysis Three groups of strictly defined patients will be studied: 12 smokers with COPD (GOLD Stage 2) with emphysema, 12 matched smokers with normal lung function and no evidence of emphysema, and 12 matched never smokers with normal spirometry. Patients in the smoking groups are current smokers, and will be given full support to stop smoking immediately after this study. In giving a controlled cigarette smoke stimulus, all patients will have abstained from smoking for 12 h, and will smoke two cigarettes with expiration through the nose in a ventilated chamber. Before and after inhalation of cigarette smoke, a series of samples will be taken from the blood, nasal mucosal lining fluid and nasal tissue by curettage. Analysis of plasma nicotine and metabolites in relation to levels of soluble inflammatory mediators in nasal lining fluid and blood, as well as assessing nasal transcriptomics, ex vivo blood platelet aggregation and leucocyte responses to toll-like receptor agonists will be undertaken. Implications Development of acute cigarette smoke challenge models has promise for the study of molecular effects of smoking in a range of pathological processes. Ethics and dissemination This study was approved by the West London National Research Ethics Committee (12/LO/1101). The study findings will be presented at conferences and will be reported in peer-reviewed journals

  13. [Biologics and mycobacterial diseases].

    PubMed

    Tsuyuguchi, Kazunari; Matsumoto, Tomoshige

    2013-03-01

    relationship between RA and nontuberculous mycobacterial (NTM) diseases were discussed, which is still poorly understood. It is well known that airway diseases often accompany RA, which may be considered as a possible etiology for development of NTM diseases, but conversely it may lead to overdiagnosis of NTM disease. Next, we evaluated justification for the contraindication of biologics in patients with NTM diseases. Recent multicenter study showed that prognosis of patients developing NTM diseases during treatment with biologics were not always poor, which throws doubt on uniform prohibition of biologics in NTM diseases. 3. Future guideline for treating latent tuberculosis infection: Seiya KATO (Research Institute of Tuberculosis, Japan AntiTuberculosis Association) The Japanese Society for Tuberculosis issued a joint statement on chemoprophylaxis with the Japan College of Rheumatology in 2004. However, issues and challenges due to changing circumstance indicate application of interferon gamma release assay (IGRA), increased variety and indication of biologics, dissemination of knowledge on strategy and system for latent tuberculosis infection (LTBI), etc. Future guideline should include 1) promoting LTBI treatment to achieve low incidence, 2) updated information on IGRAs, 3) treatment strategy and target: contact to infectious cases, immunosuppressive cases (especially HIV and patients treated with biologics), high risk groups, etc. 4) fundamental information on tuberculosis control strategies, especially DOTS. 4. Therapy for RA and tuberculosis in patients with RA and TB activated by anti-TNF treatment: Tomoshige MATSUMOTO (Osaka Prefectural Medical Center for Respiratory and Allergic Diseases) Biologics targeting TNF, including infliximab, have brought about a paradigm shift in the treatment of rheumatoid arthritis (RA). In 2001, tuberculosis, an ancient and also modem scourge, became spotlighted again, because Keane reported in the New England Journal of Medicine that

  14. The Structure and Function of Biological Networks

    ERIC Educational Resources Information Center

    Wu, Daniel Duanqing

    2010-01-01

    Biology has been revolutionized in recent years by an explosion in the availability of data. Transforming this new wealth of data into meaningful biological insights and clinical breakthroughs requires a complete overhaul both in the questions being asked and the methodologies used to answer them. A major challenge in organizing and understanding…

  15. Biological Life Support Technologies: Commercial Opportunities

    NASA Technical Reports Server (NTRS)

    Nelson, Mark (Editor); Soffen, Gerald (Editor)

    1990-01-01

    The papers from the workshop on Biological Life Support Technologies: Commercial Opportunities are presented. The meeting attracted researchers in environmental and bioregenerative systems. The role of biological support technologies was evaluated in the context of the global environmental challenge on Earth and the space exploration initiative, with its goal of a permanent space station, lunar base, and Mars exploration.

  16. BIOLOGY I, NEW APPROACHES AND OBJECTIVES.

    ERIC Educational Resources Information Center

    COKER, ROBERT; AND OTHERS

    THE PRINCIPLES OF MODERN BIOLOGY SHOULD BE PRESENTED IN A DYNAMIC AND CHALLENGING WAY TO CAPABLE STUDENTS TO DEVELOP LASTING INTEREST IN THE SUBJECT AND TO PLACE EMPHASIS UPON THE ROLE OF THE PHYSICAL SCIENCES IN BIOLOGY IN ACCORD WITH NATIONWIDE TENDENCY. THE COURSE IS COMPLETE IN ITSELF BUT PROVIDES A BASIS FOR STUDENTS WHO ELECT ADVANCED WORK.…

  17. Marine biology

    SciTech Connect

    Thurman, H.V.; Webber, H.H.

    1984-01-01

    This book discusses both taxonomic and ecological topics on marine biology. Full coverage of marine organisms of all five kingdoms is provided, along with interesting and thorough discussion of all major marine habitats. Organization into six major parts allows flexibility. It also provides insight into important topics such as disposal of nuclear waste at sea, the idea that life began on the ocean floor, and how whales, krill, and people interact. A full-color photo chapter reviews questions, and exercises. The contents are: an overview marine biology: fundamental concepts/investigating life in the ocean; the physical ocean, the ocean floor, the nature of water, the nature and motion of ocean water; general ecology, conditions for life in the sea, biological productivity and energy transfer; marine organisms; monera, protista, mycota and metaphyta; the smaller marine animals, the large animals marine habitats, the intertidal zone/benthos of the continental shelf, the photic zone, the deep ocean, the ocean under stress, marine pollution, appendix a: the metric system and conversion factors/ appendix b: prefixes and suffixes/ appendix c: taxonomic classification of common marine organisms, and glossary, and index.

  18. Reputation-based collaborative network biology.

    PubMed

    Binder, Jean; Boue, Stephanie; Di Fabio, Anselmo; Fields, R Brett; Hayes, William; Hoeng, Julia; Park, Jennifer S; Peitsch, Manuel C

    2015-01-01

    A pilot reputation-based collaborative network biology platform, Bionet, was developed for use in the sbv IMPROVER Network Verification Challenge to verify and enhance previously developed networks describing key aspects of lung biology. Bionet was successful in capturing a more comprehensive view of the biology associated with each network using the collective intelligence and knowledge of the crowd. One key learning point from the pilot was that using a standardized biological knowledge representation language such as BEL is critical to the success of a collaborative network biology platform. Overall, Bionet demonstrated that this approach to collaborative network biology is highly viable. Improving this platform for de novo creation of biological networks and network curation with the suggested enhancements for scalability will serve both academic and industry systems biology communities. PMID:25592588

  19. Enabling Systems Biology Approaches Through Microfabricated Systems

    PubMed Central

    Zhan, Mei; Chingozha, Loice; Lu, Hang

    2014-01-01

    With the experimental tools and knowledge that have accrued from a long history of reductionist biology, we can now start to put the pieces together and begin to understand how biological systems function as an integrated whole. Here, we describe how microfabricated tools have demonstrated promise in addressing experimental challenges in throughput, resolution and sensitivity to support systems-based approaches to biological understanding. PMID:23984862

  20. Microbiology and atmospheric processes: research challenges concerning the impact of airborne micro-organisms on the atmosphere and climate

    NASA Astrophysics Data System (ADS)

    Morris, C. E.; Sands, D. C.; Bardin, M.; Jaenicke, R.; Vogel, B.; Leyronas, C.; Ariya, P. A.; Psenner, R.

