Science.gov

Sample records for air blast fuel

  1. Air blast type coal slurry fuel injector

    DOEpatents

    Phatak, R.G.

    1984-08-31

    A device to atomize and inject a coal slurry in the combustion chamber of an internal combustion engine is disclosed which eliminates the use of a conventional fuel injection pump/nozzle. The injector involves the use of compressed air to atomize and inject the coal slurry and like fuels. In one embodiment, the breaking and atomization of the fuel is achieved with the help of perforated discs and compressed air. In another embodiment, a cone shaped aspirator is used to achieve the breaking and atomization of the fuel. The compressed air protects critical bearing areas of the injector.

  2. Air blast type coal slurry fuel injector

    DOEpatents

    Phatak, Ramkrishna G.

    1986-01-01

    A device to atomize and inject a coal slurry in the combustion chamber of an internal combustion engine, and which eliminates the use of a conventional fuel injection pump/nozzle. The injector involves the use of compressed air to atomize and inject the coal slurry and like fuels. In one embodiment, the breaking and atomization of the fuel is achieved with the help of perforated discs and compressed air. In another embodiment, a cone shaped aspirator is used to achieve the breaking and atomization of the fuel. The compressed air protects critical bearing areas of the injector.

  3. Analysis of Fuel Injection and Atomization of a Hybrid Air-Blast Atomizer.

    NASA Astrophysics Data System (ADS)

    Ma, Peter; Esclape, Lucas; Buschhagen, Timo; Naik, Sameer; Gore, Jay; Lucht, Robert; Ihme, Matthias

    2015-11-01

    Fuel injection and atomization are of direct importance to the design of injector systems in aviation gas turbine engines. Primary and secondary breakup processes have significant influence on the drop-size distribution, fuel deposition, and flame stabilization, thereby directly affecting fuel conversion, combustion stability, and emission formation. The lack of predictive modeling capabilities for the reliable characterization of primary and secondary breakup mechanisms is still one of the main issues in improving injector systems. In this study, an unstructured Volume-of-Fluid method was used in conjunction with a Lagrangian-spray framework to conduct high-fidelity simulations of the breakup and atomization processes in a realistic gas turbine hybrid air blast atomizer. Results for injection with JP-8 aviation fuel are presented and compared to available experimental data. Financial support through the FAA National Jet Fuel Combustion Program is gratefully acknowledged.

  4. Effect of aviation fuel type and fuel injection conditions on the spray characteristics of pressure swirl and hybrid air blast fuel injectors

    NASA Astrophysics Data System (ADS)

    Feddema, Rick

    Feddema, Rick T. M.S.M.E., Purdue University, December 2013. Effect of Aviation Fuel Type and Fuel Injection Conditions on the Spray Characteristics of Pressure Swirl and Hybrid Air Blast Fuel Injectors. Major Professor: Dr. Paul E. Sojka, School of Mechanical Engineering Spray performance of pressure swirl and hybrid air blast fuel injectors are central to combustion stability, combustor heat management, and pollutant formation in aviation gas turbine engines. Next generation aviation gas turbine engines will optimize spray atomization characteristics of the fuel injector in order to achieve engine efficiency and emissions requirements. Fuel injector spray atomization performance is affected by the type of fuel injector, fuel liquid properties, fuel injection pressure, fuel injection temperature, and ambient pressure. Performance of pressure swirl atomizer and hybrid air blast nozzle type fuel injectors are compared in this study. Aviation jet fuels, JP-8, Jet A, JP-5, and JP-10 and their effect on fuel injector performance is investigated. Fuel injector set conditions involving fuel injector pressure, fuel temperature and ambient pressure are varied in order to compare each fuel type. One objective of this thesis is to contribute spray patternation measurements to the body of existing drop size data in the literature. Fuel droplet size tends to increase with decreasing fuel injection pressure, decreasing fuel injection temperature and increasing ambient injection pressure. The differences between fuel types at particular set conditions occur due to differences in liquid properties between fuels. Liquid viscosity and surface tension are identified to be fuel-specific properties that affect the drop size of the fuel. An open aspect of current research that this paper addresses is how much the type of aviation jet fuel affects spray atomization characteristics. Conventional aviation fuel specifications are becoming more important with new interest in alternative

  5. A Blast of Cool Air

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Unable to solve their engineering problem with a rotor in their Orbital Vane product, DynEco Corporation turned to Kennedy Space Center for help. KSC engineers determined that the compressor rotor was causing a large concentration of stress, which led to cracking and instant rotor failure. NASA redesigned the lubrication system, which allowed the company to move forward with its compressor that has no rubbing parts. The Orbital Vane is a refrigerant compressor suitable for mobile air conditioning and refrigeration.

  6. Air/fuel ratio controller

    SciTech Connect

    Schechter, M.M.; Simko, A.O.

    1980-12-23

    An internal combustion engine has a fuel injection pump and an air/fuel ratio controller. The controller has a lever that is connected to the pump lever. An aneroid moves the controller lever as a function of changes in intake manifold vacuum to maintain a constant air/fuel ratio to the mixture charge. A fuel enrichment linkage is provided that modifies the movement of the fuel flow control lever by the aneroid in response to changes in manifold gas temperature levels and exhaust gas recirculation to maintain the constant air/fuel ratio. A manual override is provided to obtain a richer air/fuel ratio for maximum acceleration.

  7. 7. Air Blast Circuit Breaker Compressors, view to the southeast. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Air Blast Circuit Breaker Compressors, view to the southeast. The air blast circuit breakers are visible in the left background of the photograph. - Washington Water Power Clark Fork River Noxon Rapids Hydroelectric Development, Powerhouse, South bank of Clark Fork River at Noxon Rapids, Noxon, Sanders County, MT

  8. 6. OUTER BLAST DOOR, WEST REAR. Edwards Air Force ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. OUTER BLAST DOOR, WEST REAR. - Edwards Air Force Base, South Base Sled Track, Firing & Control Blockhouse for 10,000-foot Track, South of Sled Track at midpoint of 20,000-foot track, Lancaster, Los Angeles County, CA

  9. Air tight fuel burning stove

    SciTech Connect

    Nietupski, V.J.

    1980-03-11

    A fuel burning stove is claimed for holding and burning fuel to heat the surrounding atmosphere in a room where the stove is employed. The stove includes a fire box which supports the fuel and where the combustion is sustained. An air inlet is provided to the fire box allowing the inflow of air for combustion with the fuel. The air is preheated upon entry into the fire box for mixture with volatiles formed by the burning fuel directed toward the entering air by a baffle means to effect a secondary combustion. In addition, a movable damper cooperates with the baffle to direct volatiles toward the incoming heated air when the damper is in the closed position and to provide a more direct path to the chimney when in the open position.

  10. Explosively driven air blast in a conical shock tube

    NASA Astrophysics Data System (ADS)

    Stewart, Joel B.; Pecora, Collin

    2015-03-01

    Explosively driven shock tubes present challenges in terms of safety concerns and expensive upkeep of test facilities but provide more realistic approximations to the air blast resulting from free-field detonations than those provided by gas-driven shock tubes. Likewise, the geometry of conical shock tubes can naturally approximate a sector cut from a spherically symmetric blast, leading to a better agreement with the blast profiles of free-field detonations when compared to those provided by shock tubes employing constant cross sections. The work presented in this article documents the design, fabrication, and testing of an explosively driven conical shock tube whose goal was to closely replicate the blast profile seen from a larger, free-field detonation. By constraining the blast through a finite area, large blasts (which can add significant damage and safety constraints) can be simulated using smaller explosive charges. The experimental data presented herein show that a close approximation to the free-field air blast profile due to a 1.5 lb charge of C4 at 76 in. can be achieved by using a 0.032 lb charge in a 76-in.-long conical shock tube (which translates to an amplification factor of nearly 50). Modeling and simulation tools were used extensively in designing this shock tube to minimize expensive fabrication costs.

  11. Explosively driven air blast in a conical shock tube

    SciTech Connect

    Stewart, Joel B. Pecora, Collin

    2015-03-15

    Explosively driven shock tubes present challenges in terms of safety concerns and expensive upkeep of test facilities but provide more realistic approximations to the air blast resulting from free-field detonations than those provided by gas-driven shock tubes. Likewise, the geometry of conical shock tubes can naturally approximate a sector cut from a spherically symmetric blast, leading to a better agreement with the blast profiles of free-field detonations when compared to those provided by shock tubes employing constant cross sections. The work presented in this article documents the design, fabrication, and testing of an explosively driven conical shock tube whose goal was to closely replicate the blast profile seen from a larger, free-field detonation. By constraining the blast through a finite area, large blasts (which can add significant damage and safety constraints) can be simulated using smaller explosive charges. The experimental data presented herein show that a close approximation to the free-field air blast profile due to a 1.5 lb charge of C4 at 76 in. can be achieved by using a 0.032 lb charge in a 76-in.-long conical shock tube (which translates to an amplification factor of nearly 50). Modeling and simulation tools were used extensively in designing this shock tube to minimize expensive fabrication costs.

  12. Detailed Comparison of Blast Effects in Air and Vacuum

    SciTech Connect

    Tringe, J W; Molitoris, J D; Garza, R G; Andreski, H G; Batteux, J D; Lauderbach, L M; Vincent, E R; Wong, B M

    2007-07-26

    Although blast mitigation is most often achieved with solid shielding, ambient gas pressure can also affect the coupling of shock waves to solid targets. In this work the role of air as an energy transfer medium was examined experimentally by subjecting identical large-area rectangular witness plates to short-range blast effects in air and vacuum ({approx}50 mtorr) at 25 C. The expanding reactant front of 3 kg C4 charges was observed by fast camera to be cylindrically symmetric in both air and vacuum. The horizontal component of the reactant cloud velocity (perpendicular to the witness plates) was constant in both cases, with values of 3.0 and 5.9 km/s for air and vacuum, respectively. As a result of the blast, witness plates were plastically deformed into a shallow dish geometry, with local maxima 30 and 20 mm deep for air and vacuum, respectively. The average plate deflection from the air blast was 11 mm, {approx}10% deeper than the average vacuum plate deflection. Shock pressure estimates were made with a simple impedance-matching model, and indicate peak values in the 30-50 MPa range are consistent with the reactant cloud density and velocity. However, more detailed analysis is necessary to definitely establish the mechanisms by which air couples shock energy to the plates.

  13. Fuel-air control device

    SciTech Connect

    Norman, J.

    1981-12-15

    The invention concerns a device for controlling the vehicles fuel-air mixture by regulating the air in the ventilation passage leading to the engine air intake from the crankcase. In a vehicle provided with a PCV valve, the device is located in the ventilation passage leading from the crankcase to the engine air intake and the device is downstream of the PCV valve. The device admits outside air to the ventilation passage to lean the gas mixture when the engine creates a vacuum less than 8 psi in the ventilation passage.

  14. Droplet Breakup Mechanisms in Air-blast Atomizers

    NASA Astrophysics Data System (ADS)

    Aliabadi, Amir Abbas; Taghavi, Seyed Mohammad; Lim, Kelly

    2011-11-01

    Atomization processes are encountered in many natural and man-made phenomena. Examples are pollen release by plants, human cough or sneeze, engine fuel injectors, spray paint and many more. The physics governing the atomization of liquids is important in understanding and utilizing atomization processes in both natural and industrial processes. We have observed the governing physics of droplet breakup in an air-blast water atomizer using a high magnification, high speed, and high resolution LASER imaging technique. The droplet breakup mechanisms are investigated in three major categories. First, the liquid drops are flattened to form an oblate ellipsoid (lenticular deformation). Subsequent deformation depends on the magnitude of the internal forces relative to external forces. The ellipsoid is converted into a torus that becomes stretched and disintegrates into smaller drops. Second, the drops become elongated to form a long cylindrical thread or ligament that break up into smaller drops (Cigar-shaped deformation). Third, local deformation on the drop surface creates bulges and protuberances that eventually detach themselves from the parent drop to form smaller drops.

  15. Detailed Comparison of Blast Effects in Air and Vacuum

    NASA Astrophysics Data System (ADS)

    Tringe, J. W.; Molitoris, J. D.; Garza, R. G.; Andreski, H. G.; Batteux, J. D.; Lauderbach, L. M.; Vincent, E. R.; Wong, B. M.

    2007-12-01

    The role of air as an energy transfer medium was examined experimentally by subjecting identical large-area rectangular witness plates to short-range blast effects in air and vacuum (˜50 mtorr) at 25 °C. The expanding reactant front of 3 kg C4 charges was observed by fast camera to be cylindrically symmetric in both air and vacuum. The horizontal component of the reactant cloud velocity (perpendicular to the witness plates) was constant in both cases, with values of 3.0 and 5.9 km/s for air and vacuum, respectively. As a result of the blast, witness plates were plastically deformed into a shallow dish geometry, with local maxima 30 and 20 mm deep for air and vacuum, respectively. The average plate deflection from the air blast was 11 mm, ˜10% deeper than the average vacuum plate deflection. Shock pressure estimates were made with a simple impedance-matching model, and indicate peak values in the 30-50 MPa range are consistent with the reactant cloud density and velocity. However, more detailed analysis is necessary to better understand the time-dependent coupling of shock energy that plastically deforms the plates.

  16. 78. PIPING CHANNEL FOR FUEL LOADING, FUEL TOPPING, COMPRESSED AIR, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    78. PIPING CHANNEL FOR FUEL LOADING, FUEL TOPPING, COMPRESSED AIR, GASEOUS NITROGEN, AND HELIUM - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  17. Fuel economizer employing improved turbulent mixing of fuel and air

    SciTech Connect

    Howes, L.D.

    1980-11-25

    A fuel economizer is described for internal combustion engines which increases turbulence of the fuel and air mixture in the carburetor by decreasing the throat of its venturi to a predetermined minimum necessary to induce fuel flow through its fuel jets and then downstream of the venturi adding further atmospheric air for complete combustion.

  18. Fuel cell stack with passive air supply

    DOEpatents

    Ren, Xiaoming; Gottesfeld, Shimshon

    2006-01-17

    A fuel cell stack has a plurality of polymer electrolyte fuel cells (PEFCs) where each PEFC includes a rectangular membrane electrode assembly (MEA) having a fuel flow field along a first axis and an air flow field along a second axis perpendicular to the first axis, where the fuel flow field is long relative to the air flow field. A cathode air flow field in each PEFC has air flow channels for air flow parallel to the second axis and that directly open to atmospheric air for air diffusion within the channels into contact with the MEA.

  19. Plastic media blasting activities at Hill Air Force Base

    NASA Astrophysics Data System (ADS)

    Christensen, J. D.

    1993-03-01

    Hill Air Force Base in Utah developed plastic media blasting (PMB) paint removal process for removing paint from Air Force aircraft. The development of the process involved extensive testing of various abrasives and subsequent parameters to end up with an approved production process. Hill AFB has been using PMB in a production mode since 1985, and completely discontinued chemical stripping of airframes in 1989. We have recently installed and began operating a fully automated PMB facility that utilizes two nine-axis robots to strip an aircraft. This system has enabled us to further reduce the manhours required to strip an aircraft, and also allowed us to remove the employee from the blasting atmosphere into a control room. We have, and will continue to realize, significant environmental and economic savings by using PMB. Hill is also actively involved with the development of future paint stripping technologies.

  20. Atomizing characteristics of swirl can combustor modules with swirl blast fuel injectors

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.

    1980-01-01

    Cold flow atomization tests of several different designs of swirl can combustor modules were conducted in a 7.6 cm diameter duct at airflow rates (per unit area) of 7.3 to 25.7 g/sq cm sec and water flow rates of 6.3 to 18.9 g/sec. The effect of air and water flow rates on the mean drop size of water sprays produced with the swirl blast fuel injectors were determined. Also, from these data it was possible to determine the effect of design modifications on the atomizing performance of various fuel injector and air swirler configurations. The trend in atomizing performance, as based on the mean drop size, was then compared with the trends in the production of nitrogen oxides obtained in combustion studies with the same swirl can combustors.

  1. Numerical Simulations of Blast Loads from Near-Field Ground Explosions in Air

    NASA Astrophysics Data System (ADS)

    Dobrociński, Stanisław; Flis, Leszek

    2015-12-01

    Numerical simulations of air blast loading in the near-field acting on the ground have been performed. A simplified blast model based on empirical blast loading data representing spherical and hemispherical explosive shapes has been simulated. Conwep is an implementation of the empirical blast models presented by Kingery and Bulmash, which is also implemented in the commercial code LS-DYNA based on work done by Rahnders-Pehrson and Bannister. This makes it possible to simulate blast loads acting on structures representing spherical and hemispherical explosive shapes of TNT with reasonable computational effort as an alternative to the SPH and Eulerian model. The CPU time for the simplified blast model is however considerably shorter and may still be useful in time consuming concept studies. Reasonable numerical results using reasonable model sizes can be achieved not only for modelling near-field explosions in air but most areas of geotechnical. Calculation was compared with blast SPH and Eulerian model.

  2. The Air Blast Wave from a Nuclear Explosion

    NASA Astrophysics Data System (ADS)

    Reines, Frederick

    The sudden, large scale release of energy in the explosion of a nuclear bomb in air gives rise, in addition to nuclear emanations such as neutrons and gamma rays, to an extremely hot, rapidly expanding mass of air.** The rapidly expanding air mass has an initial temperature in the vicinity of a few hundred thousand degrees and for this reason it glows in its early stages with an intensity of many suns. It is important that the energy density in this initial "ball of fire" is of the order of 3 × 103 times that found in a detonating piece of TNT and hence that the initial stages of the large scale air motion produced by a nuclear explosion has no counterpart in an ordinary. H. E. explosion. Further, the relatively low temperatures ˜2,000°C associated with the initial stages of an H. E. detonation implies that the thermal radiation which it emits is a relatively insignificant fraction of the total energy involves. This point is made more striking when it is remembered that the thermal energy emitted by a hot object varies directly with the temperature in the Rayleigh Jeans region appropriate to the present discussion. The expansion of the air mass heated by the nuclear reaction produces, in qualitatively the same manner as in an H.E. explosion or the bursting of a high pressure balloon, an intense sharp pressure pulse, a shock wave, in the atmosphere. As the pressure pulse spreads outward it weakens due to the combined effects of divergence and the thermodynamically irreversible nature of the shock wave. The air comprising such a pressure pulse or blast wave moves first radially outward and then back towards the center as the blast wave passes. Since a permanent outward displacement of an infinite mass of air would require unlimited energy, the net outward displacement of the air distant from an explosion must approach zero with increasing distance. As the distance from the explosion is diminished the net outward displacement due to irreversible shock heating of

  3. Blast furnace stove control

    SciTech Connect

    Muske, K.R.; Hansen, G.A.; Howse, J.W.; Cagliostro, D.J.; Chaubal, P.C.

    1998-12-31

    This paper outlines the process model and model-based control techniques implemented on the hot blast stoves for the No. 7 Blast Furnace at the Inland Steel facility in East Chicago, Indiana. A detailed heat transfer model of the stoves is developed. It is then used as part of a predictive control scheme to determine the minimum amount of fuel necessary to achieve the blast air requirements. The controller also considers maximum and minimum temperature constraints within the stove.

  4. Experiments on cylindrically converging blast waves in atmospheric air

    NASA Astrophysics Data System (ADS)

    Matsuo, Hideo; Nakamura, Yuichi

    1980-06-01

    Cylindrically converging blast waves have been produced in normal atmospheric conditions by the detonation of the explosives, pentaerythritoltetranitrate, (PETN), over cylindrical surfaces. The shocks generated in this way are so strong that the fronts propagating through the air become luminous of themselves. The production and the propagation of the shocks have been monitored with a framing camera and a streak camera, and the time-space relations of the shock propagations have been determined using an electrical ionization probing system. The results have shown that the trajectory of the shock fronts near the axis of the cylinder can be approximately represented by the Guderley's formula.

  5. Atomizing characteristics of swirl can combustor modules with swirl blast fuel injectors. [in terms of NOX emission rate

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.

    1980-01-01

    Cold flow atomization tests of several different designs of swirl can combustor modules were conducted in a 7.6 cm diameter duct at airflow rates (per unit area) of 7.3 to 25.7 g/sq cm sec and water flow rates of 6.3 to 18.9 g/sec. The effect of air and water flow rates on the mean drop size of water sprays produced with the swirl blast fuel injectors were determined. Also, from these data it was possible to determine the effect of design modifications on the atomizing performance of various fuel injector and air swirler configurations. The trend in atomizing performance, as based on the mean drop size, was then compared with the trends in the production of nitrogen oxides obtained in combustion studues with the same swirl can combustors. It was found that the fuel injector design that gave the best combustor performance in terms of a low NOx emission index also gave the best atomizing performance as characterized by a spray of relatively small mean drop diameter. It was also demonstrated that at constant inlet air stream momentum the nitrogen oxides emission index was found to vary inversely with the square of the mean drop diameter of the spray produced by the different swirl blast fuel injectors. Test conditions were inlet air static pressures of 100,000 to 200,000 N/sq m at an inlet air temperature of 293 K.

  6. Air-cooled, hydrogen-air fuel cell

    NASA Technical Reports Server (NTRS)

    Shelekhin, Alexander B. (Inventor); Bushnell, Calvin L. (Inventor); Pien, Michael S. (Inventor)

    1999-01-01

    An air-cooled, hydrogen-air solid polymer electrolyte (SPE) fuel cell with a membrane electrode assembly operatively associated with a fluid flow plate having at least one plate cooling channel extending through the plate and at least one air distribution hole extending from a surface of the cathode flow field into the plate cooling channel.

  7. Properties of air and combustion products of fuel with air

    NASA Technical Reports Server (NTRS)

    Poferl, D. J.; Svehla, R. A.

    1975-01-01

    Thermodynamic and transport properties have been calculated for air, the combustion products of natural gas and air, and combustion products of ASTM-A-1 jet fuel and air. Properties calculated include: ratio of specific heats, molecular weight, viscosity, specific heat, thermal conductivity, Prandtl number, and enthalpy.

  8. Air breathing direct methanol fuel cell

    DOEpatents

    Ren, Xiaoming

    2002-01-01

    An air breathing direct methanol fuel cell is provided with a membrane electrode assembly, a conductive anode assembly that is permeable to air and directly open to atmospheric air, and a conductive cathode assembly that is permeable to methanol and directly contacting a liquid methanol source.

  9. Linear air-fuel sensor development

    SciTech Connect

    Garzon, F.; Miller, C.

    1996-12-14

    The electrochemical zirconia solid electrolyte oxygen sensor, is extensively used for monitoring oxygen concentrations in various fields. They are currently utilized in automobiles to monitor the exhaust gas composition and control the air-to-fuel ratio, thus reducing harmful emission components and improving fuel economy. Zirconia oxygen sensors, are divided into two classes of devices: (1) potentiometric or logarithmic air/fuel sensors; and (2) amperometric or linear air/fuel sensors. The potentiometric sensors are ideally suited to monitor the air-to-fuel ratio close to the complete combustion stoichiometry; a value of about 14.8 to 1 parts by volume. This occurs because the oxygen concentration changes by many orders of magnitude as the air/fuel ratio is varied through the stoichiometric value. However, the potentiometric sensor is not very sensitive to changes in oxygen partial pressure away from the stoichiometric point due to the logarithmic dependence of the output voltage signal on the oxygen partial pressure. It is often advantageous to operate gasoline power piston engines with excess combustion air; this improves fuel economy and reduces hydrocarbon emissions. To maintain stable combustion away from stoichiometry, and enable engines to operate in the excess oxygen (lean burn) region several limiting-current amperometric sensors have been reported. These sensors are based on the electrochemical oxygen ion pumping of a zirconia electrolyte. They typically show reproducible limiting current plateaus with an applied voltage caused by the gas diffusion overpotential at the cathode.

  10. Computer Simulation of Blast Wall Protection under Methane-Air Explosion on an Offshore Platform

    NASA Astrophysics Data System (ADS)

    Wang, Changjian; Yan, Weigang; Guo, Jin; Guo, Changming

    An in-house explosion program is presented to evaluate blast wall protection under Methane-Air Explosion on an offshore platform, based on two-dimensional, time-dependent, reactive Navier-Stokes equations including the effects of viscosity, thermal conduction and molecular diffusion. The results show that this program can successfully produce explosion process of methane-air gas cloud. Because the overpressure behind the blast wall and on the lifeboat plate is more than 1.0atm when explosion wave passes, the current blast wall is not enough to keep the person and lifeboat safe. So the blast wall needs to be re-designed. The explosion wave of methane-air gas cloud undergoes a successive process of detonation formation, detonation transmission, shock attenuation, regular reflection and Mach reflection etc. Additionally, due to high overpressure generated in gas cloud explosion, it is extremely devastating and must be avoided at all times on offshore platform.

  11. Fuel-air ratio controlled carburetion system

    SciTech Connect

    Abbey, H. G.

    1980-02-12

    An automatic control system is disclosed supplying a fuel-air mixture to an internal combustion engine including a variable-venturi carburetor. Air is fed into the input of the venturi, the air passing through the throat thereof whose effective area is adjusted by a mechanism operated by a servo motor. Fuel is fed into the input of the venturi from a fuel reservoir through a main path having a fixed orifice and an auxiliary path formed by a metering valve operated by an auxiliary fuel-control motor. The differential air pressure developed between the inlet of the venturi and the throat thereof is sensed to produce an airvelocity command signal that is applied to a controller adapted to compare the command signal with the servo motor set point to produce an output for governing the servo motor to cause it to seek a null point, thereby defining a closed process control loop. The intake manifold vacuum, which varies in degree as a function of load and speed conditions is sensed to govern the auxiliary fuel-control motor accordingly, is at the same time converted into an auxiliary signal which is applied to the controller in the closed loop to modulate the command signal in a manner establishing an optimum air-fuel ratio under the varying conditions of load and speed.

  12. Air breathing direct methanol fuel cell

    DOEpatents

    Ren, Xiaoming; Gottesfeld, Shimshon

    2002-01-01

    An air breathing direct methanol fuel cell is provided with a membrane electrode assembly, a conductive anode assembly that is permeable to air and directly open to atmospheric air, and a conductive cathode assembly that is permeable to methanol and directly contacting a liquid methanol source. Water loss from the cell is minimized by making the conductive cathode assembly hydrophobic and the conductive anode assembly hydrophilic.

  13. Fuel-air munition and device

    DOEpatents

    Carlson, Gary A.

    1976-01-01

    An aerially delivered fuel-air munition consisting of an impermeable tank filled with a pressurized liquid fuel and joined at its two opposite ends with a nose section and a tail assembly respectively to complete an aerodynamic shape. On impact the tank is explosively ruptured to permit dispersal of the fuel in the form of a fuel-air cloud which is detonated after a preselected time delay by means of high explosive initiators ejected from the tail assembly. The primary component in the fuel is methylacetylene, propadiene, or mixtures thereof to which is added a small mole fraction of a relatively high vapor pressure liquid diluent or a dissolved gas diluent having a low solubility in the primary component.

  14. The Effect of Charge Reactive Metal Cases on Air Blast

    NASA Astrophysics Data System (ADS)

    Zhang, Fan; Wilson, William

    2009-06-01

    Experiments were conducted in a 23 m^3 closed chamber using explosive encased in a cylindrical reactive metal case to study the effect on air blast from the case fragments. Parameters varied included explosive material, case material, case/explosive mass ratio and charge internal diameter, which ranged from 7.62 to 12.7 cm. The pressure histories measured on the chamber wall showed a double-shock front structure with an accelerating precursor shock followed by the primary shock, suggesting the early-time reaction of small case fragments. During the early reflections on the chamber wall, the pressure rise achieves a factor of 1.6 versus the steel-cased and a factor of 1.2-1.4 versus the bare charges, indicating combustion of a large amount of small case particles generated by secondary fragmentation. The analysis of explosion pressures and recovered fragments and solid products showed that the burnt case mass increases with detonation pressure and case/explosion mass ratio over a test range from 0.29 to 1.75 in a quadratic function. The influences of charge diameter and various reactive metal cases on the burnt case mass are further investigated.

  15. The Effect of Charge Reactive Metal Cases on Air Blast

    NASA Astrophysics Data System (ADS)

    Zhang, Fan; Wilson, William H.

    2009-12-01

    Experiments were conducted in a 23 m3 closed chamber using a charge encased in a cylindrical reactive metal case to study the effect on air blast from the case fragments. Parameters varied included case/charge mass ratio, charge diameter and charge type (i.e., detonation energy and pressure). The pressure histories measured on the chamber wall showed a double-shock front structure with an accelerating precursor shock followed by the primary shock, suggesting the early-time reaction of small case fragments. During the early reflections on the chamber wall, significant pressure rises versus the steel-cased and bare charges indicated combustion of a large amount of small case particles generated by secondary fragmentation. The analysis of explosion pressures and recovered fragments and solid products gave an expression for burnt casing mass as a function of Gurney velocity and charge diameter. The equivalent bare charge mass that yields the same explosion pressure as the cased charge increased with case/charge mass ratio and reached 2.5 times charge mass at the ratio of 1.75.

  16. An experimental investigation on the spray flow exhausted from a co-swirling air-blast nozzle

    NASA Astrophysics Data System (ADS)

    Dvorak, Daniel Dean

    The velocity field for a spray produced by an air-blast atomizer is measured using Particle Image Velocimetry (PIV). These measurements are conducted at a variety of input liquid and air mass flow rates producing many different air to liquid mass flow ratios (ALR). The experiment is repeated with two different liquids, water and a hydrocarbon based fuel substitute. It is found that the velocity field depends heavily on the type of fluid used as opposed to the ALR. The experiments are repeated using a Stereoscopic Particle Image Velocimetry (SPIV) measurement technique. These results are compared to the 2D PIV results, and the differences are discussed. Finally, the 2D PIV and SPIV results are compared to existing Laser Doppler Velocimetry (LDV) results. It is seen that the results from the two different techniques are not well correlated.

  17. A History of Air-Blast Sprayer Development and Future Prospects

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The design and operating procedures of air-blast sprayers have been greatly improved over the past 50 years. Early tree and vine s pray application equipment used hand-guns that required large amount of water. Later, sprayers with efficient fans, producing large volumes of air at high velocities, ...

  18. Prediction of blast-induced air overpressure: a hybrid AI-based predictive model.

    PubMed

    Jahed Armaghani, Danial; Hajihassani, Mohsen; Marto, Aminaton; Shirani Faradonbeh, Roohollah; Mohamad, Edy Tonnizam

    2015-11-01

    Blast operations in the vicinity of residential areas usually produce significant environmental problems which may cause severe damage to the nearby areas. Blast-induced air overpressure (AOp) is one of the most important environmental impacts of blast operations which needs to be predicted to minimize the potential risk of damage. This paper presents an artificial neural network (ANN) optimized by the imperialist competitive algorithm (ICA) for the prediction of AOp induced by quarry blasting. For this purpose, 95 blasting operations were precisely monitored in a granite quarry site in Malaysia and AOp values were recorded in each operation. Furthermore, the most influential parameters on AOp, including the maximum charge per delay and the distance between the blast-face and monitoring point, were measured and used to train the ICA-ANN model. Based on the generalized predictor equation and considering the measured data from the granite quarry site, a new empirical equation was developed to predict AOp. For comparison purposes, conventional ANN models were developed and compared with the ICA-ANN results. The results demonstrated that the proposed ICA-ANN model is able to predict blast-induced AOp more accurately than other presented techniques. PMID:26433903

  19. Prediction of blast-induced air overpressure: a hybrid AI-based predictive model.

    PubMed

    Jahed Armaghani, Danial; Hajihassani, Mohsen; Marto, Aminaton; Shirani Faradonbeh, Roohollah; Mohamad, Edy Tonnizam

    2015-11-01

    Blast operations in the vicinity of residential areas usually produce significant environmental problems which may cause severe damage to the nearby areas. Blast-induced air overpressure (AOp) is one of the most important environmental impacts of blast operations which needs to be predicted to minimize the potential risk of damage. This paper presents an artificial neural network (ANN) optimized by the imperialist competitive algorithm (ICA) for the prediction of AOp induced by quarry blasting. For this purpose, 95 blasting operations were precisely monitored in a granite quarry site in Malaysia and AOp values were recorded in each operation. Furthermore, the most influential parameters on AOp, including the maximum charge per delay and the distance between the blast-face and monitoring point, were measured and used to train the ICA-ANN model. Based on the generalized predictor equation and considering the measured data from the granite quarry site, a new empirical equation was developed to predict AOp. For comparison purposes, conventional ANN models were developed and compared with the ICA-ANN results. The results demonstrated that the proposed ICA-ANN model is able to predict blast-induced AOp more accurately than other presented techniques.

  20. Coaxial fuel and air premixer for a gas turbine combustor

    DOEpatents

    York, William D; Ziminsky, Willy S; Lacy, Benjamin P

    2013-05-21

    An air/fuel premixer comprising a peripheral wall defining a mixing chamber, a nozzle disposed at least partially within the peripheral wall comprising an outer annular wall spaced from the peripheral wall so as to define an outer air passage between the peripheral wall and the outer annular wall, an inner annular wall disposed at least partially within and spaced from the outer annular wall, so as to define an inner air passage, and at least one fuel gas annulus between the outer annular wall and the inner annular wall, the at least one fuel gas annulus defining at least one fuel gas passage, at least one air inlet for introducing air through the inner air passage and the outer air passage to the mixing chamber, and at least one fuel inlet for injecting fuel through the fuel gas passage to the mixing chamber to form an air/fuel mixture.

  1. Clean fuel vehicles: The air pollution solution

    SciTech Connect

    Meotti, M.P.

    1995-11-01

    Clean fuels for cars and trucks can do more for air quality, and do it sooner, than any other alternative on the drawing boards today. In much of the country, vehicles are the single biggest cause of air pollution. It`s not the industrial smoke stacks, but the tail pipes on cars that foul the air. Ninety percent of the carbon monoxide, 50% of the volatile organic compounds, and 40% of the ozone in metropolitan areas come from motor vehicles. Many state and local government officials are pursuing vehicle emission inspection, high occupancy vehicle lanes, and carpooling programs to reduce auto pollution. These efforts are valuable and should be continued. But clean fuels can quickly reduce auto emissions at a much lower cost. Alternative fuel vehicles produce fewer emissions, are much less dependent on foreign sources, and have the potential to create new jobs. One alternative fuel, natural gas, emits no particulates, 90% less carbon monoxide, and 85% fewer of the gases that form ozone.

  2. Waste plastics as supplemental fuel in the blast furnace process: improving combustion efficiencies.

    PubMed

    Kim, Dongsu; Shin, Sunghye; Sohn, Seungman; Choi, Jinshik; Ban, Bongchan

    2002-10-14

    The possibility of using waste plastics as a source of secondary fuel in a blast furnace has been of recent interest. The success of this process, however, will be critically dependent upon the optimization of operating systems. For instance, the supply of waste plastics must be reliable as well as economically attractive compared with conventional secondary fuels such as heavy oil, natural gas and pulverized coal. In this work, we put special importance on the improvement of the combustibility of waste plastics as a way to enhance energy efficiency in a blast furnace. As experimental variables to approach this target, the effects of plastic particle size, blast temperature, and the level of oxygen enrichment were investigated using a custom-made blast model designed to simulate a real furnace. Lastly, the combustion efficiency of the mixture of waste plastics and pulverized coal was tested. The observations made from these experiments led us to the conclusion that with the increase of both blast temperature and the level of oxygen enrichment, and with a decrease in particle size, the combustibility of waste polyethylene could be improved at a given distance from the tuyere. Also it was found that the efficiency of coal combustion decreased with the addition of plastics; however, the combustion efficiency of mixture could be comparable at a longer distance from the tuyere. PMID:12220825

  3. Air-assist fuel injection nozzle

    SciTech Connect

    Klomp, E.D.

    1987-09-15

    An air-assist fuel injection nozzle is described for use in discharging fuel into an associate combustion chamber of an internal combustion engine. The injection nozzle includes a nozzle body means. The straight walled spray tip portion has a plurality of radial discharge orifices extending. An axial bore in the body means extends from the opposite end to define a bushing, a needle plunger reciprocably received in the bushing between a fully raised position and a fully depressed position corresponding to the end of a suction stroke and the end of a pump stroke, respectively. The needle plunger has a radial supply passage and a radial discharge ports angularly aligned with the radial discharge orifices, wherein the discharge ports are in flow communication with the blind bore. The needle plunger and the interior portion of the enclosed end of the nozzle body means define a variable volume pump chamber. The nozzle body means includes a supply passage means with a check valve in fluid communication with the radial supply passage when the needle plunger is in the raised position. The opposite end of the supply passage means is to sequentially receive a metered quantity of pressurized fuel, and the needle plunger allows aeriform fluid flow from the combustion chamber into the pump chamber. The needle plunger blocks flow through the radial discharge orifices until such time as the needle plunger has moved a predetermined axial extent so that the radial discharge ports come into alignment with the radial discharge orifices to initiate an air-assist discharge of air, fuel vapors and fuel from the radial discharge orifices.

  4. Gaseous fuel and air proportioning device

    SciTech Connect

    Lassanske, G. G.; Poshlman, A. G.

    1984-01-10

    The device for proportioning a gaseous fuel and air for combustion in an internal combustion engine includes a plate-like first member having a peripheral edge portion and a second member cooperating with the first member having a peripheral edge portion and a second member cooperating with the first member to define a mixing chamber having an outlet adapted to be connected in communication with the air intake of the engine carburetor. The second member also includes an annular portion having an arcuate first wall which is convex to and spaced from the peripheral edge portion of the first member to define an annular venturi having an inlet in communication with the atmosphere and an annular outlet in communication with the mixing chamber. A base member or second wall cooperates with the arcuate wall to form a substantially closed, annular plenum chamber into which a gaseous fuel, such as natural gas, is admitted when the engine is to be operated on the gaseous fuel. The gaseous fuel is admitted into the mixing chamber from the plenum chamber through one or more ports in the arcuate wall at or in the vicinity of the throat of the annular venturi. A pair of circumferentially spaced radially extending partitions located on the opposite sides of each port define a radially extending venturi which has a throat located at or in the vicinity of the port and serves to induce flow of the gaseous fuel through the corresponding port. The proportioning device preferably is arranged to fit inside the housing of an existing air cleaner.

  5. 500-kV HVDC air-blast circuit breaker. Final report

    SciTech Connect

    Bachman, B.; Ruoss, E.

    1986-08-01

    This report describes the first HVDC circuit breaker to be tested on a full-scale utility system. Modular in construction to ensure economic feasibility, this breaker has a standard ac air-blast breaker as its main component and interrupts current up to 2200-A dc.

  6. Method of blast heating

    SciTech Connect

    Voges, B.

    1984-06-05

    A method of and a device for blast heating is described, employing separate indirect heat exchangers for combustion air and fuel gas fed to a regenerator and flue gases discharged from the regenerator. The indirect heat exchangers share heat-transfer liquid recirculating in a circuit in which an auxiliary heat exchanger is connected. In the latter exchanger, the temperature of transfer liquid is increased by combustion of partial streams of combustion air and fuel gas branched off downstream of the indirect heat exchangers. The temperature is increased to such a value which preheats the fuel gas to a temperature at which a substitution of fuel gas of a low calorific value, such as waste gas from a blast furnace, for fuel gas of high calorific value, is made possible.

  7. Hydrogen/Air Fuel Nozzle Emissions Experiments

    NASA Technical Reports Server (NTRS)

    Smith, Timothy D.

    2001-01-01

    The use of hydrogen combustion for aircraft gas turbine engines provides significant opportunities to reduce harmful exhaust emissions. Hydrogen has many advantages (no CO2 production, high reaction rates, high heating value, and future availability), along with some disadvantages (high current cost of production and storage, high volume per BTU, and an unknown safety profile when in wide use). One of the primary reasons for switching to hydrogen is the elimination of CO2 emissions. Also, with hydrogen, design challenges such as fuel coking in the fuel nozzle and particulate emissions are no longer an issue. However, because it takes place at high temperatures, hydrogen-air combustion can still produce significant levels of NOx emissions. Much of the current research into conventional hydrocarbon-fueled aircraft gas turbine combustors is focused on NOx reduction methods. The Zero CO2 Emission Technology (ZCET) hydrogen combustion project will focus on meeting the Office of Aerospace Technology goal 2 within pillar one for Global Civil Aviation reducing the emissions of future aircraft by a factor of 3 within 10 years and by a factor of 5 within 25 years. Recent advances in hydrocarbon-based gas turbine combustion components have expanded the horizons for fuel nozzle development. Both new fluid designs and manufacturing technologies have led to the development of fuel nozzles that significantly reduce aircraft emissions. The goal of the ZCET program is to mesh the current technology of Lean Direct Injection and rocket injectors to provide quick mixing, low emissions, and high-performance fuel nozzle designs. An experimental program is planned to investigate the fuel nozzle concepts in a flametube test rig. Currently, a hydrogen system is being installed in cell 23 at NASA Glenn Research Center's Research Combustion Laboratory. Testing will be conducted on a variety of fuel nozzle concepts up to combustion pressures of 350 psia and inlet air temperatures of 1200 F

  8. Coke quality for blast furnaces with coal-dust fuel

    SciTech Connect

    Y.A. Zolotukhin; N.S. Andreichikov

    2009-07-01

    Recently, plans have been developed for the introduction of pulverized coal injection (PCI) at various Russian metallurgical enterprises. The main incentive for switching to PCI is the recent price rises for Russian natural gas. The paper discusses the quality of coke for PCI into blast furnaces.

  9. Fuel tank air pocket removal device

    SciTech Connect

    Wilson, C.N. II.

    1991-10-08

    This paper describes a device for the removal of air pockets from filled underground fuel storage tanks. It comprises: a hollow rigid guide column of sufficient length to extend through a fuel inlet opening of the storage tank to the bottom thereof; a rotatable assembly affixed to the lower end of the column and containing guide means for facilitating the passage of a hose from the guide column to the most distant point of the walls of the storage tank; a hose slidably mounted within and extendable from and retractable into the guide column and having means for maintaining the air hose in a plane essentially parallel to the bottom of the storage tank; a first end of a tubular means connected to a first end of the hose, the tubular means comprising flotation means, the flotation means causing a second end of the tubular means to contact the air pocket; and means on a second end of the hose for extending and retracting the hose through the guide column so as to reach any point within the storage tank.

  10. Combustor air flow control method for fuel cell apparatus

    DOEpatents

    Clingerman, Bruce J.; Mowery, Kenneth D.; Ripley, Eugene V.

    2001-01-01

    A method for controlling the heat output of a combustor in a fuel cell apparatus to a fuel processor where the combustor has dual air inlet streams including atmospheric air and fuel cell cathode effluent containing oxygen depleted air. In all operating modes, an enthalpy balance is provided by regulating the quantity of the air flow stream to the combustor to support fuel cell processor heat requirements. A control provides a quick fast forward change in an air valve orifice cross section in response to a calculated predetermined air flow, the molar constituents of the air stream to the combustor, the pressure drop across the air valve, and a look up table of the orifice cross sectional area and valve steps. A feedback loop fine tunes any error between the measured air flow to the combustor and the predetermined air flow.

  11. Pressurized solid oxide fuel cell integral air accumular containment

    DOEpatents

    Gillett, James E.; Zafred, Paolo R.; Basel, Richard A.

    2004-02-10

    A fuel cell generator apparatus contains at least one fuel cell subassembly module in a module housing, where the housing is surrounded by a pressure vessel such that there is an air accumulator space, where the apparatus is associated with an air compressor of a turbine/generator/air compressor system, where pressurized air from the compressor passes into the space and occupies the space and then flows to the fuel cells in the subassembly module, where the air accumulation space provides an accumulator to control any unreacted fuel gas that might flow from the module.

  12. Air Breathing Direct Methanol Fuel Cell

    DOEpatents

    Ren; Xiaoming

    2003-07-22

    A method for activating a membrane electrode assembly for a direct methanol fuel cell is disclosed. The method comprises operating the fuel cell with humidified hydrogen as the fuel followed by running the fuel cell with methanol as the fuel.

  13. Air-fuel mixture ratio control using electrostatic force

    SciTech Connect

    Maruoka, H.

    1981-07-28

    Electrostatically charged liquid fuel is introduced into a venturi to be atomized therein and is then applied to the combustion chamber of an engine under the control of electrostatic force for properly controlling the air-fuel mixture ratio.

  14. Air-fuel mixture ratio control using electrostatic force

    SciTech Connect

    Maruoka, H.

    1980-01-15

    Electrostatically charged liquid fuel is introduced into a venturi to be atomized therein and is then applied to the combustion chambers of an engine under the control of electrostatic force for properly controlling the air-fuel mixture ratio.

  15. Effect of fuel/air nonuniformity on nitric oxide emissions

    NASA Technical Reports Server (NTRS)

    Lyons, V. J.

    1979-01-01

    A flame tube combustor holding jet A fuel was used in experiments performed at a pressure of .3 Mpa and a reference velocity of 25 meters/second for three inlet air temperatures of 600, 700, and 800 K. The gas sample measurements were taken at locations 18 cm and 48 cm downstream of the perforated plate flameholder. Nonuniform fuel/air profiles were produced using a fuel injector by separately fueling the inner five fuel tubes and the outer ring of twelve fuel tubes. Six fuel/air profiles were produced for nominal overall equivalence ratios of .5 and .6. An example of three of three of these profiles and their resultant nitric oxide NOx emissions are presented. The uniform fuel/air profile cases produced uniform and relatively low profile levels. When the profiles were either center-peaked or edge-peaked, the overall mass-weighted nitric oxide levels increased.

  16. High performance zinc air fuel cell stack

    NASA Astrophysics Data System (ADS)

    Pei, Pucheng; Ma, Ze; Wang, Keliang; Wang, Xizhong; Song, Mancun; Xu, Huachi

    2014-03-01

    A zinc air fuel cell (ZAFC) stack with inexpensive manganese dioxide (MnO2) as the catalyst is designed, in which the circulation flowing potassium hydroxide (KOH) electrolyte carries the reaction product away and acts as a coolant. Experiments are carried out to investigate the characteristics of polarization, constant current discharge and dynamic response, as well as the factors affecting the performance and uniformity of individual cells in the stack. The results reveal that the peak power density can be as high as 435 mW cm-2 according to the area of the air cathode sheet, and the influence factors on cell performance and uniformity are cell locations, filled state of zinc pellets, contact resistance, flow rates of electrolyte and air. It is also shown that the time needed for voltages to reach steady state and that for current step-up or current step-down are both in milliseconds, indicating the ZAFC can be excellently applied to vehicles with rapid dynamic response demands.

  17. A geophysical shock and air blast simulator at the National Ignition Facility.

    PubMed

    Fournier, K B; Brown, C G; May, M J; Compton, S; Walton, O R; Shingleton, N; Kane, J O; Holtmeier, G; Loey, H; Mirkarimi, P B; Dunlop, W H; Guyton, R L; Huffman, E

    2014-09-01

    The energy partitioning energy coupling experiments at the National Ignition Facility (NIF) have been designed to measure simultaneously the coupling of energy from a laser-driven target into both ground shock and air blast overpressure to nearby media. The source target for the experiment is positioned at a known height above the ground-surface simulant and is heated by four beams from the NIF. The resulting target energy density and specific energy are equal to those of a low-yield nuclear device. The ground-shock stress waves and atmospheric overpressure waveforms that result in our test system are hydrodynamically scaled analogs of full-scale seismic and air blast phenomena. This report summarizes the development of the platform, the simulations, and calculations that underpin the physics measurements that are being made, and finally the data that were measured. Agreement between the data and simulation of the order of a factor of two to three is seen for air blast quantities such as peak overpressure. Historical underground test data for seismic phenomena measured sensor displacements; we measure the stresses generated in our ground-surrogate medium. We find factors-of-a-few agreement between our measured peak stresses and predictions with modern geophysical computer codes. PMID:25273784

  18. A geophysical shock and air blast simulator at the National Ignition Facility

    SciTech Connect

    Fournier, K. B.; Brown, C. G.; May, M. J.; Compton, S.; Walton, O. R.; Shingleton, N.; Kane, J. O.; Holtmeier, G.; Loey, H.; Mirkarimi, P. B.; Dunlop, W. H.; Guyton, R. L.; Huffman, E.

    2014-09-01

    The energy partitioning energy coupling experiments at the National Ignition Facility (NIF) have been designed to measure simultaneously the coupling of energy from a laser-driven target into both ground shock and air blast overpressure to nearby media. The source target for the experiment is positioned at a known height above the ground-surface simulant and is heated by four beams from the NIF. The resulting target energy density and specific energy are equal to those of a low-yield nuclear device. The ground-shock stress waves and atmospheric overpressure waveforms that result in our test system are hydrodynamically scaled analogs of full-scale seismic and air blast phenomena. This report summarizes the development of the platform, the simulations, and calculations that underpin the physics measurements that are being made, and finally the data that were measured. Agreement between the data and simulation of the order of a factor of two to three is seen for air blast quantities such as peak overpressure. Historical underground test data for seismic phenomena measured sensor displacements; we measure the stresses generated in our ground-surrogate medium. We find factors-of-a-few agreement between our measured peak stresses and predictions with modern geophysical computer codes.

  19. A geophysical shock and air blast simulator at the National Ignition Facility

    SciTech Connect

    Fournier, K. B.; Brown, C. G.; May, M. J.; Compton, S.; Walton, O. R.; Shingleton, N.; Kane, J. O.; Holtmeier, G.; Loey, H.; Mirkarimi, P. B.; Dunlop, W. H.; Guyton, R. L.; Huffman, E.

    2014-09-15

    The energy partitioning energy coupling experiments at the National Ignition Facility (NIF) have been designed to measure simultaneously the coupling of energy from a laser-driven target into both ground shock and air blast overpressure to nearby media. The source target for the experiment is positioned at a known height above the ground-surface simulant and is heated by four beams from the NIF. The resulting target energy density and specific energy are equal to those of a low-yield nuclear device. The ground-shock stress waves and atmospheric overpressure waveforms that result in our test system are hydrodynamically scaled analogs of full-scale seismic and air blast phenomena. This report summarizes the development of the platform, the simulations, and calculations that underpin the physics measurements that are being made, and finally the data that were measured. Agreement between the data and simulation of the order of a factor of two to three is seen for air blast quantities such as peak overpressure. Historical underground test data for seismic phenomena measured sensor displacements; we measure the stresses generated in our ground-surrogate medium. We find factors-of-a-few agreement between our measured peak stresses and predictions with modern geophysical computer codes.

  20. Air blasts generated by rockfall impacts: Analysis of the 1996 Happy Isles event in Yosemite National Park

    USGS Publications Warehouse

    Morrissey, M.M.; Savage, W.Z.; Wieczorek, G.F.

    1999-01-01

    The July 10, 1996, Happy Isles rockfall in Yosemite National Park, California, released 23,000 to 38,000 m3 of granite in four separate events. The impacts of the first two events which involved a 550-m free fall, generated seismic waves and atmospheric pressure waves (air blasts). We focus on the dynamic behavior of the second air blast that downed over 1000 trees, destroyed a bridge, demolished a snack bar, and caused one fatality and several injuries. Calculated velocities for the air blast from a two-phase, finite difference model are compared to velocities estimated from tree damage. From tornadic studies of tree damage, the air blast is estimated to have traveled <108-120 m/s within 50 m from the impact and decreased to <10-20 m/s within 500 m from the impact. The numerical model simulates the two-dimensional propagation of an air blast through a dusty atmosphere with initial conditions defined by the impact velocity and pressure. The impact velocity (105-107 m/s) is estimated from the Colorado Rockfall Simulation Program that simulates rockfall trajectories. The impact pressure (0.5 MPa) is constrained by the kinetic energy of the impact (1010-1012 J) estimated from the seismic energy generated by the impact. Results from the air blast simulations indicate that the second Happy Isles air blast (weak shock wave) traveled with an initial velocity above the local sound speed. The size and location of the first impact are thought to have injected <50 wt % dust into the atmosphere. This amount of dust lowered the local atmospheric sound speed to ???220 m/s. The discrepancy between calculated velocity data and field estimated velocity data (???220 m/s versus ???110 m/s) is attributed to energy dissipated by the downing of trees and additional entrainment of debris into the atmosphere not included in the calculations. Copyright 1999 by the American Geophysical Union.

  1. Air Force Achieves Fuel Efficiency through Industry Best Practices

    SciTech Connect

    2012-12-01

    The U.S. Air Force’s Air Mobility Command (AMC) is changing the way it does business. It is saving energy and money through an aircraft fleet fuel-efficiency program inspired by private industry best practices and ideas resulting from the empowered fuel savings culture.

  2. Changes in Ultrastructure and Sensory Characteristics on Electro-magnetic and Air Blast Freezing of Beef during Frozen Storage.

    PubMed

    Choi, Yun-Sang; Ku, Su-Kyung; Jeong, Ji-Yun; Jeon, Ki-Hong; Kim, Young-Boong

    2015-01-01

    The ultrastructure in the beef muscle of the electro-magnetic resonance and air blast freezing during the frozen storage, and the changes in the quality characteristics after thawing were evaluated. The size of ice crystal was small and evenly formed in the initial freezing period, and it showed that the size was increased as the storage period was elapsed (p<0.05). The beef stored by the electro-magnetic resonance freezing showed the size of ice crystal with a lower rate of increase than the air blast freezing during the frozen storage. The thawing loss of beef stored by the electro-magnetic resonance freezing was significantly lower than the air blast freezing during frozen storage (p<0.05), and it showed that the thawing loss of the round was higher than the loin. Water holding capacity decreased as the storage period became longer while the electro-magnetic resonance freezing was higher than the air blast on 8 month (p<0.05). As a result of sensory evaluation, the beef stored by the electro-magnetic resonance freezing did not show the difference until 4 months, and it showed higher acceptability in comparison with the beef stored by the air blast freezing. Thus, it is considered that the freezing method has an effect on the change in the ultrastructure and quality characteristics of the beef.

  3. Hydrodynamic Modeling of Air Blast Propagation from the Humble Redwood Chemical High Explosive Detonations Using GEODYN

    SciTech Connect

    Chipman, V D

    2011-09-20

    Two-dimensional axisymmetric hydrodynamic models were developed using GEODYN to simulate the propagation of air blasts resulting from a series of high explosive detonations conducted at Kirtland Air Force Base in August and September of 2007. Dubbed Humble Redwood I (HR-1), these near-surface chemical high explosive detonations consisted of seven shots of varying height or depth of burst. Each shot was simulated numerically using GEODYN. An adaptive mesh refinement scheme based on air pressure gradients was employed such that the mesh refinement tracked the advancing shock front where sharp discontinuities existed in the state variables, but allowed the mesh to sufficiently relax behind the shock front for runtime efficiency. Comparisons of overpressure, sound speed, and positive phase impulse from the GEODYN simulations were made to the recorded data taken from each HR-1 shot. Where the detonations occurred above ground or were shallowly buried (no deeper than 1 m), the GEODYN model was able to simulate the sound speeds, peak overpressures, and positive phase impulses to within approximately 1%, 23%, and 6%, respectively, of the actual recorded data, supporting the use of numerical simulation of the air blast as a forensic tool in determining the yield of an otherwise unknown explosion.

  4. Using coal-dust fuel in Ukrainian and Russian blast furnaces

    SciTech Connect

    A.A. Minaev; A.N. Ryzhenkov; Y.G. Banninkov; S.L. Yaroshevskii; Y.V. Konovalov; A.V. Kuzin

    2008-02-15

    Ukrainian and Russian blast-furnace production falls short of the best global practices. It is no secret that, having switched to oxygen and natural gas in the 1960s, the blast-furnace industries have improved the batch and technological conditions and have attained a productivity of 2.5 and even 3 t/(m{sup 3} day), but have not been able to reduce coke consumption below 400 kg/t, which was the industry standard 40 years ago. The situation is particularly bad in Ukraine: in 2007, furnace productivity was 1.5-2 t/m{sup 3}, with a coke consumption of 432-530 kg/t. Theoretical considerations and industrial experience over the last 20 years show that the large-scale introduction of pulverized fuel, with simultaneous improvement in coke quality and in batch and technological conditions, is the only immediately available means of reducing coke consumption considerably (by 20-40%). By this means, natural-gas consumption is reduced or eliminated, and the efficiency of blast-furnace production and ferrous metallurgy as a whole is increased.

  5. Annular feed air breathing fuel cell stack

    DOEpatents

    Wilson, Mahlon S.

    1996-01-01

    A stack of polymer electrolyte fuel cells is formed from a plurality of unit cells where each unit cell includes fuel cell components defining a periphery and distributed along a common axis, where the fuel cell components include a polymer electrolyte membrane, an anode and a cathode contacting opposite sides of the membrane, and fuel and oxygen flow fields contacting the anode and the cathode, respectively, wherein the components define an annular region therethrough along the axis. A fuel distribution manifold within the annular region is connected to deliver fuel to the fuel flow field in each of the unit cells. In a particular embodiment, a single bolt through the annular region clamps the unit cells together. In another embodiment, separator plates between individual unit cells have an extended radial dimension to function as cooling fins for maintaining the operating temperature of the fuel cell stack.

  6. Dislodgeable azinphosmethyl residues from air blast spraying of apple foliage in Ohio.

    PubMed

    Hall, F R; Reichard, D L; Krueger, H R

    1975-01-01

    The distribution and decay rates of dislodgeable residues of azinphosmethyl applied by two types of air blast sprayers on apple foliage in Ohio were investigated. Leaf discs were taken from nine sites located on the periphery of Cortland apple trees at five dates after spraying. The sprayer delivering the higher airflow rate, but lower velocity, deposited the pesticide much more uniformly over the trees and applied more in the top of the tree. The other sprayer deposited the greatest proportion of pesticide on the site nearest the sprayer. The residue decreased at all sites and ranged from 42 to near 100% decrease at 14 days after spraying.

  7. Effect of Intake Air Filter Condition on Vehicle Fuel Economy

    SciTech Connect

    Norman, Kevin M; Huff, Shean P; West, Brian H

    2009-02-01

    The U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy and the U.S. Environmental Protection Agency (EPA) jointly maintain a fuel economy website (www.fueleconomy.gov), which helps fulfill their responsibility under the Energy Policy Act of 1992 to provide accurate fuel economy information [in miles per gallon (mpg)] to consumers. The site provides information on EPA fuel economy ratings for passenger cars and light trucks from 1985 to the present and other relevant information related to energy use such as alternative fuels and driving and vehicle maintenance tips. In recent years, fluctuations in the price of crude oil and corresponding fluctuations in the price of gasoline and diesel fuels have renewed interest in vehicle fuel economy in the United States. (User sessions on the fuel economy website exceeded 20 million in 2008 compared to less than 5 million in 2004 and less than 1 million in 2001.) As a result of this renewed interest and the age of some of the references cited in the tips section of the website, DOE authorized the Oak Ridge National Laboratory (ORNL) Fuels, Engines, and Emissions Research Center (FEERC) to initiate studies to validate and improve these tips. This report documents a study aimed specifically at the effect of engine air filter condition on fuel economy. The goal of this study was to explore the effects of a clogged air filter on the fuel economy of vehicles operating over prescribed test cycles. Three newer vehicles (a 2007 Buick Lucerne, a 2006 Dodge Charger, and a 2003 Toyota Camry) and an older carbureted vehicle were tested. Results show that clogging the air filter has no significant effect on the fuel economy of the newer vehicles (all fuel injected with closed-loop control and one equipped with MDS). The engine control systems were able to maintain the desired AFR regardless of intake restrictions, and therefore fuel consumption was not increased. The carbureted engine did show a decrease in

  8. Annular feed air breathing fuel cell stack

    DOEpatents

    Wilson, Mahlon S.; Neutzler, Jay K.

    1997-01-01

    A stack of polymer electrolyte fuel cells is formed from a plurality of unit cells where each unit cell includes fuel cell components defining a periphery and distributed along a common axis, where the fuel cell components include a polymer electrolyte membrane, an anode and a cathode contacting opposite sides of the membrane, and fuel and oxygen flow fields contacting the anode and the cathode, respectively, wherein the components define an annular region therethrough along the axis. A fuel distribution manifold within the annular region is connected to deliver fuel to the fuel flow field in each of the unit cells. The fuel distribution manifold is formed from a hydrophilic-like material to redistribute water produced by fuel and oxygen reacting at the cathode. In a particular embodiment, a single bolt through the annular region clamps the unit cells together. In another embodiment, separator plates between individual unit cells have an extended radial dimension to function as cooling fins for maintaining the operating temperature of the fuel cell stack.

  9. Analysis of Fuel Vaporization, Fuel-Air Mixing, and Combustion in Integrated Mixer-Flame Holders

    NASA Technical Reports Server (NTRS)

    Deur, J. M.; Cline, M. C.

    2004-01-01

    Requirements to limit pollutant emissions from the gas turbine engines for the future High-Speed Civil Transport (HSCT) have led to consideration of various low-emission combustor concepts. One such concept is the Integrated Mixer-Flame Holder (IMFH). This report describes a series of IMFH analyses performed with KIVA-II, a multi-dimensional CFD code for problems involving sprays, turbulence, and combustion. To meet the needs of this study, KIVA-II's boundary condition and chemistry treatments are modified. The study itself examines the relationships between fuel vaporization, fuel-air mixing, and combustion. Parameters being considered include: mixer tube diameter, mixer tube length, mixer tube geometry (converging-diverging versus straight walls), air inlet velocity, air inlet swirl angle, secondary air injection (dilution holes), fuel injection velocity, fuel injection angle, number of fuel injection ports, fuel spray cone angle, and fuel droplet size. Cases are run with and without combustion to examine the variations in fuel-air mixing and potential for flashback due to the above parameters. The degree of fuel-air mixing is judged by comparing average, minimum, and maximum fuel/air ratios at the exit of the mixer tube, while flame stability is monitored by following the location of the flame front as the solution progresses from ignition to steady state. Results indicate that fuel-air mixing can be enhanced by a variety of means, the best being a combination of air inlet swirl and a converging-diverging mixer tube geometry. With the IMFH configuration utilized in the present study, flashback becomes more common as the mixer tube diameter is increased and is instigated by disturbances associated with the dilution hole flow.

  10. Air/fuel supply system for use in a gas turbine engine

    DOEpatents

    Fox, Timothy A; Schilp, Reinhard; Gambacorta, Domenico

    2014-06-17

    A fuel injector for use in a gas turbine engine combustor assembly. The fuel injector includes a main body and a fuel supply structure. The main body has an inlet end and an outlet end and defines a longitudinal axis extending between the outlet and inlet ends. The main body comprises a plurality of air/fuel passages extending therethrough, each air/fuel passage including an inlet that receives air from a source of air and an outlet. The fuel supply structure communicates with and supplies fuel to the air/fuel passages for providing an air/fuel mixture within each air/fuel passage. The air/fuel mixtures exit the main body through respective air/fuel passage outlets.

  11. Human response to house vibrations caused by sonic booms or air blasts.

    PubMed

    Schomer, P D

    1978-07-01

    Descriptions of the effects of sonic booms of air blasts by observers in buildings have included such statements as "noticeable vibrations" in addition to phrases such as "the house rattles," "the windows rattle," or "bric-à-brac rattles." Analysis of studies of human response to vibrations, vibration complaints in the Toronto area, special tests by Kryter at Edwards Air Force Base, and laboratory studies of human response to sonic booms show that perceived vibration is not normally a factor that contributes significantly to human response to airborne, large-amplitude impulse noise. Rather, human response is solely the result of the impulse noise itself and of audible noise due to induced radiation from vibrating surfaces. PMID:711997

  12. German Air Forces experiences with plastic media blasting and future requirements

    NASA Astrophysics Data System (ADS)

    Stoermer, Matthias

    1993-03-01

    German Air Force (GAF) has been researching a method of paint removal for a couple of years to replace the chemical method still in use. This is to improve corrosion prevention, environmental protection and health care. With the support of German aerospace company MBB and the University of the Armed Forces in Munich GAF selected Plastic Media Blasting (PMB) as the most suitable method. Having a stripping facility for the entire aircraft at MBB Manching already in existence, GAF decided that the next step forward to gain more experiences is to establish a smaller 'stripping cabin' at an air force base. This cabin is suitable for stripping removable parts and components of aircraft and equipment with the max. size of a half dismantled TORNADO wing. With these gained experiences GAF will be in position to formulate the specific requirements for an entire on-base aircraft stripping plant which will be suitable for F-4's, TORNADO's and EFA's, too.

  13. Fuel Cells Utilizing Oxygen From Air at Low Pressures

    NASA Technical Reports Server (NTRS)

    Cisar, Alan; Boyer, Chris; Greenwald, Charles

    2006-01-01

    A fuel cell stack has been developed to supply power for a high-altitude aircraft with a minimum of air handling. The fuel cell is capable of utilizing oxygen from ambient air at low pressure with no need for compression. For such an application, it is advantageous to take oxygen from the air (in contradistinction to carrying a supply of oxygen onboard), but it is a challenging problem to design a fuel-cell stack of reasonable weight that can generate sufficient power while operating at reduced pressures. The present fuel-cell design is a response to this challenge. The design features a novel bipolar plate structure in combination with a gas-diffusion structure based on a conductive metal core and a carbon gas-diffusion matrix. This combination makes it possible for the flow fields in the stack to have a large open fraction (ratio between open volume and total volume) to permit large volumes of air to flow through with exceptionally low backpressure. Operations at reduced pressure require a corresponding increase in the volume of air that must be handled to deliver the same number of moles of oxygen to the anodes. Moreover, the increase in the open fraction, relative to that of a comparable prior fuel-cell design, reduces the mass of the stack. The fuel cell has been demonstrated to operate at a power density as high as 105 W/cm2 at an air pressure as low as 2 psia (absolute pressure 14 kPa), which is the atmospheric pressure at an altitude of about 50,000 ft ( 15.2 km). The improvements in the design of this fuel cell could be incorporated into designs of other fuel cells to make them lighter in weight and effective at altitudes higher than those of prior designs. Potential commercial applications for these improvements include most applications now under consideration for fuel cells.

  14. Planar solid oxide fuel cell with staged indirect-internal air and fuel preheating and reformation

    DOEpatents

    Geisbrecht, Rodney A; Williams, Mark C

    2003-10-21

    A solid oxide fuel cell arrangement and method of use that provides internal preheating of both fuel and air in order to maintain the optimum operating temperature for the production of energy. The internal preheat passes are created by the addition of two plates, one on either side of the bipolar plate, such that these plates create additional passes through the fuel cell. This internal preheat fuel cell configuration and method reduce the requirements for external heat exchanger units and air compressors. Air or fuel may be added to the fuel cell as required to maintain the optimum operating temperature through a cathode control valve or an anode control valve, respectively. A control loop comprises a temperature sensing means within the preheat air and fuel passes, a means to compare the measured temperature to a set point temperature and a determination based on the comparison as to whether the control valves should allow additional air or fuel into the preheat or bypass manifolds of the fuel cell.

  15. Electronic control system for air fuel ratio compensation in highlands

    SciTech Connect

    Kimura, J.; Noji, A.

    1981-12-29

    An electronic control system which electronically controls the air fuel ratio of a mixture being supplied to a gasoline engine in highlands is described. An orifice device is provided in a passage through which secondary air is supplied to the venturi section of the engine carburetor. An electronic control unit carries out programmed control of the orifice opening of the orifice device in response to the atmospheric pressure and the engine temperature to create a reference pressure. A further electronic control unit drives a second air control valve provided in the secondary air supply passage along a predetermined operating characteristic pattern in response to the difference between the reference pressure and an actual pressure present in the venturi section of the carburetor. A mixture having an optimum air fuel ratio corresponding to the atmospheric pressure can thus be supplied to the engine from the carburetor.

  16. Estimation of Yield and Height-of-Burst for Near-Surface Explosions from Joint Inversion of Air-Blast and Seismic Data

    NASA Astrophysics Data System (ADS)

    Rodgers, A.; Xu, H.; Templeton, D. C.; Ramirez, A. L.; Chipman, V.; Ford, S. R.; Chambers, D. H.

