Science.gov

Sample records for air breakdown plasma

  1. Optical breakdown threshold investigation of 1064 nm laser induced air plasmas

    SciTech Connect

    Thiyagarajan, Magesh; Thompson, Shane

    2012-04-01

    We present the theoretical and experimental measurements and analysis of the optical breakdown threshold for dry air by 1064 nm infrared laser radiation and the significance of the multiphoton and collisional cascade ionization process on the breakdown threshold measurements over pressures range from 10 to 2000 Torr. Theoretical estimates of the breakdown threshold laser intensities and electric fields are obtained using two distinct theories namely multiphoton and collisional cascade ionization theories. The theoretical estimates are validated by experimental measurements and analysis of laser induced breakdown processes in dry air at a wavelength of 1064 nm by focusing 450 mJ max, 6 ns, 75 MW max high-power 1064 nm IR laser radiation onto a 20 {mu}m radius spot size that produces laser intensities up to 3 - 6 TW/cm{sup 2}, sufficient for air ionization over the pressures of interest ranging from 10 to 2000 Torr. Analysis of the measured breakdown threshold laser intensities and electric fields are carried out in relation with classical and quantum theoretical ionization processes, operating pressures. Comparative analysis of the laser air breakdown results at 1064 nm with corresponding results of a shorter laser wavelength (193 nm) [M. Thiyagarajan and J. E. Scharer, IEEE Trans. Plasma Sci. 36, 2512 (2008)] and a longer microwave wavelength (10{sup 8} nm) [A. D. MacDonald, Microwave Breakdown in Gases (Wiley, New York, 1966)]. A universal scaling analysis of the breakdown threshold measurements provided a direct comparison of breakdown threshold values over a wide range of frequencies ranging from microwave to ultraviolet frequencies. Comparison of 1064 nm laser induced effective field intensities for air breakdown measurements with data calculated based on the collisional cascade and multiphoton breakdown theories is used successfully to determine the scaled collisional microwave portion. The measured breakdown threshold of 1064 nm laser intensities are then

  2. Interaction of high-power microwave with air breakdown plasma at low pressure

    NASA Astrophysics Data System (ADS)

    Zhao, Pengcheng; Guo, Lixin; Shu, Panpan

    2016-09-01

    The high-power microwave breakdown at the low air pressure (about 0.01 atm) is simulated numerically using the one-dimensional model coupling Maxwell's equations with plasma fluid equations. The accuracy of the model is validated by comparing the breakdown prediction with the experimental data. We find that a diffuse plasma with a stationary front profile forms due to the large electron diffusion. Most of the incident wave energy is absorbed and reflected by the plasma when the plasma front achieves a stationary profile. The front propagation velocity remains almost unchanged with time and increases when the incident wave amplitude increases or the incident wave frequency decreases. With the incident wave frequency increasing, the maximum density of the stationary plasma front increases, while the ratio of the reflected wave power to the incident wave power remains almost unchanged. At a higher incident wave amplitude, the maximum density and reflectance become large.

  3. A study of long aerosol initiated laser induced air breakdown plasmas

    NASA Astrophysics Data System (ADS)

    Pechacek, R. E.; Raleigh, M.; Greig, J. R.; Murphy, D. P.; Camelio, F.

    1984-06-01

    Results from three separate experiments on aerosol initiated, laser induced, air breakdown are described. The purpose of these experiments was to determine the maximum length of air breakdown plasma that can be created with a given laser pulse. Two separate neodymium glass lasers were used; the first produced an output pulse of 30 J in 60 ns and the second produced 200 J in 4 ns. Both pulses were at the wavelength of 1.06 micron. Two of the experiments used the aerosol produced by burning black gunpowder in the atmosphere which gave a mean particle size of about 0.5 micron. The third experiment attempted to use ragweed pollen with a mean particle size of about 10 micron, but these particles could not be adequately dispersed and no useful results were obtained.

  4. On the accuracy of the rate coefficients used in plasma fluid models for breakdown in air

    NASA Astrophysics Data System (ADS)

    Kourtzanidis, Konstantinos; Raja, Laxminarayan L.

    2016-07-01

    The electrical breakdown of air depends on the balance between creation and loss of charged particles. In fluid models, datasets of the rate coefficients used are obtained either from fits to experimental data or by solutions of the Boltzmann equation. Here, we study the accuracy of the commonly used models for ionization and attachment frequencies and their impact on the prediction of the breakdown threshold for air. We show that large errors can occur depending on the model and propose the most accurate dataset available for modeling of air breakdown phenomena.

  5. Observation of plasma array dynamics in 110 GHz millimeter-wave air breakdown

    SciTech Connect

    Cook, Alan M.; Hummelt, Jason S.; Shapiro, Michael A.; Temkin, Richard J.

    2011-10-15

    We present dynamical measurements of self-organizing arrays of plasma structures in air induced by a 110 GHz millimeter-wave beam with linear or circular polarization. The formation of the individual plasmas and the growth of the array pattern are studied using a fast-gated (5-10 ns) intensified camera. We measure the time-dependent speed at which the array pattern propagates in discrete steps toward the millimeter-wave source, observing a peak speed greater than 100 km/s. We observe the expansion of an initially spherical plasma into a disk or an elongated filament, depending on the polarization of the incident beam. The results show good agreement with one-dimensional ionization-diffusion theory and two-dimensional simulations.

  6. Atmospheric pressure He-air plasma jet: Breakdown process and propagation phenomenon

    NASA Astrophysics Data System (ADS)

    Begum, Asma; Laroussi, Mounir; Pervez, Mohammad Rasel

    2013-06-01

    In this paper He-discharge (plasma jet/bullet) in atmospheric pressure air and its progression phenomenon has been studied experimentally using ICCD camera, optical emission spectroscopy (OES) and calibrated dielectric probe measurements. The repetitive nanosecond pulse has applied to a plasma pencil to generate discharge in the helium gas channel. The discharge propagation speed was measured from the ICCD images. The axial electric field distribution in the plasma jet is inferred from the optical emission spectroscopic data and from the probe measurement. The correlation between the jet velocities, jet length with the pulse duration is established. It shows that the plasma jet is not isolated from the input voltage along its propagation path. The discharge propagation speed, the electron density and the local and average electric field distribution along the plasma jet axis predicted from the experimental results are in good agreement with the data predicted by numerical simulation of the streamer propagation presented in different literatures. The ionization phenomenon of the discharge predicts the key ionization parameters, such as speed, peak electric field in the front, and electron density. The maximum local electric field measured by OES is 95 kV/cm at 1.3 cm of the jet axis, and average EF measured by probe is 24 kV/cm at the same place of the jet. The average and local electron density estimated are in the order of 1011 cm-3 and it reaches to the maximum of 1012 cm-3.

  7. Atmospheric pressure He-air plasma jet: Breakdown process and propagation phenomenon

    SciTech Connect

    Begum, Asma; Laroussi, Mounir; Pervez, Mohammad Rasel

    2013-06-15

    In this paper He-discharge (plasma jet/bullet) in atmospheric pressure air and its progression phenomenon has been studied experimentally using ICCD camera, optical emission spectroscopy (OES) and calibrated dielectric probe measurements. The repetitive nanosecond pulse has applied to a plasma pencil to generate discharge in the helium gas channel. The discharge propagation speed was measured from the ICCD images. The axial electric field distribution in the plasma jet is inferred from the optical emission spectroscopic data and from the probe measurement. The correlation between the jet velocities, jet length with the pulse duration is established. It shows that the plasma jet is not isolated from the input voltage along its propagation path. The discharge propagation speed, the electron density and the local and average electric field distribution along the plasma jet axis predicted from the experimental results are in good agreement with the data predicted by numerical simulation of the streamer propagation presented in different literatures. The ionization phenomenon of the discharge predicts the key ionization parameters, such as speed, peak electric field in the front, and electron density. The maximum local electric field measured by OES is 95 kV/cm at 1.3 cm of the jet axis, and average EF measured by probe is 24 kV/cm at the same place of the jet. The average and local electron density estimated are in the order of 10{sup 11} cm{sup -3} and it reaches to the maximum of 10{sup 12} cm{sup -3}.

  8. Estimation of Minimal Breakdown Point in a GaP Plasma Structure and Discharge Features in Air and Argon Media

    NASA Astrophysics Data System (ADS)

    Kurt, H. Hilal; Tanrıverdi, Evrim

    2016-08-01

    We present gas discharge phenomena in argon and air media using a gallium phosphide (GaP) semiconductor and metal electrodes. The system has a large-diameter ( D) semiconductor and a microscaled adjustable interelectrode gap ( d). Both theoretical and experimental findings are discussed for a direct-current (dc) electric field ( E) applied to this structure with parallel-plate geometry. As one of the main parameters, the pressure p takes an adjustable value from 0.26 kPa to 101 kPa. After collection of experimental data, a new theoretical formula is developed to estimate the minimal breakdown point of the system as a function of p and d. It is proven that the minimal breakdown point in the semiconductor and metal electrode system differs dramatically from that in metal and metal electrode systems. In addition, the surface charge density σ and spatial electron distribution n e are calculated theoretically. Current-voltage characteristics (CVCs) demonstrate that there exist certain negative differential resistance (NDR) regions for small interelectrode separations (i.e., d = 50 μm) and low and moderate pressures between 3.7 kPa and 13 kPa in Ar medium. From the difference of currents in CVCs, the bifurcation of the discharge current is clarified for an applied voltage U. Since the current differences in NDRs have various values from 1 μA to 7.24 μA for different pressures, the GaP semiconductor plasma structure can be used in microwave diode systems due to its clear NDR region.

  9. Microwave air breakdown enhanced with metallic initiators

    SciTech Connect

    Herring, G. C.; Popovic, S.

    2008-03-31

    We have determined X-band (9.4 GHz) electric field strengths required to obtain air breakdown at atmospheric pressure in the presence of metallic initiators, which are irradiated with repetitive (30 pulses/s) microwave pulses of 3 {mu}s duration and 200 kW peak power. Using a half-wavelength initiator, a factor of 40 reduction (compared to no initiator) was observed in the electric field required to achieve breakdown. The present measurements are compared to a previously published model for air breakdown, which was originally validated with S-band (3 GHz) frequencies and single 40 {mu}s pulses. We find good agreement between this previous model and our present measurements of breakdown with X-band frequencies and repetitive 3 {mu}s pulses.

  10. Breakdowns in Coordination Between Air Traffic Controllers

    NASA Technical Reports Server (NTRS)

    Bearman, Chris; Orasanu, Judith; Miller, Ronald C.

    2011-01-01

    This talk outlines the complexity of coordination in air traffic control, introduces the NextGen technologies, identifies common causes for coordination breakdowns in air traffic control and examines whether these causes are likely to be reduced with the introduction of NextGen technologies. While some of the common causes of breakdowns will be reduced in a NextGen environment this conclusion should be drawn carefully given the current stage of development of the technologies and the observation that new technologies often shift problems rather than reduce them.

  11. Plasma temperature clamping in filamentation laser induced breakdown spectroscopy

    SciTech Connect

    Harilal, Sivanandan S.; Yeak, J.; Phillips, Mark C.

    2015-10-19

    Ultrafast laser filament induced breakdown spectroscopy is a very promising method for remote material detection. We present characteristics of plasmas generated in a metal target by laser filaments in air. Our measurements show that the temperature of the ablation plasma is clamped along the filamentation channel due to intensity clamping in a filament. Nevertheless, significant changes in radiation intensity are noticeable, and this is essentially due to variation in the number density of emitting atoms. The present results also partly explains the reason for the occurrence of atomic plume during fs LIBS in air compared to long-pulse ns LIBS.

  12. Dynamics of optical breakdown in air induced by single and double nanosecond laser pulses

    SciTech Connect

    Mahdieh, Mohammad Hossein Akbari Jafarabadi, Marzieh

    2015-12-15

    In this paper, an optical breakdown in air induced by single and double nanosecond laser pulses was studied. A high power Nd:YAG laser beam was used for producing optical breakdown plasma in the air. The dynamics of breakdown plasma were studied using an optical probe beam. A portion of the laser beam was used, as the probe beam and was aligned to propagate (perpendicular to the pump beam) through the breakdown region. The transmission of the probe beam (through the breakdown region) was temporally measured for both single and double pulse irradiations. The results were used to describe the evolution of the induced plasma in both conditions. These results show that the plasma formation time and its absorptivity are strongly dependent on the single or double pulse configurations.

  13. Kinetic Simulations of Dense Plasma Focus Breakdown

    NASA Astrophysics Data System (ADS)

    Schmidt, A.; Higginson, D. P.; Jiang, S.; Link, A.; Povilus, A.; Sears, J.; Bennett, N.; Rose, D. V.; Welch, D. R.

    2015-11-01

    A dense plasma focus (DPF) device is a type of plasma gun that drives current through a set of coaxial electrodes to assemble gas inside the device and then implode that gas on axis to form a Z-pinch. This implosion drives hydrodynamic and kinetic instabilities that generate strong electric fields, which produces a short intense pulse of x-rays, high-energy (>100 keV) electrons and ions, and (in deuterium gas) neutrons. A strong factor in pinch performance is the initial breakdown and ionization of the gas along the insulator surface separating the two electrodes. The smoothness and isotropy of this ionized sheath are imprinted on the current sheath that travels along the electrodes, thus making it an important portion of the DPF to both understand and optimize. Here we use kinetic simulations in the Particle-in-cell code LSP to model the breakdown. Simulations are initiated with neutral gas and the breakdown modeled self-consistently as driven by a charged capacitor system. We also investigate novel geometries for the insulator and electrodes to attempt to control the electric field profile. The initial ionization fraction of gas is explored computationally to gauge possible advantages of pre-ionization which could be created experimentally via lasers or a glow-discharge. Prepared by LLNL under Contract DE-AC52-07NA27344.

  14. Kinetic theory of runaway air-breakdown

    SciTech Connect

    Roussel-Dupre, R.A.; Gurevich, A.V.; Tunnell, T.; Milikh, G.M.

    1993-09-01

    The kinetic theory for a new air breakdown mechanism advanced in a previous paper is developed. The relevant form of the Boltzmann equation is derived and the particle orbits in both velocity space and configuration space are computed. A numerical solution of the Boltzmann equation, assuming a spatially uniform electric field, is obtained and the temporal evolution of the electron velocity distribution function is described. The results of our analysis are used to estimate the magnitude of potential x-ray emissions from discharges in thunderstorms.

  15. Kinetic theory of runaway air breakdown

    SciTech Connect

    Roussel-Dupre, R.A. ); Gurevich, A.V. ); Tunnell, T. ); Milikh, G.M. )

    1994-03-01

    The kinetic theory for an air breakdown mechanism advanced in a previous paper [Phys. Lett. A 165, 463 (1992)] is developed. The relevant form of the Boltzmann equation is derived and the particle orbits in both velocity space and configuration space are computed. A numerical solution of the Boltzmann equation, assuming a spatially uniform electric field, is obtained and the temporal evolution of the electron velocity distribution function is described. The results of our analysis are used to estimate the magnitude of potential x-ray emissions from discharges in thunderstorms.

  16. Electrical Breakdown of Plasma-Polymerized Styrene Thin Films

    NASA Astrophysics Data System (ADS)

    Hikita, Masayuki; Matsuda, Akinori; Nagao, Masayuki; Sawa, Goro; Ieda, Masayuki

    1982-03-01

    The electrical breakdown of plasma-polymerized styrene thin film (PPS) was studied by taking advantage of self-healing. The electric strength FB was almost independent of temperature from -196 to 200°C, and strongly depended on the rate of voltage increase even at a slow rate of increase. The breakdown characteristics were influenced by the electrode metal and the ambient atmosphere, but not by X-ray irradiation or photoillumination. The experimental results are used to discuss the breakdown mechanism of PPS through existing breakdown theories. As a result, no single breakdown process was considered as a possible breakdown mechanism, and we thus obtained important conditions for presenting a new breakdown model; the breakdown of PPS will be determined by a thermal criterion, and it will be closely related to a temperature-independent injection process.

  17. A one-dimensional study of the evolution of the microwave breakdown in air

    SciTech Connect

    Semenov, V. E.; Rakova, E. I.; Glyavin, M. Yu.; Tarakanov, V. P.; Nusinovich, G. S.

    2015-09-15

    The microwave breakdown in air is simulated numerically within a simple 1D model taking into account a perturbation of electromagnetic field by plasma. The simulations were performed using two qualitatively different codes. One of these codes is based on computation of Maxwell equations, whereas the other one utilizes an approximation of quasi-monochromatic electromagnetic field. There is a good agreement between simulation results obtained by using both codes. Calculations have been carried out in a wide range of air pressures and field frequencies; also varied were initial spatial distributions of plasma density. The results reveal strong dependence of the breakdown evolution on the relation between the field frequency and the gas pressure as well as on the presence of extended rarefied background plasma. At relatively low gas pressures (or high field frequencies), the breakdown process is accompanied by the stationary ionization wave propagating towards the incident electromagnetic wave. In the case of a high gas pressure (or a relatively low field frequency), the peculiarities of the breakdown are associated with a formation of plasma filament array. The extended background plasma can suppress formation of the plasma filament array completely even at high pressures (or low frequencies)

  18. Fabrication of photoluminescent Si-based layers by air optical breakdown near the silicon surface

    NASA Astrophysics Data System (ADS)

    Kabashin, A. V.; Meunier, M.

    2002-01-01

    A novel "dry" method for the fabrication of Si/SiO x nanostructures exhibiting strong visible photoluminescence (PL) is introduced. The method consists in the treatment of a silicon target surface by air breakdown plasma produced by a CO 2 laser radiation in atmospheric air. The treatment leads to the formation of a thin porous layer on the silicon wafer, which exhibits a 1.9-2.0 eV PL. Possible mechanisms of nanostructure formation and PL origin are discussed.

  19. Numerical modeling of the electrical breakdown and discharge properties of laser-generated plasma channels

    SciTech Connect

    Petrova, Tz. B.; Ladouceur, H. D.; Baronavski, A. P.

    2007-12-15

    An extensive nonequilibrium steady-state kinetics model incorporating collisional and radiative processes is developed to study the electrical breakdown and discharge maintenance of laser-induced atmospheric plasma channels formed in externally applied electric fields. The model is based upon a self-consistent numerical solution of the Boltzmann equation for the electron energy distribution function coupled with the electron energy balance equation and the population balance equations for electrons and air species. Using the electron energy distribution function, the ionization and electron attachment rates as a function of the reduced applied electric field at different degrees of ionization are calculated. We find that the ionization rate as a function of applied electric field in a laser-induced plasma channel is orders of magnitude larger than that obtained for a natural atmospheric air discharge. Therefore, the electrical breakdown of these plasma channels may occur at significantly lower applied electric fields. The present model predicts a breakdown electric field of 10 kV/cm, while the experimentally determined breakdown field strength is {approx}5.7 kV/cm [A. P. Baronavski et al., NRL Memorandum Report No. NRL/MR/6110-02-8642, 2002 (unpublished)], a reduction of about a factor of 5 from the natural Paschen electrical breakdown field of {approx}30 kV/cm.

  20. Effects of load voltage on voltage breakdown modes of electrical exploding aluminum wires in air

    NASA Astrophysics Data System (ADS)

    Wu, Jian; Li, Xingwen; Yang, Zefeng; Wang, Kun; Chao, Youchuang; Shi, Zongqian; Jia, Shenli; Qiu, Aici

    2015-06-01

    The effects of the load voltage on the breakdown modes are investigated in exploding aluminum wires driven by a 1 kA, 0.1 kA/ns pulsed current in air. From laser probing images taken by laser shadowgraphy, schlieren imaging, and interferometry, the position of the shockwave front, the plasma channel, and the wire core edge of the exploding product can be determined. The breakdown mode makes a transition from the internal mode, which involves breakdown inside the wire core, to the shunting mode, which involves breakdown in the compressed air, with decreasing charging voltage. The breakdown electrical field for a gaseous aluminum wire core of nearly solid density is estimated to be more than 20 kV/cm, while the value for gaseous aluminum of approximately 0.2% solid density decreases to 15-20 kV/cm. The breakdown field in shunting mode is less than 20 kV/cm and is strongly affected by the vaporized aluminum, the desorbed gas, and the electrons emitted from the wire core during the current pause. Ohmic heating during voltage collapses will induce further energy deposition in the current channel and thus will result in different expansion speeds for both the wire core and the shockwave front in the different modes.

  1. Effects of load voltage on voltage breakdown modes of electrical exploding aluminum wires in air

    SciTech Connect

    Wu, Jian; Li, Xingwen Yang, Zefeng; Wang, Kun; Chao, Youchuang; Shi, Zongqian; Jia, Shenli; Qiu, Aici

    2015-06-15

    The effects of the load voltage on the breakdown modes are investigated in exploding aluminum wires driven by a 1 kA, 0.1 kA/ns pulsed current in air. From laser probing images taken by laser shadowgraphy, schlieren imaging, and interferometry, the position of the shockwave front, the plasma channel, and the wire core edge of the exploding product can be determined. The breakdown mode makes a transition from the internal mode, which involves breakdown inside the wire core, to the shunting mode, which involves breakdown in the compressed air, with decreasing charging voltage. The breakdown electrical field for a gaseous aluminum wire core of nearly solid density is estimated to be more than 20 kV/cm, while the value for gaseous aluminum of approximately 0.2% solid density decreases to 15–20 kV/cm. The breakdown field in shunting mode is less than 20 kV/cm and is strongly affected by the vaporized aluminum, the desorbed gas, and the electrons emitted from the wire core during the current pause. Ohmic heating during voltage collapses will induce further energy deposition in the current channel and thus will result in different expansion speeds for both the wire core and the shockwave front in the different modes.

  2. Experimental measurements of multiphoton enhanced air breakdown by a subthreshold intensity excimer laser

    SciTech Connect

    Way, Jesse; Hummelt, Jason; Scharer, John

    2009-10-15

    This work presents density, spectroscopic temperature, and shockwave measurements of laser induced breakdown plasma in atmospheric air by subthreshold intensity (5.5x10{sup 9} W/cm{sup 2}) 193 nm laser radiation. Using molecular spectroscopy and two-wavelength interferometry, it is shown that substantial ionization (>10{sup 16} cm{sup -3}) occurs that is not predicted by collisional cascade (CC) breakdown theory. While the focused laser irradiance is three orders of magnitude below the theoretical collisional breakdown threshold, the substantial photon energy at 193 nm (6.42 eV/photon) compared with the ionization potential of air (15.6 eV) significantly increases the probability of multiphoton ionization effects. By spectroscopically monitoring the intensity of the N{sub 2}{sup +} first negative system (B {sup 2}SIGMA{sub u}{sup +}-X {sup 2}SIGMA{sub g}{sup +}) vibrational bandhead (v{sup '}=0,v{sup ''}=0) at low pressure (20 Torr) where multiphoton effects are dominant, it is shown that two photon excitation, resonant enhanced multiphoton ionization is the primary mechanism for quantized ionization of N{sub 2} to the N{sub 2}{sup +}(B {sup 2}SIGMA{sub u}{sup +}) state. This multiphoton effect then serves to amplify the collisional breakdown process at higher pressures by electron seeding, thereby reducing the threshold intensity from that required via CC processes for breakdown and producing high density laser formed plasmas.

  3. Laser frequency upshift and self-defocusing under avalanche breakdown of air

    SciTech Connect

    Verma, Updesh; Sharma, A. K.

    2010-12-15

    A theoretical model of avalanche breakdown of air by a Gaussian laser beam and frequency upshift is developed. The laser beam, below the threshold for tunnel ionization, heats the seed electrons to high energy and initiates avalanche ionization of the air. The ensuing plasma density profile that has maximum on axis and falls off radially causes refraction divergence of the beam. The temporal evolution of plasma density causes self-phase modulation of the laser, causing frequency broadening and spectral emission in the visible.

  4. Gas breakdown and plasma impedance in split-ring resonators

    NASA Astrophysics Data System (ADS)

    Hoskinson, Alan R.; Parsons, Stephen; Hopwood, Jeffrey

    2016-02-01

    The appearance of resonant structures in metamaterials coupled to plasmas motivates the systematic investigation of gas breakdown and plasma impedance in split-ring resonators over a frequency range of 0.5-9 GHz. In co-planar electrode gaps of 100 μm, the breakdown voltage amplitude decreases from 280 V to 225 V over this frequency range in atmospheric argon. At the highest frequency, a microplasma can be sustained using only 2 mW of power. At 20 mW, we measure a central electron density of 2 × 1020 m-3. The plasma-electrode overlap plays a key role in the microplasma impedance and causes the sheath impedance to dominate the plasma resistance at very low power levels. Contribution to the Topical Issue "Recent Breakthroughs in Microplasma Science and Technology", edited by Kurt Becker, Jose Lopez, David Staack, Klaus-Dieter Weltmann and Wei Dong Zhu.

  5. Ejection of atoms by laser produced optical breakdown plasma

    SciTech Connect

    Wang, M.R.; Meng, H.C.

    1981-06-01

    High-power CO/sub 2/ laser radiation has been used to study the optical breakdown plasma on various solid targets (NaCl, KBr, ZnSe, and Ge). The breakdown threshold for irreversible changes of the optical characteristics was determined as well as the evaporation threshold of Na atoms from NaCl samples by CO/sub 2/ laser irradiation; the latter value was about 2.8 x 10/sup 7/ W/cm/sup 2/. The time profiles of the ejected Na atoms and the propagation of the atoms in front of the sample was measured with the laser fluorescence method.

  6. The inception of pulsed discharges in air: simulations in background fields above and below breakdown

    NASA Astrophysics Data System (ADS)

    Sun, Anbang; Teunissen, Jannis; Ebert, Ute

    2014-11-01

    We investigate discharge inception in air, in uniform background electric fields above and below the breakdown threshold. We perform 3D particle simulations that include a natural level of background ionization in the form of positive and \\text{O}2- ions. In background fields below breakdown, we use a strongly ionized seed of electrons and positive ions to enhance the field locally. In the region of enhanced field, we observe the growth of positive streamers, as in previous simulations with 2D plasma fluid models. The inclusion of background ionization has little effect in this case. When the background field is above the breakdown threshold, the situation is very different. Electrons can then detach from \\text{O}2- and start ionization avalanches in the whole volume. These avalanches together create one extended discharge, in contrast to the ‘double-headed’ streamers found in many fluid simulations.

  7. Intense microwave pulse propagation through gas breakdown plasmas in a waveguide

    SciTech Connect

    Byrne, D.P.

    1986-10-08

    High-power microwave pulse-compression techniques are used to generate 2.856 GHz pulses which are propagated in a TE/sub 10/ mode through a gas filled section of waveguide, where the pulses interact with self-generated gas-breakdown plasmas. Pulse envelopes transmitted through the plasmas, with duration varying from 2 ns to greater than 1 ..mu..s, and peak powers of a few kW to nearly 100 MW, are measured as a function of incident pulse and gas pressure for air, nitrogen, and helium. In addition, the spatial and temporal development of the optical radiation emitted by the breakdown plasmas are measured. For transmitted pulse durations greater than or equal to 100 ns, good agreement is found with both theory and existing measurements. For transmitted pulse duration as short as 2 ns (less than 10 rf cycles), a two-dimensional model is used in which the electrons in the plasma are treated as a fluid whose interactions with the microwave pulse are governed by a self-consistent set of fluid equations and Maxwell's equations for the electromagnetic field. The predictions of this model for air are compared with the experimental results over a pressure range of 0.8 torr to 300 torr. Good agreement is obtained above about 1 torr pressure, demonstrating that microwave pulse propagation above the breakdown threshold can be accurately modeled on this time scale. 63 refs., 44 figs., 2 tabs.

  8. Radio-frequency breakdown in oxygen and synthetic air

    NASA Astrophysics Data System (ADS)

    Petrovic, Zoran Lj; Savic, Marija; Radmilovic-Radjenovic, Marija

    2015-09-01

    Parallel plate rf discharges have a long history in the materials processing industry, but much of their behavior is still poorly understood, particularly processes taking place during the breakdown. In order to test some simple models of RF breakdown we have performed detailed simulations using well tested Monte Carlo code that allows also verification against RF and DC benchmarks but also treatment of temporal spatial non-localities. This work contains our simulation results of the breakdown voltage curves in oxygen and synthetic air. At first, electrons were released from the middle of the gap and any further development is due to the applied field, random number generator and solutions of kinetic and balance equations. The obtained results qualitatively agree with the existing experimental and simulation results. In addition, spatial distributions of electron concentration, energy and rates of elastic scattering and ionization are also presented and discussed in light of the processes leading to the breakdown. We analyze the role of low threshold inelastic collisions and non-conservative attachment as compared to the previous results for argon. Supported by MESTD projects ON171037 and III41011.

  9. Detecting excess ionizing radiation by electromagnetic breakdown of air

    SciTech Connect

    Granatstein, Victor L.; Nusinovich, Gregory S.

    2010-09-15

    A scheme is proposed for detecting a concealed source of ionizing radiation by observing the occurrence of breakdown in atmospheric air by an electromagnetic wave whose electric field surpasses the breakdown field in a limited volume. The volume is chosen to be smaller than the reciprocal of the naturally occurring concentration of free electrons. The pulse duration of the electromagnetic wave must exceed the avalanche breakdown time (10-200 ns) and could profitably be as long as the statistical lag time in ambient air (typically, microseconds). Candidate pulsed electromagnetic sources over a wavelength range, 3 mm>{lambda}>10.6 {mu}m, are evaluated. Suitable candidate sources are found to be a 670 GHz gyrotron oscillator with 200 kW, 10 {mu}s output pulses and a Transversely Excited Atmospheric-Pressure (TEA) CO{sub 2} laser with 30 MW, 100 ns output pulses. A system based on 670 GHz gyrotron would have superior sensitivity. A system based on the TEA CO{sub 2} laser could have a longer range >100 m.

  10. Optical breakdown of air triggered by femtosecond laser filaments

    NASA Astrophysics Data System (ADS)

    Polynkin, Pavel; Moloney, Jerome V.

    2011-10-01

    We report experiments on the generation of dense plasma channels in ambient air using a dual laser pulse excitation scheme. The dilute plasma produced through the filamentation of an ultraintense femtosecond laser pulse is densified via avalanche ionization driven by a co-propagating multi-Joule nanosecond pulse.

  11. Experimental breakdown of selected anodized aluminum samples in dilute plasmas

    NASA Technical Reports Server (NTRS)

    Grier, Norman T.; Domitz, Stanley

    1992-01-01

    Anodized aluminum samples representative of Space Station Freedom structural material were tested for electrical breakdown under space plasma conditions. In space, this potential arises across the insulating anodized coating when the spacecraft structure is driven to a negative bias relative to the external plasma potential due to plasma-surface interaction phenomena. For anodized materials used in the tests, it was found that breakdown voltage varied from 100 to 2000 volts depending on the sample. The current in the arcs depended on the sample, the capacitor, and the voltage. The level of the arc currents varied from 60 to 1000 amperes. The plasma number density varied from 3 x 10 exp 6 to 10 exp 3 ions per cc. The time between arcs increased as the number density was lowered. Corona testing of anodized samples revealed that samples with higher corona inception voltage had higher arcing inception voltages. From this it is concluded that corona testing may provide a method of screening the samples.

  12. Microwave cavity diagnostics of microwave breakdown plasmas. Final report

    SciTech Connect

    Eckstrom, D.J.; Williams, M.S.

    1989-08-01

    We have performed microwave cavity perturbation measurements in the LLNL AIM facility using a 329-MHz cavity that allow us to examine in detail the plasma formation and decay processes for electron densities between approximately 10{sup 5} and 10{sup 7}/cm{sup 3}. We believe these to be the lowest density plasmas ever studied in microwave breakdown experiments, and as such they allow us to determine the power and energy required to produce plasmas suitable for HF radar reflection as well as the effective lifetimes of these plasmas before re-ionization is required. Analyses of these results leads to the following conclusions. (1) For microwave breakdown pulses varying from 0.6 to 2.4 {mu}s, the threshold power required to produce measurable plasmas is 30 to 12 MW/m{sup 2} at 0.01 torr, decreasing to 3.5 to 1.8 MW/m{sup 2} at 1 to 3 torr, and then increasing to 5 to 3.5 MW/m{sup 2} at 30 torr. The threshold power in each case decreases with increasing pulse length, but the required pulse energy increases with decreasing power or increasing pulse length. (2) The effective electron density decay rates are approximately 100/s for 0.1 to 1 torr, after which they increase linearly with pressure. Thus, the useful plasma lifetimes are in the range of 20 to 40 ms at the lower pressures and decrease to about 1 ms at 30 torr. These decay rates and lifetimes are comparable to those that would exist for artificially ionized regions in the upper atmosphere. (3) The collision frequencies measured at pressures of 1 torr and above correspond to electron temperatures of 800 K or less. In fact, the inferred temperatures for p > 3 torr are below room temperature. This may be due to a contribution to the measured conductivity by negative ions.

  13. Current flow in a plasma caused by dielectric breakdown

    NASA Technical Reports Server (NTRS)

    Vaughn, J. A.; Carruth, M. R., Jr.; Gray, P. A.

    1992-01-01

    Spacecraft with a thin dielectric coating on the outer surface of the structure which are biased (-200 V) negative relative to the atmospheric plasma are susceptible to dielectric breakdown. This paper will present experimental tests designed to measure the electron current flow from the structure through the plasma during the arc. The current path was examined in three parts: the electrons supplied through the structure and the arc to the outer structure, the expansion of the arc into the ambient plasma, and the return current through the ambient plasma. The measured electron current either flowing from the plasma or supplied to the plasma by the arc in each case was compared to the random thermal electron current which could be collected. The results of the tests show a spacecraft is capable of supporting arcs with peak currents greater than thermal electron currents, and these currents will be dependent upon the amount of stored charge in the structure (i.e., the structure's surface area and dielectric thickness). Also, the results of these tests show that it is possible for structures with a self capacitance of 10 microFarads to see peak currents of 90 A and structures with 1000 microFarads (i.e., capacitance of one Space Station Freedom module) to produce peak currents of 1000 A.

  14. Study of breakdown in an ablative pulsed plasma thruster

    SciTech Connect

    Huang, Tiankun; Wu, Zhiwen; Liu, Xiangyang; Xie, Kan; Wang, Ningfei; Cheng, Yue

    2015-10-15

    Breakdown in ablative pulsed plasma thrusters (APPTs) must be studied in order to design new types of APPTs and measure particular parameters. In this paper, we studied a parallel-plate ablative pulsed plasma thruster that used a coaxial semiconductor spark plug. By operating the APPT about 500 times with various capacitor voltages and electrode gaps, we measured and analyzed the voltage of the spark plug, the voltage between the electrodes, and the discharge current. These experiments revealed a time delay (∼1–10 μs) between spark plug ignition and capacitor discharge, which may affect the performance of high-pulsing-rate (>10 kHz) and double-discharge APPTs, and the measurements of some of the APPT parameters. The delay time decreased as the capacitor voltage increased, and it increased with an increasing electrode gap and increasing number of ignitions. We explain our results through a simple theoretical analysis.

  15. Plasma Conductivity and Ionization Growth in Flame Breakdown

    NASA Astrophysics Data System (ADS)

    Robledo-Martinez, Arturo; Hernandez, J. Luis

    2000-10-01

    An investigation into the properties of flame breakdown is reported. A series of DC discharge tests were performed in a set of parallel plane electrodes bridged by flames from a bunsen burner. The experimental setup aims to reproduce the conditions found in waste-disposal reactors where the combined effect of fire and an electrical arc degrade noxious substances. The current was simultaneously monitored in different points of the discharge zone. As the applied voltage is increased, it is found that initially the ionization from the flame controls discharge growth but that in later stages avalanche growth takes over. The slope of the I-V characteristics was used for estimating the Townsend ionization coefficients. The overall plasma conductivity was estimated from both the external circuit measurements and the plasma parameters. The results obtained are compared with previous investigations in which mean discharge resistivity is a relevant parameter, employed for designing applications. The effect of gap separation and height over the burner top were also analyzed. This way it was observed that the temperature profile of the flame dictates the spatial distribution of electrical conductivity and thus of breakdown.

  16. Breakdown of air pockets in downwardly inclined sewerage pressure mains.

    PubMed

    Lubbers, C L; Clemens, F H L R

    2006-01-01

    In the Netherlands, wastewater is collected in municipal areas and transported to centralised WWTPs by an extensive system of pressure mains. Over the last decades these pressure mains did not receive much attention in terms of monitoring of performance or maintenance. A recent inventory showed that half of the pressure mains show an increased pressure loss for no directly obvious reason. One of the many causes that account for the reduction of the flow capacity is the occurrence of free gas in the pipeline. During dry weather periods with low flow velocities, gas may accumulate at high points in the system. Once the velocity increases during storm weather flow, the air pockets may be broken down and transported to the end of the system. A research study is started focussing on the description of the gas-water phenomena in wastewater pressure mains with respect to transportation of gas. An experimental facility is constructed for the study of multi-phase flow. This paper describes the preliminary results of experiments on breakdown rates of gas pockets as a function of inclination angle and water flow rate. The results show an increasing breakdown rate with increasing inclination angle.

  17. Laser-induced breakdown plasma-based sensors

    NASA Astrophysics Data System (ADS)

    Griffin, Steven T.

    2010-04-01

    Laser Induced Breakdown Spectroscopy (LIBS) is dependent on the interaction between the initiating Laser sequence, the sampled material and the intermediate plasma states. Pulse shaping and timing have been empirically demonstrated to have significant impact on the signal available for active/passive detection and identification. The transient nature of empirical LIBS work makes data collection for optimization an expensive process. Guidance from effective computer simulation represents an alternative. This computational method for CBRNE sensing applications models the Laser, material and plasma interaction for the purpose of performance prediction and enhancement. This paper emphasizes the aspects of light, plasma, and material interaction relevant to portable sensor development for LIBS. The modeling structure emphasizes energy balances and empirical fit descriptions with limited detailed-balance and finite element approaches where required. Dusty plasma from partially decomposed material sample interaction with pulse dynamics is considered. This heuristic is used to reduce run times and computer loads. Computer simulations and some data for validation are presented. A new University of Memphis HPC/super-computer (~15 TFLOPS) is used to enhance simulation. Results coordinated with related effort at Arkansas State University. Implications for ongoing empirical work are presented with special attention paid to the application of compressive sensing for signal processing, feature extraction, and classification.

  18. Laser-induced breakdown spectroscopy of tantalum plasma

    SciTech Connect

    Khan, Sidra; Bashir, Shazia; Hayat, Asma; Khaleeq-ur-Rahman, M.; Faizan–ul-Haq

    2013-07-15

    Laser Induced Breakdown spectroscopy (LIBS) of Tantalum (Ta) plasma has been investigated. For this purpose Q-switched Nd: YAG laser pulses (λ∼ 1064 nm, τ∼ 10 ns) of maximum pulse energy of 100 mJ have been employed as an ablation source. Ta targets were exposed under the ambient environment of various gases of Ar, mixture (CO{sub 2}: N{sub 2}: He), O{sub 2}, N{sub 2}, and He under various filling pressure. The emission spectrum of Ta is observed by using LIBS spectrometer. The emission intensity, excitation temperature, and electron number density of Ta plasma have been evaluated as a function of pressure for various gases. Our experimental results reveal that the optical emission intensity, the electron temperature and density are strongly dependent upon the nature and pressure of ambient environment. The SEM analysis of the ablated Ta target has also been carried out to explore the effect of ambient environment on the laser induced grown structures. The growth of grain like structures in case of molecular gases and cone-formation in case of inert gases is observed. The evaluated plasma parameters by LIBS analysis such as electron temperature and the electron density are well correlated with the surface modification of laser irradiated Ta revealed by SEM analysis.

  19. Accumulation of air in polymeric materials investigated by laser-induced breakdown spectroscopy

    SciTech Connect

    Yip, W. L.; Hermann, J.; Mothe, E.; Beldjilali, S.

    2012-03-15

    We report on spectroscopic analyses of plasmas produced by laser irradiation of nitrogen-free and nitrogen-containing polymer materials. Ultraviolet laser pulses of 5 ns duration and 4 mJ energy were focused onto the samples with a fluence of about 20 Jcm{sup -2}. The plasma emission was analyzed with an Echelle spectrometer equipped with a gated detector. Comparing the spectra recorded during ablation in air and argon, it is shown that the spectral line emission of atomic nitrogen originates from the excitation of the ambient air, whereas the CN molecular bands are essentially emitted from the ablation plume. Furthermore, the measurements demonstrate an additional contribution of nitrogen emission from the air molecules accumulated in the polymer. Storage under vacuum over a duration of the order of one day leads to the release of the absorbed air. As a consequence of the air absorption, the measurement of elemental composition of polymers via laser-induced breakdown spectroscopy is particularly difficult. Here, we quantify the atmospheric contribution to the plume emission during polymer analysis.

  20. Modeling and Numerical Simulation of Microwave Pulse Propagation in Air Breakdown Environment

    NASA Technical Reports Server (NTRS)

    Kuo, S. P.; Kim, J.

    1991-01-01

    Numerical simulation is used to investigate the extent of the electron density at a distant altitude location which can be generated by a high-power ground-transmitted microwave pulse. This is done by varying the power, width, shape, and carrier frequency of the pulse. The results show that once the breakdown threshold field is exceeded in the region below the desired altitude location, electron density starts to build up in that region through cascading breakdown. The generated plasma attenuates the pulse energy (tail erosion) and thus deteriorates the energy transmission to the destined altitude. The electron density saturates at a level limited by the pulse width and the tail erosion process. As the pulse continues to travel upward, though the breakdown threshold field of the background air decreases, the pulse energy (width) is reduced more severely by the tail erosion process. Thus, the electron density grows more quickly at the higher altitude, but saturates at a lower level. Consequently, the maximum electron density produced by a single pulse at 50 km altitude, for instance, is limited to a value below 10(exp 6) cm(exp -3). Three different approaches are examined to determine if the ionization at the destined location can be improved: a repetitive pulse approach, a focused pulse approach, and two intersecting beams. Only the intersecting beam approach is found to be practical for generating the desired density level.

  1. Time-dependent dielectric breakdown of plasma-exposed porous organosilicate glass

    NASA Astrophysics Data System (ADS)

    Nichols, M. T.; Sinha, H.; Wiltbank, C. A.; Antonelli, G. A.; Nishi, Y.; Shohet, J. L.

    2012-03-01

    Time-dependent dielectric breakdown (TDDB) is a major concern for low-k organosilicate dielectrics. To examine the effect of plasma exposure on TDDB degradation, time-to-breakdown measurements were made on porous SiCOH before and after exposure to plasma. A capillary-array window was used to separate charged particle and vacuum ultraviolet (VUV) photon bombardment. Samples exposed to VUV photons, and a combination of VUV photons and ion bombardment exhibited significant degradation in breakdown time. The samples exposed to VUV photons and ion bombardment showed more degradation in breakdown time in comparison to samples exposed to VUV photons alone.

  2. Plasma Discharges in Gas Bubbles in Liquid Water: Breakdown Mechanisms and Resultant Chemistry

    NASA Astrophysics Data System (ADS)

    Gucker, Sarah M. N.

    is created either through flowing gas around the high voltage electrode in the discharge tube or self-generated by the plasma as in the steam discharge. This second method allows for large scale processing of contaminated water and for bulk chemical and optical analysis. Breakdown mechanisms of attached and unattached gas bubbles in liquid water were investigated using the first device. The breakdown scaling relation between breakdown voltage, pressure and dimensions of the discharge was studied. A Paschen-like voltage dependence for air bubbles in liquid water was discovered. The results of high-speed photography suggest the physical charging of the bubble due to a high voltage pulse; this charging can be significant enough to produce rapid kinetic motion of the bubble about the electrode region as the applied electric field changes over a voltage pulse. Physical deformation of the bubble is observed. This charging can also prevent breakdown from occurring, necessitating higher applied voltages to overcome the phenomenon. This dissertation also examines the resulting chemistry from plasma interacting with the bubble-liquid system. Through the use of optical emission spectroscopy, plasma parameters such as electron density, gas temperature, and molecular species production and intensity are found to have a time-dependence over the ac voltage cycle. This dependence is also source gas type dependent. These dependencies afford effective control over plasma-driven decomposition. The effect of plasma-produced radicals on various wastewater simulants is studied. Various organic dyes, halogenated compounds, and algae water are decomposed and assessed. Toxicology studies with melanoma cells exposed to plasma-treated dye solutions are completed, demonstrating the non-cytotoxic quality of the decomposition process. Thirdly, this dissertation examines the steam plasma system, developed through this research to circumvent the acidification associated with gas-feed discharges

  3. Electrical breakdown characteristics of an atmospheric pressure rf capacitive plasma source

    SciTech Connect

    Li Shouzhe; Kang, Jung G.; Uhm, Han S.

    2005-09-15

    The electrical breakdown characteristics of the rf capacitive plasma source are investigated theoretically and experimentally. The plasma source is the electrode type consisting of the concentric cylinders for generating nonequilibrium plasma at atmospheric pressure. The theoretical model based on the diffusion-controlled breakdown mechanism is proposed to analyze the electrical breakdown phenomenon in this rf capacitive plasma source of the coaxial cylinders. The electron temperature at the electrical breakdown is calculated from the theoretical model, thereby evaluating the electrical breakdown voltages. The experimental data of the electrical breakdown voltage are measured with respect to the variation of the geometric parameters of plasma source, the gas temperature, and the concentration of the foreign reactive gases (oxygen and nitrogen) mixed in the helium gas. The theoretical results of the electrical breakdown voltage agree remarkably well with experimental data. This indicates that not only the electron temperature is important in determining the electrical breakdown voltage, but also the geometric variables, the gas temperature, and the scattering cross sections of molecules play significant roles.

  4. Effect of magnetic field on laser-induced breakdown spectroscopy of graphite plasma

    NASA Astrophysics Data System (ADS)

    Arshad, Atiqa; Bashir, Shazia; Hayat, Asma; Akram, Mahreen; Khalid, Ayesha; Yaseen, Nazish; Ahmad, Qazi Salman

    2016-03-01

    The effect of transverse magnetic field on laser-induced breakdown spectroscopy of graphite plasma as a function of fluence has been investigated. Graphite targets were exposed to Nd:YAG (1064 nm, 10 ns) laser pulses at various laser fluences ranging from 0.4 to 2.9 J cm-2 under two different environment of air and Ar at a pressure of 150 and 760 torr. A transverse magnetic field of strength 0.5 tesla was employed by using permanent magnets. It is revealed that due to the presence of the magnetic field the emission intensity, electron temperature and number density of graphite plasma have been increased at all fluences and for all environmental conditions. The enhancement in plasma parameters is attributed to magnetic confinement effect and Joule heating effect. Initially by increasing the fluence from 0.4 to 1.5 J cm-2 (in air) and 0.4 to 1.8 J cm-2 (in Ar), the emission intensity, electron temperature and number density have been increased and have attained their maximum values. Further increase in fluence was responsible for the decreasing trend in all plasma parameters. More increase in fluence (beyond 1.8 J cm-2 in case of air and 2.2 J cm-2 in case of Ar) up to a maximum value of 2.9 J cm-2, the saturation or self-sustained regime was achieved, which is responsible for insignificant changes in plasma parameters. The value of plasma parameter " β" was also evaluated analytically, and it was less than one for all conditions (fluences as well as environments), which confirmed the existence of confinement effect.

  5. The influence of laser-particle interaction in laser induced breakdown spectroscopy and laser ablation inductively coupled plasma spectrometry

    NASA Astrophysics Data System (ADS)

    Lindner, Helmut; Loper, Kristofer H.; Hahn, David W.; Niemax, Kay

    2011-02-01

    Particles produced by previous laser shots may have significant influence on the analytical signal in laser-induced breakdown spectroscopy (LIBS) and laser ablation inductively coupled plasma (LA-ICP) spectrometry if they remain close to the position of laser sampling. The effects of these particles on the laser-induced breakdown event are demonstrated in several ways. LIBS-experiments were conducted in an ablation cell at atmospheric conditions in argon or air applying a dual-pulse arrangement with orthogonal pre-pulse, i.e., plasma breakdown in a gas generated by a focussed laser beam parallel and close to the sample surface followed by a delayed crossing laser pulse in orthogonal direction which actually ablates material from the sample and produces the LIBS plasma. The optical emission of the LIBS plasma as well as the absorption of the pre-pulse laser was measured. In the presence of particles in the focus of the pre-pulse laser, the plasma breakdown is affected and more energy of the pre-pulse laser is absorbed than without particles. As a result, the analyte line emission from the LIBS plasma of the second laser is enhanced. It is assumed that the enhancement is not only due to an increase of mass ablated by the second laser but also to better atomization and excitation conditions favored by a reduced gas density in the pre-pulse plasma. Higher laser pulse frequencies increase the probability of particle-laser interaction and, therefore, reduce the shot-to-shot line intensity variation as compared to lower particle loadings in the cell. Additional experiments using an aerosol chamber were performed to further quantify the laser absorption by the plasma in dependence on time both with and without the presence of particles. The overall implication of laser-particle interactions for LIBS and LA-ICP-MS/OES are discussed.

  6. Experiment and theoretical study of the propagation of high power microwave pulse in air breakdown environment

    NASA Technical Reports Server (NTRS)

    Kuo, S. P.; Ren, A.; Zhang, Y. S.

    1991-01-01

    In the study of the propagation of high power microwave pulse, one of the main concerns is how to minimize the energy loss of the pulse before reaching the destination. In the very high power region, one has to prevent the cutoff reflection caused by the excessive ionization in the background air. A frequency auto-conversion process which can lead to reflectionless propagation of powerful EM pulses in self-generated plasmas is studied. The theory shows that under the proper conditions the carrier frequency, omega, of the pulse will indeed shift upward with the growth of plasma frequency, omega(sub pe). Thus, the plasma during breakdown will always remain transparent to the pulse (i.e., omega greater than omega(sub pe)). A chamber experiment to demonstrate the frequency auto-conversion during the pulse propagation through the self-generated plasma is then conducted in a chamber. The detected frequency shift is compared with the theoretical result calculated y using the measured electron density distribution along the propagation path of the pulse. Good agreement between the theory and the experiment results is obtained.

  7. Measurements of electron avalanche formation time in W-band microwave air breakdown

    SciTech Connect

    Cook, Alan M.; Hummelt, Jason S.; Shapiro, Michael A.; Temkin, Richard J.

    2011-08-15

    We present measurements of formation times of electron avalanche ionization discharges induced by a focused 110 GHz millimeter-wave beam in atmospheric air. Discharges take place in a free volume of gas, with no nearby surfaces or objects. When the incident field amplitude is near the breakdown threshold for pulsed conditions, measured formation times are {approx}0.1-2 {mu}s over the pressure range 5-700 Torr. Combined with electric field breakdown threshold measurements, the formation time data shows the agreement of 110 GHz air breakdown with the similarity laws of gas discharges.

  8. Measurements of electron avalanche formation time in W-band microwave air breakdown

    NASA Astrophysics Data System (ADS)

    Cook, Alan M.; Hummelt, Jason S.; Shapiro, Michael A.; Temkin, Richard J.

    2011-08-01

    We present measurements of formation times of electron avalanche ionization discharges induced by a focused 110 GHz millimeter-wave beam in atmospheric air. Discharges take place in a free volume of gas, with no nearby surfaces or objects. When the incident field amplitude is near the breakdown threshold for pulsed conditions, measured formation times are ˜0.1-2 μs over the pressure range 5-700 Torr. Combined with electric field breakdown threshold measurements, the formation time data shows the agreement of 110 GHz air breakdown with the similarity laws of gas discharges.

  9. Air Plasma Formation in MHD Slipstream Accelerator for Mercury Lightcraft

    SciTech Connect

    Myrabo, L.N.; Raizer, Y.P.; Surzhikov, S.

    2004-03-30

    This paper investigates the physics of air plasma formation at the entrance of the MHD slipstream accelerator for the 'tractor-beam' Mercury Lightcraft. Two scenarios are analyzed. The first addresses the needs of the minimum power airspike assuming that all the power required for air plasma formation must come from the remote laser beam. The second case considers the constant-focus airspike and assumes that the breakdown criteria is satisfied by an on-board auxiliary source (e.g., electric discharge, RF source, microwave source, or E-beam)

  10. Air Plasma Formation in MHD Slipstream Accelerator for Mercury Lightcraft

    NASA Astrophysics Data System (ADS)

    Myrabo, L. N.; Raizer, Y. P.; Surzhikov, S.

    2004-03-01

    This paper investigates the physics of air plasma formation at the entrance of the MHD slipstream accelerator for the `tractor-beam' Mercury Lightcraft. Two scenarios are analyzed. The first addresses the needs of the minimum power airspike assuming that all the power required for air plasma formation must come from the remote laser beam. The second case considers the constant-focus airspike and assumes that the breakdown criteria is satisfied by an on-board auxiliary source (e.g., electric discharge, RF source, microwave source, or E-beam).

  11. 42GHz ECRH assisted Plasma Breakdown in tokamak SST-1

    NASA Astrophysics Data System (ADS)

    Shukla, B. K.; Pradhan, S.; Patel, Paresh; Babu, Rajan; Patel, Jatin; Patel, Harshida; Dhorajia, Pragnesh; Tanna, V.; Atrey, P. K.; Manchanda, R.; Gupta, Manoj; Joisa, Shankar; Gupta, C. N.; Danial, Raju; Singh, Prashant; Jha, R.; Bora, D.

    2015-03-01

    In SST-1, 42GHz ECRH system has been commissioned to carry out breakdown and heating experiments at 0.75T and 1.5T operating toroidal magnetic fields. The 42GHz ECRH system consists of high power microwave source Gyrotron capable to deliver 500kW microwave power for 500ms duration, approximately 20 meter long transmission line and a mirror based launcher. The ECRH power in fundamental O-mode & second harmonic X-mode is launched from low field side (radial port) of the tokamak. At 0.75T operation, approximately 300 kW ECH power is launched in second harmonic X-mode and successful ECRH assisted breakdown is achieved at low loop_voltage ~ 3V. The ECRH power is launched around 45ms prior to loop voltage. The hydrogen pressure in tokamak is maintained ~ 1×10-5mbar and the pre-ionized density is ~ 4×1012/cc. At 1.5T operating toroidal magnetic field, the ECH power is launched in fundamental O-mode. The ECH power at fundamental harmonic is varied from 100 kW to 250 kW and successful breakdown is achieved in all ECRH shots. In fundamental harmonic there is no delay in breakdown while at second harmonic ~ 40ms delay is observed, which is normal in case of second harmonic ECRH assisted breakdown.

  12. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Microwave generation in an optical breakdown plasma created by modulated laser radiation

    NASA Astrophysics Data System (ADS)

    Antipov, A. A.; Grasyuk, Arkadii Z.; Losev, Leonid L.; Soskov, V. I.

    1990-06-01

    It was established that when laser radiation, intensity modulated at a frequency of 2.2 GHz, interacted with an optical breakdown plasma which it had created, a microwave component appeared in the thermal emf of the plasma. The amplitude of the microwave thermal emf reached 0.7 V for a laser radiation intensity of 6 GW/cm2. Laser radiation with λL = 1.06 μm was converted to the microwave range with λmω = 13 cm in the optical breakdown plasma. A microwave signal power of ~ 0.5 W was obtained from a laser power of ~ 5 MW.

  13. [Research on accurate measurement of oxygen content in coal using laser-induced breakdown spectroscopy in air environment].

    PubMed

    Yin, Wang-bao; Zhang, Lei; Wang, Le; Dong, Lei; Ma, Wei-guang; Jia, Suo-tang

    2012-01-01

    A technique about accurate measurement of oxygen content in coal in air environment using laser-induced breakdown spectroscopy (LIBS) is introduced in the present paper. Coal samples were excited by the laser, and plasma spectra were obtained. Combining internal standard method, temperature correction method and multi-line methods, the oxygen content of coal samples was precisely measured. The measurement precision is not less than 1.37% for oxygen content in coal analysis, so is satisfied for the requirement of coal-fired power plants in coal analysis. This method can be used in surveying, environmental protection, medicine, materials, archaeological and food safety, biochemical and metallurgy application.

  14. [Research on accurate measurement of oxygen content in coal using laser-induced breakdown spectroscopy in air environment].

    PubMed

    Yin, Wang-bao; Zhang, Lei; Wang, Le; Dong, Lei; Ma, Wei-guang; Jia, Suo-tang

    2012-01-01

    A technique about accurate measurement of oxygen content in coal in air environment using laser-induced breakdown spectroscopy (LIBS) is introduced in the present paper. Coal samples were excited by the laser, and plasma spectra were obtained. Combining internal standard method, temperature correction method and multi-line methods, the oxygen content of coal samples was precisely measured. The measurement precision is not less than 1.37% for oxygen content in coal analysis, so is satisfied for the requirement of coal-fired power plants in coal analysis. This method can be used in surveying, environmental protection, medicine, materials, archaeological and food safety, biochemical and metallurgy application. PMID:22497159

  15. Plasma Discharges in Gas Bubbles in Liquid Water: Breakdown Mechanisms and Resultant Chemistry

    NASA Astrophysics Data System (ADS)

    Gucker, Sarah M. N.

    is created either through flowing gas around the high voltage electrode in the discharge tube or self-generated by the plasma as in the steam discharge. This second method allows for large scale processing of contaminated water and for bulk chemical and optical analysis. Breakdown mechanisms of attached and unattached gas bubbles in liquid water were investigated using the first device. The breakdown scaling relation between breakdown voltage, pressure and dimensions of the discharge was studied. A Paschen-like voltage dependence for air bubbles in liquid water was discovered. The results of high-speed photography suggest the physical charging of the bubble due to a high voltage pulse; this charging can be significant enough to produce rapid kinetic motion of the bubble about the electrode region as the applied electric field changes over a voltage pulse. Physical deformation of the bubble is observed. This charging can also prevent breakdown from occurring, necessitating higher applied voltages to overcome the phenomenon. This dissertation also examines the resulting chemistry from plasma interacting with the bubble-liquid system. Through the use of optical emission spectroscopy, plasma parameters such as electron density, gas temperature, and molecular species production and intensity are found to have a time-dependence over the ac voltage cycle. This dependence is also source gas type dependent. These dependencies afford effective control over plasma-driven decomposition. The effect of plasma-produced radicals on various wastewater simulants is studied. Various organic dyes, halogenated compounds, and algae water are decomposed and assessed. Toxicology studies with melanoma cells exposed to plasma-treated dye solutions are completed, demonstrating the non-cytotoxic quality of the decomposition process. Thirdly, this dissertation examines the steam plasma system, developed through this research to circumvent the acidification associated with gas-feed discharges

  16. Optimally enhanced optical emission in laser-induced air plasma by femtosecond double-pulse

    SciTech Connect

    Chen, Anmin; Li, Suyu; Li, Shuchang; Jiang, Yuanfei; Ding, Dajun; Shao, Junfeng; Wang, Tingfeng; Huang, Xuri; Jin, Mingxing

    2013-10-15

    In laser-induced breakdown spectroscopy, a femtosecond double-pulse laser was used to induce air plasma. The plasma spectroscopy was observed to lead to significant increase of the intensity and reproducibility of the optical emission signal compared to femtosecond single-pulse laser. In particular, the optical emission intensity can be optimized by adjusting the delay time of femtosecond double-pulse. An appropriate pulse-to-pulse delay was selected, that was typically about 50 ps. This effect can be especially advantageous in the context of femtosecond laser-induced breakdown spectroscopy, plasma channel, and so on.

  17. Influence of plasma conditions on the intensity ratio calibration curve during laser induced breakdown spectroscopy analysis.

    PubMed

    Kim, Chan-Kyu; In, Jung-Hwan; Lee, Seok-Hee; Jeong, Sungho

    2014-07-01

    Quantitative prediction of elemental concentration or concentration ratio of solid samples can be achieved by laser induced breakdown spectroscopy if a calibration curve that is little influenced by plasma conditions could be obtained. This work demonstrates that such a calibration curve is available for copper indium gallium diselenide (CuIn(1-x)Ga(x)Se₂) thin film solar cells for properly selected spectral lines. The possible changes of calibration curves based on the selected spectral lines are discussed in consideration of self-absorption in optically thick plasma and the dependency of spectral line properties on plasma temperature.

  18. Effect of floating conducting objects on critical switching impulse breakdown of air insulation

    SciTech Connect

    Rizk, F.A.M.

    1995-07-01

    The paper analyses the mechanism of breakdown of phase-to-ground and phase-to-phase air insulation in the presence of large conducting floating objects, under critical switching impulse stress. A new physical modeling approach is introduced which involves determination of the potential of the floating object by charge simulation technique, assessment of streamer breakdown and/or leader inception and propagation in the partial gaps and finally predicts the critical breakdown voltage of various configurations. As to phase-to-ground insulation, the investigation covers rod-plane, conductor-plane and conductor-tower leg configurations with different gap spacings as well as different shapes, dimensions and positions of the floating object. The phase-to-phase study additionally includes the effect of negative switching impulse content of the applied stress. The model is in excellent agreement with experiment and provides a novel tool for assessment of the effect of floating objects on switching impulse breakdown of some basic air gap configurations relevant to live line work.

  19. Catabolism of circulating enzymes: plasma clearance, endocytosis, and breakdown of lactate dehydrogenase-1 in rabbits

    SciTech Connect

    Smit, M.J.; Beekhuis, H.; Duursma, A.M.; Bouma, J.M.; Gruber, M.

    1988-12-01

    Lactate dehydrogenase-1, intravenously injected into rabbits, was cleared with first-order kinetics (half-life 27 min), until at least 80% of the injected activity had disappeared from plasma. Radioactivity from injected SVI-labeled enzyme disappeared at this same rate. Trichloroacetic-acid-soluble breakdown products started to appear in the circulation shortly after injection of the labeled enzyme. Body scans of the rabbits for 80 min after injection of T I-labeled enzyme revealed rapid accumulation of label in the liver, peaking 10-20 min after injection. Subsequently, activity in the liver declined and radioactivity (probably labeled breakdown products of low molecular mass) steadily accumulated in the bladder. Tissue fractionation of liver, 19 min after injection of labeled enzyme, indicated that the radioactivity was present both in endosomes and in lysosomes, suggesting uptake by endocytosis, followed by breakdown in the lysosomes. Measurements of radioactivity in liver and plasma suggest that the liver is responsible for the breakdown of at least 75% of the injected enzyme. Radioautography of tissue sections of liver and spleen showed accumulated radioactivity in sinusoidal liver cells and red pulpa, respectively. These results are very similar to those for lactate dehydrogenase-5, creatine kinase MM, and several other enzymes that we have previously studied in rats.

  20. P H/S—tokamak’s limit as a result of the plasma sheath breakdown

    NASA Astrophysics Data System (ADS)

    Mirnov, S. V.

    2016-02-01

    It was noted earlier [1] that high performance regimes of many tokamaks were achieved in the condition of plasma heating power P H limited from above. The exceeding of this limit usually ended as a plasma collapse. The analysis of the high performance regimes of well known tokamaks which operated during the last 50 years has shown that the values of such ‘permissible’ P H grow approximately linearly with the area S of the first wall surface facing to the plasma. The paper attempts to explain the existence the P H/S limit for high performance tokamak regimes as a consequence of the vacuum breakdown of the plasma sheath in the area of a plasma contact with the vessel wall and unipolar arcs which followed it.

