Science.gov

Sample records for air boundary layer

  1. Boundary Layers of Air Adjacent to Cylinders

    PubMed Central

    Nobel, Park S.

    1974-01-01

    Using existing heat transfer data, a relatively simple expression was developed for estimating the effective thickness of the boundary layer of air surrounding cylinders. For wind velocities from 10 to 1000 cm/second, the calculated boundary-layer thickness agreed with that determined for water vapor diffusion from a moistened cylindrical surface 2 cm in diameter. It correctly predicted the resistance for water vapor movement across the boundary layers adjacent to the (cylindrical) inflorescence stems of Xanthorrhoea australis R. Br. and Scirpus validus Vahl and the leaves of Allium cepa L. The boundary-layer thickness decreased as the turbulence intensity increased. For a turbulence intensity representative of field conditions (0.5) and for νwindd between 200 and 30,000 cm2/second (where νwind is the mean wind velocity and d is the cylinder diameter), the effective boundary-layer thickness in centimeters was equal to [Formula: see text]. PMID:16658855

  2. Infrared propagation in the air-sea boundary layer

    NASA Astrophysics Data System (ADS)

    Larsen, R.; Preedy, K. A.; Drake, G.

    1990-03-01

    Over the oceans and other large bodies of water the structure of the lowest layers of the atmosphere is often strongly modified by evaporation of water vapor from the water surface. At radio wavelengths this layer will usually be strongly refracting or ducting, and the layer is commonly known as the evaporation duct. However, the refractive index of air at infrared wavelengths differs from that at radio wavelengths, and the effects of the marine boundary layer on the propagation of infrared radiation are examined. Meteorological models of the air-sea boundary layer are used to compute vertical profiles of temperature and water-vapor pressure. From these are derived profiles of atmospheric refractive index at radio wavelengths and at infrared wavelengths in the window regions of low absorption. For duct propagation to occur it is necessary that the refractivity of air decreases rapidly with increasing height above the surface. At radio wavelengths this usually occurs when there is a strong lapse of water vapor pressure with increasing height. By contrast, at infrared wavelengths the refractive index is almost independent of water vapor pressure, and it is found that an infrared duct is formed only when there is a temperature inversion.

  3. Air Flow in a Separating Laminar Boundary Layer

    NASA Technical Reports Server (NTRS)

    Schubauer, G B

    1936-01-01

    The speed distribution in a laminar boundary layer on the surface of an elliptic cylinder, of major and minor axes 11.78 and 3.98 inches, respectively, has been determined by means of a hot-wire anemometer. The direction of the impinging air stream was parallel to the major axis. Special attention was given to the region of separation and to the exact location of the point of separation. An approximate method, developed by K. Pohlhausen for computing the speed distribution, the thickness of the layer, and the point of separation, is described in detail; and speed-distribution curves calculated by this method are presented for comparison with experiment.

  4. Boundary Layer

    NASA Technical Reports Server (NTRS)

    Loitsianskii. L. G.

    1956-01-01

    The fundamental, practically the most important branch of the modern mechanics of a viscous fluid or a gas, is that branch which concerns itself with the study of the boundary layer. The presence of a boundary layer accounts for the origin of the resistance and lift force, the breakdown of the smooth flow about bodies, and other phenomena that are associated with the motion of a body in a real fluid. The concept of boundary layer was clearly formulated by the founder of aerodynamics, N. E. Joukowsky, in his well-known work "On the Form of Ships" published as early as 1890. In his book "Theoretical Foundations of Air Navigation," Joukowsky gave an account of the most important properties of the boundary layer and pointed out the part played by it in the production of the resistance of bodies to motion. The fundamental differential equations of the motion of a fluid in a laminar boundary layer were given by Prandtl in 1904; the first solutions of these equations date from 1907 to 1910. As regards the turbulent boundary layer, there does not exist even to this day any rigorous formulation of this problem because there is no closed system of equations for the turbulent motion of a fluid. Soviet scientists have done much toward developing a general theory of the boundary layer, and in that branch of the theory which is of greatest practical importance at the present time, namely the study of the boundary layer at large velocities of the body in a compressed gas, the efforts of the scientists of our country have borne fruit in the creation of a new theory which leaves far behind all that has been done previously in this direction. We shall herein enumerate the most important results by Soviet scientists in the development of the theory of the boundary layer.

  5. Air-mass origin in the tropical lower stratosphere: The influence of Asian boundary layer air

    NASA Astrophysics Data System (ADS)

    Orbe, Clara; Waugh, Darryn W.; Newman, Paul A.

    2015-05-01

    A climatology of air-mass origin in the tropical lower stratosphere is presented for the Goddard Earth Observing System Chemistry Climate Model. During late boreal summer and fall, air-mass fractions reveal that as much as 20% of the air in the tropical lower stratosphere last contacted the planetary boundary layer (PBL) over Asia; by comparison, the air-mass fractions corresponding to last PBL contact over North America and over Europe are negligible. Asian air reaches the extratropical tropopause within a few days of leaving the boundary layer and is quasi-horizontally transported into the tropical lower stratosphere, where it persists until January. The rapid injection of Asian air into the lower stratosphere—and its persistence in the deep tropics through late (boreal) winter—is important as industrial emissions over East Asia continue to increase. Hence, the Asian monsoon may play an increasingly important role in shaping stratospheric composition.

  6. Turbulent Boundary Layer in High Rayleigh Number Convection in Air

    NASA Astrophysics Data System (ADS)

    du Puits, Ronald; Li, Ling; Resagk, Christian; Thess, André; Willert, Christian

    2014-03-01

    Flow visualizations and particle image velocimetry measurements in the boundary layer of a Rayleigh-Bénard experiment are presented for the Rayleigh number Ra =1.4×1010. Our visualizations indicate that the appearance of the flow structures is similar to ordinary (isothermal) turbulent boundary layers. Our particle image velocimetry measurements show that vorticity with both positive and negative sign is generated and that the smallest flow structures are 1 order of magnitude smaller than the boundary layer thickness. Additional local measurements using laser Doppler velocimetry yield turbulence intensities up to I=0.4 as in turbulent atmospheric boundary layers. From our observations, we conclude that the convective boundary layer becomes turbulent locally and temporarily although its Reynolds number Re ≈200 is considerably smaller than the value 420 underlying existing phenomenological theories. We think that, in turbulent Rayleigh-Bénard convection, the transition of the boundary layer towards turbulence depends on subtle details of the flow field and is therefore not universal.

  7. Atmospheric Boundary Layer Modeling for Combined Meteorology and Air Quality Systems

    EPA Science Inventory

    Atmospheric Eulerian grid models for mesoscale and larger applications require sub-grid models for turbulent vertical exchange processes, particularly within the Planetary Boundary Layer (PSL). In combined meteorology and air quality modeling systems consistent PSL modeling of wi...

  8. Boundary layer flow of air over water on a flat plate

    NASA Technical Reports Server (NTRS)

    Nelson, John; Alving, Amy E.; Joseph, Daniel D.

    1993-01-01

    A non-similar boundary layer theory for air blowing over a water layer on a flat plate is formulated and studied as a two-fluid problem in which the position of the interface is unknown. The problem is considered at large Reynolds number (based on x), away from the leading edge. A simple non-similar analytic solution of the problem is derived for which the interface height is proportional to x(sub 1/4) and the water and air flow satisfy the Blasius boundary layer equations, with a linear profile in the water and a Blasius profile in the air. Numerical studies of the initial value problem suggests that this asymptotic, non-similar air-water boundary layer solution is a global attractor for all initial conditions.

  9. Factors influencing the marine boundary layer during a cold-air outbreak

    NASA Technical Reports Server (NTRS)

    Stage, S. A.

    1983-01-01

    The model for the cloud-topped marine boundary layer during a cold air outbreak developed by Stage and Businger (1981a) is used in conjunction with a test profile based on a fall outbreak episode over Lake Ontario to study factors influencing marine boundary-layer evolution. Sensitivity tests are done which show changes in layer evolution resulting from variation of wind speed, radiative sky temperature, water surface temperature, humidity of the shoreline sounding and divergence. The behavior of the layer in the presence of a region of cold-water upwelling near the shore is also investigated. It is found that the main effect of the upwelling region is to delay modification of the boundary-layer air.

  10. Dynamical Simulation of Cloudy Boundary Layer Flow during Cold Air Outbreaks.

    NASA Astrophysics Data System (ADS)

    Yuen, Chiu-Wai

    A two-dimensional primitive equation planetary boundary layer model has been constructed and applied to simulate downwind evolution of coupled dynamical, thermodynamical and cloud properties in the planetary boundary layer (PBL) developed during cold air outbreaks over warm ocean. A layered parametric approach is adopted to model the inversion -capped convective boundary layer filled with shallow cumuli, or topped by stratocumulus or cloud free air. Turbulent and convective cloud fluxes are determined from modifications and generalizations of recent published parameterization schemes. A one-dimensional version of the model is first applied to a local simulation of trade wind flow. Vertical distributions of momentum flux and wind in the cumulus -filled baroclinic PBL are realistically simulated compared to observations, confirming the validity of the momentum flux parameterization scheme assembled in this research. A steady-state linear analysis for a cloud-free mixed layer flowing from land over a warm ocean clarifies the basic dynamical and thermodynamical adjustments to differential friction and heating. Downwind warming and deepening of PBL produces counteracting pressure gradient forces, while heating-induced subsidence occurs only in places where boundary layer baroclinity is strong. Comparative numerical experiments for moderate intensity air-sea interaction illustrate the importance of nonprecipitating cumulus convection and large scale environmental conditions. Such factors as baroclinity, static stability, moisture content, upwind inversion strength and height exert strong controls on the downwind evolution of PBL and clouds. Boundary layer flow is influenced by the basic geostrophic wind distribution and the PBL depth is also sensitive to large scale vertical velocity. The response of an advective boundary layer to stronger wind is different from that of a horizontally homogeneous boundary layer. In a simulation of an intense air mass transformation

  11. Impact of Bay-Breeze Circulations on Surface Air Quality and Boundary Layer Export

    NASA Technical Reports Server (NTRS)

    Loughner, Christopher P.; Tzortziou, Maria; Follette-Cook, Melanie; Pickering, Kenneth E.; Goldberg, Daniel; Satam, Chinmay; Weinheimer, Andrew; Crawford, James H.; Knapp, David J.; Montzka, Denise D.; Diskin, Glenn S.; Dickerson, Russell R.

    2014-01-01

    Meteorological and air-quality model simulations are analyzed alongside observations to investigate the role of the Chesapeake Bay breeze on surface air quality, pollutant transport, and boundary layer venting. A case study was conducted to understand why a particular day was the only one during an 11-day ship-based field campaign on which surface ozone was not elevated in concentration over the Chesapeake Bay relative to the closest upwind site and why high ozone concentrations were observed aloft by in situ aircraft observations. Results show that southerly winds during the overnight and early-morning hours prevented the advection of air pollutants from the Washington, D.C., and Baltimore, Maryland, metropolitan areas over the surface waters of the bay. A strong and prolonged bay breeze developed during the late morning and early afternoon along the western coastline of the bay. The strength and duration of the bay breeze allowed pollutants to converge, resulting in high concentrations locally near the bay-breeze front within the Baltimore metropolitan area, where they were then lofted to the top of the planetary boundary layer (PBL). Near the top of the PBL, these pollutants were horizontally advected to a region with lower PBL heights, resulting in pollution transport out of the boundary layer and into the free troposphere. This elevated layer of air pollution aloft was transported downwind into New England by early the following morning where it likely mixed down to the surface, affecting air quality as the boundary layer grew.

  12. The Atmospheric Boundary Layer

    ERIC Educational Resources Information Center

    Tennekes, Hendrik

    1974-01-01

    Discusses some important parameters of the boundary layer and effects of turbulence on the circulation and energy dissipation of the atmosphere. Indicates that boundary-layer research plays an important role in long-term forecasting and the study of air-pollution meteorology. (CC)

  13. Numerical model of boundary-layer control using air-jet generated vortices

    NASA Astrophysics Data System (ADS)

    Henry, F. S.; Pearcey, H. H.

    1994-12-01

    Numerical calculations of the three-dimensional flowfield generated by pitched and skewed air jets issuing into an otherwise undisturbed turbulent boundary layer are presented. It is demonstrated that each such jet produces a single strong longitudinal vortex. The strength of the vortex, as inferred from its effect on the development of skin friction, is shown to be influenced by pitch and skew angles, exit velocity, and downstream distance in ways which accord with published experimental results. The calculated beneficial effect that the longitudinal vortices have on the development of skin friction in an adverse pressure gradient demonstrates the mechanism by which vortex generators delay boundary-layer separation. It follows that the numerical model could be used to optimize arrays of air-jet vortex generators. Furthermore, the facility to quantify the interaction between the vortex and the boundary layer should also be valuable in the application of vane vortex generators, and possible even more generally.

  14. A laser Doppler system for the remote sensing of boundary layer winds in clear air conditions

    NASA Technical Reports Server (NTRS)

    Lawrence, T. R.; Krause, M. C.; Craven, C. E.; Morrison, L. K.; Thomson, J. A. L.; Cliff, W. C.; Huffaker, R. M.

    1975-01-01

    The system discussed uses a laser Doppler radar in combination with a velocity azimuth display mode of scanning to determine the three-dimensional wind field in the atmospheric boundary layer. An attractive feature of this CW monostatic system is that the ambient aerosol provides a 'sufficient' scattering target to permit operation under clear air conditions. Spatial resolution is achieved by focusing.

  15. Effects of boundary layer and liquid viscosity and compressible air on sloshing characteristics

    NASA Astrophysics Data System (ADS)

    Zou, Chang-Fang; Wang, De-Yu; Cai, Zhong-Hua

    2015-07-01

    In this paper, numerical investigations for tank sloshing, based on commercial CFD package FLUENT, are performed to study effects of boundary layer grid, liquid viscosity and compressible air on sloshing pressure, wave height and rising time of impact pressure. Also, sloshing experiments for liquids of different viscosity are carried out to validate the numerical results. Through comparison of numerical and experimental results, a computational model including boundary layer grid can predict the sloshing pressure more accurately. Energy dissipation due to viscous friction leads to reduction of sloshing pressure and wave elevation. Sloshing pressure is also reduced because of cushion effect of compressible air. Due to high viscosity damping effect and compressible air effect, the rising time of impact pressure becomes longer. It is also found that liquid viscosity and compressible air influence distribution of dynamic pressure along the vertical tank wall.

  16. Numerical study of shock-wave/boundary layer interactions in premixed hydrogen-air hypersonic flows

    NASA Technical Reports Server (NTRS)

    Yungster, Shaye

    1990-01-01

    A computational study of shock wave/boundary layer interactions involving premixed combustible gases, and the resulting combustion processes is presented. The analysis is carried out using a new fully implicit, total variation diminishing (TVD) code developed for solving the fully coupled Reynolds-averaged Navier-Stokes equations and species continuity equations in an efficient manner. To accelerate the convergence of the basic iterative procedure, this code is combined with vector extrapolation methods. The chemical nonequilibrium processes are simulated by means of a finite-rate chemistry model for hydrogen-air combustion. Several validation test cases are presented and the results compared with experimental data or with other computational results. The code is then applied to study shock wave/boundary layer interactions in a ram accelerator configuration. Results indicate a new combustion mechanism in which a shock wave induces combustion in the boundary layer, which then propagates outwards and downstream. At higher Mach numbers, spontaneous ignition in part of the boundary layer is observed, which eventually extends along the entire boundary layer at still higher values of the Mach number.

  17. Formation of elevated refractive layers in the oceanic boundary layer by modification of land air flowing offshore

    NASA Astrophysics Data System (ADS)

    Gossard, Earl E.

    1982-03-01

    The usual picture of the development of temperature and humidity boundary layers in a land air mass that moves offshore is shown to be very wrong under one type of Foehn condition in southern California, and it is probable that similar conditions can prevail in widespread areas around the globe, notably the Mediterranean Sea and the monsoonal regions of the Near East and Southeast Asia. A formalism is developed for analyzing the modification that seems to represent the observations satisfactorily, and graphical solutions for radio and optical ducting are given. It is shown that offshore modification can lead to elevated layers rather than to surface based layers, and the height of the layer base is theoretically predicted. Values of evaporation and heat flux into such an air mass are calculated, and the distance offshore at which dew point depression becomes zero is predicted. A method for measuring the downward heat flux in elevated inversion layers is described and results are given.

  18. Influence of the characteristics of atmospheric boundary layer on the vertical distribution of air pollutant in China's Yangtze River Delta

    NASA Astrophysics Data System (ADS)

    Wang, Chenggang; Cao, Le

    2016-04-01

    Air pollution occurring in the atmospheric boundary layer is a kind of weather phenomenon which decreases the visibility of the atmosphere and results in poor air quality. Recently, the occurrence of the heavy air pollution events has become more frequent all over Asia, especially in Mid-Eastern China. In December 2015, the most severe air pollution in recorded history of China occurred in the regions of Yangtze River Delta and Beijing-Tianjin-Hebei. More than 10 days of severe air pollution (Air Quality Index, AQI>200) appeared in many large cities of China such as Beijing, Tianjin, Shijiazhuang and Baoding. Thus, the research and the management of the air pollution has attracted most attentions in China. In order to investigate the formation, development and dissipation of the air pollutions in China, a field campaign has been conducted between January 1, 2015 and January 28, 2015 in Yangtze River Delta of China, aiming at a intensive observation of the vertical structure of the air pollutants in the atmospheric boundary layer during the time period with heavy pollution. In this study, the observation data obtained in the field campaign mentioned above is analyzed. The characteristics of the atmospheric boundary layer and the vertical distribution of air pollutants in the city Dongshan located in the center of Lake Taihu are shown and discussed in great detail. It is indicated that the stability of the boundary layer is the strongest during the nighttime and the early morning of Dongshan. Meanwhile, the major air pollutants, PM2.5 and PM10 in the boundary layer, reach their maximum values, 177.1μg m-3 and 285μg m-3 respectively. The convective boundary layer height in the observations ranges from approximately 700m to 1100m. It is found that the major air pollutants tend to be confined in a relatively shallow boundary layer, which represents that the boundary layer height is the dominant factor for controlling the vertical distribution of the air pollutants. In

  19. Effects of air pollution on thermal structure and dispersion in an urban planetary boundary layer

    NASA Technical Reports Server (NTRS)

    Viskanta, R.; Johnson, R. O.; Bergstrom, R. W.

    1977-01-01

    The short-term effects of urbanization and air pollution on the transport processes in the urban planetary boundary layer (PBL) are studied. The investigation makes use of an unsteady two-dimensional transport model which has been developed by Viskanta et al., (1976). The model predicts pollutant concentrations and temperature in the PBL. The potential effects of urbanization and air pollution on the thermal structure in the urban PBL are considered, taking into account the results of numerical simulations modeling the St. Louis, Missouri metropolitan area.

  20. Low-speed Investigation of a Semisubmerged Air Scoop with and Without Boundary-layer Suction

    NASA Technical Reports Server (NTRS)

    Pierpont, P Kenneth; Howell, Robert R

    1951-01-01

    A preliminary low-speed investigation has been made of an air scoop submerged one-half the inlet height in a depression on the surface of a simulated fuselage. Boundary-layer suction was used on the steep approach ramp to improve the internal flow. A 6-degree-included-angle diffuser with an area ratio of 1.9:1 was located behind the inlet in the model. Most of the tests were conducted with an initial turbulent boundary layer believed to approximate that which would occur on the forward part of a fuselage. A few tests were made with a boundary layer about 2.5 times the thickness of the original boundary layer to determine the effect of moving the inlet further rearward on the fuselage. The effects of suction-slot location and slot width were determined and a few tests with area suction were made. The maximum quantity of suction flow was about 15 percent of the inlet flow at an inlet-velocity ratio of 0.6.

  1. The evolution of the boundary layer in turbulent Rayleigh-Bénard convection in air

    NASA Astrophysics Data System (ADS)

    du Puits, R.; Willert, C.

    2016-04-01

    We report measurements of the near-wall flow field in turbulent Rayleigh-Bénard convection in air (Pr = 0.7) using particle image velocimetry. The measurements were performed in a thin, rectangular sample at fixed Rayleigh number Ra = 1.45 × 1010. In particular, we focus on the evolution of the boundary layer that a single convection roll generates along its path at the lower horizontal plate. We identify three specific flow regions along this path: (i) a region of wall-normal impingement of the down flow close to one corner of the sample, (ii) a region where a shear layer with almost constant thickness evolves, and (iii) a region in which this boundary layer grows and eventually detaches from the plate surface at the opposite corner of the sample. Our measurements with a spatial resolution better than 1/500 of the total thickness of the boundary layer show that the typical velocity field as well as its statistics qualitatively varies between the three flow regions. In particular, it could be verified that the shear layer region covering about 75% of the total area of the plate is in transition to turbulence at the Rayleigh number as low as investigated in the present work.

  2. Enhanced air pollution via aerosol-boundary layer feedback in China

    NASA Astrophysics Data System (ADS)

    Petäjä, T.; Järvi, L.; Kerminen, V.-M.; Ding, A. J.; Sun, J. N.; Nie, W.; Kujansuu, J.; Virkkula, A.; Yang, X.; Fu, C. B.; Zilitinkevich, S.; Kulmala, M.

    2016-01-01

    Severe air pollution episodes have been frequent in China during the recent years. While high emissions are the primary reason for increasing pollutant concentrations, the ultimate cause for the most severe pollution episodes has remained unclear. Here we show that a high concentration of particulate matter (PM) will enhance the stability of an urban boundary layer, which in turn decreases the boundary layer height and consequently cause further increases in PM concentrations. We estimate the strength of this positive feedback mechanism by combining a new theoretical framework with ambient observations. We show that the feedback remains moderate at fine PM concentrations lower than about 200 μg m-3, but that it becomes increasingly effective at higher PM loadings resulting from the combined effect of high surface PM emissions and massive secondary PM production within the boundary layer. Our analysis explains why air pollution episodes are particularly serious and severe in megacities and during the days when synoptic weather conditions stay constant.

  3. Enhanced air pollution via aerosol-boundary layer feedback in China

    PubMed Central

    Petäjä, T.; Järvi, L.; Kerminen, V.-M.; Ding, A.J.; Sun, J.N.; Nie, W.; Kujansuu, J.; Virkkula, A.; Yang, X.; Fu, C.B.; Zilitinkevich, S.; Kulmala, M.

    2016-01-01

    Severe air pollution episodes have been frequent in China during the recent years. While high emissions are the primary reason for increasing pollutant concentrations, the ultimate cause for the most severe pollution episodes has remained unclear. Here we show that a high concentration of particulate matter (PM) will enhance the stability of an urban boundary layer, which in turn decreases the boundary layer height and consequently cause further increases in PM concentrations. We estimate the strength of this positive feedback mechanism by combining a new theoretical framework with ambient observations. We show that the feedback remains moderate at fine PM concentrations lower than about 200 μg m−3, but that it becomes increasingly effective at higher PM loadings resulting from the combined effect of high surface PM emissions and massive secondary PM production within the boundary layer. Our analysis explains why air pollution episodes are particularly serious and severe in megacities and during the days when synoptic weather conditions stay constant. PMID:26753788

  4. Cold-air outbreak during GALE - Lidar observations and modeling of boundary layer dynamics

    NASA Technical Reports Server (NTRS)

    Boers, Reinout; Melfi, S. H.; Palm, Stephen P.

    1991-01-01

    Two cold-air outbreaks were studied during the Genesis of Atlantic Lows Experiment. A lidar system was operated to observe the boundary layer evolution and the development of clouds. On the first day (January 30, 1986) boundary layer rise was less than 50 percent of the value for the second day (March 2, 1986). On the first day only a thin broken cloud cover formed, while on the second day a thick solid cloud deck formed - although the average moisture content was 60 percent of that on the first day. A trajectory slab model was employed to simulate the evolution of the layer over the ocean near the east Atlantic shore. The model allows for vertical gradients in conservative variables under neutrally buoyant conditions. The primary effect of these assumptions, which are based on observed thermodynamic profiles, is to reduce cloudiness to be more in line with observations. Boundary-layer depth was reasonably well predicted as was sensible and latent heat flux.

  5. Design of an air ejector for boundary-layer bleed of an acoustically treated turbofan engine inlet during ground testing

    NASA Technical Reports Server (NTRS)

    Stakolich, E. G.

    1978-01-01

    An air ejector was designed and built to remove the boundary-layer air from the inlet a turbofan engine during an acoustic ground test program. This report describes; (1) how the ejector was sized; (2) how the ejector performed; and (3) the performance of a scale model ejector built and tested to verify the design. With proper acoustic insulation, the ejector was effective in reducing boundary layer thickness in the inlet of the turbofan engine while obtaining the desired acoustic test conditions.

  6. Effect on a shock wave boundary layer interaction of air jet vortex generators

    NASA Astrophysics Data System (ADS)

    Souverein, L. J.; Debiève, J.-F.

    2012-01-01

    The effect of upstream injection by means of continuous Air Jet Vortex Generators (AJVGs) on a shock wave turbulent boundary layer interaction is experimentally investigated. The baseline interaction is of the impinging type, with a flow deflection angle of 9.5° , a Mach number Me = 2.3, and a momentum thickness based Reynolds number of 5,000. Considered are the effects of the AJVGs on the upstream boundary layer flow topology and on the spatial and dynamical characteristics of the interaction. To this aim, Stereoscopic Particle Image Velocimetry has been employed, in addition to hot-wire anemometry (HWA) for the investigation of the dynamical characteristics of the reflected shock. It is shown that the AJVGs significantly modify the three-dimensionality of the upstream boundary layer. Overall, the AJVGs cause a reduction of the separation bubble length and height. In addition, the energetic frequency range of the reflected shock is increased by approximately 50%, which is in qualitative agreement with the smaller separation bubble size.

  7. Atmospheric Boundary Layer Height Evolution with Lidar in Buenos Aires from 2008 to 2011

    NASA Astrophysics Data System (ADS)

    Pawelko, Ezequiel Eduardo; Salvador, Jacobo Omar; Ristori, Pablo Roberto; Pallotta, Juan Vicente; Otero, Lidia Ana; Quel, Eduardo Jaime

    2016-06-01

    The analysis of the atmospheric boundary layer top height evolution is obtained from 2008 to 2011 in Buenos Aires using the multiwavelength lidar located at CEILAP (CITEDEF-CONICET) (34°33' S; 58°30' W; 17 m asl). Algorithms recognition based on covariance wavelet transform are applied to obtain seasonal statistics. This method is being evaluated for use in the Lidar Network in Argentina and it is being deployed in Patagonia region currently. The technique operates in real time in both low and high aerosol loads and with almost no human supervision.

  8. Heat transport in the marine atmospheric boundary layer during an intense cold air outbreak

    NASA Technical Reports Server (NTRS)

    Chou, Shu-Hsien; Zimmerman, Jeffrey

    1988-01-01

    The generation of the virtual heat flux in the convective MABL associated with the January 28, 1986 intense cold air airbreak offshore of the Carolinas is studied. A technique based on the joint frequency distribution of the virtual potential temperature and vertical motion (Mahrt and Paumier, 1984) is used. The results suggest that, if buoyancy is mainly driven by the temperature flux, the physical processes for generating buoyancy flux are about the same for boundary layers over land and ocean, even with different convective regimes.

  9. The role of boundary layer schemes in meteorological and air quality simulations of the Taiwan area

    NASA Astrophysics Data System (ADS)

    Cheng, Fang-Yi; Chin, Shan-Chieh; Liu, Tsun-Hsien

    2012-07-01

    Adequate air quality modeling is reliant on accurate meteorological simulations especially in the planetary boundary layer (PBL). To understand how the boundary layer processes affect the mixing and transport of air pollutants, the sensitivity of Weather Research Forecasting (WRF) model with different PBL schemes (YSU and MYJ) is utilized. Community Multiscale Air Quality (CMAQ) modeling system is performed subsequently to study the effects of the PBL physical processes on the meteorological and air quality simulations. A comparison is made of two distinct atmospheric conditions. Case 1 considers the influence of the Asian continental outflow where air pollutants carried by long-range transport (LRT) to Taiwan. The variation in ozone (O3) concentration between the two sensitivity runs is mainly caused by the PBL height difference with WRF-MYJ predicts much deeper PBL height near the frontal low-pressure region than does the WRF-YSU. Case 2 is associated with the land-sea breeze flow. In this situation O3 is locally produced from the western side of the country where major metropolitan cities and highways are located. Distinctions in O3 are caused by difference in the strength of the land-sea breeze flow between the two runs. At night the WRF-YSU predicts a weaker offshore land breeze than does the WRF-MYJ near the western coastline. During the day, the WRF-YSU predicts a stronger sea breeze near the offshore area than does the WRF-MYJ, while over the landside, the WRF-YSU predicts a lower wind speed than does the WRF-MYJ.

  10. Current state and prospects of researches on the control of turbulent boundary layer by air blowing

    NASA Astrophysics Data System (ADS)

    Kornilov, V. I.

    2015-07-01

    The paper presents the analytical review of the current state of the investigations and development trends on the problem of turbulent friction and aerodynamic drag reduction in simple model configurations, which is among key ones in modern aeromechanics. Under consideration is the modern fast progressing method of the turbulent flow control by air- and other gases (micro)blowing through a permeable surface, which is utilized in incompressible and compressible turbulent boundary layers. Several computational results to understand the essential flow physics are also included. The problem of simulation of the flow over a perforated wall where some ambiguities, in particular, at the permeable/impermeable boundary being still remained is discussed. Special attention is paid to the analysis of most important experimental and numerical results obtained with the air blowing through a finely-perforated surface, analysis of the physical peculiarities and regularities of the flow with the blowing, probability to describe the properties of such a flow within simple approach frameworks, evaluation of the efficiency of this control method, as well as the trends and opportunities of this method progress in view of state-of-the-art achievements. Although this technology has a penalty for developing the effective turbulent-flow control method, some modifications of the air blowing are an attractive alternative for real applications.

  11. Air-sea boundary layer dynamics in the presence of mesoscale surface currents

    NASA Astrophysics Data System (ADS)

    Rooth, Claes; Xie, Lian

    1992-09-01

    In the presence of surface currents, a shear stress at the air-sea interface is induced by the surface currents. In the case of a unidirectional current, a quadratic stress law leads to a stress curl proportional to and opposing the surface current vorticity even with a uniform wind. This causes a spindown effect on the surface vorticity field at a rate proportional to the wind speed. In the steady state, or in slowly varying processes which can be treated as parametrically developing quasi-steady states, the surface-layer potential vorticity modulation causes upwelling and downwelling patterns associated with the surface-current vorticity. These effects are analyzed for an idealized jet current, and for a physical situation characteristic of a Gulf Stream boundary ring along the Florida Keys, where the induced transport patterns may be important for onshore transport of fish and spiny lobster larvae, as well as for onshore transport to the Florida Keys of general flotsam transported past them by the Gulf Stream. The spindown time scale (t*) for a 1.5-layer system is H/( ρ'cdVa) for a surface jet on the deformation radius scale (where H is the thickness of the surface layer, Va the surface wind speed, ρ' the air to water density ratio and cd the surface drag coefficient) and increases for large horizontal scales in proportion to the current width squared. For a typical wind speed of 5 m/s and a density normalized drag coefficient ρ'cd= 2 × 10-6, t* is on the order of 1 month for a 30-m surface layer. In the more general case of a stratified interior water column, the vorticity spindown directly affects only the potential vorticity of the surface layer and generally leads to subsurface velocity and vorticity maxima for mesoscale eddies and jets.

  12. Radiative and turbulent heating rates in the clear-air boundary layer

    NASA Astrophysics Data System (ADS)

    Savijärvi, Hannu

    2006-01-01

    The diurnal evolution of a clear-sky midlatitude summertime boundary layer (BL) was studied using a column model over smooth and homogeneous land, subject to weak, moderate, and strong winds. The high-resolution BL model (lowest point at 30 cm) was equipped with an adequate turbulence scheme and a narrow-band long-wave (LW) radiation scheme, the latter validated using data from the International Comparison of Radiation Codes in Climate Models (ICRCCM).In off-line ICRCCM experiments, ground emissivity ɛ < 1 led to extra LW cooling of air near the surface compared to ɛ = 1. However, much stronger LW cooling at heights of 1 3 m, and warming below 1 m, was obtained by setting the ground colder than air at screen height, a typical condition during clear nights. Conversely, a warm surface anomaly typical of sunny days leads to strong LW warming at 1 3 m, with LW cooling just above the ground. These ground temperature anomalies dominated the LW heating/cooling patterns at heights of up to 3 4 m, perhaps explaining controversies in the observed LW flux divergences close to the ground.Interactive model results indicate that the middle part of a windy clear-air nocturnal BL (NBL) is dominated by turbulent cooling, while the upper and lower NBL is dominated by LW cooling. Below about 1 m, a fourth layer is formed with LW warming and turbulent cooling, in agreement with the off-line experiments. When the surface winds fall below about 1 1.5 m s -1 LW cooling dominates in the whole NBL, except very near the surface. In these light wind conditions the Monin Obukhov theory should be revised to include radiative effects.In clear-air daytime conditions strong convective BL heating dominates over weak LW cooling except at 1 3 m heights where the cooler air absorbs the thermal emission of the hot ground. The subsequent LW warming of the superadiabatic surface layer appears to be strong enough to induce local turbulent cooling (despite the hot surface) in an 'hour glass' pattern

  13. Turbulent Boundary Layer on a Finely Perforated Surface Under Conditions of Air Injection at the Expense of External Flow Resources

    NASA Astrophysics Data System (ADS)

    Kornilov, V. I.; Boiko, A. V.; Kavun, I. N.

    2015-11-01

    The characteristics of an incompressible turbulent boundary layer on a flat plate with air blown in though a finely perforated surface from an external confined flow through an input device, located on the "idle" side of the plate, have been investigated experimentally and numerically. A stable decrease in the local values of the coefficient of surface friction along the plate length that attains 85% at the end of the perforated portion is shown. The experimental and calculated data obtained point to the possibility of modeling, under earth conditions, the process of controlling a turbulent boundary layer with air injection by using the resources of an external confined flow.

  14. Boundary Layer Control on Airfoils.

    ERIC Educational Resources Information Center

    Gerhab, George; Eastlake, Charles

    1991-01-01

    A phenomena, boundary layer control (BLC), produced when visualizing the fluidlike flow of air is described. The use of BLC in modifying aerodynamic characteristics of airfoils, race cars, and boats is discussed. (KR)

  15. The atmospheric boundary layer

    SciTech Connect

    Garratt, J.R.

    1992-01-01

    This book is aimed at researchers in the atmospheric and associated sciences who require a moderately advanced text on the Atmospheric Boundary Layer (ABL) in which the many links between turbulence, air-surface transfer, boundary-layer structure and dynamics, and numerical modeling are discussed and elaborated upon. Chapter 1 serves as an introduction, with Chapters 2 and 3 dealing with the development of mean and turbulence equations, and the many scaling laws and theories that are the cornerstone of any serious ABL treatment. Modelling of the ABL is crucially dependent for its realism on the surface boundary conditions, and Chapters 4 and 5 deal with aerodynamic and energy considerations, with attention to both dry and wet land surfaces and the sea. The structure of the clear-sky, thermally stratified ABL is treated in Chapter 6, including the convective and stable cases over homogeneous land, the marine ABL and the internal boundary layer at the coastline. Chapter 7 then extends the discussion to the cloudy ABL. This is seen as particularly relevant since the extensive stratocumulus regions over the sub-tropical oceans and stratus regions over the Arctic are now identified as key players in the climate system. Finally, Chapters 8 and 9 bring much of the book's material together in a discussion of appropriate ABL and surface parameterization schemes for the general circulation models of the atmosphere that are being used for climate simulation.

  16. Transport of polluted boundary layer air from the Po Valley to high-alpine sites

    NASA Astrophysics Data System (ADS)

    Seibert, Petra; Kromp-kolb, Helga; Kasper, Anne; Kalina, Michael; Puxbaum, Hans; Jost, Dieter T.; Schwikowski, Margit; Baltensperger, Urs

    Within the EUROTRAC subproject ALPTRAC the occurrence of reactive trace species at high-alpine sites was investigated. As a part of these studies, the transport of boundary layer air from the Po Valley, which is one potential major source region for air pollution in the Alps, to the high-mountain sites Sonnblick (3106 m) in Austria and Jungfraujoch (3579 m) in Switzerland was studied. A case study based on isentropic trajectories derived from a fine-mesh analysis showed the potential of such transports to cause substantial peaks in the aerosol concentration at Sonnblick. However, on a climatological basis the Po Valley does not seem to cause higher-than-average concentrations of species such as SO 2, SO 2-4, NH +4 and NO -3. Its contribution was estimated to be about 15% in summer and much less in winter. Indications of orographically induced, subgrid vertical transports were found which are important for the interpretation of data from pollution monitoring programmes at high-alpine sites.

  17. Vehicle cabin cooling system for capturing and exhausting heated boundary layer air from inner surfaces of solar heated windows

    DOEpatents

    Farrington, Robert B.; Anderson, Ren

    2001-01-01

    The cabin cooling system includes a cooling duct positioned proximate and above upper edges of one or more windows of a vehicle to exhaust hot air as the air is heated by inner surfaces of the windows and forms thin boundary layers of heated air adjacent the heated windows. The cabin cooling system includes at least one fan to draw the hot air into the cooling duct at a flow rate that captures the hot air in the boundary layer without capturing a significant portion of the cooler cabin interior air and to discharge the hot air at a point outside the vehicle cabin, such as the vehicle trunk. In a preferred embodiment, the cooling duct has a cross-sectional area that gradually increases from a distal point to a proximal point to the fan inlet to develop a substantially uniform pressure drop along the length of the cooling duct. Correspondingly, this cross-sectional configuration develops a uniform suction pressure and uniform flow rate at the upper edge of the window to capture the hot air in the boundary layer adjacent each window.

  18. The Relation Between Wind Speed and Air-Sea Temperature Difference in the Marine Atmospheric Boundary Layer off Northwest Europe

    NASA Astrophysics Data System (ADS)

    Kettle, A. J.

    2014-12-01

    Wind speed and atmospheric stability have an important role in determining the turbulence in the marine atmospheric boundary layer (MABL) as well as the surface wave field. The understanding of MABL dynamics in northwest Europe is complicated by fetch effects, the proximity of coastlines, shallow topography, and larger scale circulation patterns (e.g., cold air outbreaks). Numerical models have difficulty simulating the marine atmospheric boundary layer in coastal areas and partially enclosed seas, and this is partly due to spatial resolution problems at coastlines. In these offshore environments, the boundary layer processes are often best understood directly from time series measurements from fixed platforms or buoys, in spite of potential difficulties from platform flow distortion as well as the spatial sparseness of the data sets. This contribution presents the results of time series measurements from offshore platforms in the North Sea and Norwegian Sea in terms of a summary diagnostic - wind speed versus air-sea temperature difference (U-ΔT) - with important implications for understanding atmospheric boundary layer processes. The U-ΔT diagram was introduced in earlier surveys of data from coastal (Sletringen; O.J. Andersen and J. Løvseth, J. Wind Eng. Ind. Aerodyn., 57, 97-109, 1995) and offshore (Statfjord A; K.J. Eidsvik, Boundary-Layer Meteorol., 32, 103-132, 1985) sites in northwest Europe to summarize boundary layer conditions at a given location. Additional information from a series of measurement purpose-built offshore measurement and oil/gas production platforms from the southern North Sea to the Norwegian Sea illustrates how the wind characteristics vary spatially over large distances, highlighting the influence of cold air outbreaks, in particular. The results are important for the offshore wind industry because of the way that wind turbines accrue fatigue damage in different conditions of atmospheric stability and wind speed.

  19. Air-Ice-Ocean Interaction: Turbulent Ocean Boundary Layer Exchange Processes

    NASA Astrophysics Data System (ADS)

    Weller, Robert

    2010-01-01

    This is a well-written book about the upper boundary layer of the ice-covered ocean. It combines a presentation of the physics and associated equations governing the structure of and mixing within the ice-ocean boundary layer (IOBL) with illustrative examples from fieldwork carried out during the author's career. The examples and good graphics do much to solidify the understanding the reader develops about these matters. Together with short summary glossaries of key quantities and parameters at the end of many chapters, the author's approach of weaving theory and observations together has resulted in an excellent text.

  20. Ozone in the Boundary Layer air over the Arctic Ocean: Measurements During the TARA Expedition.

    NASA Astrophysics Data System (ADS)

    Bottenheim, J. W.; Netcheva, S.; Morin, S.; Gascard, J.; Weber, M.; de Marliave, C.; Trouble, R.

    2007-12-01

    It is now well established that after sunrise in polar regions, the atmospheric boundary layer experiences episodes where dramatic loss of ozone can be observed. Virtually all measurements in this respect have been made at coastal observatories on land, but there is strong evidence to surmise that such episodes originate over the frozen ocean. Satellite measurements (GOME, SCIAMACHY, OMI) invariably indicate large areas over the ocean with increased concentrations of BrO which can be interpreted as a smoking gun for ozone depletion processes, but no systematic in-situ measurements of ozone do exist to corroborate the satellite data. The TARA expedition (www.taraexpeditions.org) (IPY project # 238) has enabled us for the first time to make long term ozone measurements in the surface air over the Arctic Ocean, and we report here the first results. As expected ozone was found to be stable at approx. 35 ± 5 nmol~mol-1 during the winter, but shortly after local sunrise in mid March, large depletions of ozone were observed which lasted until well into June. A particularly long episode (> 15 days) of virtually no ozone (mole fraction below or near 1 nmol~mol-1) was experienced during late April. 10-day back trajectories were calculated in an attempt to obtain more insight into the potential origin of the depletion episodes. To place the TARA ozone data into context we will compare the data with land based and satellite observations in 2007 when they become available, as well as the limited record of previous observations made from ice islands. Taking all evidence together it is plausible to speculate that large areas over the Arctic Ocean are devoid of ozone in the atmospheric boundary layer in the first months after polar sunrise, and that if anything, this will increase in the coming years. We speculate what the implications might be. This work is a contribution to IPY project #038 (OASIS, Ocean Atmosphere Sea-Ice and Snow interactions in polar regions), sponsored by

  1. Boundary-Layer & health

    NASA Astrophysics Data System (ADS)

    Costigliola, V.

    2010-09-01

    It has long been known that specific atmospheric processes, such as weather and longer-term climatic fluctuations, affect human health. The biometeorological literature refers to this relationship as meteorotropism, defined as a change in an organism that is correlated with a change in atmospheric conditions. Plenty of (patho)physiological functions are affected by those conditions - like the respiratory diseases - and currently it is difficult to put any limits for pathologies developed in reply. Nowadays the importance of atmospheric boundary layer and health is increasingly recognised. A number of epidemiologic studies have reported associations between ambient concentrations of air pollution, specifically particulate pollution, and adverse health effects, even at the relatively low concentrations of pollution found. Since 1995 there have been over twenty-one studies from four continents that have explicitly examined the association between ambient air pollutant mixes and daily mortality. Statistically significant and positive associations have been reported in data from various locations around the world, all with varying air pollutant concentrations, weather conditions, population characteristics and public health policies. Particular role has been given to atmospheric boundary layer processes, the impact of which for specific patient-cohort is, however, not well understood till now. Assessing and monitoring air quality are thus fundamental to improve Europe's welfare. One of current projects run by the "European Medical Association" - PASODOBLE will develop and demonstrate user-driven downstream information services for the regional and local air quality sectors by combining space-based and in-situ data with models in 4 thematic service lines: - Health community support for hospitals, pharmacies, doctors and people at risk - Public information for regions, cities, tourist industry and sporting event organizers - Compliance monitoring support on particulate

  2. Vertical structure of boundary layer convection during cold-air outbreaks at Barrow, Alaska

    NASA Astrophysics Data System (ADS)

    Wang, Yonggang; Geerts, Bart; Chen, Yaosheng

    2016-01-01

    Boundary layer convection (BLC) is common over high-latitude oceans and adjacent coastal regions when a cold airmass becomes exposed to a sufficient fetch of open water. The vertical structure of mixed-phase BLC clouds and precipitation is examined using the Atmospheric Radiation Measurement Program data set collected at the North Slope of Alaska (NSA) site at Barrow, Alaska. BLC may occur at this location in autumn, when cold air masses originating at higher latitudes advect southward over the still ice-free coastal waters north of Alaska. This study identifies such BLC and documents its occurrence and characteristics. Instruments used for this study include profiling Ka band radars, a depolarization backscatter profiling lidar, a scanning X band radar, a microwave radiometer, a ceilometer, surface meteorological probes, and radiosondes. Six criteria are applied to objectively identify the BLC events, using data collected between 2004 and 2013. BLC episodes are relatively common at the NSA site, but almost exclusively in the month of October, and most episodes are relatively short, less than 10 h in duration. Liquid water is commonly found in these mixed-phase BLC clouds, with a typical liquid water path of 150 g/m2, and snowfall rates average ~3 mm h-1 (water equivalent), in some cases over 10 mm h-1, notwithstanding the low cloud echo tops (~1.0-1.5 km). In one rather weak but persistent episode fall speed estimates derived from the profiling Ka band radar indicates the presence of rimed particles, confirming the convective nature of this precipitation.

  3. Direct calculation of acoustic streaming including the boundary layer phenomena in an ultrasonic air pump

    NASA Astrophysics Data System (ADS)

    Wada, Yuji; Koyama, Daisuke; Nakamura, Kentaro

    2012-05-01

    Direct finite difference fluid simulation of acoustic streaming on the fine-meshed three-dimensiona model by graphics processing unit (GPU)-oriented calculation array is discussed. Airflows due to the acoustic traveling wave are induced when an intense sound field is generated in a gap between a bending transducer and a reflector. Calculation results showed good agreement with the measurements in the pressure distribution. In addition to that, several flow-vortices were observed near the boundary of the reflector and the transducer, which have been often discussed in acoustic tube near the boundary, and have never been observed in the calculation in the ultrasonic air pump of this type.

  4. The evolution of the boundary layer and its effect on air chemistry in the Phoenix area.

    SciTech Connect

    Fast, J. D.; Doran, J. C.; Shaw, W. J.; Coulter, R. L.; Martin, T. J.; Environmental Research; PNNL

    2000-09-27

    During a 4-week period in May and June of 1998, meteorological and chemical measurements were made as part of a field campaign carried out in the Phoenix area. Data from the field campaign provide the first detailed measurements of the properties of the convective boundary layer in this area and of the effects of these properties on ozone levels. The meteorological and chemical measurements have been combined with results from a set of meteorological, particle, and chemistry models to study ozone production, transport, and mixing in the vicinity of Phoenix. Good agreement between the simulations and observations was obtained, and the results have been used to illustrate several important factors affecting ozone patterns in the region. Heating of the higher terrain north and east of Phoenix regularly produced thermally driven circulations from the south and southwest through most of the boundary layer during the afternoon, carrying the urban ozone plume to the northeast. The combination of deep mixed layers and moderate winds aloft provided good ventilation of the Phoenix area on most days so that multiday buildups of locally produced ozone did not appear to contribute significantly to ozone levels during the study period. Sensitivity simulations determined that 20 to 40% of the afternoon surface ozone mixing ratios (corresponding to 15 to 35 ppb) were due to vertical mixing processes that entrained reservoirs of ozone into the growing convective boundary layer. The model results also indicated that ozone production in the region is volatile organic compound limited.

  5. A novel Whole Air Sample Profiler (WASP) for the quantification of volatile organic compounds in the boundary layer

    SciTech Connect

    Mak, J. E.; Su, L.; Guenther, Alex B.; Karl, Thomas G.

    2013-10-16

    The emission and fate of reactive VOCs is of inherent interest to those studying chemical biosphere-atmosphere interactions. In-canopy VOC observations are obtainable using tower-based samplers, but the lack of suitable sampling systems for the full boundary 5 layer has limited the data characterizing the vertical structure of such gases above the canopy height and still in the boundary layer. This is the important region where many reactive VOCs are oxidized or otherwise removed. Here we describe an airborne sampling system designed to collect a vertical profile of air into a 3/800 OD tube 150m in length. The inlet ram air pressure is used to flow sampled air through the 10 tube, which results in a varying flow rate based on aircraft speed and altitude. Since aircraft velocity decreases during ascent, it is necessary to account for the variable flow rate into the tube. This is accomplished using a reference gas that is pulsed into the air stream so that the precise altitude of the collected air can be reconstructed post-collection. The pulsed injections are also used to determine any significant effect 15 from diffusion/mixing within the sampling tube, either during collection or subsequent extraction for gas analysis. This system has been successfully deployed, and we show some measured vertical profiles of isoprene and its oxidation products methacrolein and methyl vinyl ketone from a mixed canopy near Columbia, Missouri.

  6. High-Reynolds-number turbulent-boundary-layer wall pressure fluctuations with skin-friction reduction by air injection.

    PubMed

    Winkel, Eric S; Elbing, Brian R; Ceccio, Steven L; Perlin, Marc; Dowling, David R

    2008-05-01

    The hydrodynamic pressure fluctuations that occur on the solid surface beneath a turbulent boundary layer are a common source of flow noise. This paper reports multipoint surface pressure fluctuation measurements in water beneath a high-Reynolds-number turbulent boundary layer with wall injection of air to reduce skin-friction drag. The experiments were conducted in the U.S. Navy's Large Cavitation Channel on a 12.9-m-long, 3.05-m-wide hydrodynamically smooth flat plate at freestream speeds up to 20 ms and downstream-distance-based Reynolds numbers exceeding 200 x 10(6). Air was injected from one of two spanwise slots through flush-mounted porous stainless steel frits (approximately 40 microm mean pore diameter) at volume flow rates from 17.8 to 142.5 l/s per meter span. The two injectors were located 1.32 and 9.78 m from the model's leading edge and spanned the center 87% of the test model. Surface pressure measurements were made with 16 flush-mounted transducers in an "L-shaped" array located 10.7 m from the plate's leading edge. When compared to no-injection conditions, the observed wall-pressure variance was reduced by as much as 87% with air injection. In addition, air injection altered the inferred convection speed of pressure fluctuation sources and the streamwise coherence of pressure fluctuations. PMID:18529171

  7. Measured and calculated wall temperatures on air-cooled turbine vanes with boundary layer transition

    NASA Astrophysics Data System (ADS)

    Liebert, C. H.; Gaugler, R. E.; Gladden, H. J.

    1982-11-01

    Convection cooled turbine vane metal wall temperatures experimentally obtained in a hot cascade for one vane design were compared with wall temperatures calculated with TACT1 and STAN5 computer codes which incorporated various models for predicting laminar-to-turbulent boundary layer transition. Favorable comparisons on both vane surface were obtained at high Reynolds number with only one of these transition models. When other models were used, temperature differences between calculated and experimental data obtained at the high Reynolds number were as much as 14 percent in the separation bubble region of the pressure surface. On the suction surface and at lower Reynolds number, predictions and data unsatisfactorily differed by as much as 22 percent. Temperature differences of this magnitude can represent orders of magnitude error in blade life prediction.

  8. Computational Study of Surface Tension and Wall Adhesion Effects on an Oil Film Flow Underneath an Air Boundary Layer

    NASA Technical Reports Server (NTRS)

    Celic, Alan; Zilliac, Gregory G.

    1998-01-01

    The fringe-imaging skin friction (FISF) technique, which was originally developed by D. J. Monson and G. G. Mateer at Ames Research Center and recently extended to 3-D flows, is the most accurate skin friction measurement technique currently available. The principle of this technique is that the skin friction at a point on an aerodynamic surface can be determined by measuring the time-rate-of-change of the thickness of an oil drop placed on the surface under the influence of the external air boundary layer. Lubrication theory is used to relate the oil-patch thickness variation to shear stress. The uncertainty of FISF measurements is estimated to be as low as 4 percent, yet little is known about the effects of surface tension and wall adhesion forces on the measured results. A modified version of the free-surface Navier-Stokes solver RIPPLE, developed at Los Alamos National Laboratories, was used to compute the time development of an oil drop on a surface under a simulated air boundary layer. RIPPLE uses the volume of fluid method to track the surface and the continuum surface force approach to model surface tension and wall adhesion effects. The development of an oil drop, over a time period of approximately 4 seconds, was studied. Under the influence of shear imposed by an air boundary layer, the computed profile of the drop rapidly changes from its initial circular-arc shape to a wedge-like shape. Comparison of the time-varying oil-thickness distributions computed using RIPPLE and also computed using a greatly simplified numerical model of an oil drop equation which does not include surface tension and wall adhesion effects) was used to evaluate the effects of surface tension on FISF measurement results. The effects of surface tension were found to be small but not necessarily negligible in some cases.

  9. Investigations of the boundary-layer control on a full scale swept wing with air bled off from the turbojet

    NASA Technical Reports Server (NTRS)

    Rebuffet, Pierre; Poisson-Quinton, PH

    1952-01-01

    The following account reviews the various stages of a research program relative to the high-lift devices on a swept wing by combined suction and blowing (jet action), with ejectors fed by air bled off (extracted) from the turbojet. After reviewing the essential principles of the boundary-layer control obtained by comparison with theory, the electric analogies and the wind-tunnel tests as well as the essential elements of ejector operations, the writers describe the tests made in the large tunnel at Chalais-Meudon on a full-scale model of the SO 6020 wing.

  10. Boundary layer simulator improvement

    NASA Technical Reports Server (NTRS)

    Praharaj, Sarat C.; Schmitz, Craig P.; Nouri, Joseph A.

    1989-01-01

    Boundary Layer Integral Matrix Procedure (BLIMPJ) has been identified by the propulsion community as the rigorous boundary layer program in connection with the existing JANNAF reference programs. The improvements made to BLIMPJ and described herein have potential applications in the design of the future Orbit Transfer Vehicle engines. The turbulence model is validated to include the effects of wall roughness and a way is devised to treat multiple smooth-rough surfaces. A prediction of relaminarization regions is examined as is the combined effects of wall cooling and surface roughness on relaminarization. A turbulence model to represent the effects of constant condensed phase loading is given. A procedure is described for thrust decrement calculation in thick boundary layers by coupling the T-D Kinetics Program and BLIMPJ and a way is provided for thrust loss optimization. Potential experimental studies in rocket nozzles are identified along with the required instrumentation to provide accurate measurements in support of the presented new analytical models.

  11. Boundary-Layer Development and Low-level Baroclinicity during High-Latitude Cold-Air Outbreaks: A Simple Model

    NASA Astrophysics Data System (ADS)

    Chechin, Dmitry G.; Lüpkes, Christof

    2016-08-01

    A new quasi-analytical mixed-layer model is formulated describing the evolution of the convective atmospheric boundary layer (ABL) during cold-air outbreaks (CAO) over polar oceans downstream of the marginal sea-ice zones. The new model is superior to previous ones since it predicts not only temperature and mixed-layer height but also the height-averaged horizontal wind components. Results of the mixed-layer model are compared with dropsonde and aircraft observations carried out during several CAOs over the Fram Strait and also with results of a 3D non-hydrostatic (NH3D) model. It is shown that the mixed-layer model reproduces well the observed ABL height, temperature, low-level baroclinicity and its influence on the ABL wind speed. The mixed-layer model underestimates the observed ABL temperature only by about 10 %, most likely due to the neglect of condensation and subsidence. The comparison of the mixed-layer and NH3D model results shows good agreement with respect to wind speed including the formation of wind-speed maxima close to the ice edge. It is concluded that baroclinicity within the ABL governs the structure of the wind field while the baroclinicity above the ABL is important in reproducing the wind speed. It is shown that the baroclinicity in the ABL is strongest close to the ice edge and slowly decays further downwind. Analytical solutions demonstrate that the e -folding distance of this decay is the same as for the decay of the difference between the surface temperature of open water and of the mixed-layer temperature. This distance characterizing cold-air mass transformation ranges from 450 to 850 km for high-latitude CAOs.

  12. Explaining a Consistent Morning NOx Maximum in the Clean Air Forest Boundary Layer

    NASA Astrophysics Data System (ADS)

    Shepson, P. B.; Alaghmand, M.; Bertman, S. B.; Carroll, M.; Edburg, S. L.; Jobson, B. T.; Keutsch, F. N.; Lamb, B. K.; Starn, T.; Stevens, P. S.; Wallace, W.; Zhou, X.

    2010-12-01

    Measurements of nitrogen oxides (NOx) at continental surface sites have frequently revealed the presence of an early morning maximum in the NOx concentration. While this observation has most often been interpreted as the result of downward mixing associated with breakup of the nocturnal inversion, the morning NOx peak often occurs earlier than the NBL breakup. Given the importance of NOx to boundary layer photochemistry near forested environments, it is essential that this phenomenon be well understood. Here we examine a variety of measurements, including NOx measurements at various heights, during the 1998, 2001, 2008, and 2009 (CABINEX) summer intensives of the Program for Research on Oxidants: PHotochemistry, Emissions and Transport (PROPHET), at the University of Michigan Biological Station in Northern Michigan. We will discuss the results, in terms of the extent to which the observations support/refute each of the potential drivers of the morning NOx peak: 1) downward mixing, 2) photochemistry on the various surfaces present, 3) soil emissions, and 4) local and long range transport of anthropogenic NOx, and we will report on our conclusions as to the predominant/likely explanation(s) for this phenomenon.

  13. Microgravity Effects on Plant Boundary Layers

    NASA Technical Reports Server (NTRS)

    Stutte, Gary; Monje, Oscar

    2005-01-01

    The goal of these series of experiment was to determine the effects of microgravity conditions on the developmental boundary layers in roots and leaves and to determine the effects of air flow on boundary layer development. It is hypothesized that microgravity induces larger boundary layers around plant organs because of the absence of buoyancy-driven convection. These larger boundary layers may affect normal metabolic function because they may reduce the fluxes of heat and metabolically active gases (e.g., oxygen, water vapor, and carbon dioxide. These experiments are to test whether there is a change in boundary layer associated with microgravity, quantify the change if it exists, and determine influence of air velocity on boundary layer thickness under different gravity conditions.

  14. Microwave and Electro-optical Transmission Experiments in the air-sea Boundary Layer

    NASA Astrophysics Data System (ADS)

    Anderson, K. D.

    2002-12-01

    Microwave and electro-optical signal propagation over a wind-roughened sea is strongly dependent on signal interaction with the sea surface, the mean profiles of pressure (P), humidity (Q), temperature (T), wind (U) and their turbulent fluctuations (p, q, t, u). Yet, within the marine surface layer, these mechanisms are not sufficiently understood nor has satisfactory data been taken to validate propagation models, especially under conditions of high seas, high winds, and large surface gradients of Q and T. To address this deficiency, the Rough Evaporation Duct (RED) experiment was designed to provide first data for validation of meteorological, microwave, and electro-optical models in the marine surface layer for rough surface conditions including the effects of surface waves. The RED experiment was conducted offshore of the Hawaiian Island of Oahu in late summer, mid-August to mid-September, of 2001. R/P FLIP, moored about 10 km off of the NE coast of Oahu, hosted the primary meteorological sensor suites and served as a terminus for the propagation links. There were eleven scientists and engineers aboard R/P FLIP who installed instruments measuring mean and turbulent meteorological quantities, sea wave heights, directions, and kinematics, upward and downward radiance, near surface bubble generation, atmospheric particle size distributions, laser probing of the atmosphere, and sources for both microwave and electro-optic signals. In addition to R/P FLIP, two land sites were instrumented with microwave and electro-optic receivers and meteorological sensors, two buoys were deployed, a small boat was instrumented, and two aircraft flew various tracks to sense both sea and atmospheric conditions. In all, more than 25 people from four countries, six universities, and four government agencies were directly involved with the RED experiment. While the overall outcome of the RED experiment is positive, we had a number of major and minor problems with the outfitting

  15. The marine boundary layer - new findings from the Östergarnsholm air-sea interaction site

    NASA Astrophysics Data System (ADS)

    Smedman, A.; Högström, U.

    2003-04-01

    From studies at the air-sea interaction site Östergarnsholm, a coherent picture of how waves interact with the atmosphere is now beginning to emerge. It is clear that the surface of the ocean behaves similar to that of a solid surface with regard to the turbulence structure in the surface layer only for conditions of pure wind sea, i.e. during the phase when waves are in the process of being built up by increasing wind. At that stage of wave development, the dominant waves are short and move slowly relative to the wind. Then the drag coefficient CDN is a function only of the wave age, expressed as u*/c_p (where u* is friction velocity and c_p is the phase velocity of the dominant waves). The relation obtained by us is identical to the corresponding expression obtained from several recent ocean experiments, Drennan et al. (2000). As soon as the wave field develops behind the "pure wind sea" stage towards conditions where relatively long waves start to gain importance, inter-actions caused by these longer waves are felt in the atmosphere at our lowest turbulence measuring height, 10 m. For example it is demonstrated that the logarithmic wind law is not valid in near-neutral conditions except when pure wind sea conditions prevail and, further that for mixed seas and swell conditions, CDN is a function not only of the wave age parameter u*/c_p but also of a second wave parameter E_1/E_2, which is a measure of the proportion of energy of relatively long waves to short waves. The neutral Stanton Number, CHN, is found to follow predictions from surface-renewal theory quite well for unstable conditions up to a wind speed of about 10 ms-1. For higher wind speed CHN increases with increasing wind speed and the interpretation is made that spray is the cause of the increase.

  16. Boundary layer simulator improvement

    NASA Technical Reports Server (NTRS)

    Praharaj, S. C.; Schmitz, C.; Frost, C.; Engel, C. D.; Fuller, C. E.; Bender, R. L.; Pond, J.

    1984-01-01

    High chamber pressure expander cycles proposed for orbit transfer vehicles depend primarily on the heat energy transmitted from the combustion products through the thrust wall chamber wall. The heat transfer to the nozzle wall is affected by such variables as wall roughness, relamarization, and the presence of particles in the flow. Motor performance loss for these nozzles with thick boundary layers is inaccurate using the existing procedure coded BLIMPJ. Modifications and innovations to the code are examined. Updated routines are listed.

  17. From pores to eddies - linking diffusion-based evaporative fluxes from porous surfaces with a turbulent air boundary layer

    NASA Astrophysics Data System (ADS)

    Haghighi, E.; Or, D.

    2012-04-01

    Evaporation affects hydration and energy balance of terrestrial surfaces. Evaporation rates exhibit complex dynamics reflecting interactions between external conditions and internal transport properties of a the drying porous surface Motivated by recent progress in estimating evaporative fluxes from isolated pores across laminar air sublayer, we seek to expand the description and quantify evaporation across a turbulent boundary layer. We adopt concepts from surface renewal (SR) theory focusing on turbulent exchange with individual eddies and linking eddies surface footprint and their local boundary layer over patches of a drying surface. The model resolves diffusive exchange during limited residence time and integrates fluxes over the entire surface to quantify mean evaporative fluxes from drying surfaces into turbulent airflows accounting for subsurface internal transport processes and diffusive exchanges. Input parameters and model evaluation would be based on data from spatially and temporally resolved Infrared (IR) thermography of drying surfaces under prescribe turbulent regimes conducted in a wind-tunnel experiment. The study provides basic ingredients and building blocks essential for upscaling the results to estimation of evaporative fluxes at the field and landscape scales. Keywords: Evaporation; Turbulent Coupling; Surface Renewal; Infrared Imaging.

  18. Transitions of cloud-topped marine boundary layers characterized by AIRS, MODIS, and a large eddy simulation model

    SciTech Connect

    Yue, Qing; Kahn, Brian; Xiao, Heng; Schreier, Mathias; Fetzer, E. J.; Teixeira, J.; Suselj, Kay

    2013-08-16

    Cloud top entrainment instability (CTEI) is a hypothesized positive feedback between entrainment mixing and evaporative cooling near the cloud top. Previous theoretical and numerical modeling studies have shown that the persistence or breakup of marine boundary layer (MBL) clouds may be sensitive to the CTEI parameter. Collocated thermodynamic profile and cloud observations obtained from the Atmospheric Infrared Sounder (AIRS) and Moderate Resolution Imaging Spectroradiometer (MODIS) instruments are used to quantify the relationship between the CTEI parameter and the cloud-topped MBL transition from stratocumulus to trade cumulus in the northeastern Pacific Ocean. Results derived from AIRS and MODIS are compared with numerical results from the UCLA large eddy simulation (LES) model for both well-mixed and decoupled MBLs. The satellite and model results both demonstrate a clear correlation between the CTEI parameter and MBL cloud fraction. Despite fundamental differences between LES steady state results and the instantaneous snapshot type of observations from satellites, significant correlations for both the instantaneous pixel-scale observations and the long-term averaged spatial patterns between the CTEI parameter and MBL cloud fraction are found from the satellite observations and are consistent with LES results. This suggests the potential of using AIRS and MODIS to quantify global and temporal characteristics of the cloud-topped MBL transition.

  19. Boundary layer transition studies

    NASA Technical Reports Server (NTRS)

    Watmuff, Jonathan H.

    1995-01-01

    A small-scale wind tunnel previously used for turbulent boundary layer experiments was modified for two sets of boundary layer transition studies. The first study concerns a laminar separation/turbulent reattachment. The pressure gradient and unit Reynolds number are the same as the fully turbulent flow of Spalart and Watmuff. Without the trip wire, a laminar layer asymptotes to a Falkner & Skan similarity solution in the FPG. Application of the APG causes the layer to separate and a highly turbulent and approximately 2D mean flow reattachment occurs downstream. In an effort to gain some physical insight into the flow processes a small impulsive disturbance was introduced at the C(sub p) minimum. The facility is totally automated and phase-averaged data are measured on a point-by-point basis using unprecedently large grids. The evolution of the disturbance has been tracked all the way into the reattachment region and beyond into the fully turbulent boundary layer. At first, the amplitude decays exponentially with streamwise distance in the APG region, where the layer remains attached, i.e. the layer is viscously stable. After separation, the rate of decay slows, and a point of minimum amplitude is reached where the contours of the wave packet exhibit dispersive characteristics. From this point, exponential growth of the amplitude of the disturbance is observed in the detached shear layer, i.e. the dominant instability mechanism is inviscid. A group of large-scale 3D vortex loops emerges in the vicinity of the reattachment. Remarkably, the second loop retains its identify far downstream in the turbulent boundary layer. The results provide a level of detail usually associated with CFD. Substantial modifications were made to the facility for the second study concerning disturbances generated by Suction Holes for laminar flow Control (LFC). The test section incorporates suction through interchangeable porous test surfaces. Detailed studies have been made using isolated

  20. Finite-Difference Solution for Laminar or Turbulent Boundary Layer Flow over Axisymmetric Bodies with Ideal Gas, CF4, or Equilibrium Air Chemistry

    NASA Technical Reports Server (NTRS)

    Hamilton, H. Harris, II; Millman, Daniel R.; Greendyke, Robert B.