    2011-01-01

    For the past 200 years, the field of aerobiology has explored the abundance, diversity, survival and transport of micro-organisms in the atmosphere. Micro-organisms have been explored as passive and severely stressed riders of atmospheric transport systems. Recently, an interest in the active roles of these micro-organisms has emerged along with proposals that the atmosphere is a global biome for microbial metabolic activity and perhaps even multiplication. As part of a series of papers on the sources, distribution and roles in atmospheric processes of biological particles in the atmosphere, here we describe the pertinence of questions relating to the potential roles that air-borne micro-organisms might play in meteorological phenomena. For the upcoming era of research on the role of air-borne micro-organisms in meteorological phenomena, one important challenge is to go beyond descriptions of abundance of micro-organisms in the atmosphere toward an understanding of their dynamics in terms of both biological and physico-chemical properties and of the relevant transport processes at different scales. Another challenge is to develop this understanding under contexts pertinent to their potential role in processes related to atmospheric chemistry, the formation of clouds, precipitation and radiative forcing. This will require truly interdisciplinary approaches involving collaborators from the biological and physical sciences, from disciplines as disparate as agronomy, microbial genetics and atmosphere physics, for example.

  1. [Air pollution].

    PubMed

    Bauters, Christophe; Bauters, Gautier

    2016-01-01

    Short-term exposure to particulate matter (PM) air pollution is associated with an increased cardiovascular mortality. Chronic exposure to PM is also associated with cardiovascular risk. Myocardial infarction and heart failure are the most common cardiovascular events associated with PM pollution. The pathophysiological mechanisms related to PM pollution are inflammation, thrombosis, vasomotion abnormalities, progression of atherosclerosis, increased blood pressure, and cardiac remodeling. A decrease in PM exposure may be particularly beneficial in subjects with a high cardiovascular risk. PMID:26547674

  2. Biological design in science classrooms.

    PubMed

    Scott, Eugenie C; Matzke, Nicholas J

    2007-05-15

    Although evolutionary biology is replete with explanations for complex biological structures, scientists concerned about evolution education have been forced to confront "intelligent design" (ID), which rejects a natural origin for biological complexity. The content of ID is a subset of the claims made by the older "creation science" movement. Both creationist views contend that highly complex biological adaptations and even organisms categorically cannot result from natural causes but require a supernatural creative agent. Historically, ID arose from efforts to produce a form of creationism that would be less vulnerable to legal challenges and that would not overtly rely upon biblical literalism. Scientists do not use ID to explain nature, but because it has support from outside the scientific community, ID is nonetheless contributing substantially to a long-standing assault on the integrity of science education. PMID:17494747

  3. Biological design in science classrooms

    PubMed Central

    Scott, Eugenie C.; Matzke, Nicholas J.

    2007-01-01

    Although evolutionary biology is replete with explanations for complex biological structures, scientists concerned about evolution education have been forced to confront “intelligent design” (ID), which rejects a natural origin for biological complexity. The content of ID is a subset of the claims made by the older “creation science” movement. Both creationist views contend that highly complex biological adaptations and even organisms categorically cannot result from natural causes but require a supernatural creative agent. Historically, ID arose from efforts to produce a form of creationism that would be less vulnerable to legal challenges and that would not overtly rely upon biblical literalism. Scientists do not use ID to explain nature, but because it has support from outside the scientific community, ID is nonetheless contributing substantially to a long-standing assault on the integrity of science education. PMID:17494747

  4. 32 CFR 644.516 - Clearance of Air Force lands.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 4 2014-07-01 2013-07-01 true Clearance of Air Force lands. 644.516 Section 644... Excess Land and Improvements § 644.516 Clearance of Air Force lands. The Chief of Engineers has no responsibility for inspecting or clearing excess Air Force land of explosives or chemical/biological...

  5. 32 CFR 644.516 - Clearance of Air Force lands.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true Clearance of Air Force lands. 644.516 Section 644... Excess Land and Improvements § 644.516 Clearance of Air Force lands. The Chief of Engineers has no responsibility for inspecting or clearing excess Air Force land of explosives or chemical/biological...

  6. 32 CFR 644.516 - Clearance of Air Force lands.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 4 2013-07-01 2013-07-01 false Clearance of Air Force lands. 644.516 Section... Excess Land and Improvements § 644.516 Clearance of Air Force lands. The Chief of Engineers has no responsibility for inspecting or clearing excess Air Force land of explosives or chemical/biological...

  7. 32 CFR 644.516 - Clearance of Air Force lands.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 4 2011-07-01 2011-07-01 false Clearance of Air Force lands. 644.516 Section... Excess Land and Improvements § 644.516 Clearance of Air Force lands. The Chief of Engineers has no responsibility for inspecting or clearing excess Air Force land of explosives or chemical/biological...

  8. 32 CFR 644.516 - Clearance of Air Force lands.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 4 2012-07-01 2011-07-01 true Clearance of Air Force lands. 644.516 Section 644... Excess Land and Improvements § 644.516 Clearance of Air Force lands. The Chief of Engineers has no responsibility for inspecting or clearing excess Air Force land of explosives or chemical/biological...

  9. Air filtering device

    SciTech Connect

    Backus, A.L.

    1992-07-28

    This patent describes a room air cleaning device. It comprises: a box housing having an air inlet and an air outlet provided therein; a vertical baffle coupled to the box housing opposite the air outlet and spaced form the box housing such that an air egress outlet is formed between the vertical baffle and the box housing; air cleansing means substantially disposed within the box housing and cleansing air passing into the inlet and out of the air egress outlet; a fan disposed within the box housing, the fan providing air movement through the air inlet and the air egress outlet; wherein air exits the room air cleaning device through the air egress outlet as a vertical plane of moving air; and wherein formation of the vertical plane of moving air contributes to the formation of a low pressure area drawing impure air toward the air inlet.

  10. Biologics for tendon repair☆

    PubMed Central

    Docheva, Denitsa; Müller, Sebastian A.; Majewski, Martin; Evans, Christopher H.

    2015-01-01

    Tendon injuries are common and present a clinical challenge to orthopedic surgery mainly because these injuries often respond poorly to treatment and require prolonged rehabilitation. Therapeutic options used to repair ruptured tendons have consisted of suture, autografts, allografts, and synthetic prostheses. To date, none of these alternatives has provided a successful long-term solution, and often the restored tendons do not recover their complete strength and functionality. Unfortunately, our understanding of tendon biology lags far behind that of other musculoskeletal tissues, thus impeding the development of new treatment options for tendon conditions. Hence, in this review, after introducing the clinical significance of tendon diseases and the present understanding of tendon biology, we describe and critically assess the current strategies for enhancing tendon repair by biological means. These consist mainly of applying growth factors, stem cells, natural biomaterials and genes, alone or in combination, to the site of tendon damage. A deeper understanding of how tendon tissue and cells operate, combined with practical applications of modern molecular and cellular tools could provide the long awaited breakthrough in designing effective tendon-specific therapeutics and overall improvement of tendon disease management. PMID:25446135

  11. Land Biology

    NASA Technical Reports Server (NTRS)

    Kanemasu, E. T.

    1984-01-01

    The advancing technology of our civilization on Earth affects our environment on a local, regional and global scale. Local effects can feed into larger scale effects because of positive feedbacks in our system. The ability to understand, quantify and predict the large scale and long-term effects of technology is truly mind boggling. The understanding of these effects, which is paramount to the quality of life on Earth, will depend upon the ability to interact with scientists from the biological, atmospheric, oceanographic and geological sciences and develop a common communication system and unified objectives.