    2011-12-01

    Near-surface explosions generate air-blast overpressure and seismic ground motions. It is well known that air-blast and seismic amplitudes depend on explosive yield and range. However for explosions near the ground surface the excitation of air-blast overpressure in the atmosphere and seismic motions depends strongly on the height-of-burst (HOB) for above ground or depth-of-burial (DOB, negative HOB) for buried explosions. We report an algorithm for estimating yield and HOB from near-surface explosions by joint inversion of air-blast overpressure and seismic ground motion amplitudes. The HUMBLE REDWOOD series of chemical explosions conducted at Kirtland AFB were explicitly designed to investigate the effect of HOB on air-blast and seismic motions. Analysis of these data indicates that scaled-range and HOB effects separate and provide calibration data for signal behavior with yield, range and HOB. Variation of air-blast measurements with scaled range for above ground explosions is reasonably well fit by reported models. Dependence with scaled HOB is determined with residuals from above ground air-blast models fit to a parameterized curve. Resampling of the data allows estimates of model errors for both scaled range and scaled HOB and is also used to propagate model errors in the inversion. Similar analysis is performed for the dependence of seismic amplitudes with scaled range and scaled HOB. The inversion of air-blast and seismic amplitudes for yield and HOB uses either a grid search or Markov Chain Monte Carlo (MCMC) approach. The algorithm runs very quickly in either case because the forward calculations are algebraic and very efficient for this two-dimensional model space. We show that inversion results obtained with only one data type (air-blast or seismic) are strongly non-unique and often have large bias. However, joint inversion of air-blast and seismic data breaks the trade-offs between yield and HOB and leads to more accurate estimates. We find that

  17. Fuel cells and air quality: A California perspective

    NASA Astrophysics Data System (ADS)

    Lloyd, Alan C.; Leonard, Jonathan H.; George, Ranji

    1994-04-01

    The continuing challenge to improve the quality of urban air, worldwide, provides many opportunities to introduce cleaner technologies into the industrial energy base. The fuel cell is particularly attractive from an environmental viewpoint because of its inherent efficiency, zero or near-zero emissions, and quiet operation. Since 1991, fuel cells have made major institutional strides in being recognized as part of the solution to the major air-pollution problem in Southern California. Fuel cells and hydrogen are now receiving greater attention in the regulatory planning process. This process seeks to identify lower-emitting technologies and fuels that can assist the region in meeting health-based air-quality standards by the year 2010, and provide for a sustainable, health-grounded regional economy as well. Current demonstration projects involving fuel cells and hydrogen are discussed, as well as necessary plans and incentives for infrastructure development - a critical component of fuel-cell commercialization. Finally, an overview is presented of regulatory efforts that are being considered to support early markets for fuel cells.

  18. Air to fuel ratio control system for internal combustion engine

    SciTech Connect

    Nishimura, Y.; Oyama, Y.

    1980-05-06

    An air to fuel ratio control system for an internal combustion engine having a fixed venturi type carburetor is disclosed. The air to fuel ratio control system comprises a device for extracting an atmospheric pressure within a venturi or a pressure corresponding to a relieved venturi vacuum, a device for extracting a static fuel pressure downstream of a main jet provided in a fuel path, a device for comparing those pressures directly or indirectly and a device for controlling the static fuel pressure in accordance with an output of the detecting device. Control is made such that the difference between those pressures is always maintained substantially constant. The air to fuel ratio control system may further comprise a device for detecting composition of exhaust gas of the engine. An output of the composition detecting device is applied to a control device which controls the static fuel pressure based on the output of the differential pressure detecting device and the output of the composition detecting device.

  19. Basic Considerations in the Combustion of Hydrocarbon Fuels with Air

    NASA Technical Reports Server (NTRS)

    Barnett, Henry C; Hibbard, Robert R

    1957-01-01

    Basic combustion research is collected, collated, and interpreted as it applies to flight propulsion. The following fundamental processes are treated in separate chapters: atomization and evaporation of liquid fuels, flow and mixing processes in combustion chambers, ignition and flammability of hydrocarbon fuels, laminar flame propagation, turbulent flames, flame stabilization, diffusion flames, oscillations in combustors, and smoke and coke formation in the combustion of hydrocarbon-air mixtures. Theoretical background, basic experimental data, and practical significance to flight propulsion are presented.

  20. Spontaneous ignition delay characteristics of hydrocarbon fuel-air mixtures

    NASA Technical Reports Server (NTRS)

    Lefebvre, A. H.; Freeman, W. G.; Cowell, L. H.

    1986-01-01

    The influence of pressure on the autoignition characteristics of homogeneous mixtures of hydrocarbon fuels in air is examined. Autoignition delay times are measured for propane, ethylene, methane, and acetylene in a continuous flow apparatus featuring a multi-point fuel injector. Results are presented for mixture temperatures from 670K to 1020K, pressures from 1 to 10 atmospheres, equivalence ratios from 0.2 to 0.7, and velocities from 5 to 30 m/s. Delay time is related to pressure, temperature, and fuel concentration by global reaction theory. The results show variations in global activation energy from 25 to 38 kcal/kg-mol, pressure exponents from 0.66 to 1.21, and fuel concentration exponents from 0.19 to 0.75 for the fuels studied. These results are generally in good agreement with previous studies carried out under similar conditions.

  1. Air quality effects of alternative fuels. Final report

    SciTech Connect

    Guthrie, P.; Ligocki, M.; Looker, R.; Cohen, J.

    1997-11-01

    To support the Alternative Fuels Utilization Program, a comparison of potential air quality effects of alternative transportation fuels is being performed. This report presents the results of Phase 1 of this program, focusing on reformulated gasoline (RFG), methanol blended with 15 percent gasoline (M85), and compressed natural gas (CNG). The fuels are compared in terms of effects on simulated future concentrations of ozone and mobile source air toxics in a photochemical grid model. The fuel comparisons were carried out for the future year 2020 and assumed complete replacement of gasoline in the projected light-duty gasoline fleet by each of the candidate fuels. The model simulations were carried out for the areas surrounding Los Angeles and Baltimore/DC, and other (non-mobile) sources of atmospheric emissions were projected according to published estimates of economic and population growth, and planned emission control measures specific to each modeling domain. The future-year results are compared to a future-year run with all gasoline vehicle emissions removed. The results of the comparison indicate that the use of M85 is likely to produce similar ozone and air toxics levels as those projected from the use of RFG. Substitution of CNG is projected to produce significantly lower levels of ozone and the mobile source air toxics than those projected for RFG or M85. The relative benefits of CNG substitution are consistent in both modeling domains. The projection methodologies used for the comparison are subject to a large uncertainty, and modeled concentration distributions depend on meteorological conditions. The quantitative comparison of fuel effects is thus likely to be sensitive to alternative assumptions. The consistency of the results for two very different modeling domains, using very different base assumptions, lends credibility to the qualitative differentiation among these fuels. 32 refs., 42 figs., 47 tabs.

  2. Fuel-injector/air-swirl characterization

    NASA Technical Reports Server (NTRS)

    Mcvey, J. B.; Kennedy, J. B.; Russell, S.

    1988-01-01

    Experimental data on the characteristics of the spray produced by a gas-turbine engine airblast fuel injector are reported. The data acquired include the mass-flux distribution measured by use of a high-resolution spray patternator; the gas-phase velocity field measured by use of a two-component laser Doppler velocimeter, and the liquid droplet size and velocity distributions measured by use of a single-component phase-Doppler anemometer. The data are intended for use in assessments of two-phase flow computational methods as applied to combustor design procedures.

  3. Recent improvements in casthouse practices at the Kwangyang blast furnaces

    SciTech Connect

    Jang, Y.S.; Han, K.W.; Kim, K.Y.; Cho, B.R.; Hur, N.S.

    1997-12-31

    POSCO`s Kwangyang blast furnaces have continuously carried out high production and low fuel operation under a high pulverized coal injection rate without complications since the Kwangyang No. 1 blast furnace was blown-in in 1987. The Kwangyang blast furnaces have focused on improving the work environment for the increase of competitive power in terms of increased production, cost savings, and management of optimum manpower through use of low cost fuel and raw material. At this time, the casthouse work lags behind most work in the blast furnace. Therefore, the Kwangyang blast furnaces have adopted a remote control system for the casthouse equipment to solve complications in the casthouse work due to high temperature and fumes. As the result, the casthouse workers can work in clean air and the number of workers has been reduced to 9.5 personnel per shift by reduction of the workload.

  4. Relation of Fuel-Air Ratio to Engine Performance

    NASA Technical Reports Server (NTRS)

    Sparrow, Stanwood W

    1925-01-01

    The tests upon which this report is based were made at the Bureau of Standards between October 1919 and May 1923. From these it is concluded that: (1) with gasoline as a fuel, maximum power is obtained with fuel-air mixtures of from 0.07 to 0.08 pound of fuel per pound of air; (2) maximum power is obtained with approximately the same ratio over the range of air pressures and temperatures encountered in flight; (3) nearly minimum specific fuel consumption is secured by decreasing the fuel content of the charge until the power is 95 per cent of its maximum value. Presumably this information is of most direct value to the carburetor engineer. A carburetor should supply the engine with a suitable mixture. This report discusses what mixtures have been found suitable for various engines. It also furnishes the engine designer with a basis for estimating how much greater piston displacement an engine operating with a maximum economy mixture should have than one operating with a maximum power mixture in order for both to be capable of the same power development.

  5. Improved alkaline hydrogen/air fuel cells for transportation applications

    SciTech Connect

    McBreen, J; Kissel, G; Kordesch, K V; Kulesa, F; Taylor, E J; Gannon, E; Srinivasan, S

    1980-01-01

    Considerable progress has been made in the last few years on improvement of alkaline air electrodes for air depolarized chlor-alkali cells. Some of these electrodes from Union Carbide Corporation have been evaluated at Brookhaven National Laboratory in alkaline hydrogen/air fuel cells. In initial tests with 289 cm/sup 2/ electrodes, power densities of 100 mW/cm/sup 2/ were obtained at 0.65 V. This compares with power densities of 27 mW/cm/sup 2/ obtained by Kordesch in his vehicle fuel cell in the late sixties. Further improvements in the air electrode flow field yielded power densities of 126 mW/cm/sup 2/ at 0.65 V at an operating temperature of 70/sup 0/C. At 30/sup 0/C, nearly 60% of this power could be obtained at 0.65 V. The 289 cm/sup 2/ cells were units in a 16-cell 0.5 kW module. This module yielded similar power densities, and its power/weight and power/volume are sufficiently attractive for it to be considered as a building block for a fuel cell power plant in a fuel cell/battery hybrid vehicle.

  6. Modeling and Analysis of Aluminum/Air Fuel Cell

    NASA Astrophysics Data System (ADS)

    Leon, Armando J.

    The technical and scientific challenges to provide reliable sources energy for US and global economy are enormous tasks, and especially so when combined with strategic and recent economic concerns of the last five years. It is clear that as part of the mix of energy sources necessary to deal with these challenges, fuel cells technology will play critical or even a central role. The US Department of Energy, as well as a number of the national laboratories and academic institutions have been aware of the importance such technology for some time. Recently, car manufacturers, transportation experts, and even utilities are paying attention to this vital source of energy for the future. In this thesis, a review of the main fuel cell technologies is presented with the focus on the modeling, and control of one particular and promising fuel cell technology, aluminum air fuel cells. The basic principles of this fuel cell technology are presented. A major part of the study consists of a description of the electrochemistry of the process, modeling, and simulations of aluminum air FC using Matlab Simulink(TM). The controller design of the proposed model is also presented. In sequel, a power management unit is designed and analyzed as an alternative source of power. Thus, the system commutes between the fuel cell output and the alternative power source in order to fulfill a changing power load demand. Finally, a cost analysis and assessment of this technology for portable devices, conclusions and future recommendations are presented.

  7. Study of a blast-furnace smelting technology which involves the injection of pulverized-coal fuel, natural gas, and an oxygen-enriched blast into the hearth

    SciTech Connect

    Ryzhenkov, A.N.; Yaroshevskii, S.L.; Zamuruev, V.P.; Popov, V.E.; Afanas'eva, Z.K.

    2006-05-15

    Studies were made of features of a blast-furnace smelting technology that involves the injection of natural gas (NG), oxygen (O{sub 2}) and pulverized-coal fuel (PCF) into the hearth. The technology has been implemented in the compensation and overcompensation regimes, which has made it possible to maintain or improve the gas dynamics of the furnace, the conditions for the reduction of iron oxides, the heating of the charge, and PCF combustion in the tuyere zone as PCF consumption is increased and coke use is decreased. Under the given conditions, with the blast having an oxygen content of 25.64-25.7%, the hearth injection of 131-138 kg PCF and 65-69 m{sup 3} NG for each ton of pig iron has made it possible to reduce coke consumption by 171-185 kg/ton pig (30.2-32.7%), reduce the consumption of comparison fuel by 36-37 kg/ton (5.2-5.3%), and lower the production cost of the pig iron by 43-49 hryvnas/ton (3.7-6.4%). Here, furnace productivity has increased 3.8-6.5%, while the quality of the conversion pig iron remains the same as before. Measures are being implemented to further increase the level and efficiency of PCF use.

  8. Air Shipment of Spent Nuclear Fuel from Romania to Russia

    SciTech Connect

    Igor Bolshinsky; Ken Allen; Lucian Biro; Alexander Buchelnikov

    2010-10-01

    Romania successfully completed the world’s first air shipment of spent nuclear fuel transported in Type B(U) casks under existing international laws and without shipment license special exceptions when the last Romanian highly enriched uranium (HEU) spent nuclear fuel was transported to the Russian Federation in June 2009. This air shipment required the design, fabrication, and licensing of special 20 foot freight containers and cask tiedown supports to transport the eighteen TUK 19 shipping casks on a Russian commercial cargo aircraft. The new equipment was certified for transport by road, rail, water, and air to provide multi modal transport capabilities for shipping research reactor spent fuel. The equipment design, safety analyses, and fabrication were performed in the Russian Federation and transport licenses were issued by both the Russian and Romanian regulatory authorities. The spent fuel was transported by truck from the VVR S research reactor to the Bucharest airport, flown by commercial cargo aircraft to the airport at Yekaterinburg, Russia, and then transported by truck to the final destination in a secure nuclear facility at Chelyabinsk, Russia. This shipment of 23.7 kg of HEU was coordinated by the Russian Research Reactor Fuel Return Program (RRRFR), as part of the U.S. Department of Energy Global Threat Reduction Initiative (GTRI), in close cooperation with the Rosatom State Atomic Energy Corporation and the International Atomic Energy Agency, and was managed in Romania by the National Commission for Nuclear Activities Control (CNCAN). This paper describes the planning, shipment preparations, equipment design, and license approvals that resulted in the safe and secure air shipment of this spent nuclear fuel.

  9. A new approach to oxygen enriched high temperature blast generation

    SciTech Connect

    Queille, P.H.; Macauley, D.

    1996-12-31

    When increasing fuel injection in a blast furnace in order to reduce coke consumption and/or to increase production, the blast furnace operator tries to keep similar raceway conditions, for instance, an equivalent flame temperature. To compensate for the cooling effect due to the higher injection rate, two solutions can be selected or combined: to raise the temperature of the blast and/or to increase the level of oxygen in the blast. Whatever the choice, the Blast Furnace manager will certainly try to reduce the resulting investment and operating costs to a minimum. Air Liquide and Kvaerner Davy are trying to provide a new way to address these needs by offering a new technology for blast heating. A higher blast temperature will not only allow a higher fuel injection at tuyere level, a lower coke consumption, but also a lower oxygen consumption. Air Liquide and Kvaerner Davy are now able to offer a new heat regenerator with major advantages over conventional stoves. This new device can be used as a permanent substitute for a stove, or as a temporary one during repair, or stove improvement. It can also be added to an existing set of stoves to increase the average blast temperature.

  10. Combined fuel and air staged power generation system

    DOEpatents

    Rabovitser, Iosif K; Pratapas, John M; Boulanov, Dmitri

    2014-05-27

    A method and apparatus for generation of electric power employing fuel and air staging in which a first stage gas turbine and a second stage partial oxidation gas turbine power operated in parallel. A first portion of fuel and oxidant are provided to the first stage gas turbine which generates a first portion of electric power and a hot oxidant. A second portion of fuel and oxidant are provided to the second stage partial oxidation gas turbine which generates a second portion of electric power and a hot syngas. The hot oxidant and the hot syngas are provided to a bottoming cycle employing a fuel-fired boiler by which a third portion of electric power is generated.

  11. Higher fuel prices are associated with lower air pollution levels.

    PubMed

    Barnett, Adrian G; Knibbs, Luke D

    2014-05-01

    Air pollution is a persistent problem in urban areas, and traffic emissions are a major cause of poor air quality. Policies to curb pollution levels often involve raising the price of using private vehicles, for example, congestion charges. We were interested in whether higher fuel prices were associated with decreased air pollution levels. We examined an association between diesel and petrol prices and four traffic-related pollutants in Brisbane from 2010 to 2013. We used a regression model and examined pollution levels up to 16 days after the price change. Higher diesel prices were associated with statistically significant short-term reductions in carbon monoxide and nitrogen oxides. Changes in petrol prices had no impact on air pollution. Raising diesel taxes in Australia could be justified as a public health measure. As raising taxes is politically unpopular, an alternative political approach would be to remove schemes that put a downward pressure on fuel prices, such as industry subsidies and shopping vouchers that give fuel discounts.

  12. Air side contamination in Solid Oxide Fuel Cell stack testing

    NASA Astrophysics Data System (ADS)

    Schuler, J. Andreas; Gehrig, Christian; Wuillemin, Zacharie; Schuler, Albert J.; Wochele, Joerg; Ludwig, Christian; Hessler-Wyser, Aïcha; Van herle, Jan

    This work aimed to quantify air side contaminants during Solid Oxide Fuel Cell (SOFC) testing in stack configuration. Post-analyses of a long-term test have shown that performance degradation was mainly due to cathode pollutants originated upstream of the cell, therefore their source identification is crucial. The compressed air system, feeding the airflow to the cathode, was investigated by filtering and subsequent chemical analysis of the filters. Hot-air-sampling was redone in situ at the cathode air entry during a new test run to assess the contaminant concentrations in air in SOFC test conditions. In addition, the behavior of SOFC proximal system components, i.e. alloy oxidation, was characterized separately. Besides the investigation of silicon and sulfur contamination, the present work focused on chromium from high-temperature alloys used in Balance-of-Plant (BoP) components in direct contact with the airflow. Concentrations of volatile Cr-species under SOFC testing conditions were compared to Cr-accumulation on the tested cell as well as to Cr-evaporation rates from BoP alloys, which were individually characterized regarding oxidation behavior. Evaporated Cr quantities were found to saturate the air with Cr-vapors at the cathode air-inlet, as confirmed by the in-situ measurement of volatile species in the hot airflow, and correlate well to accumulated Cr in the cell after long term testing. The results of this study suggest guidelines to reduce air side contamination from exogenous sources in SOFC stacks.

  13. Minimization of Blast furnace Fuel Rate by Optimizing Burden and Gas Distribution

    SciTech Connect

    Dr. Chenn Zhou

    2012-08-15

    The goal of the research is to improve the competitive edge of steel mills by using the advanced CFD technology to optimize the gas and burden distributions inside a blast furnace for achieving the best gas utilization. A state-of-the-art 3-D CFD model has been developed for simulating the gas distribution inside a blast furnace at given burden conditions, burden distribution and blast parameters. The comprehensive 3-D CFD model has been validated by plant measurement data from an actual blast furnace. Validation of the sub-models is also achieved. The user friendly software package named Blast Furnace Shaft Simulator (BFSS) has been developed to simulate the blast furnace shaft process. The research has significant benefits to the steel industry with high productivity, low energy consumption, and improved environment.

  14. A review on air cathodes for zinc-air fuel cells

    NASA Astrophysics Data System (ADS)

    Neburchilov, Vladimir; Wang, Haijiang; Martin, Jonathan J.; Qu, Wei

    This paper reviews the compositions, design and methods of fabrication of air cathodes for alkali zinc-air fuel cells (ZAFCs), one of the few successfully commercialized fuel cells. The more promising compositions for air cathodes are based on individual oxides, or mixtures of such, with a spinel, perovskite, or pyrochlore structure: MnO 2, Ag, Co 3O 4, La 2O 3, LaNiO 3, NiCo 2O 4, LaMnO 3, LaNiO 3, etc. These compositions provide the optimal balance of ORR activity and chemical stability in an alkali electrolyte. The sol-gel and reverse micelle methods supply the most uniform distribution of the catalyst on carbon and the highest catalyst BET surface area. It is shown that the design of the air cathode, including types of carbon black, binding agents, current collectors, Teflon membranes, thermal treatment of the GDL, and catalyst layers, has a strong effect on performance.

  15. Method and apparatus for varying the fuel ratio of an air-fuel mixture

    SciTech Connect

    Leonardi, S.

    1981-03-24

    A method and apparatus is described for varying the fuel ratio of an air-fuel mixture supplied to the carburetor of an internal combustion engine. In a first embodiment, a valve opens and closes a port in an aluminum block between a passage coupled to the pcv and carburetor and a second passage open to the atmosphere. A spring in the second passage modulates the air flow as a function of vacuum pressure and thermally responsive means maintains the valve closed until the engine reaches its operating temperature. In a second embodiment the valve is opened as a function of the wind pressure produced during vehicle movement.

  16. 40 CFR 1065.655 - Chemical balances of fuel, intake air, and exhaust.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.655 Chemical balances of fuel, intake air, and exhaust. (a) General. Chemical balances of fuel, intake air, and... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Chemical balances of fuel, intake...

  17. 40 CFR 1065.655 - Chemical balances of fuel, intake air, and exhaust.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.655 Chemical balances of fuel, intake air, and exhaust. (a) General. Chemical balances of fuel, intake air, and... 40 Protection of Environment 33 2014-07-01 2014-07-01 false Chemical balances of fuel, intake...

  18. 40 CFR 1065.655 - Chemical balances of fuel, intake air, and exhaust.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.655 Chemical balances of fuel, intake air, and exhaust. (a) General. Chemical balances of fuel, intake air, and... 40 Protection of Environment 33 2011-07-01 2011-07-01 false Chemical balances of fuel, intake...

  19. 40 CFR 1065.655 - Chemical balances of fuel, intake air, and exhaust.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.655 Chemical balances of fuel, intake air, and exhaust. (a) General. Chemical balances of fuel, intake air, and... 40 Protection of Environment 34 2012-07-01 2012-07-01 false Chemical balances of fuel, intake...

  20. 40 CFR 1065.655 - Chemical balances of fuel, intake air, and exhaust.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) AIR POLLUTION CONTROLS ENGINE-TESTING PROCEDURES Calculations and Data Requirements § 1065.655 Chemical balances of fuel, intake air, and exhaust. (a) General. Chemical balances of fuel, intake air, and... 40 Protection of Environment 34 2013-07-01 2013-07-01 false Chemical balances of fuel, intake...

  1. Storage of LWR spent fuel in air. Volume 3, Results from exposure of spent fuel to fluorine-contaminated air

    SciTech Connect

    Cunningham, M.E.; Thomas, L.E.

    1995-06-01

    The Behavior of Spent Fuel in Storage (BSFS) Project has conducted research to develop data on spent nuclear fuel (irradiated U0{sub 2}) that could be used to support design, licensing, and operation of dry storage installations. Test Series B conducted by the BSFS Project was designed as a long-term study of the oxidation of spent fuel exposed to air. It was discovered after the exposures were completed in September 1990 that the test specimens had been exposed to an atmosphere of bottled air contaminated with an unknown quantity of fluorine. This exposure resulted in the test specimens reacting with both the oxygen and the fluorine in the oven atmospheres. The apparent source of the fluorine was gamma radiation-induced chemical decomposition of the fluoro-elastomer gaskets used to seal the oven doors. This chemical decomposition apparently released hydrofluoric acid (HF) vapor into the oven atmospheres. Because the Test Series B specimens were exposed to a fluorine-contaminated oven atmosphere and reacted with the fluorine, it is recommended that the Test Series B data not be used to develop time-temperature limits for exposure of spent nuclear fuel to air. This report has been prepared to document Test Series B and present the collected data and observations.

  2. Flame propagation in heterogeneous mixtures of fuel drops and air

    NASA Technical Reports Server (NTRS)

    Myers, G. D.; Lefebvre, A. H.

    1984-01-01

    Photographic methods are used to measure flame speeds in flowing mixtures of fuel props and air at atmospheric pressure. The fuels employed include a conventional fuel oil plus various blends JP 7 with stocks containing single-ring and mullti-ring aromatics. The results for stoichiometric mixtures show that flame propagation cannot occur in mixtures containing mean drop sizes larger than 300 to 400 microns, depending on the fuel type. For smaller drop sizes, down to around 60 microns, flame speed is inversely proportional to drop size, indicating that evaporation rates are limiting to flame speed. Below around 60 microns, the curves of flame speed versus mean drop size flatten out, thereby demonstrating that for finely atomized sprays flame speeds are much less dependent on evaporation rates, and are governed primarily by mixing and/or chemical reaction rates. The fuels exhibiting the highest flame speeds are those containing multi-ring aromatics. This is attributed to the higher radiative heat flux emanating from their soot-bearing flames which enhances the rate of evaporation of the fuel drops approaching the flame front.

  3. Model for small arms fire muzzle blast wave propagation in air

    NASA Astrophysics Data System (ADS)

    Aguilar, Juan R.; Desai, Sachi V.

    2011-11-01

    Accurate modeling of small firearms muzzle blast wave propagation in the far field is critical to predict sound pressure levels, impulse durations and rise times, as functions of propagation distance. Such a task being relevant to a number of military applications including the determination of human response to blast noise, gunfire detection and localization, and gun suppressor design. Herein, a time domain model to predict small arms fire muzzle blast wave propagation is introduced. The model implements a Friedlander wave with finite rise time which diverges spherically from the gun muzzle. Additionally, the effects in blast wave form of thermoviscous and molecular relaxational processes, which are associated with atmospheric absorption of sound were also incorporated in the model. Atmospheric absorption of blast waves is implemented using a time domain recursive formula obtained from numerical integration of corresponding differential equations using a Crank-Nicholson finite difference scheme. Theoretical predictions from our model were compared to previously recorded real world data of muzzle blast wave signatures obtained by shooting a set different sniper weapons of varying calibers. Recordings containing gunfire acoustical signatures were taken at distances between 100 and 600 meters from the gun muzzle. Results shows that predicted blast wave slope and exponential decay agrees well with measured data. Analysis also reveals the persistency of an oscillatory phenomenon after blast overpressure in the recorded wave forms.

  4. Evaluation of overpressure prediction models for air blast above the triple point.

    PubMed

    Ehrhardt, L; Boutillier, J; Magnan, P; Deck, C; De Mezzo, S; Willinger, R; Cheinet, S

    2016-07-01

    The increase of blast exposures leads to the need for better assessment of the blast threat. Empirical models describing the blast propagation in ideal conditions as free-field or surface detonations are commonly employed, but in some configurations the ground-reflected shock should be treated explicitly. Empirical models permit the prediction of the blast characteristics with the ground-reflected shock. The present study uses some original experimental data to evaluate the accuracy of the predicted overpressure with time regarding the reflected shock characteristics. Three methods are tested. The first method, called method of images (MOI) and linearly adding a virtual ground-symmetrical source blast to the free-field blast, is quick but lacks accuracy regarding the reflected shock characteristics. The second method, based on the LOAD_BLAST_ENHANCED function of the commercial LS-DYNA framework, better captures the reflected shock compared to the MOI, but the overall differences with experimental data are of the same order of magnitude as for the MOI. An original fit is introduced, based on standard physical parameters. The accuracy of this fit on the reflected shock characteristics, and the better match with the overall overpressure time series, shows its potential as a new empirical blast predicting tool.

  5. Fuel-Air Mixing and Combustion in Scramjets

    NASA Technical Reports Server (NTRS)

    Drummond, J. P.; Diskin, Glenn S.; Cutler, A. D.

    2002-01-01

    Activities in the area of scramjet fuel-air mixing and combustion associated with the Research and Technology Organization Working Group on Technologies for Propelled Hypersonic Flight are described. Work discussed in this paper has centered on the design of two basic experiments for studying the mixing and combustion of fuel and air in a scramjet. Simulations were conducted to aid in the design of these experiments. The experimental models were then constructed, and data were collected in the laboratory. Comparison of the data from a coaxial jet mixing experiment and a supersonic combustor experiment with a combustor code were then made and described. This work was conducted by NATO to validate combustion codes currently employed in scramjet design and to aid in the development of improved turbulence and combustion models employed by the codes.

  6. Effect of air distribution on solid fuel bed combustion

    SciTech Connect

    Kuo, J.T.; Hsu, W.S.; Yo, T.C.

    1996-09-01

    One important aspect of refuse mass-burn combination control is the manipulation of combustion air. Proper air manipulation is key to the achievement of good combustion efficiency and reduction of pollutant emissions. Experiments, using a small fix-grate laboratory furnace with cylindrical combustion chamber, were performed to investigate the influence of undergrate/sidewall air distribution on the combustion of beds of wood cubes. Wood cubes were used as a convenient laboratory surrogate of solid refuse. Specifically, for different bed configurations (e.g. bed height, bed voidage and bed fuel size, etc.), burning rates and combustion temperatures at different bed locations were measured under various air supply and distribution conditions. One of the significant results of the experimental investigation is that combustion, with air injected from side walls and no undergrate air, provide the most efficient combustion. On the other hand, combustion with undergrate air achieves higher combustion rates but with higher CO emissions. A simple one-dimensional model was constructed to derive correlations of combustion rate as functions of flue gas temperature and oxygen concentration. Despite the fact that the model is one dimensional and many detailed chemical and physical processes of combustion are not considered, comparisons of the model predictions and the experimental results indicate that the model is appropriate for quantitative evaluation of bed burning rates.

  7. Gas and drop behavior in reacting and non-reacting air-blast atomizer sprays

    NASA Technical Reports Server (NTRS)

    Mcdonell, Vincent G.; Samuelsen, Scott

    1991-01-01

    A detailed study of the two-phase flow produced by a gas-turbine air-blast atomizer is performed with the goal of identifying the interaction between the two phases for both nonreacting and reacting conditions. A two-component phase Doppler interferometry is utilized to characterize three flowfields produced by the atomizer: (1) the single-phase flow, (2) the two-phase nonreacting spray, and (3) the two-phase reacting spray. Measurements of the mean and fluctuating axial and azimuthal velocities for each phase are obtained. In addition, the droplet size distribution, volume flux, and concentration are measured. The results reveal the strong influence of the dispersed phase on the gas, and the influence of reaction on both the gas and the droplet field. The presence of the spray significantly alters the inlet condition of the atomizer. With this alteration quantified, it is possible to deduce that the inertia associated with the dispersed phase damps the fluctuating velocities of the gas. Reaction reduces the volume flux of the droplets, broadens the local volume distribution of the droplets in the region of the reaction zone, increases the axial velocities and radial spread of the gas, and increases the anisotropy in the region of the reaction zone.

  8. Apparatus and method for burning a lean, premixed fuel/air mixture with low NOx emission

    DOEpatents

    Kostiuk, Larry W.; Cheng, Robert K.

    1996-01-01

    An apparatus for enabling a burner to stably burn a lean fuel/air mixture. The burner directs the lean fuel/air mixture in a stream. The apparatus comprises an annular flame stabilizer; and a device for mounting the flame stabilizer in the fuel/air mixture stream. The burner may include a body having an internal bore, in which case, the annular flame stabilizer is shaped to conform to the cross-sectional shape of the bore, is spaced from the bore by a distance greater than about 0.5 mm, and the mounting device mounts the flame stabilizer in the bore. An apparatus for burning a gaseous fuel with low NOx emissions comprises a device for premixing air with the fuel to provide a lean fuel/air mixture; a nozzle having an internal bore through which the lean fuel/air mixture passes in a stream; and a flame stabilizer mounted in the stream of the lean fuel/air mixture. The flame stabilizer may be mounted in the internal bore, in which case, it is shaped and is spaced from the bore as just described. In a method of burning a lean fuel/air mixture, a lean fuel/air mixture is provided, and is directed in a stream; an annular eddy is created in the stream of the lean fuel/air mixture; and the lean fuel/air mixture is ignited at the eddy.

  9. Combustion gas properties. 2: Natural gas fuel and dry air

    NASA Technical Reports Server (NTRS)

    Wear, J. D.; Jones, R. E.; Trout, A. M.; Mcbride, B. J.

    1985-01-01

    A series of computations has been made to produce the equilibrium temperature and gas composition for natural gas fuel and dry air. The computed tables and figures provide combustion gas property data for pressures from 0.5 to 50 atmospheres and equivalence ratios from 0 to 2.0. Only samples tables and figures are provided in this report. The complete set of tables and figures is provided on four microfiche films supplied with this report.

  10. Annular fuel and air co-flow premixer

    DOEpatents

    Stevenson, Christian Xavier; Melton, Patrick Benedict; York, William David

    2013-10-15

    Disclosed is a premixer for a combustor including an annular outer shell and an annular inner shell. The inner shell defines an inner flow channel inside of the inner shell and is located to define an outer flow channel between the outer shell and the inner shell. A fuel discharge annulus is located between the outer flow channel and the inner flow channel and is configured to inject a fuel flow into a mixing area in a direction substantially parallel to an outer airflow through the outer flow channel and an inner flow through the inner flow channel. Further disclosed are a combustor including a plurality of premixers and a method of premixing air and fuel in a combustor.

  11. Low-friction coatings for air bearings in fuel cell air compressors

    SciTech Connect

    Ajayi, O. O.; Fenske, G. R.; Erdemir, A.; Woodford, J.; Sitts, J.; Elshot, K.; Griffey, K.

    2000-01-06

    In an effort to reduce fuel consumption and emissions, hybrid vehicles incorporating fuel cell systems are being developed by automotive manufacturers, their suppliers, federal agencies (specifically, the US Department of Energy) and national laboratories. The fuel cell system will require an air management subsystem that includes a compressor/expander. Certain components in the compressor will require innovative lubrication technology in order to reduce parasitic energy losses and improve their reliability and durability. One such component is the air bearing for air turbocompressors designed and fabricated by Meruit, Inc. Argonne National Laboratory recently developed a carbon-based coating with low friction and wear attributes; this near-frictionless-carbon (NFC) coating is a potential candidate for use in turbocompressor air bearings. The authors present here an evaluation of the Argonne coating for air compressor thrust bearings. With two parallel 440C stainless steel discs in unidirectional sliding contact, the NFC reduced the frictional force four times and the wear rate by more than two orders of magnitude. Wear mechanism on the uncoated surface involved oxidation and production of iron oxide debris. Wear occurred on the coated surfaces primarily by a polishing mechanism.

  12. Air electrode composition for solid oxide fuel cell

    DOEpatents

    Kuo, Lewis; Ruka, Roswell J.; Singhal, Subhash C.

    1999-01-01

    An air electrode composition for a solid oxide fuel cell is disclosed. The air electrode material is based on lanthanum manganite having a perovskite-like crystal structure ABO.sub.3. The A-site of the air electrode composition comprises a mixed lanthanide in combination with rare earth and alkaline earth dopants. The B-site of the composition comprises Mn in combination with dopants such as Mg, Al, Cr and Ni. The mixed lanthanide comprises La, Ce, Pr and, optionally, Nd. The rare earth A-site dopants preferably comprise La, Nd or a combination thereof, while the alkaline earth A-site dopant preferably comprises Ca. The use of a mixed lanthanide substantially reduces raw material costs in comparison with compositions made from high purity lanthanum starting materials. The amount of the A-site and B-site dopants is controlled in order to provide an air electrode composition having a coefficient of thermal expansion which closely matches that of the other components of the solid oxide fuel cell.

  13. Air electrode composition for solid oxide fuel cell

    DOEpatents

    Kuo, L.; Ruka, R.J.; Singhal, S.C.

    1999-08-03

    An air electrode composition for a solid oxide fuel cell is disclosed. The air electrode material is based on lanthanum manganite having a perovskite-like crystal structure ABO{sub 3}. The A-site of the air electrode composition comprises a mixed lanthanide in combination with rare earth and alkaline earth dopants. The B-site of the composition comprises Mn in combination with dopants such as Mg, Al, Cr and Ni. The mixed lanthanide comprises La, Ce, Pr and, optionally, Nd. The rare earth A-site dopants preferably comprise La, Nd or a combination thereof, while the alkaline earth A-site dopant preferably comprises Ca. The use of a mixed lanthanide substantially reduces raw material costs in comparison with compositions made from high purity lanthanum starting materials. The amount of the A-site and B-site dopants is controlled in order to provide an air electrode composition having a coefficient of thermal expansion which closely matches that of the other components of the solid oxide fuel cell. 3 figs.

  14. A pound of prevention: Air pollution and the fuel cell

    SciTech Connect

    Johnson, B.L.; Rose, R.

    1996-12-31

    The expanded use of fuel cells in transportation and power generation is an exciting proposition for public health officials because of the potential of this technology to help reduce air pollution levels around the globe. Such work is about prevention -- prevention of air emissions of hazardous substances. Prevention is a key concept in public health. An example is quarantine, which aims to prevent the spread of a disease-causing organism. In the environmental arena, prevention includes cessation of pollution. Air pollution prevention policies also have a practical impact. Sooner or later ideas on technology, especially new technology, must be sold to policy makers, legislators, and eventually the public. Advocating technologies that will improve human health and welfare can be an effective marketing strategy.

  15. Factors Affecting Internal Blast

    NASA Astrophysics Data System (ADS)

    Granholm, R. H.; Sandusky, H. W.; Felts, J. E.

    2007-12-01

    Internal blast refers to explosion effects in confined spaces, which are dominated by the heat output of the explosive. Theoretical temperatures and pressures may not be reached due to heat losses and incomplete gas mixing. Gas mixing can have the largest effect, potentially reducing peak quasi-static pressure by a factor of two due to lack of thermal equilibrium between products and atmosphere in the space, separate from the effect of incomplete combustion of excess fuel when that atmosphere is air. Chamber and test geometry affect gas mixing, which has been inferred through temperature and pressure measurements and compared to calculations. Late-time combustion is observed for TNT compared to HMX.

  16. Fuel-air mixing apparatus for reducing gas turbine combustor exhaust emissions

    NASA Technical Reports Server (NTRS)

    Zupanc, Frank J. (Inventor); Yankowich, Paul R. (Inventor)

    2006-01-01

    A fuel-air mixer for use in a combustion chamber of a gas turbine engine is provided. The fuel air mixing apparatus comprises an annular fuel injector having a plurality of discrete plain jet orifices, a first swirler wherein the first swirler is located upstream from the fuel injector and a second swirler wherein the second swirler is located downstream from the fuel injector. The plurality of discrete plain jet orifices are situated between the highly swirling airstreams generated by the two radial swirlers. The distributed injection of the fuel between two highly swirling airstreams results in rapid and effective mixing to the desired fuel-air ratio and prevents the formation of local hot spots in the combustor primary zone. A combustor and a gas turbine engine comprising the fuel-air mixer of the present invention are also provided as well as a method using the fuel-air mixer of the present invention.

  17. Burning tires for fuel and tire pyrolysis: air implications

    SciTech Connect

    Clark, C.; Meardon, K.; Russell, D.

    1991-12-01

    The document was developed in response to increasing inquiries into the environmental impacts of burning waste tires in process equipment. The document provides information on the use of whole, scrap tires and tire-derived-fuel (TDF) as combustion fuel and on the pyrolysis of scrap tires. The use of whole tires and TDF as a primary fuel is discussed for dedicated tire-to-energy facilities. The use of whole tires and TDF as a supplemental fuel is discussed for cement manufacturing plants, electric utilities, pulp and paper mills, and other industrial processes. The focus of the document is on the impact of burning whole tires and TDF on air emissions. Test data are presented and, in most instances, compared with emissions under baseline conditions (no tires or TDF in the fuel). The control devices used in these industries are discussed and, where possible, their effectiveness in controlling emissions from the burning of whole tires or TDF is described. In addition, the report provides information on the processes themselves that use whole tires or TDF, the modifications to the processes that allowed the use of whole tires or TDF, and the operational experiences of several facilities using whole tires or TDF. The economic feasibility of using whole tires and TDF for the surveyed industries is discussed. Finally, contacts for State waste tire programs are presented.

  18. Hot blast stove process model and model-based controller

    SciTech Connect

    Muske, K.R.; Howse, J.W.; Hansen, G.A.; Cagliostro, D.J.; Chaubal, P.C.

    1998-12-31

    This paper describes the process model and model-based control techniques implemented on the hot blast stoves for the No. 7 Blast Furnace at the Inland Steel facility in East Chicago, Indiana. A detailed heat transfer model of the stoves is developed and verified using plant data. This model is used as part of a predictive control scheme to determine the minimum amount of fuel necessary to achieve the blast air requirements. The model is also used to predict maximum and minimum temperature constraint violations within the stove so that the controller can take corrective actions while still achieving the required stove performance.

  19. Effects of Passive Fuel-Air Mixing Control on Burner Emissions Via Lobed Fuel Injectors

    NASA Technical Reports Server (NTRS)

    Mitchell, M. G.; Smith, O. I.; Karagozian, A. R.

    1999-01-01

    The present experimental study examines the effects of differing levels of passive fuel-air premixing on flame structures and their associated NO(x) and CO emissions. Four alternative fuel injector geometries were explored, three of which have lobed shapes. These lobed injectors mix fuel and air and strain species inter-faces to differing extents due to streamwise vorticity generation, thus creating different local or core equivalence ratios within flow regions upstream of flame ignition and stabilization. Prior experimental studies of two of these lobed injector flowfields focused on non-reactive mixing characteristics and emissions measurements for the case where air speeds were matched above and below the fuel injector, effectively generating stronger streamwise vorticity than spanwise vorticity. The present studies examine the effects of airstream mismatch (and hence additional spanwise vorticity generation), effects of confinement of the crossflow to reduce the local equivalence ratio, and the effects of altering the geometry and position of the flameholders. NO(x) and CO emissions as well as planar laser-induced fluorescence imaging (PLIF) of seeded acetone are used to characterize injector performance and reactive flow evolution.

  20. AIR EMISSIONS FROM THE TREATMENT OF SOILS CONTAMINATED WITH PETROLEUM FUELS AND OTHER SUBSTANCES

    EPA Science Inventory

    The report updates a 1992 report that summarizes available information on air emissions from the treatment of soils contaminated with fuels. Soils contaminated by leaks or spills of fuel products, such as gasoline or jet fuel, are a nationwide concern. Air emissions during remedi...

  1. PERSONAL EXPOSURE TO JP-8 JET FUEL VAPORS AND EXHAUST AT AIR FORCE BASES

    EPA Science Inventory

    JP-8 jet fuel (similar to commercial/international jet A-1 fuel) is the standard military fuel for all types of vehicles, including the U.S. Air Force aircraft inventory. As such, JP-8 presents the most common chemical exposure in the Air Force, particularly for flight and gro...

  2. Air fuel ratio control apparatus and method for an internal combustion engine with a turbocharger

    SciTech Connect

    Sawamoto, K.; Ikeura, K.; Morita, T.; Yamaguchi, H.

    1984-05-29

    Normally, an air-fuel ratio is controlled in accordance with the engine speed and the intake air quantity of an internal combustion engine with a turbocharger. When the output pressure of the turbocharger increases excessively, an intake relief valve opens to decrease the intake air quantity. In this case, the fuel injection quantity is controlled solely in accordance with the engine speed.

  3. Recycling of blast furnace sludge by briquetting with starch binder: Waste gas from thermal treatment utilizable as a fuel.

    PubMed

    Drobíková, Klára; Plachá, Daniela; Motyka, Oldřich; Gabor, Roman; Kutláková, Kateřina Mamulová; Vallová, Silvie; Seidlerová, Jana

    2016-02-01

    Steel plants generate significant amounts of wastes such as sludge, slag, and dust. Blast furnace sludge is a fine-grained waste characterized as hazardous and affecting the environment negatively. Briquetting is one of the possible ways of recycling of this waste while the formed briquettes serve as a feed material to the blast furnace. Several binders, both organic and inorganic, had been assessed, however, only the solid product had been analysed. The aim of this study was to assess the possibilities of briquetting using commonly available laundry starch as a binder while evaluating the possible utilization of the waste gas originating from the thermal treatment of the briquettes. Briquettes (100g) were formed with the admixture of starch (UNIPRET) and their mechanical properties were analysed. Consequently, they were subjected to thermal treatment of 900, 1000 and 1100°C with retention period of 40min during which was the waste gas collected and its content analysed using gas chromatography. Dependency of the concentration of the compounds forming the waste gas on the temperature used was determined using Principal component analysis (PCA) and correlation matrix. Starch was found to be a very good binder and reduction agent, it was confirmed that metallic iron was formed during the thermal treatment. Approximately 20l of waste gas was obtained from the treatment of one briquette; main compounds were methane and hydrogen rendering the waste gas utilizable as a fuel while the greatest yield was during the lowest temperatures. Preparation of blast furnace sludge briquettes using starch as a binder and their thermal treatment represents a suitable method for recycling of this type of metallurgical waste. Moreover, the composition of the resulting gas is favourable for its use as a fuel. PMID:26684056

  4. Recycling of blast furnace sludge by briquetting with starch binder: Waste gas from thermal treatment utilizable as a fuel.

    PubMed

    Drobíková, Klára; Plachá, Daniela; Motyka, Oldřich; Gabor, Roman; Kutláková, Kateřina Mamulová; Vallová, Silvie; Seidlerová, Jana

    2016-02-01

    Steel plants generate significant amounts of wastes such as sludge, slag, and dust. Blast furnace sludge is a fine-grained waste characterized as hazardous and affecting the environment negatively. Briquetting is one of the possible ways of recycling of this waste while the formed briquettes serve as a feed material to the blast furnace. Several binders, both organic and inorganic, had been assessed, however, only the solid product had been analysed. The aim of this study was to assess the possibilities of briquetting using commonly available laundry starch as a binder while evaluating the possible utilization of the waste gas originating from the thermal treatment of the briquettes. Briquettes (100g) were formed with the admixture of starch (UNIPRET) and their mechanical properties were analysed. Consequently, they were subjected to thermal treatment of 900, 1000 and 1100°C with retention period of 40min during which was the waste gas collected and its content analysed using gas chromatography. Dependency of the concentration of the compounds forming the waste gas on the temperature used was determined using Principal component analysis (PCA) and correlation matrix. Starch was found to be a very good binder and reduction agent, it was confirmed that metallic iron was formed during the thermal treatment. Approximately 20l of waste gas was obtained from the treatment of one briquette; main compounds were methane and hydrogen rendering the waste gas utilizable as a fuel while the greatest yield was during the lowest temperatures. Preparation of blast furnace sludge briquettes using starch as a binder and their thermal treatment represents a suitable method for recycling of this type of metallurgical waste. Moreover, the composition of the resulting gas is favourable for its use as a fuel.

  5. Low temperature limits for mixing recycled oil, diesel fuel, and ammonium nitrate to make ANFO-type blasting agents

    SciTech Connect

    Ruhe, T.C.; Bajpayee, T.S.

    1996-12-31

    The Bureau of Mines conducted research to determine the safe operating conditions for using recycled (used) lubricating oil from mining equipment as a partial replacement for diesel fuel to make ANFO-type blasting agents. The use of recycled oil (RO) saves energy, reduces oil imports, and reduces mining costs. Low ambient temperatures may cause these recycled oils to become too viscous for proper absorption by ammonium nitrate (AN) prills and result in poor blast performance, safety hazards, and environmental problems. To help quantify and resolve these issues, viscosity, mixing, and performance tests were conducted at various temperatures. Diesel fuels No. 1 and No. 2 were studied separately and in blends with 25, 50, and 75% RO. Good quality ANFO mixes (94-6) were produced with dry absorbent prills and blended fuel (No. 1 diesel plus RO) at temperatures as low as {minus}40 F ({minus}40 C) with 75% No. 1/25% RO, and at {minus}20 F ({minus}29 C) with 50/50. Diesel fuel No. 2 also made good mixes as low as {minus}30 F ({minus}34 C) with 75% No. 2/25% RO, and at 0 F ({minus}18 C) with 50/50. Reference detonation velocity tests were conducted in 1.4 in. (3.6 cm) diameter steel pipe at 70 F (21 C) on No. 1 diesel ANFO (94-6), giving an average value of 9,722 ft/s (2,964 m/s). Comparison tests showed good ANFO performance at low temperatures. Based on these results, a practical field method has been developed to help evaluate whether a specific oil blend will mix properly with AN at a low ambient temperature. This method will help to promote the safe and reliable use of RO ANFO at low temperatures, with adequate performance.

  6. Fuel Savings and Emission Reductions from Next-Generation Mobile Air Conditioning Technology in India: Preprint

    SciTech Connect

    Chaney, L.; Thundiyil, K.; Chidambaram, S.; Abbi, Y. P.; Anderson, S.

    2007-05-01

    This paper quantifies the mobile air-conditioning fuel consumption of the typical Indian vehicle, exploring potential fuel savings and emissions reductions these systems for the next generation of vehicles.

  7. Effect of fuel-air-ratio nonuniformity on emissions of nitrogen oxides

    NASA Technical Reports Server (NTRS)

    Lyons, V. J.

    1981-01-01

    The inlet fuel-air ratio nonuniformity is studied to deterine how nitrogen oxide (NOx) emissions are affected. An increase in NOx emissions with increased fuel-air ratio nonuniformity for average equivalence ratios less than 0.7 and a decrease in NOx emissions for average equivalence ratios near stoichiometric is predicted. The degree of uniformityy of fuel-air ratio profiles that is necessary to achieve NOx emissions goals for actual engines that use lean, premixed, prevaporized combustion systems is determined.

  8. Optimum design of bipolar plates for separate air flow cooling system of PEM fuel cells stacks

    NASA Astrophysics Data System (ADS)

    Franco, Alessandro

    2015-12-01

    The paper discusses about thermal management of PEM fuel cells. The objective is to define criteria and guidelines for the design of the air flow cooling system of fuel cells stacks for different combination of power density, bipolar plates material, air flow rate, operating temperature It is shown that the optimization of the geometry of the channel permits interesting margins for maintaining the use of separate air flow cooling systems for high power density PEM fuel cells.

  9. Fuel-Air Mixing and Combustion in Scramjets. Chapter 6

    NASA Technical Reports Server (NTRS)

    Drummond, J. Philip; Diskin, Glenn S.; Cutler, Andrew D.

    2006-01-01

    At flight speeds, the residence time for atmospheric air ingested into a scramjet inlet and exiting from the engine nozzle is on the order of a millisecond. Therefore, fuel injected into the air must efficiently mix within tens of microseconds and react to release its energy in the combustor. The overall combustion process should be mixing controlled to provide a stable operating environment; in reality, however, combustion in the upstream portion of the combustor, particularly at higher Mach numbers, is kinetically controlled where ignition delay times are on the same order as the fluid scale. Both mixing and combustion time scales must be considered in a detailed study of mixing and reaction in a scramjet to understand the flow processes and to ultimately achieve a successful design. Although the geometric configuration of a scramjet is relatively simple compared to a turbomachinery design, the flow physics associated with the simultaneous injection of fuel from multiple injector configurations, and the mixing and combustion of that fuel downstream of the injectors is still quite complex. For this reason, many researchers have considered the more tractable problem of a spatially developing, primarily supersonic, chemically reacting mixing layer or jet that relaxes only the complexities introduced by engine geometry. All of the difficulties introduced by the fluid mechanics, combustion chemistry, and interactions between these phenomena can be retained in the reacting mixing layer, making it an ideal problem for the detailed study of supersonic reacting flow in a scramjet. With a good understanding of the physics of the scramjet internal flowfield, the designer can then return to the actual scramjet geometry with this knowledge and apply engineering design tools that more properly account for the complex physics. This approach will guide the discussion in the remainder of this section.

  10. Explosively-Driven Blast Waves in Small-Diameter Tubes

    NASA Astrophysics Data System (ADS)

    Cooper, M. A.; Marinis, R. T.; Oliver, M. S.

    Studies on blast waves are motivated by the need to understand dynamic pressure loadings in accident scenarios associated with rapid energy release in confined geometries. Explosions from fuel-air mixtures, explosives and industrial accidents often occur within a range of length scales associated with ducts, pipes, corridors, and tunnels [1, 2].

  11. Rock blasting environmental impacts

    SciTech Connect

    Agreda, C.

    1995-12-31

    The rock blasting environmental impacts such as: flyrock, ground vibrations, air-blast, and/or noise, dust and fumes are identified and mentioned. Some comments on the correction factors that might be taken into consideration to calculate the initial velocity and the maximum projection of the rock fragments are mentioned as well. The blast fumes causes, its alleviation and protective measures are identified, described and discussed. To mitigate, minimize and/or avoid blast fumes, the AN/FO, Al/AN/FO and S/AN/FO dry blasting agents optimum equations are developed, discussed and recommended.

  12. Storage of LWR spent fuel in air: Volume 1: Design and operation of a spent fuel oxidation test facility

    SciTech Connect

    Thornhill, C.K.; Campbell, T.K.; Thornhill, R.E.

    1988-12-01

    This report describes the design and operation and technical accomplishments of a spent-fuel oxidation test facility at the Pacific Northwest Laboratory. The objective of the experiments conducted in this facility was to develop a data base for determining spent-fuel dry storage temperature limits by characterizing the oxidation behavior of light-water reactor (LWR) spent fuels in air. These data are needed to support licensing of dry storage in air as an alternative to spent-fuel storage in water pools. They are to be used to develop and validate predictive models of spent-fuel behavior during dry air storage in an Independent Spent Fuel Storage Installation (ISFSI). The present licensed alternative to pool storage of spent fuel is dry storage in an inert gas environment, which is called inerted dry storage (IDS). Licensed air storage, however, would not require monitoring for maintenance of an inert-gas environment (which IDS requires) but does require the development of allowable temperature limits below which UO/sub 2/ oxidation in breached fuel rods would not become a problem. Scoping tests at PNL with nonirradiated UO/sub 2/ pellets and spent-fuel fragment specimens identified the need for a statistically designed test matrix with test temperatures bounding anticipated maximum acceptable air-storage temperatures. This facility was designed and operated to satisfy that need. 7 refs.

  13. Flame holding tolerant fuel and air premixer for a gas turbine combustor

    DOEpatents

    York, William David; Johnson, Thomas Edward; Ziminsky, Willy Steve

    2012-11-20

    A fuel nozzle with active cooling is provided. It includes an outer peripheral wall, a nozzle center body concentrically disposed within the outer wall in a fuel and air pre-mixture. The fuel and air pre-mixture includes an air inlet, a fuel inlet and a premixing passage defined between the outer wall in the center body. A gas fuel flow passage is provided. A first cooling passage is included within the center body in a second cooling passage is defined between the center body and the outer wall.

  14. System for feedback control of air-fuel ratio in internal combustion engine

    SciTech Connect

    Yoneda, K.; Kunome, Y.

    1984-05-08

    A system for feedback control of the air-fuel ratio in a carburetor for an automotive internal combustion engine. The control system includes an auxiliary air bleed passage in the main air bleed of a fuel passage, an electromagnetic valve to periodically open and close the auxiliary air bleed passage, an exhaust sensor to detect a specific component of the exhaust gas as an indication of actual air-fuel ratio, and a control circuit to control the electromagnetic valve based on the output of the exhaust sensor. A vacuum passage connects the auxiliary air bleed passage at a section upstream of the electromagnetic valve to a venturi of the intake passage. A vacuum-responsive valve in the vacuum passage dilutes air admitted through the auxiliary air bleed passage with the venturi vacuum during higher speed operation of the engine to compensate for a tendency of the air through the auxiliary air bleed passage to be augmented.

  15. Effect of High Air Velocities on the Distribution and Penetration of a Fuel Spray

    NASA Technical Reports Server (NTRS)

    Rothrock, A M

    1931-01-01

    By means of the NACA Spray Photography Equipment high speed moving pictures were taken of the formation and development of fuel sprays from an automatic injection valve. The sprays were injected normal to and counter to air at velocities from 0 to 800 feet per second. The air was at atmosphere temperature and pressure. The results show that high air velocities are an effective means of mixing the fuel spray with the air during injection.

  16. 29 CFR 1926.913 - Blasting in excavation work under compressed air.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... rock face is approaching mixed face, and when tunnel excavation is in mixed face, blasting shall be performed with light charges and with light burden on each hole. Advance drilling shall be performed as tunnel excavation in rock face approaches mixed face, to determine the general nature and extent of...

  17. Air-fuel ratio control system for an internal combustion engine with a three way catalytic converter

    SciTech Connect

    Fujimura, A.; Sato, Y.

    1986-04-29

    An air-fuel ratio control system is described for an internal combustion engine having at least one of a main fuel passage and a slow fuel passage in a fuel supply system thereof, the air-fuel ratio control system being adapted for performing a feedback control of air-fuel ratio according to a detected oxygen concentration of an exhaust gas of the engine, and comprising: an auxiliary fuel supply means for supplying an auxiliary fuel to the engine through a fuel nozzle opening at a venturi part of a carburetor of the engine; an intake air temperature sensing means for sensing temperature of intake air introduced to the engine; and a control means for operating/stopping the feedback control of air-fuel ratio in accordance with the temperature of intake air sensed by the intake air temperature sensing means, the control means comprising a single control valve being adapted to stop the feedback control of air-fuel ratio and activate the auxiliary fuel supply means and to stop a supply of air into at least one of the main fuel passage and slow fuel passage, for enriching the air-fuel ratio when the temperature of intake air is below a predetermined level.

  18. Zinc/air fuel cell for electric vehicles

    SciTech Connect

    Cherepy, N. J.; Krueger, R.; Cooper, J. F.

    1999-01-01

    We are conducting tests of an advanced zinc/air fuel cell design to determine effectiveness in various commercial applications. Our 322-cm2 cell uses gravity-fed zinc pellets as the anode, 12 M KOH electrolyte, and an air cathode catalyzed by a cobalt-porphyrin complex on carbon black. A single 322 cm2 cell runs at a standard operating power of 38 W (1200 W/m2) at 39 A (1245 A/m2) and 0.96 V with a power density of 2400 W/m2 at 0.67 V. With improved current collection hardware, already demonstrated in the laboratory, power generation increases to -3600 W/m2 at 1V. We conducted a 50-hour test in which a cell generated 587 Ah and 569 Wh. The power that may be generated increases by a factor of 2.5 between T = 28 °C and 52 °C. Electrolyte capacity, without stabilization additives, was measured at 147 Ah/L

  19. Ethanol and air quality: influence of fuel ethanol content on emissions and fuel economy of flexible fuel vehicles.

    PubMed

    Hubbard, Carolyn P; Anderson, James E; Wallington, Timothy J

    2014-01-01

    Engine-out and tailpipe emissions of NOx, CO, nonmethane hydrocarbons (NMHC), nonmethane organic gases (NMOG), total hydrocarbons (THC), methane, ethene, acetaldehyde, formaldehyde, ethanol, N2O, and NH3 from a 2006 model year Mercury Grand Marquis flexible fuel vehicle (FFV) operating on E0, E10, E20, E30, E40, E55, and E80 on a chassis dynamometer are reported. With increasing ethanol content in the fuel, the tailpipe emissions of ethanol, acetaldehyde, formaldehyde, methane, and ammonia increased; NOx and NMHC decreased; while CO, ethene, and N2O emissions were not discernibly affected. NMOG and THC emissions displayed a pronounced minimum with midlevel (E20-E40) ethanol blends; 25-35% lower than for E0 or E80. Emissions of NOx decreased by approximately 50% as the ethanol content increased from E0 to E30-E40, with no further decrease seen with E55 or E80. We demonstrate that emission trends from FFVs are explained by fuel chemistry and engine calibration effects. Fuel chemistry effects are fundamental in nature; the same trend of increased ethanol, acetaldehyde, formaldehyde, and CH4 emissions and decreased NMHC and benzene emissions are expected for all FFVs. Engine calibration effects are manufacturer and model specific; emission trends for NOx, THC, and NMOG will not be the same for all FFVs. Implications for air quality are discussed.

  20. Influence of ambient air pressure on the energy conversion of laser-breakdown induced blast waves

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Komurasaki, Kimiya; Arakawa, Yoshihiro

    2013-09-01

    Influence of ambient pressure on energy conversion efficiency from a Nd : glass laser pulse (λ = 1.053 µm) to a laser-induced blast wave was investigated at reduced pressure. Temporal incident and transmission power histories were measured using sets of energy meters and photodetectors. A half-shadowgraph half-self-emission method was applied to visualize laser absorption waves. Results show that the blast energy conversion efficiency ηbw decreased monotonically with the decrease in ambient pressure. The decrease was small, from 40% to 38%, for the pressure change from 101 kPa to 50 kPa, but the decrease was considerable, to 24%, when the pressure was reduced to 30 kPa. Compared with a TEA-CO2-laser-induced blast wave (λ = 10.6 µm), higher fraction absorption in the laser supported detonation regime ηLSD of 90% was observed, which is influenced slightly by the reduction of ambient pressure. The conversion fraction ηbw/ηLSD≈90% was achieved at pressure >50 kPa, which is significantly higher than that in a CO2 laser case.

  1. Three-wheel air turbocompressor for PEM fuel cell systems

    DOEpatents

    Rehg, Tim; Gee, Mark; Emerson, Terence P.; Ferrall, Joe; Sokolov, Pavel

    2003-08-19

    A fuel cell system comprises a compressor and a fuel processor downstream of the compressor. A fuel cell stack is in communication with the fuel processor and compressor. A combustor is downstream of the fuel cell stack. First and second turbines are downstream of the fuel processor and in parallel flow communication with one another. A distribution valve is in communication with the first and second turbines. The first and second turbines are mechanically engaged to the compressor. A bypass valve is intermediate the compressor and the second turbine, with the bypass valve enabling a compressed gas from the compressor to bypass the fuel processor.

  2. Numerical simulation of the fluid-structure interaction between air blast waves and soil structure

    NASA Astrophysics Data System (ADS)

    Umar, S.; Risby, M. S.; Albert, A. Luthfi; Norazman, M.; Ariffin, I.; Alias, Y. Muhamad

    2014-03-01

    Normally, an explosion threat on free field especially from high explosives is very dangerous due to the ground shocks generated that have high impulsive load. Nowadays, explosion threats do not only occur in the battlefield, but also in industries and urban areas. In industries such as oil and gas, explosion threats may occur on logistic transportation, maintenance, production, and distribution pipeline that are located underground to supply crude oil. Therefore, the appropriate blast resistances are a priority requirement that can be obtained through an assessment on the structural response, material strength and impact pattern of material due to ground shock. A highly impulsive load from ground shocks is a dynamic load due to its loading time which is faster than ground response time. Of late, almost all blast studies consider and analyze the ground shock in the fluid-structure interaction (FSI) because of its influence on the propagation and interaction of ground shock. Furthermore, analysis in the FSI integrates action of ground shock and reaction of ground on calculations of velocity, pressure and force. Therefore, this integration of the FSI has the capability to deliver the ground shock analysis on simulation to be closer to experimental investigation results. In this study, the FSI was implemented on AUTODYN computer code by using Euler-Godunov and the arbitrary Lagrangian-Eulerian (ALE). Euler-Godunov has the capability to deliver a structural computation on a 3D analysis, while ALE delivers an arbitrary calculation that is appropriate for a FSI analysis. In addition, ALE scheme delivers fine approach on little deformation analysis with an arbitrary motion, while the Euler-Godunov scheme delivers fine approach on a large deformation analysis. An integrated scheme based on Euler-Godunov and the arbitrary Lagrangian-Eulerian allows us to analyze the blast propagation waves and structural interaction simultaneously.

  3. Robotic Water Blast Cleaner

    NASA Technical Reports Server (NTRS)

    Sharpe, M. H.; Roberts, M. L.; Hill, W. E.; Jackson, C. H.

    1983-01-01

    Water blasting system under development removes hard, dense, extraneous material from surfaces. High pressure pump forces water at supersonic speed through nozzle manipulated by robot. Impact of water blasts away unwanted material from workpiece rotated on air bearing turntable. Designed for removing thermal-protection material, system is adaptable to such industrial processes as cleaning iron or steel castings.

  4. Reaction rate constant for dry air oxidation of K Basin fuel

    SciTech Connect

    Trimble, D.J.

    1998-04-29

    The rate of oxidation of spent nuclear fuel stored in the K Basin water is an important parameter when assessing the processes and accident scenarios for preparing the fuel for dry storage. The literature provides data and rate laws for the oxidation of unirradiated uranium in various environments. Measurement data for the dry air oxidation of K Basin fuel is compared to the literature data for linear oxidation in dry air. Equations for the correlations and statistical bounds to the K Basin fuel data and the literature data are selected for predicting nominal and bounding rates for the dry air oxidation of the K Basin fuel. These rate equations are intended for use in the Spent Nuclear Fuel Project Technical Data book.

  5. AIR SHIPMENT OF HIGHLY ENRICHED URANIUM SPENT NUCLEAR FUEL FROM ROMANIA AND LIBYA

    SciTech Connect

    Christopher Landers; Igor Bolshinsky; Ken Allen; Stanley Moses

    2010-07-01

    In June 2009 Romania successfully completed the world’s first air shipment of highly enriched uranium (HEU) spent nuclear fuel transported in Type B(U) casks under existing international laws and without special exceptions for the air transport licenses. Special 20-foot ISO shipping containers and cask tiedown supports were designed to transport Russian TUK 19 shipping casks for the Romanian air shipment and the equipment was certified for all modes of transport, including road, rail, water, and air. In December 2009 Libya successfully used this same equipment for a second air shipment of HEU spent nuclear fuel. Both spent fuel shipments were transported by truck from the originating nuclear facilities to nearby commercial airports, were flown by commercial cargo aircraft to a commercial airport in Yekaterinburg, Russia, and then transported by truck to their final destinations at the Production Association Mayak facility in Chelyabinsk, Russia. Both air shipments were performed under the Russian Research Reactor Fuel Return Program (RRRFR) as part of the U.S. National Nuclear Security Administration (NNSA) Global Threat Reduction Initiative (GTRI). The Romania air shipment of 23.7 kg of HEU spent fuel from the VVR S research reactor was the last of three HEU fresh and spent fuel shipments under RRRFR that resulted in Romania becoming the 3rd RRRFR participating country to remove all HEU. Libya had previously completed two RRRFR shipments of HEU fresh fuel so the 5.2 kg of HEU spent fuel air shipped from the IRT 1 research reactor in December made Libya the 4th RRRFR participating country to remove all HEU. This paper describes the equipment, preparations, and license approvals required to safely and securely complete these two air shipments of spent nuclear fuel.

  6. Role of hydrogen in blast furnaces to improve productivity and decrease coke consumption

    SciTech Connect

    Agarwal, J.C.; Brown, F.C.; Chin, D.L.; Stevens, G.; Clark, R.; Smith, D.

    1995-12-01

    The hydrogen contained in blast furnace gases exerts a variety of physical, thermochemical, and kinetic effects as the gases pass through the various zones. The hydrogen is derived from two sources: (1) the dissociation of moisture in the blast air (ambient and injected with hot blast), and (2) the release from partial combustion of supplemental fuels (including moisture in atomizing water, steam, or transport air, if any). With each atom of oxygen (or carbon), the molar amounts of hydrogen released are more than six times higher for natural gas than for coal, and two times higher for natural gas than for oil. Injection of natural gas in a blast furnace is not a new process. Small amounts of natural gas--about 50--80 lb or 1,100--1,700 SCF/ton of hot metal--have been injected in many of the North American blast furnaces since the early 1960s, with excellent operating results. What is new, however, is a batter understanding of how natural gas reacts in the blast furnace and how natural gas and appropriate quantities of oxygen can be used to increase the driving rate or combustion rate of carbon (coke) in the blast furnace without causing hanging furnace and operating problems. The paper discusses the factors limiting blast furnace productivity and how H{sub 2} and O{sub 2} can increase productivity.