    1992-01-01

    A computer code was developed that uses an implicit finite-difference technique to solve nonsimilar, axisymmetric boundary layer equations for both laminar and turbulent flow. The code can treat ideal gases, air in chemical equilibrium, and carbon tetrafluoride (CF4), which is a useful gas for hypersonic blunt-body simulations. This is the only known boundary layer code that can treat CF4. Comparisons with experimental data have demonstrated that accurate solutions are obtained. The method should prove useful as an analysis tool for comparing calculations with wind tunnel experiments and for making calculations about flight vehicles where equilibrium air chemistry assumptions are valid.

  1. The Coupled Boundary Layers and Air-Sea Transfer (CBLAST) Experiments at the Martha's Vineyard Coastal Observatory

    NASA Astrophysics Data System (ADS)

    Edson, J. B.

    2001-12-01

    The Woods Hole Oceanographic Institution (WHOI) completed the initial phase of the Martha's Vineyard Coastal Observatory (MVCO) in July of 2001. The MVCO is being using to monitor coastal atmospheric and oceanic processes. Specifically, the observatory is expected to: - Provide continuous long-term observations for climate studies. - Provide a reliable system and rugged sensors that allow opportunistic sampling of extreme events. - Provide a local climatology for intensive, short duration field campaigns. - Further facilitate regional studies of coastal processes by providing infrastructure that supports easy access to power and data. This talk provides an example of the last two objectives using the low wind component of the Office of Naval Research's (ONR) Coupled Boundary Layers and Air-Sea Transfer (CBLAST) program. CBLAST-LOW has been designed to investigate air-sea interaction and coupled atmospheric and oceanic boundary layer dynamics at low wind speeds where the dynamic processes are driven and/or strongly modulated by thermal forcing. This effort is being carried out by scientists at WHOI, NPS, NOAA, NRL, Rutgers, UW/APL, JH/APL, OSU, NCAR, and other institutions, and includes observational and modeling components. The MVCO is providing observations and infrastructure in support of several intensive operating periods in the summers of 2001, 2002, and possibly 2003. During these periods, the observational network around the observatory was and will be greatly expanded using traditional oceanographic moorings and bottom mounted instrumentation, innovative 2- and 3-D moored and drifting arrays, survey ships, AUVs, satellite remote sensing, and heavily instrumented aircraft. In addition, the MVCO cabled components will be extended out to the 20-m isobath where we plan to deploy a 35-m tower. The tower will be instrumented from 15-m above the ocean surface to the ocean bottom with instruments capable of directly measuring the momentum, heat, and radiative

  2. Laboratory investigations of the heat and momentum transfer in the stably stratified air turbulent boundary layer above the wavy surface

    NASA Astrophysics Data System (ADS)

    Sergeev, Daniil; Troitskaya, Yuliya; Vdovin, Maxim

    2015-04-01

    Investigation of small scale transfer processes between the ocean and atmosphere in the boundary and its parameterization on the meteorological conditions (wind and surface waves parameters) is very important for weather forecasts modeling [1]. The accuracy of the predictions taking in to account the so named bulk-formulas strongly depends on the quality empirical data. That is why the laboratory modeling sometimes is preferable (see [2]) then in situ measurements for obtaining enough ensembles of the data with a good accuracy in control conditions, first of all in a case of severe conditions (strong winds with intensive wave breaking and sprays generation). In this investigation laboratory modeling was performed on the Thermostratified Wind-Wave Channel of the IAP RAS (see. [3]). Experiments were carried out for the wind speeds up to 18.5 m/s (corresponding the equivalent 10-m wind speed 30 m/s). For the possibility of varying parameters of surface roughness independently on the wind flow a special system basing on the submerged mosquito mesh (cell of 2*2 mm) was used (see [4]). The roughness was controlled by the depth of the mesh installation under the free surface (no waves when the mesh was on the surface and maximum wave amplitude for the maximum depth). So, for each wind speed several cases of the waves parameters were investigated. During experiments a stable stratification of the boundary layer of air flow was obtained. Temperature of the heating air was 33-37 degrees (depending on the reference wind speed), and the water temperature was 14-16 degrees. The Pitote gauge and hotwire were used together for measuring velocity and temperature profiles. Also indirect estimations of the total volume of the phase of sprays were obtained by analyzing hotwire signals errors during droplets hits. Then aerodynamic drag CD and heat transfer Ch coefficients were obtained by profiling method. It was shown that that these parameters are very sensitive to the intensity of

  3. The relation between air pollution data and planetary boundary layer quantities in a complex coastal industrial site nearby populated areas.

    NASA Astrophysics Data System (ADS)

    Mammarella, M. C.; Grandoni, G.; Fernando, J.; Cacciani, M.; di Sabatino, S.; Favaron, M.; Fedele, P.

    2010-09-01

    The connection among boundary layer phenomena, atmospheric pollutant dynamics and human health is an established fact, taking many different forms depending on local characteristics, including slope and position of relief and/or coastline, surface roughness, emission patterns. The problem is especially interesting in complex and coastal terrain, where concurrence of slope and sea induced local circulation interact reciprocally, yielding a complex pattern whose interpretation may go beyond pure modeling, and devise specific measurements among which the planetary boundary layer (PBL) height. An occasion for studying this important theme has been offered by Regione Molise and Valle del Biferno Consortium (COSIB), for the specific case of the industrial complex of Valle del Biferno, 3 km inland of Termoli, in Central Italy, on the Adriatic coast. The local government, sensitive to air quality and public health in the industrial area, together with COSIB has co-financed a research project aimed at gaining knowledge about local meteorology, PBL phenomena and atmospheric pollutant dispersion in the area. Expected results include new air quality monitoring and control methodologies in Valle del Biferno for a sustainable development in an environmentally respectful manner, at a site already characterized by a high environmental and landscape value. The research project, developed by ENEA, has began in 2007 and will conclude in December 2010. Project activities involve research group from Europe, the United States of America, and the Russian Federation. Scientific and practical results will be published and presented in occasion of the final workshop to be held on project conclusion. The scientific interest of Valle del Biferno case stems from the specific local characteristics at site. Given the valley orientation respect to mean synoptic circulation, local effects as sea and slope breezes are dominant, and a complex wind regime develops affecting local transport and

  4. Ozone in the Boundary Layer air over the Arctic Ocean - measurements during the TARA expedition

    NASA Astrophysics Data System (ADS)

    Bottenheim, J. W.; Netcheva, S.; Morin, S.; Nghiem, S. V.

    2009-03-01

    A full year of measurements of surface ozone over the Arctic Ocean far removed from land is presented (81° N - 88° N latitude). The data were obtained during the drift of the French schooner TARA between September 2006 and January 2008, while frozen in the Arctic Ocean. The data confirm that long periods of virtually total absence of ozone occur in the spring (mid March to mid June) after Polar sunrise. At other times of the year ozone concentrations are comparable to other oceanic observations with winter mole fractions of ca. 30-40 nmol mol-1 and summer minima of ca. 20 nmol mol-1. Contrary to earlier observations from ozone sonde data obtained at Arctic coastal observatories, the ambient temperature was well above -20°C during most ODEs (ozone depletion episodes). Backwards trajectory calculations suggest that during these ODEs the air had previously been in contact with the frozen ocean surface for several days and originated largely from the Siberian coast where several large open flaw leads developed in the spring of 2007.

  5. LDV measurements of turbulent baroclinic boundary layers

    SciTech Connect

    Neuwald, P.; Reichenbach, H.; Kuhl, A.L.

    1993-07-01

    Described here are shock tube experiments of nonsteady, turbulent boundary layers with large density variations. A dense-gas layer was created by injecting Freon through the porous floor of the shock tube. As the shock front propagated along the layer, vorticity was created at the air-Freon interface by an inviscid, baroclinic mechanism. Shadow-schlieren photography was used to visualize the turbulent mixing in this baroclinic boundary layer. Laser-Doppler-Velocimetry (LDV) was used to measure the streamwise velocity histories at 14 heights. After transition, the boundary layer profiles may be approximated by a power-law function u {approximately} u{sup {alpha}} where {alpha} {approx_equal} 3/8. This value lies between the clean flat plate value ({alpha} = 1/7) and the dusty boundary layer value ({alpha} {approx_equal} 0.7), and is controlled by the gas density near the wall.

  6. Impact of the Loess Plateau on the atmospheric boundary layer structure and air quality in the North China Plain: a case study.

    PubMed

    Hu, Xiao-Ming; Ma, ZhiQiang; Lin, Weili; Zhang, Hongliang; Hu, Jianlin; Wang, Ying; Xu, Xiaobin; Fuentes, Jose D; Xue, Ming

    2014-11-15

    The North China Plain (NCP), to the east of the Loess Plateau, experiences severe regional air pollution. During the daytime in the summer, the Loess Plateau acts as an elevated heat source. The impacts of such a thermal effect on meteorological phenomena (e.g., waves, precipitation) in this region have been discussed. However, its impacts on the atmospheric boundary layer structure and air quality have not been reported. It is hypothesized that the thermal effect of the Plateau likely modulates the boundary layer structure and ambient concentrations of pollutants over the NCP under certain meteorological conditions. Thus, this study investigates such effect and its impacts using measurements and three-dimensional model simulations. It is found that in the presence of daytime westerly wind in the lower troposphere (~1 km above the NCP), warmer air above the Loess Plateau was transported over the NCP and imposed a thermal inversion above the mixed boundary layer, which acted as a lid and suppressed the mixed layer growth. As a result, pollutants accumulated in the shallow mixed layer and ozone was efficiently produced. The downward branch of the thermally-induced Mountain-Plains Solenoid circulation over the NCP contributed to enhancing the capping inversion and exacerbating air pollution. Previous studies have reported that low mixed layer, a factor for elevated pollution in the NCP, may be caused by aerosol scattering and absorption of solar radiation, frontal inversion, and large scale subsidence. The present study revealed a different mechanism (i.e., westerly warm advection) for the suppression of the mixed layer in summer NCP, which caused severe O3 pollution. This study has important implications for understanding the essential meteorological factors for pollution episodes in this region and forecasting these severe events. PMID:25192929

  7. Modeling the urban boundary layer

    NASA Technical Reports Server (NTRS)

    Bergstrom, R. W., Jr.

    1976-01-01

    A summary and evaluation is given of the Workshop on Modeling the Urban Boundary Layer; held in Las Vegas on May 5, 1975. Edited summaries from each of the session chairpersons are also given. The sessions were: (1) formulation and solution techniques, (2) K-theory versus higher order closure, (3) surface heat and moisture balance, (4) initialization and boundary problems, (5) nocturnal boundary layer, and (6) verification of models.

  8. The Turbulent Boundary Layer Near the Air-Water Interface on a Surface-Piercing Flat Plate

    NASA Astrophysics Data System (ADS)

    Washuta, Nathan; Masnadi, Naeem; Duncan, James H.

    2015-11-01

    Turbulent fluctuations in the vicinity of the water free surface along a flat, vertically oriented surface-piercing plate are studied experimentally using a laboratory-scale experiment. In this experiment, a meter-wide stainless steel belt travels horizontally in a loop around two rollers with vertically oriented axes, which are separated by 7.5 meters. This belt device is mounted inside a large water tank with the water level set just below the top edge of the belt. The belt, rollers, and supporting frame are contained within a sheet metal box to keep the device dry except for one 6-meter-long straight test section between rollers. The belt is launched from rest with a 3- g acceleration in order to quickly reach steady state velocity. This creates a temporally evolving boundary layer analogous to the spatially evolving boundary layer created along a flat-sided ship moving at the same velocity, with a length equivalent to the length of belt that has passed the measurement region since the belt motion began. Cinematic Stereo PIV measurements are performed in planes parallel to the free surface by imaging the flow from underneath the tank in order to study the modification of the boundary layer flow field due to the effects of the water free surface. The support of the Office of Naval Research under grant N000141110029 is gratefully acknowledged.

  9. A diagram of wind speed versus air-sea temperature difference to understand the dynamics of the marine atmospheric boundary layer off northwest Europe

    NASA Astrophysics Data System (ADS)

    Kettle, Anthony

    2015-04-01

    Wind speed and atmospheric stability have an important role in determining the turbulence in the marine atmospheric boundary layer (MABL) as well as the surface wave field. The understanding of MABL dynamics in northwest Europe is complicated by fetch effects, the proximity of coastlines, shallow topography, and larger scale circulation patterns (e.g., cold air outbreaks). Numerical models have difficulty simulating the marine atmospheric boundary layer in coastal areas and partially enclosed seas, and this is partly due to spatial resolution problems at land-sea coastline discontinuities. In these offshore environments, the boundary layer processes are often best understood directly from time series measurements from measurement platforms or buoys, in spite of potential difficulties from platform flow distortion as well as the spatial sparseness of the data sets. This contribution presents updated results of measurements from offshore platforms in the North Sea and Norwegian Sea in terms of a summary diagnostic - wind speed versus air-sea temperature difference (U-ΔT) - with important implications for understanding atmospheric boundary layer processes. The U-ΔT diagram was introduced in earlier surveys of data from coastal and offshore sites in northwest Europe to summarize boundary layer conditions at a given location. Additional information from a series of measurement purpose-built offshore measurement and oil/gas production platforms from the North Sea illustrates how the wind characteristics vary spatially over large distances. The results are important for the offshore wind industry because of the way that wind turbines accrue fatigue damage in different conditions of atmospheric stability and wind speed.

  10. Removing Boundary Layer by Suction

    NASA Technical Reports Server (NTRS)

    Ackeret, J

    1927-01-01

    Through the utilization of the "Magnus effect" on the Flettner rotor ship, the attention of the public has been directed to the underlying physical principle. It has been found that the Prandtl boundary-layer theory furnishes a satisfactory explanation of the observed phenomena. The present article deals with the prevention of this separation or detachment of the flow by drawing the boundary layer into the inside of a body through a slot or slots in its surface.

  11. Forced Boundary-Layer Transition on X-43 (Hyper-X) in NASA LaRC 31-Inch Mach 10 Air Tunnel

    NASA Technical Reports Server (NTRS)

    Berry, Scott A.; DiFulvio, Michael; Kowalkowski, Matthew K.

    2000-01-01

    Aeroheating and boundary layer transition characteristics for the X-43 (Hyper-X) configuration have been experimentally examined in the Langley 31-Inch Mach 10 Air Tunnel. Global surface heat transfer distributions, and surface streamline patterns were measured on a 0.333-scale model of the Hyper-X forebody. Parametric variations include angles-of-attack of 0-deg, 2-deg, 3-deg, and 4-deg; Reynolds numbers based on model length of 1.2 to 5.1 million; and inlet cowl door both open and closed. The effects of discrete roughness elements on the forebody boundary layer, which included variations in trip configuration and height, were investigated. This document is intended to serve as a release of preliminary data to the Hyper-X program; analysis is limited to observations of the experimental trends in order to expedite dissemination.

  12. Forced Boundary-Layer Transition on X-43 (Hyper-X) in NASA LaRC 20-Inch Mach 6 Air Tunnel

    NASA Technical Reports Server (NTRS)

    Berry, Scott A.; DiFulvio, Michael; Kowalkowski, Matthew K.

    2000-01-01

    Aeroheating and boundary layer transition characteristics for the X-43 (Hyper-X) configuration have been experimentally examined in the Langley 20-Inch Mach 6 Air Tunnel. Global surface heat transfer distributions, and surface streamline patterns were measured on a 0.333-scale model of the Hyper-X forebody. Parametric variations include angles-of-attack of 0-deg, 2-deg, and 4-deg; Reynolds numbers based on model length of 1.2 to 15.4 million; and inlet cowl door both open and closed. The effects of discrete roughness elements on the forebody boundary layer, which included variations in trip configuration and height, were investigated. This document is intended to serve as a release of preliminary data to the Hyper-X program; analysis is limited to observations of the experimental trends in order to expedite dissemination.

  13. Physics of magnetospheric boundary layers

    NASA Technical Reports Server (NTRS)

    Cairns, Iver H.

    1995-01-01

    This final report was concerned with the ideas that: (1) magnetospheric boundary layers link disparate regions of the magnetosphere-solar wind system together; and (2) global behavior of the magnetosphere can be understood only by understanding its internal linking mechanisms and those with the solar wind. The research project involved simultaneous research on the global-, meso-, and micro-scale physics of the magnetosphere and its boundary layers, which included the bow shock, the magnetosheath, the plasma sheet boundary layer, and the ionosphere. Analytic, numerical, and simulation projects were performed on these subjects, as well as comparisons of theoretical results with observational data. Other related activity included in the research included: (1) prediction of geomagnetic activity; (2) global MHD (magnetohydrodynamic) simulations; (3) Alfven resonance heating; and (4) Critical Ionization Velocity (CIV) effect. In the appendixes are list of personnel involved, list of papers published; and reprints or photocopies of papers produced for this report.

  14. Unsteady turbulent boundary layer analysis

    NASA Technical Reports Server (NTRS)

    Singleton, R. E.; Nash, J. F.; Carl, L. W.; Patel, V. C.

    1973-01-01

    The governing equations for an unsteady turbulent boundary layer on a swept infinite cylinder, composed of a continuity equation, a pair of momentum equations and a pair of turbulent energy equations which include upstream history efforts, are solved numerically. An explicit finite difference analog to the partial differential equations is formulated and developed into a computer program. Calculations were made for a variety of unsteady flows in both two and three dimensions but primarily for two dimensional flow fields in order to first understand some of the fundamental physical aspects of unsteady turbulent boundary layers. Oscillating free stream flows without pressure gradient, oscillating retarded free stream flows and monotonically time-varying flows have all been studied for a wide frequency range. It was found that to the lowest frequency considered, the lower frequency bound being determined by economic considerations (machine time), there were significant unsteady effects on the turbulent boundary layer.

  15. Boundary layer control for airships

    NASA Technical Reports Server (NTRS)

    Pake, F. A.; Pipitone, S. J.

    1975-01-01

    An investigation is summarized of the aerodynamic principle of boundary layer control for nonrigid LTA craft. The project included a wind tunnel test on a BLC body of revolution at zero angle of attack. Theoretical analysis is shown to be in excellent agreement with the test data. Methods are evolved for predicting the boundary layer development on a body of revolution and the suction pumping and propulsive power requirements. These methods are used to predict the performance characteristics of a full-scale airship. The analysis indicates that propulsive power reductions of 15 to 25 percent and endurance improvements of 20 to 40 percent may be realized in employing boundary-layer control to nonrigid airships.

  16. Nonparallel stability of boundary layers

    NASA Technical Reports Server (NTRS)

    Nayfeh, Ali H.

    1987-01-01

    The asymptotic formulations of the nonparallel linear stability of incompressible growing boundary layers are critically reviewed. These formulations can be divided into two approaches. The first approach combines a numerical method with either the method of multiple scales, or the method of averaging, of the Wentzel-Kramers-Brillouin (WKB) approximation; all these methods yield the same result. The second approach combined a multi-structure theory with the method of multiple scales. The first approach yields results that are in excellent agreement with all available experimental data, including the growth rates as well as the neutral stability curve. The derivation of the linear stability of the incompressible growing boundary layers is explained.

  17. Some Observational and Modeling Studies of the Atmospheric Boundary Layer at Mississippi Gulf Coast for Air Pollution Dispersion Assessment

    PubMed Central

    Yerramilli, Anjaneyulu; Challa, Venkata Srinivas; Indracanti, Jayakumar; Dasari, Hariprasad; Baham, Julius; Patrick, Chuck; Young, John; Hughes, Robert; White, Lorren D.; Hardy, Mark G.; Swanier, Shelton

    2008-01-01

    Coastal atmospheric conditions widely vary from those over inland due to the land-sea interface, temperature contrast and the consequent development of local circulations. In this study a field meteorological experiment was conducted to measure vertical structure of boundary layer during the period 25–29 June, 2007 at three locations Seabee base, Harrison and Wiggins sites in the Mississippi coast. A GPS Sonde along with slow ascent helium balloon and automated weather stations equipped with slow and fast response sensors were used in the experiment. GPS sonde were launched at three specific times (0700 LT, 1300 LT and 1800 LT) during the experiment days. The observations indicate shallow boundary layer near the coast which gradually develops inland. The weather research and forecasting (WRF) meso-scale atmospheric model and a Lagrangian particle dispersion model (HYSPLIT) are used to simulate the lower atmospheric flow and dispersion in a range of 100 km from the coast for 28–30 June, 2007. The simulated meteorological parameters were compared with the experimental observations. The meso-scale model results show significant temporal and spatial variations in the meteorological fields as a result of development of sea breeze flow, its coupling with the large scale flow field and the ensuing alteration in the mixing depth across the coast. Simulated ground-level concentrations of SO2 from four elevated point sources located along the coast indicate diurnal variation and impact of the local sea-land breeze on the direction of the plume. Model concentration levels were highest during the stable morning condition and during the sea-breeze time in the afternoon. The highest concentrations were found up to 40 km inland during sea breeze time. The study illustrates the application of field meteorological observations for the validation of WRF which is coupled to HYSPLIT for dispersion assessment in the coastal region. PMID:19151446

  18. Senstitivity analysis of horizontal heat and vapor transfer coefficients for a cloud-topped marine boundary layer during cold-air outbreaks. M.S. Thesis

    NASA Technical Reports Server (NTRS)

    Chang, Y. V.

    1986-01-01

    The effects of external parameters on the surface heat and vapor fluxes into the marine atmospheric boundary layer (MABL) during cold-air outbreaks are investigated using the numerical model of Stage and Businger (1981a). These fluxes are nondimensionalized using the horizontal heat (g1) and vapor (g2) transfer coefficient method first suggested by Chou and Atlas (1982) and further formulated by Stage (1983a). In order to simplify the problem, the boundary layer is assumed to be well mixed and horizontally homogeneous, and to have linear shoreline soundings of equivalent potential temperature and mixing ratio. Modifications of initial surface flux estimates, time step limitation, and termination conditions are made to the MABL model to obtain accurate computations. The dependence of g1 and g2 in the cloud topped boundary layer on the external parameters (wind speed, divergence, sea surface temperature, radiative sky temperature, cloud top radiation cooling, and initial shoreline soundings of temperature, and mixing ratio) is studied by a sensitivity analysis, which shows that the uncertainties of horizontal transfer coefficients caused by changes in the parameters are reasonably small.

  19. Heat and mass transfer in a dissociated laminar boundary layer of air with consideration of the finite rate of chemical reaction

    NASA Technical Reports Server (NTRS)

    Oyegbesan, A. O.; Algermissen, J.

    1986-01-01

    A numerical investigation of heat and mass transfer in a dissociated laminar boundary layer of air on an isothermal flat plate is carried out for different degrees of cooling of the wall. A finite-difference chemical model is used to study elementary reactions involving NO2 and N2O. The analysis is based on equations of continuity, momentum, energy, conservation and state for the two-dimensional viscous flow of a reacting multicomponent mixtures. Attention is given to the effects of both catalyticity and noncatalyticity of the wall.

  20. Acoustic radar investigations of boundary layer phenomena

    NASA Technical Reports Server (NTRS)

    Marks, J. R.

    1974-01-01

    A comparison is made between acoustic radar echoes and conventional meteorological data obtained from the WKY tower, for the purpose of better understanding the relationships between acoustic radar echoes and boundary layer processes. Two thunderstorm outflow cases are presented and compared to both acoustic radar data and Charba's gust front model. The acoustic radar echoes reveal the boundary between warm and cold air and other areas of mixing and strong thermal gradient quite well. The thunderstorm outflow of 27 June 1972 is found to compare with in most respects to Charba's gust front model. The major difference is the complete separation of the head from the main body of cold air, probably caused by erosion of the area behind the head by mixing with the ambient air. Two cases of nocturnal inversions caused by advection of warmer air aloft are presented. It is found that areas of turbulent mixing or strong thermal gradient can be identified quite easily in the acoustic radar record.

  1. Physics of magnetospheric boundary layers

    NASA Technical Reports Server (NTRS)

    Cairns, I. H.

    1993-01-01

    The central ideas of this grant are that the magnetospheric boundary layers link disparate regions of the magnetosphere together, and the global behavior of the magnetosphere can be understood only by understanding the linking mechanisms. Accordingly the present grant includes simultaneous research on the global, meso-, and micro-scale physics of the magnetosphere and its boundary layers. These boundary layers include the bow shock, magnetosheath, the plasma sheet boundary layer, and the ionosphere. Analytic, numerical and simulation projects have been performed on these subjects, as well as comparison of theoretical results with observational data. Very good progress has been made, with four papers published or in press and two additional papers submitted for publication during the six month period 1 June - 30 November 1993. At least two projects are currently being written up. In addition, members of the group have given papers at scientific meetings. The further structure of this report is as follows: section two contains brief accounts of research completed during the last six months, while section three describes the research projects intended for the grant's final period.

  2. Turbulent boundary layers over nonstationary plane boundaries

    NASA Technical Reports Server (NTRS)

    Roper, A. T.

    1976-01-01

    Methods of predicting integral parameters and skin-friction coefficients of turbulent boundary layers developing over moving-ground-planes are evaluated using test information from three different wind tunnel facilities at the NASA Langley Research Center. These data include test information from the VSTOL tunnel which is presented for the first time. The three methods evaluated were: (1) relative integral parameter method, (2) relative power law method, and (3) modified law of the wall method. Methods (1) and (2) can be used to predict moving-ground-plane shape factors with an expected accuracy of + or - 10%. They may also be used to predict moving-ground-plane displacement and momentum thicknesses with lower expected accuracy. This decrease in accuracy can be traced to the failure of approximations upon which these methods are based to prove universal when compared with VSTOL tunnel test results.

  3. Boundary Layers, Transitions and Separation

    NASA Technical Reports Server (NTRS)

    2010-01-01

    Effects of roughness in boundary layers have to be addressed. Until adverse pressure gradient effects are understood, roughness will not significantly drive design. Mechanisms responsible for separation not understood. Effects on Zero Pressure Gradient boundary layers (shear stress). Effects on separation in pressure gradient (prediction of separation). Effect on scalar transport (heat transfer) not understood. Model for skin friction needed in simulations - first grid point likely to be in buffer layer. Definition of roughness important for useful experiments. A lot of validation experiments will be needed. How to get to ks for roughness of engineering interest? - depends on wavelength height, etc. for engineering interest? Re-discovering the wheel should be avoided: existing knowledge (theoretical and experimental) should find its way into the engineering models. It is a task of the industry to filter out the existing information in the literature for results relevant to its application, being external or internal.

  4. Observation studies on the influence of atmospheric boundary layer characteristics associate with air quality in dry season over the Pearl River Delta, China

    NASA Astrophysics Data System (ADS)

    Fan, Shaojia; Wu, Meng; Li, Haowen; Liao, Zhiheng; Fan, Qi; Zhu, Wei

    2016-04-01

    The characteristics of atmospheric boundary layer (ABL) is the very important factors influence on air quality in dry season over the Pearl River Delta (PRD), China. Based on the sounding data at six stations (Xinken,Dongguan, Sanshui, Nanhai, Shunde, and Heshan) which obtained from three times ABL experiments carried in dry season over PRD, the influence of wind and temperature vertical structure to the air quality over PRD has been studied with wind and temperature profiles, inversion layer, recirculation factor (RF), atmospheric boundary layer height (ABLH) and ventilation index (VI). It was found that the vertical wind of PRD could be divided in typical three layers according two wind shears appeared in 800 m and 1300 m. The thickness of calm or lower wind speed layer in pollution days was 500-1000m thicker than that of clean days, and its last time also much longer than that of clean days. The frequency of surface inversion in pollution days was about 35%,the mean thickness was about 100 m. With the influence of sea breeze, the frequency and thickness of surface inversion layer at Xinken station was a little lower than that in inland. Influenced by sea-land breezes and urban heat-island circulation, the RF of pollution days in coastal and urban area was quite smaller than that of clean days. During sea-land breezes days, the pollutants would be transported back to inland in nighttime with the influence of sea breeze, and resulted in 72.7% sea-land breezes was pollution days. The evolution of ABL was very typical in PRD during dry season. In pollution days, daily ABLH in PRD was lower than 500 m, daily VI was about 500-1500 m2/s. In clean days, daily VI was much larger than 2500 m2/s. An improved conceptual model of ABL influence on poor air quality and the parameters of the ABL characteristics associate with poor air quality in dry season over PRD had been summarized.

  5. The China Clipper - Fast advective transport of radon-rich air from the Asian boundary layer to the upper troposphere near California

    NASA Technical Reports Server (NTRS)

    Kritz, Mark A.; Le Roulley, Jean-Claude; Danielsen, Edwin F.

    1990-01-01

    A series of upper tropospheric radon concentration measurements made over the eastern Pacific and west coast of the U.S. during the summers of 1983 and 1984 has revealed the occurrence of unexpectedly high radon concentrations for 9 of the 61 measurements. A frequency distribution plot of the set of 61 observations shows a distinct bimodal distribution, with approximately 2/5 of the observations falling close to 1 pCi/SCM, and 3/5 falling in a high concentration mode centered at about 11 pCi/SCM. Trajectory and synoptic analyses for two of the flights on which such high radon concentrations were observed indicate that this radon-rich air originated in the Asian boundary layer, ascended in cumulus updrafts, and was carried eastward in the fast moving air on the anticyclonic side of the upper tropospheric jet. The results suggest that the combination of rapid vertical transport from the surface boundary layer to the upper troposphere, followed by rapid horizontal transport eastward represents an efficient mode of long-transport for other, chemically reactive atmospheric trace constituents.

  6. Stability of compressible boundary layers

    NASA Technical Reports Server (NTRS)

    Nayfeh, Ali H.

    1989-01-01

    The stability of compressible 2-D and 3-D boundary layers is reviewed. The stability of 2-D compressible flows differs from that of incompressible flows in two important features: There is more than one mode of instability contributing to the growth of disturbances in supersonic laminar boundary layers and the most unstable first mode wave is 3-D. Whereas viscosity has a destabilizing effect on incompressible flows, it is stabilizing for high supersonic Mach numbers. Whereas cooling stabilizes first mode waves, it destabilizes second mode waves. However, second order waves can be stabilized by suction and favorable pressure gradients. The influence of the nonparallelism on the spatial growth rate of disturbances is evaluated. The growth rate depends on the flow variable as well as the distance from the body. Floquet theory is used to investigate the subharmonic secondary instability.

  7. Planetary Boundary Layer from AERI and MPL

    SciTech Connect

    Sawyer, Virginia

    2014-02-13

    The distribution and transport of aerosol emitted to the lower troposphere is governed by the height of the planetary boundary layer (PBL), which limits the dilution of pollutants and influences boundary-layer convection. Because radiative heating and cooling of the surface strongly affect the PBL top height, it follows diurnal and seasonal cycles and may vary by hundreds of meters over a 24-hour period. The cap the PBL imposes on low-level aerosol transport makes aerosol concentration an effective proxy for PBL height: the top of the PBL is marked by a rapid transition from polluted, well-mixed boundary-layer air to the cleaner, more stratified free troposphere. Micropulse lidar (MPL) can provide much higher temporal resolution than radiosonde and better vertical resolution than infrared spectrometer (AERI), but PBL heights from all three instruments at the ARM SGP site are compared to one another for validation. If there is agreement among them, the higher-resolution remote sensing-derived PBL heights can accurately fill in the gaps left by the low frequency of radiosonde launches, and thus improve model parameterizations and our understanding of boundary-layer processes.

  8. Jupiter's deep magnetotail boundary layer

    NASA Astrophysics Data System (ADS)

    Nicolaou, G.; McComas, D. J.; Bagenal, F.; Elliott, H. A.; Ebert, R. W.

    2015-06-01

    In 2007 the New Horizons (NH) spacecraft flew by Jupiter for a gravity assist en route to Pluto. After closest approach on day of year (DOY) 58, 2007, NH followed a tailward trajectory that provided a unique opportunity to explore the deep jovian magnetotail and the surrounding magnetosheath. After DOY 132, 16 magnetopause crossings were observed between 1654 and 2429 Jupiter radii (Rj) along the dusk flank tailward of the planet. In some cases the crossings were identified as rapid transitions from the magnetotail to the magnetosheath and vice versa. In other cases a boundary layer was observed just inside the magnetopause. Solar Wind Around Pluto (SWAP) is an instrument on board NH that obtained spectra of low energy ions during the flyby period. We use a forward model including the SWAP instrument response to derive plasma parameters (density, temperature and velocity) which best reproduce the observations. We also vary the plasma parameters in our model in order to fit the observations more accurately on occasions where the measurements exhibit significant variability. We compare the properties of the plasma in the boundary layer with those of the magnetosheath plasma derived in our earlier work. We attempt to estimate the magnetic field in the boundary layer assuming pressure balance between it and the magnetosheath. Finally, we investigate several possible scenarios to assess if magnetopause movement and structure could cause the variations seen in the data.

  9. Boundary layer receptivity and control

    NASA Technical Reports Server (NTRS)

    Hill, D. C.

    1993-01-01

    Receptivity processes initiate natural instabilities in a boundary layer. The instabilities grow and eventually break down to turbulence. Consequently, receptivity questions are a critical element of the analysis of the transition process. Success in modeling the physics of receptivity processes thus has a direct bearing on technological issues of drag reduction. The means by which transitional flows can be controlled is also a major concern: questions of control are tied inevitably to those of receptivity. Adjoint systems provide a highly effective mathematical method for approaching many of the questions associated with both receptivity and control. The long term objective is to develop adjoint methods to handle increasingly complex receptivity questions, and to find systematic procedures for deducing effective control strategies. The most elementary receptivity problem is that in which a parallel boundary layer is forced by time-harmonic sources of various types. The characteristics of the response to such forcing form the building blocks for more complex receptivity mechanisms. The first objective of this year's research effort was to investigate how a parallel Blasius boundary layer responds to general direct forcing. Acoustic disturbances in the freestream can be scattered by flow non-uniformities to produce Tollmien-Schlichting waves. For example, scattering by surface roughness is known to provide an efficient receptivity path. The present effort is directed towards finding a solution by a simple adjoint analysis, because adjoint methods can be extended to more complex problems. In practice, flows are non-parallel and often three-dimensional. Compressibility may also be significant in some cases. Recent developments in the use of Parabolized Stability Equations (PSE) offer a promising possibility. By formulating and solving a set of adjoint parabolized equations, a method for mapping the efficiency with which external forcing excites the three

  10. The entraining moist boundary layer

    NASA Technical Reports Server (NTRS)

    Randall, D. A.

    1978-01-01

    A unified theory of entrainment into the planetary boundary layer is presented. It is assumed that the rates of buoyant and shear production of turbulence kinetic energy can be determined in terms of the entrainment mass flux. An expression is derived from the conservation law for turbulence kinetic energy, which, with the introduction of an empirical parameter, can be used together with a second relation between turbulence kinetic energy and the turbulence velocity scale to obtain the mass entrainment flux. The theory provides descriptions of storage-limited entrainment, buoyancy-limited entrainment into a clear mixed layer, and shallowing. It has been incorporated into a simulation of Day 33 of the Wangara experiment using a simple mixed layer model.

  11. Measurements of Pb-212 and Pb-214 in surface air around Lake Michigan and their implications for atmospheric boundary layer mixing

    NASA Astrophysics Data System (ADS)

    Aquino, Nadja Wackerling

    1997-10-01

    The dynamics of the atmospheric boundary layer are a result of turbulence generated at the Earth's surface. The extent of mixing in the boundary layer is studied by using radionuclides as tracers under different conditions such as: wind direction dependent on passing synoptic systems, upwind and downwind lake shore sites, urban versus rural setting, and urban setting at two different altitudes. Data were collected by high volume air samplers at each site, which filtered air for day and night intervals several days in a row. The filters were placed in a GeLe detector and gamma rays of 212Pb and 214Pb decays were counted. From these measurements, the concentrations of 212Pb and 214Pb in the sampled air were determined. Among the types of radionuclide behavior are diurnal variation in activities, synoptic-scale variation, variation due to different surface roughness characteristics and position with respect to the wind at the lake shore, and limited variation in activity at high altitude at the urban site. A series of one dimensional models were developed to interpret the data. The horizontal advection model predicted the effect on 212Pb and 214Pb activities of advecting air over a 100 km zero source region at constant velocity. 212Pb activities decrease substantially for velocities greater than 1 m/s, whereas 214Pb does not decrease much until velocities reach 100 m/s. The vertical diffusion model predicted 212Pb and 214Pb vertical profiles for different vertical diffusivities, κ z. A one order of magnitude change in κ z produces a /sqrt[10] change in activity in surface air. The results of both models are equivalent for 212Pb activities. Comparing 212Pb and 214Pb, vertical mixing affects both radionuclides similarly, but horizontal advection fractionates the two radionuclides. The diurnal box models predict activities an order of magnitude lower than the steady state models, in close agreement with observations. Furthermore, an order of magnitude increase can

  12. Boundary Layer Control for Hypersonic Airbreathing Vehicles

    NASA Technical Reports Server (NTRS)

    Berry, Scott A.; Nowak, Robert J.; Horvath, Thomas J.

    2004-01-01

    Active and passive methods for tripping hypersonic boundary layers have been examined in NASA Langley Research Center wind tunnels using a Hyper-X model. This investigation assessed several concepts for forcing transition, including passive discrete roughness elements and active mass addition (or blowing), in the 20-Inch Mach 6 Air and the 31-Inch Mach 10 Air Tunnels. Heat transfer distributions obtained via phosphor thermography, shock system details, and surface streamline patterns were measured on a 0.333-scale model of the Hyper-X forebody. The comparisons between the active and passive methods for boundary layer control were conducted at test conditions that nearly match the Hyper-X nominal Mach 7 flight test-point of an angle-of-attack of 2-deg and length Reynolds number of 5.6 million. For passive roughness, the primary parametric variation was a range of trip heights within the calculated boundary layer thickness for several trip concepts. The passive roughness study resulted in a swept ramp configuration, scaled to be roughly 0.6 of the calculated boundary layer thickness, being selected for the Mach 7 flight vehicle. For the active blowing study, the manifold pressure was systematically varied (while monitoring the mass flow) for each configuration to determine the jet penetration height, with schlieren, and transition movement, with the phosphor system, for comparison to the passive results. All the blowing concepts tested, which included various rows of sonic orifices (holes), two- and three-dimensional slots, and random porosity, provided transition onset near the trip location with manifold stagnation pressures on the order of 40 times the model surface static pressure, which is adequate to ensure sonic jets. The present results indicate that the jet penetration height for blowing was roughly half the height required with passive roughness elements for an equivalent amount of transition movement.

  13. Turbulent boundary layer of an airfoil

    NASA Technical Reports Server (NTRS)

    Fediaevsky, K

    1937-01-01

    A need has arisen for a new determination of the velocity profiles in the boundary layer. Assuming that the character of the velocity distribution depends to a large extent on the character of the shear distribution across the boundary layer, we shall consider the nature of the shear distribution for a boundary layer with a pressure gradient.

  14. Modelling the transitional boundary layer

    NASA Technical Reports Server (NTRS)

    Narasimha, R.

    1990-01-01

    Recent developments in the modelling of the transition zone in the boundary layer are reviewed (the zone being defined as extending from the station where intermittency begins to depart from zero to that where it is nearly unity). The value of using a new non-dimensional spot formation rate parameter, and the importance of allowing for so-called subtransitions within the transition zone, are both stressed. Models do reasonably well in constant pressure 2-dimensional flows, but in the presence of strong pressure gradients further improvements are needed. The linear combination approach works surprisingly well in most cases, but would not be so successful in situations where a purely laminar boundary layer would separate but a transitional one would not. Intermittency-weighted eddy viscosity methods do not predict peak surface parameters well without the introduction of an overshooting transition function whose connection with the spot theory of transition is obscure. Suggestions are made for further work that now appears necessary for developing improved models of the transition zone.

  15. Boundary Layer Heights from CALIOP

    NASA Astrophysics Data System (ADS)

    Kuehn, R.; Ackerman, S. A.; Holz, R.; Roubert, L.

    2012-12-01

    This work is focused on the development of a planetary boundary layer (PBL) height retrieval algorithm for CALIOP and validation studies. Our current approach uses a wavelet covariance transform analysis technique to find the top of the boundary layer. We use the methodology similar to that found in Davis et. al. 2000, ours has been developed to work with the lower SNR data provided by CALIOP, and is intended to work autonomously. Concurrently developed with the CALIOP algorithm we will show results from a PBL height retrieval algorithm from profiles of potential temperature, these are derived from Aircraft Meteorological DAta Relay (AMDAR) observations. Results from 5 years of collocated AMDAR - CALIOP retrievals near O'Hare airport demonstrate good agreement between the CALIOP - AMDAR retrievals. In addition, because we are able to make daily retrievals from the AMDAR measurements, we are able to observe the seasonal and annual variation in the PBL height at airports that have sufficient instrumented-aircraft traffic. Also, a comparison has been done between the CALIOP retrievals and the NASA Langley airborne High Spectral Resolution Lidar (HSRL) PBL height retrievals acquired during the GoMACCS experiment. Results of this comparison, like the AMDAR comparison are favorable. Our current work also involves the analysis and verification of the CALIOP PBL height retrieval from the 6 year CALIOP global data set. Results from this analysis will also be presented.

  16. Nonequilibrium chemistry boundary layer integral matrix procedure

    NASA Technical Reports Server (NTRS)

    Tong, H.; Buckingham, A. C.; Morse, H. L.

    1973-01-01

    The development of an analytic procedure for the calculation of nonequilibrium boundary layer flows over surfaces of arbitrary catalycities is described. An existing equilibrium boundary layer integral matrix code was extended to include nonequilibrium chemistry while retaining all of the general boundary condition features built into the original code. For particular application to the pitch-plane of shuttle type vehicles, an approximate procedure was developed to estimate the nonequilibrium and nonisentropic state at the edge of the boundary layer.

  17. Testing a detailed biophysical parameterization for land-air exchange in a high-resolution boundary-layer model

    NASA Technical Reports Server (NTRS)

    Argentini, S.; Wetzel, P. J.; Karyampudi, V. M.

    1992-01-01

    This study modifies the 1D PBL model of Zhang and Anthes (1982) to account more explicitly for the effects of a vegetation layer. New equations for the latent, sensible, and ground heat fluxes, reformulated in terms of vegetation parameters are substituted into the model. The model produces good agreement with observations over a wide range of conditions: for wet, high-vegetation conditions, and for dry, low-vegetation conditions in both the winter and the summer.

  18. Bidirectional air-sea exchange and accumulation of POPs (PAHs, PCBs, OCPs and PBDEs) in the nocturnal marine boundary layer

    NASA Astrophysics Data System (ADS)

    Lammel, Gerhard; Meixner, Franz X.; Vrana, Branislav; Efstathiou, Christos I.; Kohoutek, Jiři; Kukučka, Petr; Mulder, Marie D.; Přibylová, Petra; Prokeš, Roman; Rusina, Tatsiana P.; Song, Guo-Zheng; Tsapakis, Manolis

    2016-05-01

    As a consequence of long-range transported pollution, air-sea exchange can become a major source of persistent organic pollutants in remote marine environments. The vertical gradients in the air were quantified for 14 species, i.e. four parent polycyclic aromatic hydrocarbons (PAHs), three polychlorinated biphenyls (PCBs), three organochlorine pesticides (OCPs) and two polybrominated diphenylethers (PBDEs) in the gas-phase at a remote coastal site in the southern Aegean Sea in summer. Most vertical gradients were positive (Δc/Δz > 0), indicating downward (net depositional) flux. Significant upward (net volatilisational) fluxes were found for three PAHs, mostly during daytime, and for two OCPs, mostly during night-time, as well as for one PCB and one PBDE during part of the measurements. While phenanthrene was deposited, fluoranthene (FLT) and pyrene (PYR) seem to undergo flux oscillation, hereby not following a day-night cycle. Box modelling confirms that volatilisation from the sea surface has significantly contributed to the night-time maxima of OCPs. Fluxes were quantified based on eddy covariance. Deposition fluxes ranged from -28.5 to +1.8 µg m-2 day-1 for PAHs and -3.4 to +0.9 µg m-2 day-1 for halogenated compounds. Dry particle deposition of FLT and PYR did not contribute significantly to the vertical flux.

  19. Quantitative Interpretation of Air Radon Progeny Fluctuations in Terms of Stability Conditions in the Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Salzano, Roberto; Pasini, Antonello; Casasanta, Giampietro; Cacciani, Marco; Perrino, Cinzia

    2016-03-01

    Determining the mixing height using a tracer can improve the information obtained using traditional techniques. Here we provide an improved box model based on radon progeny measurements, which considers the vertical entrainment of residual layers and the variability in the soil radon exhalation rate. The potential issues in using progeny instead of radon have been solved from both a theoretical and experimental perspective; furthermore, the instrumental efficiency and the counting scheme have been included in the model. The applicability range of the box model has been defined by comparing radon-derived estimates with sodar and lidar data. Three intervals have been analyzed ("near-stable", "transition" and "turbulent"), and different processes have been characterized. We describe a preliminary application case performed in Rome, Italy, while case studies will be required to determine the range limits that can be applied in any circumstances.

  20. X-33 Hypersonic Boundary Layer Transition

    NASA Technical Reports Server (NTRS)

    Berry, Scott A.; Horvath, Thomas J.; Hollis, Brian R.; Thompson, Richard A.; Hamilton, H. Harris, II

    1999-01-01

    Boundary layer and aeroheating characteristics of several X-33 configurations have been experimentally examined in the Langley 20-Inch Mach 6 Air Tunnel. Global surface heat transfer distributions, surface streamline patterns, and shock shapes were measured on 0.013-scale models at Mach 6 in air. Parametric variations include angles-of-attack of 20-deg, 30-deg, and 40-deg; Reynolds numbers based on model length of 0.9 to 6.6 million; and body-flap deflections of 0, 10 and 20-deg. The effects of discrete and distributed roughness elements on boundary layer transition, which included trip height, size, location, and distribution, both on and off the windward centerline, were investigated. The discrete roughness results on centerline were used to provide a transition correlation for the X-33 flight vehicle that was applicable across the range of reentry angles of attack. The attachment line discrete roughness results were shown to be consistent with the centerline results, as no increased sensitivity to roughness along the attachment line was identified. The effect of bowed panels was qualitatively shown to be less effective than the discrete trips; however, the distributed nature of the bowed panels affected a larger percent of the aft-body windward surface than a single discrete trip.

  1. Outer layer effects in wind-farm boundary layers: Coriolis forces and boundary layer height

    NASA Astrophysics Data System (ADS)

    Allaerts, Dries; Meyers, Johan

    2015-11-01

    In LES studies of wind-farm boundary layers, scale separation between the inner and outer region of the atmospheric boundary layer (ABL) is frequently assumed, i.e., wind turbines are presumed to fall within the inner layer and are not affected by outer layer effects. However, modern wind turbine and wind farm design tends towards larger rotor diameters and farm sizes, which means that outer layer effects will become more important. In a prior study, it was already shown for fully-developed wind farms that the ABL height influences the power performance. In this study, we use the in-house LES code SP-Wind to investigate the importance of outer layer effects on wind-farm boundary layers. In a suite of LES cases, the ABL height is varied by imposing a capping inversion with varying inversion strengths. Results indicate the growth of an internal boundary layer (IBL), which is limited in cases with low inversion layers. We further find that flow deceleration combined with Coriolis effects causes a change in wind direction throughout the farm. This effect increases with decreasing boundary layer height, and can result in considerable turbine wake deflection near the end of the farm. The authors are supported by the ERC (ActiveWindFarms, grant no: 306471). Computations were performed on VSC infrastructiure (Flemish Supercomputer Center), funded by the Hercules Foundation and the Flemish Government-department EWI.

  2. Application of active optical sensors to probe the vertical structure of the urban boundary layer and assess anomalies in air quality model PM 2.5 forecasts

    NASA Astrophysics Data System (ADS)

    Gan, Chuen-Meei; Wu, Yonghua; Madhavan, B. L.; Gross, Barry; Moshary, Fred

    2011-12-01

    In this paper, the simulations of the Weather Research and Forecast (WRF) and Community Multiscale Air Quality (CMAQ) Models applied to the New York City (NYC) area are assessed with the aid of vertical profiling and column integrated remote sensing measurements. First, we find that when turbulent mixing processes are dominant, the WRF-derived planetary boundary layer (PBL) height exhibits a strong linear correlation ( R > 0.85) with lidar-derived PBL height. In these comparisons, we estimate the PBL height from the lidar measurements using a Wavelet Covariance Transform (WCT) approach that is modified to better isolate the convective layer from the residual layer (RL). Furthermore, the WRF-Lidar PBL height comparisons are made using different PBL parameterization schemes, including the Asymmetric Convective Model-version2 (ACM2) and the Modified Blackadar (BLK) scheme (which are both runs using hindcast data), as well as the Mellor-Yamada-Janjic (MYJ) scheme run in forecast mode. Our findings show that the correlations for these runs are high (>0.8), but the hindcast runs exhibit smaller overall dispersion (≈0.1) than the forecast runs. We also apply continuous 24-hour/7-day vertical ceilometer measurements to assess WRF-CMAQ model forecasts of surface PM 2.5 (particulate matter has aerodynamic diameter <2.5 μm). Strong overestimations in the surface PM 2.5 mass that are observed in the summer prior to sunrise are particularly shown to be strongly connected to underestimations of the PBL height and less to enhanced emissions. This interpretation is consistent with observations that TEOM (Tapered Element Oscillating MicroBalance) PM 2.5 measurements are better correlated to path-integrated CMAQ PM 2.5 than the near-surface measurements during these periods.

  3. Application of active optical sensors to probe the vertical structure of the urban boundary layer and assess anomalies in air quality model PM2.5forecasts

    NASA Astrophysics Data System (ADS)

    Gan, Chuen-Meei; Wu, Yonghua; Bomidi, L. M.; Gross, Barry; Moshary, Fred

    2011-11-01

    In this paper, the simulations of the Weather Research and Forecast (WRF) and Community Multiscale Air Quality (CMAQ) Models applied to the New York City (NYC) area are assessed with the aid of vertical profiling and column integrated remote sensing measurements. First, we find that when turbulent mixing processes are dominant, the WRFderived planetary boundary layer (PBL) height exhibits a strong linear correlation (R>0.85) with lidar-derived PBL height. In these comparisons, we estimate the PBL height from the lidar measurements using a Wavelet Covariance Transform (WCT) approach that is modified to better isolate the convective layer from the residual layer (RL). Furthermore, the WRF-Lidar PBL height comparisons are made using different PBL parameterization schemes, including the Asymmetric Convective Model-version2 (ACM2) and the Modified Blackadar (BLK) scheme (which are both runs using hindcast data), as well as the Mellor-Yamada-Janjic (MYJ) scheme run in forecast mode. Our findings show that the correlations for these runs are high (>0.8), but the hindcast runs exhibit smaller overall dispersion (~0.1) than the forecast runs. We also apply continuous 24-hour/7-day vertical ceilometer measurements to assess WRFCMAQ model forecasts of surface PM2.5 (particulate matter has aerodynamic diameter <2.5μm). Strong overestimations in the surface PM2.5 mass that are observed in the summer prior to sunrise are particularly shown to be strongly connected to underestimations of the PBL height and less to enhanced emissions. This interpretation is consistent with observations that TEOM (Tapered Element Oscillating MicroBalance) PM2.5 measurements are better correlated to pathintegrated CMAQ PM2.5 than the near-surface measurements during these periods.

  4. Ozone in the boundary layer air over the Arctic Ocean: measurements during the TARA transpolar drift 2006-2008

    NASA Astrophysics Data System (ADS)

    Bottenheim, J. W.; Netcheva, S.; Morin, S.; Nghiem, S. V.

    2009-07-01

    A full year of measurements of surface ozone over the Arctic Ocean far removed from land is presented (81° N-88° N latitude). The data were obtained during the drift of the French schooner TARA between September 2006 and January 2008, while frozen in the Arctic Ocean. The data confirm that long periods of virtually total absence of ozone occur in the spring (mid March to mid June) after Polar sunrise. At other times of the year, ozone concentrations are comparable to other oceanic observations with winter mole fractions of ca. 30-40 nmol mol-1 and summer minima of ca. 20 nmol mol-1. Contrary to earlier observations from ozone sonde data obtained at Arctic coastal observatories, the ambient temperature was well above -20°C during most ODEs (ozone depletion episodes). Backwards trajectory calculations suggest that during these ODEs the air had previously been in contact with the frozen ocean surface for several days and originated largely from the Siberian coast where several large open flaw leads and polynyas developed in the spring of 2007.

  5. Goertler instability of compressible boundary layers

    NASA Technical Reports Server (NTRS)

    El-Hady, N. M.; Verma, A. K.

    1984-01-01

    The instability of the laminar compressible boundary-layer flows along concave surfaces is investigated. The linearized disturbance equations for the three-dimensional, counter-rotating, longitudinal-type vortices in two-dimensional boundary layers are presented in an orthogonal curvilinear system of coordinates. The basic approximation of the disturbance equations, which includes the effect of the growth of the boundary layer, is considered and solved numerically.

  6. Turbulent boundary layers with secondary flow

    NASA Technical Reports Server (NTRS)

    Grushwitz, E.

    1984-01-01

    An experimental analysis of the boundary layer on a plane wall, along which the flow occurs, whose potential flow lines are curved in plane parallel to the wall is discussed. According to the equation frequently applied to boundary layers in a plane flow, which is usually obtained by using the pulse law, a generalization is derived which is valid for boundary layers with spatial flow. The wall shear stresses were calculated with this equation.

  7. Three-dimensional boundary layers approaching separation

    NASA Technical Reports Server (NTRS)

    Williams, J. C., III

    1976-01-01

    The theory of semi-similar solutions of the laminar boundary layer equations is applied to several flows in which the boundary layer approaches a three-dimensional separation line. The solutions obtained are used to deduce the nature of three-dimensional separation. It is shown that in these cases separation is of the "ordinary" type. A solution is also presented for a case in which a vortex is embedded within the three-dimensional boundary layer.

  8. Interactions in boundary-layer transition

    NASA Technical Reports Server (NTRS)

    Smith, Frank T.

    1989-01-01

    Certain theoretical studies of boundary-layer transition are described, based on high Reynolds numbers and with attention drawn to the various nonlinear interactions and scales present. The article concentrates in particular on theories for which the mean-flow profile is completely altered from its original state. Two- and three-dimensional flow theory and conjectures on turbulent-boundary-layer structures are included. Specific recent findings noted, and in qualitative agreement with experiments, are: nonlinear finite-time break-ups in unsteady interactive boundary layers; strong vortex/wave interactions; and prediction of turbulent boundary-layer displacement- and stress sublayer-thicknesses.

  9. Nonlinear breakdowns in boundary layer transition

    NASA Technical Reports Server (NTRS)

    Smith, Frank T.

    1990-01-01

    Theoretical studies of boundary-layer transition are described, based on high Reynolds numbers and with attention drawn to nonlinear interactions, breakdowns and scales. The article notes in particular truly nonlinear theories for which the mean-flow profile is completely altered from its original state. Two- and three-dimensional flow theory and conjectures on turbulent boundary-layer structures are included. Specific recent findings noted, and in qualitative agreement with experiments, are: nonlinear finite-time break-ups in unsteady interactive boundary layers; strong vortex/wave interactions; and prediction of turbulent boundary-layer displacement- and stress sublayer-thicknesses.

  10. Development of perturbations in the boundary layer

    NASA Technical Reports Server (NTRS)

    Dovgal, A. V.; Kachanov, Y. S.; Kozlov, V. V.; Levchenko, V. Y.; Maksimov, V. P.

    1986-01-01

    The transition of laminar flows into turbulent flows in a boundary layer is discussed. The individual aspects of the transition process, observed under controllable model conditions are examined. The aspect of this problem, namely the development or excitation of the natural oscillations in the boundary layer, the so-called Tollmin-Schlichting waves is covered. Three types of excitation of these waves are considered: (1) distributed generation throughout the boundary layer; (2) generation in the vicinity of the forward edge of a model, having either a sharp edge or an edge with a large radius or curvature, and (3) generation in a developed boundary layer by means of a focused effect.

  11. Structure of the low latitude boundary layer

    NASA Technical Reports Server (NTRS)

    Sckopke, N.; Paschmann, G.; Haerendel, G.; Sonnerup, B. U. O.; Bame, S. J.; Forbes, T. G.; Hones, E. W., Jr.; Russell, C. T.

    1980-01-01

    Observations at high temporal resolution of the frontside magnetopause and plasma boundary layer, made with the LASL/MPE fast plasma analyzer onboard the ISEE 1 and 2 spacecraft, revealed a complex quasiperiodic structure of some of the observed boundary layers. A cool tailward streaming boundary layer plasma was seen intermittently, with intervening periods of hot tenuous plasma which has properties similar to the magnetospheric population. While individual encounters with the boundary layer plasma last only a few minutes, the total observation time may extend over one hour or more.

  12. Boundary layers of the earth's outer magnetosphere

    NASA Technical Reports Server (NTRS)

    Eastman, T. E.; Frank, L. A.

    1984-01-01

    The magnetospheric boundary layer and the plasma-sheet boundary layer are the primary boundary layers of the earth's outer magnetosphere. Recent satellite observations indicate that they provide for more than 50 percent of the plasma and energy transport in the outer magnetosphere although they constitute less than 5 percent by volume. Relative to the energy density in the source regions, plasma in the magnetospheric boundary layer is predominantly deenergized whereas plasma in the plasma-sheet boundary layer has been accelerated. The reconnection hypothesis continues to provide a useful framework for comparing data sampled in the highly dynamic magnetospheric environment. Observations of 'flux transfer events' and other detailed features near the boundaries have been recently interpreted in terms of nonsteady-state reconnection. Alternative hypotheses are also being investigated. More work needs to be done, both in theory and observation, to determine whether reconnection actually occurs in the magnetosphere and, if so, whether it is important for overall magnetospheric dynamics.

  13. Seasonal variation of local atmospheric circulations and boundary layer structure in the Beijing-Tianjin-Hebei region and implications for air quality

    NASA Astrophysics Data System (ADS)

    Miao, Yucong; Hu, Xiao-Ming; Liu, Shuhua; Qian, Tingting; Xue, Ming; Zheng, Yijia; Wang, Shu

    2015-12-01

    The Beijing-Tianjin-Hebei (BTH) region experiences frequent heavy haze pollution in fall and winter. Pollution was often exacerbated by unfavorable atmospheric boundary layer (BL) conditions. The topography in this region impacts the BL processes in complex ways. Such impacts and implications on air quality are not yet clearly understood. The BL processes in all four seasons in BTH are thus investigated in this study using idealized simulations with the WRF-Chem model. Results suggest that seasonal variation of thermal conditions and synoptic patterns significantly modulates BL processes. In fall, with a relatively weak northwesterly synoptic forcing, thermal contrast between the mountains and the plain leads to a prominent mountain-plain breeze circulation (MPC). In the afternoon, the downward branch of the MPC, in addition to northwesterly warm advection, suppresses BL development over the western side of BTH. In the eastern coastal area, a sea-breeze circulation develops late in the morning and intensifies during the afternoon. In summer, southeasterly BL winds allow the see-breeze front to penetrate farther inland (˜150 km from the coast), and the MPC is less prominent. In spring and winter, with strong northwesterly synoptic winds, the sea-breeze circulation is confined in the coastal area, and the MPC is suppressed. The BL height is low in winter due to strong near-surface stability, while BL heights are large in spring due to strong mechanical forcing. The relatively low BL height in fall and winter may have exacerbated the air pollution, thus contributing to the frequent severe haze events in the BTH region.

  14. Structure and Growth of the Marine Boundary Layer

    NASA Technical Reports Server (NTRS)

    Mccumber, M.

    1984-01-01

    LANDSAT visible imagery and a one-dimensional Lagrangian boundary layer model were used to hypothesize the nature and the development of the marine boundary layer during a winter episode of strong seaward cold air advection. Over-water heating and moistening of the cold, dry continental air is estimable from linear relations involving horizontal gradients of the near-surface air temperature and humidity. A line of enhanced convection paralleling the Atlantic U.S. coast from south of New York Bay to the vicinity of Virginia Beach, VA was attributed to stronger convergence at low levels. This feature was characterized as a mesoscale front. With the assistance of a three-dimensional mesoscale boundary layer model, initialized with data obtained from the MASEX, the marine boundary layer can be mapped over the entire Atlantic coastal domain and the evolution of the boundary layer can be studied as a function of different characteristics of important surface level forcings. The effects on boundary layer growth due to the magnitude and pattern of sea surface temperature, to the shape of the coastline, and to atmospheric conditions, such as the orientation of the prevailing wind are examined.

  15. Internal Performance of Several Auxiliary Air Inlets Immersed in a Turbulent Boundary Layer at Mach Numbers of 1.3, 1.5, and 2.0

    NASA Technical Reports Server (NTRS)

    Huff, Ronald G; Anderson, Arthur R

    1957-01-01

    Internal performance of normal-shock rectangular, circular, and scoop inlets and of external-compression inlets experimentally obtained with varying immersion in a turbulent boundary layer. Recoveries varied from about 95 percent of theoretical in the free stream to 80 percent with complete immersion, while the corresponding mass flows were usually above 95 percent of theoretical. Turning of the flow through 10 degrees caused losses in pressure recovery of 0.03 to 0.07. External compression did not improve pressure recovery in the boundary layer. Average distortion at critical operation for all inlets was 5 percent.

  16. Boundary layer roll circulations during FIRE

    NASA Technical Reports Server (NTRS)

    Shirer, Hampton N.; Haack, Tracy

    1990-01-01

    The probable mechanism underlying the development of boundary layer roll circulations are studied using wind and temperature profiles measured by the National Center for Atmospheric Research (NCAR) Electra during the stratocumulus phase of the First ISCCP Regional Experiment (FIRE). The expected, or preferred, roll orientations, horizontal wavelengths, and propagation periods are determined by finding the minimum values of the dynamic and thermodynamic forcing parameters, which here are the eddy Reynolds number (Re) and moist Rayleigh number (Ra sub m). These minimum values depend on the height z sub T of the capping temperature inversion and on the values of the Fourier coefficients of the background height-dependent vector wind profile. As input to our nonlinear spectral model, descent and ascent runs by the Electra provide for initial estimates of the inversion height and the wind profiles. In the first phase of the investigation presented here, a mechanism is said to be a probable contributor to the development of roll circulations within the stratocumulus-topped boundary layer if the modeled roll orientation and wavelengths agree with their observed values. Preliminary results using the 14-coefficient model of Haack-Hirschberg (1988) are discussed for the 7 July 1987 Electra Mission 188-A (Flight 5). This mission was flown across a sharp cloud boundary that was within a LANDSAT/SPOT scene. The stratocumulus deck was relatively solid in the eastern part of the scene, while there was a rapid decrease in cloud cover to scattered cumulus clouds aligned in streets to the west. These cloud streets were oriented nearly parallel to the mean wind direction in the layer, which was approximately 340 degrees. The hypothesis that roll circulations occurred in both the relatively clear and the cloudy regions is investigated using as model input a descent profile obtained in the relatively clear air and an ascent profile obtained in the cloudy air. Initial results for the

  17. Cyclone separator having boundary layer turbulence control

    DOEpatents

    Krishna, Coimbatore R.; Milau, Julius S.

    1985-01-01

    A cyclone separator including boundary layer turbulence control that is operable to prevent undue build-up of particulate material at selected critical areas on the separator walls, by selectively varying the fluid pressure at those areas to maintain the momentum of the vortex, thereby preventing particulate material from inducing turbulence in the boundary layer of the vortical fluid flow through the separator.

  18. The study of the effect of the surface wave on turbulent stably-stratified boundary layer air-flow by direct numerical simulation

    NASA Astrophysics Data System (ADS)

    Druzhinin, Oleg; Troitskaya, Yliya; Zilitinkevich, Sergej

    2015-04-01

    Detailed knowledge of the interaction of surface water waves with the wind flow is of primary importance for correct parameterization of turbulent momentum and heat fluxes which define the energy and momentum transfer between the atmosphere and hydrosphere. The objective of the present study is to investigate the properties of the stably stratified turbulent boundary-layer (BL) air-flow over waved water surface by direct numerical simulation (DNS) at a bulk Reynolds number varying from 15000 to 80000 and the surface-wave slope up to ka = 0.2. The DNS results show that the BL-flow remains in the statistically stationary, turbulent regime if the Reynolds number (ReL) based on the Obukhov length scale and friction velocity is sufficiently large (ReL > 100). In this case, mean velocity and temperature vertical profiles are well predicted by log-linear asymptotic solutions following from the Monin-Obukhov similarity theory provided the velocity and temperature roughness parameters, z0U and z0T, are appropriately prescribed. Both z0U and z0T increase for larger surface-wave slope. DNS results also show that turbulent momentum and heat fluxes and turbulent velocity and temperature fluctuations are increased for larger wave slope (ka) whereas the mean velocity and temperature derivatives remain practically the same for different ka. Thus, we conclude that the source of turbulence enhancement in BL-flow are perturbations induced by the surface wave, and not the shear instability of the bulk flow. On the other hand, if stratification is sufficiently strong, and the surface-wave slope is sufficiently small, the BL-flow over waved surface relaminarizes in the bulk of the domain. However, if the surface-wave slope exceeds a threshold value, the velocity and temperature fluctuations remain finite in the vicinity of the critical-layer level, where the surface-wave phase velocity coincides with the mean flow velocity. We call this new stably-stratified BL-flow regime observed in

  19. Turbulent Plasmaspheric Boundary Layer: Observables and Consequences

    NASA Astrophysics Data System (ADS)

    Mishin, Evgeny

    2014-10-01

    In situ satellite observations reveal strong lower hybrid/fast magnetosonic turbulence and broadband hiss-like VLF waves in the substorm subauroral geospace at and earthward of the electron plasmasheet boundary. These coincide with subauroral ion drifts/polarization streams (SAID/SAPS) in the plasmasphere and topside ionosphere. SAID/SAPS appear in ~10 min after the substorm onset consistent with the fast propagation of substorm injection fronts. The SAID channel follows the dispersionless cutoff of the energetic electron flux at the plasmapause. This indicates that the cold plasma maintains charge neutrality within the channel, thereby short-circuiting the injected plasma jet (injection fronts over the plasmasphere. Plasma turbulence leads to the circuit resistivity and magnetic diffusion as well as significant electron heating and acceleration. As a result, a turbulent boundary layer forms between the inner edge of the electron plasmasheet and plasmasphere. The SAID/SAPS-related VLF emissions appear to constitute a distinctive subset of substorm/storm-related VLF activity in the region co-located with freshly injected energetic ions inside the plasmasphere. Significant pitch-angle diffusion coefficients suggest that substorm SAID/SAPS-related VLF waves could be responsible for the alteration of the outer radiation belt boundary during (sub)storms. Supported by the Air Force Office of Scientific Research.