  12. Large scale air monitoring: lichen vs. air particulate matter analysis.

    PubMed

    Rossbach, M; Jayasekera, R; Kniewald, G; Thang, N H

    1999-07-15

    Biological indicator organisms have been widely used for monitoring and banking purposes for many years. Although the complexity of the interactions between organisms and their environment is generally not easily comprehensible, environmental quality assessment using the bioindicator approach offers some convincing advantages compared to direct analysis of soil, water, or air. Measurement of air particulates is restricted to experienced laboratories with access to expensive sampling equipment. Additionally, the amount of material collected generally is just enough for one determination per sampling and no multidimensional characterization might be possible. Further, fluctuations in air masses have a pronounced effect on the results from air filter sampling. Combining the integrating property of bioindicators with the world wide availability and particular matrix characteristics of air particulate matter as a prerequisite for global monitoring of air pollution is discussed. A new approach for sampling urban dust using large volume filtering devices installed in air conditioners of large hotel buildings is assessed. A first experiment was initiated to collect air particulates (300-500 g each) from a number of hotels during a period of 3-4 months by successive vacuum cleaning of used inlet filters from high volume air conditioning installations reflecting average concentrations per 3 months in different large cities. This approach is expected to be upgraded and applied for global monitoring. Highly positive correlated elements were found in lichens such as K/S, Zn/P, the rare earth elements (REE) and a significant negative correlation between Hg and Cu was observed in these samples. The ratio of concentrations of elements in dust and Usnea spp. is highest for Cz, Zn and Fe (400-200) and lowest for elements such as Ca, Rb, and Sr (20-10). PMID:10474261

  13. Ecological Challenges for Closed Systems

    NASA Astrophysics Data System (ADS)

    Nelson, Mark; Dempster, William; Allen, John P.

    2012-07-01

    Closed ecological systems are desirable for a number of purposes. In space life support systems, material closure allows precious life-supporting resources to be kept inside and recycled. Closure in small biospheric systems facilitates detailed measurement of global ecological processes and biogeochemical cycles. Closed testbeds facilitate research topics which require isolation from the outside (e.g. genetically modified organisms; radioisotopes) so their ecological interactions and fluxes can be studied separate from interactions with the outside environment. But to achieve and maintain closure entails solving complex ecological challenges. These challenges include being able to handle faster cycling rates and accentuated daily and seasonal fluxes of critical life elements such as carbon dioxide, oxygen, water, macro- and mico-nutrients. The problems of achieving sustainability in closed systems for life support include how to handle atmospheric dynamics including trace gases, producing a complete human diet and recycling nutrients and maintaining soil fertility, the sustaining of healthy air and water and preventing the loss of crucial elements from active circulation. In biospheric facilities the challenge is also to produce analogues to natural biomes and ecosystems, studying processes of self-organization and adaptation in systems that allow specification or determination of state variables and cycles which may be followed through all interactions from atmosphere to soils. Other challenges include the dynamics and genetics of small populations, the psychological challenges for small isolated human groups and measures and options which may be necessary to ensure long-term operation of closed ecological systems.

  14. Digital 'faces' of synthetic biology.

    PubMed

    Friedrich, Kathrin

    2013-06-01

    In silicio design plays a fundamental role in the endeavour to synthesise biological systems. In particular, computer-aided design software enables users to manage the complexity of biological entities that is connected to their construction and reconfiguration. The software's graphical user interface bridges the gap between the machine-readable data on the algorithmic subface of the computer and its human-amenable surface represented by standardised diagrammatic elements. Notations like the Systems Biology Graphical Notation (SBGN), together with interactive operations such as drag & drop, allow the user to visually design and simulate synthetic systems as 'bio-algorithmic signs'. Finally, the digital programming process should be extended to the wet lab to manufacture the designed synthetic biological systems. By exploring the different 'faces' of synthetic biology, I argue that in particular computer-aided design (CAD) is pushing the idea to automatically produce de novo objects. Multifaceted software processes serve mutually aesthetic, epistemic and performative purposes by simultaneously black-boxing and bridging different data sources, experimental operations and community-wide standards. So far, synthetic biology is mainly a product of digital media technologies that structurally mimic the epistemological challenge to take both qualitative as well as quantitative aspects of biological systems into account in order to understand and produce new and functional entities. PMID:23578486

  15. A REVIEW OF AIR POLLUTANT DAMAGE TO MATERIALS

    EPA Science Inventory

    Report prepared as U.S. contribution to Panel 3 of NATO Committee on Challenges of Modern Society Pilot Study on Air Pollution Control Strategies and Impact Modeling. Panel 3 focuses on air pollutant impact and will publish 4 reports on air pollutants effects; this is the first i...

  16. Strategy Guideline: Compact Air Distribution Systems

    SciTech Connect

    Burdick, A.

    2013-06-01

    This Strategy Guideline discusses the benefits and challenges of using a compact air distribution system to handle the reduced loads and reduced air volume needed to condition the space within an energy efficient home. Traditional systems sized by 'rule of thumb' (i.e., 1 ton of cooling per 400 ft2 of floor space) that 'wash' the exterior walls with conditioned air from floor registers cannot provide appropriate air mixing and moisture removal in low-load homes. A compact air distribution system locates the HVAC equipment centrally with shorter ducts run to interior walls, and ceiling supply outlets throw the air toward the exterior walls along the ceiling plane; alternatively, high sidewall supply outlets throw the air toward the exterior walls. Potential drawbacks include resistance from installing contractors or code officials who are unfamiliar with compact air distribution systems, as well as a lack of availability of low-cost high sidewall or ceiling supply outlets to meet the low air volumes with good throw characteristics. The decision criteria for a compact air distribution system must be determined early in the whole-house design process, considering both supply and return air design. However, careful installation of a compact air distribution system can result in lower material costs from smaller equipment, shorter duct runs, and fewer outlets; increased installation efficiencies, including ease of fitting the system into conditioned space; lower loads on a better balanced HVAC system, and overall improved energy efficiency of the home.

  17. The development of effects-based air quality management regimes

    NASA Astrophysics Data System (ADS)

    Longhurst, J. W. S.; Irwin, J. G.; Chatterton, T. J.; Hayes, E. T.; Leksmono, N. S.; Symons, J. K.

    This paper considers the evolution of attempts to control and manage air pollution, principally but not exclusively focussing upon the challenge of managing air pollution in urban environments. The development and implementation of a range of air pollution control measures are considered. Initially the measures implemented primarily addressed point sources, a small number of fuel types and a limited number of pollutants. The adequacy of such a source-control approach is assessed within the context of a changing and challenging air pollution climate. An assessment of air quality management in the United Kingdom over a 50-year timeframe exemplifies the range of issues and challenges in contemporary air quality management. The need for new approaches is explored and the development and implementation of an effects-based, risk management system for air quality regulation is evaluated.