  7. Air feed tube support system for a solid oxide fuel cell generator

    DOEpatents

    Doshi, Vinod B.; Ruka, Roswell J.; Hager, Charles A.

    2002-01-01

    A solid oxide fuel cell generator (12), containing tubular fuel cells (36) with interior air electrodes (18), where a supporting member (82) containing a plurality of holes (26) supports oxidant feed tubes (51), which pass from an oxidant plenum (52") into the center of the fuel cells, through the holes (26) in the supporting member (82), where a compliant gasket (86) around the top of the oxidant feed tubes and on top (28) of the supporting member (82) helps support the oxidant feed tubes and center them within the fuel cells, and loosen the tolerance for centering the air feed tubes.

  8. Potential of hydrogen fuel for future air transportation systems.

    NASA Technical Reports Server (NTRS)

    Small, W. J.; Fetterman, D. E.; Bonner, T. F., Jr.

    1973-01-01

    Recent studies have shown that hydrogen fuel can yield spectacular improvements in aircraft performance in addition to its more widely discussed environmental advantages. The characteristics of subsonic, supersonic, and hypersonic transport aircraft using hydrogen fuel are discussed, and their performance and environmental impact are compared to that of similar aircraft using conventional fuel. The possibilities of developing hydrogen-fueled supersonic and hypersonic vehicles with sonic boom levels acceptable for overland flight are also explored.

  9. An investigation of air solubility in Jet A fuel at high pressures

    NASA Technical Reports Server (NTRS)

    Faeth, G. M.

    1981-01-01

    Problems concerned with the supercritical injection concept are discussed. Supercritical injection involves dissolving air into a fuel prior to injection. A similar effect is obtained by preheating the fuel so that a portion of the fuel flashes when its pressure is reduced. Flashing improves atomization properties and the presence of air in the primary zone of a spray flame reduces the formation of pollutants. The investigation is divided into three phases: (1) measure the solubility and density properties of fuel/gas mixtures, including Jet A/air, at pressures and correlate these results using theory; (2) investigate the atomization properties of flashing liquids, including fuel/dissolved gas systems. Determine and correlate the effect of inlet properties and injector geometry on mass flow rates, Sauter mean diameter and spray angles; (3) examine the combustion properties of flashing injection in an open burner flame, considering flame shape and soot production.

  10. Plain-jet airblast atomization of alternative liquid petroleum fuels under high ambient air pressure conditions

    NASA Astrophysics Data System (ADS)

    Jasuja, A. K.

    1982-04-01

    The effects that air and fuel properties have upon the spray mean drop size characteristics of a plain-jet airblast atomizer of the type employed in the gas turbine engine are investigated. The tests used kerosene, gas oil and a high-viscosity blend of gas oil in residual fuel oil, and covered a wide range of ambient air pressures. Laser light-scattering technique was employed for drop size measurements. It is concluded that the atomizer's measured mean drop size characteristics are only slightly different from those of the pre-filming type, especially when operating on low-viscosity kerosene under higher ambient air pressure. The beneficial effect of increased levels of ambient air pressure on mean drop size is shown to be much reduced in the case of high-viscosity fuels, thus making the attainment of good atomization performance on such fuels difficult. An expression is derived for correlating the obtained mean drop size data.

  11. Evolution of Fuel-Air and Contaminant Clouds Resulting from a Cruise Missile Explosion Scenario

    SciTech Connect

    Grossman, A S; Kul, A L

    2005-06-22

    A low-mach-number hydrodynamics model has been used to simulate the evolution of a fuel-air mixture and contaminant cloud resulting from the detonation of a cruise missile. The detonation has been assumed to be non-nuclear. The cloud evolution has been carried out to a time of 5.5 seconds. At this time the contaminant has completely permeated the initial fuel-air mixture cloud.

  12. Indoor air pollution in rural China: Cooking fuels, stoves, and health status

    SciTech Connect

    Peabody, J.W.; Riddell, T.J.; Smith, K.R.; Liu, Y.P.; Zhao, Y.Y.; Gong, J.H.; Milet, M.; Sinton, J.E.

    2005-03-15

    Solid fuels are a major source of indoor air pollution, but in less developed countries the short-term health effects of indoor air pollution are poorly understood. The authors conducted a large cross-sectional study of rural Chinese households to determine associations between individual health status and domestic cooking as a source of indoor air pollution. The study included measures of health status as well as measures of indoor air-pollution sources, such as solid cooking fuels and cooking stoves. Compared with other fuel types, coal was associated with a lower health status, including negative impacts on exhaled carbon monoxide level, forced vital capacity, lifetime prevalence of chronic obstructive pulmonary disease and asthma, and health care utilization. Decreasing household coal use, increasing use of improved stove technology, and increasing kitchen ventilation may decrease the short-term health effects of indoor air pollution.

  13. The Measurement of Fuel-Air Ratio by Analysis for the Oxidized Exhaust Gas

    NASA Technical Reports Server (NTRS)

    Gerrish, Harold C.; Meem, J. Lawrence, Jr.

    1943-01-01

    An investigation was made to determine a method of measuring fuel-air ratio that could be used for test purposes in flight and for checking conventional equipment in the laboratory. Two single-cylinder test engines equipped with typical commercial engine cylinders were used. The fuel-air ratio of the mixture delivered to the engines was determined by direct measurement of the quantity of air and of fuel supplied and also by analysis of the oxidized exhaust gas and of the normal exhaust gas. Five fuels were used: gasoline that complied with Army-Navy fuel Specification No. AN-VV-F-781 and four mixtures of this gasoline with toluene, benzene, and xylene. The method of determining the fuel-air ratio described in this report involves the measurement of the carbon-dioxide content of the oxidized exhaust gas and the use of graphs for the presented equation. This method is considered useful in aircraft, in the field, or in the laboratory for a range of fuel-air ratios from 0.047 to 0.124.

  14. Method and apparatus for controlling fuel/air mixture in a lean burn engine

    DOEpatents

    Kubesh, John Thomas; Dodge, Lee Gene; Podnar, Daniel James

    1998-04-07

    The system for controlling the fuel/air mixture supplied to a lean burn engine when operating on natural gas, gasoline, hydrogen, alcohol, propane, butane, diesel or any other fuel as desired. As specific humidity of air supplied to the lean burn engine increases, the oxygen concentration of exhaust gas discharged by the engine for a given equivalence ratio will decrease. Closed loop fuel control systems typically attempt to maintain a constant exhaust gas oxygen concentration. Therefore, the decrease in the exhaust gas oxygen concentration resulting from increased specific humidity will often be improperly attributed to an excessive supply of fuel and the control system will incorrectly reduce the amount of fuel supplied to the engine. Also, the minimum fuel/air equivalence ratio for a lean burn engine to avoid misfiring will increase as specific humidity increases. A relative humidity sensor to allow the control system to provide a more enriched fuel/air mixture at high specific humidity levels. The level of specific humidity may be used to compensate an output signal from a universal exhaust gas oxygen sensor for changing oxygen concentrations at a desired equivalence ratio due to variation in specific humidity specific humidity. As a result, the control system will maintain the desired efficiency, low exhaust emissions and power level for the associated lean burn engine regardless of the specific humidity level of intake air supplied to the lean burn engine.

  15. The Measurement of Fuel-air Ratio by Analysis of the Oxidized Exhaust Gas

    NASA Technical Reports Server (NTRS)

    Memm, J. Lawrence, Jr.

    1943-01-01

    An investigation was made to determine a method of measuring fuel-air ratio that could be used for test purposes in flight and for checking conventional equipment in the laboratory. Two single-cylinder test engines equipped with typical commercial engine cylinders were used. The fuel-air ratio of the mixture delivered to the engines was determined by direct measurement of the quantity of air and of fuel supplied and also by analysis of the oxidized exhaust gas and of the normal exhaust gas. Five fuels were used: gasoline that complied with Army-Navy Fuel Specification, No. AN-VV-F-781 and four mixtures of this gasoline with toluene, benzene, and xylene. The method of determining the fuel-air ratio described in this report involves the measurement of the carbon-dioxide content of the oxidized exhaust gas and the use of graphs or the presented equation. This method is considered useful in aircraft, in the field, or in the laboratory for a range of fuel-air ratios from 0.047 to 0.124

  16. Potential impacts on air quality of the use of ethanol as an alternative fuel. Final report

    SciTech Connect

    Gaffney, J.S.; Marley, N.A.

    1994-09-01

    The use of ethanol/gasoline mixtures in motor vehicles has been proposed as an alternative fuel strategy that might improve air quality while minimizing US dependence on foreign oil. New enzymatic production methodologies are being explored to develop ethanol as a viable, economic fuel. In an attempt to reduce urban carbon monoxide (CO) and ozone levels, a number of cities are currently mandating the use of ethanol/gasoline blends. However, it is not at all clear that these blended fuels will help to abate urban pollution. In fact, the use of these fuels may lead to increased levels of other air pollutants, specifically aldehydes and peroxyacyl nitrates. Although these pollutants are not currently regulated, their potential health and environmental impacts must be considered when assessing the impacts of alternative fuels on air quality. Indeed, formaldehyde has been identified as an important air pollutant that is currently being considered for control strategies by the State of California. This report focuses on measurements taken in Albuquerque, New Mexico during the summer of 1993 and the winter of 1994 as an initial attempt to evaluate the air quality effects of ethanol/gasoline mixtures. The results of this study have direct implications for the use of such fuel mixtures as a means to reduce CO emissions and ozone in a number of major cities and to bring these urban centers into compliance with the Clean Air Act.

  17. Air pollution from aircraft. [jet exhaust - aircraft fuels/combustion efficiency

    NASA Technical Reports Server (NTRS)

    Heywood, J. B.; Chigier, N. A.

    1975-01-01

    A model which predicts nitric oxide and carbon monoxide emissions from a swirl can modular combustor is discussed. A detailed analysis of the turbulent fuel-air mixing process in the swirl can module wake region is reviewed. Hot wire anemometry was employed, and gas sampling analysis of fuel combustion emissions were performed.

  18. Interim results from UO/sub 2/ fuel oxidation tests in air

    SciTech Connect

    Campbell, T.K.; Gilbert, E.R.; Thornhill, C.K.; White, G.D.; Piepel, G.F.; Griffin, C.W.j

    1987-08-01

    An experimental program is being conducted at Pacific Northwest Laboratory (PNL) to extend the characterization of spent fuel oxidation in air. To characterize oxidation behavior of irradiated UO/sub 2/, fuel oxidation tests were performed on declad light-water reactor spent fuel and nonirradited UO/sub 2/ pellets in the temperature range of 135 to 250/sup 0/C. These tests were designed to determine the important independent variables that might affect spent fuel oxidation behavior. The data from this program, when combined with the test results from other programs, will be used to develop recommended spent fuel dry-storage temperature limits in air. This report describes interim test results. The initial PNL investigations of nonirradiated and spent fuels identified the important testing variables as temperature, fuel burnup, radiolysis of the air, fuel microstructure, and moisture in the air. Based on these initial results, a more extensive statistically designed test matrix was developed to study the effects of temperature, burnup, and moisture on the oxidation behavior of spent fuel. Oxidation tests were initiated using both boiling-water reactor and pressurized-water reactor fuels from several different reactors with burnups from 8 to 34 GWd/MTU. A 10/sup 5/ R/h gamma field was applied to the test ovens to simulate dry storage cask conditions. Nonirradiated fuel was included as a control. This report describes experimental results from the initial tests on both the spent and nonirradiated fuels and results to date on the tests in a 10/sup 5/ R/h gamma field. 33 refs., 51 figs., 6 tabs.

  19. Fuel Cell Propulsion Systems for an All-electric Personal Air Vehicle

    NASA Technical Reports Server (NTRS)

    Kohout, Lisa L.; Schmitz, Paul C.

    2003-01-01

    There is a growing interest in the use of fuel cells as a power source for all-electric aircraft propulsion as a means to substantially reduce or eliminate environmentally harmful emissions. Among the technologies under consideration for these concepts are advanced proton exchange membrane and solid oxide fuel cells, alternative fuels and fuel processing, and fuel storage. This paper summarizes the results of a first-order feasibility study for an all-electric personal air vehicle utilizing a fuel cell-powered propulsion system. A representative aircraft with an internal combustion engine was chosen as a baseline to provide key parameters to the study, including engine power and subsystem mass, fuel storage volume and mass, and aircraft range. The engine, fuel tank, and associated ancillaries were then replaced with a fuel cell subsystem. Various configurations were considered including: a proton exchange membrane (PEM) fuel cell with liquid hydrogen storage; a direct methanol PEM fuel cell; and a direct internal reforming solid oxide fuel cell (SOFC)/turbine hybrid system using liquid methane fuel. Each configuration was compared to the baseline case on a mass and range basis.

  20. Fuel Cell Propulsion Systems for an All-Electric Personal Air Vehicle

    NASA Technical Reports Server (NTRS)

    Kohout, Lisa L.

    2003-01-01

    There is a growing interest in the use of fuel cells as a power source for all-electric aircraft propulsion as a means to substantially reduce or eliminate environmentally harmful emissions. Among the technologies under consideration for these concepts are advanced proton exchange membrane and solid oxide fuel cells, alternative fuels and fuel processing, and fuel storage. This paper summarizes the results of a first-order feasibility study for an all-electric personal air vehicle utilizing a fuel cell-powered propulsion system. A representative aircraft with an internal combustion engine was chosen as a baseline to provide key parameters to the study, including engine power and subsystem mass, fuel storage volume and mass, and aircraft range. The engine, fuel tank, and associated ancillaries were then replaced with a fuel cell subsystem. Various configurations were considered including: a proton exchange membrane (PEM) fuel cell with liquid hydrogen storage; a direct methanol PEM fuel cell; and a direct internal reforming solid oxide fuel cell (SOFC)/turbine hybrid system using liquid methane fuel. Each configuration was compared to the baseline case on a mass and range basis.

  1. 29 CFR 1926.913 - Blasting in excavation work under compressed air.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... of explosives and detonators. (e) All metal pipes, rails, air locks, and steel tunnel lining shall be... performed with light charges and with light burden on each hole. Advance drilling shall be performed...

  2. 29 CFR 1926.913 - Blasting in excavation work under compressed air.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... of explosives and detonators. (e) All metal pipes, rails, air locks, and steel tunnel lining shall be... performed with light charges and with light burden on each hole. Advance drilling shall be performed...

  3. Method of regulating the amount of underfire air for combustion of wood fuels in spreader-stroke boilers

    DOEpatents

    Tuttle, Kenneth L.

    1980-01-01

    A method of metering underfire air for increasing efficiency and reducing particulate emissions from wood-fire, spreader-stoker boilers is disclosed. A portion of the combustion air, approximately one pound of air per pound of wood, is fed through the grate into the fuel bed, while the remainder of the combustion air is distributed above the fuel in the furnace, and the fuel bed is maintained at a depth sufficient to consume all oxygen admitted under fire and to insure a continuous layer of fresh fuel thereover to entrap charred particles inside the fuel bed.

  4. Contemplations on air emission standards for wood waste fuels

    SciTech Connect

    Jamison, R.L.; Karch, K.M.; Junge, D.C.

    1981-08-01

    Surplus wood wastes and forest residuals are a significant renewable energy resource that could reduce U.S. oil imports one million barrels per day or lessen depletion of nonrenewable fossil fuel resources. The forest products industry currently supplies 50% of its energy requirements from internally generated wood and bark residue fuels. Energy derived from such renewable fuels totals approximately 1.2 quads at present, and there is opportunity to increase this to 2.2 quads. However, progress would be impeded if the new industrial boiler New Source Performance Standards for emissions soon to be proposed by the Environmental Protection Agency are unnecessarily stringent. 4 refs.

  5. Fuel Spray and Flame Formation in a Compression-Ignition Engine Employing Air Flow

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Waldron, C D

    1937-01-01

    The effects of air flow on fuel spray and flame formation in a high-speed compression-ignition engine have been investigated by means of the NACA combustion apparatus. The process was studied by examining high-speed motion pictures taken at the rate of 2,200 frames a second. The combustion chamber was of the flat-disk type used in previous experiments with this apparatus. The air flow was produced by a rectangular displacer mounted on top of the engine piston. Three fuel-injection nozzles were tested: a 0.020-inch single-orifice nozzle, a 6-orifice nozzle, and a slit nozzle. The air velocity within the combustion chamber was estimated to reach a value of 425 feet a second. The results show that in no case was the form of the fuel spray completely destroyed by the air jet although in some cases the direction of the spray was changed and the spray envelope was carried away by the moving air. The distribution of the fuel in the combustion chamber of a compression-ignition engine can be regulated to some extent by the design of the combustion chamber, by the design of the fuel-injection nozzle, and by the use of air flow.

  6. Personal exposure to JP-8 jet fuel vapors and exhaust at air force bases.

    PubMed

    Pleil, J D; Smith, L B; Zelnick, S D

    2000-03-01

    JP-8 jet fuel (similar to commercial/international jet A-1 fuel) is the standard military fuel for all types of vehicles, including the U.S. Air Force aircraft inventory. As such, JP-8 presents the most common chemical exposure in the Air Force, particularly for flight and ground crew personnel during preflight operations and for maintenance personnel performing routine tasks. Personal exposure at an Air Force base occurs through occupational exposure for personnel involved with fuel and aircraft handling and/or through incidental exposure, primarily through inhalation of ambient fuel vapors. Because JP-8 is less volatile than its predecessor fuel (JP-4), contact with liquid fuel on skin and clothing may result in prolonged exposure. The slowly evaporating JP-8 fuel tends to linger on exposed personnel during their interaction with their previously unexposed colleagues. To begin to assess the relative exposures, we made ambient air measurements and used recently developed methods for collecting exhaled breath in special containers. We then analyzed for certain volatile marker compounds for JP-8, as well as for some aromatic hydrocarbons (especially benzene) that are related to long-term health risks. Ambient samples were collected by using compact, battery-operated, personal whole-air samplers that have recently been developed as commercial products; breath samples were collected using our single-breath canister method that uses 1-L canisters fitted with valves and small disposable breathing tubes. We collected breath samples from various groups of Air Force personnel and found a demonstrable JP-8 exposure for all subjects, ranging from slight elevations as compared to a control cohort to > 100 [mutilpe] the control values. This work suggests that further studies should be performed on specific issues to obtain pertinent exposure data. The data can be applied to assessments of health outcomes and to recommendations for changes in the use of personal protective

  7. Fuel-in-air FY07 summary report

    SciTech Connect

    Hanson, Brady D.; Daniel, Richard C.; Casella, Andy M.; Wittman, Richard S.; Wu, Wesley; MacFarlan, Paul J.; Shimskey, Rick W.

    2008-01-22

    Results of the testing program to determine fractional release rates and particle size distributions from failed commercial spent fuel related to the operations in the surface facility at Yucca Mountain are presented.

  8. Fuel-Free Compressed-Air Energy Storage: Fuel-Free, Ubiquitous Compressed-Air Energy Storage and Power Conditioning

    SciTech Connect

    2010-09-13

    GRIDS Project: General Compression has developed a transformative, near-isothermal compressed air energy storage system (GCAES) that prevents air from heating up during compression and cooling down during expansion. When integrated with renewable generation, such as a wind farm, intermittent energy can be stored in compressed air in salt caverns or pressurized tanks. When electricity is needed, the process is reversed and the compressed air is expanded to produce electricity. Unlike conventional compressed air energy storage (CAES) projects, no gas is burned to convert the stored high-pressure air back into electricity. The result of this breakthrough is an ultra-efficient, fully shapeable, 100% renewable and carbon-free power product. The GCAES™ system can provide high quality electricity and ancillary services by effectively integrating renewables onto the grid at a cost that is competitive with gas, coal and nuclear generation.

  9. 29 CFR 1926.913 - Blasting in excavation work under compressed air.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... use in wet holes shall be water-resistant and shall be Fume Class 1. (g) When tunnel excavation in... explosives shall not be stored or kept in tunnels, shafts, or caissons. Detonators and explosives for each... of explosives and detonators. (e) All metal pipes, rails, air locks, and steel tunnel lining shall...

  10. 29 CFR 1926.913 - Blasting in excavation work under compressed air.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... use in wet holes shall be water-resistant and shall be Fume Class 1. (g) When tunnel excavation in... explosives shall not be stored or kept in tunnels, shafts, or caissons. Detonators and explosives for each... of explosives and detonators. (e) All metal pipes, rails, air locks, and steel tunnel lining shall...

  11. Quantification of emission reduction potentials of primary air pollutants from residential solid fuel combustion by adopting cleaner fuels in China.

    PubMed

    Shen, Guofeng

    2015-11-01

    Residential low efficient fuel burning is a major source of many air pollutants produced during incomplete combustions, and household air pollution has been identified as one of the top environmental risk factors. Here we compiled literature-reported emission factors of pollutants including carbon monoxide (CO), total suspended particles (TSPs), PM2.5, organic carbon (OC), elemental carbon (EC) and polycyclic aromatic hydrocarbons (PAHs) for different household energy sources, and quantified the potential for emission reduction by clean fuel adoption. The burning of crop straws, firewood and coal chunks in residential stoves had high emissions per unit fuel mass but lower thermal efficiencies, resulting in high levels of pollution emissions per unit of useful energy, whereas pelletized biofuels and coal briquettes had lower pollutant emissions and higher thermal efficiencies. Briquetting coal may lead to 82%-88% CO, 74%-99% TSP, 73%-76% PM2.5, 64%-98% OC, 92%-99% EC and 80%-83% PAH reductions compared to raw chunk coal. Biomass pelletizing technology would achieve 88%-97% CO, 73%-87% TSP, 79%-88% PM2.5, 94%-96% OC, 91%-99% EC and 63%-96% PAH reduction compared to biomass burning. The adoption of gas fuels (i.e., liquid petroleum gas, natural gas) would achieve significant pollutant reduction, nearly 96% for targeted pollutants. The reduction is related not only to fuel change, but also to the usage of high efficiency stoves.

  12. Closed loop engine control for regulating NOx emissions, using a two-dimensional fuel-air curve

    DOEpatents

    Bourn, Gary D.; Smith, Jack A.; Gingrich, Jess W.

    2007-01-30

    An engine control strategy that ensures that NOx emissions from the engine will be maintained at an acceptable level. The control strategy is based on a two-dimensional fuel-air curve, in which air manifold pressure (AMP) is a function of fuel header pressure and engine speed. The control strategy provides for closed loop NOx adjustment to a base AMP value derived from the fuel-air curve.

  13. Analysis of gaseous fuel and air mixing in flames and flame quenching

    SciTech Connect

    Brasoveanu, D.

    1997-07-01

    A model for fuel-air mixing in flames is presented and applied to study the mixing and quenching of methane-air flames. The model is based on the ideal gas law, the energy equation, the equation of continuity and Arrhenius form of rate equation and is, therefore, strictly valid for mixtures having low density, i.e., for low pressure combustors. In the absence of preferential diffusion, chemical reactions cause an unbalanced consumption of fuel and oxygen in non-stoichiometric flames. Until the desired equivalence ratio is achieved, enhanced preferential diffusion of oxygen or fuel is required in fuel-rich or fuel-lean flames, respectively. After desired equivalence ratio is achieved, preferential diffusion of oxygen or fuel should be reduced to the exact level required to compensate the unbalanced consumption of fuel and air. In the absence of these conditions, flame chemistry cannot be strictly controlled. In addition, unless the desired equivalence ratio is at a position of stable equilibrium over an extended range of operational conditions, the flame may be quenched. Net transport of fuel or oxygen due to diffusion is correlated with distributions of pressure, temperature, velocity, species mass fractions and heat transfer through radiation and conduction. Results show that negative rates of pressure (or positive rates of temperature) and positive rates of pressure (or negative rates of temperature) can enhance preferential diffusion of oxygen and fuel, respectively. Negative velocity divergence also enhances diffusion of oxygen, while positive velocity divergence enhances diffusion of fuel. Recirculation of burnt gases improves the stability of all flames.

  14. Computer program for obtaining thermodynamic and transport properties of air and products of combustion of ASTM-A-1 fuel and air

    NASA Technical Reports Server (NTRS)

    Hippensteele, S. A.; Colladay, R. S.

    1978-01-01

    A computer program for determining desired thermodynamic and transport property values by means of a three-dimensional (pressure, fuel-air ratio, and either enthalpy or temperature) interpolation routine was developed. The program calculates temperature (or enthalpy), molecular weight, viscosity, specific heat at constant pressure, thermal conductivity, isentropic exponent (equal to the specific heat ratio at conditions where gases do not react), Prandtl number, and entropy for air and a combustion gas mixture of ASTM-A-1 fuel and air over fuel-air ratios from zero to stoichiometric, pressures from 1 to 40 atm, and temperatures from 250 to 2800 K.

  15. Effects of Air-Fuel Spray and Flame Formation in a Compression-Ignition Engine

    NASA Technical Reports Server (NTRS)

    Rothrock, A M; Waldron, C D

    1937-01-01

    High-speed motion pictures were taken at the rate of 2,500 frames per second of the fuel spray and flame formation in the combustion chamber of the NACA combustion apparatus. The compression ratio was 13.2 and the speed 1,500 revolutions per minute. An optical indicator was used to record the time-pressure relationship in the combustion chamber. The air-fuel ratio was varied from 10.4 to 365. The results showed that as the air-fuel ratio was increased definite stratification of the charge occurred in the combustion chamber even though moderate air flow existed. The results also showed the rate of vapor diffusion to be relatively slow.

  16. Environmental impacts associated with the aluminum-air battery electric vehicle fuel cycle

    SciTech Connect

    Berger, K.J.E.

    1982-01-01

    The aluminum-air battery concept is discussed, and a scenario is developed which forecasts ten million aluminum-air electric vehicles in the US by the year 2000. An estimation is made regarding the consumption of natural resources and generation of wastes due to the aluminum-air battery's fuel cycle and to the increased demand on the US aluminum industry because of the scenario. The battery's fuel cycle considers the entire process of its generation and use; this includes the extraction of the raw material, processing, transportation, distribution, implementation and recycling. An analysis is also performed in which a comparison is made between the air emissions from an aluminum-air battery electric vehicle and those generated by a standard internal combustion engine vehicle. Finally, an examination is made of various ways by which potential adverse environmental impacts may be eliminated or reduced. The document concludes that no serious environmental impacts should be expected from the aluminum-air battery electric vehicle fuel cycle (provided a clean and inexpensive source of electricity is available) and that the introduction of such a vehicle could aid in reducing urban air pollution.

  17. Impact of Biodiesel Fuels on Air Quality and Human Health: Task 2 Report; The Impact of Biodiesel Fuels on Ozone Concentrations

    SciTech Connect

    Morris, R. E.; Mansell, G. E.; Jia, Y.; Wilson, G.

    2003-05-01

    This report documents Task 2 of the NREL study"Impact of Biodiesel Fuels on Air Quality and Hyman Health". Under Task 1, engine test data using biodiesel and standard diesel fuels were analyzed to estimate the effects biodiesel fuel has on heavy duty diesel vehicle tailpipe emissions.

  18. Stationary, gaseous-fueled, internal combustion engine, air-fuel ratio control for application of three-way catalysts for exhaust emission reduction

    SciTech Connect

    Engman, T.J.

    1983-01-01

    Exhaust emissions reduction has become very important to operators and manufacturers of stationary internal combustion engines. Many applications require the maximum reductions that only three-way nonselective catalysts can provide. Air-Fuel Ratio is an important variable that must be controlled to maintain efficient catalytic activity. Design considerations and operating results are presented for an Air-Fuel Ratio control system for application of catalytic converters to industrial, natural gas fueled engines.

  19. Summary report on effects at temperature, humidity, and fuel-air ratio on two air-cooled light aircraft engines

    NASA Technical Reports Server (NTRS)

    Kempke, E. E., Jr.

    1976-01-01

    Five different engine models were tested to experimentally characterize emissions and to determine the effects of variation in fuel-air ratio and spark timing on emissions levels and other operating characteristics such as cooling, misfiring, roughness, power acceleration, etc. The results are given of two NASA reports covering the Avco Lycoming 0-320-D engine testing and the recently obtained results on the Teledyne Continental TSIO-360-C engine.

  20. Investigation of the mechanism in Rijke pulse combustors with tangential air and fuel injection. Final report

    SciTech Connect

    Zinn, B.T.; Jagoda, J.I.; Daniel, B.R.; Bai, T.

    1993-03-01

    To study the mechanisms that control the operation of this combustor, an experimental setup is developed with access for detailed optical measurements. Propane is employed as fuel because the absence of liquid drops and combustion generated particulates in the combustion region significantly simplifies the optical diagnostics. The experimental techniques utilized include acoustic pressure measurements, space and time resolved radiation measurements, steady temperature measurements, exhaust flow chemical analysis, high speed video and intensified images of the reacting flow field by a computer based CCD camera imaging system. Flow visualization by the imaging system and the results from radiation intensity distribution measurements suggest that the periodic combustion processes caused by periodic vortex shedding and impingement provide the energy required to sustain the pressure oscillations. High radiation intensity occurs during a relatively short period of time and is in phase with the pressure oscillations, indicating that Rayleigh`s criterion is satisfied. Periodic variations of the air and fuel flow rates and, consequently, the air/fuel ratio of the reacting mixture inside the combustor appear to be another mechanism that contributes to the occurrence of periodic combustion and heat release processes. The presence of this mechanism has been uncovered by acoustic pressure measurements that revealed the presence of traveling pressure waves inside the air and fuel feed lines. These traveling waves produce periodic fuel and air feed rates which, in turn, result in periodic combustion and heat release processes within the combustor.

  1. Simulation of Blast Waves with Headwind

    NASA Technical Reports Server (NTRS)

    Olsen, Michael E.; Lawrence, Scott W.; Klopfer, Goetz H.; Mathias, Dovan; Onufer, Jeff T.

    2005-01-01

    The blast wave resulting from an explosion was simulated to provide guidance for models estimating risks for human spacecraft flight. Simulations included effects of headwind on blast propagation, Blasts were modelled as an initial value problem with a uniform high energy sphere expanding into an ambient field. Both still air and cases with headwind were calculated.

  2. A novel closed-body model of spinal cord injury caused by high-pressure air blasts produces extensive axonal injury and motor impairments.

    PubMed

    del Mar, Nobel; von Buttlar, Xinyu; Yu, Angela S; Guley, Natalie H; Reiner, Anton; Honig, Marcia G

    2015-09-01

    Diffuse axonal injury is thought to be the basis of the functional impairments stemming from mild traumatic brain injury. To examine how axons are damaged by traumatic events, such as motor vehicle accidents, falls, sports activities, or explosive blasts, we have taken advantage of the spinal cord with its extensive white matter tracts. We developed a closed-body model of spinal cord injury in mice whereby high-pressure air blasts targeted to lower thoracic vertebral levels produce tensile, compressive, and shear forces within the parenchyma of the spinal cord and thereby cause extensive axonal injury. Markers of cytoskeletal integrity showed that spinal cord axons exhibited three distinct pathologies: microtubule breakage, neurofilament compaction, and calpain-mediated spectrin breakdown. The dorsally situated axons of the corticospinal tract primarily exhibited microtubule breakage, whereas all three pathologies were common in the lateral and ventral white matter. Individual axons typically demonstrated only one of the three pathologies during the first 24h after blast injury, suggesting that the different perturbations are initiated independently of one another. For the first few days after blast, neurofilament compaction was frequently accompanied by autophagy, and subsequent to that, by the fragmentation of degenerating axons. TuJ1 immunolabeling and mice with YFP-reporter labeling each revealed more extensive microtubule breakage than did βAPP immunolabeling, raising doubts about the sensitivity of this standard approach for assessing axonal injury. Although motor deficits were mild and largely transient, some aspects of motor function gradually worsened over several weeks, suggesting that a low level of axonal degeneration continued past the initial wave. Our model can help provide further insight into how to intervene in the processes by which initial axonal damage culminates in axonal degeneration, to improve outcomes after traumatic injury. Importantly

  3. A novel closed-body model of spinal cord injury caused by high-pressure air blasts produces extensive axonal injury and motor impairments

    PubMed Central

    del Mar, Nobel; von Buttlar, Xinyu; Yu, Angela S.; Guley, Natalie H.; Reiner, Anton; Honig, Marcia G.

    2015-01-01

    Diffuse axonal injury is thought to be the basis of the functional impairments stemming from mild traumatic brain injury. To examine how axons are damaged by traumatic events, such as motor vehicle accidents, falls, sports activities, or explosive blasts, we have taken advantage of the spinal cord with its extensive white matter tracts. We developed a closed-body model of spinal cord injury in mice whereby high-pressure air blasts targeted to lower thoracic vertebral levels produce tensile, compressive, and shear forces within the parenchyma of the spinal cord and thereby cause extensive axonal injury. Markers of cytoskeletal integrity showed that spinal cord axons exhibited three distinct pathologies: microtubule breakage, neurofilament compaction, and calpain-mediated spectrin breakdown. The dorsally situated axons of the corticospinal tract primarily exhibited microtubule breakage, whereas all three pathologies were common in the lateral and ventral white matter. Individual axons typically demonstrated only one of the three pathologies during the first 24 h after blast injury, suggesting that the different perturbations are initiated independently of one another. For the first few days after blast, neurofilament compaction was frequently accompanied by autophagy, and subsequent to that, by the fragmentation of degenerating axons. TuJ1 immunolabeling and mice with YFP-reporter labeling each revealed more extensive microtubule breakage than did βAPP immunolabeling, raising doubts about the sensitivity of this standard approach for assessing axonal injury. Although motor deficits were mild and largely transient, some aspects of motor function gradually worsened over several weeks, suggesting that a low level of axonal degeneration continued past the initial wave. Our model can help provide further insight into how to intervene in the processes by which initial axonal damage culminates in axonal degeneration, to improve outcomes after traumatic injury. Importantly

  4. Household air pollution from coal and biomass fuels in China: Measurements, health impacts, and interventions

    SciTech Connect

    Zhang, J.J.; Smith, K.R.

    2007-06-15

    Nearly all China's rural residents and a shrinking fraction of urban residents use solid fuels (biomass and coal) for household cooking and/or heating. Consequently, global meta-analyses of epidemiologic studies indicate that indoor air pollution from solid fuel use in China is responsible for approximately 420,000 premature deaths annually, more than the approximately 300,000 attributed to urban outdoor air pollution in the country. Our objective in this review was to help elucidate the extent of this indoor air pollution health hazard. We reviewed approximately 200 publications in both Chinese- and English language journals that reported health effects, exposure characteristics, and fuel/stove intervention options. Observed health effects include respiratory illnesses, lung cancer, chronic obstructive pulmonary disease, weakening of the immune system, and reduction in lung function. Arsenic poisoning and fluorosis resulting from the use of 'Poisonous' coal have been observed in certain regions of China. Although attempts have been made in a few studies to identify specific coal smoke constituents responsible for specific adverse health effects, the majority of indoor air measurements include those of only particulate matter, carbon monoxide, sulfur dioxide, and/or nitrogen dioxide. These measurements indicate that pollution levels in households using solid fuel generally exceed China's indoor air quality standards. Intervention technologies ranging from simply adding a chimney to the more complex modernized bioenergy program are available, but they can be viable only with coordinated support from the government and the commercial sector.

  5. Cost and energy consumption estimates for the aluminum-air battery anode fuel cycle

    NASA Astrophysics Data System (ADS)

    1990-01-01

    At the request of DOE's Office of Energy Storage and Distribution (OESD), Pacific Northwest Laboratory (PNL) conducted a study to generate estimates of the energy use and costs associated with the aluminum anode fuel cycle of the aluminum-air (Al-air) battery. The results of this analysis indicate that the cost and energy consumption characteristics of the mechanically rechargeable Al-air battery system are not as attractive as some other electrically rechargeable electric vehicle battery systems being developed by OESD. However, there are distinct advantages to mechanically rechargeable batteries, which may make the Al-air battery (or other mechanically rechargeable batteries) attractive for other uses, such as stand-alone applications. Fuel cells, such as the proton exchange membrane (PEM), and advanced secondary batteries may be better suited to electric vehicle applications.

  6. Cost and energy consumption estimates for the aluminum-air battery anode fuel cycle

    SciTech Connect

    Humphreys, K.K.; Brown, D.R.

    1990-01-01

    At the request of DOE's Office of Energy Storage and Distribution (OESD), Pacific Northwest Laboratory (PNL) conducted a study to generate estimates of the energy use and costs associated with the aluminum anode fuel cycle of the aluminum-air (Al-air) battery. The results of this analysis indicate that the cost and energy consumption characteristics of the mechanically rechargeable Al-air battery system are not as attractive as some other electrically rechargeable electric vehicle battery systems being developed by OESD. However, there are distinct advantages to mechanically rechargeable batteries, which may make the Al-air battery (or other mechanically rechargeable batteries) attractive for other uses, such as stand-alone applications. Fuel cells, such as the proton exchange membrane (PEM), and advanced secondary batteries may be better suited to electric vehicle applications. 26 refs., 3 figs., 25 tabs.

  7. Downhole steam generator using low pressure fuel and air supply

    DOEpatents

    Fox, Ronald L.

    1983-01-01

    An apparatus for generation of steam in a borehole for penetration into an earth formation wherein a spiral, tubular heat exchanger is used in the combustion chamber to isolate the combustion process from the water being superheated for conversion into steam. The isolation allows combustion of a relatively low pressure oxidant and fuel mixture for generating high enthalpy steam. The fuel is preheated by feedback of combustion gases from the top of the combustion chamber through a fuel preheater chamber. The hot exhaust gases of combustion at the bottom of the combustion chamber, after flowing over the heat exchanger enter an exhaust passage and pipe. The exhaust pipe is mounted inside the water supply line heating the water flowing into the heat exchanger. After being superheated in the heat exchanger, the water is ejected through an expansion nozzle and converts into steam prior to penetration into the earth formation. Pressure responsive doors are provided at a steam outlet downstream of the nozzle and close when the steam pressure is lost due to flameout.

  8. Study of effects of injector geometry on fuel-air mixing and combustion

    NASA Technical Reports Server (NTRS)

    Bangert, L. H.; Roach, R. L.

    1977-01-01

    An implicit finite-difference method has been developed for computing the flow in the near field of a fuel injector as part of a broader study of the effects of fuel injector geometry on fuel-air mixing and combustion. Detailed numerical results have been obtained for cases of laminar and turbulent flow without base injection, corresponding to the supersonic base flow problem. These numerical results indicated that the method is stable and convergent, and that significant savings in computer time can be achieved, compared with explicit methods.

  9. Experimental study of the operating characteristics of premixing-prevaporizing fuel/air mixing passages

    NASA Technical Reports Server (NTRS)

    Rohy, D. A.; Meier, J. G.

    1983-01-01

    Fuel spray and air flow characteristics were determined using nonintrusive (optical) measurement techniques in a fuel preparation duct. A very detailed data set was obtained at high pressures (to 10 atm) and temperatures (to 750 K). The data will be used to calibrate an analytical model which will facilitate the design of a lean premixed prevaporized combustor. This combustor has potential for achieving low pollutant emissions and low levels of flame radiation and pattern factors conductive to improved durability and performance for a variety of fuels.

  10. Atomization and combustion characteristics of antimisting fuels using JT8D and air-boost injectors

    NASA Technical Reports Server (NTRS)

    Kennedy, J. B.; Florentino, A. J.

    1986-01-01

    The atomization levels of antimisting fuels are presently determined for a JT8D fuel injector, a low emission airblast JT8D injector, and an air-boost injector, at operating conditions simulating engine operating conditions. The effects of the use of antimisting kerosene (AMK) on component performance are also studied in the case of an in-service JT8D engine. The use of the AMK fuel causes a decline in the quality of the spray, most notably as a large increase in the Sauter mean diameter for all three injector types. In addition, the idle patternation data obtained indicate that the low emission injector fuel distribution changed from a hollow cone Jet A spray having no fuel at its center to a semihollow spray cone in the case of AMK; this change could disrupt the combustor primary zone recirculation pattern.

  11. Test and evaluation of shale derived jet fuel by the United States Air Force

    SciTech Connect

    Delaney, C.L.

    1985-01-01

    In June 1980, the United States Congress passed the Energy Security Act which provided for the formation of the United States Synthetic Fuels Corporation and amended the Defense Production Act of 1950 to provide for synthetic fuels for the Department of Defense (DOD). A subsequent law, P.L., 96-304, appropriated up to $20 billion for financial incentives to foster a national synthetic fuel industry. The initial synthetic fuel project funded under the Energy Security Act is the Unocal Parachute Creek Project in Colorado with an expected shale oil production of 10,000 bbls/day. The Defense Fuel Supply Center (DFSC) contracted with Gary Energy Refining Company, Fruita, Colorado to provide approximately 5,000 bbls/day of shale JP-4 for the United States Air Force (USAF) using crude from the Parachute Creek Project, with initial deliveries to begin in 1985.

  12. The effect of internal air bleed on CO poisoning in a proton exchange membrane fuel cell

    NASA Astrophysics Data System (ADS)

    Wang, Wentao

    It is found that carbon monoxide (CO) poisoning could be mitigated by increasing only cathode backpressure for a proton exchange membrane fuel cell (PEMFC) with ultra-thin membranes (≤25 μm). This mitigation can be explained by a heterogeneous oxidation of CO on a Pt-Ru/C anode by the permeated O 2 which is known as "internal air bleed" in his paper. A steady-state model which accounts for this internal air bleed has been developed to model the Pt-Ru/C anode polarization data when 50 ppm CO in H 2 is used as anode feed gas. The modeling results show that the mitigation of CO poisoning by the internal air bleed even exists at ambient conditions for a PEMFC with an ultra-thin membrane. Therefore, the effect of internal air bleed must be considered for modeling fuel cell performance or anode polarization data if an ultra-thin membrane and a low level of CO concentration are used for a Pt-Ru/C anode. An empirical relationship between the amount of internal air bleed used for the mitigation of CO poisoning and the fraction of free Pt sites is provided to facilitate the inclusion of an internal air bleed term in the modeling of anode polarization and the fuel cell performance.

  13. Emerging Fuel Cell Technology Being Developed: Offers Many Benefits to Air Vehicles

    NASA Technical Reports Server (NTRS)

    Walker, James F.; Civinskas, Kestutis C.

    2004-01-01

    Fuel cells, which have recently received considerable attention for terrestrial applications ranging from automobiles to stationary power generation, may enable new aerospace missions as well as offer fuel savings, quiet operations, and reduced emissions for current and future aircraft. NASA has extensive experience with fuel cells, having used them on manned space flight systems over four decades. Consequently, the NASA Glenn Research Center has initiated an effort to investigate and develop fuel cell technologies for multiple aerospace applications. Two promising fuel cell types are the proton exchange membrane (PEM) and solid oxide fuel cell (SOFC). PEM technology, first used on the Gemini spacecraft in the sixties, remained unutilized thereafter until the automotive industry recently recognized the potential. PEM fuel cells are low-temperature devices offering quick startup time but requiring relatively pure hydrogen fuel. In contrast, SOFCs operate at high temperatures and tolerate higher levels of impurities. This flexibility allows SOFCs to use hydrocarbon fuels, which is an important factor considering our current liquid petroleum infrastructure. However, depending on the specific application, either PEM or SOFC can be attractive. As only NASA can, the Agency is pursuing fuel cell technology for civil uninhabited aerial vehicles (UAVs) because it offers enhanced scientific capabilities, including enabling highaltitude, long-endurance missions. The NASA Helios aircraft demonstrated altitudes approaching 100,000 ft using solar power in 2001, and future plans include the development of a regenerative PEM fuel cell to provide nighttime power. Unique to NASA's mission, the high-altitude aircraft application requires the PEM fuel cell to operate on pure oxygen, instead of the air typical of terrestrial applications.

  14. Radiocarbon-depleted CO2 evidence for fuel biodegradation at the Naval Air Station North Island (USA) fuel farm site.

    PubMed

    Boyd, Thomas J; Pound, Michael J; Lohr, Daniel; Coffin, Richard B

    2013-05-01

    Dissolved CO(2) radiocarbon and stable carbon isotope ratios were measured in groundwater from a fuel contaminated site at the North Island Naval Air Station in San Diego, CA (USA). A background groundwater sampling well and 16 wells in the underground fuel contamination zone were evaluated. For each sample, a two end-member isotopic mixing model was used to determine the fraction of CO(2) derived from fossil fuel. The CO(2) fraction from fossil sources ranged from 8 to 93% at the fuel contaminated site, while stable carbon isotope values ranged from -14 to +5‰VPDB. Wells associated with highest historical and contemporary fuel contamination showed the highest fraction of CO(2) derived from petroleum (fossil) sources. Stable carbon isotope ratios indicated sub-regions on-site with recycled CO(2) (δ(13)CO(2) as high as +5‰VPDB) - most likely resulting from methanogenesis. Ancillary measurements (pH and cations) were used to determine that no fossil CaCO(3), for instance limestone, biased the analytical conclusions. Radiocarbon analysis is verified as a viable and definitive technique for confirming fossil hydrocarbon conversion to CO(2) (complete oxidation) at hydrocarbon-contaminated groundwater sites. The technique should also be very useful for assessing the efficacy of engineered remediation efforts and by using CO(2) production rates, contaminant mass conversion over time and per unit volume.

  15. Combustion of Gaseous Fuels with High Temperature Air in Normal- and Micro-gravity Conditions

    NASA Technical Reports Server (NTRS)

    Wang, Y.; Gupta, A. K.

    2001-01-01

    The objective of this study is determine the effect of air preheat temperature on flame characteristics in normal and microgravity conditions. We have obtained qualitative (global flame features) and some quantitative information on the features of flames using high temperature combustion air under normal gravity conditions with propane and methane as the fuels. This data will be compared with the data under microgravity conditions. The specific focus under normal gravity conditions has been on determining the global flame features as well as the spatial distribution of OH, CH, and C2 from flames using high temperature combustion air at different equivalence ratio.

  16. RECORDING FLAME SPEED DATA OF FUEL AND AIR RATIO MIXTURES - THE HORIZONTAL GLASS TUBE IS FILLED WITH

    NASA Technical Reports Server (NTRS)

    1949-01-01

    RECORDING FLAME SPEED DATA OF FUEL AND AIR RATIO MIXTURES - THE HORIZONTAL GLASS TUBE IS FILLED WITH A HOMOGENOUS MIXTURE OF FUEL AND AIR - THE RATE OF FLAME TRAVEL IS PICKED UP BY PHOTO CELLS SHOWN ABOVE THE TUBE AND RECORDED ON THE ELECTRONIC TIME

  17. Assessment of methanol electro-oxidation for direct methanol-air fuel cells

    SciTech Connect

    Fritts, S.D.; Sen, R.K.

    1988-07-01

    The Office of Energy Storage and Distribution of the US Department of Energy (DOE) supports the development of a methanol-air fuel cell for transportation application. The approach used at Los Alamos National Laboratory converts the methanol fuel to a hydrogen-rich gas in a reformer, then operates the fuel cell on hydrogen and air. The reformer tends to be bulky (raising vehicle packaging problems), has a long startup period, and is not well suited for the transient operation required in a vehicle. Methanol, however, can be oxidized electrochemically in the fuel cell. If this process can be conducted efficiently, a direct methanol-air fuel cell can be used, which does not require a reformer. The objective of this study is to assess the potential of developing a suitable catalyst for the direct electrochemical oxidation of methanol. The primary conclusion of this study is that no acceptable catalysts exist can efficiently oxidize methanol electrochemically and have the desired cost and lifetime for vehicle applications. However, recent progress in understanding the mechanism of methanol oxidation indicates that a predictive base can be developed to search for methanol oxidation catalysts and can be used to methodically develop improved catalysts. Such an approach is strongly recommended. The study also recommends that until further progress in developing high-performance catalysts is achieved, research in cell design and testing is not warranted. 43 refs., 12 figs., 1 tab.

  18. Research Opportunities for Cancer Associated with Indoor Air Pollution from Solid-Fuel Combustion

    EPA Science Inventory

    Background: Indoor air pollution (IAP) derived largely from the use of solid fuels for cooking and heating affects about 3 billion people worldwide, resulting in substantial adverse health outcomes, including cancer. Women and children from developing countries are the most expos...

  19. Health and Household Air Pollution from Solid Fuel Use: The Needfor Improved Exposure Assessment

    EPA Science Inventory

    Background: Nearly half the world’s population relies on solid fuel combustion to meet basic household energy needs (e.g., cooking and heating). Resulting air pollution exposures are estimated to cause 3% of the global burden of disease. Large variability and a lack of resource...

  20. HAZARDOUS AIR POLLUTANTS FROM THE COMBUSTION OF AN EMULSIFIED HEAVY FUEL OIL IN A FIRETUBE BOILER

    EPA Science Inventory

    The report gives results of measuring emissions of hazardous air pollutants (HAPs) from the combustion flue gases of a No. 6 fuel oil, both with and without an emulsifying agent, in a 2.5 million Btu/hr (732 kW) firetube boiler with the purpose of determining the impacts of the e...

  1. Combustion Gas Properties I-ASTM Jet a Fuel and Dry Air

    NASA Technical Reports Server (NTRS)

    Jones, R. E.; Trout, A. M.; Wear, J. D.; Mcbride, B. J.

    1984-01-01

    A series of computations was made to produce the equilibrium temperature and gas composition for ASTM jet A fuel and dry air. The computed tables and figures provide combustion gas property data for pressures from 0.5 to 50 atmospheres and equivalence ratios from 0 to 2.0.

  2. Combustion gas properties. Part 3: Hydrogen gas fuel and dry air

    NASA Technical Reports Server (NTRS)

    Wear, J. D.; Jones, R. E.; Mcbride, B. J.; Beyerle, R. A.

    1985-01-01

    A series of computations has been made to produce the equilibrium temperature and gas composition for hydrogen gas fuel and dry air. The computed tables and figures provide combustion gas property data for pressures from 0.5 to 50 atmospheres and equivalence ratios from 0 to 2.0. Only sample tables and figures are provided in this report.

  3. ENVIRONMENTAL TECHNOLOGY VERIFICATION REPORT, MIRATECH CORPORATIONM GECO 3001 AIR/FUEL RATIO CONTROLLER

    EPA Science Inventory

    Details on the verification test design, measurement test procedures, and Quality assurance/Quality Control (QA/QC) procedures can be found in the test plan titled Testing and Quality Assurance Plan, MIRATECH Corporation GECO 3100 Air/Fuel Ratio Controller (SRI 2001). It can be d...

  4. NATURAL ATTENUATION OF FUEL HYDROCARBONS AT MULTIPLE AIR FORCE BASE DEMONSTRATION SITES

    EPA Science Inventory

    A major initiative to evaluate monitored natural attenuation(MNA) of ground water contaminated with fuel hydrocarbons began in June 1993 and continued through October 2000. During this time site characterization studies, both initial and follow-up, were conducted at 28 Air Forc...

  5. Air Shipment of Highly Enriched Uranium Spent Nuclear Fuel from Romania

    SciTech Connect

    K. J. Allen; I. Bolshinsky; L. L. Biro; M. E. Budu; N. V. Zamfir; M. Dragusin

    2010-07-01

    Romania safely air shipped 23.7 kilograms of Russian origin highly enriched uranium (HEU) spent nuclear fuel from the VVR S research reactor at Magurele, Romania, to the Russian Federation in June 2009. This was the world’s first air shipment of spent nuclear fuel transported in a Type B(U) cask under existing international laws without special exceptions for the air transport licenses. This shipment was coordinated by the Russian Research Reactor Fuel Return Program (RRRFR), part of the U.S. Department of Energy Global Threat Reduction Initiative (GTRI), in cooperation with the Romania National Commission for Nuclear Activities Control (CNCAN), the Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH), and the Russian Federation State Corporation Rosatom. The shipment was transported by truck to and from the respective commercial airports in Romania and the Russian Federation and stored at a secure nuclear facility in Russia where it will be converted into low enriched uranium. With this shipment, Romania became the 3rd country under the RRRFR program and the 14th country under the GTRI program to remove all HEU. This paper describes the work, equipment, and approvals that were required to complete this spent fuel air shipment.

  6. Coal combustion under conditions of blast furnace injection. Final technical report, September 1, 1992--August 31, 1993

    SciTech Connect

    Crelling, J.C.; Case, E.R.

    1993-12-31

    A potentially new use for Illinois coal is as a fuel injected into a blast furnace to produce molten iron as the first step in steel production. Because of its increasing cost and decreasing availability, metallurgical coke is now being replaced by coal injected at the tuyere area of the furnace where the blast air enters. The purpose of this study is to evaluate the combustion of coal during the blast furnace injection process and to delineate the optimum properties of the feed coal. This investigation is significant to the use of Illinois coal in that the limited research to date suggests that coals of low fluidity and moderate to high sulfur and chlorine contents are suitable feedstocks for blast furnace injection. During the first phase of this project a number of the objectives were realized, specifically: (1) a blast furnace sampling system was developed and used successfully to collect samples inside an active furnace; (2) two sets of blast furnace samples were collected and petrographic analysis showed that char derived from injected coal is entering the reduction zone of the furnace; (3) a coal/char sampling probe was designed and fabricated; (4) the completion of a program of reactivity experiments on the injected coal char, blast furnace coke and Herrin No. 6 char. The results of the reactivity experiments indicate that Herrin No. 6 coal is similar or even superior to coals now being used in blast furnace injection and that additional testing is warranted.

  7. Personal exposure to JP-8 jet fuel vapors and exhaust at air force bases.

    PubMed Central

    Pleil, J D; Smith, L B; Zelnick, S D

    2000-01-01

    JP-8 jet fuel (similar to commercial/international jet A-1 fuel) is the standard military fuel for all types of vehicles, including the U.S. Air Force aircraft inventory. As such, JP-8 presents the most common chemical exposure in the Air Force, particularly for flight and ground crew personnel during preflight operations and for maintenance personnel performing routine tasks. Personal exposure at an Air Force base occurs through occupational exposure for personnel involved with fuel and aircraft handling and/or through incidental exposure, primarily through inhalation of ambient fuel vapors. Because JP-8 is less volatile than its predecessor fuel (JP-4), contact with liquid fuel on skin and clothing may result in prolonged exposure. The slowly evaporating JP-8 fuel tends to linger on exposed personnel during their interaction with their previously unexposed colleagues. To begin to assess the relative exposures, we made ambient air measurements and used recently developed methods for collecting exhaled breath in special containers. We then analyzed for certain volatile marker compounds for JP-8, as well as for some aromatic hydrocarbons (especially benzene) that are related to long-term health risks. Ambient samples were collected by using compact, battery-operated, personal whole-air samplers that have recently been developed as commercial products; breath samples were collected using our single-breath canister method that uses 1-L canisters fitted with valves and small disposable breathing tubes. We collected breath samples from various groups of Air Force personnel and found a demonstrable JP-8 exposure for all subjects, ranging from slight elevations as compared to a control cohort to > 100 [mutilpe] the control values. This work suggests that further studies should be performed on specific issues to obtain pertinent exposure data. The data can be applied to assessments of health outcomes and to recommendations for changes in the use of personal protective

  8. COD removal characteristics in air-cathode microbial fuel cells.

    PubMed

    Zhang, Xiaoyuan; He, Weihua; Ren, Lijiao; Stager, Jennifer; Evans, Patrick J; Logan, Bruce E

    2015-01-01

    Exoelectrogenic microorganisms in microbial fuel cells (MFCs) compete with other microorganisms for substrate. In order to understand how this affects removal rates, current generation, and coulombic efficiencies (CEs), substrate removal rates were compared in MFCs fed a single, readily biodegradable compound (acetate) or domestic wastewater (WW). Removal rates based on initial test conditions fit first-order kinetics, but rate constants varied with circuit resistance. With filtered WW (100Ω), the rate constant was 0.18h(-)(1), which was higher than acetate or filtered WW with an open circuit (0.10h(-)(1)), but CEs were much lower (15-24%) than acetate. With raw WW (100Ω), COD removal proceeded in two stages: a fast removal stage with high current production, followed by a slower removal with little current. While using MFCs increased COD removal rate due to current generation, secondary processes will be needed to reduce COD to levels suitable for discharge.

  9. Some Effects of Air and Fuel Oil Temperatures on Spray Penetration and Dispersion

    NASA Technical Reports Server (NTRS)

    Gelalles, A G

    1930-01-01

    Presented here are experimental results obtained from a brief investigation of the appearance, penetration, and dispersion of oil sprays injected into a chamber of highly heated air at atmospheric pressure. The development of single sprays injected into a chamber containing air at room temperature and at high temperature was recorded by spray photography equipment. A comparison of spray records showed that with the air at the higher temperature, the spray assumed the appearance of thin, transparent cloud, the greatest part of which rapidly disappeared from view. With the chamber air at room temperature, a compact spray with an opaque core was obtained. Measurements of the records showed a decrease in penetration and an increase in the dispersion of the spray injected into the heated air. No ignition of the fuel injected was observed or recorded until the spray particles came in contact with the much hotter walls of the chamber about 0.3 second after the start of injection.

  10. Design and development of the Waukesha Custom Engine Control Air/Fuel Module

    SciTech Connect

    Moss, D.W.

    1996-12-31

    The Waukesha Custom Engine Control Air/Fuel Module (AFM) is designed to control the air-fuel ratio for all Waukesha carbureted, gaseous fueled, industrial engine. The AFM is programmed with a personal computer to run in one of four control modes: catalyst, best power, best economy, or lean-burn. One system can control naturally aspirated, turbocharged, in-line or vee engines. The basic system consists of an oxygen sensing system, intake manifold pressure transducer, electronic control module, actuator and exhaust thermocouple. The system permits correct operation of Waukesha engines in spite of changes in fuel pressure or temperature, engine load or speed, and fuel composition. The system utilizes closed loop control and is centered about oxygen sensing technology. An innovative approach to applying oxygen sensors to industrial engines provides very good performance, greatly prolongs sensor life, and maintains sensor accuracy. Design considerations and operating results are given for application of the system to stationary, industrial engines operating on fuel gases of greatly varying composition.

  11. Predicting the Effects of Nano-Scale Cerium Additives in Diesel Fuel on Regional-Scale Air Quality

    EPA Science Inventory

    Diesel vehicles are a major source of air pollutant emissions. Fuel additives containing nanoparticulate cerium (nCe) are currently being used in some diesel vehicles to improve fuel efficiency. These fuel additives also reduce fine particulate matter (PM2.5) emissio...

  12. 77 FR 18297 - Air Traffic Noise, Fuel Burn, and Emissions Modeling Using the Aviation Environmental Design Tool...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-27

    ... Federal Aviation Administration Air Traffic Noise, Fuel Burn, and Emissions Modeling Using the Aviation... Aviation Environmental Design Tool version 2a (AEDT 2a) to analyze noise, fuel burn, and emissions for FAA... assess noise, fuel burn, and emissions impacts of such actions under the National Environmental...

  13. Proposal for a Vehicle Level Test Procedure to Measure Air Conditioning Fuel Use

    SciTech Connect

    Rugh, J. P.

    2010-04-01

    The air-conditioning (A/C) compressor load significantly impacts the fuel economy of conventional vehicles and the fuel use/range of plug-in hybrid electric vehicles (PHEV). A National Renewable Energy Laboratory (NREL) vehicle performance analysis shows the operation of the air conditioner reduces the charge depletion range of a 40-mile range PHEV from 18% to 30% in a worst case hot environment. Designing for air conditioning electrical loads impacts PHEV and electric vehicle (EV) energy storage system size and cost. While automobile manufacturers have climate control procedures to assess A/C performance, and the U.S. EPA has the SCO3 drive cycle to measure indirect A/C emissions, there is no automotive industry consensus on a vehicle level A/C fuel use test procedure. With increasing attention on A/C fuel use due to increased regulatory activities and the development of PHEVs and EVs, a test procedure is needed to accurately assess the impact of climate control loads. A vehicle thermal soak period is recommended, with solar lamps that meet the SCO3 requirements or an alternative heating method such as portable electric heaters. After soaking, the vehicle is operated over repeated drive cycles or at a constant speed until steady-state cabin air temperature is attained. With this method, the cooldown and steady-state A/C fuel use are measured. This method can be run at either different ambient temperatures to provide data for the GREEN-MAC-LCCP model temperature bins or at a single representative ambient temperature. Vehicles with automatic climate systems are allowed to control as designed, while vehicles with manual climate systems are adjusted to approximate expected climate control settings. An A/C off test is also run for all drive profiles. This procedure measures approximate real-world A/C fuel use and assess the impact of thermal load reduction strategies.

  14. Fuel Savings and Emission Reductions from Next-Generation Mobile Air Conditioning Technology in India

    SciTech Connect

    Chaney, L.; Thundiyil, K.; Andersen, S.; Chidambaram, S.; Abbi, Y. P.

    2007-01-01

    Up to 19.4% of vehicle fuel consumption in India is devoted to air conditioning (A/C). Indian A/C fuel consumption is almost four times the fuel penalty in the United States and close to six times that in the European Union because India's temperature and humidity are higher and because road congestion forces vehicles to operate inefficiently. Car A/C efficiency in India is an issue worthy of national attention considering the rate of increase of A/C penetration into the new car market, India's hot climatic conditions and high fuel costs. Car A/C systems originally posed an ozone layer depletion concern. Now that industrialized and many developing countries have moved away from ozone-depleting substances per Montreal Protocol obligations, car A/C impact on climate has captured the attention of policy makers and corporate leaders. Car A/C systems have a climate impact from potent global warming potential gas emissions and from fuel used to power the car A/Cs. This paper focuses on car A/C fuel consumption in the context of the rapidly expanding Indian car market and how new technological improvements can result in significant fuel savings and consequently, emission reductions. A 19.4% fuel penalty is associated with A/C use in the typical Indian passenger car. Car A/C fuel use and associated tailpipe emissions are strong functions of vehicle design, vehicle use, and climate conditions. Several techniques: reducing thermal load, improving vehicle design, improving occupants thermal comfort design, improving equipment, educating consumers on impacts of driver behaviour on MAC fuel use, and others - can lead to reduced A/C fuel consumption.

  15. Abstract: Air, Thermal and Water Management for PEM Fuel Cell Systems

    SciTech Connect

    Mark K. Gee Zia Mirza

    2008-10-01

    PEM fuel cells are excellent candidates for transportation applications due to their high efficiencies. PEM fuel cell Balance of Plant (BOP) components, such as air, thermal, and water management sub-systems, can have a significant effect on the overall system performance, but have traditionally not been addressed in research and development efforts. Recognizing this, the U.S. Department of Energy and Honeywell International Inc. are funding an effort that emphasizes the integration and optimization of air, thermal and water management sub-systems. This effort is one of the major elements to assist the fuel cell system developers and original equipment manufacturers to achieve the goal of an affordable and efficient power system for transportation applications. Past work consisted of: (1) Analysis, design, and fabrication of a motor driven turbocompressor. (2) A systematic trade study to select the most promising water and thermal management systems from five different concepts (absorbent wheel humidifier, gas to gas membrane humidifier, porous metal foam humidifier, cathode recycle compressor, and water injection pump.) This presentation will discuss progress made in the research and development of air, water and thermal management sub-systems for PEM fuel cell systems in transportation applications. More specifically, the presentation will discuss: (1) Progress of the motor driven turbocompressor design and testing; (2) Progress of the humidification component selection and testing; and (3) Progress of the thermal management component preliminary design. The programs consist of: (1) The analysis, design, fabrication and testing of a compact motor driven turbocompressor operating on foil air bearings to provide contamination free compressed air to the fuel cell stack while recovering energy from the exhaust streams to improve system efficiency. (2) The analysis, design, fabrication and testing of selected water and thermal management systems and components to

  16. Impact of the electric compressor for automotive air conditioning system on fuel consumption and performance analysis

    NASA Astrophysics Data System (ADS)

    Zulkifli, A. A.; Dahlan, A. A.; Zulkifli, A. H.; Nasution, H.; Aziz, A. A.; Perang, M. R. M.; Jamil, H. M.; Misseri, M. N.

    2015-12-01

    Air conditioning system is the biggest auxiliary load in a vehicle where the compressor consumed the largest. Problem with conventional compressor is the cooling capacity cannot be control directly to fulfill the demand of thermal load inside vehicle cabin. This study is conducted experimentally to analyze the difference of fuel usage and air conditioning performance between conventional compressor and electric compressor of the air conditioning system in automobile. The electric compressor is powered by the car battery in non-electric vehicle which the alternator will recharge the battery. The car is setup on a roller dynamometer and the vehicle speed is varied at 0, 30, 60, 90 and 110 km/h at cabin temperature of 25°C and internal heat load of 100 and 400 Watt. The results shows electric compressor has better fuel consumption and coefficient of performance compared to the conventional compressor.

  17. Analytical modeling of operating characteristics of premixing-prevaporizing fuel-air mixing passages. Volume 1: Analysis and results

    NASA Technical Reports Server (NTRS)

    Anderson, O. L.; Chiappetta, L. M.; Edwards, D. E.; Mcvey, J. B.

    1982-01-01

    A model for predicting the distribution of liquid fuel droplets and fuel vapor in premixing-prevaporizing fuel-air mixing passages of the direct injection type is reported. This model consists of three computer programs; a calculation of the two dimensional or axisymmetric air flow field neglecting the effects of fuel; a calculation of the three dimensional fuel droplet trajectories and evaporation rates in a known, moving air flow; a calculation of fuel vapor diffusing into a moving three dimensional air flow with source terms dependent on the droplet evaporation rates. The fuel droplets are treated as individual particle classes each satisfying Newton's law, a heat transfer, and a mass transfer equation. This fuel droplet model treats multicomponent fuels and incorporates the physics required for the treatment of elastic droplet collisions, droplet shattering, droplet coalescence and droplet wall interactions. The vapor diffusion calculation treats three dimensional, gas phase, turbulent diffusion processes. The analysis includes a model for the autoignition of the fuel air mixture based upon the rate of formation of an important intermediate chemical species during the preignition period.

  18. Gaseous fuels production from dried sewage sludge via air gasification.

    PubMed

    Werle, Sebastian; Dudziak, Mariusz

    2014-07-01

    Gasification is a perspective alternative method of dried sewage sludge thermal treatment. For the purpose of experimental investigations, a laboratory fixed-bed gasifier installation was designed and built. Two sewage sludge (SS) feedstocks, taken from two typical Polish wastewater treatment systems, were analysed: SS1, from a mechanical-biological wastewater treatment system with anaerobic stabilization (fermentation) and high temperature drying; and (SS2) from a mechanical-biological-chemical wastewater treatment system with fermentation and low temperature drying. The gasification results show that greater oxygen content in sewage sludge has a strong influence on the properties of the produced gas. Increasing the air flow caused a decrease in the heating value of the produced gas. Higher hydrogen content in the sewage sludge (from SS1) affected the produced gas composition, which was characterized by high concentrations of combustible components. In the case of the SS1 gasification, ash, charcoal, and tar were produced as byproducts. In the case of SS2 gasification, only ash and tar were produced. SS1 and solid byproducts from its gasification (ash and charcoal) were characterized by lower toxicity in comparison to SS2. However, in all analysed cases, tar samples were toxic.