  1. Temperature and Electron Density Determination on Laser-Induced Breakdown Spectroscopy (LIBS) Plasmas: A Physical Chemistry Experiment

    ERIC Educational Resources Information Center

    Najarian, Maya L.; Chinni, Rosemarie C.

    2013-01-01

    This laboratory is designed for physical chemistry students to gain experience using laser-induced breakdown spectroscopy (LIBS) in understanding plasma diagnostics. LIBS uses a high-powered laser that is focused on the sample causing a plasma to form. The emission of this plasma is then spectrally resolved and detected. Temperature and electron…

  2. Electric breakdowns of the "plasma capacitors" occurs on insulation coating of the ISS surface

    NASA Astrophysics Data System (ADS)

    Homin, Taras; Korsun, Anatolii

    High electric fields and currents are occurred in the spacecrafts plasma environment by onboard electric generators. Thus the high voltage solar array (SA) of the American segment of International Space Station (ISS) generates potential 160 V. Its negative pole is shorted to the frames of all the ISS segments. There is electric current between the SA and the frame through the plasma environment, i.e. electric discharge occurs. As a result a potential drop exists between the frames of all the ISS segments and the environmental plasma [1], which is cathode drop potential varphi _{c} defined. When ISS orbiting, the φc varies greatly in the range 0-100 V. A large area of the ISS frames and SA surface is coated with a thin dielectric film. Because of cathode drop potential the frame surfaces accumulate ion charges and the SA surfaces accumulate electron charges. These surfaces become plasma capacitors, which accumulate much charge and energy. Micrometeorite impacts or buildup of potential drop in excess of breakdown threshold varphi_{b} (varphi _{c} > varphi _{b} = 60 V) may cause breakdowns of these capacitors. Following a breakdown, the charge collected at the surfaces disperses and transforms into a layer of dense plasma [2]. This plasma environment of the spacecraft produces great pulsed electric fields E at the frame surfaces as well as heavy currents between construction elements which in turn induce great magnetic fields H. Therefore the conductive frame and the environmental plasma is plasma inductors. We have calculated that the densities of these pulsing and high-frequency fields E and H generated in the plasma environment of the spacecraft may exceed values hazardous to human. Besides, these fields must induce large electromagnetic impulses in the space-suit and in the power supply and control circuits of onboard systems. During astronaut’s space-suit activity, these fields will penetrate the space-suit and the human body with possible hazardous effects

  3. Plasma start-up results with electron cyclotron assisted breakdown on Frascati Tokamak Upgrade

    NASA Astrophysics Data System (ADS)

    Granucci, G.; Ramponi, G.; Calabrò, G.; Crisanti, F.; Nowak, S.; Ramogida, G.; Tudisco, O.; Bin, W.; Botrugno, A.; Buratti, P.; D'Arcangelo, O.; Frigione, D.; Pucella, G.; Romano, A.; FTU Team

    2011-07-01

    Several experiments aimed at optimizing plasma pre-ionization using electron cyclotron (EC) waves have been carried out on many tokamaks in recent years as the basis of a multi-machine comparison study made to define the best operation scenarios for ITER, where the plasma breakdown will have to be achieved with a toroidal electric field of only 0.3 V m-1. The FTU (Frascati Tokamak Upgrade, R = 0.935 m, a = 0.3 m) contribution to this study is the main subject of this work. A reduction in electric field, as can be obtained with pre-ionization by ECH, can lower the transformer flux consumption in the start-up phase leading to a longer plasma current flat top. This point is of particular interest in the conceptual design of the steady-state scenario of the proposed FAST tokamak and has also been addressed. In the FTU experiment the scan in pre-filling pressure has evidenced the capability of EC power to increase, by a factor 4, the range of working pressure useful for plasma start-up. Varying the breakdown a minimum electric field of 0.41 V m-1 has been found with 0.8 MW of EC in perpendicular injection. A scan in magnetic field has evidenced that plasma start-up is likely insensitive to alignment between EC resonance and null position. A total transformer flux saving of 22% has been found acting on plasma resistivity (by increasing electron temperature) and on the plasma starting point (for an internal inductance reduction).

  4. Kinetic theory of runaway air breakdown and the implications for lightning initiation

    SciTech Connect

    Roussel-Dupre, R.A.; Gurevich, A.V.; Tunnell, T.; Milikh, G.M.

    1993-11-01

    The kinetic theory for a new air breakdown mechanism advanced in a previous paper is developed. The relevant form of the Boltzmann equation is derived and the particle orbits in both velocity space and configuration space are computed. A numerical solution of the Boltzmann equation, assuring a spatially uniform electric field, is obtained and the temporal evolution of the electron velocity distribution function is described. The results of our analysis are used to estimate the magnitude of potential x-ray emissions from discharges in thunderstorms and are examined in the context of lightning initiation.

  5. Antimicrobial Applications of Ambient--Air Plasmas

    NASA Astrophysics Data System (ADS)

    Pavlovich, Matthew John

    The emerging field of plasma biotechology studies the applications of the plasma phase of matter to biological systems. "Ambient-condition" plasmas created at or near room temperature and atmospheric pressure are especially promising for biomedical applications because of their convenience, safety to patients, and compatibility with existing medical technology. Plasmas can be created from many different gases; plasma made from air contains a number of reactive oxygen and nitrogen species, or RONS, involved in various biological processes, including immune activity, signaling, and gene expression. Therefore, ambient-condition air plasma is of particular interest for biological applications. To understand and predict the effects of treating biological systems with ambient-air plasma, it is necessary to characterize and measure the chemical species that these plasmas produce. Understanding both gaseous chemistry and the chemistry in plasma-treated aqueous solution is important because many biological systems exist in aqueous media. Existing literature about ambient-air plasma hypothesizes the critical role of reactive oxygen and nitrogen species; a major aim of this dissertation is to better quantify RONS by produced ambient-air plasma and understand how RONS chemistry changes in response to different plasma processing conditions. Measurements imply that both gaseous and aqueous chemistry are highly sensitive to operating conditions. In particular, chemical species in air treated by plasma exist in either a low-power ozone-dominated mode or a high-power nitrogen oxide-dominated mode, with an unstable transition region at intermediate discharge power and treatment time. Ozone (O3) and nitrogen oxides (NO and NO2, or NOx) are mutually exclusive in this system and that the transition region corresponds to the transition from ozone- to nitrogen oxides-mode. Aqueous chemistry agrees well with to air plasma chemistry, and a similar transition in liquid-phase composition

  6. Laser-induced plasma spectroscopy of hydrogen Balmer series in laboratory air.

    PubMed

    Swafford, Lauren D; Parigger, Christian G

    2014-01-01

    Stark-broadened emission profiles for the hydrogen alpha and beta Balmer series lines in plasma are measured to characterize electron density and temperature. Plasma is generated using a typical laser-induced breakdown spectroscopy (LIBS) arrangement that employs a focused Q-switched neodymium-doped yttrium aluminum garnet (Nd : YAG) laser, operating at the fundamental wavelength of 1064 nm. The temporal evolution of the hydrogen Balmer series lines is explored using LIBS. Spectra from the plasma are measured following laser-induced optical breakdown in laboratory air. The electron density is primarily inferred from the Stark-broadened experimental data collected at various time delays. Due to the presence of nitrogen and oxygen in air, the hydrogen alpha and beta lines become clearly discernible from background radiation for time delays of 0.4 and 1.4 μs, respectively.

  7. Plasma diagnostics from self-absorbed doublet lines in laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    D'Angelo, C. A.; Garcimuño, M.; Díaz Pace, D. M.; Bertuccelli, G.

    2015-10-01

    In this paper, a generalized approach is developed and applied for plasma characterization and quantitative purposes in laser-induced breakdown spectroscopy (LIBS) experiences by employing a selected pair of spectral lines belonging to the same multiplet. It is based on the comparison between experimental ratios of line parameters and the theoretical calculus obtained under the framework of a homogeneous plasma in local thermodynamic equilibrium. The applicability of the method was illustrated by using the atomic resonance transitions 279.55-280.27 nm of Mg II, which are usually detected in laser-induced plasma (LIP) during laser ablation of many kinds of targets. The laser induced plasmas were produced using a Nd:YAG laser from a pressed pellet of powdered calcium hydroxide with a concentration of 300 ppm of Mg. The experimental ratios for peak intensities, total intensities and Stark widths were obtained for different time windows and matched to the theoretical calculus. The temperature and the electron density of the plasma, as well as the Mg columnar density (the atom/ion concentration times the length of the plasma along the line-of-sight), were determined. The results were interpreted under the employed approach.

  8. Underwater sediment analyses by laser induced breakdown spectroscopy and calibration procedure for fluctuating plasma parameters

    NASA Astrophysics Data System (ADS)

    Lazic, V.; Colao, F.; Fantoni, R.; Spizzichino, V.; Jovićević, S.

    2007-01-01

    Laser Induced Breakdown Spectroscopy (LIBS) was applied on sediments directly under water. The aim of the research was to develop a method for measuring the sediment elemental composition, including minor elements, which could be implemented in-situ. The plasma was generated by a double-pulse, Q-Switched Nd:YAG laser operated at 1064 nm. For signal detection, both ICCD and non-gated, compact detectors were used. The major difficulties in underwater sediment analyses are related to the natural and laser induced surface roughness, and to the sample softness. The latter is responsible for the formation of particle clouds above the surface, which scatter both the laser and plasma radiation, and often results in breakdown formation above the analyzed surface. In such cases, a broad sonoluminescence emission from water, formed during the gas bubble collapse was sometimes registered. Under optimized experimental conditions, even by using a non-gated detector and single shot acquisition, it was possible to detect several minor sediment constituents, such as titanium, barium, manganese and others. A crude estimation of the Limit of Detection (LODs) for these elements was performed by underwater measurements on certified soils/sediments. Due to strong shot-to-shot fluctuations in the plasma temperature, well correlated calibration curves, aimed for quantitative analyses, could only be obtained after applying an appropriate data processing procedure. The latter selects automatically only the spectra characterized by similar plasma parameters, which are related to their continuum spectral distribution. Application of such a procedure improves the measurement accuracy also in other surroundings and on samples different from the ones analyzed here.

  9. Observations of Regular Filamentary Plasma Arrays in High-Pressure Gas Breakdown by 1.5 MW, 110 GHz Gyrotron Pulses

    NASA Astrophysics Data System (ADS)

    Hidaka, Yoshiteru

    2008-11-01

    Formation of regular two-dimensional plasma filamentary arrays has been observed in long open-shuttered images of air breakdown at atmospheric pressure [Y. Hidaka et al., Phys. Rev. Lett. 100, 035003 (2008)]. The breakdown was generated by a focused linearly-polarized Gaussian beam from a 1.5-MW, 110-GHz gyrotron with a 3-microsecond pulse length. Each plasma filament is elongated in the electric field direction and separated roughly one-quarter wavelength from each other in the H-plane. The development of this array structure can be explained as a result of diffraction of the beam around the highly conductive filaments. The diffraction generates a new electric field profile in which a high intensity region emerges about a quarter wavelength upstream from an existing filament. A new plasma filament is likely to appear at the intensified spot. The same process continues and results in the formation of the observed array. Electromagnetic wave simulations that model plasma filaments as metallic posts agree quite well with the hypothesis above. With a nanoseconds-gated ICCD camera, we directly confirmed that only a few rows of the observed array are bright at any one moment, as well as that the light emitting region propagates towards the microwave source. Further experimental breakdown research has been carried out with nitrogen, helium, and SF6 at different pressures. Although each species exhibits qualitatively different structures, in general, a lumpy plasma at high pressures transforms into a more familiar, diffuse plasma as pressure is decreased. The propagation velocity of the ionization front has been also estimated both from the ICCD images and a photodiode array. The velocity is on the order of 10 km/s, and increases as the pressure decreases and the power density increases.

  10. Evolution of a plasma vortex in air.

    PubMed

    Tsai, Cheng-Mu; Chu, Hong-Yu

    2016-01-01

    We report the generation of a vortex-shaped plasma in air by using a capacitively coupled dielectric barrier discharge system. We show that a vortex-shaped plasma can be produced inside a helium gas vortex and is capable of propagating for 3 cm. The fluctuation of the plasma ring shows a scaling relation with the Reynolds number of the vortex. The transient discharge reveals the property of corona discharge, where the conducting channel within the gas vortex and the blur plasma emission are observed at each half voltage cycle. PMID:26871181

  11. Evolution of a plasma vortex in air.

    PubMed

    Tsai, Cheng-Mu; Chu, Hong-Yu

    2016-01-01

    We report the generation of a vortex-shaped plasma in air by using a capacitively coupled dielectric barrier discharge system. We show that a vortex-shaped plasma can be produced inside a helium gas vortex and is capable of propagating for 3 cm. The fluctuation of the plasma ring shows a scaling relation with the Reynolds number of the vortex. The transient discharge reveals the property of corona discharge, where the conducting channel within the gas vortex and the blur plasma emission are observed at each half voltage cycle.

  12. Emulating microwave-induced breakdown in air with trigatron spark gap

    NASA Astrophysics Data System (ADS)

    Lenardo, B.; Romero-Talamas, C. A.; Granatstein, V. L.; Nusinovich, G. S.

    2011-10-01

    A spark gap and power supply have been constructed to emulate the duration and energy dissipation of air breakdown induced by a 670GHz gyrotron beam, a source that our group plans to use to explore remote detection of concealed radioactive materials. The spark gap is being used in calibration and testing of diagnostics, including atomic line spectroscopy, mass spectrometry, and microwave scattering. The power supply accepts a variable high voltage input up to 5 kV, stores energy in a 1.8 microfarad capacitor, and arcs across a gap of 1.34 mm. The gap is triggered by a AA-battery powered piezoelectric igniter available commercially (used in common gas grills). Preliminary results show that for a charging voltage of 3 kV, we are able to trigger a spark with energy 1.78 +/- 0.23 Joules lasting approximately 2 microseconds, values which can be tuned by varying resistance and charging voltage of the discharge circuit. Our goal is to dissipate 3 Joules in 10 microseconds, which we expect to see in the gyrotron beam breakdown.

  13. Wavefront measurements of a laser-induced breakdown spark in still air.

    PubMed

    Rennie, R Mark; Goorskey, David; Whiteley, Matthew R; Jumper, Eric J

    2012-05-01

    Experimental measurements of the wavefronts of the light from a laser-induced breakdown (LIB) spark in non-moving air are presented and compared to spark dimensional data acquired from photographic measurements of the spark. The data show that the variation in the spark emitted wavefront between ignitions can be directly related to the motion of the spark volumetric centroid. The dominant modal components of the emitted wavefront variations are presented, as well as quantitative results for the magnitude of the wavefront variations. The results are relevant to the use of LIB as a light source for the measurement of optical aberrations such as those caused by compressible (i.e., "aero-optic") flows around an aircraft in flight, and data are shown indicating that LIB could be successfully used to measure the aberrating effect of compressible shear layers and boundary layers at typical cruise Mach numbers. PMID:22614405

  14. Energy of electrons generated during a subnanosecond breakdown in atmospheric-pressure air

    SciTech Connect

    Tarasenko, V. F. Baksht, E. Kh.; Burachenko, A. G.; Kostyrya, I. D.; Rybka, D. V.

    2013-07-15

    The influence of the cathode design on the energy of the main group of electrons generated during a subnanosecond breakdown in atmospheric-pressure air was studied experimentally. The electron energy was measured using a time-of-flight spectrometer with a picosecond time resolution. It is shown that the energy of the main group of electrons increases with increasing cathode curvature radius. It is established using 400- to 650-{mu}m-thick aluminum foils that the electron energy reaches its maximum value in voltage pulses with abrupt trailing edges and amplitudes below the maximum amplitude. Electrons with maximum energies are generated with a stronger spatial and amplitude scatter than those with average energies.

  15. Infrared Signature Masking by Air Plasma Radiation

    NASA Technical Reports Server (NTRS)

    Kruger, Charles H.; Laux, C. O.

    2001-01-01

    This report summarizes the results obtained during a research program on the infrared radiation of air plasmas conducted in the High Temperature Gasdynamics Laboratory at Stanford University under the direction of Professor Charles H. Kruger, with Dr. Christophe O. Laux as Associate Investigator. The goal of this research was to investigate the masking of infrared signatures by the air plasma formed behind the bow shock of high velocity missiles. To this end, spectral measurements and modeling were made of the radiation emitted between 2.4 and 5.5 micrometers by an atmospheric pressure air plasma in chemical and thermal equilibrium at a temperature of approximately 3000 K. The objective was to examine the spectral emission of air species including nitric oxide, atomic oxygen and nitrogen lines, molecular and atomic continua, as well as secondary species such as water vapor or carbon dioxide. The cold air stream injected in the plasma torch contained approximately 330 parts per million of CO2, which is the natural CO2 concentration in atmospheric air at room temperatures, and a small amount of water vapor with an estimated mole fraction of 3.8x10(exp -4).

  16. Evolution of the electron energy distribution function during genesis of breakdown plasma

    SciTech Connect

    Bhattacharjee, Sudeep; Paul, Samit; Ghosh, Sayandip

    2014-08-15

    During the process of plasma initiation by an electromagnetic wave, it is found that the electron energy distribution function (EEDF) that is initially Maxwellian with the most probable energy at room temperature, evolves with time and tends toward a Bi-Maxwellian – indicating attainment of thermodynamic equilibrium in the individual electron populations prior to breakdown, with a significant increase in hot electron density. In the intermediate states during the evolution, however, non-equilibrium processes are prevalent under fast pulse excitation and the EEDF initially exhibits substantial deviation from a Maxwellian. An analysis of the deviation has been carried out by optimizing the residual sum of squares of the probabilities obtained from the simulation and a fitted Maxwellian curve. The equilibrium regain time defined as the time required to attain thermodynamic equilibrium again, is investigated as a function of neutral pressure, wave electric, and external magnetostatic fields.

  17. Experimental study of the spectral characteristics of laser-induced air plasma

    SciTech Connect

    Lin Zhaoxiang; Wu Jinquan; Sun Fenglou; Gong Shunsheng

    2010-05-01

    The characteristics of laser-induced air, N2, and O2 plasma spectra are investigated spectroscopically. The study concentrates mainly on the temporal behavior of laser-induced plasma after breakdown. We used delayed spectra and spectra evolution for this study. Except for the general one-beam laser-induced breakdown experiment, a second laser beam was added to further probe the behavior of plasma during its decay. We report the experimental results of spectra composition, spectra time evolution, and spectra affected by a second laser beam. We determined that all the laser-induced air plasma spectra are from a continuous spectrum and some line spectra superposed on the continuous spectrum. The stronger short wavelength continuous spectrum is caused by bremsstrahlung radiation of electrons in the plasma, and the weaker long wavelength continuous spectrum is caused by electron and ion recombination. Line spectra originate from excited molecules, atoms, and their first-order ions, but no line spectra form higher-order ions. The results show that the temporal behavior of some spectra is a decay-rise-redecay pattern. With the two laser beam experiment we found that all the spectra intensities are enhanced by the second laser beam, but the response of various spectra to the delay of the second laser beam is quite different, in particular, the intensity increments of some spectra increase with the delay of the second laser beam. Some microscopic processes of laser-induced plasma obtained from the experimental results are discussed. These results are useful for a better understanding of some laser-induced air plasma related applications, such as laser-guided lightning and laser-induced breakdown spectroscopy.

  18. Measurement of air entrainment in plasma jets

    NASA Astrophysics Data System (ADS)

    Fincke, J. R.; Rodriquez, R.; Pentecost, C. G.

    The concentration and temperature of air entrained into argon and helium plasma jets has been measured using coherent anti-Stokes Raman spectroscopy (CARS). The argon plasma flow field is characterized by a short region of well behaved laminar flow near the nozzle exit followed by an abrupt transition to turbulence. Once the transition of turbulence occurs, air is rapidly mixed into the jet core. The location of the transition region is determined by the rapid cooling of the jet and the resulting increase in Reynolds number. In contrast, the helium plasma flow field never exceeds a Reynolds number of 200 and remains laminar. The entrainment process in this case is controlled by molecular diffusion rather than turbulent mixing.

  19. Measurement of air entrainment in plasma jets

    SciTech Connect

    Fincke, J.R.; Rodriquez, R.; Pentecost, C.G.

    1990-01-01

    The concentration and temperature of air entrained into argon and helium plasma jets has been measured using coherent anti-Stokes Raman spectroscopy (CARS). The argon plasma flow field is characterized by a short region of well behaved laminar flow near the nozzle exit followed by an abrupt transition to turbulence. Once the transition of turbulence occurs, air is rapidly mixed into the jet core. The location of the transition region is determined by the rapid cooling of the jet and the resulting increase in Reynolds number. In contrast, the helium plasma flow field never exceeds a Reynolds number of 200 and remains laminar. The entrainment process in this case is controlled by molecular diffusion rather than turbulent mixing. 9 refs., 5 figs., 1 tab.

  20. The Electrostatic Breakdown on Metal-Dielectric Junction Immersed in a Plasma

    NASA Technical Reports Server (NTRS)

    Vayner, Boris V.; Galofaro, Joel T.; Ferguson, Dale C.; Lyons, Valerie J. (Technical Monitor)

    2002-01-01

    New results are presented of an experimental study and theoretical analysis of arcing on metal-dielectric junctions immersed in low-density plasmas. Two samples of conventional solar arrays and four different metal-quartz junctions have been used to investigate the effects of arcing within a wide range of neutral gas pressures, ion currents, and electron number densities. The effect of surface conditioning (decrease of arc rate due to outgassing) was clearly demonstrated. Moreover, a considerable increase in arc rate due to absorption of molecules from atmospheric air has been confirmed. It has been proved that the are inception mechanism in plasma is different from one in vacuum.

  1. Air plasma effect on dental disinfection

    SciTech Connect

    Duarte, S.; Murata, R. M.; Saxena, D.; Kuo, S. P.; Chen, C. Y.; Huang, K. J.; Popovic, S.

    2011-07-15

    A nonthermal low temperature air plasma jet is characterized and applied to study the plasma effects on oral pathogens and biofilms. Experiments were performed on samples of six defined microorganisms' cultures, including those of gram-positive bacteria and fungi, and on a cultivating biofilm sample of Streptococcus mutans UA159. The results show that the plasma jet creates a zone of microbial growth inhibition in each treated sample; the zone increases with the plasma treatment time and expands beyond the entire region directly exposed to the plasma jet. With 30s plasma treatment twice daily during 5 days of biofilm cultivation, its formation was inhibited. The viability of S. mutans cells in the treated biofilms dropped to below the measurable level and the killed bacterial cells concentrated to local regions as manifested by the fluorescence microscopy via the environmental scanning electron microscope. The emission spectroscopy of the jet indicates that its plasma effluent carries an abundance of reactive atomic oxygen, providing catalyst for the observed plasma effect.

  2. Air plasma effect on dental disinfection

    NASA Astrophysics Data System (ADS)

    Duarte, S.; Kuo, S. P.; Murata, R. M.; Chen, C. Y.; Saxena, D.; Huang, K. J.; Popovic, S.

    2011-07-01

    A nonthermal low temperature air plasma jet is characterized and applied to study the plasma effects on oral pathogens and biofilms. Experiments were performed on samples of six defined microorganisms' cultures, including those of gram-positive bacteria and fungi, and on a cultivating biofilm sample of Streptococcus mutans UA159. The results show that the plasma jet creates a zone of microbial growth inhibition in each treated sample; the zone increases with the plasma treatment time and expands beyond the entire region directly exposed to the plasma jet. With 30s plasma treatment twice daily during 5 days of biofilm cultivation, its formation was inhibited. The viability of S. mutans cells in the treated biofilms dropped to below the measurable level and the killed bacterial cells concentrated to local regions as manifested by the fluorescence microscopy via the environmental scanning electron microscope. The emission spectroscopy of the jet indicates that its plasma effluent carries an abundance of reactive atomic oxygen, providing catalyst for the observed plasma effect.

  3. Preliminary design of laser-induced breakdown spectroscopy for proto-Material Plasma Exposure eXperiment

    SciTech Connect

    Shaw, G.; Martin, M. Z.; Martin, R.; Biewer, T. M.

    2014-11-15

    Laser-induced breakdown spectroscopy (LIBS) is a technique for measuring surface matter composition. LIBS is performed by focusing laser radiation onto a target surface, ablating the surface, forming a plasma, and analyzing the light produced. LIBS surface analysis is a possible diagnostic for characterizing plasma-facing materials in ITER. Oak Ridge National Laboratory has enabled the initial installation of a laser-induced breakdown spectroscopy diagnostic on the prototype Material-Plasma Exposure eXperiment (Proto-MPEX), which strives to mimic the conditions found at the surface of the ITER divertor. This paper will discuss the LIBS implementation on Proto-MPEX, preliminary design of the fiber optic LIBS collection probe, and the expected results.

  4. Corrections for variable plasma parameters in laser induced breakdown spectroscopy: Application on archeological samples

    NASA Astrophysics Data System (ADS)

    Lazic, V.; Trujillo-Vazquez, A.; Sobral, H.; Márquez, C.; Palucci, A.; Ciaffi, M.; Pistilli, M.

    2016-08-01

    The final scope of this work was to determine the elemental composition of different types of decorative layers present on ancient ceramic fragments through depth profiling by laser induced breakdown spectroscopy (LIBS). The measurements were performed by a stand-off LIBS system at distance of 10.5 m, by employing ns laser pulses at 1064 nm and an Echelle spectrometer. The detected plume intensity strongly differs from one sample/coating to another and changes importantly also in repeated measurements on the almost homogeneous bulk materials. Furthermore, the plasma intensity and its parameters widely change during the depth profiling, as evident from the ratio of here monitored Fe I and Fe II spectral lines. Averaging the line intensities over six repeated measurements, also on the bulk material and for a selected consecutive shot number, produces the errors up to 60% around the mean value and this makes impossible to compare composition of the ceramic body with its decorative layers. To overcome this problem, we developed a theoretically supported procedure for the spectral line corrections in presence of variable plasma parameters, which considers the relative changes among a sufficiently large data set. This method allowed improving the measurement precision up to five times, obtaining a flat response during the depth profiling, and measuring composition of the surface layers. The correction factors are specific for one analytical line of the considered element. The proposed procedure could be universally applied for increasing the LIBS precision in repeated samplings or during the depth profiling, without time consuming calculations of the plasma temperature and the electron density, which also suffer from large measurement errors.

  5. Breakdown plasma and vortex flow control for laser ignition using a combination of nano- and femto-second lasers.

    PubMed

    Kojima, Hirokazu; Takahashi, Eiichi; Furutani, Hirohide

    2014-01-13

    The breakdown plasma and successive flow leading to combustion are controlled by the combination of a nano-second Nd:YAG laser and a femto-second Ti:Sapphire (TiS) laser. The behaviors are captured by an intensified charged coupled device (ICCD) camera and a high-speed schlieren optical system. The TiS laser determines the initial position of the breakdown by supplying the initial electrons in the optical axis of focusing YAG laser pulses. We show that the initial position of the breakdown can be controlled by the incident position of the TiS laser. In addition, the ignition lean limit of the flammable mixture changes depending on the TiS laser incident position, which is influenced by hot gas distribution and the flow in the flame kernel. PMID:24922003

  6. Infrared Signature Masking by Air Plasma Radiation

    NASA Technical Reports Server (NTRS)

    Kruger, C. H.; Laux, C. O.

    1998-01-01

    Detailed measurements and modeling of the spectral emission of an atmospheric pressure air plasma at temperatures up to -3400 K have been made. The cold gas injected in the plasma torch contained an estimated mole fraction of water vapor of approximately 4.5 x 10(exp -3) and an estimated carbon dioxide mole fraction of approximately 3.3 x 10(exp -4). Under these conditions, the minimum level of air plasma emission is found to be between 3.9 and 4.15 microns. Outside this narrow region, significant spectral emission is detected that can be attributed to the fundamental and overtone bands of NO and OH, and to the v(sub 3) and the (v(sub 1)+v(sub 3)) bands Of CO2. Special attention was paid to the effects of ambient air absorption in the optical path between the plasma and the detector. Excellent quantitative agreement is obtained between the measured and simulated spectra, which are both on absolute intensity scales, thus lending confidence in the radiation models incorporated into NEQAIR2-IR over the course of this research program.

  7. Infrared Signature Masking by Air Plasma Radiation

    NASA Technical Reports Server (NTRS)

    Kruger, C. H.; Laux, C. O.

    1998-01-01

    This report describes progress during the second year of our research program on Infrared Signature Masking by Air Plasmas at Stanford University. This program is intended to investigate the masking of infrared signatures by the air plasma formed behind the bow shock of high velocity missiles. Our previous annual report described spectral measurements and modeling of the radiation emitted between 3.2 and 5.5 microns by an atmospheric pressure air plasma in chemical and thermal equilibrium at a temperature of approximately 3100 K. One of our goals was to examine the spectral emission of secondary species such as water vapor or carbon dioxide. The cold air stream injected in the plasma torch contained approximately 330 parts per million Of CO2, which is the natural CO2 concentration in atmospheric air at room temperature, and a small amount of water vapor with an estimated mole fraction of 3.8 x 10(exp -4). As can be seen from Figure 1, it was found that the measured spectrum exhibited intense spectral features due to the fundamental rovibrational bands of NO at 4.9 - 5.5 microns and the V(3) band of CO2 (antisymmetric stretch) at 4.2-4.8 microns. These observations confirmed the well-known fact that infrared signatures between 4.15 - 5.5 microns can be masked by radiative emission in the interceptor's bow-shock. Figure I also suggested that the range 3.2 - 4.15 microns did not contain any significant emission features (lines or continuum) that could mask IR signatures. However, the signal-to-noise level, close to one in that range, precluded definite conclusions. Thus, in an effort to further investigate the spectral emission in the range of interest to signature masking problem, new measurements were made with a higher signal-to-noise ratio and an extended wavelength range.

  8. Optical, radio and x-ray radiation of red sprites produced by runaway air breakdown

    SciTech Connect

    Yukhimuk, V.; Roussel-Dupre, R.; Symbalisty, E.; Taranenko, Y.

    1997-04-01

    The authors use the runaway air breakdown model of upward discharges to calculate optical, radio, and X-ray radiation generated by red sprites. Red sprites are high altitude (up to 90 km) lightning discharges. Aircraft based observations show that sprites are predominantly red in color at altitudes above {approximately}55 km with faint blue tendrils, which extend downward to an altitude of 40 km; the duration of a single sprite is less than 17 ms, their maximum brightness is about 600 kR, and estimated total optical energy is about 1--5 kJ per event. The ground based observations show similar results, and provide some additional information on spatial and temporal structure of sprites, and on sprite locations. One difference between aircraft and ground-based observations is that blue tendrils are rarely observed from the ground. Sprites usually occur above the anvils of large mesoscale convective systems and correlate with strong positive cloud to ground discharge. Upward discharges are the most probable source of X-ray emission observed above large thunderstorm complexes by the Compton Gamma-ray Observatory. To escape the atmosphere these {gamma}-rays must originate above 25 km altitude. Red sprites are usually observed at altitudes higher than 50 km, and are therefore a likely source of this x-ray emission.

  9. High altitude atmospheric discharges according to the runaway air breakdown mechanism

    SciTech Connect

    Symbalisty, E.; Roussel-Dupre, R.; Yukhimuk, V.; Taranenko, Y.

    1997-04-01

    High altitude optical transients - red sprites, blue jets, and elves - are modeled in the context of the relativistic electron runaway air breakdown mechanism. These emissions are usually associated with large mesoscale convective systems (hereafter MCS). In thunderstorms cloud electrification proceeds over a time scale long enough to permit the conducting atmosphere above the cloud to polarize and short out the thunderstorm electric field. When a lightning strike rapidly neutralizes a cloud charge layer runaway driving fields can develop in the stratosphere and mesosphere. According to present simulations of the full runaway process the variety of observed optical emissions are due to the nature of the normal lightning event in the MCS that kick starts the runaway avalanche. In this paper the authors describe some details of the model, present the results of the evolution of the primary electron population, and summarize the initial conditions necessary for different types of discharges. Two companion papers present (a) the predicted optical, gamma ray, and radio emissions caused by these electrical discharges, and (b) the time evolution of the secondary electron population and its implications in terms of observables.

  10. A multiple gap plasma cathode electron gun and its electron beam analysis in self and trigger breakdown modes

    NASA Astrophysics Data System (ADS)

    Kumar, Niraj; Pal, Dharmendra Kumar; Jadon, Arvind Singh; Pal, Udit Narayan; Rahaman, Hasibur; Prakash, Ram

    2016-03-01

    In the present paper, a pseudospark discharge based multiple gap plasma cathode electron gun is reported which has been operated separately in self and trigger breakdown modes using two different gases, namely, argon and hydrogen. The beam current and beam energy have been analyzed using a concentric ring diagnostic arrangement. Two distinct electron beams are clearly seen with hollow cathode and conductive phases. The hollow cathode phase has been observed for ˜50 ns where the obtained electron beam is having low beam current density and high energy. While in conductive phase it is high current density and low energy electron beam. It is inferred that in the hollow cathode phase the beam energy is more for the self breakdown case whereas the current density is more for the trigger breakdown case. The tailor made operation of the hollow cathode phase electron beam can play an important role in microwave generation. Up to 30% variation in the electron beam energy has been achieved keeping the same gas and by varying the breakdown mode operations. Also, up to 32% variation in the beam current density has been achieved for the trigger breakdown mode at optimized trigger position by varying the gas type.

  11. A multiple gap plasma cathode electron gun and its electron beam analysis in self and trigger breakdown modes.

    PubMed

    Kumar, Niraj; Pal, Dharmendra Kumar; Jadon, Arvind Singh; Pal, Udit Narayan; Rahaman, Hasibur; Prakash, Ram

    2016-03-01

    In the present paper, a pseudospark discharge based multiple gap plasma cathode electron gun is reported which has been operated separately in self and trigger breakdown modes using two different gases, namely, argon and hydrogen. The beam current and beam energy have been analyzed using a concentric ring diagnostic arrangement. Two distinct electron beams are clearly seen with hollow cathode and conductive phases. The hollow cathode phase has been observed for ∼50 ns where the obtained electron beam is having low beam current density and high energy. While in conductive phase it is high current density and low energy electron beam. It is inferred that in the hollow cathode phase the beam energy is more for the self breakdown case whereas the current density is more for the trigger breakdown case. The tailor made operation of the hollow cathode phase electron beam can play an important role in microwave generation. Up to 30% variation in the electron beam energy has been achieved keeping the same gas and by varying the breakdown mode operations. Also, up to 32% variation in the beam current density has been achieved for the trigger breakdown mode at optimized trigger position by varying the gas type.

  12. The influence of the sand-dust environment on air-gap breakdown discharge characteristics of the plate-to-plate electrode

    NASA Astrophysics Data System (ADS)

    He, Bo; Zhang, Gang; Chen, Bangfa; Gao, Naikui; Li, Yaozhong; Peng, Zongren; Jin, Haiyun

    2010-03-01

    The experiments of plane-plane gap discharge was carried out in an environment of artificial sandstorm. By comparing and analyzing the differences in gap breakdown voltage between the sand & dust environment and clean air, some problems were investigated, such as effects of wind speed and particle concentration on the breakdown voltage, differences of gap discharge characteristics between the dust & sand medium and the clean air medium. The results showed that compared with the clean air environment, the dust & sand environment had a decreased gap breakdown voltage. The longer the gap distance, the greater the voltage drop; the breakdown voltage decreased with the increase of particle concentration in flow. With the increase of wind speed, the breakdown voltage decreased at the beginning and rose afterwards. The results of the paper may helpful for further research regarding the unidentified flashover and external insulation characteristics of the HV power grid in the dust & sand environment.

  13. Air Plasma Source for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Henriques, J.; Tatarova, E.; Dias, F. M.; Ferreira, C. M.; Gordiets, B.; IPFN-IST, 1049-001 LX, Portugal Team; Lebedev Physical Institute of the Russian Academy of Sciences Team

    2011-10-01

    Plasma interactions with living matter are presently at the frontiers of plasma research and development. Plasmas contain numerous agents that influence biological activity. They provide essentially two types of biocidal species: reactive species, such as oxygen atoms that lead to lethality of micro-organisms through erosion, and UV radiation that can damage the DNA strands. In this work we investigate a surface wave (2.45 GHz) driven discharge plasma in air, with a small admixture of water vapor, as a source of ground state O(3P) oxygen atoms, NO molecules and UV radiation. A theoretical model describing both the wave driven discharge zone and its flowing afterglow is used to analyze the performance of this plasma source. The predicted plasma-generated NO(X) and O(3P) concentrations and NO(γ) radiation intensity along the source are presented and discussed as a function of the microwave power and water vapor percentage in the gas mixture. To validate the theoretical predictions, the relative concentrations of species have been determined by Mass Spectrometry, Fourier Transform Infrared Spectroscopy and Optical Spectroscopy. Acknowledgment: This work was funded by the Portuguese Foundation for Science and Technology, under research contract PTDC/FIS/108411/2008.

  14. The validity of the one-dimensional fluid model of electrical breakdown in synthetic air at low pressure

    NASA Astrophysics Data System (ADS)

    Jovanović, A. P.; Stankov, M. N.; Marković, V. Lj.; Stamenković, S. N.

    2013-12-01

    In this letter the validity of the fluid model used to simulate the electrical breakdown in air at low pressure is discussed. The new method for the determination of the ionization source term for the mixed gases is proposed. Paschen's curve obtained by the fluid model is compared to the available experimental data. The electron and ions density profiles calculated by the fluid model are presented. Based on Ohm's law, the current and voltage waveforms are calculated and compared to the ones measured by the oscilloscope in the synthetic-air filled tube with stainless-steel electrodes. It is shown that the one-dimensional fluid model can be used for modeling the electrical breakdown at pd values higher than Paschen's minimum and to determine stationary values of electron and ions densities.

  15. Plume splitting and rebounding in a high-intensity CO{sub 2} laser induced air plasma

    SciTech Connect

    Chen Anmin; Jiang Yuanfei; Liu Hang; Jin Mingxing; Ding Dajun

    2012-07-15

    The dynamics of plasma plume formed by high-intensity CO{sub 2} laser induced breakdown of air at atmospheric pressure is investigated. The laser wavelength is 10.6 {mu}m. Measurements were made using 3 ns gated fast photography as well as space and time resolved optical emission spectroscopy. The behavior of the plasma plume was studied with a laser energy of 3 J and 10 J. The results show that the evolution of the plasma plume is very complicated. The splitting and rebounding of the plasma plume is observed to occur early in the plumes history.

  16. Air plasma jet with hollow electrodes at atmospheric pressure

    SciTech Connect

    Hong, Yong Cheol; Uhm, Han Sup

    2007-05-15

    Atmospheric-pressure plasma jet with air is produced through hollow electrodes and dielectric with a hole of 1 mm diam. The plasma jet device is operated by injecting pressurized air into the electrode hole. The air plasma jet device at average powers less than 5 W exhibits a cold plasma jet of about 2 cm in length and near the room temperature, being low enough to treat thermally sensitive materials. Preliminary studies on the discharge characteristics and application tests are also presented by comparing the air plasma jet with the nitrogen and argon plasma jet.

  17. Laser-induced carbon plasma emission spectroscopic measurements on solid targets and in gas-phase optical breakdown.

    PubMed

    Nemes, László; Keszler, Anna M; Hornkohl, James O; Parigger, Christian G

    2005-06-20

    We report measurements of time- and spatially averaged spontaneous-emission spectra following laser-induced breakdown on a solid graphite/ambient gas interface and on solid graphite in vacuum, and also emission spectra from gas-phase optical breakdown in allene C3H4 and helium, and in CO2 and helium mixtures. These emission spectra were dominated by CII (singly ionized carbon), CIII (doubly ionized carbon), hydrogen Balmer beta (Hbeta), and Swan C2 band features. Using the local thermodynamic equilibrium and thin plasma assumptions, we derived electron number density and electron temperature estimates. The former was in the 10(16) cm(-3) range, while the latter was found to be near 20000 K. In addition, the vibration-rotation temperature of the Swan bands of the C2 radical was determined to be between 4500 and 7000 K, using an exact theoretical model for simulating diatomic emission spectra. This temperature range is probably caused by the spatial inhomogeneity of the laser-induced plasma plume. Differences are pointed out in the role of ambient CO2 in a solid graphite target and in gas-phase breakdown plasma.

  18. Laser-induced carbon plasma emission spectroscopic measurements on solid targets and in gas-phase optical breakdown

    SciTech Connect

    Nemes, Laszlo; Keszler, Anna M.; Hornkohl, James O.; Parigger, Christian

    2005-06-20

    We report measurements of time- and spatially averaged spontaneous-emission spectra following laser-induced breakdown on a solid graphite/ambient gas interface and on solid graphite in vacuum, and also emission spectra from gas-phase optical breakdown in allene C3H4 and helium, and in CO2 and helium mixtures. These emission spectra were dominated by CII (singly ionized carbon), CIII (doubly ionized carbon), hydrogen Balmer beta (H{sub b}eta), and Swan C2 band features. Using the local thermodynamic equilibrium and thin plasma assumptions, we derived electron number density and electron temperature estimates. The former was in the 1016 cm{sup -3} range, while the latter was found to be near 20000 K. In addition, the vibration-rotation temperature of the Swan bands of the C2 radical was determined to be between 4500 and 7000 K, using an exact theoretical model for simulating diatomic emission spectra. This temperature range is probably caused by the spatial inhomogeneity of the laser-induced plasma plume. Differences are pointed out in the role of ambient CO2 in a solid graphite target and in gas-phase breakdown plasma.

  19. Extended plasma channels created by UV laser in air and their application to control electric discharges

    NASA Astrophysics Data System (ADS)

    Zvorykin, V. D.; Ionin, A. A.; Levchenko, A. O.; Seleznev, L. V.; Sinitsyn, D. V.; Smetanin, I. V.; Ustinovskii, N. N.; Shutov, A. V.

    2015-02-01

    Results are presented from a series of experimental and theoretical studies on creating weakly ionized extended plasma channels in atmospheric air by 248-nm UV laser radiation and their application to control long high-voltage discharges. The main mechanisms of air ionization by UV laser pulses with durations from 100 fs to 25 ns and intensities in the ranges of 3×1011-1.5×1013 and 3×106-3×1011 W/cm2, respectively, which are below the threshold for optical gas breakdown, as well as the main relaxation processes in plasma with a density of 109-1017 cm-3, are considered. It is shown that plasma channels in air can be efficiently created by amplitude-modulated UV pulses consisting of a train of subpicosecond pulses producing primary photoelectrons and a long UV pulse suppressing electron attachment and sustaining the density of free electrons in plasma. Different modes of the generation and amplification of trains of subterawatt subpicosecond pulses and amplitude-modulated UV pulses with an energy of several tens of joules were implemented on the GARPUN-MTW hybrid Ti:sapphire-KrF laser facility. The filamentation of such UV laser beams during their propagation in air over distances of up to 100 m and the parameters of the corresponding plasma channels were studied experimentally and theoretically. Laser initiation of high-voltage electric discharges and control of their trajectories by means of amplitude-modulated UV pulses, as well as the spatiotemporal structure of breakdowns in air gaps with length of up to 80 cm, were studied.

  20. Extended plasma channels created by UV laser in air and their application to control electric discharges

    SciTech Connect

    Zvorykin, V. D. Ionin, A. A.; Levchenko, A. O.; Seleznev, L. V.; Sinitsyn, D. V.; Smetanin, I. V.; Ustinovskii, N. N.; Shutov, A. V.

    2015-02-15

    Results are presented from a series of experimental and theoretical studies on creating weakly ionized extended plasma channels in atmospheric air by 248-nm UV laser radiation and their application to control long high-voltage discharges. The main mechanisms of air ionization by UV laser pulses with durations from 100 fs to 25 ns and intensities in the ranges of 3×10{sup 11}–1.5×10{sup 13} and 3×10{sup 6}–3×10{sup 11} W/cm{sup 2}, respectively, which are below the threshold for optical gas breakdown, as well as the main relaxation processes in plasma with a density of 10{sup 9}–10{sup 17} cm{sup −3}, are considered. It is shown that plasma channels in air can be efficiently created by amplitude-modulated UV pulses consisting of a train of subpicosecond pulses producing primary photoelectrons and a long UV pulse suppressing electron attachment and sustaining the density of free electrons in plasma. Different modes of the generation and amplification of trains of subterawatt subpicosecond pulses and amplitude-modulated UV pulses with an energy of several tens of joules were implemented on the GARPUN-MTW hybrid Ti:sapphire-KrF laser facility. The filamentation of such UV laser beams during their propagation in air over distances of up to 100 m and the parameters of the corresponding plasma channels were studied experimentally and theoretically. Laser initiation of high-voltage electric discharges and control of their trajectories by means of amplitude-modulated UV pulses, as well as the spatiotemporal structure of breakdowns in air gaps with length of up to 80 cm, were studied.

  1. The Neutral Gas Desorption and Breakdown on a Metal-Dielectric Junction Immersed in a Plasma

    NASA Technical Reports Server (NTRS)

    Vayner, Boris; Galofaro, Joel; Ferguson, Dale; Lyons, Valerie J. (Technical Monitor)

    2002-01-01

    New results are presented of an experimental study and theoretical analysis of arcing on metal-dielectric junctions immersed in a low-density plasma. Two samples of conventional solar arrays have been used to investigate the effects of arcing within a wide range of neutral gas pressures, ion currents, and electron number densities. All data (except video) were obtained in digital form that allowed us to study the correlation between external parameters (plasma density, additional capacitance, bias voltage, etc) and arc characteristics (arc rate, arc current pulse width and amplitude, gas species partial pressures, intensities of spectral lines, and so on). Arc sites were determined by employing a video-camera, and it is shown that the most probable sites for arc inception are trip le-junctions, even though some arcs were initiated in gaps between cells. The effect of surface conditioning (decrease of arc rate due to outgassing) was clearly demonstrated. Moreover, a considerable increase in arc rate due to absorption of molecules from atmospheric air has been confirmed. The analysis of optical spectra (240-800 nm) reveals intense narrow atomic lines (Ag, H) and wide molecular bands (OH, CH, SiH, SiN) that confirm a complicated mechanism of arc plasma generation. The rate of plasma contamination due to arcing was measured by employing a mass-spectrometer. These measurements provided quite reliable data for the development of a theoretical model of plasma contamination, In conclusion, the arc threshold was increased to above 350 V (from 190 V) by keeping a sample in vacuum (20 micronTorr) for seven days. The results obtained are important for the understanding of the arc inception mechanism, which is absolutely essential for progress toward the design of high voltage solar arrays for space applications.

  2. Focused excimer laser initiated, radio frequency sustained high pressure air plasmas

    SciTech Connect

    Giar, Ryan; Scharer, John

    2011-11-15

    Measurements and analysis of air breakdown processes and plasma production by focusing 193 nm, 300 mJ, 15 MW high power laser radiation inside a 6 cm diameter helical radio frequency (RF) coil are presented. Quantum resonant multi-photon ionization (REMPI) and collisional cascade laser ionization processes are exploited that have been shown to produce high-density (n{sub e} {approx} 7 x 10{sup 16}/cm{sup 3}) cylindrical seed plasmas at 760 Torr. Air breakdown in lower pressures (from 7-22 Torr), where REMPI is the dominant laser ionization process, is investigated using an UV 18 cm focal length lens, resulting in a laser flux of 5.5 GW/cm{sup 2} at the focal spot. The focused laser power absorption and associated shock wave produce seed plasmas for sustainment by the RF (5 kW incident power, 1.5 s) pulse. Measurements of the helical RF antenna load impedance in the inductive and capacitive coupling regimes are obtained by measuring the loaded antenna reflection coefficient. A 105 GHz interferometer is used to measure the plasma electron density and collision frequency. Spectroscopic measurements of the plasma and comparison with the SPECAIR code are made to determine translational, rotational, and vibrational neutral temperatures and the associated neutral gas temperature. From this and the associated measurement of the gas pressure the electron temperature is obtained. Experiments show that the laser-formed seed plasma allows RF sustainment at higher initial air pressures (up to 22 Torr) than that obtained via RF-only initiation (<18 Torr) by means of a 0.3 J UV laser pulse.

  3. Characterization of Wet Air Plasma Jet Powered by Sinusoidal High Voltage and Nanosecond Pulses for Plasma Agricultural Application

    NASA Astrophysics Data System (ADS)

    Takashima, Keisuke; Shimada, Keisuke; Konishi, Hideaki; Kaneko, Toshiro

    2015-09-01

    Not only for the plasma sterilization but also for many of plasma life-science applications, atmospheric pressure plasma devices that allowed us to control its state and reactive species production are deserved to resolve the roles of the chemical species. Influence of the hydroxyl radical and ozone on germination of conidia of a strawberry pathogen is presented. Water addition to air plasma jet significantly improves germination suppression performance, while measured reactive oxygen species (ROS) are reduced. Although the results show a negative correlation between ROS and the germination suppression, this infers the importance of chemical composition generated by plasma. For further control of the plasma product, a plasma jet powered by sinusoidal high voltage and nanosecond pulses is developed and characterized with the voltage-charge Lissajous. Control of breakdown phase and discharge power by pulse-imposed phase is presented. This work is supported by JSPS KAKENHI Grant-in-Aid for Young Scientists (B) Grant Number 15K17480 and Exploratory Research Grant Number 23644199.

  4. Surface Wave Driven Air-Water Plasmas

    NASA Astrophysics Data System (ADS)

    Tatarova, Elena; Henriques, Julio; Ferreira, Carlos

    2013-09-01

    The performance of a surface wave driven air-water plasma source operating at atmospheric pressure and 2.45 GHz has been analyzed. A 1D model has been developed in order to describe in detail the creation and loss processes of active species of interest and to provide a complete characterization of the axial structure of the source, including the discharge and the afterglow zones. The main electron creation channel was found to be the associative ionization process N +O -->NO+ + e. The NO(X) relative density in the afterglow plasma jet ranges from 1.2% to 1.6% depending on power and water percentage according to the model predictions and the measurements. Other types of species such as NO2 and nitrous acid HNO2 have also been detected by mass and FT-IR spectroscopy. Furthermore, high densities of O2(a1Δg) singlet delta oxygen molecules and OH radicals (1% and 5%, respectively) can be achieved in the discharge zone. In the late afterglow the O2(a1Δg) density is about 0.1% of the total density. The plasma source has a flexible operation and potential for channeling the energy in ways that maximize the density of active species of interest. This study was funded by the Foundation for Science and Technology, Portuguese Ministry of Education and Science, under the research contract PTDC/FIS/108411/2008.

  5. Air plasma jet with hollow electrodes at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Hong, Yong Cheol; Uhm, Han Sup

    2007-05-01

    Atmospheric-pressure plasma jet with air is produced through hollow electrodes and dielectric with a hole of 5W exhibits a cold plasma jet of about 2cm in length and near the room temperature, being low enough to treat thermally sensitive materials. Preliminary studies on the discharge characteristics and application tests are also presented by comparing the air plasma jet with the nitrogen and argon plasma jet.

  6. System for time-discretized vacuum ultraviolet spectroscopy of spark breakdown in air

    SciTech Connect

    Ryberg, D.; Fierro, A.; Dickens, J.; Neuber, A.

    2014-10-15

    A system for time-discretized spectroscopic measurements of the vacuum ultraviolet (VUV) emission from spark discharges in the 60-160 nm range has been developed for the study of early plasma-forming phenomena. The system induces a spark discharge in an environment close to atmospheric conditions created using a high speed puff value, but is otherwise kept at high vacuum to allow for the propagation of VUV light. Using a vertical slit placed 1.5 mm from the discharge the emission from a small cross section of the discharge is allowed to pass into the selection chamber consisting of a spherical grating, with 1200 grooves/mm, and an exit slit set to 100 μm. Following the exit slit is a photomultiplier tube with a sodium salicylate scintillator that is used for the time discretized measurement of the VUV signal with a temporal resolution limit of 10 ns. Results from discharges studied in dry air, Nitrogen, SF{sub 6}, and Argon indicate the emission of light with wavelengths shorter than 120 nm where the photon energy begins to approach the regime of direct photoionization.

  7. System for time-discretized vacuum ultraviolet spectroscopy of spark breakdown in air.

    PubMed

    Ryberg, D; Fierro, A; Dickens, J; Neuber, A

    2014-10-01

    A system for time-discretized spectroscopic measurements of the vacuum ultraviolet (VUV) emission from spark discharges in the 60-160 nm range has been developed for the study of early plasma-forming phenomena. The system induces a spark discharge in an environment close to atmospheric conditions created using a high speed puff value, but is otherwise kept at high vacuum to allow for the propagation of VUV light. Using a vertical slit placed 1.5 mm from the discharge the emission from a small cross section of the discharge is allowed to pass into the selection chamber consisting of a spherical grating, with 1200 grooves/mm, and an exit slit set to 100 μm. Following the exit slit is a photomultiplier tube with a sodium salicylate scintillator that is used for the time discretized measurement of the VUV signal with a temporal resolution limit of 10 ns. Results from discharges studied in dry air, Nitrogen, SF6, and Argon indicate the emission of light with wavelengths shorter than 120 nm where the photon energy begins to approach the regime of direct photoionization. PMID:25362373

  8. ADI-FDTD modeling of microwave plasma discharges in air towards fully three-dimensional simulations

    NASA Astrophysics Data System (ADS)

    Kourtzanidis, Konstantinos; Rogier, François; Boeuf, Jean-Pierre

    2015-10-01

    Plasma formation and propagation during microwave breakdown has been extensively studied during the last decades. Numerical modeling of the strong coupling between the high frequency electromagnetic waves and the plasma is still a challenging topic due to the different time and space scales involved. In this article, an Alternative Direction Implicit (ADI) formulation of the Finite Difference Time Domain method for solving Maxwell's equations coupled with a simplified plasma model via the electric current is being proposed, leading to a significant reduction of the computational cost as the CFL criterion for stability of the FDTD method is being removed. An energy estimate has been used to prove the unconditional stability of the ADI-FDTD leapfrog scheme as well as its coupled formulation. The computational efficiency and accuracy of this approach has been studied in a simplified case. The proposed method is applied and validated in two dimensional microwave breakdown in air while its computational efficiency allows for fully three dimensional simulations, an important step for understanding the complex nature and evolution of a microwave plasma discharge and its possible applicability as an aerodynamic flow control method.

  9. Lidar measurement of constituents of microparticles in air by laser-induced breakdown spectroscopy using femtosecond terawatt laser pulses.

    PubMed

    Fujii, Takashi; Goto, Naohiko; Miki, Megumu; Nayuki, Takuya; Nemoto, Koshichi

    2006-12-01

    We experimentally demonstrated remote sensing of the constituents of microparticles in air by combining laser-induced breakdown spectroscopy (LIBS) and lidar, using femtosecond terawatt laser pulses. Laser pulses of 70 fs duration and 130 mJ energy generated filaments when focused at a focal length of 20 m and the pulses irradiated artificial saltwater aerosols in air at a 10 Hz pulse repetition rate. Na fluorescence was observed remotely at a distance of 16 m using a 318 mm diameter Newtonian telescope, a spectrometer, and an intensified CCD camera. These results show the possibility of remote measurement of the constituents of atmospheric particles, such as aerosols, clouds, and toxic materials, by LIBS-lidar using femtosecond terawatt laser pulses.

  10. Lidar measurement of constituents of microparticles in air by laser-induced breakdown spectroscopy using femtosecond terawatt laser pulses.

    PubMed

    Fujii, Takashi; Goto, Naohiko; Miki, Megumu; Nayuki, Takuya; Nemoto, Koshichi

    2006-12-01

    We experimentally demonstrated remote sensing of the constituents of microparticles in air by combining laser-induced breakdown spectroscopy (LIBS) and lidar, using femtosecond terawatt laser pulses. Laser pulses of 70 fs duration and 130 mJ energy generated filaments when focused at a focal length of 20 m and the pulses irradiated artificial saltwater aerosols in air at a 10 Hz pulse repetition rate. Na fluorescence was observed remotely at a distance of 16 m using a 318 mm diameter Newtonian telescope, a spectrometer, and an intensified CCD camera. These results show the possibility of remote measurement of the constituents of atmospheric particles, such as aerosols, clouds, and toxic materials, by LIBS-lidar using femtosecond terawatt laser pulses. PMID:17099748

  11. Laser ablation plasma-assisted stabilization of premixed methane/air flame

    NASA Astrophysics Data System (ADS)

    Li, Xiaohui; Yu, Yang; Peng, Jiangbo; Yu, Xin; Fan, Rongwei; Sun, Rui; Chen, Deying

    2016-01-01

    Laser ablation plasma has been applied to assist stabilization of premixed methane/air flames with a flow speed up to 15.3 m/s. The ablation plasma was generated using the 50 Hz, 1064 nm output of a Nd:YAG laser onto a tantalum slab. With the ablation plasma, the stabilization equivalence ratio has been extended to the fuel-leaner end and the blow off limits have been enhanced by from 3.6- to 14.8-folds for flames which can stabilize without the plasma. The laser pulse energy required for flameholding was reduced to 10 mJ, a 64 % reduction compared with that of gas breakdown plasma, which will ease the demand for high-power lasers for high-frequency plasma generation. The temporal evolutions of the flame kernels following the ablation plasma were investigated using the OH* chemiluminescence imaging approach, and the flame propagation speed ( v f) was measured from the flame kernel evolutions. With the ablation plasma, the v f with flow speed of 4.7-9.0 m/s and equivalence ratio of 1.4 has been enhanced from 0.175 m/s of laminar premixed methane/air flame to 2.79-4.52 and 1.59-5.46 m/s, respectively, in the early and late time following the ablation plasma. The increase in the combustion radical concentrations by the ablation plasma was thought to be responsible for the v f enhancement and the resulted flame stabilization.

  12. Multielemental analysis of prehistoric animal teeth by laser-induced breakdown spectroscopy and laser ablation inductively coupled plasma mass spectrometry

    SciTech Connect

    Galiova, Michaela; Kaiser, Jozef; Fortes, Francisco J.; Novotny, Karel; Malina, Radomir; Prokes, Lubomir; Hrdlicka, Ales; Vaculovic, Tomas; Nyvltova Fisakova, Miriam; Svoboda, Jiri; Kanicky, Viktor; Laserna, Javier J.

    2010-05-01

    Laser-induced breakdown spectroscopy (LIBS) and laser ablation (LA) inductively coupled plasma (ICP) mass spectrometry (MS) were utilized for microspatial analyses of a prehistoric bear (Ursus arctos) tooth dentine. The distribution of selected trace elements (Sr, Ba, Fe) was measured on a 26 mmx15 mm large and 3 mm thick transverse cross section of a canine tooth. The Na and Mg content together with the distribution of matrix elements (Ca, P) was also monitored within this area. The depth of the LIBS craters was measured with an optical profilometer. As shown, both LIBS and LA-ICP-MS can be successfully used for the fast, spatially resolved analysis of prehistoric teeth samples. In addition to microchemical analysis, the sample hardness was calculated using LIBS plasma ionic-to-atomic line intensity ratios of Mg (or Ca). To validate the sample hardness calculations, the hardness was also measured with a Vickers microhardness tester.

  13. Quantification of fluorine traces in solid samples using CaF molecular emission bands in atmospheric air Laser-Induced Breakdown Spectroscopy

    NASA Astrophysics Data System (ADS)

    Alvarez-Llamas, C.; Pisonero, J.; Bordel, N.

    2016-09-01

    Direct solid determination of trace amounts of fluorine using Laser-Induced Breakdown Spectroscopy (LIBS) is a challenging task due to the low excitation efficiency of this element. Several strategies have been developed to improve the detection capabilities, including the use of LIBS in a He atmosphere to enhance the signal to background ratios of F atomic emission lines. An alternative method is based on the detection of the molecular compounds that are formed with fluorine in the LIBS plasma. In this work, the detection of CaF molecular emission bands is investigated to improve the analytical capabilities of atmospheric air LIBS for the determination of fluorine traces in solid samples. In particular, Cu matrix samples containing different fluorine concentration (between 50 and 600 μg/g), and variable amounts of Ca, are used to demonstrate the linear relationships between CaF emission signal and F concentration. Limits of detection for fluorine are improved by more than 1 order of magnitude using CaF emission bands versus F atomic lines, in atmospheric-air LIBS. Furthermore, a toothpaste powder sample is used to validate this analytical method. Good agreement is observed between the nominal and the predicted fluorine mass-content.

  14. Hydrogen Balmer Series Self-Absorption Measurement in Laser-Induced Air Plasma

    NASA Astrophysics Data System (ADS)

    Gautam, Ghaneshwar; Parigger, Christian

    2015-05-01

    In experimental studies of laser-induced plasma, we use focused Nd:YAG laser radiation to generate optical breakdown in laboratory air. A Czerny-Turner type spectrometer and an ICCD camera are utilized to record spatially and temporally resolved spectra. Time-resolved spectroscopy methods are employed to record plasma dynamics for various time delays in the range of 0.300 microsecond to typically 10 microsecond after plasma initiation. Early plasma emission spectra reveal hydrogen alpha and ionized nitrogen lines for time delays larger than 0.3 microsecond, the hydrogen beta line emerges from the free-electron background radiation later in the plasma decay for time delays in excess of 1 microsecond. The self-absorption analyses include comparisons of recorded data without and with the use of a doubling mirror. The extent of self-absorption of the hydrogen Balmer series is investigated for various time delays from plasma generation. There are indications of self-absorption of hydrogen alpha by comparison with ionized nitrogen lines at a time delay of 0.3 microsecond. For subsequent time delays, self-absorption effects on line-widths are hardly noticeable, despite the fact of the apparent line-shape distortions. Of interest are comparisons of inferred electron densities from hydrogen alpha and hydrogen beta lines as the plasma decays, including assessments of spatial variation of electron density.

  15. Ultra-fast pulsed microwave plasma breakdown: evidence of various ignition modes

    NASA Astrophysics Data System (ADS)

    Carbone, Emile; Nijdam, Sander

    2014-02-01

    In this communication, we investigate the ignition of pulsed microwave plasmas in a narrow dielectric tube with an electrodeless configuration. The plasma is generated using a surfatron cavity. The power is modulated as a square wave with a rise-time of 30 ns at variable frequencies from 100 Hz up to 5 MHz. The ignition and plasma propagation inside the 3 mm radius quartz tube are imaged spatially and resolved with nanosecond time resolution using an iCCD camera. The plasma is found to propagate in the form of a front moving from the launcher to the end of the plasma column with the microwave power being gradually absorbed behind it. The velocity of the plasma front decreases while the plasma goes towards a steady state. The ionization front is found to be strongly non-uniform and various structures as a function of the pulse repetition frequency (i.e. power-off time) are shown in the axial and radial directions. At low frequencies, finger-like structures are found. The plasma becomes more hollow at smaller power-off times. At higher repetition frequencies (kHz regime), a critical repetition frequency is found for which the plasma light intensity sharply increases at the head of the propagation front, taking a shape resembling a plasma bullet. This critical frequency depends on the pressure and power. For even higher frequencies, the bullet shape disappears and plasma volume ignition from the launcher to the end of the plasma column is observed. These results bring a new insight into the ignition mechanisms of pulsed microwave plasmas inside dielectric tubes. A wide variety of effects are found which seem to mostly depend on the background ionization degree. Moreover, the results show that only a 3D time-dependent model can, in general, correctly describe the ignition of a pulsed microwave discharge.