  20. Structure of relaminarizing turbulent boundary layers

    NASA Astrophysics Data System (ADS)

    Ramesh, O.; Patwardhan, Saurabh

    2014-11-01

    Relaminarization of a turbulent boundary layer in a strongly accelerated flow has received a great attention in recent times. It has been found that such relaminarization is a general and regularly occurring phenomenon in the leading-edge region of a swept wing of an airplane (van Dam et al., 1993). In this work, we investigate the effect of initial Reynolds number on the process of relaminarization in turbulent boundary layers. The experimental and numerical investigation of relaminarizing turbulent boundary layers undergoing same history reveals that the boundary layer with higher initial Reynolds number relaminarizes at a lower pressure gradient value compared to the one with lower Reynolds number. This effect can be explained on the inviscid theory proposed earlier in the literature. Further, various parameter criteria proposed to predict relaminarization, are assessed and the structure of relaminarizing boundary layers is investigated. A mechanism for stabilization of near-wall low speed streaks is proposed.

  1. Acoustic sounding in the planetary boundary layer

    NASA Technical Reports Server (NTRS)

    Kelly, E. H.

    1974-01-01

    Three case studies are presented involving data from an acoustic radar. The first two cases examine data collected during the passage of a mesoscale cold-air intrusion, probably thunderstorm outflow, and a synoptic-scale cold front. In these studies the radar data are compared to conventional meteorological data obtained from the WKY tower facility for the purpose of radar data interpretation. It is shown that the acoustic radar echoes reveal the boundary between warm and cold air and other areas of turbulent mixing, regions of strong vertical temperature gradients, and areas of weak or no wind shear. The third case study examines the relationship between the nocturnal radiation inversion and the low-level wind maximum or jet in the light of conclusions presented by Blackadar (1957). The low-level jet is seen forming well above the top of the inversion. Sudden rapid growth of the inversion occurs which brings the top of the inversion to a height equal that of the jet. Coincident with the rapid growth of the inversion is a sudden decrease in the intensity of the acoustic radar echoes in the inversion layer. It is suggested that the decrease in echo intensity reveals a decrease in turbulent mixing in the inversion layer as predicted by Blackadar. It is concluded that the acoustic radar can be a valuable tool for study in the lower atmosphere.

  2. Atmospheric boundary layer over steep surface waves

    NASA Astrophysics Data System (ADS)

    Troitskaya, Yuliya; Sergeev, Daniil A.; Druzhinin, Oleg; Kandaurov, Alexander A.; Ermakova, Olga S.; Ezhova, Ekaterina V.; Esau, Igor; Zilitinkevich, Sergej

    2014-08-01

    Turbulent air-sea interactions coupled with the surface wave dynamics remain a challenging problem. The needs to include this kind of interaction into the coupled environmental, weather and climate models motivate the development of a simplified approximation of the complex and strongly nonlinear interaction processes. This study proposes a quasi-linear model of wind-wave coupling. It formulates the approach and derives the model equations. The model is verified through a set of laboratory (direct measurements of an airflow by the particle image velocimetry (PIV) technique) and numerical (a direct numerical simulation (DNS) technique) experiments. The experiments support the central model assumption that the flow velocity field averaged over an ensemble of turbulent fluctuations is smooth and does not demonstrate flow separation from the crests of the waves. The proposed quasi-linear model correctly recovers the measured characteristics of the turbulent boundary layer over the waved water surface.

  3. Soot and radiation in combusting boundary layers

    SciTech Connect

    Beier, R.A.

    1981-12-01

    In most fires thermal radiation is the dominant mode of heat transfer. Carbon particles within the fire are responsible for most of this emitted radiation and hence warrant quantification. As a first step toward understanding thermal radiation in full scale fires, an experimental and theoretical study is presented for a laminar combusting boundary layer. Carbon particulate volume fraction profiles and approximate particle size distributions are experimentally determined in both free and forced flow for several hydrocarbon fuels and PMMA (polymethylmethacrylate). A multiwavelength laser transmission technique determines a most probable radius and a total particle concentration which are two unknown parameters in an assumed Gauss size distribution. A sooting region is observed on the fuel rich side of the main reaction zone. For free flow, all the flames are in air, but the free stream ambient oxygen mass fraction is a variable in forced flow. To study the effects of radiation heat transfer, a model is developed for a laminar combusting boundary layer over a pyrolyzing fuel surface. An optically thin approximation simplifies the calculation of the radiant energy flux at the fuel surface. For the free flames in air, the liquid fuel soot volume fractions, f/sub v/, range from f/sub v/ approx. 10/sup -7/ for n-heptane, a paraffin, to f/sub v/ approx. 10/sup -7/ for toluene, an aromatic. The PMMA soot volume fractions, f/sub v/ approx. 5 x 10/sup -7/, are approximately the same as the values previously reported for pool fires. Soot volume fraction increases monotonically with ambient oxygen mass fraction in the forced flow flames. For all fuels tested, a most probable radius between 20 nm and 80 nm is obtained which varies only slightly with oxygen mass fraction, streamwise position, or distance normal to the fuel surface. The theoretical analysis yields nine dimensionless parameters, which control the mass flux rate at the pyrolyzing fuel surface.

  4. Longitudinal vortices imbedded in turbulent boundary layers

    NASA Astrophysics Data System (ADS)

    Mehta, R. D.; Shabaka, I. M. M.; Shibl, A.; Bradshaw, P.

    1983-01-01

    The attenuation of skew-induced longitudinal vortices by turbulent or viscous stresses is studied for the case of pure, artificially-generated longitudinal vortices entrained into initially two-dimensional boundary layers in nominally zero pressure gradients. Three types of vortex-boundary interactions are studied in detail: (1) an isolated vortex in a two-dimensional boundary layer; (2) a vortex pair in a turbulent boundary layer with the common flow between the vortices moving away from the surface; (3) a vortex pair in a boundary layer with the common flow moving towards the surface. Detailed mean flow and turbulence measurements are made, showing that the eddy viscosities defined for the different shear-stress components behave in different and complicated ways. Terms in the Reynolds stress transport equations, notably the triple products that effect turbulent diffusion of Reynolds stress, also fail to obey simple rules.

  5. An Evaluation of Boundary Conditions for Modeling Urban Boundary Layers

    SciTech Connect

    Calhoun, R.J.; Chan, S.T.; Lee, R.L.

    2000-05-18

    Numerical modeling of the urban boundary layer is complicated by the need to describe airflow patterns outside of the computational domain. These patterns have an impact on how successfully the simulation is able to model the turbulence associated with the urban boundary layer. This talk presents experiments with the model boundary conditions for simulations that were done to support two Department of Energy observational programs involving the Salt Lake City basin. The Chemical/Biological Non-proliferation Program (CBNP) is concerned with the effects of buildings on influencing dispersion patterns in urban environments. The Vertical Transport and Mixing Program (VTMX) investigating mixing mechanisms in the stable boundary layer and how they are influenced by the channeling caused by drainage flows or by obstacles such as building complexes. Both of these programs are investigating the turbulent mixing caused by building complexes and other urban obstacles.

  6. Planetary Boundary Layer Simulation Using TASS

    NASA Technical Reports Server (NTRS)

    Schowalter, David G.; DeCroix, David S.; Lin, Yuh-Lang; Arya, S. Pal; Kaplan, Michael

    1996-01-01

    Boundary conditions to an existing large-eddy simulation model have been changed in order to simulate turbulence in the atmospheric boundary layer. Several options are now available, including the use of a surface energy balance. In addition, we compare convective boundary layer simulations with the Wangara and Minnesota field experiments as well as with other model results. We find excellent agreement of modelled mean profiles of wind and temperature with observations and good agreement for velocity variances. Neutral boundary simulation results are compared with theory and with previously used models. Agreement with theory is reasonable, while agreement with previous models is excellent.

  7. Boundary-layer linear stability theory

    NASA Technical Reports Server (NTRS)

    Mack, L. M.

    1984-01-01

    Most fluid flows are turbulent rather than laminar and the reason for this was studied. One of the earliest explanations was that laminar flow is unstable, and the linear instability theory was first developed to explore this possibility. A series of early papers by Rayleigh produced many notable results concerning the instability of inviscid flows, such as the discovery of inflectional instability. Viscosity was commonly thought to act only to stabilize the flow, and flows with convex velocity profiles appeared to be stable. The investigations that led to a viscous theory of boundary layer instability was reported. The earliest application of linear stability theory to transition prediction calculated the amplitude ratio of the most amplified frequency as a function of Reynolds number for a Blasius boundary layer, and found that this quantity had values between five and nine at the observed Ret. The experiment of Schubauer and Skramstad (1947) completely reversed the prevailing option and fully vindicated the Gottingen proponents of the theory. This experiment demonstrated the existence of instability waves in a boundary layer, their connection with transition, and the quantitative description of their behavior by the theory of Tollmien and Schlichting. It is generally accepted that flow parameters such as pressure gradient, suction and heat transfer qualitatively affect transition in the manner predicted by the linear theory, and in particular that a flow predicted to be stable by the theory should remain laminar. The linear theory, in the form of the e9, or N-factor is today in routine use in engineering studies of laminar flow. The stability theory to boundary layers with pressure gradients and suction was applied. The only large body of numerical results for exact boundary layer solutions before the advent of the computer age by calculating the stability characteristics of the Falkner-Skan family of velocity profiles are given. When the digital computer

  8. Boundary-layer linear stability theory

    NASA Astrophysics Data System (ADS)

    Mack, L. M.

    1984-06-01

    Most fluid flows are turbulent rather than laminar and the reason for this was studied. One of the earliest explanations was that laminar flow is unstable, and the linear instability theory was first developed to explore this possibility. A series of early papers by Rayleigh produced many notable results concerning the instability of inviscid flows, such as the discovery of inflectional instability. Viscosity was commonly thought to act only to stabilize the flow, and flows with convex velocity profiles appeared to be stable. The investigations that led to a viscous theory of boundary layer instability was reported. The earliest application of linear stability theory to transition prediction calculated the amplitude ratio of the most amplified frequency as a function of Reynolds number for a Blasius boundary layer, and found that this quantity had values between five and nine at the observed Ret. The experiment of Schubauer and Skramstad (1947) completely reversed the prevailing option and fully vindicated the Gottingen proponents of the theory. This experiment demonstrated the existence of instability waves in a boundary layer, their connection with transition, and the quantitative description of their behavior by the theory of Tollmien and Schlichting. It is generally accepted that flow parameters such as pressure gradient, suction and heat transfer qualitatively affect transition in the manner predicted by the linear theory, and in particular that a flow predicted to be stable by the theory should remain laminar. The linear theory, in the form of the e9, or N-factor is today in routine use in engineering studies of laminar flow. The stability theory to boundary layers with pressure gradients and suction was applied. The only large body of numerical results for exact boundary layer solutions before the advent of the computer age by calculating the stability characteristics of the Falkner-Skan family of velocity profiles are given. When the digital computer

  9. Calculation methods for compressible turbulent boundary layers

    NASA Technical Reports Server (NTRS)

    Bushnell, D. M.; Cary, A. M., Jr.; Harris, J. E.

    1976-01-01

    Calculation procedures for non-reacting compressible two- and three-dimensional turbulent boundary layers were reviewed. Integral, transformation and correlation methods, as well as finite difference solutions of the complete boundary layer equations summarized. Alternative numerical solution procedures were examined, and both mean field and mean turbulence field closure models were considered. Physics and related calculation problems peculiar to compressible turbulent boundary layers are described. A catalog of available solution procedures of the finite difference, finite element, and method of weighted residuals genre is included. Influence of compressibility, low Reynolds number, wall blowing, and pressure gradient upon mean field closure constants are reported.

  10. Boundary layer flow visualization for flight testing

    NASA Technical Reports Server (NTRS)

    Obara, Clifford J.

    1986-01-01

    Flow visualization is used extensively in flight testing to determine aerodynamic characteristics such as surface flow direction and boundary layer state. Several visualization techniques are available to the aerodynamicist. Two of the most popular are oil flows and sublimating chemicals. Oil is used to visualize boundary layer transition, shock wave location, regions of separated flow, and surface flow direction. Boundary layer transition can also be visualized with sublimating chemicals. A summary of these two techniques is discussed, and the use of sublimating chemicals is examined in some detail. The different modes of boundary layer transition are characterized by different patterns in the sublimating chemical coating. The discussion includes interpretation of these chemical patterns and the temperature and velocity operating limitations of the chemical substances. Information for selection of appropriate chemicals for a desired set of flight conditions is provided.

  11. Dynamic Acoustic Detection of Boundary Layer transition

    NASA Technical Reports Server (NTRS)

    Grohs, Jonathan R.

    1995-01-01

    The wind tunnel investigation into the acoustic nature of boundary layer transition using miniature microphones. This research is the groundwork for entry into the National Transonic Facility (NTF) at the NASA Langley Research Center (LaRC). Due to the extreme environmental conditions of NTF testing, low temperatures and high pressures, traditional boundary layer detection methods are not available. The emphasis of this project and further studies is acoustical sampling of a typical boundary layer and environmental durability of the miniature microphones. The research was conducted with the 14 by 22 Foot Subsonic Tunnel, concurrent with another wind tunnel test. Using the resources of LaRC, a full inquiry into the feasibility of using Knowles Electronics, Inc. EM-3086 microphones to detect the surface boundary layer, under differing conditions, was completed. This report shall discuss the difficulties encountered, product performance and observations, and future research adaptability of this method.

  12. Boundary-layer control for drag reduction

    NASA Technical Reports Server (NTRS)

    Harvey, William D.

    1988-01-01

    Although the number of possible applications of boundary-layer control is large, a discussion is given only of those that have received the most attention recently at NASA Langley Research Center to improve airfoil drag characteristics. This research concerns stabilizing the laminar boundary layer through geometric shaping (natural laminar flow, NLF) and active control involving the removal of a portion of the laminar boundary layer (laminar flow control, LFC) either through discrete slots or a perforated surface. At low Reynolds numbers, a combination of shaping and forced transition has been used to achieve the desired run of laminar flow and control of laminar separation. In the design of both natural laminar flow and laminar flow control airfoils and wings, boundary layer stability codes play an important role. A discussion of some recent stability calculations using both incompressible and compressible codes is given.

  13. Transport of contaminants in the planetary boundary layer

    NASA Technical Reports Server (NTRS)

    Lee, I. Y.; Swan, P. R.

    1978-01-01

    A planetary boundary layer model is described and used to simulate PBL phenomena including cloud formation and pollution transport in the San Francisco Bay Area. The effect of events in the PBL on air pollution is considered, and governing equations for the average momentum, potential temperature, water vapor mixing ratio, and air contaminants are presented. These equations are derived by integrating the basic equations vertically through the mixed layer. Characteristics of the day selected for simulation are reported, and the results suggest that the diurnally cyclic features of the mesoscale motion, including clouds and air pollution, can be simulated in a readily interpretable way with the model.

  14. Boundary-layer stability and airfoil design

    NASA Technical Reports Server (NTRS)

    Viken, Jeffrey K.

    1986-01-01

    Several different natural laminar flow (NLF) airfoils have been analyzed for stability of the laminar boundary layer using linear stability codes. The NLF airfoils analyzed come from three different design conditions: incompressible; compressible with no sweep; and compressible with sweep. Some of the design problems are discussed, concentrating on those problems associated with keeping the boundary layer laminar. Also, there is a discussion on how a linear stability analysis was effectively used to improve the design for some of the airfoils.

  15. Halogen chemistry in the marine boundary layer

    NASA Astrophysics Data System (ADS)

    Plane, J. M. C.; Gomez Martin, J. C.; Kumar, R.; Mahajan, A. S.; Oetjen, H.; Saunders, R. W.

    2009-04-01

    Important atmospheric sources of iodine include the air-sea exchange of biogenic iodocarbons, and the emission of I2 from macro-algae. The major source of bromine is the release of bromide ions from sea-salt aerosol. The subsequent atmospheric chemistry of these halogens (1), changes the oxidizing capacity of the marine boundary layer by destroying ozone and changing the hydroxyl radical concentration; (2), reacts efficiently with dimethyl sulphide and mercury (in the polar regions); and (3), leads to the formation of ultra-fine particles which may contribute to cloud condensation nuclei (CCN) and hence affect climate. This paper will report observations of IO, BrO, OIO and I2 made by the technique of differential optical absorption spectroscopy, in several contrasting marine environments: the equatorial mid-Atlantic (Cape Verde); mid-latitude clean coastal (Mace Head, Ireland); polluted coastal (Roscoff, France); and the polar marine boundary layer (Hudson Bay, Canada). Both IO and BrO are observed in all these locations at significant concentrations (> 1 pptv), and so have a major impact on (1) and (2) above. To complement the field campaigns we have also carried out wide-ranging laboratory investigation. A new study of OIO photochemistry shows that absorption in the visible bands between 490 and 630 nm leads to I atom production with a quantum yield of unity, which now means that iodine is a particularly powerful ozone-depleting agent. We have also studied the formation and growth kinetics of iodine oxide nano-particles, and their uptake of water, sulphuric acid and di-carboxylic organic acids, in order to model their growth to a size where they can act as CCN. Their ice-nucleating properties will also be reported.

  16. Size distributions of boundary-layer clouds

    SciTech Connect

    Stull, R.; Berg, L.; Modzelewski, H.

    1996-04-01

    Scattered fair-weather clouds are triggered by thermals rising from the surface layer. Not all surface layer air is buoyant enough to rise. Also, each thermal has different humidities and temperatures, resulting in interthermal variability of their lifting condensation levels (LCL). For each air parcel in the surface layer, it`s virtual potential temperature and it`s LCL height can be computed.

  17. Boundary Layer Flow Over a Moving Wavy Surface

    NASA Astrophysics Data System (ADS)

    Hendin, Gali; Toledo, Yaron

    2016-04-01

    Boundary Layer Flow Over a Moving Wavy Surface Gali Hendin(1), Yaron Toledo(1) January 13, 2016 (1)School of Mechanical Engineering, Tel-Aviv University, Israel Understanding the boundary layer flow over surface gravity waves is of great importance as various atmosphere-ocean processes are essentially coupled through these waves. Nevertheless, there are still significant gaps in our understanding of this complex flow behaviour. The present work investigates the fundamentals of the boundary layer air flow over progressive, small-amplitude waves. It aims to extend the well-known Blasius solution for a boundary layer over a flat plate to one over a moving wavy surface. The current analysis pro- claims the importance of the small curvature and the time-dependency as second order effects, with a meaningful impact on the similarity pattern in the first order. The air flow over the ocean surface is modelled using an outer, inviscid half-infinite flow, overlaying the viscous boundary layer above the wavy surface. The assumption of a uniform flow in the outer layer, used in former studies, is now replaced with a precise analytical solution of the potential flow over a moving wavy surface with a known celerity, wavelength and amplitude. This results in a conceptual change from former models as it shows that the pressure variations within the boundary layer cannot be neglected. In the boundary layer, time-dependent Navier-Stokes equations are formulated in a curvilinear, orthogonal coordinate system. The formulation is done in an elaborate way that presents additional, formerly neglected first-order effects, resulting from the time-varying coordinate system. The suggested time-dependent curvilinear orthogonal coordinate system introduces a platform that can also support the formulation of turbulent problems for any surface shape. In order to produce a self-similar Blasius-type solution, a small wave-steepness is assumed and a perturbation method is applied. Consequently, a

  18. Dependence of Boundary Layer Mixing On Lateral Boundary Conditions

    NASA Astrophysics Data System (ADS)

    Straub, D.

    Ocean circulation models often show strong mixing in association with lateral bound- ary layers. Such mixing is generally considered to be artifactual rather than real. Fur- thermore, the severity of the problem is boundary condition dependent. For example, an inconsistency between geostrophy and insulating boundary conditions on tempera- ture and salinity cause many modelers to opt for the no slip, rather than slip boundary condtion on the tangential component of momentum. As modellers increasingly move into the eddy revealing regime, biharmonic, rather than harmonic dissipative operators are likely to become more common. Biharmonic operators, however, require specifi- cation of additional boundary conditions. For example, there are several `natural ex- tensions' to each of the slip and no slip conditions. Here, these various possiblities are considered in the context of a simple model. Particular attention is payed to how mixing (and the associated overturning cell) is affected by the choice of boundary condition.

  19. Dense gas boundary layer experiments: Visualization, pressure measurements, concentration evaluation

    SciTech Connect

    Reichenbach, H.; Neuwald, P.; Kuhl, A.L.

    1992-11-01

    This technical report describes methods that were applied to investigate turbulent boundary layers generated by inviscid, baroclinic effects. The Cranz-Schardin 24-sparks camera was used to visualize the interactions of a planar shock wave with a Freon R12-layer. The shock propagates more slowly in the Freon layer than in air because of its smaller sound speed. This causes the shock front to be curved and to be reflected between the wall and the layer interface. As a consequence of the reflection process, a series of compression and expansion waves radiate from the layer. Large fluctuations in the streamwise velocity and in pressure develop for about 1 ms. These waves strongly perturb the interface shear layer, which rapidly transitions to a turbulent boundary flow. Pressure measurements showed that the fluctuations in the Freon layer reach a peak pressure 4 times higher than in the turbulent boundary flow. To characterize the preshock Freon boundary layer, concentration measurements were performed with a differential interferometry technique. The refraction index of Freon R12 is so high that Mach-Zehnder interferometry was not successful in these experiments. The evaluation of the concentration profile is described here in detail. Method and results of corresponding LDV measurements under the same conditions are presented in a different report, EMI Report T 9/92. The authors plan to continue the dense gas layer investigations with the gas combination helium/Freon.

  20. The inner core thermodynamics of the tropical cyclone boundary layer

    NASA Astrophysics Data System (ADS)

    Williams, Gabriel J.

    2016-02-01

    Although considerable progress has been made in understanding the inner-core dynamics of the tropical cyclone boundary layer (TCBL), our knowledge of the inner-core thermodynamics of the TCBL remains limited. In this study, the inner-core budgets of potential temperature (θ ), specific humidity (q), and reversible equivalent potential temperature (θ _e ) are examined using a high-resolution multilevel boundary layer model. The potential temperature budgets show that the heat energy is dominated by latent heat release in the eyewall, evaporative cooling along the outer edge of the eyewall, and upward surface fluxes of sensible and latent heat from the underlying warm ocean. It is shown that the vertical θ advection overcompensates the sum of radial advective warming from the boundary layer outflow jet and latent heating for the development of cooling in the eyewall within the TCBL. The moisture budgets show the dominant upward transport of moisture in the eyewall updrafts, partly by the boundary-layer outflow jet from the bottom eye region, so that the eyewall remains nearly saturated. The θ _e budgets reveal that the TCBL is maintained thermodynamically by the upward surface flux of higher-θ _e air from the underlying warm ocean, the radial transport of low-θ _e air from the outer regions of the TCBL, and the dry adiabatic cooling associated by eyewall updrafts. These results underscore the significance of vertical motion and the location of the boundary layer outflow jet in maintaining the inner core thermal structure of the TCBL.

  1. Modeling the summertime Arctic cloudy boundary layer

    SciTech Connect

    Curry, J.A.; Pinto, J.O.; McInnes, K.L.

    1996-04-01

    Global climate models have particular difficulty in simulating the low-level clouds during the Arctic summer. Model problems are exacerbated in the polar regions by the complicated vertical structure of the Arctic boundary layer. The presence of multiple cloud layers, a humidity inversion above cloud top, and vertical fluxes in the cloud that are decoupled from the surface fluxes, identified in Curry et al. (1988), suggest that models containing sophisticated physical parameterizations would be required to accurately model this region. Accurate modeling of the vertical structure of multiple cloud layers in climate models is important for determination of the surface radiative fluxes. This study focuses on the problem of modeling the layered structure of the Arctic summertime boundary-layer clouds and in particular, the representation of the more complex boundary layer type consisting of a stable foggy surface layer surmounted by a cloud-topped mixed layer. A hierarchical modeling/diagnosis approach is used. A case study from the summertime Arctic Stratus Experiment is examined. A high-resolution, one-dimensional model of turbulence and radiation is tested against the observations and is then used in sensitivity studies to infer the optimal conditions for maintaining two separate layers in the Arctic summertime boundary layer. A three-dimensional mesoscale atmospheric model is then used to simulate the interaction of this cloud deck with the large-scale atmospheric dynamics. An assessment of the improvements needed to the parameterizations of the boundary layer, cloud microphysics, and radiation in the 3-D model is made.

  2. Boundary layer loss sensitivity study using a modified ICRPG turbulent boundary layer computer program

    NASA Technical Reports Server (NTRS)

    Omori, S.; Krebsbach, A.; Gross, K. W.

    1972-01-01

    Modifications of the turbulent boundary layer (TBL) computer program refer to a more accurate representation of boundary layer edge conditions, internal calculation of the Prandtl number, a changed friction coefficient relationship, and computation of the performance degradation. Important input parameters of the modified TBL program such as wall temperature distribution, Prandtl number, Stanton number, and velocity profile exponent were changed and the individual effects on significant boundary layer parameters, heat transfer, and performance degradation are described.

  3. Lear jet boundary layer/shear layer laser propagation experiments

    NASA Technical Reports Server (NTRS)

    Gilbert, K.

    1980-01-01

    Optical degradations of aircraft turbulent boundary layers with shear layers generated by aerodynamic fences are analyzed. A collimated 2.5 cm diameter helium-neon laser (0.63 microns) traversed the approximate 5 cm thick natural aircraft boundary layer in double pass via a reflective airfoil. In addition, several flights examined shear layer-induced optical degradation. Flight altitudes ranged from 1.5 to 12 km, while Mach numbers were varied from 0.3 to 0.8. Average line spread function (LSF) and Modulation Transfer Function (MTF) data were obtained by averaging a large number of tilt-removed curves. Fourier transforming the resulting average MTF yields an LSF, thus affording a direct comparison of the two optical measurements. Agreement was good for the aerodynamic fence arrangement, but only fair in the case of a turbulent boundary layer. Values of phase variance inferred from the LSF instrument for a single pass through the random flow and corrected for a large aperture ranged from 0.08 to 0.11 waves (lambda = .63 microns) for the boundary layer. Corresponding values for the fence vary from 0.08 to 0.16 waves. Extrapolation of these values to 10.6 microns suggests negligible degradation for a CO2 laser transmitted through a 5 cm thick, subsonic turbulent boundary layer.

  4. High enthalpy hypersonic boundary layer flow

    NASA Technical Reports Server (NTRS)

    Yanow, G.

    1972-01-01

    A theoretical and experimental study of an ionizing laminar boundary layer formed by a very high enthalpy flow (in excess of 12 eV per atom or 7000 cal/gm) with allowance for the presence of helium driver gas is described. The theoretical investigation has shown that the use of variable transport properties and their respective derivatives is very important in the solution of equilibrium boundary layer equations of high enthalpy flow. The effect of low level helium contamination on the surface heat transfer rate is minimal. The variation of ionization is much smaller in a chemically frozen boundary layer solution than in an equilibrium boundary layer calculation and consequently, the variation of the transport properties in the case of the former was not essential in the integration. The experiments have been conducted in a free piston shock tunnel, and a detailed study of its nozzle operation, including the effects of low levels of helium driver gas contamination has been made. Neither the extreme solutions of an equilibrium nor of a frozen boundary layer will adequately predict surface heat transfer rate in very high enthalpy flows.

  5. Boundary-Layer-Ingesting Inlet Flow Control

    NASA Technical Reports Server (NTRS)

    Owens, Lewis R.; Allan, Brian G.; Gorton, Susan A.

    2008-01-01

    An experimental study was conducted to provide the first demonstration of an active flow control system for a flush-mounted inlet with significant boundary-layer-ingestion in transonic flow conditions. The effectiveness of the flow control in reducing the circumferential distortion at the engine fan-face location was assessed using a 2.5%-scale model of a boundary-layer-ingesting offset diffusing inlet. The inlet was flush mounted to the tunnel wall and ingested a large boundary layer with a boundary-layer-to-inlet height ratio of 35%. Different jet distribution patterns and jet mass flow rates were used in the inlet to control distortion. A vane configuration was also tested. Finally a hybrid vane/jet configuration was tested leveraging strengths of both types of devices. Measurements were made of the onset boundary layer, the duct surface static pressures, and the mass flow rates through the duct and the flow control actuators. The distortion and pressure recovery were measured at the aerodynamic interface plane. The data show that control jets and vanes reduce circumferential distortion to acceptable levels. The point-design vane configuration produced higher distortion levels at off-design settings. The hybrid vane/jet flow control configuration reduced the off-design distortion levels to acceptable ones and used less than 0.5% of the inlet mass flow to supply the jets.

  6. Boundary Layer Cloudiness Parameterizations Using ARM Observations

    SciTech Connect

    Bruce Albrecht

    2004-09-15

    This study used DOE ARM data and facilities to: (1) study macroscopic properties of continental stratus clouds at SGP and the factors controlling these properties, (2) develop a scientific basis for understanding the processes responsible for the formation of boundary layer clouds using ARM observations in conjunction with simple parametric models and LES, and (3) evaluate cumulus cloud characteristics retrieved from the MMCR operating at TWP-Nauru. In addition we have used high resolution 94 GHz observations of boundary layer clouds and precipitation to: (1) develop techniques for using high temporal resolution Doppler velocities to study large-eddy circulations and turbulence in boundary layer clouds and estimate the limitations of using current and past MMCR data for boundary layer cloud studies, (2) evaluate the capability and limitations of the current MMCR data for estimating reflectivity, vertical velocities, and spectral under low- signal-to-noise conditions associated with weak no n-precipitating clouds, (3) develop possible sampling modes for the new MMCR processors to allow for adequate sampling of boundary layer clouds, and (4) retrieve updraft and downdraft structures under precipitating conditions.

  7. The Kinematics of Turbulent Boundary Layer Structure

    NASA Technical Reports Server (NTRS)

    Robinson, Stephen Kern

    1991-01-01

    The long history of research into the internal structure of turbulent boundary layers has not provided a unified picture of the physics responsible for turbulence production and dissipation. The goals of the present research are to: (1) define the current state of boundary layer structure knowledge; and (2) utilize direct numerical simulation results to help close the unresolved issues identified in part A and to unify the fragmented knowledge of various coherent motions into a consistent kinematic model of boundary layer structure. The results of the current study show that all classes of coherent motion in the low Reynolds number turbulent boundary layer may be related to vortical structures, but that no single form of vortex is representative of the wide variety of vortical structures observed. In particular, ejection and sweep motions, as well as entrainment from the free-streem are shown to have strong spatial and temporal relationships with vortical structures. Disturbances of vortex size, location, and intensity show that quasi-streamwise vortices dominate the buffer region, while transverse vortices and vortical arches dominate the wake region. Both types of vortical structure are common in the log region. The interrelationships between the various structures and the population distributions of vortices are combined into a conceptual kinematic model for the boundary layer. Aspects of vortical structure dynamics are also postulated, based on time-sequence animations of the numerically simulated flow.

  8. Laminar boundary layer in conditions of natural transition to turbulent flow

    NASA Technical Reports Server (NTRS)

    Polyakov, N. F.

    1986-01-01

    Results of experimental study of regularities of a natural transition of a laminar boundary layer to a turbulent layer at low subsonic air flow velocities are presented, analyzed and compared with theory and model experiments.

  9. Sea-air boundary meteorological sensor

    NASA Astrophysics Data System (ADS)

    Barbosa, Jose G.

    2015-05-01

    The atmospheric environment can significantly affect radio frequency and optical propagation. In the RF spectrum refraction and ducting can degrade or enhance communications and radar coverage. Platforms in or beneath refractive boundaries can exploit the benefits or suffer the effects of the atmospheric boundary layers. Evaporative ducts and surface-base ducts are of most concern for ocean surface platforms and evaporative ducts are almost always present along the sea-air interface. The atmospheric environment also degrades electro-optical systems resolution and visibility. The atmospheric environment has been proven not to be uniform and under heterogeneous conditions substantial propagation errors may be present for large distances from homogeneous models. An accurate and portable atmospheric sensor to profile the vertical index of refraction is needed for mission planning, post analysis, and in-situ performance assessment. The meteorological instrument used in conjunction with a radio frequency and electro-optical propagation prediction tactical decision aid tool would give military platforms, in real time, the ability to make assessments on communication systems propagation ranges, radar detection and vulnerability ranges, satellite communications vulnerability, laser range finder performance, and imaging system performance predictions. Raman lidar has been shown to be capable of measuring the required atmospheric parameters needed to profile the atmospheric environment. The atmospheric profile could then be used as input to a tactical decision aid tool to make propagation predictions.

  10. Possibilities for drag reduction by boundary layer control

    NASA Technical Reports Server (NTRS)

    Naiman, I.

    1946-01-01

    The mechanics of laminar boundary layer transition are reviewed. Drag possibilities for boundary layer control are analyzed using assumed conditions of transition Reynolds number, inlet loss, number of slots, blower efficiency, and duct losses. Although the results of such analysis are highly favorable, those obtained by experimental investigations yield conflicting results, showing only small gains, and sometimes losses. Reduction of this data indicates that there is a lower limit to the quantity of air which must be removed at the slot in order to stabilize the laminar flow. The removal of insufficient air permits transition to occur while the removal of excessive amounts of air results in high power costs, with a net drag increases. With the estimated value of flow coefficient and duct losses equal to half the dynamic pressure, drag reductions of 50% may be obtained; with twice this flow coefficient, the drag saving is reduced to 25%.

  11. Numerical simulation of supersonic boundary layer transition

    NASA Technical Reports Server (NTRS)

    Guo, Y.; Adams, N. A.; Sandham, N. D.; Kleiser, L.

    1994-01-01

    The present contribution reviews some of the recent progress obtained at our group in the direct numerical simulation (DNS) of compressible boundary layer transition. Elements of the different simulation approaches and numerical techniques employed are surveyed. Temporal and spatial simulations, as well as comparisons with results obtained from Parabolized Stability Equations, are discussed. DNS results are given for flat plate boundary layers in the Mach number range 1.6 to 4.5. A temporal DNS at Mach 4.5 has been continued through breakdown all the way to the turbulent stage. In addition results obtained with a recently developed extended temporal DNS approach are presented, which takes into account some nonparallel effects of a growing boundary layer. Results from this approach are quite close to those of spatial DNS, while preserving the efficiency of the temporal DNS.

  12. Mechanics of Boundary Layer Transition. Part 5: Boundary Layer Stability theory in incompressible and compressible flow

    NASA Technical Reports Server (NTRS)

    Mack, L. M.

    1967-01-01

    The fundamentals of stability theory, its chief results, and the physical mechanisms at work are presented. The stability theory of the laminar boundary determines whether a small disturbance introduced into the boundary layer will amplify or damp. If the disturbance damps, the boundary layer remains laminar. If the disturbance amplifies, and by a sufficient amount, then transition to turbulence eventually takes place. The stability theory establishes those states of the boundary layer which are most likely to lead to transition, identifys those frequencies which are the most dangerous, and indicates how the external parameters can best be changed to avoid transition.

  13. Influence of wall permeability on turbulent boundary-layer properties

    NASA Technical Reports Server (NTRS)

    Wilkinson, S. P.

    1983-01-01

    Experimental boundary-layer studies of a series of low pressure drop, permeable surfaces have been conducted to characterize their surface interaction with a turbulent boundary layer. The models were flat and tested at nominally zero pressure gradient in low speed air. The surfaces were thin metal sheets with discrete perforations. Direct drag balance measurements of skin friction indicate that the general effect of surface permeability is to increase drag above that of a smooth plate reference level. Heuristic arguments are presented to show that this type of behavior is to be expected. Other boundary-layer data are also presented including mean velocity profiles and conditionally sampled streamwise velocity fluctuations (hot wire) for selected models.

  14. Aerosol buffering of marine boundary layer cloudiness

    NASA Astrophysics Data System (ADS)

    Kazil, J.; Feingold, G.; Wang, H.

    2010-12-01

    The role of aerosol particles in maintaining a cloudy boundary layer in the remote marine environment is explored. It has previously been shown that precipitation can result in the transition from a closed- to open-cellular state but that the boundary layer cannot maintain this open-cell state without a resupply of particles. Potential sources include wind-driven production of sea salt particles from the ocean, nucleation from the gas phase, and entrainment from the free troposphere. Here we investigate with model simulations how the interplay of cloud properties, aerosol production, and boundary layer dynamics results in aerosol sources acting as a buffer against processes that destabilize cloudiness and the dynamic state of the marine boundary layer. For example, at nighttime, cloud liquid water increases in the absence of solar heating, resulting in increased precipitation, stronger cloud top cooling, accelerated boundary layer turbulence, and faster surface wind speeds. Faster surface wind speeds drive an enhanced flux of sea salt aerosol, at a time when aerosol particles are scavenged more readily by enhanced precipitation. In contrast, absorption of solar radiation during daytime reduces cloud water, decelerates boundary layer turbulence, reduces surface wind speeds, and therefore slows surface emissions. This is compensated by nucleation of small aerosol particles from the gas phase in response to the nigh complete removal of cloud condensation nuclei in precipitating open cell walls. These newly formed particles need to grow to larger sizes before they can serve as cloud condensation nuclei (CCN), but will likely contribute to the CCN population during the nighttime and, together with ocean emissions, buffer the system against precipitation removal.

  15. Stability of an oscillating boundary layer

    NASA Technical Reports Server (NTRS)

    Levchenko, V. Y.; Solovyev, A. S.

    1985-01-01

    Levchenko and Solov'ev (1972, 1974) have developed a stability theory for space periodic flows, assuming that the Floquet theory is applicable to partial differential equations. In the present paper, this approach is extended to unsteady periodic flows. A complete unsteady formulation of the stability problem is obtained, and the stability characteristics over an oscillating period are determined from the solution of the problem. Calculations carried out for an oscillating incompressible boundary layer on a plate showed that the boundary layer flow may be regarded as a locally parallel flow.

  16. Stability of an oscillating boundary layer

    NASA Astrophysics Data System (ADS)

    Levchenko, V. Y.; Solovyev, A. S.

    1985-03-01

    Levchenko and Solov'ev (1972, 1974) have developed a stability theory for space periodic flows, assuming that the Floquet theory is applicable to partial differential equations. In the present paper, this approach is extended to unsteady periodic flows. A complete unsteady formulation of the stability problem is obtained, and the stability characteristics over an oscillating period are determined from the solution of the problem. Calculations carried out for an oscillating incompressible boundary layer on a plate showed that the boundary layer flow may be regarded as a locally parallel flow.

  17. Boundary-Layer Code For Supersonic Combustion

    NASA Technical Reports Server (NTRS)

    Pinckney, S. Z.; Walton, J. T.

    1994-01-01

    HUD is integral computer code based on Spaulding-Chi method for predicting development of boundary layers in laminar, transitional, and turbulent regions of flows on two-dimensional or axisymmetric bodies. Approximates nonequilibrium velocity profiles as well as local surface friction in presence of pressure gradient. Predicts transfer of heat in turbulent boundary layer in presence of high axial presure gradient. Provides for pressure gradients both normal and lateral to surfaces. Also used to estimate requirements for cooling scramjet engines. Because of this capability, HUD program incorporated into several scramjet-cycle-performance-analysis codes, including SCRAM (ARC-12338) and SRGULL (LEW-15093). Written in FORTRAN 77.

  18. Hairpin vortices in turbulent boundary layers

    NASA Astrophysics Data System (ADS)

    Eitel-Amor, G.; Örlü, R.; Schlatter, P.; Flores, O.

    2015-02-01

    The present work presents a number of parallel and spatially developing simulations of boundary layers to address the question of whether hairpin vortices are a dominant feature of near-wall turbulence, and which role they play during transition. In the first part, the parent-offspring regeneration mechanism is investigated in parallel (temporal) simulations of a single hairpin vortex introduced in a mean shear flow corresponding to either turbulent channels or boundary layers (Reτ ≲ 590). The effect of a turbulent background superimposed on the mean flow is considered by using an eddy viscosity computed from resolved simulations. Tracking the vortical structure downstream, it is found that secondary hairpins are only created shortly after initialization, with all rotational structures decaying for later times. For hairpins in a clean (laminar) environment, the decay is relatively slow, while hairpins in weak turbulent environments (10% of νt) dissipate after a couple of eddy turnover times. In the second part, the role of hairpin vortices in laminar-turbulent transition is studied using simulations of spatial boundary layers tripped by hairpin vortices. These vortices are generated by means of specific volumetric forces representing an ejection event, creating a synthetic turbulent boundary layer initially dominated by hairpin-like vortices. These hairpins are advected towards the wake region of the boundary layer, while a sinusoidal instability of the streaks near the wall results in rapid development of a turbulent boundary layer. For Reθ > 400, the boundary layer is fully developed, with no evidence of hairpin vortices reaching into the wall region. The results from both the parallel and spatial simulations strongly suggest that the regeneration process is rather short-lived and may not sustain once a turbulent background is developed. From the transitional flow simulations, it is conjectured that the forest of hairpins reported in former direct numerical

  19. Boundary layer halogens in coastal Antarctica.

    PubMed

    Saiz-Lopez, Alfonso; Mahajan, Anoop S; Salmon, Rhian A; Bauguitte, Stephane J-B; Jones, Anna E; Roscoe, Howard K; Plane, John M C

    2007-07-20

    Halogens influence the oxidizing capacity of Earth's troposphere, and iodine oxides form ultrafine aerosols, which may have an impact on climate. We report year-round measurements of boundary layer iodine oxide and bromine oxide at the near-coastal site of Halley Station, Antarctica. Surprisingly, both species are present throughout the sunlit period and exhibit similar seasonal cycles and concentrations. The springtime peak of iodine oxide (20 parts per trillion) is the highest concentration recorded anywhere in the atmosphere. These levels of halogens cause substantial ozone depletion, as well as the rapid oxidation of dimethyl sulfide and mercury in the Antarctic boundary layer. PMID:17641195

  20. Boundary-layer theory for blast waves

    NASA Technical Reports Server (NTRS)

    Kim, K. B.; Berger, S. A.; Kamel, M. M.; Korobeinikov, V. P.; Oppenheim, A. K.

    1975-01-01

    It is profitable to consider the blast wave as a flow field consisting of two regions: the outer, which retains the properties of the inviscid solution, and the inner, which is governed by flow equations including terms expressing the effects of heat transfer and, concomitantly, viscosity. The latter region thus plays the role of a boundary layer. Reported here is an analytical method developed for the study of such layers, based on the matched asymptotic expansion technique combined with patched solutions.

  1. Calculation methods for compressible turbulent boundary layers, 1976

    NASA Technical Reports Server (NTRS)

    Bushnell, D. M.; Cary, A. M., Jr.; Harris, J. E.

    1977-01-01

    Equations and closure methods for compressible turbulent boundary layers are discussed. Flow phenomena peculiar to calculation of these boundary layers were considered, along with calculations of three dimensional compressible turbulent boundary layers. Procedures for ascertaining nonsimilar two and three dimensional compressible turbulent boundary layers were appended, including finite difference, finite element, and mass-weighted residual methods.

  2. High-resolution distributed temperature sensing: a new tool to study the space-time dynamics of transient cold-air pools in the weak-wind stable boundary layer

    NASA Astrophysics Data System (ADS)

    Thomas, C. K.; Selker, J. S.; Zeeman, M. J.

    2011-12-01

    We present a novel approach to observing the two-dimensional thermal structure of atmospheric near-surface turbulent and non-turbulent flows by measuring air temperatures in a vertical plane at a high resolution (0.25 m, every approximately 2 s) using distributed temperature sensing (DTS). Air temperature observations obtained from a fiber optics array of approximate dimensions 8 by 8 m and sonic anemometer data from two levels were collected for a period of 23 days over a short grass field located in the flat bottom of a wide valley with moderate surface heterogeneity. In addition to evaluating the DTS technique to resolve the rapidly changing gradients and small-scale perturbations associated with turbulence in the atmosphere for convective and stable boundary layers, the objective was to analyze the space-time dynamics of transient cold-air pools in the stable boundary layer. The time response and precision of the fiber temperatures were adequate to resolve individual sub-meter sized turbulent and non-turbulent structures of time scales >= 3 s and enabled calculation of meaningful sensible heat fluxes when combined with vertical wind observations. The small turbulence scales associated with strong vertical shear and low measurement heights pose limitations to the technique. The top of the transient cold-air pool was highly non-stationary. The thermal structure of the near-surface air is generally a superposition of various perturbations of different time and length scales, whereas no preferred scales were identified. Vertical length scales for turbulence in the strongly stratified transient cold-air pool directly derived from the DTS data agreed well with buoyancy length scales parameterized using the vertical velocity variance and the Brunt-Vaisala frequency, while scales for weak stratification disagreed. The high-resolution DTS technique opens a new window into spatially sampling geophysical fluid flows including turbulent energy exchange with a broad

  3. Nonlinear Transient Growth and Boundary Layer Transition

    NASA Technical Reports Server (NTRS)

    Paredes, Pedro; Choudhari, Meelan M.; Li, Fei

    2016-01-01

    Parabolized stability equations (PSE) are used in a variational approach to study the optimal, non-modal disturbance growth in a Mach 3 at plate boundary layer and a Mach 6 circular cone boundary layer. As noted in previous works, the optimal initial disturbances correspond to steady counter-rotating streamwise vortices, which subsequently lead to the formation of streamwise-elongated structures, i.e., streaks, via a lift-up effect. The nonlinear evolution of the linearly optimal stationary perturbations is computed using the nonlinear plane-marching PSE for stationary perturbations. A fully implicit marching technique is used to facilitate the computation of nonlinear streaks with large amplitudes. To assess the effect of the finite-amplitude streaks on transition, the linear form of plane- marching PSE is used to investigate the instability of the boundary layer flow modified by spanwise periodic streaks. The onset of bypass transition is estimated by using an N- factor criterion based on the amplification of the streak instabilities. Results show that, for both flow configurations of interest, streaks of sufficiently large amplitude can lead to significantly earlier onset of transition than that in an unperturbed boundary layer without any streaks.

  4. Flow unsteadiness effects on boundary layers

    NASA Technical Reports Server (NTRS)

    Murthy, Sreedhara V.

    1989-01-01

    The development of boundary layers at high subsonic speeds in the presence of either mass flux fluctuations or acoustic disturbances (the two most important parameters in the unsteadiness environment affecting the aerodynamics of a flight vehicle) was investigated. A high quality database for generating detailed information concerning free-stream flow unsteadiness effects on boundary layer growth and transition in high subsonic and transonic speeds is described. The database will be generated with a two-pronged approach: (1) from a detailed review of existing literature on research and wind tunnel calibration database, and (2) from detailed tests in the Boundary Layer Apparatus for Subsonic and Transonic flow Affected by Noise Environment (BLASTANE). Special instrumentation, including hot wire anemometry, the buried wire gage technique, and laser velocimetry were used to obtain skin friction and turbulent shear stress data along the entire boundary layer for various free stream noise levels, turbulence content, and pressure gradients. This database will be useful for improving the correction methodology of applying wind tunnel test data to flight predictions and will be helpful for making improvements in turbulence modeling laws.

  5. Boundary Layer Transition on X-43A

    NASA Technical Reports Server (NTRS)

    Berry, Scott; Daryabeigi, Kamran; Wurster, Kathryn; Bittner, Robert

    2008-01-01

    The successful Mach 7 and 10 flights of the first fully integrated scramjet propulsion systems by the Hyper-X (X-43A) program have provided the means with which to verify the original design methodologies and assumptions. As part of Hyper-X s propulsion-airframe integration, the forebody was designed to include a spanwise array of vortex generators to promote boundary layer transition ahead of the engine. Turbulence at the inlet is thought to provide the most reliable engine design and allows direct scaling of flight results to groundbased data. Pre-flight estimations of boundary layer transition, for both Mach 7 and 10 flight conditions, suggested that forebody boundary layer trips were required to ensure fully turbulent conditions upstream of the inlet. This paper presents the results of an analysis of the thermocouple measurements used to infer the dynamics of the transition process during the trajectories for both flights, on both the lower surface (to assess trip performance) and the upper surface (to assess natural transition). The approach used in the analysis of the thermocouple data is outlined, along with a discussion of the calculated local flow properties that correspond to the transition events as identified in the flight data. The present analysis has confirmed that the boundary layer trips performed as expected for both flights, providing turbulent flow ahead of the inlet during critical portions of the trajectory, while the upper surface was laminar as predicted by the pre-flight analysis.

  6. Orbiter Boundary Layer Transition Prediction Tool Enhancements

    NASA Technical Reports Server (NTRS)

    Berry, Scott A.; King, Rudolph A.; Kegerise, Michael A.; Wood, William A.; McGinley, Catherine B.; Berger, Karen T.; Anderson, Brian P.

    2010-01-01

    Updates to an analytic tool developed for Shuttle support to predict the onset of boundary layer transition resulting from thermal protection system damage or repair are presented. The boundary layer transition tool is part of a suite of tools that analyze the local aerothermodynamic environment to enable informed disposition of damage for making recommendations to fly as is or to repair. Using mission specific trajectory information and details of each d agmea site or repair, the expected time (and thus Mach number) of transition onset is predicted to help define proper environments for use in subsequent thermal and stress analysis of the thermal protection system and structure. The boundary layer transition criteria utilized within the tool were updated based on new local boundary layer properties obtained from high fidelity computational solutions. Also, new ground-based measurements were obtained to allow for a wider parametric variation with both protuberances and cavities and then the resulting correlations were calibrated against updated flight data. The end result is to provide correlations that allow increased confidence with the resulting transition predictions. Recently, a new approach was adopted to remove conservatism in terms of sustained turbulence along the wing leading edge. Finally, some of the newer flight data are also discussed in terms of how these results reflect back on the updated correlations.

  7. Astrophysical Boundary Layers: A New Picture

    NASA Astrophysics Data System (ADS)

    Belyaev, Mikhail; Rafikov, Roman R.; Mclellan Stone, James

    2016-04-01

    Accretion is a ubiquitous process in astrophysics. In cases when the magnetic field is not too strong and a disk is formed, accretion can proceed through the mid plane all the way to the surface of the central compact object. Unless that compact object is a black hole, a boundary layer will be formed where the accretion disk touches its surfaces. The boundary layer is both dynamically and observationally significant as up to half of the accretion energy is dissipated there.Using a combination of analytical theory and computer simulations we show that angular momentum transport and accretion in the boundary layer is mediated by waves. This breaks with the standard astrophysical paradigm of an anomalous turbulent viscosity that drives accretion. However, wave-mediated angular momentum transport is a natural consequence of "sonic instability." The sonic instability, which we describe analytically and observe in our simulations, is a close cousin of the Papaloizou-Pringle instability. However, it is very vigorous in the boundary layer due to the immense radial velocity shear present at the equator.Our results are applicable to accreting neutron stars, white dwarfs, protostars, and protoplanets.

  8. Boundary layer control device for duct silencers

    NASA Technical Reports Server (NTRS)

    Schmitz, Fredric H. (Inventor); Soderman, Paul T. (Inventor)

    1993-01-01

    A boundary layer control device includes a porous cover plate, an acoustic absorber disposed under the porous cover plate, and a porous flow resistive membrane interposed between the porous cover plate and the acoustic absorber. The porous flow resistive membrane has a flow resistance low enough to permit sound to enter the acoustic absorber and high enough to damp unsteady flow oscillations.

  9. Studying the Afternoon Transition of the Planetary Boundary Layer

    NASA Astrophysics Data System (ADS)

    Lothon, Marie; Lenschow, Donald H.

    2010-07-01

    The planetary boundary layer is the part of the atmosphere that interacts directly with the Earth's surface on a time scale of a few hours or less. In daytime, solar heating of the surface can generate buoyant turbulent eddies that efficiently mix the air through a depth of more than a kilometer. This convective boundary layer (CBL) is a conduit for trace gases such as water vapor and carbon dioxide that are emitted or absorbed by the surface (and surface vegetation) to be transported into or out of the layer nearest the surface. The CBL has been extensively observed and relatively successfully modeled. But the early morning transition—when the CBL emerges from the nocturnal boundary layer—and the late afternoon transition—when the CBL decays to an intermittently turbulent “residual layer” overlying a shallower, stably stratified boundary layer—are difficult to observe and model due to turbulence intermittency and anisotropy, horizontal heterogeneity, and rapid time changes. Even the definition of the boundary layer during these transitional periods is fuzzy; there is no consensus on what criteria to use and no simple scaling laws, as there are for the CBL, that apply during these transitions.

  10. INDIVIDUAL TURBULENT CELL INTERACTION: BASIS FOR BOUNDARY LAYER ESTABLISHMENT

    EPA Science Inventory

    Boundary layers are important in determining the forces on objects in flowing fluids, mixing characteristics, and other phenomena. For example, benthic boundary layers are frequently active resuspension layers that determine bottom turbidity and transniissivity. Traditionally, bo...

  11. Accretion disk boundary layers in cataclysmic variables. 1: Optically thick boundary layers

    NASA Technical Reports Server (NTRS)

    Popham, Robert; Narayan, Ramesh

    1995-01-01

    We develop numerical models of accretions disks in cataclysmic variables (CVs), including and emphasizing the boundary layer region where the accretion disk meets the accreting white dwarf. We confine ourselves to solutions where the boundary layer region is vertically optically thick, and find that these solutions share several common features. The angular and radial velocities of the accreting material drop rapidly in a dynamical boundary layer, which has a radial width approximately 1%-3% of the white dwarf radius. The energy dissipated in this region diffuses through the inner part of the disk and is radiated from the disk surface in a thermal boundary layer, which has a radial width comparable to the disk thickness, approximately 5%-15% of the white dwarf radius. We examine the dependence of the boundary layer structure on the mass accretion rate, the white dwarf mass and rotation rate, and the viscosity parameter alpha. We delineate the boundary between optically thick and optically thin boundary layer solutions as a function of these parameters and suggest that by means of a careful comparison with observations it may be possible to estimate alpha in CVs. We derive an expression for the total boundary layer luminosities as a function of the parameters and show that it agrees well with the luminosites of our numerical solutions. Finally, we calcuate simple blackbody continuum spectra of the boundary layer and disk emission for our solutions and compare these to soft X-ray, EUV, and He II emission-line observations of CVs. We show that, through such comparisons, it may be possible to determine the rotation rates of the accreting stars in CVs, and perhaps also the white dwarf masses and the accretion rates. The spectra are quite insensitive to alpha, so the uncertainty in this parameter does not affect such comparisons.

  12. Partially exposed polymer dispersed liquid crystals for boundary layer investigations

    NASA Technical Reports Server (NTRS)

    Parmar, Devendra S.; Singh, Jag J.

    1992-01-01

    A new configuration termed partially exposed polymer dispersed liquid crystal in which the liquid crystal microdroplets dispersed in a rigid polymer matrix are partially entrapped on the free surface of the thin film deposited on a glass substrate is reported. Optical transmission characteristics of the partially exposed polymer dispersed liquid crystal thin film in response to an air flow induced shear stress field reveal its potential as a sensor for gas flow and boundary layer investigations.

  13. Experimental Investigation of Axisymmetric Transitional Shock Wave Boundary Layer Interactions at Mach 5

    NASA Astrophysics Data System (ADS)

    Erdem, E.; Kontis, K.; Johnstone, E.; Murray, N.; Steelant, J.

    Shock Wave Boundary Layer Interactions (SWBLIs) can induce separation which causes loss of a control surface effectiveness, drop of an air intake efficiency and it may be the origin of large scale fluctuations such as air-intake buzz, buffeting or fluctuating side loads in separated propulsive nozzles. The subsequent reattachment of the separated shear layer on a nearby surface gives rise to local heat transfer rates which can be far in excess of those of an attached boundary layer [1].

  14. Bursting frequency prediction in turbulent boundary layers

    SciTech Connect

    LIOU,WILLIAM W.; FANG,YICHUNG

    2000-02-01

    The frequencies of the bursting events associated with the streamwise coherent structures of spatially developing incompressible turbulent boundary layers were predicted using global numerical solution of the Orr-Sommerfeld and the vertical vorticity equations of hydrodynamic stability problems. The structures were modeled as wavelike disturbances associated with the turbulent mean flow. The global method developed here involves the use of second and fourth order accurate finite difference formula for the differential equations as well as the boundary conditions. An automated prediction tool, BURFIT, was developed. The predicted resonance frequencies were found to agree very well with previous results using a local shooting technique and measured data.

  15. Particulate plumes in boundary layers with obstacles

    NASA Astrophysics Data System (ADS)

    Petrosyan, Arakel; Karelsky, Kirill

    2013-04-01

    This presentation is aimed at creating and realization of new physical model of impurity transfer (solid particles and heavy gases) in areas with non-flat and/or nonstationary boundaries. The main idea of suggested method is to use non-viscous equations for solid particles transport modeling in the vicinity of complex boundary. In viscous atmosphere with as small as one likes coefficient of molecular viscosity, the non-slip boundary condition on solid surface must be observed. This postulates the reduction of velocity to zero at a solid surface. It is unconditionally in this case Prandtle hypothesis must be observed: for rather wide range of conditions in the surface neighboring layers energy dissipation of atmosphere flows is comparable by magnitude with manifestation of inertia forces. That is why according to Prandtle hypothesis in atmosphere movement characterizing by a high Reynolds number the boundary layer is forming near a planet surface, within which the required transition from zero velocities at the surface to magnitudes at the external boundary of the layer that are quite close to ones in ideal atmosphere flow. In that layer fast velocity gradients cause viscous effects to be comparable in magnitude with inertia forces influence. For conditions considered essential changes of hydrodynamic fields near solid boundary caused not only by non-slip condition but also by a various relief of surface: mountains, street canyons, individual buildings. Transport of solid particles, their ascent and precipitation also result in dramatic changes of meteorological fields. As dynamic processes of solid particles transfer accompanying the flow past of complex relief surface by wind flows is of our main interest we are to use equations of non-viscous hydrodynamic. We should put up with on the one hand idea of big wind gradients in the boundary layer and on the other hand disregard of molecular viscosity in two-phase atmosphere equations.We deal with describing big field

  16. Hairpin vortices in turbulent boundary layers

    NASA Astrophysics Data System (ADS)

    Eitel-Amor, G.; Flores, O.; Schlatter, P.

    2014-04-01

    The present work addresses the question whether hairpin vortices are a dominant feature of near-wall turbulence and which role they play during transition. First, the parent-offspring mechanism is investigated in temporal simulations of a single hairpin vortex introduced in a mean shear flow corresponding to turbulent channels and boundary layers up to Reτ = 590. Using an eddy viscosity computed from resolved simulations, the effect of a turbulent background is also considered. Tracking the vortical structure downstream, it is found that secondary hairpins are created shortly after initialization. Thereafter, all rotational structures decay, whereas this effect is enforced in the presence of an eddy viscosity. In a second approach, a laminar boundary layer is tripped to transition by insertion of a regular pattern of hairpins by means of defined volumetric forces representing an ejection event. The idea is to create a synthetic turbulent boundary layer dominated by hairpin-like vortices. The flow for Reτ < 250 is analysed with respect to the lifetime of individual hairpin-like vortices. Both the temporal and spatial simulations demonstrate that the regeneration process is rather short-lived and may not sustain once a turbulent background has formed. From the transitional flow simulations, it is conjectured that the forest of hairpins reported in former DNS studies is an outer layer phenomenon not being connected to the onset of near-wall turbulence.

  17. Toward parameterization of the stable boundary layer

    NASA Technical Reports Server (NTRS)

    Wetzel, P. J.

    1982-01-01

    Wangara data is used to examine the depth of the nocturnal boundary layer (NBL) and the height to which surface-linked turbulence extends. It is noted that a linearity of virtual temperature profiles has been found to extend up to a significant portion of the NBL, and then diverge where the wind shear rides over the surface-induced turbulence. A series of Richardson numbers are examined for varying degrees of turbulence and the significant cooling region is observed to have greater depth than the depth of the linear relationship layer. A three-layer parameterization of the thermodynamic structure of the NBL is developed so that a system of five equations must be solved when the wind velocity profile and the temperature at the surface are known. A correlation between the bulk Richardson number and the depth of the linear layer was found to be 0.89.

  18. Boundary Layer Theory. Part 1; Laminar Flows

    NASA Technical Reports Server (NTRS)

    Schlichting, H.

    1949-01-01

    The purpose of this presentation is to give you a survey of a field of aerodynamics which has for a number of years been attracting an ever growing interest. The subject is the theory of flows with friction, and, within that field, particularly the theory of friction layers, or boundary layers. As you know, a great many considerations of aerodynamics are based on the so-called ideal fluid, that is, the frictionless incompressible fluid. By neglect of compressibility and friction the extensive mathematical theory of the ideal fluid (potential theory) has been made possible.

  19. Numerical simulation of boundary-layer transition

    NASA Technical Reports Server (NTRS)

    Spalart, P. R.

    1984-01-01

    The transition to turbulence in boundary layers was investigated by direct numerical solution of the nonlinear, three-dimensional, incompressible Navier-Stokes equations in the half-infinite domain over a flat plate. Periodicity was imposed in the streamwise and spanwise directions. A body force was applied to approximate the effect of a nonparallel mean flow. The numerical method was spectra, based on Fourier series and Jacobi polynomials, and used divergence-free basis functions. Extremely rapid convergence was obtained when solving the linear Orr-Sommerfeld equation. The early nonlinear and three-dimensional stages of transition, in a boundary layer disturbed by a vibrating ribbon, were successfully simulated. Excellent qualitative agreement was observed with either experiments or weakly nonlinear theories. In particular, the breakdown pattern was staggered or nonstaggered depending on the disturbance amplitude.

  20. Turbulent shear stresses in compressible boundary layers

    NASA Technical Reports Server (NTRS)

    Laderman, A. J.; Demetriades, A.

    1979-01-01

    Hot-wire anemometer measurements of turbulent shear stresses in a Mach 3 compressible boundary layer were performed in order to investigate the effects of heat transfer on turbulence. Measurements were obtained by an x-probe in a flat plate, zero pressure gradient, two dimensional boundary layer in a wind tunnel with wall to freestream temperature ratios of 0.94 and 0.71. The measured shear stress distributions are found to be in good agreement with previous results, supporting the contention that the shear stress distribution is essentially independent of Mach number and heat transfer for Mach numbers from incompressible to hypersonic and wall to freestream temperature ratios of 0.4 to 1.0. It is also found that corrections for frequency response limitations of the electronic equipment are necessary to determine the correct shear stress distribution, particularly at the walls.

  1. Boundary layer transition detection by luminescence imaging

    NASA Technical Reports Server (NTRS)

    Mclachlan, B. G.; Bell, J. H.; Gallery, J.; Gouterman, M.; Callis, J.

    1993-01-01

    In recent experiments we have demonstrated the feasibility of a new approach to boundary layer transition detection. This new approach employs the temperature dependence of certain photoluminescent materials in the form of a surface coating or 'paint' to detect the change in heat transfer characteristics that accompany boundary layer transition. The feasibility experiments were conducted for low subsonic to transonic Mach numbers on two-dimensional airfoil and flat plate configurations. Paint derived transition locations were determined and compared to those obtained from Preston pressure probe measurements. Artificial heating of the models was used to obtain transition temperature signatures suitable for the instrumentation available to us. Initial estimates show, however, that passive kinetic heating at high Mach numbers is a promising alternative.

  2. Burst vortex/boundary layer interaction

    NASA Technical Reports Server (NTRS)

    Bradshaw, P.; Naaseri, M.

    1988-01-01

    Several configurations of delta wing vortex generator and boundary layer test plate were tested, and two final ones selected. Sample measurements and flow visualizations in the candidate configurations, together with more detailed measurements in one of the two final arrangements, which were selected so that a pure vortex bursts repeatably and then interacts, in as simple fashion as possible, with a simple turbulent boundary layer, are included. It is concluded that different intensities of bursting or breakdown, like different strengths of shock wave or hydraulic jump, can be produced by minor changes of configuration. The weaker breakdowns do not produce flow reversal. The initial measurements were done with a fairly weak, but repeatable, breakdown. Basic measurements on the second final arrangement, with a stronger breakdown, are in progress.

  3. BOREAS AFM-6 Boundary Layer Height Data

    NASA Technical Reports Server (NTRS)

    Wilczak, James; Hall, Forrest G. (Editor); Newcomer, Jeffrey A. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Airborne Fluxes and Meteorology (AFM)-6 team from National Oceanic and Atmospheric Adminsitration/Environment Technology Laboratory (NOAA/ETL) operated a 915-MHz wind/Radio Acoustic Sounding System (RASS) profiler system in the Southern Study Area (SSA) near the Old Jack Pine (OJP) site. This data set provides boundary layer height information over the site. The data were collected from 21 May 1994 to 20 Sep 1994 and are stored in tabular ASCII files. The boundary layer height data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  4. Shock-boundary-layer interaction in flight

    NASA Technical Reports Server (NTRS)

    Bertelrud, Arild

    1989-01-01

    A brief survey is given on the study of transonic shock/boundary layer effects in flight. Then the possibility of alleviating the adverse shock effects through passive shock control is discussed. A Swedish flight experiment on a swept wing attack aircraft is used to demonstrate how it is possible to reduce the extent of separated flow and increase the drag-rise Mach number significantly using a moderate amount of perforation of the surface.

  5. The boundary layer on compressor cascade blades

    NASA Technical Reports Server (NTRS)

    Deutsch, S.

    1981-01-01

    Some redesign of the cascade facility was necessary in order to incoporate the requirements of the LDA system into the design. Of particular importance was the intended use of a combination of suction upstream of the blade pack with diverging pack walls, as opposed to blade pack suction alone, for spanwise dimensionality control. An ARL blade was used to redo some tests using this arrangement. Preliminary testing and boundary layer measurements began on the double circular arc blades.

  6. Clidar Mountain Boundary Layer Case Studies

    NASA Astrophysics Data System (ADS)

    Sharma, Nimmi C. P.; Barnes, John E.

    2016-06-01

    A CCD Camera Lidar system called the CLidar system images a vertically pointing laser from the side with a spatially separated CCD camera and wide angle optics. The system has been used to investigate case studies of aerosols in mountain boundary layers in in the times following sunset. The aerosols detected by the system demonstrate the wide variation of near ground aerosol structure and capabilities of the CLidar system.

  7. Boundary layer dynamics and its parameterization over the central Himalayas: A step towards improved weather and air quality forecasting over complex terrain

    NASA Astrophysics Data System (ADS)

    Solanki, R.