  18. Integrative radiation systems biology.

    PubMed

    Unger, Kristian

    2014-01-01

    Maximisation of the ratio of normal tissue preservation and tumour cell reduction is the main concept of radiotherapy alone or combined with chemo-, immuno- or biologically targeted therapy. The foremost parameter influencing this ratio is radiation sensitivity and its modulation towards a more efficient killing of tumour cells and a better preservation of normal tissue at the same time is the overall aim of modern therapy schemas. Nevertheless, this requires a deep understanding of the molecular mechanisms of radiation sensitivity in order to identify its key players as potential therapeutic targets. Moreover, the success of conventional approaches that tried to statistically associate altered radiation sensitivity with any molecular phenotype such as gene expression proofed to be somewhat limited since the number of clinically used targets is rather sparse. However, currently a paradigm shift is taking place from pure frequentistic association analysis to the rather holistic systems biology approach that seeks to mathematically model the system to be investigated and to allow the prediction of an altered phenotype as the function of one single or a signature of biomarkers. Integrative systems biology also considers the data from different molecular levels such as the genome, transcriptome or proteome in order to partially or fully comprehend the causal chain of molecular mechanisms. An example for the application of this concept currently carried out at the Clinical Cooperation Group "Personalized Radiotherapy in Head and Neck Cancer" of the Helmholtz-Zentrum München and the LMU Munich is described. This review article strives for providing a compact overview on the state of the art of systems biology, its actual challenges, potential applications, chances and limitations in radiation oncology research working towards improved personalised therapy concepts using this relatively new methodology. PMID:24411063

  19. [Opportunity and challenge on molecular epidemiology].

    PubMed

    Duan, G C; Chen, S Y

    2016-08-10

    Molecular epidemiology, a branch of epidemiology, combines the theories and methods, both in epidemiology and molecular biology. Molecular epidemiology mainly focuses on biological markers, describing the distribution, occurrence, development and prognosis of diseases at the molecular level. The completion of Human Genome Project and rapid development of Precision Medicine and Big Data not only offer the new development opportunities but also bring about a higher demand and new challenge for molecular epidemiology. PMID:27539332

  20. Autonomous Detection of Aerosolized Biological Agents by Multiplexed Immunoassay with PCR Confirmation

    SciTech Connect

    Hindson, B J; McBride, M T; Makarewicz, A J; Henderer, B D; Setlur, U S; Smith, S M; Gutierrez, D M; Metz, T R; Nasarabadi, S L; Venkateswaran, K S; Farrow, S W; Colston, Jr., B W; Dzenitis, J M

    2004-05-27

    The autonomous pathogen detection system (APDS) is an automated, podium-sized instrument that continuously monitors the air for biological threat agents (bacteria, viruses, and toxins). The system has been developed to warn of a biological attack in critical or high-traffic facilities and at special events. The APDS performs continuous aerosol collection, sample preparation, and detection using multiplexed immunoassay followed by confirmatory PCR using real-time TaqMan assays. We have integrated completely reusable flow-through devices that perform DNA extraction and PCR amplification. The fully integrated system was challenged with aerosolized Bacillus anthracis, Yersinia pestis, Bacillus globigii and botulinum toxoid. By coupling highly selective antibody and DNA based assays, the probability of an APDS reporting a false positive is extremely low.

  1. Corneal Viscoelastic Properties from Finite-Element Analysis of In Vivo Air-Puff Deformation

    PubMed Central

    Kling, Sabine; Bekesi, Nandor; Dorronsoro, Carlos; Pascual, Daniel; Marcos, Susana

    2014-01-01

    Biomechanical properties are an excellent health marker of biological tissues, however they are challenging to be measured in-vivo. Non-invasive approaches to assess tissue biomechanics have been suggested, but there is a clear need for more accurate techniques for diagnosis, surgical guidance and treatment evaluation. Recently air-puff systems have been developed to study the dynamic tissue response, nevertheless the experimental geometrical observations lack from an analysis that addresses specifically the inherent dynamic properties. In this study a viscoelastic finite element model was built that predicts the experimental corneal deformation response to an air-puff for different conditions. A sensitivity analysis reveals significant contributions to corneal deformation of intraocular pressure and corneal thickness, besides corneal biomechanical properties. The results show the capability of dynamic imaging to reveal inherent biomechanical properties in vivo. Estimates of corneal biomechanical parameters will contribute to the basic understanding of corneal structure, shape and integrity and increase the predictability of corneal surgery. PMID:25121496

  2. On Crowd-verification of Biological Networks

    PubMed Central

    Ansari, Sam; Binder, Jean; Boue, Stephanie; Di Fabio, Anselmo; Hayes, William; Hoeng, Julia; Iskandar, Anita; Kleiman, Robin; Norel, Raquel; O’Neel, Bruce; Peitsch, Manuel C.; Poussin, Carine; Pratt, Dexter; Rhrissorrakrai, Kahn; Schlage, Walter K.; Stolovitzky, Gustavo; Talikka, Marja

    2013-01-01

    Biological networks with a structured syntax are a powerful way of representing biological information generated from high density data; however, they can become unwieldy to manage as their size and complexity increase. This article presents a crowd-verification approach for the visualization and expansion of biological networks. Web-based graphical interfaces allow visualization of causal and correlative biological relationships represented using Biological Expression Language (BEL). Crowdsourcing principles enable participants to communally annotate these relationships based on literature evidences. Gamification principles are incorporated to further engage domain experts throughout biology to gather robust peer-reviewed information from which relationships can be identified and verified. The resulting network models will represent the current status of biological knowledge within the defined boundaries, here processes related to human lung disease. These models are amenable to computational analysis. For some period following conclusion of the challenge, the published models will remain available for continuous use and expansion by the scientific community. PMID:24151423

  3. On Crowd-verification of Biological Networks.

    PubMed

    Ansari, Sam; Binder, Jean; Boue, Stephanie; Di Fabio, Anselmo; Hayes, William; Hoeng, Julia; Iskandar, Anita; Kleiman, Robin; Norel, Raquel; O'Neel, Bruce; Peitsch, Manuel C; Poussin, Carine; Pratt, Dexter; Rhrissorrakrai, Kahn; Schlage, Walter K; Stolovitzky, Gustavo; Talikka, Marja

    2013-01-01

    Biological networks with a structured syntax are a powerful way of representing biological information generated from high density data; however, they can become unwieldy to manage as their size and complexity increase. This article presents a crowd-verification approach for the visualization and expansion of biological networks. Web-based graphical interfaces allow visualization of causal and correlative biological relationships represented using Biological Expression Language (BEL). Crowdsourcing principles enable participants to communally annotate these relationships based on literature evidences. Gamification principles are incorporated to further engage domain experts throughout biology to gather robust peer-reviewed information from which relationships can be identified and verified. The resulting network models will represent the current status of biological knowledge within the defined boundaries, here processes related to human lung disease. These models are amenable to computational analysis. For some period following conclusion of the challenge, the published models will remain available for continuous use and expansion by the scientific community. PMID:24151423

  4. The biological sciences in India

    PubMed Central

    Dell, Karen

    2009-01-01

    India is gearing up to become an international player in the life sciences, powered by its recent economic growth and a desire to add biotechnology to its portfolio. In this article, we present the history, current state, and projected future growth of biological research in India. To fulfill its aspirations, India's greatest challenge will be in educating, recruiting, and supporting its next generation of scientists. Such challenges are faced by the US/Europe, but are particularly acute in developing countries that are racing to achieve scientific excellence, perhaps faster than their present educational and faculty support systems will allow. PMID:19204144

  5. Biological membranes

    PubMed Central

    Watson, Helen

    2015-01-01

    Biological membranes allow life as we know it to exist. They form cells and enable separation between the inside and outside of an organism, controlling by means of their selective permeability which substances enter and leave. By allowing gradients of ions to be created across them, membranes also enable living organisms to generate energy. In addition, they control the flow of messages between cells by sending, receiving and processing information in the form of chemical and electrical signals. This essay summarizes the structure and function of membranes and the proteins within them, and describes their role in trafficking and transport, and their involvement in health and disease. Techniques for studying membranes are also discussed. PMID:26504250

  6. Biological Effects of Directed Energy

    NASA Astrophysics Data System (ADS)

    Dayton, Thomas; Beason, Charles; Hitt, M. K.; Rogers, Walter; Cook, Michael

    2002-11-01

    This Final Report summarizes the biological effects research conducted by Veridian Engineering personnel under contract F41624-96-C-9009 in support of the Air Force Research Laboratory's Radio Frequency Radiation Branch from April 1997 to April 2002. Biological effects research and consultation were provided in five major areas: Active Denial System (also known as Vehicle Mounted Active Denial System), radio frequency radiation (RFR) health and safety, non-lethal weapon biological effects research, the newly formed Joint Non-Lethal Weapons Human Effects Center of Excellence, and Biotechnology. The report is organized by research efforts within the major research areas, providing title, objective, a brief description, relevance to the AF or DoD, funding, and products.