  19. Indoor air quality scenario in India-An outline of household fuel combustion

    NASA Astrophysics Data System (ADS)

    Rohra, Himanshi; Taneja, Ajay

    2016-03-01

    Most of the research around the world has been on outdoor air pollution, but in India we have a more severe problem of Indoor Air Pollution (IAP). The foremost factor cited for is burning of fossil fuels for cooking. Among the 70% of the country's rural population, about 80% households rely on biomass fuel making India to top the list of countries with largest population lacking access to cleaner fuel for cooking. 4 million deaths and 5% disability-adjusted life-years is an upshot of exposure to IAP from unhealthy cooking making it globally the most critical environmental risk factor. India alone bears the highest burden (28% needless deaths) among developing countries. Moreover, about ¼ of ambient PM2.5 in the country comes from household cookfuels. These considerations have prompted the discussion of the present knowledge on the disastrous health effects of pollutants emitted by biomass combustion in India. Additionally, Particulate Matter as an indoor air pollutant is highlighted with main focus on its spatial temporal variation and some recent Indian studies are further explored. As there are no specific norms for IAP in India, urgent need has arisen for implementing the strategies to create public awareness. Moreover improvement in ventilation and modification in the pattern of fuel will also contribute to eradicate this national health issue.

  20. Free air breathing proton exchange membrane fuel cell: Thermal behavior characterization near freezing temperature

    NASA Astrophysics Data System (ADS)

    Higuita Cano, Mauricio; Kelouwani, Sousso; Agbossou, Kodjo; Dubé, Yves

    2014-01-01

    A free air breathing fuel cell thermal model is developed. This proton exchange membrane fuel cell (PEMFC) has been selected as the basis for the study due to its use in automotive applications. The blowers integrated to the stack provide the required air flow for hydrogen oxidation as well as the fluid for the stack thermal regulation. Hence, their controls are a key point for keeping the system to maximum efficiency. Using well-known fuel cell electrochemistry, a dynamic thermal model near freezing temperature, which includes the stack physical parameters, is developed and validated. In addition to these parameters, only the inlet and outlet air temperatures are used to derive the model. Experimental validation with a real 1 kW free air breathing PEMFC has demonstrated that the model can reasonably track the stack internal temperature with a maximum deviation between the observed and the estimated temperatures of 5%. Therefore, the proposed method will allow the development of efficient blower management systems for PEMFC efficiency improvement.

  1. Air quality and acute respiratory illness in biomass fuel using homes in Bagamoyo, Tanzania.

    PubMed

    Kilabuko, James H; Matsuki, Hidieki; Nakai, Satoshi

    2007-03-01

    Respiratory Diseases are public health concern worldwide. The diseases have been associated with air pollution especially indoor air pollution from biomass fuel burning in developing countries. However, researches on pollution levels and on association of respiratory diseases with biomass fuel pollution are limited. A study was therefore undertaken to characterize the levels of pollutants in biomass fuel using homes and examine the association between biomass fuel smoke exposure and Acute Respiratory Infection (ARI) disease in Nianjema village in Bagamoyo, Tanzania. Pollution was assessed by measuring PM10, NO2, and CO concentrations in kitchen, living room and outdoors. ARI prevalence was assessed by use of questionnaire which gathered health information for all family members under the study. Results showed that PM10, NO2, and CO concentrations were highest in the kitchen and lowest outdoors. Kitchen concentrations were highest in the kitchen located in the living room for all pollutants except CO. Family size didn't have effect on the levels measured in kitchens. Overall ARI prevalence for cooks and children under age 5 making up the exposed group was 54.67% with odds ratio (OR) of 5.5; 95% CI 3.6 to 8.5 when compared with unexposed men and non-regular women cooks. Results of this study suggest an association between respiratory diseases and exposure to domestic biomass fuel smoke, but further studies with improved design are needed to confirm the association.

  2. Determining air quality and greenhouse gas impacts of hydrogen infrastructure and fuel cell vehicles.

    PubMed

    Stephens-Romero, Shane; Carreras-Sospedra, Marc; Brouwer, Jacob; Dabdub, Donald; Samuelsen, Scott

    2009-12-01

    Adoption of hydrogen infrastructure and hydrogen fuel cell vehicles (HFCVs) to replace gasoline internal combustion engine (ICE) vehicles has been proposed as a strategy to reduce criteria pollutant and greenhouse gas (GHG) emissions from the transportation sector and transition to fuel independence. However, it is uncertain (1) to what degree the reduction in criteria pollutants will impact urban air quality, and (2) how the reductions in pollutant emissions and concomitant urban air quality impacts compare to ultralow emission gasoline-powered vehicles projected for a future year (e.g., 2060). To address these questions, the present study introduces a "spatially and temporally resolved energy and environment tool" (STREET) to characterize the pollutant and GHG emissions associated with a comprehensive hydrogen supply infrastructure and HFCVs at a high level of geographic and temporal resolution. To demonstrate the utility of STREET, two spatially and temporally resolved scenarios for hydrogen infrastructure are evaluated in a prototypical urban airshed (the South Coast Air Basin of California) using geographic information systems (GIS) data. The well-to-wheels (WTW) GHG emissions are quantified and the air quality is established using a detailed atmospheric chemistry and transport model followed by a comparison to a future gasoline scenario comprised of advanced ICE vehicles. One hydrogen scenario includes more renewable primary energy sources for hydrogen generation and the other includes more fossil fuel sources. The two scenarios encompass a variety of hydrogen generation, distribution, and fueling strategies. GHG emissions reductions range from 61 to 68% for both hydrogen scenarios in parallel with substantial improvements in urban air quality (e.g., reductions of 10 ppb in peak 8-h-averaged ozone and 6 mug/m(3) in 24-h-averaged particulate matter concentrations, particularly in regions of the airshed where concentrations are highest for the gasoline scenario

  3. Investigation of novel electrolyte systems for advanced metal/air batteries and fuel cells

    NASA Astrophysics Data System (ADS)

    Ye, Hui

    It is a worldwide challenge to develop advanced green power sources for modern portable devices, transportation and stationary power generation. Metal/air batteries and fuel cells clearly stand out in view of their high specific energy, high energy efficiency and environment-friendliness. Advanced metal/air batteries based on metal ion conductors and proton exchange membrane (PEM) fuel cells operated at elevated temperatures (>120°C) can circumvent the limitations of current technologies and bring considerable advantages. The key is to develop suitable electrolytes to enable these new technologies. In this thesis research, investigation of novel electrolytes systems for advanced metal/air batteries and PEM fuel cells is conducted. Novel polymer gel electrolyte systems, [metal salt/ionic liquid/polymer] and [metal salt/liquid polyether/polymer] are prepared. Such systems contain no volatile solvents, conduct metal ions (Li+ or Zn 2+) with high ionic conductivity, possess wide electrochemical stability windows, and exhibit wide operating temperature ranges. They promise to enable non-aqueous, all-solid-state, thin-film Li/air batteries and Zn/air batteries. They are advantageous for application in other battery systems as well, such as rechargeable lithium and lithium ion batteries. In the case of proton exchange membranes, polymer gel electrolyte systems [acid/ionic liquid/polymer] are prepared. Especially, H3PO4/PMIH2PO 4/PBI is demonstrated as prospective proton exchange membranes for PEM fuel cells operating at elevated temperatures. Comprehensive electrochemical characterization, thermal analysis (TGA and DSC) and spectroscopy analysis (NMR and FTIR) are carried out to investigate these novel electrolyte systems and their ion transport mechanisms. The design and synthesis of novel ionic liquids and electrolyte systems based on them for advantageous application in various electrochemical power sources are highlighted in this work.

  4. Household Air Pollution from Coal and Biomass Fuels in China: Measurements, Health Impacts, and Interventions

    PubMed Central

    Zhang, Junfeng (Jim); Smith, Kirk R.

    2007-01-01

    Objective Nearly all China’s rural residents and a shrinking fraction of urban residents use solid fuels (biomass and coal) for household cooking and/or heating. Consequently, global meta-analyses of epidemiologic studies indicate that indoor air pollution from solid fuel use in China is responsible for approximately 420,000 premature deaths annually, more than the approximately 300,000 attributed to urban outdoor air pollution in the country. Our objective in this review was to help elucidate the extent of this indoor air pollution health hazard. Data sources We reviewed approximately 200 publications in both Chinese- and English-language journals that reported health effects, exposure characteristics, and fuel/stove intervention options. Conclusions Observed health effects include respiratory illnesses, lung cancer, chronic obstructive pulmonary disease, weakening of the immune system, and reduction in lung function. Arsenic poisoning and fluorosis resulting from the use of “poisonous” coal have been observed in certain regions of China. Although attempts have been made in a few studies to identify specific coal smoke constituents responsible for specific adverse health effects, the majority of indoor air measurements include those of only particulate matter, carbon monoxide, sulfur dioxide, and/or nitrogen dioxide. These measurements indicate that pollution levels in households using solid fuel generally exceed China’s indoor air quality standards. Intervention technologies ranging from simply adding a chimney to the more complex modernized bioenergy program are available, but they can be viable only with coordinated support from the government and the commercial sector. PMID:17589590

  5. Determining air quality and greenhouse gas impacts of hydrogen infrastructure and fuel cell vehicles.

    PubMed

    Stephens-Romero, Shane; Carreras-Sospedra, Marc; Brouwer, Jacob; Dabdub, Donald; Samuelsen, Scott

    2009-12-01

    Adoption of hydrogen infrastructure and hydrogen fuel cell vehicles (HFCVs) to replace gasoline internal combustion engine (ICE) vehicles has been proposed as a strategy to reduce criteria pollutant and greenhouse gas (GHG) emissions from the transportation sector and transition to fuel independence. However, it is uncertain (1) to what degree the reduction in criteria pollutants will impact urban air quality, and (2) how the reductions in pollutant emissions and concomitant urban air quality impacts compare to ultralow emission gasoline-powered vehicles projected for a future year (e.g., 2060). To address these questions, the present study introduces a "spatially and temporally resolved energy and environment tool" (STREET) to characterize the pollutant and GHG emissions associated with a comprehensive hydrogen supply infrastructure and HFCVs at a high level of geographic and temporal resolution. To demonstrate the utility of STREET, two spatially and temporally resolved scenarios for hydrogen infrastructure are evaluated in a prototypical urban airshed (the South Coast Air Basin of California) using geographic information systems (GIS) data. The well-to-wheels (WTW) GHG emissions are quantified and the air quality is established using a detailed atmospheric chemistry and transport model followed by a comparison to a future gasoline scenario comprised of advanced ICE vehicles. One hydrogen scenario includes more renewable primary energy sources for hydrogen generation and the other includes more fossil fuel sources. The two scenarios encompass a variety of hydrogen generation, distribution, and fueling strategies. GHG emissions reductions range from 61 to 68% for both hydrogen scenarios in parallel with substantial improvements in urban air quality (e.g., reductions of 10 ppb in peak 8-h-averaged ozone and 6 mug/m(3) in 24-h-averaged particulate matter concentrations, particularly in regions of the airshed where concentrations are highest for the gasoline scenario).

  6. Fuel flexible fuel injector

    DOEpatents

    Tuthill, Richard S; Davis, Dustin W; Dai, Zhongtao

    2015-02-03

    A disclosed fuel injector provides mixing of fuel with airflow by surrounding a swirled fuel flow with first and second swirled airflows that ensures mixing prior to or upon entering the combustion chamber. Fuel tubes produce a central fuel flow along with a central airflow through a plurality of openings to generate the high velocity fuel/air mixture along the axis of the fuel injector in addition to the swirled fuel/air mixture.

  7. Investigation of air solubility in jet A fuel at high pressures

    NASA Technical Reports Server (NTRS)

    Rupprecht, S. D.; Faeth, G. M.

    1981-01-01

    The solubility and density properties of saturated mixtures of fuels and gases were measured. The fuels consisted of Jet A and dodecane, the gases were air and nitrogen. The test range included pressures of 1.03 to 10.34 MPa and temperatures of 298 to 373 K. The results were correlated successfully, using the Soave equation of state. Over this test range, dissolved gas concentrations were roughly proportional to pressure and increased slightly with increasing temperature. Mixture density was relatively independent of dissolved gas concentration.

  8. The effect of fuel-to-air ratio on burner-rig hot corrosion

    NASA Technical Reports Server (NTRS)

    Deadmore, D. L.; Lowell, C. E.; Kohl, F. J.

    1978-01-01

    Samples of a cobalt-base alloy, Mar M-509, were subjected to hot corrosion in a Mach-0.3 burner rig. The corrodent was NaCl added as an aqueous solution to the combustion products of a sulfur-containing Jet-A fuel. The metal temperature was fixed at 900 C. The extent of hot corrosion increased by a factor of three as the fuel-to-air mass ratio was increased from 0.033 to 0.050. Because the depositing salt was always Na2SO4, the increased attack appeared to be related to the gas composition.

  9. An exploratory study to determine the integrated technological air transportation system ground requirements of liquid-hydrogen-fueled subsonic, long-haul civil air transports

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A baseline air terminal concept was developed which permitted airlines and the airport to operate JP- or LH2-fueled aircraft at common terminal gates. The concept included installation of a hydrogen liquefaction and storage facility on airport property, as well as the fuel distribution system. The capital investment and hydrogen-related operating costs to the airlines were estimated.

  10. Real-Time Optical Fuel-to-Air Ratio Sensor for Gas Turbine Combustors

    NASA Technical Reports Server (NTRS)

    Nguyen, Quang-Viet; Mongia, Rajiv K.; Dibble, Robert W.

    1999-01-01

    The measurement of the temporal distribution of fuel in gas turbine combustors is important in considering pollution, combustion efficiency and combustor dynamics and acoustics. Much of the previous work in measuring fuel distributions in gas turbine combustors has focused on the spatial aspect of the distribution. The temporal aspect however, has often been overlooked, even though it is just as important. In part, this is due to the challenges of applying real-time diagnostic techniques in a high pressure and high temperature environment. A simple and low-cost instrument that non-intrusively measures the real-time fuel-to-air ratio (FAR) in a gas turbine combustor has been developed. The device uses a dual wavelength laser absorption technique to measure the concentration of most hydrocarbon fuels such as jet fuel, methane, propane, etc. The device can be configured to use fiber optics to measure the local FAR inside a high pressure test rig without the need for windows. Alternatively, the device can readily be used in test rigs that have existing windows without modifications. An initial application of this instrument was to obtain time-resolved measurements of the FAR in the premixer of a lean premixed prevaporized (LPP) combustor at inlet air pressures and temperatures as high as 17 atm at 800 K, with liquid JP-8 as the fuel. Results will be presented that quantitatively show the transient nature of the local FAR inside a LPP gas turbine combustor at actual operating conditions. The high speed (kHz) time resolution of this device, combined with a rugged fiber optic delivery system, should enable the realization of a flight capable active-feedback and control system for the abatement of noise and pollutant emissions in the future. Other applications that require an in-situ and time-resolved measurement of fuel vapor concentrations should also find this device to be of use.

  11. Aerosols emitted in underground mine air by diesel engine fueled with biodiesel.

    PubMed

    Bugarski, Aleksandar D; Cauda, Emanuele G; Janisko, Samuel J; Hummer, Jon A; Patts, Larry D

    2010-02-01

    Using biodiesel in place of petroleum diesel is considered by several underground metal and nonmetal mine operators to be a viable strategy for reducing the exposure of miners to diesel particulate matter. This study was conducted in an underground experimental mine to evaluate the effects of soy methyl ester biodiesel on the concentrations and size distributions of diesel aerosols and nitric oxides in mine air. The objective was to compare the effects of neat and blended biodiesel fuels with those of ultralow sulfur petroleum diesel. The evaluation was performed using a mechanically controlled, naturally aspirated diesel engine equipped with a muffler and a diesel oxidation catalyst. The effects of biodiesel fuels on size distributions and number and total aerosol mass concentrations were found to be strongly dependent on engine operating conditions. When fueled with biodiesel fuels, the engine contributed less to elemental carbon concentrations for all engine operating modes and exhaust configurations. The substantial increases in number concentrations and fraction of organic carbon (OC) in total carbon over the baseline were observed when the engine was fueled with biodiesel fuels and operated at light-load operating conditions. Size distributions for all test conditions were found to be single modal and strongly affected by engine operating conditions, fuel type, and exhaust configuration. The peak and total number concentrations as well as median diameter decreased with an increase in the fraction of biodiesel in the fuels, particularly for high-load operating conditions. The effects of the diesel oxidation catalyst, commonly deployed to counteract the potential increase in OC emissions due to use of biodiesel, were found to vary depending upon fuel formulation and engine operating conditions. The catalyst was relatively effective in reducing aerosol number and mass concentrations, particularly at light-load conditions, but also showed the potential for an

  12. Biomass fuel use and the exposure of children to particulate air pollution in southern Nepal

    PubMed Central

    Devakumar, D.; Semple, S.; Osrin, D.; Yadav, S.K.; Kurmi, O.P.; Saville, N.M.; Shrestha, B.; Manandhar, D.S.; Costello, A.; Ayres, J.G.

    2014-01-01

    The exposure of children to air pollution in low resource settings is believed to be high because of the common use of biomass fuels for cooking. We used microenvironment sampling to estimate the respirable fraction of air pollution (particles with median diameter less than 4 μm) to which 7–9 year old children in southern Nepal were exposed. Sampling was conducted for a total 2649 h in 55 households, 8 schools and 8 outdoor locations of rural Dhanusha. We conducted gravimetric and photometric sampling in a subsample of the children in our study in the locations in which they usually resided (bedroom/living room, kitchen, veranda, in school and outdoors), repeated three times over one year. Using time activity information, a 24-hour time weighted average was modeled for all the children in the study. Approximately two-thirds of homes used biomass fuels, with the remainder mostly using gas. The exposure of children to air pollution was very high. The 24-hour time weighted average over the whole year was 168 μg/m3. The non-kitchen related samples tended to show approximately double the concentration in winter than spring/autumn, and four times that of the monsoon season. There was no difference between the exposure of boys and girls. Air pollution in rural households was much higher than the World Health Organization and the National Ambient Air Quality Standards for Nepal recommendations for particulate exposure. PMID:24533994

  13. Recent decreases in fossil-fuel emissions of ethane and methane derived from firn air.

    PubMed

    Aydin, Murat; Verhulst, Kristal R; Saltzman, Eric S; Battle, Mark O; Montzka, Stephen A; Blake, Donald R; Tang, Qi; Prather, Michael J

    2011-08-10

    Methane and ethane are the most abundant hydrocarbons in the atmosphere and they affect both atmospheric chemistry and climate. Both gases are emitted from fossil fuels and biomass burning, whereas methane (CH(4)) alone has large sources from wetlands, agriculture, landfills and waste water. Here we use measurements in firn (perennial snowpack) air from Greenland and Antarctica to reconstruct the atmospheric variability of ethane (C(2)H(6)) during the twentieth century. Ethane levels rose from early in the century until the 1980s, when the trend reversed, with a period of decline over the next 20 years. We find that this variability was primarily driven by changes in ethane emissions from fossil fuels; these emissions peaked in the 1960s and 1970s at 14-16 teragrams per year (1 Tg = 10(12) g) and dropped to 8-10 Tg  yr(-1) by the turn of the century. The reduction in fossil-fuel sources is probably related to changes in light hydrocarbon emissions associated with petroleum production and use. The ethane-based fossil-fuel emission history is strikingly different from bottom-up estimates of methane emissions from fossil-fuel use, and implies that the fossil-fuel source of methane started to decline in the 1980s and probably caused the late twentieth century slow-down in the growth rate of atmospheric methane.

  14. Computational modeling of alkaline air-breathing microfluidic fuel cells with an array of cylinder anodes

    NASA Astrophysics Data System (ADS)

    Ye, Ding-Ding; Zhang, Biao; Zhu, Xun; Sui, Pang-Chieh; Djilali, Ned; Liao, Qiang

    2015-08-01

    A three-dimensional computational model is developed for an alkaline air-breathing microfluidic fuel cell (AMFC) with an array of cylinder anodes. The model is validated against experimental data from an in-house prototype AMFC. The distributions of fluid velocity, fuel concentration and current density of the fuel cell are analyzed in detail. The effect of reactant flow rate on the cell performance and electrode potentials is also studied. The model results suggest that fuel crossover is minimized by the fast electrolyte flow in the vicinity of the cathode. The current production of each anode is uneven and is well correlated with internal ohmic resistance. Fuel transfer limitation occurs at low flow rates (<100 μL min-1) but diminishes at high flow rates. The model results also indicate that cathode potential reversal takes place at combined low flow rate and high current density conditions, mainly due to the improved overpotential downstream where fuel starvation occurs. The anode reaction current distribution is found to be relatively uniform, which is a result of a compensating mechanism that improves the current production of the bottom anodes downstream.

  15. Blast Injuries

    MedlinePlus

    ... Service Members & Veterans Family & Caregivers Medical Providers Blast Injuries U.S. Army photo by Sgt. Gustavo Olgiati How ... tertiary injury Does a blast cause different brain injuries than blunt trauma? There currently is no evidence ...

  16. Adaptive RBF network for parameter estimation and stable air-fuel ratio control.

    PubMed

    Wang, Shiwei; Yu, D L

    2008-01-01

    In the application of variable structure control to engine air-fuel ratio, the ratio is subjected to chattering due to system uncertainty, such as unknown parameters or time varying dynamics. This paper proposes an adaptive neural network method to estimate two immeasurable physical parameters on-line and to compensate for the model uncertainty and engine time varying dynamics, so that the chattering is substantially reduced and the air-fuel ratio is regulated within the desired range of the stoichiometric value. The adaptive law of the neural network is derived using the Lyapunov method, so that the stability of the whole system and the convergence of the networks are guaranteed. Computer simulations based on a mean value engine model demonstrate the effectiveness of the technique. PMID:18166378

  17. Blast wave parameters at diminished ambient pressure

    NASA Astrophysics Data System (ADS)

    Silnikov, M. V.; Chernyshov, M. V.; Mikhaylin, A. I.

    2015-04-01

    Relation between blast wave parameters resulted from a condensed high explosive (HE) charge detonation and a surrounding gas (air) pressure has been studied. Blast wave pressure and impulse differences at compression and rarefaction phases, which traditionally determine damage explosive effect, has been analyzed. An initial pressure effect on a post-explosion quasi-static component of the blast load has been investigated. The analysis is based on empirical relations between blast parameters and non-dimensional similarity criteria. The results can be directly applied to flying vehicle (aircraft or spacecraft) blast safety analysis.

  18. Effect of air-staging on mercury speciation in pulverized fuel co-combustion: part 2

    SciTech Connect

    Shishir P. Sable; Wiebren de Jong; Ruud Meij; Hartmut Spliethoff

    2007-08-15

    The concerns regarding global warming and need for new energy resources brought the concept of biomass and waste as secondary fuels to the power industry. Mercury emissions in cases of cofiring of chicken manure, olive residue, and B-wood with a high volatile bituminous coal blend are studied in the first part of this paper. The use of secondary fuels significantly affects NOx emissions due to different types of nitrogen present in the fuel matrix. Air-staging is a proven in-furnace NOx reduction technology. The present work mainly involves bench scale studies to investigate the effect of air-staging on partitioning of mercury in pulverized fuel co-combustion. The combustion experiments are carried out in an entrained flow reactor at 1300{sup o}C with a 20%th share of secondary fuels. Elemental and total gaseous mercury from the reactor is measured on-line, and ash is analyzed for particulate mercury along with elemental and surface properties. Reducing the air stoichiometry in the primary zone of the combustor increases unburnt carbon which in turn reduces mercury emissions in the gas phase. Ash analysis shows the effect of surface area, particle size, and unburnt carbon on mercury capture. Calcium variation in the ash was observed due to formation of different slag in reducing and oxidizing conditions and might have affected the mercury capture in combination with the above parameters. A low iron concentration of ash does not seem to affect the capture of mercury. The results will help in predicting different forms of mercury emitted from the furnace at desired operating conditions which will eventually form the basis for the design of the control strategies for mercury emissions. 22 refs., 3 figs., 1 tab.

  19. Thermodynamic Cycle and CFD Analyses for Hydrogen Fueled Air-breathing Pulse Detonation Engines

    NASA Technical Reports Server (NTRS)

    Povinelli, Louis A.; Yungster, Shaye

    2002-01-01

    This paper presents the results of a thermodynamic cycle analysis of a pulse detonation engine (PDE) using a hydrogen-air mixture at static conditions. The cycle performance results, namely the specific thrust, fuel consumption and impulse are compared to a single cycle CFD analysis for a detonation tube which considers finite rate chemistry. The differences in the impulse values were indicative of the additional performance potential attainable in a PDE.

  20. Experimental investigation on a turbine compressor for air supply system of a fuel cell

    SciTech Connect

    Matsuda, Masayasu; Tsuchiyama, Syozo

    1996-12-31

    This report covers part of a joint study on a PEFC propulsion system for surface ships, summarized in a presentation to this Seminar, entitled {open_quotes}Study on a Polymer Electrolyte Fuel Cell (PEFC) Propulsion System for Surface Ships{close_quotes}, and which envisages application to a 1,500 DWT cargo vessel. The aspect treated here concerns a study on the air supply system for the PEFC, with particular reference to system components.

  1. Detonation propagation through methane-air mixtures with fuel concentration gradients

    NASA Astrophysics Data System (ADS)

    Kessler, David; Gamezo, Vadim; Oran, Elaine

    2010-11-01

    The complex structure of a multidimensional detonation front consists of constantly changing, multiply intersecting incident shocks and Mach stems followed by growing and shrinking regions of reacted and unreacted gases. Because these flow structures change in time, the energy release in the shocked and compressed gases varies in space and time. Trajectories of triple points formed at shock intersections create cellular patterns whose size and structure are characteristic of the particular material and the background condition. In high-activation-energy fuel-air mixtures, such as methane in air, cellular patterns are relatively large, very irregular, and have complex and changing substructures. Here we use numerical simulations to study the behavior of detonations propagating through methane-air mixtures with a spatial gradient of fuel concentration. When the mixture stoichiometry varies from stoichiometric, the detonation propagation speed slows and sizes of cellular structures grow. In partially premixed systems with a nonuniform concentration of fuel -- a condition that can occur, for example, naturally in sealed underground coal mine tunnels -- both the propagation speed and the characteristic detonation cell size vary spatially.

  2. Seeking effective dyes for a mediated glucose-air alkaline battery/fuel cell

    NASA Astrophysics Data System (ADS)

    Eustis, Ross; Tsang, Tsz Ming; Yang, Brigham; Scott, Daniel; Liaw, Bor Yann

    2014-02-01

    A significant level of power generation from an abiotic, air breathing, mediated reducing sugar-air alkaline battery/fuel cell has been achieved in our laboratories at room temperature without complicated catalysis or membrane separation in the reaction chamber. Our prior studies suggested that mass transport limitation by the mediator is a limiting factor in power generation. New and effective mediators were sought here to improve charge transfer and power density. Forty-five redox dyes were studied to identify if any can facilitate mass transport in alkaline electrolyte solution; namely, by increasing the solubility and mobility of the dye, and the valence charge carried per molecule. Indigo dyes were studied more closely to understand the complexity involved in mass transport. The viability of water-miscible co-solvents was also explored to understand their effect on solubility and mass transport of the dyes. Using a 2.0 mL solution, 20% methanol by volume, with 100 mM indigo carmine, 1.0 M glucose and 2.5 M sodium hydroxide, the glucose-air alkaline battery/fuel cell attained 8 mA cm-2 at short-circuit and 800 μW cm-2 at the maximum power point. This work shall aid future optimization of mediated charge transfer mechanism in batteries or fuel cells.

  3. Fuel-Air Mixing Effect on Nox Emissions for a Lean Premixed-Prevaporized Combustion System

    NASA Technical Reports Server (NTRS)

    Lee, Chi-Ming; Chun, Kue S.; Locke, Randy J.

    1995-01-01

    The lean premixed-prevaporized (LPP) concept effectively meets low nitrogen oxides (NOx) emission requirements for combustors with the high inlet temperature and pressure typical of the High-Speed Civil Transport (HSCT). For the LPP system fuel-air mixture uniformity is probably the most important factor for low NOx emissions. Previous studies have suggested that the fuel-air mixture uniformity can be severely affected by changing the number and configuration of fuel injection points. Therefore, an experimental study was performed to determine how the number of fuel injection points and their arrangement affect NOx emissions from an LPP system. The NOx emissions were measured by a gas-sampling probe in a flame-tube rig at the following conditions: inlet temperature of 810 K (1000 F), rig pressure of 10 atm, reference velocity of 150 ft/s, and residence time near 0.005 s. Additionally, a focused Schlieren diagnostic technique coupled with a high speed camera was used to provide a qualitative description of the spatial flow field.

  4. Effects of Air Conditioner Use on Real-World Fuel Economy

    SciTech Connect

    Huff, Shean P; West, Brian H; Thomas, John F

    2013-01-01

    Vehicle data were acquired on-road and on a chassis dynamometer to assess fuel consumption under several steady cruise conditions and at idle. Data were gathered for various air conditioner (A/C) settings and with the A/C off and the windows open. Two vehicles were used in the comparisonstudy: a 2009 Ford Explorer and a 2009 Toyota Corolla. At steady speeds between 64.4 and 112.7 kph (40 and 70 mph), both vehicles consumed more fuel with the A/C on at maximum cooling load (compressor at 100% duty cycle) than when driving with the windows down. The Explorer maintained this trend beyond 112.7 kph (70 mph), while the Corolla fuel consumption with the windows down matched that of running the A/C at 120.7 kph (75 mph), and exceeded it at 128.7 kph (80 mph). The largest incremental fuel consumption rate penalty due to air conditioner use occurred was nearly constant with a weakslight trend of increasing consumption with increasing compressor (and vehicle) speed. Lower consumption is seenobserved at idle for both vehicles, likely due to the low compressor speed at this operating point

  5. JV Task 75 - Lignite Fuel Enhancement via Air-Jigging Technology

    SciTech Connect

    Jason Lamb; Steven Benson; Joshua Stanislowski

    2007-03-01

    Several North Dakota lignite coals from the Falkirk Mine were processed in a 5-ton-per-hour dry coal-cleaning plant. The plant uses air-jigging technology to separate undesirable ash constituents as well as sulfur and mercury. The results of this study indicate average ash, sulfur, and mercury reductions on a weight basis of 15%, 22%, and 28%, respectively. The average heating value was increased by 2% on a Btu/lb basis. Two computer models were used to understand the impact of a cleaned fuel on boiler performance: PCQUEST{reg_sign} and Vista. The PCQUEST model indicated improvements in slagging and fouling potential when cleaned coals are used over feed coals. The Vista model was set up to simulate coal performance and economics at Great River Energy's Coal Creek Station. In all cases, the cleaned fuel performed better than the original feed coal, with economic benefits being realized for all fuels tested. The model also indicated that one fuel considered to be unusable before cleaning was transformed into a potentially salable product. While these data indicate full-scale implementation of air-jigging technology may be beneficial to the mine and the plant, complete economic analysis, including payback period, is needed to make the final decision to implement.

  6. Experimental evaluation of premixing-prevaporizing fuel injection concepts for a gas turbine catalytic combustor

    NASA Technical Reports Server (NTRS)

    Tacina, R. R.

    1977-01-01

    Experiments were performed to evolve and evaluate a premixing-prevaporizing fuel system to be used with a catalytic combustor for possible application in an automotive gas turbine. Spatial fuel distribution and degree of vaporization were measured using Jet A fuel. Three types of air blast injectors, an air assist nozzle and a simplex pressure atomizer were tested. Air swirlers with vane angles up to 30 deg were used to improve the spatial fuel distribution. The work was done in a 12-cm (4.75-in.) diameter tubular rig. Test conditions were: a pressure of 0.3 and 0.5 MPa (3 and 5 atm), inlet air temperatures up to 800 K (980 F), velocity of 20 m/sec (66 ft/sec) and fuel-air ratios of 0.01 and 0.025. Uniform spatial fuel distributions that were within plus or minus 10 percent of the mean were obtained. Complete vaporization of the fuel was achieved with air blast configurations at inlet air temperatures of 550 K (530 F) and higher. The total pressure loss was less than 0.5 percent for configurations without air swirlers and less than 1 percent for configurations with a 30 deg vane angle air swirler.

  7. Investigation of spray characteristics for flashing injection of fuels containing dissolved air and superheated fuels

    NASA Technical Reports Server (NTRS)

    Solomon, A. S. P.; Chen, L. D.; Faeth, G. M.

    1982-01-01

    The flow, atomization and spreading of flashing injector flowing liquids containing dissolved gases (jet/air) as well as superheated liquids (Freon II) were considered. The use of a two stage expansion process separated by an expansion chamber, ws found to be beneficial for flashing injection particularly for dissolved gas systems. Both locally homogeneous and separated flow models provided good predictions of injector flow properties. Conventional correlations for drop sizes from pressure atomized and airblast injectors were successfully modified, using the separated flow model to prescribe injector exit conditions, to correlate drop size measurements. Additional experimental results are provided for spray angle and combustion properties of sprays from flashing injectors.

  8. Morphology control of zinc regeneration for zinc-air fuel cell and battery

    NASA Astrophysics Data System (ADS)

    Wang, Keliang; Pei, Pucheng; Ma, Ze; Xu, Huachi; Li, Pengcheng; Wang, Xizhong

    2014-12-01

    Morphology control is crucial both for zinc-air batteries and for zinc-air fuel cells during zinc regeneration. Zinc dendrite should be avoided in zinc-air batteries and zinc pellets are yearned to be formed for zinc-air fuel cells. This paper is mainly to analyze the mechanism of shape change and to control the zinc morphology during charge. A numerical three-dimensional model for zinc regeneration is established with COMSOL software on the basis of ionic transport theory and electrode reaction electrochemistry, and some experiments of zinc regeneration are carried out. The deposition process is qualitatively analyzed by the kinetics Monte Carlo method to study the morphological change from the electrocrystallization point of view. Morphological evolution of deposited zinc under different conditions of direct currents and pulse currents is also investigated by simulation. The simulation shows that parametric variables of the flowing electrolyte, the surface roughness and the structure of the electrode, the charging current and mode affect morphological evolution. The uniform morphology of deposited zinc is attained at low current, pulsating current or hydrodynamic electrolyte, and granular morphology is obtained by means of an electrode of discrete columnar structure in combination with high current and flowing electrolyte.

  9. Multipathway human health risk assessment concerning air emissions from combustion of Orimulsion fuel

    SciTech Connect

    Teaf, C.M.; Coleman, R.M.; Manning, M.J.; Covert, D.J.; Phelps, J.L.

    1995-12-31

    A multipathway human health risk assessment was conducted concerning air emissions from the combustion of Orimulsion. Exposure was considered for nearby residents who might be exposed by oral, dermal or inhalation pathways, including ingestion of analytes that may be present in meat and agricultural products from nearby areas. Occupational exposure were evaluated via the same intake pathways, except for potential ingestion of food products. Pathways included airborne exposures, deposition on crops, exposures to soils, and uptake by livestock and plants. Livestock intake included ingestion of analytes retained by plants and inhalation of soil-bound particulates. Analytes of potential concern included compounds identified as combustion products of the orimulsion fuel. Air concentrations of analytes, and the areal distribution of these concentrations resulting from stack emissions, were predicted using transport and deposition models. A worst cast scenario for air and cumulative soil concentrations was considered to represent the entire facility project lifetime (20 years) for dry deposition as well as predicted air concentrations occurring at continuous 100% facility operating capacity. Potential exposures to sulfuric acid mist and lead were shown to be much less than levels protective of human populations. Based upon the airborne emissions estimates and the deposition estimates for other constituents of interest, as well as the strongly conservative estimates of the potential for human intake, local health risks contributed from the combustion of Orimulsion fuel at the facility were judged to be negligible.

  10. CLIMATE CHANGE FUEL CELL PROGRAM UNITED STATES COAST GUARD AIR STATION CAPE COD BOURNE, MASSACHUSETTS

    SciTech Connect

    John K. Steckel Jr

    2004-06-30

    This report covers the first year of operation of a fuel cell power plant, installed by PPL Spectrum, Inc. (PPL) under contract with the United States Coast Guard (USCG), Research and Development Center (RDC). The fuel cell was installed at Air Station Cape Cod in Bourne, MA. The project had the support of the Massachusetts Technology Collaborative (MTC), the Department of Energy (DOE), and Keyspan Energy. PPL selected FuelCell Energy, Inc. (FCE) and its fuel cell model DFC{reg_sign}300 for the contract. Grant contributions were finalized and a contract between PPL and the USCG for the manufacture, installation, and first year's maintenance of the fuel cell was executed on September 24, 2001. As the prime contractor, PPL was responsible for all facets of the project. All the work was completed by PPL through various subcontracts, including the primary subcontract with FCE for the manufacture, delivery, and installation of the fuel cell. The manufacturing and design phases proceeded in a relatively timely manner for the first half of the project. However, during latter stages of manufacture and fuel cell testing, a variety of issues were encountered that ultimately resulted in several delivery delays, and a number of contract modifications. Final installation and field testing was completed in April and May 2003. Final acceptance of the fuel cell was completed on May 16, 2003. The fuel cell has operated successfully for more than one year. The unit achieved an availability rate of 96%, which exceeded expectations. The capacity factor was limited because the unit was set at 155 kW (versus a nameplate of 250 kW) due to the interconnection with the electric utility. There were 18 shutdowns during the first year and most were brief. The ability of this plant to operate in the island mode improved availability by 3 to 4%. Events that would normally be shutdowns were simply island mode events. The mean time between failure was calculated at 239 hours, or slightly less

  11. Decadal trends in fossil fuel energy consumption and related air pollutant emissions

    NASA Astrophysics Data System (ADS)

    Shekar Reddy, M.; Venkataraman, C.; Boucher, O.

    2003-04-01

    The economic liberalization in the early 1990s in India fuelled the industrial production, enabled the decadal annual average rate of 5.9% in the gross domestic product (GDP) during 1990-2000. This resulted in a steady increase of fossil fuels energy consumption throughout the decade. This paper investigates the trends in the GDP growth rate, sectoral fossil fuels consumption and resultant atmospheric air pollutant emissions during the above period. The fossil fuels energy consumption in the 1990 was 6875 PJ, and increased to 10801 PJ in 2000, with a decadal annual average growth rate of 5.7%. Share of the coal and petroleum fuels are 52% and 35%, respectively during 2000. The relative share contribution of power, industrial, transport, and domestic sectors are 40%, 48%, 5% and 7%, respectively. The contribution of various sectors to fossil fuels energy consumption, and the relative distribution of the different fuels within each sector will be discussed. The annual sulfur dioxide (SO_2) and aerosols (particulate matter, black carbon, organic carbon) emissions are estimated using sector and fuel specific average emission factors (mass of pollutant per unit mass of fuel burnt). The estimates take into account the changes in the fuel characteristics and technology during the study period. The estimated SO_2 emissions are 1.7 Tg S yr-1 in 1990 and increased to 2.5 Tg S yr-1 in 2000, with an annual average increase of 5%. Majority of the SO_2 emissions are from coal consumption accounting 62%, predominantly from the power plants. Trends in fuel and sectoral contributions to SO2 emissions over the decade will be presented. In the transportation sector, diesels contribute significantly to BC. Notably, in India, two-stroke engines account for 78% of total vehicle fleet, and contribute significantly to organic carbon emissions. An analysis of available SO_2 and aerosols concentration measurements will be made to explore the possible correlations between trends in the

  12. New developments in the Electric Fuel Ltd. zinc/air system

    NASA Astrophysics Data System (ADS)

    Goldstein, Jonathan; Brown, Ian; Koretz, Binyamin

    Electric Fuel Ltd. is engaged in the design, development and commercialization of its proprietary zinc/air battery technology for electric vehicles, consumer electronic products and defence applications. To meet the challenging requirements for propelling an all-electric bus, the Vehicle Division sought a unique solution: an all electric battery-battery hybrid propulsion system. The high energy zinc/air battery is coupled with a high-power auxiliary battery. The combined system offers zero emission, high power and long range in an economically viable package. The consumer battery group has developed a high power primary zinc/air cell aimed at cellular phone users, offering extended use, convenience and low cost.

  13. AIR SHIPMENT OF SPENT NUCLEAR FUEL FROM THE BUDAPEST RESEARCH REACTOR

    SciTech Connect

    Dewes, J.

    2014-02-24

    The shipment of spent nuclear fuel is usually done by a combination of rail, road or sea, as the high activity of the SNF needs heavy shielding. Air shipment has advantages, e.g. it is much faster than any other shipment and therefore minimizes the transit time as well as attention of the public. Up to now only very few and very special SNF shipments were done by air, as the available container (TUK6) had a very limited capacity. Recently Sosny developed a Type C overpack, the TUK-145/C, compliant with IAEA Standard TS-R-1 for the VPVR/M type Skoda container. The TUK-145/C was first used in Vietnam in July 2013 for a single cask. In October and November 2013 a total of six casks were successfully shipped from Hungary in three air shipments using the TUK-145/C. The present paper describes the details of these shipments and formulates the lessons learned.

  14. Time-Resolved Optical Measurements of Fuel-Air Mixedness in Windowless High Speed Research Combustors

    NASA Technical Reports Server (NTRS)

    Nguyen, Quang-Viet

    1998-01-01

    Fuel distribution measurements in gas turbine combustors are needed from both pollution and fuel-efficiency standpoints. In addition to providing valuable data for performance testing and engine development, measurements of fuel distributions uniquely complement predictive numerical simulations. Although equally important as spatial distribution, the temporal distribution of the fuel is an often overlooked aspect of combustor design and development. This is due partly to the difficulties in applying time-resolved diagnostic techniques to the high-pressure, high-temperature environments inside gas turbine engines. Time-resolved measurements of the fuel-to-air ratio (F/A) can give researchers critical insights into combustor dynamics and acoustics. Beginning in early 1998, a windowless technique that uses fiber-optic, line-of-sight, infrared laser light absorption to measure the time-resolved fluctuations of the F/A (refs. 1 and 2) will be used within the premixer section of a lean-premixed, prevaporized (LPP) combustor in NASA Lewis Research Center's CE-5 facility. The fiber-optic F/A sensor will permit optical access while eliminating the need for film-cooled windows, which perturb the flow. More importantly, the real-time data from the fiber-optic F/A sensor will provide unique information for the active feedback control of combustor dynamics. This will be a prototype for an airborne sensor control system.

  15. Nitric Oxide PLIF Visualization of Simulated Fuel-Air Mixing in a Dual-Mode Scramjet

    NASA Technical Reports Server (NTRS)

    Cantu, Luca M. L.; Gallo, Emanuela C. A.; Cutler, Andrew D.; Bathel, Brett F.; Danehy, Paul M.; Rockwell, Robert D.; Goyne, Christopher P.; McDaniel, James C.

    2015-01-01

    Nitric oxide (NO) planar induced laser fluorescence (PLIF) measurements have been performed in a small scale scramjet combustor at the University of Virginia Aerospace Research Laboratory at nominal simulated Mach 5 flight. A mixture of NO and N2 was injected at the upstream end of the inlet isolator as a surrogate for ethylene fuel, and the mixing of this fuel simulant was studied with and without a shock train. The shock train was produced by an air throttle, which simulated the blockage effects of combustion downstream of the cavity flame holder. NO PLIF signal was imaged in a plane orthogonal to the freestream at the leading edge of the cavity. Instantaneous planar images were recorded and analyzed to identify the most uniform cases, which were achieved by varying the location of the fuel injection and shock train. This method was used to screen different possible fueling configurations to provide optimized test conditions for follow-on combustion measurements using ethylene fuel. A theoretical study of the selected NO rotational transitions was performed to obtain a LIF signal that is linear with NO mole fraction and approximately independent of pressure and temperature.

  16. Air emission from the co-combustion of alternative derived fuels within cement plants: Gaseous pollutants.

    PubMed

    Richards, Glen; Agranovski, Igor E

    2015-02-01

    Cement manufacturing is a resource- and energy-intensive industry, utilizing 9% of global industrial energy use while releasing more than 5% of global carbon dioxide (CO₂) emissions. With an increasing demand of production set to double by 2050, so too will be its carbon footprint. However, Australian cement plants have great potential for energy savings and emission reductions through the substitution of combustion fuels with a proportion of alternative derived fuels (ADFs), namely, fuels derived from wastes. This paper presents the environmental emissions monitoring of 10 cement batching plants while under baseline and ADF operating conditions, and an assessment of parameters influencing combustion. The experiential runs included the varied substitution rates of seven waste streams and the monitoring of seven target pollutants. The co-combustion tests of waste oil, wood chips, wood chips and plastic, waste solvents, and shredded tires were shown to have the minimal influence when compared to baseline runs, or had significantly reduced the unit mass emission factor of pollutants. With an increasing ADF% substitution, monitoring identified there to be no subsequent emission effects and that key process parameters contributing to contaminant suppression include (1) precalciner and kiln fuel firing rate and residence time; (2) preheater and precalciner gas and material temperature; (3) rotary kiln flame temperature; (4) fuel-air ratio and percentage of excess oxygen; and (5) the rate of meal feed and rate of clinker produced. PMID:25947054

  17. Air emission from the co-combustion of alternative derived fuels within cement plants: Gaseous pollutants.

    PubMed

    Richards, Glen; Agranovski, Igor E

    2015-02-01

    Cement manufacturing is a resource- and energy-intensive industry, utilizing 9% of global industrial energy use while releasing more than 5% of global carbon dioxide (CO₂) emissions. With an increasing demand of production set to double by 2050, so too will be its carbon footprint. However, Australian cement plants have great potential for energy savings and emission reductions through the substitution of combustion fuels with a proportion of alternative derived fuels (ADFs), namely, fuels derived from wastes. This paper presents the environmental emissions monitoring of 10 cement batching plants while under baseline and ADF operating conditions, and an assessment of parameters influencing combustion. The experiential runs included the varied substitution rates of seven waste streams and the monitoring of seven target pollutants. The co-combustion tests of waste oil, wood chips, wood chips and plastic, waste solvents, and shredded tires were shown to have the minimal influence when compared to baseline runs, or had significantly reduced the unit mass emission factor of pollutants. With an increasing ADF% substitution, monitoring identified there to be no subsequent emission effects and that key process parameters contributing to contaminant suppression include (1) precalciner and kiln fuel firing rate and residence time; (2) preheater and precalciner gas and material temperature; (3) rotary kiln flame temperature; (4) fuel-air ratio and percentage of excess oxygen; and (5) the rate of meal feed and rate of clinker produced.

  18. Air-breathing direct formic acid microfluidic fuel cell with an array of cylinder anodes

    NASA Astrophysics Data System (ADS)

    Zhu, Xun; Zhang, Biao; Ye, Ding-Ding; Li, Jun; Liao, Qiang

    2014-02-01

    An air-breathing direct formic acid membraneless microfluidic fuel cell using graphite cylinder arrays as the anode is proposed. The three dimensional anode volumetrically extends the reactive surface area and improves fuel utilization. The effects of spacer configuration, fuel and electrolyte concentration as well as reactant flow rate on the species transport and cell performance are investigated. The dynamic behavior of generated CO2 bubbles is visualized and its effect on current generation is discussed. The results show that the absence of two spacers adjacent to the cathode surface improves the cell performance by reducing the proton transfer resistance. The CO2 gas bubbles are constrained within the anode array and expelled by the fluid flow periodically. Proper reactant concentration and flow rate are crucial for cell operation. At optimum conditions, a maximum current density of 118.3 mA cm-3 and a peak power density of 21.5 mW cm-3 are obtained. In addition, benefit from the volumetrically stacked anodes and enhanced fuel transfer, the maximum single pass fuel utilization rate reaches up to 87.6% at the flow rate of 1 mL h-1.

  19. Health and Household Air Pollution from Solid Fuel Use: The Need for Improved Exposure Assessment

    PubMed Central

    Peel, Jennifer L.; Balakrishnan, Kalpana; Breysse, Patrick N.; Chillrud, Steven N.; Naeher, Luke P.; Rodes, Charles E.; Vette, Alan F.; Balbus, John M.

    2013-01-01

    Background: Nearly 3 billion people worldwide rely on solid fuel combustion to meet basic household energy needs. The resulting exposure to air pollution causes an estimated 4.5% of the global burden of disease. Large variability and a lack of resources for research and development have resulted in highly uncertain exposure estimates. Objective: We sought to identify research priorities for exposure assessment that will more accurately and precisely define exposure–response relationships of household air pollution necessary to inform future cleaner-burning cookstove dissemination programs. Data Sources: As part of an international workshop in May 2011, an expert group characterized the state of the science and developed recommendations for exposure assessment of household air pollution. Synthesis: The following priority research areas were identified to explain variability and reduce uncertainty of household air pollution exposure measurements: improved characterization of spatial and temporal variability for studies examining both short- and long-term health effects; development and validation of measurement technology and approaches to conduct complex exposure assessments in resource-limited settings with a large range of pollutant concentrations; and development and validation of biomarkers for estimating dose. Addressing these priority research areas, which will inherently require an increased allocation of resources for cookstove research, will lead to better characterization of exposure–response relationships. Conclusions: Although the type and extent of exposure assessment will necessarily depend on the goal and design of the cookstove study, without improved understanding of exposure–response relationships, the level of air pollution reduction necessary to meet the health targets of cookstove interventions will remain uncertain. Citation: Clark ML, Peel JL, Balakrishnan K, Breysse PN, Chillrud SN, Naeher LP, Rodes CE, Vette AF, Balbus JM. 2013. Health

  20. Solid oxide fuel cells, and air electrode and electrical interconnection materials therefor

    DOEpatents

    Bates, J.L.

    1992-09-01

    In one aspect of the invention, an air electrode material for a solid oxide fuel cell comprises Y[sub 1[minus]a]Q[sub a]MnO[sub 3], where Q is selected from the group consisting of Ca and Sr or mixtures thereof and a' is from 0.1 to 0.8. Preferably, a' is from 0.4 to 0.7. In another aspect of the invention, an electrical interconnection material for a solid oxide fuel cell comprises Y[sub 1[minus]b]Ca[sub b]Cr[sub 1[minus]c]Al[sub c]O[sub 3], where b' is from 0.1 to 0.6 and c' is from 0 to 9.3. Preferably, b' is from 0.3 to 0.5 and c' is from 0.05 to 0.1. A composite solid oxide electrochemical fuel cell incorporating these materials comprises: a solid oxide air electrode and an adjacent solid oxide electrical interconnection which commonly include the cation Y, the air electrode comprising Y[sub 1[minus]a]Q[sub a]MnO[sub 3], where Q is selected from the group consisting of Ca and Sr or mixtures thereof and a' is from 0.1 to 0.8, the electrical interconnection comprising Y[sub 1[minus]b]Ca[sub b]Cr[sub 1[minus]c]Al[sub c]O[sub 3], where b' is from 0.1 to 0.6 and c' is from 0.0 to 0.3; a yttrium stabilized solid electrolyte comprising (1[minus]d)ZrO[sub 2]-(d)Y[sub 2]O[sub 3] where d' is from 0.06 to 0.5; and a solid fuel electrode comprising X-ZrO[sub 2], where X' is an elemental metal. 5 figs.

  1. Solid oxide fuel cells, and air electrode and electrical interconnection materials therefor

    DOEpatents

    Bates, J. Lambert

    1992-01-01

    In one aspect of the invention, an air electrode material for a solid oxide fuel cell comprises Y.sub.1-a Q.sub.a MnO.sub.3, where "Q" is selected from the group consisting of Ca and Sr or mixtures thereof and "a" is from 0.1 to 0.8. Preferably, "a" is from 0.4 to 0.7. In another aspect of the invention, an electrical interconnection material for a solid oxide fuel cell comprises Y.sub.1-b Ca.sub.b Cr.sub.1-c Al.sub.c O.sub.3, where "b" is from 0.1 to 0.6 and "c" is from 0 to 9.3. Preferably, "b" is from 0.3 to 0.5 and "c" is from 0.05 to 0.1. A composite solid oxide electrochemical fuel cell incorporating these materials comprises: a solid oxide air electrode and an adjacent solid oxide electrical interconnection which commonly include the cation Y, the air electrode comprising Y.sub.1-a Q.sub.a MnO.sub.3, where "Q" is selected from the group consisting of Ca and Sr or mixtures thereof and "a" is from 0.1 to 0.8, the electrical interconnection comprising Y.sub.1-b Ca.sub.b Cr.sub.1-c Al.sub.c O.sub.3, where "b" is from 0.1 to 0.6 and "c" is from 0.0 to 0.3; a yttrium stabilized solid electrolyte comprising (1-d)ZrO.sub.2 -(d)Y.sub.2 O.sub.3 where "d" is from 0.06 to 0.5; and a solid fuel electrode comprising X-ZrO.sub.2, where "X" is an elemental metal.

  2. Opposed jet diffusion flames of nitrogen-diluted hydrogen vs air - Axial LDA and CARS surveys; fuel/air rates at extinction

    SciTech Connect

    Pellett, G.L.; Northam, G.B.; Wilson, L.G.; Jarrett, O. Jr.; Antcliff, R.R.

    1989-01-01

    An experimental study of H-air counterflow diffusion flames (CFDFs) is reported. Coaxial tubular opposed jet burners were used to form dish-shaped CFDFs centered by opposing laminar jets of H2/N2 and air in an argon bath at 1 atm. Jet velocities for extinction and flame restoration limits are shown versus input H2 concentration. LDA velocity data and CARS temperature and absolute N2, O2 density data give detailed flame structure on the air side of the stagnation point. The results show that air jet velocity is a more fundamental and appropriate measure of H2-air CFDF extinction than input H2 mass flux or fuel jet velocity. It is proposed that the observed constancy of air jet velocity for fuel mixtures containing 80 to 100 percent H2 measure a maximum, kinetically controlled rate at which the CFDF can consume oxygen in air. Fuel velocity mainly measures the input jet momentum required to center an H2/N2 versus air CFDF. 42 refs.

  3. Opposed jet diffusion flames of nitrogen-diluted hydrogen vs air - Axial LDA and CARS surveys; fuel/air rates at extinction

    NASA Technical Reports Server (NTRS)

    Pellett, G. L.; Northam, G. B.; Wilson, L. G.; Jarrett, Olin, Jr.; Antcliff, R. R.

    1989-01-01

    An experimental study of H-air counterflow diffusion flames (CFDFs) is reported. Coaxial tubular opposed jet burners were used to form dish-shaped CFDFs centered by opposing laminar jets of H2/N2 and air in an argon bath at 1 atm. Jet velocities for extinction and flame restoration limits are shown versus input H2 concentration. LDA velocity data and CARS temperature and absolute N2, O2 density data give detailed flame structure on the air side of the stagnation point. The results show that air jet velocity is a more fundamental and appropriate measure of H2-air CFDF extinction than input H2 mass flux or fuel jet velocity. It is proposed that the observed constancy of air jet velocity for fuel mixtures containing 80 to 100 percent H2 measure a maximum, kinetically controlled rate at which the CFDF can consume oxygen in air. Fuel velocity mainly measures the input jet momentum required to center an H2/N2 versus air CFDF.

  4. Quick reproduction of blast-wave flow-field properties of nuclear, TNT, and ANFO explosions

    NASA Astrophysics Data System (ADS)

    Groth, C. P. T.

    1986-04-01

    In many instances, extensive blast-wave flow-field properties are required in gasdynamics research studies of blast-wave loading and structure response, and in evaluating the effects of explosions on their environment. This report provides a very useful computer code, which can be used in conjunction with the DNA Nuclear Blast Standard subroutines and code, to quickly reconstruct complete and fairly accurate blast-wave data for almost any free-air (spherical) and surface-burst (hemispherical) nuclear, trinitrotoluene (TNT), or ammonium nitrate-fuel oil (ANFO) explosion. This code is capable of computing all of the main flow properties as functions of radius and time, as well as providing additional information regarding air viscosity, reflected shock-wave properties, and the initial decay of the flow properties just behind the shock front. Both spatial and temporal distributions of the major blast-wave flow properties are also made readily available. Finally, provisions are also included in the code to provide additional information regarding the peak or shock-front flow properties over a range of radii, for a specific explosion of interest.

  5. Effects of selected R&D options on fuel usage in the commercial air system

    NASA Technical Reports Server (NTRS)

    Gobetz, F. W.; Dubin, A. P.

    1976-01-01

    The study on which this paper is based, known as RECAT (Study of Cost Benefit Tradeoffs for Reducing the Energy Consumption of the Commercial Air Transportation System), was sponsored by NASA to establish a basis for assigning priorities in its aircraft fuel-conservation R&D program. The study involved coordinated efforts by four independent contractors to conceive and quantify fuel-conserving technology alternatives, transform these alternatives into viable R&D options, and simulate each option in a general model of the U.S. domestic air transportation system. This paper deals primarily with the latter phase and concentrates on the results of the study, as revealed not only by estimated fuel usage but also by other impacts of the technology options, such as demand growth, operator economics, and fleet composition. However, while the paper focuses on results, the basic assumptions and technology inputs are documented, and a general description of the modeling approach is provided to demonstrate the level of detail considered in the analysis.

  6. 78 FR 32223 - Control of Air Pollution From Motor Vehicles: Tier 3 Motor Vehicle Emission and Fuel Standards

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-29

    ... AGENCY 40 CFR Parts 80, 85, 86, 600, 1036, 1037, 1065, and 1066 RIN 2060-A0 Control of Air Pollution From... (``EPA'') is announcing an extension of the public comment period for the proposed rule ``Control of Air Pollution from Motor Vehicles: Tier 3 Motor Vehicle Emission and Fuel Standards'' (the proposed rule...

  7. 78 FR 20881 - Control of Air Pollution From Motor Vehicles: Tier 3 Motor Vehicle Emission and Fuel Standards...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-08

    ... AGENCY 40 CFR Part 80 RIN 2060-AQ86 Control of Air Pollution From Motor Vehicles: Tier 3 Motor Vehicle... hearings to be held for the proposed rule ``Control of Air Pollution from Motor Vehicles: Tier 3 Motor Vehicle Emission and Fuel Standards'' (the proposed rule is hereinafter referred to as ``Tier 3''),...

  8. Tolerance of non-platinum group metals cathodes proton exchange membrane fuel cells to air contaminants

    NASA Astrophysics Data System (ADS)

    Reshetenko, Tatyana; Serov, Alexey; Artyushkova, Kateryna; Matanovic, Ivana; Sarah Stariha; Atanassov, Plamen

    2016-08-01

    The effects of major airborne contaminants (SO2, NO2 and CO) on the spatial performance of Fe/N/C cathode membrane electrode assemblies were studied using a segmented cell system. The injection of 2-10 ppm SO2 in air stream did not cause any performance decrease and redistribution of local currents due to the lack of stably adsorbed SO2 molecules on Fe-Nx sites, as confirmed by density functional theory (DFT) calculations. The introduction of 5-20 ppm of CO into the air stream also did not affect fuel cell performance. The exposure of Fe/N/C cathodes to 2 and 10 ppm NO2 resulted in performance losses of 30 and 70-75 mV, respectively. DFT results showed that the adsorption energies of NO2 and NO were greater than that of O2, which accounted for the observed voltage decrease and slight current redistribution. The cell performance partially recovered when the NO2 injection was stopped. The long-term operation of the fuel cells resulted in cell performance degradation. XPS analyses of Fe/N/C electrodes revealed that the performance decrease was due to catalyst degradation and ionomer oxidation. The latter was accelerated in the presence of air contaminants. The details of the spatial performance and electrochemical impedance spectroscopy results are presented and discussed.

  9. Investigation of remediation of soil contaminated with diesel fuel using air venting

    SciTech Connect

    Fotinich, A.; Joo, Y.; Dhir, V.K.

    1996-12-31

    Soil venting is an effective and widely used method to remediate hydrocarbonically contaminated soils. A non-isothermal model, proposed by Lingineni and Dhir (1992) to predict evaporation rates of organic contaminants in an unsaturated non-sorbing soil, was incorporated into a computer code capable of numerically analyzing multi-component diesel fuel. The program accounts for 14 major components of diesel fuel as well as for temperature variation due to evaporation of the contaminant, preheating of the venting air, and heat loss. Experiments to verify the model performance were conducted in a one-dimensional column. Temperature readings from thermocouples located in the test section were recorded during the experiment and the composition of hydrocarbons in the effluent air was also monitored. The effluent gas samples were extracted at the selected times and analyzed with the help of a gas chromatograph. The experimental temperature readings and vapor composition in the extracted samples are in general agreement with the predictions from the computer program. The results show that the diesel components are removed according to their volatility with the higher volatility components being removed first. It is also found that preheating of the venting air can significantly increase the removal rates of the components.

  10. Tolerance of non-platinum group metals cathodes proton exchange membrane fuel cells to air contaminants

    NASA Astrophysics Data System (ADS)

    Reshetenko, Tatyana; Serov, Alexey; Artyushkova, Kateryna; Matanovic, Ivana; Sarah Stariha; Atanassov, Plamen

    2016-08-01

    The effects of major airborne contaminants (SO2, NO2 and CO) on the spatial performance of Fe/N/C cathode membrane electrode assemblies were studied using a segmented cell system. The injection of 2-10 ppm SO2 in air stream did not cause any performance decrease and redistribution of local currents due to the lack of stably adsorbed SO2 molecules on Fe-Nx sites, as confirmed by density functional theory (DFT) calculations. The introduction of 5-20 ppm of CO into the air stream also did not affect fuel cell performance. The exposure of Fe/N/C cathodes to 2 and 10 ppm NO2 resulted in performance losses of 30 and 70-75 mV, respectively. DFT results showed that the adsorption energies of NO2 and NO were greater than that of O2, which accounted for the observed voltage decrease and slight current redistribution. The cell performance partially recovered when the NO2 injection was stopped. The long-term operation of the fuel cells resulted in cell performance degradation. XPS analyses of Fe/N/C electrodes revealed that the performance decrease was due to catalyst degradation and ionomer oxidation. The latter was accelerated in the presence of air contaminants. The details of the spatial performance and electrochemical impedance spectroscopy results are presented and discussed.

  11. Passive cathodic water/air management device for micro-direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Peng, Hsien-Chih; Chen, Po-Hon; Chen, Hung-Wen; Chieng, Ching-Chang; Yeh, Tsung-Kuang; Pan, Chin; Tseng, Fan-Gang

    A high efficient passive water/air management device (WAMD) is proposed and successfully demonstrated in this paper. The apparatus consists of cornered micro-channels and air-breathing windows with hydrophobicity arrangement to regulate liquids and gases to flow on their predetermined pathways. A high performance water/air separation with water removal rate of about 5.1 μl s -1 cm -2 is demonstrated. The performance of the proposed WAMD is sufficient to manage a cathode-generated water flux of 0.26 μl s -1 cm -2 in the micro-direct methanol fuel cells (μDMFCs) which are operated at 100 mW cm -2 or 400 mA cm -2. Furthermore, the condensed vapors can also be collected and recirculated with the existing micro-channels which act as a passive water recycling system for μDMFCs. The durability testing shows that the fuel cells equipped with WAMD exhibit improved stability and higher current density.

  12. Unsteady Extinction of Opposed Jet Ethylene/Methane HIFiRE Surrogate Fuel Mixtures vs Air

    NASA Technical Reports Server (NTRS)

    Vaden, Sarah N.; Debes, Rachel L.; Lash, E. Lara; Burk, Rachel S.; Boyd, C. Merritt; Wilson, Lloyd G.; Pellett, Gerald L.

    2009-01-01

    A unique idealized study of the subject fuel vs. air systems was conducted using an Oscillatory-input Opposed Jet Burner (OOJB) system and a newly refined analysis. Extensive dynamic-extinction measurements were obtained on unanchored (free-floating) laminar Counter Flow Diffusion Flames (CFDFs) at 1-atm, stabilized by steady input velocities (e.g., U(sub air)) and perturbed by superimposed in-phase sinusoidal velocity inputs at fuel and air nozzle exits. Ethylene (C2H4) and methane (CH4), and intermediate 64/36 and 15/85 molar percent mixtures were studied. The latter gaseous surrogates were chosen earlier to mimic ignition and respective steady Flame Strengths (FS = U(sub air)) of vaporized and cracked, and un-cracked, JP-7 "like" kerosene for a Hypersonic International Flight Research Experimentation (HIFiRE) scramjet. For steady idealized flameholding, the 100% C2H4 flame is respectively approx. 1.3 and approx.2.7 times stronger than a 64/36 mix and CH4; but is still 12.0 times weaker than a 100% H2-air flame. Limited Hot-Wire (HW) measurements of velocity oscillations at convergent-nozzle exits, and more extensive Probe Microphone (PM) measurements of acoustic pressures, were used to normalize Dynamic FSs, which decayed linearly with pk/pk U(sub air) (velocity magnitude, HW), and also pk/pk P (pressure magnitude, PM). Thus Dynamic Flame Weakening (DFW) is defined as % decrease in FS per Pascal of pk/pk P oscillation, namely, DFW = -100 d(U(sub air)/U(sub air),0Hz)/d(pkpk P). Key findings are: (1) Ethylene flames are uniquely strong and resilient to extinction by oscillating inflows below 150 Hz; (2) Methane flames are uniquely weak; (3) Ethylene / methane surrogate flames are disproportionately strong with respect to ethylene content; and (4) Flame weakening is consistent with limited published results on forced unsteady CFDFs. Thus from 0 to approx. 10 Hz and slightly higher, lagging diffusive responses of key species led to progressive phase lags (relative

  13. Aviation fuel property effects on altitude relight

    NASA Technical Reports Server (NTRS)

    Venkataramani, K.

    1987-01-01

    The major objective of this experimental program was to investigate the effects of fuel property variation on altitude relight characteristics. Four fuels with widely varying volatility properties (JP-4, Jet A, a blend of Jet A and 2040 Solvent, and Diesel 2) were tested in a five-swirl-cup-sector combustor at inlet temperatures and flows representative of windmilling conditions of turbofan engines. The effects of fuel physical properties on atomization were eliminated by using four sets of pressure-atomizing nozzles designed to give the same spray Sauter mean diameter (50 + or - 10 micron) for each fuel at the same design fuel flow. A second series of tests was run with a set of air-blast nozzles. With comparable atomization levels, fuel volatility assumes only a secondary role for first-swirl-cup lightoff and complete blowout. Full propagation first-cup blowout were independent of fuel volatility and depended only on the combustor operating conditions.

  14. Oxidation of spent fuel in air at 175{degree} to 195{degree}C

    SciTech Connect

    Einziger, R.E.; Buchanan, H.C.; Thomas, L.E.; Stout, R.B.

    1992-04-01

    Oxidation tests in dry air were conducted on four LWR spent fuels at 175{degrees} and 195{degrees}C to determine the effect of the fuel characteristics on the oxidation state likely to exist at the time leaching occurs in a potential repository. Weight changes were measured and samples were examined by XRD, ceramography, TEM, and TGA. Despite local variations in the grain boundary susceptibility to oxidation, all four fuels progressed toward an apparent endpoint at an oxygen-to-metal (O/M) ratio of 2.4. The sole oxidation product was U{sub 4}O{sub 9+x,} a cubic phase structurally related to UO{sub 2} but with a slightly smaller lattice constant. The growth of the U{sub 4}O{sub 9+x} from the grain boundaries into the UO{sub 2} grains followed parabolic kinetics and had an activation energy of 26.6 kcal/mol. Based on the kinetics, the time required at 95{degrees}C to completely oxidize LWR spent fuel to U{sub 4}O{sub 9+x} would be at least 2000 yr. The next oxidation product to form after the U{sub 4}O{sub 9+x} phase may be U{sub 3}O{sub 8,} but no U{sub 3}O{sub 8} or other dilatational oxidation product has been detected in these accelerated tests conducted up to 25,000 h.

  15. Oxidation of spent fuel in air at 175 degree to 195 degree C

    SciTech Connect

    Einziger, R.E.; Buchanan, H.C.; Thomas, L.E. ); Stout, R.B. )

    1992-04-01

    Oxidation tests in dry air were conducted on four LWR spent fuels at 175{degrees} and 195{degrees}C to determine the effect of the fuel characteristics on the oxidation state likely to exist at the time leaching occurs in a potential repository. Weight changes were measured and samples were examined by XRD, ceramography, TEM, and TGA. Despite local variations in the grain boundary susceptibility to oxidation, all four fuels progressed toward an apparent endpoint at an oxygen-to-metal (O/M) ratio of 2.4. The sole oxidation product was U{sub 4}O{sub 9+x,} a cubic phase structurally related to UO{sub 2} but with a slightly smaller lattice constant. The growth of the U{sub 4}O{sub 9+x} from the grain boundaries into the UO{sub 2} grains followed parabolic kinetics and had an activation energy of 26.6 kcal/mol. Based on the kinetics, the time required at 95{degrees}C to completely oxidize LWR spent fuel to U{sub 4}O{sub 9+x} would be at least 2000 yr. The next oxidation product to form after the U{sub 4}O{sub 9+x} phase may be U{sub 3}O{sub 8,} but no U{sub 3}O{sub 8} or other dilatational oxidation product has been detected in these accelerated tests conducted up to 25,000 h.