    2015-12-01

    This study aims towards understanding the boundary layer (BL) dynamics and its parameterization, with observations carried out at ARIES, Manora Peak (29.4⁰ N, 79.5⁰ E, 1960 amsl) in the central Himalayas. The site is located over a complex mountainous terrain and the measurements made with Radar Wind Profiler (RWP), ultrasonic anemometer at two levels and a micro pulse LiDAR are being incorporated in this study. Measurement of local BL has been conducted using 1290 MHz radar wind profiler (RWP) as a part of major field campaign, GVAX. The RWP provides 24 hour diurnal cycle of the BL dynamical state over the site. The general criterion of peak in SNR profile being considered as mixed layer (ML) height was found to be inadequate. Therefore, a new approach is implemented according to which the region of SNR above 6 dB was taken as ML. The maxima in monthly-mean ML height is observed to vary from 557 ± 200 m in November (late autumn) to 912 ± 318 m during March (early spring). As a continuation of this study we have attempted to understand the micrometeorology of the site with fast-response measurements (25 Hz) of temperature and wind at two levels above ground using ultrasonic anemometer. These observations are used to derive diurnal variations of surface layer micro-meteorological parameters during fair-weather conditions. Turbulence and gust characteristics of wind over the site have also been parameterized to provide input for dispersion modeling and understand aerosol distribution over the Himalayas. These observations are consolidated with observations of aerosol vertical distribution made with LIDAR for 2 years, identifying the influences on aerosol loadings from IGP via BL evolution and convective mixing. A strong seasonality in aerosol vertical profile within lower 4 km is observed. Finally, these measurements are used to evaluate high resolution (5 km x 5 km) simulations from the Weather Research and Forecasting (WRF) model. Model simulated and measured

  8. Pressure gradient influence in turbulent boundary layers

    NASA Astrophysics Data System (ADS)

    Reuther, Nico; Kaehler, Christian J.

    2015-11-01

    Understanding wall-bounded turbulence is still an ongoing process. Although remarkable progress has been made in the last decades, many challenges still remain. Mean flow statistics are well understood in case of zero pressure gradient flows. However, almost all turbulent boundary layers in technical applications, such as aircrafts, are subjected to a streamwise pressure gradient. When subjecting turbulent boundary layers to adverse pressure gradients, significant changes in the statistical behavior of the near-wall flow have been observed in experimental studies conducted however the details dynamics and characteristics of these flows has not been fully resolved. The sensitivity to Reynolds number and the dependency on several parameters, including the dependence on the pressure gradient parameter, is still under debate and very little information exists about statistically averaged quantities such as the mean velocity profile or Reynolds stresses. In order to improve the understanding of wall-bounded turbulence, this work experimentally investigates turbulent boundary layer subjected to favorable and adverse pressure gradients by means of Particle Image Velocimetry over a wide range of Reynolds numbers, 4200

  9. Shock-wave boundary layer interactions

    NASA Technical Reports Server (NTRS)

    Delery, J.; Marvin, J. G.; Reshotko, E.

    1986-01-01

    Presented is a comprehensive, up-to-date review of the shock-wave boundary-layer interaction problem. A detailed physical description of the phenomena for transonic and supersonic speed regimes is given based on experimental observations, correlations, and theoretical concepts. Approaches for solving the problem are then reviewed in depth. Specifically, these include: global methods developed to predict sudden changes in boundary-layer properties; integral or finite-difference methods developed to predict the continuous evolution of a boundary-layer encountering a pressure field induced by a shock wave; coupling methods to predict entire flow fields; analytical methods such as multi-deck techniques; and finite-difference methods for solving the time-dependent Reynolds-averaged Navier-Stokes equations used to predict the development of entire flow fields. Examples are presented to illustrate the status of the various methods and some discussion is devoted to delineating their advantages and shortcomings. Reference citations for the wide variety of subject material are provided for readers interested in further study.

  10. Coupled wake boundary layer model of windfarms

    NASA Astrophysics Data System (ADS)

    Stevens, Richard; Gayme, Dennice; Meneveau, Charles

    2014-11-01

    We present a coupled wake boundary layer (CWBL) model that describes the distribution of the power output in a windfarm. The model couples the traditional, industry-standard wake expansion/superposition approach with a top-down model for the overall windfarm boundary layer structure. Wake models capture the effect of turbine positioning, while the top-down approach represents the interaction between the windturbine wakes and the atmospheric boundary layer. Each portion of the CWBL model requires specification of a parameter that is unknown a-priori. The wake model requires the wake expansion rate, whereas the top-down model requires the effective spanwise turbine spacing within which the model's momentum balance is relevant. The wake expansion rate is obtained by matching the mean velocity at the turbine from both approaches, while the effective spanwise turbine spacing is determined from the wake model. Coupling of the constitutive components of the CWBL model is achieved by iterating these parameters until convergence is reached. We show that the CWBL model predictions compare more favorably with large eddy simulation results than those made with either the wake or top-down model in isolation and that the model can be applied successfully to the Horns Rev and Nysted windfarms. The `Fellowships for Young Energy Scientists' (YES!) of the Foundation for Fundamental Research on Matter supported by NWO, and NSF Grant #1243482.

  11. Unsteadiness of Shock Wave / Boundary Layer Interactions

    NASA Astrophysics Data System (ADS)

    Clemens, Noel

    2009-11-01

    Shock wave / boundary layer interactions are an important feature of high-speed flows that occur in a wide range of practical configurations including aircraft control surfaces, inlets, missile base flows, nozzles, and rotating machinery. These interactions are often associated with severe boundary layer separation, which is highly unsteady, and exhibits high fluctuating pressure and heat loads. The unsteady motions are characterized by a wide range of frequencies, including low-frequency motions that are about two orders of magnitude lower than those that characterize the upstream boundary layer. It is these low-frequency motions that are of most interest because they have been the most difficult to explain and model. Despite significant work over the past few decades, the source of the low-frequency motions remains a topic of intense debate. Owing to a flurry of activity over the past decade on this single topic we are close to developing a comprehensive understanding of the low-frequency unsteadiness. For example, recent work in our laboratory and others suggests that the driving mechanism is related to low-frequency fluctuations in the upstream boundary layer. However, several recent studies suggest the dominant mechanism is an intrinsic instability of the separated flow. Here we attempt to reconcile these views by arguing that the low-frequency unsteadiness is driven by both upstream and downstream processes, but the relative importance of each mechanism depends on the strength (or length-scale) of separation. In cases where the separation bubble is relatively small, then the flow is intermittently separated, and there exists a strong correlation between upstream velocity fluctuations and the separation bubble dynamics. It appears that superstructures in the upstream boundary layer can play an important role in driving the unsteadiness for this case. It is not clear, however, if the upstream fluctuations directly move the separation point or indirectly couple

  12. The role of nonlinear critical layers in boundary layer transition

    NASA Technical Reports Server (NTRS)

    Goldstein, M.E.

    1995-01-01

    Asymptotic methods are used to describe the nonlinear self-interaction between pairs of oblique instability modes that eventually develops when initially linear spatially growing instability waves evolve downstream in nominally two-dimensional laminar boundary layers. The first nonlinear reaction takes place locally within a so-called 'critical layer', with the flow outside this layer consisting of a locally parallel mean flow plus a pair of oblique instability waves - which may or may not be accompanied by an associated plane wave. The amplitudes of these waves, which are completely determined by nonlinear effects within the critical layer, satisfy either a single integro-differential equation or a pair of integro-differential equations with quadratic to quartic-type nonlinearities. The physical implications of these equations are discussed.

  13. Scaling the heterogeneously heated convective boundary layer

    NASA Astrophysics Data System (ADS)

    Van Heerwaarden, C.; Mellado, J.; De Lozar, A.

    2013-12-01

    We have studied the heterogeneously heated convective boundary layer (CBL) by means of large-eddy simulations (LES) and direct numerical simulations (DNS). What makes our study different from previous studies on this subject are our very long simulations in which the system travels through multiple states and that from there we have derived scaling laws. In our setup, a stratified atmosphere is heated from below by square patches with a high surface buoyancy flux, surrounded by regions with no or little flux. By letting a boundary layer grow in time we let the system evolve from the so-called meso-scale to the micro-scale regime. In the former the heterogeneity is large and strong circulations can develop, while in the latter the heterogeneity is small and does no longer influence the boundary layer structure. Within each simulation we can now observe the formation of a peak in kinetic energy, which represents the 'optimal' heterogeneity size in the meso-scale, and the subsequent decay of the peak and the development towards the transition to the micro-scale. We have created a non-dimensional parameter space that describes all properties of this system. By studying the previously described evolution for different combinations of parameters, we have derived three important conclusions. First, there exists a horizontal length scale of the heterogeneity (L) that is a function of the boundary layer height (h) and the Richardson (Ri) number of the inversion at the top of the boundary layer. This relationship has the form L = h Ri^(3/8). Second, this horizontal length scale L allows for expressing the time evolution, and thus the state of the system, as a ratio of this length scale and the distance between two patches Xp. This ratio thus describes to which extent the circulation fills up the space that exists between two patch centers. The timings of the transition from the meso- to the micro-scale collapse under this scaling for all simulations sharing the same flux

  14. Fifty Years of Boundary-Layer Theory and Experiment

    NASA Technical Reports Server (NTRS)

    Dryden, Hugh L.

    1955-01-01

    The year 1954 marked the 50th anniversary of the Prandtl boundary-layer theory from which we may date the beginning of man's understanding of the dynamics of real fluids. A backward look at this aspect of the history of the last 50 years may be instructive. This paper (1) attempts to compress the events of those 50 years into a few thousand words, to tell in this brief space the interesting story of the development of a new concept, its slow acceptance and growth, its spread from group to group within its country of origin, and its diffusion to other countries of the world. The original brief paper of Prandtl (2) was presented at the Third International Mathematical Congress at Heidelberg in 1904 and published in the following year. It was an attempt to explain the d'Alembert paradox, namely, that the neglect of the small friction of air in the theory resulted in the prediction of zero resistance to motion. Prandtl set himself the task of computing the motion of a fluid of small friction, so small that its effect could be neglected everywhere except where large velocity differences were present or a cumulative effect of friction occurred This led to the concept of boundary layer, or transition layer, near the wall of a body immersed in a fluid stream in which the velocity rises from zero to the free-stream value. It is interesting that Prandtl used the term Grenzsehicht (boundary layer) only once and the term Ubergangsschicht (transition layer) seven times in the brief article. Later writers also used Reibungsschicht (friction layer), but most writers today use Grenzschicht (boundary layer).

  15. Autumnal Mixed-Phase Cloudy Boundary Layers in the Arctic.

    NASA Astrophysics Data System (ADS)

    Pinto, James O.

    1998-06-01

    Two mixed-phase cloudy boundary layer events observed over the Arctic ice pack in autumn are extensively analyzed. The local dynamic and thermodynamic structure of the boundary layers is determined from aircraft measurements including analysis of turbulence, longwave radiative transfer, and cloud microphysics. The large-scale forcing is determined from the National Centers for Environmental Prediction reanalysis fields while mesoscale forcing is estimated from 40-km aircraft box patterns. The two cases differed somewhat in their local static stability, surface characteristics, and large-scale forcing. One case was characterized by a stably stratified cloudy boundary layer over a heterogeneous surface containing numerous open leads. The other case occurred over a fairly homogenous surface of multiyear ice and consisted of a surface-based stable layer surmounted by a low-level jet and a cloud-topped mixed layer. An important large-scale factor in the development of low clouds appears to have been water vapor advection. Low clouds formed irrespective of the sign of the large-scale vertical velocity. Observed flux profiles indicate that both cloudy boundary layers are cooled through turbulent eddies except at cloud top where entrainment of warm moist air aloft occurs. Maximum turbulent kinetic energy occurs near cloud top where turbulent motions are driven by strong radiative cooling (>70 K day1) and in the vicinity of the low-level jet where turbulence is shear induced. The presence of both liquid and ice in the cloud layers appears to be a nearly steady-state feature at temperatures between 13° and 20°C. Results of a simple condensed water budget indicate that these colloidally unstable mixed-phase clouds may be maintained through strong cloud-top radiative cooling. The isobaric cooling rate required to maintain the presence of both liquid and ice in a stratiform cloud is quite sensitive to variations in the highly uncertain concentration of ice-forming nuclei.

  16. Acoustic explorations of the upper ocean boundary layer

    NASA Astrophysics Data System (ADS)

    Vagle, Svein

    2005-04-01

    The upper ocean boundary layer is an important but difficult to probe part of the ocean. A better understanding of small scale processes at the air-sea interface, including the vertical transfer of gases, heat, mass and momentum, are crucial to improving our understanding of the coupling between atmosphere and ocean. Also, this part of the ocean contains a significant part of the total biomass at all trophic levels and is therefore of great interest to researchers in a range of different fields. Innovative measurement plays a critical role in developing our understanding of the processes involved in the boundary layer, and the availability of low-cost, compact, digital signal processors and sonar technology in self-contained and cabled configurations has led to a number of exciting developments. This talk summarizes some recent explorations of this dynamic boundary layer using both active and passive acoustics. The resonant behavior of upper ocean bubbles combined with single and multi-frequency broad band active and passive devices are now giving us invaluable information on air-sea gas transfer, estimation of biological production, marine mammal behavior, wind speed and precipitation, surface and internal waves, turbulence, and acoustic communication in the surf zone.

  17. Turbulence measurements in high Reynolds number boundary layers

    NASA Astrophysics Data System (ADS)

    Vallikivi, Margit; Smits, Alexander

    2013-11-01

    Measurements are conducted in zero pressure gradient turbulent boundary layers for Reynolds numbers from Reθ = 9,000 to 225,000. The experiments were performed in the High Reynolds number Test Facility (HRTF) at Princeton University, which uses compressed air as the working fluid. Nano-Scale Thermal Anemometry Probes (NSTAPs) are used to acquire data with very high spatial and temporal precision. These new data are used to study the scaling behavior of the streamwise velocity fluctuations in the boundary layer and make comparisons with the scaling of other wall-bounded turbulent flows. Supported under ONR Grant N00014-09-1-0263 (program manager Ron Joslin) and NSF Grant CBET-1064257 (program manager Henning Winter).

  18. Acoustic Radiation from a Mach 14 Turbulent Boundary layer

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Duan, Lian; Choudhari, Meelan

    2015-11-01

    Direct numerical simulations (DNS) are used to examine the pressure fluctuations generated by a high-speed turbulent boundary layer with a nominal freestream Mach number of 14 and wall temperature of 0.18 times the recovery temperature. The emphasis is on characterizing the acoustic radiation from the turbulent boundary layer and comparing it with previous simulations at Mach 2.5 and Mach 6 to assess the Mach-number dependence of the freestream pressure fluctuations. In particular, the numerical database is used to provide insights into the pressure disturbance spectrum and amplitude scaling with respect to the freestream Mach number as well as to understand the acoustic source mechanisms at very high Mach numbers. Such information is important for characterizing the freestream disturbance environment in conventional (i.e., noisy) hypersonic wind tunnels. Spectral characteristics of pressure fluctuations at the surface are also investigated. Sponsored by Air Force Office of Scientific Research.

  19. Finite-element numerical modeling of atmospheric turbulent boundary layer

    NASA Technical Reports Server (NTRS)

    Lee, H. N.; Kao, S. K.

    1979-01-01

    A dynamic turbulent boundary-layer model in the neutral atmosphere is constructed, using a dynamic turbulent equation of the eddy viscosity coefficient for momentum derived from the relationship among the turbulent dissipation rate, the turbulent kinetic energy and the eddy viscosity coefficient, with aid of the turbulent second-order closure scheme. A finite-element technique was used for the numerical integration. In preliminary results, the behavior of the neutral planetary boundary layer agrees well with the available data and with the existing elaborate turbulent models, using a finite-difference scheme. The proposed dynamic formulation of the eddy viscosity coefficient for momentum is particularly attractive and can provide a viable alternative approach to study atmospheric turbulence, diffusion and air pollution.

  20. Comparison of Methods for Determining Boundary Layer Edge Conditions for Transition Correlations

    NASA Technical Reports Server (NTRS)

    Liechty, Derek S.; Berry, Scott A.; Hollis, Brian R.; Horvath, Thomas J.

    2003-01-01

    Data previously obtained for the X-33 in the NASA Langley Research Center 20-Inch Mach 6 Air Tunnel have been reanalyzed to compare methods for determining boundary layer edge conditions for use in transition correlations. The experimental results were previously obtained utilizing the phosphor thermography technique to monitor the status of the boundary layer downstream of discrete roughness elements via global heat transfer images of the X-33 windward surface. A boundary layer transition correlation was previously developed for this data set using boundary layer edge conditions calculated using an inviscid/integral boundary layer approach. An algorithm was written in the present study to extract boundary layer edge quantities from higher fidelity viscous computational fluid dynamic solutions to develop transition correlations that account for viscous effects on vehicles of arbitrary complexity. The boundary layer transition correlation developed for the X-33 from the viscous solutions are compared to the previous boundary layer transition correlations. It is shown that the boundary layer edge conditions calculated using an inviscid/integral boundary layer approach are significantly different than those extracted from viscous computational fluid dynamic solutions. The present results demonstrate the differences obtained in correlating transition data using different computational methods.

  1. Planetary Boundary Layer Dynamics over Reno, Nevada in Summer

    NASA Astrophysics Data System (ADS)

    Liming, A.; Sumlin, B.; Loria Salazar, S. M.; Holmes, H.; Arnott, W. P.

    2014-12-01

    Quantifying the height of the planetary boundary layer (PBL) is important to understand the transport behavior, mixing, and surface concentrations of air pollutants. In Reno, NV, located in complex, mountainous terrain with high desert climate, the daytime boundary layer can rise to an estimated 3km or more on a summer day due to surface heating and convection. The nocturnal boundary layer, conversely, tends to be much lower and highly stable due to radiative cooling from the surface at night and downslope flow of cool air from nearby mountains. With limited availability of radiosonde data, current estimates of the PBL height at any given time or location are potentially over or underestimated. To better quantify the height and characterize the PBL physics, we developed portable, lightweight sensors that measure CO2 concentrations, temperature, pressure, and humidity every 5 seconds. Four of these sensors are used on a tethered balloon system to monitor CO2 concentrations from the surface up to 300m. We will combine this data with Radio Acoustic Sounding System (RASS) data that measures vertical profiles of wind speed, temperature, and humidity from 40m to 400m. This experiment will characterize the diurnal evolution of CO2 concentrations at multiple heights in the PBL, provide insight into PBL physics during stability transition periods at sunrise and sunset, and estimate the nighttime PBL depth during August in Reno. Further, we expect to gain a better understanding of the impact of mixing volume changes (i.e., PBL height) on air quality and pollution concentrations in Reno. The custom portable sensor design will also be presented. It is expected that these instruments can be used for indoor or outdoor air quality studies, where lightness, small size, and battery operation can be of benefit.

  2. Boundary-Layer-Ingesting Inlet Flow Control

    NASA Technical Reports Server (NTRS)

    Owens, Lewis R.; Allan, Brian G.; Gorton, Susan A.

    2006-01-01

    This paper gives an overview of a research study conducted in support of the small-scale demonstration of an active flow control system for a boundary-layer-ingesting (BLI) inlet. The effectiveness of active flow control in reducing engine inlet circumferential distortion was assessed using a 2.5% scale model of a 35% boundary-layer-ingesting flush-mounted, offset, diffusing inlet. This experiment was conducted in the NASA Langley 0.3-meter Transonic Cryogenic Tunnel at flight Mach numbers with a model inlet specifically designed for this type of testing. High mass flow actuators controlled the flow through distributed control jets providing the active flow control. A vortex generator point design configuration was also tested for comparison purposes and to provide a means to examine a hybrid vortex generator and control jets configuration. Measurements were made of the onset boundary layer, the duct surface static pressures, and the mass flow through the duct and the actuators. The distortion and pressure recovery were determined by 40 total pressure measurements on 8 rake arms each separated by 45 degrees and were located at the aerodynamic interface plane. The test matrix was limited to a maximum free-stream Mach number of 0.85 with scaled mass flows through the inlet for that condition. The data show that the flow control jets alone can reduce circumferential distortion (DPCP(sub avg)) from 0.055 to about 0.015 using about 2.5% of inlet mass flow. The vortex generators also reduced the circumferential distortion from 0.055 to 0.010 near the inlet mass flow design point. Lower inlet mass flow settings with the vortex generator configuration produced higher distortion levels that were reduced to acceptable levels using a hybrid vortex generator/control jets configuration that required less than 1% of the inlet mass flow.

  3. Boundary-Layer-Ingesting Inlet Flow Control

    NASA Technical Reports Server (NTRS)

    Owens, Lewis R.; Allan, Brian G.; Gorton, Susan A.

    2006-01-01

    This paper gives an overview of a research study conducted in support of the small-scale demonstration of an active flow control system for a boundary-layer-ingesting (BLI) inlet. The effectiveness of active flow control in reducing engine inlet circumferential distortion was assessed using a 2.5% scale model of a 35% boundary-layer-ingesting flush-mounted, offset, diffusing inlet. This experiment was conducted in the NASA Langley 0.3-meter Transonic Cryogenic Tunnel at flight Mach numbers with a model inlet specifically designed for this type of testing. High mass flow actuators controlled the flow through distributed control jets providing the active flow control. A vortex generator point design configuration was also tested for comparison purposes and to provide a means to examine a hybrid vortex generator and control jets configuration. Measurements were made of the onset boundary layer, the duct surface static pressures, and the mass flow through the duct and the actuators. The distortion and pressure recovery were determined by 40 total pressure measurements on 8 rake arms each separated by 45 degrees and were located at the aerodynamic interface plane. The test matrix was limited to a maximum free-stream Mach number of 0.85 with scaled mass flows through the inlet for that condition. The data show that the flow control jets alone can reduce circumferential distortion (DPCPavg) from 0.055 to about 0.015 using about 2.5% of inlet mass flow. The vortex generators also reduced the circumferential distortion from 0.055 to 0.010 near the inlet mass flow design point. Lower inlet mass flow settings with the vortex generator configuration produced higher distortion levels that were reduced to acceptable levels using a hybrid vortex generator/control jets configuration that required less than 1% of the inlet mass flow.

  4. Boundary-layer Transition at Supersonic Speeds

    NASA Technical Reports Server (NTRS)

    Low, George M

    1956-01-01

    Recent results of the effects of Mach number, stream turbulence, leading-edge geometry, leading-edge sweep, surface temperature, surface finish, pressure gradient, and angle of attack on boundary-layer transition are summarized. Factors that delay transition are nose blunting, surface cooling, and favorable pressure gradient. Leading-edge sweep and excessive surface roughness tend to promote early transition. The effects of leading-edge blunting on two-dimensional surfaces and surface cooling can be predicted adequately by existing theories, at least in the moderate Mach number range.

  5. Coherent motions in the turbulent boundary layer

    NASA Technical Reports Server (NTRS)

    Robinson, Stephen K.

    1991-01-01

    The role of coherent structures in the production and dissipation of turbulence in a boundary layer is characterized, summarizing the results of recent investigations. Coherent motion is defined as a three-dimensional region of flow where at least one fundamental variable exhibits significant correlation with itself or with another variable over a space or time range significantly larger than the smallest local scales of the flow. Sections are then devoted to flow-visualization experiments, statistical analyses, numerical simulation techniques, the history of coherent-structure studies, vortices and vortical structures, conceptual models, and predictive models. Diagrams and graphs are provided.

  6. The minisodar and planetary boundary layer studies

    SciTech Connect

    Coulter, R.L.

    1996-06-01

    The minisodar, in addition to being smaller than conventional sodar, operates at higher frequencies, obtains usable signal returns closer to the surface, and can use smaller range gates. Because the max range is generally limited to the lower 200 m above the surface, the minisodar is not able to interrogate the entire daytime atmospheric Planetary Boundary Layer (PBL); however it can be a very useful tool for understanding the PBL. In concert with other instruments, the minisodar can add significant new insights to our understanding of the PBL. This paper gives examples of past and potential uses of minisodars in such situations.

  7. Sound radiation due to boundary layer transition

    NASA Technical Reports Server (NTRS)

    Wang, Meng

    1993-01-01

    This report describes progress made to date towards calculations of noise produced by the laminar-turbulence transition process in a low Mach number boundary layer formed on a rigid wall. The primary objectives of the study are to elucidate the physical mechanisms by which acoustic waves are generated, to clarify the roles of the fluctuating Reynolds stress and the viscous stress in the presence of a solid surface, and to determine the relative efficiency as a noise source of the various transition stages. In particular, we will examine the acoustic characteristics and directivity associated with three-dimensional instability waves, the detached high-shear layer, and turbulent spots following a laminar breakdown. Additionally, attention will be paid to the unsteady surface pressures during the transition, which provide a source of flow noise as well as a forcing function for wall vibration in both aeronautical and marine applications.

  8. Large Eddy Simulation of Stable Boundary Layer Turbulent Processes in Complex Terrain

    SciTech Connect

    Eric D. Skyllingstad

    2005-01-26

    Research was performed using a turbulence boundary layer model to study the behavior of cold, dense flows in regions of complex terrain. Results show that flows develop a balance between turbulent entrainment of warm ambient air and dense, cold air created by surface cooling. Flow depth and strength is a function of downslope distance, slope angle and angle changes, and the ambient air temperature.

  9. Boundary Layer Transition Flight Experiment Overview

    NASA Technical Reports Server (NTRS)

    Berger, Karen T.; Anderson, Brian P.; Campbell, Charles H.; Garske, Michael T.; Saucedo, Luis A.; Kinder, Gerald R.; Micklos, Ann M.

    2011-01-01

    In support of the Boundary Layer Transition Flight Experiment (BLT FE) Project, a manufactured protuberance tile was installed on the port wing of Space Shuttle Orbiter Discovery for STS-119, STS-128, STS-131 and STS-133 as well as Space Shuttle Endeavour for STS-134. Additional instrumentation was installed in order to obtain more spatially resolved measurements downstream of the protuberance. This paper provides an overview of the BLT FE Project with emphasis on the STS-131 and STS-133 results. A high-level overview of the in-situ flight data is presented, along with a summary of the comparisons between pre- and post-flight analysis predictions and flight data. Comparisons show that empirically correlated predictions for boundary layer transition onset time closely match the flight data, while predicted surface temperatures were significantly higher than observed flight temperatures. A thermocouple anomaly observed on a number of the missions is discussed as are a number of the mitigation actions that will be taken on the final flight, STS-134, including potential alterations of the flight trajectory and changes to the flight instrumentation.

  10. Convective boundary layer and modeling of dispersion

    NASA Astrophysics Data System (ADS)

    Ahmed, Nizam Uddin

    Looping, bifurcation, and meandering of a plume are generally observed in a convective field. The blobby or puffy concentration patterns associated with these plumes are marked deviations from what is expected from either conventional K-theory or Gaussian distribution formulae. A numerical model was developed for material dispersion in a convective boundary layer from both elevated and ground sources. Mechanistic formulation, rather than parameterization, or statistical behavior of planetary boundary layer (PBL) phenomena, was used as a basis. The dispersion mechanism is considered to be due to mixing between the updraft and the downdraft. This model uses two universal constants, (turbulent entrainment constant, a, and decay constant A) and a mixing scheme directly supported by observations. Researchers examined the dispersion pattern from the elevated and ground sources. For elevated sources, the maximum concentration descends first to the ground level at some distance downwind, and then rises, depending on the inversion height, the mean wind and height at which material is released. The updrafts have a higher velocity than the downdrafts and consequently the downdrafts occupy a larger horizontal area. In some cases the updrafts and downdrafts are comparable and materials are caught equally in the updrafts and downdrafts. The concentration of materials is split into two parts, one moving downward and the other upward. It is shown using the same mechanistic principles, that different convective situations cause different concentration patterns (for example, looping, bifurcating of a plume, and ascending of center line).

  11. Halogen chemistry in the trosopheric boundary layer

    NASA Astrophysics Data System (ADS)

    Plane, John M. C.; Mahajan, Anoop; Oetjen, Hilke

    Iodine and bromine chemistry can affect the lower troposphere in several important ways: (1), change the oxidizing capacity by destroying ozone and affecting the hydroxyl radical concentration; (2), react efficiently with dimethyl sulphide (in the marine boundary layer) and mercury (in the polar regions); and (3), form ultra-fine particles (iodine oxides are highly condensable), which may contribute to cloud condensation nuclei and hence affect climate. This paper will report measurements of IO, BrO, OIO and I2 , made by the technique of differential optical absorption spectroscopy (DOAS), in several contrasting environments: equatorial clean mid-ocean (Cape Verde); mid-latitude clean coastal (Mace Head, Ireland); polluted coastal (Roscoff, France); and the polar boundary layer (Halley Bay, Antarctica and Hudson Bay, Canada). Both IO and BrO are observed in all these locations at concentrations (> 1 pptv), and so have a major impact on (1) and (2) above. The concentrations of IO in coastal Antarctica, and coastlines rich in certain species of macro-algae, are large enough (> 10 pptv) to promote ultra-fine particle formation. Recently, the first satellite measurements of IO, using the SCIAMACHY instrument on ENVISAT, have been reported by two groups; their results will be compared with the ground-based measurements.

  12. Soot profiles in boundary-layer flames

    SciTech Connect

    Beier, R.A.; Pagni, P.J.

    1981-12-01

    Carbon particulate volume fractions and approximate particle size distributions are measured in a free laminar combusting boundary layer for liquid hydrocarbon fuels (n-heptane, iso-octane, cyclohexane, cyclohexene, toluene) and polymethylmethacrylate (PMMA). A multiwavelength laser transmission technique determines a most probable radius and the total particle concentration, which are two parameters in an assumed form for the size distribution. In the combusting boundary layer, a sooting region exists between the pyrolyzing fuel surface and the flame zone. The liquid fuel soot volume fractions, f/sub v/, range from f/sub v/ approx. 10/sup -7/ for n-heptane, a paraffin, to f/sub v approx. 10/sup -5/ for toluene, an aromatic. The PMMA volume fractions, f/sub v/ approx. 5 X 10/sup -7/, are approximately the same as the values previously reported for pool fires. The soot volume fractions increase with height; convection of carbon particles downstream widens the soot region with height. For all fuels tested, the most probable radius is between 20 nm and 50 nm, and it changes only slightly with height and distance from the fuel surface.

  13. Sound Radiation from a Turbulent Boundary Layer

    NASA Technical Reports Server (NTRS)

    Laufer, J.

    1961-01-01

    If the restriction of incompressibility in the turbulence problem is relaxed, the phenomenon of energy radiation in the form of sound from the turbulent zone arises. In order to calculate this radiated energy, it is shown that new statistical quantities, such as time-space correlation tensors, have to be known within the turbulent zone in addition to the conventional quantities. For the particular case of the turbulent boundary layer, indications are that the intensity of radiation becomes significant only in supersonic flows. Under these conditions, the recent work of Phillips is examined together with some experimental findings of the author. It is shown that the qualitative features of the radiation field (intensity, directionality) as predicted by the theory are consistent with the measurements; however, even for the highest Mach number flow, some of the assumptions of the asymptotic theory are not yet satisfied in the experiments. Finally, the question of turbulence damping due to radiation is discussed, with the result that in the Mach number range covered by the experiments, the energy lost from the boundary layer due to radiation is a small percentage of the work done by the wall shearing stresses.

  14. Performance and boundary-layer evaluation of a sonic inlet

    NASA Technical Reports Server (NTRS)

    Schmidt, J. F.; Ruggeri, R. S.

    1976-01-01

    Tests were conducted to determine the boundary layer characteristics and aerodynamic performance of a radial vane sonic inlet with a length/diameter ratio of 1 for several vane configurations. The sonic inlet was designed with a slight wavy wall type of diffuser geometry, which permits operation at high inlet Mach numbers (sufficiently high for good noise suppression) without boundary layer flow separation and with good total pressure recovery. A new method for evaluating the turbulent boundary layer was developed to separate the boundary layer from the inviscid core flow, which is characterized by a total pressure variation from hub to tip, and to determine the experimental boundary layer parameters.

  15. Open-path TDL-Spectrometry for a Tomographic Reconstruction of 2D H2O-Concentration Fields in the Soil-Air-Boundary-Layer of Permafrost

    NASA Astrophysics Data System (ADS)

    Seidel, Anne; Wagner, Steven; Dreizler, Andreas; Ebert, Volker

    2013-04-01

    The melting of permafrost soils in arctic regions is one of the effects of climate change. It is recognized that climatically relevant gases are emitted during the thawing process, and that they may lead to a positive atmospheric feedback [1]. For a better understanding of these developments, a quantification of the gases emitted from the soil would be required. Extractive sensors with local point-wise gas sampling are currently used for this task, but are hampered due to the complex spatial structure of the soil surface, which complicates the situation due to the essential need for finding a representative gas sampling point. For this situation it would be much preferred if a sensor for detecting 2D-concentration fields of e.g. water vapor, (and in the mid-term also for methane or carbon dioxide) directly in the soil-atmosphere-boundary layer of permafrost soils would be available. However, it also has to be kept in mind that field measurements over long time periods in such a harsh environment require very sturdy instrumentation preferably without the need for sensor calibration. Therefore we are currently developing a new, robust TDLAS (tuneable diode laser absorption spectroscopy)-spectrometer based on cheap reflective foils [2]. The spectrometer is easily transportable, requires hardly any alignment and consists of industrially available, very stable components (e.g. diode lasers and glass fibers). Our measurement technique, open path TDLAS, allows for calibration-free measurements of absolute H2O concentrations. The static instrument for sampling open-path H2O concentrations consists of a joint sending and receiving optics at one side of the measurement path and a reflective element at the other side. The latter is very easy to align, since it is a foil usually applied for traffic purposes that retro-reflects the light to its origin even for large angles of misalignment (up to 60°). With this instrument, we achieved normalized detection limits of up to 0

  16. Interaction between the atmospheric and oceanic boundary layers

    NASA Technical Reports Server (NTRS)

    Yeh, G.-T.

    1974-01-01

    The two-layer system of an atmosphere over water bodies is reduced to a single-layer problem. Values of the interfacial quantities, such as the friction velocity, the surface velocity, the angles, alpha and beta, between the surface shear stress and the geostrophic wind velocity and the surface wind velocity, respectively, and the surface roughness, all of which depend upon external parameters, such as the geostrophic wind and stratifications, are obtained. The geostrophic drag coefficient, the geostrophic wind coefficient, and the angles alpha, and beta, of the turbulent flow at the sea-air interface are functions of a dimensionless number, mfG/kg, with S sub 1 and S sub 2 as two free stratification parameters. The surface roughness is uniquely determined from the geostrophic wind rather than from the wind profile in the boundary layer.

  17. The Interactions of a Flame and Its Self-Induced Boundary Layer

    NASA Technical Reports Server (NTRS)

    Ott, James D.; Oran, Elaine S.; Anderson, John D.

    1999-01-01

    The interaction of a laminar flame with its self-generated boundary layer in a rectangular channel was numerically simulated using the two-dimensional, reacting, Navier-Stokes equations. A two species chemistry model was implemented which simulates the stoichiometric reaction of acetylene and air. Calculations were performed to investigate the effects of altering the boundary condition of the wall temperature, the Lewis number, the dynamic viscosity, and the ignition method. The purpose of this study was to examine the fundamental physics of the formation of the boundary layer and the interaction of the flame as it propagates into the boundary layer that its own motion has created.

  18. Wintertime Boundary Layer Structure in the Grand Canyon.

    NASA Astrophysics Data System (ADS)

    Whiteman, C. David; Zhong, Shiyuan; Bian, Xindi

    1999-08-01

    Wintertime temperature profiles in the Grand Canyon exhibit a neutral to isothermal stratification during both daytime and nighttime, with only rare instances of actual temperature inversions. The canyon warms during daytime and cools during nighttime more or less uniformly through the canyon's entire depth. This weak stability and temperature structure evolution differ from other Rocky Mountain valleys, which develop strong nocturnal inversions and exhibit convective and stable boundary layers that grow upward from the valley floor. Mechanisms that may be responsible for the different behavior of the Grand Canyon are discussed, including the possibility that the canyon atmosphere is frequently mixed to near-neutral stratification when cold air drains into the top of the canyon from the nearby snow-covered Kaibab Plateau. Another feature of canyon temperature profiles is the sharp inversions that often form near the canyon rims. These are generally produced when warm air is advected over the canyon in advance of passing synoptic-scale ridges.Wintertime winds in the main canyon are not classical diurnal along-valley wind systems. Rather, they are driven along the canyon axis by the horizontal synoptic-scale pressure gradient that is superimposed along the canyon's axis by passing synoptic-scale weather disturbances. They may thus bring winds into the canyon from either end at any time of day.The implications of the observed canyon boundary layer structure for air pollution dispersion are discussed.

  19. Nonequilibrium boundary layer of potassium-seeded combustion products

    SciTech Connect

    Benilov, M.S.; Pozdeev, P.A.; Rogov, B.V.; Sinel'shchikov, V.A. . Inst. for High Temperatures)

    1994-09-01

    Results are reported from numerical modeling and experimental study of a chemically reacting boundary layer, formed on a body inserted into a stream of potassium-seeded combustion products of gaseous hydrocarbon fuels. The numerical model developed in previous work is modified to incorporate current data on potassium chemical kinetics. The temperature and potassium atom number density profiles are measured across the boundary layer formed on a cylindrical specimen of Al[sub 2]O[sub 3] dense ceramics by flow of combustion products of a propane-air mixture. The numerical results are compared with present experimental data as well as those available from the literature. The comparison is carried out for a broad range of experimental conditions including the postflame burned-gas region, and the boundary layers on a cylinder and on a flat plate. It provides verification of the proposed model, revision of the rate constants of some reactions of potassium-containing species, and supports the value of potassium superoxide dissociation energy of 247 kJ/mol.

  20. Cloud-Scale Numerical Modeling of the Arctic Boundary Layer

    NASA Technical Reports Server (NTRS)

    Krueger, Steven K.

    1998-01-01

    The interactions between sea ice, open ocean, atmospheric radiation, and clouds over the Arctic Ocean exert a strong influence on global climate. Uncertainties in the formulation of interactive air-sea-ice processes in global climate models (GCMs) result in large differences between the Arctic, and global, climates simulated by different models. Arctic stratus clouds are not well-simulated by GCMs, yet exert a strong influence on the surface energy budget of the Arctic. Leads (channels of open water in sea ice) have significant impacts on the large-scale budgets during the Arctic winter, when they contribute about 50 percent of the surface fluxes over the Arctic Ocean, but cover only 1 to 2 percent of its area. Convective plumes generated by wide leads may penetrate the surface inversion and produce condensate that spreads up to 250 km downwind of the lead, and may significantly affect the longwave radiative fluxes at the surface and thereby the sea ice thickness. The effects of leads and boundary layer clouds must be accurately represented in climate models to allow possible feedbacks between them and the sea ice thickness. The FIRE III Arctic boundary layer clouds field program, in conjunction with the SHEBA ice camp and the ARM North Slope of Alaska and Adjacent Arctic Ocean site, will offer an unprecedented opportunity to greatly improve our ability to parameterize the important effects of leads and boundary layer clouds in GCMs.

  1. Interaction of Pulsed Vortex Generator Jets with Turbulent Boundary Layers

    NASA Astrophysics Data System (ADS)

    McManus, K. R.; Johari, H.

    1996-11-01

    Vortex Generator Jets (VGJ) have been proposed as a means for active control of turbulent boundary layer separation by Johnston footnote AIAA J. 28, 989 (1990). It has been shown that a vortex generator jet can create weak longitudinal vorticity of a single sign when the surface-mounted jets are pitched and skewed with respect to the solid surface. The primary advantages of VGJs when compared to solid vortex generators are their lack of parasitic drag when the jets are off and the ability to rapidly activate and deactivate the jets for dynamic control. Pulsing of the jets is proposed as a way of increasing the turbulent mixing and therefore, improving the performance of vortex generator jets. Initial experiments with jets pitched at 45 deg and skewed at 90 deg degrees in air have indicated that large-scale turbulent structures are formed by the pulsed VGJs. Subsequent flow visualization experiments in a water tunnel suggest that fully-modulated jets embedded in a flat plate boundary layer result in a series of puffs which penetrate through the boundary layer. The influence of jet velocity, diameter, pulsing frequency and duty-cycle will be discussed. * Supported by NSF and PSI.

  2. Investigation of catalytic combustion within a fin boundary layer

    SciTech Connect

    Griffin, G.J.; Wood, D.G.

    1999-07-01

    A mathematical model of a catalytic fin, a flat plate coated with a catalyst, operating under steady-state conditions where air carrying a fuel flows parallel to the surface, is developed. The model equations are derived from the basic equations of change, and model predictions of tin and boundary layer temperature are compared with experimental data for the combustion of propane and carbon monoxide (CO) over the flat plate coated with platinum(Pt)/alumina catalyst. Good qualitative agreement is found between the results of the experiments and the model predictions, although the model generally predicts higher fin temperatures and ignition of reaction to occur at lower temperatures.

  3. SUPERSONIC SHEAR INSTABILITIES IN ASTROPHYSICAL BOUNDARY LAYERS

    SciTech Connect

    Belyaev, Mikhail A.; Rafikov, Roman R.

    2012-06-20

    Disk accretion onto weakly magnetized astrophysical objects often proceeds via a boundary layer (BL) that forms near the object's surface, in which the rotation speed of the accreted gas changes rapidly. Here, we study the initial stages of formation for such a BL around a white dwarf or a young star by examining the hydrodynamical shear instabilities that may initiate mixing and momentum transport between the two fluids of different densities moving supersonically with respect to each other. We find that an initially laminar BL is unstable to two different kinds of instabilities. One is an instability of a supersonic vortex sheet (implying a discontinuous initial profile of the angular speed of the gas) in the presence of gravity, which we find to have a growth rate of order (but less than) the orbital frequency. The other is a sonic instability of a finite width, supersonic shear layer, which is similar to the Papaloizou-Pringle instability. It has a growth rate proportional to the shear inside the transition layer, which is of order the orbital frequency times the ratio of stellar radius to the BL thickness. For a BL that is thin compared to the radius of the star, the shear rate is much larger than the orbital frequency. Thus, we conclude that sonic instabilities play a dominant role in the initial stages of nonmagnetic BL formation and give rise to very fast mixing between disk gas and stellar fluid in the supersonic regime.

  4. Supersonic boundary-layer flow turbulence modeling

    NASA Technical Reports Server (NTRS)

    Wang, Chi-Rong

    1993-01-01

    Baldwin-Lomax and kappa-epsilon turbulence models were modified for use in Navier-Stokes numerical computations of Mach 2.9 supersonic turbulent boundary layer flows along compression ramps. The computational results of Reynolds shear stress profiles were compared with experimental data. The Baldwin-Lomax model was modified to account for the Reynolds shear stress amplification within the flow field. A hybrid kappa-epsilon model with viscous sublayer turbulence treatment was constructed to predict the Reynolds shear stress profiles within the entire flow field. These modified turbulence models were effective for the computations of the surface pressure and the skin friction factor variations along an 8 deg ramp surface. The hybrid kappa-epsilon model could improve the predictions of the Reynolds shear stress profile and the skin friction factor near the corner of a 16 deg ramp.

  5. Persistent Structures in the Turbulent Boundary Layer

    NASA Technical Reports Server (NTRS)

    Palumbo, Dan; Chabalko, Chris

    2005-01-01

    Persistent structures in the turbulent boundary layer are located and analyzed. The data are taken from flight experiments on large commercial aircraft. An interval correlation technique is introduced which is able to locate the structures. The Morlet continuous wavelet is shown to not only locates persistent structures but has the added benefit that the pressure data are decomposed in time and frequency. To better understand how power is apportioned among these structures, a discrete Coiflet wavelet is used to decompose the pressure data into orthogonal frequency bands. Results indicate that some structures persist a great deal longer in the TBL than would be expected. These structure contain significant power and may be a primary source of vibration energy in the airframe.

  6. Chemistry of a polluted cloudy boundary layer

    NASA Technical Reports Server (NTRS)

    Jacob, Daniel J.; Gottlieb, Elaine W.; Prather, Michael J.

    1989-01-01

    A one-dimensional photochemical model for cloud-topped boundary layers has been developed to include descriptions of gas- and aqueous-phase chemistry and the radiation field in and below the cloud. The model is applied to the accumulation of pollutants during a wintertime episode with low stratus over Bakersfield, CA. The mechanisms of sulfate production and the balance between the concentrations of acids and bases are examined. It is shown that most of the sulfate production may be explained by the Fe(III)-catalyzed autoxidation of S(IV). Another source of sulfate is the oxidation of SO2 by OH in both the gas and the aqueous phase. It is shown that the sulfate production in the model is controlled by the availability of NH3. It is suggested that this explains the balance observed between total concentration of acids and bases.

  7. Modelling of the Evolving Stable Boundary Layer

    NASA Astrophysics Data System (ADS)

    Sorbjan, Zbigniew

    2014-06-01

    A single-column model of the evolving stable boundary layer (SBL) is tested for self-similar properties of the flow and effects of ambient forcing. The turbulence closure of the model is diagnostic, based on the K-theory approach, with a semi-empirical form of the mixing length, and empirical stability functions of the Richardson number. The model results, expressed in terms of local similarity scales, are universal functions, satisfied in the entire SBL. Based on similarity expression, a realizability condition is derived for the minimum allowable turbulent heat flux in the SBL. Numerical experiments show that the development of "horse-shoe" shaped, fixed-elevation hodographs in the interior of the SBL around sunrise is controlled by effects imposed by surface thermal forcing.

  8. Geometric invariance of compressible turbulent boundary layers

    NASA Astrophysics Data System (ADS)

    Bi, Wei-Tao; Wu, Bin; She, Zhen-Su; Hussain, Fazle

    2015-11-01

    A symmetry based approach is applied to analyze the mean velocity and temperature fields of compressible, flat plate turbulent boundary layers (CTBL). A Reynolds stress length scale and a turbulent heat flux length scale are identified to possess the same defect scaling law in the CTBL bulk, which is solely owing to the constraint of the wall to the geometry of the wall-attached eddies, but invariant to compressibility and wall heat transfer. This invariance is called the geometric invariance of CTBL eddies and is likely the origin of the Mach number invariance of Morkovin's hypothesis, as well as the similarity of energy and momentum transports. A closure for the turbulent transport by using the invariant lengths is attainted to predict the mean velocity and temperature profiles in the CTBL bulk- superior to the van Driest transformation and the Reynolds analogy based relations for its sound physics and higher accuracy. Additionally, our approach offers a new understanding of turbulent Prandtl number.

  9. Acoustics of laminar boundary layers breakdown

    NASA Technical Reports Server (NTRS)

    Wang, Meng

    1994-01-01

    Boundary layer flow transition has long been suggested as a potential noise source in both marine (sonar-dome self noise) and aeronautical (aircraft cabin noise) applications, owing to the highly transient nature of process. The design of effective noise control strategies relies upon a clear understanding of the source mechanisms associated with the unsteady flow dynamics during transition. Due to formidable mathematical difficulties, theoretical predictions either are limited to early linear and weakly nonlinear stages of transition, or employ acoustic analogy theories based on approximate source field data, often in the form of empirical correlation. In the present work, an approach which combines direct numerical simulation of the source field with the Lighthill acoustic analogy is utilized. This approach takes advantage of the recent advancement in computational capabilities to obtain detailed information about the flow-induced acoustic sources. The transitional boundary layer flow is computed by solving the incompressible Navier-Stokes equations without model assumptions, thus allowing a direct evaluation of the pseudosound as well as source functions, including the Lighthill stress tensor and the wall shear stress. The latter are used for calculating the radiated pressure field based on the Curle-Powell solution of the Lighthill equation. This procedure allows a quantitative assessment of noise source mechanisms and the associated radiation characteristics during transition from primary instability up to the laminar breakdown stage. In particular, one is interested in comparing the roles played by the fluctuating volume Reynolds stress and the wall-shear-stresses, and in identifying specific flow processes and structures that are effective noise generators.

  10. Large Eddy Simulation of Transitional Boundary Layer

    NASA Astrophysics Data System (ADS)

    Sayadi, Taraneh; Moin, Parviz

    2009-11-01

    A sixth order compact finite difference code is employed to investigate compressible Large Eddy Simulation (LES) of subharmonic transition of a spatially developing zero pressure gradient boundary layer, at Ma = 0.2. The computational domain extends from Rex= 10^5, where laminar blowing and suction excites the most unstable fundamental and sub-harmonic modes, to fully turbulent stage at Rex= 10.1x10^5. Numerical sponges are used in the neighborhood of external boundaries to provide non-reflective conditions. Our interest lies in the performance of the dynamic subgrid scale (SGS) model [1] in the transition process. It is observed that in early stages of transition the eddy viscosity is much smaller than the physical viscosity. As a result the amplitudes of selected harmonics are in very good agreement with the experimental data [2]. The model's contribution gradually increases during the last stages of transition process and the dynamic eddy viscosity becomes fully active and dominant in the turbulent region. Consistent with this trend the skin friction coefficient versus Rex diverges from its laminar profile and converges to the turbulent profile after an overshoot. 1. Moin P. et. al. Phys Fluids A, 3(11), 2746-2757, 1991. 2. Kachanov Yu. S. et. al. JFM, 138, 209-247, 1983.

  11. Simulations of Boundary-Layer Transition

    NASA Technical Reports Server (NTRS)

    Herbert, Thorwald

    2007-01-01

    For incompressible benchmark flows, we have demonstrated the capability of the parabolized stability equations (PSE) to simulate the transition process in excellent agreement with microscopic experiments and direct Navier-Stokes simulations at modest computational cost. Encouraged by these results, we have developed the PSE methodology of three-dimensional boundary-layers in general curvilinear coordinates for the range from low to hypersonic speeds, and for both linear and nonlinear problems. For given initial and boundary conditions, the approach permits simulations from receptivity through linear and secondary instabilities into the late stages of transition where significant changes in skin friction and heat transfer coefficients occur. We have performed transition simulations for a variety of two- and three-dimensional similarity solutions and for realistic flows over swept wings at subsonic and supersonic speeds, the pressure ans suction side of turbine blades at low and medium turbulence levels, and over a blunt cone at Mach number Ma = 8. We present selected results for different transition mechanisms with emphasis on the late stage of transition and the evolution of wall-shear stress and heat transfer.

  12. A Turbulent Boundary Layer over Superhydrophobic Surfaces

    NASA Astrophysics Data System (ADS)

    Park, Hyunwook; Kim, John

    2015-11-01

    Direct numerical simulations of a spatially developing turbulent boundary layer (TBL) developing over superhydrophobic surfaces (SHS) were performed in order to investigate the underlying physics of turbulent flow over SHS. SHS were modeled through the shear-free boundary condition, assuming that the gas-liquid interfaces remained as non-deformable. Pattern-averaged turbulence statistics were examined in order to determine the effects of SHS on turbulence in no-slip and slip regions separately. Near-wall turbulence over the slip region was significantly affected by SHS due to insufficient mean shear required to sustain near-wall turbulence. SHS also indirectly affected near-wall turbulence over the no-slip region. In addition to the effects of the spanwise width of SHS on skin-friction drag reduction reported previously, spatial effects in the streamwise direction were examined. A guideline for optimal design of SHS geometry will be discussed. This research was supported by the ONR (Grant No. N000141410291).

  13. Improved Boundary Layer Depth Retrievals from MPLNET

    NASA Technical Reports Server (NTRS)

    Lewis, Jasper R.; Welton, Ellsworth J.; Molod, Andrea M.; Joseph, Everette

    2013-01-01

    Continuous lidar observations of the planetary boundary layer (PBL) depth have been made at the Micropulse Lidar Network (MPLNET) site in Greenbelt, MD since April 2001. However, because of issues with the operational PBL depth algorithm, the data is not reliable for determining seasonal and diurnal trends. Therefore, an improved PBL depth algorithm has been developed which uses a combination of the wavelet technique and image processing. The new algorithm is less susceptible to contamination by clouds and residual layers, and in general, produces lower PBL depths. A 2010 comparison shows the operational algorithm overestimates the daily mean PBL depth when compared to the improved algorithm (1.85 and 1.07 km, respectively). The improved MPLNET PBL depths are validated using radiosonde comparisons which suggests the algorithm performs well to determine the depth of a fully developed PBL. A comparison with the Goddard Earth Observing System-version 5 (GEOS-5) model suggests that the model may underestimate the maximum daytime PBL depth by 410 m during the spring and summer. The best agreement between MPLNET and GEOS-5 occurred during the fall and they diered the most in the winter.

  14. Turbulence measurements in hypersonic boundary layers using constant-temperature anemometry and Reynolds stress measurements in hypersonic boundary layers

    NASA Technical Reports Server (NTRS)

    Spina, Eric F.

    1995-01-01

    The primary objective in the two research investigations performed under NASA Langley sponsorship (Turbulence measurements in hypersonic boundary layers using constant temperature anemometry and Reynolds stress measurements in hypersonic boundary layers) has been to increase the understanding of the physics of hypersonic turbulent boundary layers. The study began with an extension of constant-temperature thermal anemometry techniques to a Mach 11 helium flow, including careful examinations of hot-wire construction techniques, system response, and system calibration. This was followed by the application of these techniques to the exploration of a Mach 11 helium turbulent boundary layer (To approximately 290 K). The data that was acquired over the course of more than two years consists of instantaneous streamwise mass flux measurements at a frequency response of about 500 kHz. The data are of exceptional quality in both the time and frequency domain and possess a high degree of repeatability. The data analysis that has been performed to date has added significantly to the body of knowledge on hypersonic turbulence, and the data reduction is continuing. An attempt was then made to extend these thermal anemometry techniques to higher enthalpy flows, starting with a Mach 6 air flow with a stagnation temperature just above that needed to prevent liquefaction (To approximately 475 F). Conventional hot-wire anemometry proved to be inadequate for the selected high-temperature, high dynamic pressure flow, with frequent wire breakage and poor system frequency response. The use of hot-film anemometry has since been investigated for these higher-enthalpy, severe environment flows. The difficulty with using hot-film probes for dynamic (turbulence) measurements is associated with construction limitations and conduction of heat into the film substrate. Work continues under a NASA GSRP grant on the development of a hot film probe that overcomes these shortcomings for hypersonic

  15. Radiative transfer in a polluted urban planetary boundary layer

    NASA Technical Reports Server (NTRS)

    Viskanta, R.; Johnson, R. O.; Bergstrom, R. W.

    1977-01-01

    Radiative transfer in a polluted urban atmosphere is studied using a dynamic model. The diurnal nature of radiative transfer for summer conditions is simulated for an urban area 40 km in extent and the effects of various parameters arising in the problem are investigated. The results of numerical computations show that air pollution has the potential of playing a major role in the radiative regime of the urban area. Absorption of solar energy by aerosols in realistic models of urban atmosphere are of the same order of magnitude as that due to water vapor. The predicted effect of the air pollution aerosol in the city is to warm the earth-atmosphere system, and the net effect of gaseous pollutant is to warm the surface and cool the planetary boundary layer, particularly near the top.

  16. Hypersonic Boundary-Layer Trip Development for Hyper-X

    NASA Technical Reports Server (NTRS)

    Berry, Scott A.; Auslender, Aaron H.; Dilley, Authur D.; Calleja, John F.

    2000-01-01

    Boundary layer trip devices for the Hper-X forebody have been experimentally examined in several wind tunnels. Five different trip configurations were compared in three hypersonic facilities, the LaRC 20-Inch Mach 6 Air Tunnel, the LaRC 31 -Inch Mach 10 Air Tunnel, and in the HYPULSE Reflected Shock Tunnel at GASL. Heat transfer distributions, utilizing the phosphor thermography and thin-film techniques, shock system details, and surface streamline patterns were measured on a 0.333-scale model of the Hyper-X forebody. Parametric variations include angles-of-attack of 0-deg, 2-deg, and 4-deg; Reynolds numbers based on model length of 1.2 to 15.4 million: and inlet cowl door simulated in both open and closed positions. Comparisons of transition due to discrete roughness elements have led to the selection of a trip configuration for the Hyper-X Mach 7 flight vehicle.

  17. Vegetation-atmosphere interactions and boundary layer cumulus clouds

    NASA Astrophysics Data System (ADS)

    Freedman, Jeffrey Michael

    2000-07-01

    A study of vegetation-atmosphere interactions and boundary layer cumulus clouds (``BLcu'') in terms of seasonal trends (i.e., heat and moisture tendencies) and short-term events (specifically the modification of in situ air masses) is presented. In the northeastern U.S., in response to increasing insolation and sensible heat flux, both the mixed layer height (zi) and lifting condensation level (LCL) peak (~1300 and 1700 m) just before the start of the growing season. With the commencement of transpiration, the Bowen ratio (β) falls abruptly (from greater than 3 to less than 1) as additional moisture is transpired into the boundary layer, and zi and the LCL decrease. By late spring, boundary layer cumulus cloud frequency increases sharply, as the mixed layer approaches a new equilibrium. At Harvard Forest during 1995, afternoon net carbon uptake (Fco2 ) was 52% greater on days with boundary layer cumulus clouds than clear days. For 1996-1998, afternoon Fco2 was also enhanced, especially during dry periods. The same enhancement, albeit reduced, was observed at a northern jack pine site during the BOREAS project, despite very different phenological, hydrological, and climatological regimes. Sixteen frontal sequences affecting the northeastern U.S. were analyzed in terms of local and regional contributions to the temperature and moisture tendency equations. A composite of sequences featuring the daily appearance of BLcu indicates a diminished role for entrainment and other external forcings due to the daily occurrence of a rapid growth phase in ML diurnal evolution subsequent to day 1. From the sequence minimum (day 2) in temperature and moisture, surface flux convergence accounts for about 50% of the overall net moistening and heating of the mixed layer. Model sensitivity tests show that changes in subsidence and γ θν affect ML processes most on day 1; dining subsequent days, the rapid growth phase dominates the ML growth equation, and reduces the impact of these

  18. Wave-Particle Interactions in the Turbulent Plasmaspheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Mishin, Evgeny

    2015-11-01

    A wealth of wave activity around the plasmasphere's boundary enhances during substorm injection events. A turbulent plasmaspheric boundary layer forms initially near the pre-substorm plasmapause due to interactions between the injected and plasmaspheric populations. The free energy for plasma instabilities driving lower hybrid/fast magnetosonic turbulence and broadband hiss-like VLF waves come from substorm-injected hot plasma particles impacting the cold plasmasphere. In particular, the hot electron diamagnetic drift and the highly anisotropic hot ion distribution drive the modified two-stream and ion-ring instabilities in the entry layer and the central part, respectively. The diamagnetic drift of hot ions dominates near the inner edge. Enhanced plasma turbulence leads to heating of the cold plasma and to acceleration of suprathermal electron tails, thereby enhancing the downward heat transport and concomitant heating of the ionospheric electrons. Broadband, hiss-like VLF waves have amplitudes sufficient to provide rapid precipitation of the radiation belt electrons thereby shaping the outer radiation belt boundary. In addition, the hot ions penetrating inside the plasmasphere satisfy the orbit chaotization condition and become demagnetized. These results can also be helpful for understanding impulsive penetration at the magnetopause. Supported by the Air Force Office of Scientific Research.

  19. Defining the Entrainment Zone in Stratocumulus-topped Boundary Layers

    NASA Astrophysics Data System (ADS)

    Wang, Q.; Zhou, M.; Kalogiros, J. A.; Lenschow, D. H.; Dai, C.; Wang, S.

    2010-12-01

    The presence of an entrainment zone near the top of the stratocumulus-topped boundary layers has been identified by many early studies. However, the definition of the entrainment zone was rather vague. We have examined the fine vertical variations of cloud liquid water content, wind, temperature and humidity near the stratocumulus top and developed a new method to identify the entrainment zone objectively. Aircraft measurements from various field projects in stratocumulus-topped boundary layers are used, taking advantage of the fast sampling capability of many of the aircraft sensors. Because of the inhomogeneous mixing of two air masses with distinctively different thermodynamic properties, the magnitude of temperature perturbations within the entrainment zone is significantly larger than those above or below. This characteristics is used to define the upper and lower boundaries of the entrainment zone using a wavelet spectra analyses. The definition of the entrainment zone is further evaluated by the presence of a linear mixing line through mixing line analyses. Various other interfaces at the cloud top are also examined, including the cloud interface, temperature interface (inversion), and moisture interface. The heights of these interfaces are examined relative to the height of the entrainment zone. This study also systematically revealed the presence of turbulence above the local cloud top and/or above the entrainment zone. Wind shear near the cloud top is one possible source that generated local turbulence. Other potential sources of turbulence will also be discussed.

  20. Diverging boundary layers with zero streamwise pressure gradient

    NASA Technical Reports Server (NTRS)

    Pauley, Wayne R.; Eaton, John K.; Cutler, Andrew D.

    1989-01-01

    The effects of spanwise divergence on the boundary layer forming between a pair of embedded streamwise vortices with the common flow between them directed toward the wall was studied. Measurements indicate that divergence controls the rate of development of the boundary layer and that large divergence significantly retards boundary layer growth and enhances skin friction. For strongly diverging boundary layers, divergence accounts for nearly all of the local skin friction. Even with divergence, however, the local similarity relationships for two-dimensional boundary layers are satisfactory. Although divergence modifies the mean development of the boundary layer, it does not significantly modify the turbulence structure. In the present experiments with a zero streamwise pressure gradient, it was found that spanwise divergence dit not significantly affect the Reynolds stress and the turbulent triple product distributions.

  1. Simulating supercell thunderstorms in a convective boundary layer: Effects on storm and boundary layer properties

    NASA Astrophysics Data System (ADS)

    Nowotarski, Christopher J.

    Nearly all previous numerical simulations of supercell thunderstorms have neglected surface uxes of heat, moisture, and momentum as well as horizontal inhomogeneities in the near-storm environment from resulting dry boundary layer convection. This investigation uses coupled radiation and land-surface schemes within an idealized cloud model to identify the effects of organized boundary layer convection in the form of horizontal convective rolls (HCRs) on the strength, structure, and evolution of simulated supercell thunderstorms. The in uence of HCRs and the importance of their orientation relative to storm motion is tested by comparing simulations with a convective boundary layer (CBL) against those with a horizontally homogeneous base state having the same mean environment. The impact of anvil shading on the CBL is tested by comparing simulations with and without the effects of clouds in the radiative transfer scheme. The results of these simulations indicate that HCRs provide a potentially important source of environmental vertical vorticity in the sheared, near-storm boundary layer. These vorticity perturbations are amplified both beneath the main supercell updraft and along the trailing out ow boundary, leading to the formation of occasionally intense misovortices. HCRs perpendicular to storm motion are found to have a detrimental effect on the strength and persistence of the lowlevel mesocyclone, particularly during its initial development. Though the mean environment is less supportive of low-level rotation with a wind profile conducive to HCRs oriented parallel to storm motion, such HCRs are found to often enhance the low-level mesocyclone circulation. When anvil shading is included, stabilization results in generally weaker low-level mesocyclone circulation, regardless of HCR orientation. Moreover, HCRs diminish in the near-storm environment such that the effects of HCRs on the supercell are mitigated. HCRs are also shown to be a necessary condition for the

  2. Boundary Layer Transition Flight Experiment Implementation on OV-103

    NASA Technical Reports Server (NTRS)

    Spanos, Theodoros A.

    2009-01-01

    This slide presentation reviews the boundary layer transition experiment flown on Discovery. The purpose of the boundary layer transition flight experiment was to obtain hypersonic aero-thermodynamic data for the purpose of better understanding the flow transition from a laminar to turbulent boundary layer using a known height protuberance. The preparation of the shuttle is described, with the various groups responsibilities outlined. Views of the shuttle in flight with the experimental results are shown.

  3. Methods and results of boundary layer measurements on a glider

    NASA Technical Reports Server (NTRS)

    Nes, W. V.

    1978-01-01

    Boundary layer measurements were carried out on a glider under natural conditions. Two effects are investigated: the effect of inconstancy of the development of static pressure within the boundary layer and the effect of the negative pressure difference in a sublaminar boundary layer. The results obtained by means of an ion probe in parallel connection confirm those results obtained by means of a pressure probe. Additional effects which have occurred during these measurements are briefly dealt with.

  4. Numerical investigation of implementation of air-earth boundary by acoustic-elastic boundary approach

    USGS Publications Warehouse

    Xu, Y.; Xia, J.; Miller, R.D.

    2007-01-01

    The need for incorporating the traction-free condition at the air-earth boundary for finite-difference modeling of seismic wave propagation has been discussed widely. A new implementation has been developed for simulating elastic wave propagation in which the free-surface condition is replaced by an explicit acoustic-elastic boundary. Detailed comparisons of seismograms with different implementations for the air-earth boundary were undertaken using the (2,2) (the finite-difference operators are second order in time and space) and the (2,6) (second order in time and sixth order in space) standard staggered-grid (SSG) schemes. Methods used in these comparisons to define the air-earth boundary included the stress image method (SIM), the heterogeneous approach, the scheme of modifying material properties based on transversely isotropic medium approach, the acoustic-elastic boundary approach, and an analytical approach. The method proposed achieves the same or higher accuracy of modeled body waves relative to the SIM. Rayleigh waves calculated using the explicit acoustic-elastic boundary approach differ slightly from those calculated using the SIM. Numerical results indicate that when using the (2,2) SSG scheme for SIM and our new method, a spatial step of 16 points per minimum wavelength is sufficient to achieve 90% accuracy; 32 points per minimum wavelength achieves 95% accuracy in modeled Rayleigh waves. When using the (2,6) SSG scheme for the two methods, a spatial step of eight points per minimum wavelength achieves 95% accuracy in modeled Rayleigh waves. Our proposed method is physically reasonable and, based on dispersive analysis of simulated seismographs from a layered half-space model, is highly accurate. As a bonus, our proposed method is easy to program and slightly faster than the SIM. ?? 2007 Society of Exploration Geophysicists.

  5. Mixing length in low Reynolds number compressible turbulent boundary layers

    NASA Technical Reports Server (NTRS)

    Bushnell, D. M.; Cary, A. M., Jr.; Holley, B. B.

    1975-01-01

    The paper studies the effect of low Reynolds number in high-speed turbulent boundary layers on variations of mixing length. Boundary layers downstream of natural transition on plates, cones and cylinders, and boundary layers on nozzle walls without laminarization-retransition are considered. The problem of whether low Reynolds number amplification of shear stress is a result of transitional flow structure is considered. It is concluded that a knowledge of low Reynolds number boundary layer transition may be relevant to the design of high-speed vehicles.

  6. Incorporation of the planetary boundary layer in atmospheric models

    NASA Technical Reports Server (NTRS)

    Moeng, Chin-Hoh; Wyngaard, John; Pielke, Roger; Krueger, Steve

    1993-01-01

    The topics discussed include the following: perspectives on planetary boundary layer (PBL) measurements; current problems of PBL parameterization in mesoscale models; and convective cloud-PBL interactions.