  16. Precise alignment of the collection fiber assisted by real-time plasma imaging in laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Motto-Ros, V.; Negre, E.; Pelascini, F.; Panczer, G.; Yu, J.

    2014-02-01

    Improving the repeatability and the reproducibility of measurement with laser-induced breakdown spectroscopy (LIBS) is one of the actual challenging issues faced by the technique to fit the requirements of precise and accurate quantitative analysis. Among the numerous factors influencing the measurement stability in short and long terms, there are shot-to-shot and day-to-day fluctuations of the morphology of the plasma. Such fluctuations are due to the high sensitivity of laser-induced plasma to experimental conditions including properties of the sample, the laser parameters as well as properties of the ambient gas. In this paper, we demonstrate that precise alignment of the optical fiber for the collection of the plasma emission with respect to the actual morphology of the plasma assisted by real-time imaging, greatly improves the stability of LIBS measurements in short as well as in long terms. The used setup is based on a plasma imaging arrangement using a CCD camera and a real-time image processing. The obtained plasma image is displayed in a 2-dimensional frame where the position of the optical fiber is beforehand calibrated. In addition, the setup provides direct sample surface monitoring, which allows a precise control of the distance between the focusing lens and the sample surface. Test runs with a set of 8 reference samples show very high determination coefficient for calibration curves (R2 = 0.9999), and a long term repeatability and reproducibility of 4.6% (relative standard deviation) over a period of 3 months without any signal normalization. The capacity of the system to automatically correct the sample surface position for a tilted or non-regular sample surface during a surface mapping measurement is also demonstrated.

  17. Three dimensional simulations of pattern formation during high-pressure, freely localized microwave breakdown in air

    SciTech Connect

    Kourtzanidis, K. Boeuf, J. P.; Rogier, F.

    2014-12-15

    Recent experiments have demonstrated that a freely localized 100 GHz microwave discharge can propagate towards the microwave source with high speed, forming a complex pattern of self-organized filaments. We present three-dimensional simulations of the formation and propagation of such patterns that reveal more information on their nature and interaction with the electromagnetic waves. The developed three-dimensional Maxwell-plasma solver permits the study of different forms of incident field polarization. Results for linear and circular polarization of the wave are presented and comparisons with recent experiments show a good overall agreement. The three dimensional simulations provide a quantitative analysis of the parameters controlling the time and length scales of the strongly non-linear plasma dynamics and could be useful for potential microwave plasma applications such as aerodynamic flow and combustion control.

  18. Terahertz generation in multiple laser-induced air plasmas

    SciTech Connect

    Chen, M.-K.; Kim, Jae Hun; Yang, C.-E.; Yin, Stuart Shizhuo; Hui Rongqing; Ruffin, Paul

    2008-12-08

    An investigation of the terahertz wave generation in multiple laser-induced air plasmas is presented. First, it is demonstrated that the intensity of the terahertz wave increases as the number of air plasmas increases. Second, the physical mechanism of this enhancement effect of the terahertz generation is studied by quantitatively measuring the intensity of the generated terahertz wave as a function of phase difference between adjacent air plasmas. It is found out that the superposition is the main mechanism to cause this enhancement. Thus, the results obtained in this paper not only provide a technique to generate stronger terahertz wave but also enable a better understanding of the mechanism of the terahertz generation in air plasma.

  19. Radiofrequency plasma antenna generated by femtosecond laser filaments in air

    SciTech Connect

    Brelet, Y.; Houard, A.; Point, G.; Prade, B.; Carbonnel, J.; Andre, Y.-B.; Mysyrowicz, A.; Arantchouk, L.; Pellet, M.

    2012-12-24

    We demonstrate tunable radiofrequency emission from a meter-long linear plasma column produced in air at atmospheric pressure. A short-lived plasma column is initially produced by femtosecond filamentation and subsequently converted into a long-lived discharge column by application of an external high voltage field. Radiofrequency excitation is fed to the plasma by induction and detected remotely as electromagnetic radiation by a classical antenna.

  20. Effect of glow discharge air plasma on grain crops seed

    SciTech Connect

    Dubinov, A.E.; Lazarenko, E.M.; Selemir, V.D.

    2000-02-01

    Oat and barley seeds have been exposed to both continuous and pulsed glow discharge plasmas in air to investigate the effects on germination and sprout growth. Statistical analysis was used to evaluate the effect of plasma exposure on the percentage germination and length of sprout growth. A stimulating effect of plasma exposure was found together with a strong dependence on whether continuous or pulsed discharges were used.

  1. Quantification of air plasma chemistry for surface disinfection

    NASA Astrophysics Data System (ADS)

    Pavlovich, Matthew J.; Clark, Douglas S.; Graves, David B.

    2014-12-01

    Atmospheric-pressure air plasmas, created by a variety of discharges, are promising sources of reactive species for the emerging field of plasma biotechnology because of their convenience and ability to operate at ambient conditions. One biological application of ambient-air plasma is microbial disinfection, and the ability of air plasmas to decontaminate both solid surfaces and liquid volumes has been thoroughly established in the literature. However, the mechanism of disinfection and which reactive species most strongly correlate with antimicrobial effects are still not well understood. We describe quantitative gas-phase measurements of plasma chemistry via infrared spectroscopy in confined volumes, focusing on air plasma generated via surface micro-discharge (SMD). Previously, it has been shown that gaseous chemistry is highly sensitive to operating conditions, and the measurements we describe here extend those findings. We quantify the gaseous concentrations of ozone (O3) and nitrogen oxides (NO and NO2, or NOx) throughout the established ‘regimes’ for SMD air plasma chemistry: the low-power, ozone-dominated mode; the high-power, nitrogen oxides-dominated mode; and the intermediate, unstable transition region. The results presented here are in good agreement with previously published experimental studies of aqueous chemistry and parameterized models of gaseous chemistry. The principal finding of the present study is the correlation of bacterial inactivation on dry surfaces with gaseous chemistry across these time and power regimes. Bacterial decontamination is most effective in ‘NOx mode’ and less effective in ‘ozone mode’, with the weakest antibacterial effects in the transition region. Our results underscore the dynamic nature of air plasma chemistry and the importance of careful chemical characterization of plasma devices intended for biological applications.

  2. [Quantitative Measurement of Equivalence Ratios of Methane/Air Mixture by Laser-Induced Breakdown Spectroscopy: the Effects of Detector Gated Mode and Laser Wavelength].

    PubMed

    Zuo, Peng; Li, Bo; Yan, Bei-bei; Li, Zhong-shan; Yao, Ming-fa

    2015-11-01

    Laser-induced breakdown spectroscopy (LIBS) has been increasingly used in combustion diagnostics as a novel spectral analysis method in recent years. The quantitative local equivalence ratio of methane/air mixture is determined by LIBS using different emission intensity ratios of H/O and H/N. The comparison between calibration curves of H₆₅₆/O₇₇₇ and H₆₅₆/N₇₄₆ is performed in gated mode, which shows that H₆₅₆/O₇₇₇ can achieve better prediction accuracy and higher sensitivity. More spectral intensity ratios (H₆₅₆/O₇₇₇, H₆₅₆/N₅₀₀⁺, H₆₅₆/N₅₆₇ and H₆₅₆/N₇₄₆) can be used to make calibration measurements in ungated mode and H₆₅₆/O₇₇₇ is also tested best among them. The comparison between gated and ungated detection modes shows that gated mode offers better accuracy and precision. In addition, the effects of different laser wavelengths (1064, 532 and 355 nm) on LIBS spectra and calibration curves are investigated with laser focal point size and laser fluence kept constant. The results show that with longer laser wavelength, the peak intensity and SNR of H, O and N lines increase, as well as the slope of calibration curve of H₆₅₆/O₇₇₇. Among these three wavelengths, 1064 nm laser is best suited to measure the equivalence ratio of CH₄/air mixture by LIBS. The experimental results are explained in terms of plasma electron density and temperature, which have a significant impact on the emission intensity and the partition function of hydrogen and oxygen, respectively.

  3. Spatial confinement effects in laser-induced breakdown spectroscopy

    SciTech Connect

    Shen, X. K.; Sun, J.; Ling, H.; Lu, Y. F.

    2007-08-20

    The spatial confinement effects in laser-induced breakdown of aluminum (Al) targets in air have been investigated both by optical emission spectroscopy and fast photography. A KrF excimer laser was used to produce plasmas from Al targets in air. Al atomic emission lines show an obvious enhancement in the emission intensity when a pair of Al-plate walls were placed to spatially confine the plasma plumes. Images of the Al plasma plumes showed that the plasma plumes evolved into a torus shape and were compressed in the Al walls. The mechanism for the confinement effects was discussed using shock wave theory.

  4. Breakdown of the Brillouin limit and classical fluxes in rotating collisional plasmas

    SciTech Connect

    Rax, J. M.; Fruchtman, A.; Gueroult, R.; Fisch, N. J.

    2015-09-15

    The classical collisionless analysis displaying the occurrence of slow and fast rigid body rotation modes in magnetized plasmas is extended to collisional discharges. Collisions speed up the fast mode, slow down the slow one, and break down the classical Brillouin limit. Rigid body rotation has a strong impact on transport, and a collisional radial transport regime, different from the classical Braginskii collisional flux, is identified and analyzed.

  5. Electrical breakdown of a bubble in a water-filled capillary

    SciTech Connect

    Bruggeman, P.J.; Leys, C.A.; Vierendeels, J. A.

    2006-06-01

    In this Communication, the electrical breakdown of a static bubble in a water-filled capillary generated in a dc electrical field is studied. We present experimental results which indicate that the liquid layer between capillary and bubble wall can have an important influence on the breakdown mechanism of the bubble. The breakdown electrical field (atmospheric pressure) without a liquid layer in a (vapor) bubble is 18 kV/cm. When a liquid layer is present, the electrical breakdown of an air bubble is observed at electrical fields typically two times smaller. Local plasma formation is observed in this case possibly due to bubble deformation.

  6. Air-Plasma Bullets Propagating Inside Microcapillaries and in Ambient Air

    NASA Astrophysics Data System (ADS)

    Lacoste, Deanna A.; Bourdon, Anne; Kuribara, Koichi; Urabe, Keiichiro; Stauss, Sven; Terashima, Kazuo

    2014-10-01

    We report on the characterization of air-plasma bullets formed inside microcapillary tubes and in ambient air, obtained without the use of inert or noble gases. The bullets are produced by nanosecond discharges, applied at 1 kHz in a dielectric barrier discharge configuration. The anode consists of a tungsten wire with a 50- μm diameter, centered in the microcapillary, while the cathode is a silver ring, fixed on the outer surface of the fused silica tube. The gap distance is kept constant at 1.35 mm. The microcapillary is fed with a 4-sccm flow of air at atmospheric pressure. In the tubes and in ambient air, the propagation of air plasma bullets is observed. The temporal evolution of the bullet propagation has been studied with the aid of an ICCD camera. The effect of the applied voltage (from 5.2 to 8.2 kV) and the inner diameter of the microcapillaries (from 100 to 500 μm) on the discharge dynamics are investigated. Inside the tubes, while the topology of the bullets seems to be strongly dependent on the diameter, their velocity (on the order of 1 to 5 ×105 ms-1) is only a function of the applied voltage. In ambient air, the air-plasma bullets propagate at a velocity of 1 . 25 ×105 ms-1. Possible mechanisms for the propagation of air-plasma bullets in ambient air are discussed.

  7. Analysis of processes in DC arc plasma torches for spraying that use air as plasma forming gas

    NASA Astrophysics Data System (ADS)

    Frolov, V.; Ivanov, D.; Toropchin, A.

    2014-11-01

    Developed in Saint Petersburg State Polytechnical University technological processes of air-plasma spraying of wear-resistant, regenerating, hardening and decorative coatings used in number of industrial areas are described. The article contains examples of applications of air plasma spraying of coatings as well as results of mathematical modelling of processes in air plasma torches for spraying.

  8. Surface analysis using a new plasma assisted desorption/ionisation source for mass spectrometry in ambient air

    NASA Astrophysics Data System (ADS)

    Bowfield, A.; Barrett, D. A.; Alexander, M. R.; Ortori, C. A.; Rutten, F. M.; Salter, T. L.; Gilmore, I. S.; Bradley, J. W.

    2012-06-01

    The authors report on a modified micro-plasma assisted desorption/ionisation (PADI) device which creates plasma through the breakdown of ambient air rather than utilising an independent noble gas flow. This new micro-PADI device is used as an ion source for ambient mass spectrometry to analyse species released from the surfaces of polytetrafluoroethylene, and generic ibuprofen and paracetamol tablets through remote activation of the surface by the plasma. The mass spectra from these surfaces compare favourably to those produced by a PADI device constructed using an earlier design and confirm that the new ion source is an effective device which can be used to achieve ambient mass spectrometry with improved spatial resolution.

  9. Synergetic effects of double laser pulses for the formation of mild plasma in water: Toward non-gated underwater laser-induced breakdown spectroscopy

    SciTech Connect

    Sakka, Tetsuo; Tamura, Ayaka; Nakajima, Takashi; Fukami, Kazuhiro; Ogata, Yukio H.

    2012-05-07

    We experimentally study the dynamics of the plasma induced by the double-laser-pulse irradiation of solid target in water, and find that an appropriate choice of the pulse energies and pulse interval results in the production of an unprecedentedly mild (low-density) plasma, the emission spectra of which are very narrow even without the time-gated detection. The optimum pulse interval and pulse energies are 15-30 {mu}s and about {approx}1 mJ, respectively, where the latter values are much smaller than those typically employed for this kind of study. In order to clarify the mechanism for the formation of mild plasma we examine the role of the first and second laser pulses, and find that the first pulse produces the cavitation bubble without emission (and hence plasma), and the second pulse induces the mild plasma in the cavitation bubble. These findings may present a new phase of underwater laser-induced breakdown spectroscopy.

  10. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Spatial distribution of laser radiation scattered in a plasma formed by optical breakdown of a gas

    NASA Astrophysics Data System (ADS)

    Bufetov, Igor'A.; Bufetova, G. A.; Fyodorov, V. B.

    1994-12-01

    Spatial distributions of laser radiation scattered by a laser spark were determined at different laser radiation wavelengths (λ = 1060, 530, 353, and 265 nm) and gas pressures (air at 10-760 Torr). An interference structure of the cone of the scattered radiation behind the spark was detected for the first time. The structure was attributed to interference of the radiation scattered in two or more self-focusing centres in the laser-spark plasma in air. The dependences of the maximum scattering angle on the gas pressure and on the laser radiation wavelength were determined experimentally.

  11. Air plasma treatment of liquid covered tissue: long timescale chemistry

    NASA Astrophysics Data System (ADS)

    Lietz, Amanda M.; Kushner, Mark J.

    2016-10-01

    Atmospheric pressure plasmas have shown great promise for the treatment of wounds and cancerous tumors. In these applications, the sample is usually covered by a thin layer of a biological liquid. The reactive oxygen and nitrogen species (RONS) generated by the plasma activate and are processed by the liquid before the plasma produced activation reaches the tissue. The synergy between the plasma and the liquid, including evaporation and the solvation of ions and neutrals, is critical to understanding the outcome of plasma treatment. The atmospheric pressure plasma sources used in these procedures are typically repetitively pulsed. The processes activated by the plasma sources have multiple timescales—from a few ns during the discharge pulse to many minutes for reactions in the liquid. In this paper we discuss results from a computational investigation of plasma-liquid interactions and liquid phase chemistry using a global model with the goal of addressing this large dynamic range in timescales. In modeling air plasmas produced by a dielectric barrier discharge over liquid covered tissue, 5000 voltage pulses were simulated, followed by 5 min of afterglow. Due to the accumulation of long-lived species such as ozone and N x O y , the gas phase dynamics of the 5000th discharge pulse are different from those of the first pulse, particularly with regards to the negative ions. The consequences of applied voltage, gas flow, pulse repetition frequency, and the presence of organic molecules in the liquid on the gas and liquid reactive species are discussed.

  12. Spatial characterization of red and white skin potatoes using nano-second laser induced breakdown in air

    NASA Astrophysics Data System (ADS)

    Rehan, Imran; Rehan, Kamran; Sultana, S.; Haq, M. Oun ul; Niazi, Muhammad Zubair Khan; Muhammad, Riaz

    2016-01-01

    We presents spectroscopic study of the plasma generated by a Q-switched Nd:YAG (1064 nm) laser irradiation of the flesh of red and white skin potatoes. From the spectra recorded with spectrometer (LIBS2500+, Ocean Optics, USA) 11 elements were identified in red skin potato, whereas, the white skin potato was found to have nine elements. Their relative concentrations were estimated using CF-LIBS method for the plasma in local thermodynamic equilibrium. The target was placed in ambient air at atmospheric pressure. The electron temperature and number density were calculated from Boltzmann plot and stark broadened line profile methods, respectively using Fe I spectral lines. The spatial distribution of plasma parameters were also studied which show a decreasing trend of 6770 K-4266 K and (3-2.0) × 1016 cm-3. Concentrations of the detected elements were monitored as a function of depth of the potatoes. Our study reveals a decreasing tendency in concentration of iron from top to the centre of potato's flesh, whereas, the concentrations of other elements vary randomly.

  13. The mass and speed dependence of meteor air plasma temperatures.

    PubMed

    Jenniskens, Peter; Laux, Christophe O; Wilson, Michael A; Schaller, Emily L

    2004-01-01

    The speed and mass dependence of meteor air plasma temperatures is perhaps the most important data needed to understand how small meteoroids chemically change the ambient atmosphere in their path and enrich the ablated meteoric organic matter with oxygen. Such chemistry can play an important role in creating prebiotic compounds. The excitation conditions in various air plasma emissions were measured from high-resolution optical spectra of Leonid storm meteors during NASA's Leonid Multi-Instrument Aircraft Campaign. This was the first time a sufficient number and range of temperature measurements were obtained to search for meteoroid mass and speed dependencies. We found slight increases in temperature with decreasing altitude, but otherwise nearly constant values for meteoroids with speeds between 35 and 72 km/s and masses between 10(-5) g and 1 g. We conclude that faster and more massive meteoroids produce a larger emission volume, but not a higher air plasma temperature. We speculate that the meteoric plasma may be in multiphase equilibrium with the ambient atmosphere, which could mean lower plasma temperatures in a CO(2)-rich early Earth atmosphere.

  14. The mass and speed dependence of meteor air plasma temperatures

    NASA Technical Reports Server (NTRS)

    Jenniskens, Peter; Laux, Christophe O.; Wilson, Michael A.; Schaller, Emily L.

    2004-01-01

    The speed and mass dependence of meteor air plasma temperatures is perhaps the most important data needed to understand how small meteoroids chemically change the ambient atmosphere in their path and enrich the ablated meteoric organic matter with oxygen. Such chemistry can play an important role in creating prebiotic compounds. The excitation conditions in various air plasma emissions were measured from high-resolution optical spectra of Leonid storm meteors during NASA's Leonid Multi-Instrument Aircraft Campaign. This was the first time a sufficient number and range of temperature measurements were obtained to search for meteoroid mass and speed dependencies. We found slight increases in temperature with decreasing altitude, but otherwise nearly constant values for meteoroids with speeds between 35 and 72 km/s and masses between 10(-5) g and 1 g. We conclude that faster and more massive meteoroids produce a larger emission volume, but not a higher air plasma temperature. We speculate that the meteoric plasma may be in multiphase equilibrium with the ambient atmosphere, which could mean lower plasma temperatures in a CO(2)-rich early Earth atmosphere.

  15. Generation of low-temperature air plasma for food processing

    NASA Astrophysics Data System (ADS)

    Stepanova, Olga; Demidova, Maria; Astafiev, Alexander; Pinchuk, Mikhail; Balkir, Pinar; Turantas, Fulya

    2015-11-01

    The project is aimed at developing a physical and technical foundation of generating plasma with low gas temperature at atmospheric pressure for food industry needs. As known, plasma has an antimicrobial effect on the numerous types of microorganisms, including those that cause food spoilage. In this work an original experimental setup has been developed for the treatment of different foods. It is based on initiating corona or dielectric-barrier discharge in a chamber filled with ambient air in combination with a certain helium admixture. The experimental setup provides various conditions of discharge generation (including discharge gap geometry, supply voltage, velocity of gas flow, content of helium admixture in air and working pressure) and allows for the measurement of the electrical discharge parameters. Some recommendations on choosing optimal conditions of discharge generation for experiments on plasma food processing are developed.

  16. Measuring H, O, li, B, and BE on Planetary Surfaces: Calibration of Laser-Induced Breakdown Spectroscopy (libs) Data Under Air, Vacuum, and CO2

    NASA Astrophysics Data System (ADS)

    Dyar, M. D.; Nelms, M.; Breves, E. A.

    2012-12-01

    Laser-induced breakdown spectrometer (LIBS), as implemented on the ChemCam instrument on Mars Science Lab and the proposed New Frontiers SAGE mission to Venus, can analyze elements from H to Pb from up to 7m standoff. This study examines the capabilities of LIBS to analyze H, O, B, Be, and Li under conditions simulating Earth, the Moon, and Mars. Of these, H is a major constituent of clay minerals and a key indicator of the presence of water. Its abundance in terrestrial materials ranges from 0 ppm up to 10's of wt.% H2O in hydrated sulfates and clays, with prominent emission lines occurring ca. 656.4 nm. O is an important indicator of atmospheric and magmatic coevolution, and has lines ca. 615.8, 656.2, 777.6, and 844.8 nm. Unfortunately there are very few geological samples from which O has been directly measured, but stoichiometry suggests that O varies from ca. 0 wt.% in sulfides to 21% in ferberite, 32% in ilmenite, 42% in amphiboles, 53% in quartz, 63% in melanterite, and 71% in epsomite. Li (lines at 413.3, 460.4, and 670.9 nm in vacuum), B (412.3 nm), and Be (313.1 nm) are highly mobile elements and key indicators of interaction with water. Local atmospheric composition and pressure significantly influence LIBS plasma intensity because the local atmosphere and the breakdown products from the atmospheric species interact with the ablated surface material in the plasma. Measurement of light elements with LIBS requires that spectra be acquired under conditions matching the remote environment. LIBS is critically dependent on the availability of well characterized, homogeneous reference materials that are closely matched in matrix (composition and structure) to the sample being studied. In modern geochemistry, analyses of most major, minor, and trace elements are routinely made. However, quantitative determination of light element concentrations in geological specimens still represents a major analytical challenge. Thus standards for which hydrogen, oxygen, and

  17. EFFECTS OF LASER RADIATION ON MATTER. LASER PLASMA: Feasibility of investigation of optical breakdown statistics using multifrequency lasers

    NASA Astrophysics Data System (ADS)

    Ulanov, S. F.

    1990-06-01

    A method proposed for investigating the statistics of bulk optical breakdown relies on multifrequency lasers, which eliminates the influence of the laser radiation intensity statistics. The method is based on preliminary recording of the peak intensity statistics of multifrequency laser radiation pulses at the caustic using the optical breakdown threshold of K8 glass. The probability density distribution function was obtained at the focus for the peak intensities of the radiation pulses of a multifrequency laser. This method may be used to study the self-interaction under conditions of bulk optical breakdown of transparent dielectrics.

  18. Non-equilibrium Air Plasma for Wound Bleeding Control

    NASA Astrophysics Data System (ADS)

    Kuo, Spencer P.; Chen, Cheng-Yen; Lin, Chuan-Shun; Chiang, Shu-Hsing

    A low temperature non-equilibrium air plasma spray is tested as a blood coagulator. Emission spectroscopy of the plasma effluent indicates that it carries abundant reactive atomic oxygen (RAO), which can activate erythrocyte - platelet interactions to enhance blood coagulation for plug formation. Tests of the device for wound bleeding control were performed on pigs. Four types of wounds, straight cut and cross cut in the ham area, a hole in an ear saphenous vein, and a cut to an ear artery, were examined. The results showed that this plasma spray could effectively stop the bleeding and reduced the bleeding time considerably. Post-Operative observation of straight cut and cross cut wound healing was carried out. It was found that the plasma treatment had a positive impact on wound healing, in particular, of the cross cut wound; its healing time was shortened by a half.

  19. Inactivation of the biofilm by the air plasma containing water

    NASA Astrophysics Data System (ADS)

    Suganuma, Ryota; Yasuoka, Koichi; Yasuoka Takeuchi lab Team

    2014-10-01

    Biofilms are caused by environmental degradation in food factory and medical facilities. Inactivation of biofilm has the method of making it react to chemicals including chlorine, hydrogen peroxide, and ozone. Although inactivation by chemicals has the problem that hazardous property of a residual substance and hydrogen peroxide have slow reaction velocity. We achieved advanced oxidation process (AOP) with air plasma. Hydrogen peroxide and ozone, which were used for the formation of OH radicals in our experiment, were able to be generated selectively by adjusting the amount of water supplied to the plasma. We inactivated Pseudomonas aeruginosa biofilm in five minutes with OH radicals generated by using hydrogen peroxide and ozone.

  20. Cold atmospheric pressure air plasma jet for medical applications

    SciTech Connect

    Kolb, J. F.; Price, R. O.; Bowman, A.; Chiavarini, R. L.; Stacey, M.; Schoenbach, K. H.; Mohamed, A.-A H.; Swanson, R. J.

    2008-06-16

    By flowing atmospheric pressure air through a direct current powered microhollow cathode discharge, we were able to generate a 2 cm long plasma jet. With increasing flow rate, the flow becomes turbulent and temperatures of the jet are reduced to values close to room temperature. Utilizing the jet, yeast grown on agar can be eradicated with a treatment of only a few seconds. Conversely, animal studies show no skin damage even with exposures ten times longer than needed for pathogen extermination. This cold plasma jet provides an effective mode of treatment for yeast infections of the skin.

  1. Cold atmospheric pressure air plasma jet for medical applications

    NASA Astrophysics Data System (ADS)

    Kolb, J. F.; Mohamed, A.-A. H.; Price, R. O.; Swanson, R. J.; Bowman, A.; Chiavarini, R. L.; Stacey, M.; Schoenbach, K. H.

    2008-06-01

    By flowing atmospheric pressure air through a direct current powered microhollow cathode discharge, we were able to generate a 2cm long plasma jet. With increasing flow rate, the flow becomes turbulent and temperatures of the jet are reduced to values close to room temperature. Utilizing the jet, yeast grown on agar can be eradicated with a treatment of only a few seconds. Conversely, animal studies show no skin damage even with exposures ten times longer than needed for pathogen extermination. This cold plasma jet provides an effective mode of treatment for yeast infections of the skin.

  2. Morphology and characteristics of laser-induced aluminum plasma in argon and in air: A comparative study

    NASA Astrophysics Data System (ADS)

    Bai, Xueshi; Cao, Fan; Motto-Ros, Vincent; Ma, Qianli; Chen, Yanping; Yu, Jin

    2015-11-01

    In laser-induced breakdown spectroscopy (LIBS), ablation takes place in general in an ambient gas of the atmospheric pressure, often in air but also in noble gas such as argon or helium. The use of noble gas is known to significantly improve the performance of the technique. We investigate in this work the morphology and the characteristics of induced plasma in argon and in air. The purpose is to understand the mechanism of the analytical performance improvement by the use of argon ambient with respective to air ambient and the dependence on the other experimental parameters such as the laser fluence. The observation of plasma morphology in different ambient gases provides also information for better design of the detection system which optimizes the signal collection according to the used ambient gases. More specifically, the expansion of the plasma induced on an aluminum target with nanosecond infrared (1064 nm) laser pulse in two ambient gases, argon and the atmospheric air, has been studied with spectroscopic imaging at short delays and with emission spectroscopy at longer delays. With relatively low ablation laser fluence (65 J/cm2), similar morphologies have been observed in argon and in air over the early stage of plasma expansion, while diagnostics at longer delay shows stronger emission, higher electron density and temperature for plasma induced in argon. With higher ablation laser fluence (160 J/cm2) however, different expansion behaviors have been observed, with a stagnating aluminum vapor near the target surface in air while a propagating plume away from the target in argon. The craters left on the target surface show as well corresponding difference: in air, the crater is very shallow with a target surface chaotically affected by the laser pulse, indicating an effective re-deposition of the ablated material back to the crater; while in Ar a deeper crater is observed, indicating an efficient mass removal by laser ablation. At longer delays, a brighter

  3. Indoor air cleaning using a pulsed discharge plasma

    SciTech Connect

    Mizuno, Akira; Kisanuki, Yoshiyuki; Noguchi, Masanobu; Katsura, Shinji; Lee, S.H.; Hong, Y.K.; Shin, S.Y.; Kang, J.H.

    1999-12-01

    The purpose of this paper is to develop a high-efficiency air-cleaning system for air pollutants such as tobacco smoke found in indoor environments. The authors investigated the basic characteristics of treating particulate matter and acetaldehyde (CH{sub 3}CHO) in a one-pass test using a pulse generator and a plasma-driven catalyst reactor, both of which are attachable to an air conditioner. Using a circulation test, the decrease in acetaldehyde concentration was measured in a closed vessel where the reactor had been placed. The removal efficiencies of particulate matter and acetaldehyde in the one-pass test (residence time of 10 ms) were 70% and 27%, respectively. In the circulation test, 98% of the suspended particles were collected after 2 min of operation and the acetaldehyde concentration decreased by 70% after 50 mins. It is believed that the TiO{sub 2} catalyst is excited by plasma-induced high-energy particles (electrons, photons, and metastable molecules), resulting in an enhanced pollutant removal. These test results indicate that the combination of plasma with TiO{sub 2} is a potential alternative in treating the pollutants in environmental tobacco smoke.

  4. Air spark-like plasma source for antimicrobial NOx generation

    NASA Astrophysics Data System (ADS)

    Pavlovich, M. J.; Ono, T.; Galleher, C.; Curtis, B.; Clark, D. S.; Machala, Z.; Graves, D. B.

    2014-12-01

    We demonstrate and analyse the generation of nitrogen oxides and their antimicrobial efficacy using atmospheric air spark-like plasmas. Spark-like discharges in air in a 1 L confined volume are shown to generate NOx at an initial rate of about 1.5  ×  1016 NOx molecules/J dissipated in the plasma. Such a discharge operating in this confined volume generates on the order of 6000 ppm NOx in 10 min. Around 90% of the NOx is in the form of NO2 after several minutes of operation in the confined volume, suggesting that NO2 is the dominant antimicrobial component. The strong antimicrobial action of the NOx mixture after several minutes of plasma operation is demonstrated by measuring rates of E. coli disinfection on surfaces and in water exposed to the NOx mixture. Some possible applications of plasma generation of NOx (perhaps followed by dissolution in water) include disinfection of surfaces, skin or wound antisepsis, and sterilization of medical instruments at or near room temperature.

  5. Mapping of lead, magnesium and copper accumulation in plant tissues by laser-induced breakdown spectroscopy and laser-ablation inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Kaiser, J.; Galiová, M.; Novotný, K.; Červenka, R.; Reale, L.; Novotný, J.; Liška, M.; Samek, O.; Kanický, V.; Hrdlička, A.; Stejskal, K.; Adam, V.; Kizek, R.

    2009-01-01

    Laser-Induced Breakdown Spectroscopy (LIBS) and Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) were utilized for mapping the accumulation of Pb, Mg and Cu with a resolution up to 200 μm in a up to cm × cm area of sunflower ( Helianthus annuus L.) leaves. The results obtained by LIBS and LA-ICP-MS are compared with the outcomes from Atomic Absorption Spectrometry (AAS) and Thin-Layer Chromatography (TLC). It is shown that laser-ablation based analytical methods can substitute or supplement these techniques mainly in the cases when a fast multi-elemental mapping of a large sample area is needed.

  6. Cold Micro-Plasma Jets in Atmospheric Pressure Air

    NASA Astrophysics Data System (ADS)

    Mohamed, A. H.; Suddala, S.; Schoenbach, K. H.

    2003-10-01

    Direct current microhollow cathode discharges (MHCDs) have been operated in air, nitrogen and oxygen at pressures of one atmosphere. The electrodes are 250 μm thick molybdenum foils, separated by an alumina insulator of the same thickness. A cylindrical hole with a diameter in the 100 μm range is drilled through all layers. By flowing gases at high pressure through this hole, plasma jets with radial dimensions on the same order as the microhole dimensions, and with lengths of up to one centimeter are generated. The gas temperature in these jets was measured by means of a micro-thermocouple. The lowest temperatures of close to room temperature were measured when the flow changed from laminar to turbulent. The results of spectral emission and absorption studies indicate high concentrations of byproducts, such as ozone, when the discharge is operated in air or oxygen. This work is supported by the U.S Air Force Office of Scientific Research (AFOSR).

  7. A handheld low temperature atmospheric pressure air plasma gun for nanomaterial synthesis in liquid phase

    NASA Astrophysics Data System (ADS)

    Yu, Shuang; Wang, Kaile; Zuo, Shasha; Liu, Jiahui; Zhang, Jue; Fang, Jing

    2015-10-01

    A handheld low temperature atmospheric pressure air plasma gun based on a dielectric barrier structure with hollow electrodes was proposed. The portable plasma gun with an embedded mini air pump was driven by a 12 V direct voltage battery. The air plasma jet generated from the gun could be touched without a common shock hazard. Besides working in air, the plasma gun can also work in water. The diagnostic result of optical emission spectroscopy showed the difference in reactive species of air plasma jet between in air and in water. The plasma gun was excited in 20 ml chloroauric acid aqueous solution with a concentration of 1.214 mM. A significant amount of gold nanoparticles were synthesized after 2 min continuous discharge. The plasma gun with these unique features is applicable in plasma medicine, etching, and s-nthesis of nanomaterials.

  8. A handheld low temperature atmospheric pressure air plasma gun for nanomaterial synthesis in liquid phase

    SciTech Connect

    Yu, Shuang; Wang, Kaile; Zuo, Shasha; Liu, Jiahui; Zhang, Jue Fang, Jing

    2015-10-15

    A handheld low temperature atmospheric pressure air plasma gun based on a dielectric barrier structure with hollow electrodes was proposed. The portable plasma gun with an embedded mini air pump was driven by a 12 V direct voltage battery. The air plasma jet generated from the gun could be touched without a common shock hazard. Besides working in air, the plasma gun can also work in water. The diagnostic result of optical emission spectroscopy showed the difference in reactive species of air plasma jet between in air and in water. The plasma gun was excited in 20 ml chloroauric acid aqueous solution with a concentration of 1.214 mM. A significant amount of gold nanoparticles were synthesized after 2 min continuous discharge. The plasma gun with these unique features is applicable in plasma medicine, etching, and s-nthesis of nanomaterials.

  9. Production of extended plasma channels in atmospheric air by amplitude-modulated UV radiation of GARPUN-MTW Ti : sapphire—KrF laser. Part 2. Accumulation of plasma electrons and electric discharge control

    NASA Astrophysics Data System (ADS)

    Zvorykin, V. D.; Ionin, Andrei A.; Levchenko, A. O.; Mesyats, Gennadii A.; Seleznev, L. V.; Sinitsyn, D. V.; Smetanin, Igor V.; Sunchugasheva, E. S.; Ustinovskii, N. N.; Shutov, A. V.

    2013-04-01

    The problem of the production of extended (~1 m) plasma channels is studied in atmospheric air by amplitude-modulated laser pulses of UV radiation, which are a superposition of a subpicosecond USP train amplified in a regenerative KrF amplifier with an unstable confocal resonator and a quasi-stationary lasing pulse. The USPs possess a high (0.2-0.3 TW) peak power and efficiently ionise oxygen molecules due to multiphoton ionisation, and the quasi-stationary lasing pulse, which has a relatively long duration (~100 ns), maintains the electron density at a level ne = (3-5) × 1014 cm—3 by suppressing electron attachment to oxygen. Experiments in laser triggering of high-voltage electric discharges suggest that the use of combined pulses results in a significant lowering of the breakdown threshold and enables controlling the discharge trajectory with a higher efficiency in comparison with smooth pulses. It was shown that controlled breakdowns may develop with a delay of tens of microseconds relative to the laser pulse, which is many orders of magnitude greater than the lifetime of free electrons in the laser-induced plasma. We propose a mechanism for this breakdown, which involves speeding-up of the avalanche ionisation of the air by negative molecular oxygen ions with a low electron binding energy (~0.5 eV) and a long lifetime (~1 ms), which are produced upon cessation of the laser pulse.

  10. Modeling of low-temperature plasmas generated using laser-induced breakdown spectroscopy: the ChemCam diagnostic tool on the Mars Science Laboratory Rover

    NASA Astrophysics Data System (ADS)

    Colgan, James

    2016-05-01

    We report on efforts to model the low-temperature plasmas generated using laser-induced breakdown spectroscopy (LIBS). LIBS is a minimally invasive technique that can quickly and efficiently determine the elemental composition of a target and is employed in an extremely wide range of applications due to its ease of use and fast turnaround. In particular, LIBS is the diagnostic tool used by the ChemCam instrument on the Mars Science Laboratory rover Curiosity. In this talk, we report on the use of the Los Alamos plasma modeling code ATOMIC to simulate LIBS plasmas, which are typically at temperatures of order 1 eV and electron densities of order 10 16 - 17 cm-3. At such conditions, these plasmas are usually in local-thermodynamic equilibrium (LTE) and normally contain neutral and singly ionized species only, which then requires that modeling must use accurate atomic structure data for the element under investigation. Since LIBS devices are often employed in a very wide range of applications, it is therefore desirable to have accurate data for most of the elements in the periodic table, ideally including actinides. Here, we discuss some recent applications of our modeling using ATOMIC that have explored the plasma physics aspects of LIBS generated plasmas, and in particular discuss the modeling of a plasma formed from a basalt sample used as a ChemCam standard1. We also highlight some of the more general atomic physics challenges that are encountered when attempting to model low-temperature plasmas. The Los Alamos National Laboratory is operated by Los Alamos National Security, LLC for the National Nuclear Security Administration of the U.S. Department of Energy under Contract No. DE-AC5206NA25396. Work performed in conjunction with D. P. Kilcrease, H. M. Johns, E. J. Judge, J. E. Barefield, R. C. Wiens, S. M. Clegg.

  11. Size effects in electronic and breakdown processes during barrier electric discharge in disperse systems

    NASA Astrophysics Data System (ADS)

    Aliev, M. M.; Zelenkova, E. A.

    2009-05-01

    The differences in the breakdown characteristics of barrier electric discharge (BED) in air and disperse systems (air + ZrO2) at 77 and 300 K are determined by polarization, plasma-forming medium charge deposition on the ZrO2 surface, and surface effects on the duration and mechanism of electron avalanches changing with the sizes of air voids between oxide surfaces ( E/ P ˜ const, T ˜ const).

  12. Analysis of organic vapors with laser induced breakdown spectroscopy

    SciTech Connect

    Nozari, Hadi; Tavassoli, Seyed Hassan; Rezaei, Fatemeh

    2015-09-15

    In this paper, laser induced breakdown spectroscopy (LIBS) is utilized in the study of acetone, ethanol, methanol, cyclohexane, and nonane vapors. Carbon, hydrogen, oxygen, and nitrogen atomic emission spectra have been recorded following laser-induced breakdown of the organic vapors that are mixed with air inside a quartz chamber at atmospheric pressure. The plasma is generated with focused, Q-switched Nd:YAG radiation at the wavelength of 1064 nm. The effects of ignition and vapor pressure are discussed in view of the appearance of the emission spectra. The recorded spectra are proportional to the vapor pressure in air. The hydrogen and oxygen contributions diminish gradually with consecutive laser-plasma events without gas flow. The results show that LIBS can be used to characterize organic vapor.

  13. Analysis of organic vapors with laser induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Nozari, Hadi; Rezaei, Fatemeh; Tavassoli, Seyed Hassan

    2015-09-01

    In this paper, laser induced breakdown spectroscopy (LIBS) is utilized in the study of acetone, ethanol, methanol, cyclohexane, and nonane vapors. Carbon, hydrogen, oxygen, and nitrogen atomic emission spectra have been recorded following laser-induced breakdown of the organic vapors that are mixed with air inside a quartz chamber at atmospheric pressure. The plasma is generated with focused, Q-switched Nd:YAG radiation at the wavelength of 1064 nm. The effects of ignition and vapor pressure are discussed in view of the appearance of the emission spectra. The recorded spectra are proportional to the vapor pressure in air. The hydrogen and oxygen contributions diminish gradually with consecutive laser-plasma events without gas flow. The results show that LIBS can be used to characterize organic vapor.

  14. Amplitude-temporal characteristics of a supershort avalanche electron beam generated during subnanosecond breakdown in air and nitrogen

    NASA Astrophysics Data System (ADS)

    Tarasenko, V. F.; Baksht, E. Kh.; Beloplotov, D. V.; Burachenko, A. G.; Lomaev, M. I.

    2016-04-01

    The amplitude-temporal characteristics of a supershort avalanche electron beam (SAEB) with an amplitude of up to 100 A, as well as of the breakdown voltage and discharge current, are studied experimentally with a picosecond time resolution. The waveforms of discharge and SAEB currents are synchronized with those of the voltage pulses. It is shown that the amplitude-temporal characteristics of the SAEB depend on the gap length and the designs of the gas diode and cathode. The mechanism for the generation of runaway electron beams in atmospheric-pressure gases is analyzed on the basis of the obtained experimental data.

  15. Surface modification of PE film by DBD plasma in air

    NASA Astrophysics Data System (ADS)

    Ren, C.-S.; Wang, K.; Nie, Q.-Y.; Wang, D.-Z.; Guo, S.-H.

    2008-12-01

    In this paper, surface modification of polyethylene (PE) films is studied by dielectric barrier discharge plasma treatment in air. The treated samples were examined by water contact angle measurement, calculation of surface free energy, Fourier transform infrared attenuated total reflection spectroscopy (FTIR-ATR), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). The water contact angle changes from the original value of 93.2° to the minimum value of 53.3° and surface free energy increases from 27.3 to 51.89 J/m 2 after treatment time of 50 s. Both ATR and XPS show some oxidized species are introduced into the sample surface by the plasma treatment and that the change tendencies of the water contact angle and surface free energy with the treatment time are the same as that of the oxygen concentration on the treated sample surface. Cu films were deposited on the treated and untreated PE surfaces. The peel adhesive strength between the Cu film and the treated sample is 1.5 MPa, whereas the value is only 0.8 MPa between the Cu film and the untreated PE. SEM pictures show that the Cu film deposited on the plasma treated PE surface is smooth and the crystal grain is smaller, contrarily the Cu film on the untreated PE surface is rough and the crystal grain is larger.

  16. Magnetic Ignition of Pulsed Gas Discharges in Air of Low Pressure in a Coaxial Plasma Gun

    NASA Technical Reports Server (NTRS)

    Thom, Karlheinz; Norwood, Joseph, Jr.

    1961-01-01

    The effect of an axial magnetic field on the breakdown voltage of a coaxial system of electrodes has been investigated by earlier workers. For low values of gas pressure times electrode spacing, the breakdown voltage is decreased by the application of the magnetic field. The electron cyclotron radius now assumes the role held by the mean free path in nonmagnetic discharges and the breakdown voltage becomes a function of the magnetic flux density. In this paper the dependence of the formative time lag as a function of the magnetic flux density is established and the feasibility of using a magnetic field for igniting high-voltage, high-current discharges is shown through theory and experiment. With a 36 microfarad capacitor bank charged to 48,000 volts, a peak current of 1.3 x 10( exp 6) amperes in a coaxial type of plasma gun was achieved with a current rise time of only 2 microseconds.

  17. Task breakdown

    NASA Technical Reports Server (NTRS)

    Pavlich, Jane

    1990-01-01

    The topics concerning the Center for Space Construction (CSC) space construction breakdown structure are presented in viewgraph form. It is concluded that four components describe a task -- effecting, information gathering, analysis, and regulation; uncertainties effect the relative amount of information gathering and analysis that occurs; and that task timing requirements drive the 'location in time' of cognition.

  18. Dynamics of ionization processes in high-pressure nitrogen, air, and SF6 during a subnanosecond breakdown initiated by runaway electrons

    NASA Astrophysics Data System (ADS)

    Tarasenko, V. F.; Beloplotov, D. V.; Lomaev, M. I.

    2015-10-01

    The dynamics of ionization processes in high-pressure nitrogen, air, and SF6 during breakdown of a gap with a nonuniform distribution of the electric field by nanosecond high-voltage pulses was studied experimentally. Measurements of the amplitude and temporal characteristics of a diffuse discharge and its radiation with a subnanosecond time resolution have shown that, at any polarity of the electrode with a small curvature radius, breakdown of the gap occurs via two ionization waves, the first of which is initiated by runaway electrons. For a voltage pulse with an ˜500-ps front, UV radiation from different zones of a diffuse discharge is measured with a subnanosecond time resolution. It is shown that the propagation velocity of the first ionization wave increases after its front has passed one-half of the gap, as well as when the pressure in the discharge chamber is reduced and/or when SF6 is replaced with air or nitrogen. It is found that, at nitrogen pressures of 0.4 and 0.7 MPa and the positive polarity of the high-voltage electrode with a small curvature radius, the ionization wave forms with a larger (˜30 ps) time delay with respect to applying the voltage pulse to the gap than at the negative polarity. The velocity of the second ionization wave propagating from the plane electrode is measured. In a discharge in nitrogen at a pressure of 0.7 MPa, this velocity is found to be ˜10 cm/ns. It is shown that, as the nitrogen pressure increases to 0.7 MPa, the propagation velocity of the front of the first ionization wave at the positive polarity of the electrode with a small curvature radius becomes lower than that at the negative polarity.

  19. Dynamics of ionization processes in high-pressure nitrogen, air, and SF{sub 6} during a subnanosecond breakdown initiated by runaway electrons

    SciTech Connect

    Tarasenko, V. F. Beloplotov, D. V.; Lomaev, M. I.

    2015-10-15

    The dynamics of ionization processes in high-pressure nitrogen, air, and SF{sub 6} during breakdown of a gap with a nonuniform distribution of the electric field by nanosecond high-voltage pulses was studied experimentally. Measurements of the amplitude and temporal characteristics of a diffuse discharge and its radiation with a subnanosecond time resolution have shown that, at any polarity of the electrode with a small curvature radius, breakdown of the gap occurs via two ionization waves, the first of which is initiated by runaway electrons. For a voltage pulse with an ∼500-ps front, UV radiation from different zones of a diffuse discharge is measured with a subnanosecond time resolution. It is shown that the propagation velocity of the first ionization wave increases after its front has passed one-half of the gap, as well as when the pressure in the discharge chamber is reduced and/or when SF{sub 6} is replaced with air or nitrogen. It is found that, at nitrogen pressures of 0.4 and 0.7 MPa and the positive polarity of the high-voltage electrode with a small curvature radius, the ionization wave forms with a larger (∼30 ps) time delay with respect to applying the voltage pulse to the gap than at the negative polarity. The velocity of the second ionization wave propagating from the plane electrode is measured. In a discharge in nitrogen at a pressure of 0.7 MPa, this velocity is found to be ∼10 cm/ns. It is shown that, as the nitrogen pressure increases to 0.7 MPa, the propagation velocity of the front of the first ionization wave at the positive polarity of the electrode with a small curvature radius becomes lower than that at the negative polarity.

  20. Age-specific discrimination of blood plasma samples of healthy and ovarian cancer prone mice using laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Melikechi, Noureddine; Markushin, Yuri; Connolly, Denise C.; Lasue, Jeremie; Ewusi-Annan, Ebo; Makrogiannis, Sokratis

    2016-09-01

    Epithelial ovarian cancer (EOC) mortality rates are strongly correlated with the stage at which it is diagnosed. Detection of EOC prior to its dissemination from the site of origin is known to significantly improve the patient outcome. However, there are currently no effective methods for early detection of the most common and lethal subtype of EOC. We sought to determine whether laser-induced breakdown spectroscopy (LIBS) and classification techniques such as linear discriminant analysis (LDA) and random forest (RF) could classify and differentiate blood plasma specimens from transgenic mice with ovarian carcinoma and wild type control mice. Herein we report results using this approach to distinguish blood plasma samples obtained from serially bled (at 8, 12, and 16 weeks) tumor-bearing TgMISIIR-TAg transgenic and wild type cancer-free littermate control mice. We have calculated the age-specific accuracy of classification using 18,000 laser-induced breakdown spectra of the blood plasma samples from tumor-bearing mice and wild type controls. When the analysis is performed in the spectral range 250 nm to 680 nm using LDA, these are 76.7 (± 2.6)%, 71.2 (± 1.3)%, and 73.1 (± 1.4)%, for the 8, 12 and 16 weeks. When the RF classifier is used, we obtain values of 78.5 (± 2.3)%, 76.9 (± 2.1)% and 75.4 (± 2.0)% in the spectral range of 250 nm to 680 nm, and 81.0 (± 1.8)%, 80.4 (± 2.1)% and 79.6 (± 3.5)% in 220 nm to 850 nm. In addition, we report, the positive and negative predictive values of the classification of the two classes of blood plasma samples. The approach used in this study is rapid, requires only 5 μL of blood plasma, and is based on the use of unsupervised and widely accepted multivariate analysis algorithms. These findings suggest that LIBS and multivariate analysis may be a novel approach for detecting EOC.

  1. Investigation of heavy-metal accumulation in selected plant samples using laser induced breakdown spectroscopy and laser ablation inductively coupled plasma mass spectrometry

    NASA Astrophysics Data System (ADS)

    Galiová, M.; Kaiser, J.; Novotný, K.; Novotný, J.; Vaculovič, T.; Liška, M.; Malina, R.; Stejskal, K.; Adam, V.; Kizek, R.

    2008-12-01

    Single-pulse Laser-Induced Breakdown Spectroscopy (LIBS) and Laser-Ablation Inductively Coupled Plasma Mass-Spectrometry (LA-ICP-MS) were applied for mapping the silver and copper distribution in Helianthus Annuus L. samples treated with contaminant in controlled conditions. For Ag and Cu detection the 328.07 nm Ag(I) and 324.75 nm Cu(I) lines were used, respectively. The LIBS experimental conditions (mainly the laser energy and the observation window) were optimized in order to avoid self-absorption effect in the measured spectra. In the LA-ICP-MS analysis the Ag 107 and Cu 63 isotopes were detected. The capability of these two analytical techniques for high-resolution mapping of selected trace chemical elements was demonstrated.

  2. Plasma-activated air mediates plasmid DNA delivery in vivo

    PubMed Central

    Edelblute, Chelsea M; Heller, Loree C; Malik, Muhammad A; Bulysheva, Anna; Heller, Richard

    2016-01-01

    Plasma-activated air (PAA) provides a noncontact DNA transfer platform. In the current study, PAA was used for the delivery of plasmid DNA in a 3D human skin model, as well as in vivo. Delivery of plasmid DNA encoding luciferase to recellularized dermal constructs was enhanced, resulting in a fourfold increase in luciferase expression over 120 hours compared to injection only (P < 0.05). Delivery of plasmid DNA encoding green fluorescent protein (GFP) was confirmed in the epidermal layers of the construct. In vivo experiments were performed in BALB/c mice, with skin as the delivery target. PAA exposure significantly enhanced luciferase expression levels 460-fold in exposed sites compared to levels obtained from the injection of plasmid DNA alone (P < 0.001). Expression levels were enhanced when the plasma reactor was positioned more distant from the injection site. Delivery of plasmid DNA encoding GFP to mouse skin was confirmed by immunostaining, where a 3-minute exposure at a 10 mm distance displayed delivery distribution deep within the dermal layers compared to an exposure at 3 mm where GFP expression was localized within the epidermis. Our findings suggest PAA-mediated delivery warrants further exploration as an alternative approach for DNA transfer for skin targets. PMID:27110584

  3. Plasma-activated air mediates plasmid DNA delivery in vivo.

    PubMed

    Edelblute, Chelsea M; Heller, Loree C; Malik, Muhammad A; Bulysheva, Anna; Heller, Richard

    2016-01-01

    Plasma-activated air (PAA) provides a noncontact DNA transfer platform. In the current study, PAA was used for the delivery of plasmid DNA in a 3D human skin model, as well as in vivo. Delivery of plasmid DNA encoding luciferase to recellularized dermal constructs was enhanced, resulting in a fourfold increase in luciferase expression over 120 hours compared to injection only (P < 0.05). Delivery of plasmid DNA encoding green fluorescent protein (GFP) was confirmed in the epidermal layers of the construct. In vivo experiments were performed in BALB/c mice, with skin as the delivery target. PAA exposure significantly enhanced luciferase expression levels 460-fold in exposed sites compared to levels obtained from the injection of plasmid DNA alone (P < 0.001). Expression levels were enhanced when the plasma reactor was positioned more distant from the injection site. Delivery of plasmid DNA encoding GFP to mouse skin was confirmed by immunostaining, where a 3-minute exposure at a 10 mm distance displayed delivery distribution deep within the dermal layers compared to an exposure at 3 mm where GFP expression was localized within the epidermis. Our findings suggest PAA-mediated delivery warrants further exploration as an alternative approach for DNA transfer for skin targets. PMID:27110584

  4. Cold atmospheric air plasma jet for medical applications

    NASA Astrophysics Data System (ADS)

    Kolb, Juergen F.; Price, Robert O.; Stacey, Michael; Swanson, R. James; Bowman, Angela; Chiavarini, Robert L.; Schoenbach, Karl H.

    2008-10-01

    By flowing ambient air through the discharge channel of a microhollow cathode geometry, we were able to sustain a stable 1.5-2 cm long afterglow plasma jet with dc voltages of only a few hundred volts. The temperature in this expelled afterglow plasma is close to room temperature. Emission spectra show atomic oxygen, hydroxyl ions and various nitrogen compounds. The low heavy-particle temperature allows us to use this exhaust stream on biological samples and tissues without thermal damage. The high levels of reactive species suggest an effective treatment for pathological skin conditions caused, in particular, by infectious agents. In first experiments, we have successfully tested the efficacy on Candida kefyr (a yeast), E.coli, and a matching E.coli strain-specific virus. All pathogens investigated responded well to the treatment. In the yeast case, complete eradication of the organism in the treated area could be achieved with an exposure of 90 seconds at a distance of 5 mm. A 10-fold increase of exposure, to 900 seconds caused no observable damage to murine integument.

  5. Common versus noble Bacillus subtilis differentially responds to air and argon gas plasma.

    PubMed

    Winter, Theresa; Bernhardt, Jörg; Winter, Jörn; Mäder, Ulrike; Schlüter, Rabea; Weltmann, Klaus-Dieter; Hecker, Michael; Kusch, Harald

    2013-09-01

    The applications of low-temperature plasma are not only confined to decontamination and sterilization but are also found in the medical field in terms of wound and skin treatment. For the improvement of already established and also for new plasma techniques, in-depth knowledge on the interactions between plasma and microorganism is essential. In an initial study, the interaction between growing Bacillus subtilis and argon plasma was investigated by using a growth chamber system suitable for low-temperature gas plasma treatment of bacteria in liquid medium. In this follow-up investigation, a second kind of plasma treatment-namely air plasma-was applied. With combined proteomic and transcriptomic analyses, we were able to investigate the plasma-specific stress response of B. subtilis toward not only argon but also air plasma. Besides an overlap of cellular responses due to both argon and air plasma treatment (DNA damage and oxidative stress), a variety of gas-dependent cellular responses such as growth retardation and morphological changes were observed. Only argon plasma treatments lead to a phosphate starvation response whereas air plasma induced the tryptophan operon implying damage by photooxidation. Biological findings were supported by the detection of reactive plasma species by optical emission spectroscopy and Fourier transformed infrared spectroscopy measurements.

  6. Common versus noble Bacillus subtilis differentially responds to air and argon gas plasma.

    PubMed

    Winter, Theresa; Bernhardt, Jörg; Winter, Jörn; Mäder, Ulrike; Schlüter, Rabea; Weltmann, Klaus-Dieter; Hecker, Michael; Kusch, Harald

    2013-09-01

    The applications of low-temperature plasma are not only confined to decontamination and sterilization but are also found in the medical field in terms of wound and skin treatment. For the improvement of already established and also for new plasma techniques, in-depth knowledge on the interactions between plasma and microorganism is essential. In an initial study, the interaction between growing Bacillus subtilis and argon plasma was investigated by using a growth chamber system suitable for low-temperature gas plasma treatment of bacteria in liquid medium. In this follow-up investigation, a second kind of plasma treatment-namely air plasma-was applied. With combined proteomic and transcriptomic analyses, we were able to investigate the plasma-specific stress response of B. subtilis toward not only argon but also air plasma. Besides an overlap of cellular responses due to both argon and air plasma treatment (DNA damage and oxidative stress), a variety of gas-dependent cellular responses such as growth retardation and morphological changes were observed. Only argon plasma treatments lead to a phosphate starvation response whereas air plasma induced the tryptophan operon implying damage by photooxidation. Biological findings were supported by the detection of reactive plasma species by optical emission spectroscopy and Fourier transformed infrared spectroscopy measurements. PMID:23794223

  7. Air pollution and children: neural and tight junction antibodies and combustion metals, the role of barrier breakdown and brain immunity in neurodegeneration.

    PubMed

    Calderón-Garcidueñas, Lilian; Vojdani, Aristo; Blaurock-Busch, Eleonore; Busch, Yvette; Friedle, Albrecht; Franco-Lira, Maricela; Sarathi-Mukherjee, Partha; Martínez-Aguirre, Xavier; Park, Su-Bin; Torres-Jardón, Ricardo; D'Angiulli, Amedeo

    2015-01-01

    Millions of children are exposed to concentrations of air pollutants, including fine particulate matter (PM2.5), above safety standards. In the Mexico City Metropolitan Area (MCMA) megacity, children show an early brain imbalance in oxidative stress, inflammation, innate and adaptive immune response-associated genes, and blood-brain barrier breakdown. We investigated serum and cerebrospinal fluid (CSF) antibodies to neural and tight junction proteins and environmental pollutants in 139 children ages 11.91 ± 4.2 y with high versus low air pollution exposures. We also measured metals in serum and CSF. MCMA children showed significantly higher serum actin IgG, occludin/zonulin 1 IgA, IgG, myelin oligodendrocyte glycoprotein IgG and IgM (p < 0.01), myelin basic protein IgA and IgG, S-100 IgG and IgM, and cerebellar IgG (p < 0.001). Serum IgG antibodies to formaldehyde, benzene, and bisphenol A, and concentrations of Ni and Cd were significantly higher in exposed children (p < 0.001). CSF MBP antibodies and nickel concentrations were higher in MCMA children (p = 0.03). Air pollution exposure damages epithelial and endothelial barriers and is a robust trigger of tight junction and neural antibodies. Cryptic 'self' tight junction antigens can trigger an autoimmune response potentially contributing to the neuroinflammatory and Alzheimer and Parkinson's pathology hallmarks present in megacity children. The major factor determining the impact of neural antibodies is the integrity of the blood-brain barrier. Defining the air pollution linkage of the brain/immune system interactions and damage to physical and immunological barriers with short and long term neural detrimental effects to children's brains ought to be of pressing importance for public health. PMID:25147109

  8. Air pollution and children: neural and tight junction antibodies and combustion metals, the role of barrier breakdown and brain immunity in neurodegeneration.

    PubMed

    Calderón-Garcidueñas, Lilian; Vojdani, Aristo; Blaurock-Busch, Eleonore; Busch, Yvette; Friedle, Albrecht; Franco-Lira, Maricela; Sarathi-Mukherjee, Partha; Martínez-Aguirre, Xavier; Park, Su-Bin; Torres-Jardón, Ricardo; D'Angiulli, Amedeo

    2015-01-01

    Millions of children are exposed to concentrations of air pollutants, including fine particulate matter (PM2.5), above safety standards. In the Mexico City Metropolitan Area (MCMA) megacity, children show an early brain imbalance in oxidative stress, inflammation, innate and adaptive immune response-associated genes, and blood-brain barrier breakdown. We investigated serum and cerebrospinal fluid (CSF) antibodies to neural and tight junction proteins and environmental pollutants in 139 children ages 11.91 ± 4.2 y with high versus low air pollution exposures. We also measured metals in serum and CSF. MCMA children showed significantly higher serum actin IgG, occludin/zonulin 1 IgA, IgG, myelin oligodendrocyte glycoprotein IgG and IgM (p < 0.01), myelin basic protein IgA and IgG, S-100 IgG and IgM, and cerebellar IgG (p < 0.001). Serum IgG antibodies to formaldehyde, benzene, and bisphenol A, and concentrations of Ni and Cd were significantly higher in exposed children (p < 0.001). CSF MBP antibodies and nickel concentrations were higher in MCMA children (p = 0.03). Air pollution exposure damages epithelial and endothelial barriers and is a robust trigger of tight junction and neural antibodies. Cryptic 'self' tight junction antigens can trigger an autoimmune response potentially contributing to the neuroinflammatory and Alzheimer and Parkinson's pathology hallmarks present in megacity children. The major factor determining the impact of neural antibodies is the integrity of the blood-brain barrier. Defining the air pollution linkage of the brain/immune system interactions and damage to physical and immunological barriers with short and long term neural detrimental effects to children's brains ought to be of pressing importance for public health.

  9. Secondary plasma formation after single pulse laser ablation underwater and its advantages for laser induced breakdown spectroscopy (LIBS).

    PubMed

    Gavrilović, M R; Cvejić, M; Lazic, V; Jovićević, S

    2016-06-01

    In this work we present studies of spatial and temporal plasma evolution after single pulse ablation of an aluminium target in water. The laser ablation was performed using 20 ns long pulses emitted at 1064 nm. The plasma characterization was performed by fast photography, the Schlieren technique, shadowgraphy and optical emission spectroscopy. The experimental results indicate the existence of two distinct plasma stages: the first stage has a duration of approximately 500 ns from the laser pulse, and is followed by a new plasma growth starting from the crater center. The secondary plasma slowly evolves inside the growing vapor bubble, and its optical emission lasts over several tens of microseconds. Later, the hot glowing particles, trapped inside the vapor cavity, were detected during the whole cycle of the bubble, where the first collapse occurs after 475 μs from the laser pulse. Differences in the plasma properties during the two evolution phases are discussed, with an accent on the optical emission since its detection is of primary importance for LIBS. Here we demonstrate that the LIBS signal quality in single pulse excitation underwater can be greatly enhanced by detecting only the secondary plasma emission, and also by applying long acquisition gates (in the order of 10-100 μs). The presented results are of great importance for LIBS measurements inside a liquid environment, since they prove that a good analytical signal can be obtained by using nanosecond pulses from a single commercial laser source and by employing cost effective, not gated detectors. PMID:27180875

  10. Qualitative and quantitative spectro-chemical analysis of dates using UV-pulsed laser induced breakdown spectroscopy and inductively coupled plasma mass spectrometry.

    PubMed

    Mehder, A O; Habibullah, Y B; Gondal, M A; Baig, Umair

    2016-08-01

    Laser Induced Breakdown Spectroscopy (LIBS) is demonstrated for the spectral analysis of nutritional and toxic elements present in several varieties of date fruit samples available in the Saudi Arabia market. The method analyzes the optical emission of a test sample when subjected to pulsed laser ablation. In this demonstration, our primary focus is on calcium (Ca) and magnesium (Mg), as nutritional elements, and on chromium (Cr), as a toxic element. The local thermodynamic equilibrium (LTE) condition was confirmed prior to the elemental characterization of date samples to ensure accuracy of the LIBS analysis. This was achieved by measuring parameters associated with the plasma, such as the electron temperature and the electron number density. These plasma parameters aid interpretation of processes such as ionization, dissociation, and excitation occurring in the plasma plume formed by ablating the date palm sample. The minimum detection limit was established from calibration curves that involved plotting the LIBS signal intensity as a function of standard date samples with known concentrations. The concentration of Ca and Mg detected in different varieties of date samples was between 187 and 515 and 35-196mgL(-1) respectively, while Cr concentration measured between 1.72 and 7.76mgL(-1). In order to optimize our LIBS system, we have studied how the LIBS signal intensity depends on the incident laser energy and the delay time. In order to validate our LIBS analysis results, standard techniques such as inductively coupled plasma mass spectrometry (ICP-MS) were also applied on an identical (duplicate) date samples as those used for the LIBS analysis. The LIBS results exhibit remarkable agreement with those obtained from the ICP-MS analysis. In addition, the finger print wavelengths of other elements present in date samples were also identified and are reported here, which has not been previously reported, to the best of our knowledge.