  7. Challenges for the aircraft structural integrity program

    NASA Technical Reports Server (NTRS)

    Lincoln, John W.

    1994-01-01

    Thirty-six years ago the United States Air Force established the USAF Aircraft Structural Integrity Program (ASIP) because flight safety had been degraded by fatigue failures of operational aircraft. This initial program evolved, but has been stable since the issuance of MIL-STD-1530A in 1975. Today, the program faces new challenges because of a need to maintain aircraft longer in an environment of reduced funding levels. Also, there is increased pressure to reduce cost of the acquisition of new aircraft. It is the purpose of this paper to discuss the challenges for the ASIP and identify the changes in the program that will meet these challenges in the future.

  8. Structural Biology Fact Sheet

    MedlinePlus

    ... Home > Science Education > Structural Biology Fact Sheet Structural Biology Fact Sheet Tagline (Optional) Middle/Main Content Area What is structural biology? Structural biology is a field of science focused ...

  9. Visualization of aerocolloidal biological particles using 2D particle image velocimetry (PIV)

    NASA Astrophysics Data System (ADS)

    Hall, Carsie A., III; Masabattula, Sree; Akyuzlu, Kazim M.; Russo, Edwin P.; Klich, Maren A.

    2003-11-01

    Recent concerns over the possible use of airborne biological particles as weapons of mass destruction have significantly increased the attention that researchers are giving to this threat. The size of these particles, ranging from a fraction of a micrometer to several tens of micrometers, allows them to travel over long distances before settling out of the airstreams carrying these particles. Furthermore, the odd shapes of many of these particles along with uncertainties about their light scattering characteristics make detection and tracking quite a challenge. In the present paper, results are reported on the visualization of airborne biological particles using two-dimensional particle image velocimetry (PIV). These initial results show the utility of PIV in illuminating and tracking airborne biological particles. A compressed air nebulizer is used to aerosolize the biological particles inside a Plexiglas test section. The biological particles prepared for the nebulizer are first inoculated and cultured onto agar media, gypsum board, and acoustic ceiling tile to achieve an abundant growth of spores. A colloidal suspension of biological particles is then made using sterilized, de-ionized water and a mild surfactant to de-agglomerate the biological particles in the suspension. The concentration of biological particles in the colloidal suspension is determined using a hemacytometer. In the visualization experiments, images are captured for polystyrene latex (PSL) test particles, liquid water droplets, and spores of the fungal species Aspergillus versicolor. During the PIV system operation, two successive images are captured with a time delay of 50 μm to develop flow field velocities of the PSL test particles, liquid water droplets, and the A. versicolor spores.

  10. AIR CLEANING FOR ACCEPTABLE INDOOR AIR QUALITY

    EPA Science Inventory

    The paper discusses air cleaning for acceptable indoor air quality. ir cleaning has performed an important role in heating, ventilation, and air-conditioning systems for many years. raditionally, general ventilation air-filtration equipment has been used to protect cooling coils ...

  11. Practising Conservation Biology in a Virtual Rainforest World

    ERIC Educational Resources Information Center

    Schedlbauer, Jessica L.; Nadolny, Larysa; Woolfrey, Joan

    2016-01-01

    The interdisciplinary science of conservation biology provides undergraduate biology students with the opportunity to connect the biological sciences with disciplines including economics, social science and philosophy to address challenging conservation issues. Because of its complexity, students do not often have the opportunity to practise…

  12. The Intersection of Structural and Chemical Biology - An Essential Synergy.

    PubMed

    Zuercher, William J; Elkins, Jonathan M; Knapp, Stefan

    2016-01-21

    The continual improvement in our ability to generate high resolution structural models of biological molecules has stimulated and supported innovative chemical biology projects that target increasingly challenging ligand interaction sites. In this review we outline some of the recent developments in chemical biology and rational ligand design and show selected examples that illustrate the synergy between these research areas. PMID:26933743

  13. Context, Cognition, and Biology in Applied Behavior Analysis.

    ERIC Educational Resources Information Center

    Morris, Edward K.

    Behavior analysts are having their professional identities challenged by the roles that cognition and biology are said to play in the conduct and outcome of applied behavior analysis and behavior therapy. For cogniphiliacs, cognition and biology are central to their interventions because cognition and biology are said to reflect various processes,…

  14. Challenges and opportunities of airborne metagenomics.

    PubMed

    Behzad, Hayedeh; Gojobori, Takashi; Mineta, Katsuhiko

    2015-05-01

    Recent metagenomic studies of environments, such as marine and soil, have significantly enhanced our understanding of the diverse microbial communities living in these habitats and their essential roles in sustaining vast ecosystems. The increase in the number of publications related to soil and marine metagenomics is in sharp contrast to those of air, yet airborne microbes are thought to have significant impacts on many aspects of our lives from their potential roles in atmospheric events such as cloud formation, precipitation, and atmospheric chemistry to their major impact on human health. In this review, we will discuss the current progress in airborne metagenomics, with a special focus on exploring the challenges and opportunities of undertaking such studies. The main challenges of conducting metagenomic studies of airborne microbes are as follows: 1) Low density of microorganisms in the air, 2) efficient retrieval of microorganisms from the air, 3) variability in airborne microbial community composition, 4) the lack of standardized protocols and methodologies, and 5) DNA sequencing and bioinformatics-related challenges. Overcoming these challenges could provide the groundwork for comprehensive analysis of airborne microbes and their potential impact on the atmosphere, global climate, and our health. Metagenomic studies offer a unique opportunity to examine viral and bacterial diversity in the air and monitor their spread locally or across the globe, including threats from pathogenic microorganisms. Airborne metagenomic studies could also lead to discoveries of novel genes and metabolic pathways relevant to meteorological and industrial applications, environmental bioremediation, and biogeochemical cycles. PMID:25953766