  7. Mercury in the marine boundary layer and seawater of the South China Sea: Concentrations, sea/air flux, and implication for land outflow

    NASA Astrophysics Data System (ADS)

    Fu, Xuewu; Feng, Xinbin; Zhang, Gan; Xu, Weihai; Li, Xiangdong; Yao, Hen; Liang, Peng; Li, Jun; Sommar, Jonas; Yin, Runsheng; Liu, Na

    2010-03-01

    Using R/V Shiyan 3 as a sampling platform, measurements of gaseous elemental mercury (GEM), surface seawater total mercury (THg), methyl mercury (MeHg), and dissolved gaseous mercury (DGM) were carried out above and in the South China Sea (SCS). Measurements were collected for 2 weeks (10 to 28 August 2007) during an oceanographic expedition, which circumnavigated the northern SCS from Guangzhou (Canton), Hainan Inland, the Philippines, and back to Guangzhou. GEM concentrations over the northern SCS ranged from 1.04 to 6.75 ng m-3 (mean: 2.62 ng m-3, median: 2.24 ng m-3). The spatial distribution of GEM was characterized by elevated concentrations near the coastal sites adjacent to mainland China and lower concentrations at stations in the open sea. Trajectory analysis revealed that high concentrations of GEM were generally related to air masses from south China and the Indochina peninsula, while lower concentrations of GEM were related to air masses from the open sea area, reflecting great Hg emissions from south China and Indochina peninsula. The mean concentrations of THg, MeHg, and DGM in surface seawater were 1.2 ± 0.3 ng L-1, 0.12 ± 0.05 ng L-1, and 36.5 ± 14.9 pg L-1, respectively. In general, THg and MeHg levels in the northern SCS were higher compared to results reported from most other oceans/seas. Elevated THg levels in the study area were likely attributed to significant Hg delivery from surrounding areas of the SCS primarily via atmospheric deposition and riverine input, whereas other sources like in situ production by various biotic and abiotic processes may be important for MeHg. Average sea/air flux of Hg in the study area was estimated using a gas exchange method (4.5 ± 3.4 ng m-2 h-1). This value was comparable to those from other coastal areas and generally higher than those from open sea environments, which may be attributed to the reemission of Hg previously transported to this area.

  8. Laser Energy Deposition for Shock Wave Boundary Layer Control at Supersonic Speeds

    NASA Astrophysics Data System (ADS)

    Erdem, E.; Kontis, K.; Osuka, T.; Majima, R.; Tamba, T.; Sasoh, Akihiro

    Shock Wave Boundary Layer Interactions (SWBLIs) can induce separation which causes loss of a control surface effectiveness, drop of an air intake efficiency and it may be the origin of large scale fluctuations such as air-intake buzz, buffeting or fluctuating side loads in separated propulsive nozzles

  9. Large-eddy simulation of the hurricane boundary layer: Evaluation of the planetary boundary-layer parametrizations

    NASA Astrophysics Data System (ADS)

    Alizadeh-Choobari, O.

    2015-03-01

    The organized roll vortices are the integral part of the hurricane boundary layer (HBL) where they have an important contribution in the vertical transport of momentum, heat and moisture. Large-eddy simulations (LESs) were conducted to explicitly resolve the organized roll vortices in the HBL over the ocean using the Weather Research and Forecasting (WRF) model. The LESs were nested within the WRF mesoscale model to provide two-way up-scale and down-scale exchange at the nest interfaces, and explicitly resolve large eddies. Downdrafts in the organized roll vortices correspond to transport of high-momentum air down to the surface, while updrafts tend to transport low-momentum air upwards. The downdrafts and updrafts therefore lead to a well-organized band-like structure of alternating strong and relatively weak near-surface winds, respectively. The upward legs of the roll vortices are also associated with transport of moist air to the upper levels, while drier air is brought down to the surface in the downward legs. Organized roll vortices contribute a significant portion to the vertical transport of heat and moisture. Three planetary boundary-layer (PBL) parametrizations were examined against the LES. Results indicate that PBL parametrizations cannot capture the band-like structure of alternating strong and relatively weak near-surface winds as they are subgrid scale features, and are unable to adequately represent the surface heat fluxes and wind profiles in the hurricane conditions. PBL parametrizations show overall less variability in the extremes of the wind field.

  10. Effect of sound on boundary layer stability

    NASA Astrophysics Data System (ADS)

    Saric, William S.; Spencer, Shelly Anne

    1993-06-01

    Experiments are conducted in the Arizona State University Unsteady Wind Tunnel with a zero-pressure-gradient flat-plate model that has a 67:1 elliptical leading edge. Boundary-layer measurements are made of the streamwise fluctuating-velocity component in order to identify the amplified T-S waves that are forced by downstream-traveling sound waves. Measurements are taken with circular 3-D roughness elements placed at the Branch 1 neutral stability point for the frequency under consideration, and then with the roughness element downstream of Branch 1. These roughness elements have a principal chord dimension equal to 2 lambda(sub TS)/pi of the T-S waves under study and are 'stacked' in order to resemble a Gaussian height distribution. Measurements taken just downstream of the roughness (with leading-edge T-S waves, surface roughness T-S waves, instrumentation sting vibrations, and the Stokes wave subtracted) show the generation of 3-D T-S waves, but not in the characteristic heart-shaped disturbance field predicted by 3-D asymptotic theory. Maximum disturbance amplitudes are found on the roughness centerline. However, some near-field characteristics predicted by numerical modeling are observed.

  11. The boundary layer on compressor cascade blades

    NASA Technical Reports Server (NTRS)

    Deutsch, S.; Zierke, W. C.

    1986-01-01

    The purpose of NASA Research Grant NSG-3264 is to characterize the flowfield about an airfoil in a cascade at chord Reynolds number(R sub C)near 5 x 10 to the 5th power. The program is experimental and combines laser Doppler velocimeter (LDV) measurements with flow visualization techniques in order to obtain detailed flow data, e.g., boundary layer profiles, points of separation and the transition zone, on a cascade of highly-loaded compressor blades. The information provided by this study is to serve as benchmark data for the evaluation of current and future compressor cascade predictive models, in this way aiding in the compressor design process. Summarized is the research activity for the period 1 December 1985 through 1 June 1986. Progress made from 1 June 1979 through 1 December 1985 is presented. Detailed measurements have been completed at the initial cascade angle of 53 deg. (incidence angle 5 degrees). A three part study, based on that data, has been accepted as part of the 1986 Gas Turbine Conference and will be submitted for subsequent journal publication. Also presented are data for a second cascade angle of 45 deg (an incidence angle of 3 degrees).

  12. A boundary layer model for magnetospheric substorms

    NASA Technical Reports Server (NTRS)

    Rostoker, Gordon; Eastman, Tim

    1987-01-01

    An alternative framework for understanding magnetospheric substorm activity is presented. It is argued that observations of magnetic field and plasma flow variations in the magnetotail can be explained in terms of the passage of the plasma sheet boundary layer over the satellite detecting the tail signatures. It is shown that field-aligned currents and particle acceleration processes on magnetic field lines threading the ionospheric Harang discontinuity lead to the distinctive particle and field signatures observed in the magnetotail during substorms. It is demonstrated that edge effects of field-aligned currents associated with the westward traveling surge can lead to the negative B(z) perturbations observed in the tail that are presently attributed to observations made on the anti-earthward side of a near-earth neutral line. Finally, it is shown that the model can provide a physical explanation of both the driven system and the loading-unloading system whose combined effects provide the observed substorm perturbation pattern in the magnetosphere and ionosphere.

  13. Effect of sound on boundary layer stability

    NASA Technical Reports Server (NTRS)

    Saric, William S. (Principal Investigator); Spencer, Shelly Anne

    1993-01-01

    Experiments are conducted in the Arizona State University Unsteady Wind Tunnel with a zero-pressure-gradient flat-plate model that has a 67:1 elliptical leading edge. Boundary-layer measurements are made of the streamwise fluctuating-velocity component in order to identify the amplified T-S waves that are forced by downstream-travelling, sound waves. Measurements are taken with circular 3-D roughness elements placed at the Branch 1 neutral stability point for the frequency under consideration, and then with the roughness element downstream of Branch 1. These roughness elements have a principal chord dimension equal to 2(lambda)(sub TS)/pi, of the T-S waves under study and are 'stacked' in order to resemble a Gaussian height distribution. Measurements taken just downstream of the roughness (with leading-edge T-S waves, surface roughness T-S waves, instrumentation sting vibrations and the Stokes wave subtracted) show the generation of 3-D-T-S waves, but not in the characteristic heart-shaped disturbance field predicted by 3-D asymptotic theory. Maximum disturbance amplitudes are found on the roughness centerline. However, some near-field characteristics predicted by numerical modelling are observed.

  14. Effect of sound on boundary layer stability

    NASA Technical Reports Server (NTRS)

    Saric, William S.; Spencer, Shelly Anne

    1993-01-01

    Experiments are conducted in the Arizona State University Unsteady Wind Tunnel with a zero-pressure-gradient flat-plate model that has a 67:1 elliptical leading edge. Boundary-layer measurements are made of the streamwise fluctuating-velocity component in order to identify the amplified T-S waves that are forced by downstream-traveling sound waves. Measurements are taken with circular 3-D roughness elements placed at the Branch 1 neutral stability point for the frequency under consideration, and then with the roughness element downstream of Branch 1. These roughness elements have a principal chord dimension equal to 2 lambda(sub TS)/pi of the T-S waves under study and are 'stacked' in order to resemble a Gaussian height distribution. Measurements taken just downstream of the roughness (with leading-edge T-S waves, surface roughness T-S waves, instrumentation sting vibrations, and the Stokes wave subtracted) show the generation of 3-D T-S waves, but not in the characteristic heart-shaped disturbance field predicted by 3-D asymptotic theory. Maximum disturbance amplitudes are found on the roughness centerline. However, some near-field characteristics predicted by numerical modeling are observed.

  15. Green House Gases Flux Model in Boundary Layer

    NASA Astrophysics Data System (ADS)

    Nurgaliev, Ildus

    Analytical dynamic model of the turbulent flux in the three-layer boundary system is presented. Turbulence is described as a presence of the non-zero vorticity. The generalized advection-diffusion-reaction equation is derived for an arbitrary number of components in the flux. The fluxes in the layers are objects for matching requirements on the boundaries between the layers. Different types of transport mechanisms are dominant on the different levels of the layers.

  16. Columnar modelling of nucleation burst evolution in the convective boundary layer - first results from a feasibility study Part III: Preliminary results on physicochemical model performance using two "clean air mass" reference scenarios

    NASA Astrophysics Data System (ADS)

    Hellmuth, O.

    2006-09-01

    In Paper I of four papers, a revised columnar high-order model to investigate gas-aerosol-turbulence interactions in the convective boundary layer (CBL) was proposed. In Paper II, the model capability to predict first-, second- and third-order moments of meteorological variables in the CBL was demonstrated using available observational data. In the present Paper III, the high-order modelling concept is extended to sulphur and ammonia chemistry as well as to aerosol dynamics. Based on the previous CBL simulation, a feasibility study is performed using two "clean air mass" scenarios with an emission source at the ground but low aerosol background concentration. Such scenarios synoptically correspond to the advection of fresh post-frontal air in an anthropogenically influenced region. The aim is to evaluate the time-height evolution of ultrafine condensation nuclei (UCNs) and to elucidate the interactions between meteorological and physicochemical variables in a CBL column. The scenarios differ in the treatment of new particle formation (NPF), whereas homogeneous nucleation according to the classical nucleation theory (CNT) is considered. The first scenario considers nucleation of a binary system consisting of water vapour and sulphuric acid (H2SO4) vapour, the second one nucleation of a ternary system additionally involving ammonia (NH3). Here, the two synthetic scenarios are discussed in detail, whereas special attention is payed to the role of turbulence in the formation of the typical UCN burst behaviour, that can often be observed in the surface layer. The intercomparison of the two scenarios reveals large differences in the evolution of the UCN number concentration in the surface layer as well as in the time-height cross-sections of first-order moments and double correlation terms. Although in both cases the occurrence of NPF bursts could be simulated, the burst characteristics and genesis of the bursts are completely different. It is demonstrated, that

  17. Slow Manifolds and Multiple Equilibria in Stratocumulus-Capped Boundary Layers

    NASA Astrophysics Data System (ADS)

    Bretherton, Christopher S.; Uchida, Junya; Blossey, Peter N.

    2010-04-01

    In marine stratocumulus-capped boundary layers under strong inversions, the timescale for thermodynamic adjustment is roughly a day, much shorter than the multiday timescale for inversion height adjustment. Slow-manifold analysis is introduced to exploit this timescale separation when boundary layer air columns experience only slow changes in their boundary conditions. Its essence is that the thermodynamic structure of the boundary layer remains approximately slaved to its inversion height and the instantaneous boundary conditions; this slaved structure determines the entrainment rate and hence the slow evolution of the inversion height and can be regarded as a one-dimensional slow manifold. Slow-manifold analysis is applied to mixed-layer model and large-eddy simulations of an idealized nocturnal stratocumulus-capped boundary layer. Both models are found to have multiple equilibria; depending on the initial inversion height, the simulations slowly evolve toward a shallow thin-cloud boundary layer or a deep, well-mixed thick cloud boundary layer. In the mixed-layer model, this can be described using a single slow manifold bifurcated by an unstable equilibrium inversion height which separates a branch that evolves toward a deep steady state from a branch which shallows indefinitely. In the large-eddy simulations, there are two separate slow manifolds (one of which becomes unstable if cloud droplet concentration is reduced). On one, the boundary layer is well-mixed and deepens to a thick-cloud steady state. On the other, the boundary layer is decoupled and shallows to a thin-cloud steady state. If the initial inversion height supports an optically thick but nearly nondrizzling cloud, it evolves onto the well-mixed manifold; if the initial cloud layer is either too thin to efficiently radiatively cool, or thick enough to heavily drizzle, it evolves onto the decoupled manifold. Applications to analysis of stratocumulus observations and to pockets of open cells and ship

  18. Turbulence in a convective marine atmospheric boundary layer

    NASA Technical Reports Server (NTRS)

    Chou, S.-H.; Atlas, D.; Yeh, E.-N.

    1986-01-01

    The structure and kinetic energy budget of turbulence in the convective marine atmospheric boundary layer as observed by aircraft during a cold air outbreak have been studied using mixed layer scaling. The results are significantly different from those of previous studies under conditions closer to free convection. The normalized turbulent kinetic energy and turbulent transport are about twice those found during the Air Mass Transformation Experiment (AMTEX). This implies that for a given surface heating the present case is dynamically more active. The difference is mainly due to the greater importance of wind shear in the present case. This case is closer to the roll vortex regime, whereas AMTEX observed mesoscale cellular convection which is closer to free convection. Shear generation is found to provide a significant energy source, in addition to buoyancy production, to maintain a larger normalized turbulent kinetic energy and to balance a larger normalized dissipation. The interaction between turbulent pressure and divergence (i.e., pressure scrambling) is also found to transfer energy from the vertical to the horizontal components, and is expected to be stronger in roll vortices than in m esoscale cells. The sensible heat flux is found to fit well with a linear vertical profile in a clear or subcloud planetary boundary layer (PBL), in good agreement with the results of Lenschow et al., (1980). The heat flux ratio between the PBL top and the surface, derived from the linear fitted curve, is approximately -0.14, in good agreement with that derived from the lidar data for the same case. Near the PBL top, the heat flux profiles are consistent with those of Deardoff (1979) and Deardorff et al. (1980).

  19. Spherical bubble motion in a turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Felton, Keith; Loth, Eric

    2001-09-01

    Monodisperse dilute suspensions of spherical air bubbles in a tap-water turbulent vertical boundary layer were experimentally studied to note their motion and distribution. Bubbles with diameters of 0.37-1.2 mm were injected at various transverse wall-positions for free-stream velocities between 0.4 and 0.9 m/s. The bubbles were released from a single injector at very low frequencies such that two-way coupling and bubble-bubble interaction were negligible. The experimental diagnostics included ensemble-averaged planar laser intensity profiles for bubble concentration distribution, as well as Cinematic Particle Image Velocimetry with bubble tracking for bubble hydrodynamic forces. A variety of void distributions within the boundary layer were found. For example, there was a tendency for bubbles to collect along the wall for higher Stokes number conditions, while the lower Stokes number conditions produced Gaussian-type profiles throughout the boundary layer. In addition, three types of bubble trajectories were observed—sliding bubbles, bouncing bubbles, and free-dispersion bubbles. Instantaneous liquid forces acting on individual bubbles in the turbulent flow were also obtained to provide the drag and lift coefficients (with notable experimental uncertainty). These results indicate that drag coefficient decreases with increasing Reynolds number as is conventionally expected but variations were observed. In general, the instantaneous drag coefficient (for constant bubble Reynolds number) tended to be reduced as the turbulence intensity increased. The averaged lift coefficient is higher than that given by inviscid theory (and sometimes even that of creeping flow theory) and tends to decrease with increasing bubble Reynolds number.

  20. Modelling the low-latitude boundary layer with reconnection entry

    NASA Technical Reports Server (NTRS)

    Song, P.; Holzer, T. E.; Russell, C. T.; Wang, Z.

    1994-01-01

    We develop a one-dimensional Low Latitude Boundary Layer (LLBL) model for northward interplanetary magnetic field (IMF). The boundary layer in this model is uniform in the direction normal to the magnetopause, a 'plateau-type' boundary layer. The boundary layer motion is decoupled from the magnetosheath motion and driven by the plasma pressure associated with the incoming solar wind plasma near local noon, which has become entrained on closed field lines as a result of reconnection in the cusp region. Dissipation in the ionosphere at the feet of the boundary layer field lines opposes this motion. There are two physical solutions for the model. In one, the boundary layer reaches a terminal velocity in the tail as the boundary layer plasma effectively joins the solar wind flow. In the other solution, the flow is nearly stopped in the far tail. In combination with other mechanisms, this latter solution may correspond to the case in which the boundary layer plasma participates in magnetospheric convection and returns sunward. The density, velocity, and thickness as functions of distance from local noon are studied, assuming that the magnetopause hasa elliptical shape and the magnetospheric field is dipolar.

  1. A study of methods to investigate nozzle boundary layer transition

    NASA Technical Reports Server (NTRS)

    Pauley, Laura L.

    1991-01-01

    To further investigate nozzle flow, numerical computations are employed. The computations produce complete flow velocity and temperature fields within the nozzle. As a check, these results can be compared with experimental data at the wall. Once an accurate numerical scheme has been validated, it can be used as a design tool to predict the performance of other nozzle designs without the cost of experimental testing. Typically, the numerical analysis assumes either a laminar boundary layer or a fully turbulent boundary layer which is steady and two-dimensional. Boundary layer transition is not considered. Computing both the completely laminar boundary layer and the completely turbulent boundary layer conditions gives the minimum and maximum wall heat flux possible for a specified geometry. When the experimental heat flux measurements lie between these two values, the nature of the boundary layer is unknown. The boundary layer may have transitioned from laminar to turbulent; three-dimensional structures may be present in the boundary layer, or the inlet flow conditions may not be correctly specified in the computation.

  2. Symmetries in Turbulent Boundary Layer Flows

    NASA Technical Reports Server (NTRS)

    Oberlack, M.

    1996-01-01

    The objective is the development of a new theory which enables the algorithmic computation of all self-similar mean velocity profiles. The theory is based on Liegroup analysis and unifies a large set of self-similar solutions for the mean velocity of stationary parallel turbulent shear flows. The results include the logarithmic law of the wall, an algebraic law, the viscous sublayer, the linear region in the middle of a Couette flow and in the middle of a rotating channel flow, and a new exponential mean velocity profile not previously reported. Experimental results taken in the outer parts of a high Reynolds number flat-plate boundary layer, strongly support the exponential profile. From experimental as well as from DNS data of a turbulent channel flow the algebraic scaling law could be confirmed in both the center region and in the near wall region. In the case of the logarithmic law of the wall, the scaling with the wall distance arises as a result of the analysis and has not been assumed in the derivation. The crucial part of the derivation of all the different mean velocity profiles is to consider the invariance of the equation for the velocity fluctuations at the same time as the invariance of the equation for the velocity product equations. The latter is the dyad product of the velocity fluctuations with the equation for the velocity fluctuations. It has been proven that all the invariant solutions are also consistent with similarity of all velocity moment equations up to any arbitrary order.

  3. Seasonality of mercury in the Atlantic marine boundary layer

    NASA Astrophysics Data System (ADS)

    Soerensen, Anne L.; Sunderland, Elsie; Skov, Henrik; Holmes, Christopher; Jacob, Daniel J.

    2010-05-01

    Around one third of the mercury emissions today are from primary anthropogenic sources, with the remaining two-thirds from secondary reemissions of earlier deposition and natural sources (AMAP/UNEP 2008). Mercury exchange at the air-sea interface is important for the global distribution of atmospheric mercury as parts of deposited mercury will reenter the atmosphere through evasion. The exchange at the air-sea interface also affects the amount of inorganic mercury in the ocean and thereby the conversion to the neuro-toxic methylmercury. Here we combine new cruise measurements in the atmospheric marine boundary layer (MBL) of the Atlantic Ocean (Northern Hemisphere) from the fall of 2006 and the spring of 2007 with existing data from cruises in the Atlantic Ocean since 1978. We observe from these data a seasonal cycle in Hg(0) concentrations in the Atlantic marine boundary later (MBL) that exhibits minimum concentrations during summer and high concentrations during fall to spring. These observations suggest a local, seasonally dependent Hg(0) source in the MBL that causes variability in concentrations above the open ocean. To further investigate controls on Hg(0) concentrations in the MBL, we developed an improved representation of oceanic air-sea exchange processes within the GEOS-Chem global 3-D biogeochemical mercury model. Specifically, we used new data on mercury redox reactions in the surface ocean as a function of biological and photochemical processes, and implemented new algorithms for mercury dynamics associated with suspended particles. Our coupled atmospheric-oceanic modeling results support the premise that oceanic evasion is a main driver controlling Hg(0) concentrations in the MBL. We also use the model to investigate what drivers the evasion across the air-sea interface on shorter timescales. This is done by tracking evasion rates and other model components on an hourly basis for chosen locations in the Atlantic Ocean.

  4. Plume fluxes in clear and cloudy convective boundary layers

    SciTech Connect

    Schumann, U. ); Moeng, C.H. )

    1991-08-01

    From results of large-eddy simulations of the clear convective boundary layer and of a stratus-topped boundary layer, mean properties of [open quotes]plumes[close quotes] that consist of [open quotes]updrafts[close quotes] and [open quotes]downdrafts[close quotes] are determined. The plumes are defined locally by the sign of the vertical velocity or of moisture fluctuation or by a combination of both. As a further alternative, updrafts and downdrafts in which the vertical velocity magnitude exceeds certain threshold values are considered. The first two variants divide the motion field into two streams, whereas in the other variants [open quotes]environmental[close quotes] air forms a separate stream. The computed mean properties are in general agreement with existing measurements. From the results we compute mean vertical fluxes assuming [open quotes]top-hat profiles[close quotes] and compare these with the actual fluxes. It is shown that the most uniform flux approximation is obtained if the plume structure is classified in terms of vertical velocity w. For such [open quotes]w plumes,[close quotes] the top-hat profiles approximate about 60% of the actual fluxes if updrafts and downdrafts are distinguished with zero threshold values just according to the sign of the vertical velocity. A higher percentage is obtained with nonzero threshold values. 23 refs., 40 figs.

  5. Dusty boundary layer in a surface-burst explosion

    SciTech Connect

    Kuhl, A.L.; Ferguson, R.E.; Chien, K.Y.; Collins, J.P.

    1993-08-01

    Dusty boundary layers are an inherent feature of explosions over ground surfaces. Detailed knowledge of dusty boundary layer characteristics is needed in explosion safety analysis (e.g., to calculate the drag loads on structures). Also, to predicct the amount of dust in the rising fireball of an explsion, one must know the dusty boundary layer swept up during the positive and negative phases of the blast wave and how much of this boundary layer dust is entrained into the stem of the dust cloud. This paper describes the results of numerical simulations of the dusty boundary layer created by a surface burst explosion. The evolution of the flow was calculated by a high-order Godunov code that solves the nonsteady conservation laws.

  6. Destiny of earthward streaming plasma in the plasmasheet boundary layer

    NASA Technical Reports Server (NTRS)

    Green, J. L.; Horwitz, J. L.

    1986-01-01

    The dynamics of the earth's magnetotail have been investigated, and it has become clear that the plasmasheet boundary layer field lines map into the Region I Field-Aligned Currents (FAC) of the auroral zone. It is pointed out that the role of earthward streaming ions in the plasmasheet boundary layer may be of fundamental importance in the understanding of magnetotail dynamics, auroral zone physics, and especially for ionospheric-magnetospheric interactions. The present paper has the objective to evaluate propagation characteristics for the earthward streaming ions observed in the plasmasheet boundary layer. An investigation is conducted of the propagation characteristics of protons in the plasmasheet boundary layer using independent single particle dynamics, and conclusions are discussed. The density of earthward streaming ions found in the plasmasheet boundary layer should include the ring current as well as the auroral zone precipitaiton and inner plasmasheet regions of the magnetosphere.

  7. The boundary layer growth in an urban area.

    PubMed

    Pino, D; Vilà-Guerau de Arellano, J; Comerón, A; Rocadenbosch, F

    2004-12-01

    The development and maintenance of the atmospheric boundary layer (ABL) plays a key role in the distribution of atmospheric constituents, especially in a polluted urban area. In particular, the ABL has a direct impact on the concentration and transformation of pollutants. In this work, in order to analyze the different mechanisms which control the boundary layer growth, we have simulated by means of the non-hydrostatic model MM5 several boundary layer observed in the city of Barcelona (Spain). Sensitivity analysis of the modelled ABL is carried out by using various descriptions of the planetary boundary layer (PBL). Direct and continuous measurements of the boundary layer depth taken by a lidar are used to evaluate the results obtained by the model. PMID:15504507

  8. Dynamic behavior of an unsteady trubulent boundary layer

    NASA Technical Reports Server (NTRS)

    Parikh, P. G.; Reynolds, W. C.; Jayaramen, R.; Carr, L. W.

    1981-01-01

    Experiments on an unsteady turbulent boundary layer are reported in which the upstream portion of the flow is steady (in the mean) and in the downstream region, the boundary layer sees a linearly decreasing free stream velocity. This velocity gradient oscillates in time, at frequencies ranging from zero to approximately the bursting frequency. For the small amplitude, the mean velocity and mean turbulence intensity profiles are unaffected by the oscillations. The amplitude of the periodic velocity component, although as much as 70% greater than that in the free stream for very low frequencies, becomes equal to that in the free stream at higher frequencies. At high frequencies, both the boundary layer thickness and the Reynolds stress distribution across the boundary layer become frozen. The behavior at higher amplitude is quite similar. At sufficiently high frequencies, the boundary layer thickness remains frozen at the mean value over the oscillation cycle, even though flow reverses near the wall during a part of the cycle.

  9. Data Assimilation Strategies in the Planetary Boundary Layer

    NASA Astrophysics Data System (ADS)

    Reen, Brian P.; Stauffer, David R.

    2010-11-01

    We investigate the effect of the assimilation of surface and boundary-layer mass-field observations on the planetary boundary layer (PBL) within a one-dimensional (1D) version of the non-hydrostatic Fifth-Generation Pennsylvania State University/National Center for Atmospheric Research Mesoscale Model (MM5). We focus on the vertical extent and effects of mass-field nudging within the PBL based on surface observations, and the added value of assimilating column mass observations within the PBL. Model experiments for dynamic initialization and dynamic analysis are conducted and composited for 29 May, 6 June, and 7 June 2002 during the International H2O Project (IHOP) over the Southern Great Plains, U.S.A. Advantages are found when the data assimilation uses the innovation (the difference between the modelled value and the observed value) calculated by comparing the surface mass-field observation to the model value at the 2-m observation height rather than at the lowest model level. It is shown that this innovation can be applied throughout the model-diagnosed PBL via nudging during free-convective conditions because of the well-mixed nature of the PBL. However, in stable conditions, due to decreased vertical mixing the surface innovation may be best applied only in a shallow layer adjacent to the surface. Surface air-temperature innovations were also applied to the top soil-layer temperature to minimize disruption to the surface energy balance. In combination with the surface observations, the use of within-PBL mass-field data assimilation improves the simulated PBL structure.

  10. On the concept of leaf boundary layer resistance for forced convection

    PubMed

    Vesala

    1998-09-01

    The definition of leaf boundary layer resistance is reconsidered in respect of the three-dimensional diffusion-controlled mass transport region just above the leaf surface. Due to the existence of this superstomatal air layer, the conventional convective boundary layer is not in direct contact with the surface. Thus, in terms of plant physiology, the diffusive "end correction" to the stomatal resistance should be included in the boundary layer resistance. This is true for laminar as well as turbulent flows. When the surface mole fraction of an exchanged gas is estimated using the boundary layer resistance ignoring the diffusive term may lead to a noticeable error. The self-consistent approach is used to clarify the problems of the boundary layer formation and stomatal interference. If the correction is taken into account, the boundary layer resistance becomes dependent also on stomatal shape and distribution on the leaf. The traditional semiempirical formula corrected by the superstomatal diffusion is applied in numerical calculations. In estimates of the water vapour mole fraction on the surface of a transpiring leaf the relative error ranges from insignificant (quiescent air, large leaf and large stomatal pores) to 20 % (low humidity, strong wind, small leaf and small elliptic pores). The boundary layer resistance can decrease by a factor of 3 when the semiaxis lengths of the stomata increase from 1 and 0.5 &mgr;m to 10 and 5 &mgr;m. The effective thickness of the superstomatal air layer is maximally several millimetres (small stomatal surface concentration and small pores). Copyright 1998 Academic Press Limited PMID:9778427

  11. An Equation for the Mean Velocity Distribution of Boundary Layers

    NASA Technical Reports Server (NTRS)

    Sandborn, V. A.

    1959-01-01

    A general relation, empirical in origin, for the mean velocity distribution of both laminar and turbulent boundary layers is proposed. The equation, in general, accurately describes the profiles in both laminar and turbulent flows. The calculation of profiles is based on a prior knowledge of momentum, displacement, and boundary-layer thickness together with free-stream conditions. The form for turbulent layers agrees with the present concepts of similarity of the outer layer. For the inner region or turbulent boundary layers the present relation agrees very closely with experimental measurements even in cases where the logarithmic law of the wall is inadequate. A unique relation between profile form factors and the ratio of displacement thickness to boundary-layer thickness is obtained for turbulent separation. A similar criterion is also obtained for laminar separation. These relations are demonstrated to serve as an accurate criterion for identifying separation in known profiles.

  12. Boundary Layer Rolls Observed Above and Below a Jet in a Marine Boundary Layer

    NASA Astrophysics Data System (ADS)

    Foster, R. C.; Emmitt, G. D.; Godwin, K.; Greco, S.

    2013-12-01

    We have flown a coherent Doppler wind lidar (DWL) on the Cirpas Twin Otter off the California coast near Monterey since 2003. One scientific purpose of these flights is to understand the relationship between the turbulent fluxes measured on the aircraft or on other platforms and the observed structure of the marine boundary layer (MBL). Two common features are found in the MBL flow: (1) a strong jet at approximately 200 m above the sea surface; and (2) organized large eddies (OLE) in the form of roll vortices that are approximately aligned along the mean wind direction. On two flights (April 13, 2007 and September 30, 2012), the DWL data indicated that roll OLE existed simultaneously both above and below the jet. The DWL winds suggest that the OLE in these layers are sometimes independent and sometimes connected. Standard flux data are obtained on the Twin Otter at flight level, which is nominally 300 m. The 10 Hz wind and temperature data exhibit variability at spatial scales corresponding to the OLE wavelength. We have constructed a nonlinear theoretical model that includes triad wave-wave interactions to test the hypothesis that rolls could form both above and below the jet. This model shows that this is possible and that the rolls in the two layers could have unique characteristics compared to standard boundary layer rolls. The model further shows that the rolls above and below the jet are due to separate instabilities that interact. This is consistent with the observations of both connected and independent OLE above and below the jet. Contrast-enhanced DWL line-of-sight winds. Jet maximum 200 m below aircraft. Typical resonant triad solution for rolls above and below a PBL jet.

  13. Mesoscale (50-km) Boundary Layer Eddies in CASES-97

    NASA Astrophysics Data System (ADS)

    LeMone, M. A.; Grossman, R. L.; Yates, D.; Chen, F.; Ikeda, K.

    2001-05-01

    Boundery-layer eddies 50 km across are documented for the morning of 10 May 1997 during the Cooperative Atmosphere Surface Exchange Study (CASES-97). CASES-97 was held from 21 April to 21 May 1997, in the lower Walnut River Watershed in south central Kansas, to study the role of the heterogeneous surface in boundary-layer evolution. The eddies appear to be tied to terrain, with warm, upwelling air over the relatively high terrain that forms the eastern edge of the watershed, and downwelling air over the watershed. The winds on this day were 5 m/s out of the south, and there were strong horizontal contrasts in vegetation and surface fluxes, suggesting that surfact fluxes could also play a role. For comparison, we examine two other days for the presence of mesoscale eddies, 29 April (characterized by high horizontal heterogeneity of vegetation and 10 m/s southerlies), and 20 May (characterized by a uniformly green and moist surface with winds ENE at 7 m/s). 29 April had significant but rapidly-changing horizontal variability at scales greater than 10 km, but variability on 20 May was on scales less than 5 km. Estimates of the sensible heat budgets for the three days revealed a large residual for 10 May, the day with the mesoscale eddies. Calculation of the expected errors and reasonable corrections for bias errors and radiative heating did not account for the residual, leading to the hypothesis that the residual is associated with the mesoscale eddies.

  14. Heat transfer and boundary layer in conical nozzles

    NASA Technical Reports Server (NTRS)

    Boldman, D. R.; Graham, R. W.

    1972-01-01

    A review of a comprehensive experimental investigation of the heat transfer and boundary layer in 30 deg to 15 deg and 60 deg to 15 deg conical nozzles is presented. The experiments were conducted with air at a stagnation temperature of 539 K (970 R) and throat Reynolds numbers based on a diameter ranging from 6 x 10 to the 5th power to 5 x 10 to the 6th power. Nozzle wall surface finish was varied from a smooth machine finish to a 826 x 10 to the minus 6th power cm (325 x 10 to the minus 6th in.) rms sandblasted finish. Measured heat transfer and wall temperatures are tabulated.

  15. A low-density boundary-layer wind tunnel facility

    NASA Technical Reports Server (NTRS)

    White, B. R.

    1987-01-01

    This abstract describes a low-density wind-tunnel facility that was established at NASA Ames in order to aid interpretation and understanding of data received from the Mariner and Viking spacecraft through earth-based simulation. The wind tunnel is a boundary-layer type which is capable of operating over a range of air densities ranging from 0.01 to 1.24 kg/cu m, with the lower values being equivalent to the near-surface density of the planet Mars. Although the facility was developed for space and extraterrestrial simulation, it also can serve as a relatively large-scale, low-density aerodynamic test facility. A description of this unique test facility and some Pitot-tube and hot-wire anemometry data acquired in the facility are presented.

  16. The wave-induced boundary layer under long internal waves

    NASA Astrophysics Data System (ADS)

    Lin, Yuncheng; Redekopp, Larry G.

    2011-08-01

    The boundary layer formed under the footprint of an internal solitary wave is studied by numerical simulation for waves of depression in a two-layer model of the density stratification. The inviscid outer flow, in the perspective of boundary-layer theory, is based on an exact solution for the long wave-phase speed, yielding a family of fully nonlinear solitary wave solutions of the extended Korteweg-de Vries equation. The wave-induced boundary layer corresponding to this outer flow is then studied by means of simulation employing the Reynolds-averaged Navier-Stokes (RANS) formulation coupled with a turbulence closure model validated for wall-bounded flows. Boundary-layer characteristics are computed for an extensive range of environmental conditions and wave amplitudes. Boundary-layer transition, identified by monitoring the eddy viscosity, is correlated in terms of a boundary-layer Reynolds number. The frictional drag is evaluated for laminar, transitional, and turbulent cases, and correlations are presented for the friction coefficient plus relevant measures of the boundary-layer thickness.

  17. On Reflection of Shock Waves from Boundary Layers

    NASA Technical Reports Server (NTRS)

    Liepmann, H W; Roshko, A; Dhawan, S

    1952-01-01

    Measurements are presented at Mach numbers from about 1.3 to 1.5 of reflection characteristics and the relative upstream influence of shock waves impinging on a flat surface with both laminar and turbulent boundary layers. The difference between impulse and step waves is discussed and their interaction with the boundary layer is compared. General considerations on the experimental production of shock waves from wedges and cones and examples of reflection of shock waves from supersonic shear layers are also presented.

  18. A cloudiness transition in a marine boundary layer

    NASA Technical Reports Server (NTRS)

    Betts, Alan K.; Boers, Reinout

    1990-01-01

    Boundary layer cloudiness plays several important roles in the energy budget of the earth. Low level stratocumulus are highly reflective clouds which reduce the net incoming shortwave radiation at the earth's surface. Climatically, the transition to a small area fraction of scattered cumulus clouds occurs as the air flows over warmer water. Although these clouds reflect less sunlight, they still play an important role in the boundary layer equilibrium by transporting water vapor upwards, and enhancing the surface evaporation. The First ISCCP (International Satellite Cloud Climatology Project) Regional Experiment (FIRE) included a marine stratocumulus experiment off the southern California coast from June 29 to July 19, 1987. The objectives of this experiment were to study the controls on fractional cloudiness, and to assess the role of cloud-top entrainment instability (CTEI) and mesoscale structure in determining cloud type. The focus is one research day, July 7, 1987, when coordinated aircraft missions were flown by four research aircraft, centered on a LANDSAT scene at 1830 UTC. The remarkable feature of this LANDSAT scene is the transition from a clear sky in the west through broken cumulus to solid stratocumulus in the east. The dynamic and thermodynamic structure of this transition in cloudiness is analyzed using data from the NCAR Electra. By averaging the aircraft data, the internal structure of the different cloud regimes is documented, and it is shown that the transition between broken cumulus and stratocumulus is associated with a change in structure with respect to the CTEI condition. However, this results not from sea surface temperature changes, but mostly from a transition in the air above the inversion, and the breakup appears to be at a structure on the unstable side of the wet virtual adiabat.

  19. Sensing the Stable Boundary Layer in a Towing Tank

    NASA Astrophysics Data System (ADS)

    Steeneveld, G. J.; Dobrovolschi, D.; Paci, A.; Eiff, O.; Lacaze, L.; Holtslag, A. A. M.

    2010-09-01

    Understanding and forecasting the stable atmospheric boundary layer (SBL) over land is a challenge for already several decades. Generally, the SBL covers two different regimes. The first regime is the weakly SBL, characterised by well defined wind driven turbulence. The second regime covers the very SBL with weak turbulence, and then additional processes become relevant, such as meandering motions, gravity waves, drainage flows, intermittent turbulence and radiation divergence. Especially in this regime this complexity limits the understanding of the SBL and its representation in numerical weather prediction, climate models and air pollution models. For calm conditions, these models typically overestimate near surface temperature and wind speed, with adverse effects for understanding polar climate and end users in agriculture, transportation, and air quality assessment. To improve our understanding of the SBL, we study SBL turbulence in the CNRM-GAME stratified water flume in Toulouse. This unique facility, particularly well suited for stratified flow and BL studies, provides novel laboratory observations that extend earlier efforts of field observations and wind tunnel studies. Among other things, laboratory observations have the advantage of statistical robustness due to repeatability of the experiment and provide access to an extensive set of data. Hence, a 3x3 m2 plate covered with LEGO of Lx=1.57 cm and Ly=3.57 cm, (roughness length = 0.0014 m, and roughness density =0.250, index of frontal area = 0.125) was towed at different velocities through the tank of 22 x 3 x 1.6 m. In this way we were able to achieve an SBL of ~10 cm with bulk Richardson numbers in the range between 0.05 and 0.25, and turbulence with a well-behaved inertial subrange. We focus on the estimation of the non-dimensional velocity and density profiles, on higher order turbulent statistics (important for plume dispersion), as well as on the turbulence spectral behaviour. Finally, we aim to

  20. Aerothermodynamic Testing and Boundary Layer Trip Sizing of the HIFiRE Flight 1 Vehicle

    NASA Technical Reports Server (NTRS)

    Berger, Karen T.; Greene, Frank A.; Kimmel, Roger

    2008-01-01

    An experimental wind tunnel test was conducted in the NASA Langley Research Center s 20-Inch Mach 6 Air Tunnel in support of the Hypersonic International Flight Research Experimentation Program. The information in this report is focused on the Flight 1 configuration, the first in a series of flight experiments. This report documents experimental measurements made over a range of Reynolds numbers and angles of attack on several scaled ceramic heat transfer models of the Flight 1 payload. Global heat transfer was measured using phosphor thermography and the resulting images and heat transfer distributions were used to infer the state of the boundary layer on the vehicle windside and leeside surfaces. Boundary layer trips were used to force the boundary layer turbulent, and a brief study was conducted to determine the effectiveness of the trips with various heights. The experimental data highlighted in this test report were used to size and place the boundary layer trip for the flight test vehicle.

  1. Spatial Linear Instability of Confluent Wake/Boundary Layers

    NASA Technical Reports Server (NTRS)

    Liou, William W.; Liu, Feng-Jun; Rumsey, C. L. (Technical Monitor)

    2001-01-01

    The spatial linear instability of incompressible confluent wake/boundary layers is analyzed. The flow model adopted is a superposition of the Blasius boundary layer and a wake located above the boundary layer. The Orr-Sommerfeld equation is solved using a global numerical method for the resulting eigenvalue problem. The numerical procedure is validated by comparing the present solutions for the instability of the Blasius boundary layer and for the instability of a wake with published results. For the confluent wake/boundary layers, modes associated with the boundary layer and the wake, respectively, are identified. The boundary layer mode is found amplified as the wake approaches the wall. On the other hand, the modes associated with the wake, including a symmetric mode and an antisymmetric mode, are stabilized by the reduced distance between the wall and the wake. An unstable mode switching at low frequency is observed where the antisymmetric mode becomes more unstable than the symmetric mode when the wake velocity defect is high.

  2. Boundary-layer receptivity and laminar-flow airfoil design

    NASA Technical Reports Server (NTRS)

    Kerschen, Edward J.

    1987-01-01

    Boundary-layer receptivity examines the way in which external disturbances generate instability waves in boundary layers. Receptivity theory is complementary to stability theory, which studies the evolution of disturbances that are already present in the boundary layer. A transition prediction method which combines receptivity with linear stability theory would directly account for the influence of free-stream disturbances and also consider the characteristics of the boundary layer upstream of the neutral stability point. The current e sup N transition prediction methods require empirical correlations for the influence of environmental disturbances, and totally ignore the boundary layer characteristics upstream of the neutral stability point. The regions where boundary-layer receptivity occurs can be separated into two classes, one near the leading edges and the other at the downstream points where the boundary layer undergoes rapid streamwise adjustments. Analyses were developed for both types of regions, and parametric studies which examine the relative importance of different mechanisms were carried out. The work presented here has focused on the low Mach number case. Extensions to high subsonic and supersonic conditions are presently underway.

  3. On the theory of laminar boundary layers involving separation

    NASA Technical Reports Server (NTRS)

    Von Karman, TH; Millikan, C

    1934-01-01

    This paper presents a mathematical discussion of the laminar boundary layer, which was developed with a view of facilitating the investigation of those boundary layers in particular for which the phenomenon of separation occurs. The treatment starts with a slight modification of the form of the boundary layer equation first published by Von Mises. Two approximate solutions of this equation are found, one of which is exact at the outer edge of the boundary layer while the other is exact at the wall. The final solution is obtained by joining these two solutions at the inflection points of the velocity profiles. The final solution is given in terms of a series of universal functions for a fairly broad class of potential velocity distributions outside of the boundary layer. Detailed calculations of the boundary layer characteristics are worked out for the case in which the potential velocity is a linear function of the distance from the upstream stagnation point. Finally, the complete separation point characteristics are determined for the boundary layer associated with a potential velocity distribution made up of two linear functions of the distance from the stagnation point. It appears that extensions of the detailed calculations to more complex potential flows can be fairly easily carried out by using the explicit formulae given in the paper. (author)

  4. Crosshatch roughness distortions on a hypersonic turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Peltier, S. J.; Humble, R. A.; Bowersox, R. D. W.

    2016-04-01

    The effects of periodic crosshatch roughness (k+ = 160) on a Mach 4.9 turbulent boundary layer (Reθ = 63 000) are examined using particle image velocimetry. The roughness elements generate a series of alternating shock and expansion waves, which span the entire boundary layer, causing significant (up to +50% and -30%) variations in the Reynolds shear stress field. Evidence of the hairpin vortex organization of incompressible flows is found in the comparative smooth-wall boundary layer case (Reθ = 47 000), and can be used to explain several observations regarding the rough-wall vortex organization. In general, the rough-wall boundary layer near-wall vortices no longer appear to be well-organized into streamwise-aligned packets that straddle relatively low-speed regions like their smooth-wall counterpart; instead, they lean farther away from the wall, become more spatially compact, and their populations become altered. In the lower half of the boundary layer, the net vortex swirling strength and outer-scaled Reynolds stresses increase relative to the smooth-wall case, and actually decrease in the outer half of the boundary layer, as ejection and entrainment processes are strengthened and weakened in these two regions, respectively. A spectral analysis of the data suggests a relative homogenizing of the most energetic scales near Λ = ˜ 0.5δ across the rough-wall boundary layer.

  5. Boundary-Layer Origin for Jets, and Non-Existence of the Boundary Layer in Young Jet-Producing Protostars

    NASA Astrophysics Data System (ADS)

    Williams, Peter T.

    2016-01-01

    Twenty-five years ago, Pringle suggested a boundary-layer origin for jets from YSOs. The jets were driven by a toroidal magnetic field generated by strong shear in the accretion boundary layer. Such a mechanism is clearly non-magnetocentrifugal in nature.Nearly fifteen years ago, we suggested a cartoon of the jet-launching mechanism in protostars in which shear, acting upon MHD turbulence generated by the magnetorotational instability (MRI), generated a tangled, toroidal magnetic field capable of driving a jet. This picture, which is also manifestly non-magnetocentrifugal in nature, relied upon a novel model for MRI-driven MHD turbulence based on a viscoelastic, rather than a viscous, prescription for the turbulent stress. Our hypothesis has some clear similarities to Pringle's mechanism, but it relied upon a large envelope surrounding the central star.An accretion boundary layer has long been recognized as a promising source for protostellar jets in good part because in a standard thin disk, matter loses circa half of all its accretion energy in this layer, but it is problematic to drive a well-collimated outflow from a boundary layer in a thin disk. In this presentation, we argue paradoxically that the "boundary layer" can drive jets when a true boundary layer, like the thin disk, does not exist. This changes the inner boundary condition for viscous angular momentum flux in the disk.The standard argument for a thin boundary layer is, we argue, circular. In high accretion-rate systems, or when the gas cannot cool efficiently, there is no reason to suspect the turbulent viscosity in this boundary layer to be small, and therefore neither is the boundary layer. When the boundary layer becomes larger than the central accretor itself, it is arguably no longer a boundary layer, but rather an envelope. It is still, however, a substantial source of power and toroidal MRI-driven magnetic fields.It is, again, only in relatively hot or high-accretion rate systems in which

  6. Numerical experiments on the stability of controlled boundary layers

    NASA Technical Reports Server (NTRS)

    Zang, Thomas A.; Hussaini, M. Y.

    1988-01-01

    Nonlinear simulations are presented for instability and transition in parallel water boundary layers subjected to pressure gradient, suction, or heating control. In the nonlinear regime, finite amplitude, 2-D Tollmein-Schlichting waves grow faster than is predicted by linear theory. Moreover, this discrepancy is greatest in the case of heating control. Likewise, heating control is found to be the least effective in delaying secondary instabilities of both the fundamental and subharmonic type. Flow field details (including temperature profiles) are presented for both the uncontrolled boundary layer and the heated boundary layer.

  7. Formation of pre-sheath boundary layers in electronegative plasmas

    SciTech Connect

    Vitello, P., LLNL

    1998-05-01

    In electronegative plasmas Coulomb scattering between positive and negative ions can lead to the formation of a pre-sheath boundary layer containing the bulk of the negative ions. The negative ion boundary layer forms when momentum transfer from positive to negative ions dominates the negative ion acceleration from the electric field. This condition is met in Inductively Coupled Plasma reactors that operate at low pressure and high plasma density. Simulations of the GEC reactor for Chlorine and Oxygen chemistries using the INDUCT95 2D model are presented showing the pre-sheath boundary layer structure as a function of applied power and neutral pressure.

  8. Further Improvements to Nozzle Boundary Layer Calculations in BLIMPJ

    NASA Technical Reports Server (NTRS)

    Praharaj, S. C.; Gross, Klaus W.

    1989-01-01

    Further improvements made to advance the current Boundary Layer Integral Matrix Procedure - Version J (BLIMPJ) containing previously modeled simplified calculation methods by accounting for condensed phase, thick boundary layer and free stream turbulence effects are discussed. The condensed phase effects were included through species composition effect considered via input to the code and through particle damping effect considered via a turbulence model. The thrust loss calculation procedure for thick boundary layer effects was improved and the optimization of net thrust with respect to nozzle length was performed. The effects of free stream turbulence were approximately modeled in the turbulence model.

  9. Structure of turbulence in three-dimensional boundary layers

    NASA Technical Reports Server (NTRS)

    Subramanian, Chelakara S.

    1993-01-01

    This report provides an overview of the three dimensional turbulent boundary layer concepts and of the currently available experimental information for their turbulence modeling. It is found that more reliable turbulence data, especially of the Reynolds stress transport terms, is needed to improve the existing modeling capabilities. An experiment is proposed to study the three dimensional boundary layer formed by a 'sink flow' in a fully developed two dimensional turbulent boundary layer. Also, the mean and turbulence field measurement procedure using a three component laser Doppler velocimeter is described.

  10. Control of turbulent boundary layer flows by sound

    NASA Astrophysics Data System (ADS)

    Ahuja, K. K.; Whipkey, R. R.; Jones, G. S.

    1983-04-01

    The effects of acoustic excitation on the turbulent boundary-layer characteristics over an airfoil were examined as a function of excitation frequency and level and also flow velocity. The measured data primarily consisted of: (1) lift coefficients, (2) mean velocities and turbulence intensities as measured by a laser velocimeter, and (3) flow visualization. The experiments successfully demonstrated that separation of turbulent boundary layer flows can be controlled by sound in both pre- and post-stall regions. In addition, it was shown that, with high-frequency acoustic excitation, the turbulence levels in the boundary layer at a fixed measurement point can be reduced considerably.

  11. Physical modeling of the atmospheric boundary layer for wind energy and wind engineering studies

    NASA Astrophysics Data System (ADS)

    Taylor-Power, Gregory; Turner, John; Wosnik, Martin

    2015-11-01

    The Flow Physics Facility (FPF) at UNH has test section dimensions W6.0m, H2.7m, L=72m. It can achieve high Reynolds number boundary layers, enabling turbulent boundary layer, wind energy and wind engineering research with exceptional spatial and temporal instrument resolution. We examined the FPF's ability to experimentally simulate different types of the atmospheric boundary layer (ABL): the stable, unstable, and neutral ABL. The neutral ABL is characterized by a zero potential temperature gradient, which is readily achieved in the FPF by operating when air and floor temperatures are close to equal. The stable and unstable ABLs have positive and negative vertical temperature gradients, respectively, which are more difficult to simulate without direct control of air or test section floor temperature. The test section floor is a 10 inch thick concrete cement slab and has significant thermal mass. When combined with the diurnal temperature variation of the ambient air, it is possible to achieve vertical temperature gradients in the test section, and produce weakly stable or weakly unstable boundary layer. Achievable Richardson numbers and Obukhov lengths are estimated. The different boundary layer profiles were measured, and compared to theoretical atmospheric models. Supported by UNH Hamel Center for Undergraduate Research SURF.

  12. Hypersonic Boundary Layer Transition Measurements Using NO2 approaches NO Photo-dissociation Tagging Velocimetry

    NASA Technical Reports Server (NTRS)

    Bathel, Brett F.; Johansen, Craig T.; Danehy, Paul M.; Inman, Jennifer A.; Jones, Stephen B.; Goyne, Christopher P.

    2011-01-01

    Measurements of instantaneous and mean streamwise velocity profiles in a hypersonic laminar boundary layer as well as a boundary layer undergoing laminar-to-turbulent transition were obtained over a 10-degree half-angle wedge model. A molecular tagging velocimetry technique consisting of a NO2 approaches?NO photo-dissociation reaction and two subsequent excitations of NO was used. The measurement of the transitional boundary layer velocity profiles was made downstream of a 1-mm tall, 4-mm diameter cylindrical trip along several lines lying within a streamwise measurement plane normal to the model surface and offset 6-mm from the model centerline. For laminar and transitional boundary layer measurements, the magnitudes of streamwise velocity fluctuations are compared. In the transitional boundary layer the fluctuations were, in general, 2-4 times larger than those in the laminar boundary layer. Of particular interest were fluctuations corresponding to a height of approximately 50% of the laminar boundary layer thickness having a magnitude of nearly 30% of the mean measured velocity. For comparison, the measured fluctuations in the laminar boundary layer were approximately 5% of the mean measured velocity at the same location. For the highest 10% signal-to-noise ratio data, average single-shot uncertainties using a 1 ?Es and 50 ?Es interframe delay were 115 m/s and 3 m/s, respectively. By averaging single-shot measurements of the transitional boundary layer, uncertainties in mean velocity as low as 39 m/s were obtained in the wind tunnel. The wall-normal and streamwise spatial resolutions were 0.14-mm (2 pixel) and 0.82-mm (11 pixels), respectively. These measurements were performed in the 31-inch Mach 10 Air Wind Tunnel at the NASA Langley Research Center.

  13. Energy dissipating structures in turbulent boundary layers

    NASA Astrophysics Data System (ADS)

    Farge, Marie; Nguyen van Yen, Romain; Schneider, Kai

    2011-11-01

    We present numerical experiments of a dipole crashing into a wall, a generic event in two-dimensional incompressible flows with solid boundaries. The Reynolds number Re is varied from 985 to 7880, and no-slip boundary conditions are approximated by Navier boundary conditions with a slip length proportional to Re-1 . Energy dissipation is shown to first set up within a vorticity sheet of thickness proportional to Re-1 in the neighborhood of the wall, and to continue as this sheet rolls up into a spiral and detaches from the wall. The energy dissipation rate integrated over these regions appears to converge towards Rey -independent values, indicating the existence of energy dissipating structures that persist in the vanishing viscosity limit. Details can be found in Nguyen van yen, Farge and Schneider, PRL, 106, 184502 (2011).

  14. Planetary boundary layer response to surface temperature anomalies forcing

    NASA Astrophysics Data System (ADS)

    Perrot, Xavier; Lapeyre, Guillaume; Plougonven, Riwal

    2015-04-01

    Recent studies showed that strong sea surface temperature (SST) fronts, on the scale of the western boundary currents, strongly affect the planetary boundary layer (PBL) but also all the troposphere. This renewed the interest of air-sea interactions at oceanic meso-scales. Mainly two mechanisms are proposed in the literature, the first one (due to Wallace et al 1989) is based on the destabilization of the PBL above SST anomalies, the second one (Lindzen and Nigam 1987) is based on the pressure anomalies linked to the atmosphere temperature adjustment to the SST. These two mechanisms predict different responses of the PBL to the SST. We did numerical simulations with a meso-scale atmospheric model (WRF) with the same configuration as the one described in Lambert et al 2013. The model is forced by a SST anomaly which is first a zonally or meridionally constant field and secondly a field of meso-scale structures. Firstly we studied the influence of the initial wind strength on the PBL response for the two different types of SST anomalies. We showed that the dominant mechanism can change according to weak or strong wind and to the orientation of the SST anomaly. Secondly after considering a dry atmosphere we switched on the humidity in our configuration. We studied how it influences the PBL response and whether the mechanism driving the PBL response is still the same as in the dry case.

  15. Observations of the magnetopause current layer: Cases with no boundary layer and tests of recent models

    NASA Technical Reports Server (NTRS)

    Eastman, Timothy E.

    1995-01-01

    Evidence for the probable existence of magnetospheric boundary layers was first presented by Hones, et al. (1972), based on VELA satellite plasma observations (no magnetic field measurements were obtained). This magnetotail boundary layer is now known to be the tailward extension of the high-latitude boundary layer or plasma mantle (first uniquely identified using HEOS 2 plasma and field observations by Rosenbauer et al., 1975) and the low-latitude boundary layer (first uniquely identified using IMP 6 plasma and field observations by Eastman et al., 1976). The magnetospheric boundary layer is the region of magnetosheath-like plasma located Earthward of, but generally contiguous with the magnetopause. This boundary layer is typically identified by comparing low-energy (less than 10 keV) ion spectra across the magnetopause. Low-energy electron measurements are also useful for identifying the boundary layer because the shocked solar wind or magnetosheath has a characteristic spectral signature for electrons as well. However, there are magnetopause crossings where low-energy electrons might suggest a depletion layer outside the magnetopause even though the traditional field-rotation signature indicates that this same region is a boundary layer Earthward of the current layer. Our analyses avoided crossings which exhibit such ambiguities. Pristine magnetopause crossings are magnetopause crossings for which the current layer is well defined and for which there is no adjoining magnetospheric boundary layer as defined above. Although most magnetopause models to date apply to such crossings, few comparisons between such theory and observations of pristine magnetopause crossings have been made because most crossings have an associated magnetospheric boundary layer which significantly affects the applicable boundary conditions for the magnetopause current layer. Furthermore, almost no observational studies of magnetopause microstructure have been done even though key

  16. Influences on the Height of the Stable Boundary Layer as seen in LES

    SciTech Connect

    Kosovic, B; Lundquist, J

    2004-06-15

    Climate models, numerical weather prediction (NWP) models, and atmospheric dispersion models often rely on parameterizations of planetary boundary layer height. In the case of a stable boundary layer, errors in boundary layer height estimation can result in gross errors in boundary-layer evolution and in prediction of turbulent mixing within the boundary layer.

  17. Modeling the Urban Boundary and Canopy Layers

    EPA Science Inventory

    Today, we are confronted with increasingly more sophisticated application requirements for urban modeling. These include those that address emergency response to acute exposures from toxic releases, health exposure assessments from adverse air quality, energy usage, and character...

  18. Wall Boundary Layer Measurements for the NASA Langley Transonic Dynamics Tunnel

    NASA Technical Reports Server (NTRS)

    Wieseman, Carol D.; Bennett, Robert M.

    2007-01-01

    Measurements of the boundary layer parameters in the NASA Langley Transonic Dynamics tunnel were conducted during extensive calibration activities following the facility conversion from a Freon-12 heavy-gas test medium to R-134a. Boundary-layer rakes were mounted on the wind-tunnel walls, ceiling, and floor. Measurements were made over the range of tunnel operation envelope in both heavy gas and air and without a model in the test section at three tunnel stations. Configuration variables included open and closed east sidewall wall slots, for air and R134a test media, reentry flap settings, and stagnation pressures over the full range of tunnel operation. The boundary layer thickness varied considerably for the six rakes. The thickness for the east wall was considerably larger that the other rakes and was also larger than previously reported. There generally was some reduction in thickness at supersonic Mach numbers, but the effect of stagnation pressure, and test medium were not extensive.

  19. Trace-Gas Mixing in Isolated Urban Boundary Layers: Results from the 2001 Phoenix Sunrise Experiment

    SciTech Connect

    Berkowitz, Carl M.; Doran, J C.; Shaw, William J.; Springston, Stephen R.; Spicer, Chet W.

    2006-01-01

    Measurements made from surface sites, from the 50-m and 140-m levels (the 16th and 39th floors) of a skyscraper and from an instrumented aircraft are used to characterize early morning profiles of CO, NOy and O3 within the mid-morning summertime convective atmospheric boundary layer (CABL) over Phoenix, Arizona. Although mixing was anticipated to produce uniform values of these species throughout the CABL, this was found not to be the case. Background air advected into the upper levels of the boundary layer and entrained air from above appears to be the most likely cause for the lack of well-mixed trace gases. The results show that surface measurements may provide only limited information on concentrations of trace gas species higher in the boundary layer.

  20. Toward evaluation of heat fluxes in the convective boundary layer

    SciTech Connect

    Sorbjan, Z.

    1995-05-01

    This article demonstrates that vertical profiles of the heat flux in the convective boundary layer can be diagnosed through an integration over height of the time change rates of observed potential temperature profiles. Moreover, the basic characteristics of the convective boundary layer, such as the mixed-layer height z{sub t}, the depth of the interfacial (entrainment) layer, and the heat flux zero-crossing height h{sub 0} can be uniquely evaluated based on a time evolution of potential temperature profiles in the lower atmosphere. 12 refs., 12 figs., 1 tab.

  1. Further studies of unsteady boundary layers with flow reversal

    NASA Technical Reports Server (NTRS)

    Nash, J. F.

    1976-01-01

    One set of calculations was performed using the first order, time dependent turbulent boundary layer equations, and extended earlier work by Nash and Patel to a wider range of flows. Another set of calculations was performed for laminar flow using the time dependent Navier-Stokes equations. The results of the calculations confirm previous conclusions concerning the existence of a regime of unseparated flow, containing an embedded region of reversal, which is accessible to first order boundary layer theory. However, certain doubts are cast on the precise nature of the events which accompany the eventual breakdown of the theory due to singularity onset. The earlier view that the singularity appears as the final event in a sequence involving rapid thickening of the boundary layer and the formation of a localized region of steep gradients is called into question by the present results. It appears that singularity onset is not necessarily preceded by rapid boundary layer thickening, or even necessarily produces immediate thickening.

  2. Interacting turbulent boundary layer over a wavy wall

    NASA Technical Reports Server (NTRS)

    Polak, A.; Werle, M. J.

    1977-01-01

    The two dimensional supersonic flow of a thick turbulent boundary layer over a train of relatively small wave-like protuberances is considered. The flow conditions and the geometry are such that there exists a strong interaction between the viscous and inviscid flow. The problem cannot be solved without inclusion of interaction effects due to the occurrence of the separation singularity in classical boundary layer methods. The interacting boundary layer equations are solved numerically using a time-like relaxation method with turbulence effects represented by the inclusion of the eddy viscosity model. Results are presented for flow over a train of up to six waves for Mach numbers of 10 and 32 million/meter, and wall temperature rations (T sub w/T sub 0) of 0.4 and 0.8. Limited comparisons with independent experimental and analytical results are also given. Detailed results on the influence of small protuberances on surface heating by boundary layers are presented.

  3. The current structure of stratified tidal planetary boundary layer flow

    SciTech Connect

    Myrhaug, D.; Slaattelid, O.H.

    1995-12-31

    The paper presents the bottom shear stress and velocity profiles in stratified tidal planetary boundary layer flow by using similarity theory. For a given seabed roughness length, free stream current velocity components, frequency of tidal oscillation, Coriolis parameter and stratification parameter the maximum bottom shear stress is determined for flow conditions in the rough, smooth and transitional smooth-to-rough turbulent regime. Further, the direction of the bottom shear stress and the velocity profiles are given. Comparison is made with data from field measurements of time-independent as well as tidal planetary boundary layer flow for neutral conditions, and the agreement between the predictions and the data is generally good. Further, an example of application for stable stratification is given, and qualitatively the predictions show, as expected, that the bottom shear stress and the thickness of the boundary layer become smaller for stable than for neutral stratification. Other features of the tidal planetary boundary layer flow are also discussed.

  4. Viscous boundary layers in rotating fluids driven by periodic flows

    NASA Technical Reports Server (NTRS)

    Bergstrom, R. W.; Cogley, A. C.

    1976-01-01

    The paper analyzes the boundary layers formed in a rotating fluid by an oscillating flow over an infinite half plate, with particular attention paid to the effects of unsteadiness, the critical latitude effect and the structure of the solution to the boundary layer equations at resonance. The Navier-Stokes boundary layer equations are obtained through an asymptotic expansion with the incorporation of the Rossby and Ekman numbers and are analyzed as the sum of a nonlinear steady solution and a linearized unsteady solution. The solution is predominantly composed of two inertial wave vector components, one circularly polarized to the left and the other circularly polarized to the right. The problem considered here has relevance in oceanography and meteorology, with special reference to the unsteady atmospheric boundary layer.

  5. The structure and evolution of boundary layers in stratified convection

    NASA Astrophysics Data System (ADS)

    Anders, Evan H.; Brown, Benjamin; Brandenburg, Axel; Rast, Mark

    2016-05-01

    Solar convection is highly stratified, and the density in the Sun increases by many orders of magnitude from the photosphere to the base of the convection zone. The photosphere is an important boundary layer, and interactions between the surface convection and deep convection may lie at the root of the solar convection conundrum, where observed large-scale velocities are much lower than predicted by full numerical simulations. Here, we study the structure and time evolution of boundary layers in numerical stratified convection. We study fully compressible convection within plane-parallel layers using the Dedalus pseudospectral framework. Within the context of polytropic stratification, we study flows from low (1e-3) to moderately high (0.1) Mach number, and at moderate to high Rayleigh number to study both laminar and turbulent convective transport. We aim to characterize the thickness and time variation of velocity and thermal (entropy) boundary layers at the top and bottom boundaries of the domain.

  6. A compressible boundary layer algorithm for use with SINDA '85

    NASA Technical Reports Server (NTRS)

    Sakowski, Barbara; Darling, Douglas; Vandewall, Allan

    1992-01-01

    It is useful to interface a high-speed-flow solution and SINDA to analyze the thermal behavior of systems that include both conduction and high speed flows. When interfacing a high-speed-flow solution to SINDA, it may be necessary to include the viscous effects in the energy equations. Boundary layer effects of interest include heat transfer coefficients (including convection and viscous dissipation) and friction coefficients. To meet this need, a fast, uncoupled, compressible, two-dimensional, boundary layer algorithm was developed that can model flows with and without separation. This algorithm was used as a subroutine with SINDA. Given the core flow properties and the wall heat flux from SINDA, the boundary layer algorithm returns a wall temperature to SINDA and boundary layer algorithm are iterated until they predict the same wall temperature.

  7. Boundary-layer transition effects on airplane stability and control

    NASA Technical Reports Server (NTRS)

    Van Dam, C. P.; Holmes, B. J.

    1986-01-01

    Surface contamination of laminar-flow airfoils can significantly modify the location of transition from laminar-to-turbulent boundary-layer flow. The contamination can be the result of insect debris, environmental effects such as ice crystals and moisture due to mist or rain, surface damage, or other contamination adhering to the surface. Location and mode of transition have a dominant effect on the lift-and-drag characteristics of a lifting surface. The influences of laminar boundary-layer flow behavior on airplane stability and control are examined through theoretical results and experimental (wind-tunnel and free-flight) data. For certain airfoils with a relatively steep pressure recovery it is shown that loss of laminar flow near the leading edge can result in premature separation of the turbulent boundary layer and, consequently, in loss of lift and control effectiveness. Aerodynamic modifications which minimize boundary-layer transition effects on airplane stability and control are also discussed.