  11. Qualitative and quantitative spectro-chemical analysis of dates using UV-pulsed laser induced breakdown spectroscopy and inductively coupled plasma mass spectrometry.

    PubMed

    Mehder, A O; Habibullah, Y B; Gondal, M A; Baig, Umair

    2016-08-01

    Laser Induced Breakdown Spectroscopy (LIBS) is demonstrated for the spectral analysis of nutritional and toxic elements present in several varieties of date fruit samples available in the Saudi Arabia market. The method analyzes the optical emission of a test sample when subjected to pulsed laser ablation. In this demonstration, our primary focus is on calcium (Ca) and magnesium (Mg), as nutritional elements, and on chromium (Cr), as a toxic element. The local thermodynamic equilibrium (LTE) condition was confirmed prior to the elemental characterization of date samples to ensure accuracy of the LIBS analysis. This was achieved by measuring parameters associated with the plasma, such as the electron temperature and the electron number density. These plasma parameters aid interpretation of processes such as ionization, dissociation, and excitation occurring in the plasma plume formed by ablating the date palm sample. The minimum detection limit was established from calibration curves that involved plotting the LIBS signal intensity as a function of standard date samples with known concentrations. The concentration of Ca and Mg detected in different varieties of date samples was between 187 and 515 and 35-196mgL(-1) respectively, while Cr concentration measured between 1.72 and 7.76mgL(-1). In order to optimize our LIBS system, we have studied how the LIBS signal intensity depends on the incident laser energy and the delay time. In order to validate our LIBS analysis results, standard techniques such as inductively coupled plasma mass spectrometry (ICP-MS) were also applied on an identical (duplicate) date samples as those used for the LIBS analysis. The LIBS results exhibit remarkable agreement with those obtained from the ICP-MS analysis. In addition, the finger print wavelengths of other elements present in date samples were also identified and are reported here, which has not been previously reported, to the best of our knowledge. PMID:27216665

  12. Aerosol-induced laser breakdown thresholds: wavelength dependence.

    PubMed

    Pinnick, R G; Chylek, P; Jarzembski, M; Creegan, E; Srivastava, V; Fernandez, G; Pendleton, J D; Biswas, A

    1988-03-01

    Aerosol-induced loser breakdown thresholds have been measured for liquid droplets at wavelengths lambda= 1.064, 0.532, 0.355, 0.266 microm using a Nd:YAG laser with 5-10-ns pulse duration. Breakdown thresholds are 2-3 orders of magnitude below those for clean air and range from 4 x 10(7) to 3 x 10(9) W cm(-2) for nominal 50-microm diam droplets, depending on laser wavelength and droplet composition. Thresholds decrease with decreasing wavelength; they also decrease for droplets having a higher real refractive index. For water droplets the breakdown threshold intensity varies approximately as lambda(0.5). The wavelength dependence of breakdown thresholds can be qualitatively explained by considering (1) the effect of enhancement of internal fields and energy density within and near droplets and (2) the increasing importance of multiphoton absorption processes at shorter wavelengths. Laser transmission losses through the breakdown plasma and observations of the suppression of stimulated Raman scattering by the addition of small quantitites of absorbing material to water and carbon tetrachloride droplets are also reported.

  13. Determination of plasma temperature and electron density of iron in iron slag samples using laser induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Hussain, T.; Gondal, M. A.; Shamraiz, M.

    2016-08-01

    Plasma temperature and electron density of iron in iron slag samples taken from a local plant is studied. Optimal experimental conditions were evaluated using Nd: YAG laser at 1064 nm. Some toxic elements were identified and quantitative measurements were also made. Plasma temperature and electron density were estimated using standard equations and well resolved iron spectral lines in the 229.06-358.11 nm region at 10, 20, 30 and 40 mJ laser pulse energy with 4.5 μs delay time. These parameters were found to increase with increase in laser pulse energy. The Boltzmann distribution and experimentally measured line intensities support the assumption that the laser-induced plasma was in local thermal equilibrium. It is worth mentioning that iron and steel sector generates tons of solid waste and residues annually containing variety of contaminants which can be harmful to the environment and therefore knowledge, proper analysis and investigation of such iron slag is important.

  14. On the difference between breakdown and quench voltages of argon plasma and its relation to 4p–4s atomic state transitions

    SciTech Connect

    Forati, Ebrahim Piltan, Shiva; Sievenpiper, Dan

    2015-02-02

    Using a relaxation oscillator circuit, breakdown (V{sub BD}) and quench (V{sub Q}) voltages of a DC discharge microplasma between two needle probes are measured. High resolution modified Paschen curves are obtained for argon microplasmas including a quench voltage curve representing the voltage at which the plasma turns off. It is shown that for a point to point microgap (e.g., the microgap between two needle probes) which describes many realistic microdevices, neither Paschen's law applies nor field emission is noticeable. Although normally V{sub BD} > V{sub Q,} it is observed that depending on environmental parameters of argon, such as pressure and the driving circuitry, plasma can exist in a different state with equal V{sub BD} and V{sub Q.} Using emission line spectroscopy, it is shown that V{sub BD} and V{sub Q} are equal if the atomic excitation by the electric field dipole moment dominantly leads to one of the argon's metastable states (4P{sub 5} in our study)

  15. Properties of thermal air plasma with admixing of copper and carbon

    NASA Astrophysics Data System (ADS)

    Fesenko, S.; Veklich, A.; Boretskij, V.; Cressault, Y.; Gleizes, A.; Teulet, Ph

    2014-11-01

    This paper deals with investigations of air plasma with admixing of copper and carbon. Model plasma source unit with real breaking arc was used for the simulation of real discharges, which can be occurred during sliding of Cu-C composite electrodes on copper wire at electromotive vehicles. The complex technique of plasma property studies is developed. From one hand, the radial profiles of temperature and electron density in plasma of electric arc discharge in air between Cu-C composite and copper electrodes in air flow were measured by optical spectroscopy techniques. From another hand, the radial profiles of electric conductivity of plasma mixture were calculated by solution of energy balance equation. It was assumed that the thermal conductivity of air plasma is not depending on copper or carbon vapor admixtures. The electron density is obtained from electric conductivity profiles by calculation in assumption of local thermodynamic equilibrium in plasma. Computed in such way radial profiles of electron density in plasma of electric arc discharge in air between copper electrodes were compared with experimentally measured profiles. It is concluded that developed techniques of plasma diagnostics can be reasonably used in investigations of thermal plasma with copper and carbon vapors.

  16. Breakdown of electrostatic predictions for the nonlinear dispersion relation of a stimulated Raman scattering driven plasma wave

    SciTech Connect

    Benisti, Didier; Gremillet, Laurent

    2008-03-15

    The kinetic nonlinear dispersion relation, and frequency shift {delta}{omega}{sub srs}, of a plasma wave driven by stimulated Raman scattering are presented. Our theoretical calculations are fully electromagnetic, and use an adiabatic expression for the electron susceptibility which accounts for the change in phase velocity as the wave grows. When k{lambda}{sub D} > or approx. 0.35 (k being the plasma wave number and {lambda}{sub D} the Debye length), {delta}{omega}{sub srs} is significantly larger than could be inferred by assuming that the wave is freely propagating. Our theory is in excellent agreement with 1D Eulerian Vlasov-Maxwell simulations when 0.3{<=}k{lambda}{sub D}{<=}0.58, and allows discussion of previously proposed mechanisms for Raman saturation. In particular, we find that no ''loss of resonance'' of the plasma wave would limit the Raman growth rate, and that saturation through a phase detuning between the plasma wave and the laser drive is mitigated by wave number shifts.

  17. Production of extended plasma channels in atmospheric air by amplitude-modulated UV radiation of GARPUN-MTW Ti : sapphire-KrF laser. Part 2. Accumulation of plasma electrons and electric discharge control

    SciTech Connect

    Zvorykin, V D; Ionin, Andrei A; Levchenko, A O; Mesyats, Gennadii A; Seleznev, L V; Sinitsyn, D V; Smetanin, Igor V; Sunchugasheva, E S; Ustinovskii, N N; Shutov, A V

    2013-04-30

    The problem of the production of extended ({approx}1 m) plasma channels is studied in atmospheric air by amplitude-modulated laser pulses of UV radiation, which are a superposition of a subpicosecond USP train amplified in a regenerative KrF amplifier with an unstable confocal resonator and a quasi-stationary lasing pulse. The USPs possess a high (0.2-0.3 TW) peak power and efficiently ionise oxygen molecules due to multiphoton ionisation, and the quasi-stationary lasing pulse, which has a relatively long duration ({approx}100 ns), maintains the electron density at a level n{sub e} = (3-5) Multiplication-Sign 10{sup 14} cm{sup -3} by suppressing electron attachment to oxygen. Experiments in laser triggering of high-voltage electric discharges suggest that the use of combined pulses results in a significant lowering of the breakdown threshold and enables controlling the discharge trajectory with a higher efficiency in comparison with smooth pulses. It was shown that controlled breakdowns may develop with a delay of tens of microseconds relative to the laser pulse, which is many orders of magnitude greater than the lifetime of free electrons in the laser-induced plasma. We propose a mechanism for this breakdown, which involves speeding-up of the avalanche ionisation of the air by negative molecular oxygen ions with a low electron binding energy ({approx}0.5 eV) and a long lifetime ({approx}1 ms), which are produced upon cessation of the laser pulse. (extreme light fields and their applications)

  18. Non-thermal plasma for air and water remediation.

    PubMed

    Hashim, Siti Aiasah; Samsudin, Farah Nadia Dayana Binti; Wong, Chiow San; Abu Bakar, Khomsaton; Yap, Seong Ling; Mohd Zin, Mohd Faiz

    2016-09-01

    A modular typed dielectric barrier discharge (DBD) device is designed and tested for air and water remediation. The module is made of a number of DBD tubes that can be arranged in series or parallel. Each of the DBD tubes comprises inner electrode enclosed with dielectric barrier and arranged as such to provide a gap for the passage of gases. Non-thermal plasma generated in the gap effectively creates gaseous chemical reactions. Its efficacy in the remediation of gas stream containing high NOx, similar to diesel emission and wastewater containing latex, are presented. A six tubes DBD module has successfully removed more than 80% of nitric oxide from the gas stream. In another arrangement, oxygen was fed into a two tubes DBD to generate ozone for treatment of wastewater. Samples of wastewater were collected from a treatment pond of a rubber vulcanization pilot plant. The water pollution load was evaluated by the chemical oxygen demand (COD) and biological oxygen demand (BOD5) values. Preliminary results showed some improvement (about 13%) on the COD after treatment and at the same time had increased the BOD5 by 42%. This results in higher BOD5/COD ratio after ozonation which indicate better biodegradability of the wastewater.

  19. Non-thermal plasma for air and water remediation.

    PubMed

    Hashim, Siti Aiasah; Samsudin, Farah Nadia Dayana Binti; Wong, Chiow San; Abu Bakar, Khomsaton; Yap, Seong Ling; Mohd Zin, Mohd Faiz

    2016-09-01

    A modular typed dielectric barrier discharge (DBD) device is designed and tested for air and water remediation. The module is made of a number of DBD tubes that can be arranged in series or parallel. Each of the DBD tubes comprises inner electrode enclosed with dielectric barrier and arranged as such to provide a gap for the passage of gases. Non-thermal plasma generated in the gap effectively creates gaseous chemical reactions. Its efficacy in the remediation of gas stream containing high NOx, similar to diesel emission and wastewater containing latex, are presented. A six tubes DBD module has successfully removed more than 80% of nitric oxide from the gas stream. In another arrangement, oxygen was fed into a two tubes DBD to generate ozone for treatment of wastewater. Samples of wastewater were collected from a treatment pond of a rubber vulcanization pilot plant. The water pollution load was evaluated by the chemical oxygen demand (COD) and biological oxygen demand (BOD5) values. Preliminary results showed some improvement (about 13%) on the COD after treatment and at the same time had increased the BOD5 by 42%. This results in higher BOD5/COD ratio after ozonation which indicate better biodegradability of the wastewater. PMID:27056469

  20. Modification of polysulfone porous hollow fiber membranes by air plasma treatment

    NASA Astrophysics Data System (ADS)

    Volkov, V. V.; Ibragimov, R. G.; Abdullin, I. Sh; Gallyamov, R. T.; Ovcharova, A. A.; Bildyukevich, A. V.

    2016-09-01

    Air plasma treatment was used to enhance the surface hydrophilic properties of the polysulfone porous hollow fiber membranes prepared via a dry-wet phase invertion technique in the free spinning mode in air. Membranes prepared had porous asymmetric structure with macroporous support on the shell side and fine-porous selective layer on the lumen side. The wettability of the inner membrane surfaces were checked by contact angle measurements and FTIR was used to compare the surfaces before and after plasma treatment. Membrane morphology was examined with confocal scanning laser microscopy (CSLM). Contact angle measurements confirm that air plasma treatment affords improvement in the wettability of polysulfone membranes and FTIR results show that air plasmas chemically modify the lumen side membrane surface, however, there is no significant change in membranes chemical structure after modification. CSLM data obtained, as well as gas permeability (He and CO2) measurements show that after plasma treatment pore etching occurs.

  1. Air plasma processing of poly(methyl methacrylate) micro-beads: Surface characterisations

    NASA Astrophysics Data System (ADS)

    Liu, Chaozong; Cui, Nai-Yi; Osbeck, Susan; Liang, He

    2012-10-01

    This paper reports the surface processing of poly(methyl methacrylate) (PMMA) micro-beads by using a rotary air plasma reactor, and its effects on surface properties. The surface properties, including surface wettability, surface chemistry and textures of the PMMA beads, were characterised. It was observed that the air plasma processing can improve the surface wettability of the PMMA microbeads significantly. A 15 min plasma processing can reduce the surface water contact angle of PMMA beads to about 50° from its original value of 80.3°. This was accompanied by about 8% increase in surface oxygen concentration as confirmed by XPS analysis. The optical profilometry examination revealed the air plasma processing resulted in a rougher surface that has a “delicate” surface texture. It is concluded that the surface chemistry and texture, induced by air plasma processing, co-contributed to the surface wettability improvement of PMMA micro-beads.

  2. [The correction to spectroscopic diagnostics of plasma jet with air engulfment].

    PubMed

    Zhao, Wen-hua; Tang, Huang-zai; Tian, Kuo; Zhang, Guan-zhong

    2004-04-01

    A high-resolution, multi-line spectroscopic diagnostic system was used to detect two spectral line intensities in plasma jet simultaneously. The temperature profiles of an arc plasma jet issued into atmosphere and the concentrations of the air engulfment in the plasma jet were experimentally determined by means of the line absolute intensity method in this paper. The temperature profiles were obtained in two cases: the air engulfment in the plasma jet being considered and not being considered. The comparison of temperatures obtained in these two cases illustrates that the air engulfment in the plasma jet has considerable influence on spectroscopic diagnostic results. The neglect of the air engulfment brings on error in the temperature diagnostics with the absolute line intensity method. Especially in the region far away from the exit of the nozzle, the error is obvious.

  3. A scaling model for plasma columns produced by CO2 laser-induced breakdown in a solenoidal field

    NASA Astrophysics Data System (ADS)

    Ahlborn, B.; Vlases, G. C.; Pietrzyk, Z. A.

    1982-12-01

    An analytical model is derived for the plasma cylinder produced by a long pulse (approximately microsec) CO2 laser of power p(l) (watts) which is incident upon neutral hydrogen imbedded in a strong axial magnetic field. Under certain conditions the leading edge of the plasma propagates away from the laser as an optical detonation, where the leading shock front fully ionizes the background gas, and the inverse bremsstrahlung absorption zone immediately behind it is equivalent to the chemical energy release zone in an ordinary detonation. The front velocity is V(od) = (3E(i)/m) to the 1/2 power, where E(i) is the ionization (and dissociation) energy. This velocity is in agreement with experiments and with certain stability considerations. Radial expansion takes place immediately behind the detonation front and reduces the density to about 1/3 of the initial filling gas density. Far behind the leading edge, the laser-produced plasma acquires an equilibrium radius and steady pressure, density, and temperature determined by a balance between laser energy absorption and conduction and radiation losses. The density profile maintains a shallow minimum on axis.

  4. Thermodynamic and Transport Properties of Real Air Plasma in Wide Range of Temperature and Pressure

    NASA Astrophysics Data System (ADS)

    Wang, Chunlin; Wu, Yi; Chen, Zhexin; Yang, Fei; Feng, Ying; Rong, Mingzhe; Zhang, Hantian

    2016-07-01

    Air plasma has been widely applied in industrial manufacture. In this paper, both dry and humid air plasmas' thermodynamic and transport properties are calculated in temperature 300-100000 K and pressure 0.1-100 atm. To build a more precise model of real air plasma, over 70 species are considered for composition. Two different methods, the Gibbs free energy minimization method and the mass action law method, are used to determinate the composition of the air plasma in a different temperature range. For the transport coefficients, the simplified Chapman-Enskog method developed by Devoto has been applied using the most recent collision integrals. It is found that the presence of CO2 has almost no effect on the properties of air plasma. The influence of H2O can be ignored except in low pressure air plasma, in which the saturated vapor pressure is relatively high. The results will serve as credible inputs for computational simulation of air plasma. supported by the National Key Basic Research Program of China (973 Program)(No. 2015CB251002), National Natural Science Foundation of China (Nos. 51521065, 51577145), the Science and Technology Project Funds of the Grid State Corporation (SGTYHT/13-JS-177), the Fundamental Research Funds for the Central Universities, and State Grid Corporation Project (GY71-14-004)

  5. Effects of Atmospheric Air Plasma Irradiation on pH of Water

    NASA Astrophysics Data System (ADS)

    Sarinont, Thapanut; Koga, Kazunori; Kitazaki, Satoshi; Uchida, Giichirou; Hayashi, Nobuya; Shiratani, Masaharu

    We have studied the effects of atmospheric air plasma irradiation to water using a scalable dielectric barrier discharge device. Measurements of the pH of water treated by the plasmas have shown the pH decreases due to peroxide molecules generated by plasma irradiation and depends on material of water container. We also found this plasma treated water has little effect on the growth enhancement on Radish sprouts compare with plasma irradiation on dry seeds and the plasma irradiation can affect them through the water buffer of 0.2 mm in thickness.

  6. Electrical Breakdown in Solids

    NASA Astrophysics Data System (ADS)

    Hjalmarson, Harold; Zutavern, Fred; Kambour, Kenneth; Moore, Chris; Mar, Alan

    During electron breakdown of a solid subjected to a large electric field, impact ionization causes growth of an electron-hole plasma. This growth process is opposed by Auger recombination of the electron-hole pairs. In our work, such breakdown is investigated by obtaining steady-state solutions to the Boltzmann equation. In these calculations, the carriers are heated by the electric field and cooled by phonon emission. Our results imply that breakdown may lead to high carrier-density current filaments. Conductive filaments have been observed in optically-triggered, high-power photoconductive semiconductor switch (PCSS) devices being developed at Sandia Labs. The relationship between the steady-state computed solutions to the observed filaments will be discussed in the presentation. This work was supported by the Laboratory Directed Research and Development program at Sandia National Laboratories. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under Contract DE-AC04-94AL85000.

  7. Characteristics of the calibration curves of copper for the rapid sorting of steel scrap by means of laser-induced breakdown spectroscopy under ambient air atmospheres.

    PubMed

    Kashiwakura, Shunsuke; Wagatsuma, Kazuaki

    2013-01-01

    For the rapid and precise sorting of steel scrap with relatively high contents of copper, laser-induced breakdown spectroscopy (LIBS) is a promising method. It has several advantages such that it can work under ambient air atmospheres, and specimens can be tested without any pretreatment, such as acid digestion, polishing of the surface of the specimens, etc. For the application of LIBS for actual steel scrap, we obtained emission spectra by an LIBS system, which was mainly comprised of an Nd:YAG laser, an Echelle-type spectrometer, and an ICCD detector. The standard reference materials (SRMs) of JISF FXS 350-352, which are Fe-Cu binary alloy and have certified concentrations of copper, were employed for making calibration lines. Considering spectral interferences from the emission lines of the iron matrix in the alloys, Cu I lines having wavelengths of 324.754 and 327.396 nm could be chosen. In five replicate measurements of each SRM, shorter delay times after laser irradiation and longer gate widths for detecting the transient emission signal are suggested to be the optimal experiment parameters. In the determination process, utilizing the calibration line from Cu I 327.396 nm was better because of less spectral interference. By using 200 pulsed laser shots for the measurement sequence, a limit of detection of 0.004 Cu at% could be obtained.

  8. Electron properties and air mixing in radio frequency driven argon plasma jets at atmospheric pressure

    SciTech Connect

    Gessel, Bram van; Bruggeman, Peter; Brandenburg, Ronny

    2013-08-05

    A time modulated radio frequency (RF) plasma jet operated with an Ar mixture is investigated by measuring the electron density and electron temperature using Thomson scattering. The measurements have been performed spatially resolved for two different electrode configurations and as a function of the plasma dissipated power and air concentration admixed to the Ar. Time resolved measurements of electron densities and temperatures during the RF cycle and after plasma power switch-off are presented. Furthermore, the influence of the plasma on the air entrainment into the effluent is studied using Raman scattering.

  9. Two-dimensional plasma grating by non-collinear femtosecond filament interaction in air

    SciTech Connect

    Liu Jia; Li Wenxue; Pan Haifeng; Zeng Heping

    2011-10-10

    We experimentally demonstrated that two-dimensional (2D) plasma gratings could be generated in air by nonlinear interaction of three femtosecond filaments. The intensity interference of non-collinearly overlapped filaments was self-projected along a relatively long distance and accompanied with a wavelength-scale periodic change of the refractive index in the encircling air due to periodic plasma density modulation. The 2D plasma gratings supported 2D diffraction of the generated third-harmonic pulses. By using in-line time-resolved holographic imaging and time-delayed diffraction, the 2D plasma gratings were evidenced to last a few tens picoseconds after the excitation pulses.

  10. Plasma-catalyst coupling for volatile organic compound removal and indoor air treatment: a review

    NASA Astrophysics Data System (ADS)

    Thevenet, F.; Sivachandiran, L.; Guaitella, O.; Barakat, C.; Rousseau, A.

    2014-06-01

    The first part of the review summarizes the problem of air pollution and related air-cleaning technologies. Volatile organic compounds in particular have various effects on health and their abatement is a key issue. Different ways to couple non-thermal plasmas with catalytic or adsorbing materials are listed. In particular, a comparison between in-plasma and post-plasma coupling is made. Studies dealing with plasma-induced heterogeneous reactivity are analysed, as well as the possible modifications of the catalyst surface under plasma exposure. As an alternative to the conventional and widely studied plasma-catalyst coupling, a sequential approach has been recently proposed whereby pollutants are first adsorbed onto the material, then oxidized by switching on the plasma. Such a sequential approach is reviewed in detail.

  11. An investigation of an underwater steam plasma discharge as alternative to air plasmas for water purification

    NASA Astrophysics Data System (ADS)

    Gucker, Sarah N.; Foster, John E.; Garcia, Maria C.

    2015-10-01

    An underwater steam plasma discharge, in which water itself is the ionizing media, is investigated as a means to introduce advanced oxidation species into contaminated water for the purpose of water purification. The steam discharge avoids the acidification observed with air discharges and also avoids the need for a feed gas, simplifying the system. Steam discharge operation did not result in a pH changes in the processing of water or simulated wastewater, with the actual pH remaining roughly constant during processing. Simulated wastewater has been shown to continue to decompose significantly after steam treatment, suggesting the presence of long-lived plasma produced radicals. During steam discharge operation, nitrate production is limited, and nitrite production was found to be below the detection threshold of (roughly 0.2 mg L-1). The discharge was operated over a broad range of deposited power levels, ranging from approximately 30 W to 300 W. Hydrogen peroxide production was found to scale with increasing power. Additionally, the hydrogen peroxide production efficiency of the discharge was found to be higher than many of the rates reported in the literature to date.

  12. High gradient RF breakdown studies

    NASA Astrophysics Data System (ADS)

    Laurent, Lisa Leanne

    Higher accelerating gradients are required by future demands for TeV electron linear colliders. With higher energy comes the challenge of handling stronger electromagnetic fields in the accelerator structures and in the microwave sources that supply the power. A limit on the maximum field gradient is imposed by rf electrical breakdown. Investigating methods to achieve higher gradients and to better understand the mechanisms involved in the rf breakdown process has been the focal point of this study. A systematic series of rf breakdown experiments have been conducted at Stanford Linear Accelerator Center utilizing a transmission cavity operating in the TM020 mode. A procedure was developed to examine the high gradient section of the cavity in an electron microscope. The results have revealed that breakdown asymmetry exists between opposing high gradient surfaces. During breakdown, a plasma formation is detected localized near the surface with no visible evidence of an arc traversing the gap. These findings support the theory that high frequency rf breakdown is a single surface phenomenon. Other results from this study have shown that breakdown can occur at relatively low voltages when surface irregularities exist and along grain boundaries. A series of steps have been developed through this study that have significantly reduced the number of breakdowns that occur along grain boundaries. Testing under various vacuum conditions (10-11--10 -5 Torr) have revealed that while the breakdown threshold remained the same, the field emitted current density increased by almost two orders of magnitude. This suggests that the total field emitted current density is not the critical parameter in the initiation of high frequency vacuum breakdown. In the course of this study, microparticles were carefully tracked before and after rf processing. The outcome of this research suggests that expensive cleanroom facilities may not offer any advantage over practicing good cleaning and

  13. Multivariate classification of edible salts: Simultaneous Laser-Induced Breakdown Spectroscopy and Laser-Ablation Inductively Coupled Plasma Mass Spectrometry Analysis

    NASA Astrophysics Data System (ADS)

    Lee, Yonghoon; Nam, Sang-Ho; Ham, Kyung-Sik; Gonzalez, Jhanis; Oropeza, Dayana; Quarles, Derrick; Yoo, Jonghyun; Russo, Richard E.

    2016-04-01

    Laser-Induced Breakdown Spectroscopy (LIBS) and Laser-Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS), both based on laser ablation sampling, can be employed simultaneously to obtain different chemical fingerprints from a sample. We demonstrated that this analysis approach can provide complementary information for improved classification of edible salts. LIBS could detect several of the minor metallic elements along with Na and Cl, while LA-ICP-MS spectra were used to measure non-metallic and trace heavy metal elements. Principal component analysis using LIBS and LA-ICP-MS spectra showed that their major spectral variations classified the sample salts in different ways. Three classification models were developed by using partial least squares-discriminant analysis based on the LIBS, LA-ICP-MS, and their fused data. From the cross-validation performances and confusion matrices of these models, the minor metallic elements (Mg, Ca, and K) detected by LIBS and the non-metallic (I) and trace heavy metal (Ba, W, and Pb) elements detected by LA-ICP-MS provided complementary chemical information to distinguish particular salt samples.

  14. Quantitative analysis of deuterium in zircaloy using double-pulse laser-induced breakdown spectrometry (LIBS) and helium gas plasma without a sample chamber.

    PubMed

    Suyanto, H; Lie, Z S; Niki, H; Kagawa, K; Fukumoto, K; Rinda, Hedwig; Abdulmadjid, S N; Marpaung, A M; Pardede, M; Suliyanti, M M; Hidayah, A N; Jobiliong, E; Lie, T J; Tjia, M O; Kurniawan, K H

    2012-03-01

    A crucial safety measure to be strictly observed in the operation of heavy-water nuclear power plants is the mandatory regular inspection of the concentration of deuterium penetrated into the zircaloy fuel vessels. The existing standard method requires a tedious, destructive, and costly sample preparation process involving the removal of the remaining fuel in the vessel and melting away part of the zircaloy pipe. An alternative method of orthogonal dual-pulse laser-induced breakdown spectrometry (LIBS) is proposed by employing flowing atmospheric helium gas without the use of a sample chamber. The special setup of ps and ns laser systems, operated for the separate ablation of the sample target and the generation of helium gas plasma, respectively, with properly controlled relative timing, has succeeded in producing the desired sharp D I 656.10 nm emission line with effective suppression of the interfering H I 656.28 nm emission by operating the ps ablation laser at very low output energy of 26 mJ and 1 μs ahead of the helium plasma generation. Under this optimal experimental condition, a linear calibration line is attained with practically zero intercept and a 20 μg/g detection limit for D analysis of zircaloy sample while creating a crater only 10 μm in diameter. Therefore, this method promises its potential application for the practical, in situ, and virtually nondestructive quantitative microarea analysis of D, thereby supporting the more-efficient operation and maintenance of heavy-water nuclear power plants. Furthermore, it will also meet the anticipated needs of future nuclear fusion power plants, as well as other important fields of application in the foreseeable future.

  15. Enhanced laser-induced plasma channels in air

    NASA Astrophysics Data System (ADS)

    Yanlei, Zuo; Xiaofeng, Wei; Kainan, Zhou; Xiaoming, Zeng; Jingqin, Su; Zhihong, Jiao; Na, Xie; Zhaohui, Wu

    2016-03-01

    Plasma is a significant medium in high-energy density physics since it can hardly be damaged. For some applications such as plasma based backward Raman amplification (BRA), uniform high-density and large-scale plasma channels are required. In the previous experiment, the plasma transverse diameter and density are 50-200 μm and 1-2 × 1019 cm-3, here we enhance them to 0.8 mm and 8 × 1019 cm-3, respectively. Moreover, the gradient plasma is investigated in our experiment. A proper plasma gradient can be obtained with suitable pulse energy and delay. The experimental results are useful for plasma physics and nonlinear optics. Project supported by the Development Foundation of the Chinese Academy of Engineering Physics (Grant Nos. 2012A0401019 and 2013A0401019).

  16. DNA damage and mitochondria dysfunction in cell apoptosis induced by nonthermal air plasma

    SciTech Connect

    Kim, G. J.; Lee, J. K.; Kim, W.; Kim, K. T.

    2010-01-11

    Nonthermal plasma is known to induce animal cell death but the mechanism is not yet clear. Here, cellular and biochemical regulation of cell apoptosis is demonstrated for plasma treated cells. Surface type nonthermal air plasma triggered apoptosis of B16F10 mouse melanoma cancer cells causing DNA damage and mitochondria dysfunction. Plasma treatment activated caspase-3, apoptosis executioner. The plasma treated cells also accumulated gamma-H2A.X, marker for DNA double strand breaks, and p53 tumor suppressor gene as a response to DNA damage. Interestingly, cytochrome C was released from mitochondria and its membrane potential was changed significantly.

  17. DNA damage and mitochondria dysfunction in cell apoptosis induced by nonthermal air plasma

    NASA Astrophysics Data System (ADS)

    Kim, G. J.; Kim, W.; Kim, K. T.; Lee, J. K.

    2010-01-01

    Nonthermal plasma is known to induce animal cell death but the mechanism is not yet clear. Here, cellular and biochemical regulation of cell apoptosis is demonstrated for plasma treated cells. Surface type nonthermal air plasma triggered apoptosis of B16F10 mouse melanoma cancer cells causing DNA damage and mitochondria dysfunction. Plasma treatment activated caspase-3, apoptosis executioner. The plasma treated cells also accumulated gamma-H2A.X, marker for DNA double strand breaks, and p53 tumor suppressor gene as a response to DNA damage. Interestingly, cytochrome C was released from mitochondria and its membrane potential was changed significantly.

  18. Responses by pacific halibut to air exposure: Lack of correspondence among plasma constituents and mortality

    USGS Publications Warehouse

    Davis, M.W.; Schreck, C.B.

    2005-01-01

    Age-1 and age-2 Pacific halibut Hippoglossus stenolepis were exposed to a range of times in air (0-60 min) and air temperatures (10??C or 16??C) that simulated conditions on deck after capture to test for correspondence among responses in plasma constituents and mortality. Pacific halibut mortality generally did not correspond with cortisol, glucose, sodium, and potassium since the maximum observed plasma concentrations were reached after exposure to 30 min in air, while significant mortality occurred only after exposure to 40 min in air for age-1 fish and 60 min in air for age-2 fish. Predicting mortality in discarded Pacific halibut using these plasma constituents does not appear to be feasible. Lactate concentrations corresponded with mortality in age-1 fish exposed to 16??C and may be useful predictors of discard mortality under a limited set of fishing conditions.

  19. Plasma flame for mass purification of contaminated air with chemical and biological warfare agents

    SciTech Connect

    Uhm, Han S.; Shin, Dong H.; Hong, Yong C.

    2006-09-18

    An elimination of airborne simulated chemical and biological warfare agents was carried out by making use of a plasma flame made of atmospheric plasma and a fuel-burning flame, which can purify the interior air of a large volume in isolated spaces such as buildings, public transportation systems, and military vehicles. The plasma flame generator consists of a microwave plasma torch connected in series to a fuel injector and a reaction chamber. For example, a reaction chamber, with the dimensions of a 22 cm diameter and 30 cm length, purifies an airflow rate of 5000 lpm contaminated with toluene (the simulated chemical agent) and soot from a diesel engine (the simulated aerosol for biological agents). Large volumes of purification by the plasma flame will free mankind from the threat of airborne warfare agents. The plasma flame may also effectively purify air that is contaminated with volatile organic compounds, in addition to eliminating soot from diesel engines as an environmental application.

  20. Optical Diagnostics of Air Flows Induced in Surface Dielectric Barrier Discharge Plasma Actuator

    NASA Astrophysics Data System (ADS)

    Kobatake, Takuya; Deguchi, Masanori; Suzuki, Junya; Eriguchi, Koji; Ono, Kouichi

    2014-10-01

    A surface dielectric barrier discharge (SDBD) plasma actuator has recently been intensively studied for the flow control over airfoils and turbine blades in the fields of aerospace and aeromechanics. It consists of two electrodes placed on both sides of the dielectric, where one is a top powered electrode exposed to the air, and the other is a bottom grounded electrode encapsulated with an insulator. The unidirectional gas flow along the dielectric surfaces is induced by the electrohydrodynamic (EHD) body force. It is known that the thinner the exposed electrode, the greater the momentum transfer to the air is, indicating that the thickness of the plasma is important. To analyze plasma profiles and air flows induced in the SDBD plasma actuator, we performed time-resolved and -integrated optical emission and schlieren imaging of the side view of the SDBD plasma actuator in atmospheric air. We applied a high voltage bipolar pulse (4-8 kV, 1-10 kHz) between electrodes. Experimental results indicated that the spatial extent of the plasma is much smaller than that of the induced flows. Experimental results further indicated that in the positive-going phase, a thin and long plasma is generated, where the optical emission is weak and uniform; on the other hand, in the negative-going phase, a thick and short plasma is generated, where a strong optical emission is observed near the top electrode.

  1. Generation of High-Density Electrons Based on Plasma Grating Induced Bragg Diffraction in Air

    SciTech Connect

    Shi Liping; Li Wenxue; Wang Yongdong; Lu Xin; Ding Liang'en; Zeng Heping

    2011-08-26

    Efficient nonlinear Bragg diffraction was observed as an intense infrared femtosecond pulse was focused on a plasma grating induced by interference between two ultraviolet femtosecond laser pulses in air. The preformed electrons inside the plasma grating were accelerated by subsequent intense infrared laser pulses, inducing further collisional ionization and significantly enhancing the local electron density.

  2. Targeting cancer cells with reactive oxygen and nitrogen species generated by atmospheric-pressure air plasma.

    PubMed

    Ahn, Hak Jun; Kim, Kang Il; Hoan, Nguyen Ngoc; Kim, Churl Ho; Moon, Eunpyo; Choi, Kyeong Sook; Yang, Sang Sik; Lee, Jong-Soo

    2014-01-01

    The plasma jet has been proposed as a novel therapeutic method for cancer. Anticancer activity of plasma has been reported to involve mitochondrial dysfunction. However, what constituents generated by plasma is linked to this anticancer process and its mechanism of action remain unclear. Here, we report that the therapeutic effects of air plasma result from generation of reactive oxygen/nitrogen species (ROS/RNS) including H2O2, Ox, OH-, •O2, NOx, leading to depolarization of mitochondrial membrane potential and mitochondrial ROS accumulation. Simultaneously, ROS/RNS activate c-Jun NH2-terminal kinase (JNK) and p38 kinase. As a consequence, treatment with air plasma jets induces apoptotic death in human cervical cancer HeLa cells. Pretreatment of the cells with antioxidants, JNK and p38 inhibitors, or JNK and p38 siRNA abrogates the depolarization of mitochondrial membrane potential and impairs the air plasma-induced apoptotic cell death, suggesting that the ROS/RNS generated by plasma trigger signaling pathways involving JNK and p38 and promote mitochondrial perturbation, leading to apoptosis. Therefore, administration of air plasma may be a feasible strategy to eliminate cancer cells.

  3. Characterization of an atmospheric pressure air plasma source for polymer surface modification

    NASA Astrophysics Data System (ADS)

    Yang, Shujun; Tang, Jiansheng

    2013-10-01

    An atmospheric pressure air plasma source was generated through dielectric barrier discharge (DBD). It was used to modify polyethyleneterephthalate (PET) surfaces with very high throughput. An equivalent circuit model was used to calculate the peak average electron density. The emission spectrum from the plasma was taken and the main peaks in the spectrum were identified. The ozone density in the down plasma region was estimated by Absorption Spectroscopy. NSF and ARC-ODU

  4. Numerical Investigation of Radiative Heat Transfer in Laser Induced Air Plasmas

    NASA Technical Reports Server (NTRS)

    Liu, J.; Chen, Y. S.; Wang, T. S.; Turner, James E. (Technical Monitor)

    2001-01-01

    Radiative heat transfer is one of the most important phenomena in the laser induced plasmas. This study is intended to develop accurate and efficient methods for predicting laser radiation absorption and plasma radiative heat transfer, and investigate the plasma radiation effects in laser propelled vehicles. To model laser radiation absorption, a ray tracing method along with the Beer's law is adopted. To solve the radiative transfer equation in the air plasmas, the discrete transfer method (DTM) is selected and explained. The air plasma radiative properties are predicted by the LORAN code. To validate the present nonequilibrium radiation model, several benchmark problems are examined and the present results are found to match the available solutions. To investigate the effects of plasma radiation in laser propelled vehicles, the present radiation code is coupled into a plasma aerodynamics code and a selected problem is considered. Comparisons of results at different cases show that plasma radiation plays a role of cooling plasma and it lowers the plasma temperature by about 10%. This change in temperature also results in a reduction of the coupling coefficient by about 10-20%. The present study indicates that plasma radiation modeling is very important for accurate modeling of aerodynamics in a laser propelled vehicle.

  5. Open-air direct current plasma jet: Scaling up, uniformity, and cellular control

    NASA Astrophysics Data System (ADS)

    Wu, S.; Wang, Z.; Huang, Q.; Lu, X.; Ostrikov, K.

    2012-10-01

    Atmospheric-pressure plasma jets are commonly used in many fields from medicine to nanotechnology, yet the issue of scaling the discharges up to larger areas without compromising the plasma uniformity remains a major challenge. In this paper, we demonstrate a homogenous cold air plasma glow with a large cross-section generated by a direct current power supply. There is no risk of glow-to-arc transitions, and the plasma glow appears uniform regardless of the gap between the nozzle and the surface being processed. Detailed studies show that both the position of the quartz tube and the gas flow rate can be used to control the plasma properties. Further investigation indicates that the residual charges trapped on the inner surface of the quartz tube may be responsible for the generation of the air plasma plume with a large cross-section. The spatially resolved optical emission spectroscopy reveals that the air plasma plume is uniform as it propagates out of the nozzle. The remarkable improvement of the plasma uniformity is used to improve the bio-compatibility of a glass coverslip over a reasonably large area. This improvement is demonstrated by a much more uniform and effective attachment and proliferation of human embryonic kidney 293 (HEK 293) cells on the plasma-treated surface.

  6. OH(A,X) radicals in microwave plasma-assisted combustion of methane/air

    NASA Astrophysics Data System (ADS)

    Wu, Wei; Fuh, Che; Wang, Chuji; Laser Spectroscopy and Plasma Team

    2014-10-01

    A novel microwave plasma-assisted combustion (PAC) system, which consists of a microwave plasma-assisted combustor, a gas flow control manifold, and a set of optical diagnostic systems, was developed as a new test platform to study plasma enhancement of combustion. Using this system, we studied the state-resolved OH(A,X) radicals in the plasma-assisted combustion and ignition of a methane/air mixture. Experimental results identified three reaction zones in the plasma-assisted combustor: the plasma zone, the hybrid plasma-flame zone, and the flame zone. The OH(A) radicals in the three distinct zones were characterized using optical emission spectroscopy (OES). Results showed a surge of OH(A) radicals in the hybrid zone compared to the plasma zone and the flame zone. The OH(X) radicals in the flame zone were measured using cavity ringdown spectroscopy (CRDS), and the absolute number density distribution of OH(X) was quantified in two-dimension. The effect of microwave argon plasma on combustion was studied with two different fuel/oxidizer injection patterns, namely the premixed methane/air injection and the nonpremixed (separate) methane/air injection. Parameters investigated included the flame geometry, the lean flammability limit, the emission spectra, and rotational temperature. State-resolved OH(A,X) radicals in the PAC of both injection patterns were also compared. This work is supported by the National Science Foundation through the Grant No. CBET-1066486.

  7. Open-air direct current plasma jet: Scaling up, uniformity, and cellular control

    SciTech Connect

    Wu, S.; Wang, Z.; Huang, Q.; Lu, X.; Ostrikov, K.

    2012-10-15

    Atmospheric-pressure plasma jets are commonly used in many fields from medicine to nanotechnology, yet the issue of scaling the discharges up to larger areas without compromising the plasma uniformity remains a major challenge. In this paper, we demonstrate a homogenous cold air plasma glow with a large cross-section generated by a direct current power supply. There is no risk of glow-to-arc transitions, and the plasma glow appears uniform regardless of the gap between the nozzle and the surface being processed. Detailed studies show that both the position of the quartz tube and the gas flow rate can be used to control the plasma properties. Further investigation indicates that the residual charges trapped on the inner surface of the quartz tube may be responsible for the generation of the air plasma plume with a large cross-section. The spatially resolved optical emission spectroscopy reveals that the air plasma plume is uniform as it propagates out of the nozzle. The remarkable improvement of the plasma uniformity is used to improve the bio-compatibility of a glass coverslip over a reasonably large area. This improvement is demonstrated by a much more uniform and effective attachment and proliferation of human embryonic kidney 293 (HEK 293) cells on the plasma-treated surface.

  8. Atmospheric pressure air-plasma jet evolved from microdischarges: Eradication of E. coli with the jet

    SciTech Connect

    Hong, Yong Cheol; Kang, Won Seok; Hong, Yoo Beom; Yi, Won Ju; Uhm, Han Sup

    2009-12-15

    An atmospheric-pressure air-plasma jet operating at 60 Hz ac is presented. A plasma jet with a length of 23 mm was produced by feeding air through a porous alumina dielectric installed between an outer electrode and a hollow inner electrode. Microdischarges in the porous alumina are ejected as a plasma jet from the outer electrode through a 1 mm hole, showing that the temperature of the jet decreases to a value close to the room temperature. The jet disinfects E. coli cells very effectively, eradicating them with an exposure of a few seconds to the jet flame.

  9. A plasma needle for generating homogeneous discharge in atmospheric pressure air

    SciTech Connect

    Li Xuechen; Yuan Ning; Jia Pengying; Chen Junying

    2010-09-15

    Homogeneous discharge in air is often considered to be the ultimate low-temperature atmospheric pressure plasmas for industrial applications. In this paper, we present a method whereby stable homogeneous discharge in open air can be generated by a simple plasma needle. The discharge mechanism is discussed based on the spatially resolved light emission waveforms from the plasma. Optical emission spectroscopy is used to determine electron energy and rotational temperature, and results indicate that both electron energy and rotational temperature increase with increasing the applied voltage. The results are analyzed qualitatively based on the discharge mechanism.

  10. Atmospheric pressure resistive barrier air plasma jet induced bacterial inactivation in aqueous environment

    NASA Astrophysics Data System (ADS)

    Thiyagarajan, Magesh; Sarani, Abdollah; Gonzales, Xavier

    2013-03-01

    An atmospheric pressure resistive barrier air plasma jet is designed to inactivate bacteria in aqueous media in direct and indirect exposure modes of treatment. The resistive barrier plasma jet is designed to operate at both dc and standard 50-60 Hz low frequency ac power input and the ambient air at 50% humidity level was used as the operating gas. The voltage-current characteristics of the plasma jet were analyzed and the operating frequency of the discharge was measured to be 20 kHz and the plasma power was measured to be 26 W. The plasma jet rotational temperatures (Trot) are obtained from the optical emission spectra, from the N2C-B(2+) transitions by matching the experimental spectrum results with the Spectra Air (SPECAIR) simulation spectra. The reactive oxygen and nitrogen species were measured using optical emission spectroscopy and gas analyzers, for direct and indirect treatment modes. The nitric oxides (NO) were observed to be the predominant long lived reactive nitrogen species produced by the plasma. Three different bacteria including Staphylococcus aureus (Gram-positive), Escherichia coli (Gram-negative), and Neisseria meningitidis (Gram-negative) were suspended in an aqueous media and treated by the resistive barrier air plasma jet in direct and indirect exposure modes. The results show that a near complete bacterial inactivation was achieved within 120 s for both direct and indirect plasma treatment of S. aureus and E. coli bacteria. Conversely, a partial inactivation of N. meningitidis was observed by 120 s direct plasma exposure and insignificant inactivation was observed for the indirect plasma exposure treatment. Plasma induced shifts in N. meningitidis gene expression was analyzed using pilC gene expression as a representative gene and the results showed a reduction in the expression of the pilC gene compared to untreated samples suggesting that the observed protection against NO may be regulated by other genes.

  11. Plasma test on industrial diamond powder in hydrogen and air for fracture strength study

    NASA Astrophysics Data System (ADS)

    Chary, Rohit Asuri Sudharshana

    Diamonds are the most precious material all over the world. Ever since their discovery, the desire for natural diamonds has been great; recently, the demand has steeply increased, leading to scarcity. For example, in 2010, diamonds worth $50 billion were marketed. This increased demand has led to discovering alternative sources to replace diamonds. The diamond, being the hardest material on earth, could be replaced with no other material except another diamond. Thus, the industrial or synthetic diamond was invented. Because of extreme hardness is one of diamond's properties, diamonds are used in cutting operations. The fracture strength of diamond is one of the crucial factors that determine its life time as a cutting tool. Glow discharge is one of the techniques used for plasma formation. The glow discharge process is conducted in a vacuum chamber by ionizing gas atoms. Ions penetrate into the atomic structure, ejecting a secondary electron. The objective of this study is to determine the change in fracture strength of industrial diamond powder before and after plasma treatment. This study focuses mainly on the change in crystal defects and crushing strength (CS) of industrial diamond powder after the penetration of hydrogen gas, air and hydrogen-air mixture ions into the sample powder. For this study, an industrial diamond powder sample of 100 carats weight, along with its average fracture strength value was received from Engis Corporation, Illinois. The sample was divided into parts, each weighing 10-12 carats. At the University of Nevada, Las Vegas (UNLV), a plasma test was conducted on six sample parts for a total of 16 hours on each part. The three gas types mentioned above were used during plasma tests, with the pressure in vacuum chamber between 200 mTorr and 2 Torr. The plasma test on four sample parts was in the presence of hydrogen-air mixture. The first sample had chamber pressures between 200 mTorr and 400 mTorr. The remaining three samples had chamber

  12. A Novel Technique to Treat Air Leak Following Lobectomy: Intrapleural Infusion of Plasma

    PubMed Central

    Konstantinou, Froso; Potaris, Konstantinos; Syrigos, Konstantinos N.; Tsipas, Panteleimon; Karagkiouzis, Grigorios; Konstantinou, Marios

    2016-01-01

    Background Persistent air leak following pulmonary lobectomy can be very difficult to treat and results in prolonged hospitalization. We aimed to evaluate the efficacy of a new method of postoperative air leak management using intrapleurally infused fresh frozen plasma via the chest tube. Material/Methods Between June 2008 and June 2014, we retrospectively reviewed 98 consecutive patients who underwent lobectomy for lung cancer and postoperatively developed persistent air leak treated with intrapleural instillation of fresh frozen plasma. Results The study identified 89 men and 9 women, with a median age of 65.5 years (range 48–77 years), with persistent postoperative air leak. Intrapleural infusion of fresh frozen plasma was successful in stopping air leaks in 90 patients (92%) within 24 hours, and in 96 patients (98%) within 48 hours, following resumption of the procedure. In the remaining 2, air leak ceased at 14 and 19 days. Conclusions Intrapleural infusion of fresh frozen plasma is a safe, inexpensive, and remarkably effective method for treatment of persistent air leak following lobectomy for lung cancer. PMID:27079644

  13. Simulated experiment for elimination of air contaminated with odorous chemical agents by microwave plasma burner

    SciTech Connect

    Hong, Yong Cheol; Shin, Dong Hun; Uhm, Han Sup

    2007-10-15

    An experimental study on elimination of odorous chemical agent was carried out by making use of a microwave plasma burner, which consists of a microwave plasma torch and a reaction chamber with a fuel injector. Injection of hydrocarbon fuels into a high-temperature microwave torch plasma generates a plasma flame. The plasma flame can eliminate the odorous chemical agent diluted in air or purify the interior air of a large volume in isolated spaces. The specially designed reaction chamber eliminated H{sub 2}S and NH{sub 3} diluted in airflow rate of 5000 lpm (liters per minute), showing {beta} values of 46.52 and 39.69 J/l, respectively.

  14. Fast tomographic measurements of temperature in an air plasma cutting torch

    NASA Astrophysics Data System (ADS)

    Hlína, J.; Šonský, J.; Gruber, J.; Cressault, Y.

    2016-03-01

    Temperatures in an air plasma jet were measured using a tomographic experimental arrangement providing time-resolved scans of plasma optical radiation in the spectral band 559-601 nm from two directions. The acquired data and subsequent processing yielded time-resolved temperature distributions in measurement planes perpendicular to the plasma jet axis with a temporal resolution of 1 μs. The measurement system and evaluation methods afforded detailed information about the influence of high-frequency ripple modulation of the arc current on plasma temperature.

  15. Characteristics of a Direct Current-driven plasma jet operated in open air

    NASA Astrophysics Data System (ADS)

    Li, Xuechen; Di, Cong; Jia, Pengying; Bao, Wenting

    2013-09-01

    A DC-driven plasma jet has been developed to generate a diffuse plasma plume by blowing argon into the ambient air. The plasma plume, showing a cup shape with a diameter of several centimeters at a higher voltage, is a pulsed discharge despite a DC voltage is applied. The pulse frequency is investigated as a function of the voltage under different gap widths and gas flow rates. Results show that plasma bullets propagate from the hollow needle to the plate electrode by spatially resolved measurement. A supposition about non-electroneutral trail of the streamer is proposed to interpret these experimental phenomena.

  16. Characteristics of a Direct Current-driven plasma jet operated in open air

    SciTech Connect

    Li, Xuechen; Bao, Wenting; Di, Cong; Jia, Pengying

    2013-09-30

    A DC-driven plasma jet has been developed to generate a diffuse plasma plume by blowing argon into the ambient air. The plasma plume, showing a cup shape with a diameter of several centimeters at a higher voltage, is a pulsed discharge despite a DC voltage is applied. The pulse frequency is investigated as a function of the voltage under different gap widths and gas flow rates. Results show that plasma bullets propagate from the hollow needle to the plate electrode by spatially resolved measurement. A supposition about non-electroneutral trail of the streamer is proposed to interpret these experimental phenomena.

  17. Effects of picosecond terawatt UV laser beam filamentation and a repetitive pulse train on creation of prolonged plasma channels in atmospheric air

    NASA Astrophysics Data System (ADS)

    Zvorykin, V. D.; Ionin, A. A.; Levchenko, A. O.; Seleznev, L. V.; Shutov, A. V.; Sinitsyn, D. V.; Smetanin, I. V.; Ustinovskii, N. N.

    2013-08-01

    Amplitude-modulated UV laser pulse of up to 30 J energy was produced at hybrid Ti:Sapphire/KrF GARPUN-MTW laser facility when a preliminary amplified train of short pulses was injected into unstable resonator cavity of the main e-beam-pumped KrF amplifier. The combined radiation consisted of regeneratively amplified picosecond pulses with subTW peak power overlapped with 100-ns pulse of a free-running lasing. The advantages of combined radiation for production of long-lived prolonged plasma channels in air and HV discharge triggering were demonstrated: photocurrent sustained by modulated pulse is two orders of magnitude higher and HV breakdown distance is twice longer than for a smooth UV pulse. It was found that in contrast to IR radiation multiple filamentation of high-power UV laser beam does not produce extended nonlinear focusing of UV radiation.

  18. The AMY experiment: Microwave emission from air shower plasmas

    NASA Astrophysics Data System (ADS)

    Alvarez-Muñiz, J.; Blanco, M.; Boháčová, M.; Buonomo, B.; Cataldi, G.; Coluccia, M. R.; Creti, P.; De Mitri, I.; Di Giulio, C.; Facal San Luis, P.; Foggetta, L.; Gaïor, R.; Garcia-Fernandez, D.; Iarlori, M.; Le Coz, S.; Letessier-Selvon, A.; Louedec, K.; Maris, I. C.; Martello, D.; Mazzitelli, G.; Monasor, M.; Perrone, L.; Petrera, S.; Privitera, P.; Rizi, V.; Rodriguez Fernandez, G.; Salamida, F.; Salina, G.; Settimo, M.; Valente, P.; Vazquez, J. R.; Verzi, V.; Williams, C.

    2016-07-01

    You The Air Microwave Yield (AMY) experiment investigate the molecular bremsstrahlung radiation emitted in the GHz frequency range from an electron beam induced air-shower. The measurements have been performed at the Beam Test Facility (BTF) of Frascati INFN National Laboratories with a 510 MeV electron beam in a wide frequency range between 1 and 20 GHz. We present the apparatus and the results of the tests performed.

  19. Plasma shield for in-air beam processesa)

    NASA Astrophysics Data System (ADS)

    Hershcovitch, Ady

    2008-05-01

    A novel concept/apparatus, the Plasma Shield, is introduced in this paper. The purpose of the Plasma Shield is designed to shield a target object chemically and thermally by engulfing an area subjected to beam treatment with inert plasma. The shield consists of a vortex-stabilized arc that is employed to shield beams and workpiece area of interaction from an atmospheric or liquid environment. A vortex-stabilized arc is established between a beam generating device (laser, ion or electron gun) and a target object. The arc, which is composed of a pure noble gas, engulfs the interaction region and shields it from any surrounding liquids like water or reactive gases. The vortex is composed of a sacrificial gas or liquid that swirls around and stabilizes the arc. The successful Plasma Shield was experimentally established and very high-quality electron beam welding with partial plasma shielding was performed. The principle of the operation and experimental results are discussed in the paper.

  20. Plasma shield for in-air beam processes

    SciTech Connect

    Hershcovitch, Ady

    2008-05-15

    A novel concept/apparatus, the Plasma Shield, is introduced in this paper. The purpose of the Plasma Shield is designed to shield a target object chemically and thermally by engulfing an area subjected to beam treatment with inert plasma. The shield consists of a vortex-stabilized arc that is employed to shield beams and workpiece area of interaction from an atmospheric or liquid environment. A vortex-stabilized arc is established between a beam generating device (laser, ion or electron gun) and a target object. The arc, which is composed of a pure noble gas, engulfs the interaction region and shields it from any surrounding liquids like water or reactive gases. The vortex is composed of a sacrificial gas or liquid that swirls around and stabilizes the arc. The successful Plasma Shield was experimentally established and very high-quality electron beam welding with partial plasma shielding was performed. The principle of the operation and experimental results are discussed in the paper.

  1. Degradation of volatile organic compounds in a non-thermal plasma air purifier.

    PubMed

    Schmid, Stefan; Jecklin, Matthias C; Zenobi, Renato

    2010-03-01

    The degradation of volatile organic compounds in a commercially available non-thermal plasma based air purifying system was investigated. Several studies exist that interrogate the degradation of VOCs in closed air systems using a non-thermal plasma combined with a heterogeneous catalyst. For the first time, however, our study was performed under realistic conditions (normal indoor air, 297.5K and 12.5 g m(-3) water content) on an open system, in the absence of an auxiliary catalyst, and using standard operating air flow rates (up to 320 L min(-1)). Cyclohexene, benzene, toluene, ethylbenzene and the xylene isomers were nebulized and guided through the plasma air purifier. The degradation products were trapped by activated charcoal tubes or silica gel tubes, and analyzed using gas chromatography mass spectrometry. Degradation efficiencies of 11+/-1.6% for cyclohexene, <2% for benzene, 11+/-2.4% for toluene, 3+/-1% for ethylbenzene, 1+/-1% for sigma-xylene, and 3+/-0.4% for m-/rho-xylene were found. A fairly wide range of degradation products could be identified. On both trapping media, various oxidized species such as alcohols, aldehydes, ketones and one epoxide were observed. The formation of adipaldehyde from nebulized cyclohexene clearly indicates an ozonolysis reaction. Other degradation products observed suggests reactions with OH radicals. We propose that mostly ozone and OH radicals are responsible for the degradation of organic molecules in the plasma air purifier. PMID:20167347

  2. Air surface microdischarge-photon synergy in antibacterial plasma-activated water

    NASA Astrophysics Data System (ADS)

    Graves, David; Pavlovich, Mathew; Chang, Hung-Wen; Sakiyama, Yuki; Clark, Douglas

    2013-09-01

    We show that the antibacterial effects of air plasma on water can be amplified by synergy with ultraviolet (UV) photons. We use the surface microdischarge configuration (SMD) in atmospheric air adjacent to bacteria-laden water coupled with UVA (360 nm) photons from a light emitting diode (LED) to demonstrate this synergy. Air SMD, especially if operated in a confined space, can operate in different modes: low power mode (<0.1 W/cm2) generates primarily O3 whereas higher powers generate mainly nitrogen oxides; we focus here on the latter. The nitrogen oxide mode creates a powerful antibacterial mixture in water, including NO2-, NO3- and H2O2. Although these species alone can be strongly antibacterial, especially at low pH, we show that addition of UVA photons greatly amplifies the antibacterial effect. We first measured log reductions with only photons and then only plasma. Only when UVA exposes water after plasma does the synergy appear. Synergy appears to be due to UVA photolysis of plasma-generated NO2- to form NO and OH. We conclude that combining plasma-generated chemical species with activating photons can amplify and strengthen plasma effectiveness in many biological and other applications. Supported by Department of Energy, Office of Fusion Science Plasma Science Center.

  3. Investigation on Plasma Jet Flow Phenomena During DC Air Arc Motion in Bridge-Type Contacts

    NASA Astrophysics Data System (ADS)

    Zhai, Guofu; Bo, Kai; Chen, Mo; Zhou, Xue; Qiao, Xinlei

    2016-05-01

    Arc plasma jet flow in the air was investigated under a bridge-type contacts in a DC 270 V resistive circuit. We characterized the arc plasma jet flow appearance at different currents by using high-speed photography, and two polished contacts were used to search for the relationship between roughness and plasma jet flow. Then, to make the nature of arc plasma jet flow phenomena clear, a simplified model based on magnetohydrodynamic (MHD) theory was established and calculated. The simulated DC arc plasma was presented with the temperature distribution and the current density distribution. Furthermore, the calculated arc flow velocity field showed that the circular vortex was an embodiment of the arc plasma jet flow progress. The combined action of volume force and contact surface was the main reason of the arc jet flow. supported by National Natural Science Foundation of China (Nos. 51307030, 51277038)

  4. A simple atmospheric pressure room-temperature air plasma needle device for biomedical applications

    NASA Astrophysics Data System (ADS)

    Lu, X.; Xiong, Z.; Zhao, F.; Xian, Y.; Xiong, Q.; Gong, W.; Zou, C.; Jiang, Z.; Pan, Y.

    2009-11-01

    Rather than using noble gas, room air is used as the working gas for an atmospheric pressure room-temperature plasma. The plasma is driven by submicrosecond pulsed directed current voltages. Several current spikes appear periodically for each voltage pulse. The first current spike has a peak value of more than 1.5 A with a pulse width of about 10 ns. Emission spectra show that besides excited OH, O, N2(C-B), and N2+(B-X) emission, excited NO, N2(B-A), H, and even N emission are also observed in the plasma, which indicates that the plasma may be more reactive than that generated by other plasma jet devices. Utilizing the room-temperature plasma, preliminary inactivation experiments show that Enterococcus faecalis can be killed with a treatment time of only several seconds.

  5. DC Breakdown Experiments

    SciTech Connect

    Calatroni, S.; Descoeudres, A.; Levinsen, Y.; Taborelli, M.; Wuensch, W.

    2009-01-22

    In the context of the CLIC (Compact Linear Collider) project investigations of DC breakdown in ultra high vacuum are carried out in parallel with high power RF tests. From the point of view of saturation breakdown field the best material tested so far is stainless steel, followed by titanium. Copper shows a four times weaker breakdown field than stainless steel. The results indicate clearly that the breakdown events are initiated by field emission current and that the breakdown field is limited by the cathode. In analogy to RF, the breakdown probability has been measured in DC and the data show similar behaviour as a function of electric field.

  6. The cold and atmospheric-pressure air surface barrier discharge plasma for large-area sterilization applications

    SciTech Connect

    Wang Dacheng; Zhao Di; Feng Kecheng; Zhang Xianhui; Liu Dongping; Yang Size

    2011-04-18

    This letter reports a stable air surface barrier discharge device for large-area sterilization applications at room temperature. This design may result in visually uniform plasmas with the electrode area scaled up (or down) to the required size. A comparison for the survival rates of Escherichia coli from air, N{sub 2} and O{sub 2} surface barrier discharge plasmas is presented, and the air surface plasma consisting of strong filamentary discharges can efficiently kill Escherichia coli. Optical emission measurements indicate that reactive species such as O and OH generated in the room temperature air plasmas play a significant role in the sterilization process.

  7. Plastic identification based on molecular and elemental information from laser induced breakdown spectra: a comparison of plasma conditions in view of efficient sorting

    NASA Astrophysics Data System (ADS)

    Barbier, Sophie; Perrier, Sébastien; Freyermuth, Pierre; Perrin, Didier; Gallard, Benjamin; Gilon, Nicole

    2013-10-01

    This work is dedicated to a comparison of plasma conditions for the accurate determination of some elements: Br, Cl, Ca, P and Sb, in polymers. The comparison of the plasma conditions to sort plastics according to CN, C2 and element signals was also investigated. The comparison of a helium atmosphere and an air atmosphere led to improved results using helium as a buffer gas. The improvement is obtained in two areas, it increased the detection of halogens (Br, Cl) usually employed as flame retardants. It was also found to significantly improve the discrimination based on simple calculations of C2/He and CN/He ratios. Best conditions were based on a laser emitting at 266 nm, with a low 6 mJ energy focalized on a 50 μm spot and the helium buffer gas. A plot of C2/He against CN/He was efficient to identify the four groups of plastics employed in this study: polystyrene, polypropylene, acrylonitryle-butadiene-styrene and acrylonitryle-butadiene-styrene/polycarbonate.