  16. Zinc air refuelable battery: alternative zinc fuel morphologies and cell behavior

    SciTech Connect

    Cooper, J.F.; Krueger, R.

    1997-01-01

    Multicell zinc/air batteries have been tested previously in the laboratory and as part of the propulsion system of an electric bus; cut zinc wire was used as the anode material. This battery is refueled by a hydraulic transport of 0.5-1 mm zinc particles into hoppers above each cell. We report an investigation concerning alternative zinc fuel morphologies, and energy losses associated with refueling and with overnight or prolonged standby. Three types of fuel pellets were fabricated, tested and compared with results for cut wire: spheres produced in a fluidized bed electrolysis cell; elongated particles produced by gas-atomization; and pellets produced by chopping 1 mm porous plates made of compacted zinc fines. Relative sizes of the particles and cell gap dimensions are critical. All three types transported within the cell 1553 and showed acceptable discharge characteristics, but a fluidized bed approach appears especially attractive for owner/user recovery operations.

  17. Determination of phosphorus and sulfur in fuel rich air-hydrogen flames.

    PubMed

    Syty, A; Dean, J A

    1968-07-01

    Excitation conditions for the green HPO bands, the uv PO bands, and the violet S(2) bands were explored. A cylindrical glass shield placed around the tip of a Beckman (sprayer) burner provided a simple arrangement to isolate a fuel rich environment of a reversed air-hydrogen flame. Samples were converted to aerosol in a separate nebulization chamber. The HPO band at 5262 A gave a detection limit of 6 microg/ml; the S(2) band, 5 microg/ml. Owing to low flame noise, both detection limits could be improved with interference filters in place of the Beckman small quartz monochromator. The PO bands are emitted best from fuel rich oxygen-acetylene flames with the normal Beckman sprayer burner. The significant aspect of this study lies in the introduction of liquid samples and circumvention of lengthy, and often uncertain, decomposition steps when handling many types of organic and biochemical compounds containing phosphorus and sulfur.

  18. Utilization of ventilation air methane as a supplementary fuel at a circulating fluidized bed combustion boiler.

    PubMed

    You, Changfu; Xu, Xuchang

    2008-04-01

    Ventilation air methane (VAM) accounts for 60-80% of the total emissions from coal mining activities in China, which is of serious greenhouse gas concerns as well as a waste of valuable fuel sources. This contribution evaluates the use of the VAM utilization methods as a supplementary fuel at a circulating fluidized bed combustion boiler. The paper describes the system design and discusses some potential technical challenges such as methane oxidation rate, corrosion, and efficiency. Laboratory experimentation has shown that the VAM can be burnt completely in circulated fluidized bed furnaces, and the VAM oxidation does not obviously affect the boiler operation when the methane concentration is less than 0.6%. The VAM decreased the incomplete combustion loss for the circulating fluidized bed combustion furnace. The economic benefit from the coal saving insures that the proposed system is more economically feasible.

  19. Determination of phosphorus and sulfur in fuel rich air-hydrogen flames.

    PubMed

    Syty, A; Dean, J A

    1968-07-01

    Excitation conditions for the green HPO bands, the uv PO bands, and the violet S(2) bands were explored. A cylindrical glass shield placed around the tip of a Beckman (sprayer) burner provided a simple arrangement to isolate a fuel rich environment of a reversed air-hydrogen flame. Samples were converted to aerosol in a separate nebulization chamber. The HPO band at 5262 A gave a detection limit of 6 microg/ml; the S(2) band, 5 microg/ml. Owing to low flame noise, both detection limits could be improved with interference filters in place of the Beckman small quartz monochromator. The PO bands are emitted best from fuel rich oxygen-acetylene flames with the normal Beckman sprayer burner. The significant aspect of this study lies in the introduction of liquid samples and circumvention of lengthy, and often uncertain, decomposition steps when handling many types of organic and biochemical compounds containing phosphorus and sulfur. PMID:20068796

  20. Urban airshed modeling of air quality impacts of alternative transportation fuel use in Los Angeles and Atlanta

    SciTech Connect

    1997-12-01

    The main objective of NREL in supporting this study is to determine the relative air quality impact of the use of compressed natural gas (CNG) as an alternative transportation fuel when compared to low Reid vapor pressure (RVP) gasoline and reformulated gasoline (RFG). A table lists the criteria, air toxic, and greenhouse gas pollutants for which emissions were estimated for the alternative fuel scenarios. Air quality impacts were then estimated by performing photochemical modeling of the alternative fuel scenarios using the Urban Airshed Model Version 6.21 and the Carbon Bond Mechanism Version IV (CBM-IV) (Geary et al., 1988) Using this model, the authors examined the formation and transport of ozone under alternative fuel strategies for motor vehicle transportation sources for the year 2007. Photochemical modeling was performed for modeling domains in Los Angeles, California, and Atlanta, Georgia.

  1. The impact of air-fuel mixture composition on SI engine performance during natural gas and producer gas combustion

    NASA Astrophysics Data System (ADS)

    Przybyła, G.; Postrzednik, S.; Żmudka, Z.

    2016-09-01

    The paper summarizers results of experimental tests of SI engine fuelled with gaseous fuels such as, natural gas and three mixtures of producer gas substitute that simulated real producer gas composition. The engine was operated under full open throttle and charged with different air-fuel mixture composition (changed value of air excess ratio). The spark timing was adjusted to obtain maximum brake torque (MBT) for each fuel and air-fuel mixture. This paper reports engine indicated performance based on in-cylinder, cycle resolved pressure measurements. The engine performance utilizing producer gas in terms of indicated efficiency is increased by about 2 percentage points when compared to fuelling with natural gas. The engine power de-rating when producer gas is utilized instead the natural gas, varies from 24% to 28,6% under stoichiometric combustion conditions. For lean burn (λ=1.5) the difference are lower and varies from 22% to 24.5%.

  2. Biomass fuel use and indoor air pollution in homes in Malawi

    PubMed Central

    Fullerton, D G; Semple, S; Kalambo, F; Suseno, A; Malamba, R; Henderson, G; Ayres, J G; Gordon, S B

    2009-01-01

    Background: Air pollution from biomass fuels in Africa is a significant cause of mortality and morbidity both in adults and children. The work describes the nature and quantity of smoke exposure from biomass fuel in Malawian homes. Methods: Markers of indoor air quality were measured in 62 homes (31 rural and 31 urban) over a typical 24 h period. Four different devices were used (one gravimetric device, two photometric devices and a carbon monoxide (HOBO) monitor. Gravimetric samples were analysed for transition metal content. Data on cooking and lighting fuel type together with information on indicators of socioeconomic status were collected by questionnaire. Results: Respirable dust levels in both the urban and rural environment were high with the mean (SD) 24 h average levels being 226 μg/m3 (206 μg/m3). Data from real-time instruments indicated respirable dust concentrations were >250 μg/m3 for >1 h per day in 52% of rural homes and 17% of urban homes. Average carbon monoxide levels were significantly higher in urban compared with rural homes (6.14 ppm vs 1.87 ppm; p<0.001). The transition metal content of the smoke was low, with no significant difference found between urban and rural homes. Conclusions: Indoor air pollution levels in Malawian homes are high. Further investigation is justified because the levels that we have demonstrated are hazardous and are likely to be damaging to health. Interventions should be sought to reduce exposure to concentrations less harmful to health. PMID:19671533

  3. Source of Biomass Cooking Fuel Determines Pulmonary Response to Household Air Pollution

    PubMed Central

    Ingole, Vijendra; Kim, Jung-Hyun; McCormick, Sarah; Negherbon, Jesse; Fallica, Jonathan; Akulian, Jason; Yarmus, Lonny; Feller-Kopman, David; Wills-Karp, Marsha; Horton, Maureen R.; Breysse, Patrick N.; Agrawal, Anurag; Juvekar, Sanjay; Salvi, Sundeep

    2014-01-01

    Approximately 3 billion people—half the worldwide population—are exposed to extremely high concentrations of household air pollution due to the burning of biomass fuels on inefficient cookstoves, accounting for 4 million annual deaths globally. Yet, our understanding of the pulmonary responses to household air pollution exposure and the underlying molecular and cellular events is limited. The two most prevalent biomass fuels in India are wood and cow dung, and typical 24-hour mean particulate matter (PM) concentrations in homes that use these fuels are 300 to 5,000 μg/m3. We dissected the mechanisms of pulmonary responses in mice after acute or subchronic exposure to wood or cow dung PM collected from rural Indian homes during biomass cooking. Acute exposures resulted in robust proinflammatory cytokine production, neutrophilic inflammation, airway resistance, and hyperresponsiveness, all of which were significantly higher in mice exposed to PM from cow dung. On the contrary, subchronic exposures induced eosinophilic inflammation, PM-specific antibody responses, and alveolar destruction that was highest in wood PM–exposed mice. To understand the molecular pathways that trigger biomass PM–induced inflammation, we exposed Toll-like receptor (TLR)2-, TLR3-, TLR4-, TLR5-, and IL-1R–deficient mice to PM and found that IL-1R, TLR4, and TLR2 are the predominant receptors that elicit inflammatory responses via MyD88 in mice exposed to wood or cow dung PM. In conclusion, this study demonstrates that subchronic exposure to PM collected from households burning biomass fuel elicits a persistent pulmonary inflammation largely through activation of TLR and IL-1R pathways, which could increase the risk for chronic respiratory diseases. PMID:24102120

  4. Source of biomass cooking fuel determines pulmonary response to household air pollution.

    PubMed

    Sussan, Thomas E; Ingole, Vijendra; Kim, Jung-Hyun; McCormick, Sarah; Negherbon, Jesse; Fallica, Jonathan; Akulian, Jason; Yarmus, Lonny; Feller-Kopman, David; Wills-Karp, Marsha; Horton, Maureen R; Breysse, Patrick N; Agrawal, Anurag; Juvekar, Sanjay; Salvi, Sundeep; Biswal, Shyam

    2014-03-01

    Approximately 3 billion people-half the worldwide population-are exposed to extremely high concentrations of household air pollution due to the burning of biomass fuels on inefficient cookstoves, accounting for 4 million annual deaths globally. Yet, our understanding of the pulmonary responses to household air pollution exposure and the underlying molecular and cellular events is limited. The two most prevalent biomass fuels in India are wood and cow dung, and typical 24-hour mean particulate matter (PM) concentrations in homes that use these fuels are 300 to 5,000 μg/m(3). We dissected the mechanisms of pulmonary responses in mice after acute or subchronic exposure to wood or cow dung PM collected from rural Indian homes during biomass cooking. Acute exposures resulted in robust proinflammatory cytokine production, neutrophilic inflammation, airway resistance, and hyperresponsiveness, all of which were significantly higher in mice exposed to PM from cow dung. On the contrary, subchronic exposures induced eosinophilic inflammation, PM-specific antibody responses, and alveolar destruction that was highest in wood PM-exposed mice. To understand the molecular pathways that trigger biomass PM-induced inflammation, we exposed Toll-like receptor (TLR)2-, TLR3-, TLR4-, TLR5-, and IL-1R-deficient mice to PM and found that IL-1R, TLR4, and TLR2 are the predominant receptors that elicit inflammatory responses via MyD88 in mice exposed to wood or cow dung PM. In conclusion, this study demonstrates that subchronic exposure to PM collected from households burning biomass fuel elicits a persistent pulmonary inflammation largely through activation of TLR and IL-1R pathways, which could increase the risk for chronic respiratory diseases.

  5. Climate and air quality trade-offs in altering ship fuel sulfur content

    NASA Astrophysics Data System (ADS)

    Partanen, A.-I.; Laakso, A.; Schmidt, A.; Kokkola, H.; Kuokkanen, T.; Pietikäinen, J.-P.; Kerminen, V.-M.; Lehtinen, K. E. J.; Laakso, L.; Korhonen, H.

    2013-08-01

    Aerosol particles from shipping emissions both cool the climate and cause adverse health effects. The cooling effect is, however, declining because of shipping emission controls aiming to improve air quality. We used an aerosol-climate model ECHAM-HAMMOZ to test whether by altering ship fuel sulfur content, the present-day aerosol-induced cooling effect from shipping could be preserved while at the same time reducing premature mortality rates related to shipping emissions. We compared the climate and health effects of a present-day shipping emission scenario with (1) a simulation with strict emission controls in the coastal waters (ship fuel sulfur content of 0.1%) and twofold ship fuel sulfur content compared to current global average of 2.7% elsewhere; and (2) a scenario with global strict shipping emission controls (ship fuel sulfur content of 0.1% in coastal waters and 0.5% elsewhere) roughly corresponding to international agreements to be enforced by the year 2020. Scenario 1 had a slightly stronger aerosol-induced radiative flux perturbation (RFP) from shipping than the present-day scenario (-0.43 W m-2 vs. -0.39 W m-2) while reducing premature mortality from shipping by 69% (globally 34 900 deaths avoided per year). Scenario 2 decreased the RFP to -0.06 W m-2 and annual deaths by 96% (globally 48 200 deaths avoided per year) compared to present-day. A small difference in radiative effect (global mean of 0.04 W m-2) in the coastal regions between Scenario 1 and the present-day scenario imply that shipping emission regulation in the existing emission control areas should not be removed in hope of climate cooling. Our results show that the cooling effect of present-day emissions could be retained with simultaneous notable improvements in air quality, even though the shipping emissions from the open ocean clearly have a significant effect on continental air quality. However, increasing ship fuel sulfur content in the open ocean would violate existing

  6. Analyzing the possibility of constructing the air heating system for an integrated solid fuel gasification combined-cycle power plant

    NASA Astrophysics Data System (ADS)

    Mikula, V. A.; Ryzhkov, A. F.; Val'tsev, N. V.

    2015-11-01

    Combined-cycle power plants operating on solid fuel have presently been implemented only in demonstration projects. One of possible ways for improving such plants consists in making a shift to hybrid process circuits of integrated gasification combined-cycle plants with external firing of solid fuel. A high-temperature air heater serving to heat compressed air is a key element of the hybrid process circuit. The article describes application of a high-temperature recuperative metal air heater in the process circuit of an integrated gasification combined-cycle power plant (IGCC). The available experience with high-temperature air heating is considered, and possible air heater layout arrangements are analyzed along with domestically produced heat-resistant grades of steel suitable for manufacturing such air heater. An alternative (with respect to the traditional one) design is proposed, according to which solid fuel is fired in a noncooled furnace extension, followed by mixing the combustion products with recirculation gases, after which the mixture is fed to a convective air heater. The use of this design makes it possible to achieve considerably smaller capital outlays and operating costs. The data obtained from thermal and aerodynamic calculations of the high-temperature air heater with a thermal capacity of 258 MW for heating air to a temperature of up to 800°C for being used in the hybrid process circuit of a combined-cycle power plant are presented.

  7. Numerical Simulations of Dynamic Deformation of Air Transport Fresh Fuel Package in Accidental Impacts

    SciTech Connect

    Ryabov, A. A.; Romanov, V. I.; Sotskov, G. I.

    2003-02-24

    Results of numerical investigations of dynamic deformations of packages for air transportation of fresh nuclear fuel from Nuclear Power Plants are presented for the cases of axis and on-side impacts with hard surface at a speed of 90 meters/second (m/s). Modeling results on deformed structure shapes and kinematical parameters (displacements, decelerations, cramping) for axis impact are compared with experimental data. Use of this numerical-experimental technology gives new capabilities to analyze correctly the safety of such a package in accidents through modeling, which does not require implantation of expensive testing, thereby saving money.

  8. Small-Scale Shock Reactivity and Internal Blast Test

    NASA Astrophysics Data System (ADS)

    Granholm, R. H.; Sandusky, H. W.

    2006-07-01

    Explosives react from a strong shock, even in quantities too small for detonation. The potential for a new material to be an explosive can be evaluated from this shock reactivity. The recently developed small-scale shock reactivity test (SSRT) uses very high confinement to allow prompt reactions to occur in less than half-gram samples well below critical diameter. Early and late-time reactions are simultaneously measured from a single sample subjected to the output from an RP-80 detonator. Prompt reactions are quantified by a dent in a soft aluminum witness block, while later reactions, such as from fuel/air combustion, are measured by recording blast pressure. Internal blast quasi-static pressure is obtained by confining the sample apparatus within a three-liter chamber. Late-time reaction effects of plastics, and results from HMX, HMX/Aluminum, and a plastic-bonded explosive (PBX) are reported.

  9. Mixing of Pure Air Jets with a Reacting Fuel-Rich Crossflow

    NASA Technical Reports Server (NTRS)

    Leong, M. Y.; Samuelsen, G. S.; Holdeman, J. D.

    1997-01-01

    Jets in a crossflow play an integral role in practical combustion systems such as can and annular gas turbine combustors in conventional systems, and the Rich-burn/Quick-mix/Lean-burn (RQL) combustor utilized in stationary applications and proposed for advanced subsonic and supersonic transports. The success of the RQL combustor rests with the performance of the quick-mixing section that bridges the rich and lean zones. The mixing of jet air with a rich crossflow to bring the reaction to completion in the lean zone must be performed rapidly and thoroughly in order to decrease the extent of near-stoichiometric fluid pocket formation. Fluid pockets at near-stoichiometric equivalence ratios are undesirable because the high temperatures attained accelerate pollutant formation kinetics associated with nitric oxide (NO). The present study develops a model experiment designed to reveal the processes that occur when jet air is introduced into hot effluent emanating from a fuel-rich reaction zone.

  10. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  11. Opposed Jet Burner Extinction Limits: Simple Mixed Hydrocarbon Scramjet Fuels vs Air

    NASA Technical Reports Server (NTRS)

    Pellett, Gerald L.; Vaden, Sarah N.; Wilson, Lloyd G.

    2007-01-01

    Opposed Jet Burner tools have been used extensively by the authors to measure Flame Strength (FS) of laminar non-premixed H2 air and simple hydrocarbon (HC) air counterflow diffusion flames at 1-atm. FS represents a strain-induced extinction limit based on air jet velocity. This paper follows AIAA-2006-5223, and provides new HC air FSs for global testing of chemical kinetics, and for characterizing idealized flameholding potentials during early scramjet-like combustion. Previous FS data included six HCs, pure and N2-diluted; and three HC-diluted H2 fuels, where FS decayed very nonlinearly as HC was added to H2, due to H-atom scavenging. This study presents FSs on mixtures of (candidate surrogate) HCs, some with very high FS ethylene. Included are four binary gaseous systems at 300 K, and a hot ternary system at approx. 600 K. The binaries are methane + ethylene, ethane + ethylene, methane + ethane, and methane + propylene. The first three also form two ternary systems. The hot ternary includes both 10.8 and 21.3 mole % vaporized n-heptane and full ranges of methane + ethylene. Normalized FS data provide accurate means of (1) validating, globally, chemical kinetics for extinction of non-premixed flames, and (2) estimating (scaling by HC) the loss of incipient flameholding in scramjet combustors. The n-heptane is part of a proposed baseline simulant (10 mole % with 30% methane + 60% ethylene) that mimics the ignition of endothermically cracked JP-7 like kerosene fuel, as suggested by Colket and Spadaccini in 2001 in their shock tube Scramjet Fuels Autoignition Study. Presently, we use FS to gauge idealized flameholding, and define HC surrogates. First, FS was characterized for hot nheptane + methane + ethylene; then a hot 36 mole % methane + 64% ethylene surrogate was defined that mimics FS of the baseline simulant system. A similar hot ethane + ethylene surrogate can also be defined, but it has lower vapor pressure at 300 K, and thus exhibits reduced gaseous

  12. Mixing of an Airblast-atomized Fuel Spray Injected into a Crossflow of Air

    NASA Technical Reports Server (NTRS)

    Leong, May Y.; McDonell, Vincent G.; Samuelsen, G. Scott

    2000-01-01

    The injection of a spray of fuel droplets into a crossflow of air provides a means of rapidly mixing liquid fuel and air for combustion applications. Injecting the liquid as a spray reduces the mixing length needed to accommodate liquid breakup, while the transverse injection of the spray into the air stream takes advantage of the dynamic mixing induced by the jet-crossflow interaction. The structure of the spray, formed from a model plain-jet airblast atomizer, is investigated in order to determine and understand the factors leading to its dispersion. To attain this goal, the problem is divided into the following tasks which involve: (1) developing planar imaging techniques that visualize fuel and air distributions in the spray, (2) characterizing the airblast spray without a crossflow, and (3) characterizing the airblast spray upon injection into a crossflow. Geometric and operating conditions are varied in order to affect the atomization, penetration, and dispersion of the spray into the crossflow. The airblast spray is first characterized, using imaging techniques, as it issues into a quiescent environment. The spray breakup modes are classified in a liquid Reynolds number versus airblast Weber number regime chart. This work focuses on sprays formed by the "prompt" atomization mode, which induces a well-atomized and well-dispersed spray, and which also produces a two-lobed liquid distribution corresponding to the atomizing air passageways in the injector. The characterization of the spray jet injected into the crossflow reveals the different processes that control its dispersion. Correlations that describe the inner and outer boundaries of the spray jet are developed, using the definition of a two-phase momentum-flux ratio. Cross-sections of the liquid spray depict elliptically-shaped distributions, with the exception of the finely-atomized sprays which show kidney-shaped distributions reminiscent of those obtained in gaseous jet in crossflow systems. A droplet

  13. Ambient Fine Particulate (PM2.5) Air Pollution Attributable to Household Cooking Fuel in Asia

    NASA Astrophysics Data System (ADS)

    Chafe, Z.; Mehta, S.; Smith, K. R.

    2011-12-01

    Using the Greenhouse Gas and Air Pollution Interactions and Synergies (GAINS) model, hosted by the International Institute for Applied Systems Analysis (IIASA), we estimate the proportion of fine particulate ambient air pollution (PM2.5) attributable to household fuel use for cooking in Asia. This analysis considers primary anthropogenic PM2.5 emissions in two years: 1990 and 2005. Only emissions from household cooking fuels-not heating or lighting-are considered. Due to data availability, this analysis focuses solely on Asian countries, notably India and China which are home to about half of the households using solid fuel use worldwide. Forest and grassland fires, dust, and other "natural" particle sources were omitted from this analysis. The impact of emission sources on secondary particles from aerosol precursors was not determined. In China, the proportion of total primary anthropogenic PM2.5 attributable to household cooking decreased from 44% to 31% between 1990 and 2005. In India, the percent of primary anthropogenic PM2.5 emissions attributable to household cooking decreased from 55% to 49% between 1990 and 2005. Total mass change in primary anthropogenic PM2.5 emissions was much more variable by state in India, between 1990 and 2005, than by province in China (where there was a general downward trend in the total mass emitted). Similarly, growth in industrial emissions was much more variable at the sub-national level, between 1990 and 2005, in India than in China. Energy production played a more prominent role in the growth of primary anthropogenic PM2.5 emissions in India than it did in China. Forward-looking GAINS scenarios show that the contribution of household cooking to total primary anthropogenic PM2.5 emissions is much greater than that from on-road transport in India and China between 1990 and 2030. On-road cars, trucks, and other transport vehicles are, however, the cause of important pollutants other than PM2.5 (as are as cooking stoves that do

  14. Reactive Blast Waves from Composite Charges

    SciTech Connect

    Kuhl, A L; Bell, J B; Beckner, V E

    2009-10-16

    Investigated here is the performance of composite explosives - measured in terms of the blast wave they drive into the surrounding environment. The composite charge configuration studied here was a spherical booster (1/3 charge mass), surrounded by aluminum (Al) powder (2/3 charge mass) at an initial density of {rho}{sub 0} = 0.604 g/cc. The Al powder acts as a fuel but does not detonate - thereby providing an extreme example of a 'non-ideal' explosive (where 2/3 of the charge does not detonate). Detonation of the booster charge creates a blast wave that disperses the Al powder and ignites the ensuing Al-air mixture - thereby forming a two-phase combustion cloud embedded in the explosion. Afterburning of the booster detonation products with air also enhances and promotes the Al-air combustion process. Pressure waves from such reactive blast waves have been measured in bomb calorimeter experiments. Here we describe numerical simulations of those experiments. A Heterogeneous Continuum Model was used to model the dispersion and combustion of the Al particle cloud. It combines the gasdynamic conservation laws for the gas phase with a dilute continuum model for the dispersed phase, as formulated by Nigmatulin. Inter-phase mass, momentum and energy exchange are prescribed by phenomenological models of Khasainov. It incorporates a combustion model based on mass conservation laws for fuel, air and products; source/sink terms are treated in the fast-chemistry limit appropriate for such gasdynamic fields, along with a model for mass transfer from the particle phase to the gas. The model takes into account both the afterburning of the detonation products of the booster with air, and the combustion of the Al particles with air. The model equations were integrated by high-order Godunov schemes for both the gas and particle phases. Adaptive Mesh Refinement (AMR) was used to capture the energy-bearing scales of the turbulent flow on the computational grid, and to track

  15. Lanthanum manganite-based air electrode for solid oxide fuel cells

    DOEpatents

    Ruka, Roswell J.; Kuo, Lewis; Li, Baozhen

    1999-01-01

    An air electrode material for a solid oxide fuel cell is disclosed. The electrode material is based on lanthanum manganite having a perovskite-like crystal structure ABO.sub.3. The A-site of the air electrode material preferably comprises La, Ca, Ce and at least one lanthanide selected from Sm, Gd, Dy, Er, Y and Nd. The B-site of the electrode material comprises Mn with substantially no dopants. The ratio of A:B is preferably slightly above 1. A preferred air electrode composition is of the formula La.sub.w Ca.sub.x Ln.sub.y Ce.sub.z MnO.sub.3, wherein Ln comprises at least one lanthanide selected from Sm, Gd, Dy, Er, Y and Nd, w is from about 0.55 to about 0.56, x is from about 0.255 to about 0.265, y is from about 0.175 to about 0.185, and z is from about 0.005 to about 0.02. The air electrode material possesses advantageous chemical and electrical properties as well as favorable thermal expansion and thermal cycle shrinkage characteristics.

  16. Lanthanum manganite-based air electrode for solid oxide fuel cells

    DOEpatents

    Ruka, R.J.; Kuo, L.; Li, B.

    1999-06-29

    An air electrode material for a solid oxide fuel cell is disclosed. The electrode material is based on lanthanum manganite having a perovskite-like crystal structure ABO[sub 3]. The A-site of the air electrode material preferably comprises La, Ca, Ce and at least one lanthanide selected from Sm, Gd, Dy, Er, Y and Nd. The B-site of the electrode material comprises Mn with substantially no dopants. The ratio of A:B is preferably slightly above 1. A preferred air electrode composition is of the formula La[sub w]Ca[sub x]Ln[sub y]Ce[sub z]MnO[sub 3], wherein Ln comprises at least one lanthanide selected from Sm, Gd, Dy, Er, Y and Nd, w is from about 0.55 to about 0.56, x is from about 0.255 to about 0.265, y is from about 0.175 to about 0.185, and z is from about 0.005 to about 0.02. The air electrode material possesses advantageous chemical and electrical properties as well as favorable thermal expansion and thermal cycle shrinkage characteristics. 10 figs.

  17. Various Perspectives of Mitigating Fossil Fuel Use and Air Pollutant Emissions in China's Megacity

    NASA Astrophysics Data System (ADS)

    Wang, H.

    2014-12-01

    It is critical to reduce energy use and air pollutions in metropolitan areas because these areas usually serve as economic engines and have large, dense populations. Fossil fuel use and air-polluting emissions were analyzed in Beijing between 1997 and 2010 from both a bottom-up and a top-down perspective. From a bottom-up perspective, the key energy-intensive industrial sectors directly caused changes in Beijing's air pollution by means of a series of energy and economic policies. From a top-down perspective, variation in industrial production caused increases in most emissions between 2000 and 2010, however, there were decreases in PM10 and PM2.5 emissions during 2005-2010. Population growth was found to be the largest driver of energy consumption and emissions between1997 and 2010. Energy use and air pollutant emissions were also found to outsource from Beijing to other regions in China. Policies for reducing urban energy consumption and emissions should consider not only the key industrial sectors but also socioeconomic drivers.

  18. Tip-to-tail numerical simulation of a hypersonic air-breathing engine with ethylene fuel

    NASA Astrophysics Data System (ADS)

    Dharavath, Malsur; Manna, P.; Chakraborty, Debasis

    2016-11-01

    End to end CFD simulations of external and internal flow paths of an ethylene fueled hypersonic airbreathing vehicle with including forebody, horizontal fins, vertical fins, intake, combustor, single expansion ramp nozzle are carried out. The performance of the scramjet combustor and vehicle net thrust-drag is calculated for hypersonic cruise condition. Three-dimensional Navier-Stokes equations are solved along with SST-k-ω turbulence model using the commercial CFD software CFX-14. Single step chemical reaction based on fast chemistry assumption is used for combustion of gaseous ethylene fuel. Simulations captured complex shock structures including the shocks generated from the vehicle nose and compression ramps, impingement of cowl-shock on vehicle undersurface and its reflection in the intake and combustor etc. Various thermochemical parameters are analyzed and performance parameters are evaluated for nonreacting and reacting cases. Very good mixing (~98%) of fuel with incoming air stream is observed. Positive thrust-drag margins are obtained for fuel equivalence ratio of 0.6 and computed combustion efficiency is observed to be 94 %. Effect of equivalence ratio on the vehicle performance is studied parametrically. Though the combustion efficiency has come down by 8% for fuel equivalence ratio of 0.8, net vehicle thrust is increased by 44%. Heat flux distribution on the various walls of the whole vehicle including combustor is estimated for the isothermal wall condition of 1000 K in reacting flow. Higher local heat flux values are observed at all the leading edges of the vehicle (i.e., nose, wing, fin and cowl leading edges) and strut regions of the combustor.

  19. Computational modeling of air-breathing microfluidic fuel cells with flow-over and flow-through anodes

    NASA Astrophysics Data System (ADS)

    Zhang, Biao; Ye, Ding-ding; Sui, Pang-Chieh; Djilali, Ned; Zhu, Xun

    2014-08-01

    A three-dimensional computational model for air-breathing microfluidic fuel cells (AMFCs) with flow-over and flow-through anodes is developed. The coupled multiphysics phenomena of fluid flow, species transport and electrochemical reactions are resolved numerically. The model has been validated against experimental data using an in-house AMFC prototype with a flow-through anode. Characteristics of fuel transfer and fuel crossover for both types of anodes are investigated. The model results reveal that the fuel transport to the flow-over anode is intrinsically limited by the fuel concentration boundary layer. Conversely, fuel transport for the flow-through anode is convectively enhanced by the permeate flow, and no concentration boundary layer is observed. An unexpected additional advantage of the flow-through anode configuration is lower parasitic (crossover) current density than the flow-over case at practical low flow rates. Cell performance of the flow-through case is found to be limited by reaction kinetics. The present model provides insights into the fuel transport and fuel crossover in air-breathing microfluidic fuel cells and provides guidance for further design and operation optimization.

  20. Cycle analysis of an integrated solid oxide fuel cell and recuperative gas turbine with an air reheating system

    NASA Astrophysics Data System (ADS)

    Zhang, Xiongwen; Li, Jun; Li, Guojun; Feng, Zhenping

    Cycle simulation and analysis for two kinds of SOFC/GT hybrid systems were conducted with the help of the simulation tool: Aspen Custom Modeler. Two cycle schemes of recuperative heat exchanger (RHE) and exhaust gas recirculated (EGR) were described according to the air reheating method. The system performance with operating pressure, turbine inlet temperature and fuel cell load were studied based on the simulation results. Then the effects of oxygen utilization, fuel utilization, operating temperature and efficiencies of the gas turbine components on the system performance of the RHE cycle and the EGR cycle were discussed in detail. Simulation results indicated that the system optimum efficiency for the EGR air reheating cycle scheme was higher than that of the RHE cycle system. A higher pressure ratio would be available for the EGR cycle system in comparison with the RHE cycle. It was found that increasing fuel utilization or oxygen utilization would decrease fuel cell efficiency but improve the system efficiency for both of the RHE and EGR cycles. The efficiency of the RHE cycle hybrid system decreased as the fuel cell air inlet temperature increased. However, the system efficiency of EGR cycle increased with fuel cell air inlet temperature. The effect of turbine efficiency on the system efficiency was more obvious than the effect of the compressor and recuperator efficiencies among the gas turbine components. It was also indicated that improving the gas turbine component efficiencies for the RHE cycle increased system efficiency higher than that for the EGR cycle.

  1. Fuel injector: Air swirl characterization aerothermal modeling, phase 2, volume 1

    NASA Technical Reports Server (NTRS)

    Nikjooy, M.; Mongia, H. C.; Mcdonell, V. G.; Samuelsen, G. S.

    1993-01-01

    A well integrated experimental/analytical investigation was conducted to provide benchmark quality relevant to a prefilming type airblast fuel nozzle and its interaction with the combustor dome air swirler. The experimental investigation included a systematic study of both single-phase flows that involved single and twin co-axial jets with and without swirl. A two-component Phase Doppler Particle Analyzer (PDPA) was used to document the interaction of single and co-axial air jets with glass beads that simulate nonevaporating spray and simultaneously avoid the complexities associated with fuel atomization processes and attendant issues about the specification of relevant boundary conditions. The interaction of jets with methanol spray produced by practical airblast nozzle was also documented in the spatial domain of practical interest. Model assessment activities included the use of three turbulence models (k-epsilon, algebraic second moment (ASM), and differential second moment (DSM)) for the carrier phase, deterministic or stochastic Lagrangian treatment of the dispersed phase, and advanced numerical schemes. Although qualitatively good comparison with data was obtained for most of the cases investigated, the model deficiencies in regard to modeled dissipation rate transport equation, single length scale, pressure-strain correlation, and other critical closure issues need to be resolved before one can achieve the degree of accuracy required to analytically design combustion systems.

  2. Design Considerations of ISTAR Hydrocarbon Fueled Combustor Operating in Air Augmented Rocket, Ramjet and Scramjet Modes

    NASA Technical Reports Server (NTRS)

    Andreadis, Dean; Drake, Alan; Garrett, Joseph L.; Gettinger, Christopher D.; Hoxie, Stephen S.

    2003-01-01

    The development and ground test of a rocket-based combined cycle (RBCC) propulsion system is being conducted as part of the NASA Marshall Space Flight Center (MSFC) Integrated System Test of an Airbreathing Rocket (ISTAR) program. The eventual flight vehicle (X-43B) is designed to support an air-launched self-powered Mach 0.7 to 7.0 demonstration of an RBCC engine through all of its airbreathing propulsion modes - air augmented rocket (AAR), ramjet (RJ), and scramjet (SJ). Through the use of analytical tools, numerical simulations, and experimental tests the ISTAR program is developing and validating a hydrocarbon-fueled RBCC combustor design methodology. This methodology will then be used to design an integrated RBCC propulsion system that produces robust ignition and combustion stability characteristics while maximizing combustion efficiency and minimizing drag losses. First order analytical and numerical methods used to design hydrocarbon-fueled combustors are discussed with emphasis on the methods and determination of requirements necessary to establish engine operability and performance characteristics.

  3. Design Considerations of Istar Hydrocarbon Fueled Combustor Operating in Air Augmented Rocket, Ramjet and Scramjet Modes

    NASA Technical Reports Server (NTRS)

    Andreadis, Dean; Drake, Alan; Garrett, Joseph L.; Gettinger, Christopher D.; Hoxie, Stephen S.

    2002-01-01

    The development and ground test of a rocket-based combined cycle (RBCC) propulsion system is being conducted as part of the NASA Marshall Space Flight Center (MSFC) Integrated System Test of an Airbreathing Rocket (ISTAR) program. The eventual flight vehicle (X-43B) is designed to support an air-launched self-powered Mach 0.7 to 7.0 demonstration of an RBCC engine through all of its airbreathing propulsion modes - air augmented rocket (AAR), ramjet (RJ), and scramjet (SJ). Through the use of analytical tools, numerical simulations, and experimental tests the ISTAR program is developing and validating a hydrocarbon-fueled RBCC combustor design methodology. This methodology will then be used to design an integrated RBCC propulsion system thai: produces robust ignition and combustion stability characteristics while maximizing combustion efficiency and minimizing drag losses. First order analytical and numerical methods used to design hydrocarbon-fueled combustors are discussed with emphasis on the methods and determination of requirements necessary to establish engine operability and performance characteristics.

  4. Fuel Injector: Air swirl characterization aerothermal modeling, phase 2, volume 2

    NASA Technical Reports Server (NTRS)

    Nikjooy, M.; Mongia, H. C.; Mcdonell, V. G.; Samuelson, G. S.

    1993-01-01

    A well integrated experimental/analytical investigation was conducted to provide benchmark quality data relevant to prefilming type airblast fuel nozzle and its interaction with combustor dome air swirler. The experimental investigation included a systematic study of both single-phase flows that involved single and twin co-axial jets with and without swirl. A two-component Phase Doppler Particle Analyzer (PDPA) equipment was used to document the interaction of single and co-axial air jets with glass beads that simulate nonevaporating spray and simultaneously avoid the complexities associated with fuel atomization processes and attendant issues about the specification of relevant boundary conditions. The interaction of jets with methanol spray produced by practical airblast nozzle was also documented in the spatial domain of practical interest. Model assessment activities included the use of three turbulence models (k-epsilon, algebraic second moment (ASM) and differential second moment (DSM)) for the carrier phase, deterministic or stochastic Lagrangian treatment of the dispersed phase, and advanced numerical schemes. Although qualitatively good comparison with data was obtained for most of the cases investigated, the model deficiencies in regard to modeled dissipation rate transport equation, single length scale, pressure-strain correlation, and other critical closure issues need to be resolved before one can achieve the degree of accuracy required to analytically design combustion systems.

  5. Disease burden due to biomass cooking-fuel-related household air pollution among women in India

    PubMed Central

    Sehgal, Meena; Rizwan, Suliankatchi Abdulkader; Krishnan, Anand

    2014-01-01

    Background Household air pollution (HAP) due to biomass cooking fuel use is an important risk factor for a range of diseases, especially among adult women who are primary cooks, in India. About 80% of rural households in India use biomass fuel for cooking. The aim of this study is to estimate the attributable cases (AC) for four major diseases/conditions associated with biomass cooking fuel use among adult Indian women. Methods We used the population attributable fraction (PAF) method to calculate the AC of chronic bronchitis, tuberculosis (TB), cataract, and stillbirths due to exposure to biomass cooking fuel. A number of data sources were accessed to obtain population totals and disease prevalence rates. A meta-analysis was conducted to obtain adjusted pooled odds ratios (ORs) for strength of association. Using this, PAF and AC were calculated using a standard formula. Results were presented as number of AC and 95% confidence intervals (CI). Results The fixed effects pooled OR obtained from the meta-analysis were 2.37 (95% CI: 1.59, 3.54) for chronic bronchitis, 2.33 (1.65, 3.28) for TB, 2.16 (1.42, 3.26) for cataract, and 1.26 (1.12, 1.43) for stillbirths. PAF varied across conditions being maximum (53%) for chronic bronchitis in rural areas and least (1%) for cataract in older age and urban areas. About 2.4 (95% CI: 1.4, 3.1) of 5.6 m cases of chronic bronchitis, 0.3 (0.2, 0.4) of 0.76 m cases of TB, 5.0 (2.8, 6.7) of 51.4 m cases of cataract among adult Indian women and 0.02 (0.01, 0.03) of 0.15 m stillbirths across India are attributable to HAP due to biomass cooking fuel. These estimates should be cautiously interpreted in the light of limitations discussed which relate to exposure assessment, exposure characterization, and age-specific prevalence of disease. Conclusions HAP due to biomass fuel has diverse and major impacts on women’s health in India. Although challenging, incorporating the agenda of universal clean fuel access or cleaner technology within

  6. Optimisation of air cooled, open-cathode fuel cells: Current of lowest resistance and electro-thermal performance mapping

    NASA Astrophysics Data System (ADS)

    Meyer, Quentin; Ronaszegi, Krisztian; Pei-June, Gan; Curnick, Oliver; Ashton, Sean; Reisch, Tobias; Adcock, Paul; Shearing, Paul R.; Brett, Daniel J. L.

    2015-09-01

    Selecting the ideal operating point for a fuel cell depends on the application and consequent trade-off between efficiency, power density and various operating considerations. A systematic methodology for determining the optimal operating point for fuel cells is lacking; there is also the need for a single-value metric to describe and compare fuel cell performance. This work shows how the 'current of lowest resistance' can be accurately measured using electrochemical impedance spectroscopy and used as a useful metric of fuel cell performance. This, along with other measures, is then used to generate an 'electro-thermal performance map' of fuel cell operation. A commercial air-cooled open-cathode fuel cell is used to demonstrate how the approach can be used; in this case leading to the identification of the optimum operating temperature of ∼45 °C.

  7. Is it possible to model the temperature of the fuel elements in fast reactors using water or air?

    SciTech Connect

    Ushakov, P.A.; Sorokin, A.P.

    1995-12-01

    Thermal stresses caused by temperature nonuniformity around the perimeter of fuel elements in sodium-cooled reactors can cause deformation of the fuel rods. This is the case for fuel elements positioned on the periphery of assemblies and nonuniformly edge-cooled by a coolant, for fuel elements in closely packed assemblies, etc. Extensive investigations of the temperature fields in such fuel elements have been carried out at the Physics and Power Institute of the State Scientific Center, particularly in collaboration with Czech specialists from the Institute of Nuclear Research at Rez. The possibility is now considered of investigating the temperature distribution of fuel elements, for the case when they are closely packed, using test with water and modeling temperature fields when the liquid metals are agitated using tests in air.

  8. VOC and hazardous air pollutant emission factors for military aircraft fuel cell inspection, maintenance, and repair operations

    SciTech Connect

    Nand, K.; Sahu, R.

    1997-12-31

    Accurate emission estimation is one of the key aspects of implementation of any air quality program. The Federal Title 5 program, specially requires an accurate and updated inventory of criteria as well hazardous air pollutants (HAPs) from all facilities. An overestimation of these two categories of pollutants, may cause the facility to be classified as a major source, when in fact it may actually be a minor source, and may also trigger unnecessary compliance requirements. A good example of where overestimation of volatile organic compounds (VOCs) and HAPs is easily possible are military aircraft fuel cells inspection, maintenance, and repair operations. The military aircraft fuel tanks, which are commonly identified as fuel cells, are routinely inspected for maintenance and repairs at military aircraft handling facilities. Prior to entry into the fuel cell by an inspector, fuel cells are first drained into bowsers and then purged with fresh air; the purged air is generally released without any controls to the atmosphere through a stack. The VOC and HAPs emission factors from these operations are not available in the literature for JP-8 fuel, which is being used increasingly by military aircraft. This paper presents two methods for estimating emissions for this source type, which are based on engineering calculations and professional judgment. This paper presents several methods for estimating emissions for this source type, which are based on engineering calculations and professional judgment. There are three emission producing phases during the draining and purging operations: (1) emissions during splash loading of bowsers (unloading of fuel cells), (2) emissions from spillage of fuel during loading of bowsers, and (3) emissions from fuel cell purging operations. Results of the emission estimation, including a comparison of the two emission estimation methods are presented in this paper.

  9. NanoCapillary Network Proton Conducting Membranes for High Temperature Hydrogen/Air Fuel Cells

    SciTech Connect

    Pintauro, Peter

    2012-07-09

    The objective of this proposal is to fabricate and characterize a new class of NanoCapillary Network (NCN) proton conducting membranes for hydrogen/air fuel cells that operate under high temperature, low humidity conditions. The membranes will be intelligently designed, where a high density interconnecting 3-D network of nm-diameter electrospun proton conducting polymer fibers is embedded in an inert (uncharged) water/gas impermeable polymer matrix. The high density of fibers in the resulting mat and the high ion-exchange capacity of the fiber polymer will ensure high proton conductivity. To further enhance water retention, molecular silica will be added to the sulfonated polymer fibers. The uncharged matrix material will control water swelling of the high ion-exchange capacity proton conducting polymer fibers and will impart toughness to the final nanocapillary composite membrane. Thus, unlike other fuel cell membranes, the role of the polymer support matrix will be decoupled from that of the proton-conducting channels. The expected final outcome of this 5-year project is the fabrication of fuel cell membranes with properties that exceed the DOE’s technical targets, in particular a proton conductivity of 0.1 S/cm at a temperature less than or equal to120°C and 25-50% relative humidity.

  10. Liftoff and blowoff of a diffusion flame between parallel streams of fuel and air

    SciTech Connect

    Fernandez-Tarrazo, Eduardo; Vera, Marcos; Linan, Amable

    2006-01-01

    A numerical analysis is presented to describe the liftoff and blowoff of a diffusion flame in the mixing layer between two parallel streams of fuel (mainly methane diluted with nitrogen) and air emerging from porous walls. The analysis, which takes into account the effects of thermal expansion, assumes a one-step overall Arrhenius reaction, where the activation energy E is allowed to vary to reproduce the variations of the planar flame propagation velocity with the equivalence ratio. First, we describe the steady flame-front structure when stabilized close to the porous wall (attached flame regime). Then, we analyze the case where the flame front is located far away from the porous wall, at a distance x{sub f}' such that, upstream of the flame front, the mixing layer has a self-similar structure (lifted flame regime). For steady lifted flames, the results, given here in the case when the fuel and air streams are injected with the same velocity, relate U{sub f}'/S{sub L}, the front velocity (relative to the upstream flow) measured with the planar stoichiometric flame velocity, with the Damkohler number D{sub m}=({delta}{sub m}/{delta}{sub L}){sup 2}, based on the thickness, {delta}{sub m}, of the nonreacting mixing layer at the flame-front position and the laminar flame thickness, {delta}{sub L}. For large values of D{sub m}, the results, presented here for a wide range of dilutions of the fuel stream, provide values of the front propagation velocity that are in good agreement with previous experimental results, yielding well-defined conditions for blowoff. The calculated flame-front velocity can also be used to describe the transient flame-front dynamics after ignition by an external energy source.

  11. Measurement of the Tracer Gradient and Sampling System Bias of the Hot Fuel Examination Facility Stack Air Monitoring System

    SciTech Connect

    Glissmeyer, John A.; Flaherty, Julia E.

    2011-07-20

    This report describes tracer gas uniformity and bias measurements made in the exhaust air discharge of the Hot Fuel Examination Facility at Idaho National Laboratory. The measurements were a follow-up on earlier measurements which indicated a lack of mixing of the two ventilation streams being discharged via a common stack. The lack of mixing is detrimental to the accuracy of air emission measurements. The lack of mixing was confirmed in these new measurements. The air sampling probe was found to be out of alignment and that was corrected. The suspected sampling bias in the air sample stream was disproved.

  12. Specific features of operation of a membrane-electrode assembly of an air-hydrogen fuel cell

    NASA Astrophysics Data System (ADS)

    Nechitailov, A. A.; Glebova, N. V.; Koshkina, D. V.; Tomasov, A. A.; Zelenina, N. K.; Terukova, E. E.

    2013-09-01

    Specific features of the operation of the membrane-electrode assembly with high catalytic activity that are a part of the simplified design of a low-temperature air-hydrogen fuel cell under conditions of forced and natural convection of air on the cathode are studied. The governing effect of water balance on the specific power of the fuel cell in the stationary mode (˜1 h) is shown, and the range of the operating conditions of the cell with self-control is determined. The power of the fuel cell at an efficiency of ˜50% and the surface density of platinum on a cathode of ≈0.2 mg/cm2 is 200-250 and 100 mW/cm2 in the forced and natural air-convection modes, respectively, which is comparable with the advanced results.

  13. Energy-efficient air pollution controls for fossil-fueled plants: Technology assessment

    SciTech Connect

    Sayer, J.H.

    1995-06-01

    The 1990 Clean Air Act Amendments require most fossil-fuel fired power plants to reduce sulfur dioxide, nitrogen oxides, and particulate emissions. While emission-control equipment is available to help most of New York State`s 91 utility units in 31 power plants comply with the new regulations, technologies currently available consume energy, increase carbon dioxide emissions, reduce operating efficiency, and may produce large amounts of solid and/or semisolid byproducts that use additional energy for processing and disposal. This report discribes several pollution-control technologies that are more energy efficient compared to traditional technologies for controlling sulfur dioxide, nitrogen oxide, and particulates, that may have application in New York State. These technologies are either in commercial use, under development, or in the demonstration phase; This report also presents operating characteristics for these technologies and discusses solutions to dispose of pollution-control system byproducts. Estimated energy consumption for emission-control systems relative to a plant`s gross generating capacity is 3 to 5 for reducing up to 90% sulfur dioxide emissions from coal-fired plants. 0.5 to 2.5% for reducing nitrogen oxide emissions by up to 80% from all fossil-fuel fired plants; and 0.5 to 1.5 % for controlling particulate emissions from oil- and coal-fired plants. While fuel switching and/or cofiring with natural gas are options to reduce emissions, these techniques are not considered in this report; the discussion is limited to fossil-fueled steam-generating plants.

  14. Continuous flow membrane-less air cathode microbial fuel cell with spunbonded olefin diffusion layer.

    PubMed

    Tugtas, Adile Evren; Cavdar, Pelin; Calli, Baris

    2011-11-01

    The power production performance of a membrane-less air-cathode microbial fuel cell was evaluated for 53 days. Anode and cathode electrodes and the micro-fiber cloth separator were configured by sandwiching the separator between two electrodes. In addition, the air-facing side of the cathode was covered with a spunbonded olefin sheet instead of polytetrafluoroethylene (PTFE) coating to control oxygen diffusion and water loss. The configuration resulted in a low resistance of about 4Ω and a maximum power density of 750 mW/m2. However, as a result of a gradual decrease in the cathode potential, maximum power density decreased to 280 mW/m2. The declining power output was attributed to loss of platinum catalyst (8.26%) and biomass growth (38.44%) on the cathode. Coulombic efficiencies over 55% and no water leakage showed that the spunbonded olefin sheet covering the air-facing side of the cathode can be a cost-effective alternative to PTFE coating.

  15. Power generation by packed-bed air-cathode microbial fuel cells.

    PubMed

    Zhang, Xiaoyuan; Shi, Juan; Liang, Peng; Wei, Jincheng; Huang, Xia; Zhang, Chuanyi; Logan, Bruce E

    2013-08-01

    Catalysts and catalyst binders are significant portions of the cost of microbial fuel cell (MFC) cathodes. Many materials have been tested as aqueous cathodes, but air-cathodes are needed to avoid energy demands for water aeration. Packed-bed air-cathodes were constructed without expensive binders or diffusion layers using four inexpensive carbon-based materials. Cathodes made from activated carbon produced the largest maximum power density of 676 ± 93 mW/m(2), followed by semi-coke (376 ± 47 mW/m(2)), graphite (122 ± 14 mW/m(2)) and carbon felt (60 ± 43 mW/m(2)). Increasing the mass of activated carbon and semi-coke from 5 to ≥ 15 g significantly reduced power generation because of a reduction in oxygen transfer due to a thicker water layer in the cathode (∼3 or ∼6 cm). These results indicate that a thin packed layer of activated carbon or semi-coke can be used to make inexpensive air-cathodes for MFCs. PMID:23732924

  16. Calculating the parameters of self-oscillations in the vertical combustion chamber of the blast-furnace air heater during unstable combustion

    NASA Astrophysics Data System (ADS)

    Basok, B. I.; Gotsulenko, V. V.

    2015-01-01

    A procedure for simplified calculation of the parameters of self-oscillations excited during unstable (vibrating) combustion in the vertical combustion chambers of blast-furnace air heaters is developed. The proposed procedure is based on an independent nonlinear dynamic system similar to the equations from the theory of a blade supercharger stalling and surging mode. The head characteristic considered in the blade supercharger stalling and surging theory determines the part of the supercharger drive rotation energy that is converted into the head developed by the supercharger. In the considered system, the supercharger head characteristic is replaced by the combustion chamber head characteristic. Being a function of flow rate, this characteristic describes the part of heat supplied to flow that is converted to the flow head. Unlike the supercharger head characteristic, which is determined by experiment, the combustion chamber head characteristic is determined by calculation, due to which it becomes much easier to calculate the parameters of self-oscillations according to the proposed procedure. In particular, an analysis of the periodic solutions of the obtained dynamic system made it possible to determine the pattern in which the amplitude of considered self-oscillations depends on the surge impedance of the vertical combustion chamber.

  17. Experimental evaluation of oxygen-enriched air and emulsified fuels in a six-cylinder diesel engine

    NASA Astrophysics Data System (ADS)

    Sekar, R. R.; Marr, W. W.; Cole, R. L.; Marciniak, T. J.; Longman, D. E.

    1993-01-01

    The objectives of this investigation are to (1) determine the technical feasibility of using oxygen-enriched air to increase the efficiency of and reduce emissions from diesel engines, (2) examine the effects of water-emulsified fuel on the formation of nitrogen oxides in oxygen-enriched combustion, and (3) investigate the use of lower-grade fuels in high-speed diesel engines by emulsifying the fuel with water. These tests, completed on a Caterpillar model 3406B, six-cylinder engine are a scale-up from previous, single-cylinder-engine tests. The engine was tested with (1) intake-air oxygen levels up to 30%, (2) water content up to 20% of the fuel, (3) three fuel-injection timings, and (4) three fuel-flow rates (power levels). The Taguchi technique for experimental design was used to minimize the number of experimental points in the test matrix. Four separate test matrices were run to cover two different fuel-flow-rate strategies and two different fuels (No. 2 diesel and No. 6 diesel). A liquid-oxygen tank located outside the test cell supplied the oxygen for the tests. The only modification of the engine was installation of a pressure transducer in one cylinder. All tests were run at 1800 rpm, which corresponds to the synchronous speed of a 60-Hz generator. Test results show that oxygen enrichment results in power increases of 50% or more while significantly decreasing the levels of smoke and particulates emitted. The increase in power was accompanied by a small increase in thermal efficiency. Maximum engine power was limited by the test-cell dynamometer capacity and the capacity of the fuel-injection pump. Oxygen enrichment increases nitrogen-oxide emissions significantly. No adverse effects of oxygen enrichment on the turbocharger were observed. The engine operated successfully with No. 6 fuel, but it operated at a lower thermal efficiency and emitted more smoke and particulates than with No. 2 fuel.

  18. Coherent Anti-Stokes Raman Scattering (CARS) as a Probe for Supersonic Hydrogen-Fuel/Air Mixing

    NASA Technical Reports Server (NTRS)

    Danehy, P. M.; O'Byrne, S.; Cutler, A. D.; Rodriguez, C. G.

    2003-01-01

    The dual-pump coherent anti-Stokes Raman spectroscopy (CARS) method was used to measure temperature and the absolute mole fractions of N2, O2 and H2 in a supersonic non-reacting fuel-air mixing experiment. Experiments were conducted in NASA Langley Research Center s Direct Connect Supersonic Combustion Test Facility. Under normal operation of this facility, hydrogen and air burn to increase the enthalpy of the test gas and O2 is added to simulate air. This gas is expanded through a Mach 2 nozzle and into a combustor model where fuel is then injected, mixes and burns. In the present experiment the O2 of the test gas is replaced by N2. The lack of oxidizer inhibited combustion of the injected H2 fuel jet allowing the fuel/air mixing process to be studied. CARS measurements were performed 427 mm downstream of the nozzle exit and 260 mm downstream of the fuel injector. Maps were obtained of the mean temperature, as well as the N2, O2 and H2 mean mole fraction fields. A map of mean H2O vapor mole fraction was also inferred from these measurements. Correlations between different measured parameters and their fluctuations are presented. The CARS measurements are compared with a preliminary computational prediction of the flow.

  19. Perspective use of direct human blood as an energy source in air-breathing hybrid microfluidic fuel cells

    NASA Astrophysics Data System (ADS)

    Dector, A.; Escalona-Villalpando, R. A.; Dector, D.; Vallejo-Becerra, V.; Chávez-Ramírez, A. U.; Arriaga, L. G.; Ledesma-García, J.

    2015-08-01

    This work presents a flexible and light air-breathing hybrid microfluidic fuel cell (HμFC) operated under biological conditions. A mixture of glucose oxidase, glutaraldehyde, multi-walled carbon nanotubes and vulcan carbon (GOx/VC-MWCNT-GA) was used as the bioanode. Meanwhile, integrating an air-exposed electrode (Pt/C) as the cathode enabled direct oxygen delivery from air. The microfluidic fuel cell performance was evaluated using glucose obtained from three different sources as the fuel: 5 mM glucose in phosphate buffer, human serum and human blood. For the last fuel, an open circuit voltage and maximum power density of 0.52 V and 0.20 mW cm-2 (at 0.38 V) were obtained respectively; meanwhile the maximum current density was 1.1 mA cm-2. Furthermore, the stability of the device was measured in terms of recovery after several polarization curves, showing excellent results. Although this air-breathing HμFC requires technological improvements before being tested in a biomedical device, it represents the best performance to date for a microfluidic fuel cell using human blood as glucose source.

  20. Coal combustion under conditions of blast furnace injection; [Quarterly] technical report, September 1--November 30, 1993

    SciTech Connect

    Crelling, J.C.

    1993-12-31

    A potentially new use for Illinois coal is its use as a fuel injected into a blast furnace to produce molten iron as the first step in steel production. Because of its increasing cost and decreasing availability, metallurgical coke is now being replaced by coal injected at the tuyere area of the furnace where the blast air enters. The purpose of this study is to evaluate the combustion of coal during the blast furnace injection process and to delineate the optimum properties of the feed coal. This investigation is significant to the use of Illinois coal in that the limited research to date suggests that coals of low fluidity and moderate to high sulfur and chlorine contents are suitable feedstocks for blast furnace injection. This study is unique in that it will be the first North American effort to directly determine the nature of the combustion of coal injected into a blast furnace. This proposal is a follow-up to one funded for the 1992--1993 period. It is intended to complete the study already underway with the Armco Inc. steel company and to initiate a new cooperative study along somewhat similar lines with the Inland Steel Company. The results of this study will lead to the development of a testing and evaluation protocol that will give a unique and much needed understanding of the behavior of coal in the injection process and prove the potential of Illinois coals f or such use.

  1. Human Injury Criteria for Underwater Blasts.

    PubMed

    Lance, Rachel M; Capehart, Bruce; Kadro, Omar; Bass, Cameron R

    2015-01-01

    Underwater blasts propagate further and injure more readily than equivalent air blasts. Development of effective personal protection and countermeasures, however, requires knowledge of the currently unknown human tolerance to underwater blast. Current guidelines for prevention of underwater blast injury are not based on any organized injury risk assessment, human data or experimental data. The goal of this study was to derive injury risk assessments for underwater blast using well-characterized human underwater blast exposures in the open literature. The human injury dataset was compiled using 34 case reports on underwater blast exposure to 475 personnel, dating as early as 1916. Using severity ratings, computational reconstructions of the blasts, and survival information from a final set of 262 human exposures, injury risk models were developed for both injury severity and risk of fatality as functions of blast impulse and blast peak overpressure. Based on these human data, we found that the 50% risk of fatality from underwater blast occurred at 302±16 kPa-ms impulse. Conservatively, there is a 20% risk of pulmonary injury at a kilometer from a 20 kg charge. From a clinical point of view, this new injury risk model emphasizes the large distances possible for potential pulmonary and gut injuries in water compared with air. This risk value is the first impulse-based fatality risk calculated from human data. The large-scale inconsistency between the blast exposures in the case reports and the guidelines available in the literature prior to this study further underscored the need for this new guideline derived from the unique dataset of actual injuries in this study.

  2. Human Injury Criteria for Underwater Blasts

    PubMed Central

    Lance, Rachel M.; Capehart, Bruce; Kadro, Omar; Bass, Cameron R.

    2015-01-01

    Underwater blasts propagate further and injure more readily than equivalent air blasts. Development of effective personal protection and countermeasures, however, requires knowledge of the currently unknown human tolerance to underwater blast. Current guidelines for prevention of underwater blast injury are not based on any organized injury risk assessment, human data or experimental data. The goal of this study was to derive injury risk assessments for underwater blast using well-characterized human underwater blast exposures in the open literature. The human injury dataset was compiled using 34 case reports on underwater blast exposure to 475 personnel, dating as early as 1916. Using severity ratings, computational reconstructions of the blasts, and survival information from a final set of 262 human exposures, injury risk models were developed for both injury severity and risk of fatality as functions of blast impulse and blast peak overpressure. Based on these human data, we found that the 50% risk of fatality from underwater blast occurred at 302±16 kPa-ms impulse. Conservatively, there is a 20% risk of pulmonary injury at a kilometer from a 20 kg charge. From a clinical point of view, this new injury risk model emphasizes the large distances possible for potential pulmonary and gut injuries in water compared with air. This risk value is the first impulse-based fatality risk calculated from human data. The large-scale inconsistency between the blast exposures in the case reports and the guidelines available in the literature prior to this study further underscored the need for this new guideline derived from the unique dataset of actual injuries in this study. PMID:26606655

  3. Human Injury Criteria for Underwater Blasts.

    PubMed

    Lance, Rachel M; Capehart, Bruce; Kadro, Omar; Bass, Cameron R

    2015-01-01

    Underwater blasts propagate further and injure more readily than equivalent air blasts. Development of effective personal protection and countermeasures, however, requires knowledge of the currently unknown human tolerance to underwater blast. Current guidelines for prevention of underwater blast injury are not based on any organized injury risk assessment, human data or experimental data. The goal of this study was to derive injury risk assessments for underwater blast using well-characterized human underwater blast exposures in the open literature. The human injury dataset was compiled using 34 case reports on underwater blast exposure to 475 personnel, dating as early as 1916. Using severity ratings, computational reconstructions of the blasts, and survival information from a final set of 262 human exposures, injury risk models were developed for both injury severity and risk of fatality as functions of blast impulse and blast peak overpressure. Based on these human data, we found that the 50% risk of fatality from underwater blast occurred at 302±16 kPa-ms impulse. Conservatively, there is a 20% risk of pulmonary injury at a kilometer from a 20 kg charge. From a clinical point of view, this new injury risk model emphasizes the large distances possible for potential pulmonary and gut injuries in water compared with air. This risk value is the first impulse-based fatality risk calculated from human data. The large-scale inconsistency between the blast exposures in the case reports and the guidelines available in the literature prior to this study further underscored the need for this new guideline derived from the unique dataset of actual injuries in this study. PMID:26606655

  4. Electronic modification of Pt via Ti and Se as tolerant cathodes in air-breathing methanol microfluidic fuel cells.

    PubMed

    Ma, Jiwei; Habrioux, Aurélien; Morais, Cláudia; Alonso-Vante, Nicolas

    2014-07-21

    We reported herein on the use of tolerant cathode catalysts such as carbon supported Pt(x)Ti(y) and/or Pt(x)Se(y) nanomaterials in an air-breathing methanol microfluidic fuel cell. In order to show the improvement of mixed-reactant fuel cell (MRFC) performances obtained with the developed tolerant catalysts, a classical Pt/C nanomaterial was used for comparison. Using 5 M methanol concentration in a situation where the fuel crossover is 100% (MRFC-mixed reactant fuel cell application), the maximum power density of the fuel cell with a Pt/C cathodic catalyst decreased by 80% in comparison with what is observed in the laminar flow fuel cell (LFFC) configuration. With Pt(x)Ti(y)/C and Pt(x)Se(y)/C cathode nanomaterials, the performance loss was only 55% and 20%, respectively. The evaluation of the tolerant cathode catalysts in an air-breathing microfluidic fuel cell suggests the development of a novel nanometric system that will not be size restricted. These interesting results are the consequence of the high methanol tolerance of these advanced electrocatalysts via surface electronic modification of Pt. Herein we used X-ray photoelectron and in situ FTIR spectroscopies to investigate the origin of the high methanol tolerance on modified Pt catalysts.

  5. Effects of switching to lower sulfur marine fuel oil on air quality in the San Francisco Bay area.

    PubMed

    Tao, Ling; Fairley, David; Kleeman, Michael J; Harley, Robert A

    2013-09-17

    Ocean-going vessels burning high-sulfur heavy fuel oil are an important source of air pollutants, such as sulfur dioxide and particulate matter. Beginning in July 2009, an emission control area was put into effect at ports and along the California coastline, requiring use of lower sulfur fuels in place of heavy fuel oil in main engines of ships. To assess impacts of the fuel changes on air quality at the Port of Oakland and in the surrounding San Francisco Bay area, we analyzed speciated fine particle concentration data from four urban sites and two more remote sites. Measured changes in concentrations of vanadium, a specific marker for heavy fuel oil combustion, are related to overall changes in aerosol emissions from ships. We found a substantial reduction in vanadium concentrations after the fuel change and a 28-72% decrease in SO2 concentrations, with the SO2 decrease varying depending on proximity to shipping lanes. We estimate that the changes in ship fuel reduced ambient PM2.5 mass concentrations at urban sites in the Bay area by about 3.1 ± 0.6% or 0.28 ± 0.05 μg/m(3). The largest contributing factor to lower PM mass concentrations was reductions in particulate sulfate. Absolute sulfate reductions were fairly consistent across sites, whereas trace metal reductions were largest at a monitoring site in West Oakland near the port.

  6. Cleaning the Air and Improving Health with Hydrogen Fuel-Cell Vehicles

    NASA Astrophysics Data System (ADS)

    Jacobson, M. Z.; Colella, W. G.; Golden, D. M.

    2005-06-01

    Converting all U.S. onroad vehicles to hydrogen fuel-cell vehicles (HFCVs) may improve air quality, health, and climate significantly, whether the hydrogen is produced by steam reforming of natural gas, wind electrolysis, or coal gasification. Most benefits would result from eliminating current vehicle exhaust. Wind and natural gas HFCVs offer the greatest potential health benefits and could save 3700 to 6400 U.S. lives annually. Wind HFCVs should benefit climate most. An all-HFCV fleet would hardly affect tropospheric water vapor concentrations. Conversion to coal HFCVs may improve health but would damage climate more than fossil/electric hybrids. The real cost of hydrogen from wind electrolysis may be below that of U.S. gasoline.

  7. Cleaning the air and improving health with hydrogen fuel-cell vehicles.

    PubMed

    Jacobson, M Z; Colella, W G; Golden, D M

    2005-06-24

    Converting all U.S. onroad vehicles to hydrogen fuel-cell vehicles (HFCVs) may improve air quality, health, and climate significantly, whether the hydrogen is produced by steam reforming of natural gas, wind electrolysis, or coal gasification. Most benefits would result from eliminating current vehicle exhaust. Wind and natural gas HFCVs offer the greatest potential health benefits and could save 3700 to 6400 U.S. lives annually. Wind HFCVs should benefit climate most. An all-HFCV fleet would hardly affect tropospheric water vapor concentrations. Conversion to coal HFCVs may improve health but would damage climate more than fossil/electric hybrids. The real cost of hydrogen from wind electrolysis may be below that of U.S. gasoline.