  15. Challenges and Opportunities of Airborne Metagenomics

    PubMed Central

    Behzad, Hayedeh; Gojobori, Takashi; Mineta, Katsuhiko

    2015-01-01

    Recent metagenomic studies of environments, such as marine and soil, have significantly enhanced our understanding of the diverse microbial communities living in these habitats and their essential roles in sustaining vast ecosystems. The increase in the number of publications related to soil and marine metagenomics is in sharp contrast to those of air, yet airborne microbes are thought to have significant impacts on many aspects of our lives from their potential roles in atmospheric events such as cloud formation, precipitation, and atmospheric chemistry to their major impact on human health. In this review, we will discuss the current progress in airborne metagenomics, with a special focus on exploring the challenges and opportunities of undertaking such studies. The main challenges of conducting metagenomic studies of airborne microbes are as follows: 1) Low density of microorganisms in the air, 2) efficient retrieval of microorganisms from the air, 3) variability in airborne microbial community composition, 4) the lack of standardized protocols and methodologies, and 5) DNA sequencing and bioinformatics-related challenges. Overcoming these challenges could provide the groundwork for comprehensive analysis of airborne microbes and their potential impact on the atmosphere, global climate, and our health. Metagenomic studies offer a unique opportunity to examine viral and bacterial diversity in the air and monitor their spread locally or across the globe, including threats from pathogenic microorganisms. Airborne metagenomic studies could also lead to discoveries of novel genes and metabolic pathways relevant to meteorological and industrial applications, environmental bioremediation, and biogeochemical cycles. PMID:25953766

  16. Simulating Biological and Non-Biological Motion

    ERIC Educational Resources Information Center

    Bruzzo, Angela; Gesierich, Benno; Wohlschlager, Andreas

    2008-01-01

    It is widely accepted that the brain processes biological and non-biological movements in distinct neural circuits. Biological motion, in contrast to non-biological motion, refers to active movements of living beings. Aim of our experiment was to investigate the mechanisms underlying mental simulation of these two movement types. Subjects had to…

  17. [Knowledgebases in postgenomic molecular biology].

    PubMed

    Lisitsa, A V; Shilov, B V; Evdokimov, P A; Gusev, S A

    2010-01-01

    Knowledgebases can become an effective tool essentially raising quality of information retrieval in molecular biology, promoting the development of new methods of education and forecasting of the biomedical R&D. Knowledge-based technologies should induce "paradigm shift" in the life science due to integrative focusing of research groups towards the challenges of postgenomic era. This paper debates concept of the knowledgebase, which exploits web usage mining to personalize the access of molecular biologist to the Internet resources. PMID:21328913

  18. ADDRESSING ENVIRONMENTAL ENGINEERING CHALLENGES WITH COMPUTATIONAL FLUID DYNAMICS

    EPA Science Inventory

    This paper discusses the status and application of Computational Fluid Dynamics )CFD) models to address environmental engineering challenges for more detailed understanding of air pollutant source emissions, atmospheric dispersion and resulting human exposure. CFD simulations ...

  19. Advances in Norovirus Biology

    PubMed Central

    Karst, Stephanie M.; Wobus, Christiane E.; Goodfellow, Ian G.; Green, Kim Y.

    2014-01-01

    Human noroviruses are a major cause of epidemic and sporadic gastroenteritis worldwide, and can chronically infect immunocompromised patients. Efforts to develop effective vaccines and antivirals have been hindered by the uncultivable nature and extreme genetic diversity of human noroviruses. Although they remain a particularly challenging pathogen to study, recent advances in norovirus animal models and in vitro cultivation systems have led to an increased understanding of norovirus molecular biology and replication, pathogenesis, cell tropism, and innate and adaptive immunity. Furthermore, clinical trials of vaccines consisting of nonreplicating virus-like particles have shown promise. In this review, we summarize these recent advances and discuss controversies in the field, which is rapidly progressing towards generation of antiviral agents and increasingly effective vaccines. PMID:24922570

  20. Evolution of Biological Complexity

    NASA Astrophysics Data System (ADS)

    Goldstein, Raymond E.

    It is a general rule of nature that larger organisms are more complex, at least as measured by the number of distinct types of cells present. This reflects the fitness advantage conferred by a division of labor among specialized cells over homogeneous totipotency. Yet, increasing size has both costs and benefits, and the search for understanding the driving forces behind the evolution of multicellularity is becoming a very active area of research. This article presents an overview of recent experimental and theoretical work aimed at understanding this biological problem from the perspective of physics. For a class of model organisms, the Volvocine green algae, an emerging hypothesis connects the transition from organisms with totipotent cells to those with terminal germ-soma differentiation to the competition between diffusion and fluid advection created by beating flagella. A number of challenging problems in fluid dynamics, nonlinear dynamics, and control theory emerge when one probes the workings of the simplest multicellular organisms.

  1. Challenges in Astronomy Education

    NASA Astrophysics Data System (ADS)

    De Greve, Jean-Pierre

    2010-11-01

    Astronomy is an attractive subject for education. It deals with fascination of the unknown and the unreachable, yet is uses tools, concepts and insights from various fundamental sciences such as mathematics, physics, chemistry, biology. Because of this it can be well used for introducing sciences to young people and to raise their interest in further studies in that direction. It is also an interesting subject for teaching as its different aspects (observation techniques, theory, data sampling and analysis, modelling,?) offer various didactical approaches towards different levels of pupils, students and different backgrounds. And it gives great opportunities to teach and demonstrate the essence of scientific research, through tutorials and projects. In this paper we discuss some of the challenges education in general, and astronomy in particular, faces in the coming decades, given the major geophysical and technological changes that can be deducted from our present knowledge. This defines a general, but very important background in terms of educational needs at various levels, and in geographical distribution of future efforts of the astronomical community. Special emphasis will be given to creative approaches to teaching, to strategies that are successful (such as the use of tutorials with element from computer games), and to initiatives complementary to the regular educational system. The programs developed by the IAU will be briefly highlighted.

  2. Recent advances in zinc-air batteries.

    PubMed

    Li, Yanguang; Dai, Hongjie

    2014-08-01

    Zinc-air is a century-old battery technology but has attracted revived interest recently. With larger storage capacity at a fraction of the cost compared to lithium-ion, zinc-air batteries clearly represent one of the most viable future options to powering electric vehicles. However, some technical problems associated with them have yet to be resolved. In this review, we present the fundamentals, challenges and latest exciting advances related to zinc-air research. Detailed discussion will be organized around the individual components of the system - from zinc electrodes, electrolytes, and separators to air electrodes and oxygen electrocatalysts in sequential order for both primary and electrically/mechanically rechargeable types. The detrimental effect of CO2 on battery performance is also emphasized, and possible solutions summarized. Finally, other metal-air batteries are briefly overviewed and compared in favor of zinc-air. PMID:24926965

  3. Unmet Challenges of Structural Genomics

    PubMed Central

    Chruszcz, Maksymilian; Domagalski, Marcin; Osinski, Tomasz; Wlodawer, Alexander; Minor, Wladek

    2010-01-01

    Summary Structural genomics (SG) programs have developed during the last decade many novel methodologies for faster and more accurate structure determination. These new tools and approaches led to determination of thousands of protein structures. The generation of enormous amounts of experimental data resulted in significant improvements in the understanding of many biological processes at molecular levels. However, the amount of data collected so far is so large that traditional analysis methods are limiting the rate of extraction of biological and biochemical information from 3-D models. This situation has prompted us to review the challenges that remain unmet by structural genomics, as well as the areas in which the potential impact of SG could exceed what has been achieved so far. PMID:20810277

  4. Interdisciplinary and physics challenges of network theory

    NASA Astrophysics Data System (ADS)

    Bianconi, Ginestra

    2015-09-01

    Network theory has unveiled the underlying structure of complex systems such as the Internet or the biological networks in the cell. It has identified universal properties of complex networks, and the interplay between their structure and dynamics. After almost twenty years of the field, new challenges lie ahead. These challenges concern the multilayer structure of most of the networks, the formulation of a network geometry and topology, and the development of a quantum theory of networks. Making progress on these aspects of network theory can open new venues to address interdisciplinary and physics challenges including progress on brain dynamics, new insights into quantum technologies, and quantum gravity.