  8. Effect of plasma suppression additives on electrodynamic characteristics of the torch discharge burning in the air

    NASA Astrophysics Data System (ADS)

    Vidyaev, D.; Lutsenko, Yu; Boretsky, E.

    2016-06-01

    The paper shows the results of measurements of wave number of electromagnetic wave, which supports burning of high-frequency torch discharge in the mixture of air with water vapor and carbon dioxide. The nonmonotonic dependence of attenuation factor of electromagnetic waves is set on a concentration of water vapor. It is shown that the attenuation degree of electromagnetic field in the plasma with water vapor significantly exceeds the attenuation degree of electromagnetic field in the plasma with carbon dioxide.

  9. Simulation of cold atmospheric plasma component composition and particle densities in air

    NASA Astrophysics Data System (ADS)

    Kirsanov, Gennady; Chirtsov, Alexander; Kudryavtsev, Anatoliy

    2015-11-01

    Recently discharges in air at atmospheric pressure were the subject of numerous studies. Of particular interest are the cold streams of air plasma, which contains large amounts of chemically active species. It is their action can be decisive in the interaction with living tissues. Therefore, in addition to its physical properties, it is important to know the component composition and particle densities. The goal was to develop a numerical model of atmospheric pressure glow microdischarge in air with the definition of the component composition of plasma. To achieve this goal the task was divided into two sub-tasks, in the first simulated microdischarge atmospheric pressure in air using a simplified set of plasma chemical reactions in order to obtain the basic characteristics of the discharge, which are the initial approximations in the problem of the calculation of the densities with detailed plasma chemistry, including 53 spices and over 600 chemical reactions. As a result of the model was created, which can be adapted for calculating the component composition of plasma of various sources. Calculate the density of particles in the glow microdischarges and dynamics of their change in time.

  10. Simulation of cold atmospheric plasma component composition and particle densities in air

    NASA Astrophysics Data System (ADS)

    Kirsanov, Gennady; Bekasov, Vladimir; Eliseev, Stepan; Kudryavtsev, Anatoly; Sisoev, Sergey

    2015-11-01

    Recently discharges in air at atmospheric pressure were the subject of numerous studies. Of particular interest are the cold streams of air plasma, which contains large amounts of chemically active species. It is their action can be decisive in the interaction with living tissues. Therefore, in addition to its physical properties, it is important to know the component composition and particle densities. The goal was to develop a numerical model of atmospheric pressure glow microdischarge in air with the definition of the component composition of plasma. To achieve this goal the task was broken down into two sub-tasks, in the first simulated microdischarge atmospheric pressure in air using a simplified set of plasma chemical reactions in order to obtain the basic characteristics of the discharge, which are the initial approximations in the problem of the calculation of the densities with detailed plasma chemistry, including 53 spices and over 600 chemical reactions. As a result of the model was created, which can be adapted for calculating the component composition of plasma of various sources. Calculate the density of particles in the glow microdischarges and dynamics of their change in time.

  11. Temporal evolution of femtosecond laser induced plasma filament in air and N{sub 2}

    SciTech Connect

    Papeer, J.; Botton, M.; Zigler, A.; Gordon, D.; Sprangle, P.

    2013-12-09

    We present single shot, high resolution, time-resolved measurements of the relaxation of laser induced plasma filaments in air and in N{sub 2} gas. Based on the measurements of the time dependent electromagnetic signal in a waveguide, an accurate and simple derivation of the electron density in the filament is demonstrated. This experimental method does not require prior knowledge of filament dimensions or control over its exact spatial location. The experimental results are compared to numerical simulations of air plasma chemistry. Results reveal the role of various decay mechanisms including the importance of O{sub 4}{sup +} molecular levels.

  12. Surface-dependent inactivation of model microorganisms with shielded sliding plasma discharges and applied air flow.

    PubMed

    Edelblute, Chelsea M; Malik, Muhammad A; Heller, Loree C

    2015-06-01

    Cold atmospheric plasma inactivates bacteria through reactive species produced from the applied gas. The use of cold plasma clinically has gained recent interest, as the need for alternative or supplementary strategies are necessary for preventing multi-drug resistant infections. The purpose of this study was to evaluate the antibacterial efficacy of a novel shielded sliding discharge based cold plasma reactor operated by nanosecond voltage pulses in atmospheric air on both biotic and inanimate surfaces. Bacterial inactivation was determined by direct quantification of colony forming units. The plasma activated air (afterglow) was bactericidal against Escherichia coli and Staphylococcus epidermidis seeded on culture media, laminate, and linoleum vinyl. In general, E. coli was more susceptible to plasma exposure. A bacterial reduction was observed with the application of air alone on a laminate surface. Whole-cell real-time PCR revealed a decrease in the presence of E. coli genomic DNA on exposed samples. These findings suggest that plasma-induced bacterial inactivation is surface-dependent.

  13. Resonant- and avalanche-ionization amplification of laser-induced plasma in air

    SciTech Connect

    Wu, Yue; Zhang, Zhili; Jiang, Naibo; Roy, Sukesh; Gord, James R.

    2014-10-14

    Amplification of laser-induced plasma in air is demonstrated utilizing resonant laser ionization and avalanche ionization. Molecular oxygen in air is ionized by a low-energy laser pulse employing (2 + 1) resonance-enhanced multi-photon ionization (REMPI) to generate seed electrons. Subsequent avalanche ionization of molecular oxygen and nitrogen significantly amplifies the laser-induced plasma. In this plasma-amplification effect, three-body attachments to molecular oxygen dominate the electron-generation and -loss processes, while either nitrogen or argon acts as the third body with low electron affinity. Contour maps of the electron density within the plasma obtained in O₂/N₂ and O₂/Ar gas mixtures are provided to show relative degrees of plasma amplification with respect to gas pressure and to verify that the seed electrons generated by O₂ 2 + 1 REMPI are selectively amplified by avalanche ionization of molecular nitrogen in a relatively low-pressure condition (≤100 Torr). Such plasma amplification occurring in air could be useful in aerospace applications at high altitude.

  14. Resonant- and avalanche-ionization amplification of laser-induced plasma in air

    NASA Astrophysics Data System (ADS)

    Wu, Yue; Zhang, Zhili; Jiang, Naibo; Roy, Sukesh; Gord, James R.

    2014-10-01

    Amplification of laser-induced plasma in air is demonstrated utilizing resonant laser ionization and avalanche ionization. Molecular oxygen in air is ionized by a low-energy laser pulse employing (2 + 1) resonance-enhanced multi-photon ionization (REMPI) to generate seed electrons. Subsequent avalanche ionization of molecular oxygen and nitrogen significantly amplifies the laser-induced plasma. In this plasma-amplification effect, three-body attachments to molecular oxygen dominate the electron-generation and -loss processes, while either nitrogen or argon acts as the third body with low electron affinity. Contour maps of the electron density within the plasma obtained in O2/N2 and O2/Ar gas mixtures are provided to show relative degrees of plasma amplification with respect to gas pressure and to verify that the seed electrons generated by O2 2 + 1 REMPI are selectively amplified by avalanche ionization of molecular nitrogen in a relatively low-pressure condition (≤100 Torr). Such plasma amplification occurring in air could be useful in aerospace applications at high altitude.

  15. Enhanced filament ablation of metals based on plasma grating in air

    SciTech Connect

    Wang, Di; Liu, Fengjiang; Ding, Liangen; Yuan, Shuai; Zeng, Heping

    2015-09-15

    We demonstrate efficient ablation of metals with filamentary plasma grating generated by two intense blue femtosecond filaments and a third focused infrared pulse. This scheme leads to significant promotion of ablation efficiency on metal targets in air in comparison with single infrared or blue filament with equal pulse energy. The reason is that the blue plasma grating firstly provides stronger intensity and a higher density of background electrons, then the delayed infrared pulse accelerates local electrons inside the plasma grating. These two processes finally results in robustly increased electron density and highly ionized metallic atoms.

  16. Genetic effects of an air discharge plasma on Staphylococcus aureus at the gene transcription level

    NASA Astrophysics Data System (ADS)

    Xu, Zimu; Wei, Jun; Shen, Jie; Liu, Yuan; Ma, Ronghua; Zhang, Zelong; Qian, Shulou; Ma, Jie; Lan, Yan; Zhang, Hao; Zhao, Ying; Xia, Weidong; Sun, Qiang; Cheng, Cheng; Chu, Paul K.

    2015-05-01

    The dynamics of gene expression regulation (at transcription level) in Staphylococcus aureus after different doses of atmospheric-pressure room-temperature air plasma treatments are investigated by monitoring the quantitative real-time polymerase chain reaction. The plasma treatment influences the transcription of genes which are associated with several important bio-molecular processes related to the environmental stress resistance of the bacteria, including oxidative stress response, biofilm formation, antibiotics resistance, and DNA damage protection/repair. The reactive species generated by the plasma discharge in the gas phase and/or induced in the liquid phase may account for these gene expression changes.

  17. Using advanced oxidation treatment for biofilm inactivation by varying water vapor content in air plasma

    NASA Astrophysics Data System (ADS)

    Ryota, Suganuma; Koichi, Yasuoka

    2015-09-01

    Biofilms are caused by environmental degradation in food factories and medical facilities. The inactivation of biofilms involves making them react with chemicals including chlorine, hydrogen peroxide, and ozone, although inactivation using chemicals has a potential problem because of the hazardous properties of the residual substance and hydrogen peroxide, which have slow reaction velocity. We successfully performed an advanced oxidation process (AOP) using air plasma. Hydrogen peroxide and ozone, which were used for the formation of OH radicals in our experiment, were generated by varying the amount of water vapor supplied to the plasma. By varying the content of the water included in the air, the main product was changed from air plasma. When we increased the water content in the air, hydrogen peroxide was produced, while ozone peroxide was produced when we decreased the water content in the air. By varying the amount of water vapor, we realized a 99.9% reduction in the amount of bacteria in the biofilm when we discharged humidified air only. This work was supported by JSPS KAKENHI Grant Number 25630104.

  18. Surface functionalization of macroporous polymeric materials by treatment with air low temperature plasma.

    PubMed

    Molina, R; Sole, I; Vílchez, A; Bertran, E; Solans, C; Esquena, J

    2013-04-01

    Polystyrene/divinylbenzene (PS-DVB) macroporous monoliths obtained using highly concentrated emulsions as templates show a superhydrophobic behaviour, restricting their potential technological applications, especially those related to adhesion and wetting. Air plasma treatments were carried out in order to modulate wetting properties, modifying the surface chemical composition of macroporous polystyrene/divinylbenzene materials. The superhydrophobic behaviour was rapidly suppressed by air plasma treatment, greatly reducing the water contact angle, from approximately 150 degrees to approximately 90 degrees, in only 10 seconds of treatment. The new surface chemical groups, promoted by plasma active species, were characterized by surface analysis techniques with different depth penetration specificity (contact angle, XPS, FTIR and SEM). Results demonstrated that very short treatment times produced different chemical functionalities, mainly C-O, C=O, O-C=O and C-N, which provide the materials with predominantly acidic surface properties. However, plasma active species did not penetrate deeply through the interconnected pores of the material. FTIR analysis evidenced that the new hydrophilic surface groups promoted by plasma active species are in a negligibly concentration compared to bulk chemical groups, and are located in a very thin surface region on the PS-DVB monolith surface (significantly below 2 microm). XPS analysis of treated monoliths revealed a progressive increase of oxygen and nitrogen content as a function of plasma treatment time. However, oxidation of the PS-DVB monoliths surface prevails over the incorporation of nitrogen atoms. Finally, SEM studies indicated that the morphology of the plasma treated PS-DVB does not significantly change even for the longest air plasma treatment time studied (120 s).

  19. Thermophysics Characterization of Multiply Ionized Air Plasma Absorption of Laser Radiation

    NASA Technical Reports Server (NTRS)

    Wang, Ten-See; Rhodes, Robert; Turner, Jim (Technical Monitor)

    2002-01-01

    The impact of multiple ionization of air plasma on the inverse Bremsstrahlung absorption of laser radiation is investigated for air breathing laser propulsion. Thermochemical properties of multiply ionized air plasma species are computed for temperatures up to 200,000 deg K, using hydrogenic approximation of the electronic partition function; And those for neutral air molecules are also updated for temperatures up to 50,000 deg K, using available literature data. Three formulas for absorption are calculated and a general formula is recommended for multiple ionization absorption calculation. The plasma composition required for absorption calculation is obtained by increasing the degree of ionization sequentially, up to quadruple ionization, with a series of thermal equilibrium computations. The calculated second ionization absorption coefficient agrees reasonably well with that of available data. The importance of multiple ionization modeling is demonstrated with the finding that area under the quadruple ionization curve of absorption is found to be twice that of single ionization. The effort of this work is beneficial to the computational plasma aerodynamics modeling of laser lightcraft performance.

  20. Modified by air plasma polymer tack membranes as drainage material for antiglaucomatous operations

    NASA Astrophysics Data System (ADS)

    Ryazantseva, T. V.; Kravets, L. I.; Elinson, V. M.

    2014-06-01

    The morphological and clinical studies of poly(ethylene terephthalate) track membranes modified by air plasma as drainage materials for antiglaucomatous operations were performed. It was demonstrated their compatibility with eye tissues. Moreover, it was shown that a new drainage has a good lasting hypotensive effect and can be used as operation for refractory glaucoma surgery.

  1. Physics and applications of atmospheric non-thermal air plasma with reference to environment

    NASA Astrophysics Data System (ADS)

    Marode, E.; Djermoune, D.; Dessante, P.; Deniset, C.; Ségur, P.; Bastien, F.; Bourdon, A.; Laux, C.

    2009-12-01

    Since air is a natural part of our environment, special attention is given to the study of plasmas in air at atmospheric pressure and their applications. This fact promoted the study of electrical conduction in air-like mixtures, i.e. mixtures containing an electronegative gas component. If the ionization growth is not limited its temporal evolution leads to spark formation, i.e. a thermal plasma of several thousand kelvins in a quasi-local thermodynamic equilibrium state. But before reaching such a thermal state, a plasma sets up where the electrons increase their energy characterized by an electron temperature Te much higher than that of heavy species T or T+ for the ions. Since the plasma is no longer characterized by only one temperature T, it is said to be in a non-thermal plasma (NTP) state. Practical ways are listed to prevent electron ionization from going beyond the NTP states. Much understanding of such NTP may be gathered from the study of the simple paradigmatic case of a discharge induced between a sharp positively stressed point electrode facing a grounded negative plane electrode. Some physical properties will be gathered from such configurations and links underlined between these properties and some associated applications, mostly environmental. Aerosol filtration and electrostatic precipitators, pollution control by removal of hazardous species contained in flue gas exhaust, sterilization applications for medical purposes and triggering fuel combustion in vehicle motors are among such applications nowadays.

  2. Creating nanoporosity in silver nanocolumns by direct exposure to radio-frequency air plasma

    NASA Astrophysics Data System (ADS)

    El Mel, Abdel-Aziz; Stephant, Nicolas; Hamon, Jonathan; Thiry, Damien; Chauvin, Adrien; Chettab, Meriem; Gautron, Eric; Konstantinidis, Stephanos; Granier, Agnès; Tessier, Pierre-Yves

    2015-12-01

    Nanoporous materials are of great importance for a broad range of applications including catalysis, optical sensors and water filtration. Although several approaches already exist for the creation of nanoporous materials, the race for the development of versatile methods, more suitable for the nanoelectronics industry, is still ongoing. In this communication we report for the first time on the possibility of generating nanoporosity in silver nanocolumns using a dry approach based on the oxidation of silver by direct exposure to a commercially available radio-frequency air plasma. The silver nanocolumns are created by glancing angle deposition using magnetron sputtering of a silver target in pure argon plasma. We show that upon exposure to the rf air plasma, the nanocolumns transform from solid silver into nanoporous silver oxide. We further show that by tuning the plasma pressure and the exposure duration, the oxidation process can be finely adjusted allowing for precisely controlling the morphology and the nanoporosity of the silver oxide nanocolumns. The generation of porosity within the silver nanocolumns is explained according to a cracking-induced oxidation mechanism based on two repeated events occurring alternately during the oxidation process: (i) oxidation of silver upon exposure to the air plasma and (ii) generation of nanocracks and blisters within the oxide layer due to the high internal stress generated within the material during oxidation.

  3. Spatial and Temporal Dependence of Interspark Interactions in Femtosecond-Nanosecond Dual-Pulse Laser-Induced Breakdown Spectroscopy

    NASA Astrophysics Data System (ADS)

    Scaffidi, Jon; Pearman, William; Lawrence, Marion; Chance Carter, J.; Colston, Bill W., Jr.; Angel, S. Michael

    2004-09-01

    A femtosecond air spark has recently been combined with a nanosecond ablative pulse in order to map the spatial and temporal interactions of the two plasmas in femtosecond-nanosecond orthogonal preablation spark dual-pulse laser-induced breakdown spectroscopy (LIBS). Good spatial and temporal correlation was found for reduced atomic emission from atmospheric species (nitrogen and oxygen) and increased atomic emission from ablated species (copper and aluminum) in the femtosecond-nanosecond plasma, suggesting a potential role for atmospheric pressure or nitrogen/oxygen concentration reduction following air spark formation in generating atomic emission enhancements in dual-pulse LIBS.

  4. Laser-induced plasmas in ambient air for incoherent broadband cavity-enhanced absorption spectroscopy.

    PubMed

    Ruth, Albert A; Dixneuf, Sophie; Orphal, Johannes

    2015-03-01

    The emission from a laser-induced plasma in ambient air, generated by a high power femtosecond laser, was utilized as pulsed incoherent broadband light source in the center of a quasi-confocal high finesse cavity. The time dependent spectra of the light leaking from the cavity was compared with those of the laser-induced plasma emission without the cavity. It was found that the light emission was sustained by the cavity despite the initially large optical losses of the laser-induced plasma in the cavity. The light sustained by the cavity was used to measure part of the S(1) ← S(0) absorption spectrum of gaseous azulene at its vapour pressure at room temperature in ambient air as well as the strongly forbidden γ-band in molecular oxygen: b(1)Σ(g)(+)(ν'=2)←X(3)Σ(g)(-)(ν''=0). PMID:25836833

  5. Microwave plasma-assisted ignition and flameholding in premixed ethylene/air mixtures

    NASA Astrophysics Data System (ADS)

    Fuh, Che A.; Wu, Wei; Wang, Chuji

    2016-07-01

    In this study, a 2.45 GHz microwave source and a surfatron were used, coupled with a T-shaped quartz combustor, to investigate the role of a nonthermal microwave argon plasma jet on the plasma-assisted ignition and flameholding of a premixed ethylene/air mixture. A modified U-shaped plot of the minimum plasma power required for ignition versus fuel equivalence ratio was obtained, whereby the plasma power required for plasma-assisted ignition decreased with increase in fuel equivalence ratios in the range 0.2-0.6, but for fuel equivalence ratios of 0.7 and above, the plasma power required for ignition remained fairly constant throughout. It was observed that leaner fuel/air mixtures were more sensitive to heat losses to the surrounding and this sensitivity decreased with increase in the fuel equivalence ratio. Comparison with results obtained from previous studies suggested that the mixing scheme between the plasma and the premixed fuel/air mixture and the energy density of the fuel used played an important role in influencing the minimum plasma power required for ignition with the effect being more pronounced for near stoichiometric to rich fuel equivalence ratios (0.7-1.4). Flame images obtained showed a dual layered flame with an inner white core and a bluish outer layer. The images also showed an increased degree of flameholding (tethering of the flame to the combustor orifice) with increase in plasma power. The concurrency of the dual peaks in the emission intensity profiles for OH(A), CH(A), C2(d), and the rotational temperature profiles obtained via optical emission spectroscopy along with the ground state OH(X) number density profiles in the flame using cavity ringdown spectroscopy led to the proposal that the mechanism of plasma-assisted flameholding in ethylene/air flames is predominantly radical dependent with the formation of an inner radical rich flame core which enhances the ignition and stabilization of the surrounding coflow.

  6. Microwave plasma-assisted ignition and flameholding in premixed ethylene/air mixtures

    NASA Astrophysics Data System (ADS)

    Fuh, Che A.; Wu, Wei; Wang, Chuji

    2016-07-01

    In this study, a 2.45 GHz microwave source and a surfatron were used, coupled with a T-shaped quartz combustor, to investigate the role of a nonthermal microwave argon plasma jet on the plasma-assisted ignition and flameholding of a premixed ethylene/air mixture. A modified U-shaped plot of the minimum plasma power required for ignition versus fuel equivalence ratio was obtained, whereby the plasma power required for plasma-assisted ignition decreased with increase in fuel equivalence ratios in the range 0.2–0.6, but for fuel equivalence ratios of 0.7 and above, the plasma power required for ignition remained fairly constant throughout. It was observed that leaner fuel/air mixtures were more sensitive to heat losses to the surrounding and this sensitivity decreased with increase in the fuel equivalence ratio. Comparison with results obtained from previous studies suggested that the mixing scheme between the plasma and the premixed fuel/air mixture and the energy density of the fuel used played an important role in influencing the minimum plasma power required for ignition with the effect being more pronounced for near stoichiometric to rich fuel equivalence ratios (0.7–1.4). Flame images obtained showed a dual layered flame with an inner white core and a bluish outer layer. The images also showed an increased degree of flameholding (tethering of the flame to the combustor orifice) with increase in plasma power. The concurrency of the dual peaks in the emission intensity profiles for OH(A), CH(A), C2(d), and the rotational temperature profiles obtained via optical emission spectroscopy along with the ground state OH(X) number density profiles in the flame using cavity ringdown spectroscopy led to the proposal that the mechanism of plasma-assisted flameholding in ethylene/air flames is predominantly radical dependent with the formation of an inner radical rich flame core which enhances the ignition and stabilization of the surrounding coflow.

  7. Experimental investigation of ultraviolet laser induced plasma density and temperature evolution in air

    SciTech Connect

    Thiyagarajan, Magesh; Scharer, John

    2008-07-01

    We present measurements and analysis of laser induced plasma neutral densities and temperatures in dry air by focusing 200 mJ, 10 MW high power, 193 nm ultraviolet ArF (argon fluoride) laser radiation to a 30 {mu}m radius spot size. We examine these properties that result from multiphoton and collisional cascade processes for pressures ranging from 40 Torr to 5 atm. A laser shadowgraphy diagnostic technique is used to obtain the plasma electron temperature just after the shock front and this is compared with optical emission spectroscopic measurements of nitrogen rotational and vibrational temperatures. Two-color laser interferometry is employed to measure time resolved spatial electron and neutral density decay in initial local thermodynamic equilibrium (LTE) and non-LTE conditions. The radiating species and thermodynamic characteristics of the plasma are analyzed by means of optical emission spectroscopy (OES) supported by SPECAIR, a special OES program for air constituent plasmas. Core plasma rotational and vibrational temperatures are obtained from the emission spectra from the N{sub 2}C-B(2+) transitions by matching the experimental spectrum results with the SPECAIR simulation results and the results are compared with the electron temperature just behind the shock wave. The plasma density decay measurements are compared with a simplified electron density decay model that illustrates the dominant three-and two-body recombination terms with good correlation.

  8. Experimental investigation of ultraviolet laser induced plasma density and temperature evolution in air

    NASA Astrophysics Data System (ADS)

    Thiyagarajan, Magesh; Scharer, John

    2008-07-01

    We present measurements and analysis of laser induced plasma neutral densities and temperatures in dry air by focusing 200 mJ, 10 MW high power, 193 nm ultraviolet ArF (argon fluoride) laser radiation to a 30 μm radius spot size. We examine these properties that result from multiphoton and collisional cascade processes for pressures ranging from 40 Torr to 5 atm. A laser shadowgraphy diagnostic technique is used to obtain the plasma electron temperature just after the shock front and this is compared with optical emission spectroscopic measurements of nitrogen rotational and vibrational temperatures. Two-color laser interferometry is employed to measure time resolved spatial electron and neutral density decay in initial local thermodynamic equilibrium (LTE) and non-LTE conditions. The radiating species and thermodynamic characteristics of the plasma are analyzed by means of optical emission spectroscopy (OES) supported by SPECAIR, a special OES program for air constituent plasmas. Core plasma rotational and vibrational temperatures are obtained from the emission spectra from the N2C-B(2+) transitions by matching the experimental spectrum results with the SPECAIR simulation results and the results are compared with the electron temperature just behind the shock wave. The plasma density decay measurements are compared with a simplified electron density decay model that illustrates the dominant three-and two-body recombination terms with good correlation.

  9. Experimental study of the behavior of two laser produced plasmas in air

    SciTech Connect

    Yang, Zefeng; Wei, Wenfu; Han, Jiaxun; Wu, Jian Li, Xingwen; Jia, Shenli

    2015-07-15

    The interactions among two laser ablated Al plasmas and their shock wave fronts (SWFs) induced by double laser pulses in air were studied experimentally. The evolution processes, including the expansion and interaction of the two plasmas and their shocks, were investigated by laser shadowgraphs, schlieren images, and interferograms. Remarkably, the distribution of the compressed air and the laser plasmas during the colliding process was clearly obtained using the Mach-Zehnder interferometer. From the refractive index profiles, typical plasmas density and gas density behind the shock front were estimated as ∼5.2 × 10{sup 18 }cm{sup −3} and ∼2.4 × 10{sup 20 }cm{sup −3}. A stagnation layer formed by the collision of gas behind the shock front is observed. The SWFs propagated, collided, and reflected with a higher velocity than plasmas. The results indicated that the slower plasma collided at middle, leading to the formation of the soft stagnation.

  10. Quasi-steady-state air plasma channel produced by a femtosecond laser pulse sequence

    PubMed Central

    Lu, Xin; Chen, Shi-You; Ma, Jing-Long; Hou, Lei; Liao, Guo-Qian; Wang, Jin-Guang; Han, Yu-Jing; Liu, Xiao-Long; Teng, Hao; Han, Hai-Nian; Li, Yu-Tong; Chen, Li-Ming; Wei, Zhi-Yi; Zhang, Jie

    2015-01-01

    A long air plasma channel can be formed by filamentation of intense femtosecond laser pulses. However, the lifetime of the plasma channel produced by a single femtosecond laser pulse is too short (only a few nanoseconds) for many potential applications based on the conductivity of the plasma channel. Therefore, prolonging the lifetime of the plasma channel is one of the key challenges in the research of femtosecond laser filamentation. In this study, a unique femtosecond laser source was developed to produce a high-quality femtosecond laser pulse sequence with an interval of 2.9 ns and a uniformly distributed single-pulse energy. The metre scale quasi-steady-state plasma channel with a 60–80 ns lifetime was formed by such pulse sequences in air. The simulation study for filamentation of dual femtosecond pulses indicated that the plasma channel left by the previous pulse was weakly affected the filamentation of the next pulse in sequence under our experimental conditions. PMID:26493279

  11. Effect of duty-cycles on the air plasma gas-phase of dielectric barrier discharges

    NASA Astrophysics Data System (ADS)

    Barni, R.; Biganzoli, I.; Dell'Orto, E. C.; Riccardi, C.

    2015-10-01

    An experimental investigation concerning the effects of a duty-cycle in the supply of a dielectric barrier discharge in atmospheric pressure air has been performed. Electrical characteristics of the discharge have been measured, focusing mainly on the statistical properties of the current filaments and on dielectric surface charging, both affected by the frequent repetition of breakdown imposed by the duty-cycle. Information on the gas-phase composition was gathered too. In particular, a strong enhancement in the ozone formation rate is observed when suitable long pauses separate the active discharge phases. A simulation of the chemical kinetics in the gas-phase, based on a simplified discharge modeling, is briefly described in order to shed light on the observed increase in ozone production. The effect of a duty-cycle on surface modification of polymeric films in order to increase their wettability has been investigated too.

  12. Decay of femtosecond laser-induced plasma filaments in air, nitrogen, and argon for atmospheric and subatmospheric pressures.

    PubMed

    Aleksandrov, N L; Bodrov, S B; Tsarev, M V; Murzanev, A A; Sergeev, Yu A; Malkov, Yu A; Stepanov, A N

    2016-07-01

    The temporal evolution of a plasma channel at the trail of a self-guided femtosecond laser pulse was studied experimentally and theoretically in air, nitrogen (with an admixture of ∼3% O_{2}), and argon in a wide range of gas pressures (from 2 to 760 Torr). Measurements by means of transverse optical interferometry and pulsed terahertz scattering techniques showed that plasma density in air and nitrogen at atmospheric pressure reduces by an order of magnitude within 3-4 ns and that the decay rate decreases with decreasing pressure. The argon plasma did not decay within several nanoseconds for pressures of 50-760 Torr. We extended our theoretical model previously applied for atmospheric pressure air plasma to explain the plasma decay in the gases under study and to show that allowance for plasma channel expansion affects plasma decay at low pressures. PMID:27575227

  13. Decay of femtosecond laser-induced plasma filaments in air, nitrogen, and argon for atmospheric and subatmospheric pressures

    NASA Astrophysics Data System (ADS)

    Aleksandrov, N. L.; Bodrov, S. B.; Tsarev, M. V.; Murzanev, A. A.; Sergeev, Yu. A.; Malkov, Yu. A.; Stepanov, A. N.

    2016-07-01

    The temporal evolution of a plasma channel at the trail of a self-guided femtosecond laser pulse was studied experimentally and theoretically in air, nitrogen (with an admixture of ˜3% O2), and argon in a wide range of gas pressures (from 2 to 760 Torr). Measurements by means of transverse optical interferometry and pulsed terahertz scattering techniques showed that plasma density in air and nitrogen at atmospheric pressure reduces by an order of magnitude within 3-4 ns and that the decay rate decreases with decreasing pressure. The argon plasma did not decay within several nanoseconds for pressures of 50-760 Torr. We extended our theoretical model previously applied for atmospheric pressure air plasma to explain the plasma decay in the gases under study and to show that allowance for plasma channel expansion affects plasma decay at low pressures.

  14. Streptococci biofilm decontamination on teeth by low-temperature air plasma of dc corona discharges

    NASA Astrophysics Data System (ADS)

    Kovalóvá, Z.; Zahoran, M.; Zahoranová, A.; Machala, Z.

    2014-06-01

    Non-thermal plasmas of atmospheric pressure air direct current corona discharges were investigated for potential applications in dental medicine. The objective of this ex vivo study was to apply cold plasmas for the decontamination of Streptococci biofilm grown on extracted human teeth, and to estimate their antimicrobial efficiency and the plasma's impact on the enamel and dentine of the treated tooth surfaces. The results show that both positive streamer and negative Trichel pulse coronas can reduce bacterial population in the biofilm by up to 3 logs in a 10 min exposure time. This bactericidal effect can be reached faster (within 5 min) by electrostatic spraying of water through the discharge onto the treated tooth surface. Examination of the tooth surface after plasma exposure by infrared spectroscopy and scanning electron microscopy did not show any significant alteration in the tooth material composition or the tooth surface structures.

  15. Surface cleaning of metals in air with a one atmosphere uniform glow discharge plasma

    SciTech Connect

    Roth, J.R.; Ku, Y.

    1995-12-31

    The authors report the use of active species generated in a one atmosphere uniform glow discharge plasma reactor with a parallel-plate configuration to clean the surface of as-received metal samples from the machine shop floor. The experimental arrangement used to expose the 7 by 10 cm metal samples is shown. The lower parallel-plate electrode is a flat copper plate 22 by 22 cm, covered by a 5mm thick pyrex sheet. The upper electrode is formed by the bare metal sample plate, with the side to be cleaned facing the plasma. To assure plasma uniformity between the electrodes, it was helpful to direct a flow of air on the edges of the plasma volume. The cleanliness of the metal samples was determined with the standard sessile water drop test.

  16. Characteristics of Low Power CH4/Air Atmospheric Pressure Plasma Jet

    NASA Astrophysics Data System (ADS)

    ZHANG, Jun; XIAO, Dezhi; FANG, Shidong; SHU, Xingsheng; ZUO, Xiao; CHENG, Cheng; MENG, Yuedong; WANG, Shouguo

    2015-03-01

    A low power atmospheric pressure plasma jet driven by a 24 kHz AC power source and operated with a CH4/air gas mixture has been investigated by optical emission spectrometer. The plasma parameters including the electron excitation temperature, vibrational temperature and rotational temperature of the plasma jet at different discharge powers are diagnosed based on the assumption that the kinetic energy of the species obeys the Boltzmann distribution. The electron density at different power is also investigated by Hβ Stark broadening. The results show that the plasma source works under non-equilibrium conditions. It is also found that the vibrational temperature and rotational temperature increase with discharge power, whereas the electron excitation temperature seems to have a downward trend. The electron density increases from 0.8 × 1021 m-3 to 1.1 × 1021 m-3 when the discharge power increases from 53 W to 94 W.

  17. A brush-shaped air plasma jet operated in glow discharge mode at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Li, Xuechen; Bao, Wenting; Jia, Pengying; Di, Cong

    2014-07-01

    Using ambient air as working gas, a direct-current plasma jet is developed to generate a brush-shaped plasma plume with fairly large volume. Although a direct-current power supply is used, the discharge shows a pulsed characteristic. Based on the voltage-current curve and fast photography, the brush-shaped plume, like the gliding arc plasma, is in fact a temporal superposition of a moving discharge filament in an arched shape. During it moves away from the nozzle, the discharge evolves from a low-current arc into a normal glow in one discharge cycle. The emission profile is explained qualitatively based on the dynamics of the plasma brush.

  18. Surface modification of poly(ethylene terephthalate) fibers induced by radio frequency air plasma treatment

    NASA Astrophysics Data System (ADS)

    Riccardi, Claudia; Barni, Ruggero; Selli, Elena; Mazzone, Giovanni; Massafra, Maria Rosaria; Marcandalli, Bruno; Poletti, Giulio

    2003-04-01

    The surface chemical and physical modifications of poly(ethylene terephthalate) (PET) fibers induced by radiofrequency air plasma treatments were correlated with the characteristics of the discharge parameters and the chemical composition of the plasma itself, to identify the plasma-induced surface processes prevailing under different operating conditions. Treated polymer surfaces were characterized by water droplet absorption time measurements and XPS analysis, as a function of the aging time in different media, and by AFM analysis. They exhibited a remarkable increase in hydrophilicity, accompanied by extensive etching and by the implantation of both oxygen- and nitrogen-containing polar groups. Etching was mainly a consequence of ion bombardment, yielding low molecular weight, water soluble oxidation products, while surface chemical modifications were mainly due to the action of neutral species on the plasma-activated polymer surface.

  19. Cold air plasma to decontaminate inanimate surfaces of the hospital environment.

    PubMed

    Cahill, Orla J; Claro, Tânia; O'Connor, Niall; Cafolla, Anthony A; Stevens, Niall T; Daniels, Stephen; Humphreys, Hilary

    2014-03-01

    The hospital environment harbors bacteria that may cause health care-associated infections. Microorganisms, such as multiresistant bacteria, can spread around the patient's inanimate environment. Some recently introduced biodecontamination approaches in hospitals have significant limitations due to the toxic nature of the gases and the length of time required for aeration. This study evaluated the in vitro use of cold air plasma as an efficient alternative to traditional methods of biodecontamination of hospital surfaces. Cultures of methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant enterococci (VRE), extended-spectrum-β-lactamase (ESBL)-producing Escherichia coli, and Acinetobacter baumannii were applied to different materials similar to those found in the hospital environment. Artificially contaminated sections of marmoleum, mattress, polypropylene, powder-coated mild steel, and stainless steel were then exposed to a cold air pressure plasma single jet for 30 s, 60 s, and 90 s, operating at approximately 25 W and 12 liters/min flow rate. Direct plasma exposure successfully reduced the bacterial load by log 3 for MRSA, log 2.7 for VRE, log 2 for ESBL-producing E. coli, and log 1.7 for A. baumannii. The present report confirms the efficient antibacterial activity of a cold air plasma single-jet plume on nosocomial bacterially contaminated surfaces over a short period of time and highlights its potential for routine biodecontamination in the clinical environment.

  20. Air core poloidal magnetic field system for a toroidal plasma producing device

    DOEpatents

    Marcus, Frederick B.

    1978-01-01

    A poloidal magnetics system for a plasma producing device of toroidal configuration is provided that reduces both the total volt-seconds requirement and the magnitude of the field change at the toroidal field coils. The system utilizes an air core transformer wound between the toroidal field (TF) coils and the major axis outside the TF coils. Electric current in the primary windings of this transformer is distributed and the magnetic flux returned by air core windings wrapped outside the toroidal field coils. A shield winding that is closely coupled to the plasma carries a current equal and opposite to the plasma current. This winding provides the shielding function and in addition serves in a fashion similar to a driven conducting shell to provide the equilibrium vertical field for the plasma. The shield winding is in series with a power supply and a decoupling coil located outside the TF coil at the primary winding locations. The present invention requires much less energy than the usual air core transformer and is capable of substantially shielding the toroidal field coils from poloidal field flux.

  1. Cold Air Plasma To Decontaminate Inanimate Surfaces of the Hospital Environment

    PubMed Central

    Claro, Tânia; O'Connor, Niall; Cafolla, Anthony A.; Stevens, Niall T.; Daniels, Stephen; Humphreys, Hilary

    2014-01-01

    The hospital environment harbors bacteria that may cause health care-associated infections. Microorganisms, such as multiresistant bacteria, can spread around the patient's inanimate environment. Some recently introduced biodecontamination approaches in hospitals have significant limitations due to the toxic nature of the gases and the length of time required for aeration. This study evaluated the in vitro use of cold air plasma as an efficient alternative to traditional methods of biodecontamination of hospital surfaces. Cultures of methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant enterococci (VRE), extended-spectrum-β-lactamase (ESBL)-producing Escherichia coli, and Acinetobacter baumannii were applied to different materials similar to those found in the hospital environment. Artificially contaminated sections of marmoleum, mattress, polypropylene, powder-coated mild steel, and stainless steel were then exposed to a cold air pressure plasma single jet for 30 s, 60 s, and 90 s, operating at approximately 25 W and 12 liters/min flow rate. Direct plasma exposure successfully reduced the bacterial load by log 3 for MRSA, log 2.7 for VRE, log 2 for ESBL-producing E. coli, and log 1.7 for A. baumannii. The present report confirms the efficient antibacterial activity of a cold air plasma single-jet plume on nosocomial bacterially contaminated surfaces over a short period of time and highlights its potential for routine biodecontamination in the clinical environment. PMID:24441156

  2. Microstructure of Suspension Plasma Spray and Air Plasma Spray Al2O3-ZrO2 Composite Coatings

    NASA Astrophysics Data System (ADS)

    Chen, Dianying; Jordan, Eric H.; Gell, Maurice

    2009-09-01

    Al2O3-ZrO2 coatings were deposited by the suspension plasma spray (SPS) molecularly mixed amorphous powder and the conventional air plasma spray (APS) Al2O3-ZrO2 crystalline powder. The amorphous powder was produced by heat treatment of molecularly mixed chemical solution precursors below their crystallization temperatures. Phase composition and microstructure of the as-synthesized and heat-treated SPS and APS coatings were characterized by XRD and SEM. XRD analysis shows that the as-sprayed SPS coating is composed of α-Al2O3 and tetragonal ZrO2 phases, while the as-sprayed APS coating consists of tetragonal ZrO2, α-Al2O3, and γ-Al2O3 phases. Microstructure characterization revealed that the Al2O3 and ZrO2 phase distribution in SPS coatings is much more homogeneous than that of APS coatings.

  3. Physicochemical processes in the indirect interaction between surface air plasma and deionized water

    NASA Astrophysics Data System (ADS)

    Liu, Z. C.; Liu, D. X.; Chen, C.; Li, D.; Yang, A. J.; Rong, M. Z.; Chen, H. L.; Kong, M. G.

    2015-12-01

    One of the most central scientific questions for plasma applications in healthcare and environmental remediation is the chemical identity and the dose profile of plasma-induced reactive oxygen and nitrogen species (ROS/RNS) that can act on an object inside a liquid. A logical focus is on aqueous physicochemical processes near a sample with a direct link to their upstream gaseous processes in the plasma region and a separation gap from the liquid bulk. Here, a system-level modeling framework is developed for indirect interactions of surface air plasma and a deionized water bulk and its predictions are found to be in good agreement with the measurement of gas-phase ozone and aqueous long-living ROS/RNS concentrations. The plasma region is described with a global model, whereas the air gap and the liquid region are simulated with a 1D fluid model. All three regions are treated as one integrated entity and computed simultaneously. With experimental validation, the system-level modeling shows that the dominant aqueous ROS/RNS are long-living species (e.g. H2O2 aq, O3 aq, nitrite/nitrate, H+ aq). While most short-living gaseous species could hardly survive their passage to the liquid, aqueous short-living ROS/RNS are generated in situ through reactions among long-living plasma species and with water molecules. This plasma-mediated remote production of aqueous ROS/RNS is important for the abundance of aqueous HO2 aq, HO3 aq, OHaq and \\text{O}2- aq as well as NO2 aq and NO3 aq. Aqueous plasma chemistry offers a novel and significant pathway to activate a given biological outcome, as exemplified here for bacterial deactivation in plasma-activated water. Additional factors that may synergistically broaden the usefulness of aqueous plasma chemistry include an electric field by aqueous ions and liquid acidification. The system-modeling framework will be useful in assisting designs and analyses of future investigations of plasma-liquid and plasma-cell interactions.

  4. Microwave interferometry of laser induced air plasmas formed by short laser pulses

    SciTech Connect

    Jungwirth, P.W.

    1993-08-01

    Applications for the interaction of laser induced plasmas with electromagnetic probes requires time varying complex conductivity data for specific laser/electromagnetic probe geometries. Applications for this data include plasma switching (Q switching) and the study of ionization fronts. The plasmas were created in laboratory air by 100 ps laser pulses at a wavelength of 1 {mu}m. A long focal length lens focused the laser pulse into WR90 (X band) rectangular waveguide. Two different laser beam/electromagnetic probe geometries were investigated. For the longitudinal geometry, the laser pulse and the microwave counterpropagated inside the waveguide. For the transverse geometry, the laser created a plasma ``post`` inside the waveguide. The effects of the laser beam deliberately hitting the waveguide were also investigated. Each geometry exhibits its own characteristics. This research project focused on the longitudinal geometry. Since the laser beam intensity varies inside the waveguide, the charge distribution inside the waveguide also varies. A 10 GHz CW microwave probe traveled through the laser induced plasma. From the magnitude and phase of the microwave probe, a spatially integrated complex conductivity was calculated. No measurements of the temporal or spatial variation of the laser induced plasma were made. For the ``plasma post,`` the electron density is more uniform.

  5. Non-Thermal Ignition of Hydrocarbon-Air Mixtures by Nonequilibrium Plasmas

    NASA Astrophysics Data System (ADS)

    Chintala, Naveen; Bao, Ainan; Lou, Guofeng; Rich, J. William; Lempert, Walter; Adamovich, Igor

    2004-09-01

    The paper presents results of nonequilibrium RF plasma assisted ignition and combustion experiments in premixed methane-air, ethylene-air, and CO-air flows. The results show that large volume ignition of these mixtures by a uniform, diffuse RF plasma can be achieved at high flow velocities (up to u=25 m/s) and low pressures (P=60-130 torr), as compared to either a spark discharge or a DC arc discharge. FT-IR measurements show that ignition occurs at temperatures below that of equilibrium autoignition by as much as 350o C. Spontaneous emission in the discharge detected presence of radical species such as CN, CH, C2, and OH, as well as O and H atoms. CO2 emission was also detected in the flame downstream of the RF plasma. FTIR absorption of the combustion products shows that up to 80burned in ethylene-air mixtures and 50mixtures. Further experiments at higher test section flow velocities and higher RF discharge powers are underway.

  6. Electrical breakdown of nanowires.

    PubMed

    Zhao, Jiong; Sun, Hongyu; Dai, Sheng; Wang, Yan; Zhu, Jing

    2011-11-01

    Instantaneous electrical breakdown measurements of GaN and Ag nanowires are performed by an in situ transmission electron microscopy method. Our results directly reveal the mechanism that typical thermally heated semiconductor nanowires break at the midpoint, while metallic nanowires breakdown near the two ends due to the stress induced by electromigration. The different breakdown mechanisms for the nanowires are caused by the different thermal and electrical properties of the materials.

  7. Air-water ‘tornado’-type microwave plasmas applied for sugarcane biomass treatment

    NASA Astrophysics Data System (ADS)

    Bundaleska, N.; Tatarova, E.; Dias, F. M.; Lino da Silva, M.; Ferreira, C. M.; Amorim, J.

    2014-02-01

    The production of cellulosic ethanol from sugarcane biomass is an attractive alternative to the use of fossil fuels. Pretreatment is needed to separate the cellulosic material, which is packed with hemicellulose and lignin in cell wall of sugarcane biomass. A microwave ‘tornado’-type air-water plasma source operating at 2.45 GHz and atmospheric pressure has been applied for this purpose. Samples of dry and wet biomass (˜2 g) have been exposed to the late afterglow plasma stream. The experiments demonstrate that the air-water highly reactive plasma environment provides a number of long-lived active species able to destroy the cellulosic wrapping. Scanning electron microscopy has been applied to analyse the morphological changes occurring due to plasma treatment. The effluent gas streams have been analysed by Fourier-transform infrared spectroscopy (FT-IR). Optical emission spectroscopy and FT-IR have been applied to determine the gas temperature in the discharge and late afterglow plasma zones, respectively. The optimal range of the operational parameters is discussed along with the main active species involved in the treatment process. Synergistic effects can result from the action of singlet O2(a 1Δg) oxygen, NO2, nitrous acid HNO2 and OH hydroxyl radical.

  8. Cold atmospheric air plasma sterilization against spores and other microorganisms of clinical interest.

    PubMed

    Klämpfl, Tobias G; Isbary, Georg; Shimizu, Tetsuji; Li, Yang-Fang; Zimmermann, Julia L; Stolz, Wilhelm; Schlegel, Jürgen; Morfill, Gregor E; Schmidt, Hans-Ulrich

    2012-08-01

    Physical cold atmospheric surface microdischarge (SMD) plasma operating in ambient air has promising properties for the sterilization of sensitive medical devices where conventional methods are not applicable. Furthermore, SMD plasma could revolutionize the field of disinfection at health care facilities. The antimicrobial effects on Gram-negative and Gram-positive bacteria of clinical relevance, as well as the fungus Candida albicans, were tested. Thirty seconds of plasma treatment led to a 4 to 6 log(10) CFU reduction on agar plates. C. albicans was the hardest to inactivate. The sterilizing effect on standard bioindicators (bacterial endospores) was evaluated on dry test specimens that were wrapped in Tyvek coupons. The experimental D(23)(°)(C) values for Bacillus subtilis, Bacillus pumilus, Bacillus atrophaeus, and Geobacillus stearothermophilus were determined as 0.3 min, 0.5 min, 0.6 min, and 0.9 min, respectively. These decimal reduction times (D values) are distinctly lower than D values obtained with other reference methods. Importantly, the high inactivation rate was independent of the material of the test specimen. Possible inactivation mechanisms for relevant microorganisms are briefly discussed, emphasizing the important role of neutral reactive plasma species and pointing to recent diagnostic methods that will contribute to a better understanding of the strong biocidal effect of SMD air plasma.

  9. Emission spectroscopy of an atmospheric pressure plasma jet operated with air at low frequency

    NASA Astrophysics Data System (ADS)

    Giuliani, L.; Gallego, J. L.; Minotti, F.; Kelly, H.; Grondona, D.

    2015-03-01

    Low-temperature, high-pressure plasma jets have an extensive use in plasma biology and plasma medicine, such as pathogen deactivation, wound disinfection, stopping of bleeding without damage of healthy tissue, acceleration of wound healing, control of bio-film proliferation, etc. In this work, a spectroscopic characterization of a typical plasma jet, operated in air at atmospheric pressure, is reported. Within the spectrum of wavelengths from 200 to 450 nm all remarkable emissions of N2 were monitored. Spectra of the N2 2nd positive system (C3Πu-B3Πg) emitted in air are the most convenient for plasma diagnostics, since they enable to determine electronic Te, rotational Tr and vibrational Tv temperatures by fitting the experimental spectra with the simulated ones. We used SPECAIR software for spectral simulation and obtained the best fit with all these temperatures about 3500K. The conclusion that all temperatures are equal, and its relatively high value, is consistent with the results of a previous work, where it was found that the experimentally determined electrical characteristic was consistent with the model of a thermal arc discharge, together with a highly collisional cathode sheet.

  10. Cold Atmospheric Air Plasma Sterilization against Spores and Other Microorganisms of Clinical Interest

    PubMed Central

    Isbary, Georg; Shimizu, Tetsuji; Li, Yang-Fang; Zimmermann, Julia L.; Stolz, Wilhelm; Schlegel, Jürgen; Morfill, Gregor E.; Schmidt, Hans-Ulrich

    2012-01-01

    Physical cold atmospheric surface microdischarge (SMD) plasma operating in ambient air has promising properties for the sterilization of sensitive medical devices where conventional methods are not applicable. Furthermore, SMD plasma could revolutionize the field of disinfection at health care facilities. The antimicrobial effects on Gram-negative and Gram-positive bacteria of clinical relevance, as well as the fungus Candida albicans, were tested. Thirty seconds of plasma treatment led to a 4 to 6 log10 CFU reduction on agar plates. C. albicans was the hardest to inactivate. The sterilizing effect on standard bioindicators (bacterial endospores) was evaluated on dry test specimens that were wrapped in Tyvek coupons. The experimental D23°C values for Bacillus subtilis, Bacillus pumilus, Bacillus atrophaeus, and Geobacillus stearothermophilus were determined as 0.3 min, 0.5 min, 0.6 min, and 0.9 min, respectively. These decimal reduction times (D values) are distinctly lower than D values obtained with other reference methods. Importantly, the high inactivation rate was independent of the material of the test specimen. Possible inactivation mechanisms for relevant microorganisms are briefly discussed, emphasizing the important role of neutral reactive plasma species and pointing to recent diagnostic methods that will contribute to a better understanding of the strong biocidal effect of SMD air plasma. PMID:22582068

  11. Two-dimensional calculations of a continuous optical discharge in atmospheric air flow (optical plasma generator)

    NASA Astrophysics Data System (ADS)

    Raizer, Iu. P.; Silant'ev, A. Iu.; Surzhikov, S. T.

    1987-06-01

    Two-dimensional gasdynamic processes in a continuous optical discharge in subsonic flow of atmospheric air are simulated numerically with allowance for distortions of the light channel due to laser beam refraction in the generated plasma, radiative energy losses, and radiant heat transfer. It is found that instabilities and vortex structures are formed in the hot jet behind the energy release region; flow in this region is nonstationary but periodic. These effects are not observed in the main part of the discharge, which is quite stable. Depending on flow velocity, diffraction in the plasma may lead to both defocusing and focusing of the beam.

  12. Antimicrobial Efficacy of Two Surface Barrier Discharges with Air Plasma against In Vitro Biofilms

    PubMed Central

    Matthes, Rutger; Bender, Claudia; Schlüter, Rabea; Koban, Ina; Bussiahn, René; Reuter, Stephan; Lademann, Jürgen; Weltmann, Klaus-Dieter; Kramer, Axel

    2013-01-01

    The treatment of infected wounds is one possible therapeutic aspect of plasma medicine. Chronic wounds are often associated with microbial biofilms which limit the efficacy of antiseptics. The present study investigates two different surface barrier discharges with air plasma to compare their efficacy against microbial biofilms with chlorhexidine digluconate solution (CHX) as representative of an important antibiofilm antiseptic. Pseudomonas aeruginosa SG81 and Staphylococcus epidermidis RP62A were cultivated on polycarbonate discs. The biofilms were treated for 30, 60, 150, 300 or 600 s with plasma or for 600 s with 0.1% CHX, respectively. After treatment, biofilms were dispensed by ultrasound and the antimicrobial effects were determined as difference in the number of the colony forming units by microbial culture. A high antimicrobial efficacy on biofilms of both plasma sources in comparison to CHX treatment was shown. The efficacy differs between the used strains and plasma sources. For illustration, the biofilms were examined under a scanning electron microscope before and after treatment. Additionally, cytotoxicity was determined by the MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay with L929 mouse fibroblast cell line. The cell toxicity of the used plasma limits its applicability on human tissue to maximally 150 s. The emitted UV irradiance was measured to estimate whether UV could limit the application on human tissue at the given parameters. It was found that the UV emission is negligibly low. In conclusion, the results support the assumption that air plasma could be an option for therapy of chronic wounds. PMID:23894661

  13. Coherent anti-Stokes Raman spectroscopic measurement of air entrainment in argon plasma jets

    SciTech Connect

    Fincke, J.R.; Rodriquez, R.; Pentecost, C.G.

    1990-01-01

    The concentration and temperature of air entrained into an argon plasma jet has been measured using coherent anti-Stokes Raman spectroscopy (CARS). The flow field is characterized by a short region of well behaved laminar flow near the nozzle exit followed by an abrupt transition to turbulence. Once the transition to turbulence occurs, air is rapidly entrained into the jet core. The location of the transition region is thought to be driven by the rapid cooling of the jet and the resulting increase in Reynolds number. 8 refs., 6 figs.

  14. Coherent anti-Stokes Raman spectroscopic measurement of air entrainment in argon plasma jets

    NASA Astrophysics Data System (ADS)

    Fincke, J. R.; Rodriquez, R.; Pentecost, C. G.

    The concentration and temperature of air entrained into an argon plasma jet has been measured using coherent anti-Stokes Raman spectroscopy (CARS). The flow field is characterized by a short region of well behaved laminar flow near the nozzle exit followed by an abrupt transition to turbulence. Once the transition to turbulence occurs, air is rapidly entrained into the jet core. The location of the transition region is thought to be driven by the rapid cooling of the jet and the resulting increase in Reynolds number.

  15. Aerosynthesis: Growths of Vertically Aligned Carbon Nanofibers with Air DC Plasma

    SciTech Connect

    Kodumagulla, A; Varanasi, V; Pearce, Ryan; Wu, W-C; Hensley, Dale K; Tracy, Joseph B; McKnight, Timothy E; Melechko, Anatoli

    2014-01-01

    Vertically aligned carbon nanofibers (VACNF) have been synthesized in a mixture of acetone and air using catalytic DC plasma enhanced chemical vapor deposition. Typically, ammonia or hydrogen is used as etchant gas in the mixture to remove carbon that otherwise passivates the catalyst surface and impedes growth. Our demonstration of using air as the etchant gas opens up a possibility that ion etching could be sufficient to maintain the catalytic activity state during synthesis. It also demonstrates the path toward growing VACNFs in open atmosphere.

  16. Third harmonic generation in air ambient and laser ablated carbon plasma

    SciTech Connect

    Singh, Ravi Pratap Gupta, Shyam L.; Thareja, Raj K.

    2015-12-15

    We report the third harmonic generation of a nanosecond laser pulse (1.06 μm) in air ambient and in the presence of nanoparticles from laser ablated carbon plasma. Significant decrease in the threshold of third harmonic generation and multi-fold increment in the intensity of generated third harmonic is observed in presence of carbon plasma. The third harmonic in air is due to the quasi-resonant four photon process involving vibrationally excited states of molecular ion of nitrogen due to electron impact ionization and laser pulse. Following optical emission spectroscopic observations we conclude that the presence of C{sub 2} and CN in the ablated plume play a vital role in the observed third harmonic signals.

  17. Time resolved optical diagnostics of ZnO plasma plumes in air

    SciTech Connect

    Gupta, Shyam L.; Singh, Ravi Pratap; Thareja, Raj K.

    2013-10-15

    We report dynamical evolution of laser ablated ZnO plasma plumes using interferometry and shadowgraphy; 2-D fast imaging and optical emission spectroscopy in air ambient at atmospheric pressure. Recorded interferograms using Nomarski interferometer and shadowgram images at various time delays show the presence of electrons and neutrals in the ablated plumes. The inference drawn from sign change of fringe shifts is consistent with two dimensional images of the plume and optical emission spectra at varying time delays with respect to ablating pulse. Zinc oxide plasma plumes are created by focusing 1.06 μm radiation on to ZnO target in air and 532 nm is used as probe beam.

  18. Characterization of a Microhollow Cathode Discharge Plasma in Helium or Air with Water Vapor

    NASA Astrophysics Data System (ADS)

    Fukuhara, D.; Namba, S.; Kozue, K.; Yamasaki, T.; Takiyama, K.

    2013-02-01

    Microhollow cathode discharge (MHCD) plasmas were generated in gas mixtures containing water vapor at pressures of up to 100 kPa of He or 20 kPa of air. The cathode diameter was 1.0 mm with a length of 2.0 mm. The electrical characteristics showed an abnormal glow mode. Spectroscopic measurements were carried out to examine the plasma and radicals. An analysis of the spectral profile of Hα at 656.3 nm enabled a derivation of the electron densities, namely 2×1014 cm-3 (at 10 kPa) and 6×1014 cm-3 (at 4 kPa) for the helium and air atmospheres, respectively, in the negative glow region. By comparing the observed OH radical spectra with those calculated by the simulation code LIFBASE, the gas temperature was deduced to be 900 K for 4 kPa of He at a discharge current of 50 mA.

  19. Generation of runaway electrons and X-ray emission during breakdown of atmospheric-pressure air by voltage pulses with an ∼0.5-μs front duration

    SciTech Connect

    Kostyrya, I. D.; Tarasenko, V. F.

    2015-03-15

    Results are presented from experiments on the generation of runaway electron beams and X-ray emission in atmospheric-pressure air by using voltage pulses with an ∼0.5-μs front duration. It is shown that the use of small-curvature-radius spherical cathodes (or other cathodes with small curvature radii) decreases the intensity of the runaway electron beam and X-ray emission. It is found that, at sufficiently high voltages at the electrode gap (U{sub m} ∼ 100 kV), the gap breakdown, the formation of a spark channel, and the generation of a runaway electron beam occur over less than 10 ns. At high values of U{sub m} behind the anode that were reached by increasing the cathode size and the electrode gap length, a supershort avalanche electron beam with a full width at half-maximum (FWHM) of up to ∼100 ps was detected. At voltages of ∼50 kV, the second breakdown regime was revealed in which a runaway electron beam with an FWHM of ∼2 ns was generated, whereas the FWHM of the X-ray pulse increased to ∼100 ns. It is established that the energy of the bulk of runaway electrons decreases with increasing voltage front duration and is ⩽30 keV in the first regime and ⩽10 keV in the second regime.

  20. Plasma column and nano-powder generation from solid titanium by localized microwaves in air

    NASA Astrophysics Data System (ADS)

    Popescu, Simona; Jerby, Eli; Meir, Yehuda; Barkay, Zahava; Ashkenazi, Dana; Mitchell, J. Brian A.; Le Garrec, Jean-Luc; Narayanan, Theyencheri

    2015-07-01

    This paper studies the effect of a plasma column ejected from solid titanium by localized microwaves in an ambient air atmosphere. Nanoparticles of titanium dioxide (titania) are found to be directly synthesized in this plasma column maintained by the microwave energy in the cavity. The process is initiated by a hotspot induced by localized microwaves, which melts the titanium substrate locally. The molten hotspot emits ionized titanium vapors continuously into the stable plasma column, which may last for more than a minute duration. The characterization of the dusty plasma obtained is performed in-situ by small-angle X-ray scattering (SAXS), optical spectroscopy, and microwave reflection analyses. The deposited titania nanoparticles are structurally and morphologically analyzed by ex-situ optical and scanning-electron microscope observations, and also by X-ray diffraction. Using the Boltzmann plot method combined with the SAXS results, the electron temperature and density in the dusty plasma are estimated as ˜0.4 eV and ˜1019 m-3, respectively. The analysis of the plasma product reveals nanoparticles of titania in crystalline phases of anatase, brookite, and rutile. These are spatially arranged in various spherical, cubic, lamellar, and network forms. Several applications are considered for this process of titania nano-powder production.

  1. Formation of plasma channels in air under filamentation of focused ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Ionin, A. A.; Seleznev, L. V.; Sunchugasheva, E. S.

    2015-03-01

    The formation of plasma channels in air under filamentation of focused ultrashort laser pulses was experimentally and theoretically studied together with theoreticians of the Moscow State University and the Institute of Atmospheric Optics. The influence of various characteristics of ultrashort laser pulses on these plasma channels is discussed. Plasma channels formed under filamentation of focused laser beams with a wavefront distorted by spherical aberration (introduced by adaptive optics) and by astigmatism, with cross-section spatially formed by various diaphragms and with different UV and IR wavelengths, were experimentally and numerically studied. The influence of plasma channels created by a filament of a focused UV or IR femtosecond laser pulse (λ = 248 nm or 740 nm) on characteristics of other plasma channels formed by a femtosecond pulse at the same wavelength following the first one with varied nanosecond time delay was also experimentally studied. An application of plasma channels formed due to the filamentation of focused UV ultrashort laser pulses including a train of such pulses and a combination of ultrashort and long (~100 ns) laser pulses for triggering and guiding long (~1 m) electric discharges is discussed.

  2. Functionalization of graphene by atmospheric pressure plasma jet in air or H2O2 environments

    NASA Astrophysics Data System (ADS)

    Huang, Weixin; Ptasinska, Sylwia

    2016-03-01

    The functionalization of graphene, which deforms its band structure, can result in a metal-semiconductor transition. In this work, we report a facile strategy to oxidize single-layer graphene using an atmospheric pressure plasma jet (APPJ) that generates a variety of reactive plasma species at close to ambient temperature. We systematically characterized the oxygen content and chemical structure of the graphene films after plasma treatment under different oxidative conditions (ambient air atmosphere or hydrogen peroxide solution) by X-ray Photoelectron Spectroscopy (XPS). Plasma-treated graphene films containing more than 40% oxygen were obtained in both oxidative environments. Interestingly, prolonged irradiation led to the reduction of graphene oxides. N-doping of graphene also occurred during the APPJ treatment in H2O2 solution; the nitrogen content of the doped graphene was dependent on the duration of irradiation and reached up to 8.1% within 40 min. Moreover, the H2O2 solution served as a buffer layer that prevented damage to the graphene during plasma irradiation. Four-point probe measurement revealed an increase in sheet resistance of the plasma-treated graphene, indicating the transition of the material property from semi-metallic to semiconducting.