  8. A one-compartment fructose/air biological fuel cell based on direct electron transfer.

    PubMed

    Wu, Xuee; Zhao, Feng; Varcoe, John R; Thumser, Alfred E; Avignone-Rossa, Claudio; Slade, Robert C T

    2009-10-15

    The construction and characterization of a one-compartment fructose/air biological fuel cell (BFC) based on direct electron transfer is reported. The BFC employs bilirubin oxidase and d-fructose dehydrogenase adsorbed on a cellulose-multiwall carbon nanotube (MWCNT) matrix, reconstituted with an ionic liquid, as the biocathode and the bioanode for oxygen reduction and fructose oxidation reactions, respectively. The performance of the bioelectrode was investigated by chronoamperometric and cyclic voltammetric techniques in a standard three-electrode cell, and the polarization and long-term stability of the BFC was tested by potentiostatic discharge. An open circuit voltage of 663 mV and a maximum power density of 126 microWcm(-2) were obtained in buffer at pH 5.0. Using this regenerated cellulose-MWCNT matrix as the immobilization platform, this BFC has shown a relatively high performance and long-term stability compared with previous studies.

  9. Effect of Fuel-Air Ratio, Inlet Temperature, and Exhaust Pressure on Detonation

    NASA Technical Reports Server (NTRS)

    Taylor, E S; Leary, W A; Diver, J R

    1940-01-01

    An accurate determination of the end-gas condition was attempted by applying a refined method of analysis to experimental results. The results are compared with those obtained in Technical Report no. 655. The experimental technique employed afforded excellent control over the engine variables and unusual cyclic reproducibility. This, in conjunction with the new analysis, made possible the determination of the state of the end-gas at any instant to a fair degree of precision. Results showed that for any given maximum pressure the maximum permissible end-gas temperature increased as the fuel-air ratio was increased. The tendency to detonate was slightly reduced by an increase in residual gas content resulting from an increase in exhaust backpressure with inlet pressure constant.

  10. Water management in a planar air-breathing fuel cell array using operando neutron imaging

    NASA Astrophysics Data System (ADS)

    Coz, E.; Théry, J.; Boillat, P.; Faucheux, V.; Alincant, D.; Capron, P.; Gébel, G.

    2016-11-01

    Operando Neutron imaging is used for the investigation of a planar air-breathing array comprising multiple cells in series. The fuel cell demonstrates a stable power density level of 150 mW/cm2. Water distribution and quantification is carried out at different operating points. Drying at high current density is observed and correlated to self-heating and natural convection. Working in dead-end mode, water accumulation at lower current density is largely observed on the anode side. However, flooding mechanisms are found to begin with water condensation on the cathode side, leading to back-diffusion and anodic flooding. Specific in-plane and through-plane water distribution is observed and linked to the planar array design.

  11. Development of a local continuous sampling probe for the equivalence air-fuel ratio measurement. Application to spark ignition engine

    NASA Astrophysics Data System (ADS)

    Guibert, P.; Dicocco, E.

    This paper is a contribution to the development of an original technique for measuring the in-cylinder equivalence air-fuel ratio. The main objective was to construct an instrument able to furnish instantaneous values of hydrocarbon concentration for many consecutive cycles at a definite location, especially at the spark plug location. The probe is based on a hot-wire-like apparatus, but involves catalytic oxidation on the wire surface in order to be sensitive to the hydrocarbon concentration. In this paper, we present the different steps needed to develop and validate the probe. The first step focuses on the geometric configuration to simplify as much as possible the mass transfer phenomena on the wire. The second step is a parametric study to evaluate the sensitivity, confidence and lifetime of the wire. By physical analysis, we propose a relationship between the electrical signal and the air-fuel equivalence ratio of the sampled gases. The third step is the application of the probe to in-cylinder motored engine measurements, which confirms the ability of the technique to characterise, quantitatively, the homogeneity of the air-fuel mixture, especially during the compression stroke. This work points out that the global sensitivity is estimated at 4V per unit of equivalence air-fuel ratio and the response time is estimated at about 400μs. The equivalence air-fuel ratio range is from pure air to 1.2. Experiments show that it is necessary to calibrate the system before use because of the existence of multiple catalysis states. The probe presents advantages associated with its simplicity, its low cost and its direct engine application without any modifications.

  12. Olive mill wastewater treatment in single-chamber air-cathode microbial fuel cells.

    PubMed

    Bermek, Hakan; Catal, Tunc; Akan, S Süha; Ulutaş, Mehmet Sefa; Kumru, Mert; Özgüven, Mine; Liu, Hong; Özçelik, Beraat; Akarsubaşı, Alper Tunga

    2014-04-01

    Olive mill wastewaters create significant environmental issues in olive-processing countries. One of the most hazardous groups of pollutants in these wastewaters is phenolic compounds. Here, olive mill wastewater was used as substrate and treated in single-chamber air-cathode microbial fuel cells. Olive mill wastewater yielded a maximum voltage of 381 mV on an external resistance of 1 kΩ. Notable decreases in the contents of 3,4-dihydroxybenzoic acid, tyrosol, gallic acid and p-coumaric acid were detected. Chemical oxygen demand removal rates were 65 % while removal of total phenolics by the process was lower (49 %). Microbial community analysis during the olive mill wastewater treating MFC has shown that both exoelectrogenic and phenol-degrading microorganisms have been enriched during the operation. Brevundimonas-, Sphingomonas- and Novosphingobium-related phylotypes were enriched on the anode biofilm, while Alphaproteobacteria and Bacteriodetes dominated the cathode biofilm. As one of the novel studies, it has been demonstrated that recalcitrant olive mill wastewaters could be treated and utilized for power generation in microbial fuel cells.

  13. A MultiAir®/MultiFuel Approach to Enhancing Engine System Efficiency

    SciTech Connect

    Reese, Ronald

    2015-05-20

    FCA US LLC (formally known as Chrysler Group LLC, and hereinafter “Chrysler”) was awarded an American Recovery and Reinvestment Act (ARRA) funded project by the Department of Energy (DOE) titled “A MultiAir®/MultiFuel Approach to Enhancing Engine System Efficiency” (hereinafter “project”). This award was issued after Chrysler submitted a proposal for Funding Opportunity Announcement DE-FOA- 0000079, “Systems Level Technology Development, Integration, and Demonstration for Efficient Class 8 Trucks (SuperTruck) and Advanced Technology Powertrains for Light-Duty Vehicles (ATP-LD).” Chrysler started work on this project on June 01, 2010 and completed testing activities on August 30, 2014. Overall objectives of this project were; Demonstrate a 25% improvement in combined Federal Test Procedure (FTP) City and Highway fuel economy over a 2009 Chrysler minivan; Accelerate the development of highly efficient engine and powertrain systems for light-duty vehicles, while meeting future emissions standards; and Create and retain jobs in accordance with the American Recovery and Reinvestment Act of 2009

  14. Temperature dependence of an abiotic glucose/air alkaline fuel cell

    NASA Astrophysics Data System (ADS)

    Orton, Dane; Scott, Daniel

    2015-11-01

    The temperature dependence of a previously developed glucose fuel cell is explored. This cell uses a small molecule dye mediator to transport oxidizable electrons from glucose to a carbon felt anode. This reaction is driven by an air breathing MnO2 cathode. This research investigates how the temperature of the system affects the power production of the fuel cell. Cell performance is observed using either methyl viologen, indigo carmine, trypan blue, or hydroquinone as a mediator at temperatures of 15, 19, 27, 32, 37, 42, and 49 °C. Cyclic voltammetry of the cell anode at the given temperatures with the individual dyes is also presented. The highest power production amongst all of the cells occurs at 32 °C. This occurs with the mediator indigo carmine or with the mediator methyl viologen. These sustained powers are 2.31 mW cm-2 and 2.39 mW cm-2, respectively. This is approximately a 350% increase for these cells compared to their power produced at room temperature. This dramatic increase is likely due to increased solubility of the mediator dye at higher temperatures.

  15. Influence of the continuous and dispersed phases on the symmetry of a gas turbine air-blast atomizer

    NASA Technical Reports Server (NTRS)

    Mcdonell, V. G.; Samuelsen, G. S.

    1990-01-01

    Current trends in liquid-fueled practical combustion systems are leaving less tolerance for fuel injection deficiencies such as poor spray field symmetry. The present paper evaluates the symmetry of the flowfield produced by a practical airblast atomizer. Specifically, the influence of both the continuous phase and dispersed phase on the spray field symmetry is assessed. In the present case, asymmetry in volume flux is associated principally with disparities in the injection of the dispersed phase, which is manifested by a maldistribution of larger drops. Asymmetries observed in the continuous phase without the dispersed phase are reduced in magnitude by the presence of the dispersed phase, but still contribute to asymmetry in radial spread of the dispersed phase.

  16. Ignition of ethane, propane, and butane in counterflow jets of cold fuel versus hot air under variable pressures

    SciTech Connect

    Fotache, C.G.; Wang, H.; Law, C.K.

    1999-06-01

    This study investigates experimentally the nonpremixed ignition of ethane, propane, n-butane, and isobutane in a configuration of opposed fuel versus heated air jets. For each of these fuels the authors explore the effects of inert dilution, system pressure, and flow strain rate, for fuel concentrations ranging between 3--100% by volume, pressures between 0.2 and 8 atm, and strain rates of 100--600 s{sup {minus}1}. Qualitatively, these fuels share a number of characteristics. First, flame ignition typically occurs after an interval of mild oxidation, characterized by minimal heat release, fuel conversion, and weak light emission. The temperature extent of this regime decreases with increasing the fuel concentration, the ambient pressure, or the flow residence time. Second, the response to strain rate, pressure, and fuel concentration is similar for all investigated fuels, in that the ignition temperatures monotonically decrease with increasing fuel content, decreasing flow strain, and increasing ambient pressure. The C{sub 4} alkanes, however, exhibit three distinct p-T ignition regimes, similar to the homogeneous explosion limits. Finally, at 1 atm, 100% fuel, and a fixed flow strain rate the ignition temperature increases in the order of ethane < propane < n-butane < i-butane. Numerical simulation was conducted for ethane ignition using detailed reaction kinetics and transport descriptions. The modeling results suggest that ignition for all fuels studied at pressures below 5 atm is initiated by fuel oxidation following the high-temperature mechanism of radical chain branching and with little contribution by low-to-intermediate temperature chemistry.

  17. Effects of hydraulic pressure on the performance of single chamber air-cathode microbial fuel cells.

    PubMed

    Cheng, Shaoan; Liu, Weifeng; Guo, Jian; Sun, Dan; Pan, Bin; Ye, Yaoli; Ding, Weijun; Huang, Haobin; Li, Fujian

    2014-06-15

    Scaling up of microbial fuel cells (MFCs) without losing power density requires a thorough understanding of the effect of hydraulic pressure on MFC performance. In this work, the performance of an activated carbon air-cathode MFC was evaluated under different hydraulic pressures. The MFC under 100 mmH2O hydraulic pressure produced a maximum power density of 1260 ± 24 mW m(-2), while the power density decreased by 24.4% and 44.7% as the hydraulic pressure increased to 500 mmH2O and 2000 mmH2O, respectively. Notably, the performance of both the anode and the cathode had decreased under high hydraulic pressures. Electrochemical impedance spectroscopy tests of the cathode indicated that both charge transfer resistance and diffusion transfer resistance increased with the increase in hydraulic pressure. Denaturing gradient gel electrophoresis of PCR-amplified partial 16S rRNA genes demonstrated that the similarity among anodic biofilm communities under different hydraulic pressures was ≥ 90%, and the communities of all MFCs were dominated by Geobacter sp. These results suggested that the reduction in power output of the single chamber air-cathode MFC under high hydraulic pressures can be attributed to water flooding of the cathode and suppression the metabolism of anodic exoelectrogenic bacteria.

  18. A single-chamber microbial fuel cell without an air cathode.

    PubMed

    Nimje, Vanita Roshan; Chen, Chien-Cheng; Chen, Hau-Ren; Chen, Chien-Yen; Tseng, Min-Jen; Cheng, Kai-Chien; Shih, Ruey-Chyuan; Chang, Young-Fo

    2012-01-01

    Microbial fuel cells (MFCs) represent a novel technology for wastewater treatment with electricity production. Electricity generation with simultaneous nitrate reduction in a single-chamber MFC without air cathode was studied, using glucose (1 mM) as the carbon source and nitrate (1 mM) as the final electron acceptor employed by Bacillus subtilis under anaerobic conditions. Increasing current as a function of decreased nitrate concentration and an increase in biomass were observed with a maximum current of 0.4 mA obtained at an external resistance (R(ext)) of 1 KΩ without a platinum catalyst of air cathode. A decreased current with complete nitrate reduction, with further recovery of the current immediately after nitrate addition, indicated the dependence of B. subtilis on nitrate as an electron acceptor to efficiently produce electricity. A power density of 0.0019 mW/cm(2) was achieved at an R(ext) of 220 Ω. Cyclic voltammograms (CV) showed direct electron transfer with the involvement of mediators in the MFC. The low coulombic efficiency (CE) of 11% was mainly attributed to glucose fermentation. These results demonstrated that electricity generation is possible from wastewater containing nitrate, and this represents an alternative technology for the cost-effective and environmentally benign treatment of wastewater.

  19. Silver electrodeposition on the activated carbon air cathode for performance improvement in microbial fuel cells

    NASA Astrophysics Data System (ADS)

    Pu, Liangtao; Li, Kexun; Chen, Zhihao; Zhang, Peng; Zhang, Xi; Fu, Zhou

    2014-12-01

    The present work was to study silver electrodeposition on the activated carbon (AC) air cathode for performance improvement in microbial fuel cells (MFCs). The treated cathodes were proved to be effective to enhance the performance of MFCs. The maximum power density of MFC with silver electrodeposition time of 50 s (Ag-50) cathode was 1080 ± 60 mW m-2, 69% higher than the bare AC air cathode. X-ray photoelectron spectroscopy (XPS) results showed that zero-valent, monovalent and divalent silver were present to transform mutually, which illustrated that the oxygen reduction reaction (ORR) at the cathode took place through four-electron pathway. From electrochemical impedance spectroscopy (EIS) analysis, the electrodeposition method made the total resistance of the electrodes largely reduced. Meanwhile the deposited silver had no toxic effects on anode culture but inhibited the biofilm growth of the cathodes. This kind of antimicrobial efficient cathode, prepared with a simple, fast and economical method, was of good benefit to the performance improvement of MFCs.

  20. Impact of sulfur content regulations of shipping fuel on coastal air quality

    NASA Astrophysics Data System (ADS)

    Seyler, André; Wittrock, Folkard; Kattner, Lisa; Mathieu-Üffing, Barbara; Weigelt, Andreas; Peters, Enno; Richter, Andreas; Schmolke, Stefan; Burrows, John P.

    2016-04-01

    Shipping traffic is a sector that faces an enormous growth rate and contributes substantially to the emissions from the transportation sector, but lacks regulations and controls. Shipping is not enclosed in the Kyoto Protocol. However, the International Maritime Organization (IMO) introduced sufhur limits for marine heavy fuels, nitrogen oxide limits for newly-built ship engines and established Emission Control Areas (ECA) in the North and Baltic Sea as well as around North America with the International Convention for the Prevention of Pollution from Ships (MARPOL 73/78 Annex VI). Recently, on the 1st of January 2015, the allowed sulfur content of marine fuels inside Sulfur Emission Control Areas has been significantly decreased from 1.0% to 0.1%. However, measurements of reactive trace gases and the chemical composition of the marine troposphere along shipping routes are sparse and up to now there is no regular monitoring system available. The project MeSmarT (measurements of shipping emissions in the marine troposphere) is a cooperation between the University of Bremen, the German Federal Maritime and Hydrographic Agency (Bundesamt für Seeschifffahrt und Hydrographie, BSH) and the Helmholtz-Zentrum Geesthacht. This study aims to analyse the influence of shipping emissions on the coastal air quality by evaluating ground-based remote sensing measurements using the MAX-DOAS (Multi AXis Differential Optical Absorption Spectroscopy) technique. Measurements of the atmospheric trace gases nitrogen dioxide (NO2) and sulfur dioxide (SO2) have been carried out in the marine troposphere at the MeSmarT measurement sites in Wedel and on Neuwerk and on-board several ship cruises on the North and Baltic Sea. The capability of two-channel MAX-DOAS systems to do simultaneous measurements in the UV and visible spectral range has been used in the so called "onion-peeling" approach to derive spatial distributions of ship emissions and to analyse the movement of the exhausted

  1. Impacts of using reformulated and oxygenated fuel blends on the regional air quality of the upper Rhine valley

    NASA Astrophysics Data System (ADS)

    Vinuesa, J.-F.; Mirabel, Ph.; Ponche, J.-L.

    2006-06-01

    The effects of using three alternative gasoline fuel blends on regional air quality of the upper Rhine valley have been investigated. The first of the tested fuels is oxygenated by addition of ethyl-tertio-butyl ether (ETBE), the second is based on a reformulation of its composition and the third on is both oxygenated and reformulated. The upper Rhine valley is a very sensitive region for pollution episodes and several meteorological and air quality studies have already been performed. High temporal and spatial emission inventories are available allowing relevant and realistic modifications of the emission inventories. The calculation period, i.e., 11 May 1998, corresponds to a regional photochemical ozone pollution episode during which ozone concentrations exceeded several times the information threshold of the ozone directive of the European Union (180 μg m-3 as 1 hourly average). New emission inventories are set up using specific emission factors related to the alternative fuels by varying the fraction of gasoline passenger cars (from 50% to 100%) using the three fuel blends. Then air quality modeling simulations are performed using these emission inventories over the upper Rhine valley. The impact of alternative fuels on regional air quality is evaluated by comparing these simulations with the one using a reference emission inventory, e.g., where no modifications of the fuel composition are included. The results are analyzed by focusing on peak levels and daily averaged concentrations. The use of the alternative fuels leads to general reductions of ozone and volatile organic compounds (VOC) and increases of NOx levels. We found different behaviors related to the type of the area of concern i.e. rural or urban. The impacts on ozone are enhanced in urban areas where 15% reduction of the ozone peak and daily averaged concentrations can be reached. This behavior is similar for the NOx for which, in addition, an increase of the levels can be noted in urban plumes

  2. Impacts of using reformulated and oxygenated fuel blends on the regional air quality of the upper Rhine valley

    NASA Astrophysics Data System (ADS)

    Vinuesa, J.-F.; Mirabel, Ph.; Ponche, J.-L.

    2005-11-01

    The effects of using three alternative gasoline fuel blends on regional air quality of the upper Rhine valley have been investigated. The first of the tested fuels is oxygenated by addition of ethyl-tertio-butyl ether (ETBE), the second is based on a reformulation of its composition and the third on is both oxygenated and reformulated. The upper Rhine valley is a very sensitive region for pollution episodes and several meteorological and air quality studies have already been performed. High temporal and spatial emission inventories are available allowing relevant and realistic modifications of the emission inventories. The calculation period, i.e., 11 May 1998, corresponds to a regional photochemical ozone pollution episode during which ozone concentrations exceeded several times the information threshold of the ozone directive of the European Union (180 µg m-3 as 1 hourly average). New emission inventories are set up using specific emission factors related to the alternative fuels by varying the fraction of gasoline passenger cars (from 50% to 100%) using the three fuel blends. Then air quality modeling simulations are performed using these emission inventories over the upper Rhine valley. The impact of alternative fuels on regional air quality is evaluated by comparing these simulations with the one using a reference emission inventory, e.g., where no modifications of the fuel composition are included. The results are analyzed by focusing on peak levels and daily averaged concentrations. The use of the alternative fuels leads to general reductions of ozone and volatile organic compounds (VOC) and increases of NOx levels. We found different behaviors related to the type of the area of concern i.e. rural or urban. The impacts on ozone are enhanced in urban areas where 15% reduction of the ozone peak and daily averaged concentrations can be reached. This behavior is similar for the NOx for which, in addition, an increase of the levels can be noted in urban plumes

  3. Manipulating ship fuel sulfur content and modeling the effects on air quality and climate

    NASA Astrophysics Data System (ADS)

    Partanen, Antti-Ilari; Laakso, Anton; Schmidt, Anja; Kokkola, Harri; Kuokkanen, Tuomas; Kerminen, Veli-Matti; Lehtinen, Kari E. J.; Laakso, Lauri; Korhonen, Hannele

    2013-04-01

    Aerosol emissions from international shipping are known to cause detrimental health effects on people mainly via increased lung cancer and cardiopulmonary diseases. On the other hand, the aerosol particles from the ship emissions modify the properties of clouds and are believed to have a significant cooling effect on the global climate. In recent years, aerosol emissions from shipping have been more strictly regulated in order to improve air quality and thus decrease the mortality due to ship emissions. Decreasing the aerosol emissions from shipping is projected to decrease their cooling effect, which would intensify the global warming even further. In this study, we use a global aerosol-climate model ECHAM5.5-HAM2 to test if continental air quality can be improved while still retaining the cooling effect from shipping. The model explicitly resolves emissions of aerosols and their pre-cursor gases. The model also calculates the interaction between aerosol particles and clouds, and can thus predict the changes in cloud properties due to aerosol emissions. We design and simulate a scenario where ship fuel sulfur content is strictly limited to 0.1% near all coastal regions, but doubled in the open oceans from the current global mean value of 2.7% (geo-ships). This scenario is compared to three other simulations: 1) No shipping emissions at all (no-ships), 2) present-day shipping emissions (std-ships) and 3) a future scenario where sulfur content is limited to 0.1% in the coastal zones and to 0.5% in the open ocean (future-ships). Global mean radiative flux perturbation (RFP) in std-ships compared to no-ships is calculated to be -0.4 W m-2, which is in the range of previous estimates for present-day shipping emissions. In the geo-ships simulation the corresponding global mean RFP is roughly equal, but RFP is spatially distributed more on the open oceans, as expected. In future-ships the decreased aerosol emissions provide weaker cooling effect of only -0.1 W m-2. In

  4. Estimating the climate and air quality benefits of aviation fuel and emissions reductions

    NASA Astrophysics Data System (ADS)

    Dorbian, Christopher S.; Wolfe, Philip J.; Waitz, Ian A.

    2011-05-01

    associated with CO 2 alone (all else being equal). For a non-CO 2 to CO 2 ratio based on economic damage costs, we find a central value of 1.8 at a 3% discount rate, with a range from 0.6 to 2.5 for the upper and lower bounds of scientific and scenario-based uncertainty. Since estimating the co-benefits in this way is an important requirement for cost-benefit analyses, we also provide estimates of the air quality benefits of aviation fuel burn reduction in a similar format. We find the marginal damage costs of aircraft emissions below 3000 feet to be of similar magnitude to the climate costs on a per unit fuel burn basis, or an order of magnitude smaller on a per flight basis since we take no account of the air quality impacts of emissions above 3000 feet where the majority of fuel is consumed for the fleet.

  5. The study on the interdependence of spray characteristics and evaporation history of fuel spray in high temperature air crossflow

    NASA Astrophysics Data System (ADS)

    Zhu, J. Y.; Chin, J. S.

    1986-06-01

    A numerical calculation method is used to predict the variation of the characteristics of fuel spray moving in a high temperature air crossflow, mainly, Sauter mean diameter SMD, droplet size distribution index N of Rosin-Rammler distribution and evaporation percentage changing with downstream distance X from the nozzle. The effect of droplet heat-up period evaporation process and forced convection are taken into full account; thus, the calculation model is a very good approximation to the process of spray evaporation in a practical combustor, such as ramjet, aero-gas turbine, liquid propellant rocket, diesel and other liquid fuel-powered combustion devices. The changes of spray characteristics N, SMD and spray evaporation percentage with air velocity, pressure, temperature, fuel injection velocity, and the initial spray parameters are presented.

  6. Influence of air contaminants on planar, self-breathing hydrogen PEM fuel cells in an outdoor environment

    NASA Astrophysics Data System (ADS)

    Biesdorf, Johannes; Zamel, Nada; Kurz, Timo

    2014-02-01

    In this study, the effects of air contaminants on the operation of air-breathing fuel cells in an outdoor environment are investigated. For this purpose, a unique testing platform, which allows continuous operation of 30 cells at different locations, was developed. Three of these testing platforms were placed at different sites in Freiburg im Breisgau, Germany, with high variances of weather and pollution patterns. These locations range from a highly polluted place next to a busy highway to a location with virtually pure air at an altitude of 1205 m. The fuel cells were tested at all sites for over 4500 h in continuous operation. The degradation of the cells due to air pollutants was measured as a voltage decrease for three different operation loads and membranes from two different manufactures. As the temperature of the fuel cells has not been regulated, the irreversible degradation of the cell voltages could not be isolated from the dominant influence of the temperature in the raw data. With the use of the measured data, the impact of real mixtures of air contaminants was observed to be mainly reversible.

  7. Regeneration of zinc anodes for the Electric Fuel{reg_sign} zinc-air refuelable EV battery system

    SciTech Connect

    Koretz, B.; Goldstein, J.R.

    1997-12-31

    The Electric Fuel Limited (EFL) refuelable zinc-air battery system is currently being tested in a number of electric vehicle demonstration projects, the largest of which is a field test of zinc-air postal vans sponsored chiefly by Deutsche Post AG (the German Post Office). The zinc-air battery is not recharged electrically, but rather is refueled through a series of mechanical and electrochemical steps that will require a special infrastructure in commercial application. As part of the German Post Office field test program, Electric Fuel designed and constructed a pilot zinc anode regeneration plant in Bremen, Germany. This plant is capable of servicing up to 100 commercial vans per week, which is adequate for the field test vehicle fleet. This paper will describe the design and operation of each of the areas and devices within the plant.

  8. Primary zone air proportioner

    DOEpatents

    Cleary, Edward N. G.

    1982-10-12

    An air proportioner is provided for a liquid hydrocarbon fueled gas turbine of the type which is convertible to oil gas fuel and to coal gas fuel. The turbine includes a shell for enclosing the turbine, an air duct for venting air in said shell to a gasifier, and a fuel injector for injecting gasified fuel into the turbine. The air proportioner comprises a second air duct for venting air from the air duct for mixing with fuel from the gasifier. The air can be directly injected into the gas combustion basket along with the fuel from the injector or premixed with fuel from the gasifier prior to injection by the fuel injector.

  9. Environmental, health and safety impact analysis of an aluminum-air battery for vehicular applications and impact analysis associated with its overall fuel cycle. Volume 1. Battery and fuel cycle. Final report

    SciTech Connect

    Gratt, L.B.

    1981-11-30

    This volume considers the potential environmental, health, and safety concerns of the aluminum-air battery and its overall fuel cycle. It quantifies the consumption of natural resources and the generation of environmental residuals due to the battery's fuel cycle. A comparison of the air emissions of the aluminum-air battery vehicle to an internal combustion engine vehicle is presented. Methods of mitigating potentially adverse impacts are examined along with the areas requiring further environmental, health and safety research.

  10. Modelling of blast loading on aboveground structures - I. General phenomenology and external blast

    NASA Astrophysics Data System (ADS)

    Beshara, F. B. A.

    1994-06-01

    The paper is concerned with the prediction of dynamic effects of unconfined explosions needed for the structural analysis of blast-loaded aboveground structures. The basic features of the explosion and blast wave phenomena are presented along with a discussion of TNT equivalency and blast scaling laws. The characteristics of incident overpressure loading due to atomic weapons, conventional high explosives and unconfined vapour cloud explosions are addressed and followed by a description of the other blast loading components associated with air flow and reflection process. In the final part, the modelling of external blast loads on the different faces of aboveground rigid structures is considered. A unified approach is followed in the presentation of the governing equations of modelling of blast loads for mathematical and practical applications.

  11. Combinatorial electrochemical cell array for high throughput screening of micro-fuel-cells and metal/air batteries

    NASA Astrophysics Data System (ADS)

    Jiang, Rongzhong

    2007-07-01

    An electrochemical cell array was designed that contains a common air electrode and 16 microanodes for high throughput screening of both fuel cells (based on polymer electrolyte membrane) and metal/air batteries (based on liquid electrolyte). Electrode materials can easily be coated on the anodes of the electrochemical cell array and screened by switching a graphite probe from one cell to the others. The electrochemical cell array was used to study direct methanol fuel cells (DMFCs), including high throughput screening of electrode catalysts and determination of optimum operating conditions. For screening of DMFCs, there is about 6% relative standard deviation (percentage of standard deviation versus mean value) for discharge current from 10to20mA/cm2. The electrochemical cell array was also used to study tin/air batteries. The effect of Cu content in the anode electrode on the discharge performance of the tin/air battery was investigated. The relative standard deviations for screening of metal/air battery (based on zinc/air) are 2.4%, 3.6%, and 5.1% for discharge current at 50, 100, and 150mA/cm2, respectively.

  12. Combinatorial electrochemical cell array for high throughput screening of micro-fuel-cells and metal/air batteries.

    PubMed

    Jiang, Rongzhong

    2007-07-01

    An electrochemical cell array was designed that contains a common air electrode and 16 microanodes for high throughput screening of both fuel cells (based on polymer electrolyte membrane) and metal/air batteries (based on liquid electrolyte). Electrode materials can easily be coated on the anodes of the electrochemical cell array and screened by switching a graphite probe from one cell to the others. The electrochemical cell array was used to study direct methanol fuel cells (DMFCs), including high throughput screening of electrode catalysts and determination of optimum operating conditions. For screening of DMFCs, there is about 6% relative standard deviation (percentage of standard deviation versus mean value) for discharge current from 10 to 20 mAcm(2). The electrochemical cell array was also used to study tin/air batteries. The effect of Cu content in the anode electrode on the discharge performance of the tin/air battery was investigated. The relative standard deviations for screening of metal/air battery (based on zinc/air) are 2.4%, 3.6%, and 5.1% for discharge current at 50, 100, and 150 mAcm(2), respectively. PMID:17672740

  13. High-pressure combustor exhaust emissions with improved air-atomizing and conventional pressure-atomizing fuel nozzles

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.; Norgren, C. T.

    1973-01-01

    A high-pressure combustor segment 0.456 meter (18 in.) long with a maximum cross section of 0.153 by 0.305 meter (6 by 12 in.) was tested with specially designed air-atomizing and conventional pressure-atomizing fuel nozzles at inlet-air temperatures of 340 to 755 k (610 deg to 1360 R), reference velocities of 12.4 to 26.1 meters per second (41 to 86 ft/sec), and fuel-air ratios of 0.008 to 0.020. Increasing inlet-air pressure from 4 to 20 atmospheres generally increased smoke number and nitric oxide, but decreased carbon monoxide and unburned hydrocarbon concentrations with air-atomizing and pressure-atomizing nozzles. Emission indexes for carbon monoxide and unburned hydrocarbons were lower at 4, 10, and 20 atmospheres, and nitric oxide emission indexes were lower at 10 and 20 atmospheres with air-atomizing than with pressure-atomizing nozzles.

  14. Research Opportunities for Cancer Associated with Indoor Air Pollution from Solid-Fuel Combustion

    PubMed Central

    Ghazarian, Armen A.; DeMarini, David M.; Sapkota, Amir; Jack, Darby; Lan, Qing; Winn, Deborah M.; Birnbaum, Linda S.

    2012-01-01

    Background: Indoor air pollution (IAP) derived largely from the use of solid fuels for cooking and heating affects about 3 billion people worldwide, resulting in substantial adverse health outcomes, including cancer. Women and children from developing countries are the most exposed populations. A workshop was held in Arlington, Virginia, 9–11 May 2011, to better understand women’s and children’s potential health effects from IAP in developing countries. Workshop participants included international scientists, manufacturers, policy and regulatory officials, community leaders, and advocates who held extensive discussions to help identify future research needs. Objectives: Our objective was to identify research opportunities regarding IAP and cancer, including research questions that could be incorporated into studies of interventions to reduce IAP exposure. In this commentary, we describe the state of the science in understanding IAP and its associations with cancer and suggest research opportunities for improving our understanding of the issues. Discussion: Opportunities for research on IAP and cancer include studies of the effect of IAP on cancers other than lung cancer; studies of genetic factors that modify susceptibility; studies to determine whether the effects of IAP are mediated via germline, somatic, and/or epigenetic changes; and studies of the effects of IAP exposure via dermal and/or oral routes. Conclusions: IAP from indoor coal use increases the risk of lung cancer. Installing chimneys can reduce risk, and some genotypes, including GSTM1-null, can increase risk. Additional research is needed regarding the effects of IAP on other cancers and the effects of different types of solid fuels, oral and dermal routes of IAP exposure, genetic and epigenetic mechanisms, and genetic susceptibility. PMID:22846419

  15. [Electricity generation using the short-arm air-cathode microbial fuel cell].

    PubMed

    Guo, Kun; Li, Ding-jie; Li, Hao-ran; Du, Zhu-wei

    2009-10-15

    The short-arm air-cathode microbial fuel cell (ACMFC) was constructed using a cramp to fix the proton exchange membrane (PEM) and carbon paper with 0.5 mg/cm2 onto the short-arm side of the anode chamber. Exoelectrogens on the surface of graphite rod were enriched by a sludge microbial fuel cell from the anaerobic digestion sludge. And the cyclic voltammetry result showed these microbes had electrochemical activities. Using the graphite rod covered by exoelectrogens as the anode and sodium acetate as the substrate, the short-arm ACMFC showed a maximal power density (Pm) of 738 mW/m2, internal resistance (Ri) of 280 omega and open circuit voltage (OCV) of 741 mV. Continuous sparging the anode chamber with nitrogen or removal of the proton exchange membrane enhance the Pm of the cell to 745 mW/m2 and 759 mW/m2 respectively. When both of the two measures were used together, the Pm reached up to 922 mW/m2. Under these three conditions the Ri of the cell was kept around 280 omega. When the substrate concentration was 12.62-100.96 mg/L and external resistance was 510 omega, the maximal voltage of the cell and the substrate concentration showed an obvious linear relation (R2 = 0.99). But when the concentration was above 100.96 mg/L, the maximal voltage stably kept around 302mV(the external resistance was 510 omega). However, the Coulombic efficiency of the short-arm ACMFC gradually increased with the increase of the substrate concentration, from 31.83% to 45.03%.

  16. Solid Fuel Burning in Steady, Strained, Premixed Flow Fields: The Graphite/Air/Methane System

    NASA Technical Reports Server (NTRS)

    Egolfopoulos, Fokion N.; Wu, Ming-Shin (Technical Monitor)

    2000-01-01

    A detailed numerical investigation was conducted on the simultaneous burning of laminar premixed CH4/air flames and solid graphite in a stagnation flow configuration. The graphite and methane were chosen for this model, given that they are practical fuels and their chemical kinetics are considered as the most reliable ones among solid and hydrocarbon fuels, respectively. The simulation was performed by solving the quasi-one-dimensional equations of mass, momentum, energy, and species. The GRI 2.1 scheme was used for the gas-phase kinetics, while the heterogeneous kinetics were described by a six-step mechanism including stable and radical species. The effects of the graphite surface temperature, the gas-phase equivalence ratio, and the aerodynamic strain rate on the graphite burning rate and NO, production and destruction mechanisms were assessed. Results indicate that as the graphite temperature increases, its burning rate as well as the NO, concentration increase. Furthermore, it was found that by increasing the strain rate, the graphite burning rate increases as a result of the augmented supply of the gas-phase reactants towards the surface, while the NO, concentration decreases as a result of the reduced residence time. The effect of the equivalence ratio on both the graphite burning rate and NO, concentration was found to be non-monotonic and strongly dependent on the graphite temperature. Comparisons between results obtained for a graphite and a chemically inert surface revealed that the chemical activity of the graphite surface can result to the reduction of NO through reactions of the CH3, CH2, CH, and N radicals with NO.

  17. Organic carbonyl compounds in Albuquerque, New Mexico, air: A preliminary study of the effects of oxygenated fuel use

    SciTech Connect

    Popp, C.J.; Zhang, Lin; Gaffney, J.S.

    1993-06-01

    A suite of inorganic and organic species were analyzed for four 2--4 day time periods over a year in Albuquerque, New Mexico to determine baseline conditions for organic pollutants under the current air pollution control parameters. Concentrations of low molecular weight carbonyl compounds were relatively high compared with areas such as Los Angeles. Formio acid concentrations in air samples were significant even in winter. In addition, ratios of peroxypropionyl nitrate to peroxyacyetyl nitrate are higher than expected and may be related to the use of oxygenated fuels which are used to mitigate CO concentrations. The number of CO violations in Albuquerque has decreased steadily since 1982 and the downward trend has continued since 1989 when oxygenated fuel use was mandated. It is, therefore, difficult to correlate the drop in CO violations directly to the use of oxygenated fuels when such factors as fleet turnover, woodburning controls, emissions testing and meteorological conditions also may be playing significant roles. More detailed studies are needed to determine the specific relationship between the use of oxygenated fuels and the air quality in Albuquerque, New Mexico and similar urban areas in the western United States.

  18. Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells.

    PubMed

    Logan, Bruce; Cheng, Shaoan; Watson, Valerie; Estadt, Garett

    2007-05-01

    To efficiently generate electricity using bacteria in microbial fuel cells (MFCs), highly conductive noncorrosive materials are needed that have a high specific surface area (surface area per volume) and an open structure to avoid biofouling. Graphite brush anodes, consisting of graphite fibers wound around a conductive, but noncorrosive metal core, were examined for power production in cube (C-MFC) and bottle (B-MFC) air-cathode MFCs. Power production in C-MFCs containing brush electrodes at 9600 m2/m3 reactor volume reached a maximum power density of 2400 mW/m2 (normalized to the cathode projected surface area), or 73 W/m3 based on liquid volume, with a maximum Coulombic efficiency (CE) of 60%. This power density, normalized by cathode projected area, is the highest value yet achieved by an air-cathode system. The increased power resulted from a reduction in internal resistance from 31 to 8 Q. Brush electrodes (4200 m2/m3) were also tested in B-MFCs, consisting of a laboratory media bottle modified to have a single side arm with a cathode clamped to its end. B-MFCs inoculated with wastewater produced up to 1430 mW/m2 (2.3 W/m3, CE = 23%) with brush electrodes, versus 600 mW/m2 with a plain carbon paper electrode. These findings show that brush anodes that have high surface areas and a porous structure can produce high power densities, and therefore have qualities that make them ideal for scaling up MFC systems.

  19. Indoor air pollution from burning yak dung as a household fuel in Tibet

    NASA Astrophysics Data System (ADS)

    Xiao, Qingyang; Saikawa, Eri; Yokelson, Robert J.; Chen, Pengfei; Li, Chaoliu; Kang, Shichang

    2015-02-01

    Yak dung is widely used for cooking and heating in Tibet. We measured real-time concentrations of black carbon (BC) and fine particulate matter with an aerodynamic diameter of 2.5 μm or less (PM2.5) emitted by yak dung burning in six households with different living conditions and stove types in the Nam Co region, Tibet. We observed a much lower average BC/PM2.5 mass ratio (0.013, range 0.006-0.028) from dung combustion in this area than previously reported estimates, ranging between 0.05 and 0.11. Based on our measurements, estimated fuel use, and published emission factors of BC and PM2.5, about 0.4-1.7 Gg/year of BC is emitted by yak dung combustion in Tibet in addition to the previously estimated 0.70 Gg/year of BC for Tibetan residential sources. Our survey shows that most residents were aware of adverse health impacts of indoor yak dung combustion and approximately 2/3 of residents had already installed chimney stoves to mitigate indoor air pollution. However, our measurements reveal that, without adequate ventilation, installing a chimney may not ensure good indoor air quality. For instance, the 6-h average BC and PM2.5 concentrations in a stone house using a chimney stove were 24.5 and 873 μg/m3, respectively. We also observed a change in the BC/PM2.5 ratios before and after a snow event. The impact of dung moisture content on combustion efficiency and pollutant emissions needs further investigation.

  20. Process control techniques for the Sidmar blast furnaces

    SciTech Connect

    Vandenberghe, D.; Bonte, L.; Nieuwerburgh, H. van

    1995-12-01

    The major challenge for modern blast furnace operation is the achievement of a very high productivity, excellent hot metal quality, low fuel consumption and longer blast furnace campaigns. The introduction of predictive models, decision supporting software and expert systems has reduced the standard deviation of the hot metal silicon content. The production loss due to the thermal state of the blast furnace has decreased three times since 1990. An appropriate control of the heat losses with high pulverized coal injection rates, is of the utmost importance for the life of the blast furnace. Different rules for the burden distribution of both blast furnaces are given. At blast furnace A, a peripheral gas flow is promoted, while at blast furnace B a more central gas flow is promoted.

  1. Investigation of low temperature solid oxide fuel cells for air-independent UUV applications

    NASA Astrophysics Data System (ADS)

    Moton, Jennie Mariko

    Unmanned underwater vehicles (UUVs) will benefit greatly from high energy density (> 500 Wh/L) power systems utilizing high-energy-density fuels and air-independent oxidizers. Current battery-based systems have limited energy densities (< 400 Wh/L), which motivate development of alternative power systems such as solid oxide fuel cells (SOFCs). SOFC-based power systems have the potential to achieve the required UUV energy densities, and the current study explores how SOFCs based on gadolinia-doped ceria (GDC) electrolytes with operating temperatures of 650°C and lower may operate in the unique environments of a promising UUV power plant. The plant would contain a H 2O2 decomposition reactor to supply humidified O2 to the SOFC cathode and exothermic aluminum/H2O combustor to provide heated humidified H2 fuel to the anode. To characterize low-temperature SOFC performance with these unique O2 and H2 source, SOFC button cells based on nickel/GDC (Gd0.1Ce0.9O 1.95) anodes, GDC electrolytes, and lanthanum strontium cobalt ferrite (La0.6Sr0.4Co0.2Fe0.8O3-δ or LSCF)/GDC cathodes were fabricated and tested for performance and stability with humidity on both the anode and the cathode. Cells were also tested with various reactant concentrations of H2 and O2 to simulate gas depletion down the channel of an SOFC stack. Results showed that anode performance depended primarily on fuel concentration and less on the concentration of the associated increase in product H2O. O 2 depletion with humidified cathode flows also caused significant loss in cell current density at a given voltage. With the humidified flows in either the anode or cathode, stability tests of the button cells at 650 °C showed stable voltage is maintained at low operating current (0.17 A/cm2) at up to 50 % by mole H2O, but at higher current densities (0.34 A/cm2), irreversible voltage degradation occurred at rates of 0.8-3.7 mV/hour depending on exposure time. From these button cell results, estimated average

  2. Multi-variable mathematical models for the air-cathode microbial fuel cell system

    NASA Astrophysics Data System (ADS)

    Ou, Shiqi; Kashima, Hiroyuki; Aaron, Douglas S.; Regan, John M.; Mench, Matthew M.

    2016-05-01

    This research adopted the version control system into the model construction for the single chamber air-cathode microbial fuel cell (MFC) system, to understand the interrelation of biological, chemical, and electrochemical reactions. The anodic steady state model was used to consider the chemical species diffusion and electric migration influence to the MFC performance. In the cathodic steady state model, the mass transport and reactions in a multi-layer, abiotic cathode and multi-bacteria cathode biofilm were simulated. Transport of hydroxide was assumed for cathodic pH change. This assumption is an alternative to the typical notion of proton consumption during oxygen reduction to explain elevated cathode pH. The cathodic steady state model provided the power density and polarization curve performance results that can be compared to an experimental MFC system. Another aspect considered was the relative contributions of platinum catalyst and microbes on the cathode to the oxygen reduction reaction (ORR). Simulation results showed that the biocatalyst in a cathode that includes a Pt/C catalyst likely plays a minor role in ORR, contributing up to 8% of the total power calculated by the models.

  3. Anolyte recirculation effects in buffered and unbuffered single-chamber air-cathode microbial fuel cells.

    PubMed

    Zhang, Liang; Zhu, Xun; Kashima, Hiroyuki; Li, Jun; Ye, Ding-ding; Liao, Qiang; Regan, John M

    2015-03-01

    Two identical microbial fuel cells (MFCs) with a floating air-cathode were operated under either buffered (MFC-B) or bufferless (MFC-BL) conditions to investigate anolyte recirculation effects on enhancing proton transfer. With an external resistance of 50 Ω and recirculation rate of 1.0 ml/min, MFC-BL had a 27% lower voltage (9.7% lower maximal power density) but a 64% higher Coulombic efficiency (CE) than MFC-B. MFC-B had a decreased voltage output, batch time, and CE with increasing recirculation rate resulting from more oxygen transfer into the anode. However, increasing the recirculation rate within a low range significantly enhanced proton transfer in MFC-BL, resulting in a higher voltage output, a longer batch time, and a higher CE. A further increase in recirculation rate decreased the batch time and CE of MFC-BL due to excess oxygen transfer into anode outweighing the proton-transfer benefits. The unbuffered MFC had an optimal recirculation rate of 0.35 ml/min.

  4. Multi-variable mathematical models for the air-cathode microbial fuel cell system

    DOE PAGES

    Ou, Shiqi; Kashima, Hiroyuki; Aaron, Douglas S.; Regan, John M.; Mench, Matthew M.

    2016-03-10

    This research adopted the version control system into the model construction for the single chamber air-cathode microbial fuel cell (MFC) system, to understand the interrelation of biological, chemical, and electrochemical reactions. The anodic steady state model was used to consider the chemical species diffusion and electric migration influence to the MFC performance. In the cathodic steady state model, the mass transport and reactions in a multi-layer, abiotic cathode and multi-bacteria cathode biofilm were simulated. Transport of hydroxide was assumed for cathodic pH change. This assumption is an alternative to the typical notion of proton consumption during oxygen reduction to explainmore » elevated cathode pH. The cathodic steady state model provided the power density and polarization curve performance results that can be compared to an experimental MFC system. Another aspect we considered was the relative contributions of platinum catalyst and microbes on the cathode to the oxygen reduction reaction (ORR). We found simulation results showed that the biocatalyst in a cathode that includes a Pt/C catalyst likely plays a minor role in ORR, contributing up to 8% of the total power calculated by the models.« less

  5. Continuous electricity generation by a graphite granule baffled air-cathode microbial fuel cell.

    PubMed

    Feng, Yujie; Lee, He; Wang, Xin; Liu, Yaolan; He, Weihua

    2010-01-01

    A baffled air-cathode microbial fuel cell (BAFMFC) was designed and operated under continuous flow. With glucose fed as substrate, an average voltage of 652 mV was obtained under the external resistance of 1000 Omega (30 degrees C). The maximum power density was 15.2 W/m(3) with the chemical oxygen demand (COD) removal rate of 88.0%. The overall resistance was 13.7 Omega while ohmic internal resistance was 10.8 Omega. Average COD removal rate was 69.7-88.0%, when COD loading varied from 4.11 kg COD/(m(3)NACd) to 16.0 kg COD/(m(3)NACd). The liquid from corn stover steam explosion process (COD=7160+/-50mg/L) was treated by BAFMFC, and the maximum power density was 10.7 W/m(3) with the average COD removal rate was 89.1%. The present study indicated BAFMFC can be comparable to the traditional anaerobic baffled reactor in COD removal rate for high-concentration wastewater and have an advantage in energy harvest from wastewater.

  6. Development of carbon free diffusion layer for activated carbon air cathode of microbial fuel cells.

    PubMed

    Yang, Wulin; Kim, Kyoung-Yeol; Logan, Bruce E

    2015-12-01

    The fabrication of activated carbon air cathodes for larger-scale microbial fuel cells requires a diffusion layer (DL) that is highly resistant to water leakage, oxygen permeable, and made using inexpensive materials. A hydrophobic polyvinylidene fluoride (PVDF) membrane synthesized using a simple phase inversion process was examined as a low cost ($0.9/m(2)), carbon-free DL that prevented water leakage at high pressure heads compared to a polytetrafluoroethylene/carbon black DL ($11/m(2)). The power density produced with a PVDF (20%, w/v) DL membrane of 1400±7mW/m(2) was similar to that obtained using a wipe DL [cloth coated with poly(dimethylsiloxane)]. Water head tolerance reached 1.9m (∼19kPa) with no mesh supporter, and 2.1m (∼21kPa, maximum testing pressure) with a mesh supporter, compared to 0.2±0.05m for the wipe DL. The elimination of carbon black from the DL greatly simplified the fabrication procedure and further reduced overall cathode costs. PMID:26342345

  7. [Electrode configuration as a factor affecting electricity generation in air-cathode microbial fuel cell].

    PubMed

    You, Shi-Jie; Zhao, Qing-Liang; Jiang, Jun-Qiu

    2006-11-01

    In air-cathode microbial fuel cell (ACMFC), oxygen diffused into the reactor from cathode without PEM can be reduced as electron acceptor via aerobic respiration by facultative microorganisms, resulting in either a decreasing of power generation or electron loss. In this study, ACMFC1 and ACMFC2 with different electrode configuration were compared to examine power density and electron recovery from glucose. The results showed that ACMFC1 generated a maximum power density of 3 070mW/m3 with internal resistance of 302.141 and anode potential of -323mV; while maximum power density of 9 800mW/m3 for ACMFC2 was obtained with internal resistance of 107.79omega and anode potential of -442mV. ACMFC2 could sustain generating electricity for nearly 220 h (ERE of 30.1%), comparing with ACMFC1 of less than 50 h (ERE of 9.78%) under batch operation. Therefore, an improved design for electrode configuration of ACMFC can be performed to generate higher power with low internal resistance, meanwhile, achieve increasing electron recovery simultaneously.

  8. Adaptive critic learning techniques for engine torque and air-fuel ratio control.

    PubMed

    Liu, Derong; Javaherian, Hossein; Kovalenko, Olesia; Huang, Ting

    2008-08-01

    A new approach for engine calibration and control is proposed. In this paper, we present our research results on the implementation of adaptive critic designs for self-learning control of automotive engines. A class of adaptive critic designs that can be classified as (model-free) action-dependent heuristic dynamic programming is used in this research project. The goals of the present learning control design for automotive engines include improved performance, reduced emissions, and maintained optimum performance under various operating conditions. Using the data from a test vehicle with a V8 engine, we developed a neural network model of the engine and neural network controllers based on the idea of approximate dynamic programming to achieve optimal control. We have developed and simulated self-learning neural network controllers for both engine torque (TRQ) and exhaust air-fuel ratio (AFR) control. The goal of TRQ control and AFR control is to track the commanded values. For both control problems, excellent neural network controller transient performance has been achieved.

  9. Anti-air pollution & energy conservation system for automobiles using leaded or unleaded gasoline, diesel or alternate fuel

    DOEpatents

    Bose, Ranendra K.

    2002-06-04

    Exhaust gases from an internal combustion engine operating with leaded or unleaded gasoline or diesel or natural gas, are used for energizing a high-speed gas turbine. The convoluting gas discharge causes a first separation stage by stratifying of heavier and lighter exhaust gas components that exit from the turbine in opposite directions, the heavier components having a second stratifying separation in a vortex tube to separate combustible pollutants from non-combustible components. The non-combustible components exit a vortex tube open end to atmosphere. The lighter combustible, pollutants effected in the first separation are bubbled through a sodium hydroxide solution for dissolving the nitric oxide, formaldehyde impurities in this gas stream before being piped to the engine air intake for re-combustion, thereby reducing the engine's exhaust pollution and improving its fuel economy. The combustible, heavier pollutants from the second separation stage are piped to air filter assemblies. This gas stream convoluting at a high-speed through the top stator-vanes of the air filters, centrifugally separates the coalescent water, aldehydes, nitrogen dioxides, sulfates, sulfur, lead particles which collect at the bottom of the bowl, wherein it is periodically released to the roadway. Whereas, the heavier hydrocarbon, carbon particles are piped through the air filter's porous element to the engine air intake for re-combustion, further reducing the engine's exhaust pollution and improving its fuel economy.

  10. Nitric oxide density measurements in air and air/fuel nanosecond pulse discharges by laser induced fluorescence

    NASA Astrophysics Data System (ADS)

    Uddi, M.; Jiang, N.; Adamovich, I. V.; Lempert, W. R.

    2009-04-01

    Laser induced fluorescence is used to measure absolute nitric oxide concentrations in air, methane-air and ethylene-air non-equilibrium plasmas, as a function of time after initiation of a single pulse, 20 kV peak voltage, 25 ns pulse duration discharge. A mixture of NO and nitrogen with known composition (4.18 ppm NO) is used for calibration. Peak NO density in air at 60 Torr, after a single pulse, is ~8 × 1012 cm-3 (~4.14 ppm) occurring at ~250 µs after the pulse, with decay time of ~16.5 ms. Peak NO atom mole fraction in a methane-air mixture with equivalence ratio of phiv = 0.5 is found to be approximately equal to that in air, with approximately the same rise and decay rate. In an ethylene-air mixture (also with equivalence ratio of phiv = 0.5), the rise and decay times are comparable to air and methane-air, but the peak NO concentration is reduced by a factor of approximately 2.5. Spontaneous emission measurements show that excited electronic states N2(C 3Π) and NO(A 2Σ) in air at P = 60 Torr decay within ~20 ns and ~1 µs, respectively. Kinetic modelling calculations incorporating air plasma kinetics complemented with the GRI Mech 3.0 hydrocarbon oxidation mechanism are compared with the experimental data using three different NO production mechanisms. It is found that NO concentration rise after the discharge pulse is much faster than predicted by Zel'dovich mechanism reactions, by two orders of magnitude, but much slower compared with reactions of electronically excited nitrogen atoms and molecules, also by two orders of magnitude. It is concluded that processes involving long lifetime (~100 µs) metastable states, such as N2(X 1Σ,v) and O2(b 1Σ), formed by quenching of the metastable N2(A 3Σ) state by ground electronic state O2, may play a dominant role in NO formation. NO decay, in all cases, is found to be dominated by the reverse Zel'dovich reaction, NO + O → N + O2, as well as by conversion into NO2 in a reaction of NO with ozone.

  11. Analytical evaluation of effect of equivalence ratio inlet-air temperature and combustion pressure on performance of several possible ram-jet fuels

    NASA Technical Reports Server (NTRS)

    Tower, Leonard K; Gammon, Benson E

    1953-01-01

    The results of an analytical investigation of the theoretical air specific impulse performance and adiabatic combustion temperatures of several possible ram-jet fuels over a range of equivalence ratios, inlet-air temperatures, and combustion pressures, is presented herein. The fuels include octane-1, 50-percent-magnesium slurry, boron, pentaborane, diborane, hydrogen, carbon, and aluminum. Thermal effects from high combustion temperatures were found to effect considerably the combustion performance of all the fuels. An increase in combustion pressure was beneficial to air specific impulse at high combustion temperatures. The use of these theoretical data in engine operation and in the evaluation of experimental data is described.

  12. MWCNT-supported phthalocyanine cobalt as air-breathing cathodic catalyst in glucose/O2 fuel cells

    NASA Astrophysics Data System (ADS)

    Elouarzaki, Kamal; Haddad, Raoudha; Holzinger, Michael; Le Goff, Alan; Thery, Jessica; Cosnier, Serge

    2014-06-01

    Simple and highly efficient glucose fuel cells using abiotic catalysts and different ion exchange membranes were designed. The glucose fuel cells are based on a multi-walled carbon nanotube (MWCNT)-supported cobalt phthalocyanine (CoPc) cathode and a carbon black/platinum (C/Pt) anode. The electrocatalytic activity of the MWCNT/CoPc electrode for oxygen reduction was investigated by cyclic and linear sweep voltammetry. The electrochemical experiments show that CoPc exhibits promising catalytic properties for oxygen reduction due to its high overpotential and efficiency at reduced metal load. The MWCNT/CoPc electrodes were applied to the oxygen reduction reaction as air-breathing cathode in a single-chambered glucose fuel cell. This cathode was associated with a C/Pt anode in fuel cell configurations using either an anion (Nafion®) or a cation (Tokuyama) exchange membrane. The best fuel cell configuration delivered a maximum power density of 2.3 mW cm-2 and a cell voltage of 0.8 V in 0.5 M KOH solution containing 0.5 M glucose using the Tokuyama membrane at ambient conditions. Beside the highest power density per cathodic catalyst mass (383 W g-1), these glucose fuel cells exhibit a high operational stability, delivering 0.3 mW cm-2 after 50 days.

  13. Regulatory fire test requirements for plutonium air transport packages : JP-4 or JP-5 vs. JP-8 aviation fuel.

    SciTech Connect

    Figueroa, Victor G.; Lopez, Carlos; Nicolette, Vernon F.

    2010-10-01

    For certification, packages used for the transportation of plutonium by air must survive the hypothetical thermal environment specified in 10CFR71.74(a)(5). This regulation specifies that 'the package must be exposed to luminous flames from a pool fire of JP-4 or JP-5 aviation fuel for a period of at least 60 minutes.' This regulation was developed when jet propellant (JP) 4 and 5 were the standard jet fuels. However, JP-4 and JP-5 currently are of limited availability in the United States of America. JP-4 is very hard to obtain as it is not used much anymore. JP-5 may be easier to get than JP-4, but only through a military supplier. The purpose of this paper is to illustrate that readily-available JP-8 fuel is a possible substitute for the aforementioned certification test. Comparisons between the properties of the three fuels are given. Results from computer simulations that compared large JP-4 to JP-8 pool fires using Sandia's VULCAN fire model are shown and discussed. Additionally, the Container Analysis Fire (CAFE) code was used to compare the thermal response of a large calorimeter exposed to engulfing fires fueled by these three jet propellants. The paper then recommends JP-8 as an alternate fuel that complies with the thermal environment implied in 10CFR71.74.

  14. Coal combustion under conditions of blast furnace injection. Technical report, March 1, 1994--May 31, 1994

    SciTech Connect

    Crelling, J.C.

    1994-09-01

    A potentially new use for Illinois coal is its use as a fuel injected into a blast furnace to produce molten iron as the first step in steel production. Because of its increasing cost and decreasing availability, metallurgical coke is now being replaced by coal injected at the tuyere area of the furnace where the blast air enters. The purpose of this study is to evaluate the combustion of coal during the blast furnace injection process and to delineate the optimum properties of the feed coal. This investigation is significant to the use of Illinois coal in that the limited research to date suggests that coals of low fluidity and moderate to high sulfur and chlorine contents are suitable feedstocks for blast furnace injection. This proposal is a follow-up to one funded for the 1992-93 period. It is intended to complete the study already underway with the Armco Inc. Steel Company and to initiate a new cooperative study along somewhat similar lines with the Inland Steel Company. The results of this study will lead to the development of a testing and evaluation protocol that will give a unique and much needed understanding of the behavior of coal in the injection process and prove the potential of Illinois coals for such use. During this quarter samples of two feed coals and the IBCSP 112 (Herrin No. 6) were prepared for reactivity testing and compared to blast furnace coke, and char fines taken from an active blast furnace. As the initial part of a broad reactivity analysis program, these same samples were also analyzed on a thermogravimetric analyzer (TGA) to determine their combustion and reactivity properties.

  15. [The characteristics of blast traumatic brain injury].

    PubMed

    Matsumoto, Yoshihisa; Hatano, Ben; Matsushita, Yoshitaro; Nawashiro, Hiroshi; Shima, Katsuji

    2010-08-01

    With the increase in terrorist activity in recent times, the number of blast injuries has also increased in civilian and military settings. In a recent war, the number of patients who suffered blast traumatic brain injury (bTBI) increased, so treatment of bTBI is currently a very important issue. Blast injury is complicated and can be divided into 4 categories: primary, secondary, tertiary, and quaternary. Primary blast injury results from exposure to blast waves; secondary blast injury is trauma caused by fragments of explosive devices; tertiary blast injury is the result of collision with objects; and quaternary blast injury is the result of exposure to toxic and other substances. Blast waves mainly injure air-containing organs such as the lung, bowel, and ear. The brain may also be affected by blast waves. From the clinical perspective, hyperemia and severe cerebral edema occur frequently in patients who sustain significant bTBI. Penetrating or closed head injury caused by the explosion may be associated with vasospasm and pseudoaneurysm formation. Mild traumatic brain injury during war can be associated with posttraumatic stress disorder. To elucidate the mechanism of bTBI, many research works using animal models and computer analysis are underway. Such studies have so far shown that blast waves can cause damage to the brain tissue and cognitive deficits; however, detailed investigations on this topic are still required. Treatment of bTBI patients may require clinical knowledge and skills related to intensive care, neurology, and neurosurgery. Moreover, further research is required in this field. PMID:20697143

  16. Raceway control with oxygen, steam and coal for stable blast furnace operation

    SciTech Connect

    Chatterjee, L.M.

    1996-12-31

    Tata Steel operates seven blast furnaces at its Jamshedpur works. Coal injection was introduced in the three larger furnaces starting in 1991, and coal tar injection was commissioned in the A blast furnace in June, 1996. Presently, a coal injection level of 130 kg/thm has been achieved at G blast furnace, which is the newest and the largest among all blast furnaces at Tata Steel. The paper discusses the operational features of the blast furnaces at Tata Steel, practical limits of fuel injection, the philosophy of the control of raceway conditions, and experience with fuel injection at Tata Steel.

  17. Indoor air pollution from solid fuels and peripheral blood DNA methylation: findings from a population study in Warsaw, Poland.

    PubMed

    Tao, Meng-Hua; Zhou, Jiachen; Rialdi, Alexander P; Martinez, Regina; Dabek, Joanna; Scelo, Ghislaine; Lissowska, Jolanta; Chen, Jia; Boffetta, Paolo

    2014-10-01

    DNA methylation is a potential mechanism linking indoor air pollution to adverse health effects. Fetal and early-life environmental exposures have been associated with altered DNA methylation and play a critical role in progress of diseases in adulthood. We investigated whether exposure to indoor air pollution from solid fuels at different lifetime periods was associated with global DNA methylation and methylation at the IFG2/H19 imprinting control region (ICR) in a population-based sample of non-smoking women from Warsaw, Poland. Global methylation and IFG2/H19 ICR methylation were assessed in peripheral blood DNA from 42 non-smoking women with Luminometric Methylation Assay (LUMA) and quantitative pyrosequencing, respectively. Linear regression models were applied to estimate associations between indoor air pollution and DNA methylation in the blood. Compared to women without exposure, the levels of LUMA methylation for women who had ever exposed to both coal and wood were reduced 6.70% (95% CI: -13.36, -0.04). Using both coal and wood before age 20 was associated with 6.95% decreased LUMA methylation (95% CI: -13.79, -0.11). Further, the negative correlations were more significant with exposure to solid fuels for cooking before age 20. There were no clear associations between indoor solid fuels exposure before age 20 and through the lifetime and IFG2/H19 ICR methylation. Our study of non-smoking women supports the hypothesis that exposure to indoor air pollution from solid fuels, even early-life exposure, has the capacity to modify DNA methylation that can be detected in peripheral blood.

  18. Analysis of effect of flameholder characteristics on lean, premixed, partially vaporized fuel-air mixtures quality and nitrogen oxides emissions

    NASA Technical Reports Server (NTRS)

    Cooper, L. P.

    1981-01-01

    An analysis was conducted of the effect of flameholding devices on the precombustion fuel-air characteristics and on oxides of nitrogen (NOx) emissions for combustion of premixed partially vaporized mixtures. The analysis includes the interrelationships of flameholder droplet collection efficiency, reatomization efficiency and blockage, and the initial droplet size distribution and accounts for the contribution of droplet combustion in partially vaporized mixtures to NOx emissions. Application of the analytical procedures is illustrated and parametric predictions of NOx emissions are presented.

  19. Microbial community structures differentiated in a single-chamber air-cathode microbial fuel cell fueled with rice straw hydrolysate

    PubMed Central

    2014-01-01

    Background The microbial fuel cell represents a novel technology to simultaneously generate electric power and treat wastewater. Both pure organic matter and real wastewater can be used as fuel to generate electric power and the substrate type can influence the microbial community structure. In the present study, rice straw, an important feedstock source in the world, was used as fuel after pretreatment with diluted acid method for a microbial fuel cell to obtain electric power. Moreover, the microbial community structures of anodic and cathodic biofilm and planktonic culturewere analyzed and compared to reveal the effect of niche on microbial community structure. Results The microbial fuel cell produced a maximum power density of 137.6 ± 15.5 mW/m2 at a COD concentration of 400 mg/L, which was further increased to 293.33 ± 7.89 mW/m2 through adjusting the electrolyte conductivity from 5.6 mS/cm to 17 mS/cm. Microbial community analysis showed reduction of the microbial diversities of the anodic biofilm and planktonic culture, whereas diversity of the cathodic biofilm was increased. Planktonic microbial communities were clustered closer to the anodic microbial communities compared to the cathodic biofilm. The differentiation in microbial community structure of the samples was caused by minor portion of the genus. The three samples shared the same predominant phylum of Proteobacteria. The abundance of exoelectrogenic genus was increased with Desulfobulbus as the shared most abundant genus; while the most abundant exoelectrogenic genus of Clostridium in the inoculum was reduced. Sulfate reducing bacteria accounted for large relative abundance in all the samples, whereas the relative abundance varied in different samples. Conclusion The results demonstrated that rice straw hydrolysate can be used as fuel for microbial fuel cells; microbial community structure differentiated depending on niches after microbial fuel cell operation; exoelectrogens were

  20. The electrolyte challenge for a direct methanol-air polymer electrolyte fuel cell operating at temperatures up to 200 C

    NASA Technical Reports Server (NTRS)

    Savinell, Robert; Yeager, Ernest; Tryk, Donald; Landau, Uziel; Wainright, Jesse; Gervasio, Dominic; Cahan, Boris; Litt, Morton; Rogers, Charles; Scherson, Daniel

    1993-01-01

    Novel polymer electrolytes are being evaluated for use in a direct methanol-air fuel cell operating at temperatures in excess of 100 C. The evaluation includes tests of thermal stability, ionic conductivity, and vapor transport characteristics. The preliminary results obtained to date indicate that a high temperature polymer electrolyte fuel cell is feasible. For example, Nafion 117 when equilibrated with phosphoric acid has a conductivity of at least 0.4 Omega(exp -1)cm(exp -1) at temperatures up to 200 C in the presence of 400 torr of water vapor and methanol vapor cross over equivalent to 1 mA/cm(exp 2) under a one atmosphere methanol pressure differential at 135 C. Novel polymers are also showing similar encouraging results. The flexibility to modify and optimize the properties by custom synthesis of these novel polymers presents an exciting opportunity to develop an efficient and compact methanol fuel cell.

  1. Simultaneous processes of electricity generation and ceftriaxone sodium degradation in an air-cathode single chamber microbial fuel cell

    NASA Astrophysics Data System (ADS)

    Wen, Qing; Kong, Fanying; Zheng, Hongtao; Yin, Jinling; Cao, Dianxue; Ren, Yueming; Wang, Guiling

    2011-03-01

    A single chamber microbial fuel cell (MFC) with an air-cathode is successfully demonstrated using glucose-ceftriaxone sodium mixtures or ceftriaxone sodium as fuel. Results show that the ceftriaxone sodium can be biodegraded and produce electricity simultaneously. Interestingly, these ceftriaxone sodium-glucose mixtures play an active role in production of electricity. The maximum power density is increased in comparison to 1000 mg L-1 glucose (19 W m-3) by 495% for 50 mg L-1 ceftriaxone sodium + 1000 mg L-1 glucose (113 W m-3), while the maximum power density is 11 W m-3 using 50 mg L-1 ceftriaxone sodium as the sole fuel. Moreover, ceftriaxone sodium biodegradation rate reaches 91% within 24 h using the MFC in comparison with 51% using the traditional anaerobic reactor. These results indicate that some toxic and bio-refractory organics such as antibiotic wastewater might be suitable resources for electricity generation using the MFC technology.

  2. Advanced fuel hydrocarbon remediation national test location - in situ air sparging system (revised)

    SciTech Connect

    Health, J.; Lory, E.

    1997-03-01

    Air sparging is the process of injecting clean air directly into an aquifer for remediation of contaminated groundwater. For removing contaminants, air sparging relies on two basic mechanisms working either alone or in tandem: biodegradation and volatilization. The objective of air sparging is to force air through contaminated aquifer materials to provide oxygen for bioremediation and/or to strip contaminants out of the aquifer.

  3. Vibrational and rotational CARS measurements of nitrogen in afterglow of streamer discharge in atmospheric pressure fuel/air mixtures

    NASA Astrophysics Data System (ADS)

    Pendleton, S. J.; Montello, A.; Carter, C.; Lempert, W.; Gundersen, M. A.