  5. Control of aerosol contaminants in indoor air: combining the particle concentration reduction with microbial inactivation.

    PubMed

    Grinshpun, Sergey A; Adhikari, Atin; Honda, Takeshi; Kim, Ki Youn; Toivola, Mika; Rao, K S Ramchander; Reponen, Tiina

    2007-01-15

    An indoor air purification technique, which combines unipolar ion emission and photocatalytic oxidation (promoted by a specially designed RCI cell), was investigated in two test chambers, 2.75 m3 and 24.3 m3, using nonbiological and biological challenge aerosols. The reduction in particle concentration was measured size selectively in real-time, and the Air Cleaning Factor and the Clean Air Delivery Rate (CADR) were determined. While testing with virions and bacteria, bioaerosol samples were collected and analyzed, and the microorganism survival rate was determined as a function of exposure time. We observed that the aerosol concentration decreased approximately 10 to approximately 100 times more rapidly when the purifier operated as compared to the natural decay. The data suggest that the tested portable unit operating in approximately 25 m3 non-ventilated room is capable to provide CADR-values more than twice as great than the conventional closed-loop HVAC system with a rating 8 filter. The particle removal occurred due to unipolar ion emission, while the inactivation of viable airborne microorganisms was associated with photocatalytic oxidation. Approximately 90% of initially viable MS2 viruses were inactivated resulting from 10 to 60 min exposure to the photocatalytic oxidation. Approximately 75% of viable B. subtilis spores were inactivated in 10 min, and about 90% or greater after 30 min. The biological and chemical mechanisms that led to the inactivation of stress-resistant airborne viruses and bacterial spores were reviewed. PMID:17310729

  6. Developing a Watershed Challenge

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2010-01-01

    This article presents a watershed challenge that gives students an opportunity to investigate the challenge of using a watershed area as a site for development, examining the many aspects of this multifaceted problem. This design challenge could work well in a team-based format, with students taking on specific aspects of the challenges and…

  7. Systems Biology of Industrial Microorganisms

    NASA Astrophysics Data System (ADS)

    Papini, Marta; Salazar, Margarita; Nielsen, Jens

    The field of industrial biotechnology is expanding rapidly as the chemical industry is looking towards more sustainable production of chemicals that can be used as fuels or building blocks for production of solvents and materials. In connection with the development of sustainable bioprocesses, it is a major challenge to design and develop efficient cell factories that can ensure cost efficient conversion of the raw material into the chemical of interest. This is achieved through metabolic engineering, where the metabolism of the cell factory is engineered such that there is an efficient conversion of sugars, the typical raw materials in the fermentation industry, into the desired product. However, engineering of cellular metabolism is often challenging due to the complex regulation that has evolved in connection with adaptation of the different microorganisms to their ecological niches. In order to map these regulatory structures and further de-regulate them, as well as identify ingenious metabolic engineering strategies that full-fill mass balance constraints, tools from systems biology can be applied. This involves both high-throughput analysis tools like transcriptome, proteome and metabolome analysis, as well as the use of mathematical modeling to simulate the phenotypes resulting from the different metabolic engineering strategies. It is in fact expected that systems biology may substantially improve the process of cell factory development, and we therefore propose the term Industrial Systems Biology for how systems biology will enhance the development of industrial biotechnology for sustainable chemical production.

  8. Rotorcraft Health Management Issues and Challenges

    NASA Technical Reports Server (NTRS)

    Zakrajsek, James J.; Dempsey, Paula J.; Huff, Edward M.; Augustin, Michael; Safa-Bakhsh, Robab; Ephraim, Piet; Grabil, Paul; Decker, Harry J.

    2006-01-01

    This paper presents an overview of health management issues and challenges that are specific to rotorcraft. Rotorcraft form a unique subset of air vehicles in that their propulsion system is used not only for propulsion, but also serves as the primary source of lift and maneuvering of the vehicle. No other air vehicle relies on the propulsion system to provide these functions through a transmission system with single critical load paths without duplication or redundancy. As such, health management of the power train is a critical and unique part of any rotorcraft health management system. This paper focuses specifically on the issues and challenges related to the dynamic mechanical components in the main power train. This includes the transmission and main rotor mechanisms. This paper will review standard practices used for rotorcraft health management, lessons learned from fielded trials, and future challenges.

  9. Neutron instrumentation for biology

    SciTech Connect

    Mason, S.A.

    1994-12-31

    In the October 1994 round of proposals at the ILL, the external biology review sub- committee was asked to allocate neutron beam time to a wide range of experiments, on almost half the total number of scheduled neutron instruments: on 3 diffractometers, on 3 small angle scattering instruments, and on some 6 inelastic scattering spectrometers. In the 3.5 years since the temporary reactor shutdown, the ILL`s management structure has been optimized, budgets and staff have been trimmed, the ILL reactor has been re-built, and many of the instruments up-graded, many powerful (mainly Unix) workstations have been introduced, and the neighboring European Synchrotron Radiation Facility has established itself as the leading synchrotron radiation source and has started its official user program. The ILL reactor remains the world`s most intense dedicated neutron source. In this challenging context, it is of interest to review briefly the park of ILL instruments used to study the structure and energetics of small and large biological systems. A brief summary will be made of each class of experiments actually proposed in the latest ILL proposal round.

  10. Insights into prion biology

    PubMed Central

    DiSalvo, Susanne

    2011-01-01

    Protein misfolding and assembly into ordered, self-templating aggregates (amyloid) has emerged as a novel mechanism for regulating protein function. For a subclass of amyloidogenic proteins known as prions, this process induces transmissible changes in normal cellular physiology, ranging from neurodegenerative disease in animals and humans to new traits in fungi. The severity and stability of these altered phenotypic states can be attenuated by the conformation or amino-acid sequence of the prion, but in most of these cases, the protein retains the ability to form amyloid in vitro. Thus, our ability to link amyloid formation in vitro with its biological consequences in vivo remains a challenge. In two recent studies, we have begun to address this disconnect by assessing the effects of the cellular environment on traits associated with the misfolding of the yeast prion Sup35. Remarkably, the effects of quality control pathways and of limitations on protein transfer in vivo amplify the effects of even slight differences in the efficiency of Sup35 misfolding, leading to dramatic changes in the associated phenotype. Together, our studies suggest that the interplay between protein misfolding pathways and their cellular context is a crucial contributor to prion biology. PMID:21654204

  11. Ecology at Work: The Biodome Challenge

    ERIC Educational Resources Information Center

    Clovis, Christopher J.

    2003-01-01

    This article describes a challenge given to students completing a senior high school biology course. The scenario described encourages students to apply their knowledge, understanding, and appreciation of scientific and commercial principles. It permits them the opportunity to develop skills in research, collaboration, cooperation, delegation, and…

  12. The National Environmental Respiratory Center (NERC) experiment in multi-pollutant air quality health research: III. Components of diesel and gasoline engine exhausts, hardwood smoke and simulated downwind coal emissions driving non-cancer biological responses in rodents.