  3. Plasma column and nano-powder generation from solid titanium by localized microwaves in air

    SciTech Connect

    Popescu, Simona; Jerby, Eli Meir, Yehuda; Ashkenazi, Dana; Barkay, Zahava; Mitchell, J. Brian A.; Le Garrec, Jean-Luc; Narayanan, Theyencheri

    2015-07-14

    This paper studies the effect of a plasma column ejected from solid titanium by localized microwaves in an ambient air atmosphere. Nanoparticles of titanium dioxide (titania) are found to be directly synthesized in this plasma column maintained by the microwave energy in the cavity. The process is initiated by a hotspot induced by localized microwaves, which melts the titanium substrate locally. The molten hotspot emits ionized titanium vapors continuously into the stable plasma column, which may last for more than a minute duration. The characterization of the dusty plasma obtained is performed in-situ by small-angle X-ray scattering (SAXS), optical spectroscopy, and microwave reflection analyses. The deposited titania nanoparticles are structurally and morphologically analyzed by ex-situ optical and scanning-electron microscope observations, and also by X-ray diffraction. Using the Boltzmann plot method combined with the SAXS results, the electron temperature and density in the dusty plasma are estimated as ∼0.4 eV and ∼10{sup 19 }m{sup −3}, respectively. The analysis of the plasma product reveals nanoparticles of titania in crystalline phases of anatase, brookite, and rutile. These are spatially arranged in various spherical, cubic, lamellar, and network forms. Several applications are considered for this process of titania nano-powder production.

  4. Elevated Plasma Endothelin-1 and Pulmonary Arterial Pressure in Children Exposed to Air Pollution

    PubMed Central

    Calderón-Garcidueñas, Lilian; Vincent, Renaud; Mora-Tiscareño, Antonieta; Franco-Lira, Maricela; Henríquez-Roldán, Carlos; Barragán-Mejía, Gerardo; Garrido-García, Luis; Camacho-Reyes, Laura; Valencia-Salazar, Gildardo; Paredes, Rogelio; Romero, Lina; Osnaya, Hector; Villarreal-Calderón, Rafael; Torres-Jardón, Ricardo; Hazucha, Milan J.; Reed, William

    2007-01-01

    Background Controlled exposures of animals and humans to particulate matter (PM) or ozone air pollution cause an increase in plasma levels of endothelin-1, a potent vasoconstrictor that regulates pulmonary arterial pressure. Objectives The primary objective of this field study was to determine whether Mexico City children, who are chronically exposed to levels of PM and O3 that exceed the United States air quality standards, have elevated plasma endothelin-1 levels and pulmonary arterial pressures. Methods We conducted a study of 81 children, 7.9 ± 1.3 years of age, lifelong residents of either northeast (n = 19) or southwest (n = 40) Mexico City or Polotitlán (n = 22), a control city with PM and O3 levels below the U.S. air quality standards. Clinical histories, physical examinations, and complete blood counts were done. Plasma endothelin-1 concentrations were determined by immunoassay, and pulmonary arterial pressures were measured by Doppler echocardiography. Results Mexico City children had higher plasma endothelin-1 concentrations compared with controls (p < 0.001). Mean pulmonary arterial pressure was elevated in children from both northeast (p < 0.001) and southwest (p < 0.05) Mexico City compared with controls. Endothelin-1 levels in Mexico City children were positively correlated with daily outdoor hours (p = 0.012), and 7-day cumulative levels of PM air pollution < 2.5 μm in aerodynamic diameter (PM2.5) before endothelin-1 measurement (p = 0.03). Conclusions Chronic exposure of children to PM2.5 is associated with increased levels of circulating endothelin-1 and elevated mean pulmonary arterial pressure. PMID:17687455

  5. In-situ formation of multiphase air plasma sprayed barrier coatings for turbine components

    DOEpatents

    Subramanian, Ramesh

    2001-01-01

    A turbine component (10), such as a turbine blade, is provided which is made of a metal alloy (22) and a base, planar-grained thermal barrier layer (28) applied by air plasma spraying on the alloy surface, where a heat resistant ceramic oxide overlay material (32') covers the bottom thermal barrier coating (28), and the overlay material is the reaction product of the precursor ceramic oxide overlay material (32) and the base thermal barrier coating material (28).

  6. Size-dependent mechanical properties of PVA nanofibers reduced via air plasma treatment

    NASA Astrophysics Data System (ADS)

    Fu, Qiang; Jin, Yu; Song, Xuefeng; Gao, Jingyun; Han, Xiaobing; Jiang, Xingyu; Zhao, Qing; Yu, Dapeng

    2010-03-01

    Organic nanowires/fibers have great potential in applications such as organic electronics and soft electronic techniques. Therefore investigation of their mechanical performance is of importance. The Young's modulus of poly(vinyl alcohol) (PVA) nanofibers was analyzed by scanning probe microscopy (SPM) methods. Air plasma treatment was used to reduce the nanofibers to different sizes. Size-dependent mechanical properties of PVA nanofibers were studied and revealed that the Young's modulus increased dramatically when the scales became very small (<80 nm).

  7. A model for residual stress evolution in air-plasma-sprayed zirconia thermal barrier coatings

    SciTech Connect

    Nair, B. G.; Singh, J. P.; Grimsditch, M.

    2000-02-28

    Ruby fluorescence spectroscopy indicates that residual stress in air-plasma-sprayed zirconia thermal barrier coatings is a function of the local interface geometry. The stress profile of a simulated rough interface characterized by ``peaks'' and ``valleys'' was modeled with a finite-element approach that accounted for thermal mismatch, oxide scale growth, and top coat sintering. Dependence of the stress profile on interface geometry and microstructure was investigated, and the results were compared with measured stresses.

  8. Sterilization effect of atmospheric pressure non-thermal air plasma on dental instruments

    PubMed Central

    Sung, Su-Jin; Huh, Jung-Bo; Yun, Mi-Jung; Chang, Brian Myung W.; Jeong, Chang-Mo

    2013-01-01

    PURPOSE Autoclaves and UV sterilizers have been commonly used to prevent cross-infections between dental patients and dental instruments or materials contaminated by saliva and blood. To develop a dental sterilizer which can sterilize most materials, such as metals, rubbers, and plastics, the sterilization effect of an atmospheric pressure non-thermal air plasma device was evaluated. MATERIALS AND METHODS After inoculating E. coli and B. subtilis the diamond burs and polyvinyl siloxane materials were sterilized by exposing them to the plasma for different lengths of time (30, 60, 90, 120, 180 and, 240 seconds). The diamond burs and polyvinyl siloxane materials were immersed in PBS solutions, cultured on agar plates and quantified by counting the colony forming units. The data were analyzed using one-way ANOVA and significance was assessed by the LSD post hoc test (α=0.05). RESULTS The device was effective in killing E. coli contained in the plasma device compared with the UV sterilizer. The atmospheric pressure non-thermal air plasma device contributed greatly to the sterilization of diamond burs and polyvinyl siloxane materials inoculated with E. coli and B. subtilis. Diamond burs and polyvinyl siloxane materials inoculated with E. coli was effective after 60 and 90 seconds. The diamond burs and polyvinyl siloxane materials inoculated with B. subtilis was effective after 120 and 180 seconds. CONCLUSION The atmospheric pressure non-thermal air plasma device was effective in killing both E. coli and B. subtilis, and was more effective in killing E. coli than the UV sterilizer. PMID:23508991

  9. Picosecond laser filamentation in air

    NASA Astrophysics Data System (ADS)

    Schmitt-Sody, Andreas; Kurz, Heiko G.; Bergé, Luc; Skupin, Stefan; Polynkin, Pavel

    2016-09-01

    The propagation of intense picosecond laser pulses in air in the presence of strong nonlinear self-action effects and air ionization is investigated experimentally and numerically. The model used for numerical analysis is based on the nonlinear propagator for the optical field coupled to the rate equations for the production of various ionic species and plasma temperature. Our results show that the phenomenon of plasma-driven intensity clamping, which has been paramount in femtosecond laser filamentation, holds for picosecond pulses. Furthermore, the temporal pulse distortions in the picosecond regime are limited and the pulse fluence is also clamped. In focused propagation geometry, a unique feature of picosecond filamentation is the production of a broad, fully ionized air channel, continuous both longitudinally and transversely, which may be instrumental for many applications including laser-guided electrical breakdown of air, channeling microwave beams and air lasing.

  10. Experimental investigation on plasma-assisted combustion characteristics of premixed propane/air mixture

    NASA Astrophysics Data System (ADS)

    Liu, Xingjian; He, Liming; Yu, Jinlu; Zeng, Hao; Jin, Tao

    2015-06-01

    A detailed study on the plasma-assisted combustion (PAC) characteristics of premixed propane/air mixture is presented. The PAC is measured electrically, as well as optically with a multichannel spectrometer. The characteristics are demonstrated by stable combustion temperature and combustion stability limits, and the results are compared with conventional combustion (CC). Stable combustion temperature measurements show that the introduction of PAC into combustion system can increase the stable combustion temperature, and the increment is more notable with an increase of discharge voltage. Besides, the rich and weak limits of combustion stability are both enlarged when plasma is applied into the combustion process and the increase of discharge voltage results in the expansion of combustion stability limits as well. The measurements of temperature head and emission spectrum illustrate that the kinetic enhancement caused by reactive species in plasma is the main enhancement pathway for current combustion system.

  11. REMC computer simulations of the thermodynamic properties of argon and air plasmas

    NASA Astrophysics Data System (ADS)

    Lisal, Martin; Smith, William R.; Bures, Michal; Vacek, Vaclav; Navratil, Jiri

    The reaction ensemble Monte Carlo (REMC) computer simulation method (Smith, W. R., and Triska, B., 1994, J. chem. Phys. , 100, 3019) is employed to calculate reaction equilibrium in multi-reaction systems using a molecular based system model. The compositions and thermodynamic properties of argon plasmas (7 reactions) and air plasmas (26 reactions) are studied using a molecular level model based on the underlying atomic and ionic interactions. In the context of the specified molecular model, the REMC approach gives an essentially exact description of the system thermodynamics. Calculations are made of plasma compositions, molar enthalpies, molar volumes, molar heat capacities, and coefficients of cubic expansion over a range of temperatures up to 100000K at a pressure of 10bar, and the results are compared with those obtained using the macroscopic level ideal-gas and Debye-Hückel approximations.

  12. Experimental characterization of ultraviolet radiation of air in a high enthalpy plasma torch facility

    NASA Astrophysics Data System (ADS)

    Casses, C. J.; Bertrand, P. J.; Jacobs, C. M.; Mac Donald, M. E.; Laux, Ch. O.

    2015-06-01

    During atmospheric reentry, a plasma is formed ahead of the surface of the vehicle and the excited particle present in the plasma produces radiative heating fluxes to the surface of the vehicle. A high-temperature air plasma torch operating at atmospheric pressure was used to experimentally reproduce atmospheric reentry conditions. A high-resolution and absolute intensity emission spectrum (full width at half maximum (FWHM) = 0.064 nm) was obtained from 200 to 450 nm and then compared with computational results provided by the SPECAIR code [1]. This paper discusses the comparison of the two spectra over this wavelength range in order to confirm the validity of the calculation and provide direction to improve the calculated spectrum.

  13. Frontal vitrification of PDMS using air plasma and consequences for surface wrinkling.

    PubMed

    Nania, Manuela; Matar, Omar K; Cabral, João T

    2015-04-21

    We study the surface oxidation of polydimethylsiloxane (PDMS) by air plasma exposure and its implications for the mechanically-induced surface wrinkling of the resulting glass-elastomer bilayers. The effect of plasma frequency (kHz and MHz), oxygen content (from O2 to air), pressure (0.5 ≤ P ≤ 1.5 mbar), as well as exposure time and power, is quantified in terms of the resulting glassy skin thickness h, inferred from wrinkling experiments. The glassy skin thickness is found to increase logarithmically with an exposure time t, for different induction powers p, and all data collapse in terms of a plasma dose, D ≡ p × t. The kinetics of film propagation are found to increase with the oxygen molar fraction yO2 and decrease with the gas pressure P, allowing both the wrinkling wavelength λ and amplitude A to be effectively controlled by gas pressure and composition. A generalised relationship for frontal vitrification is obtained by re-scaling all λ and h data by D/P. A coarse-grained wave propagation model effectively describes and quantifies the process stages (induction, skin formation and propagation) under all the conditions studied. Equipped with this knowledge, we further expand the capabilities of plasma oxidation for PDMS wrinkling, and a wavelength of λ ≈ 100 nm is readily attained with a modest strain εprestrain ≈ 20%.

  14. Laser-induced micro-plasmas in air for incoherent broadband cavity-enhanced absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Ruth, Albert; Dixneuf, Sophie; Orphal, Johannes

    2016-04-01

    Incoherent broadband cavity-enhanced absorption spectroscopy (IBBCEAS) is an experimentally straightforward absorption method where the intensity of light transmitted by an optically stable (high finesse) cavity is measured. The technique is realized using broadband incoherent sources of radiation and therefore the amount of light transmitted by a cavity consisting of high reflectance mirrors (typically R > 99.9%) can be low. In order to find an alternative to having an incoherent light source outside the cavity, an experiment was devised, where a laser-induced plasma in ambient air was generated inside a quasi-confocal cavity by a high-power femtosecond laser. The emission from the laser-induced plasma was utilized as pulsed broadband light source. The time-dependent spectra of the light leaking from the cavity were compared with those of the laser-induced plasma emission without the cavity. It was found that the light emission was sustained by the cavity despite the initially large optical losses caused by the laser-induced plasma in the cavity. The light sustained by the cavity was used to measure part of the S1 ← S0 absorption spectrum of gaseous azulene at its vapour pressure at room temperature in ambient air, as well as the strongly forbidden γ-band in molecular oxygen (b1Σ(2,0) ← X3Σ(0,0)).

  15. [The modelling of the composition of the thermal oxidative breakdown products of aviation oils determined in the cabin air of aircraft].

    PubMed

    Belkin, B I; Filippov, A F; Kozlovskaia, N N

    1994-01-01

    The authors suggested a method to obtain a mixture of chemicals from splitting thermo-oxidation of aviation oil. The qualitative and quantitative aspects of the mixture correspond to the concentration of the chemicals in the air of aircraft cabins. The possibility to obtain such mixtures helps to assess in hygienic laboratory conditions a level of air pollution with aviation oil in aircraft cabins.

  16. Laser-induced plasmas in air studied using two-color interferometry

    NASA Astrophysics Data System (ADS)

    Yang, Zefeng; Wu, Jian; Wei, Wenfu; Li, Xingwen; Han, Jiaxun; Jia, Shenli; Qiu, Aici

    2016-08-01

    Temporally and spatially resolved density profiles of Cu atoms, electrons, and compressed air, from laser-induced copper plasmas in air, are measured using fast spectral imaging and two-color interferometry. From the intensified CCD images filtered by a narrow-band-pass filter centered at 515.32 nm, the Cu atoms expansion route is estimated and used to determine the position of the fracture surface between the Cu atoms and the air. Results indicate that the Cu atoms density at distances closer to the target (0-0.4 mm) is quite low, with the maximum density appearing at the edge of the plasma's core being ˜4.6 × 1024 m-3 at 304 ns. The free electrons are mainly located in the internal region of the plume, which is supposed to have a higher temperature. The density of the shock wave is (4-6) × 1025 m-3, corresponding to air compression of a factor of 1.7-2.5.

  17. Open Air Silicon Deposition by Atmospheric Pressure Plasma under Local Ambient Gas Control

    NASA Astrophysics Data System (ADS)

    Naito, Teruki; Konno, Nobuaki; Yoshida, Yukihisa

    2015-09-01

    In this paper, we report open air silicon (Si) deposition by combining a silane free Si deposition technology and a newly developed local ambient gas control technology. Recently, material processing in open air has been investigated intensively. While a variety of materials have been deposited, there were only few reports on Si deposition due to the susceptibility to contamination and the hazardous nature of source materials. Since Si deposition is one of the most important processes in device fabrication, we have developed open air silicon deposition technologies in BEANS project. For a clean and safe process, a local ambient gas control head was designed. Process gas leakage was prevented by local evacuation, and air contamination was shut out by inert curtain gas. By numerical and experimental investigations, a safe and clean process condition with air contamination less than 10 ppm was achieved. Si film was deposited in open air by atmospheric pressure plasma enhanced chemical transport under the local ambient gas control. The film was microcrystalline Si with the crystallite size of 17 nm, and the Hall mobility was 2.3 cm2/V .s. These properties were comparable to those of Si films deposited in a vacuum chamber. This research has been conducted as one of the research items of New Energy and Industrial Technology Development Organization ``BEANS'' project.

  18. Proof-of-concept experiment for on-line laser induced breakdown spectroscopy analysis of impurity layer deposited on optical window and other plasma facing components of Aditya tokamak

    SciTech Connect

    Maurya, Gulab Singh; Kumar, Rohit; Rai, Awadhesh Kumar; Kumar, Ajai

    2015-12-15

    In the present manuscript, we demonstrate the design of an experimental setup for on-line laser induced breakdown spectroscopy (LIBS) analysis of impurity layers deposited on specimens of interest for fusion technology, namely, plasma-facing components (PFCs) of a tokamak. For investigation of impurities deposited on PFCs, LIBS spectra of a tokamak wall material like a stainless steel sample (SS304) have been recorded through contaminated and cleaned optical windows. To address the problem of identification of dust and gases present inside the tokamak, we have shown the capability of the apparatus to record LIBS spectra of gases. A new approach known as “back collection method” to record LIBS spectra of impurities deposited on the inner surface of optical window is presented.

  19. Proof-of-concept experiment for on-line laser induced breakdown spectroscopy analysis of impurity layer deposited on optical window and other plasma facing components of Aditya tokamak

    NASA Astrophysics Data System (ADS)

    Maurya, Gulab Singh; Kumar, Rohit; Kumar, Ajai; Rai, Awadhesh Kumar

    2015-12-01

    In the present manuscript, we demonstrate the design of an experimental setup for on-line laser induced breakdown spectroscopy (LIBS) analysis of impurity layers deposited on specimens of interest for fusion technology, namely, plasma-facing components (PFCs) of a tokamak. For investigation of impurities deposited on PFCs, LIBS spectra of a tokamak wall material like a stainless steel sample (SS304) have been recorded through contaminated and cleaned optical windows. To address the problem of identification of dust and gases present inside the tokamak, we have shown the capability of the apparatus to record LIBS spectra of gases. A new approach known as "back collection method" to record LIBS spectra of impurities deposited on the inner surface of optical window is presented.

  20. Proof-of-concept experiment for on-line laser induced breakdown spectroscopy analysis of impurity layer deposited on optical window and other plasma facing components of Aditya tokamak.

    PubMed

    Maurya, Gulab Singh; Kumar, Rohit; Kumar, Ajai; Rai, Awadhesh Kumar

    2015-12-01

    In the present manuscript, we demonstrate the design of an experimental setup for on-line laser induced breakdown spectroscopy (LIBS) analysis of impurity layers deposited on specimens of interest for fusion technology, namely, plasma-facing components (PFCs) of a tokamak. For investigation of impurities deposited on PFCs, LIBS spectra of a tokamak wall material like a stainless steel sample (SS304) have been recorded through contaminated and cleaned optical windows. To address the problem of identification of dust and gases present inside the tokamak, we have shown the capability of the apparatus to record LIBS spectra of gases. A new approach known as "back collection method" to record LIBS spectra of impurities deposited on the inner surface of optical window is presented.

  1. Effect of droplet-induced breakdown on CARS temperature measurements

    SciTech Connect

    Dunn-Rankin, D. ); Switzer, G.L. ); Obringer, C.A.; Jackson, T. )

    1990-07-20

    This research examines the potential for coherent anti-Stokes Raman scattering (CARS) to rovide reliable gas temperature measurements in the presence of liquid droplets. The droplets cause dielectric breakdown by focusing the CARS laser beams. This breakdown produces a plasma that can disrupt or obscure the CARS signal. Specifically, we examine the influence of laser induced breakdown on the CARS signal, and we determine the importance of droplet position relative to the CARS focal volume and droplet concentration on the reliability of CARS temperature measurements in droplet-laden flows. In addition, we propose a reliable data reduction procedure to minimize the disruptive influence of laser induced breakdown on CARS temperature.

  2. Laser radiation attenuation by sparks of optical breakdown

    NASA Astrophysics Data System (ADS)

    Budnik, A. P.; Semenov, L. P.; Skripkin, A. M.; Volkovitskii, O. A.

    1989-06-01

    A breakdown generated by laser radiation in a gas contaminated by aerosol particles is known to occur at much lower radiation intensities than in case of pure gases. Laser radiation is heavily attenuated by sparks of plasma formed at breakdowns. Energy loss estimation is important at radiation propagation in the atmosphere and in laser resonators. The breakdown phenomenon may be used in diagnostics of the atmospheric aerosol contamination events. The report presents experimental data on the influence of aerosol size distribution and concentration on optical breakdown generation and other results.

  3. Laser Radiation Attenuation By Sparks Of Optical Breakdown

    NASA Astrophysics Data System (ADS)

    Budnik, A. P.; Semenov, L. P.; Skripkin, A. M.; Volkovitsky, O. A.

    1990-01-01

    A breakdown generated by laser radiation in a gas contaminated by aerosol particles is known to occur at much lower radiation intensities than in case of pure gases, Laser radiation is heavily attenuated by sparks of plasma formed at breakdowns. Energy loss estimation is important at radiation propagation in the atmosphere and in laser resonators. The breakdown phenomenon may be used in diagnostics of the atmospheric aerosol contamination events. The report presents experimental data on the influence of aerosol size distribution and concentration on optical breakdown generation and other results.

  4. Laser Cladding to Improve Oxidation Behavior of Air Plasma-Sprayed Ni-20Cr Coating on Stainless Steel Substrate

    NASA Astrophysics Data System (ADS)

    Rauf, M. Mudassar; Shahid, Muhammad; Nusair Khan, A.; Mehmood, K.

    2015-09-01

    Air plasma-sprayed Ni-20Cr coating on stainless steel (AISI-304) substrate was re-melted using CO2 laser to remove the inherent defects, i.e., porosity, splat boundaries, and oxides of air plasma-sprayed coating. The (1) uncoated, (2) air plasma-sprayed, and (3) laser-re-melted specimens were exposed to cyclic oxidation at 900 °C for a hundred cycles run. The oxidation products were characterized using XRD and SEM. Weight changes were determined after every 4th cycle; Uncoated samples showed severe oxidation indicated by substantial weight loss, whereas air plasma-coated samples demonstrated noticeable weight gain. However, oxidation resistance of laser-cladded samples was found to be significantly improved as the samples showed negligible weight change; porosity within the coating was minimized with an improvement in interface quality causing reduction in delamination damage.

  5. Insights in the laser-induced breakdown spectroscopy signal generation underwater using dual pulse excitation — Part I: Vapor bubble, shockwaves and plasma

    NASA Astrophysics Data System (ADS)

    Lazic, V.; Laserna, J. J.; Jovicevic, S.

    2013-04-01

    Plasma and vapor bubble formation and evolution after a nanosecond laser pulse delivered to aluminum targets inside water were studied by fast photography. This technique was also applied to monitor the plasma produced by a second laser pulse and for different interpulse delays. The bubble growth was evident only after 3 μs from the first laser pulse and the bubble shape changed during expansion and collapse cycles. The evolution and propagation of the initial shockwave and its reflections both from the back sample surface and cell walls were detected by Schlieren photography. The primary plasma develops in two phases: violent particle expulsion and ionization during the first μs, followed by slow plasma growth from the ablation crater into the evolving vapor bubble. The shape of the secondary plasma strongly depends on the inner bubble pressure whereas the particle expulsion into the expanded bubble is much less evident. Both the primary and secondary plasma have similar duration of about 30 μs. Detection efficiency of the secondary plasma is much reduced by light refraction at the curved bubble-water interface, which behaves as a negative lens; this leads to an apparent reduction of the plasma dimensions. Defocusing power of the bubble lens increases with its expansion due to the lowering of the vapor's refraction index with respect to that of the surrounding liquid (Lazic et al., 2012 [1]). Smell's reflections of secondary plasma radiation at the expanded bubble wall redistribute the detected intensity on a wavelength-dependent way and allow gathering of the emission also from the external plasma layer that otherwise, would not enter into the optical system.

  6. Laser plasma plume structure and dynamics in the ambient air: The early stage of expansion

    SciTech Connect

    Cirisan, M.; Jouvard, J. M.; Lavisse, L.; Hallo, L.; Oltra, R.

    2011-05-15

    Laser ablation plasma plume expanding into the ambient atmosphere may be an efficient way to produce nanoparticles. From that reason it would be interesting to study the properties of these laser induced plasmas formed under conditions that are known to be favorable for nanoparticles production. In general, plume behavior can be described as a two-stage process: a 'violent' plume expansion due to the absorption of the laser beam energy (during the laser pulse) followed by a fast adiabatic expansion in the ambient gas (after the end of the laser pulse). Plasma plume may last a few microseconds and may have densities 10{sup -6} times lower than the solid densities at temperatures close to the ambient temperature. Expansion of the plasma plume induced by the impact of a nanosecond laser beam ({lambda} 1064 nm) on the surface of metallic samples in the open air has been investigated by means of fast photography. Spatio-temporal evolution of the plume at the early stage of its expansion (first 330 ns) has been recorded. Structure and dynamics of the plasma plume have been investigated and compared to numerical simulations obtained with a hydro-code, as well as some scaling laws. In addition, measurements using different sample materials (Al, Fe, and Ti) have been performed in order to analyze the influence of target material on plume expansion.

  7. Contact-Free Inactivation of Candida albicans Biofilms by Cold Atmospheric Air Plasma

    PubMed Central

    Shimizu, Tetsuji; Isbary, Georg; Heinlin, Julia; Karrer, Sigrid; Klämpfl, Tobias G.; Li, Yang-Fang; Morfill, Gregor; Zimmermann, Julia L.

    2012-01-01

    Candida albicans is one of the main species able to form a biofilm on almost any surface, causing both skin and superficial mucosal infections. The worldwide increase in antifungal resistance has led to a decrease in the efficacy of standard therapies, prolonging treatment time and increasing health care costs. Therefore, the aim of this work was to demonstrate the applicability of atmospheric plasma at room temperature for inactivating C. albicans growing in biofilms without thermally damaging heat-sensitive materials. This so-called cold atmospheric plasma is produced by applying high voltage to accelerate electrons, which ionize the surrounding air, leading to the production of charged particles, reactive species, and photons. A newly developed plasma device was used, which exhibits a large plasma-generating surface area of 9 by 13 cm (117 cm2). Different time points were selected to achieve an optimum inactivation efficacy range of ≥3 log10 to 5 log10 reduction in CFU per milliliter, and the results were compared with those of 70% ethanol. The results obtained show that contact-free antifungal inactivation of Candida biofilms by cold atmospheric plasma is a promising tool for disinfection of surfaces (and items) in both health care settings and the food industry, where ethanol disinfection should be avoided. PMID:22467505

  8. Contact-free inactivation of Candida albicans biofilms by cold atmospheric air plasma.

    PubMed

    Maisch, Tim; Shimizu, Tetsuji; Isbary, Georg; Heinlin, Julia; Karrer, Sigrid; Klämpfl, Tobias G; Li, Yang-Fang; Morfill, Gregor; Zimmermann, Julia L

    2012-06-01

    Candida albicans is one of the main species able to form a biofilm on almost any surface, causing both skin and superficial mucosal infections. The worldwide increase in antifungal resistance has led to a decrease in the efficacy of standard therapies, prolonging treatment time and increasing health care costs. Therefore, the aim of this work was to demonstrate the applicability of atmospheric plasma at room temperature for inactivating C. albicans growing in biofilms without thermally damaging heat-sensitive materials. This so-called cold atmospheric plasma is produced by applying high voltage to accelerate electrons, which ionize the surrounding air, leading to the production of charged particles, reactive species, and photons. A newly developed plasma device was used, which exhibits a large plasma-generating surface area of 9 by 13 cm (117 cm(2)). Different time points were selected to achieve an optimum inactivation efficacy range of ≥3 log(10) to 5 log(10) reduction in CFU per milliliter, and the results were compared with those of 70% ethanol. The results obtained show that contact-free antifungal inactivation of Candida biofilms by cold atmospheric plasma is a promising tool for disinfection of surfaces (and items) in both health care settings and the food industry, where ethanol disinfection should be avoided.

  9. Studies of air, water, and ethanol vapor atmospheric pressure plasmas for antimicrobial applications.

    PubMed

    Ferrell, James R; Bogovich, Erinn R; Lee, Nicholas R; Gray, Robert L; Pappas, Daphne D

    2015-06-25

    The generation of air-based plasmas under atmospheric plasma conditions was studied to assess their antimicrobial efficacy against commonly found pathogenic bacteria. The mixture of initial gases supplied to the plasma was found to be critical for the formation of bactericidal actives. The optimal gas ratio for bactericidal effect was determined to be 99% nitrogen and 1% oxygen, which led to a 99.999% reduction of a pathogenic strain of Escherichia coli on stainless steel surfaces. The experimental substrate, soil load on the substrate, flow rate of the gases, and addition of ethanol vapor all were found to affect antimicrobial efficacy of studied plasmas. Optical emission spectroscopy was used to identify the species that were present in the plasma bulk phase for multiple concentrations of nitrogen and oxygen ratios. The collected spectra indicate a unique series of bands present in the ultraviolet region of the electromagnetic spectrum that can be attributed to nitric oxide species known to be highly antimicrobial. This intense spectral profile dramatically changes as the concentration of nitrogen decreases.

  10. Studies of air, water, and ethanol vapor atmospheric pressure plasmas for antimicrobial applications.

    PubMed

    Ferrell, James R; Bogovich, Erinn R; Lee, Nicholas R; Gray, Robert L; Pappas, Daphne D

    2015-01-01

    The generation of air-based plasmas under atmospheric plasma conditions was studied to assess their antimicrobial efficacy against commonly found pathogenic bacteria. The mixture of initial gases supplied to the plasma was found to be critical for the formation of bactericidal actives. The optimal gas ratio for bactericidal effect was determined to be 99% nitrogen and 1% oxygen, which led to a 99.999% reduction of a pathogenic strain of Escherichia coli on stainless steel surfaces. The experimental substrate, soil load on the substrate, flow rate of the gases, and addition of ethanol vapor all were found to affect antimicrobial efficacy of studied plasmas. Optical emission spectroscopy was used to identify the species that were present in the plasma bulk phase for multiple concentrations of nitrogen and oxygen ratios. The collected spectra indicate a unique series of bands present in the ultraviolet region of the electromagnetic spectrum that can be attributed to nitric oxide species known to be highly antimicrobial. This intense spectral profile dramatically changes as the concentration of nitrogen decreases. PMID:25810273

  11. Enhancement of airborne shock wave by laser-induced breakdown of liquid column in laser shock cleaning

    SciTech Connect

    Jang, Deoksuk; Kim, Dongsik; Park, Jin-Goo

    2011-04-01

    In laser shock cleaning (LSC), the shock wave is generated by laser-induced breakdown of the ambient gas. The shock wave intensity has thus been a factor limiting the performance of the LSC process. In this work, a novel method of amplifying a laser-induced plasma-generated shock wave by the breakdown of a liquid column is proposed and analyzed. When the laser beam is focused on a microscale liquid column, a shock wave having a significantly amplified intensity compared to that generated by air breakdown alone can be generated in air. Therefore, substantially amplified cleaning force can be obtained. The dynamics of a shock wave induced by a Q-switched Nd:YAG laser was analyzed by laser flash shadowgraphy. The peak pressure of the laser-induced shock wave was approximately two times greater than that of air breakdown at the same laser fluence. The proposed method of shock wave generation is expected to be useful in various applications of laser shock processing, including surface cleaning.

  12. [The modelling of the composition of the thermal oxidative breakdown products of aviation oils determined in the cabin air of aircraft].

    PubMed

    Belkin, B I; Filippov, A F; Kozlovskaia, N N

    1994-01-01

    The authors suggested a method to obtain a mixture of chemicals from splitting thermo-oxidation of aviation oil. The qualitative and quantitative aspects of the mixture correspond to the concentration of the chemicals in the air of aircraft cabins. The possibility to obtain such mixtures helps to assess in hygienic laboratory conditions a level of air pollution with aviation oil in aircraft cabins. PMID:7834229

  13. Bragg scattering of electromagnetic waves by microwave-produced plasma layers

    NASA Technical Reports Server (NTRS)

    Kuo, S. P.; Zhang, Y. S.

    1990-01-01

    A set of parallel plasma layers is generated by two intersecting microwave pulses in a chamber containing dry air at a pressure comparable to the upper atmosphere. The dependencies of breakdown conditions on the pressure and pulse length are examined. The results are shown to be consistent with the appearance of tail erosion of the microwave pulse caused by air breakdown. A Bragg scattering experiment, using the plasma layers as a Bragg reflector, is then performed. Both time domain and frequency domain measurements of wave scattering are conducted. The experimental results are found to agree very well with the theory.

  14. Vortex breakdown simulation

    NASA Technical Reports Server (NTRS)

    Nakamura, Y.; Leonard, A.; Spalart, P. R.

    1985-01-01

    A vortex breakdown was simulated by the vortex filament method, and detailed figures are presented based on the results. Deformations of the vortex filaments showed clear and large swelling at a particular axial station which implied the presence of a recirculation bubble at that station. The tendency for two breakdowns to occur experimentally was confirmed by the simulation, and the jet flow inside the bubble was well simulated. The particle paths spiralled with expansion, and the streamlines took spiral forms at the breakdown with expansion.

  15. Kinetic studies of NO formation in pulsed air-like low-pressure dc plasmas

    NASA Astrophysics Data System (ADS)

    Hübner, M.; Gortschakow, S.; Guaitella, O.; Marinov, D.; Rousseau, A.; Röpcke, J.; Loffhagen, D.

    2016-06-01

    The kinetics of the formation of NO in pulsed air-like dc plasmas at a pressure of 1.33 mbar and mean currents between 50 and 150 mA of discharge pulses with 5 ms duration has been investigated both experimentally and by self-consistent numerical modelling. Using time-resolved quantum cascade laser absorption spectroscopy, the densities of NO, NO2 and N2O have been measured in synthetic air as well as in air with 0.8% of NO2 and N2O, respectively. The temporal evolution of the NO density shows four distinct phases during the plasma pulse and the early afterglow in the three gas mixtures that were used. In particular, a steep density increase during the ignition phase and after termination of the discharge current pulse has been detected. The NO concentration has been found to reach a constant value of 0.57× {{10}14}~\\text{molecules}~\\text{c}{{\\text{m}}-3} , 1.05× {{10}14}~\\text{molecules}~\\text{c}{{\\text{m}}-3} , and 1.3× {{10}14}~\\text{molecules}~\\text{c}{{\\text{m}}-3} for mean plasma currents of 50 mA, 100 mA and 150 mA, respectively, in the afterglow. The measured densities of NO2 and N2O in the respective mixture decrease exponentially during the plasma pulse and remain almost constant in the afterglow, especially where the admixture of NO2 has a remarkable impact on the NO production during the ignition. The numerical results of the coupled solution of a set of rate equations for the various heavy particles and the time-dependent Boltzmann equation of the electrons agree quite well with the experimental findings for the different air-like plasmas. The main reaction processes have been analysed on the basis of the model calculations and the remaining differences between the experiment and modelling especially during the afterglow are discussed.

  16. A high-power low-temperature air plasma generator with a divergent channel of the output electrode

    NASA Astrophysics Data System (ADS)

    Gadzhiev, M. Kh.; Isakaev, E. Kh.; Tyuftyaev, A. S.; Yusupov, D. I.

    2016-01-01

    We have developed and studied a powerful high-enthalpy (H ≥ 20 kJ/g) air plasma jet generator with a divergent channel of the output electrode, which belongs to the class of dc plasmatrons with a thermionic cathode. The plasma generator possesses an efficiency of about 80% and ensures the formation of slightly divergent (2± = 12°) plasma jet with diameter D = 50 mm and a mass-average temperature of 6000-9000 K.

  17. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  18. Kinetic mechanism of molecular energy transfer and chemical reactions in low-temperature air-fuel plasmas.

    PubMed

    Adamovich, Igor V; Li, Ting; Lempert, Walter R

    2015-08-13

    This work describes the kinetic mechanism of coupled molecular energy transfer and chemical reactions in low-temperature air, H2-air and hydrocarbon-air plasmas sustained by nanosecond pulse discharges (single-pulse or repetitive pulse burst). The model incorporates electron impact processes, state-specific N(2) vibrational energy transfer, reactions of excited electronic species of N(2), O(2), N and O, and 'conventional' chemical reactions (Konnov mechanism). Effects of diffusion and conduction heat transfer, energy coupled to the cathode layer and gasdynamic compression/expansion are incorporated as quasi-zero-dimensional corrections. The model is exercised using a combination of freeware (Bolsig+) and commercial software (ChemKin-Pro). The model predictions are validated using time-resolved measurements of temperature and N(2) vibrational level populations in nanosecond pulse discharges in air in plane-to-plane and sphere-to-sphere geometry; temperature and OH number density after nanosecond pulse burst discharges in lean H(2)-air, CH(4)-air and C(2)H(4)-air mixtures; and temperature after the nanosecond pulse discharge burst during plasma-assisted ignition of lean H2-mixtures, showing good agreement with the data. The model predictions for OH number density in lean C(3)H(8)-air mixtures differ from the experimental results, over-predicting its absolute value and failing to predict transient OH rise and decay after the discharge burst. The agreement with the data for C(3)H(8)-air is improved considerably if a different conventional hydrocarbon chemistry reaction set (LLNL methane-n-butane flame mechanism) is used. The results of mechanism validation demonstrate its applicability for analysis of plasma chemical oxidation and ignition of low-temperature H(2)-air, CH(4)-air and C(2)H(4)-air mixtures using nanosecond pulse discharges. Kinetic modelling of low-temperature plasma excited propane-air mixtures demonstrates the need for development of a more accurate

  19. Kinetic mechanism of molecular energy transfer and chemical reactions in low-temperature air-fuel plasmas.

    PubMed

    Adamovich, Igor V; Li, Ting; Lempert, Walter R

    2015-08-13

    This work describes the kinetic mechanism of coupled molecular energy transfer and chemical reactions in low-temperature air, H2-air and hydrocarbon-air plasmas sustained by nanosecond pulse discharges (single-pulse or repetitive pulse burst). The model incorporates electron impact processes, state-specific N(2) vibrational energy transfer, reactions of excited electronic species of N(2), O(2), N and O, and 'conventional' chemical reactions (Konnov mechanism). Effects of diffusion and conduction heat transfer, energy coupled to the cathode layer and gasdynamic compression/expansion are incorporated as quasi-zero-dimensional corrections. The model is exercised using a combination of freeware (Bolsig+) and commercial software (ChemKin-Pro). The model predictions are validated using time-resolved measurements of temperature and N(2) vibrational level populations in nanosecond pulse discharges in air in plane-to-plane and sphere-to-sphere geometry; temperature and OH number density after nanosecond pulse burst discharges in lean H(2)-air, CH(4)-air and C(2)H(4)-air mixtures; and temperature after the nanosecond pulse discharge burst during plasma-assisted ignition of lean H2-mixtures, showing good agreement with the data. The model predictions for OH number density in lean C(3)H(8)-air mixtures differ from the experimental results, over-predicting its absolute value and failing to predict transient OH rise and decay after the discharge burst. The agreement with the data for C(3)H(8)-air is improved considerably if a different conventional hydrocarbon chemistry reaction set (LLNL methane-n-butane flame mechanism) is used. The results of mechanism validation demonstrate its applicability for analysis of plasma chemical oxidation and ignition of low-temperature H(2)-air, CH(4)-air and C(2)H(4)-air mixtures using nanosecond pulse discharges. Kinetic modelling of low-temperature plasma excited propane-air mixtures demonstrates the need for development of a more accurate

  20. Influence of air pressure on the performance of plasma synthetic jet actuator

    NASA Astrophysics Data System (ADS)

    Li, Yang; Jia, Min; Wu, Yun; Li, Ying-hong; Zong, Hao-hua; Song, Hui-min; Liang, Hua

    2016-09-01

    Plasma synthetic jet actuator (PSJA) has a wide application prospect in the high-speed flow control field for its high jet velocity. In this paper, the influence of the air pressure on the performance of a two-electrode PSJA is investigated by the schlieren method in a large range from 7 kPa to 100 kPa. The energy consumed by the PSJA is roughly the same for all the pressure levels. Traces of the precursor shock wave velocity and the jet front velocity vary a lot for different pressures. The precursor shock wave velocity first decreases gradually and then remains at 345 m/s as the air pressure increases. The peak jet front velocity always appears at the first appearance of a jet, and it decreases gradually with the increase of the air pressure. A maximum precursor shock wave velocity of 520 m/s and a maximum jet front velocity of 440 m/s are observed at the pressure of 7 kPa. The averaged jet velocity in one period ranges from 44 m/s to 54 m/s for all air pressures, and it drops with the rising of the air pressure. High velocities of the precursor shock wave and the jet front indicate that this type of PSJA can still be used to influence the high-speed flow field at 7 kPa. Project supported by the National Natural Science Foundation of China (Grant Nos. 51407197, 51522606, 51336011, 91541120, and 11472306).

  1. Effect of non-thermal air atmospheric pressure plasma jet treatment on gingival wound healing

    NASA Astrophysics Data System (ADS)

    Lee, Jung-Hwan; Choi, Eun-Ha; Kim, Kwang-Mahn; Kim, Kyoung-Nam

    2016-02-01

    Non-thermal atmospheric pressure plasmas have been applied in the biomedical field for the improvement of various cellular activities. In dentistry, the healing of gingival soft tissue plays an important role in health and aesthetic outcomes. While the biomedical application of plasma has been thoroughly studied in dentistry, a detailed investigation of plasma-mediated human gingival fibroblast (HGF) migration for wound healing and its underlying biological mechanism is still pending. Therefore, the aim of this study is to apply a non-thermal air atmospheric pressure plasma jet (NTAAPPJ) to HGF to measure the migration and to reveal the underlying biological mechanisms involved in the migration. After the characterization of NTAAPPJ by optical emission spectroscopy, the adherent HGF was treated with NTAAPPJ or air with a different flow rate. Cell viability, lipid peroxidation, migration, intracellular reactive oxygen species (ROS), and the expression of migration-related genes (EGFR, PAK1, and MAPK3) were investigated. The level of statistical significance was set at 0.05. NTAAPPJ and air treatment with a flow rate of 250–1000 standard cubic centimetres per minute (sccm) for up to 30 s did not induce significant decreases in cell viability or membrane damage. A significant increase in the migration of mitomycin C-treated HGF was observed after 30 s of NTAAPPJ treatment compared to 30 s air-only treatment, which was induced by high levels of intracellular reactive oxygen species (ROS). An increase in migration-related gene expression and EGFR activation was observed following NTAAPPJ treatment in an air flow rate-dependent manner. This is the first report that NTAAPPJ treatment induces an increase in HGF migration without changing cell viability or causing membrane damage. HGF migration was related to an increase in intracellular ROS, changes in the expression of three of the migration-related genes (EGFR, PAK1, and MAPK1), and EGFR activation. Therefore

  2. Effect of non-thermal air atmospheric pressure plasma jet treatment on gingival wound healing

    NASA Astrophysics Data System (ADS)

    Lee, Jung-Hwan; Choi, Eun-Ha; Kim, Kwang-Mahn; Kim, Kyoung-Nam

    2016-02-01

    Non-thermal atmospheric pressure plasmas have been applied in the biomedical field for the improvement of various cellular activities. In dentistry, the healing of gingival soft tissue plays an important role in health and aesthetic outcomes. While the biomedical application of plasma has been thoroughly studied in dentistry, a detailed investigation of plasma-mediated human gingival fibroblast (HGF) migration for wound healing and its underlying biological mechanism is still pending. Therefore, the aim of this study is to apply a non-thermal air atmospheric pressure plasma jet (NTAAPPJ) to HGF to measure the migration and to reveal the underlying biological mechanisms involved in the migration. After the characterization of NTAAPPJ by optical emission spectroscopy, the adherent HGF was treated with NTAAPPJ or air with a different flow rate. Cell viability, lipid peroxidation, migration, intracellular reactive oxygen species (ROS), and the expression of migration-related genes (EGFR, PAK1, and MAPK3) were investigated. The level of statistical significance was set at 0.05. NTAAPPJ and air treatment with a flow rate of 250-1000 standard cubic centimetres per minute (sccm) for up to 30 s did not induce significant decreases in cell viability or membrane damage. A significant increase in the migration of mitomycin C-treated HGF was observed after 30 s of NTAAPPJ treatment compared to 30 s air-only treatment, which was induced by high levels of intracellular reactive oxygen species (ROS). An increase in migration-related gene expression and EGFR activation was observed following NTAAPPJ treatment in an air flow rate-dependent manner. This is the first report that NTAAPPJ treatment induces an increase in HGF migration without changing cell viability or causing membrane damage. HGF migration was related to an increase in intracellular ROS, changes in the expression of three of the migration-related genes (EGFR, PAK1, and MAPK1), and EGFR activation. Therefore

  3. Photoionization capable, extreme and vacuum ultraviolet emission in developing low temperature plasmas in air

    NASA Astrophysics Data System (ADS)

    Stephens, J.; Fierro, A.; Beeson, S.; Laity, G.; Trienekens, D.; Joshi, R. P.; Dickens, J.; Neuber, A.

    2016-04-01

    Experimental observation of photoionization capable extreme ultraviolet and vacuum ultraviolet emission from nanosecond timescale, developing low temperature plasmas (i.e. streamer discharges) in atmospheric air is presented. Applying short high voltage pulses enabled the observation of the onset of plasma formation exclusively by removing the external excitation before spark development was achieved. Contrary to the common assumption that radiative transitions from the b{{}1}{{\\Pi}u} (Birge-Hopfield I) and b{{}\\prime 1}Σu+ (Birge-Hopfield II) singlet states of N2 are the primary contributors to photoionization events, these results indicate that radiative transitions from the c{{4\\prime}1}Σu+ (Carroll-Yoshino) singlet state of N2 are dominant in developing low temperature plasmas in air. In addition to c{}4\\prime transitions, photoionization capable transitions from atomic and singly ionized atomic oxygen were also observed. The inclusion of c{{4\\prime}1}Σu+ transitions into a statistical photoionization model coupled with a fluid model enabled streamer growth in the simulation of positive streamers.

  4. Field demonstration and commercialization of silent discharge plasma hazardous air pollutant control technology

    SciTech Connect

    Rosocha, L.A.; Coogan, J.J.; Korzekwa, R.A.; Secker, D.A.; Reimers, R.F.; Herrmann, P.G.; Chase, P.J.; Gross, M.P. |; Jones, M.R.

    1996-07-01

    Silent electrical discharge plasma (dielectric barrier) reactors can decompose gas-phase pollutants by free-radical attack or electron-induced fragmentation. The radicals or electrons are produced by the large average volume nonthermal plasmas generated in the reactor. In the past decade, the barrier configuration has attracted attention for destroying toxic chemical agents for the military, removing harmful greenhouse gases, and treating other environmentally- hazardous chemical compounds. At the Los Alamos National Laboratory, we have been studying the silent discharge plasma (SDP) for processing gaseous-based hazardous chemicals for approximately five years. The key objective is to convert hazardous or toxic chemicals into non-hazardous compounds or into materials which are more easily managed. The main applications have been for treating off-gases from thermal treatment units, and for abating hazardous air-pollutant emissions (e.g., industrial air emissions, vapors extracted from contaminated soil or groundwater). In this paper, we will summarize the basic principles of SDP processing, discuss illustrative applications of the technology, and present results from small-scale field tests that are relevant to our commercialization effort.

  5. Influence of a Static Magnetic Field on Laser Induced Tungsten Plasma in Air

    NASA Astrophysics Data System (ADS)

    Wu, Ding; Liu, Ping; Sun, Liying; Hai, Ran; Ding, Hongbin

    2016-04-01

    In this work, laser induced tungsten plasma has been investigated in the absence and presence of 0.6 T static transverse magnetic field at atmospheric pressure in air. The spectroscopic characterization of laser induced tungsten plasma was experimentally studied using space-resolved emission spectroscopy. The atomic emission lines of tungsten showed a significant enhancement in the presence of a magnetic field, while the ionic emission lines of tungsten presented little change. Temporal variation of the optical emission lines of tungsten indicated that the atomic emission time in the presence of a magnetic field was longer than that in the absence of a magnetic field, while no significant changes occurred for the ionic emission time. The spatial resolution of optical emission lines of tungsten demonstrated that the spatial distribution of atoms and ions were separated. The influence of a magnetic field on the spatial distribution of atoms was remarkable, whereas the spatial distribution of ions was little influenced by the magnetic field. The different behaviors between ions and atoms with and without magnetic field in air were related to the various atomic processes especially the electrons and ions recombination process during the plasma expansion and cooling process.

  6. Measurement of transient force produced by a propagating arc magnetohydrodynamic plasma actuator in quiescent atmospheric air

    NASA Astrophysics Data System (ADS)

    Choi, Young Joon; Sirohi, Jayant; Raja, Laxminarayan L.

    2015-10-01

    An experimental study was conducted on a magnetohydrodynamic plasma actuator consisting of two parallel, six inch long, copper electrodes flush mounted on an insulating ceramic plate. An electrical arc is generated by a  ∼1 kA current pulse at  ∼100 V across the electrodes. A self-induced Lorentz force drives the arc along the electrodes. The motion of the arc induces flow in the surrounding air through compression as well as entrainment, and generates a transient force, about  ∼4 ms in duration. Experiments were performed on a prototype actuator in quiescent atmospheric air to characterize the motion of the arc and the momentum transferred to the surrounding air. Measurements included transient force and total impulse generated by the actuator as well as the armature voltage and current. The arc shape and transit velocity were determined by high-speed imaging. A peak force of 0.4 N imparting an impulse of 0.68 mN-s was measured for a peak current of 1.2 kA. The force scaled with the square of the armature current and the impulse scaled linearly with the spent capacitor energy. The results provide insight into the mechanisms of body force generation and momentum transfer of a magnetohydrodynamic plasma actuator.

  7. Plasma induced degradation of Indigo Carmine by bipolar pulsed dielectric barrier discharge(DBD) in the water-air mixture.

    PubMed

    Zhang, Ruo-Bing; Wu, Yan; Li, Guo-Feng; Wang, Ning-Hui; Li, Jie

    2004-01-01

    Degradation of the Indigo Carmine (IC) by the bipolar pulsed DBD in water-air mixture was studied. Effects of various parameters such as gas flow rate, solution conductivity, pulse repetitive rate and ect., on color removal efficiency of dying wastewater were investigated. Concentrations of gas phase o3 and aqueous phase H2O2 under various conditions were measured. Experimental results showed that air bubbling facilitates the breakdown of water and promotes generation of chemically active species. Color removal efficiency of IC solution can be greatly improved by the air aeration under various solution conductivities. Decolorization efficiency increases with the increase of the gas flow rate, and decreases with the increase of the initial solution conductivity. A higher pulse repetitive rate and a larger pulse capacitor C(p) are favorable for the decolorization process. Ozone and hydrogen peroxide formed decreases with the increase of initial solution conductivity. In addition, preliminary analysis of the decolorization mechanisms is given.

  8. Experimental and theoretical study of artificial plasma layers produced by two intersecting beams in a chamber

    NASA Technical Reports Server (NTRS)

    Kuo, S. P.; Zhang, Y. S.

    1989-01-01

    The work done on the Bragg scattering of electromagnetic waves by microwave produced plasma layers is reported. Also summarized is the work accomplished on the propagation of high power microwave pulses in an air breakdown environment. Ongoing work on the theoretical model and numerical results of pulse propagation in air is also presented as are the results of studying the decay of plasma density and temperature.

  9. Measurement and modeling of ozone and nitrogen oxides produced by laser breakdown in oxygen-nitrogen atmospheres.

    PubMed

    Gornushkin, Igor B; Stevenson, Chris L; Galbács, Gábor; Smith, Ben W; Winefordner, James D

    2003-11-01

    The production of ozone nad nitrogen oxides was studied during multiple laser breakdown in oxygen-nitrogen mixtures at atmospheric pressure. About 2000 laser shots at 10(10) W cm-2 were delivered into a sealed reaction chamber. The chamber with a long capillary was designed to measure absorption of O3, NO, and NO2 as a function of the number of laser shots. The light source for absorption measurements was the continuum radiation emitted by the plasma during the first 0.2 microsecond of its evolution. A kinetic model was developed that encompassed the principal chemical reactions between the major atmospheric components and the products of laser breakdown. In the model, the laser plasma was treated as a source of nitric oxide and atomic oxygen, whose rates of production were calculated using measured absorption by NO, NO2, and O3. The calculated concentration profiles for NO, NO2, and O3 were in good agreement with measured profiles over a time scale of 0-200 s. The steady-state concentration of ozone was measured in a flow cell in air. For a single breakdown in air, the estimated steady-state yield of ozone was 2 x 10(12) molecules, which agreed with the model prediction. This study can be of importance for general understanding of laser plasma chemistry and for elucidating the nature of spectral interferences and matrix effects that may take place in applied spectrochemical analysis.

  10. Measurement and modeling of ozone and nitrogen oxides produced by laser breakdown in oxygen-nitrogen atmospheres.

    PubMed

    Gornushkin, Igor B; Stevenson, Chris L; Galbács, Gábor; Smith, Ben W; Winefordner, James D

    2003-11-01

    The production of ozone nad nitrogen oxides was studied during multiple laser breakdown in oxygen-nitrogen mixtures at atmospheric pressure. About 2000 laser shots at 10(10) W cm-2 were delivered into a sealed reaction chamber. The chamber with a long capillary was designed to measure absorption of O3, NO, and NO2 as a function of the number of laser shots. The light source for absorption measurements was the continuum radiation emitted by the plasma during the first 0.2 microsecond of its evolution. A kinetic model was developed that encompassed the principal chemical reactions between the major atmospheric components and the products of laser breakdown. In the model, the laser plasma was treated as a source of nitric oxide and atomic oxygen, whose rates of production were calculated using measured absorption by NO, NO2, and O3. The calculated concentration profiles for NO, NO2, and O3 were in good agreement with measured profiles over a time scale of 0-200 s. The steady-state concentration of ozone was measured in a flow cell in air. For a single breakdown in air, the estimated steady-state yield of ozone was 2 x 10(12) molecules, which agreed with the model prediction. This study can be of importance for general understanding of laser plasma chemistry and for elucidating the nature of spectral interferences and matrix effects that may take place in applied spectrochemical analysis. PMID:14658160

  11. Surface Decontamination of Chemical Agent Surrogates Using an Atmospheric Pressure Air Flow Plasma Jet

    NASA Astrophysics Data System (ADS)

    Li, Zhanguo; Li, Ying; Cao, Peng; Zhao, Hongjie

    2013-07-01

    An atmospheric pressure dielectric barrier discharge (DBD) plasma jet generator using air flow as the feedstock gas was applied to decontaminate the chemical agent surrogates on the surface of aluminum, stainless steel or iron plate painted with alkyd or PVC. The experimental results of material decontamination show that the residual chemical agent on the material is lower than the permissible value of the National Military Standard of China. In order to test the corrosion effect of the plasma jet on different material surfaces in the decontamination process, corrosion tests for the materials of polymethyl methacrylate, neoprene, polyvinyl chloride (PVC), polyethylene (PE), phenolic resin, iron plate painted with alkyd, stainless steel, aluminum, etc. were carried out, and relevant parameters were examined, including etiolation index, chromatism, loss of gloss, corrosion form, etc. The results show that the plasma jet is slightly corrosive for part of the materials, but their performances are not affected. A portable calculator, computer display, mainboard, circuit board of radiogram, and a hygrometer could work normally after being treated by the plasma jet.

  12. Dust particle charge screening in the dry-air plasma produced by an external ionization source

    SciTech Connect

    Derbenev, I. N.; Filippov, A. V.

    2015-08-15

    The ionic composition of the plasma produced by an external ionization source in dry air at atmospheric pressure and room temperature and the screening of the electric field of a dust particle in such a plasma have been investigated. The point sink model based on the diffusion-drift approximation has been used to solve the screening problem. We have established that the main species of ions in the plasma under consideration are O{sub 4}{sup +}, O{sub 2}{sup -}, and O{sub 4}{sup -} and that the dust particle potential distribution is described by a superposition of four exponentials with four different constants. We show that the first constant coincides with the inverse Debye length, the second is described by the inverse ambipolar diffusion length of the positive and negative plasma components in the characteristic time of their recombination, the third is determined by the conversion of negative ions, and the fourth is determined by the attachment and recombination of electrons and diatomic ions.

  13. Spectroscopic analysis of the excitation transfer from background air to diffusing aluminum laser produced plasma

    SciTech Connect

    Ribiere, M.; Cheron, B. G.; Karabourniotis, D.

    2009-04-15

    During the relaxation of the plasma plume generated by laser ablation of an aluminum target, a pronounced intensity enhancement is observed at the central wavelength of the 396.15 nm self-reversed resonant line. This spectral special feature is analyzed and related to the interaction of the plasma edge with the background air excited by the shockwave, prompt electrons, and extreme ultraviolet radiation produced at the earliest times of the ablation. In this article, the electron density, the aluminum ground state, and resonant level populations are determined from the fitting of the 396.15 nm calculated line profile to the experimental one at two background pressures (100 and 1000 Pa). The evolution of these densities is derived from experiments performed at delays, after the laser pulse arrival, ranging from 120 to 180 ns.

  14. Atmospheric pressure discharge plasma decomposition for gaseous air contaminants -- Trichlorotrifluoroethane and trichloroethylene

    SciTech Connect

    Oda, Tetsuji; Yamashita, Ryuichi; Takahashi, Tadashi; Masuda, Senichi

    1996-03-01

    The decomposition performance of gaseous environmental destructive contaminants in air by using atmospheric pressure discharged plasma including the surface discharge induced plasma chemical processing (SPCP) was examined. The main contaminants tested were chlorofluorocarbon (CFC-113) and trichloroethylene, typically. The discharge exciting frequency range studied was wide--50 Hz to 50 kHz. Results showed the low frequency discharge requires high voltage to inject high electric power in the gas and to decompose the contaminants. A Gas Chromatograph Mass Spectrometer was used to analyze discharge products of dense CFC-113 or trichloroethylene. Among the detected products were HCl, CClFO, and CHCl{sub 3}. Two different electrode configurations; the silent discharge (coaxial) electrode and the coil-electrode were also tested and compared to each other as a gas reactor.

  15. Spectroscopic Challenges in the Modelling and Diagnostics of High Temperature Air Plasma Radiation for Aerospace Applications

    SciTech Connect

    Laux, Christophe O.

    2007-04-06

    State-of-the-art spectroscopic models of the radiative transitions of interest for Earth re-entry and ground-based diagnostic facilities for aerospace applications are reviewed. The spectral range considered extends from the vacuum ultraviolet to the mid-infrared range (80 nm to 5.5 {mu}m). The modeling results are compared with absolute intensity measurements of the ultraviolet-visible-infrared emission of a well-characterized high-temperature air plasma produced with a 50 kW inductively coupled radio-frequency plasma torch, and with high-resolution absorption spectra from the Center for Astrophysics in the vacuum ultraviolet. The Spectroscopic data required to better model the spectral features of interest for aerospace applications are discussed.

  16. Factors affecting the microstructural stability and durability of thermal barrier coatings fabricated by air plasma spraying

    SciTech Connect

    Helminiak, M A; Yanar, N M; Pettit, F S; Taylor, T A; Meier, G H

    2012-10-01

    The high-temperature behavior of high-purity, low-density (HP-LD) air plasma sprayed (APS) thermal barrier coatings (TBCs) with NiCoCrAlY bond coats deposited by argon-shrouded plasma spraying is described. The high purity yttria-stabilized zirconia resulted in top coats which are highly resistant to sintering and transformation from the metastable tetragonal phase to the equilibrium mixture of monoclinic and cubic phases. The thermal conductivity of the as-processed TBC is low but increases during high temperature exposure even before densification occurs. The porous topcoat microstructure also resulted in good spallation resistance during thermal cycling. The actual failure mechanisms of the APS coatings were found to depend on topcoat thickness, topcoat density, and the thermal cycle frequency. The failure mechanisms are described and the durability of the HP-LD coatings is compared with that of state-of-the-art electron beam physical vapor deposition TBCs.

  17. Air plasma gasification of RDF as a prospective method for reduction of carbon dioxide emission

    NASA Astrophysics Data System (ADS)

    Bratsev, A. N.; Kumkova, I. I.; Kuznetsov, V. A.; Popov, V. E.; Shtengel', S. V.; Ufimtsev, A. A.

    2011-03-01

    Waste disposal dumps are one of sources of carbonic gas penetration in the atmosphere. The waste is treated into RDF (refuse-derived fuel) and used in boilers for electric power or heat generation for decrease in carbonic gas emissions in the atmosphere. In industry power stations on the basis of the combined cycle have the highest efficiency of burning. The paper deals with the application of an air-plasma gasifier using the down draft scheme of RDF transformation into synthesis gas, which afterwards can be used in the combined cycle. Results of calculations of the process characteristics for various RDF compositions are presented. The advantage of the plasma method in comparison with autothermal one is shown. Experimental data are shown.

  18. Silent Discharge Plasma Technology for the Treatment of Air Toxics and Other Applications

    SciTech Connect

    Rosocha, Louis A.; Chase, Peter J.; Gross, Michael P.

    1998-09-21

    Under this CRADA, the Los Alamos National Laboratory (LANL) and High Mesa Technologies, Inc. (HMT) carried out a joint project on the development of the silent discharge plasma (SDP) technology for the treatment of hazardous air pollutants and other hazardous or toxic chemicals. The project had two major components: a technology-demonstration part and a scale-up and commercialization part. In the first part, a small-scale, mobile SDP plasma processor, which was being developed under a CRADA with the Electric Power Research Institute (EPRI) was the mobile equipment was modified for higher capacity service and employed for an innovative remediation technologies demonstration on soil-vapor extraction off-gases at the McClellan Air Force Base near Sacramento, CA. The performance of the SDP system for the variety of volatile organic compounds (VOCs) encountered at the McClellan site was sufficiently promising to the project HMT and LANL worked together to formulate a scale-up strategy and commercialization/manufacturing plan, and to design a prototype scaled-up SDP unit. HMT and LANL are now in the final stages of completing a licensing agreement for the technology and HMT is in the process of raising funds to engineer and manufacture commercial prototype SDP equipment focused on stack-gas emissions control and environmental remediation. HMT, in collaboration with another Northern New Mexico business, Coyote Aerospace, has also been successful in receiving a Phase I Small Business Innovative Research (SBIR) award from the Army Research Office to develop, design, and construct a small non-thermal plasma reactor for laboratory studies ("Non-Thermal Plasma Reactor for Control of Fugitive Emissions of Toxic Gases")

  19. Conversion of air mixture with ethanol and water vapors in nonequilibrium gas-discharge plasma

    NASA Astrophysics Data System (ADS)

    Shchedrin, A. I.; Levko, D. S.; Chernyak, V. Ya.; Yukhimenko, V. V.; Naumov, V. V.

    2009-05-01

    In search for an alternative fuel for internal combustion engines, we have studied the possibility of obtaining molecular hydrogen via the conversion of air mixture with ethanol and water vapors in a new plasma reactor. It is shown that, in agreement with experimental data, the H2 concentration is a linear function of the discharge current and decreases with increasing gas flow rate in the interelectrode gap. It is established that the proposed approach provides higher molecular hydrogen concentrations as compared to those achieved with other methods.

  20. Efficient new process for the desulfurization of mixtures of air and hydrogen sulfide via a dielectric barrier discharge plasma

    NASA Astrophysics Data System (ADS)

    Dahle, S.