    2012-12-01

    The use of nonequilibrium plasma generated by nanosecond discharges to ignite fuel/air mixtures, known as transient plasma ignition (TPI), has been shown to effectively reduce ignition delay and improve engine performance relative to spark ignition for combustion engines. While this method is potentially useful for many engine applications, at present the underlying physics are poorly understood. This work uses coherent anti-Stokes Raman spectroscopy (CARS) to measure the rotational and vibrational excitation of nitrogen molecules in the discharge afterglow in a variety of fuel/air mixtures outside the limits of combustion in order to elucidate the thermal behaviour of TPI. The time evolution of relative populations of vibrationally excited states of nitrogen in the electronic ground state are reported for each gas mixture; it is shown that generation of these vibrationally excited states is inefficient during the discharge in air but that generation occurs at a high rate roughly 5 µs following the discharge; with the addition of fuels vibrationally excited states are observed during the discharge but an increase in population is still seen at 5 µs. Possible mechanisms for this behaviour are discussed. In addition, rotational temperature increases of at least 500 K are reported for all gas mixtures. The effect of this temperature increase on ignition, reaction rates, and thermal energy pathways are discussed.

  4. Management of primary blast injury.

    PubMed

    Argyros, G J

    1997-07-25

    Blast waves are produced following the detonation of munitions, the firing of large caliber guns, or from any type of explosion. These blast waves can be powerful enough to injure the individuals exposed to them. This type of injury is called primary blast injury (PBI) and the organs most vulnerable to PBI are the gas-filled organs, namely the ear, the lungs and the gastrointestinal tract. The approach to the casualty with PBI is the same as it would be for any trauma victim, i.e. the initiation of life support measures. Attention should be directed to the common life-threatening manifestation of thoracic and abdominal PBI. Pulmonary manifestations would include hemorrhage, barotrauma and arterial air embolism, while abdominal manifestations would include hemorrhage and hollow organ rupture. Therapy is directed at the specific manifestations as well as avoiding additional iatrogenic injury. PMID:9217319

  5. Combustor exhaust-emissions and blowout-limits with diesel number 2 and jet A fuels utilizing air-atomizing and pressure atomizing nozzles

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.; Norgren, C. T.

    1975-01-01

    Experimental tests with diesel number 2 and Jet A fuels were conducted in a combustor segment to obtain comparative data on exhaust emissions and blowout limits. An air-atomizing nozzle was used to inject the fuels. Tests were also made with diesel number 2 fuel using a pressure-atomizing nozzle to determine the effectiveness of the air-atomizing nozzle in reducing exhaust emissions. Test conditions included fuel-air ratios of 0.008 to 0.018, inlet-air total pressures and temperatures of 41 to 203 newtons per square centimeter and 477 to 811 K, respectively, and a reference velocity of 21.3 meters per second. Smoke number and unburned hydrocarbons were twice as high with diesel number 2 as with Jet A fuel. This was attributed to diesel number 2 having a higher concentration of aromatics and lower volatility than Jet A fuel. Oxides of nitrogen, carbon monoxide, and blowout limits were approximately the same for the two fuels. The air-atomizing nozzle, as compared with the pressure-atomizing nozzle, reduced oxides-of-nitrogen by 20 percent, smoke number by 30 percent, carbon monoxide by 70 percent, and unburned hydrocarbons by 50 percent when used with diesel number 2 fuel.

  6. Estimating the Number of Low-Income Americans Exposed to Household Air Pollution from Burning Solid Fuels

    PubMed Central

    Rogalsky, Derek K.; Mendola, Pauline; Metts, Tricia A.

    2014-01-01

    Background: Exposure to household air pollution (HAP) from inefficient biomass and coal stoves kills nearly 4 million people every year worldwide. HAP is an environmental risk associated with poverty that affects an estimated 3 billion people mostly in low- and middle-income countries. Objectives: Our goal was to estimate the number of low-income Americans exposed to potentially health-damaging concentrations of HAP. Methods: We mapped county-level data for the percentage of households using wood, coal, and/or coke as their primary heating fuel along with percent of the population below the federal poverty level. Using U.S. Census data and the likelihood of fugitive emissions as reported in the literature, we estimated the number of low-income Americans potentially exposed to HAP. Results: Solid fuel is the primary heating source for > 2.5 million U.S. households, or 6.5 million people. The mapping exercise showed several rural areas, primarily in the northern and western regions, that have high levels of solid-fuel use and poverty. We then identified 117 counties with high co-incident poverty and solid-fuel use as high-priority counties for research into potential health risks from HAP. We estimate that between 500,000 and 600,000 low-income people in the United States are likely exposed to HAP from burning solid fuels within their homes. Conclusion: HAP occurs within the United States and should be further investigated for adverse health risks, especially among those living in areas with rural poverty. Citation: Rogalsky DK, Mendola P, Metts TA, Martin WJ II. 2014. Estimating the number of low-income Americans exposed to household air pollution from burning solid fuels. Environ Health Perspect 122:806–810; http://dx.doi.org/10.1289/ehp.1306709 PMID:24833615

  7. Blast-furnace performance with coal-dust injection

    SciTech Connect

    G.G. Vasyura

    2007-07-01

    For the blast furnace shop at OAO Alchevskii Metallurgicheskii Kombinat (AMK) the injection of pulverized fuel is promising. Preliminary steps toward its introduction are underway, including analytical research. In this context, blast furnace performance when using pulverized coal is calculated in this study.

  8. Thermodynamic and transport properties of air and its products of combustion with ASTMA-A-1 fuel and natural gas at 20, 30, and 40 atmospheres

    NASA Technical Reports Server (NTRS)

    Poferl, D. J.; Svehla, R. A.

    1973-01-01

    The isentropic exponent, molecular weight, viscosity, specific heat at constant pressure, thermal conductivity, Prandtl number, and enthalpy were calculated for air, the combustion products of ASTM-A-1 jet fuel and air, and the combustion products of natural gas and air. The properties were calculated over a temperature range from 300 to 2800 K in 100 K increments and for pressures of 20, 30 and 40 atmospheres. The data for natural gas and ASTM-A-1 were calculated for fuel-air ratios from zero to stoichiometric in 0.01 increments.

  9. Effect of air temperature and relative humidity at various fuel-air ratios on exhaust emissions on a per-mode basis of an Avco Lycoming 0-320 DIAD light aircraft engine. Volume 2: Individual data points

    NASA Technical Reports Server (NTRS)

    Skorobatckyi, M.; Cosgrove, D. V.; Meng, P. R.; Kempke, E. R.

    1976-01-01

    A carbureted four cylinder air cooled 0-320 DIAD Lycoming aircraft engine was tested to establish the effects of air temperature and humidity at various fuel-air ratios on the exhaust emissions on a per-mode basis. The test conditions included carburetor lean-out at air temperatures of 50, 59, 80, and 100 F at relative humidities of 0, 30, 60, and 80 percent. Temperature-humidity effects at the higher values of air temperature and relative humidity tested indicated that the HC and CO emissions increased significantly, while the NOx emissions decreased. Even at a fixed fuel-air ratio, the HC emissions increase and the NOx emissions decrease at the higher values of air temperature and humidity. Volume II contains the data taken at each of the individual test points.

  10. Effect of Air Temperature and Relative Humidity at Various Fuel-Air Ratios on Exhaust Emissions on a Per-Mode Basis of an AVCO Lycoming 0-320 Diad Light Aircraft Engine: Volume 1: Results and Plotted Data

    NASA Technical Reports Server (NTRS)

    Skorobatckyi, M.; Cosgrove, D. V.; Meng, P. R.; Kempe, E. E., Jr.

    1978-01-01

    A carbureted four cylinder air cooled 0-320 DIAD Lycoming aircraft engine was tested to establish the effects of air temperature and humidity at various fuel-air ratios on the exhaust emissions on a per-mode basis. The test conditions include carburetor lean out at air temperatures of 50, 59, 80, and 100 F at relative humidities of 0, 30, 60, and 80 percent. Temperature humidity effects at the higher values of air temperature and relative humidity tested indicated that the HC and CO emissions increased significantly, while the NOx emissions decreased. Even at a fixed fuel air ratio, the HC emissions increase and the NOx emissions decrease at the higher values of air temperature and humidity.

  11. Commuters’ Exposure to Particulate Matter Air Pollution Is Affected by Mode of Transport, Fuel Type, and Route

    PubMed Central

    Zuurbier, Moniek; Hoek, Gerard; Oldenwening, Marieke; Lenters, Virissa; Meliefste, Kees; van den Hazel, Peter; Brunekreef, Bert

    2010-01-01

    Background Commuters are exposed to high concentrations of air pollutants, but little quantitative information is currently available on differences in exposure between different modes of transport, routes, and fuel types. Objectives The aim of our study was to assess differences in commuters’ exposure to traffic-related air pollution related to transport mode, route, and fuel type. Methods We measured particle number counts (PNCs) and concentrations of PM2.5 (particulate matter ≤ 2.5 μm in aerodynamic diameter), PM10, and soot between June 2007 and June 2008 on 47 weekdays, from 0800 to 1000 hours, in diesel and electric buses, gasoline- and diesel-fueled cars, and along two bicycle routes with different traffic intensities in Arnhem, the Netherlands. In addition, each-day measurements were taken at an urban background location. Results We found that median PNC exposures were highest in diesel buses (38,500 particles/cm3) and for cyclists along the high-traffic intensity route (46,600 particles/cm3) and lowest in electric buses (29,200 particles/cm3). Median PM10 exposure was highest from diesel buses (47 μg/m3) and lowest along the high- and low-traffic bicycle routes (39 and 37 μg/m3). The median soot exposure was highest in gasoline-fueled cars (9.0 × 10−5/m), diesel cars (7.9 × 10−5/m), and diesel buses (7.4 × 10−5/m) and lowest along the low-traffic bicycle route (4.9 × 10−5/m). Because the minute ventilation (volume of air per minute) of cyclists, which we estimated from measured heart rates, was twice the minute ventilation of car and bus passengers, we calculated that the inhaled air pollution doses were highest for cyclists. With the exception of PM10, we found that inhaled air pollution doses were lowest for electric bus passengers. Conclusions Commuters’ rush hour exposures were significantly influenced by mode of transport, route, and fuel type. PMID:20185385

  12. Health benefits from reducing indoor air pollution from household solid fuel use in China--three abatement scenarios.

    PubMed

    Mestl, Heidi Elizabeth Staff; Aunan, Kristin; Seip, Hans Martin

    2007-08-01

    According to the World Health Organization (WHO), indoor air pollution (IAP) from the use of solid fuels in households in the developing world is responsible for more than 1.6 million premature deaths each year, whereof 0.42 million occur in China alone. We argue that the methodology applied by WHO--the so-called fuel-based approach--underestimates the health effects, and suggest an alternative method. Combining exposure-response functions and current mortality and morbidity rates, we estimate the burden of disease of IAP in China and the impacts of three abatement scenarios. Using linear exposure-response functions, we find that 3.5 [0.8-14.7 95% CI] million people die prematurely due to IAP in China each year. The central estimate constitutes 47% of all deaths in China. We find that modest changes in the use of cooking fuels in rural households might have a large health impact, reducing annual mortality by 0.63 [0.1-3. 2 95% CI] million. If the indoor air quality (IAQ) standard set by the Chinese government (150 microg PM(10)/m(3)) was met in all households, we estimate that 0.9 [0.2-4.8] million premature deaths would be avoided in urban areas and 2.8 [0.7-12.4] million in rural areas. However, in urban areas this would require improvements to the outdoor air quality in addition to a complete fuel switch to clean fuels in households. We estimate that a fuel switch in urban China could prevent 0.7 [0.2-4.8] million premature deaths. The methodology for exposure assessment applied here is probably more realistic than the fuel-based approach; however, the use of linear exposure-response relationships most likely tends to overestimate the effects. The discrepancies between our results and the WHO estimates is probably also explained by our use of "all-cause mortality" which includes important causes of death like cardiovascular diseases, conditions known to be closely associated with exposure to particulate pollution, whereas the WHO estimate is limited to

  13. Household Cooking with Solid Fuels Contributes to Ambient PM2.5 Air Pollution and the Burden of Disease

    PubMed Central

    Chafe, Zoë A.; Brauer, Michael; Klimont, Zbigniew; Van Dingenen, Rita; Mehta, Sumi; Rao, Shilpa; Riahi, Keywan; Dentener, Frank

    2014-01-01

    Background: Approximately 2.8 billion people cook with solid fuels. Research has focused on the health impacts of indoor exposure to fine particulate pollution. Here, for the 2010 Global Burden of Disease project (GBD 2010), we evaluated the impact of household cooking with solid fuels on regional population-weighted ambient PM2.5 (particulate matter ≤ 2.5 μm) pollution (APM2.5). Objectives: We estimated the proportion and concentrations of APM2.5 attributable to household cooking with solid fuels (PM2.5-cook) for the years 1990, 2005, and 2010 in 170 countries, and associated ill health. Methods: We used an energy supply–driven emissions model (GAINS; Greenhouse Gas and Air Pollution Interactions and Synergies) and source-receptor model (TM5-FASST) to estimate the proportion of APM2.5 produced by households and the proportion of household PM2.5 emissions from cooking with solid fuels. We estimated health effects using GBD 2010 data on ill health from APM2.5 exposure. Results: In 2010, household cooking with solid fuels accounted for 12% of APM2.5 globally, varying from 0% of APM2.5 in five higher-income regions to 37% (2.8 μg/m3 of 6.9 μg/m3 total) in southern sub-Saharan Africa. PM2.5-cook constituted > 10% of APM2.5 in seven regions housing 4.4 billion people. South Asia showed the highest regional concentration of APM2.5 from household cooking (8.6 μg/m3). On the basis of GBD 2010, we estimate that exposure to APM2.5 from cooking with solid fuels caused the loss of 370,000 lives and 9.9 million disability-adjusted life years globally in 2010. Conclusions: PM2.5 emissions from household cooking constitute an important portion of APM2.5 concentrations in many places, including India and China. Efforts to improve ambient air quality will be hindered if household cooking conditions are not addressed. Citation: Chafe ZA, Brauer M, Klimont Z, Van Dingenen R, Mehta S, Rao S, Riahi K, Dentener F, Smith KR. 2014. Household cooking with solid fuels contributes to

  14. Advanced fuel hydrocarbon remediation national test location. Demonstration of hot air vapor extraction for fuel hydrocarbon cleanup

    SciTech Connect

    Heath, J.; Lory, E.

    1997-03-01

    Hot air vapor extration (HAVE) is a fast track, innovative environmental cleanup technolgy that uses a combination of thermal, heap pile, and vapor extraction techniques to remove and destroy hydrocarbon contamination in soil. This technology is very effective in cleaning soils contaminated with gasoline, diesel, heavy oil, and polycyclic aromatic hydrocarbons (PAH).

  15. Effect of Indoor air pollution from biomass and solid fuel combustion on symptoms of preeclampsia/eclampsia in Indian women

    PubMed Central

    Agrawal, S; Yamamoto, S

    2015-01-01

    Available evidence concerning the association between indoor air pollution (IAP) from biomass and solid fuel combustion and preeclampsia/eclampsia is not available in developing countries. We investigated the association between exposure to IAP from biomass and solid fuel combustion and symptoms of preeclampsia/eclampsia in Indian women by analyzing cross-sectional data from India's third National Family Health Survey (NFHS-3, 2005–2006). Self-reported symptoms of preeclampsia/eclampsia during pregnancy such as convulsions (not from fever), swelling of legs, body or face, excessive fatigue or vision difficulty during daylight, were obtained from 39 657 women aged 15–49 years who had a live birth in the previous 5 years. Effects of exposure to cooking smoke, ascertained by type of fuel used for cooking on preeclampsia/eclampsia risk, were estimated using logistic regression after adjusting for various confounders. Results indicate that women living in households using biomass and solid fuels have two times higher likelihood of reporting preeclampsia/eclampsia symptoms than do those living in households using cleaner fuels (OR = 2.21; 95%: 1.26–3.87; P = 0.006), even after controlling for the effects of a number of potentially confounding factors. This study is the first to empirically estimate the associations of IAP from biomass and solid fuel combustion and reported symptoms suggestive of preeclampsia/eclampsia in a large nationally representative sample of Indian women and we observed increased risk. These findings have important program and policy implications for countries such as India, where large proportions of the population rely on polluting biomass fuels for cooking and space heating. More epidemiological research with detailed exposure assessments and clinical measures of preeclampsia/eclampsia is needed in a developing country setting to validate these findings. PMID:25039812

  16. Effect of indoor air pollution from biomass and solid fuel combustion on symptoms of preeclampsia/eclampsia in Indian women.

    PubMed

    Agrawal, S; Yamamoto, S

    2015-06-01

    Available evidence concerning the association between indoor air pollution (IAP) from biomass and solid fuel combustion and preeclampsia/eclampsia is not available in developing countries. We investigated the association between exposure to IAP from biomass and solid fuel combustion and symptoms of preeclampsia/eclampsia in Indian women by analyzing cross-sectional data from India's third National Family Health Survey (NFHS-3, 2005-2006). Self-reported symptoms of preeclampsia/eclampsia during pregnancy such as convulsions (not from fever), swelling of legs, body or face, excessive fatigue or vision difficulty during daylight, were obtained from 39,657 women aged 15-49 years who had a live birth in the previous 5 years. Effects of exposure to cooking smoke, ascertained by type of fuel used for cooking on preeclampsia/eclampsia risk, were estimated using logistic regression after adjusting for various confounders. Results indicate that women living in households using biomass and solid fuels have two times higher likelihood of reporting preeclampsia/eclampsia symptoms than do those living in households using cleaner fuels (OR = 2.21; 95%: 1.26-3.87; P = 0.006), even after controlling for the effects of a number of potentially confounding factors. This study is the first to empirically estimate the associations of IAP from biomass and solid fuel combustion and reported symptoms suggestive of preeclampsia/eclampsia in a large nationally representative sample of Indian women and we observed increased risk. These findings have important program and policy implications for countries such as India, where large proportions of the population rely on polluting biomass fuels for cooking and space heating. More epidemiological research with detailed exposure assessments and clinical measures of preeclampsia/eclampsia is needed in a developing country setting to validate these findings.

  17. Emission factors of air pollutants from CNG-gasoline bi-fuel vehicles: Part II. CO, HC and NOx.

    PubMed

    Huang, Xiaoyan; Wang, Yang; Xing, Zhenyu; Du, Ke

    2016-09-15

    The estimation of emission factors (EFs) is the basis of accurate emission inventory. However, the EFs of air pollutants for motor vehicles vary under different operating conditions, which will cause uncertainty in developing emission inventory. Natural gas (NG), considered as a "cleaner" fuel than gasoline, is increasingly being used to reduce combustion emissions. However, information is scarce about how much emission reduction can be achieved by motor vehicles burning NG (NGVs) under real road driving conditions, which is necessary for evaluating the environmental benefits for NGVs. Here, online, in situ measurements of the emissions from nine bi-fuel vehicles were conducted under different operating conditions on the real road. A comparative study was performed for the EFs of black carbon (BC), carbon monoxide (CO), hydrocarbons (HCs) and nitrogen oxides (NOx) for each operating condition when the vehicles using gasoline and compressed NG (CNG) as fuel. BC EFs were reported in part I. The part II in this paper series reports the influence of operating conditions and fuel types on the EFs of CO, HC and NOx. Fuel-based EFs of CO showed good correlations with speed when burning CNG and gasoline. The correlation between fuel-based HC EFs and speed was relatively weak whether burning CNG or gasoline. The fuel-based NOx EFs moderately correlated with speed when burning CNG, but weakly correlated with gasoline. As for HC, the mileage-based EFs of gasoline vehicles are 2.39-12.59 times higher than those of CNG vehicles. The mileage-based NOx EFs of CNG vehicles are slightly higher than those of gasoline vehicles. These results would facilitate a detailed analysis of the environmental benefits for replacing gasoline with CNG in light duty vehicles.

  18. Emission factors of air pollutants from CNG-gasoline bi-fuel vehicles: Part II. CO, HC and NOx.

    PubMed

    Huang, Xiaoyan; Wang, Yang; Xing, Zhenyu; Du, Ke

    2016-09-15

    The estimation of emission factors (EFs) is the basis of accurate emission inventory. However, the EFs of air pollutants for motor vehicles vary under different operating conditions, which will cause uncertainty in developing emission inventory. Natural gas (NG), considered as a "cleaner" fuel than gasoline, is increasingly being used to reduce combustion emissions. However, information is scarce about how much emission reduction can be achieved by motor vehicles burning NG (NGVs) under real road driving conditions, which is necessary for evaluating the environmental benefits for NGVs. Here, online, in situ measurements of the emissions from nine bi-fuel vehicles were conducted under different operating conditions on the real road. A comparative study was performed for the EFs of black carbon (BC), carbon monoxide (CO), hydrocarbons (HCs) and nitrogen oxides (NOx) for each operating condition when the vehicles using gasoline and compressed NG (CNG) as fuel. BC EFs were reported in part I. The part II in this paper series reports the influence of operating conditions and fuel types on the EFs of CO, HC and NOx. Fuel-based EFs of CO showed good correlations with speed when burning CNG and gasoline. The correlation between fuel-based HC EFs and speed was relatively weak whether burning CNG or gasoline. The fuel-based NOx EFs moderately correlated with speed when burning CNG, but weakly correlated with gasoline. As for HC, the mileage-based EFs of gasoline vehicles are 2.39-12.59 times higher than those of CNG vehicles. The mileage-based NOx EFs of CNG vehicles are slightly higher than those of gasoline vehicles. These results would facilitate a detailed analysis of the environmental benefits for replacing gasoline with CNG in light duty vehicles. PMID:27219504

  19. System modeling of an air-independent solid oxide fuel cell system for unmanned undersea vehicles

    NASA Astrophysics Data System (ADS)

    Burke, A. Alan; Carreiro, Louis G.

    To examine the feasibility of a solid oxide fuel cell (SOFC)-powered unmanned undersea vehicle (UUV), a system level analysis is presented that projects a possible integration of the SOFC stack, fuel steam reformer, fuel/oxidant storage and balance of plant components into a 21-in. diameter UUV platform. Heavy hydrocarbon fuel (dodecane) and liquid oxygen (LOX) are chosen as the preferred reactants. A maximum efficiency of 45% based on the lower heating value of dodecane was calculated for a system that provides 2.5 kW for 40 h. Heat sources and sinks have been coupled to show viable means of thermal management. The critical design issues involve proper recycling of exhaust steam from the fuel cell back into the reformer and effective use of the SOFC stack radiant heat for steam reformation of the hydrocarbon fuel.

  20. Fuel Efficient Strategies for Reducing Contrail Formations in United States Air Space

    NASA Technical Reports Server (NTRS)

    Sridhar, Banavar; Chen, Neil Y.; Ng, Hok K.

    2010-01-01

    This paper describes a class of strategies for reducing persistent contrail formation in the United States airspace. The primary objective is to minimize potential contrail formation regions by altering the aircraft's cruising altitude in a fuel-efficient way. The results show that the contrail formations can be reduced significantly without extra fuel consumption and without adversely affecting congestion in the airspace. The contrail formations can be further reduced by using extra fuel. For the day tested, the maximal reduction strategy has a 53% contrail reduction rate. The most fuel-efficient strategy has an 8% reduction rate with 2.86% less fuel-burnt compared to the maximal reduction strategy. Using a cost function which penalizes extra fuel consumed while maximizing the amount of contrail reduction provides a flexible way to trade off between contrail reduction and fuel consumption. It can achieve a 35% contrail reduction rate with only 0.23% extra fuel consumption. The proposed fuel-efficient contrail reduction strategy provides a solution to reduce aviation-induced environmental impact on a daily basis.

  1. An assessment of air emissions from liquefied natural gas ships using different power systems and different fuels.

    PubMed

    Afon, Yinka; Ervin, David

    2008-03-01

    The shipping industry has been an unrecognized source of criteria pollutants: nitrogen oxides (NOx), volatile organic compounds, coarse particulate matter (PM10), fine particulate matter (PM2.5), sulfur dioxide (SO2), and carbon monoxide (CO). Liquefied natural gas (LNG) has traditionally been transported via steam turbine (ST) ships. Recently, LNG shippers have begun using dual-fuel diesel engines (DFDEs) to propel and offload their cargoes. Both the conventional ST boilers and DFDE are capable of burning a range of fuels, from heavy fuel oil to boil-off-gas (BOG) from the LNG load. In this paper a method for estimating the emissions from ST boilers and DFDEs during LNG offloading operations at berth is presented, along with typical emissions from LNG ships during offloading operations under different scenarios ranging from worst-case fuel oil combustion to the use of shore power. The impact on air quality in nonattainment areas where LNG ships call is discussed. Current and future air pollution control regulations for ocean-going vessels (OGVs) such as LNG ships are also discussed. The objective of this study was to estimate and compare emissions of criteria pollutants from conventional ST and DFDE ships using different fuels. The results of this study suggest that newer DFDE ships have lower SO2 and PM2.5/PM10 emissions, conventional ST ships have lower NOx, volatile organic compound, and CO emissions; and DFDE ships utilizing shore power at berth produce no localized emissions because they draw their required power from the local electric grid.

  2. An assessment of air emissions from liquefied natural gas ships using different power systems and different fuels.

    PubMed

    Afon, Yinka; Ervin, David

    2008-03-01

    The shipping industry has been an unrecognized source of criteria pollutants: nitrogen oxides (NOx), volatile organic compounds, coarse particulate matter (PM10), fine particulate matter (PM2.5), sulfur dioxide (SO2), and carbon monoxide (CO). Liquefied natural gas (LNG) has traditionally been transported via steam turbine (ST) ships. Recently, LNG shippers have begun using dual-fuel diesel engines (DFDEs) to propel and offload their cargoes. Both the conventional ST boilers and DFDE are capable of burning a range of fuels, from heavy fuel oil to boil-off-gas (BOG) from the LNG load. In this paper a method for estimating the emissions from ST boilers and DFDEs during LNG offloading operations at berth is presented, along with typical emissions from LNG ships during offloading operations under different scenarios ranging from worst-case fuel oil combustion to the use of shore power. The impact on air quality in nonattainment areas where LNG ships call is discussed. Current and future air pollution control regulations for ocean-going vessels (OGVs) such as LNG ships are also discussed. The objective of this study was to estimate and compare emissions of criteria pollutants from conventional ST and DFDE ships using different fuels. The results of this study suggest that newer DFDE ships have lower SO2 and PM2.5/PM10 emissions, conventional ST ships have lower NOx, volatile organic compound, and CO emissions; and DFDE ships utilizing shore power at berth produce no localized emissions because they draw their required power from the local electric grid. PMID:18376643

  3. Autocorrelation standard deviation and root mean square frequency analysis of polymer electrolyte membrane fuel cell to monitor for hydrogen and air undersupply

    NASA Astrophysics Data System (ADS)

    Kim, Joo Gon; Mukherjee, Santanu; Bates, Alex; Zickel, Benjamin; Park, Sam; Son, Byung Rak; Choi, Jae Sung; Kwon, Osung; Lee, Dong Ha; Chung, Hyun-Youl

    2015-12-01

    Proton exchange membrane fuel cells are a promising energy conversion device which can help to solve urgent environmental and economic problems. Among the various types of fuel cells, the air breathing proton exchange membrane fuel cell, which minimizes the balance of plant, has drawn a lot of attention due to its superior energy density. In this study a compact, air breathing, proton exchange membrane fuel cell based on Nafion and a Pt/C membrane electrode assembly was designed. The fuel cell was tested using a Scribner Associates 850e fuel cell test station. Specifically, the hydrogen fuel and oxygen starvation of the fuel cell were accurately and systematically tested and analyzed using a frequency analysis method which can analyze the input and output frequency. The analysis of the frequency variation under a fuel starvation condition was done using RMSF (root mean square frequency) and ACSD (autocorrelation standard deviation). The study reveals two significant results: first, the fuel starvations show entirely different phenomenon in both RMSF and ACSD and second, the results of the Autocorrelation show clearer results for fuel starvation detection than the results with RMSF.

  4. 24. LOOKING SOUTH AT CLEAN BLAST FURNACE GAS PIPE LEADING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. LOOKING SOUTH AT CLEAN BLAST FURNACE GAS PIPE LEADING INTO THE EASTERN WALL OF THE CENTRAL BOILER HOUSE. - U.S. Steel Duquesne Works, Fuel & Utilities Plant, Along Monongahela River, Duquesne, Allegheny County, PA

  5. Blast waves produced by interactions of femtosecond laser pulses with water.

    PubMed

    Li, Y T; Zhang, J; Teng, H; Li, K; Peng, X Y; Jin, Z; Lu, X; Zheng, Z Y; Yu, Q Z

    2003-05-01

    The behaviors of the blast waves produced by femtosecond laser-water interactions, and the blast waves induced by laser self-focusing in air, have been investigated using optical shadowgraphy at a maximum intensity of 1 x 10(16) W/cm(2). The temporal evolution of the blast wave launched by the water plasma can be described by a planar blast wave model including source mass. An aneurismlike structure, due to the quick propagation inside a hollow channel formed by laser self-focusing, is observed. The expansion of the channel in air is found to agree with a cylindrical self-similar blast wave solution. PMID:12786283

  6. The effect of time of exposure to elevated temperatures on the flammability limits of some common gaseous fuels in air

    SciTech Connect

    Wierzba, I.; Ale, B.B.

    1999-01-01

    The flammability limits of methane, ethylene, propane, and hydrogen were experimentally determined at elevated initial mixture temperatures up to 350 C at atmospheric pressure for upward flame propagation in a steel test tube apparatus. The existence of preignition reactions at these levels of temperatures that may influence the value of the flammability limits was also investigated. The fuel-air mixtures were exposed to elevated temperatures over different periods of time before spark ignition (up to 2 h). It was shown that the flammability limits for methane widened approximately linearly with an increase in the initial mixture temperature over the entire range of temperatures tested and were not affected by the length of the exposure time to these temperatures before spark ignition. However, different behavior was observed for the flammability limits of the other tested fuels--ethylene, propane, and hydrogen. At higher temperatures the flammability limits narrowed and were very significantly affected by the exposure time. The longer was the exposure time of fuel-air mixtures to the elevated temperatures, the narrower were their flammability limits.

  7. 2. View of blast deflector fences along northeast side of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. View of blast deflector fences along northeast side of the operational apron. View to northwest. - Offutt Air Force Base, Looking Glass Airborne Command Post, Blast Deflector Fences, Northeast & Southwest sides of Operational Apron, Project Looking Glass Historic District, Bellevue, Sarpy County, NE

  8. 1. View of blast deflector fences along southwest side of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. View of blast deflector fences along southwest side of the operational apron. View to west. - Offutt Air Force Base, Looking Glass Airborne Command Post, Blast Deflector Fences, Northeast & Southwest sides of Operational Apron, Project Looking Glass Historic District, Bellevue, Sarpy County, NE

  9. A Multi-Mode Shock Tube for Investigation of Blast-Induced Traumatic Brain Injury

    PubMed Central

    Reneer, Dexter V.; Hisel, Richard D.; Hoffman, Joshua M.; Kryscio, Richard J.; Lusk, Braden T.

    2011-01-01

    Abstract Blast-induced mild traumatic brain injury (bTBI) has become increasingly common in recent military conflicts. The mechanisms by which non-impact blast exposure results in bTBI are incompletely understood. Current small animal bTBI models predominantly utilize compressed air-driven membrane rupture as their blast wave source, while large animal models use chemical explosives. The pressure-time signature of each blast mode is unique, making it difficult to evaluate the contributions of the different components of the blast wave to bTBI when using a single blast source. We utilized a multi-mode shock tube, the McMillan blast device, capable of utilizing compressed air- and compressed helium-driven membrane rupture, and the explosives oxyhydrogen and cyclotrimethylenetrinitramine (RDX, the primary component of C-4 plastic explosives) as the driving source. At similar maximal blast overpressures, the positive pressure phase of compressed air-driven blasts was longer, and the positive impulse was greater, than those observed for shockwaves produced by other driving sources. Helium-driven shockwaves more closely resembled RDX blasts, but by displacing air created a hypoxic environment within the shock tube. Pressure-time traces from oxyhydrogen-driven shockwaves were very similar those produced by RDX, although they resulted in elevated carbon monoxide levels due to combustion of the polyethylene bag used to contain the gases within the shock tube prior to detonation. Rats exposed to compressed air-driven blasts had more pronounced vascular damage than those exposed to oxyhydrogen-driven blasts of the same peak overpressure, indicating that differences in blast wave characteristics other than peak overpressure may influence the extent of bTBI. Use of this multi-mode shock tube in small animal models will enable comparison of the extent of brain injury with the pressure-time signature produced using each blast mode, facilitating evaluation of the blast wave

  10. A multi-mode shock tube for investigation of blast-induced traumatic brain injury.

    PubMed

    Reneer, Dexter V; Hisel, Richard D; Hoffman, Joshua M; Kryscio, Richard J; Lusk, Braden T; Geddes, James W

    2011-01-01

    Blast-induced mild traumatic brain injury (bTBI) has become increasingly common in recent military conflicts. The mechanisms by which non-impact blast exposure results in bTBI are incompletely understood. Current small animal bTBI models predominantly utilize compressed air-driven membrane rupture as their blast wave source, while large animal models use chemical explosives. The pressure-time signature of each blast mode is unique, making it difficult to evaluate the contributions of the different components of the blast wave to bTBI when using a single blast source. We utilized a multi-mode shock tube, the McMillan blast device, capable of utilizing compressed air- and compressed helium-driven membrane rupture, and the explosives oxyhydrogen and cyclotrimethylenetrinitramine (RDX, the primary component of C-4 plastic explosives) as the driving source. At similar maximal blast overpressures, the positive pressure phase of compressed air-driven blasts was longer, and the positive impulse was greater, than those observed for shockwaves produced by other driving sources. Helium-driven shockwaves more closely resembled RDX blasts, but by displacing air created a hypoxic environment within the shock tube. Pressure-time traces from oxyhydrogen-driven shockwaves were very similar those produced by RDX, although they resulted in elevated carbon monoxide levels due to combustion of the polyethylene bag used to contain the gases within the shock tube prior to detonation. Rats exposed to compressed air-driven blasts had more pronounced vascular damage than those exposed to oxyhydrogen-driven blasts of the same peak overpressure, indicating that differences in blast wave characteristics other than peak overpressure may influence the extent of bTBI. Use of this multi-mode shock tube in small animal models will enable comparison of the extent of brain injury with the pressure-time signature produced using each blast mode, facilitating evaluation of the blast wave components

  11. Biofuels that cause land-use change may have much larger non-GHG air quality emissions than fossil fuels.

    PubMed

    Tsao, C-C; Campbell, J E; Mena-Carrasco, M; Spak, S N; Carmichael, G R; Chen, Y

    2012-10-01

    Although biofuels present an opportunity for renewable energy production, significant land-use change resulting from biofuels may contribute to negative environmental, economic, and social impacts. Here we examined non-GHG air pollution impacts from both indirect and direct land-use change caused by the anticipated expansion of Brazilian biofuels production. We synthesized information on fuel loading, combustion completeness, and emission factors, and developed a spatially explicit approach with uncertainty and sensitivity analyses to estimate air pollution emissions. The land-use change emissions, ranging from 6.7 to 26.4 Tg PM(2.5), were dominated by deforestation burning practices associated with indirect land-use change. We also found Brazilian sugar cane ethanol and soybean biodiesel including direct and indirect land-use change effects have much larger life-cycle emissions than conventional fossil fuels for six regulated air pollutants. The emissions magnitude and uncertainty decrease with longer life-cycle integration periods. Results are conditional to the single LUC scenario employed here. After LUC uncertainty, the largest source of uncertainty in LUC emissions stems from the combustion completeness during deforestation. While current biofuels cropland burning policies in Brazil seek to reduce life-cycle emissions, these policies do not address the large emissions caused by indirect land-use change.

  12. Effect of indoor air pollution from biomass fuel use on argyrophilic nuclear organizer regions in buccal epithelial cells.

    PubMed

    Mondal, Nandan K; Dutta, Anindita; Banerjee, Anirban; Chakraborty, Sreeparna; Lahiri, Twisha; Ray, Manas Ranjan

    2009-01-01

    This study investigated the effect of indoor air pollution from biomass-fuel use on the expression of argyrophilic nucleolar organizer regions (AgNORs), an indicator of ribosome biosynthesis, in epithelial cells of oral mucosa. AgNORs were evaluated using cytochemical staining in 62 nonsmoking indian women (median age, 34 years), who cooked exclusively with biomass, and 55 age-matched women, who were from a similar neighborhood and cooked with relatively clean liquefied petroleum gas (LPG). Concentrations of particulate pollutants in indoor air were measured using a real-time aerosol monitor. Compared to the LPG-using controls, biomass-fuel users showed a remarkably increased number of AgNOR dots per nucleus (6.08 +/-2.26 vs 3.16 +/-0.86, p < 0.001), AgNOR size (0.85 +/-0.19 vs 0.53 +/-0.15 mum2, p < 0.001), and percentage of AgNOR-occupied nuclear area (4.88 +/-1.49 vs 1.75 +/-0.13%, p < 0.001). Biomass-using households had 2 to 4 times more particulate pollutants than that of LPG-using households. The changes in AgNOR expression were positively associated with PM10 and PM2.5 levels in indoor air after controlling for potential confounders such as age, kitchen location, and family income. Thus, biomass smoke appears to be a risk factor for abnormal cell growth via upregulation of ribosome biogenesis.

  13. Biofuels that cause land-use change may have much larger non-GHG air quality emissions than fossil fuels.

    PubMed

    Tsao, C-C; Campbell, J E; Mena-Carrasco, M; Spak, S N; Carmichael, G R; Chen, Y

    2012-10-01

    Although biofuels present an opportunity for renewable energy production, significant land-use change resulting from biofuels may contribute to negative environmental, economic, and social impacts. Here we examined non-GHG air pollution impacts from both indirect and direct land-use change caused by the anticipated expansion of Brazilian biofuels production. We synthesized information on fuel loading, combustion completeness, and emission factors, and developed a spatially explicit approach with uncertainty and sensitivity analyses to estimate air pollution emissions. The land-use change emissions, ranging from 6.7 to 26.4 Tg PM(2.5), were dominated by deforestation burning practices associated with indirect land-use change. We also found Brazilian sugar cane ethanol and soybean biodiesel including direct and indirect land-use change effects have much larger life-cycle emissions than conventional fossil fuels for six regulated air pollutants. The emissions magnitude and uncertainty decrease with longer life-cycle integration periods. Results are conditional to the single LUC scenario employed here. After LUC uncertainty, the largest source of uncertainty in LUC emissions stems from the combustion completeness during deforestation. While current biofuels cropland burning policies in Brazil seek to reduce life-cycle emissions, these policies do not address the large emissions caused by indirect land-use change. PMID:22924498

  14. Household Cooking Fuel Use among Residents of a Sub-Urban Community in Nigeria: Implications for Indoor Air Pollution

    PubMed Central

    Isara, Alphonsus Rukevwe; Aigbokhaode, Adesuwa Queen

    2014-01-01

    Objective: The aim of this study is to assess the types of household cooking fuel used by residents of Isiohor community in Edo State, Nigeria. Materials and Methods: This descriptive cross-sectional study was conducted among 133 household heads or their representatives in Isiohor Community in Edo State, Nigeria. Data collection was by means of a structured interviewer administered questionnaire. Results: Half (50.3%) of the households studied were made up of 4-6 persons living in them. Sixty-two (46.6%) respondents had tertiary level of education and a third 44 (33.1%) earned between 21,000 and 30,000 naira (150-200 dollars) monthly. Forty six (34.6%) and 27 (20.3%) respondents live in passage houses and flats respectively. Two thirds (68.4%) of the respondents cook their food indoors. The predominant household cooking fuels used by the respondents were cooking gas (51.1%), Kerosene (45.9%), vegetables (25.6%) and firewood (14.3%). Majority 106 (79.7%) had poor knowledge of the health effects of prolonged exposure to smoke arising from indoor cooking. There was a statistically significant association between the occupation of the respondents and the type of household cooking fuel used (p=0.002). Conclusion: The use of unclean indoor cooking fuel was high among the residents of Isiohor community in Edo State, Nigeria. Also, there was poor knowledge of the health effects of prolonged exposure to smoke from unclean cooking fuel among the respondents and this has serious implications for indoor air pollution. There is an urgent need for health/hygiene education on the health effects of use of unclean indoor cooking fuel among these residents. There is also need for use of clean/green cooking stoves and construction of exhaust ventilation pipes in these households. PMID:25610326

  15. Automated Blast Cleaner

    NASA Technical Reports Server (NTRS)

    Pickett, Isaiah R.; Yulfo, Alyce R.

    1992-01-01

    Automatic grit-blasting machine removes melted-layer residue from electrical-discharge-machined surfaces of turbine blades. Automatic control system of machine provides steady flow of grit and maintains blast nozzles at proper distance and in correct orientation perpendicular to surface being blasted, regardless of contour. Eliminates localized excessive blasting and consequent excessive removal of underlying material, blasting of adjacent surfaces, and missed areas.

  16. Combustion characteristics and air pollutant formation during oxy-fuel co-combustion of microalgae and lignite.

    PubMed

    Gao, Yuan; Tahmasebi, Arash; Dou, Jinxiao; Yu, Jianglong

    2016-05-01

    Oxy-fuel combustion of solid fuels is seen as one of the key technologies for carbon capture to reduce greenhouse gas emissions. The combustion characteristics of lignite coal, Chlorella vulgaris microalgae, and their blends under O2/N2 and O2/CO2 conditions were studied using a Thermogravimetric Analyzer-Mass Spectroscopy (TG-MS). During co-combustion of blends, three distinct peaks were observed and were attributed to C. vulgaris volatiles combustion, combustion of lignite, and combustion of microalgae char. Activation energy during combustion was calculated using iso-conventional method. Increasing the microalgae content in the blend resulted in an increase in activation energy for the blends combustion. The emissions of S- and N-species during blend fuel combustion were also investigated. The addition of microalgae to lignite during air combustion resulted in lower CO2, CO, and NO2 yields but enhanced NO, COS, and SO2 formation. During oxy-fuel co-combustion, the addition of microalgae to lignite enhanced the formation of gaseous species.

  17. Regional patterns of radiocarbon and fossil fuel-derived CO2 in surface air across North America

    NASA Astrophysics Data System (ADS)

    Hsueh, Diana Y.; Krakauer, Nir Y.; Randerson, James T.; Xu, Xiaomei; Trumbore, Susan E.; Southon, John R.

    2007-01-01

    Radiocarbon levels in annual plants provide a means to map out regional and continental-scale fossil fuel plumes in surface air. We collected corn (Zea mays) across North America during the summer of 2004. Plants from mountain regions of western North America showed the smallest influence of fossil fuel-derived CO2 with a mean Δ14C of 66.3‰ +/-1.7‰. Plants from eastern North America and from the Ohio-Maryland region showed a larger fossil fuel influence with a mean Δ14C of 58.8‰ +/- 3.9‰ and 55.2‰ +/- 2.3‰, respectively, corresponding to 2.7 ppm +/- 1.5 ppm and 4.3 ppm +/- 1.0 ppm of added fossil fuel CO2 relative to the mountain west. A model-data comparison suggests that surveys of annual plant Δ14C can provide a useful test of atmospheric mixing in transport models that are used to estimate the spatial distribution of carbon sources and sinks.

  18. The road to Clean Cities: Promoting energy security and cleaner air through alternative fuels

    SciTech Connect

    Chun, C.A.

    1997-12-31

    The United States Department of Energy (DOE) Clean Cities Program is a locally-based government/industry partnership program coordinated by DOE to expand the use of alternatives to gasoline and diesel fuel. By combining local decision-making with the voluntary action of partners, the Clean Cities grass roots approach departs from traditional government programs. It creates an effective plan, carried out at the local level, to establish a sustainable alternative fuels market. The broad goals of the Clean Cities Program are to: reduce dependence on foreign oil, improve the environment, and increase economic growth and competitiveness. The key element of success for this program is partnerships -- public/private partnerships that engage the necessary market forces to accomplish the infusion of new alternative fuels and alternative fuel vehicle (AFV) technologies. DOE does not provide direct funding for acquisition of AFVs and products, but rather, provides market development assistance. DOE technical and management resources are targeted at building local coalitions, coordinating technology product suppliers, and improving market and customer information. Clean Cities works directly with local governments and local businesses and shares innovations along the network of Clean Cities coalitions. Since 1993, Clean Cities has made great strides in diversifying transportation fuel consumption. Voluntary Clean Cities partnerships around the United States have heightened public awareness of alternative fuel usage, increased the number of AFVs on the road, and developed alternative fuels infrastructure throughout North America. The Clean Cities Program encourages sustainable development by reducing a community`s dependence on nonrenewable fossil fuels (both domestic and imported), cleaning up the local and global environment, and boosting local economies through the development of alternative fuels industries.

  19. Active water management at the cathode of a planar air-breathing polymer electrolyte membrane fuel cell using an electroosmotic pump

    NASA Astrophysics Data System (ADS)

    Fabian, T.; O'Hayre, R.; Litster, S.; Prinz, F. B.; Santiago, J. G.

    In a typical air-breathing fuel cell design, ambient air is supplied to the cathode by natural convection and dry hydrogen is supplied to a dead-ended anode. While this design is simple and attractive for portable low-power applications, the difficulty in implementing effective and robust water management presents disadvantages. In particular, excessive flooding of the open-cathode during long-term operation can lead to a dramatic reduction of fuel cell power. To overcome this limitation, we report here on a novel air-breathing fuel cell water management design based on a hydrophilic and electrically conductive wick in conjunction with an electroosmotic (EO) pump that actively pumps water out of the wick. Transient experiments demonstrate the ability of the EO-pump to "resuscitate" the fuel cell from catastrophic flooding events, while longer term galvanostatic measurements suggest that the design can completely eliminate cathode flooding using less than 2% of fuel cell power, and lead to stable operation with higher net power performance than a control design without EO-pump. This demonstrates that active EO-pump water management, which has previously only been demonstrated in forced-convection fuel cell systems, can also be applied effectively to miniaturized (<5 W) air-breathing fuel cell systems.

  20. A Systematic Review of Innate Immunomodulatory Effects of Household Air Pollution Secondary to the Burning of Biomass Fuels

    PubMed Central

    Lee, Alison; Kinney, Patrick; Chillrud, Steve; Jack, Darby

    2016-01-01

    BACKGROUND Household air pollution (HAP)-associated acute lower respiratory infections cause 455,000 deaths and a loss of 39.1 million disability-adjusted life years annually. The immunomodulatory mechanisms of HAP are poorly understood. OBJECTIVES The aim of this study was to conduct a systematic review of all studies examining the mechanisms underlying the relationship between HAP secondary to solid fuel exposure and acute lower respiratory tract infection to evaluate current available evidence, identify gaps in knowledge, and propose future research priorities. METHODS We conducted and report on studies in accordance with the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. In all, 133 articles were fully reviewed and main characteristics were detailed, namely study design and outcome, including in vivo versus in vitro and pollutants analyzed. Thirty-six studies were included in a nonexhaustive review of the innate immune system effects of ambient air pollution, traffic-related air pollution, or wood smoke exposure of developed country origin. Seventeen studies investigated the effects of HAP-associated solid fuel (biomass or coal smoke) exposure on airway inflammation and innate immune system function. RESULTS Particulate matter may modulate the innate immune system and increase susceptibility to infection through a) alveolar macrophage-driven inflammation, recruitment of neutrophils, and disruption of barrier defenses; b) alterations in alveolar macrophage phagocytosis and intracellular killing; and c) increased susceptibility to infection via upregulation of receptors involved in pathogen invasion. CONCLUSIONS HAP secondary to the burning of biomass fuels alters innate immunity, predisposing children to acute lower respiratory tract infections. Data from biomass exposure in developing countries are scarce. Further study is needed to define the inflammatory response, alterations in phagocytic function, and upregulation of

  1. The Role of Distribution Infrastructure and Equipment in the Life-cycle Air Emissions of Liquid Transportation Fuels

    NASA Astrophysics Data System (ADS)

    Strogen, Bret Michael

    component. In order to apply the new emission factors to policy-relevant scenarios, a projection is made for the fleet inventory of infrastructure components necessary to distribute 21 billion gallons of ethanol (the 2022 federal mandate for advanced biofuels under the Energy Independence and Security Act of 2007) derived entirely from Miscanthus grass, for comparison to the baseline petroleum system. Due to geographic, physical and chemical properties of biomass and alcohols, the distribution system for Miscanthus-based ethanol is more capital- and energy-intensive than petroleum per unit of fuel energy delivered. The transportation of biofuels away from producer regions poses environmental, health, and economic trade-offs that are herein evaluated using a simplified national distribution network model. In just the last ten years, ethanol transportation within the contiguous United States is estimated to have increased more than ten-fold in total t-km as ethanol has increasingly been transported away from Midwest producers due to air quality regulations pertaining to gasoline, renewable fuel mandates, and the 10% blending limit (i.e., the E10 blend wall). From 2004 to 2009, approximately 10 billion t-km of ethanol transportation are estimated to have taken place annually for reasons other than the E10 blend wall, leading to annual freight costs greater than $240 million and more than 300,000 tonnes of CO2-e emissions and significant emissions of criteria air pollutants from the combustion of more than 90 million liters of diesel. Although emissions from distribution activities are small when normalized to each unit of fuel, they are large in scale. Archetypal fuel distribution routes by rail and by truck are created to evaluate the significance of mode choice and route location on the severity of public health impacts from locomotive and truck emissions, by calculating the average PM2.5 pollution intake fraction along each route. Exposure to pollution resulting from

  2. Note: Device for underwater laboratory simulation of unconfined blast waves

    NASA Astrophysics Data System (ADS)

    Courtney, Elijah; Courtney, Amy; Courtney, Michael

    2015-06-01

    Shock tubes simulate blast waves to study their effects in air under laboratory conditions; however, few experimental models exist for simulating underwater blast waves that are needed for facilitating experiments in underwater blast transmission, determining injury thresholds in marine animals, validating numerical models, and exploring mitigation strategies for explosive well removals. This method incorporates an oxy-acetylene driven underwater blast simulator which creates peak blast pressures of about 1860 kPa. Shot-to-shot consistency was fair, with an average standard deviation near 150 kPa. Results suggest that peak blast pressures from 460 kPa to 1860 kPa are available by adjusting the distance from the source.

  3. Note: Device for underwater laboratory simulation of unconfined blast waves.

    PubMed

    Courtney, Elijah; Courtney, Amy; Courtney, Michael

    2015-06-01

    Shock tubes simulate blast waves to study their effects in air under laboratory conditions; however, few experimental models exist for simulating underwater blast waves that are needed for facilitating experiments in underwater blast transmission, determining injury thresholds in marine animals, validating numerical models, and exploring mitigation strategies for explosive well removals. This method incorporates an oxy-acetylene driven underwater blast simulator which creates peak blast pressures of about 1860 kPa. Shot-to-shot consistency was fair, with an average standard deviation near 150 kPa. Results suggest that peak blast pressures from 460 kPa to 1860 kPa are available by adjusting the distance from the source. PMID:26133878

  4. Mixing Effect in Internal Blast

    NASA Astrophysics Data System (ADS)

    Granholm, R. H.; Sandusky, H. W.

    2009-12-01

    Detonation product gases are usually assumed to be completely mixed with an existing atmosphere by the time a peak quasi-static pressure (Pqs) is reached within an enclosed internal blast environment. With incomplete mixing, however, comes a loss in pressure from unburned fuel as well as a previously unrecognized source of error: heat capacity of the gas increases substantially with temperature, providing an energy sink in regions of unmixed hot gas. Our objective was to look at the extent of mixing by measuring gas temperature at several locations within a blast chamber at the time of peak Pqs. We recorded ranges of up to 400° C depending on charge location within the chamber, which is presumed to affect turbulence and mixing. Losses in peak Pqs of up to 13% may be attributed to this mixing effect for 1-kg Pentolite charges in a 62-m3 chamber in the simple geometries tested. A reasonably accurate Pqs may be extracted from blast wave reverberations in a chamber, allowing a closer look at effects such as gas mixing and consistency among multiple gages. These results point to an explanation for missing energy and a better understanding of heat flow in internal blast.

  5. Enhanced air/fuel mixing for automotive stirling engine turbulator-type combustors

    SciTech Connect

    Riecke, George T.; Stotts, Robert E.

    1992-01-01

    The invention relates to the improved combustion of fuel in a combustion chamber of a stirling engine and the like by dividing combustion into primary and secondary combustion zones through the use of a diverter plate.

  6. Blast furnace supervision and control system

    SciTech Connect

    Remorino, M.; Lingiardi, O.; Zecchi, M.

    1997-12-31

    On December 1992, a group of companies headed by Techint, took over Somisa, the state-owned integrated steel plant located at San Nicolas, Province of Buenos Aires, Argentina, culminating an ambitious government privatization scheme. The blast furnace 2 went into a full reconstruction and relining in January 1995. After a 140 MU$ investment the new blast furnace 2 was started in September 1995. After more than one year of operation of the blast furnace the system has proven itself useful and reliable. The main reasons for the success of the system are: same use interface for all blast furnace areas -- operation, process, maintenance and management, (full horizontal and vertical integration); and full accessibility to all information and process tools though some restrictions apply to field commands (people empowerment). The paper describes the central system.

  7. Downhole steam generator using low-pressure fuel and air supply

    DOEpatents

    Fox, R.L.

    1981-01-07

    For tertiary oil recovery, an apparatus for downhole steam generation is designed in which water is not injected directly onto the flame in the combustor, the combustion process is isolated from the reservoir pressure, the fuel and oxidant are supplied to the combustor at relatively low pressures, and the hot exhaust gases is prevented from entering the earth formation but is used to preheat the fuel and oxidant and water. The combustion process is isolated from the steam generation process. (DLC)

  8. The AQMEII Two-Continent Regional Air Quality Model Evaluation Study: Fueling Ideas with Unprecedented Data

    EPA Science Inventory

    Although strong collaborations in the air pollution field have existed among the North American (NA) and European (EU) countries over the past five decades, regional-scale air quality model developments and model performance evaluations have been carried out independently unlike ...

  9. 30 CFR 7.87 - Test to determine the maximum fuel-air ratio.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the intake air. Where: Ps = dry atmospheric pressure (kPa) Ta = intake air temperature (°C) (ii) The...) The parameter for the laboratory atmospheric factor, fa, shall be: 0.98≤fa≤1.02; (A) The equation...

  10. 30 CFR 7.87 - Test to determine the maximum fuel-air ratio.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the intake air. Where: Ps = dry atmospheric pressure (kPa) Ta = intake air temperature (°C) (ii) The...) The parameter for the laboratory atmospheric factor, fa, shall be: 0.98≤fa≤1.02; (A) The equation...

  11. 30 CFR 7.87 - Test to determine the maximum fuel-air ratio.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the intake air. Where: Ps = dry atmospheric pressure (kPa) Ta = intake air temperature (°C) (ii) The...) The parameter for the laboratory atmospheric factor, fa, shall be: 0.98≤fa≤1.02; (A) The equation...

  12. 30 CFR 7.87 - Test to determine the maximum fuel-air ratio.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the intake air. Where: Ps = dry atmospheric pressure (kPa) Ta = intake air temperature (°C) (ii) The...) The parameter for the laboratory atmospheric factor, fa, shall be: 0.98≤fa≤1.02; (A) The equation...

  13. 30 CFR 7.87 - Test to determine the maximum fuel-air ratio.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the intake air. Where: Ps = dry atmospheric pressure (kPa) Ta = intake air temperature (°C) (ii) The...) The parameter for the laboratory atmospheric factor, fa, shall be: 0.98≤fa≤1.02; (A) The equation...

  14. Air-Independent Solid Oxide Fuel Cells for NASA's LOX-CH4 Landers

    NASA Technical Reports Server (NTRS)

    Ryan, Abigail C.; Araghi, Koorosh R.; Farmer, Serene C.

    2013-01-01

    Gemini, Apollo, and Space Shuttle used fuel cells as main power source for vehicle and water source for life support and thermal PEM (Gemini) and Alkaline (Apollo, Shuttle) fuel cells were used Ideal for short (less than 3 weeks) missions when the required O2 and H2 can be launched with the vehicle. New missions that might require long-duration stays in orbit or at a habitat, cannot rely on the availability of pure reactants but should also aim to be sun-independent - a problem for which Solid Oxide Fuel Cells might be the answer. Recently, NASA has investigated & developed LOX/CH4-propelled landers (Altair, MORPHEUS). In order to preserve mission flexibility, fuel cells are being studied as a potential power source. Much of NASA's fuel cell development has been focused on creating a dead-headed, non-flow through PEM fuel cells which would weigh less and be more reliable than the existing Alkaline and PEM technology; however, LOX/CH4 as a propellant introduces SOFCs as a power option due to their ability to accept those reactants without much reforming.

  15. Inhibition of microbial growth on air cathodes of single chamber microbial fuel cells by incorporating enrofloxacin into the catalyst layer.

    PubMed

    Liu, Weifeng; Cheng, Shaoan; Sun, Dan; Huang, Haobin; Chen, Jie; Cen, Kefa

    2015-10-15

    The inevitable growth of aerobic bacteria on the surface of air cathodes is an important factor reducing the performance stability of air cathode single-chamber membrane-free microbial fuel cells (MFCs). Thus searching for effective methods to inhibit the cathodic microbial growth is critical for the practical application of MFCs. In this study, enrofloxacin (ENR), a broad spectrum fluoroquinolone antibiotic, was incorporated into the catalyst layer of activated carbon air cathodes (ACACs) to inhibit the cathodic microbial growth. The biomass content on ACACs was substantially reduced by 60.2% with ENR treatment after 91 days of MFCs operation. As a result of the inhibited microbial growth, the oxygen reduction catalytic performance of the ENR treated ACACs was much stable compared to the fast performance decline of the untreated control. Consequently, a quite stable electricity production was obtained for the MFCs with the ENR treated ACACs, in contrast with a 22.5% decrease in maximum power density of the MFCs with the untreated cathode. ENR treatment of ACACs showed minimal effects on the anode performance. These results indicate that incorporating antibiotics into ACACs should be a simple and effective strategy to inhibit the microbial growth and improve the long-term stability of the performance of air cathode and the electricity production of MFCs.

  16. Fuel consumption and CO2/pollutant emissions of mobile air conditioning at fleet level - new data and model comparison.

    PubMed

    Weilenmann, Martin F; Alvarez, Robert; Keller, Mario

    2010-07-01

    Mobile air conditioning (MAC) systems are the second-largest energy consumers in cars after driving itself. While different measurement series are available to illustrate their behavior in hot ambient conditions, little data are available for lower temperatures. There are also no data available on diesel vehicles, despite these being quite common in Europe (up to 70% of the fleet in some countries). In the present study, six representative modern diesel passenger cars were tested. In combination with data from previous measurements on gasoline cars, a new model was developed - EEMAC = Empa Emission model for Mobile Air Conditioning systems - to predict emissions from air conditioning. The measurements obtained show that A/C activity still occurs at temperatures below the desired interior temperature. The EEMAC model was applied to the average meteorological year of a central European region and compared with the US EPA MOBILE6 model. As temperatures in central Europe are often below 20 degrees C (the point below which the two models differ), the overall results differ clearly. The estimated average annual CO(2) output according to EEMAC is six times higher than that of MOBILE6. EEMAC also indicates that around two-thirds of the fuel used for air conditioning could be saved by switching the MAC system off below 18 degrees C.

  17. Enhanced performance of an air-cathode microbial fuel cell with oxygen supply from an externally connected algal bioreactor.

    PubMed

    Kakarla, Ramesh; Kim, Jung Rae; Jeon, Byong-Hun; Min, Booki

    2015-11-01

    An algae bioreactor (ABR) was externally connected to air-cathode microbial fuel cells (MFCs) to increase power generation by supplying a high amount of oxygen to cathode electrode. The MFC with oxygen fed from ABR produced maximum cell voltage and cathode potential at a fixed loading of 459 mV and 10 mV, respectively. During polarization analysis, the MFC displayed a maximum power density of 0.63 W/m(2) (at 2.06 A/m(2)) using 39.2% O2 from ABR, which was approximately 30% higher compared with use of atmospheric air (0.44 W/m(2), 20.8% O2,). The cyclic voltammogram analysis exhibited a higher reduction current of -137 mA with 46.5% O2 compared to atmospheric air (-115 mA). Oxygen supply by algae bioreactor to air-cathode MFC could also maintain better MFC performance in long term operation by minimizing cathode potential drop over time.

  18. External CO2 and water supplies for enhancing electrical power generation of air-cathode microbial fuel cells.

    PubMed

    Ishizaki, So; Fujiki, Itto; Sano, Daisuke; Okabe, Satoshi

    2014-10-01

    Alkalization on the cathode electrode limits the electrical power generation of air-cathode microbial fuel cells (MFCs), and thus external proton supply to the cathode electrode is essential to enhance the electrical power generation. In this study, the effects of external CO2 and water supplies to the cathode electrode on the electrical power generation were investigated, and then the relative contributions of CO2 and water supplies to the total proton consumption were experimentally evaluated. The CO2 supply decreased the cathode pH and consequently increased the power generation. Carbonate dissolution was the main proton source under ambient air conditions, which provides about 67% of total protons consumed for the cathode reaction. It is also critical to adequately control the water content on the cathode electrode of air-cathode MFCs because the carbonate dissolution was highly dependent on water content. On the basis of these experimental results, the power density was increased by 400% (143.0 ± 3.5 mW/m(2) to 575.0 ± 36.0 mW/m(2)) by supplying a humid gas containing 50% CO2 to the cathode chamber. This study demonstrates that the simultaneous CO2 and water supplies to the cathode electrode were effective to increase the electrical power generation of air-cathode MFCs for the first time.

  19. Numerical investigation of interfacial mass transport resistance and two-phase flow in PEM fuel cell air channels

    NASA Astrophysics Data System (ADS)

    Koz, Mustafa

    Proton exchange membrane fuel cells (PEMFCs) are efficient and environmentally friendly electrochemical engines. The performance of a PEMFC is adversely affected by oxygen (O2) concentration loss from the air flow channel to the cathode catalyst layer (CL). Oxygen transport resistance at the gas diffusion layer (GDL) and air channel interface is a non-negligible component of the O2 concentration loss. Simplified PEMFC performance models in the available literature incorporate the O2 resistance at the GDL-channel interface as an input parameter. However, this parameter has been taken as a constant so far in the available literature and does not reflect variable PEMFC operating conditions and the effect of two-phase flow in the channels. This study numerically calculates the O2 transport resistance at the GDL-air channel interface and expresses this resistance through the non-dimensional Sherwood number (Sh). Local Sh is investigated in an air channel with multiple droplets and films inside. These water features are represented as solid obstructions and only air flow is simulated. Local variations of Sh in the flow direction are obtained as a function of superficial air velocity, water feature size, and uniform spacing between water features. These variations are expressed with mathematical expressions for the PEMFC performance models to utilize and save computational resources. The resulting mathematical correlations for Sh can be utilized in PEMFC performance models. These models can predict cell performance more accurately with the help of the results of this work. Moreover, PEMFC performance models do not need to use a look-up table since the results were expressed through correlations. Performance models can be kept simplified although their predictions will become more realistic. Since two-phase flow in channels is experienced mostly at lower temperatures, performance optimization at low temperatures can be done easier.

  20. Indoor air pollution from solid fuel use, chronic lung diseases and lung cancer in Harbin, Northeast China

    SciTech Connect

    Galeone, C.; Pelucchi, C.; La Vecchia, C.; Negri, E.; Bosetti, C.; Hu, J.F.

    2008-10-15

    In some areas of China, indoor air pollution (IAP) originating principally from the combustion of solid fuels has a relevant role in lung cancer. Most previous studies focused on the female population and only a few on both the sexes. We analyzed the relationship between IAP from solid fuel use and selected chronic lung diseases and lung cancer risk in Harbin, Northeast China, an area with a very high base line risk of lung cancer for both the sexes. We used data from a case-control study conducted between 1987 and 1990, including 218 patients with incident, histologically confirmed lung cancer and 436 controls admitted to the same hospitals as cases. We calculated an index of IAP from solid fuel use exposure using data on heating type, cooking fuel used, and house measurements. Cases reported more frequently than controls on exposure to coal fuel for house heating and/or cooking, and the odds ratio (OR) for ever versus never exposed was 2.19 (95% confidence interval (CI): 1.08-4.46). The ORs of lung cancer according to subsequent tertiles of IAP exposure index were 1.82 (95% CI: 1.14-2.89) and 1.99 (95% CI: 1.26-3.15) as compared with the lowest tertile. The ORs of lung cancer for participants with a history of chronic bronchitis and tuberculosis were 3.79 (95% CI: 2.38-6.02) and 3.82 (95% CI: 1.97-7.41), respectively. This study gives further support and quantification of the positive association between IAP, history of selected nonmalignant lung diseases, and lung cancer risk for both the sexes.

  1. 24. GENERAL VIEW OF NEW CONCRETE BLAST BERM FOR NEW ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    24. GENERAL VIEW OF NEW CONCRETE BLAST BERM FOR NEW LIQUID HYDROGEN TANK FARM; VIEW TO EAST. - Cape Canaveral Air Station, Launch Complex 17, Facility 28402, East end of Lighthouse Road, Cape Canaveral, Brevard County, FL

  2. The flammability limits of lean fuel-air mixtures: thermochemical and kinetic criteria for explosion hazards.

    PubMed

    Burgess, D; Hertzberg, M

    1975-01-01

    The present state of knowledge is reviewed concisely in terms of the experimental methods used, the effect of apparatus size, accuracy of data, methods of data presentation, and the sensitivity of the limits to initial temperature and pressure. The heat of combustion per mole of gas mixture at the lean limit is a reliable thermochemical criterion for the flammability of organic fuels with comparable reactivities. The limit calorific value for the heavy paraffins is 11.5 +/- 0.1 kcal mole -1. However, kinetic effects strongly influence this value. Highly reactive fuels (hydrogen, acetylene) require lower energy contents, whereas less reactive fuels (ammonia) require higher values. Hydrogen-starved fuels (carbon monoxide, cyanogen) show marked anomalies and are sensitive to impurities that can provide H-atom chain carriers. These kinetic effects are reflected in the experimentally measurable burning velocity of the fuel. This parameter is a key ingredient in the theory of flammable limits, which is briefly sketched. Five competing processes dissipate power from the combustion wave and quench it at some characteristic limit velocity. The prevalent consensus that the limits are controlled by natural convection is clearly demonstrated, and the complex interplay of kinetics and thermochemistry follows logically therefrom.

  3. Experimental investigation of water droplet-air flow interaction in a non-reacting PEM fuel cell channel

    NASA Astrophysics Data System (ADS)

    Esposito, Angelo; Montello, Aaron D.; Guezennec, Yann G.; Pianese, Cesare

    It has been well documented that water production in PEM fuel cells occurs in discrete locations, resulting in the formation and growth of discrete droplets on the gas diffusion layer (GDL) surface within the gas flow channels (GFCs). This research uses a simulated fuel cell GFC with three transparent walls in conjunction with a high speed fluorescence photometry system to capture videos of dynamically deforming droplets. Such videos clearly show that the droplets undergo oscillatory deformation patterns. Although many authors have previously investigated the air flow induced droplet detachment, none of them have studied these oscillatory modes. The novelty of this work is to process and analyze the recorded videos to gather information on the droplets induced oscillation. Plots are formulated to indicate the dominant horizontal and vertical deformation frequency components over the range of sizes of droplets from formation to detachment. The system is also used to characterize droplet detachment size at a variety of channel air velocities. A simplified model to explain the droplet oscillation mechanism is provided as well.