  8. Experimental measurements of unsteady turbulent boundary layers near separation

    NASA Technical Reports Server (NTRS)

    Simpson, R. L.

    1982-01-01

    Investigations conducted to document the behavior of turbulent boundary layers on flat surfaces that separate due to adverse pressure gradients are reported. Laser and hot wire anemometers measured turbulence and flow structure of a steady free stream separating turbulent boundary layer produced on the flow of a wind tunnel section. The effects of sinusoidal and unsteadiness of the free stream velocity on this separating turbulent boundary layer at a reduced frequency were determined. A friction gage and a thermal tuft were developed and used to measure the surface skin friction and the near wall fraction of time the flow moves downstream for several cases. Abstracts are provided of several articles which discuss the effects of the periodic free stream unsteadiness on the structure or separating turbulent boundary layers.

  9. Stability of the laminar boundary layer in a streamwise corner

    NASA Technical Reports Server (NTRS)

    Lakin, W. D.

    1984-01-01

    The stability of viscous, incompressible flow along a streamwise corner, often called the corner boundary layer problem is examined. The semi-infinite boundary value problem satisfied by small amplitude disturbances in the "bending boundary layer' region is obtained. The mean secondary flow induced by the corner exhibits a flow reversal in this region. Uniformly valid "first approximations' to solutions of the governing differential equations are derived. Uniformity at infinity is achieved by a suitable choice of the large parameter and use of an approximate Langer variable. Approximations to solutions of balanced type have a phase shift across the critical layer which is associated with instabilities in the case of two dimensional boundary layer profiles.

  10. Sea Breezes over the Red Sea: Affect of topography and interaction with Desert Convective Boundary Layer

    NASA Astrophysics Data System (ADS)

    Khan, Basit A.; Stenchikov, Georgiy; Abualnaja, Yasser

    2014-05-01

    Thermodynamic structure of sea-breeze, its interaction with coastal mountains, desert plateau and desert convective boundary layer have been investigated in the middle region of the Red Sea around 25°N, at the Western coast of Saudi Arabia. Sea and land breeze is a common meteorological phenomenon in most of the coastal regions around the world. Sea-Breeze effects the local meteorology and cause changes in wind speed, direction, cloud cover and sometimes precipitation. The occurrence of sea-breeze, its intensity and landward propagation are important for wind energy resource assessment, load forecasting for existing wind farms, air pollution, marine and aviation applications. The thermally induced mesoscale circulation of sea breeze modifies the desert Planetary Boundary Layer (PBL) by forming Convective Internal Boundary Layer (CIBL), and propagates inland as a density current. The leading edge of the denser marine air rapidly moves inland undercutting the hot and dry desert air mass. The warm air lifts up along the frontal boundary and if contains enough moisture a band of clouds is formed along the sea breeze front (SBF). This study focuses on the thermodynamic structure of sea-breeze as it propagates over coastal rocky mountain range of Al-Sarawat, east of the Red Sea coast, and the desert plateau across the mountain range. Additional effects of topographical gaps such as Tokar gap on the dynamics of sea-land breezes have also been discussed. Interaction of SBF with the desert convective boundary layer provide extra lifting that could further enhance the convective instability along the frontal boundary. This study provides a detailed analysis of the thermodynamics of interaction of the SBF and convective internal boundary layer over the desert. Observational data from a buoy and meteorological stations have been utilized while The Advanced Research WRF (ARW) modeling system has been employed in real and 2D idealized configuration.

  11. Approximation theory for boundary layer suction through individual slits

    NASA Technical Reports Server (NTRS)

    Walz, A.

    1979-01-01

    The basic concepts of influencing boundary layers are summarized, especially the prevention of flow detachment and the reduction of frictional resistance. A mathematical analysis of suction through a slit is presented with two parameters, for thickness and for shape of the boundary layer, being introduced to specify the flow's velocity profile behind the slit. An approximation of the shape parameter produces a useful formula, which can be used to determine the most favorable position of the slit. An aerodynamic example is given.

  12. Tropical boundary layer equilibrium in the last ice age

    NASA Technical Reports Server (NTRS)

    Betts, Alan K.; Ridgway, W.

    1992-01-01

    A radiative-convective boundary layer model is used to assess the effect of changing sea surface temperature, pressure, wind speed, and the energy export from the tropics on the boundary layer equilibrium equivalent potential temperature. It remains difficult to reconcile the observations that during the last glacial maximum (18,000 yr BP) the snowline on the tropical mountains fell 950 m, while the tropical sea surface temperatures fell only 1-2 K.

  13. Wave phenomena in a high Reynolds number compressible boundary layer

    NASA Technical Reports Server (NTRS)

    Bayliss, A.; Maestrello, L.; Parikh, P.; Turkel, E.

    1985-01-01

    Growth of unstable disturbances in a high Reynolds number compressible boundary layer is numerically simulated. Localized periodic surface heating and cooling as a means of active control of these disturbances is studied. It is shown that compressibility in itself stabilizes the flow but at a lower Mach number, significant nonlinear distortions are produced. Phase cancellation is shown to be an effective mechanism for active boundary layer control.

  14. Classification of structures in the stable boundary layer

    NASA Astrophysics Data System (ADS)

    Belusic, Danijel

    2015-04-01

    Ubiquitous but generally unknown flow structures populate the stable boundary layer at scales larger than turbulence. They introduce nonstationarity, affect the generation of turbulence and induce fluxes. Classification of the structures into clusters based on a similarity measure could reduce their apparent complexity and lead to better understanding of their characteristics and mechanisms. Here we explore different approaches to detect and classify structures, the usefulness of those approaches, and their potential to provide better understanding of the stable boundary layer.

  15. MPLNET V3 Cloud and Planetary Boundary Layer Detection

    NASA Astrophysics Data System (ADS)

    Lewis, Jasper R.; Welton, Ellsworth J.; Campbell, James R.; Haftings, Phillip C.

    2016-06-01

    The NASA Micropulse Lidar Network Version 3 algorithms for planetary boundary layer and cloud detection are described and differences relative to the previous Version 2 algorithms are highlighted. A year of data from the Goddard Space Flight Center site in Greenbelt, MD consisting of diurnal and seasonal trends is used to demonstrate the results. Both the planetary boundary layer and cloud algorithms show significant improvement of the previous version.

  16. Wall pressure spectra calculations for equilibrium boundary layers

    NASA Technical Reports Server (NTRS)

    Panton, R. L.; Linebarger, J. H.

    1974-01-01

    Calculation of the flow direction wave-number spectrum of pressure fluctuations on the wall under a turbulent boundary layer. Particular attention is paid to finding the spectral density of the wall pressure fluctuations as a function of the streamwise wave number. For this purpose a five-dimensional integration is employed in which the equilibrium boundary layers are assumed to have velocity profiles given by the law of the wall plus Cole's wake function.

  17. Shear-induced surface alignment of polymer dispersed liquid crystal microdroplets on the boundary layer

    NASA Technical Reports Server (NTRS)

    Parmar, D. S.; Singh, J. J.

    1993-01-01

    Polymer dispersed liquid crystal thin films have been deposited on a glass substrate, utilizing the processes of polymerization and solvent evaporation induced phase separation. Liquid crystal microdroplets trapped on the upper surface of the thin film respond to the shear stress due to air or gas flow on the surface layer. Response to an applied step shear stress input on the surface layer has been measured by measuring the time response of the transmitted light intensity. Initial results on the measurements of the light transmission as a function of the air flow differential pressure indicate that these systems offer features suitable for boundary layer and gas flow sensors.

  18. Nanoscale Hot-Wire Probes for Boundary-Layer Flows

    NASA Technical Reports Server (NTRS)

    Tedjojuwono, Ken T.; Herring, Gregory C.

    2003-01-01

    Hot-wire probes having dimensions of the order of nanometers have been proposed for measuring temperatures (and possibly velocities) in boundary-layer flows at spatial resolutions much finer and distances from walls much smaller than have been possible heretofore. The achievable resolutions and minimum distances are expected to be of the order of tens of nanometers much less than a typical mean free path of a molecule and much less than the thickness of a typical flow boundary layer in air at standard temperature and pressure. An additional benefit of the small scale of these probes is that they would perturb the measured flows less than do larger probes. The hot-wire components of the probes would likely be made from semiconducting carbon nanotubes or ropes of such nanotubes. According to one design concept, a probe would comprise a single nanotube or rope of nanotubes laid out on the surface of an insulating substrate between two metallic wires. According to another design concept, a nanotube or rope of nanotubes would be electrically connected and held a short distance away from the substrate surface by stringing it between two metal electrodes. According to a third concept, a semiconducting nanotube or rope of nanotubes would be strung between the tips of two protruding electrodes made of fully conducting nanotubes or ropes of nanotubes. The figure depicts an array of such probes that could be used to gather data at several distances from a wall. It will be necessary to develop techniques for fabricating the probes. It will also be necessary to determine whether the probes will be strong enough to withstand the aerodynamic forces and impacts of micron-sized particles entrained in typical flows of interest.

  19. Studies of planetary boundary layer by infrared thermal imagery

    SciTech Connect

    Albina, Bogdan; Dimitriu, Dan Gheorghe Gurlui, Silviu Octavian; Cazacu, Marius Mihai; Timofte, Adrian

    2014-11-24

    The IR camera is a relatively novel device for remote sensing of atmospheric thermal processes from the Planetary Boundary Layer (PBL) based on measurements of the infrared radiation. Infrared radiation is energy radiated by the motion of atoms and molecules on the surface of aerosols, when their temperature is more than absolute zero. The IR camera measures directly the intensity of radiation emitted by aerosols which is converted by an imaging sensor into an electric signal, resulting a thermal image. Every image pixel that corresponds to a specific radiance is pre-processed to identify the brightness temperature. The thermal infrared imaging radiometer used in this study, NicAir, is a precision radiometer developed by Prata et al. The device was calibrated for the temperature range of 270–320 K and using a calibration table along with image processing software, important information about variations in temperature can be extracted from acquired IR images. The PBL is the lowest layer of the troposphere where the atmosphere interacts with the ground surfaces. The importance of PBL lies in the fact that it provides a finite but varying volume in which pollutants can disperse. The aim of this paper is to analyze the PBL altitude and thickness variations over Iasi region using the IR imaging camera as well as its behavior from day to night and thermal processes occurring in PBL.

  20. Large eddy simulation of boundary layer flow under cnoidal waves

    NASA Astrophysics Data System (ADS)

    Li, Yin-Jun; Chen, Jiang-Bo; Zhou, Ji-Fu; Zhang, Qiang

    2016-02-01

    Water waves in coastal areas are generally nonlinear, exhibiting asymmetric velocity profiles with different amplitudes of crest and trough. The behaviors of the boundary layer under asymmetric waves are of great significance for sediment transport in natural circumstances. While previous studies have mainly focused on linear or symmetric waves, asymmetric wave-induced flows remain unclear, particularly in the flow regime with high Reynolds numbers. Taking cnoidal wave as a typical example of asymmetric waves, we propose to use an infinite immersed plate oscillating cnoidally in its own plane in quiescent water to simulate asymmetric wave boundary layer. A large eddy simulation approach with Smagorinsky subgrid model is adopted to investigate the flow characteristics of the boundary layer. It is verified that the model well reproduces experimental and theoretical results. Then a series of numerical experiments are carried out to study the boundary layer beneath cnoidal waves from laminar to fully developed turbulent regimes at high Reynolds numbers, larger than ever studied before. Results of velocity profile, wall shear stress, friction coefficient, phase lead between velocity and wall shear stress, and the boundary layer thickness are obtained. The dependencies of these boundary layer properties on the asymmetric degree and Reynolds number are discussed in detail.

  1. Experimental studies on two dimensional shock boundary layer interactions

    NASA Technical Reports Server (NTRS)

    Skebe, S. A.; Greber, I.; Hingst, W. R.

    1984-01-01

    Experiments have been performed on the interaction of oblique shock waves with flat plate boundary layers in the 30.48 cm x 30.48 cm (1 ft. x 1 ft.) supersonic wind tunnel at NASA Lewis Research Center. High accuracy measurements of the plate surface static pressure and shear stress distributions as well as boundary layer velocity profiles were obtained through the interaction region. Documentation was also performed of the tunnel test section flow field and of the two-dimensionality of the interaction regions. The findings provide detailed description of two-dimensional interaction with initially laminar boundary layers over the Mach number range 2.0 to 4.0. Additional information with regard to interactions involving initially transitional boundary layers is presented over the Mach number range 2.0 to 3.0 and those for initially turbulent boundary layers at Mach 2.0. These experiments were directed toward providing well documented information of high accuracy useful as test cases for analytic and numerical calculations. Flow conditions encompassed a Reynolds number range of 4.72E6 to 2.95E7 per meter. The shock boundary layer interaction results were found to be generally in good agreement with the experimental work of previous authors both in terms of direct numerical comparison and in support of correlations establishing laminar separation characteristics.

  2. Orbiter Boundary Layer Transition Stability Modeling at Flight Entry Conditions

    NASA Technical Reports Server (NTRS)

    Bartkowicz, Matt; Johnson, Heath; Candler, Graham; Campbell, Charles H.

    2009-01-01

    State of the art boundary layer stability modeling capabilities are increasingly seeing application to entry flight vehicles. With the advent of user friendly and robust implementations of two-dimensional chemical nonequilibrium stability modeling with the STABL/PSE-CHEM software, the need for flight data to calibrate such analyses capabilities becomes more critical. Recent efforts to perform entry flight testing with the Orbiter geometry related to entry aerothermodynamics and boundary layer transition is allowing for a heightened focus on the Orbiter configuration. A significant advancement in the state of the art can likely be achieved by establishing a basis of understanding for the occurrence of boundary layer transition on the Orbiter due to discrete protruding gap fillers and the nominal distributed roughness of the actual thermal protection system. Recent success in demonstrating centerline two-dimensional stability modeling on the centerline of the Orbiter at flight entry conditions provides a starting point for additional investigations. The more detailed paper will include smooth Orbiter configuration boundary layer stability results for several typical orbiter entry conditions. In addition, the numerical modeling approach for establishing the mean laminar flow will be reviewed and the method for determining boundary layer disturbance growth will be overviewed. In addition, if actual Orbiter TPS surface data obtained via digital surface scans become available, it may be possible to investigate the effects of an as-flown flight configuration on boundary layer transition compared to a smooth CAD reference.

  3. Dynamic Boundary Layer Properties in Turbulent Thermal Convection

    NASA Astrophysics Data System (ADS)

    Xia, Ke-Qing; Har Cheung, Yin; Sun, Chao

    2004-11-01

    We report an experimental study on the properties of the velocity and temperature boundary layers in turbulent thermal convection in a rectangular-shaped box over a range of Rayleigh numbers and at a constant Prandtl number. Velocity components both parallel and perpendicular to the conducting plate are measured simultaneously using the PIV technique. Our results show that, for the given geometry of the cell, the velocity boundary layer at the conduction plate is of a Blasius type, i.e. the boundary layer thickness δv scales with the Reynolds number Re as δv ˜ Re-1/2. The measurement further reveals that, at the velocity boundary layer, the turbulent (Reynolds) shear tress becomes larger than the viscous shear stress when Ra reaches 1-2×10^10, indicating that the boundary layer becomes turbulent for Ra >10^10. The viscous dissipation rate calculated based on the measured velocity field shows that it is dominated by contribution from the bulk over that from the boundary layer.

  4. GASEOUS ELEMENTAL MERCURY IN THE MARINE BOUNDARY LAYER: EVIDENCE FOR RAPID REMOVAL IN ANTHROPOGENIC POLLUTION

    EPA Science Inventory

    In this study, gas-phase elemental mercury (Hg0) and related species (including inorganic reactive gaseous mercury (RGM) and particulate mercury (PHg)) were measured at Cheeka Peak Observatory (CPO), Washington State, in the marine boundary layer (MBL) during 2001-2002. Air of...

  5. Application of a Reynolds stress model to separating boundary layers

    NASA Technical Reports Server (NTRS)

    Ko, Sung HO

    1993-01-01

    Separating turbulent boundary layers occur in many practical engineering applications. Nonetheless, the physics of separation/reattachment of flows is poorly understood. During the past decade, various turbulence models were proposed and their ability to successfully predict some types of flows was shown. However. prediction of separating/reattaching flows is still a formidable task for model developers. The present study is concerned with the process of separation from a smooth surface. Features of turbulent separating boundary layers that are relevant to modeling include the following: the occurrence of zero wall shear stress, which causes breakdown of the boundary layer approximation; the law of the wall not being satisfied in the mean back flow region; high turbulence levels in the separated region; a significant low-frequency motion in the separation bubble; and the turbulence structure of the separated shear layer being quite different from that of either the mixing layers or the boundary layers. These special characteristics of separating boundary layers make it difficult for simple turbulence models to correctly predict their behavior.

  6. Observations of the Arctic boundary layer clouds during ACSE 2014

    NASA Astrophysics Data System (ADS)

    Achtert, P.; Sotiropoulou, G.; Brooks, I. M.; Brooks, B. J.; Johnston, P. E.; Persson, O. P. G.; Prytherch, J.; Salisbury, D.; Sedlar, J.; Tjernstrom, M. K. H.; Wolfe, D. E.; Shupe, M.

    2015-12-01

    Boundary-layer structure and dynamics are intimately linked with both surface exchange processes and the properties of boundary-layer clouds, which in turn exert a strong control on the surface energy budget. Sea ice melt and formation are thus closely coupled with boundary layer clouds and turbulent exchange. Coordinated observations of boundary layer processes and cloud dynamics are sparse in over the Arctic Ocean. This holds especially for observations that extend over the entire ice melt season. Measurements with surface-based remote-sensing instruments and near-surface meteorological sensors as well as through radiosoundings were perfomed during the 3-month Arctic Clouds in Summer Experiment (ACSE) in the East Siberian Arctic Ocean during the summer and early autumn of 2014. We will present a detailed view of cloud and fog properties in connection with boundary layer structure (e.g. inversions, stratification), vertical mixing processes, and the effect of a variety of surface conditions from open water, through marginal ice to dense pack ice on the overlaying cloud layers over. Most of the observed clouds showed a base height of 300 m or less. Strongly stable near-surface conditions with fog were often observed during the beginning of the cruise (summer season), whereas deeper surface-based mixed layers capped by mixed-phase clouds occured more frequently in autumn.

  7. PLIF Visualization of Active Control of Hypersonic Boundary Layers Using Blowing

    NASA Technical Reports Server (NTRS)

    Bathel, Brett F.; Danehy, Paul M.; Inman, Jennifer A.; Alderfer, David W.; Berry, Scott A.

    2008-01-01

    Planar laser-induced fluorescence (PLIF) imaging was used to visualize the boundary layer flow on a 1/3-scale Hyper-X forebody model. The boundary layer was perturbed by blowing out of orifices normal to the model surface. Two blowing orifice configurations were used: a spanwise row of 17-holes spaced at 1/8 inch, with diameters of 0.020 inches and a single-hole orifice with a diameter of 0.010 inches. The purpose of the study was to visualize and identify laminar and turbulent structures in the boundary layer and to make comparisons with previous phosphor thermography measurements of surface heating. Jet penetration and its influence on the boundary layer development was also examined as was the effect of a compression corner on downstream boundary layer transition. Based upon the acquired PLIF images, it was determined that global surface heating measurements obtained using the phosphor thermography technique provide an incomplete indicator of transitional and turbulent behavior of the corresponding boundary layer flow. Additionally, the PLIF images show a significant contribution towards transition from instabilities originating from the underexpanded jets. For this experiment, a nitric oxide/nitrogen mixture was seeded through the orifices, with nitric oxide (NO) serving as the fluorescing gas. The experiment was performed in the 31-inch Mach 10 Air Tunnel at NASA Langley Research Center.

  8. Evaluation of the parameterization for cloud top-down mixing in the boundary layer

    NASA Astrophysics Data System (ADS)

    Lee, Eun-Hee; Hong, Song-You; Dudhia, Jimy

    2015-04-01

    An enhanced turbulent mixing due to radiative cooling at cloud or fog top located in the planetary boundary layer (PBL) is parameterized by adopting the top-down diffusivity profile and the cloud top entrainment. The algorithm is first implemented to YSU PBL scheme to be evaluated for idealized cases and then applied for the regional and global real case simulations. Since the modified algorithm consider the mixing height as near surface cloud top, its enhanced mixing effect appears more distinctly especially for the stabilized nocturnal boundary layer. As a result, in the idealized radiation fog case study, it is found that near-surface air temperature decreases due to both radiative cooling at fog top and boundary layer mixing of the new algorithm. Also, the moisture is diffused more effectively to the above the boundary layer, which leads to the rapid dispersion of the fog in the modified algorithm. As a result, the new algorithm simulates the warm and dried near-surface and the cool and moistened boundary layer top in the following daytime. It is also found that the modified algorithm affects the cloud structure frequently occurring at the ocean boundary layer top in the regional and global simulation results.

  9. Validation of High-Speed Turbulent Boundary Layer and Shock-Boundary Layer Interaction Computations with the OVERFLOW Code

    NASA Technical Reports Server (NTRS)

    Oliver, A. B.; Lillard, R. P.; Blaisdell, G. A.; Lyrintizis, A. S.

    2006-01-01

    The capability of the OVERFLOW code to accurately compute high-speed turbulent boundary layers and turbulent shock-boundary layer interactions is being evaluated. Configurations being investigated include a Mach 2.87 flat plate to compare experimental velocity profiles and boundary layer growth, a Mach 6 flat plate to compare experimental surface heat transfer,a direct numerical simulation (DNS) at Mach 2.25 for turbulent quantities, and several Mach 3 compression ramps to compare computations of shock-boundary layer interactions to experimental laser doppler velocimetry (LDV) data and hot-wire data. The present paper describes outlines the study and presents preliminary results for two of the flat plate cases and two small-angle compression corner test cases.

  10. Boundary layer equations and symmetry analysis of a Carreau fluid

    NASA Astrophysics Data System (ADS)

    Dolapci, Ihsan Timuçin

    2016-06-01

    In this paper, boundary layer equations of the Carreau fluid have been examined. Lie group theory is applied to the governing equations and symmetries of the equations are determined. The non-linear partial differential equations and their boundary conditions are transformed into a system of ordinary differential equations using the similarity transformations obtained from the symmetries. The system of ordinary differential equations are numerically solved for the boundary layer conditions. Finally, effects of non-Newtonian parameters on the solutions are investigated in detail.

  11. Seasonal Simulations of the Planetary Boundary Layer and Boundary-Layer Stratocumulus Clouds with a General Circulation Model.

    NASA Astrophysics Data System (ADS)

    Randall, David A.; Abeles, James A.; Corsetti, Thomas G.

    1985-04-01

    The UCLA general circulation model (GCM) has been used to simulate the seasonally varying planetary boundary layer (PBL), as well as boundary-layer stratus and stratocumulus clouds. The PBL depth is a prognostic variable of the GCM, incorporated through the use of a vertical coordinate system in which the PBL is identified with the lowest model layer.Stratocumulus clouds are assumed to occur whenever the upper portion of the PBL becomes saturated, provided that the cloud-top entrainment instability does not occur. As indicated by Arakawa and Schubert, cumulus clouds are assumed to originate at the PBL top, and tend to make the PBL shallow by drawing on its mass.Results are presented from a three-year simulation, starting from a 31 December initial condition obtained from an earlier run with a different version of the model. The simulated seasonally varying climates of the boundary layer and free troposphere are realistic. The observed geographical and seasonal variations of stratocumulus cloudiness are fairly well simulated. The simulation of the stratocumulus clouds associated with wintertime cold-air outbreaks is particularly realistic. Examples are given of individual events. The positions of the subtropical marine stratocumulus regimes are realistically simulated, although their observed frequency of occurrence is seriously underpredicted. The observed summertime abundance of Arctic stratus clouds is also underpredicted.In the GCM results, the layer cloud instability appears to limit the extent of the marine subtropical stratocumulus regimes. The instability also frequently occurs in association with cumulus convection over land.Cumulus convection acts as a very significant sink of PBL mass throughout the tropics, and over the midlatitude continents in summer.Three experiments have been performed to investigate the sensitivity of the GCM results to aspects of the PBL and stratocumulus parameterizations. For all three experiments, the model was started from 1

  12. Version 2 of the Protuberance Correlations for the Shuttle-Orbiter Boundary Layer Transition Tool

    NASA Technical Reports Server (NTRS)

    King, Rudolph A.; Kegerise, Michael A.; Berry, Scott A.

    2009-01-01

    Orbiter-specific transition data, acquired in four ground-based facilities (LaRC 20-Inch Mach 6 Air Tunnel, LaRC 31-Inch Mach 10 Air Tunnel, LaRC 20-Inch Mach 6 CF4 Tunnel, and CUBRC LENS-I Shock Tunnel) with three wind tunnel model scales (0.75, 0.90, and 1.8%) and from Orbiter historical flight data, have been analyzed to improve a pre-existing engineering tool for reentry transition prediction on the windward side of the Orbiter. Boundary layer transition (BLT) engineering correlations for transition induced by isolated protuberances are presented using a laminar Navier-Stokes (N-S) database to provide the relevant boundary-layer properties. It is demonstrated that the earlier version of the BLT correlation that had been developed using parameters derived from an engineering boundary-layer code has improved data collapse when developed with the N-S database. Of the new correlations examined, the proposed correlation 5, based on boundary-layer edge and wall properties, was found to provide the best overall correlation metrics when the entire database is employed. The second independent correlation (proposed correlation 7) selected is based on properties within the boundary layer at the protuberance height. The Aeroheating Panel selected a process to derive the recommended coefficients for Version 2 of the BLT Tool. The assumptions and limitations of the recommended protuberance BLT Tool V.2 are presented.

  13. Modeling large wind farms in conventionally neutral atmospheric boundary layers under varying initial conditions

    NASA Astrophysics Data System (ADS)

    Allaerts, Dries; Meyers, Johan

    2014-05-01

    Atmospheric boundary layers (ABL) are frequently capped by an inversion layer limiting the entrainment rate and boundary layer growth. Commonly used analytical models state that the entrainment rate is inversely proportional to the inversion strength. The height of the inversion turns out to be a second important parameter. Conventionally neutral atmospheric boundary layers (CNBL) are ABLs with zero surface heat flux developing against a stratified free atmosphere. In this regime the inversion-filling process is merely driven by the downward heat flux at the inversion base. As a result, CNBLs are strongly dependent on the heating history of the boundary layer and strong inversions will fail to erode during the course of the day. In case of large wind farms, the power output of the farm inside a CNBL will depend on the height and strength of the inversion above the boundary layer. On the other hand, increased turbulence levels induced by wind farms may partially undermine the rigid lid effect of the capping inversion, enhance vertical entrainment of air into the farm, and increase boundary layer growth. A suite of large eddy simulations (LES) is performed to investigate the effect of the capping inversion on the conventionally neutral atmospheric boundary layer and on the wind farm performance under varying initial conditions. For these simulations our in-house pseudo-spectral LES code SP-Wind is used. The wind turbines are modelled using a non-rotating actuator disk method. In the absence of wind farms, we find that a decrease in inversion strength corresponds to a decrease in the geostrophic angle and an increase in entrainment rate and geostrophic drag. Placing the initial inversion base at higher altitudes further reduces the effect of the capping inversion on the boundary layer. The inversion can be fully neglected once it is situated above the equilibrium height that a truly neutral boundary layer would attain under the same external conditions such as

  14. Multiple paths to subharmonic laminar breakdown in a boundary layer

    NASA Technical Reports Server (NTRS)

    Zang, Thomas A.; Hussaini, M. Yousuff

    1989-01-01

    Numerical simulations demonstrate that laminar breakdown in a boundary layer induced by the secondary instability of two-dimensional Tollmien-Schlichting waves to three-dimensional subharmonic disturbances need not take the conventional lambda vortex/high-shear layer path.

  15. ON AERODYNAMIC AND BOUNDARY LAYER RESISTANCES WITHIN DRY DEPOSITION MODELS

    EPA Science Inventory

    There have been many empirical parameterizations for the aerodynamic and boundary layer resistances proposed in the literature, e.g. those of the Meyers Multi-Layer Deposition Model (MLM) used with the nation-wide dry deposition network. Many include arbitrary constants or par...

  16. Coupling of magnetopause-boundary layer to the polar ionosphere

    NASA Technical Reports Server (NTRS)

    Wei, C. Q.; Lee, L. C.

    1993-01-01

    The plasma dynamics in the low-latitude boundary layer and its coupling to the polar ionosphere under boundary conditions at the magnetopause are investigated. In the presence of a driven plasma flow along the magnetopause, the Kelvin-Helmholtz instability can develop, leading to the formation and growth of plasma vortices in the boundary layer. The finite ionospheric conductivity leads to the decay of these vortices. The competing effect of the formation and decay of vortices leads to the formation of strong vortices only in a limited region. Several enhanced field-aligned power density regions associated with the boundary layer vortices and the upward field-aligned current (FAC) filaments can be found along the postnoon auroral oval. These enhanced field-aligned power density regions may account for the observed auroral bright spots.

  17. Numerical Studies of Boundary-Layer Receptivity

    NASA Technical Reports Server (NTRS)

    Reed, Helen L.

    1995-01-01

    Direct numerical simulations (DNS) of the acoustic receptivity process on a semi-infinite flat plate with a modified-super-elliptic (MSE) leading edge are performed. The incompressible Navier-Stokes equations are solved in stream-function/vorticity form in a general curvilinear coordinate system. The steady basic-state solution is found by solving the governing equations using an alternating direction implicit (ADI) procedure which takes advantage of the parallelism present in line-splitting techniques. Time-harmonic oscillations of the farfield velocity are applied as unsteady boundary conditions to the unsteady disturbance equations. An efficient time-harmonic scheme is used to produce the disturbance solutions. Buffer-zone techniques have been applied to eliminate wave reflection from the outflow boundary. The spatial evolution of Tollmien-Schlichting (T-S) waves is analyzed and compared with experiment and theory. The effects of nose-radius, frequency, Reynolds number, angle of attack, and amplitude of the acoustic wave are investigated. This work is being performed in conjunction with the experiments at the Arizona State University Unsteady Wind Tunnel under the direction of Professor William Saric. The simulations are of the same configuration and parameters used in the wind-tunnel experiments.

  18. Delay in convection in nocturnal boundary layer due to aerosol-induced cooling

    NASA Astrophysics Data System (ADS)

    Singh, Dhiraj Kumar; Ponnulakshmi, V. K.; Subramanian, G.; Sreenivas, K. R.

    2012-11-01

    Heat transfer processes in the nocturnal boundary layer (NBL) influence the surface energy budget, and play an important role in many micro-meteorological processes including the formation of inversion layers, radiation fog, and in the control of air-quality near the ground. Under calm clear-sky conditions, radiation dominates over other transport processes, and as a result, the air layers just above ground cool the fastest after sunset. This leads to an anomalous post-sunset temperature profile characterized by a minimum a few decimeters above ground (Lifted temperature minimum). We have designed a laboratory experimental setup to simulate LTM, involving an enclosed layer of ambient air, and wherein the boundary condition for radiation is decoupled from those for conduction and convection. The results from experiments involving both ambient and filtered air indicate that the high cooling rates observed are due to the presence of aerosols. Calculated Rayleigh number of LTM-type profiles is of the order 105-107 in the field and of order 103-105 in the laboratory. In the LTM region, there is convective motion when the Rayleigh number is greater than 104 rather than the critical Rayleigh number (Rac = 1709). The diameter of convection rolls is a function of height of minimum of LTM-type profiles. The results obtained should help in the parameterization of transport process in the nocturnal boundary layer, and highlight the need to accounting the effects of aerosols and ground emissivity in climate models.

  19. A Diagnostic Diagram to Understand the Marine Atmospheric Boundary Layer at High Wind Speeds

    NASA Astrophysics Data System (ADS)

    Kettle, Anthony

    2014-05-01

    Long time series of offshore meteorological measurements in the lower marine atmospheric boundary layer show dynamical regimes and variability that are forced partly by interaction with the underlying sea surface and partly by the passage of cloud systems overhead. At low wind speeds, the dynamics and stability structure of the surface layer depend mainly on the air-sea temperature difference and the measured wind speed at a standard height. The physical processes are mostly understood and the quantified through Monin-Obukhov (MO) similarity theory. At high wind speeds different dynamical regimes become dominant. Breaking waves contribute to the atmospheric loading of sea spray and water vapor and modify the character of air-sea interaction. Downdrafts and boundary layer rolls associated with clouds at the top of the boundary layer impact vertical heat and momentum fluxes. Data from offshore meteorological monitoring sites will typically show different behavior and the regime shifts depending on the local winds and synoptic conditions. However, the regular methods to interpret time series through spectral analysis give only a partial view of dynamics in the atmospheric boundary layer. Also, the spectral methods have limited use for boundary layer and mesoscale modellers whose geophysical diagnostics are mostly anchored in directly measurable quantities: wind speed, temperature, precipitation, pressure, and radiation. Of these, wind speed and the air-sea temperature difference are the most important factors that characterize the dynamics of the lower atmospheric boundary layer and they provide a dynamical and thermodynamic constraint to frame observed processes, especially at high wind speeds. This was recognized in the early interpretation of the Froya database of gale force coastal winds from mid-Norway (Andersen, O.J. and J. Lovseth, Gale force maritime wind. The Froya data base. Part 1: Sites and instrumentation. Review of the data base, Journal of Wind

  20. An experimental investigation of turbulent boundary layers along curved surfaces

    NASA Technical Reports Server (NTRS)

    So, R. M. C.; Mellor, G. L.

    1972-01-01

    A curved wall tunnel was designed, and an equilibrium turbulent boundary layer was set up on the straight section preceding the curved test section. Turbulent boundary layer flows with uniform and adverse pressure distributions along convex and concave walls were investigated. Hot-wire measurements along the convex surface indicated that turbulent mixing between fluid layers was very much reduced. However, the law of the wall held and the skin friction, thus determined, correlated well with other measurements. Hot-wire measurements along the concave test wall revealed a system of longitudinal vortices inside the boundary layer and confirmed that concave curvature enhances mixing. A self-consistent set of turbulent boundary layer equations for flows along curved surfaces was derived together with a modified eddy viscosity. Solution of these equations together with the modified eddy viscosity gave results that correlated well with the present data on flows along the convex surface with arbitrary pressure distribution. However, it could only be used to predict the mean characteristics of the flow along concave walls because of the existence of the system of longitudinal vortices inside the boundary layer.

  1. Pressure-strain correlations in curved wall boundary layers

    NASA Technical Reports Server (NTRS)

    Hong, S. K.; Murthy, S. N. B.

    1984-01-01

    Pressure-strain correlations, which represent some part of production and dissipation of Reynolds stress in turbulent wall-bounded shear layers, have been determined for the cases of boundary layer flow past a convex, a concave and a flat wall, the latter also in the case when it follows a convex wall (relaxing flow). The Large Eddy Interaction Model utilized for prediction also permits determination of the contribution from different parts of the turbulence spectra to the correlations in different parts across the boundary layer. The relation between the anisotropic nature of the correlations and the spectra in the different flow cases provides a means of testing models for the correlations.

  2. Feasibility study of optical boundary layer transition detection method

    NASA Technical Reports Server (NTRS)

    Azzazy, M.; Modarress, D.; Trolinger, J. D.

    1986-01-01

    A high sensitivity differential interferometer was developed to locate the region where the boundary layer flow undergoes transition from laminar to turbulent. Two laboratory experimental configurations were used to evaluate the performance of the interferometer: open shear layer, and low speed wind tunnel turbulent spot configuration. In each experiment, small temperature fluctuations were introduced as the signal source. Simultaneous cold wire measurements were compared with the interferometer data. The comparison shows that the interferometer is sensitive to very weak phase variations in the order of 0.001 the laser wavelength. An attempt to detect boundary layer transition over a flat plate at NASA-Langley Unitary Supersonic Wind Tunnel using the interferometer system was performed. The phase variations during boundary layer transition in the supersonic wind tunnel were beyond the minimum signal-to-noise level of the instrument.

  3. Modeling turbulent boundary layers in adverse pressure gradients

    NASA Technical Reports Server (NTRS)

    Belcher, Stephen E.

    1991-01-01

    Many of the turbulent layers encountered in practical flows develop in adverse pressure gradients; hence, the dynamics of the thickening and possible separation of the boundary layer has important implications for design practices. What are the key physical processes that govern how a turbulent boundary layer responds to an adverse pressure gradient, and how should these processes be modeled? Despite the ubiquity of such flows in engineering and nature, these equations remain largely unanswered. The turbulence closure models presently used to describe these flows commonly use 'wall functions' that have ad hoc corrections for the effects of pressure gradients. There is, therefore, a practical and theoretical need to examine the effects of adverse pressure gradients on wall bounded turbulent flows in order to develop models based on sound physical principle. The evolution of a turbulent boundary layer on a flat wall with an externally imposed pressure gradient is studied.

  4. Vortex Generators to Control Boundary Layer Interactions

    NASA Technical Reports Server (NTRS)

    Babinsky, Holger (Inventor); Loth, Eric (Inventor); Lee, Sang (Inventor)

    2014-01-01

    Devices for generating streamwise vorticity in a boundary includes various forms of vortex generators. One form of a split-ramp vortex generator includes a first ramp element and a second ramp element with front ends and back ends, ramp surfaces extending between the front ends and the back ends, and vertical surfaces extending between the front ends and the back ends adjacent the ramp surfaces. A flow channel is between the first ramp element and the second ramp element. The back ends of the ramp elements have a height greater than a height of the front ends, and the front ends of the ramp elements have a width greater than a width of the back ends.

  5. FOREWORD: International Conference on Planetary Boundary Layer and Climate Change

    NASA Astrophysics Data System (ADS)

    Djolov, G.; Esau, I.

    2010-05-01

    structural uncertainties is hard to reduce and this could be one of the reasons determining slow progress in narrowing the climate model uncertainty range over the last 30 years (Knutti and Hagerl, Nature Geoscience, 2008). One of the most prominent structural uncertainties in the ongoing transient climate change is related to poor understanding and hence incorrect modelling of the turbulent physics and dynamics processes in the planetary boundary layer. Nevertheless, the climate models continue to rely on physically incorrect boundary layer parameterizations (Cuxart et al., BLM, 2006), whose erroneous dynamical response in the climate models may lead to significant abnormalities in simulated climate. At present, international efforts in theoretical understanding of the turbulent mixing have resulted in significant progress in turbulence simulation, measurements and parameterizations. However, this understanding has not yet found its way to the climate research community. Vice versa, climate research is not usually addressed by the boundary layer research community. The gap needs to be closed in order to crucially complete the scientific basis of climate change studies. The focus of the proposed forum could be formulated as follows: The planetary boundary layer determines several key parameters controlling the Earth's climate system but being a dynamic sub-system, just a layer of turbulent mixing in the atmosphere/ocean, it is also controlled by the climate system and its changes. Such a dynamic relationship causes a planetary boundary layer feedback (PBL-feedback) which could be defined as the response of the surface air temperature on changes in the vertical turbulent mixing. The forum participants have discussed both climatological and fluid dynamic aspects of this response, in order to quantify their role in the Earth's transient heat uptake and its representation in climate models. The choice of the forum location and dates are motivated by the role of tropical oceans

  6. Nature, theory and modelling of geophysical convective planetary boundary layers

    NASA Astrophysics Data System (ADS)

    Zilitinkevich, Sergej

    2015-04-01

    Geophysical convective planetary boundary layers (CPBLs) are still poorly reproduced in oceanographic, hydrological and meteorological models. Besides the mean flow and usual shear-generated turbulence, CPBLs involve two types of motion disregarded in conventional theories: 'anarchy turbulence' comprised of the buoyancy-driven plumes, merging to form larger plumes instead of breaking down, as postulated in conventional theory (Zilitinkevich, 1973), large-scale organised structures fed by the potential energy of unstable stratification through inverse energy transfer in convective turbulence (and performing non-local transports irrespective of mean gradients of transporting properties). C-PBLs are strongly mixed and go on growing as long as the boundary layer remains unstable. Penetration of the mixed layer into the weakly turbulent, stably stratified free flow causes turbulent transports through the CPBL outer boundary. The proposed theory, taking into account the above listed features of CPBL, is based on the following recent developments: prognostic CPBL-depth equation in combination with diagnostic algorithm for turbulence fluxes at the CPBL inner and outer boundaries (Zilitinkevich, 1991, 2012, 2013; Zilitinkevich et al., 2006, 2012), deterministic model of self-organised convective structures combined with statistical turbulence-closure model of turbulence in the CPBL core (Zilitinkevich, 2013). It is demonstrated that the overall vertical transports are performed mostly by turbulence in the surface layer and entrainment layer (at the CPBL inner and outer boundaries) and mostly by organised structures in the CPBL core (Hellsten and Zilitinkevich, 2013). Principal difference between structural and turbulent mixing plays an important role in a number of practical problems: transport and dispersion of admixtures, microphysics of fogs and clouds, etc. The surface-layer turbulence in atmospheric and marine CPBLs is strongly enhanced by the velocity shears in

  7. Diamagnetic boundary layers - A kinetic theory. [for collisionless magnetized plasmas

    NASA Technical Reports Server (NTRS)

    Lemaire, J.; Burlaga, L. F.

    1976-01-01

    A kinetic theory is presented for boundary layers associated with MHD tangential 'discontinuities' in a collisionless magnetized plasma, such as those observed in the solar wind. The theory consists of finding self-consistent solutions of Vlasov's equation and Maxwell's equation for stationary one-dimensional boundary layers separating two Maxwellian plasma states. Layers in which the current is carried by electrons are found to have a thickness of the order of a few electron gyroradii, but the drift speed of the current-carrying electrons is found to exceed the Alfven speed, and accordingly such layers are not stable. Several types of layers in which the current is carried by protons are discussed; in particular, cases are considered in which the magnetic-field intensity, direction, or both, changed across the layer. In every case, the thickness was of the order of a few proton gyroradii, and the field changed smoothly, although the characteristics depended somewhat on the boundary conditions. The drift speed was always less than the Alfven speed, consistent with stability of such structures. These results are consistent with observations of boundary layers in the solar wind near 1 AU.

  8. Turbulence models for compressible boundary layers

    NASA Technical Reports Server (NTRS)

    Huang, P. G.; Bradshaw, P.; Coakley, T. J.

    1994-01-01

    It is shown that to satisfy the general accepted compressible law of the wall derived from the Van Driest transformation, turbulence modeling coefficients must actually be functions of density gradients. The transformed velocity profiles obtained by using standard turbulence model constants have too small a value of the effective von Karman constant kappa in the log-law region (inner layer). Thus, if the model is otherwise accurate, the wake component is overpredicted and the predicted skin friction is lower than the expected value.

  9. Genesis of Atlantic Lows Experiment NASA Electra Boundary Layer Flights Data Report

    NASA Technical Reports Server (NTRS)

    Palm, Stephen P.; Melfi, S. H.; Boers, Reinout

    1988-01-01

    The objective of this research was to obtain high resolution measurements of the height of the Marine Atmospheric Boundary Layer (MABL) during cold air outbreaks using an Airborne Lidar System. The research was coordinated with other investigators participating in the Genesis of Atlantic Lows Experiment (GALE). An objective computerized scheme was developed to obtain the Boundary Layer Height from the Lidar Data. The algorithm was used on each of the four flight days producing a high resolution data set of the MABL height over the GALE experiment area. Plots of the retrieved MABL height as well as tabular data summaries are presented.

  10. Extension of boundary-layer heat-transfer theory to cooled turbine blades

    NASA Technical Reports Server (NTRS)

    Brown, W Byron; Donoughe, Patrick L

    1950-01-01

    An equation for average heat transfer of a surface was derived when the boundary layer changed from laminar to turbulent. Influences on the heat transfer through a laminar boundary layer of Mach number, temperature ratio (gas temperature divided by wall temperature), and exponents of gas-property temperature relations were shown to be relatively small for air with Mach numbers less than 2 and temperature ratios between 1 and 4. Good agreement was obtained with experimental results from cylinders, an airfoil, and turbine blades.

  11. Forthcoming Meetings on Planetary Boundary-layer Theory, Modelling and Applications

    NASA Astrophysics Data System (ADS)

    Zilitinkevich, Sergej; Savijärvi, Hannu; Baklanov, Alexander; Grisogono, Branko; Myrberg, Kai

    2006-06-01

    In this short communication we highlight the NATO Advanced Research Workshop (ARW) “Atmospheric Boundary Layers: Modelling and Applications for Environmental Security”, to be held in Dubrovnik, Croatia, 18 22 April 2006 (http:// pbl-nato-arw.dmi.dk) and the “Summer School on Air-Sea Interaction” to be held in Helsinki, Finland, 28 August 1 September 2006 (http://www.scasi.fi). These two events are connected to the ongoing Ev Marie Curie Chair Project “Planetary boundary layers Theory, modelling and role in earth systems” (PBL TMRES, Contract MEXC-CT-2003-509742, www.atm.helsinki.fi/PBL/).

  12. Linear and nonlinear PSE for compressible boundary layers

    NASA Technical Reports Server (NTRS)

    Chang, Chau-Lyan; Malik, Mujeeb R.; Erlebacher, Gordon; Hussaini, M. Yousuff

    1993-01-01

    Compressible stability of growing boundary layers is studied by numerically solving the partial differential equations under a parabolizing approximation. The resulting parabolized stability equations (PSE) account for nonparallel as well as nonlinear effects. Evolution of disturbances in compressible flat-plate boundary layers are studied for freestream Mach numbers ranging from 0 to 4.5. Results indicate that the effect of boundary-layer growth is important for linear disturbances. Nonlinear calculations are performed for various Mach numbers. Two-dimensional nonlinear results using the PSE approach agree well with those from direct numerical simulations using the full Navier-Stokes equations while the required computational time is less by an order of magnitude. Spatial simulation using PSE were carried out for both the fundamental and subharmonic type breakdown for a Mach 1.6 boundary layer. The promising results obtained show that the PSE method is a powerful tool for studying boundary-layer instabilities and for predicting transition over a wide range of Mach numbers.

  13. Bending Boundary Layers in Laminated-Composite Circular Cylindrical Shells

    NASA Technical Reports Server (NTRS)

    Nemeth, Michael P.; Smeltzer, Stanley S., III

    2000-01-01

    A study of the attenuation of bending boundary layers in balanced and unbalanced, symmetrically and unsymmetrically laminated cylindrical shells is presented for nine contemporary material systems. The analysis is based on the linear Sanders-Koiter shell equations and specializations to the Love-Kirchhoff shell equations and Donnell's equations are included. Two nondimensional parameters are identified that characterize the effects of laminate orthotropy and anisotropy on the bending boundary-layer decay length in a very general manner. A substantial number of structural design technology results are presented for a wide range of laminated-composite cylinders. For all laminates considered, the results show that the differences between results obtained with the Sanders-Koiter shell equations, the Love-Kirchhoff shell equations, and Donnell's equations are negligible. The results also show that the effect of anisotropy in the form of coupling between pure bending and twisting has a negligible effect on the size of the bending boundary-layer decay length of the balanced, symmetrically laminated cylinders considered. Moreover, the results show that coupling between the various types of shell anisotropies has a negligible effect on the calculation of the bending boundary-layer decay length in most cases. The results also show that, in some cases, neglecting the shell anisotropy results in underestimating the bending boundary-layer decay length and, in other cases, results in an overestimation.

  14. Bending Boundary Layers in Laminated-Composite Circular Cylindrical Shells

    NASA Technical Reports Server (NTRS)

    Nemeth, Michael P.; Smeltzer, Stanley S., III

    2000-01-01

    An analytical, parametric study of the attenuation of bending boundary layers or edge effects in balanced and unbalanced, symmetrically and unsymmetrically laminated thin cylindrical shells is presented for nine contemporary material systems. The analysis is based on the linear Sanders-Koiter shell equations and specializations to the Love-Kirchhoff shell equations and Donnell's equations are included. Two nondimensional parameters are identified that characterize and quantify the effects of laminate orthotropy and laminate anisotropy on the bending boundary-layer decay length in a very general and encompassing manner. A substantial number of structural design technology results are presented for a wide range of laminated-composite cylinders. For all the laminate constructions considered, the results show that the differences between results that were obtained with the Sanders-Koiter shell equations, the Love-Kirchhoff shell equations, and Donnell's equations are negligible. The results also show that the effect of anisotropy in the form of coupling between pure bending and twisting has a negligible effect on the size of the bending boundary-layer decay length of the balanced, symmetrically laminated cylinders considered. Moreover, the results show that coupling between the various types of shell anisotropies has a negligible effect on the calculation of the bending boundary-layer decay length in most cases. The results also show that in some cases neglecting the shell anisotropy results in underestimating the bending boundary-layer decay length and in other cases it results in an overestimation.

  15. A simplified Reynolds stress model for unsteady turbulent boundary layers

    NASA Technical Reports Server (NTRS)

    Fan, Sixin; Lakshminarayana, Budugur

    1993-01-01

    A simplified Reynolds stress model has been developed for the prediction of unsteady turbulent boundary layers. By assuming that the net transport of Reynolds stresses is locally proportional to the net transport of the turbulent kinetic energy, the time dependent full Reynolds stress model is reduced to a set of ordinary differential equations. These equations contain only time derivatives and can be readily integrated in a time dependent boundary layer or Navier-Stokes code. The turbulent kinetic energy and dissipation rate needed for the model are obtained by solving the k-epsilon equations. This simplified Reynolds stress turbulence model (SRSM) does not use the eddy viscosity assumption, which may not be valid for unsteady turbulent flows. The anisotropy of both the steady and the unsteady turbulent normal stresses can be captured by the SRSM model. Through proper damping of the shear stresses, the present model can be used in the near wall region of turbulent boundary layers. This model has been validated against data for steady and unsteady turbulent boundary layers, including periodic turbulent boundary layers subjected to a mean adverse pressure gradient. For the cases tested, the predicted unsteady velocity and turbulent stress components agree well with the experimental data. Comparison between the predictions from the SRSM model and a k-epsilon model is also presented.

  16. Highly buoyant bent-over plumes in a boundary layer

    NASA Astrophysics Data System (ADS)

    Tohidi, Ali; Kaye, Nigel B.

    2016-04-01

    Highly buoyant plumes, such as wildfire plumes, in low to moderate wind speeds have initial trajectories that are steeper than many industrial waste plumes. They will rise further into the atmosphere before bending significantly. In such cases the plume's trajectory will be influenced by the vertical variation in horizontal velocity of the atmospheric boundary layer. This paper examined the behavior of a plume in an unstratified environment with a power-law ambient velocity profile. Examination of previously published experimental measurements of plume trajectory show that inclusion of the boundary layer velocity profile in the plume model often provides better predictions of the plume trajectory compared to algebraic expressions developed for uniform flow plumes. However, there are many cases in which uniform velocity profile algebraic expressions are as good as boundary layer models. It is shown that it is only important to model the role of the atmospheric boundary layer velocity profile in cases where either the momentum length (square root of source momentum flux divided by the reference wind speed) or buoyancy length (buoyancy flux divided by the reference wind speed cubed) is significantly greater than the plume release height within the boundary layer. This criteria is rarely met with industrial waste plumes, but it is important in modeling wildfire plumes.

  17. Particle motion in atmospheric boundary layers of Mars and Earth

    NASA Technical Reports Server (NTRS)

    White, B. R.; Iversen, J. D.; Greeley, R.; Pollack, J. B.

    1975-01-01

    To study the eolian mechanics of saltating particles, both an experimental investigation of the flow field around a model crater in an atmospheric boundary layer wind tunnel and numerical solutions of the two- and three-dimensional equations of motion of a single particle under the influence of a turbulent boundary layer were conducted. Two-dimensional particle motion was calculated for flow near the surfaces of both Earth and Mars. For the case of Earth both a turbulent boundary layer with a viscous sublayer and one without were calculated. For the case of Mars it was only necessary to calculate turbulent boundary layer flow with a laminar sublayer because of the low values of friction Reynolds number; however, it was necessary to include the effects of slip flow on a particle caused by the rarefied Martian atmosphere. In the equations of motion the lift force functions were developed to act on a single particle only in the laminar sublayer or a corresponding small region of high shear near the surface for a fully turbulent boundary layer. The lift force functions were developed from the analytical work by Saffman concerning the lift force acting on a particle in simple shear flow.

  18. Turbulent boundary-layer structure of flows over freshwater biofilms

    NASA Astrophysics Data System (ADS)

    Walker, J. M.; Sargison, J. E.; Henderson, A. D.

    2013-12-01

    The structure of the turbulent boundary-layer for flows over freshwater biofilms dominated by the diatom Tabellaria flocculosa was investigated. Biofilms were grown on large test plates under flow conditions in an Australian hydropower canal for periods up to 12 months. Velocity-profile measurements were obtained using LDV in a recirculating water tunnel for biofouled, smooth and artificially sandgrain roughened surfaces over a momentum thickness Reynolds number range of 3,000-8,000. Significant increases in skin friction coefficient of up to 160 % were measured over smooth-wall values. The effective roughnesses of the biofilms, k s, were significantly higher than their physical roughness measured using novel photogrammetry techniques and consisted of the physical roughness and a component due to the vibration of the biofilm mat. The biofilms displayed a k-type roughness function, and a logarithmic relationship was found between the roughness function and roughness Reynolds number based on the maximum peak-to-valley height of the biofilm, R t. The structure of the boundary layer adhered to Townsend's wall-similarity hypothesis even though the scale separation between the effective roughness height and the boundary-layer thickness was small. The biofouled velocity-defect profiles collapsed with smooth and sandgrain profiles in the outer region of the boundary layer. The Reynolds stresses and quadrant analysis also collapsed in the outer region of the boundary layer.

  19. Stabilization of boundary layer streaks by plasma actuators

    NASA Astrophysics Data System (ADS)

    Riherd, Mark; Roy, Subrata

    2014-03-01

    A flow's transition from laminar to turbulent leads to increased levels of skin friction. In recent years, dielectric barrier discharge actuators have been shown to be able to delay the onset of turbulence in boundary layers. While the laminar to turbulent transition process can be initiated by several different instability mechanisms, so far, only stabilization of the Tollmien-Schlichting path to transition has received significant attention, leaving the stabilization of other transition paths using these actuators less explored. To fill that void, a bi-global stability analysis is used here to examine the stabilization of boundary layer streaks in a laminar boundary layer. These streaks, which are important to both transient and by-pass instability mechanisms, are damped by the addition of a flow-wise oriented plasma body force to the boundary layer. Depending on the magnitude of the plasma actuation, this damping can be up to 25% of the perturbation's kinetic energy. The damping mechanism appears to be due to highly localized effects in the immediate vicinity of the body force, and when examined using a linearized Reynolds-averaged Navier-Stokes energy balance, indicate negative production of the perturbation's kinetic energy. Parametric studies of the stabilization have also been performed, varying the magnitude of the plasma actuator's body force and the spanwise wavenumber of the actuation. Based on these parametric studies, the damping of the boundary layer streaks appears to be linear with respect to the total amount of body force applied to the flow.

  20. Lead-212 in the urban boundary layer of New York City.

    PubMed

    Assaf, G; Biscaye, P E

    1972-02-25

    The radioactive emanation product lead-212 is useful in estimating rates of air exchange within the urban boundary layer. The concentration of lead-212 is negligible in air of oceanic origin as well as in air above continental areas under snow cover. On several days when conditions were such that one of these types of air mass approached New York City, measurements were made which show that the source strength of lead-212 within the city is relatively constant. On two such days vertical profiles of the concentration of lead-212 were measured from the Empire State Building, which served as a sampling tower. From the data of these profiles and a two-layer model of the urban boundary layer, we estimate the vertical eddy diffusivity to be of the order of tens of square meters per second and the residence time of air within the street layer to be of the order of S minutes. These results are consistent with the observed distribution of stable lead and with an independent estimate of the eddy viscosity from a wind profile. Under moderate wind conditions and with a mixing depth of hundreds of meters, virtually all the horizontal transport of lead-212 and other tracers with street-level sources takes place in the advective layer. PMID:5008606

  1. Heterogeneous evaporation across a turbulent internal boundary layer

    NASA Astrophysics Data System (ADS)

    Shahraeeni, Ebrahim; Vanderborght, Jan; Vereecken, Harry

    2014-05-01

    In local evaporation from sufficiently uniform and large surfaces, horizontal advection close to the changes in surface condition is not significant. Under natural condition, this assumption is often invalid and horizontal inhomogeneity is important. When partially saturated air flows from a uniform dry land surface over a wet surface, all lower boundary conditions of transport equations change abruptly. Also surface humidity and roughness are likely to be different from their upwind values. Due to these changes, the velocity profile and turbulence structure of the airflow must readjust. The vertical profiles are no longer in equilibrium and the horizontal gradients do not equal to zero. When there is more than one of these changes in the domain of interest, the interaction between different patches with a contrast in roughness, temperature or surface water content is also important. Rigorous experimental and numerical analysis of turbulent transfer of mass and momentum in the so-called internal boundary layer (the region affected by such step changes in surface condition) is the aim of this work. A combination of numerical simulations using in-house codes and commercial softwares and experimental measurements in the environmental wind tunnel is performed. We are specifically interested in correct depiction of roughness, in a more accurate representation of the turbulent velocity profile and in a better description of turbulent diffusion close to the interface. A series of simplifying assumptions in the classical representation of this problem are investigated and a sensitivity analysis is performed to identify the contribution of neglected terms. We are also interested in the parameterization of the heat and mass exchange processes for the case with different wet patches in a background of dry soil, which is of interest in several field scale applications.

  2. Anisotropic Mesh Adaptivity for Turbulent Flows with Boundary Layers

    NASA Astrophysics Data System (ADS)

    Chitale, Kedar C.

    Turbulent flows are found everywhere in nature and are studied, analyzed and simulated using various experimental and numerical tools. For computational analysis, a variety of turbulence models are available and the accuracy of these models in capturing the phenomenon depends largely on the mesh spacings, especially near the walls, in the boundary layer region. Special semi-structured meshes called "mesh boundary layers" are widely used in the CFD community in simulations of turbulent flows, because of their graded and orthogonal layered structure. They provide an efficient way to achieve very fine and highly anisotropic mesh spacings without introducing poorly shaped elements. Since usually the required mesh spacings to accurately resolve the flow are not known a priori to the simulations, an adaptive approach based on a posteriori error indicators is used to achieve an appropriate mesh. In this study, we apply the adaptive meshing techniques to turbulent flows with a focus on boundary layers. We construct a framework to calculate the critical wall normal mesh spacings inside the boundary layers based on the flow physics and the knowledge of the turbulence model. This approach is combined with numerical error indicators to adapt the entire flow region. We illustrate the effectiveness of this hybrid approach by applying it to three aerodynamic flows and studying their superior performance in capturing the flow structures in detail. We also demonstrate the capabilities of the current developments in parallel boundary layer mesh adaptation by applying them to two internal flow problems. We also study the application of adaptive boundary layer meshes to complex geometries like multi element wings. We highlight the advantage of using such techniques for superior wake and tip region resolution by showcasing flow results. We also outline the future direction for the adaptive meshing techniques to be useful to the large scale flow computations.

  3. Interferometric data for a shock-wave/boundary-layer interaction

    NASA Technical Reports Server (NTRS)

    Dunagan, Stephen E.; Brown, James L.; Miles, John B.

    1986-01-01

    An experimental study of the axisymmetric shock-wave / boundary-layer strong interaction flow generated in the vicinity of a cylinder-cone intersection was conducted. The study data are useful in the documentation and understanding of compressible turbulent strong interaction flows, and are part of a more general effort to improve turbulence modeling for compressible two- and three-dimensional strong viscous/inviscid interactions. The nominal free stream Mach number was 2.85. Tunnel total pressures of 1.7 and 3.4 atm provided Reynolds number values of 18 x 10(6) and 36 x 10(6) based on model length. Three cone angles were studied giving negligible, incipient, and large scale flow separation. The initial cylinder boundary layer upstream of the interaction had a thickness of 1.0 cm. The subsonic layer of the cylinder boundary layer was quite thin, and in all cases, the shock wave penetrated a significant portion of the boundary layer. Owing to the thickness of the cylinder boundary layer, considerable structural detail was resolved for the three shock-wave / boundary-layer interaction cases considered. The primary emphasis was on the application of the holographic interferometry technique. The density field was deduced from an interferometric analysis based on the Able transform. Supporting data were obtained using a 2-D laser velocimeter, as well as mean wall pressure and oil flow measurements. The attached flow case was observed to be steady, while the separated cases exhibited shock unsteadiness. Comparisons with Navier-Stokes computations using a two-equation turbulence model are presented.

  4. The upper-branch stability of compressible boundary layer flows

    NASA Technical Reports Server (NTRS)

    Gajjar, J. S. B.; Cole, J. W.

    1989-01-01

    The upper-branch linear and nonlinear stability of compressible boundary layer flows is studied using the approach of Smith and Bodonyi (1982) for a similar incompressible problem. Both pressure gradient boundary layers and Blasius flow are considered with and without heat transfer, and the neutral eigenrelations incorporating compressibility effects are obtained explicitly. The compressible nonlinear viscous critical layer equations are derived and solved numerically and the results indicate some solutions with positive phase shift across the critical layer. Various limiting cases are investigated including the case of much larger disturbance amplitudes and this indicates the structure for the strongly nonlinear critical layer of the Benney-Bergeon (1969) type. It is also shown how a match with the inviscid neutral inflexional modes arising from the generalized inflexion point criterion, is achieved.

  5. Summary of experimentally determined facts concerning the behavior of the boundary layer and performance of boundary layer measurements. [considering sailing flight

    NASA Technical Reports Server (NTRS)

    Vanness, W.

    1978-01-01

    A summary report of boundary layer studies is presented. Preliminary results of experimental measurements show that: (1) A very thin layer (approximately 0.4 mm) of the boundary layer seems to be accelerated; (2) the static pressure of the outer flow does not remain exactly constant through the boundary layer; and (3) an oncoming boundary layer which is already turbulent at the suction point can again become laminar behind this point without being completely sucked off.

  6. Structure of reconnection boundary layers in incompressible MHD

    SciTech Connect

    Sonnerup, B.U.Oe.; Wang, D.J. )

    1987-08-01

    The incompressible MHD equations with nonvanishing viscosity and resistivity are simplified by use of the boundary layer approximation to describe the flow and magnetic field in the exit flow regions of magnetic field reconnection configurations when the reconnection rate is small. The conditions are derived under which self-similar solutions exist of the resulting boundary layer equations. For the case of zero viscosity and resistivity, the equations describing such self-similar layers are then solved in terms of quadratures, and the resulting flow and field configurations are described. Symmetric solutions, relevant, for example, to reconnection in the geomagnetic tail, as well as asymmetric solutions, relevant to reconnection at the earth's magnetopause, are found to exist. The nature of the external solutions to which the boundary layer solutions should be matched is discussed briefly, but the actual matching, which is to occur at Alfven-wave characteristic curves in the boundary layer solutions, is not carried out. Finally, it is argued that the solutions obtained may also be used to describe the structure of the intense vortex layers observed to occur at magnetic separatrices in computer simulations and in certain analytical models of the reconnection process.

  7. Numerical simulations of coupled sea waves and boundary layer dynamics

    NASA Astrophysics Data System (ADS)

    Chalikov, D.

    2009-04-01

    Wind-wave dynamic and thermodynamic interaction belongs to one of the most important problems of geophysical fluid dynamics. At present this interaction in a parameterized form is taken into account for formulation of boundary conditions in atmospheric and oceanic models, weather forecast models, coupled ocean-atmosphere climate models and wave forecasting models. However, the accuracy of this parameterization is mostly unknown. The main difficulty in experimental and theoretical investigation of small-scale ocean-atmosphere interaction is the presence of a multi-mode (and, occasionally, non- single-valued) nonstationary interface. It makes impossible many types of measurements in close vicinity of the physical surface, and highly complicates construction of numerical models. Existing approaches on the wind-wave interaction problem are based on assumptions that a wave field can be represented as superposition of linear waves whilst the process of wind-wave interaction is a superposition of elementary processes. This assumption is acceptable only for very small amplitude waves due to: (1) wave surface cannot be represented as superposition of linear waves with random phases as a result of nonlinearity leading to formation of ‘bound' waves, focusing energy in physical space and wave breaking; (2) dynamic interactions of waves with the air (for example, long waves modify the local flow, which influences energy input into short waves, while short waves create local drag that affects the flow over large waves). In general, all waves "spring, burgeon and fall" in the environment provided by the entire spectrum; (3) energy input into waves of even moderate steepness is concentrated rather in physical space than in Fourier space. Hence, a Fourier image of the input is often not quite representative. The new approach to the problem is based on coupled 2-D modeling of waves and boundary layer in joint conformal surface-following coordinates. The wave model is based on full

  8. Zero pressure gradient boundary layer at extreme Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Hultmark, Marcus; Vallikivi, Margit; Smits, Alexander

    2011-11-01

    Experiments were conducted in a zero pressure gradient flat plate boundary layer using the Princeton/ONR High Reynolds number Test Facility (HRTF). The HRTF uses highly compressed air, up to 220 atmospheres, to produce Reynolds numbers up to Reθ =225,000 . This corresponds to a δ+ =65,000 which is one of the highest Reynolds numbers ever measured in a laboratory. When using pressure to achieve high Reynolds numbers the size of the measurement probes become critical, thus the need for very small sensors is acute. The streamwise component of velocity was investigated using a nanoscale thermal anemometer (NSTAP) as well as a 200 μm pitot tube. The NSTAP has a spatial resolution as well as a temporal resolution one order of magnitude better than conventional measurement techniques. The data was compared to recent data from a high Reynolds number turbulent pipe flow and it was shown that the two flows are more similar than previous data suggests. Supported under NR Grant N00014-09-1-0263 (program manager Ron Joslin) and NSF Grant CBET-1064257(program manager Henning Winter).