    PubMed

    Mauderly, Joe L; Seilkop, Steven K

    2014-09-01

    An approach to identify causal components of complex air pollution mixtures was explored. Rats and mice were exposed by inhalation 6 h daily for 1 week or 6 months to dilutions of simulated downwind coal emissions, diesel and gasoline exhausts and wood smoke. Organ weights, hematology, serum chemistry, bronchoalveolar lavage, central vascular and respiratory allergic responses were measured. Multiple additive regression tree (MART) analysis of the combined database ranked 45 exposure (predictor) variables for importance to models best fitting 47 significant responses. Single-predictor concentration-response data were examined for evidence of single response functions across all exposure groups. Replication of the responses by the combined influences of the two most important predictors was tested. Statistical power was limited by inclusion of only four mixtures, albeit in multiple concentrations each and with particles removed for some groups. Results gave suggestive or strong evidence of causation of 19 of the 47 responses. The top two predictors of the 19 responses included only 12 organic and 6 inorganic species or classes. An increase in red blood cell count of rats by ammonia and pro-atherosclerotic vascular responses of mice by inorganic gases yielded the strongest evidence for causation and the best opportunity for confirmation. The former was a novel finding; the latter was consistent with other results. The results demonstrated the plausibility of identifying putative causal components of highly complex mixtures, given a database in which the ratios of the components are varied sufficiently and exposures and response measurements are conducted using a consistent protocol. PMID:25162720

  13. ALTERED IRON HOMEOSTATIS AND THE MECHANISM OF BIOLOGIC EFFECT BY PARTICLES

    EPA Science Inventory

    Several features of the clinical presentation and changes in physiology and pathology following exposure to many diverse ambient air pollution particles are comparable, suggesting a common mechanism for their biological effect. We propose that a mechanism of biological effect com...

  14. Spatial Aspects in Biological System Simulations

    SciTech Connect

    Resat, Haluk; Costa, Michelle N.; Shankaran, Harish

    2011-01-30

    Mathematical models of the dynamical properties of biological systems aim to improve our understanding of the studied system with the ultimate goal of being able to predict system responses in the absence of experimentation. Despite the enormous advances that have been made in biological modeling and simulation, the inherently multiscale character of biological systems and the stochasticity of biological processes continue to present significant computational and conceptual challenges. Biological systems often consist of well-organized structural hierarchies, which inevitably lead to multiscale problems. This chapter introduces and discusses the advantages and shortcomings of several simulation methods that are being used by the scientific community to investigate the spatio-temporal properties of model biological systems. We first describe the foundations of the methods and then describe their relevance and possible application areas with illustrative examples from our own research. Possible ways to address the encountered computational difficulties are also discussed.

  15. Space Biophysics: Accomplishments, Trends, Challenges

    NASA Technical Reports Server (NTRS)

    Smith, Jeffrey D.

    2015-01-01

    Physics and biology are inextricably linked. All the chemical and biological processes of life are dutifully bound to follow the rules and laws of physics. In space, these physical laws seem to turn on their head and biological systems, from microbes to humans, adapt and evolve in myriad ways to cope with the changed physical influences of the space environment. Gravity is the most prominent change in space that influences biology. In microgravity, the physical processes of sedimentation, density-driven convective flow, influence of surface tension and fluid pressure profoundly influence biology at the molecular and cellular level as well as at the whole-body level. Gravity sensing mechanisms are altered, structural and functional components of biology (such as bone and muscle) are reduced and changes in the way fluids and gasses behave also drive the way microbial systems and biofilms grow as well as the way plants and animals adapt. The radiation environment also effects life in space. Solar particle events and high energy cosmic radiation can cause serious damage to DNA and other biomolecules. The results can cause mutation, cellular damage or death, leading to health consequences of acute radiation damage or long-term health consequences such as increased cancer risk. Space Biophysics is the study and utilization of physical changes in space that cause changes in biological systems. The unique physical environment in space has been used successfully to grow high-quality protein crystals and 3D tissue cultures that could not be grown in the presence of unidirectional gravitational acceleration here on Earth. All biological processes that change in space have their root in a biophysical alteration due to microgravity and/or the radiation environment of space. In order to fully-understand the risks to human health in space and to fully-understand how humans, plants, animals and microbes can safely and effectively travel and eventually live for long periods beyond

  16. Systems Biology as an Integrated Platform for Bioinformatics, Systems Synthetic Biology, and Systems Metabolic Engineering

    PubMed Central

    Chen, Bor-Sen; Wu, Chia-Chou

    2013-01-01

    Systems biology aims at achieving a system-level understanding of living organisms and applying this knowledge to various fields such as synthetic biology, metabolic engineering, and medicine. System-level understanding of living organisms can be derived from insight into: (i) system structure and the mechanism of biological networks such as gene regulation, protein interactions, signaling, and metabolic pathways; (ii) system dynamics of biological networks, which provides an understanding of stability, robustness, and transduction ability through system identification, and through system analysis methods; (iii) system control methods at different levels of biological networks, which provide an understanding of systematic mechanisms to robustly control system states, minimize malfunctions, and provide potential therapeutic targets in disease treatment; (iv) systematic design methods for the modification and construction of biological networks with desired behaviors, which provide system design principles and system simulations for synthetic biology designs and systems metabolic engineering. This review describes current developments in systems biology, systems synthetic biology, and systems metabolic engineering for engineering and biology researchers. We also discuss challenges and future prospects for systems biology and the concept of systems biology as an integrated platform for bioinformatics, systems synthetic biology, and systems metabolic engineering. PMID:24709875

  17. Systems biology as an integrated platform for bioinformatics, systems synthetic biology, and systems metabolic engineering.

    PubMed

    Chen, Bor-Sen; Wu, Chia-Chou

    2013-01-01

    Systems biology aims at achieving a system-level understanding of living organisms and applying this knowledge to various fields such as synthetic biology, metabolic engineering, and medicine. System-level understanding of living organisms can be derived from insight into: (i) system structure and the mechanism of biological networks such as gene regulation, protein interactions, signaling, and metabolic pathways; (ii) system dynamics of biological networks, which provides an understanding of stability, robustness, and transduction ability through system identification, and through system analysis methods; (iii) system control methods at different levels of biological networks, which provide an understanding of systematic mechanisms to robustly control system states, minimize malfunctions, and provide potential therapeutic targets in disease treatment; (iv) systematic design methods for the modification and construction of biological networks with desired behaviors, which provide system design principles and system simulations for synthetic biology designs and systems metabolic engineering. This review describes current developments in systems biology, systems synthetic biology, and systems metabolic engineering for engineering and biology researchers. We also discuss challenges and future prospects for systems biology and the concept of systems biology as an integrated platform for bioinformatics, systems synthetic biology, and systems metabolic engineering. PMID:24709875

  18. Non-Targeted Analysis Challenge (Non-targeted screening workshop)

    EPA Science Inventory

    This brief presentation is intended to motivate discussion of the "Non-Targeted Analysis Challenge" at the Advancing Non-Targeted Analyses of Xenobiotics in Environmental and Biological Media workshop held at the EPA RTP campus.

  19. Metal-Air Batteries

    SciTech Connect

    Zhang, Jiguang; Bruce, Peter G.; Zhang, Gregory

    2011-08-01

    Metal-air batteries have much higher specific energies than most currently available primary and rechargeable batteries. Recent advances in electrode materials and electrolytes, as well as new designs on metal-air batteries, have attracted intensive effort in recent years, especially in the development of lithium-air batteries. The general principle in metal-air batteries will be reviewed in this chapter. The materials, preparation methods, and performances of metal-air batteries will be discussed. Two main metal-air batteries, Zn-air and Li-air batteries will be discussed in detail. Other type of metal-air batteries will also be described.

  20. AMBIENT AIR MONITORING STRATEGY

    EPA Science Inventory

    The Clean Air Act requires EPA to establish national ambient air quality standards and to regulate as necessary, hazardous air pollutants. EPA uses ambient air monitoring to determine current air quality conditions, and to assess progress toward meeting these standards and relat...