  4. Quantitative Analysis of Spectral Interference of Spontaneous Raman Scattering in High-Pressure Fuel-Rich H2-Air Combustion

    NASA Technical Reports Server (NTRS)

    Kojima, Jun; Nguyen, Quang-Viet

    2004-01-01

    We present a theoretical study of the spectral interferences in the spontaneous Raman scattering spectra of major combustion products in 30-atm fuel-rich hydrogen-air flames. An effective methodology is introduced to choose an appropriate line-shape model for simulating Raman spectra in high-pressure combustion environments. The Voigt profile with the additive approximation assumption was found to provide a reasonable model of the spectral line shape for the present analysis. The rotational/vibrational Raman spectra of H2, N2, and H2O were calculated using an anharmonic-oscillator model using the latest collisional broadening coefficients. The calculated spectra were validated with data obtained in a 10-atm fuel-rich H2-air flame and showed excellent agreement. Our quantitative spectral analysis for equivalence ratios ranging from 1.5 to 5.0 revealed substantial amounts of spectral cross-talk between the rotational H2 lines and the N2 O-/Q-branch; and between the vibrational H2O(0,3) line and the vibrational H2O spectrum. We also address the temperature dependence of the spectral cross-talk and extend our analysis to include a cross-talk compensation technique that removes the nterference arising from the H2 Raman spectra onto the N2, or H2O spectra.

  5. Effect of fuel to air ratio on Mach 0.3 burner rig hot corrosion of ZrO2-Y2O3 thermal barrier coatings

    NASA Technical Reports Server (NTRS)

    Hodge, P. E.

    1982-01-01

    A Mach 0.3 burner rig test program was conducted to determine how the fuel to air mass ratio affects the durability of ZrO2-Y2O3/Ni-16Cr-6Al-0.31Y thermal barrier coating systems in combustion products containing 5 ppm Na and 2 ppm V. As the fuel to air mass ratio was increased from 0.039 to 0.049, the durability of ZrO2-6Y2O3, ZrO2-8Y2O3 and ZrO2-12Y2O3 coatings decreased. ZrO2-8Y2O3 coatings were approximately 2X and 1.3X more durable than ZrO2-12Y2O3 and ZrO2-6Y2O3 coatings respectively at the fuel to air mass ratio of 0.039. The number of one hour cycles endured by ZrO2-8Y2O3 coatings varied from averages of 53 to 200 for the fuel to air mass ratios of 0.049 and 0.039, respectively. At the fuel to air mass ratio of 0.049, all ZrO2-Y2O3 coated specimens failed in 40 to 60 one hour cycles

  6. Emissions of an AVCO Lycoming 0-320-DIAD air cooled light aircraft engine as a function of fuel-air ratio, timing, and air temperature and humidity

    NASA Technical Reports Server (NTRS)

    Meng, P. R.; Skorobatckyi, M.; Cosgrove, D. V.; Kempke, E. E., Jr.

    1976-01-01

    A carbureted aircraft engine was operated over a range of test conditions to establish the exhaust levels over the EPA seven-mode emissions cycle. Baseline (full rich production limit) exhaust emissions at an induction air temperature of 59 F and near zero relative humidity were 90 percent of the EPA standard for HC, 35 percent for NOx, and 161 percent for CO. Changes in ignition timing around the standard 25 deg BTDC from 30 deg BTDC to 20 deg BTDC had little effect on the exhaust emissions. Retarding the timing to 15 deg BTDC increased both the HC and CO emissions and decreased NOx emissions. HC and CO emissions decreased as the carburetor was leaned out, while NOx emissions increased. The EPA emission standards were marginally achieved at two leanout conditions. Variations in the quantity of cooling air flow over the engine had no effect on exhaust emissions. Temperature-humidity effects at the higher values of air temperature and relative humidity tested indicated that the HC and CO emissions increased significantly, while the NOx emissions decreased.

  7. Coal combustion under conditions of blast furnace injection. [Quarterly] technical report, 1 December 1993--28 February 1994

    SciTech Connect

    Crelling, J.C.

    1994-06-01

    A potentially new use for Illinois coal is its use as a fuel injected into a blast furnace to produce molten iron as the first step in steel production. Because of its increasing cost and decreasing availability, metallurgical coke is now being replaced by coal injected at the tuyere area of the furnace where the blast air enters. The purpose of this study is to evaluate the combustion of coal during the blast furnace injection process and to delineate the optimum properties of the feed coal. This proposal is a follow-up to one funded for the 1992--1993 period. It is intended to complete the study already underway with the Armco Inc. Steel Company and to initiate a new cooperative study along somewhat similar lines with the Inland Steel Company. The results of this study will lead to the development of a testing and evaluation protocol that will give a unique and much needed understanding of the behavior of coal in the injection process and prove the potential of Illinois coals for such use. During this quarter a sample of the feed coal that is being used for injection into the No. 7 Blast Furnace of Inland Steel has been analyzed petrographically and compared to both the Herrin No. 6 coal and Armco feed coal. Additional characterization is underway and an advanced program of pyrolysis and reactivity testing has been initiated.

  8. Pilot plant testing of Illinois coal for blast furnace injection. Technical report, March 1--May 31, 1995

    SciTech Connect

    Crelling, J.C.

    1995-12-31

    A new use for Illinois coal is as fuel injected into a blast furnace to produce molten iron as first step in steel production. Because of cost and decreasing availability, metallurgical coke is being replaced by coal injected at the tuyere area of the furnace where the blast air enters. Purpose of this study is to evaluate combustion of Illinois coal in the blast furnace injection process in a pilot plant test facility. (Limited research to date suggests that coals of low fluidity and moderate to high S and Cl contents are suitable for blast furnace injection.) This proposal is intended to complete the study under way with Armco and Inland and to demonstrate quantitatively the suitability of Herrin No. 6 and Springfield No. 5 coals for injection. Main feature of current work is testing of Illinois coals at CANMET`s pilot plant coal combustion facility. During this quarter, two additional 300-pound samples of coal (IBCSP-110 Springfield No. 5 and an Appalachian coal) were delivered. Six Illinois Basin coals were analyzed with the CANMET model and compared with other bituminous coals from the Appalachians, France, Poland, South Africa, and Colombia. Based on computer modeling, lower rank bituminous coals, including coal from the Illinois Basin, compare well in injection with a variety of other bituminous coals.

  9. Indoor Air Pollution and Health in Ghana: Self-Reported Exposure to Unprocessed Solid Fuel Smoke.

    PubMed

    Armah, Frederick A; Odoi, Justice O; Luginaah, Isaac

    2015-06-01

    Most countries in Sub-Saharan Africa including Ghana still depend extensively on unprocessed solid cooking fuels with many people exposed on a daily basis to harmful emissions and other health risks. In this study, using complementary log-log multivariate models, we estimated the health effects of exposure to smoke from unprocessed wood in four regions of Ghana while controlling for socio-environmental and socio-demographic factors. The results show that the distribution of self-reported exposure to smoke was highest among participants in the Northern region, rural dwellers, the 25-49 age groups, individuals with no education, and married women. As expected, exposure to smoke was higher in crowded households and in communities without basic social amenities. Region, residential locality, housing quality (type of roofing, floor and exterior materials), self-reported housing condition, and access to toilet facilities were associated with self-reported exposure to solid fuel smoke. Participants living in urban areas were less likely (OR = 0.82, ρ ≤ 0.01) to be exposed to solid fuel smoke compared to their rural counterparts. An inverse relationship between self-reported housing condition and exposure to solid fuel smoke was observed and persisted even after adjustments were made for confounding variables in the demographic model. In Ghana, the cost and intermittent shortages of liquefied petroleum gas and other alternative fuel sources hold implications for the willingness of the poor to shift to their use. Thus, the poorest rural populations with nearly no cash income and electricity, but with access to wood and/or agricultural waste, are unlikely to move to clean fuels or use significantly improved stoves without large subsidies, which are usually not sustainable. However, there appears to be large populations between these extremes that can be targeted by efforts to introduce improved stoves.

  10. Indoor Air Pollution and Health in Ghana: Self-Reported Exposure to Unprocessed Solid Fuel Smoke.

    PubMed

    Armah, Frederick A; Odoi, Justice O; Luginaah, Isaac

    2015-06-01

    Most countries in Sub-Saharan Africa including Ghana still depend extensively on unprocessed solid cooking fuels with many people exposed on a daily basis to harmful emissions and other health risks. In this study, using complementary log-log multivariate models, we estimated the health effects of exposure to smoke from unprocessed wood in four regions of Ghana while controlling for socio-environmental and socio-demographic factors. The results show that the distribution of self-reported exposure to smoke was highest among participants in the Northern region, rural dwellers, the 25-49 age groups, individuals with no education, and married women. As expected, exposure to smoke was higher in crowded households and in communities without basic social amenities. Region, residential locality, housing quality (type of roofing, floor and exterior materials), self-reported housing condition, and access to toilet facilities were associated with self-reported exposure to solid fuel smoke. Participants living in urban areas were less likely (OR = 0.82, ρ ≤ 0.01) to be exposed to solid fuel smoke compared to their rural counterparts. An inverse relationship between self-reported housing condition and exposure to solid fuel smoke was observed and persisted even after adjustments were made for confounding variables in the demographic model. In Ghana, the cost and intermittent shortages of liquefied petroleum gas and other alternative fuel sources hold implications for the willingness of the poor to shift to their use. Thus, the poorest rural populations with nearly no cash income and electricity, but with access to wood and/or agricultural waste, are unlikely to move to clean fuels or use significantly improved stoves without large subsidies, which are usually not sustainable. However, there appears to be large populations between these extremes that can be targeted by efforts to introduce improved stoves. PMID:24136388

  11. Field test of the Electric Fuel{trademark} zinc-air refuelable battery system for electric vehicles

    SciTech Connect

    Goldstein, J.R.; Koretz, B.; Harats, Y.

    1996-12-31

    The Electric Fuel Limited (EFL) zinc-air refuelable battery system will be tested over the next two years in a number of electric vehicle demonstration projects, the largest of which is an $18-million, 64-vehicle, two-year test sponsored chiefly by Deutsche Post AG (the German Post Corporation). The German field test is the largest-ever EV fleet test of a single advanced-battery technology. It also represents a marked departure from other EV test and demonstration programs, in that it is being sponsored not by government or electric utility interests, but by large fleet operators committed to shifting significant proportions of their vehicles to electric over the next 5--10 years. The Electric Fuel battery has specific energy of 200 Wh/kg, an achievement that allows electric vehicles to go as far on a charge as conventionally fueled vehicles go on a tank of gasoline. Fast, convenient refueling eliminates the need for lengthy electrical recharging, and clean, centralized zinc regeneration plants ensure the most efficient and environment-friendly use of energy resources.

  12. Climate impacts of air quality policy: switching to a natural gas-fueled public transportation system in New Delhi.

    PubMed

    Reynolds, Conor C O; Kandlikar, Milind

    2008-08-15

    Between 2001 and 2003, public transport vehicles in New Delhi were required to switch their fuel to natural gas in an attemptto reduce their air pollution impacts. This study examines the climatic impacts of New Delhi's fuel switching policy, and outlines implications for such efforts in rapidly industrializing countries. Natural gas is mostly composed of methane, an important greenhouse gas. Emitted aerosols (black carbon, particulate organic carbon, and sulfate) also cause radiative forcing. We find that methane and black carbon emissions are critical contributors to the change in carbon dioxide equivalent [CO2(e)] emissions. In New Delhi, the switch to natural gas results in a 30% increase in CO2(e) when the impact of aerosols is not considered. However, when aerosol emissions are taken into account in our model, the net effect of the switch is estimated to be a 10% reduction in CO2(e), and there may be as much as a 30% reduction in CO2(e). There is significant potential for emissions reductions through the United Nations Framework Convention on Climate Change (UNFCCC) Clean Development Mechanism for such fuel switching projects.

  13. Impact of Solar Control PVB Glass on Vehicle Interior Temperatures, Air-Conditioning Capacity, Fuel Consumption, and Vehicle Range

    SciTech Connect

    Rugh, J.; Chaney, L.; Venson, T.; Ramroth, L.; Rose, M.

    2013-04-01

    The objective of the study was to assess the impact of Saflex1 S-series Solar Control PVB (polyvinyl butyral) configurations on conventional vehicle fuel economy and electric vehicle (EV) range. The approach included outdoor vehicle thermal soak testing, RadTherm cool-down analysis, and vehicle simulations. Thermal soak tests were conducted at the National Renewable Energy Laboratory's Vehicle Testing and Integration Facility in Golden, Colorado. The test results quantified interior temperature reductions and were used to generate initial conditions for the RadTherm cool-down analysis. The RadTherm model determined the potential reduction in air-conditioning (A/C) capacity, which was used to calculate the A/C load for the vehicle simulations. The vehicle simulation tool identified the potential reduction in fuel consumption or improvement in EV range between a baseline and modified configurations for the city and highway drive cycles. The thermal analysis determined a potential 4.0% reduction in A/C power for the Saflex Solar PVB solar control configuration. The reduction in A/C power improved the vehicle range of EVs and fuel economy of conventional vehicles and plug-in hybrid electric vehicles.

  14. Sustainable design of high-performance microsized microbial fuel cell with carbon nanotube anode and air cathode.

    PubMed

    Mink, Justine E; Hussain, Muhammad Mustafa

    2013-08-27

    Microbial fuel cells (MFCs) are a promising alternative energy source that both generates electricity and cleans water. Fueled by liquid wastes such as wastewater or industrial wastes, the microbial fuel cell converts waste into energy. Microsized MFCs are essentially miniature energy harvesters that can be used to power on-chip electronics, lab-on-a-chip devices, and/or sensors. As MFCs are a relatively new technology, microsized MFCs are also an important rapid testing platform for the comparison and introduction of new conditions or materials into macroscale MFCs, especially nanoscale materials that have high potential for enhanced power production. Here we report a 75 μL microsized MFC on silicon using CMOS-compatible processes and employ a novel nanomaterial with exceptional electrochemical properties, multiwalled carbon nanotubes (MWCNTs), as the on-chip anode. We used this device to compare the usage of the more commonly used but highly expensive anode material gold, as well as a more inexpensive substitute, nickel. This is the first anode material study done using the most sustainably designed microsized MFC to date, which utilizes ambient oxygen as the electron acceptor with an air cathode instead of the chemical ferricyanide and without a membrane. Ferricyanide is unsustainable, as the chemical must be continuously refilled, while using oxygen, naturally found in air, makes the device mobile and is a key step in commercializing this for portable technology such as lab-on-a-chip for point-of-care diagnostics. At 880 mA/m(2) and 19 mW/m(2) the MWCNT anode outperformed the others in both current and power densities with between 6 and 20 times better performance. All devices were run for over 15 days, indicating a stable and high-endurance energy harvester already capable of producing enough power for ultra-low-power electronics and able to consistently power them over time. PMID:23899322

  15. Sensitivity of hazardous air pollutant emissions to the combustion of blends of petroleum diesel and biodiesel fuel

    NASA Astrophysics Data System (ADS)

    Magara-Gomez, Kento T.; Olson, Michael R.; Okuda, Tomoaki; Walz, Kenneth A.; Schauer, James J.

    2012-04-01

    Emission rates and composition of known hazardous air pollutants in the exhaust gas from a commercial agriculture tractor, burning a range of biodiesel blends operating at two different load conditions were investigated to better understand the emission characteristics of biodiesel fuel. Ultra-Low Sulfur Petroleum Diesel (ULSD) fuel was blended with soybean oil and beef tallow based biodiesel to examine fuels containing 0% (B0), 50% (B50) and 100% (B100) soybean oil based biodiesel, and 50% (B50T) and 100% (B100T) beef tallow biodiesel. Samples were collected using a dilution source sampler to simulate atmospheric dilution. Particulate matter and exhaust gases were analyzed for carbonyls, Volatile Organic Compounds (VOCs), and Polycyclic Aromatic Hydrocarbons (PAHs) to determine their respective emission rates. This analysis is focused on the emissions of organic compounds classified by the US EPA as air toxics and include 2,2,4 trimethylpentane, benzene, toluene, ethylbenzene, m-, p- and o-xylene, formaldehyde, acetaldehyde and methylethyl ketone. Emission rates of 2,2,4 trimethylpentane, toluene, ethylbenzene, m-, p- and o-xylene decreased more than 90% for B50, B100 and B100T blends; decreases in emission rates of benzene, formaldehyde and acetaldehyde were more modest, producing values between 23 and 67%, and methyl ethyl ketone showed decreases not exceeding 7% for the studied biodiesel blends. PAHs emission rates were reduced by 66% for B50, 84% for B100, and by 89% for B100T. The overall emissions of toxic organic compounds were calculated and expressed as benzene equivalents. The largest contributors of toxic risk were found to be formaldehyde and acetaldehyde. Reductions in formaldehyde emissions were 23% for B50 and 42% for B100 soybean, and 40% for B100T beef tallow compared to B0. Similarly, acetaldehyde reductions were 34% for B50 and 53% for B100 soybean biodiesel and 42% for B100T beef tallow biodiesel.

  16. Sustainable design of high-performance microsized microbial fuel cell with carbon nanotube anode and air cathode.

    PubMed

    Mink, Justine E; Hussain, Muhammad Mustafa

    2013-08-27

    Microbial fuel cells (MFCs) are a promising alternative energy source that both generates electricity and cleans water. Fueled by liquid wastes such as wastewater or industrial wastes, the microbial fuel cell converts waste into energy. Microsized MFCs are essentially miniature energy harvesters that can be used to power on-chip electronics, lab-on-a-chip devices, and/or sensors. As MFCs are a relatively new technology, microsized MFCs are also an important rapid testing platform for the comparison and introduction of new conditions or materials into macroscale MFCs, especially nanoscale materials that have high potential for enhanced power production. Here we report a 75 μL microsized MFC on silicon using CMOS-compatible processes and employ a novel nanomaterial with exceptional electrochemical properties, multiwalled carbon nanotubes (MWCNTs), as the on-chip anode. We used this device to compare the usage of the more commonly used but highly expensive anode material gold, as well as a more inexpensive substitute, nickel. This is the first anode material study done using the most sustainably designed microsized MFC to date, which utilizes ambient oxygen as the electron acceptor with an air cathode instead of the chemical ferricyanide and without a membrane. Ferricyanide is unsustainable, as the chemical must be continuously refilled, while using oxygen, naturally found in air, makes the device mobile and is a key step in commercializing this for portable technology such as lab-on-a-chip for point-of-care diagnostics. At 880 mA/m(2) and 19 mW/m(2) the MWCNT anode outperformed the others in both current and power densities with between 6 and 20 times better performance. All devices were run for over 15 days, indicating a stable and high-endurance energy harvester already capable of producing enough power for ultra-low-power electronics and able to consistently power them over time.

  17. 75 FR 6307 - Approval and Promulgation of Air Quality Implementation Plans; Maryland; Control of Carbon...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-09

    ... blast furnace and scrap metal which is heated with oxygen to produce molten metal. The molten metal is... . COMAR 26.11.10.06 required a person who operated a blast furnace, grey iron cupola or BOF to burn the...) Blast furnace gas is not controlled but is used as fuel in on site fuel burning equipment; (2) there...

  18. The effect of incomplete fuel-air mixing on the lean limit and emissions characteristics of a Lean Prevaporized Premixed (LPP) combustor

    NASA Technical Reports Server (NTRS)

    Santavicca, D. A.; Steinberger, R. L.; Gibbons, K. A.; Citeno, J. V.; Mills, S.

    1993-01-01

    Results are presented from an experimental study of the effect of incomplete fuel-air mixing on the lean limit and emissions characteristics of a lean, prevaporized, premixed (LPP), coaxial mixing tube combustor. Two-dimensional exciplex fluorescence was used to characterize the degree of fuel vaporization and mixing at the combustor inlet under non-combusting conditions. These tests were conducted at a pressure of 4 atm., a temperature of 400 C, a mixer tube velocity of 100 m/sec and an equivalence ratio of .8, using a mixture of tetradecane, 1 methyl naphthalene and TMPD as a fuel simulant. Fuel-air mixtures with two distinct spatial distributions were studied. The exciplex measurements showed that there was a significant amount of unvaporized fuel at the combustor entrance in both cases. One case, however, exhibited a very non-uniform distribution of fuel liquid and vapor at the combustor entrance, i.e., with most of the fuel in the upper half of the combustor tube, while in the other case, both the fuel liquid and vapor were much more uniformly distributed across the width of the combustor entrance. The lean limit and emissions measurements were all made at a pressure of 4 atm. and a mixer tube velocity of 100 m/sec, using Jet A fuel and both fuel-air mixture distributions. Contrary to what was expected, the better mixed case was found to have a substantially leaner operating limit. The two mixture distributions also unexpectedly resulted in comparable NO(x) emissions, for a given equivalence ratio and inlet temperature, however, lower NO(x) emissions were possible in the better mixed case due to its leaner operating limit.

  19. COMPARISON OF AIR POLLUTANT EMISSIONS FROM THE COMBUSTION OF ORIMULSION AND OTHER FUELS

    EPA Science Inventory

    The paper gives results of inhouse emissions testing and a literature review relating to Orimulsion, an emulsion of Venezuelan bitumen, water, and a proprietary surfactant, being used as a fuel for utilities in Canada, China, Denmark, Italy, Japan, and Lithuania, primarily as a r...

  20. Steam Methane Reformation Testing for Air-Independent Solid Oxide Fuel Cell Systems

    NASA Technical Reports Server (NTRS)

    Mwara, Kamwana N.

    2015-01-01

    Recently, NASA has been looking into utilizing landers that can be propelled by LOX-CH (sub 4), to be used for long duration missions. Using landers that utilize such propellants, also provides the opportunity to use solid oxide fuel cells as a power option, especially since they are able to process methane into a reactant through fuel reformation. One type of reformation, called steam methane reformation, is a process to reform methane into a hydrogen-rich product by reacting methane and steam (fuel cell exhaust) over a catalyst. A steam methane reformation system could potentially use the fuel cell's own exhaust to create a reactant stream that is hydrogen-rich, and requires less internal reforming of the incoming methane. Also, steam reformation may hold some advantages over other types of reforming, such as partial oxidation (PROX) reformation. Steam reformation does not require oxygen, while up to 25 percent can be lost in PROX reformation due to unusable CO (sub 2) reformation. NASA's Johnson Space Center has conducted various phases of steam methane reformation testing, as a viable solution for in-space reformation. This has included using two different types of catalysts, developing a custom reformer, and optimizing the test system to find the optimal performance parameters and operating conditions.

  1. Aircraft Fuel, Hydraulic and Pneumatic Systems (Course Outlines), Aviation Mechanics 3 (Air Frame): 9067.01.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    This document presents an outline for a 135-hour course designed to familiarize the student with the operation, inspection, and repair of aircraft fuel, hydraulic, and pneumatic systems. It is designed to help the trainee master the knowledge and skills necessary to become an aviation airframe mechanic. The aviation airframe maintenance technician…

  2. NATURAL ATTENUATION OF FUEL HYDROCARBONS AT MULTIPLE AIR FORCE BASE DEMONSTRATION SITES

    EPA Science Inventory

    ABSTRACT
    A major initiative to evaluate monitored natural attenuation (MNA) of ground-water contaminated with fuel hydrocarbons began in June, 1993, and continued through September, 1999. The main emphasis was to evaluate natural degradation mechanisms to reduce dissolved ...

  3. Radioactive air emissions notice of construction fuel removal for 105-KE basin

    SciTech Connect

    Kamberg, L.D., Fluor Daniel Hanford

    1997-02-11

    This document serves as a notice of construction (NOC), pursuant to the requirements of Washington Administrative Code (WAC) 246-247-060, and as a request for approval to construct pursuant to 40 Code of Federal Regulations (CFR) 61.96 for the modifications, installation of new equipment, and fuel removal and sludge relocation activities at 105-KE Basin. The 105-K east reactor and its associated spent nuclear fuel (SNF) storage basin (105-KE Basin) were constructed in the early 1950s and are located in the 100-K Area about 1,400 feet from the Columbia River. The 105-KE Basin contains 1,152 metric tons of SNF stored underwater in 3,673 open canisters. This SNF has been stored for varying periods of time ranging from 8 to 24 years. The 105-KE Basin is constructed of unlined concrete and contains approximately 1.3 million gallons of water with an asphaltic membrane beneath the pool. The fuel is corroding and an estimated 1,700 cubic feet of sludge, containing radionuclides and miscellaneous materials, have accumulated in the basin. The 105-KE Basin has leaked radiologically contaminated water to the soil beneath the basin in the past most likely at the construction joint between the foundation of the basin and the foundation of the reactor. The purpose of the activities described in this Notice of Construction (NOC) is to enable the retrieval and transport of the fuel to the Cold Vacuum Drying Facility (CVDF). This NOC describes modifications, the installation of new equipment, and fuel removal and sludge relocation activities expected to be routine in the future. Debris removal activities described in this NOC will supersede the previously approved NOC (DOE/RL-95-65). The proposed modifications described are scheduled to begin in calendar year 1997.

  4. Radioactive air emissions notice of construction fuel removal for 105-KW Basin

    SciTech Connect

    Hays, C.B.

    1997-05-29

    This document serves as a Notice of Construction (NOC), pursuant to the requirements of Washington Administrative Code (WAC) 246-247-060, and as a request for approval to construct, pursuant to 40 Code of Federal Regulations (CFR) 61.96, for the modifications, installation of new equipment, and fuel removal and sludge relocation activities at 105-KW Basin. The purpose of the activities described in this NOC is to enable the eventual retrieval and transport of the fuel for processing. The fuel retrieval and transport will require an integrated water treatment system for which performance specifications have been developed. These specifications are currently in the procurement process. Following procurement (and before installation of this system and the handling of fuel) design details will be provided to Washington State Department of Health (WDOH). The 105-K West Reactor (105-KW) and its associated spent nuclear fuel (SNF) storage basin were constructed in the early 1950s and are located on the Hanford Site in the 100-K Area about 1,400 feet from the Columbia River. The 105-KW Basin contains 964 Metric Tons of SNF stored under water in approximately 3,800 closed canisters. This SNF has been stored for varying periods of time ranging from 8 to 17 years. The 105-KW Basin is constructed of concrete with an epoxy coating and contains approximately 1.3 million gallons of water with an asphaltic membrane beneath the pool. Although the 105-KW Basin has not been known to leak, the discharge chute and associated construction joint have been isolated from the rest of the basin by metal isolation barriers. This was a precautionary measure, to mitigate the consequences of a seismic event. The proposed modifications described are scheduled to begin in calendar year 1997.

  5. Accelerated OH(-) transport in activated carbon air cathode by modification of quaternary ammonium for microbial fuel cells.

    PubMed

    Wang, Xin; Feng, Cuijuan; Ding, Ning; Zhang, Qingrui; Li, Nan; Li, Xiaojing; Zhang, Yueyong; Zhou, Qixing

    2014-04-01

    Activated carbon (AC) is a promising catalyst for the air cathode of microbial fuel cells (MFCs) because of its high performance and low cost. To increase the performance of AC air cathodes, the acceleration of OH(-) transport is one of the most important methods, but it has not been widely investigated. Here we added quaternary ammonium to ACs by in situ anchoring of a quaternary ammonium/epoxide-reacting compound (QAE) or ex situ mixing with anion exchange resins in order to modify ACs from not only the external surface but also inside the pores. In 50 mM phosphate buffer solution (PBS), the in situ anchoring of QAE was a more effective way to increase the power. The highest power density of 2781 ± 36 mW/m(2), which is 10% higher than that of the control, was obtained using QAE-anchored AC cathodes. When the medium was switched to an unbuffered NaCl solution, the increase in maximum power density (885 ± 25 mW/m(2)) was in accordance with the anion exchange capacity (0.219 mmol/g). The highest power density of the anion exchange resin-mixed air cathode was 51% higher than that of the control, indicating that anion exchange is urgently needed in real wastewaters. Excess anchoring of QAE blocked both the mesopores and micropores, causing the power output to be inhibited.

  6. Effect of the air-fuel mixing on the NOx yield in a low-emission gas-turbine plant combustor

    NASA Astrophysics Data System (ADS)

    Vasil'ev, V. D.; Bulysova, L. A.; Berne, A. L.

    2016-04-01

    The article deals with construction of a simplified model of inhibition of nitric oxides formed in the combustors of the gas-turbine plants (GTPs) operating on natural gas. A combustor in which premixed, lean air-fuel mixtures are burnt is studied theoretically and experimentally. The research was carried out using a full-scale combustor that had parameters characteristic of modern GTPs. The article presents the results computed by the FlowVision software and the results of the experiments carried out on the test bench of the All-Russia Thermal Engineering Institute. The calculations and the tests were conducted under the following conditions: a flow rate of approximately 4.6 kg/s, a pressure to 450 kPa, an air temperature at the combustor inlet of approximately 400°C, the outlet temperature t 3 ≤ 1200°C, and natural gas as the fuel. The comparison of the simulated parameters with the experimental results underlies the constructed correlation dependence of the experimental NO x emission on the calculated parameter of nonuniform fuel concentration at the premixing zone outlet. The postulate about a weak dependence of the emission of NO x formed upon combustion of a perfectly mixed air-fuel mixture—when the methane concentration in air is constant at any point of the air-fuel mixture, i.e., constant in the mixture bulk—on the pressure in the combustor has been experimentally proven. The correctness and the practicability of the stationary mathematical model of the mixing process used to assess the NO x emission by the calculated amount of the air-fuel mixture generated in the premixing zone has been validated. This eliminates some difficulties that arise in the course of calculation of combustion and formation of NO x .

  7. Aerodynamic effect of combustor inlet-air pressure on fuel jet atomization

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.

    1984-01-01

    Mean drop diameters were measured with a recently developed scanning radiometer in a study of the atomization of liquid jets injected cross stream in high velocity and high pressure airflows. At constant inlet air pressure, reciprocal mean drop diameter, was correlated with airflow mass velocity. Over a combustor inlet-air pressure range of 1 to 21 atmospheres, the ratio of orifice to mean drop diameter, D(O)/D(M), was correlated with the product of Weber and Reynolds number, WeRe, and with the molecular scale momentum transfer ratio of gravitational to inertial forces.

  8. Aerodynamic effect of combustor inlet-air pressure on fuel jet atomization

    NASA Technical Reports Server (NTRS)

    Ingebo, R. D.

    1984-01-01

    Mean drop diameters were measured with a recently developed scanning radiometer in a study of the atomization of liquid jets injected cross stream in high velocity and high pressure airflows. At constant inlet air pressure, reciprocal mean drop diameter was correlated with airflow mass velocity. Over a combustor inlet-air pressure range of 1 to 21 atmospheres, the ratio of orifice to mean drop diameter, D(O)/D(M), was correlated with the product of Weber and Reynolds number, WeRe, and with the molecular scale momentum transfer ratio of gravitational to inertial forces. Previously announced in STAR as N84-22910

  9. Computer modeling of thoracic response to blast.

    PubMed

    Stuhmiller, J H; Chuong, C J; Phillips, Y Y; Dodd, K T

    1988-01-01

    Primary blast injury affects the gas-containing structures of the body. Damage to the lungs with resultant respiratory insufficiency and arterial embolization of air from alveolar pulmonary venous fistulae is the predominant cause of morbidity and mortality following high-level blast exposure. In an effort to generate a widely applicable damage-risk criterion for thoracic injury from blast we are developing a complex computer finite element model (FEM) of the thorax. Taking an engineering approach, a horizontal cross-section of the thorax is divided into small discrete units (finite elements) of homogeneous structure. The necessary physical properties (density, bulk modulus, etc.) are then determined for each element. Specifying the material constants and geometry of the elements, the computer can load the surface of the structure with some force-time function (blast pressure-time history) and calculate the resultant physical events such as displacement, compression, stress, strain, etc. Computer predictions of pressure wave phenomena in the lung parenchyma are compared with trans-bronchially measured pressures in blast-exposed animals. The model should prove useful in assessing the risk of blast injury in diverse overpressure environments and may give insight into pathophysiologic mechanisms and strategies for protection.

  10. Internal combustion engine cylinder-to-cylinder balancing with balanced air-fuel ratios

    SciTech Connect

    Harris, Ralph E.; Bourn, Gary D.; Smalley, Anthony J.

    2006-01-03

    A method of balancing combustion among cylinders of an internal combustion engine. For each cylinder, a normalized peak firing pressure is calculated as the ratio of its peak firing pressure to its combustion pressure. Each cylinder's normalized peak firing pressure is compared to a target value for normalized peak firing pressure. The fuel flow is adjusted to any cylinder whose normalized peak firing pressure is not substantially equal to the target value.

  11. Development of a 10 kW hydrogen/air PEM fuel cell stack

    SciTech Connect

    Barbir, F.; Marken, F.; Bahar, B.; Kolde, J.A.

    1996-12-31

    PEM fuel cells have potential for meeting automotive industry`s power density and cost requirements, such as 0.8 kW/kg, 0.8 kW/1 and $30/kW. For automotive applications, the fuel cell power requirements are in the 10-100 kW range. As the first phase in reaching this power output, a 10 kW PEM fuel cell stack has been developed at Energy Partners. The stack consists of 50 cells with relatively large active area of 780 cm{sup 2}. The main feature of the stack is the advanced membrane electrode assembly (MEA) developed by W.L. Gore & Associates, Inc. These novel MEAs consist of a thin composite perfluorinated polymer membrane with a catalyst layer with platinum loading of 0.3 Mg/cm{sup 2} on each side. The combination of reinforcement and thinness provides high membrane conductance and improved water distribution in the operating cell. In addition, the membrane has excellent mechanical properties (particularly when it is hydrated) and dimensional stability.

  12. Effect of fuel injector type on performance and emissions of reverse-flow combustor

    NASA Technical Reports Server (NTRS)

    Norgren, C. T.; Riddlebaugh, S. M.

    1981-01-01

    The combustion process in a reverse-flow combustor suitable for a small gas turbine engine was investigated to evaluate the effect of fuel injector type on performance and emissions. Fuel injector configurations using pressure-atomizing, spill-flow, air blast, and air-assist techniques were compared and evaluated on the basis of performance obtained in a full-scale experimental combustor operated at inlet conditions corresponding to takeoff, cruise, low power, and idle and typical of a 16:1-pressure-ratio turbine engine. Major differences in combustor performance and emissions characteristics were experienced with each injector type even though the aerodynamic configuration was common to most combustor models. Performance characteristics obtained with the various fuel injector types could not have been predicted from bench-test injector spray characteristics. The effect of the number of operating fuel injectors on performance and emissions is also presented.

  13. Close-in Blast Waves from Spherical Charges*

    NASA Astrophysics Data System (ADS)

    Howard, William; Kuhl, Allen

    2011-06-01

    We study the close-in blast waves created by the detonation of spherical high explosives (HE) charges, via numerical simulations with our Arbitrary-Lagrange-Eulerian (ALE3D) code. We used a finely-resolved, fixed Eulerian 2-D mesh (200 μm per cell) to capture the detonation of the charge, the blast wave propagation in air, and the reflection of the blast wave from an ideal surface. The thermodynamic properties of the detonation products and air were specified by the Cheetah code. A programmed-burn model was used to detonate the charge at a rate based on measured detonation velocities. The results were analyzed to evaluate the: (i) free air pressure-range curves: Δps (R) , (ii) free air impulse curves, (iii) reflected pressure-range curves, and (iv) reflected impulse-range curves. A variety of explosives were studied. Conclusions are: (i) close-in (R < 10 cm /g 1 / 3) , each explosive had its own (unique) blast wave (e.g., Δps (R , HE) ~ a /Rn , where n is different for each explosive); (ii) these close-in blast waves do not scale with the ``Heat of Detonation'' of the explosive (because close-in, there is not enough time to fully couple the chemical energy to the air via piston work); (iii) instead they are related to the detonation conditions inside the charge. Scaling laws will be proposed for such close-in blast waves.

  14. Comparison of Internal-Blast Explosive Performance in Small- and Large-Scale Tests

    NASA Astrophysics Data System (ADS)

    Granholm, Richard

    2013-06-01

    Small-scale internal blast measurements were correlated with large-scale test data. Highly confined small explosive samples <0.5 g were subjected to the output from a PETN detonator while enclosed in a 3-liter chamber. Large-scale tests up to 22.7 kg were generally unconfined and shot in a 180-m3 chamber. When sample mass was expressed as total sample energy/chamber volume, theoretical peak quasi-static blast pressures for both small and large-scale tests fell on the same curve. Blast explosives may comprise high levels of fuels and reactive materials to enhance or control the release of energy, and may be insensitive and slow-reacting, with performance that may not scale well to small size tests. High confinement of a small sample can compensate for low sensitivity, but at the expense of heat loss to the metal confinement. This heat loss can be measured to improve the correlation between large and small-scale measurements, unless the released energy becomes too low to sustain complete reaction of the sample, either with itself or with air in the chamber.

  15. Adaptation of Combustion Principles to Aircraft Propulsion. Volume I; Basic Considerations in the Combustion of Hydrocarbon Fuels with Air

    NASA Technical Reports Server (NTRS)

    Barnett, Henry C (Editor); Hibbard, Robert R (Editor)

    1955-01-01

    The report summarizes source material on combustion for flight-propulsion engineers. First, several chapters review fundamental processes such as fuel-air mixture preparation, gas flow and mixing, flammability and ignition, flame propagation in both homogenous and heterogenous media, flame stabilization, combustion oscillations, and smoke and carbon formation. The practical significance and the relation of these processes to theory are presented. A second series of chapters describes the observed performance and design problems of engine combustors of the principal types. An attempt is made to interpret performance in terms of the fundamental processes and theories previously reviewed. Third, the design of high-speed combustion systems is discussed. Combustor design principles that can be established from basic considerations and from experience with actual combustors are described. Finally, future requirements for aircraft engine combustion systems are examined.

  16. Critical importance of humidification of the anode in miniature air-breathing polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Hamel, Simon; Fréchette, Luc G.

    2011-08-01

    Although water management at the cathode is known to be critical in miniature polymer electrolyte membrane fuel cells (mPEMFCs), this study shows that control of water transport towards the anode is a determining factor to increase air-breathing mPEMFC performances. An analytical 1D model is developed to capture the water transport and water content profile in the membrane. It shows that drying at the anode and flooding at the cathode can happen simultaneously, mainly due to dominant electro-osmotic drag at low cell temperatures. Experimental results demonstrate that injecting water at the anode, at a rate of 3 times the amount produced at the cathode, increases the cell performances at high current densities. By this method, the limiting current and maximum power densities have been raised by 100% and 30% respectively.

  17. Hidden disbond detection in spent nuclear fuel storage systems using air-coupled ultrasonics

    NASA Astrophysics Data System (ADS)

    Song, Homin; Popovics, John S.

    2016-04-01

    This paper studies an air-coupled ultrasonic scanning approach for damage assessment in steel-clad concrete structures. An air-coupled ultrasonic sender generates guided plate waves in the steel cladding and a small contact-type receiver measures the corresponding wave responses. A frequency-wavenumber (f-k) domain signal filtering technique is used to isolate the behavior of the fundamental symmetric (S0) mode of the guided plate waves. The behavior of the S0 mode is sensitive to interface bonding conditions. The proposed inspection approach is verified by a series of experiments performed on laboratory-scale specimens. The experimental results demonstrate that hidden disbond between steel cladding and underlying concrete substrate can be successfully detected with the ultrasonic test setup and the f-k domain signal filtering technique.

  18. Modern BLAST Programs

    NASA Astrophysics Data System (ADS)

    Ma, Jian; Zhang, Louxin

    The Basic Local Alignment Search Tool (BLAST) is arguably the most widely used program in bioinformatics. By sacrificing sensitivity for speed, it makes sequence comparison practical on huge sequence databases currently available. The original version of BLAST was developed in 1990. Since then it has spawned a variant of specialized programs. This chapter surveys the development of BLAST and BLAST-like programs for homology search, discusses alignment statistics that are used in assessment of reported matches in BLAST, and provides the reader with guidance to select appropriate programs and set proper parameters to match research requirements.

  19. Study of azo dye decolorization and determination of cathode microorganism profile in air-cathode microbial fuel cells.

    PubMed

    Kumru, Mert; Eren, Hilal; Catal, Tunc; Bermek, Hakan; Akarsubaşi, Alper Tunga

    2012-09-01

    Five textile azo dyes, as part of an artificial mixture, were treated in single-chamber air-cathode microbial fuel cells while simultaneously utilizing acetate for electricity production. Remazol Black, Remazol Brilliant Blue, Remazol Turquoise Blue, Reactive Yellow and Reactive Red at concentrations of 40 or 80 mg L(-1) were decolorized to a similar extent, at averages of 78, 95, 53, 93 and 74%, respectively, in 24 hours. During the process of decolorization, electricity generation from acetate oxidation continued. Power densities obtained in the presence of textile dyes ranged from 347 to 521 mW m(-2) at the current density range of 0.071 - 0.086 mA cm(-2). Microbial community analyses of cathode biofilm exhibited dynamic changes in abundant species following dye decolorization. Upon the addition of the first dye, a major change (63%) in microbial diversity was observed; however, subsequent addition of other dyes did not affect the community profile significantly. Actinobacteria, Aquamicrobium, Mesorhizobium, Ochrobactrum, Thauera, Paracoccus, Achromobacter and Chelatacoccus affiliated phylotypes were the major phylotypes detected. Our results demonstrate that microbial fuel cells could be a promising alternative for treatment of textile wastewaters and an active bacterial community can rapidly be established for simultaneous azo dye decolorization and sustainable electricity generation.

  20. Electrochemically exfoliated graphene anodes with enhanced biocurrent production in single-chamber air-breathing microbial fuel cells.

    PubMed

    Najafabadi, Amin Taheri; Ng, Norvin; Gyenge, Előd

    2016-07-15

    Microbial fuel cells (MFCs) present promising options for environmentally sustainable power generation especially in conjunction with waste water treatment. However, major challenges remain including low power density, difficult scale-up, and durability of the cell components. This study reports enhanced biocurrent production in a membrane-free MFC, using graphene microsheets (GNs) as anode and MnOx catalyzed air cathode. The GNs are produced by ionic liquid assisted simultaneous anodic and cathodic electrochemical exfoliation of iso-molded graphite electrodes. The GNs produced by anodic exfoliation increase the MFC peak power density by over 300% compared to plain carbon cloth (i.e., 2.85Wm(-2) vs 0.66Wm(-2), respectively), and by 90% compared to conventional carbon black (i.e., Vulcan XC-72) anode. These results exceed previously reported power densities for graphene-containing MFC anodes. The fuel cell polarization results are corroborated by electrochemical impedance spectroscopy indicating three times lower charge transfer resistance for the GN anode. Material characterizations suggest that the best performing GN samples were of relatively smaller size (~500nm), with higher levels of ionic liquid induced surface functionalization during the electrochemical exfoliation process.

  1. Electrochemically exfoliated graphene anodes with enhanced biocurrent production in single-chamber air-breathing microbial fuel cells.

    PubMed

    Najafabadi, Amin Taheri; Ng, Norvin; Gyenge, Előd

    2016-07-15

    Microbial fuel cells (MFCs) present promising options for environmentally sustainable power generation especially in conjunction with waste water treatment. However, major challenges remain including low power density, difficult scale-up, and durability of the cell components. This study reports enhanced biocurrent production in a membrane-free MFC, using graphene microsheets (GNs) as anode and MnOx catalyzed air cathode. The GNs are produced by ionic liquid assisted simultaneous anodic and cathodic electrochemical exfoliation of iso-molded graphite electrodes. The GNs produced by anodic exfoliation increase the MFC peak power density by over 300% compared to plain carbon cloth (i.e., 2.85Wm(-2) vs 0.66Wm(-2), respectively), and by 90% compared to conventional carbon black (i.e., Vulcan XC-72) anode. These results exceed previously reported power densities for graphene-containing MFC anodes. The fuel cell polarization results are corroborated by electrochemical impedance spectroscopy indicating three times lower charge transfer resistance for the GN anode. Material characterizations suggest that the best performing GN samples were of relatively smaller size (~500nm), with higher levels of ionic liquid induced surface functionalization during the electrochemical exfoliation process. PMID:26926591

  2. Study of azo dye decolorization and determination of cathode microorganism profile in air-cathode microbial fuel cells.

    PubMed

    Kumru, Mert; Eren, Hilal; Catal, Tunc; Bermek, Hakan; Akarsubaşi, Alper Tunga

    2012-09-01

    Five textile azo dyes, as part of an artificial mixture, were treated in single-chamber air-cathode microbial fuel cells while simultaneously utilizing acetate for electricity production. Remazol Black, Remazol Brilliant Blue, Remazol Turquoise Blue, Reactive Yellow and Reactive Red at concentrations of 40 or 80 mg L(-1) were decolorized to a similar extent, at averages of 78, 95, 53, 93 and 74%, respectively, in 24 hours. During the process of decolorization, electricity generation from acetate oxidation continued. Power densities obtained in the presence of textile dyes ranged from 347 to 521 mW m(-2) at the current density range of 0.071 - 0.086 mA cm(-2). Microbial community analyses of cathode biofilm exhibited dynamic changes in abundant species following dye decolorization. Upon the addition of the first dye, a major change (63%) in microbial diversity was observed; however, subsequent addition of other dyes did not affect the community profile significantly. Actinobacteria, Aquamicrobium, Mesorhizobium, Ochrobactrum, Thauera, Paracoccus, Achromobacter and Chelatacoccus affiliated phylotypes were the major phylotypes detected. Our results demonstrate that microbial fuel cells could be a promising alternative for treatment of textile wastewaters and an active bacterial community can rapidly be established for simultaneous azo dye decolorization and sustainable electricity generation. PMID:23240212

  3. Novel injector techniques for coal-fueled diesel engines

    SciTech Connect

    Badgley, P.R.

    1992-09-01

    This report, entitled Novel Injector Techniques for Coal-Fueled Diesel Engines,'' describes the progress and findings of a research program aimed at development of a dry coal powder fuel injector in conjunction with the Thermal Ignition Combustion System (TICS) concept to achieve autoignition of dry powdered coal in a single-cylinder high speed diesel engine. The basic program consisted of concept selection, analysis and design, bench testing and single cylinder engine testing. The coal injector concept which was selected was a one moving part dry-coal-powder injector utilizing air blast injection. Adiabatics has had previous experience running high speed diesel engines on both direct injected directed coal-water-slurry (CWS) fuel and also with dry coal powder aspirated into the intake air. The Thermal Ignition Combustion System successfully ignited these fuels at all speeds and loads without requiring auxiliary ignition energy such as pilot diesel fuel, heated intake air or glow or spark plugs. Based upon this prior experience, it was shown that the highest efficiency and fastest combustion was with the dry coal, but that the use of aspiration of coal resulted in excessive coal migration into the engine lubrication system. Based upon a desire of DOE to utilize a more modern test engine, the previous naturally-aspirated Caterpillar model 1Y73 single cylinder engine was replaced with a turbocharged (by use of shop air compressor and back pressure control valve) single cylinder version of the Cummins model 855 engine.

  4. Spatial distribution of bacterial communities on volumetric and planar anodes in single-chamber air-cathode microbial fuel cells.

    PubMed

    Vargas, Ignacio T; Albert, Istvan U; Regan, John M

    2013-11-01

    Pyrosequencing was used to characterize bacterial communities in air-cathode microbial fuel cells across a volumetric (graphite fiber brush) and a planar (carbon cloth) anode, where different physical and chemical gradients would be expected associated with the distance between anode location and the air cathode. As expected, the stable operational voltage and the coulombic efficiency (CE) were higher for the volumetric anode than the planar anode (0.57 V and CE = 22% vs. 0.51 V and CE = 12%). The genus Geobacter was the only known exoelectrogen among the observed dominant groups, comprising 57 ± 4% of recovered sequences for the brush and 27 ± 5% for the carbon-cloth anode. While the bacterial communities differed between the two anode materials, results showed that Geobacter spp. and other dominant bacterial groups were homogenously distributed across both planar and volumetric anodes. This lends support to previous community analysis interpretations based on a single biofilm sampling location in these systems. PMID:23616357

  5. Combustion rate limits of hydrogen plus hydrocarbon fuel: Air diffusion flames from an opposed jet burner technique

    NASA Technical Reports Server (NTRS)

    Pellett, Gerald L.; Guerra, Rosemary; Wilson, Lloyd G.; Reeves, Ronald N.; Northam, G. Burton

    1987-01-01

    Combustion of H2/hydrocarbon (HC) fuel mixtures may be considered in certain volume-limited supersonic airbreathing propulsion applications. Effects of HC addition to H2 were evaluated, using a recent argon-bathed, coaxial, tubular opposed jet burner (OJB) technique to measure the extinction limits of counterflow diffusion flames. The OJB flames were formed by a laminar jet of (N2 and/or HC)-diluted H2 mixture opposed by a similar jet of air at ambient conditions. The OJB data, derived from respective binary mixtures of H2 and methane, ethylene, or propane HCs, were used to characterize BLOWOFF and RESTORE. BLOWOFF is a sudden breaking of the dish-shaped OJB flame to a stable torus or ring shape, and RESTORE marks sudden restoration of the central flame by radial inward flame propagation. BLOWOFF is a measure of kinetically-limited flame reactivity/speed under highly stretched, but relatively ideal impingement flow conditions. RESTORE measures inward radial flame propagation rate, which is sensitive to ignition processes in the cool central core. It is concluded that relatively small molar amounts of added HC greatly reduce the reactivity characteristics of counterflow hydrogen-air diffusion flames, for ambient initial conditions.

  6. Hollow-spherical Co/N-C nanoparticle as an efficient electrocatalyst used in air cathode microbial fuel cell.

    PubMed

    Yang, Tingting; Li, Kexun; Pu, Liangtao; Liu, Ziqi; Ge, Baochao; Pan, Yajun; Liu, Ying

    2016-12-15

    The hollow-spherical Co/N-C nanoparticle, which is synthesized via a simple hydrothermal reaction followed by heat treatment, is firstly used as electrocatalyst for oxygen reduction reaction (ORR) in air-cathode microbial fuel cell (MFC). The maximum power density of MFC with 10% Co/N-C air-cathode is as high as 2514±59mWm(-2), which is almost 174% higher than the control. The exchange current density (i0) of cathode equipped with 10% Co/N-C is 238% higher than that of untreated AC. While the total resistance of treated samples decreases from 13.017 to 10.255Ω. The intensity ratio of Raman D to G band (ID/IG) decreases from 0.93 (N-C) to 0.73 (Co/N-C), indicating the catalyst forms graphite structure. Both XRD and XPS testify that Co is bonded to N within graphitic sheets and serves as the active sites in ORR. The four-electron pathway of the Co/N-C also plays a crucial role in electrochemical catalytic activity. As a result, it can be expected that the as-synthesized Co/N-C, with extraordinary electro-catalytic performance towards ORR, will be a promising alternative to the state-of-the-art non-precious metal ORR electro-catalysts for electrochemical energy applications.

  7. Temporal variations of cathode performance in air-cathode single-chamber microbial fuel cells with different separators

    NASA Astrophysics Data System (ADS)

    Ma, Jinxing; Wang, Zhiwei; Suor, Denis; Liu, Shumeng; Li, Jiaqi; Wu, Zhichao

    2014-12-01

    An ideal separator is essential for efficient power production from air-cathode single-chamber microbial fuel cells (MFCs). In this study, we use different kinds of membranes as separators, including Nafion 117 proton exchange membrane, polyethersulfone and poly(vinylidene fluoride) microfiltration membranes. Temporal variations of cathode performance are monitored during the experiment. Results show that MFCs with microfiltration membranes present higher power output but deterioration is still observed after about 600-h operation. With the utilization of appropriate separators (e.g., polyethersulfone membrane), biofouling, cation fouling and chemical scale fouling of the cathodes are alleviated while reaction fouling seems inevitable. Moreover, it is found that Coulombic efficiency (CE) and energy efficiency (EE) are also related to the cathode performance. Despite relatively high oxygen diffusivity (1.49 × 10-5 cm2 s-1), CE and EE of the MFC with 0.1 μm pore-size polyethersulfone membrane can reach 92.8% and 13.7%, respectively, when its average power density registers 403.5 mW m-2. This phenomenon might be attributed to the finding that the overall substrate consumption rate due to oxygen reduction and respiration is almost constant in the air-cathode MFCs. Oxygen leakage into the electrolyte can be inhibited due to the efficient oxygen reduction reaction on the surface of the cathode.

  8. The past and present of blast injury research in China.

    PubMed

    Zhao, Yan; Zhou, Yuan-Guo

    2015-01-01

    With the increasing incidence of blast injury, the research on its mechanisms and protective measures draws more and more attention. Blast injury has many characteristics different from general war injuries or trauma. For example, soldiers often have various degrees of visceral injury without significant surface damage, combined injuries and arterial air embolism. Researchers in China began to investigate blast injury later than the United States and Sweden, but the development is so fast that lots of achievements have been gained, including the development of biological shock tube, the mechanisms and characteristics of blast injury in various organs, as well as protective measures under special environments. This article reviews the past and current situation of blast injury research in China.

  9. Strategies for reducing exposure to indoor air pollution from household burning of solid fuels: effects on acute lower respiratory infections in children under the age of 15 years

    PubMed Central

    Havens, Deborah; Jary, Hannah R; Patel, Latifa B; Chiume, Msandeni E; Mortimer, Kevin J

    2015-01-01

    This is the protocol for a review and there is no abstract. The objectives are as follows: This study aims to assess the effects of intervention strategies that reduce exposure to household air pollution from burning solid fuels on episodes of acute lower respiratory infection (ALRI) in children under the age of 15 years.

  10. Performance evaluation of an advanced air-fuel ratio controller on a stationary, rich-burn natural gas engine

    NASA Astrophysics Data System (ADS)

    Kochuparampil, Roshan Joseph

    The advent of an era of abundant natural gas is making it an increasingly economical fuel source against incumbents such as crude oil and coal, in end-use sectors such as power generation, transportation and industrial chemical production, while also offering significant environmental benefits over these incumbents. Equipment manufacturers, in turn, are responding to widespread demand for power plants optimized for operation with natural gas. In several applications such as distributed power generation, gas transmission, and water pumping, stationary, spark-ignited, natural gas fueled internal combustion engines (ICEs) are the power plant of choice (over turbines) owing to their lower equipment and operational costs, higher thermal efficiencies across a wide load range, and the flexibility afforded to end-users when building fine-resolution horsepower topologies: modular size increments ranging from 100 kW -- 2 MW per ICE power plant compared to 2 -- 5 MW per turbine power plant. Under the U.S. Environment Protection Agency's (EPA) New Source Performance Standards (NSPS) and Reciprocating Internal Combustion Engine National Emission Standards for Hazardous Air Pollutants (RICE NESHAP) air quality regulations, these natural gas power plants are required to comply with stringent emission limits, with several states mandating even stricter emissions norms. In the case of rich-burn or stoichiometric natural gas ICEs, very high levels of sustained emissions reduction can be achieved through exhaust after-treatment that utilizes Non Selective Catalyst Reduction (NSCR) systems. The primary operational constraint with these systems is the tight air-fuel ratio (AFR) window of operation that needs to be maintained if the NSCR system is to achieve simultaneous reduction of carbon monoxide (CO), nitrogen oxides (NOx), total hydrocarbons (THC), volatile organic compounds (VOCs), and formaldehyde (CH 2O). Most commercially available AFR controllers utilizing lambda (oxygen

  11. Effect of Water-Alcohol Injection and Maximum Economy Spark Advance on Knock-Limited Performance and Fuel Economy of a Large Air-Cooled Cylinder

    NASA Technical Reports Server (NTRS)

    Heinicke, Orville H.; Vandeman, Jack E.

    1945-01-01

    An investigation was conducted to determine the effect of a coolant solution of 25 percent ethyl alcohol, 25 percent methyl alcohol, and 50 percent water by volume and maximum-economy spark advance on knock-limited performance and fuel economy of a large air-cooled cylinder. The knock-limited performance of the cylinder at engine speeds of 2100 and 2500 rpm was determined for coolant-fuel ratios of 0.0, 0.2, and 0.4. The effect of water-alcohol injection on fuel economy was determined in constant charge-air flow tests. The tests were conducted at a spark advance of 20 deg B.T.C. and maximum-economy spark advance.

  12. An Internet-based interactive module for air emissions from fossil fuel based power generation

    SciTech Connect

    Karman, D.; O`Leary, K.; O`Reilly, S. |

    1997-12-31

    The proliferation of the Internet, Web pages and associated software tools available for developing multimedia material provides significant opportunities in training, education and information transfer. This paper will describe the development, testing and evaluation of an interactive teaching module aimed at college and university students that have previous education in thermodynamics and basic chemistry. The module is currently in development at the Department of Civil and Environmental Engineering at Carleton University with support from Environment Canada. Preliminary testing of this module is expected to begin late January. The module contains options to look at CO, CO{sub 2}, SO{sub 2} and NO{sub x} emissions associated with electric power generation in thermal stations that use coal, natural gas, crude and distillate oil. Factors governing the thermal efficiency of typical boiler systems and the thermodynamic limitations for converting heat into work are discussed. Supporting background information such as emission trends and emission factors used in calculations are also included as part of this module. A simple Rankine cycle without reheat or regeneration is considered to compare the emissions per unit energy delivered from each of the fuels considered. For natural gas and distillate oil, combined cycle operation is considered with a gas turbine-heat recovery steam generator combination replacing the boiler in the simple Rankine cycle. For all fuels, the cogeneration option is investigated by expanding the steam to an intermediate pressure in the turbine and utilizing the remaining heat by condensing the steam in a heat recovery application. Emission factors and basic information on CO, SO{sub 2} and NO{sub x} control technologies are utilized to calculate and report the emissions per unit energy delivered under the various scenarios investigated.

  13. Performance of Novel Composites and Sandwich Structures Under Blast Loading

    NASA Astrophysics Data System (ADS)

    Shukla, Arun; Tekalur, Srinivasan Arjun; Gardner, Nate; Jackson, Matt; Wang, Erheng

    The current chapter focuses on the experimental observations of the resistance of different composite material systems to air blast loadings. These material systems include traditional two dimensional (2D) woven laminated composites, layered composites and sandwich composite materials. A controlled blast loading of pre-defined pressure magnitude and rise time were obtained using a shock tube apparatus. Rectangular plate elements of the desired material system were subjected to such a controlled blast loading and the effect of the blast loading on these elements were studied using optical and residual strength measurements. A high speed imaging technique was utilized to study the damage modes and mechanisms in real time. It was observed that layering of a conventional composite material with a soft visco-elastic polymer provided better blast resistance and sandwiching the polymer greatly enhanced its survivability under extreme air blast conditions. Aside from layering the conventional composite material with a soft visco-elastic polymer, it was observed that layering or grading the core can successfully mitigate the impact damage and thus improve the overall blast resistance as well. In addition to these, three dimensional (3D) woven skin and core reinforcements were introduced in the conventional sandwich composites and their effects on the blast resistance were studied experimentally. It was observed that these reinforcements also enhance the blast resistance of conventional sandwich composites by changing the mechanism of failure initiation and propagation in these sandwich structures. The energies during the blast loading process were estimated to illustrate the energy absorption and energy redistribution properties of the composite panels. The effect of pre-existing impact damage on the failure mechanisms in sandwich structures was also studied.

  14. Blast assessment and optimization for high quarry face-blasting

    SciTech Connect

    Sames, F.; O`Meara, R.

    1996-12-01

    Where applicable, high production benches can improve efficiency in quarrying. Quality control, geological, cost or other considerations might result in the development of quarry benches higher than 30 m and sometimes up to 60 m. Production blasts on high quarry faces require a confident blast design with respect to safety, cost efficiency and minimized environmental effects. Careful pre-blast assessment of the design parameters, blast monitoring of the product performance and the environmental effects and post-blast assessment of the overall blast performance are essential for the successful implementation of the blast design. The blast geometry for high quarry faces and a blast design that often includes multiple explosive charges in a blasthole, make a reliable assessment of the blast parameters difficult. Assessment techniques, their applications and limitations are described and discussed. This will include such methods as blast surveying using laser profiling and borehole deviation measurements, blast monitoring using continuous velocity of detonation measurement systems, high speed photography and seismographs for blast performance and environmental effects. Observations of low frequency airblast and high standard deviations in ground vibration measurements are described and discussed against a background of timing assessment and frequency spectra analysis. Approaches where an optimized design was implemented based on the blast parameter assessment and modeling are presented. An improvement in blast efficiency lies in the combination of blast assessment and blast modeling, whilst adequate documentation supports the process of designing and implementing successful blasts.

  15. Combined current and temperature mapping in an air-cooled, open-cathode polymer electrolyte fuel cell under steady-state and dynamic conditions

    NASA Astrophysics Data System (ADS)

    Meyer, Q.; Ronaszegi, K.; Robinson, J. B.; Noorkami, M.; Curnick, O.; Ashton, S.; Danelyan, A.; Reisch, T.; Adcock, P.; Kraume, R.; Shearing, P. R.; Brett, D. J. L.

    2015-11-01

    In situ diagnostic techniques provide a means of understanding the internal workings of fuel cells so that improved designs and operating regimes can be identified. Here, for the first time, a combined current density and temperature distributed measurement system is used to generate an electro-thermal performance map of an air-cooled, air-breathing polymer electrolyte fuel cell stack operating in an air/hydrogen cross-flow configuration. Analysis is performed in low- and high-current regimes and a complex relationship between localised current density, temperature and reactant supply is identified that describes the way in which the system enters limiting performance conditions. Spatiotemporal analysis was carried out to characterise transient operations in dead-ended anode/purge mode which revealed extensive current density and temperature gradients.

  16. Compressive strength after blast of sandwich composite materials

    PubMed Central

    Arora, H.; Kelly, M.; Worley, A.; Del Linz, P.; Fergusson, A.; Hooper, P. A.; Dear, J. P.

    2014-01-01

    Composite sandwich materials have yet to be widely adopted in the construction of naval vessels despite their excellent strength-to-weight ratio and low radar return. One barrier to their wider use is our limited understanding of their performance when subjected to air blast. This paper focuses on this problem and specifically the strength remaining after damage caused during an explosion. Carbon-fibre-reinforced polymer (CFRP) composite skins on a styrene–acrylonitrile (SAN) polymer closed-cell foam core are the primary composite system evaluated. Glass-fibre-reinforced polymer (GFRP) composite skins were also included for comparison in a comparable sandwich configuration. Full-scale blast experiments were conducted, where 1.6×1.3 m sized panels were subjected to blast of a Hopkinson–Cranz scaled distance of 3.02 m kg−1/3, 100 kg TNT equivalent at a stand-off distance of 14 m. This explosive blast represents a surface blast threat, where the shockwave propagates in air towards the naval vessel. Hopkinson was the first to investigate the characteristics of this explosive air-blast pulse (Hopkinson 1948 Proc. R. Soc. Lond. A 89, 411–413 (doi:10.1098/rspa.1914.0008)). Further analysis is provided on the performance of the CFRP sandwich panel relative to the GFRP sandwich panel when subjected to blast loading through use of high-speed speckle strain mapping. After the blast events, the residual compressive load-bearing capacity is investigated experimentally, using appropriate loading conditions that an in-service vessel may have to sustain. Residual strength testing is well established for post-impact ballistic assessment, but there has been less research performed on the residual strength of sandwich composites after blast. PMID:24711494

  17. Compressive strength after blast of sandwich composite materials.

    PubMed

    Arora, H; Kelly, M; Worley, A; Del Linz, P; Fergusson, A; Hooper, P A; Dear, J P

    2014-05-13

    Composite sandwich materials have yet to be widely adopted in the construction of naval vessels despite their excellent strength-to-weight ratio and low radar return. One barrier to their wider use is our limited understanding of their performance when subjected to air blast. This paper focuses on this problem and specifically the strength remaining after damage caused during an explosion. Carbon-fibre-reinforced polymer (CFRP) composite skins on a styrene-acrylonitrile (SAN) polymer closed-cell foam core are the primary composite system evaluated. Glass-fibre-reinforced polymer (GFRP) composite skins were also included for comparison in a comparable sandwich configuration. Full-scale blast experiments were conducted, where 1.6×1.3 m sized panels were subjected to blast of a Hopkinson-Cranz scaled distance of 3.02 m kg(-1/3), 100 kg TNT equivalent at a stand-off distance of 14 m. This explosive blast represents a surface blast threat, where the shockwave propagates in air towards the naval vessel. Hopkinson was the first to investigate the characteristics of this explosive air-blast pulse (Hopkinson 1948 Proc. R. Soc. Lond. A 89, 411-413 (doi:10.1098/rspa.1914.0008)). Further analysis is provided on the performance of the CFRP sandwich panel relative to the GFRP sandwich panel when subjected to blast loading through use of high-speed speckle strain mapping. After the blast events, the residual compressive load-bearing capacity is investigated experimentally, using appropriate loading conditions that an in-service vessel may have to sustain. Residual strength testing is well established for post-impact ballistic assessment, but there has been less research performed on the residual strength of sandwich composites after blast.

  18. Effects of azide on electron transport of exoelectrogens in air-cathode microbial fuel cells.

    PubMed

    Zhou, Xiangtong; Qu, Youpeng; Kim, Byung Hong; Choo, Pamela Yengfung; Liu, Jia; Du, Yue; He, Weihua; Chang, In Seop; Ren, Nanqi; Feng, Yujie

    2014-10-01

    The effects of azide on electron transport of exoelectrogens were investigated using air-cathode MFCs. These MFCs enriched with azide at the concentration higher than 0.5mM generated lower current and coulomb efficiency (CE) than the control reactors, but at the concentration lower than 0.2mM MFCs generated higher current and CE. Power density curves showed overshoot at higher azide concentrations, with power and current density decreasing simultaneously. Electrochemical impedance spectroscopy (EIS) showed that azide at high concentration increased the charge transfer resistance. These analyses might reflect that a part of electrons were consumed by the anode microbial population rather than transferred to the anode. Bacterial population analyses showed azide-enriched anodes were dominated by Deltaproteobacteria compared with the controls. Based on these results it is hypothesized that azide can eliminate the growth of aerobic respiratory bacteria, and at the same time is used as an electron acceptor/sink.

  19. Fuel-air mixing and distribution in a direct-injection stratified-charge rotary engine

    NASA Technical Reports Server (NTRS)

    Abraham, J.; Bracco, F. V.

    1989-01-01

    A three-dimensional model for flows and combustion in reciprocating and rotary engines is applied to a direct-injection stratified-charge rotary engine to identify the main parameters that control its burning rate. It is concluded that the orientation of the six sprays of the main injector with respect to the air stream is important to enhance vaporization and the production of flammable mixture. In particular, no spray should be in the wake of any other spray. It was predicted that if such a condition is respected, the indicated efficiency would increase by some 6 percent at higher loads and 2 percent at lower loads. The computations led to the design of a new injector tip that has since yielded slightly better efficiency gains than predicted.

  20. Experimental Studies of Mitigation Materials for Blast Induced Tbi

    NASA Astrophysics Data System (ADS)

    Alley, M. D.; Son, S. F.; Christou, G.; Goel, R.; Young, L.

    2009-12-01

    The objective of this experimental study is to compare the effects of various materials obstructing the flow of a blast wave and the ability of the material to reduce the damage caused by the blast. Several methods of energy transfer in blast wave flows are expected including: material interfaces with impedance mismatches, density changes in a given material, internal shearing, and particle fracture. Our hypothesis is that the greatest energy transfer within the obstructing material will yield the greatest mitigation effects to the blast. Sample configurations of foam were varied to introduce material interfaces and filler materials with varying densities and impedances (liquids and powders). The samples were dynamically loaded using a small scale blast produced by an explosive driven shock tube housing gram-scale explosive charges. The transmitted blast profiles were analyzed for variations in impulse characteristics and frequency components as compared to standard free field profiles. The results showed a rounding effect of the transmitted blast profile for all samples with the effects of the high density fillers surpassing all others tested. These results lead to a conclusion that low porosity, high density materials offer superior attenuation by reducing air blast features and spatially distributing the transmitted wave.