    2015-10-01

    The efficient removal of hydrogen sulfide, H2S, from streams of H2S in air via a dielectric barrier discharge (DBD) plasma has been investigated using a quadrupole mass spectrometer. A suitable plasma device with a reservoir for storing sorbent powder of various kinds within the plasma region was constructed. Plasma treatments of gas streams with high concentrations of hydrogen sulfide in air yielded a removal of more than 98% of the initial hydrogen sulfide and a deposition of sulfur at the surface of the dielectric, while small amounts of sulfur dioxide were generated. The presence of calcium carbonate within the plasma region of the DBD device resulted in the removal of over 99% of the initial hydrogen sulfide content and the removal of 98% of the initial sulfur dioxide impurities from the gas mixture.

  1. Effect of high-power laser divergence on the plasma structural parameters during multiple filamentation in air

    NASA Astrophysics Data System (ADS)

    Geints, Yu. E.; Zemlyanov, A. A.

    2016-06-01

    Multiple filamentation of an infrared high-power laser pulse in air is considered. Based on the numerical solution to the unidirectional pulse propagation equation, the effect of radiation external focusing on the spatial structure of the plasma area produced in the filamentation region is studied. We show that the number of generated plasma channels in the beam wake and the density of their spatial distribution over the filamentation region depend on the initial divergence of laser radiation. We found that in a specific range of beam focusing the number of produced plasma channels could be minimized due to the formation of a consolidated thick plasma bunch at the beam axis.

  2. Electrical breakdown of water in microgaps

    NASA Astrophysics Data System (ADS)

    Schoenbach, Karl; Kolb, Juergen; Xiao, Shu; Katsuki, Sunao; Minamitani, Yasushi; Joshi, Ravindra

    2008-05-01

    Experimental and modeling studies on electrical breakdown in water in submillimeter gaps between pin and plane electrodes have been performed. Prebreakdown, breakdown and recovery of the water gaps were studied experimentally by using optical and electrical diagnostics with a temporal resolution on the order of one nanosecond. By using Mach-Zehnder interferometry, the electric field distribution in the prebreakdown phase was determined by means of the Kerr effect. Electric fields values in excess of the computed electric fields, which reach >4 MV cm-1 for applied electrical pulses of 20 ns duration, were recorded at the tip of the pin electrode, an effect which can be explained by a reduced permittivity of water at high electric fields. Breakdown of the gaps, streamer-to-arc transition, was recorded by means of high-speed electrical diagnostics, and through high-speed photography. It was shown, through simulations, that breakdown is initiated by field emission at the interface of preexisting microbubbles. Impact ionization within the micro-bubble's gas then contributes to plasma development. Experiments using pulse-probe methods and Schlieren diagnostics allowed us to follow the development of the disturbance caused by the breakdown over a time of more than milliseconds and to determine the recovery time of a water switch. In order to trigger water switches a trigger electrode with a triple point has been utilized. The results of this research have found application in the construction of compact pulse power generators for bioelectric applications.

  3. Breakdown simulations in a focused microwave beam within the simplified model

    NASA Astrophysics Data System (ADS)

    Semenov, V. E.; Rakova, E. I.; Glyavin, M. Yu.; Nusinovich, G. S.

    2016-07-01

    The simplified model is proposed to simulate numerically air breakdown in a focused microwave beam. The model is 1D from the mathematical point of view, but it takes into account the spatial non-uniformity of microwave field amplitude along the beam axis. The simulations are completed for different frequencies and different focal lengths of microwave beams. The results demonstrate complicated regimes of the breakdown evolution which represents a series of repeated ionization waves. These waves start at the focal point and propagate towards incident microwave radiation. The ionization wave parameters vary during propagation. At relatively low frequencies, the propagation regime of subsequent waves can also change qualitatively. Each next ionization wave is less pronounced than the previous one, and the breakdown evolution approaches the steady state with relatively small plasma density. The ionization wave parameters are sensitive to the weak source of external ionization, but the steady state is independent on such a source. As the beam focal length decreases, the stationary plasma density increases and the onset of the steady state occurs faster.

  4. Improved Ethanol Production from Xylose by Candida shehatae Induced by Dielectric Barrier Discharge Air Plasma

    NASA Astrophysics Data System (ADS)

    Chen, Huixia; Xiu, Zhilong; Bai, Fengwu

    2014-06-01

    Xylose fermentation is essential for ethanol production from lignocellulosic biomass. Exposure of the xylose-fermenting yeast Candida shehatae (C. shehatae) CICC1766 to atmospheric pressure dielectric barrier discharge (DBD) air plasma yields a clone (designated as C81015) with stability, which exhibits a higher ethanol fermentation rate from xylose, giving a maximal enhancement in ethanol production of 36.2% compared to the control (untreated). However, the biomass production of C81015 is lower than that of the control. Analysis of the NADH (nicotinamide adenine dinucleotide)- and NADPH (nicotinamide adenine dinucleotide phosphate)-linked xylose reductases and NAD+-linked xylitol dehydrogenase indicates that their activities are enhanced by 34.1%, 61.5% and 66.3%, respectively, suggesting that the activities of these three enzymes are responsible for improving ethanol fermentation in C81015 with xylose as a substrate. The results of this study show that DBD air plasma could serve as a novel and effective means of generating microbial strains that can better use xylose for ethanol fermentation.

  5. Electromagnetic wave attenuation measurements in a ring-shaped inductively coupled air plasma

    NASA Astrophysics Data System (ADS)

    Wei, Xiaolong; Xu, Haojun; Li, Jianhai; Lin, Min; Su; Chen

    2015-05-01

    An aerocraft with the surface, inlet and radome covered large-area inductive coupled plasma (ICP) can attenuate its radar echo effectively. The shape, thickness, and electron density ( N e ) distribution of ICP are critical to electromagnetic wave attenuation. In the paper, an air all-quartz ICP generator in size of 20 × 20 × 7 cm3 without magnetic confinement is designed. The discharge results show that the ICP is amorphous in E-mode and ring-shaped in H-mode. The structure of ICP stratifies into core region and edge halo in H-mode, and its width and thickness changes from power and pressure. Such phenomena are explained by the distribution of RF magnetic field, the diffusion of negative ions plasma and the variation of skin depth. In addition, the theoretical analysis shows that the N e achieves nearly uniform within the electronegative core and sharply steepens in the edge. The N e of core region is diagnosed by microwave interferometer under varied conditions (pressure in range of 10-50 Pa, power in 300-700 W). Furthermore, the electromagnetic wave attenuation measurements were carried out with the air ICP in the frequencies of 4-5 GHz. The results show that the interspaced ICP is still effective to wave attenuation, and the wave attenuation increases with the power and pressure. The measured attenuation is approximately in accordance with the calculation data of finite-different time-domain simulations.

  6. Effects of atmospheric air plasma treatment of graphite and carbon felt electrodes on the anodic current from Shewanella attached cells.

    PubMed

    Epifanio, Monica; Inguva, Saikumar; Kitching, Michael; Mosnier, Jean-Paul; Marsili, Enrico

    2015-12-01

    The attachment of electrochemically active microorganisms (EAM) on an electrode is determined by both the chemistry and topography of the electrode surface. Pre-treatment of the electrode surface by atmospheric air plasma introduces hydrophilic functional groups, thereby increasing cell attachment and electroactivity in short-term experiments. In this study, we use graphite and carbon felt electrodes to grow the model EAM Shewanella loihica PV-4 at oxidative potential (0.2 V vs. Ag/AgCl). Cell attachment and electroactivity are measured through electrodynamic methods. Atmospheric air plasma pre-treatment increases cell attachment and current output at graphite electrodes by 25%, while it improves the electroactivity of the carbon felt electrodes by 450%. Air plasma pre-treatment decreased the coulombic efficiency on both carbon felt and graphite electrodes by 60% and 80%, respectively. Microbially produced flavins adsorb preferentially at the graphite electrode, and air plasma pre-treatment results in lower flavin adsorption at both graphite and carbon felt electrodes. Results show that air plasma pre-treatment is a feasible option to increase current output in bioelectrochemical systems.

  7. A large-area diffuse air discharge plasma excited by nanosecond pulse under a double hexagon needle-array electrode.

    PubMed

    Liu, Zhi-Jie; Wang, Wen-Chun; Yang, De-Zheng; Wang, Sen; Zhang, Shuai; Tang, Kai; Jiang, Peng-Chao

    2014-01-01

    A large-area diffuse air discharge plasma excited by bipolar nanosecond pulse is generated under a double hexagon needle-array electrode at atmospheric pressure. The images of the diffuse discharge, electric characteristics, and the optical emission spectra emitted from the diffuse air discharge plasma are obtained. Based on the waveforms of pulse voltage and current, the power consumption, and the power density of the diffuse air discharge plasma are investigated under different pulse peak voltages. The electron density and the electron temperature of the diffuse plasma are estimated to be approximately 1.42×10(11) cm(-3) and 4.4 eV, respectively. The optical emission spectra are arranged to determine the rotational and vibrational temperatures by comparing experimental with simulated spectra. Meanwhile, the rotational and vibrational temperatures of the diffuse discharge plasma are also discussed under different pulse peak voltages and pulse repetition rates, respectively. In addition, the diffuse air discharge plasma can form an area of about 70×50 mm(2) on the surface of dielectric layer and can be scaled up to the required size.

  8. Influence of air diffusion on the OH radicals and atomic O distribution in an atmospheric Ar (bio)plasma jet

    NASA Astrophysics Data System (ADS)

    Nikiforov, A.; Li, L.; Britun, N.; Snyders, R.; Vanraes, P.; Leys, C.

    2014-02-01

    Treatment of samples with plasmas in biomedical applications often occurs in ambient air. Admixing air into the discharge region may severely affect the formation and destruction of the generated oxidative species. Little is known about the effects of air diffusion on the spatial distribution of OH radicals and O atoms in the afterglow of atmospheric-pressure plasma jets. In our work, these effects are investigated by performing and comparing measurements in ambient air with measurements in a controlled argon atmosphere without the admixture of air, for an argon plasma jet. The spatial distribution of OH is detected by means of laser-induced fluorescence diagnostics (LIF), whereas two-photon laser-induced fluorescence (TALIF) is used for the detection of atomic O. The spatially resolved OH LIF and O TALIF show that, due to the air admixture effects, the reactive species are only concentrated in the vicinity of the central streamline of the afterglow of the jet, with a characteristic discharge diameter of ˜1.5 mm. It is shown that air diffusion has a key role in the recombination loss mechanisms of OH radicals and atomic O especially in the far afterglow region, starting up to ˜4 mm from the nozzle outlet at a low water/oxygen concentration. Furthermore, air diffusion enhances OH and O production in the core of the plasma. The higher density of active species in the discharge in ambient air is likely due to a higher electron density and a more effective electron impact dissociation of H2O and O2 caused by the increasing electrical field, when the discharge is operated in ambient air.

  9. Obstacle-induced spiral vortex breakdown

    NASA Astrophysics Data System (ADS)

    Pasche, Simon; Gallaire, François; Dreyer, Matthieu; Farhat, Mohamed

    2014-08-01

    An experimental investigation on vortex breakdown dynamics is performed. An adverse pressure gradient is created along the axis of a wing-tip vortex by introducing a sphere downstream of an elliptical hydrofoil. The instrumentation involves high-speed visualizations with air bubbles used as tracers and 2D Laser Doppler Velocimeter (LDV). Two key parameters are identified and varied to control the onset of vortex breakdown: the swirl number, defined as the maximum azimuthal velocity divided by the free-stream velocity, and the adverse pressure gradient. They were controlled through the incidence angle of the elliptical hydrofoil, the free-stream velocity and the sphere diameter. A single helical breakdown of the vortex was systematically observed over a wide range of experimental parameters. The helical breakdown coiled around the sphere in the direction opposite to the vortex but rotated along the vortex direction. We have observed that the location of vortex breakdown moved upstream as the swirl number or the sphere diameter was increased. LDV measurements were corrected using a reconstruction procedure taking into account the so-called vortex wandering and the size of the LDV measurement volume. This allows us to investigate the spatio-temporal linear stability properties of the flow and demonstrate that the flow transition from columnar to single helical shape is due to a transition from convective to absolute instability.

  10. The Mutation Breeding and Mutagenic Effect of Air Plasma on Penicillium Chrysogenum

    NASA Astrophysics Data System (ADS)

    Gui, Fang; Wang, Hui; Wang, Peng; Liu, Hui; Cai, Xiaochun; Hu, Yihua; Yuan, Chengling; Zheng, Zhiming

    2012-04-01

    Low temperature air plasma was used as the mutation tool for penicillin-producing strain Penicillium chrysogenum. The discharge conditions were RF power of 360 W, temperature of 40°C in a sealed chamber, and pressure of 10 Pa to 30 Pa. The result showed that the kinetics of the survival rate followed a typical saddle-shaped curve. Based on a statistic analysis, at the treating duration of 10 min, the positive mutation rate was as high as 37.5% while the negative mutation rate was low. The colonial morphology changed obviously when the plasma treating duration reached or exceeded 45 min. After both primary and secondary screening, a mutant designated as aPc051310 with high productivity of penicillin was obtained, and a strong mutagenic effect on P. chrysogenum was observed in the process. It was proved that after five generations, the mutant aPc051310 still exhibits a high productivity. All the results prove that the plasma mutation method could be developed as a convenient and effective tool to breed high-yield strains in the fermentation industry, while expanding the plasm application at the same time.

  11. A uniform laminar air plasma plume with large volume excited by an alternating current voltage

    NASA Astrophysics Data System (ADS)

    Li, Xuechen; Bao, Wenting; Chu, Jingdi; Zhang, Panpan; Jia, Pengying

    2015-12-01

    Using a plasma jet composed of two needle electrodes, a laminar plasma plume with large volume is generated in air through an alternating current voltage excitation. Based on high-speed photography, a train of filaments is observed to propagate periodically away from their birth place along the gas flow. The laminar plume is in fact a temporal superposition of the arched filament train. The filament consists of a negative glow near the real time cathode, a positive column near the real time anode, and a Faraday dark space between them. It has been found that the propagation velocity of the filament increases with increasing the gas flow rate. Furthermore, the filament lifetime tends to follow a normal distribution (Gaussian distribution). The most probable lifetime decreases with increasing the gas flow rate or decreasing the averaged peak voltage. Results also indicate that the real time peak current decreases and the real time peak voltage increases with the propagation of the filament along the gas flow. The voltage-current curve indicates that, in every discharge cycle, the filament evolves from a Townsend discharge to a glow one and then the discharge quenches. Characteristic regions including a negative glow, a Faraday dark space, and a positive column can be discerned from the discharge filament. Furthermore, the plasma parameters such as the electron density, the vibrational temperature and the gas temperature are investigated based on the optical spectrum emitted from the laminar plume.

  12. Characterization Of Nano-Second Laser Induced Plasmas From Al Target In Air At Atmospheric Pressure

    SciTech Connect

    Hegazy, H.; Abdel-Rahim, F. M.; Nossair, A. M. A.; Allam, S. H.; El-Sherbini, Th. M.

    2008-09-23

    In the present work we study the effect of the laser beam energy on the properties of the plasma generated by focusing an intense laser beam on Al solid target in air at atmospheric pressure. Plasma is generated using a Nd:YAG pulsed laser at 1064 nm wavelength, 6 ns pulse duration with a maximum pulse energy of 750mJ. The emission spectrum is collected using an Echelle spectrometer equipped with ICCD camera Andor type. The measurements were performed at several delay times between 0 to 9 {mu}s. Measurements of temperature and electron density of the produced plasmas at different laser energies and at different delay times are described using different emission spectral lines. Based on LTE assumption, excitation temperature is determined from the Boltzmann plot using O I spectral lines at 777.34, 794.93, and 848.65 nm and the electron density is determined from Stark width of Al II at 281.6 and 466.3 nm. The determined density is compared with the density determined from H{sub {alpha}} spectral line.

  13. Conversion of carbon disulfide in air by non-thermal plasma.

    PubMed

    Yan, Xiao; Sun, Yifei; Zhu, Tianle; Fan, Xing

    2013-10-15

    Carbon disulfide (CS2), a typical odorous organic sulfur compound, has adverse effects on human health and is a potential threat to the environment. In the present study, CS2 conversion in air by non-thermal plasma (NTP) was systematically investigated using a link tooth wheel-cylinder plasma reactor energized by a DC power supply. The results show that corona discharge is effective in removing CS2. The CS2 conversion increases with the increase of specific input energy (SIE). Both short-living (e.g. O, OH radicals) and long-living species contribute to the CS2 conversion, but the short-living species play a more important role. Both gaseous and solid products are formed during the conversion of CS2. Gaseous products mainly include CO, CO2, OCS, SO2, SO3 and H2SO4. The yields of CO and CO2 increase, the yields of OCS and SO2 follow bell curves while the sum yield of SO3 and H2SO4 remains constant as SIE increases. The solid products, consisting of CO3(2-), SO4(2-) and possible polymeric sulfur, deposit on the inner wall and electrodes of the plasma reactor.

  14. Removal of low-concentration BTX in air using a combined plasma catalysis system.

    PubMed

    Fan, X; Zhu, T L; Wang, M Y; Li, X M

    2009-06-01

    The behavior of non-thermal plasma (NTP) and combined plasma catalysis (CPC) was investigated for removal of low-concentration benzene, toluene and p-xylene (BTX mixture) in air using a link tooth wheel-cylinder plasma reactor. Combining NTP with MnO(x)/Al(2)O(3) catalyst after the discharge zone (CPC) significantly promoted BTX conversion and improved the energy efficiency. For a specific input energy (SIE) of 10 JL(-1), the conversion of benzene, toluene and p-xylene reached 94%, 97% and 95%, respectively. The introduction of MnO(x)/Al(2)O(3) catalyst also moved the BTX conversion towards total oxidation and reduced the emission of O(3) and NO(2) as compared to NTP alone. For an SIE of 10 JL(-1), the O(3) outlet concentration decreased from 46.7 for NTP alone to 1.9 ppm for CPC, while the NO(2) emission correspondingly decreased from 1380 to 40 ppb.

  15. Effects of air transient spark discharge and helium plasma jet on water, bacteria, cells, and biomolecules.

    PubMed

    Hensel, Karol; Kučerová, Katarína; Tarabová, Barbora; Janda, Mário; Machala, Zdenko; Sano, Kaori; Mihai, Cosmin Teodor; Ciorpac, Mitică; Gorgan, Lucian Dragos; Jijie, Roxana; Pohoata, Valentin; Topala, Ionut

    2015-06-06

    Atmospheric pressure DC-driven self-pulsing transient spark (TS) discharge operated in air and pulse-driven dielectric barrier discharge plasma jet (PJ) operated in helium in contact with water solutions were used for inducing chemical effects in water solutions, and the treatment of bacteria (Escherichia coli), mammalian cells (Vero line normal cells, HeLa line cancerous cells), deoxyribonucleic acid (dsDNA), and protein (bovine serum albumin). Two different methods of water solution supply were used in the TS: water electrode system and water spray system. The effects of both TS systems and the PJ were compared, as well as a direct exposure of the solution to the discharge with an indirect exposure to the discharge activated gas flow. The chemical analysis of water solutions was performed by using colorimetric methods of UV-VIS absorption spectrophotometry. The bactericidal effects of the discharges on bacteria were evaluated by standard microbiological plate count method. Viability, apoptosis and cell cycle were assessed in normal and cancerous cells. Viability of cells was evaluated by trypan blue exclusion test, apoptosis by Annexin V-FITC/propidium iodide assay, and cell cycle progression by propidium iodide/RNase test. The effect of the discharges on deoxyribonucleic acid and protein were evaluated by fluorescence and UV absorption spectroscopy. The results of bacterial and mammalian cell viability, apoptosis, and cell cycle clearly show that cold plasma can inactivate bacteria and selectively target cancerous cells, which is very important for possible future development of new plasma therapeutic strategies in biomedicine. The authors found that all investigated bio-effects were stronger with the air TS discharge than with the He PJ, even in indirect exposure.

  16. Two-dimensional numerical study of two counter-propagating helium plasma jets in air at atmospheric pressure

    SciTech Connect

    Yan, Wen; Sang, Chaofeng; Wang, Dezhen; Liu, Fucheng

    2014-06-15

    In this paper, a computational study of two counter-propagating helium plasma jets in ambient air is presented. A two-dimensional fluid model is applied to investigate the physical processes of the two plasma jets interaction (PJI) driven by equal and unequal voltages, respectively. In all studied cases, the PJI results in a decrease of both plasma bullets propagation velocity. When the two plasma jets are driven by equal voltages, they never merge but rather approach each other around the middle of the gas gap at a minimum approach distance, and the minimal distance decreases with the increase of both the applied voltages and initial electron density, but increases with the increase of the relative permittivity. When the two plasma jets are driven by unequal voltages, we observe the two plasma jets will merge at the position away from the middle of the gas gap. The effect of applied voltage difference on the PJI is also studied.

  17. Afterglow chemistry of atmospheric-pressure helium-oxygen plasmas with humid air impurity

    NASA Astrophysics Data System (ADS)

    Murakami, Tomoyuki; Niemi, Kari; Gans, Timo; O'Connell, Deborah; Graham, William G.

    2014-04-01

    The formation of reactive species in the afterglow of a radio-frequency-driven atmospheric-pressure plasma in a fixed helium-oxygen feed gas mixture (He+0.5%O2) with humid air impurity (a few hundred ppm) is investigated by means of an extensive global plasma chemical kinetics model. As an original objective, we explore the effects of humid air impurity on the biologically relevant reactive species in an oxygen-dependent system. After a few milliseconds in the afterglow environment, the densities of atomic oxygen (O) decreases from 1015 to 1013 cm-3 and singlet delta molecular oxygen (O2(1D)) of the order of 1015 cm-3 decreases by a factor of two, while the ozone (O3) density increases from 1014 to 1015 cm-3. Electrons and oxygen ionic species, initially of the order of 1011 cm-3, recombine much faster on the time scale of some microseconds. The formation of atomic hydrogen (H), hydroxyl radical (OH), hydroperoxyl (HO2), hydrogen peroxide (H2O2), nitric oxide (NO) and nitric acid (HNO3) resulting from the humid air impurity as well as the influence on the afterglow chemistry is clarified with particular emphasis on the formation of dominant reactive oxygen species (ROS). The model suggests that the reactive species predominantly formed in the afterglow are major ROS O2(1D) and O3 (of the order of 1015 cm-3) and rather minor hydrogen- and nitrogen-based reactive species OH, H2O2, HNO3 and NO2/NO3, of which densities are comparable to the O-atom density (of the order of 1013 cm-3). Furthermore, the model quantitatively reproduces the experimental results of independent O and O3 density measurements.

  18. Electron density measurements in an atmospheric pressure air plasma by means of infrared heterodyne interferometry

    NASA Astrophysics Data System (ADS)

    Leipold, Frank; Stark, Robert H.; El-Habachi, Ahmed; Schoenbach, Karl H.

    2000-09-01

    An infrared heterodyne interferometer has been used to measure the spatial distribution of the electron density in direct current, atmospheric pressure discharges in air. Spatial resolution of the electron density in the high-pressure glow discharge with characteristic dimensions on the order of 100 µm required the use of a CO2 laser at a wavelength of 10.6 µm. For this wavelength and electron densities greater than 1011 cm-3 the index of refraction of the atmospheric air plasma is mainly determined by heavy particles rather than electrons. The electron contribution to the refractive index was separated from that of the heavy particles by taking the different relaxation times of the two particle species into account. With the discharge operated in a repetitive pulsed mode, the initial rapid change of the refractive index was assumed to be due to the increase in electron density, whereas the following slower rise is due to the decrease in gas density caused by gas heating. By reducing the time between pulses, direct current conditions were approached, and the electron density as well as the gas density, and gas temperature, respectively, were obtained through extrapolation. A computation inversion method was used to determine the radial distribution of the plasma parameters in the cylindrical discharge. For a direct-current filamentary discharge in air, at a current of 10 mA, the electron density was found to be 1013 cm-3 in the centre, decreasing to half of this value at a radial distance of 0.21 mm. Gaussian temperature profiles with σ = 1.1 mm and maximum values of 1000-2000 K in the centre were also obtained with, however, larger error margins than for electron densities.

  19. Multi-Group Reductions of LTE Air Plasma Radiative Transfer in Cylindrical Geometries

    NASA Technical Reports Server (NTRS)

    Scoggins, James; Magin, Thierry Edouard Bertran; Wray, Alan; Mansour, Nagi N.

    2013-01-01

    Air plasma radiation in Local Thermodynamic Equilibrium (LTE) within cylindrical geometries is studied with an application towards modeling the radiative transfer inside arc-constrictors, a central component of constricted-arc arc jets. A detailed database of spectral absorption coefficients for LTE air is formulated using the NEQAIR code developed at NASA Ames Research Center. The database stores calculated absorption coefficients for 1,051,755 wavelengths between 0.04 µm and 200 µm over a wide temperature (500K to 15 000K) and pressure (0.1 atm to 10.0 atm) range. The multi-group method for spectral reduction is studied by generating a range of reductions including pure binning and banding reductions from the detailed absorption coefficient database. The accuracy of each reduction is compared to line-by-line calculations for cylindrical temperature profiles resembling typical profiles found in arc-constrictors. It is found that a reduction of only 1000 groups is sufficient to accurately model the LTE air radiation over a large temperature and pressure range. In addition to the reduction comparison, the cylindrical-slab formulation is compared with the finite-volume method for the numerical integration of the radiative flux inside cylinders with varying length. It is determined that cylindrical-slabs can be used to accurately model most arc-constrictors due to their high length to radius ratios.

  20. On-site application of air cleaner emitting plasma ion to reduce airborne contaminants in pig building

    NASA Astrophysics Data System (ADS)

    Cho, Man Su; Ko, Han Jong; Kim, Daekeun; Kim, Ki Youn

    2012-12-01

    The objective of this field study is to evaluate temporal reduction efficiency of air cleaner emitting plasma ion on airborne pollutants emitted from pig building. The operation principle of air cleaner based on plasma ion is that hydrogen atoms and oxygen ions combine to form hydroperoxyl radicals (HOO-), which surround and attach to surface of airborne microorganisms and eliminate them by breaking the hydrogen bond in their protein structure. In gaseous pollutants, it was found that there is no reduction effect of the air cleaner on ammonia and hydrogen sulfide (p > 0.05). In particulate pollutants, the air cleaner showed mean 79%(±6.1) and 78%(±3.0) of reduction efficiency for PM2.5. and PM1, respectively, compared to the control without air cleaner (p < 0.05). However, there is no significant difference in TSP and PM10 between the treatment with air cleaner and the control without air cleaner (p > 0.05). In biological pollutants, the mean reduction efficiencies for airborne bacteria and fungi by application of air cleaner were 22%(±6.6) and 25%(±8.7), respectively (p < 0.05). Based on the results obtained from this study, it was concluded that the air cleaner had a positive reduction effect on PM2.5, PM1, airborne bacteria and airborne fungi among airborne pollutants distributed in pig building while it did not lead to significant reduction of ammonia and hydrogen sulfide.

  1. A fluid model simulation of a simplified plasma limiter based on spectral-element time-domain method

    SciTech Connect

    Qian, Cheng; Ding, Dazhi Fan, Zhenhong; Chen, Rushan

    2015-03-15

    A simplified plasma limiter prototype is proposed and the fluid model coupled with Maxwell's equations is established to describe the operating mechanism of plasma limiter. A three-dimensional (3-D) simplified sandwich structure plasma limiter model is analyzed with the spectral-element time-domain (SETD) method. The field breakdown threshold of air and argon at different frequency is predicted and compared with the experimental data and there is a good agreement between them for gas microwave breakdown discharge problems. Numerical results demonstrate that the two-layer plasma limiter (plasma-slab-plasma) has better protective characteristics than a one-layer plasma limiter (slab-plasma-slab) with the same length of gas chamber.

  2. A fluid model simulation of a simplified plasma limiter based on spectral-element time-domain method

    NASA Astrophysics Data System (ADS)

    Qian, Cheng; Ding, Dazhi; Fan, Zhenhong; Chen, Rushan

    2015-03-01

    A simplified plasma limiter prototype is proposed and the fluid model coupled with Maxwell's equations is established to describe the operating mechanism of plasma limiter. A three-dimensional (3-D) simplified sandwich structure plasma limiter model is analyzed with the spectral-element time-domain (SETD) method. The field breakdown threshold of air and argon at different frequency is predicted and compared with the experimental data and there is a good agreement between them for gas microwave breakdown discharge problems. Numerical results demonstrate that the two-layer plasma limiter (plasma-slab-plasma) has better protective characteristics than a one-layer plasma limiter (slab-plasma-slab) with the same length of gas chamber.

  3. Diagnostics of the loss of stability of loaded constructions and the development of the sites of breakdown during the action of seismic explosion and air shock waves

    NASA Astrophysics Data System (ADS)

    Makhmudov, Kh. F.; Menzhulin, M. G.; Zakharyan, M. V.; Sultonov, U.; Abdurakhmanov, Z. M.

    2015-11-01

    One of the challenging problems for mining enterprises, namely, predicting the decrease in the strength of the structure elements in guarded buildings and constructions during blasting, is solved in terms of a stress concentration factor, the time of exceeding the long-term tensile strength, and the crack growth rate. It is shown that the existence of stress concentrators in the form of natural heterogeneities or defects in the building materials of the building elements subjected to the action of seismic explosion and air shock waves results in crack growth. The distribution of cracks in samples of some materials and the ultimate tensile strength of these materials are determined to find the surface energy. The size distribution of cracks is used to calculate the effective crack length.

  4. Fully kinetic model of breakdown during sheath expansion after interruption of vacuum arcs

    NASA Astrophysics Data System (ADS)

    Wang, Zhenxing; Wang, Haoran; Zhou, Zhipeng; Tian, Yunbo; Geng, Yingsan; Wang, Jianhua; Liu, Zhiyuan

    2016-08-01

    Research on sheath expansion is critical to the understanding of the dielectric recovery process in a vacuum interrupter after interruption of vacuum arcs. In this paper, we investigated how residual plasma affects breakdown in the sheath expansion period after the current zero. To simulate sheath expansion and breakdown, we developed a fully kinetic particle-in-cell Monte Carlo collision model with one spatial dimension and three velocity dimensions. The model accounted for various collisions, including ionization, excitation, elastic collisions, charge exchange, and momentum exchange, and we added an external circuit to the model to make the calculations self-consistent. The existence of metal vapor slowed the sheath expansion in the gap and caused high electric field formation in front of the cathode surface. The initial residual plasma, which was at sufficiently low density, seemed to have a limited impact on breakdown, and the metal vapor dominated the breakdown in this case. Additionally, the breakdown probability was sensitive to the initial plasma density if the value exceeded a specific threshold, and plasma at sufficiently high density could mean that breakdown would occur more easily. We found that if the simulation does not take the residual plasma into account, it could overestimate the critical value of the metal vapor density, which is always used to describe the boundary of breakdown after interruption of vacuum arcs. We discussed the breakdown mechanism in sheath expansion, and the breakdown is determined by a combination of metal vapor, residual plasma, and the electric field in front of the cathode surface.

  5. Laser prepulse induced plasma channel formation in air and relativistic self focusing of an intense short pulse

    SciTech Connect

    Kumar, Ashok; Dahiya, Deepak; Sharma, A. K.

    2011-02-15

    An analytical formalism is developed and particle-in-cell simulations are carried out to study plasma channel formation in air by a two pulse technique and subsequent relativistic self focusing of the third intense laser through it. The first prepulse causes tunnel ionization of air. The second pulse heats the plasma electrons and establishes a prolonged channel. The third pulse focuses under the combined effect of density nonuniformity of the channel and relativistic mass nonlinearity. A channel with 20% density variation over the spot size of the third pulse is seen to strongly influence relativistic self focusing at normalized laser amplitude {approx}0.4-1. In deeper plasma channels, self focusing is less sensitive to laser amplitude variation. These results are reproduced in particle-in-cell simulations. The present treatment is valid for millimeter range plasma channels.

  6. Beauty in the Breakdown

    ERIC Educational Resources Information Center

    Brisco, Nicole

    2008-01-01

    Most human beings look at erosion as the destruction of a surface, but artists can see that erosion often creates indefinable beauty. Where do you see beauty in the breakdown? In this article, the author presents an innovative lesson that would allow students to observe both human and physical nature. In this activity students will create a work…

  7. Measuring Breakdown Voltage.

    ERIC Educational Resources Information Center

    Auer, Herbert J.

    1978-01-01

    The article discusses an aspect of conductivity, one of the electrical properties subdivisions, and describes a tester that can be shop-built. Breakdown voltage of an insulation material is specifically examined. Test procedures, parts lists, diagrams, and test data form are included. (MF)

  8. Nanosecond-gated laser induced breakdown spectroscopy in hydrocarbon mixtures

    NASA Astrophysics Data System (ADS)

    Kobayashi, Kazunobu; Bak, Moon Soo; Tanaka, Hiroki; Do, Hyungrok

    2015-09-01

    Nanosecond-gated laser induced breakdown spectroscopy have been carried out in four different hydrocarbon gas mixtures (CH4/CO2/O2/N2, C2H4/O2/N2, C3H8/CO2/O2/N2 and C4H10/CO2/O2/N2) to investigate the effect of gas species on the laser induced breakdown kinetics and resulting the plasma emission. For this purpose, each mixture that consists of different species has the same atom composition. It is found that the temporal emission spectra and the decay rates of atomic line-intensities are almost identical for the breakdowns in the four different mixtures. This finding may indicate that the breakdown plasmas of these mixtures reach a similar thermodynamic and physiochemical state after its formation, resulting in a similar trend of quenching of excited species.

  9. Removal of volatile organic compounds from air streams by making use of a microwave plasma burner with reverse vortex flows

    NASA Astrophysics Data System (ADS)

    Kim, Ji H.; Ma, Suk H.; Cho, Chang H.; Hong, Yong C.; Ahn, Jae Y.

    2014-01-01

    We developed an atmospheric-pressure microwave plasma burner for removing volatile organic compounds (VOCs) from polluted air streams. This study focused on the destruction of the VOCs in the high flow rate polluted streams required for industrial use. Plasma flames were sustained by injecting liquefied natural gas (LNG), which is composed of CH4, into the microwave plasma torch. With its high temperature and high density of atomic oxygen, the microwave torch attained nearly complete combustion of LNG, thereby providing a large-volume, high-temperature plasma flame. The plasma flame was applied to reactors in which the polluted streams were in one of two vortex flows: a conventional vortex reactor (CVR) or a reverse vortex reactor (RVR). The RVR, using a plasma power of 2 kW and an LNG flow of 20 liters per minute achieved a destruction removal efficiency (DRE) of 98% for an air flow rate of 5 Nm3/min polluted with 550 pm of VOCs.. For the same experimental parameters, the CVR provided a DRE of 90.2%. We expect that this decontamination system will prove effective in purifying contaminated air at high flow rates.

  10. Breakdown voltage of metal-oxide resistors in liquid argon

    SciTech Connect

    Bagby, L. F.; Gollapinni, S.; James, C. C.; Jones, B. J.P.; Jostlein, H.; Lockwitz, S.; Naples, D.; Raaf, J. L.; Rameika, R.; Schukraft, A.; Strauss, T.; Weber, M. S.; Wolbers, S. A.

    2014-11-07

    We characterized a sample of metal-oxide resistors and measured their breakdown voltage in liquid argon by applying high voltage (HV) pulses over a 3 second period. This test mimics the situation in a HV-divider chain when a breakdown occurs and the voltage across resistors rapidly rise from the static value to much higher values. All resistors had higher breakdown voltages in liquid argon than their vendor ratings in air at room temperature. Failure modes range from full destruction to coating damage. In cases where breakdown was not catastrophic, subsequent breakdown voltages were lower in subsequent measuring runs. One resistor type withstands 131 kV pulses, the limit of the test setup.

  11. Comparisons of Force Measurement Methods for DBD Plasma Actuators in Quiescent Air

    NASA Technical Reports Server (NTRS)

    Hoskinson, Alan R.; Hershkowitz, Noah; Ashpis, David E.

    2009-01-01

    We have performed measurements of the force induced by both single (one electrode insulated) and double (both electrodes insulated) dielectric barrier discharge plasma actuators in quiescent air. We have shown that, for single barrier actuators with cylindrical exposed electrodes, as the electrode diameter decrease the force efficiencies increase much faster than a previously reported linear trend. This behavior has been experimentally verified using two different measurement techniques: stagnation probe measurements of the induced flow velocity and direct measurement of the force using an electronic balance. Actuators with rectangular cross-section exposed electrodes do not show the same rapid increase at small thicknesses. We have also shown that the induced force is independent of the material used for the exposed electrode. The same techniques have shown that the induced force of a double barrier actuator increases with decreasing narrow electrode diameter.

  12. Force Measurements of Single and Double Barrier DBD Plasma Actuators in Quiescent Air

    NASA Technical Reports Server (NTRS)

    Hoskinson, Alan R.; Hershkowitz, Noah; Ashpis, David E.

    2008-01-01

    We have performed measurements of the force induced by both single (one electrode insulated) and double (both electrodes insulated) dielectric barrier discharge plasma actuators in quiescent air. We have shown that, for single barrier actuators, as the electrode diameter decreased below those values previously studied the induced Force increases exponentially rather than linearly. This behavior has been experimentally verified using two different measurement techniques: stagnation probe measurements of the induced flow velocity and direct measurement of the force using an electronic balance. In addition, we have shown the the induced force is independent of the material used for the exposed electrode. The same techniques have shown that the induced force of a double barrier actuator increases with decreasing narrow electrode diameter.

  13. Electromagnetic wave attenuation measurements in a ring-shaped inductively coupled air plasma

    SciTech Connect

    Xiaolong, Wei; Haojun, Xu; Min, Lin; Chen, Su; Jianhai, Li

    2015-05-28

    An aerocraft with the surface, inlet and radome covered large-area inductive coupled plasma (ICP) can attenuate its radar echo effectively. The shape, thickness, and electron density (N{sub e}) distribution of ICP are critical to electromagnetic wave attenuation. In the paper, an air all-quartz ICP generator in size of 20 × 20 × 7 cm{sup 3} without magnetic confinement is designed. The discharge results show that the ICP is amorphous in E-mode and ring-shaped in H-mode. The structure of ICP stratifies into core region and edge halo in H-mode, and its width and thickness changes from power and pressure. Such phenomena are explained by the distribution of RF magnetic field, the diffusion of negative ions plasma and the variation of skin depth. In addition, the theoretical analysis shows that the N{sub e} achieves nearly uniform within the electronegative core and sharply steepens in the edge. The N{sub e} of core region is diagnosed by microwave interferometer under varied conditions (pressure in range of 10–50 Pa, power in 300–700 W). Furthermore, the electromagnetic wave attenuation measurements were carried out with the air ICP in the frequencies of 4–5 GHz. The results show that the interspaced ICP is still effective to wave attenuation, and the wave attenuation increases with the power and pressure. The measured attenuation is approximately in accordance with the calculation data of finite-different time-domain simulations.

  14. Microwave air plasmas in capillaries at low pressure II. Experimental investigation

    NASA Astrophysics Data System (ADS)

    Stancu, G. D.; Leroy, O.; Coche, P.; Gadonna, K.; Guerra, V.; Minea, T.; Alves, L. L.

    2016-11-01

    This work presents an experimental study of microwave (2.45 GHz excitation frequency) micro-plasmas, generated in dry air (N2 80%: O2 20%) within a small radius silica capillary (345 µm inner radius) at low pressure (300 Pa) and low powers (80–130 W). Experimental diagnostics are performed using optical emission spectroscopy calibrated in absolute intensity. Axial-resolved measurements (50 µm spatial resolution) of atomic transitions N(3p4S)  →  N(3s4P) O(3p5P)  →  O(3s5S) and molecular transitions N2(C,v‧)  →  N2(B,v″) \\text{N}2+ (B,v‧)  →  \\text{N}2+ (X,v″) allow us to obtain, as a function of the coupled power, the absolute densities of N(3p4S), O(3p5P), N2(C), N2(B) and \\text{N}2+ (B), as well as the gas (rotational) temperature (700–1000 K), the vibrational temperature of N2(C,v) (7000–10 000 K) and the excitation temperatures of N2(C) and N2(B) (11 000 K). The analysis of the H β line-width gives an upper limiting value of 1013 cm‑3 for the electron density; its axial variation (4  ×  1011–6  ×  1012 cm‑3) being estimated by solving the wave electrodynamics equations for the present geometry, plasma length and electron–neutral collision frequency. The experimental results were compared with the results from a 0D model, presented in companion paper I [1], which couples the system of rate balance equations for the dominant neutral and charged plasma species to the homogeneous two-term electron Boltzmann equation, taking the measured gas temperature and the estimated electron density as input parameters. Good qualitative agreement is found between the measurements and calculations of the local species densities for various powers and axial positions. The dissociation degree of oxygen is found above 10%. Moreover, both the measurements and calculations show evidence of the non-equilibrium behavior of low-temperature plasmas, with vibrational and excitation

  15. Microwave plasma jet assisted combustion of premixed methane-air: Roles of OH(A) and OH(X) radicals

    NASA Astrophysics Data System (ADS)

    Wang, Chuji; Wu, Wei

    2013-09-01

    Plasma assisted combustion (PAC) technology can enhance combustion performance by pre-heating combustion fuels, shortening ignition delay time, enhancing flame holding, or increasing flame volume and flame speed. PAC can also increase fuel efficiency by extending fuel lean flammability limit (LFL) and help reduce combustion pollutant emissions. Experiment results have shown that microwave plasma could modify flame structure, increase flame volume, flame speed, flame temperature, and flame stability, and could also extend the fuel lean flammability limit. We report on a novel microwave PAC system that allows us to study PAC using complicated yet well-controlled combinations of operating parameters, such as fuel equivalence ratio (φ) , fuel mixture flow rate, plasma gas flow rate, plasma gases, plasma jet configurations, symmetric or asymmetric fuel-oxidant injection patterns, etc. We have investigated the roles of the stated-resolved OH(A, X) radicals in plasma assisted ignition and combustion of premixed methane-air fuel mixtures. Results suggest that that both the electronically excited state OH(A) and the electronic ground state OH(X) enhance the methane-air ignition process, i.e. extending the fuel LFL, but the flame stabilization and flame holding is primarily determined by the electronic ground state OH(X) as compared to the role of the OH(A). E-mail: cw175@msstate.edu. Supported by National Science Foundation through the grant of ``A quantitative survey of combustion intermediates toward understanding of plasma-assisted combustion mechanism'' (CBET-1066486).

  16. Study on structural, morphological and thermal properties of surface modified polyvinylchloride (PVC) film under air, argon and oxygen discharge plasma

    NASA Astrophysics Data System (ADS)

    Suganya, Arjunan; Shanmugavelayutham, Gurusamy; Serra Rodríguez, Carmen

    2016-09-01

    The effect of air, argon, oxygen DC glow discharge plasma on the polyvinylchloride (PVC) film synthesized by solution casting technique, were evaluated via changes in physio-chemical properties such as structural, morphological, crystalline, thermal properties. The PVC film was plasma treated as a function of exposure time and different plasma forming gases, while other operating parameters such as power and pressure remained constant at 100 W and 2 Pa respectively. The plasma treated PVC were characterized by static contact angle, ATR-FTIR, XPS, AFM and T-peel analysis. It was found that various gaseous plasma treatments have improved the polar components, surface roughness on the surface of PVC which was confirmed by XPS, AFM, resulting in highly enhanced wettability and adhesion. X-ray diffraction study showed that plasma treatment does not persuade considerable change, even though it vaguely induces the crystallinity. The thermal properties of plasma treated PVC were evaluated by Differential Scanning Calorimetry and it was observed that O2 plasma treatment gives higher glass transition temperature of 87.21 °C compared with the untreated one. The glass transition temperature slightly increased for Oxygen plasma treated material due to the presence of higher concentration of the polar functional groups on the PVC surface due to strong intramolecular bonding.

  17. Phenol production in benzene/air plasmas at atmospheric pressure. Role of radical and ionic routes.

    PubMed

    Ascenzi, Daniela; Franceschi, Pietro; Guella, Graziano; Tosi, Paolo

    2006-06-29

    Benzene can be efficiently converted into phenol when it is treated by either corona or dielectric barrier discharge (DBD) plasmas operating at atmospheric pressure in air or mixtures of N(2) and O(2). Phenol produced by corona discharge in an atmospheric pressure chemical ionization source (APCI) has been detected as the corresponding radical cation C(6)H(5)OH(+*) at m/z 94 by an ion trap mass spectrometer. On the other hand, phenol has been observed also as neutral product by gas chromatography-mass spectrometry analysis (GC-MS) after treatment in a DBD plasma. Experiments aimed at shading light on the elementary processes responsible for benzene oxidation were carried out (i) by changing the composition of the gas in the corona discharge source; (ii) by using isotopically labeled reagents; and (iii) by investigating some relevant ion-molecule reactions (i.e. C(6)H(6)(+*) + O(2), C(6)H(5)(+) + O(2)) via selected guided ion beam measurements and with the help of ab initio calculations. The results of our approach show that ionic mechanisms do not play a significant role in phenol production, which can be better explained by radical reactions resulting in oxygen addition to the benzene ring followed by 1,2 H transfer.

  18. Production of geopolymers using glass produced from DC plasma treatment of air pollution control (APC) residues.

    PubMed

    Kourti, Ioanna; Rani, D Amutha; Deegan, D; Boccaccini, A R; Cheeseman, C R

    2010-04-15

    Air pollution control (APC) residues are the hazardous waste produced from cleaning gaseous emissions at energy-from-waste (EfW) facilities processing municipal solid waste (MSW). APC residues have been blended with glass-forming additives and treated using DC plasma technology to produce a high calcium alumino-silicate glass. This research has investigated the optimisation and properties of geopolymers prepared from this glass. Work has shown that high strength geopolymers can be formed and that the NaOH concentration of the activating solution significantly affects the properties. The broad particle size distribution of the APC residue glass used in these experiments results in a microstructure that contains unreacted glass particles included within a geopolymer binder phase. The high calcium content of APC residues may cause the formation of some amorphous calcium silicate hydrate (C-S-H) gel. A mix prepared with S/L=3.4, Si/Al=2.6 and [NaOH]=6M in the activating solution, produced high strength geopolymers with compressive strengths of approximately 130 MPa. This material had high density (2070 kg/m(3)) and low porosity. The research demonstrates for the first time that glass derived from DC plasma treatment of APC residues can be used to form high strength geopolymer-glass composites that have potential for use in a range of applications.

  19. The behavior of high-purity, low-density air plasma sprayed thermal barrier coatings

    SciTech Connect

    Helminiak, Yanar NM

    2009-12-01

    Research on the behavior of high-purity, low-density (85%) air plasma sprayed (APS) thermal barrier coatings (TBC) with NiCoCrAlY bond coats deposited by argon-shrouded plasma spraying is described. The microstructure of the APS topcoats is one variable in this study intended to maximize the coating thicknesses that can be applied without spallation and to minimize the thermal conduction through the YSZ layer. The specimens were evaluated using cyclic oxidation tests and important properties of the TBCs, such as resistance to sintering and phase transformation, were determined. The high purity resulted in top coats which are highly resistant to sintering and transformation from the metastable tetragonal phase to the equilibrium mixture of monoclinic and cubic phases. The porous topcoat microstructure also resulted in significant durability during thermal cycling. The actual failure mechanisms of the APS coatings were found to depend on topcoat thickness, CTE of the superalloy substrate and the nature of the thermal exposure.

  20. Microwave air plasmas in capillaries at low pressure I. Self-consistent modeling

    NASA Astrophysics Data System (ADS)

    Coche, P.; Guerra, V.; Alves, L. L.

    2016-06-01

    This work presents the self-consistent modeling of micro-plasmas generated in dry air using microwaves (2.45 GHz excitation frequency), within capillaries (<1 mm inner radius) at low pressure (300 Pa). The model couples the system of rate balance equations for the most relevant neutral and charged species of the plasma to the homogeneous electron Boltzmann equation. The maintenance electric field is self-consistently calculated adopting a transport theory for low to intermediate pressures, taking into account the presence of O- ions in addition to several positive ions, the dominant species being O{}2+ , NO+ and O+ . The low-pressure small-radius conditions considered yield very-intense reduced electric fields (˜600-1500 Td), coherent with species losses controlled by transport and wall recombination, and kinetic mechanisms strongly dependent on electron-impact collisions. The charged-particle transport losses are strongly influenced by the presence of the negative ion, despite its low-density (˜10% of the electron density). For electron densities in the range (1-≤ft. 4\\right)× {{10}12} cm-3, the system exhibits high dissociation degrees for O2 (˜20-70%, depending on the working conditions, in contrast with the  ˜0.1% dissociation obtained for N2), a high concentration of O2(a) (˜1014 cm-3) and NO(X) (5× {{10}14} cm-3) and low ozone production (<{{10}-3}% ).

  1. Plasma decay in the afterglow of a high-voltage nanosecond discharge in air

    SciTech Connect

    Aleksandrov, N. L.; Anokhin, E. M.; Kindysheva, S. V.; Kirpichnikov, A. A.; Kosarev, I. N.; Nudnova, M. M.; Starikovskaya, S. M.; Starikovskii, A. Yu.

    2012-02-15

    The decay of air plasma produced by a high-voltage nanosecond discharge at room temperature and gas pressures in the range of 1-10 Torr was studied experimentally and theoretically. The time dependence of the electron density was measured with a microwave interferometer. The initial electron density was about 10{sup 12} cm{sup -3}. The discharge homogeneity was monitored using optical methods. The dynamics of the charged particle densities in the discharge afterglow was simulated by numerically solving the balance equations for electron and ions and the equation for the electron temperature. It was shown that, under these experimental conditions, plasma electrons are mainly lost due to dissociative and three-body recombination with ions. Agreement between the measured and calculated electron densities was achieved only when the rate constant of the three-body electron-ion recombination was increased by one order of magnitude and the temperature dependence of this rate constant was modified. This indicates that the mechanism for three-body recombination of molecular ions differs from that of the well-studied mechanism of atomic ion recombination.

  2. An investigation of particle trajectories and melting in an air plasma sprayed zirconia

    SciTech Connect

    Neiser, R.A.; Roemer, T.J.

    1996-12-31

    The partially stabilized zirconia powders used to plasma spray thermal barrier coatings typically exhibit broad particle-size distributions. There are conflicting reports in the literature about the extent of injection-induced particle-sizing effects in air plasma-sprayed materials. If significant spatial separation of finer and coarser particles in the jet occurs, then one would expect it to play an important role in determining the microstructure and properties of deposits made from powders containing a wide range of particle sizes. This paper presents the results of a study in which a commercially available zirconia powder was fractionated into fine, medium, and coarse cuts and sprayed at the same torch conditions used for the ensemble powder. Diagnostic measurements of particle surface temperature, velocity, and number-density distributions in the plume for each size-cut and for the ensemble powder are reported. Deposits produced by traversing the torch back and forth to produce a raised bead were examined metallographically to study their shape and location with respect to the torch centerline and to look at their internal microstructure. The results show that, for the torch conditions used in this study, the fine, medium, and coarse size-cuts all followed the same mean trajectory. No measureable particle segregation effects were observed. Considerable differences in coatings microstructure were observed. These differences can be explained by the different particle properties measured in the plume.

  3. Properties of sintered glass-ceramics prepared from plasma vitrified air pollution control residues.

    PubMed

    Roether, J A; Daniel, D J; Rani, D Amutha; Deegan, D E; Cheeseman, C R; Boccaccini, A R

    2010-01-15

    Air pollution control (APC) residues, obtained from a major UK energy from waste (EfW) plant, processing municipal solid waste, have been blended with silica and alumina and melted using DC plasma arc technology. The glass produced was crushed, milled, uni-axially pressed and sintered at temperatures between 750 and 1150 degrees C, and the glass-ceramics formed were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Mechanical properties assessed included Vickers's hardness, flexural strength, Young's modulus and thermal shock resistance. The optimum sintering temperature was found to be 950 degrees C. This produced a glass-ceramic with high density (approximately 2.58 g/cm(3)), minimum water absorption (approximately 2%) and relatively high mechanical strength (approximately 81+/-4 MPa). Thermal shock testing showed that 950 degrees C sintered samples could withstand a 700 degrees C quench in water without micro-cracking. The research demonstrates that glass-ceramics can be readily formed from DC plasma treated APC residues and that these have comparable properties to marble and porcelain. This novel approach represents a technically and commercially viable treatment option for APC residues that allow the beneficial reuse of this problematic waste.

  4. Treatment of airborne asbestos and asbestos-like microfiber particles using atmospheric microwave air plasma.

    PubMed

    Averroes, A; Sekiguchi, H; Sakamoto, K

    2011-11-15

    Atmospheric microwave air plasma was used to treat asbestos-like microfiber particles that had two types of ceramic fiber and one type of stainless fiber. The treated particles were characterized via scanning electron microscopy (SEM) and X-ray diffraction (XRD). The experiment results showed that one type of ceramic fiber (Alumina:Silica=1:1) and the stainless fiber were spheroidized, but the other type of ceramic fiber (Alumina:Silica=7:3) was not. The conversion of the fibers was investigated by calculating the equivalent diameter, the aspect ratio, and the fiber content ratio. The fiber content ratio in various conditions showed values near zero. The relationship between the normalized fiber vanishing rate and the energy needed to melt the particles completely per unit surface area of projected particles, which is defined as η, was examined and seen to indicate that the normalized fiber vanishing rate decreased rapidly with the increase in η. Finally, some preliminary experiments for pure asbestos were conducted, and the analysis via XRD and phase-contrast microscopy (PCM) showed the availability of the plasma treatment. PMID:21962864

  5. Fabrication and Characterization of Amorphous Alumina-Yttria-Stabilized Zirconia Coatings by Air Plasma Spraying

    NASA Astrophysics Data System (ADS)

    Song, Xuemei; Suhonen, Tomi; Varis, Tommi; Huang, Liping; Zheng, Xuebin; Zeng, Yi

    2014-12-01

    Almost fully amorphous coatings of near-eutectic alumina-yttria-stabilized zirconia (Al2O3-YSZ) were prepared by air plasma spraying using Al2O3 and 8 mol.% YSZ crystalline-mixed powders. The coatings consist of mostly an amorphous phase with a small amount of nanocrystals. Various characterization techniques were used to understand coating formation and the origins of the different phases within the coatings. The formation of the mostly amorphous structure is attributed to the high glass-forming ability of Al2O3-YSZ and the appropriate plasma spraying conditions. A small number of nanocrystals are produced during crystallization of the incoming molten droplets or by recrystallization of the solidified splats by accumulated heat. Scanning electron microscopy shows that the coatings have a dense, layered structure with low porosity, and bright-field transmission electron microscopy images indicate sharp interface rather than grit-blasted wavy surface between splats and substrates in the coatings. The as-sprayed amorphous coatings crystallized at around 920 °C and micro-hardness of the as-sprayed amorphous coatings was 8.12 GPa.

  6. Studies on gas breakdown in pulsed radio frequency atmospheric pressure glow discharges

    SciTech Connect

    Huo, W. G.; Jian, S. J.; Yao, J.; Ding, Z. F.

    2014-05-15

    In pulsed RF atmospheric pressure glow discharges, the gas breakdown judged by the rapid drop in the amplitude of the pulsed RF voltage is no longer universally true. The steep increment of the plasma-absorbed RF power is proposed to determine the gas breakdown. The averaged plasma-absorbed RF power over a pulse period is used to evaluate effects of the preceding pulsed RF discharge on the breakdown voltage of the following one, finding that the breakdown voltage decreases with the increment in the averaged plasma-absorbed RF power under constant pulse duty ratio. Effects of the pulse off-time on the breakdown voltage and the breakdown delay time are also studied. The obtained dependence of the breakdown voltage on the pulse off-time is indicative of the transitional plasma diffusion processes in the afterglow. The breakdown voltage varies rapidly as the plasma diffuses fast in the region of moderate pulse off-time. The contribution of nitrogen atom recombination at the alumina surface is demonstrated in the prolonged memory effect on the breakdown delay time vs. the pulse off-time and experimentally validated by introducing a trace amount of nitrogen into argon at short and long pulse off-times.

  7. Microwave plasma source operating with atmospheric pressure air-water mixtures

    NASA Astrophysics Data System (ADS)

    Tatarova, E.; Henriques, J. P.; Felizardo, E.; Lino da Silva, M.; Ferreira, C. M.; Gordiets, B.

    2012-11-01

    The overall performance of a surface wave driven air-water plasma source operating at atmospheric pressure and 2.45 GHz has been analyzed. A 1D model previously developed has been improved in order to describe in detail the creation and loss processes of active species of interest. This model provides a complete characterization of the axial structure of the source, including the discharge and the afterglow zones. The main electron creation channel was found to be the associative ionization process N + O → NO+ + e. The NO(X) relative density in the afterglow plasma jet ranges from 1.2% to 1.6% depending on power and water percentage, according to the model predictions and the measurements. Other types of species such as NO2 and nitrous acid HNO2 have also been detected by mass and Fourier Transform Infrared spectroscopy. The relative population density of O(3P) ground state atoms increases from 8% to 10% in the discharge zone when the input microwave power increases from 200 to 400 W and the water percentage from 1% to 10%. Furthermore, high densities of O2(a1Δg) singlet delta oxygen molecules and OH radicals (1% and 5%, respectively) can be achieved in the discharge zone. In the late afterglow the O2(a1Δg) density is about 0.1% of the total density. This plasma source has a flexible operation and potential for channeling the energy in ways that maximize the density of active species of interest.

  8. Large-area imager of hydrogen leaks in fuel cells using laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Hori, M.; Hayano, R. S.; Fukuta, M.; Koyama, T.; Nobusue, H.; Tanaka, J.

    2009-10-01

    We constructed a simple device, which utilized laser-induced breakdown spectroscopy to image H2 gas leaking from the surfaces of hydrogen fuel cells to ambient air. Nanosecond laser pulses of wavelength λ =532 nm emitted from a neodymium-doped yttrium aluminum garnet laser were first compressed to a pulse length Δt <1 ns using a stimulated Brillouin backscattering cell. Relay-imaging optics then focused this beam onto the H2 leak and initiated the breakdown plasma. The Balmer-alpha (H-α) emission that emerged from this was collected with a 2-m-long macrolens assembly with a 90-mm-diameter image area, which covered a solid angle of ˜1×10-3π steradians seen from the plasma. The H-α light was isolated by two 100-mm-diameter interference filters with a 2 nm bandpass, and imaged by a thermoelectrically cooled charge-coupled device camera. By scanning the position of the laser focus, the spatial distribution of H2 gas over a 90-mm-diameter area was photographed with a spatial resolution of ≤5 mm. Photoionization of the water vapor in the air caused a strong H-α background. By using pure N2 as a buffer gas, H2 leaks with rates of <1 cc/min were imaged. We also studied the possibilities of detecting He, Ne, or Xe gas leaks.

  9. Experimental Study on Electrical Breakdown for Devices with Micrometer Gaps

    NASA Astrophysics Data System (ADS)

    Meng, Guodong; Cheng, Yonghong; Dong, Chengye; Wu, Kai

    2014-12-01

    The understanding of electrical breakdown in atmospheric air across micrometer gaps is critically important for the insulation design of micro & nano electronic devices. In this paper, planar aluminum electrodes with gaps ranging from 2 μm to 40 μm were fabricated by microelectromechanical system technology. The influence factors including gap width and surface dielectric states were experimentally investigated using the home-built test and measurement system. Results showed that for SiO2 layers the current sustained at 2-3 nA during most of the pre-breakdown period, and then rose rapidly to 10-30 nA just before breakdown due to field electron emission, followed by the breakdown. The breakdown voltage curves demonstrated three stages: (1) a constantly decreasing region (the gap width d < 5 μm), where the field emission effect played an important role just near breakdown, supplying enough initial electrons for the breakdown process; (2) a plateau region with a near constant breakdown potential (5 μm < d < 10 μm) (3) a region for large gaps that adhered to Paschen's curve (d > 10 μm). And the surface dielectric states including the surface resistivity and secondary electron yield were verified to be related to the propagation of discharge due to the interaction between initial electrons and dielectrics.

  10. Cold-air atmospheric pressure plasma against Clostridium difficile spores: a potential alternative for the decontamination of hospital inanimate surfaces.

    PubMed

    Claro, Tânia; Cahill, Orla J; O'Connor, Niall; Daniels, Stephen; Humphreys, Hilary

    2015-06-01

    Clostridium difficile spores survive for months on environmental surfaces and are highly resistant to decontamination. We evaluated the effect of cold-air plasma against C. difficile spores. The single-jet had no effect while the multi-jet achieved 2-3 log10 reductions in spore counts and may augment traditional decontamination.

  11. Optical emission spectroscopy characterizations of micro-air plasma used for simulation of cell membrane poration

    NASA Astrophysics Data System (ADS)

    Zerrouki, A.; Motomura, H.; Ikeda, Y.; Jinno, M.; Yousfi, M.

    2016-07-01

    A micro-air corona discharge, which is one of the plasmas successfully used for gene transfection in terms of high transfection and cell viability rates, is characterized by optical emission spectroscopy. This non-equilibrium low temperature plasma is generated from the tip of a pulsed high voltage micro-tube (0.2 mm inner diameter and 0.7 mm for outer diameter) placed 2 mm in front of a petri dish containing deionized water and set on a grounded copper plate. The electron temperature, equal to about 6.75 eV near the electrode tip and decreased down to 3.4 eV near the plate, has been estimated, with an error bar of about 30%, from an interesting approach based on the experimental ratio of the closest nitrogen emission spectra of \\text{N}2+ (FNS) at 391.4 nm and N2(SPS) at 394.3 nm. This is based on one hand on a balance equation between creations and losses of the excited upper levels of these two UV spectra and on the other hand on the electron impact rates of the creation of these upper levels calculated from solution of the multi-term Boltzmann equation. Then using the measured Hα spectrum, electron density n e has been estimated from Stark broadening versus the inter-electrode position with an average error bar of about 50%. n e  ≈  1  ×  1015 cm-3 is near the tip coherent with the usual magnitude of electron density in the streamer head developed near the tip of the corona discharges. Rotational temperatures, estimated from comparison of synthetic and experimental spectra of OH(A  -  X), \\text{N}2+ (FNS) at 391.4 nm, and N2(SPS) at 337 nm are respectively equal to 2350 K, 2000 K and 700 K in the gap space. This clearly underlines a thermal non-equilibrium of the corresponding excited species generated inside the thin streamer filaments. But, due to the high dilution of these species in the background gas, these high rotational temperatures do not affect the mean gas temperature that remains close to 300

  12. Optical emission spectroscopy characterizations of micro-air plasma used for simulation of cell membrane poration

    NASA Astrophysics Data System (ADS)

    Zerrouki, A.; Motomura, H.; Ikeda, Y.; Jinno, M.; Yousfi, M.