  9. Resolvent mode identification in a turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Rosenberg, Kevin; McKeon, Beverley

    2014-11-01

    The resolvent analysis developed by McKeon and Sharma (J. Fluid Mechanics, 2010) has demonstrated a connection between the most amplified disturbances in wavenumber/frequency space and observed structures in wall turbulence. Three simultaneous hotwire measurements are made across a zero-pressure gradient turbulent boundary layer to identify the resolvent modes associated with these structures. A resolvent mode is designated by a streamwise wavenumber, a spanwise number, and a temporal frequency (k, n, ω respectively) and physically represents a travelling wave. The three wires are aligned in the wall normal direction and spaced in the streamwise and spanwise directions. The signals are filtered at the frequency corresponding to the resolvent mode of interest and ensemble averaged over a single period; the resulting phase differences between wires and their respective separation distances allows for the calculation of the spatial wavenumbers. The eventual goal is to sense these modes in real time as this will provide an important first step towards the development of closed-loop control schemes, specifically within the context of the resolvent framework. The support of the Air Force Office of Scientific Research under Grant # FA 9550-12-1-0469 (P.M. Doug Smith) is gratefully acknowledged.

  10. Simultaneous profiling of the Arctic Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Mayer, S.; Jonassen, M.; Reuder, J.

    2009-04-01

    The structure of the Arctic atmospheric boundary layer (AABL) and the heat and moisture fluxes between relatively warm water and cold air above non-sea-ice-covered water (such as fjords, leads and polynyas) are of great importance for the sensitive Arctic climate system. So far, such processes are not sufficiently resolved in numerical weather prediction (NWP) and climate models. Especially for regions with complex topography as the Svalbard mountains and fjords the state and diurnal evolution of the AABL is not well known yet. Knowledge can be gained by novel and flexible measurement techniques such as the use of an unmanned aerial vehicle (UAV). An UAV can perform vertical profiles as well as horizontal surveys of the mean meteorological parameters: temperature, relative humidity, pressure and wind. A corresponding UAV called Small Unmanned Meteorological Observer (SUMO) has been developed at the Geophysical Institute at the University of Bergen in cooperation with Müller Engineering (www.pfump.org) and the Paparazzi Project (http://paparazzi.enac.fr). SUMO will be used under Arctic conditions in March/April 2009. This time the special purpose will be to send two SUMOs simultaneously on mission; one over the ice and snow-covered land surface and the other one above the open water of Isfjorden. This will be the first step of future multiple UAV operations in so called "swarms" or "flocks". With this, corresponding measurements of the diurnal evolution of the AABL can be achieved with minimum technical efforts and costs.

  11. Evidence of reactive iodine chemistry in the Arctic boundary layer

    NASA Astrophysics Data System (ADS)

    Mahajan, Anoop S.; Shaw, Marvin; Oetjen, Hilke; Hornsby, Karen E.; Carpenter, Lucy J.; Kaleschke, Lars; Tian-Kunze, Xiangshan; Lee, James D.; Moller, Sarah J.; Edwards, Peter; Commane, Roisin; Ingham, Trevor; Heard, Dwayne E.; Plane, John M. C.

    2010-10-01

    Although it has recently been established that iodine plays an important role in the atmospheric chemistry of coastal Antarctica, where it occurs at levels which cause significant ozone (O3) depletion and changes in the atmospheric oxidising capacity, iodine oxides have not previously been observed conclusively in the Arctic boundary layer (BL). This paper describes differential optical absorption spectroscopy (DOAS) observations of iodine monoxide (IO), along with gas chromatographic measurements of iodocarbons, in the sub-Arctic environment at Kuujjuarapik, Hudson Bay, Canada. Episodes of elevated levels of IO (up to 3.4 ± 1.2 ppt) accompanied by a variety of iodocarbons were observed. Air mass back trajectories show that the observed iodine compounds originate from open water polynyas that form in the sea ice on Hudson Bay. A combination of long-path DOAS and multiaxis DOAS observations suggested that the IO is limited to about 100 m in height. The observations are interpreted using a one-dimensional model, which indicates that the iodocarbon sources from these exposed waters can account for the observed concentrations of IO. These levels of IO deplete O3 at rates comparable to bromine oxide (BrO) and, more importantly, strongly enhance the effect of bromine-catalyzed O3 depletion in the Arctic BL, an effect which has not been quantitatively considered hitherto. However, the measurements and modeling results indicate that the effects of iodine chemistry are on a much more localized scale than bromine chemistry in the Arctic environment.

  12. Effect of Far-Field Boundary Conditions on Boundary-Layer Transition

    NASA Technical Reports Server (NTRS)

    Bertolotti, Fabio P.; Joslin, Ronald D.

    1994-01-01

    The effect of far-field boundary conditions on the evolution of a finite-amplitude two-dimensional wave in the Blasius boundary layer is assessed. With the use of the parabolized stability equations (PSE) theory for the numerical computations, either asymptotic, Dirichlet, Neumann or mixed boundary conditions are imposed at various distances from the wall. The results indicate that asymptotic and mixed boundary conditions yield the most accurate mean-flow distortion and unsteady instability modes in comparison with the results obtained with either Dirichlet or Neumann conditions.

  13. Effect of Far-Field Boundary Conditions on Boundary-Layer Transition

    NASA Technical Reports Server (NTRS)

    Bertolotti, Fabio P.; Joslin, Ronald D.

    1995-01-01

    The effect of far-field boundary conditions on the evolution of a finite-amplitude two-dimensional wave in the Blasius boundary layer is assessed. With the use of the parabolized stability equations (PSE) theory for the numerical computations, either asymptotic, Dirichlet, Neumann or mixed boundary conditions are imposed at various distances from the wall. The results indicate that asymptotic and mixed boundary conditions yield the most accurate mean-flow distortion and unsteady instability modes in comparison with the results obtained with either Dirichlet or Neumann conditions.

  14. Effects of forebody geometry on subsonic boundary-layer stability

    NASA Technical Reports Server (NTRS)

    Dodbele, Simha S.

    1990-01-01

    As part of an effort to develop computational techniques for design of natural laminar flow fuselages, a computational study was made of the effect of forebody geometry on laminar boundary layer stability on axisymmetric body shapes. The effects of nose radius on the stability of the incompressible laminar boundary layer was computationally investigated using linear stability theory for body length Reynolds numbers representative of small and medium-sized airplanes. The steepness of the pressure gradient and the value of the minimum pressure (both functions of fineness ratio) govern the stability of laminar flow possible on an axisymmetric body at a given Reynolds number. It was found that to keep the laminar boundary layer stable for extended lengths, it is important to have a small nose radius. However, nose shapes with extremely small nose radii produce large pressure peaks at off-design angles of attack and can produce vortices which would adversely affect transition.

  15. Effect of Blowing on Boundary Layer of Scarf Inlet

    NASA Technical Reports Server (NTRS)

    Gerhold, Carl H.; Clark, Lorenzo R.

    2004-01-01

    When aircraft operate in stationary or low speed conditions, airflow into the engine accelerates around the inlet lip and pockets of turbulence that cause noise and vibration can be ingested. This problem has been encountered with engines equipped with the scarf inlet, both in full scale and in model tests, where the noise produced during the static test makes it difficult to assess the noise reduction performance of the scarf inlet. NASA Langley researchers have implemented boundary layer control in an attempt to reduce the influence of the flow nonuniformity in a 12-in. diameter model of a high bypass fan engine mounted in an anechoic chamber. Static pressures and boundary layer profiles were measured in the inlet and far field acoustic measurements were made to assess the effectiveness of the blowing treatment. The blowing system was found to lack the authority to overcome the inlet distortions. Methods to improve the implementation of boundary layer control to reduce inlet distortion are discussed.

  16. Wind Tunnel Simulation of the Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Hohman, Tristen; Smits, Alexander; Martinelli, Luigi

    2013-11-01

    To simulate the interaction of large Vertical Axis Wind Turbines (VAWT) with the Atmospheric Boundary Layer (ABL) in the laboratory, we implement a variant of Counihan's technique [Counihan 1969] in which a combination of a castellated barrier, elliptical vortex generators, and floor roughness elements is used to create an artificial ABL profile in a standard closed loop wind tunnel. To examine the development and formation of the artificial ABL hotwire and SPIV measurements were taken at various downstream locations with changes in wall roughness, wall type, and vortex generator arrangements. It was found possible to generate a boundary layer at Reθ ~106 , with a mean velocity that followed the 1/7 power law of a neutral ABL over rural terrain and longitudinal turbulence intensities and power spectra that compare well with the data obtained for high Reynolds number flat plate turbulent boundary layers [Hultmark et al. 2010]. Supported by Hopewell Wind Power Ltd., and the Princeton Grand Challenges Program.

  17. Wind Tunnel Simulation of the Atmospheric Boundary Layer

    NASA Astrophysics Data System (ADS)

    Hohman, Tristen; Smits, Alexander; Martinelli, Luigi

    2012-11-01

    To simulate the interaction of large Vertical Axis Wind Turbines (VAWT) with the Atmospheric Boundary Layer (ABL) in the laboratory, we implement a variant of Counihan's technique in which a combination of a castellated barrier, elliptical vortex generators, and floor roughness elements is used to create an artificial ABL profile in a standard closed loop wind tunnel. We report hotwire measurements in a plane normal to the flow direction at various downstream positions and free stream velocities to examine the development and formation of the artificial ABL. It was found possible to generate a boundary layer at Reθ ~106 , with a mean velocity that followed the 1/7 power law of a neutral ABL over rural terrain and longitudinal turbulence intensities and power spectra that compare well with the data obtained by Hultmark in 2010 for high Reynolds number flat plate turbulent boundary layers. Supported by Hopewell Wind Power Ltd., and the Princeton Grand Challenges Program.

  18. Boundary layer integral matrix procedure: Verification of models

    NASA Technical Reports Server (NTRS)

    Bonnett, W. S.; Evans, R. M.

    1977-01-01

    The three turbulent models currently available in the JANNAF version of the Aerotherm Boundary Layer Integral Matrix Procedure (BLIMP-J) code were studied. The BLIMP-J program is the standard prediction method for boundary layer effects in liquid rocket engine thrust chambers. Experimental data from flow fields with large edge-to-wall temperature ratios are compared to the predictions of the three turbulence models contained in BLIMP-J. In addition, test conditions necessary to generate additional data on a flat plate or in a nozzle are given. It is concluded that the Cebeci-Smith turbulence model be the recommended model for the prediction of boundary layer effects in liquid rocket engines. In addition, the effects of homogeneous chemical reaction kinetics were examined for a hydrogen/oxygen system. Results show that for most flows, kinetics are probably only significant for stoichiometric mixture ratios.

  19. Roughness Induced Transition in a Supersonic Boundary Layer

    NASA Technical Reports Server (NTRS)

    Balakumar, Ponnampalam; Kergerise, Michael A.

    2013-01-01

    Direct numerical simulation is used to investigate the transition induced by threedimensional isolated roughness elements in a supersonic boundary layer at a free stream Mach number of 3.5. Simulations are performed for two different configurations: one is a square planform roughness and the other is a diamond planform roughness. The mean-flow calculations show that the roughness induces counter rotating streamwise vortices downstream of the roughness. These vortices persist for a long distance downstream and lift the low momentum fluid from the near wall region and place it near the outer part of the boundary layer. This forms highly inflectional boundary layer profiles. These observations agree with recent experimental observations. The receptivity calculations showed that the amplitudes of the mass-flux fluctuations near the neutral point for the diamond shape roughness are the same as the amplitude of the acoustic disturbances. They are three times smaller for the square shape roughness.

  20. The Turbulent Boundary Layer on a Rough Curvilinear Surface

    NASA Technical Reports Server (NTRS)

    Droblenkov, V. F.

    1958-01-01

    A number of semiempirical approximate methods exist for determining the characteristics of the turbulent boundary layer on a curvilinear surface. At present, among these methods, the one proposed by L. G. Loitsianskii is given frequent practical application. This method is sufficiently effective and permits, in the case of wing profiles with technically smooth surfaces, calculating the basic characteristics of the boundary layer and the values of the overall drag with an accuracy which suffices for practical purposes. The idea of making use of the basic integral momentum equation ((d delta(sup xx))/dx) + ((V' delta(sup xx))/V) (2 + H) = (tau(sub 0))/(rho V(exp 2)) proves to be fruitful also for the solution of the problems in the determination of the characteristics of the turbulent boundary layer on a rough surface.

  1. Turbulence in the convective boundary layer observed by microwave interferometry

    SciTech Connect

    Shao, X.M.; Carlos, R.C.; Kirkland, M.W.

    1997-12-01

    A 9-antenna, 400 meter microwave interferometer was utilized in SALSA MEX on the San Pedro River area in July and August, 1997, to measure the turbulence in the Convective Boundary Layer. Water vapor has an appreciable index of refraction at radio frequencies around 10 GHz, and acts as a passive tracer of the magnitude and motion of turbulence. The relative phase changes of a signal from a satellite were tracked by an array of 9 antennas, and the phase differences between antennas were then used to derive the turbulence properties of the boundary layer. Preliminary analysis shows clearly different characteristics for the convection activity of the boundary layer between day and night. From the structure function analysis they can see that the turbulence structure starts to decorrelate at scale sizes of 200 meters for a temporal passband around 100 seconds. Derivation of average wind fields is currently in process.

  2. Hypersonic flow separation in shock wave boundary layer interactions

    NASA Technical Reports Server (NTRS)

    Hamed, A.; Kumar, Ajay

    1992-01-01

    An assessment is presented for the experimental data on separated flow in shock wave turbulent boundary layer interactions at hypersonic and supersonic speeds. The data base consists mainly of two dimensional and axisymmetric interactions in compression corners or cylinder-flares, and externally generated oblique shock interactions with boundary layers over flat plates or cylindrical surfaces. The conditions leading to flow separation and the subsequent changes in the flow empirical correlations for incipient separation are reviewed. The effects of the Mach number, Reynolds number, surface cooling and the methods of detecting separation are discussed. The pertinent experimental data for the separated flow characteristics in separated turbulent boundary layer shock interaction are also presented and discussed.

  3. Localized travelling waves in the asymptotic suction boundary layer

    NASA Astrophysics Data System (ADS)

    Kreilos, Tobias; Gibson, John F.; Schneider, Tobias M.

    2016-05-01

    We present two spanwise-localized travelling wave solutions in the asymptotic suction boundary layer, obtained by continuation of solutions of plane Couette flow. One of the solutions has the vortical structures located close to the wall, similar to spanwise-localized edge states previously found for this system. The vortical structures of the second solution are located in the free stream far above the laminar boundary layer and are supported by a secondary shear gradient that is created by a large-scale low-speed streak. The dynamically relevant eigenmodes of this solution are concentrated in the free stream, and the departure into turbulence from this solution evolves in the free stream towards the walls. For invariant solutions in free-stream turbulence, this solution thus shows that that the source of energy of the vortical structures can be a dynamical structure of the solution itself, instead of the laminar boundary layer.

  4. A compilation of unsteady turbulent boundary-layer experimental data

    NASA Technical Reports Server (NTRS)

    Carr, L. W.

    1981-01-01

    An extensive literature search was conducted and those experiments related to unsteady boundary layer behavior were cataloged. In addition, an international survey of industrial, university, and governmental research laboratories was made in which new and ongoing experimental programs associated with unsteady turbulent boundary layer research were identified. Pertinent references were reviewed and classified based on the technical emphasis of the various experiments. Experiments that include instantaneous or ensemble averaged profiles of boundary layer variables are stressed. The experimental apparatus and flow conditions are described and summaries of acquired data and significant conclusions are summarized. Measurements obtained from the experiments which exist in digital form were stored on magnetic tape. Instructions are given for accessing these data sets for further analysis.

  5. DNS of Turbulent Boundary Layers under Highenthalpy Conditions

    NASA Astrophysics Data System (ADS)

    Duan, Lian; Martín, Pino

    2010-11-01

    To study real-gas effects and turbulence-chemistry interaction, direct numerical simulations (DNS) of hypersonic boundary layers are conducted under typical hypersonic conditions. We consider the boundary layer on a lifting-body consisting of a flat plate at an angle of attack, which flies at altitude 30km with a Mach number 21. Two different inclined angles, 35^o and 8^o, are considered,representing blunt and slender bodies. Both noncatalytic and supercatalytic wall conditions are considered. The DNS data are studied to assess the validity of Morkovin's hypothesis, the strong Reynolds analogy, as well as the behaviors of turbulence structures under high-enthalpy conditions.Relative to low-enthalpy conditions [1], significant differences in typical scalings are observed. [4pt] [1] L. Duan and I. Beekman and M. P. Mart'in, Direct numerical simulation of hypersonic turbulent boundary layers. Part 2: Effect of temperature, J. Fluid Mech. 655 (2010), 419-445.

  6. Nonlocalized receptivity of boundary layers to three-dimensional disturbances

    NASA Astrophysics Data System (ADS)

    Crouch, J. D.; Bertolotti, F. P.

    1992-01-01

    The nonlocalized receptivity of the Blasius boundary layer over a wavy surface is analyzed using two different approaches. First, a mode-interaction theory is employed to unveil basic mechanisms and to explore the interplay between different components of the disturbance field. The second approach is derived from the parabolized stability equations. These nonlinear equations incorporate the effects of the stream-wise divergence of the boundary layer. The analysis provides results for three-dimensional disturbances and also considers nonparallel effects. Results for two-dimensional disturbances demonstrate that nonparallel effects are negligible and substantiates the mechanism described by the mode-interaction theory. Nonparallel effects become significant with increasing three-dimensionality. Receptivity amplitudes are shown to be large over a broad range of surface wave numbers. When operative, this mechanism is likely to dominate the boundary-layer receptivity.

  7. Numerical Simulations of Wake/Boundary Layer Interactions

    NASA Technical Reports Server (NTRS)

    Piomelli, Ugo; Choudhari, Meelan M.; Ovchinnikov, Victor; Balaras, Elias

    2003-01-01

    Direct and large-eddy simulations of the interaction between the wake of a circular cylinder and a flat-plate boundary layer are conducted. Two Reynolds numbers are examined. The simulations indicate that at the lower Reynolds number the boundary layer is buffeted by the unsteady Karman vortex street shed by the cylinder. The fluctuations, however, cannot be self-sustained due to the low Reynolds-number, and the flow does not reach a turbulent state within the computational domain. In contrast, in the higher Reynolds-number case, boundary-layer fluctuations persist after the wake has decayed (due, in part, to the higher values of the local Reynolds number Re(sub theta) achieved in this case); some evidence could be observed that a self-sustaining turbulence generation cycle was beginning to be established.

  8. Turbulence and diffusion in the atmospheric boundary layer

    NASA Astrophysics Data System (ADS)

    Baskett, Ronald L.

    1990-05-01

    This conference addressed recent theoretical advancements of turbulence and diffusion in the atmospheric boundary layer (ABL). Activities were centered on the technical sessions of the conference. Sessions addressed clouds and the marine atmospheric boundary layer, field experimental techniques, physical and numerical simulations, transport and diffusion, surface properties, general boundary layer, stratified turbulence and turbulence in complex terrain. A jointly authored poster on an evaluation of the ARAC emergency response models with and without on-site sound detection and ranging systems (sodars) which measure vertical wind profiles was presented. Several scientists commented on our work and some requested further information. In addition, there was a workshop on dispersion around groups of buildings and a tour of Riso National Laboratory. Developments relevant to our work included work on dispersion model evaluation, especially using Monte Carlo random walk techniques, parameterizations of mixing height and turbulence from remote sensing systems such as sodars and radars, and measurements and parameterizations of enhanced turbulence around groups of buildings.

  9. Blow-up and control of marginally separated boundary layers.

    PubMed

    Braun, Stefan; Kluwick, Alfred

    2005-05-15

    Interactive solutions for steady two-dimensional laminar marginally separated boundary layers are known to exist up to a critical value Gamma(c) of the controlling parameter (e.g. the angle of attack of a slender airfoil) Gamma only. Here, we investigate three-dimensional unsteady perturbations of such boundary layers, assuming that the basic flow is almost critical, i.e. in the limit Gamma(c)-Gamma-->0. It is then shown that the interactive equations governing such perturbations simplify significantly, allowing, among others, a systematic study of the blow-up phenomenon observed in earlier investigations and the optimization of devices used in boundary-layer control. PMID:16105768

  10. Particle motion inside Ekman and Bödewadt boundary layers

    NASA Astrophysics Data System (ADS)

    Duran Matute, Matias; van der Linden, Steven; van Heijst, Gertjan

    2014-11-01

    We present results from both laboratory experiments and numerical simulations of the motion of heavy particles inside Ekman and Bödewadt boundary layers. The particles are initially at rest on the bottom of a rotating cylinder filled with water and with its axis parallel to the axis of rotation. The particles are set into motion by suddenly diminishing the rotation rate and the subsequent creation of a swirl flow with the boundary layer above the bottom plate. We consider both spherical and non-spherical particles with their size of the same order as the boundary layer thickness. It was found that the particle trajectories define a clear logarithmic spiral with its shape depending on the different parameters of the problem. Numerical simulations show good agreement with experiments and help explain the motion of the particles. This research is funded by NWO (the Netherlands) through the VENI Grant 863.13.022.

  11. Defects and boundary layers in non-Euclidean plates

    NASA Astrophysics Data System (ADS)

    Gemmer, J. A.; Venkataramani, S. C.

    2012-12-01

    We investigate the behaviour of non-Euclidean plates with constant negative Gaussian curvature using the Föppl-von Kármán reduced theory of elasticity. Motivated by recent experimental results, we focus on annuli with a periodic profile. We prove rigorous upper and lower bounds for the elastic energy that scales like the thickness squared. In particular we show that are only two types of global minimizers—deformations that remain flat and saddle shaped deformations with isolated regions of stretching near the edge of the annulus. We also show that there exist local minimizers with a periodic profile that have additional boundary layers near their lines of inflection. These additional boundary layers are a new phenomenon in thin elastic sheets and are necessary to regularize jump discontinuities in the azimuthal curvature across lines of inflection. We rigorously derive scaling laws for the width of these boundary layers as a function of the thickness of the sheet.

  12. Optical measurements of degradation in aircraft boundary layers

    NASA Technical Reports Server (NTRS)

    Kelsall, D.

    1980-01-01

    Visible wavelength measurements of the degradation of optical beams when transmitted through the thin aerodynamic boundary layers around an aircraft are reviewed. The measured results indicated degradation levels for the KC-135 airplanes between 0.10 to 0.13 lambda increasing to 0.18 lambda (rms wavefront distortion). For the Lear Jet, degradation with a 25 mm diameter optics was roughly 0.07 lambda. The corresponding infinite aperture degradation levels are also calculated. The corresponding measured correlation lengths of roughly 12 mm for the KC-135 aircraft and 6 mm for the Lear Jet scale to roughly 20 and 25 mm, respectively, for infinite apertures. These boundary layer correlation lengths do not appear to reflect the different boundary layer thicknesses on the two different aircraft.

  13. Bypass transition and spot nucleation in boundary layers

    NASA Astrophysics Data System (ADS)

    Kreilos, Tobias; Khapko, Taras; Schlatter, Philipp; Duguet, Yohann; Henningson, Dan S.; Eckhardt, Bruno

    2016-08-01

    The spatiotemporal aspects of the transition to turbulence are considered in the case of a boundary-layer flow developing above a flat plate exposed to free-stream turbulence. Combining results on the receptivity to free-stream turbulence with the nonlinear concept of a transition threshold, a physically motivated model suggests a spatial distribution of spot nucleation events. To describe the evolution of turbulent spots a probabilistic cellular automaton is introduced, with all parameters directly obtained from numerical simulations of the boundary layer. The nucleation rates are then combined with the cellular automaton model, yielding excellent quantitative agreement with the statistical characteristics for different free-stream turbulence levels. We thus show how the recent theoretical progress on transitional wall-bounded flows can be extended to the much wider class of spatially developing boundary-layer flows.

  14. Heat transfer to the transpired turbulent boundary layer.

    NASA Technical Reports Server (NTRS)

    Kays, W. M.

    1972-01-01

    This paper contains a summarization of five years work on an investigation on heat transfer to the transpired turbulent boundary layer. Experimental results are presented for friction coefficient and Stanton number over a wide range of blowing and suction for the case of constant free-stream velocity, holding certain blowing parameters constant. The problem of the accelerated turbulent boundary layer with transpiration is considered, experimental data are presented and discussed, and theoretical models for solution of the momentum equation under these conditions are presented. Data on turbulent Prandtl number are presented so that solutions to the energy equation may be obtained. Some examples of boundary layer heat transfer and friction coefficient predictions are presented using one of the models discussed, employing a finite difference solution method.

  15. Atmospheric boundary layer processes during a total solar eclipse

    SciTech Connect

    SethuRaman, S.; Prabhu, A.; Narahari Rao, K.; Narasimha, R.

    1980-01-01

    The total solar eclipse that occurred over the southern part of India on February 16, 1980, gave a unique opportunity to study the earth's atmospheric boundary layer. The meteorological experiments during the 1980 solar eclipse were conducted at Raichur, India (16/sup 0/12'N, 77/sup 0/21'E) located in the state of Karnataka, approximately 400-m above sea level. The main objective was to determine the changes in the earth's atmosphere during and immediately after the eclipse. The goal was to study the changes in the momentum and heat fluxes in the boundary layer due to the eclipse. Measurements were made for 2 days prior to and 1 day after the day of the eclipse to determine background characteristics of the boundary layer which might be site-dependent.

  16. Finite volume solution of the compressible boundary-layer equations

    NASA Technical Reports Server (NTRS)

    Loyd, B.; Murman, E. M.

    1986-01-01

    A box-type finite volume discretization is applied to the integral form of the compressible boundary layer equations. Boundary layer scaling is introduced through the grid construction: streamwise grid lines follow eta = y/h = const., where y is the normal coordinate and h(x) is a scale factor proportional to the boundary layer thickness. With this grid, similarity can be applied explicity to calculate initial conditions. The finite volume method preserves the physical transparency of the integral equations in the discrete approximation. The resulting scheme is accurate, efficient, and conceptually simple. Computations for similar and non-similar flows show excellent agreement with tabulated results, solutions computed with Keller's Box scheme, and experimental data.

  17. Instability of a Supersonic Boundary-Layer with Localized Roughness

    NASA Technical Reports Server (NTRS)

    Marxen, Olaf; Iaccarino, Gianluca; Shaqfeh, Eric S. G.

    2010-01-01

    A localized 3-D roughness causes boundary-layer separation and (weak) shocks. Most importantly, streamwise vortices occur which induce streamwise (low U, high T) streaks. Immersed boundary method (volume force) suitable to represent roughness element in DNS. Favorable comparison between bi-global stability theory and DNS for a "y-mode" Outlook: Understand the flow physics (investigate "z-modes" in DNS through sinuous spanwise forcing, study origin of the beat in DNS).

  18. Boundary-Layer Effects on Acoustic Transmission Through Narrow Slit Cavities

    NASA Astrophysics Data System (ADS)

    Ward, G. P.; Lovelock, R. K.; Murray, A. R. J.; Hibbins, A. P.; Sambles, J. R.; Smith, J. D.

    2015-07-01

    We explore the slit-width dependence of the resonant transmission of sound in air through both a slit array formed of aluminum slats and a single open-ended slit cavity in an aluminum plate. Our experimental results accord well with Lord Rayleigh's theory concerning how thin viscous and thermal boundary layers at a slit's walls affect the acoustic wave across the whole slit cavity. By measuring accurately the frequencies of the Fabry-Perot-like cavity resonances, we find a significant 5% reduction in the effective speed of sound through the slits when an individual viscous boundary layer occupies only 5% of the total slit width. Importantly, this effect is true for any airborne slit cavity, with the reduction being achieved despite the slit width being on a far larger scale than an individual boundary layer's thickness. This work demonstrates that the recent prevalent loss-free treatment of narrow slit cavities within acoustic metamaterials is unrealistic.

  19. Effect of pressure gradient fluctuations on boundary layer turbulence

    NASA Astrophysics Data System (ADS)

    Joshi, Pranav; Katz, Joseph; Liu, Xiaofeng

    2013-11-01

    The present study focuses on the effect of large-scale pressure gradient fluctuations on turbulence in both, zero pressure gradient (ZPG) and mean favorable pressure gradient (FPG) boundary layers. Time-resolved, two-dimensional PIV data in the streamwise-wall-normal plane enables us to calculate the instantaneous pressure distributions by integrating the planar projection of the material acceleration of the fluid. In both boundary layers, sweeps (u'> 0, v'< 0) mostly occur during periods of adverse pressure gradient fluctuations (∂p'/ ∂x > 0), while favorable pressure gradient fluctuations (∂p'/ ∂x < 0) accompany ejections (u'< 0, v'> 0). Conditional averaging indicates that in the ZPG boundary layer, large-scale ∂p'/ ∂x > 0 events accompanying sweeps lead to the formation of a growing region of ejection downstream, in a phenomenon resembling adverse-pressure induced flow separation. This phenomenon is much less pronounced in the FPG boundary layer, as the large-scale ∂p'/ ∂x > 0 events are for the most part significantly weaker than the mean FPG. Conditional sampling and instantaneous data in the ZPG boundary layer also confirm that although some of the ejections are preceded, and presumably initiated, by regions of adverse pressure gradients and sweeps, others are not. In the FPG boundary layer, there is no evidence of sweeps or adverse pressure gradients immediately upstream of ejections. The mechanisms initiating these structures presumably occur far upstream of the peak in favorable pressure gradient fluctuations. Sponsored by NSF, CBET Division, Fluid Dynamics program.

  20. Similarity Theory for Boundary Layers with Pressure Gradient

    NASA Astrophysics Data System (ADS)

    Castillo, Luciano

    1997-11-01

    The analysis of George et al. (1996)(George, W.K., Castillo, L. and Knecht, P. (1996). The Zero Pressure-Gradient Turbulent Boundary Layer. Tech. Rep. TRL-153a, Turb. Res. Lab., SUNY Buffalo.) for the zero-pressure gradient turbulent boundary layer is extended to boundary layers with pressure gradient. As noted by George and Castillo (1993)(George, W.K. and Castillo, L. (1993). Boundary layers with pressure gradient: Another look at the equilibrium boundary layer, Near Wall Turbulent Flows), (So, R.M.C. et al. eds.), 901--910, Elsevier, NY., the velocity deficit scales with U_∞ and a parameter, Λ = δ /(ρ U_∞^2 dδ/dx)dP_∞/dx, which is proportional to the Clauser parameter in the limit of infinite Reynolds number. Like the zero-pressure gradient boundary layer, the velocity profile in the overlap region is also a power law in y+a where a^+ is an offset which is nearly constant and accounts for the mesolayer. In inner variables: u^+ = C_ipy^+^γ_p in outer: \\overlineu = C_op\\overliney^γ_p. It can be shown theoretically that away from separation, both C_ip and γp are equal to the zero pressure gradient values. Moreover, C_op differs from the zero-pressure gradient value only by an additive parameter which depends only on Λ. Thus, the Reynolds number dependence is independent of the pressure gradient.

  1. Direct Numerical Simulation of Supersonic Turbulent Boundary Layers

    NASA Technical Reports Server (NTRS)

    Guarini, Stephen; Moser, R.; Shariff, K.; Wray, A.; Merriam, Marshal (Technical Monitor)

    1997-01-01

    The talk will present some initial results from the direct numerical simulation (DNS) of compressible turbulent boundary layers. We solve numerically the compressible Navier-Stokes equations using a method based on Spalart's transformation for the incompressible turbulent boundary layer. This allows the spatially developing boundary layer to be transformed to a calculation with periodic boundary conditions in the streamwise and spanwise directions. The equations are solved using Fourier expansions in the horizontal directions and B-splines in the wall-normal direction. The first simulation is at Mach 2.5 with a momentum thickness Reynolds number based on wall viscosity of R(sub theta(sup 1)) = 825. We are examining the physics of the compressible boundary layer using turbulence statistics and budget equations. The turbulence statistics include: rms (root mean square) and mean profiles, energy spectra, and two-point correlations. It is found that there are large density gradients which require significantly more resolution than the incompressible case.

  2. Numerical Modeling of the Evolving Stable Boundary Layer

    NASA Astrophysics Data System (ADS)

    Sorbjan, Z.

    2013-12-01

    A single-column model of the evolving stable boundary layer is tested for the consistency of turbulence parameterization, self-similar properties of the flow, and effects of ambient forcing. The turbulence closure of the model is based on the K-theory approach, with stability functions based on empirical data, and a semi-empirical form of the mixing length. The model has one internal, governing stability parameter, the Richardson number Ri, which dynamically adjusts to the boundary conditions and to external forcing. Model results, expressed in terms of local similarity scales, are universal functions of the Richardson number, i.e. they are satisfied in the entire stable boundary layer, for all instants of time, and all kinds of external forcing. Based on similarity expression, a realizability condition is derived for the minimum turbulent heat flux in the stable boundary layer. Numerical experiments show that the development of 'horse-shoe' shaped, 'fixed-elevation' wind hodographs in the interior of the stable boundary layer are solely caused by effects imposed by surface thermal forcing, and are not related to the inertial oscillation mechanism.

  3. Optically relevant turbulence parameters in the Marine boundary layer

    NASA Technical Reports Server (NTRS)

    Davidson, K. L.; Houlihan, T. M.

    1976-01-01

    Shipboard measurements of temperature and velocity fluctuations were performed to determine optical propagation properties of the marine boundary layer. Empirical expressions describing the temperature structure parameter in terms of the Richardson Number overland were used to analyze data obtained for open ocean conditions. Likewise, profiles of mean wind and velocity fluctuation spectra derived from shipboard observations were utilized to calculate associated boundary layer turbulence parameters. In general, there are considerable differences between the open-ocean results of this study and previously determined overland results.

  4. Non-Equilibrium Effects on Hypersonic Turbulent Boundary Layers

    NASA Astrophysics Data System (ADS)

    Kim, Pilbum

    Understanding non-equilibrium effects of hypersonic turbulent boundary layers is essential in order to build cost efficient and reliable hypersonic vehicles. It is well known that non-equilibrium effects on the boundary layers are notable, but our understanding of the effects are limited. The overall goal of this study is to improve the understanding of non-equilibrium effects on hypersonic turbulent boundary layers. A new code has been developed for direct numerical simulations of spatially developing hypersonic turbulent boundary layers over a flat plate with finite-rate reactions. A fifth-order hybrid weighted essentially non-oscillatory scheme with a low dissipation finite-difference scheme is utilized in order to capture stiff gradients while resolving small motions in turbulent boundary layers. The code has been validated by qualitative and quantitative comparisons of two different simulations of a non-equilibrium flow and a spatially developing turbulent boundary layer. With the validated code, direct numerical simulations of four different hypersonic turbulent boundary layers, perfect gas and non-equilibrium flows of pure oxygen and nitrogen, have been performed. In order to rule out uncertainties in comparisons, the same inlet conditions are imposed for each species, and then mean and turbulence statistics as well as near-wall turbulence structures are compared at a downstream location. Based on those comparisons, it is shown that there is no direct energy exchanges between internal and turbulent kinetic energies due to thermal and chemical non-equilibrium processes in the flow field. Instead, these non-equilibria affect turbulent boundary layers by changing the temperature without changing the main characteristics of near-wall turbulence structures. This change in the temperature induces the changes in the density and viscosity and the mean flow fields are then adjusted to satisfy the conservation laws. The perturbation fields are modified according to

  5. Boundary layer study on nozzle wall at hypersonic velocities

    NASA Technical Reports Server (NTRS)

    Jones, Kenneth M.; Dejarnette, Fred R.; Griffith, Wayland C.; Yanta, William J.

    1992-01-01

    The boundary layer on the wall of the Hypervelocity Tunnel 9 was investigated with pitot pressure and total temperature measurements. Experimental results are presented for standard and supercooled Mach 14 runs. The boundary layer data at supercooled conditions are compared to numerical predictions made with a Navier-Stokes algorithm including vibrational nonequilibrium and intermolecular force effects. For standard tunnel conditions, the numerical solutions agree well with experimental data. For the supercooled cases, the numerical code predicts the total temperature but overpredicts the pitot pressure.

  6. Lower Atmospheric Boundary Layer Experiment (LABLE) Final Campaign Report

    SciTech Connect

    Klein, P; Bonin, TA; Newman, JF; Turner, DD; Chilson, P; Blumberg, WG; Mishra, S; Wainwright, CE; Carney, M; Jacobsen, EP; Wharton, S

    2015-11-01

    The Lower Atmospheric Boundary Layer Experiment (LABLE) included two measurement campaigns conducted at the Atmospheric Radiation Measurement (ARM) Southern Great Plains site in Oklahoma during 2012 and 2013. LABLE was designed as a multi-phase, low-cost collaboration among the University of Oklahoma, the National Severe Storms Laboratory, Lawrence Livermore National Laboratory, and the ARM program. A unique aspect was the role of graduate students in LABLE. They served as principal investigators and took the lead in designing and conducting experiments using different sampling strategies to best resolve boundary-layer phenomena.

  7. Carbon vaporization into a nonequilibrium, stagnation-point boundary layer

    NASA Technical Reports Server (NTRS)

    Suzuki, T.

    1978-01-01

    The heat transfer to the stagnation point of an ablating carbonaceous heat shield, where both the gas-phase boundary layer and the heterogeneous surface reactions are not in chemical equilibrium, is examined. Specifically, the nonequilibrium changes in the mass fraction profiles of carbon species calculated for frozen flow are studied. A set of equations describing the steady-state, nonequilibrium laminar boundary layer in the axisymmetric stagnation region, over an ablating graphite surface, is solved, with allowance for the effects of finite rate of carbon vaporization.

  8. An Innovative Flow-Measuring Device: Thermocouple Boundary Layer Rake

    NASA Technical Reports Server (NTRS)

    Hwang, Danny P.; Fralick, Gustave C.; Martin, Lisa C.; Wrbanek, John D.; Blaha, Charles A.

    2001-01-01

    An innovative flow-measuring device, a thermocouple boundary layer rake, was developed. The sensor detects the flow by using a thin-film thermocouple (TC) array to measure the temperature difference across a heater strip. The heater and TC arrays are microfabricated on a constant-thickness quartz strut with low heat conductivity. The device can measure the velocity profile well into the boundary layer, about 65 gm from the surface, which is almost four times closer to the surface than has been possible with the previously used total pressure tube.

  9. Interactive-Boundary-Layer Computations For Oscillating Airfoil

    NASA Technical Reports Server (NTRS)

    Carr, L. W.; Cebeci, T.; Jang, Hong-Ming

    1993-01-01

    Interactive-boundary-layer method developed for computations of steady flow, extended under assumption of quasi-steady flow, to computations of evolution of two-dimensional flow about oscillating airfoil under light-dynamic-stall conditions. Represents advance toward ability to compute unsteady flows at even greater angles of attack with solutions of equations normally used for description of boundary-layer flows on airfoils prior to stall. Important in practical studies of flow on blades of helicopter rotors, axial compressors, and turbines.

  10. Simulation of glancing shock wave and boundary layer interaction

    NASA Technical Reports Server (NTRS)

    Hung, Ching-Mao

    1989-01-01

    Shock waves generated by sharp fins, glancing across a laminar boundary layer growing over a flat plate, are simulated numerically. Several basic issues concerning the resultant three-dimensional flow separation are studied. Using the same number of grid points, different grid spacings are employed to investigate the effects of grid resolution on the origin of the line of separation. Various shock strengths (generated by different fin angles) are used to study the so-called separated and unseparated boundary layer and to establish the existence or absence of the secondary separation. The usual interpretations of the flow field from previous studies and new interpretations arising from the present simulation are discussed.

  11. Investigation of turbulent processes in magnetospheric boundary layers

    NASA Technical Reports Server (NTRS)

    Lotko, William; Sonnerup, B. U. O.

    1990-01-01

    A self-consistent non-evolving two dimensional slab model of a viscous low-latitude boundary layer (LLBL) coupled to the ionosphere was developed by Phan, et al., (1989). Numerical results from the model and possible use of observations to determine the model parameters are discussed. The dynamical model developed by Lotko, et al., (1987) was used by Lotko and Shen (1991) to examine dynamical processes relevant to the LLBL with particular application to post-noon auroral shear layers. Initial results from a magnetohydrodynamic study of flank-side mangetopause boundary configuration are described. Effects of compressibility, scalar viscosity, and electrical resistivity are included in the MHD equations.

  12. Plasma behavior in the boundary layer near a railgun surface

    SciTech Connect

    Kang, S.W.; McCallen, R. )

    1989-01-01

    Viscous flow and thermal characteristics are theoretically analyzed for the plasma behind a moving projectile inside a railgun. When only convective effects are included in the turbulent boundary layer analysis, the results suggest a temperature maximum in the wall region for very high velocity flows. The case of radiative as well as convective transport has also been investigated for an optically thick boundary layer flow by application of an approximate method. Results show a sizable effect of radiation on the flow characteristics, especially on the heat transfer rate to the railgun surface.

  13. Plasma behavior in the boundary layer near a railgun surface

    SciTech Connect

    Kang, Sang-Wook; McCallen, R.E.

    1988-03-01

    Viscous flow and thermal characteristics are theoretically analyzed for the plasma behind a moving projectile inside a railgun. When only convective effects are included in the turbulent boundary layer analysis, the results suggest a temperature maximum in the wall region for very high velocity flows. The case of radiative as well as convective transport has also been investigated for an optically-thick boundary layer flow by application of an approximate method. Results show a sizable effect of radiation on the flow characteristics, especially on the heat-transfer rate to the railgun surface. 7 refs., 2 figs.

  14. Numerical Study of Boundary-Layer in Aerodynamics

    NASA Technical Reports Server (NTRS)

    Shih, Tom I-P.

    1997-01-01

    The accomplishments made in the following three tasks are described: (1) The first task was to study shock-wave boundary-layer interactions with bleed - this study is relevant to boundary-layer control in external and mixed-compression inlets of supersonic aircraft; (2) The second task was to test RAAKE, a code developed for computing turbulence quantities; and (3) The third task was to compute flow around the Ames ER-2 aircraft that has been retrofitted with containers over its wings and fuselage. The appendices include two reports submitted to AIAA for publication.

  15. Characteristics of turbulence in boundary layer with zero pressure gradient

    NASA Technical Reports Server (NTRS)

    Klebanoff, P S

    1955-01-01

    The results of an experimental investigation of a turbulent boundary layer with zero pressure gradient are presented. Measurements with the hot-wire anemometer were made of turbulent energy and turbulent shear stress, probability density and flattening factor of u-fluctuation (fluctuation in x-direction), spectra of turbulent energy and shear stress, and turbulent dissipation. The importance of the region near the wall and the inadequacy of the concept of local isotropy are demonstrated. Attention is given to the energy balance and the intermittent character of the outer region of the boundary layer. Also several interesting features of the spectral distribution of the turbulent motions are discussed.

  16. Fluorescence Visualization of Hypersonic Flow Past Triangular and Rectangular Boundary-layer Trips

    NASA Technical Reports Server (NTRS)

    Danehy, Paul M.; Garcia, A. P.; Borg, Stephen E.; Dyakonov, Artem A.; Berry, Scott A.; Inman, Jennifer A.; Alderfer, David W.

    2007-01-01

    Planar laser-induced fluorescence (PLIF) flow visualization has been used to investigate the hypersonic flow of air over surface protrusions that are sized to force laminar-to-turbulent boundary layer transition. These trips were selected to simulate protruding Space Shuttle Orbiter heat shield gap-filler material. Experiments were performed in the NASA Langley Research Center 31-Inch Mach 10 Air Wind Tunnel, which is an electrically-heated, blowdown facility. Two-mm high by 8-mm wide triangular and rectangular trips were attached to a flat plate and were oriented at an angle of 45 degrees with respect to the oncoming flow. Upstream of these trips, nitric oxide (NO) was seeded into the boundary layer. PLIF visualization of this NO allowed observation of both laminar and turbulent boundary layer flow downstream of the trips for varying flow conditions as the flat plate angle of attack was varied. By varying the angle of attack, the Mach number above the boundary layer was varied between 4.2 and 9.8, according to analytical oblique-shock calculations. Computational Fluid Dynamics (CFD) simulations of the flowfield with a laminar boundary layer were also performed to better understand the flow environment. The PLIF images of the tripped boundary layer flow were compared to a case with no trip for which the flow remained laminar over the entire angle-of-attack range studied. Qualitative agreement is found between the present observed transition measurements and a previous experimental roughness-induced transition database determined by other means, which is used by the shuttle return-to-flight program.

  17. The high-order statistics of APG turbulent boundary layers

    NASA Astrophysics Data System (ADS)

    Maciel, Yvan; Gungor, Ayse G.; Simens, Mark P.; Soria, Julio

    2013-11-01

    One and two-point statistics are presented from a new direct numerical simulation of an adverse pressure gradient boundary layer, at Reθ = 250 - 2175 , in which the transition to turbulence is triggered by a trip wire which is modeled using the immersed boundary method. Mean velocity results in the attached turbulent region do not show log law profiles. Departure from the law of the wall occurs throughout the inner region. The production and Reynolds stress peaks move to roughly the middle of the boundary layer. The profiles of the uv correlation factor reveal that de-correlation between u and v takes place throughout the boundary layer, but especially near the wall, as the mean velocity defect increases. The non-dimensional stress ratios and quadrant analysis of uv indicate changes to the turbulence structure. The structure parameter is low, similar to equilibrium APG flows and mixing layers in the present flow and seems to be decreasing as the mean velocity defect increases. The statistics of the upper half of the APG flow show resemblance with results for a mixing layer. Funded in part by ITU, NSERC of Canada, ARC Discovery Grant, and Multiflow program of the ERC.

  18. Turbulent boundary layers subjected to multiple curvatures and pressure gradients

    NASA Technical Reports Server (NTRS)

    Bandyopadhyay, Promode R.; Ahmed, Anwar

    1993-01-01

    The effects of abruptly applied cycles of curvatures and pressure gradients on turbulent boundary layers are examined experimentally. Two two-dimensional curved test surfaces are considered: one has a sequence of concave and convex longitudinal surface curvatures and the other has a sequence of convex and concave curvatures. The choice of the curvature sequences were motivated by a desire to study the asymmetric response of turbulent boundary layers to convex and concave curvatures. The relaxation of a boundary layer from the effects of these two opposite sequences has been compared. The effect of the accompaying sequences of pressure gradient has also been examined but the effect of curvature dominates. The growth of internal layers at the curvature junctions have been studied. Measurements of the Gortler and corner vortex systems have been made. The boundary layer recovering from the sequence of concave to convex curvature has a sustained lower skin friction level than in that recovering from the sequence of convex to concave curvature. The amplification and suppression of turbulence due to the curvature sequences have also been studied.

  19. Combustion-turbulence interaction in the turbulent boundary layer over a hot surface

    SciTech Connect

    Ng, T.T.; Cheng, R.K.; Robben, F.; Talbot, L.

    1982-01-01

    The turbulence-combustion interaction in a reacting turbulent boundary layer over a heated flat plate was studied. Ethylene/air mixture with equivalence ratio of 0.35 was used. The free stream velocity was 10.5 m/s and the wall temperature was 1250/sup 0/K. Combustion structures visualization was provided by high-speed schlieren photographs. Fluid density statistics were deduced from Rayleigh scattering intensity measurements. A single-component laser Doppler velocimetry system was used to obtain mean and root-mean-square velocity distributions, the Reynolds stress, the streamwise and the cross-stream turbulent kinetic energy diffusion, and the production of turbulent kinetic energy by Reynolds stress. The combustion process was dominated by large-scale turbulent structures of the boundary layer. Combustion causes expansion of the boundary layer. No overall self-similarity is observed in either the velocity or the density profiles. Velocity fluctuations were increased in part of the boundary layer and the Reynolds stress was reduced. The turbulent kinetic energy diffusion pattern was changed significantly and a modification of the boundary layer assumption will be needed when dealing with this problem analytically. 11 figures, 1 table.

  20. Aerothermodynamic Testing and Boundary Layer Trip Sizing of the HIFiRE Flight 1 Vehicle

    NASA Technical Reports Server (NTRS)

    Berger, Karen T.; Greene, Frank A.; Kimmel, Roger; Alba, Christopher; Johnson, Heath

    2008-01-01

    An experimental wind tunnel test was conducted in the NASA Langley Research Center s 20-Inch Mach 6 Air Tunnel in support of the Hypersonic International Flight Research Experimentation Program. The information in this article is focused on the Flight 1 configuration, the first in a series of flight experiments. The article documents experimental measurements made over a Reynolds numbers range of 2.1x10(exp 6)/ft to 5.6x10(exp 6)/ft and angles of attack of -5 to +5 deg on several scaled ceramic heat transfer models of the Flight 1 configuration. Global heat transfer was measured using phosphor thermography and the resulting images and heat transfer distributions were used to infer the state of the boundary layer on the vehicle windside and leeside surfaces. Boundary layer trips were used to force the boundary layer turbulent and the experimental data highlighted in this article were used to size and place the boundary layer trip for the flight vehicle. The required height of the flight boundary layer trip was determined to be 0.079 in and the trip was moved from the design location of 7.87 in to 20.47 in to ensure that augmented heating would not impact the laminar side of the vehicle. Allowable roughness was selected to be 3.2x10(exp -3) in.

  1. Calculation of eddy viscosity in a compressible turbulent boundary layer with mass injection and chemical reaction

    NASA Technical Reports Server (NTRS)

    Omori, S.; Gross, K. W.

    1973-01-01

    The turbulent kinetic energy equation is coupled with boundary layer equations to solve the characteristics of compressible turbulent boundary layers with mass injection and combustion. The Reynolds stress is related to the turbulent kinetic energy using the Prandtl-Wieghardt formulation. When a lean mixture of hydrogen and nitrogen is injected through a porous plate into the subsonic turbulent boundary layer of air flow and ignited by external means, the turbulent kinetic energy increases twice as much as that of noncombusting flow with the same mass injection rate of nitrogen. The magnitudes of eddy viscosity between combusting and noncombusting flows with injection, however, are almost the same due to temperature effects, while the distributions are different. The velocity profiles are significantly affected by combustion. If pure hydrogen as a transpiration coolant is injected into a rocket nozzle boundary layer flow of combustion products, the temperature drops significantly across the boundary layer due to the high heat capacity of hydrogen. At a certain distance from the wall hydrogen reacts with the combustion products, liberating an extensive amount of heat.

  2. Simultaneous measurement of aero-optical distortion and turbulent structure in a heated boundary layer

    NASA Astrophysics Data System (ADS)

    Saxton-Fox, Theresa; McKeon, Beverley; Smith, Adam; Gordeyev, Stanislav

    2014-11-01

    This study examines the relationship between turbulent structures and the aero-optical distortion of a laser beam passing through a turbulent boundary layer. Previous studies by Smith et al. (AIAA, 2014--2491) have found a bulk convection velocity of 0 . 8U∞ for aero-optical distortion in turbulent boundary layers, motivating a comparison of the distortion with the outer boundary layer. In this study, a turbulent boundary layer is developed over a flat plate with a moderately-heated section of length 25 δ . Density variation in the thermal boundary layer leads to aero-optical distortion, which is measured with a Malley probe (Smith et al., AIAA, 2013--3133). Simultaneously, 2D PIV measurements are recorded in a wall-normal, streamwise plane centered on the Malley probe location. Experiments are run at Reθ = 2100 and at a Mach number of 0.03, with the heated wall 10 to 20°C above the free stream temperature. Correlations and conditional averages are carried out between Malley probe distortion angles and flow features in the PIV vector fields. Aero-optical distortion in this study will be compared to distortion in higher Mach number flows studied by Gordeyev et al. (J. Fluid Mech., 2014), with the aim of extending conclusions into compressible flows. This research is made possible by the Department of Defense through the National Defense & Engineering Graduate Fellowship (NDSEG) Program and by the Air Force Office of Scientific Research Grant # FA9550-12-1-0060.

  3. The Saharan atmospheric boundary layer: Turbulence, stratification and mixing

    NASA Astrophysics Data System (ADS)

    Garcia-Carreras, Luis; Parker, Douglas J.; Marsham, John H.; Rosenberg, Philip D.; Marenco, Franco; Mcquaid, James B.

    2013-04-01

    High-resolution large-eddy model simulations, combined with aircraft and radiosonde observations from the Fennec observational campaign are used to describe the vertical structure of the Saharan atmospheric boundary layer (SABL). The SABL, probably the deepest dry convective boundary layer on Earth, is crucial in controlling the vertical redistribution and long-range transport of dust, heat, water and momentum in the Sahara, with significant implications for the large-scale Saharan heat low and West African monsoon systems. The daytime SABL has a unique structure, with an actively growing convective region driven by high sensible heating at the surface, capped by a weak (≤1K) temperature inversion and a deep, near-neutrally stratified Saharan residual layer (SRL) above it, which is mostly well mixed in humidity and temperature and reaches a height of ~500hPa. Large-eddy model (LEM) simulations were initialized with radiosonde data and driven by surface heat flux observations from Fennec supersite-1 at Bordj Bardji Mokhtar (BBM), southern Algeria. Aircraft observations are used to validate the processes of interest identified in the model, as well as providing unprecedented detail of the turbulent characteristics of the SABL. Regular radiosondes from BBM during June 2011 are used to generate a climatology of the day-time SABL structure, providing further evidence that the processes identified with the LEM are recurrent features of the real SABL. The model is shown to reproduce the typical SABL structure from observations, and different tracers are used to illustrate the penetration of the convective boundary layer into the residual layer above as well as mixing processes internal to the residual layer. Despite the homogeneous surface fluxes and tracer initialization, the large characteristic length-scale of the turbulent eddies leads to large horizontal changes in boundary layer depth (which control the formation of clouds) and significant heterogeneity in tracer

  4. Mixing layer growth and background air-quality measurements over the Colorado oil-shale area

    SciTech Connect

    Laulainen, N.S.; Whiteman, C.D.; Davis, W.E.; Thorp, J.M.

    1981-06-01

    The daily growth of convective boundary layers over the complex terrain of the oil shale areas of Colorado is a prominent feature of the meteorology of the region. The development of these layers was investigated using airsondes, rawinsondes, and aircraft. The deep growth of the layers in August, to heights in excess of 5500-m MSL on clear or partly cloudy days, is expected to have important implications for the dispersal of pollutants released in the region as the oil shale resource undergoes future development. Aircraft observations show that the present background air quality is good over the region and that pollutants, when present, become well mixed throughout the depth of the convective boundary layer. The layer therefore represents an important natural means of dilution for pollutants introduced into the atmosphere. Work is proceeding to incorporate the time-dependent convective boundary layer growth into air pollution models for the region.

  5. Vertical distribution of HOx concentrations driven by boundary layer dynamics

    NASA Astrophysics Data System (ADS)

    Gomm, Sebastian; Broch, Sebastian; Fuchs, Hendrik; Hofzumahaus, Andreas; Holland, Frank; Bohn, Birger; Häseler, Rolf; Jäger, Julia; Kaiser, Jennifer; Keutsch, Frank; Li, Xin; Lu, Keding; Lohse, Insa; Rohrer, Franz; Tillmann, Ralf; Wegener, Robert; Wolfe, Glenn; Mentel, Thomas F.; Kiendler-Scharr, Astrid; Wahner, Andreas

    2014-05-01

    The hydroxyl (OH) and hydroperoxy (HO2) radicals are key compounds for the degradation of pollutants in the atmosphere. Therefore, accurate and precise measurements of HOx radicals (= OH + HO2) at different altitudes and in different regions are necessary to test our understanding of atmospheric chemical processes. The planetary boundary layer (PBL) is of special interest as it is chemically the most active part of the atmosphere. Until today, there is a general lack of measurements investigating the distribution of radicals, trace gases, and aerosols in the PBL with high spatial resolution. Here, we present results of measurements performed in June/July 2012 in the Po valley region in Italy as part of the Pan-European Gas-AeroSOls-climate interaction Study (PEGASOS). A Zeppelin NT was used as an airborne platform for measurements of HOx radical concentrations and total OH reactivity (kOH) applying a remotely controlled Laser Induced Fluorescence (LIF) instrument. In addition a comprehensive set of other trace gases (O3, CO, NO, NO2, HCHO, HONO, VOCs), photolysis frequencies, particle number concentration, and meteorological parameters were measured. During the morning hours, a layered atmospheric structure with vertical gradients in trace gas concentrations was observed. In altitudes larger than 600 m above ground, air masses with low trace gas concentrations (NOx < 500 ppt, kOH < 3 s-1) were probed, whereas air masses in altitudes below 100 m above ground were influenced by ground emissions resulting in higher trace gas concentrations (NOx > 6 ppb, kOH > 6 s-1). The airship Zeppelin NT was used to perform localized height profiles between 75 and 900 m above ground in order to investigate the influence of these trace gas gradients on HOx radical concentrations. Due to changing chemical conditions, the measured OH concentration shows a variability with height up to a factor of 2.5 and for the measured HO2 concentration up to a factor of 5. Additionally, we present

  6. Turbulence in rough-wall boundary layers: universality issues

    NASA Astrophysics Data System (ADS)

    Amir, Mohammad; Castro, Ian P.

    2011-08-01

    Wind tunnel measurements of turbulent boundary layers over three-dimensional rough surfaces have been carried out to determine the critical roughness height beyond which the roughness affects the turbulence characteristics of the entire boundary layer. Experiments were performed on three types of surfaces, consisting of an urban type surface with square random height elements, a diamond-pattern wire mesh and a sand-paper type grit. The measurements were carried out over a momentum thickness Reynolds number ( Re θ) range of 1,300-28,000 using two-component Laser Doppler anemometry (LDA) and hot-wire anemometry (HWA). A wide range of the ratio of roughness element height h to boundary layer thickness δ was covered (0.04 ≤ h/δ ≤ 0.40). The results confirm that the mean profiles for all the surfaces collapse well in velocity defect form up to surprisingly large values of h/δ, perhaps as large as 0.2, but with a somewhat larger outer layer wake strength than for smooth-wall flows, as previously found. At lower h/δ, at least up to 0.15, the Reynolds stresses for all surfaces show good agreement throughout the boundary layer, collapsing with smooth-wall results outside the near-wall region. With increasing h/δ, however, the turbulence above the near-wall region is gradually modified until the entire flow is affected. Quadrant analysis confirms that changes in the rough-wall boundary layers certainly exist but are confined to the near-wall region at low h/δ; for h/δ beyond about 0.2 the quadrant events show that the structural changes extend throughout much of the boundary layer. Taken together, the data suggest that above h/δ ≈ 0.15, the details of the roughness have a weak effect on how quickly (with rising h/δ) the turbulence structure in the outer flow ceases to conform to the classical boundary layer behaviour. The present results provide support for Townsend's wall similarity hypothesis at low h/δ and also suggest that a single critical roughness

  7. Physical description of boundary-layer transition: Experimental evidence

    NASA Technical Reports Server (NTRS)

    Saric, William S.

    1994-01-01

    The problems of understanding the origins of turbulent flow and transition to turbulent flow are the most important unsolved problems of fluid mechanics and aerodynamics. It is well known that the stability, transition, and turbulent characteristics of bounded shear layers are fundamentally different from those of free shear layers. Likewise, the stability, transition, and turbulent characteristics of open systems are fundamentally different from those of closed systems. Because of the influence of indigenous disturbances, surface geometry and roughness, sound, heat transfer, and ablation, it is not possible to develop general prediction schemes for transition location and the nature of turbulent structures in boundary-layer flows. At the present time no mathematical model exists that can predict the transition Reynolds number on a flat plate. The recent progress in this area is encouraging, in that a number of distinct transition mechanisms have been found experimentally. The theoretical work finds them to be amplitude and Reynolds-number dependent. The theory remains rather incomplete with regard to predicting transition. Amplitude and spectral characteristics of the disturbances inside the laminar viscous layer strongly influence which type of transition occurs. The major need in this area is to understand how freestream disturbances are entrained into the boundary layer, i.e., to answer the question of receptivity. We refer receptivity to the mechanism(s) that cause freestream disturbances to enter the boundary layer and create the initial amplitudes for unstable waves.

  8. Simulating Dispersion in the Evening-Transition Boundary Layer

    NASA Astrophysics Data System (ADS)

    Taylor, Alexander C.; Beare, Robert J.; Thomson, David J.

    2014-12-01

    We investigate dispersion in the evening-transition boundary layer using large-eddy simulation (LES). In the LES, a particle model traces pollutant paths using a combination of the resolved flow velocities and a random displacement model to represent subgrid-scale motions. The LES is forced with both a sudden switch-off of the surface heat flux and also a more gradual observed evolution. The LES shows `lofting' of plumes from near-surface releases in the pre-transition convective boundary layer; it also shows the subsequent `trapping' of releases in the post-transition near-surface stable boundary layer and residual layer above. Given the paucity of observations for pollution dispersion in evening transitions, the LES proves a useful reference. We then use the LES to test and improve a one-dimensional Lagrangian Stochastic Model (LSM) such as is often used in practical dispersion studies. The LSM used here includes both time-varying and skewed turbulence statistics. It is forced with the vertical velocity variance, skewness and dissipation from the LES for particle releases at various heights and times in the evening transition. The LSM plume spreads are significantly larger than those from the LES in the post-transition stable boundary-layer trapping regime. The forcing from the LES was thus insufficient to constrain the plume evolution, and inclusion of the significant stratification effects was required. In the so-called modified LSM, a correction to the vertical velocity variance was included to represent the effect of stable stratification and the consequent presence of wave-like motions. The modified LSM shows improved trapping of particles in the post-transition stable boundary layer.

  9. Initiation of deep convection along boundary layer convergence lines in a semitropical environment

    SciTech Connect

    Fankhauser, J.C.; Crook, N.A.; Tuttle, J.; Miller, L.J.; Wade, C.G.

    1995-02-01

    The initiation of deep convection through forcing along boundary layer convergence lines is examined using observations from the Convection and Precipitation/Electrification (CaPE) Experiment conducted in east-central Florida during the summer of 1991. The study is concerned with the evolution and interaction of two converging air masses that were initially separated by an intervening boundary layer characterized by neutral stability and horizontal convective rolls. As anticipated, major thunderstorms erupt when the east coast breeze eventually collides with thunderstorm outflows from the west, but unexpected convection takes place prior to their merger along a well-defined confluence zone associated with a persistent quasi-stationary roll vortex signature. In this study, complementary interactions between roll vortex convergence lines and the sea-breeze front are not sufficient to trigger deep convection. However, organized convergence along the eastward-spreading thunderstorm outflows did interact periodically with roll vortex convergence maxima to initiate a new series of new storms. Results from two-dimensional numerical model simulations replicate many of the observed boundary layer features. Surface heating produces circulations similar to sea-breeze frontal zones that appear near the coastlines and progress steadily toward each other as the interior boundary layer deepens. Vertical velocity maxima develop over the associated convergence zones, but weaker periodic maxima also occur within the interior air mass at intervals similar to the spacing of observed horizontal roll vortices.

  10. Effect of Dynamic Sector Boundary Changes on Air Traffic Controllers

    NASA Technical Reports Server (NTRS)

    Jung, Jaewoo; Lee, Paul; Kessell, Angela; Homola, Jeff; Zelinski, Shannon

    2010-01-01

    The effect of dynamic sector boundary changes on air traffic controller workload was investigated with data from a human-in-the-loop simulation. Multiple boundary changes were made during simulated operations, and controller rating of workload was recorded. Analysis of these data showed an increase of 16.9% in controller workload due to boundary changes. This increased workload was correlated with the number of aircraft handoffs and change in sector volume. There was also a 12.7% increase in average workload due to the changed sector design after boundary changes. This increase was correlated to traffic flow crossing points getting closer to sector boundaries and an increase in the number of flights with short dwell time in a sector. This study has identified some of the factors that affect controller workload when sector boundaries are changed, but more research is needed to better understand their relationships.

  11. Passive Control of Supersonic Rectangular Jets through Boundary Layer Swirl

    NASA Astrophysics Data System (ADS)

    Han, Sang Yeop; Taghavi, Ray R.; Farokhi, Saeed

    2013-06-01

    Mixing characteristics of under-expanded supersonic jets emerging from plane and notched rectangular nozzles are computationally studied using nozzle exit boundary layer swirl as a mean of passive flow control. The coupling of the rectangular jet instability modes, such as flapping, and the swirl is investigated. A three-dimensional unsteady Reynolds-Averaged Navier-Stokes (RANS) code with shock adaptive grids is utilized. For plane rectangular nozzle with boundary layer swirl, the flapping and spanwise oscillations are captured in the jet's small and large dimensions at twice the frequencies of the nozzles without swirl. A symmetrical oscillatory mode is also observed in the jet with double the frequency of spanwise oscillation mode. For the notched rectangular nozzle with boundary layer swirl, the flapping oscillation in the small jet dimension and the spanwise oscillation in the large jet dimension are observed at the same frequency as those without boundary layer swirl. The mass flow rates in jets at 11 and 8 nozzle heights downstream of the nozzles increased by nearly 25% and 41% for the plane and notched rectangular nozzles respectively, due to swirl. The axial gross thrust penalty due to induced swirl was 5.1% for the plane and 4.9% for the notched rectangular nozzle.

  12. Retinal layer segmentation of macular OCT images using boundary classification

    PubMed Central

    Lang, Andrew; Carass, Aaron; Hauser, Matthew; Sotirchos, Elias S.; Calabresi, Peter A.; Ying, Howard S.; Prince, Jerry L.

    2013-01-01

    Optical coherence tomography (OCT) has proven to be an essential imaging modality for ophthalmology and is proving to be very important in neurology. OCT enables high resolution imaging of the retina, both at the optic nerve head and the macula. Macular retinal layer thicknesses provide useful diagnostic information and have been shown to correlate well with measures of disease severity in several diseases. Since manual segmentation of these layers is time consuming and prone to bias, automatic segmentation methods are critical for full utilization of this technology. In this work, we build a random forest classifier to segment eight retinal layers in macular cube images acquired by OCT. The random forest classifier learns the boundary pixels between layers, producing an accurate probability map for each boundary, which is then processed to finalize the boundaries. Using this algorithm, we can accurately segment the entire retina contained in the macular cube to an accuracy of at least 4.3 microns for any of the nine boundaries. Experiments were carried out on both healthy and multiple sclerosis subjects, with no difference in the accuracy of our algorithm found between the groups. PMID:23847738

  13. Boundary-Layer Receptivity and Integrated Transition Prediction

    NASA Technical Reports Server (NTRS)

    Chang, Chau-Lyan; Choudhari, Meelan

    2005-01-01

    The adjoint parabold stability equations (PSE) formulation is used to calculate the boundary layer receptivity to localized surface roughness and suction for compressible boundary layers. Receptivity efficiency functions predicted by the adjoint PSE approach agree well with results based on other nonparallel methods including linearized Navier-Stokes equations for both Tollmien-Schlichting waves and crossflow instability in swept wing boundary layers. The receptivity efficiency function can be regarded as the Green's function to the disturbance amplitude evolution in a nonparallel (growing) boundary layer. Given the Fourier transformed geometry factor distribution along the chordwise direction, the linear disturbance amplitude evolution for a finite size, distributed nonuniformity can be computed by evaluating the integral effects of both disturbance generation and linear amplification. The synergistic approach via the linear adjoint PSE for receptivity and nonlinear PSE for disturbance evolution downstream of the leading edge forms the basis for an integrated transition prediction tool. Eventually, such physics-based, high fidelity prediction methods could simulate the transition process from the disturbance generation through the nonlinear breakdown in a holistic manner.

  14. Three-Dimensional Turbulent Boundary Layer With Adverse Pressure Gradient

    NASA Technical Reports Server (NTRS)

    Driver, David M.; Hebbar, Sheshagiri K.

    1992-01-01

    Report describes experiment to measure effects of adverse pressure gradient on three-dimensional turbulent boundary-layer flow; effect of streamwise gradient of pressure on crossflow of particular interest. Production of turbulent kinetic energy grows rapidly in vicinity of step as result of steep mean-flow velocity gradients. Dissipation grows less quickly than production; leading to net growth with distance along streamline.

  15. Secondary three-dimensional instability in compressible boundary layers

    NASA Technical Reports Server (NTRS)

    El-Hady, Nabil M.

    1989-01-01

    Three dimensional linear secondary instability theory is extended for compressible boundary layers on a flat plate in the presence of finite amplitude Tollmien-Schlichting waves. The focus is on principal parametric resonance responsible for strong growth of subharmonics in low disturbance environment.

  16. Atmospheric boundary layer evening transitions over West Texas

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A systemic analysis of the atmospheric boundary layer behavior during some evening transitions over West Texas was done using the data from an extensive array of instruments which included small and large aperture scintillometers, net radiometers, and meteorological stations. The analysis also comp...

  17. Response of Hypervelocity Boundary Layers to Global and Local Distortion

    NASA Astrophysics Data System (ADS)

    Flaherty, William; Austin, Joanna

    2013-11-01

    Concave surface curvature can impose significant distortion to compressible boundary layer flows due to multiple, potentially coupled, effects including an adverse pressure gradient, bulk flow compression, and possible centrifugal instabilities. Approximate methods provide insight into dominant mechanisms, however few strategies are capable of treating heat transfer effects and predictions diverge significantly from the available experimental data at larger pressure gradient. In this work, we examine the response of boundary layers to global and local distortions in hypervelocity flows where thermochemical energy exchange has significant impact on boundary layer structure and stability. Experiments are carried out in a novel expansion tube facility built at Illinois. We demonstrate that reasonable estimates of the laminar heat flux augmentation may be obtained as a function of the local turning angle, even at the conditions of greatest distortion. As a model problem to study the evolution of large-scale structures under strained conditions, streamwise vortices are imposed into the boundary layer. The impact of the additional local distortion is investigated. The heat transfer scaling is found to be robust even in the presence of the imposed structures.

  18. ON HYDROMAGNETIC STRESSES IN ACCRETION DISK BOUNDARY LAYERS

    SciTech Connect

    Pessah, Martin E.; Chan, Chi-kwan E-mail: ckch@nordita.org

    2012-05-20

    Detailed calculations of the physical structure of accretion disk boundary layers, and thus their inferred observational properties, rely on the assumption that angular momentum transport is opposite to the radial angular frequency gradient of the disk. The standard model for turbulent shear viscosity satisfies this assumption by construction. However, this behavior is not supported by numerical simulations of turbulent magnetohydrodynamic (MHD) accretion disks, which show that angular momentum transport driven by the magnetorotational instability (MRI) is inefficient in disk regions where, as expected in boundary layers, the angular frequency increases with radius. In order to shed light on physically viable mechanisms for angular momentum transport in this inner disk region, we examine the generation of hydromagnetic stresses and energy density in differentially rotating backgrounds with angular frequencies that increase outward in the shearing-sheet framework. We isolate the modes that are unrelated to the standard MRI and provide analytic solutions for the long-term evolution of the resulting shearing MHD waves. We show that, although the energy density of these waves can be amplified significantly, their associated stresses oscillate around zero, rendering them an inefficient mechanism to transport significant angular momentum (inward). These findings are consistent with the results obtained in numerical simulations of MHD accretion disk boundary layers and challenge the standard assumption of efficient angular momentum transport in the inner disk regions. This suggests that the detailed structure of turbulent MHD accretion disk boundary layers could differ appreciably from those derived within the standard framework of turbulent shear viscosity.

  19. ATMOSPHERIC DISPERSION IN THE ARCTIC: WINTERTIME BOUNDARY-LAYER MEASUREMENTS

    EPA Science Inventory

    The wintertime arctic atmospheric boundary layer was investigated with micro-meteorological and SF6 tracer measurements collected in Prudhoe Bay, AK. he flat, snow-covered tundra surface at this site generates a very small (0.03 cm) surface roughness. he relatively warm maritime ...

  20. Detection of boundary-layer transitions in wind tunnels

    NASA Technical Reports Server (NTRS)

    Wood, W. R.; Somers, D. M.

    1978-01-01

    Accelerometer replaces stethoscope in technique for detection of laminar-to-turbulent boundary-layer transitions on wind-tunnel models. Technique allows measurements above or below atmospheric pressure because human operator is not required within tunnel. Data may be taken from accelerometer, and pressure transducer simultaneously, and delivered to systems for analysis.

  1. Secondary eyewall formation as a progressive boundary layer response

    NASA Astrophysics Data System (ADS)

    Abarca, S. F.; Montgomery, M. T.; Bell, M. M.

    2012-12-01

    The robust observational (satellite based) evidence that secondary eyewalls are common features in major hurricanes contrasts with the scarce in situ observations of the phenomena and its life cycle. This lack of observations has resulted in an incomplete understanding of the dynamics of secondary eyewall formation (SEF). A wide variety of physical processes have been invoked to explain SEF, but only the recently proposed theory of a progressive boundary layer control in SEF has been supported by a variety of full physics mesoscale numerical integrations. The RAINEX field project provided unique observations of the secondary eyewall of Hurricane Rita (2005) both before and during the time Rita exhibited a clear secondary eyewall structure. These observations have contributed to the advancement of the understanding of the secondary eyewall phenomenon. However, in the RAINEX experiment, there was limited data sampling during the development of the secondary wind maxima, thereby precluding a complete observational investigation of the dynamics of SEF. In this presentation we adopt an azimuthally-averaged perspective of the flow dynamics and we test the newly proposed theory of a progressive boundary layer control on SEF. Specifically, we use both RAINEX data as well as data from high resolution, full physics mesoscale numerical simulations to initialize and force an axisymmetric slab boundary layer model with radial diffusion included. The objective is to investigate whether such a reduced boundary layer model can generate secondary wind maxima as a response to environments like those that result in SEF in nature and in full physics simulations.

  2. Boundary layer measurements using hot-film sensors

    NASA Technical Reports Server (NTRS)

    Holmes, Harlan K.; Carraway, Debra L.

    1986-01-01

    Measurements in the aerodynamic boundary layer using heat transfer, hot-film sensors are receiving a significant amount of effort at the Langley Research Center. A description of the basic sensor, the signal conditioning employed, and several manifestations of the sensor are given. Results of a flow reversal sensor development are presented, and future work areas are outlined.

  3. On the Effects of Surface Roughness on Boundary Layer Transition

    NASA Technical Reports Server (NTRS)

    Choudhari, Meelan M.; Li, Fei; Chang, Chau-Lyan; Edwards, Jack

    2009-01-01

    Surface roughness can influence laminar-turbulent transition in many different ways. This paper outlines selected analyses performed at the NASA Langley Research Center, ranging in speed from subsonic to hypersonic Mach numbers and highlighting the beneficial as well as adverse roles of the surface roughness in technological applications. The first theme pertains to boundary-layer tripping on the forebody of a hypersonic airbreathing configuration via a spanwise periodic array of trip elements, with the goal of understanding the physical mechanisms underlying roughness-induced transition in a high-speed boundary layer. The effect of an isolated, finite amplitude roughness element on a supersonic boundary layer is considered next. The other set of flow configurations examined herein corresponds to roughness based laminar flow control in subsonic and supersonic swept wing boundary layers. A common theme to all of the above configurations is the need to apply higher fidelity, physics based techniques to develop reliable predictions of roughness effects on laminar-turbulent transition.

  4. Laminarization of Turbulent Boundary Layer on Flexible and Rigid Surfaces

    NASA Technical Reports Server (NTRS)

    Maestrello, Lucio

    2001-01-01

    An investigation of the control of turbulent boundary layer flow over flexible and rigid surfaces downstream of a concave-convex geometry has been made. The concave-convex curvature induces centrifugal forces and a pressure gradient on the growth of the turbulent boundary layer. The favorable gradient is not sufficient to overcome the unfavorable; thus, the net effect is a destabilizing, of the flow into Gortler instabilities. This study shows that control of the turbulent boundary layer and structural loading can be successfully achieved by using localized surface heating because the subsequent cooling and geometrical shaping downstream over a favorable pressure gradient is effective in laminarization of the turbulence. Wires embedded in a thermally insulated substrate provide surface heating. The laminarized velocity profile adjusts to a lower Reynolds number, and the structure responds to a lower loading. In the laminarization, the turbulent energy is dissipated by molecular transport by both viscous and conductivity mechanisms. Laminarization reduces spanwise vorticity because of the longitudinal cooling gradient of the sublayer profile. The results demonstrate that the curvature-induced mean pressure gradient enhances the receptivity of the flow to localized surface heating, a potentially viable mechanism to laminarize turbulent boundary layer flow; thus, the flow reduces the response of the flexible structure and the resultant sound radiation.

  5. Carbon transport in the bottom boundary layer. Final report

    SciTech Connect

    Agrawal, Y.C.

    1998-10-05

    This report summarizes the activities and findings from a field experiment devised to estimate the rates and mechanisms of transport of carbon across the continental shelves. The specific site chosen for the experiment was the mid-Atlantic Bight, a region off the North Carolina coast. The experiment involved a large contingent of scientists from many institutions. The specific component of the program was the transport of carbon in the bottom boundary layer. The postulate mechanisms of transport of carbon in the bottom boundary layer are: resuspension and advection, downward deposition, and accumulation. The high turbulence levels in the bottom boundary layer require the understanding of the coupling between turbulence and bottom sediments. The specific issues addressed in the work reported here were: (a) What is the sediment response to forcing by currents and waves? (b) What is the turbulence climate in the bottom boundary layer at this site? and (c) What is the rate at which settling leads to carbon sequestering in bottom sediments at offshore sites?

  6. Boundary Layer Relaminarization and High-Lift Aerodynamics

    NASA Astrophysics Data System (ADS)

    Bourassa, Corey; Thomas, Flint O.; Nelson, Robert C.

    1998-11-01

    Modern high-lift devices are complicated systems that exhibit a variety of complex flow physics phenomena. Thomas( Thomas, F.O., Liu, X., & Nelson, R.C., 1997, ``Experimental Investigation of the Confluent Boundary Layer of a High-Lift System,'' AIAA Paper 97-1934.) outlines several critical flow phenomena, dubbed ``high-lift building block flows'', that can be found in a typical multi-element high-lift system. One such high-lift building block flow is turbulent boundary layer relaminarization, which may be responsible for such phenomena as ``inverse Reynolds number effects.'' Flight test experiments on leading edge transition and relaminarization conducted by Yip, et al(Yip, et al), ``The NASA B737-100 High-Lift Flight Research Program--Measurements and Computations,'' Aeronautical Journal, Paper No. 2125, Nov. 1995. using the NASA Transport Systems Research Vehicle, a Boeing 737-100, have provided tantalizing evidence but not proof of the existence of relaminarization in high-lift systems. To investigate the possibility of boundary layer relaminarization occuring on a high-lift system, a joint wind tunnel/flight test program is in progress with the NASA Dryden Flight Research Center to determine the role, if any, that turbulent boundary layer relaminarization plays in high-lift aerodynamics. Sponsored under NASA grant No. NAG4-123

  7. Numerical calculations of shock-wave/boundary-layer flow interactions

    NASA Astrophysics Data System (ADS)

    Huang, P. G.; Liou, W. W.

    1994-08-01

    The paper presents results of calculations for 2-D supersonic turbulent compression corner flows. The results seem to indicate that the newer, improved kappa-epsilon models offer limited advantages over the standard kappa-epsilon model in predicting the shock-wave/boundary-layer flows in the 2-D compression corner over a wide range of corner angles and flow conditions.

  8. On the growth of turbulent regions in laminar boundary layers

    NASA Technical Reports Server (NTRS)

    Gad-El-hak, M.; Riley, J. J.; Blackwelder, R. F.

    1981-01-01

    Turbulent spots evolving in a laminar boundary layer on a nominally zero pressure gradient flat plate are investigated. The plate is towed through an 18 m water channel, using a carriage that rides on a continuously replenished oil film giving a vibrationless tow. Turbulent spots are initiated using a solenoid valve that ejects a small amount of fluid through a minute hole on the working surface. A novel visualization technique that utilizes fluorescent dye excited by a sheet of laser light is employed. Some new aspects of the growth and entrainment of turbulent spots, especially with regard to lateral growth, are inferred from the present experiments. To supplement the information on lateral spreading, a turbulent wedge created by placing a roughness element in the laminar boundary layer is also studied both visually and with probe measurements. The present results show that, in addition to entrainment, another mechanism is needed to explain the lateral growth characteristics of a turbulent region in a laminar boundary layer. This mechanism, termed growth by destabilization, appears to be a result of the turbulence destabilizing the unstable laminar boundary layer in its vicinity. To further understand the growth mechanisms, the turbulence in the spot is modulated using drag-reducing additives and salinity stratification.

  9. FLUID MODELING OF ATMOSPHERIC DISPERSION IN THE CONVECTIVE BOUNDARY LAYER

    EPA Science Inventory

    Study of convective boundary layer (CBL) processes has depended largely upon laboratory analogs for many years. The pioneering work of Willis and Deardorff (1974) and some 35 subsequent papers by the same authors showed that much useful research could be accomplished with a re...

  10. Determination of Stability and Translation in a Boundary Layer

    NASA Technical Reports Server (NTRS)

    Crepeau, John; Tobak, Murray

    1996-01-01

    Reducing the infinite degrees of freedom inherent in fluid motion into a manageable number of modes to analyze fluid motion is presented. The concepts behind the center manifold technique are used. Study of the Blasius boundary layer and a precise description of stability within the flow field are discussed.

  11. Modeling of particulate plumes transportation in boundary layers with obstacles

    NASA Astrophysics Data System (ADS)

    Karelsky, K. V.; Petrosyan, A. S.

    2012-04-01

    This presentation is aimed at creating and realization of new physical model of impurity transfer (solid particles and heavy gases) in areas with non-flat and/or nonstationary boundaries. The main idea of suggested method is to use non-viscous equations for solid particles transport modeling in the vicinity of complex boundary. In viscous atmosphere with as small as one likes coefficient of molecular viscosity, the non-slip boundary condition on solid surface must be observed. This postulates the reduction of velocity to zero at a solid surface. It is unconditionally in this case Prandtle hypothesis must be observed: for rather wide range of conditions in the surface neighboring layers energy dissipation of atmosphere flows is comparable by magnitude with manifestation of inertia forces. That is why according to Prandtle hypothesis in atmosphere movement characterizing by a high Reynolds number the boundary layer is forming near a planet surface, within which the required transition from zero velocities at the surface to magnitudes at the external boundary of the layer that are quite close to ones in ideal atmosphere flow. In that layer fast velocity gradients cause viscous effects to be comparable in magnitude with inertia forces influence. For conditions considered essential changes of hydrodynamic fields near solid boundary caused not only by nonslip condition but also by a various relief of surface: mountains, street canyons, individual buildings. Transport of solid particles, their ascent and precipitation also result in dramatic changes of meteorological fields. As dynamic processes of solid particles transfer accompanying the flow past of complex relief surface by wind flows is of our main interest we are to use equations of non-viscous hydrodynamic. We should put up with on the one hand idea of high wind gradients in the boundary layer and on the other hand disregard of molecular viscosity in two-phase atmosphere equations. We deal with describing high

  12. Transport of Particulates in Boundary Layer with Obstacles

    NASA Astrophysics Data System (ADS)

    Karelsky, Kirill; Petrosyan, Arakel

    2014-05-01

    This presentation is aimed at creating and realization of new physical model of impurity transfer (solid particles and heavy gases) in areas with non-flat and/or nonstationary boundaries. The main idea of suggested method is to use non-viscous equations for solid particles transport modeling in the vicinity of complex boundary. In viscous atmosphere with as small as one likes coefficient of molecular viscosity, the non-slip boundary condition on solid surface must be observed. This postulates the reduction of velocity to zero at a solid surface. It is unconditionally in this case Prandtle hypothesis must be observed: for rather wide range of conditions in the surface neighboring layers energy dissipation of atmosphere flows is comparable by magnitude with manifestation of inertia forces. That is why according to Prandtle hypothesis in atmosphere movement characterizing by a high Reynolds number the boundary layer is forming near a planet surface, within which the required transition from zero velocities at the surface to magnitudes at the external boundary of the layer that are quite close to ones in ideal atmosphere flow. In that layer fast velocity gradients cause viscous effects to be comparable in magnitude with inertia forces influence. For conditions considered essential changes of hydrodynamic fields near solid boundary caused not only by nonslip condition but also by a various relief of surface: mountains, street canyons, individual buildings. Transport of solid particles, their ascent and precipitation also result in dramatic changes of meteorological fields. As dynamic processes of solid particles transfer accompanying the flow past of complex relief surface by wind flows is of our main interest we are to use equations of non-viscous hydrodynamic. We should put up with on the one hand idea of high wind gradients in the boundary layer and on the other hand disregard of molecular viscosity in two-phase atmosphere equations. We deal with describing high

  13. Boundary Layer Flow over a Rotating Permeable Plane

    NASA Astrophysics Data System (ADS)

    Mehta, K.; Rao, K.

    1994-06-01

    This paper examines the effect of permeability on boundary layerflow over an infinite permeable bed rotatingin a mass of still fluid occupying the upper half space.The slip boundar condition proposed by Beavers and Joseph1) isemployed to analyse the dynamic coupling of boundary layer flowwith the Darcy flow induced in the bed due to transfer of momentumby seepage into the porous medium,occupying the lower half space below the fluid.The effect of permeability and rotation on the componentsof slip velocity and shear stress in the radialand transverse directions is examined.Rotation and tangential slip are found to cause axial flow reversalin the boundary layer.Dependence of the location of point of flow reversalon rotation and permeability has been also studied.

  14. Effects of mesoscale surface inhomogeneities on atmospheric boundary layer transfer

    SciTech Connect

    Shaw, W.J.; Doran, J.C.; Hubbe, J.M.

    1992-09-01

    Defining the nature of turbulent transfer over horizontally inhomogeneous surfaces remains one of the challenges in meteorology. Because the transfer of energy and momentum through the atmospheric boundary layer forms part of the lower boundary condition for global climate models (GCMs), the problem is important. Over the last two decades, advances in sensor and computer technology wave made good point measurements of turbulent fluxes fairly routine. A fundamental question with respect to climate models, however, is how such point measurements are related to average fluxes over the area of a GCM grid box. In this paper we will use data from the field program to depict the evolution of the boundary layer over adjacent, sharply contrasting surface types on two separate occasions. We will then use simple scaling based on the observations to argue that sub-gridscale motions would often be likely to significantly alter the estimates and resulting parameterizations of GCM-scale surface fluxes in the region.

  15. Rough-wall turbulent boundary layers in the transition regime

    NASA Technical Reports Server (NTRS)

    Bandyopadhyay, Promode R.

    1987-01-01

    An experimental investigation of turbulent boundary layers over two-dimensional spanwise groove and three-dimensional sandgrain roughnesses in the transition regime between hydraulically smooth and fully rough conditions is presented. It is found that a self-preserving state can be reached in boundary layers developing over both d-type groove and sandgrain roughnesses, and that the drag of a k-type rough wall can be reduced by lowering the spanwise aspect ratio of the roughness elements. The two roughness Reynolds numbers defining the boundaries of the transition regime of the k-type roughnesses are shown to decrease with increasing roughness-element spanwise aspect ratio, and the upper critical transition Reynolds number is shown to determine the roughness behavior in both the transition and fully rough regime.

  16. Modeling Disturbance Dynamics in Transitional and Turbulent Boundary Layers

    NASA Technical Reports Server (NTRS)

    Grosch, C. E.; Gatski, T. B. (Technical Monitor)

    2002-01-01

    The dynamics of an ensemble of linear disturbances in boundary-layer flows at various Reynolds numbers is studied through an analysis of the transport equations for the mean disturbance kinetic energy and energy dissipation rate. Effects of adverse and favorable pressure-gradients on the disturbance dynamics are also included in the analysis. Unlike the fully turbulent regime where nonlinear phase scrambling of the fluctuations affects the flow field even in proximity to the wall, the early stage transition regime fluctuations studied here are influenced across the boundary layer by the solid boundary. In addition, the dominating dynamics in the disturbance kinetic energy equation is governed by the energy production, pressure-transport and viscous diffusion - also in contrast to the fully turbulent regime. For the disturbance dissipation rate, a dynamic balance exists between the destruction and diffusion of dissipation.

  17. Anomalous plasma diffusion and the magnetopause boundary layer

    NASA Technical Reports Server (NTRS)

    Treumann, Rudolf A.; Labelle, James; Haerendel, Gerhard; Pottelette, Raymond

    1992-01-01

    An overview of the current state of anomalous diffusion research at the magnetopause and its role in the formation of the magnetopause boundary layer is presented. Plasma wave measurements in the boundary layer indicate that most of the relevant unstable wave modes contribute negligibly to the diffusion process at the magnetopause under magnetically undisturbed northward IMF conditions. The most promising instability is the lower hybrid drift instability, which may yield diffusion coefficients of the right order if the highest measured wave intensities are assumed. It is concluded that global stationary diffusion due to wave-particle interactions does not take place at the magnetopause. Microscopic wave-particle interaction and anomalous diffusion may contribute to locally break the MD frozen-in conditions and help in transporting large amounts of magnetosheath plasma across the magnetospheric boundary.

  18. On the theory of the turbulent boundary layer

    NASA Technical Reports Server (NTRS)

    Rotta, J

    1953-01-01

    As a rule, a division of the turbulent boundary layer is admissible: a division into a part near the wall, where the flow is governed only by the wall effects, and into an outer part, where the wall roughness and the viscosity of the flow medium affects only the wall shearing stress occurring as boundary condition but does not exert any other influence on the flow. Both parts may be investigated to a large extent independently. Under certain presuppositions there result for the outer part "similar" solutions. The theoretical considerations give a cue how to set up, by appropriate experiments and their evaluation, generally valid connections which are required for the approximate calculation of the turbulent boundary layer according to the momentum and energy theorem.

  19. On Supersonic-Inlet Boundary-Layer Bleed Flow

    NASA Technical Reports Server (NTRS)

    Harloff, Gary J.; Smith, Gregory E.

    1995-01-01

    Boundary-layer bleed in supersonic inlets is typically used to avoid separation from adverse shock-wave/boundary-layer interactions and subsequent total pressure losses in the subsonic diffuser and to improve normal shock stability. Methodologies used to determine bleed requirements are reviewed. Empirical sonic flow coefficients are currently used to determine the bleed hole pattern. These coefficients depend on local Mach number, pressure ratio, hole geometry, etc. A new analytical bleed method is presented to compute sonic flow coefficients for holes and narrow slots and predictions are compared with published data to illustrate the accuracy of the model. The model can be used by inlet designers and as a bleed boundary condition for computational fluid dynamic studies.

  20. Boundary layer development and energy exchange over a patchy mountain snow cover

    NASA Astrophysics Data System (ADS)

    Mott, Rebecca; Daniels, Megan; Horender, Stefan; Crivelli, Philip; Lehning, Michael

    2014-05-01

    Once the snow cover gets patchy in spring, small-scale thermal internal boundary layers develop, involving strong vertical and horizontal flux divergences. Furthermore, the advection of warm air from bare ground towards snow-covered areas can promote strong atmospheric stabilities and boundary layer decoupling above snow, that suppress the net turbulent heat flux close to the snow surface, thus, changing the heat budget there. We experimentally and numerically investigated the small-scale boundary layer dynamics over snow patches and their effect on the energy balance at the snow surface. Local eddy flux measurements at an alpine test site revealed that wind velocity, wind fetch distance and topographical curvature control the boundary layer growth, boundary layer decoupling and the efficiency of advective heat transport to contribute to snow ablation. These results were verified in a wind tunnel experiment on the boundary layer development over a single snow patch. The experiments showed that heat advection was very efficient at short fetch distances and high wind velocities forming strong thermal gradients close to the snow surface. The heat potentially available from the advective heat transport was, however, not efficiently transferred towards the snow surface. The turbulent heat exchange was strongly suppressed at the lowest centimetres above the snow surface, where the Richardson number exceeded the critical value. Thus, boundary layer decoupling caused by very shallow layers of increased thermal stability could be shown to be very efficient, even for higher wind velocities. In addition to experiments, we numerically analysed the effect of heat advection, boundary layer decoupling and changing patterns of secondary flows on the energy balance of patchy snow cover characterized by different snow-cover fractions. The atmospheric boundary layer flows over patchy snow-covers were calculated with an atmospheric model (Advanced Regional Prediction System) on a very

  1. Some Basic Aspects of Magnetohydrodynamic Boundary-Layer Flows

    NASA Technical Reports Server (NTRS)

    Hess, Robert V.

    1959-01-01

    An appraisal is made of existing solutions of magnetohydrodynamic boundary-layer equations for stagnation flow and flat-plate flow, and some new solutions are given. Since an exact solution of the equations of magnetohydrodynamics requires complicated simultaneous treatment of the equations of fluid flow and of electromagnetism, certain simplifying assumptions are generally introduced. The full implications of these assumptions have not been brought out properly in several recent papers. It is shown in the present report that for the particular law of deformation which the magnetic lines are assumed to follow in these papers a magnet situated inside the missile nose would not be able to take up any drag forces; to do so it would have to be placed in the flow away from the nose. It is also shown that for the assumption that potential flow is maintained outside the boundary layer, the deformation of the magnetic lines is restricted to small values. The literature contains serious disagreements with regard to reductions in heat-transfer rates due to magnetic action at the nose of a missile, and these disagreements are shown to be mainly due to different interpretations of reentry conditions rather than more complicated effects. In the present paper the magnetohydrodynamic boundary-layer equation is also expressed in a simple form that is especially convenient for physical interpretation. This is done by adapting methods to magnetic forces which in the past have been used for forces due to gravitational or centrifugal action. The simplified approach is used to develop some new solutions of boundary-layer flow and to reinterpret certain solutions existing in the literature. An asymptotic boundary-layer solution representing a fixed velocity profile and shear is found. Special emphasis is put on estimating skin friction and heat-transfer rates.

  2. Boundary Layer Dynamical Structure During Secondary Eyewall Formation

    NASA Astrophysics Data System (ADS)

    Abarca, S. F.; Montgomery, M. T.; McWilliams, J. C.

    2014-12-01

    Secondary eyewall formation (SEF) is widely recognized as an important research problem in the dynamics of mature tropical cyclones. It has been shown that the development of the wind maxima in SEF occurs within the boundary layer and that it follows a chain of events initiated by a substantial radial expansion of the tangential wind field. In this context, there is not yet a consensus on the phenomenon's essential physics. It has been proposed that the boundary-layer dynamics of a maturing hurricane vortex is an important controlling element in SEF. However, recent literature also argues that hurricane boundary layers and the related coupling with the interior flow can be described through an Ekman-like balance and that shock-like structures are relevant in the swirling boundary layer of the inner core of mature storms. We analyze the radial and vertical structure of the specific forces and accelerations in in the boundary layer in a mature hurricane that includes a canonical eyewall replacement cycle. The case occurred in a mesoscale, convection-permitting numerical simulation of a tropical cyclone, integrated from an initial weak mesoscale vortex in an idealized quiescent environment. The simulation has been studied extensively in the literature. We find that momentum advection is almost everywhere important (some of it is associated with asymmetric eddies). We discuss the implication of our findings on the proposed importance of Ekman-like balance dynamics during SEF. Finally, our analysis does not support the recently proposed idea that the radial advection of radial momentum, and shock-like structures, are closely related to the supergradient wind phenomena observed during SEF.

  3. Hypersonic Turbulent Boundary-Layer and Free Sheer Database Datasets

    NASA Technical Reports Server (NTRS)

    Settles, Gary S.; Dodson, Lori J.

    1993-01-01

    A critical assessment and compilation of data are presented on attached hypersonic turbulent boundary layers in pressure gradients and compressible turbulent mixing layers. Extensive searches were conducted to identify candidate experiments, which were subjected to a rigorous set of acceptance criteria. Accepted datasets are both tabulated and provided in machine-readable form. The purpose of this database effort is to make existing high quality data available in detailed form for the turbulence-modeling and computational fluid dynamics communities. While significant recent data were found on the subject of compressible turbulent mixing, the available boundary-layer/pressure-gradient experiments are all older ones of which no acceptable data were found at hypersonic Mach numbers.

  4. Minimum Wind Dynamic Soaring Trajectories under Boundary Layer Thickness Limits

    NASA Astrophysics Data System (ADS)

    Bousquet, Gabriel; Triantafyllou, Michael; Slotine, Jean-Jacques

    2015-11-01

    Dynamic soaring is the flight technique where a glider, either avian or manmade, extracts its propulsive energy from the non-uniformity of horizontal winds. Albatrosses have been recorded to fly an impressive 5000 km/week at no energy cost of their own. In the sharp boundary layer limit, we show that the popular image, where the glider travels in a succession of half turns, is suboptimal for travel speed, airspeed, and soaring ability. Instead, we show that the strategy that maximizes the three criteria simultaneously is a succession of infinitely small arc-circles connecting transitions between the calm and windy layers. The model is consistent with the recordings of albatross flight patterns. This lowers the required wind speed for dynamic soaring by over 50% compared to previous beliefs. In the thick boundary layer limit, energetic considerations allow us to predict a minimum wind gradient necessary for sustained soaring consistent with numerical models.

  5. Lateral straining of turbulent boundary layers. I - Streamline divergence

    NASA Technical Reports Server (NTRS)

    Saddoughi, Seyed G.; Joubert, Peter N.

    1991-01-01

    The effect of prolonged streamline divergence on developing turbulent boundary layers is investigated using an experimental approximation of the source flow over a flat plate to achieve a simple divergence. Results are presented of hot-wire measurements for the planes of symmetry of two layers which had the same (low) Reynolds number and were developed in the presence of the same amount of simple divergence with a maximum divergence parameter of about 0.075 but with different (by a factor of 2) pressure-gradient parameters. It was found that there were two overlapping stages of development. In the initial stage, which covered a distance of about 20 initial boundary-layer thicknesses from the start of divergence, the coupled effects of both the pressure gradient and divergence were present. In the second region, which lasts nearly to the end of the diverging section, the pressure-gradient effects were negligible.

  6. Turbulent boundary layer on a convex, curved surface

    NASA Technical Reports Server (NTRS)

    Gillis, J. C.; Johnston, J. P.; Kays, W. M.; Moffat, R. J.

    1980-01-01

    The effects of strong convex curvature on boundary layer turbulence were investigated. The data gathered on the behavior of Reynolds stress suggested the formulation of a simple turbulence model. Three sets of data were taken on two separate facilities. Both rigs had flow from a flat surface, over a convex surface with 90 deg of turning, and then onto a flat recovery surface. The geometry was adjusted so that, for both rigs, the pressure gradient along the test surface was zero - thus avoiding any effects of streamwise acceleration on the wall layers. Results show that after a sudden introduction of curvature, the shear stress in the outer part of the boundary layer is sharply diminished and is even slightly negative near the edge. The wall shear also drops off quickly downstream. In contrast, when the surface suddenly becomes flat again, the wall shear and shear stress profiles recover very slowly towards flat wall conditions.

  7. Electromagnetic structure of the magnetopause and boundary layer

    NASA Technical Reports Server (NTRS)

    Sonnerup, B. U. O.; Ledley, B. G.

    1979-01-01

    After a review of the properties and predictions of the closed and open models of the magnetopause, OGO-5 magnetometer data are used to illustrate various observed signatures of the magnetopause current layer and the adjacent plasma boundary layer. Among the topics touched upon are: fluctuations, diamagnetic effects, and field aligned currents in the boundary layer; one dimensionality of the magnetopause; presence and absence of a magnetic field component perpendicular to the magnetopause; finite ion gyroradius effects. A brief summary is given of existing Vlasov theory for the description of tangential, rotational, and contact discontinuities. Special attention is paid to the tangential momentum balance and the jump conditions at a rotational discontinuity. Low frequency fluctuations are discussed with emphasis on the signatures of the tearing mode.

  8. Provenance of the K/T boundary layers

    NASA Technical Reports Server (NTRS)

    Hildebrand, A. R.; Boynton, W. V.

    1988-01-01

    An array of chemical, physical and isotopic evidence indicates that an impact into oceanic crust terminated the Cretaceous Period. Approximately 1500 cu km of debris, dispersed by the impact fireball, fell out globally in marine and nonmarine environments producing a 2 to 4 mm thick layer (fireball layer). In North American locales, the fireball layer overlies a 15 to 25 mm thick layer of similar but distinct composition. This 15 to 25 mm layer (ejecta layer) may represent approximately 1000 cu km of lower energy ejecta from a nearby impact site. Isotopic and chemical evidence supports a mantle provenance for the bulk of the layers. The extraordinary REE pattern of the boundary clays was modelled as a mixture of oceanic crust, mantle, and approximately 10 percent continental material. The results are presented. If the siderophiles of the ejecta layer were derived solely from the mantle, a test may be available to see if the siderophile element anomaly of the fireball layer had an extraterrestrial origin. Radiogenic Os-187 is depleted in the mantle relative to an undifferentiated chondritic source. Os-187/Os-186 ratios of 1.049 and 1.108 were calculated for the ejecta and fireball layers, respectively.

  9. Behaviour of Atmospheric Boundary Layer Height at Dome C, Antarctica

    NASA Astrophysics Data System (ADS)

    Pietroni, I.; Argentini, S.

    2009-09-01

    The Antarctic Atmospheric Boundary Layer presents characteristics which are substantially different from the mid-latitudes ABLs. On the Antarctic plateau two different extreme situations are observed. During the summer a mixing height develops during the warmer hours of the day although the sensible heat flux is reduced compared to that at mid-latitudes. During the winter a long lived stable boundary layer is continuously present, the residual layer is never observed, consequently the inversion layer is connected at the free atmosphere. To understand the stable ABL process the STABLEDC (Study of the STAble Boundary Layer Environmental at Dome C) experimental field was held at Concordia, the French Italian plateau station at Dome C, during 2005. In the same period the RMO (Routine Measurements Observations) started. The data included turbulence data at the surface, temperature profiles by a microwave profiler (MTP-5P), a mini-sodar and radio-soundings. In this work we will show the results of a comparison of the ABL height at Concordia (3233 m a.s.l) during the summer and the winter using direct measurements and parameterization. The winter ABL height was estimated directly using experimental data (radio-soundings and radiometer temperature and wind velocity profiles) and different methods proposed in literature. The stable ABL height was also estimated using the formulation proposed by Zilitinkevich et al. (2007) for the long-lived stable boundary layer. The correlation of ABL height with the temperature and wind speed is also shown. The summer mixing height was instead estimated by mini-sodar data and compared with the height given by the model suggested by Batchvarova and Gryning (1991) which use as input the turbulence data.

  10. On buffer layers as non-reflecting computational boundaries

    NASA Technical Reports Server (NTRS)

    Hayder, M. Ehtesham; Turkel, Eli L.

    1996-01-01

    We examine an absorbing buffer layer technique for use as a non-reflecting boundary condition in the numerical simulation of flows. One such formulation was by Ta'asan and Nark for the linearized Euler equations. They modified the flow inside the buffer zone to artificially make it supersonic in the layer. We examine how this approach can be extended to the nonlinear Euler equations. We consider both a conservative and a non-conservative form modifying the governing equations in the buffer layer. We compare this with the case that the governing equations in the layer are the same as in the interior domain. We test the effectiveness of these buffer layers by a simulation of an excited axisymmetric jet based on a nonlinear compressible Navier-Stokes equations.

  11. Investigations on entropy layer along hypersonic hyperboloids using a defect boundary layer

    NASA Technical Reports Server (NTRS)

    Brazier, J. P.; Aupoix, B.; Cousteix, J.

    1992-01-01

    A defect approach coupled with matched asymptotic expansions is used to derive a new set of boundary layer equations. This method ensures a smooth matching of the boundary layer with the inviscid solution. These equations are solved to calculate boundary layers over hypersonic blunt bodies involving the entropy gradient effect. Systematic comparisons are made for both axisymmetric and plane flows in several cases with different Mach and Reynolds numbers. After a brief survey of the entropy layer characteristics, the defect boundary layer results are compared with standard boundary layer and full Navier-Stokes solutions. The entropy gradient effects are found to be more important in the axisymmetric case than in the plane one. The wall temperature has a great influence on the results through the displacement effect. Good predictions can be obtained with the defect approach over a cold wall in the nose region, with a first order solution. However, the defect approach gives less accurate results far from the nose on axisymmetric bodies because of the thinning of the entropy layer.

  12. Injection slot location for boundary-layer control in shock-induced separation

    NASA Technical Reports Server (NTRS)

    Viswanath, P. R.; Sankaran, L.; Sagdeo, P. M.; Narasimha, R.; Prabhu, A.

    1978-01-01

    An experimental investigation of the effect of tangential air injection, when the injection slot is located inside of what would otherwise have been the dead air zone in a separated flow, in controlling shock-induced turbulent boundary layer separation is presented. The experiments were carried out at a free-stream Mach number of 2.5 in the separated flow induced by a compression corner with a 20 deg angle. The observations made were wall static pressures, pitot profiles, and schlieren visualizations of the flow. The results show that the present location for injection is more effective in suppressing boundary-layer separation than the more conventional one, where the slot is located upstream of where separation would occur in the absence of injection.

  13. Sound transmission through double cylindrical shells lined with porous material under turbulent boundary layer excitation

    NASA Astrophysics Data System (ADS)

    Zhou, Jie; Bhaskar, Atul; Zhang, Xin

    2015-11-01

    This paper investigates sound transmission through double-walled cylindrical shell lined with poroelastic material in the core, excited by pressure fluctuations due to the exterior turbulent boundary layer (TBL). Biot's model is used to describe the sound wave propagating in the porous material. Three types of constructions, bonded-bonded, bonded-unbonded and unbonded-unbonded, are considered in this study. The power spectral density (PSD) of the inner shell kinetic energy is predicted for two turbulent boundary layer models, different air gap depths and three types of polyimide foams, respectively. The peaks of the inner shell kinetic energy due to shell resonance, hydrodynamic coincidence and acoustic coincidence are discussed. The results show that if the frequency band over the ring frequency is of interest, an air gap, even if very thin, should exist between the two elastic shells for better sound insulation. And if small density foam has a high flow resistance, a superior sound insulation can still be maintained.

  14. Profiling the Arctic Stable Boundary Layer in Advent Valley, Svalbard: Measurements and Simulations

    NASA Astrophysics Data System (ADS)

    Mayer, Stephanie; Jonassen, Marius O.; Sandvik, Anne; Reuder, Joachim

    2012-06-01

    The unmanned aerial system SUMO (Small Unmanned Meteorological Observer) has been used for the observation of the structure and behaviour of the atmospheric boundary layer above the Advent Valley, Svalbard during a two-week period in early spring 2009. Temperature, humidity and wind profiles measured by the SUMO system have been compared with measurements of a small tethered balloon system that was operated simultaneously. It is shown that both systems complement each other. Above 200 m, the SUMO system outperforms the tethered balloon in terms of flexibility and the ability to penetrate strong inversion layers of the Arctic boundary layer. Below that level, the tethered balloon system provides atmospheric profiles with higher accuracy, mainly due to its ability to operate at very low vertical velocities. For the observational period, a numerical mesoscale model has been run at high resolution and evaluated with SUMO profiles reaching up to a height of 1500 m above the ground. The sensitivity to the choice of atmospheric boundary-layer schemes and horizontal resolution has been investigated. A new scheme especially suited for stable conditions slightly improves the temperature forecast in stable conditions, although all schemes show a warm bias close to the surface and a cold bias above the atmospheric boundary layer. During one cold and cloudless night, the SUMO system could be operated nearly continuously (every 30-45 minutes). This allowed for a detailed case study addressing the structure and behaviour of the air column within and above Advent Valley and its interaction with the local topography. The SUMO measurements in conjunction with a 10-m meteorological mast enabled the identification of a very stable nocturnal surface layer adjacent to the valley bottom, a stable air column in the valley and a strong inversion layer above the summit height. The results indicate the presence of inertial-gravity waves during the night, a feature not captured by the model.

  15. BLSTA: A boundary layer code for stability analysis

    NASA Technical Reports Server (NTRS)

    Wie, Yong-Sun

    1992-01-01

    A computer program is developed to solve the compressible, laminar boundary-layer equations for two-dimensional flow, axisymmetric flow, and quasi-three-dimensional flows including the flow along the plane of symmetry, flow along the leading-edge attachment line, and swept-wing flows with a conical flow approximation. The finite-difference numerical procedure used to solve the governing equations is second-order accurate. The flow over a wide range of speed, from subsonic to hypersonic speed with perfect gas assumption, can be calculated. Various wall boundary conditions, such as wall suction or blowing and hot or cold walls, can be applied. The results indicate that this boundary-layer code gives velocity and temperature profiles which are accurate, smooth, and continuous through the first and second normal derivatives. The code presented herein can be coupled with a stability analysis code and used to predict the onset of the boundary-layer transition which enables the assessment of the laminar flow control techniques. A user's manual is also included.

  16. A general integral form of the boundary-layer equation for incompressible flow with an application to the calculation of the separation point of turbulent boundary layers

    NASA Technical Reports Server (NTRS)

    Tetervin, Neal; Lin, Chia Chiao

    1951-01-01

    A general integral form of the boundary-layer equation, valid for either laminar or turbulent incompressible boundary-layer flow, is derived. By using the experimental finding that all velocity profiles of the turbulent boundary layer form essentially a single-parameter family, the general equation is changed to an equation for the space rate of change of the velocity-profile shape parameter. The lack of precise knowledge concerning the surface shear and the distribution of the shearing stress across turbulent boundary layers prevented the attainment of a reliable method for calculating the behavior of turbulent boundary layers.

  17. Atmospheric marine boundary layer mixing rates in the California coastal region. Technical report

    SciTech Connect

    Schacher, G.E.; Fairall, C.W.; Davidson, K.L.

    1980-05-01

    The Naval Postgraduate School has conducted five research cruises in California coastal waters for which sufficient data was obtained to allow boundary layer mixing rates to be determined. These data have been processed to determine the mixing rates. The rates have been correlated with meteorological conditions and geographical location and average values for use in air pollution models have been determined. A simplified method for calculating the mixing rate from mean meteorological parameters is presented.

  18. Almost Global Existence for the Prandtl Boundary Layer Equations

    NASA Astrophysics Data System (ADS)

    Ignatova, Mihaela; Vicol, Vlad

    2016-05-01

    We consider the Prandtl boundary layer equations on the half plane, with initial datum that lies in a weighted H 1 space with respect to the normal variable, and is real-analytic with respect to the tangential variable. The boundary trace of the horizontal Euler flow is taken to be a constant. We prove that if the Prandtl datum lies within {\\varepsilon} of a stable profile, then the unique solution of the Cauchy problem can be extended at least up to time {T_{\\varepsilon} ≥ exp(\\varepsilon^{-1} / log(\\varepsilon^{-1}))}.

  19. Boundary-layer model of pattern formation in solidification

    NASA Technical Reports Server (NTRS)

    Ben-Jacob, E.; Goldenfeld, N.; Langer, J. S.; Schon, G.

    1984-01-01

    A model of pattern formation in crystal growth is proposed, and its analytic properties are investigated. The principal dynamical variables in this model are the curvature of the solidification front and the thickness (or heat content) of a thermal boundary layer, both taken to be functions of position along the interface. This model is mathematically much more tractable than the realistic, fully nonlocal version of the free-boundary problem, and still recaptures many of the features that seem essential for studying dendritic behavior, for example. Preliminary numerical solutions produce snowflakelike patterns similar to those seen in nature.

  20. Edge Plasma Boundary Layer Generated By Kink Modes in Tokamaks

    SciTech Connect

    L.E. Zakharov

    2010-11-22

    This paper describes the structure of the electric current generated by external kink modes at the plasma edge using the ideally conducting plasma model. It is found that the edge current layer is created by both wall touching and free boundary kink modes. Near marginal stability, the total edge current has a universal expression as a result of partial compensation of the δ-functional surface current by the bulk current at the edge. The resolution of an apparent paradox with the pressure balance across the plasma boundary in the presence of the surface currents is provided.

  1. Numerical Simulation of a Spatially Evolving Supersonic Turbulent Boundary Layer

    NASA Technical Reports Server (NTRS)

    Gatski, T. B.; Erlebacher, G.

    2002-01-01

    The results from direct numerical simulations of a spatially evolving, supersonic, flat-plate turbulent boundary-layer flow, with free-stream Mach number of 2.25 are presented. The simulated flow field extends from a transition region, initiated by wall suction and blowing near the inflow boundary, into the fully turbulent regime. Distributions of mean and turbulent flow quantities are obtained and an analysis of these quantities is performed at a downstream station corresponding to Re(sub x)= 5.548 x10(exp 6) based on distance from the leading edge.

  2. Transition experiments in a boundary layer with embedded streamwise vortices

    NASA Astrophysics Data System (ADS)

    Bakchinov, A. A.; Grek, G. R.; Klingmann, B. G. B.; Kozlov, V. V.

    1995-04-01

    The stability of a flat plate boundary layer modulated by stationary streamwise vortices was studied experimentally in the T-324 low speed wind tunnel in Novosibirsk. Vortices were generated inside the boundary layer by means of roughness elements arranged in a regular array along the spanwise (z-) direction. Transition is not caused directly by these structures, but by the growth of small amplitude traveling waves riding on top of the steady vortices. This situation is analogous to the transition process in Görtler and cross-flows. The waves were found to amplify up to a stage where higher harmonics are generated, leading to turbulent breakdown and disintegration of the spanwise boundary layer structure. For strong modulations, the observed instability is quite powerful, and can be excited ``naturally'' by small uncontrollable background disturbances. Controlled oscillations were then introduced by means of a vibrating ribbon, allowing a detailed investigation of the wave characteristics. The instability seems to be associated with the spanwise gradients of the mean flow, ∂U/∂z, and at all z-positions, the maximum wave amplitude was found at a wall-normal position where the mean velocity is equal to the phase velocity of the wave, U(y)=c, i.e., at the local critical layer. Unstable waves were observed at frequencies well above those for which Tollmien-Schlichting (TS) waves amplify in the Blasius boundary layer. Excitation at lower frequencies and milder basic flow modulations showed that TS-type waves may also develop. The relation between TS-type waves and the observed high-frequency instability is discussed in the light of previous authors' findings.

  3. Acoustic Radiation From a Mach 14 Turbulent Boundary Layer

    NASA Technical Reports Server (NTRS)

    Zhang, Chao; Duan, Lian; Choudhari, Meelan M.

    2016-01-01

    Direct numerical simulations (DNS) are used to examine the turbulence statistics and the radiation field generated by a high-speed turbulent boundary layer with a nominal freestream Mach number of 14 and wall temperature of 0:18 times the recovery temperature. The flow conditions fall within the range of nozzle exit conditions of the Arnold Engineering Development Center (AEDC) Hypervelocity Tunnel No. 9 facility. The streamwise domain size is approximately 200 times the boundary-layer thickness at the inlet, with a useful range of Reynolds number corresponding to Re 450 ?? 650. Consistent with previous studies of turbulent boundary layer at high Mach numbers, the weak compressibility hypothesis for turbulent boundary layers remains applicable under this flow condition and the computational results confirm the validity of both the van Driest transformation and Morkovin's scaling. The Reynolds analogy is valid at the surface; the RMS of fluctuations in the surface pressure, wall shear stress, and heat flux is 24%, 53%, and 67% of the surface mean, respectively. The magnitude and dominant frequency of pressure fluctuations are found to vary dramatically within the inner layer (z/delta 0.< or approx. 0.08 or z+ < or approx. 50). The peak of the pre-multiplied frequency spectrum of the pressure fluctuation is f(delta)/U(sub infinity) approx. 2.1 at the surface and shifts to a lower frequency of f(delta)/U(sub infinity) approx. 0.7 in the free stream where the pressure signal is predominantly acoustic. The dominant frequency of the pressure spectrum shows a significant dependence on the freestream Mach number both at the wall and in the free stream.

  4. Aero-optic characteristics of turbulent compressible boundary layers

    NASA Astrophysics Data System (ADS)

    Wyckham, Christopher Mark

    This dissertation presents a detailed study of the aberrating effect on a plane incident wavefront of light due to its passage through a turbulent, compressible boundary layer. This aberration has important implications for the design of airborne optical systems for imaging, communications, or projection. A Shack-Hartmann sensor and associated data analysis software suite were developed and validated for the high resolution measurement of two dimensional wavefront phase. Significant improvements in wavefront reconstruction were achieved by using the calculated centroid uncertainties to weight the least squares fitting of the phase surface. Using the Shack-Hartmann sensor in a high speed, one dimensional mode, individual structures are observed propagating past the sensor in a transonic flow. The uncertainties on the reconstructed phase in this mode are very high, however. In a two dimensional mode the uncertainties are greatly reduced and a large database of individual, uncorrelated wavefronts was collected, allowing statistics to be calculated such as the rms wavefront height and the Strehl ratio. Data were collected at transonic and hypersonic speeds and with no injection or with helium or nitrogen injection into the boundary layer. In all cases except the hypersonic helium injection case, the time averaged wavefronts reveal no features in the boundary layer which are steady in time. In the hypersonic helium injection case, however, steady, longitudinal features are observed, in agreement with previous observations. When helium is injected for window cooling at high speeds, the results show there may be an opportunity to reduce the resulting distortion by taking advantage of the stable structures that form in the boundary layer by using a low bandwidth adaptive optic system. A new scaling argument is also presented to allow the prediction and comparison of wavefront data for different compressible boundary layer flow conditions. The proposed formula gives

  5. Comparison of secondary flows and boundary-layer accumulations in several turbine nozzles

    NASA Technical Reports Server (NTRS)

    Kofskey, Milton G; Allen, Hubert W; Herzig, Howard Z

    1953-01-01

    An investigation was made of losses and secondary flows in three different turbine nozzle configurations in annular cascade. Appreciable outer shroud loss cores (passage vortices) were found to exist at the discharge of blades which had thickened suction surface boundary layers near the outer shroud. Blade designs having thinner boundary layers did not show such outer shroud loss cores, but indicated greater inward radial flow of low momentum air, in the wake loss is to this extent an indication of the presence or absence of radial flow. The blade wake was a combination of profile loss and low momentum air from the outer shroud, and the magnitude of the wake loss is to this extent an indication of the presence or absence of radial flow. At a high Mach number, shock-boundary-layer thickening on the blade suction surfaces provided an additional radial flow path for low momentum air, which resulted in large inner shroud loss regions accompanied by large deviations from design values of discharge angle. (author)

  6. Tracking atmospheric boundary layer dynamics with water vapor D-excess observations

    NASA Astrophysics Data System (ADS)

    Parkes, Stephen; McCabe, Matthew; Griffiths, Alan; Wang, Lixin

    2015-04-01

    Stable isotope water vapor observations present a history of hydrological processes that have impacted on an air mass. Consequently, there is scope to improve our knowledge of how different processes impact on humidity budgets by determining the isotopic end members of these processes and combining them with in-situ water vapor measurements. These in-situ datasets are still rare and cover a limited geographical expanse, so expanding the available data can improve our ability to define isotopic end members and knowledge about atmospheric humidity dynamics. Using data collected from an intensive field campaign across a semi-arid grassland site in eastern Australia, we combine multiple methods including in-situ stable isotope observations to study humidity dynamics associated with the growth and decay of the atmospheric boundary layer and the stable nocturnal boundary layer. The deuterium-excess (D-excess) in water vapor is traditionally thought to reflect the sea surface temperature and relative humidity at the point of evaporation over the oceans. However, a number of recent studies suggest that land-atmosphere interactions are also important in setting the D-excess of water vapor. These studies have shown a highly robust diurnal cycle for the D-excess over a range of sites that could be exploited to better understand variations in atmospheric humidity associated with boundary layer dynamics. In this study we use surface radon concentrations as a tracer of surface layer dynamics and combine these with the D-excess observations. The radon concentrations showed an overall trend that was inversely proportional to the D-excess, with early morning entrainment of air from the residual layer of the previous day both diluting the radon concentration and increasing the D-excess, followed by accumulation of radon at the surface and a decrease in the D-excess as the stable nocturnal layer developed in the late afternoon and early evening. The stable nocturnal boundary layer

  7. Simulation and optimal control of wind-farm boundary layers

    NASA Astrophysics Data System (ADS)

    Meyers, Johan; Goit, Jay

    2014-05-01

    In large wind farms, the effect of turbine wakes, and their interaction leads to a reduction in farm efficiency, with power generated by turbines in a farm being lower than that of a lone-standing turbine by up to 50%. In very large wind farms or `deep arrays', this efficiency loss is related to interaction of the wind farms with the planetary boundary layer, leading to lower wind speeds at turbine level. Moreover, for these cases it has been demonstrated both in simulations and wind-tunnel experiments that the wind-farm energy extraction is dominated by the vertical turbulent transport of kinetic energy from higher regions in the boundary layer towards the turbine level. In the current study, we investigate the use of optimal control techniques combined with Large-Eddy Simulations (LES) of wind-farm boundary layer interaction for the increase of total energy extraction in very large `infinite' wind farms. We consider the individual wind turbines as flow actuators, whose energy extraction can be dynamically regulated in time so as to optimally influence the turbulent flow field, maximizing the wind farm power. For the simulation of wind-farm boundary layers we use large-eddy simulations in combination with actuator-disk and actuator-line representations of wind turbines. Simulations are performed in our in-house pseudo-spectral code SP-Wind that combines Fourier-spectral discretization in horizontal directions with a fourth-order finite-volume approach in the vertical direction. For the optimal control study, we consider the dynamic control of turbine-thrust coefficients in an actuator-disk model. They represent the effect of turbine blades that can actively pitch in time, changing the lift- and drag coefficients of the turbine blades. Optimal model-predictive control (or optimal receding horizon control) is used, where the model simply consists of the full LES equations, and the time horizon is approximately 280 seconds. The optimization is performed using a

  8. Modification of the Atmospheric Boundary Layer by a Small Island: Observations from Nauru

    SciTech Connect

    Matthews, Stuart; Hacker, Jorg M.; Cole, Jason N.; Hare, Jeffrey; Long, Charles N.; Reynolds, R. M.

    2007-03-01

    Nauru, a small island in the tropical pacific, generates plumes of clouds that may grow to several hundred km length. This study uses observations to examine the mesoscale disturbance of the marine atmospheric boundary layer by the island that produces these cloud streets. Observations of the surface layer were made from two ships in the vicinity of Nauru and from instruments on the island. The structure of the atmospheric boundary layer over the island was investigated using aircraft flights. Cloud production over Nauru was examined using remote sensing instruments. During the day the island surface layer was warmer than the marine surface layer and wind speed was lower than over the ocean. Surface heating forced the growth of a thermal internal boundary layer, above which a street of cumulus clouds formed. The production of clouds resulted in reduced downwelling shortwave irradiance at the island surface. A plume of warm-dry air was observed over the island which extended 15 – 20 km downwind.

  9. Boundary layer ozone - An airborne survey above the Amazon Basin

    NASA Technical Reports Server (NTRS)

    Gregory, Gerald L.; Browell, Edward V.; Warren, Linda S.

    1988-01-01

    Ozone data obtained over the forest canopy of the Amazon Basin during July and August 1985 in the course of NASA's Amazon Boundary Layer Experiment 2A are discussed, and ozone profiles obtained during flights from Belem to Tabatinga, Brazil, are analyzed to determine any cross-basin effects. The analyses of ozone data indicate that the mixed layer of the Amazon Basin, for the conditions of undisturbed meteorology and in the absence of biomass burning, is a significant sink for tropospheric ozone. As the coast is approached, marine influences are noted at about 300 km inland, and a transition from a forest-controlled mixed layer to a marine-controlled mixed layer is noted.

  10. Direct numerical simulation of supersonic turbulent boundary layers

    NASA Astrophysics Data System (ADS)

    Guarini, Stephen

    The objectives of this research were to develop a method by which the spatially developing compressible turbulent boundary layer could be simulated using a temporally developing numerical simulation and to study the physics of the compressible turbulent boundary layer. We take advantage of the technique developed by Spalart (1987, 1988) for the incompressible case. In this technique, it is recognized that the boundary layer exhibits slow growth in the streamwise direction, so the turbulence can be treated as approximately homogeneous in this direction. The slow growth is accounted for with a coordinate transformation and a multiple scale analysis. The result is a modified system of equations (Navier-Stokes plus some extra terms, which we call "slow growth terms") that are homogeneous in both the streamwise and spanwise directions and represent the state of the boundary layer at a given streamwise location (or, equivalently, a given thickness). The compressible Navier-Stokes equations are solved using a mixed Fourier and B-spline "spectral" method. The dependent variables are expanded in terms of a Fourier representation in the horizontal directions and a B-spline representation in the wall-normal direction. In the wall-normal direction non-reflecting boundary conditions are used at the freestream boundary, and zero-heat-flux no-slip boundary conditions are used at the wall. This combination of splines and Fourier methods produces a very accurate numerical method. Mixed implicit/explicit time discretization is used. Results are presented for a case with a Mach number of 2.5, and a Reynolds number, based on momentum integral thickness and wall viscosity, of Rsb{thetasp'} = 840. The results show that the van Driest transformed velocity satisfies the incompressible scalings and a narrow logarithmic region is obtained. The results for the turbulence intensities compare well with the incompressible simulations of Spalart. Pressure fluctuations are found to be higher than

  11. Entropy generation in the viscous parts of turbulent boundary layers

    SciTech Connect

    Donald M. McEligot; Edmund J. Walsh; Eckart Laurien; Philippe R. Spalart

    2008-06-01

    The local (pointwise) entropy generation rate per unit volume S is a key to improving many energy processes and applications. Consequently, in the present study, the objectives are to examine the effects of Reynolds number and favorable streamwise pressure gradients on entropy generation rates across turbulent boundary layers on flat plates and—secondarily—to assess a popular approximate technique for their evaluation. About two-thirds or more of the entropy generation occurs in the viscous part, known as the viscous layer. Fundamental new results for entropy generation in turbulent boundary layers are provided by extending available direct numerical simulations. It was found that, with negligible pressure gradients, results presented in wall coordinates are predicted to be near “universal” in the viscous layer. This apparent universality disappears when a significant pressure gradient is applied; increasing the pressure gradient decreases the entropy generation rate. Within the viscous layer, the approximate evaluation of S differs significantly from the “proper” value but its integral, the entropy generation rate per unit surface area S, agrees within 5% at its edge.

  12. Numerical study of sink-flow boundary layers

    NASA Technical Reports Server (NTRS)

    Spalart, Philippe R.

    1986-01-01

    Direct numerical simulations of sink-flow boundary layers, with acceleration parameters K between 1.5 x 10 to the -6th and 3.0 x 10 to the -6th, are presented. The three-dimensional, time-dependent Navier-Stokes equations are solved numerically, using a spectral method, with about one million degrees of freedom. The flow is assumed to be statistically steady, and self-similar. A multiple-scale approximation and periodic conditions are applied to the fluctuations. The turbulence is studied using instantaneous and statistical results. Good agreement with the experiments of Jones and Launder (1972) is observed. The two effects of the favorable pressure gradient are to extend the logarithmic layer, and to alter the energy balance of the turbulence near the edge of the boundary layer. At low Reynolds number the logarithmic layer is shortened and slightly displaced, but wall-layer streaks are present even at the lowest values of R(theta) for which turbulence can be sustained. Large quiescent patches appear in the flow. Relaminarization occurs at K = 3.0 x 10 to the -6th, corresponding to a Reynolds number R(theta) of about 330.

  13. Logarithmic Boundary Layers in Strong Taylor-Couette Turbulence

    NASA Astrophysics Data System (ADS)

    Lohse, Detlef; Huisman, Sander; Ostilla, Rodolfo; Scharnowski, Sven; Cierpka, Christian; Kähler, Christian; Verzicco, Roberto; Sun, Chao; Grossmann, Siegfried

    2013-11-01

    We provide direct measurements of boundary layer profiles in highly turbulent Taylor-Couette flow up to Re = 2 ×106 using high-resolution particle image velocimetry and particle tracking velocimetry, complemented by DNS data on the same system up to Re =105 . We find that the mean azimuthal velocity profile at the inner and outer cylinder can be fitted by the von Kármán log law, but with corrections due to the curvature of the cylinder, which we theoretically account for, based on the Navier-Stokes equation and a closure assumption for the turbulent diffusivity. In particular, we study how these corrections depend on the cylinder radius ratio and show that they are different for the boundary layers at the inner and at the outer cylinder.

  14. Characteristics of Mach 10 transitional and turbulent boundary layers

    NASA Technical Reports Server (NTRS)

    Watson, R. D.

    1978-01-01

    Measurements of the mean flow properties of transitional and turbulent boundary layers in helium on 4 deg and 5 deg wedges were made for flows with edge Mach numbers from 9.5 to 11.3, ratios of wall temperature to total temperature of 0.4 to 0.95, and maximum length Reynolds numbers of one hundred million. The data include pitot and total temperature surveys and measurements of heat transfer and surface shear. In addition, with the assumption of local similarity, turbulence quantities such as the mixing length were derived from the mean flow profiles. Low Reynolds number and precursor transition effects were significant factors at these test conditions and were included in finite difference boundary layer predictions.

  15. Turbulence structures in a strongly decelerated boundary layer

    NASA Astrophysics Data System (ADS)

    Gungor, Ayse G.; Maciel, Yvan; Simens, Mark P.

    2014-11-01

    The characteristics of three-dimensional intense Reynolds shear stress structures (Qs) are presented from a direct numerical simulation of an adverse pressure gradient boundary layer at Reθ = 1500 -2175. The intense Q2 (ejections) and Q4 (sweeps) structures separate into two groups: wall-attached and wall-detached structures. In the region where turbulent activity is maximal, between 0 . 2 δ and 0 . 6 δ , 94 % of the structures are detached structures. In comparison to canonical wall flows, the large velocity defect turbulent boundary layers are less efficient in extracting turbulent energy from the mean flow. There is, furthermore, much less turbulence activity and less velocity coherence near the wall. Additionally, the wall-detached structures are more frequent and carry a much larger amount of Reynolds shear stress. Funded in part by ITU, NSERC of Canada, and Multiflow program of the ERC.

  16. Atmospheric surface and boundary layers of the Amazon Basin

    NASA Technical Reports Server (NTRS)

    Garstang, Michael

    1987-01-01

    Three phases of work were performed: design of and preparation for the Amazon Boundary Layer Experiment (ABLE 2-A); execution of the ABLE 2-A field program; and analysis of the ABLE 2-A data. Three areas of experiment design were dealt with: surface based meteorological measurements; aircraft missions; and project meteorological support. The primary goal was to obtain a good description of the structure of the atmosphere immediately above the rain forest canopy (top of canopy to a few thousand meters), to describe this region during the growing daytime phase of the boundary layer; and to examine the nighttime stratified state. A secondary objective was to examine the role that deep convective storms play in the vertical transport of heat, water vapor, and other trace gases. While significant progress was made, much of the analysis remains to be done.

  17. Nonparallel instability of supersonic and hypersonic boundary layers

    NASA Technical Reports Server (NTRS)

    El-Hady, Nabil M.

    1991-01-01

    Multiple scaling technique is used to examine the nonparallel instability of supersonic and hypersonic boundary-layer flows to three dimensional (first mode) and two dimensional (second mode) disturbances. The method is applied to the flat plate boundary layer for a range of Mach numbers from 0 to 10. Growth rates of disturbances are calculated based on three different criteria: following the maximum of the mass-flow disturbance, using an integral of the disturbance kinetic energy, and using the integral of the square of the mass-flow amplitude. By following the maximum of the mass-flow disturbance, the calculated nonparallel growth rates are in good quantitative agreement with the experimental results at Mach number 4.5.

  18. Nonparallel instability of supersonic and hypersonic boundary layers

    NASA Technical Reports Server (NTRS)

    El-Hady, Nabil M.

    1991-01-01

    Multiple scaling technique is used to examine the nonparallel instability of supersonic and hypersonic boundary-layer flows to three-dimensional (first mode) and two-dimensional (second mode) disturbances. The method is applied to the flat plate boundary layer for a range of Mach numbers from 0 to 10. Growth rates of disturbances are calculated based on three different criteria: following the maximum of the mass-flow disturbance, using an integral of the disturbance kinetic energy, and using an integral of the square of the mass-flow amplitude. By following the maximum of the mass-flow dusturbance, the calculated nonparallel growth rates are in good quantitative agreement with the experimental results of Kendall (1967) at Mach number 4.5.

  19. Nonparallel instability of supersonic and hypersonic boundary layers

    NASA Technical Reports Server (NTRS)

    El-Hady, Nabil M.

    1991-01-01

    Multiple scaling technique is used to examine the nonparallel instability of supersonic and hypersonic boundary-layer flows to three-dimensional (first mode) and two-dimensional (second mode) disturbances. The method is applied to the flat plate boundary layer for a range of Mach numbers from 0 to 10. Growth rates of disturbances are calculated based on three different criteria: following the maximum of the mass-flow disturbance, using an integral of the disturbance kinetic energy, and using the integral of the square of the mass-flow amplitude. By following the maximum of the mass-flow disturbance, the calculated nonparallel growth rates are in good quantitative agreement with the experimental results at Mach number 4.5.

  20. Inverse boundary-layer technique for airfoil design

    NASA Technical Reports Server (NTRS)

    Henderson, M. L.

    1979-01-01

    A description is presented of a technique for the optimization of airfoil pressure distributions using an interactive inverse boundary-layer program. This program allows the user to determine quickly a near-optimum subsonic pressure distribution which meets his requirements for lift, drag, and pitching moment at the desired flow conditions. The method employs an inverse turbulent boundary-layer scheme for definition of the turbulent recovery portion of the pressure distribution. Two levels of pressure-distribution architecture are used - a simple roof top for preliminary studies and a more complex four-region architecture for a more refined design. A technique is employed to avoid the specification of pressure distributions which result in unrealistic airfoils, that is, those with negative thickness. The program allows rapid evaluation of a designed pressure distribution off-design in Reynolds number, transition location, and angle of attack, and will compute an airfoil contour for the designed pressure distribution using linear theory.