    2016-07-01

    A micro-air corona discharge, which is one of the plasmas successfully used for gene transfection in terms of high transfection and cell viability rates, is characterized by optical emission spectroscopy. This non-equilibrium low temperature plasma is generated from the tip of a pulsed high voltage micro-tube (0.2 mm inner diameter and 0.7 mm for outer diameter) placed 2 mm in front of a petri dish containing deionized water and set on a grounded copper plate. The electron temperature, equal to about 6.75 eV near the electrode tip and decreased down to 3.4 eV near the plate, has been estimated, with an error bar of about 30%, from an interesting approach based on the experimental ratio of the closest nitrogen emission spectra of \\text{N}2+ (FNS) at 391.4 nm and N2(SPS) at 394.3 nm. This is based on one hand on a balance equation between creations and losses of the excited upper levels of these two UV spectra and on the other hand on the electron impact rates of the creation of these upper levels calculated from solution of the multi-term Boltzmann equation. Then using the measured Hα spectrum, electron density n e has been estimated from Stark broadening versus the inter-electrode position with an average error bar of about 50%. n e  ≈  1  ×  1015 cm‑3 is near the tip coherent with the usual magnitude of electron density in the streamer head developed near the tip of the corona discharges. Rotational temperatures, estimated from comparison of synthetic and experimental spectra of OH(A  ‑  X), \\text{N}2+ (FNS) at 391.4 nm, and N2(SPS) at 337 nm are respectively equal to 2350 K, 2000 K and 700 K in the gap space. This clearly underlines a thermal non-equilibrium of the corresponding excited species generated inside the thin streamer filaments. But, due to the high dilution of these species in the background gas, these high rotational temperatures do not affect the mean gas temperature that remains close to 300

  13. Space Charge Modulated Electrical Breakdown

    PubMed Central

    Li, Shengtao; Zhu, Yuanwei; Min, Daomin; Chen, George

    2016-01-01

    Electrical breakdown is one of the most important physical phenomena in electrical and electronic engineering. Since the early 20th century, many theories and models of electrical breakdown have been proposed, but the origin of one key issue, that the explanation for dc breakdown strength being twice or higher than ac breakdown strength in insulating materials, remains unclear. Here, by employing a bipolar charge transport model, we investigate the space charge dynamics in both dc and ac breakdown processes. We demonstrate the differences in charge accumulations under both dc and ac stresses and estimate the breakdown strength, which is modulated by the electric field distortion induced by space charge. It is concluded that dc breakdown initializes in the bulk whereas ac breakdown initializes in the vicinity of the sample-electrode interface. Compared with dc breakdown, the lower breakdown strength under ac stress and the decreasing breakdown strength with an increase in applied frequency, are both attributed to the electric field distortion induced by space charges located in the vicinity of the electrodes. PMID:27599577

  14. Space Charge Modulated Electrical Breakdown

    NASA Astrophysics Data System (ADS)

    Li, Shengtao; Zhu, Yuanwei; Min, Daomin; Chen, George

    2016-09-01

    Electrical breakdown is one of the most important physical phenomena in electrical and electronic engineering. Since the early 20th century, many theories and models of electrical breakdown have been proposed, but the origin of one key issue, that the explanation for dc breakdown strength being twice or higher than ac breakdown strength in insulating materials, remains unclear. Here, by employing a bipolar charge transport model, we investigate the space charge dynamics in both dc and ac breakdown processes. We demonstrate the differences in charge accumulations under both dc and ac stresses and estimate the breakdown strength, which is modulated by the electric field distortion induced by space charge. It is concluded that dc breakdown initializes in the bulk whereas ac breakdown initializes in the vicinity of the sample-electrode interface. Compared with dc breakdown, the lower breakdown strength under ac stress and the decreasing breakdown strength with an increase in applied frequency, are both attributed to the electric field distortion induced by space charges located in the vicinity of the electrodes.

  15. Space Charge Modulated Electrical Breakdown.

    PubMed

    Li, Shengtao; Zhu, Yuanwei; Min, Daomin; Chen, George

    2016-01-01

    Electrical breakdown is one of the most important physical phenomena in electrical and electronic engineering. Since the early 20(th) century, many theories and models of electrical breakdown have been proposed, but the origin of one key issue, that the explanation for dc breakdown strength being twice or higher than ac breakdown strength in insulating materials, remains unclear. Here, by employing a bipolar charge transport model, we investigate the space charge dynamics in both dc and ac breakdown processes. We demonstrate the differences in charge accumulations under both dc and ac stresses and estimate the breakdown strength, which is modulated by the electric field distortion induced by space charge. It is concluded that dc breakdown initializes in the bulk whereas ac breakdown initializes in the vicinity of the sample-electrode interface. Compared with dc breakdown, the lower breakdown strength under ac stress and the decreasing breakdown strength with an increase in applied frequency, are both attributed to the electric field distortion induced by space charges located in the vicinity of the electrodes. PMID:27599577

  16. Chemical kinetics and relaxation of non-equilibrium air plasma generated by energetic photon and electron beams

    NASA Astrophysics Data System (ADS)

    Maulois, Melissa; Ribière, Maxime; Eichwald, Olivier; Yousfi, Mohammed; Azaïs, Bruno

    2016-04-01

    The comprehension of electromagnetic perturbations of electronic devices, due to air plasma-induced electromagnetic field, requires a thorough study on air plasma. In the aim to understand the phenomena at the origin of the formation of non-equilibrium air plasma, we simulate, using a volume average chemical kinetics model (0D model), the time evolution of a non-equilibrium air plasma generated by an energetic X-ray flash. The simulation is undertaken in synthetic air (80% N2 and 20% O2) at ambient temperature and atmospheric pressure. When the X-ray flash crosses the gas, non-relativistic Compton electrons (low energy) and a relativistic Compton electron beam (high energy) are simultaneously generated and interact with the gas. The considered chemical kinetics scheme involves 26 influent species (electrons, positive ions, negative ions, and neutral atoms and molecules in their ground or metastable excited states) reacting following 164 selected reactions. The kinetics model describing the plasma chemistry was coupled to the conservation equation of the electron mean energy, in order to calculate at each time step of the non-equilibrium plasma evolution, the coefficients of reactions involving electrons while the energy of the heavy species (positive and negative ions and neutral atoms and molecules) is assumed remaining close to ambient temperature. It has been shown that it is the relativistic Compton electron beam directly created by the X-ray flash which is mainly responsible for the non-equilibrium plasma formation. Indeed, the low energy electrons (i.e., the non-relativistic ones) directly ejected from molecules by Compton collisions contribute to less than 1% on the creation of electrons in the plasma. In our simulation conditions, a non-equilibrium plasma with a low electron mean energy close to 1 eV and a concentration of charged species close to 1013 cm-3 is formed a few nanoseconds after the peak of X-ray flash intensity. 200 ns after the flash

  17. Nonequilibrium dynamics of laser-generated plasma channels

    NASA Astrophysics Data System (ADS)

    Petrova, Tz. B.; Ladouceur, H. D.; Baronavski, A. P.

    2008-05-01

    A time-dependent nonequilibrium kinetics model based upon the time-dependent electron Boltzmann equation coupled with an extensive air chemistry model accounting for gas heating and vibrational kinetics is developed. The model is applied to the temporal evolution of femtosecond laser-generated air plasma channels at atmospheric pressure in an external electric field. The plasma channel dynamics depend upon the initial free electron density, the initial electron energy of the plasma, and upon the externally applied electric field strength. The model predicts an electric breakdown field strength of 5-10kV/cm with a delay time of hundreds of nanoseconds when the electron density drops to the optimum value of ˜1012-1013cm-3. The experimentally observed breakdown field is ˜5.7kV/cm with a statistical breakdown delay time of ˜200ns. The reduction in the breakdown field strength in natural air from ˜30to5kV/cm is attributed to a combination of processes such as enhanced ionization due to relaxation of the initial electron energy distribution function toward a Maxwellian distribution, strong electron detachment, and gas heating. The calculated electron density decay of the laser-generated plasma channel in both pure nitrogen and dry air is in good agreement with the NRL experiments. The derived rate constant for recombination in dry air is bBair=3.9×10-8cm3s-1 and in pure nitrogen it is bBN2=4.4×10-8cm3s-1. The attachment rate coefficient in dry air is ηBair=7.5×106s-1.

  18. On the thermodynamic properties of thermal plasma in the flame kernel of hydrocarbon/air premixed gases

    NASA Astrophysics Data System (ADS)

    Askari, Omid; Beretta, Gian Paolo; Eisazadeh-Far, Kian; Metghalchi, Hameed

    2016-07-01

    Thermodynamic properties of hydrocarbon/air plasma mixtures at ultra-high temperatures must be precisely calculated due to important influence on the flame kernel formation and propagation in combusting flows and spark discharge applications. A new algorithm based on the complete chemical equilibrium assumption is developed to calculate the ultra-high temperature plasma composition and thermodynamic properties, including enthalpy, entropy, Gibbs free energy, specific heat at constant pressure, specific heat ratio, speed of sound, mean molar mass, and degree of ionization. The method is applied to compute the thermodynamic properties of H2/air and CH4/air plasma mixtures for different temperatures (1000-100 000 K), different pressures (10-6-100 atm), and different fuel/air equivalence ratios within flammability limit. In calculating the individual thermodynamic properties of the atomic species needed to compute the complete equilibrium composition, the Debye-Huckel cutoff criterion has been used for terminating the series expression of the electronic partition function so as to capture the reduction of the ionization potential due to pressure and the intense connection between the electronic partition function and the thermodynamic properties of the atomic species and the number of energy levels taken into account. Partition functions have been calculated using tabulated data for available atomic energy levels. The Rydberg and Ritz extrapolation and interpolation laws have been used for energy levels which are not observed. The calculated plasma properties are then presented as functions of temperature, pressure and equivalence ratio, in terms of a new set of thermodynamically self-consistent correlations that are shown to provide very accurate fits suitable for efficient use in CFD simulations. Comparisons with existing data for air plasma show excellent agreement.

  19. Taking the Blood Bank to the Field: The Design and Rationale of the Prehospital Air Medical Plasma (PAMPer) Trial.

    PubMed

    Brown, Joshua B; Guyette, Francis X; Neal, Matthew D; Claridge, Jeffrey A; Daley, Brian J; Harbrecht, Brian G; Miller, Richard S; Phelan, Herb A; Adams, Peter W; Early, Barbara J; Peitzman, Andrew B; Billiar, Timothy R; Sperry, Jason L

    2015-01-01

    Hemorrhage and trauma induced coagulopathy remain major drivers of early preventable mortality in military and civilian trauma. Interest in the use of prehospital plasma in hemorrhaging patients as a primary resuscitation agent has grown recently. Trauma center-based damage control resuscitation using early and aggressive plasma transfusion has consistently demonstrated improved outcomes in hemorrhaging patients. Additionally, plasma has been shown to have several favorable immunomodulatory effects. Preliminary evidence with prehospital plasma transfusion has demonstrated feasibility and improved short-term outcomes. Applying state-of-the-art resuscitation strategies to the civilian prehospital arena is compelling. We describe here the rationale, design, and challenges of the Prehospital Air Medical Plasma (PAMPer) trial. The primary objective is to determine the effect of prehospital plasma transfusion during air medical transport on 30-day mortality in patients at risk for traumatic hemorrhage. This study is a multicenter cluster randomized clinical trial. The trial will enroll trauma patients with profound hypotension (SBP ≤ 70 mmHg) or hypotension (SBP 71-90 mmHg) and tachycardia (HR ≥ 108 bpm) from six level I trauma center air medical transport programs. The trial will also explore the effects of prehospital plasma transfusion on the coagulation and inflammatory response following injury. The trial will be conducted under exception for informed consent for emergency research with an investigational new drug approval from the U.S. Food and Drug Administration utilizing a multipronged community consultation process. It is one of three ongoing Department of Defense-funded trials aimed at expanding our understanding of the optimal therapeutic approaches to coagulopathy in the hemorrhaging trauma patient.

  20. Analysis and experimental study on formation conditions of large-scale barrier-free diffuse atmospheric pressure air plasmas in repetitive pulse mode

    SciTech Connect

    Li, Lee Liu, Lun; Liu, Yun-Long; Bin, Yu; Ge, Ya-Feng; Lin, Fo-Chang

    2014-01-14

    Atmospheric air diffuse plasmas have enormous application potential in various fields of science and technology. Without dielectric barrier, generating large-scale air diffuse plasmas is always a challenging issue. This paper discusses and analyses the formation mechanism of cold homogenous plasma. It is proposed that generating stable diffuse atmospheric plasmas in open air should meet the three conditions: high transient power with low average power, excitation in low average E-field with locally high E-field region, and multiple overlapping electron avalanches. Accordingly, an experimental configuration of generating large-scale barrier-free diffuse air plasmas is designed. Based on runaway electron theory, a low duty-ratio, high voltage repetitive nanosecond pulse generator is chosen as a discharge excitation source. Using the wire-electrodes with small curvature radius, the gaps with highly non-uniform E-field are structured. Experimental results show that the volume-scaleable, barrier-free, homogeneous air non-thermal plasmas have been obtained between the gap spacing with the copper-wire electrodes. The area of air cold plasmas has been up to hundreds of square centimeters. The proposed formation conditions of large-scale barrier-free diffuse air plasmas are proved to be reasonable and feasible.

  1. Analysis and experimental study on formation conditions of large-scale barrier-free diffuse atmospheric pressure air plasmas in repetitive pulse mode

    NASA Astrophysics Data System (ADS)

    Li, Lee; Liu, Lun; Liu, Yun-Long; Bin, Yu; Ge, Ya-Feng; Lin, Fo-Chang

    2014-01-01

    Atmospheric air diffuse plasmas have enormous application potential in various fields of science and technology. Without dielectric barrier, generating large-scale air diffuse plasmas is always a challenging issue. This paper discusses and analyses the formation mechanism of cold homogenous plasma. It is proposed that generating stable diffuse atmospheric plasmas in open air should meet the three conditions: high transient power with low average power, excitation in low average E-field with locally high E-field region, and multiple overlapping electron avalanches. Accordingly, an experimental configuration of generating large-scale barrier-free diffuse air plasmas is designed. Based on runaway electron theory, a low duty-ratio, high voltage repetitive nanosecond pulse generator is chosen as a discharge excitation source. Using the wire-electrodes with small curvature radius, the gaps with highly non-uniform E-field are structured. Experimental results show that the volume-scaleable, barrier-free, homogeneous air non-thermal plasmas have been obtained between the gap spacing with the copper-wire electrodes. The area of air cold plasmas has been up to hundreds of square centimeters. The proposed formation conditions of large-scale barrier-free diffuse air plasmas are proved to be reasonable and feasible.

  2. Prevention of breakdown behind railgun projectiles

    DOEpatents

    Hawke, Ronald S.

    1992-01-01

    An electromagnetic railgun accelerator system, for accelerating projectiles (14, 15, 114, 214, 314, 444) by a plasma arc (3), introduces a breakdown inhibiting gas into the railgun chamber (26) behind the accelerating projectile (14). The breakdown inhibiting gas, which absorbs electrons, is a halide or a halide compound such as fluorine or SF.sub.6. The gas is introduced between the railgun rails (12) after the projectile (14) has passed through inlets (16) in the rails (12) or the projectile (114); by coating the rails (12) or the projectile (15) with a material (28) which releases the gas after the projectile (14 ) passes over it; by fabricating the rails (12) or the projectile (15) or insulators out of a material which releases the gas into the portions of the chamber (26) through which the projectile has travelled. The projectile (214, 314, 414) may have a cavity (232, 332, 432) at its rear to control the release of ablation products (4).

  3. Prevention of breakdown behind railgun projectiles

    DOEpatents

    Hawke, Ronald S.

    1992-01-01

    An electromagnetic railgun accelerator system, for accelerating projectiles (14, 15, 114, 214, 314, 414) by a plasma arc (3), introduces a breakdown inhibiting gas into the railgun chamber (26) behind the accelerating projectile (14). The breakdown inhibiting gas, which absorbs electrons, is a halide or a halide compound such as fluorine or SF.sub.6. The gas is introduced between the railgun rails (12) after the projectile (14) has passed through inlets (16) in the rails (12) or the projectile (114); by coating the rails (12) or the projectile (15) with a material (28) which releases the gas after the projectile (14) passes over it; by fabricating the rails (12) or the projectile (15) or insulators out of a material which releases the gas into the portions of the chamber (26) through which the projectile has travelled. The projectile (214, 314, 414) may have a cavity (232, 332, 432) at its rear to control the release of ablation products (4).

  4. Prevention of breakdown behind railgun projectiles

    DOEpatents

    Hawke, R.S.

    1992-09-01

    An electromagnetic railgun accelerator system, for accelerating projectiles by a plasma arc, introduces a breakdown inhibiting gas into the railgun chamber behind the accelerating projectile. The breakdown inhibiting gas, which absorbs electrons, is a halide or a halide compound such as fluorine or SF[sub 6]. The gas is introduced between the railgun rails after the projectile has passed through inlets in the rails or the projectile; by coating the rails or the projectile with a material which releases the gas after the projectile passes over it; by fabricating the rails or the projectile or insulators out of a material which releases the gas into the portions of the chamber through which the projectile has travelled. The projectile may have a cavity at its rear to control the release of ablation products. 12 figs.

  5. Prevention of breakdown behind railgun projectiles

    DOEpatents

    Hawke, R.S.

    1992-10-13

    An electromagnetic railgun accelerator system, for accelerating projectiles by a plasma arc, introduces a breakdown inhibiting gas into the railgun chamber behind the accelerating projectile. The breakdown inhibiting gas, which absorbs electrons, is a halide or a halide compound such as fluorine or SF[sub 6]. The gas is introduced between the railgun rails after the projectile has passed through inlets in the rails or the projectile; by coating the rails or the projectile with a material which releases the gas after the projectile passes over it; by fabricating the rails or the projectile or insulators out of a material which releases the gas into the portions of the chamber through which the projectile has travelled. The projectile may have a cavity at its rear to control the release of ablation products. 12 figs.

  6. Inhibitory effect of silver nanoparticles mediated by atmospheric pressure air cold plasma jet against dermatophyte fungi.

    PubMed

    Ouf, Salama A; El-Adly, Amira A; Mohamed, Abdel-Aleam H

    2015-10-01

    In an in vitro study with five clinical isolates of dermatophytes, the MIC(50) and MIC(100) values of silver nanoparticles (AgNPs) ranged from 5 to 16 and from 15 to 32 μg ml(- 1), respectively. The combined treatment of AgNPs with atmospheric pressure-air cold plasma (APACP) induced a drop in the MIC(50) and MIC100 values of AgNPs reaching 3-11 and 12-23 μg ml(- 1), respectively, according to the examined species. Epidermophyton floccosum was the most sensitive fungus to AgNPs, while Trichophyton rubrum was the most tolerant. AgNPs induced significant reduction in keratinase activity and an increase in the mycelium permeability that was greater when applied combined with plasma treatment. Scanning electron microscopy showed electroporation of the cell walls and the accumulation of AgNPs on the cell wall and inside the cells, particularly when AgNPs were combined with APACP treatment. An in vivo experiment with dermatophyte-inoculated guinea pigs indicated that the application of AgNPs combined with APACP was more efficacious in healing and suppressing disease symptoms of skin as compared with the application of AgNPs alone. The recovery from the infection reached 91.7 % in the case of Microsporum canis-inoculated guinea pigs treated with 13 μg ml(- 1) AgNPs combined with APACP treatment delivered for 2  min. The emission spectra indicated that the efficacy of APACP was mainly due to generation of NO radicals and excited nitrogen molecules. These reactive species interact and block the activity of the fungal spores in vitro and in the skin lesions of the guinea pigs. The results achieved are promising compared with fluconazole as reference antifungal drug. PMID:26296782

  7. Inhibitory effect of silver nanoparticles mediated by atmospheric pressure air cold plasma jet against dermatophyte fungi.

    PubMed

    Ouf, Salama A; El-Adly, Amira A; Mohamed, Abdel-Aleam H

    2015-10-01

    In an in vitro study with five clinical isolates of dermatophytes, the MIC(50) and MIC(100) values of silver nanoparticles (AgNPs) ranged from 5 to 16 and from 15 to 32 μg ml(- 1), respectively. The combined treatment of AgNPs with atmospheric pressure-air cold plasma (APACP) induced a drop in the MIC(50) and MIC100 values of AgNPs reaching 3-11 and 12-23 μg ml(- 1), respectively, according to the examined species. Epidermophyton floccosum was the most sensitive fungus to AgNPs, while Trichophyton rubrum was the most tolerant. AgNPs induced significant reduction in keratinase activity and an increase in the mycelium permeability that was greater when applied combined with plasma treatment. Scanning electron microscopy showed electroporation of the cell walls and the accumulation of AgNPs on the cell wall and inside the cells, particularly when AgNPs were combined with APACP treatment. An in vivo experiment with dermatophyte-inoculated guinea pigs indicated that the application of AgNPs combined with APACP was more efficacious in healing and suppressing disease symptoms of skin as compared with the application of AgNPs alone. The recovery from the infection reached 91.7 % in the case of Microsporum canis-inoculated guinea pigs treated with 13 μg ml(- 1) AgNPs combined with APACP treatment delivered for 2  min. The emission spectra indicated that the efficacy of APACP was mainly due to generation of NO radicals and excited nitrogen molecules. These reactive species interact and block the activity of the fungal spores in vitro and in the skin lesions of the guinea pigs. The results achieved are promising compared with fluconazole as reference antifungal drug.

  8. Laser-induced breakdown spectroscopy system for remote measurement of salt in a narrow gap

    NASA Astrophysics Data System (ADS)

    Eto, Shuzo; Fujii, Takashi

    2016-02-01

    We performed remotely measured, with a 5-m optical path, the chlorine concentration of a sea salt attached to stainless steel (SS) located at the side wall of a narrow gap (width ~ 50 mm) by using laser-induced breakdown spectroscopy (LIBS) in two configurations. One uses mirrors for transmitting laser pulses in air, while the other uses multimode fiber. A compact optical device was developed to access the surface of SS for focusing laser pulses and collecting laser-induced plasma. With the configuration in which laser pulses pass through the fiber, the chlorine spectrum could be detected by fiber-coupled LIBS. In addition, with the configuration in which laser pulses pass through air, chlorine concentrations from 0 to 100 mg/m2 could be evaluated quantitatively by using the calibration data of chlorine emission intensity. These results show that the proposed system enables the measurement of chlorine at the surface of SS remotely, instantly, and quantitatively.

  9. Effects of Atmospheric Pressure Air Plasma Pretreatment on the Seed Germination and Early Growth of Andrographis paniculata

    NASA Astrophysics Data System (ADS)

    Tong, Jiayun; He, Rui; Zhang, Xiaoli; Zhan, Ruoting; Chen, Weiwen; Yang, Size

    2014-03-01

    The objective of this paper is to demonstrate whether air plasma can change the seed germination characteristics, seedling emergence, as well as biochemical reactivity, in Andrographis paniculata (A. paniculata) seedlings by modifying the seed coat and finding a beneficial treatment dose. Eight treatment doses and one control were used to conduct electrical conductivity determination, a germination test, a seedling emergence test and a biochemical assay. The results showed that after being treated with air plasma excited at 5950 V for 10 s, the permeability of the seeds was improved significantly, resulting in the acceleration of seed germination and seedling emergence. In the meantime, the catalase activity and catalase isoenzyme expression were also improved, while the malondialdehyde content in the seedlings was decreased (which means greater counteraction with environmental stress). After being treated with 4250 V for 10 s and 5950 V for 20 s, the seed germination was enhanced, but without an obvious change in seedling emergence. However, after treatment with 3400 V for 20 s and 5100 V for 10 s, the permeability of the seeds was decreased, resulting in a delay in seedling emergence. These results indicate that air plasma can change the physiological and biochemical characteristics of Andrographis paniculata seeds by modifying the seed coat, combined with the effects of the active plasma species, and that different treating doses have different effects.

  10. Vortex breakdown in a truncated conical bioreactor

    NASA Astrophysics Data System (ADS)

    Balci, Adnan; Brøns, Morten; Herrada, Miguel A.; Shtern, Vladimir N.

    2015-12-01

    This numerical study explains the eddy formation and disappearance in a slow steady axisymmetric air-water flow in a vertical truncated conical container, driven by the rotating top disk. Numerous topological metamorphoses occur as the water height, Hw, and the bottom-sidewall angle, α, vary. It is found that the sidewall convergence (divergence) from the top to the bottom stimulates (suppresses) the development of vortex breakdown (VB) in both water and air. At α = 60°, the flow topology changes eighteen times as Hw varies. The changes are due to (a) competing effects of AMF (the air meridional flow) and swirl, which drive meridional motions of opposite directions in water, and (b) feedback of water flow on AMF. For small Hw, the AMF effect dominates. As Hw increases, the swirl effect dominates and causes VB. The water flow feedback produces and modifies air eddies. The results are of fundamental interest and can be relevant for aerial bioreactors.

  11. Work breakdown structure guide

    SciTech Connect

    Not Available

    1987-02-06

    Utilization of the work breakdown structure (WBS) technique is an effective aid in managing Department of Energy (DOE) programs and projects. The technique provides a framework for project management by focusing on the products that are being developed or constructed to solve technical problems. It assists both DOE and contractors in fulfilling their management responsibilities. This document provides guidance for use of the WBS technique for product oriented work identification and definition. It is one in a series of policy and guidance documents supporting DOE's project manaagement system.

  12. The surface cracking behavior in air plasma sprayed thermal barrier coating system incorporating interface roughness effect

    NASA Astrophysics Data System (ADS)

    Zhang, W. X.; Fan, X. L.; Wang, T. J.

    2011-11-01

    The objective of this work is to understand the effect of interface roughness on the strain energy release rate and surface cracking behavior in air plasma sprayed thermal barrier coating system. This is achieved by a parameter investigation of the interfacial shapes, in which the extended finite element method (XFEM) and periodic boundary condition are used. Predictions for the stress field and driving force of multiple surface cracks in the film/substrate system are presented. It is seen that the interface roughness has significant effects on the strain energy release rate, the interfacial stress distribution, and the crack propagation patterns. One can see the completely different distributions of stress and strain energy release rate in the regions of convex and concave asperities of the substrate. Variation of the interface asperity is responsible for the oscillatory characteristics of strain energy release rate, which can cause the local arrest of surface cracks. It is concluded that artificially created rough interface can enhance the durability of film/substrate system with multiple cracks.

  13. Air jet erosion test on plasma sprayed surface by varying erodent impingement pressure and impingement angle

    NASA Astrophysics Data System (ADS)

    Behera, Ajit; Behera, Asit; Mishra, S. C.; Pani, S.; Parida, P.

    2015-02-01

    Fly-ash premixed with quartz and illmenite powder in different weight proportions are thermal sprayed on mild steel and copper substrates at various input power levels of the plasma torch ranging from 11 kW to 21 kW DC. The erosion test has done using Air Jet erosion test Reg (As per ASTM G76) with silica erodent typically 150-250 pm in size. Multiple tests were performed at increasing the time duration from 60 sec to 180 sec with increasing pressure (from 1 bar to 2.5 bar) and angle (60° & 90°). This study reveals that the impact velocity and impact angle are two most significant parameters among various factors influencing the wear rate of these coatings. The mechanisms and microstructural changes that arise during erosion wear are studied by using SEM. It is found that, when erodent are impacting the fresh un-eroded surface, material removal occurs by the continuous evolution of craters on the surface. Upper layer splats are removed out after 60 sec and second layer splat erosion starts. Based on these observations Physical models are developed. Some graphs plotted between mass loss-rate versus time period/impact Pressure/impact Angle gives good correlation with surface features observed.

  14. Spatial diagnostics of the laser-produced tin plasma in air

    NASA Astrophysics Data System (ADS)

    Iqbal, Javed; Ahmed, R.; Rafique, M.; Anwar-ul-Haq, M.; Baig, M. A.

    2016-07-01

    We present here new experimental studies on the laser-produced tin plasma generated by focusing the beam of a Q-switched Nd:YAG laser (532 nm) on the sample in air at atmospheric pressure. The optical emission spectra were recorded with a set of five spectrometers covering the spectral range from 200-720 nm. The electron temperature has been calculated to be about (10 600  ±  600) K using three methods; the two-line ratio, Boltzmann plot and the Saha-Boltzmann plot method, whereas the electron number density of about (9.0  ±  0.8)  ×  1016 cm-3 has been calculated using the Stark broadened line profiles of tin lines and the hydrogen Hα-line. Furthermore, the branching fractions have been deduced for 15 spectral lines of the 5p5d  →  5p2 transition array in tin, whereas the absolute values of the transition probabilities have been calculated by combining the experimental branching fractions with the lifetimes of the excited levels. Our measured values are compared with those reported in the literature and NIST data base, showing good agreement.

  15. Geopolymers prepared from DC plasma treated air pollution control (APC) residues glass: properties and characterisation of the binder phase.

    PubMed

    Kourti, Ioanna; Devaraj, Amutha Rani; Bustos, Ana Guerrero; Deegan, David; Boccaccini, Aldo R; Cheeseman, Christopher R

    2011-11-30

    Air pollution control (APC) residues have been blended with glass-forming additives and treated using DC plasma technology to produce a high calcium aluminosilicate glass (APC glass). This has been used to form geopolymer-glass composites that exhibit high strength and density, low porosity, low water absorption, low leaching and high acid resistance. The composites have a microstructure consisting of un-reacted residual APC glass particles imbedded in a complex geopolymer and C-S-H gel binder phase, and behave as particle reinforced composites. The work demonstrates that materials prepared from DC plasma treated APC residues have potential to be used to form high quality pre-cast products.

  16. Experimental and theoretical studies of laser-induced breakdown spectroscopy emission from iron oxide: Studies of atmospheric effects

    NASA Astrophysics Data System (ADS)

    Colgan, J.; Barefield, J. E.; Judge, E. J.; Campbell, K.; Johns, H. M.; Kilcrease, D. P.; McInroy, R.; Clegg, S. M.

    2016-08-01

    We report on a comprehensive study of the emission spectra from laser-induced breakdown spectroscopy (LIBS) measurements on iron oxide. Measurements have been made of the emission from Fe2O3 under atmospheres of air, He, and Ar, and at different atmospheric pressures. The effect of varying the time delay of the measurement is also explored. Theoretical calculations were performed to analyze the plasma conditions and find that a reasonably consistent picture of the change in plasma temperature and density for different atmospheric conditions can be reached. We also investigate the sensitivity of the OI 777 nm emission lines to the plasma conditions, something that has not been explored in detail in the previous work. Finally, we also show that LIBS can be used to differentiate between FeO and Fe2O3 by examining the ratio of the intensities of selected Fe emission to O emission lines.

  17. On Preliminary Breakdown

    NASA Astrophysics Data System (ADS)

    Beasley, W. H.; Petersen, D.

    2013-12-01

    The preliminary breakdown phase of a negative cloud-to-ground lightning flash was observed in detail. Observations were made with a Photron SA1.1 high-speed video camera operating at 9,000 frames per second, fast optical sensors, a flat-plate electric field antenna covering the SLF to MF band, and VHF and UHF radio receivers with bandwidths of 20 MHz. Bright stepwise extensions of a negative leader were observed at an altitude of 8 km during the first few milliseconds of the flash, and were coincident with bipolar electric field pulses called 'characteristic pulses'. The 2-D step lengths of the preliminary processes were in excess of 100 meters, with some 2-D step lengths in excess of 200 meters. Smaller and shorter unipolar electric field pulses were superposed onto the bipolar electric field pulses, and were coincident with VHF and UHF radio pulses. After a few milliseconds, the emerging negative stepped leader system showed a marked decrease in luminosity, step length, and propagation velocity. Details of these events will be discussed, including the possibility that the preliminary breakdown phase consists not of a single developing lightning leader system, but of multiple smaller lightning leader systems that eventually join together into a single system.

  18. Numerical simulation for the influence of laser-induced plasmas addition on air mass capture of hypersonic inlet

    NASA Astrophysics Data System (ADS)

    Zhao, Wei; Dou, Zhiguo; Li, Qian

    2012-03-01

    The theory of laser-induced plasmas addition to hypersonic airflow off a vehicle to increase air mass capture and improve the performance of hypersonic inlets at Mach numbers below the design value is explored. For hypersonic vehicles, when flying at mach numbers lower than the design one, we can increase the mass capture ratio of inlet through laser-induced plasmas injection to the hypersonic flow upstream of cowl lip to form a virtual cowl. Based on the theory, the model of interaction between laser-induced plasmas and hypersonic flow was established. The influence on the effect of increasing mass capture ratio was studied at different positions of laser-induced plasmas region for the external compression hypersonic inlet at Mach 5 while the design value is 6, the power of plasmas was in the range of 1-8mJ. The main results are as follows: 1. the best location of the plasma addition region is near the intersection of the nose shock of the vehicle with the continuation of the cowl line, and slightly below that line. In that case, the shock generated by the heating is close to the shock that is a reflection of the vehicle nose shock off the imaginary solid surface-extension of the cowl. 2. Plasma addition does increase mass capture, and the effect becomes stronger as more energy is added, the peak value appeared when the power of plasma was about 4mJ, when the plasma energy continues to get stronger, the mass capture will decline slowly.

  19. Effect of air plasma treatment on the dyeing of Tencel fabric with C.I. Reactive Black 5

    NASA Astrophysics Data System (ADS)

    Zhang, L. S.; Liu, H. L.; Yu, W. D.

    2015-02-01

    The Tencel fabrics were treated by the atmospheric pressure plasma with air for different length of time and dyed with the C.I. Reactive Black 5 at 1%, 5% and 10% o.m.f. The effect of the prolonged plasma treatment time was characterized by both the weight loss and the whiteness index analyses, which implied that with the increase of the plasma treatment time, the treated fabrics were lighter and yellower than the untreated ones. The contact angle decreased dramatically from 139° to instantly spread. The results of SEM showed that, with the prolonged treatment time, more significant crater-like surface morphology on the fiber of Tencel samples was formed. Compared with untreated samples, the values of dye bath exhaustion and total fixation effect were higher. But they did not increase with the prolonged plasma treatment time. With the prolonged storage time after the plasma treatment, the result to ageing effect indicated that the values of dye bath exhaustion and total fixation effect reduced. The Integ values for characterizing the coloring effect were evaluated by the CIE system of color measurement. In most cases, the Integ values reached the highest ones when the plasma treatment time was 10 or 20 min. When the concentration of the dye bath was low (at 1% o.m.f.), the longer plasma treatment time was, the higher the Integ value was. However, if the fabrics after plasma treatment were stored for 21 days, the longer plasma treatment time did not cause the larger Integ value. When the concentration was 1%, the Integ value increased with the weight loss increasing, which was different from the values of fabrics with 5% and 10% concentration. If the dyeing concentration was low, the fixation had a more significant effect on the color fastness to wet rubbing; in contrast, if the dyeing concentration was high, the surface roughness had a more important effect on it.

  20. Inactivation of a 25.5 µm Enterococcus faecalis biofilm by a room-temperature, battery-operated, handheld air plasma jet

    NASA Astrophysics Data System (ADS)

    Pei, X.; Lu, X.; Liu, J.; Liu, D.; Yang, Y.; Ostrikov, K.; Chu, Paul K.; Pan, Y.

    2012-04-01

    Effective biofilm inactivation using a handheld, mobile plasma jet powered by a 12 V dc battery and operated in open air without any external gas supply is reported. This cold, room-temperature plasma is produced in self-repetitive nanosecond discharges with current pulses of ˜100 ns duration, current peak amplitude of ˜6 mA and repetition rate of ˜20 kHz. It is shown that the reactive plasma species penetrate to the bottom layer of a 25.5 µm-thick Enterococcus faecalis biofilm and produce a strong bactericidal effect. This is the thickest reported biofilm inactivated using room-temperature air plasmas.

  1. Failure of thick, low density air plasma sprayed thermal barrier coatings

    NASA Astrophysics Data System (ADS)

    Helminiak, Michael Aaron

    This research was directed at developing fundamental understandings of the variables that influence the performance of air plasma sprayed (APS) yttria-stabilized zirconia (YSZ) thermal barrier coatings (TBC). Focus was placed on understanding how and why each variable influenced the performance of the TBC system along with how the individual variables interacted with one another. It includes research on the effect of surface roughness of NiCoCrAlY bond coats deposited by argon-shrouded plasma spraying, the interdiffusion behavior of bond coats coupled to commercial superalloys, and the microstructural and compositional control of APS topcoats to maximize the coating thicknesses that can be applied without spallation. The specimens used for this research were prepared by Praxair Surface Technologies and have been evaluated using cyclic oxidation and thermal shock tests. TBC performance was sensitive to bond coat roughness with the rougher bond coats having improved cyclic performance than the smoother bond coats. The explanation being the rough bond coat surface hindered the propagation of the delamination cracks. The failure mechanisms of the APS coatings were found to depend on a combination of the topcoat thickness, topcoat microstructure and the coefficient of thermal expansion (CTE) mismatch between the superalloy and topcoat. Thinner topcoats tended to fail at the topcoat/TGO interface due to bond coat oxidation whereas thicker topcoats failed within the topcoat due to the strain energy release rate of the thicker coating exceeding the fracture strength of the topcoat. Properties of free-standing high and conventional purity YSZ topcoats of both a lowdensity (LD) and dense-vertically fissure (DVF) microstructures were evaluated. The densification rate and phase evolution were sensitive to the YSZ purity and the starting microstructure. Increasing the impurity content resulted in enhanced sintering and phase decomposition rates, with the exception of the

  2. Observations of fast VHF-bright positive breakdown

    NASA Astrophysics Data System (ADS)

    Stock, M.; Krehbiel, P. R.; Rison, W.; Lapierre, J. L.; Edens, H. E.

    2014-12-01

    Positive breakdown during lightning discharges is generally considered to be weak and slowly propagating, as high speed video observations show it to be optically weak, and studies of the development of cloud-to-ground (CG) and intracloud (IC) flashes show development in the negative charge region to be slow. With the proper instrumentation, however, fast positive breakdown is a relatively common feature of both CG and IC flashes. The breakdown is bright at VHF, but is smoothly continuous so that time-of-arrival VHF mapping systems such as the Lightning Mapping Array are usually unable to detect or locate its occurrence. However, the breakdown is easily locatable using interferometric mapping techniques. Such an interferometer was developed at NM Tech in the 1980s and used in the CaPE studies at Kennedy Space Center in 1991, where it observed fast (1-6 × 107 m/s), VHF-bright positive leaders propagating away from the source region of negative CG return strokes (Shao et al., 1995). Here we report new observations of fast positive breakdown, obtained with Langmuir Laboratory's flash-continuous broadband VHF interferometer, that confirm and substantially expand our understanding of the phenomena. Numerous examples have been observed following return strokes of negative CG flashes, including bolt-from-blue discharges, and during K-processes of both IC and CG flashes. The breakdown typically propagates a few kilometers at speeds on the order of 107 m/s and frequently produces some of the brightest radiation of the flash. A particularly interesting feature of the breakdown is that it propagates into regions of previously un-ionized air. Then following the breakdown, frequently no further VHF emission is seen along or beyond its channel, indicating that the channel formed is not conducting. But on occasion, especially during cloud-to-ground flashes, the end of the fast positive breakdown turns into a normal, slowly propagating positive leader.

  3. Inactivation of Staphylococcus aureus and Enterococcus faecalis by a direct-current, cold atmospheric-pressure air plasma microjet☆

    PubMed Central

    Tian, Ye; Sun, Peng; Wu, Haiyan; Bai, Na; Wang, Ruixue; Zhu, Weidong; Zhang, Jue; Liu, Fuxiang

    2010-01-01

    Objective A direct-current, cold atmospheric-pressure air plasma microjet (PMJ) was performed to inactivate Staphylococcus aureus (S. aureus) and Enterococcus faecalis (E. faecalis) in air. The process of sterilization and morphology of bacteria was observed. We wish to know the possible inactivation mechanisms of PMJ and explore a potential application in dental and other temperature sensitive treatment. Methods In this study, we employed a direct current, atmospheric pressure, cold air PMJ to inactivate bacterias. Scanning electron microscopy was employed to evaluate the morphology of S. aureus and showed rupture of cell walls after the plasma treatment and Optical emission spectrum (OES) were used to understand the possible inactivation mechanisms of PMJ. Results The inactivation rates could reach 100% in 5 min. When the distance between the exit nozzle of the PMJ device and Petri dish was extended from 1 cm to 3 cm, effective inactivation was also observed with a similar inactivation curve. Conclusion The inactivation of bacteria is attributed to the abundant reactive oxygen and nitrogen species, as well as ultroviolet radiation in the plasma. Different life spans and defensibilities of these killing agents may hold the key to understanding the different inactivation curves at different treatment distances. PMID:23554639

  4. Permanent hydrophilization of outer and inner surfaces of polytetrafluoroethylene tubes using ambient air plasma generated by surface dielectric barrier discharges

    SciTech Connect

    Pavliňák, D.; Galmiz, O.; Zemánek, M.; Brablec, A.; Čech, J.; Černák, M.

    2014-10-13

    We present an atmospheric pressure ambient air plasma technique developed for technically simple treatment of inner and/or outer surfaces of plastic tubes and other hollow dielectric bodies. It is based on surface dielectric barrier discharge generating visually diffuse plasma layers along the treated dielectric surfaces using water-solution electrodes. The observed visual uniformity and measured plasma rotational and vibrational temperatures of 333 K and 2350 K indicate that the discharge can be readily applied to material surface treatment without significant thermal effect. This is exemplified by the obtained permanent surface hydrophilization of polytetrafluoroethylene tubes related to the replacement of a high fraction (more than 80%) of the surface fluorine determined by X-ray photoelectron spectroscopy. A tentative explanation of the discharge mechanism based on high-speed camera observations and the discharge current and voltage of measurements is outlined.

  5. Breakdown of organic insulators

    NASA Technical Reports Server (NTRS)

    Cuddihy, E. F.

    1983-01-01

    Solar cells and their associated electrical interconnects and leads were encapsulated in transparent elastomeric materials. Their purpose in a photovoltaic module, one of the most important for these elastomeric encapsulation materials, is to function as electrical insulation. This includes internal insulation between adjacent solar cells, between other encapsulated electrical parts, and between the total internal electrical circuitry and external metal frames, grounded areas, and module surfaces. Catastrophic electrical breakdown of the encapsulant insulation materials or electrical current through these materials or module edges to external locations can lead to module failure and can create hazards to humans. Electrical insulation stability, advanced elastomeric encapsulation materials are developed which are intended to be intrinsically free of in-situ ionic impurities, have ultralow water absorption, be weather-stable (UV, oxygen), and have high mechanical flexibility. Efforts to develop a method of assessing the life potential of organic insulation materials in photovoltaic modules are described.

  6. Remote monostatic detection of radioactive material by laser-induced breakdown

    NASA Astrophysics Data System (ADS)

    Isaacs, Joshua; Miao, Chenlong; Sprangle, Phillip

    2016-03-01

    This paper analyzes and evaluates a concept for remotely detecting the presence of radioactivity using electromagnetic signatures. The detection concept is based on the use of laser beams and the resulting electromagnetic signatures near the radioactive material. Free electrons, generated from ionizing radiation associated with the radioactive material, cascade down to low energies and attach to molecular oxygen. The resulting ion density depends on the level of radioactivity and can be readily photo-ionized by a low-intensity laser beam. This process provides a controllable source of seed electrons for the further collisional ionization (breakdown) of the air using a high-power, focused, CO2 laser pulse. When the air breakdown process saturates, the ionizing CO2 radiation reflects off the plasma region and can be detected. The time required for this to occur is a function of the level of radioactivity. This monostatic detection arrangement has the advantage that both the photo-ionizing and avalanche laser beams and the detector can be co-located.

  7. Numerical studies of third-harmonic generation in laser filament in air perturbed by plasma spot

    SciTech Connect

    Feng Liubin; Lu Xin; Liu Xiaolong; Li Yutong; Chen Liming; Ma Jinglong; Dong Quanli; Wang Weimin; Xi Tingting; Sheng Zhengming; Zhang Jie; He Duanwei

    2012-07-15

    Third-harmonic emission from laser filament intercepted by plasma spot is studied by numerical simulations. Significant enhancement of the third-harmonic generation is obtained due to the disturbance of the additional plasma. The contribution of the pure plasma effect and the possible plasma-enhanced third-order susceptibility on the third-harmonic generation enhancement are compared. It is shown that the plasma induced cancellation of destructive interference [Y. Liu et al., Opt. Commun. 284, 4706 (2011)] of two-colored filament is the dominant mechanism of the enhancement of third-harmonic generation.

  8. Spectroscopic and electrical characters of SBD plasma excited by bipolar nanosecond pulse in atmospheric air.

    PubMed

    Zhao, Zi-Lu; Yang, De-Zheng; Wang, Wen-Chun; Yuan, Hao; Zhang, Li; Wang, Sen; Liu, Zhi-Jie; Zhang, Shuai

    2016-05-15

    In this paper, an atmospheric surface barrier discharge (SBD) generated by annular electrodes in quartz tube is presented through employing bipolar nanosecond pulse voltage in air. The discharge images, waveforms of pulse voltage and discharge current, and optical emission spectra emitted from the discharges are recorded and calculated. A spectra simulation method is developed to separate the overlap of the secondary diffraction spectra which are produced by grating in monochromator, and N2 (B(3)Πg→A(3)Σu(+)) and O (3p(5)P→3s(5)S2(o)) are extracted. The effects of pulse voltage and discharge power on the emission intensities of OH (A(2)Σ(+)→X(2)Пi), N2(+) (B(2)Σu(+)→X(2)Σg(+)), N2 (C(3)Πu→B(3)Πg), N2 (B(3)Πg→A(3)Σu(+)), and O (3p(5)P→3s(5)S2(o)) are investigated. It is found that increasing the pulse peak voltage can lead to an easier formation of N2(+) (B(2)Σu(+)) than that of N2 (C(3)Πu). Additionally, vibrational and rotational temperatures of the plasma are determined by comparing the experimental and simulated spectra of N2(+) (B(2)Σu(+)→X(2)Σg(+)), and the results show that the vibrational and rotational temperatures are 3250±20K and 350±5K under the pulse peak voltage of 28kV, respectively. PMID:26924210

  9. Spectroscopic and electrical characters of SBD plasma excited by bipolar nanosecond pulse in atmospheric air

    NASA Astrophysics Data System (ADS)

    Zhao, Zi-Lu; Yang, De-Zheng; Wang, Wen-Chun; Yuan, Hao; Zhang, Li; Wang, Sen; Liu, Zhi-Jie; Zhang, Shuai

    2016-05-01

    In this paper, an atmospheric surface barrier discharge (SBD) generated by annular electrodes in quartz tube is presented through employing bipolar nanosecond pulse voltage in air. The discharge images, waveforms of pulse voltage and discharge current, and optical emission spectra emitted from the discharges are recorded and calculated. A spectra simulation method is developed to separate the overlap of the secondary diffraction spectra which are produced by grating in monochromator, and N2 (B3Πg → A3Σu+) and O (3p5P → 3s5S2o) are extracted. The effects of pulse voltage and discharge power on the emission intensities of OH (A2Σ+ → X2Пi), N2+ (B2Σu+ → X2Σg+), N2 (C3Πu → B3Πg), N2 (B3Πg → A3Σu+), and O (3p5P → 3s5S2o) are investigated. It is found that increasing the pulse peak voltage can lead to an easier formation of N2+ (B2Σu+) than that of N2 (C3Πu). Additionally, vibrational and rotational temperatures of the plasma are determined by comparing the experimental and simulated spectra of N2+ (B2Σu+ → X2Σg+), and the results show that the vibrational and rotational temperatures are 3250 ± 20 K and 350 ± 5 K under the pulse peak voltage of 28 kV, respectively.

  10. The rf breakdown voltage curves-similarity law

    NASA Astrophysics Data System (ADS)

    Savic, Marija; Radmilovic-Radjenovic, Marija; Suvakov, Milovan; Petrovic, Zoran Lj.

    2013-09-01

    Capacitively coupled radio frequency (rf) discharges are attracting an increased attention due to their wide applications in many technological processes such as plasma etching for semiconductor materials, thin film deposition and plasma cleaning. One of the crucial problem in optimizing plasma technological process is determination of the plasma operating conditions which can be obtained from the breakdown voltage. It was shown that the RF breakdown voltage curves obey similarity law: Vrf =f(pd,f .d =const), where p is the gas pressure, d is the interelectrode distance and f is t the operating frequency. We have performed calculations in argon by using Monte Carlo code considering only electrons motion. Simulation conditions were based on the experimental conditions. The obtain results confirm similarity law and satisfactorily agree with the available experimental data. This work was supported by the MNTR, Serbia, under Contracts ON171037 and III41011.

  11. Real-time analysis of metals in stack gas using argon/air inductively coupled plasma with optical emission spectrometry

    NASA Astrophysics Data System (ADS)

    Meyer, Gerhard; Seltzer, Michael D.

    1999-02-01

    The design and operation of an instrument capable of continuous, real-time detection of hazardous air pollutant metals in the effluent of boilers, incinerators, and furnaces is reported. A commercially available inductively coupled argon plasma spectrometer, modified for introduction of sample air, provides sensitivity for several metals comparable to that of EPA-approved manual methods, with an analysis result reported every 1 to 2 minutes. Achievable detection limits for the present list of hazardous air pollutant metals range from 0.1 to 20 (mu) g/dry standard cubic meter. Air is isokinetically extracted from a stack or duct and introduced into the argon plasma through an innovative sample transport interface. Data is reported after every measurement cycle and immediately archived to a control computer, where the information is available to a local area network. The entire instrument is automated, and is enclosed in a shelter that can be placed as near as possible to the stack. The measurement of sample losses in the transport line is also discussed.

  12. Laser-induced breakdown in large transparent water droplets.

    PubMed

    Chang, R K; Eickmans, J H; Hsieh, W F; Wood, C F; Zhang, J Z; Zheng, J B

    1988-06-15

    Recent experiments on the laser-induced breakdown (LIB) of large transparent liquid droplets are reviewed. A physical model of LIB processes is presented with the aim of integrating the following recent results: (1) the internal and near-field distributions for large transparent spheres; (2) the location of LIB initiation based on spatially resolved plasma emission spectroscopic techniques; (3) spatially resolved but time-averaged density of the plasma plumes and temperature of the atomic species within the plasma; (4) the plasma front propagation velocities inside and outside the droplet; and (5) the fate of the remaining superheated droplet and the expelled material.

  13. Two-photon absorption laser induced fluorescence measurement of atomic oxygen density in an atmospheric pressure air plasma jet

    NASA Astrophysics Data System (ADS)

    Conway, J.; Gogna, G. S.; Gaman, C.; Turner, M. M.; Daniels, S.

    2016-08-01

    Atomic oxygen number density [O] is measured in an air atmospheric pressure plasma jet (APPJ) using two-photon absorption laser induced fluorescence (TALIF). Gas flow is fixed at 8 slpm, the RF power coupled into the plasma jet varied between 5 W and 20 W, and the resulting changes in atomic oxygen density measured. Photolysis of molecular oxygen is employed to allow in situ calibration of the TALIF system. During calibration, O2 photo-dissociation and two-photon excitation of the resulting oxygen atoms are achieved within the same laser pulse. The atomic oxygen density produced by photolysis is time varying and spatially non-uniform which needs to be corrected for to calibrate the TALIF system for measurement of atomic oxygen density in plasma. Knowledge of the laser pulse intensity I 0(t), wavelength, and focal spot size allows correction factors to be determined using a rate equation model. Atomic oxygen is used for calibration and measurement, so the laser intensity can be increased outside the TALIF quadratic laser power dependence region without affecting the calibration reliability as the laser power dependence will still be the same for both. The atomic O density results obtained are not directly benchmarked against other known density measurement techniques. The results show that the plasma jet atomic oxygen content increases as the RF power coupled into the plasma increases.

  14. Kinetic-energy structure of a laser-produced-plasma channel in air

    NASA Astrophysics Data System (ADS)

    Shu, Xiao-Fang; Yu, Cheng-Xin; Li, Wei; Liu, Shi-Bing

    2015-12-01

    In this paper, we propose a method to calculate the fine structure of kinetic energy of laser-produced plasma, which bridges the two parts of researches of plasma channel usually studied independently of each other, i.e., the extension of the length of plasma filament and the prolongation of the lifetime of plasma channel generated by the laser pulse. The kinetic energy structure of the plasma channel is calculated by solving the motion equation of ionized electrons and utilizing the ionization rate as the weighting factor. With the study on the laser intensity, we analyze the formation mechanisms of the kinetic energy structure. This work holds great promise for optimizing the initial conditions of the evolutions of plasma channel after the laser pulse.

  15. Characteristics of surface-wave plasma with air-simulated N2 O2 gas mixture for low-temperature sterilization

    NASA Astrophysics Data System (ADS)

    Xu, L.; Nonaka, H.; Zhou, H. Y.; Ogino, A.; Nagata, T.; Koide, Y.; Nanko, S.; Kurawaki, I.; Nagatsu, M.

    2007-02-01

    Sterilization experiments using low-pressure air discharge plasma sustained by the 2.45 GHz surface-wave have been carried out. Geobacillus stearothermoplilus spores having a population of 3.0 × 106 were sterilized for only 3 min using air-simulated N2-O2 mixture gas discharge plasma, faster than the cases of pure O2 or pure N2 discharge plasmas. From the SEM analysis of plasma-irradiated spores and optical emission spectroscopy measurements of the plasmas, it has been found that the possible sterilization mechanisms of air-simulated plasma are the chemical etching effect due to the oxygen radicals and UV emission from the N2 molecules and NO radicals in the wavelength range 200-400 nm. Experiment suggested that UV emission in the wavelength range less than 200 nm might not be significant in the sterilization. The UV intensity at 237.0 nm originated from the NO γ system (A 2Σ+ → X 2Π) in N2-O2 plasma as a function of the O2 percentage added to N2-O2 mixture gas has been investigated. It achieved its maximum value when the O2 percentage was roughly 10-20%. This result suggests that air can be used as a discharge gas for sterilization, and indeed we have confirmed a rapid sterilization with the actual air discharge at a sample temperature of less than 65 °C.

  16. Breakdown of atmospheric pressure microgaps at high excitation frequencies

    NASA Astrophysics Data System (ADS)

    Levko, Dmitry; Raja, Laxminarayan

    2015-09-01

    Microwave breakdown of atmospheric pressure microgaps was studied by a one-dimensional Particle-in-Cell Monte Carlo Collisions numerical model. The effect of both field electron emission and secondary electron emission (due to electron impact, ion impact, and primary electron reflection) from surfaces on the breakdown process is considered. For conditions where field emission is the dominant electron emission mechanism from the electrode surfaces, it is found that the breakdown voltage of mw microdischarge coincides with the breakdown voltage of direct-current microdischarge. When microdischarge properties are controlled by both field and secondary electron emission, breakdown voltage of mw microdischarge exceeds that of dc microdischarge. When microdischarge is controlled only by secondary electron emission, breakdown voltage of mw microdischarge is smaller than that of dc microdischarge. It is shown that if the interelectrode gap exceeds some critical value, mw microdischarge can be ignited only by electrons initially seeded within the gap volume. In addition, the influence of electron reflection and secondary emission due to electron impact is studied. This work was supported by the Air Force Office of Scientific Research.

  17. Laser Induced Breakdown Spectroscopy of Metals

    NASA Astrophysics Data System (ADS)

    Palmer, Andria; Lawhead, Carlos; Ujj, Laszlo

    2015-03-01

    Laser Induced Breakdown Spectroscopy (LIBS) is a very practical spectroscopy to determine the chemical composition of materials. Recent technical developments resulted in equipment used on the MARS Rover by NASA. It is capable of measuring the emission spectra of laser induced plasma created by energetic laser pulses focused on the sample (rocks, metals, etc.). We have develop a Laser Induced Breakdown Spectroscopy setup and investigated the necessary experimental and methodological challenges needed to make such material identification measurements. 355 and 532 nm laser pulses with 5 ns temporal duration was used to generate micro-plasma from which compositions can be determined based on known elemental and molecular emission intensities and wavelengths. The performance of LIBS depends on several parameters including laser wavelength, pulse energy, pulse duration, time interval of observation, geometrical configuration of collecting optics, and the properties of ambient medium. Spectra recorded from alloys (e.g. US penny coin) and pure metals will be presented. Special thanks for the financial support of the Office of Undergraduate Research of UWF.

  18. Microwave assisted laser-induced breakdown spectroscopy at ambient conditions

    NASA Astrophysics Data System (ADS)

    Viljanen, Jan; Sun, Zhiwei; Alwahabi, Zeyad T.

    2016-04-01

    Signal enhancements in laser-induced breakdown spectroscopy (LIBS) using external microwave power are demonstrated in ambient air. Pulsed microwave at 2.45 GHz and of 1 millisecond duration was delivered via a simple near field applicator (NFA), with which an external electric field is generated and coupled into laser induced plasma. The external microwave power can significantly increase the signal lifetime from a few microseconds to hundreds of microseconds, resulting in a great enhancement on LIBS signals with the use of a long integration time. The dependence of signal enhancement on laser energy and microwave power is experimentally assessed. With the assistance of microwave source, a significant enhancement of ~ 100 was achieved at relatively low laser energy that is only slightly above the ablation threshold. A limit of detection (LOD) of 8.1 ppm was estimated for copper detection in Cu/Al2O3 solid samples. This LOD corresponds to a 93-fold improvement compared with conventional single-pulse LIBS. Additionally, in the microwave assisted LIBS, the self-reversal effect was greatly reduced, which is beneficial in measuring elements of high concentration. Temporal measurements have been performed and the results revealed the evolution of the emission process in microwave-enhanced LIBS. The optimal position of the NFA related to the ablation point has also been investigated.

  19. Delaying vortex breakdown by waves

    NASA Astrophysics Data System (ADS)

    Yao, M. F.; Jiang, L. B.; Wu, J. Z.; Ma, H. Y.; Pan, J. Y.

    1989-03-01

    The effect of spiral waves on delaying vortex breakdown in a tube is studied experimentally and theoretically. When a harmonic oscillation was imposed on one of guiding vanes in the tube, the breakdown was observed to be postponed appreciately. According to the generalized Lagrangian mean theory, proper forcing spiral waves may produce an additional streaming momentum, of which the effect is favorable and similar to an axial suction at downstream end. The delayed breakdown position is further predicted by using nonlinear wave theory. Qualitative agreement between theory and experiment is obtained, and experimental comparison of the effects due to forcing spiral wave and axial suction is made.

  20. Breakdown in the pretext tokamak

    SciTech Connect

    Benesch, J.F.

    1981-06-01

    Data are presented on the application of ion cyclotron resonance RF power to preionization in tokamaks. We applied 0.3-3 kW at 12 MHz to hydrogen and obtained a visible discharge, but found no scaling of breakdown voltage with any parameter we were able to vary. A possible explanation for this, which implies that higher RF power would have been much more effective, is discussed. Finally, we present our investigation of the dV/dt dependence of breakdown voltage in PRETEXT, a phenomenon also seen in JFT-2. The breakdown is discussed in terms of the physics of Townsend discharges.

  1. RF breakdown experiments at SLAC

    NASA Astrophysics Data System (ADS)

    Laurent, L.; Scheitrum, G.; Vlieks, A.; Pearson, C.; Caryotakis, G.; Luhmann, N. C.

    1999-05-01

    RF breakdown is a critical issue in the conditioning of klystrons, accelerator sections, and rf components for the next linear collider (NLC), as well as other high gradient accelerators and high power microwave sources. SLAC is conducting a series of experiments using an X-band traveling wave ring to characterize the processes and trigger mechanisms associated with rf breakdown. The goal of the research is to identify materials, processes, and manufacturing methods that will increase the breakdown threshold and minimize the time required for conditioning.

  2. Air plasma or UV-irradiation applied to surface modification of pectin/poly(vinyl alcohol) blends

    NASA Astrophysics Data System (ADS)

    Kowalonek, Jolanta; Kaczmarek, Halina; Dąbrowska, Aldona

    2010-10-01

    Poly(vinyl alcohol), pectin and their blends with different components ratio were exposed to low-temperature air plasma or high energy UV-irradiation ( λ = 254 nm) for the purpose of surface modification. The physico-chemical changes in surface properties have been studied by attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) and contact angle measurements. Surface free energy of polymeric films, its polar and dispersive components have been calculated by Owens-Wendt method. Moreover, the work of adhesion was estimated and the recovery of hydrophobic properties of modified films after storage have been also studied. The few seconds air-plasma treatment caused more effective surface modification than 5-6 h UV-irradiation. The observed changes were partially reversible, contrary to these caused by photo-modification. It was found that pectin/PVA (50:50) blend was characterised by larger susceptibility to plasma modification compared to pure pectin and pure PVA, whereas the photosensitivity to radiation of 254 nm wavelength was the lowest for this specimen in comparison to other studied samples.

  3. Nonlinear Theory and Breakdown

    NASA Technical Reports Server (NTRS)

    Smith, Frank

    2007-01-01

    The main points of recent theoretical and computational studies on boundary-layer transition and turbulence are to be highlighted. The work is based on high Reynolds numbers and attention is drawn to nonlinear interactions, breakdowns and scales. The research focuses in particular on truly nonlinear theories, i.e. those for which the mean-flow profile is completely altered from its original state. There appear to be three such theories dealing with unsteady nonlinear pressure-displacement interactions (I), with vortex/wave interactions (II), and with Euler-scale flows (III). Specific recent findings noted for these three, and in quantitative agreement with experiments, are the following. Nonlinear finite-time break-ups occur in I, leading to sublayer eruption and vortex formation; here the theory agrees with experiments (Nishioka) regarding the first spike. II gives rise to finite-distance blowup of displacement thickness, then interaction and break-up as above; this theory agrees with experiments (Klebanoff, Nishioka) on the formation of three-dimensional streets. III leads to the prediction of turbulent boundary-layer micro-scale, displacement-and stress-sublayer-thicknesses.

  4. The role of laser wavelength on plasma generation and expansion of ablation plumes in air

    SciTech Connect

    Hussein, A. E.; Diwakar, P. K.; Harilal, S. S.; Hassanein, A.

    2013-04-14

    We investigated the role of excitation laser wavelength on plasma generation and the expansion and confinement of ablation plumes at early times (0-500 ns) in the presence of atmospheric pressure. Fundamental, second, and fourth harmonic radiation from Nd:YAG laser was focused on Al target to produce plasma. Shadowgraphy, fast photography, and optical emission spectroscopy were employed to analyze the plasma plumes, and white light interferometry was used to characterize the laser ablation craters. Our results indicated that excitation wavelength plays a crucial role in laser-target and laser-plasma coupling, which in turn affects plasma plume morphology and radiation emission. Fast photography and shadowgraphy images showed that plasmas generated by 1064 nm are more cylindrical compared to plasmas generated by shorter wavelengths, indicating the role of inverse bremsstrahlung absorption at longer laser wavelength excitation. Electron density estimates using Stark broadening showed higher densities for shorter wavelength laser generated plasmas, demonstrating the significance of absorption caused by photoionization. Crater depth analysis showed that ablated mass is significantly higher for UV wavelengths compared to IR laser radiation. In this experimental study, the use of multiple diagnostic tools provided a comprehensive picture of the differing roles of laser absorption mechanisms during ablation.

  5. Electrical breakdown of soil under nonlinear pulsed current spreading

    NASA Astrophysics Data System (ADS)

    Vasilyak, L. M.; Pecherkin, V. Ya; Vetchinin, S. P.; Panov, V. A.; Son, E. E.; Efimov, B. V.; Danilin, A. N.; Kolobov, V. V.; Selivanov, V. N.; Ivonin, V. V.

    2015-07-01

    Laboratory investigations on pulsed current spreading from spherical electrodes and evolution of electrical breakdown of silica sand with different water contents under a 15-20 kV voltage pulse were carried out. A sharp nonlinear decrease in the pulsed resistance of soil was observed when the current density exceeded a certain threshold value. Then ionization-overheating instability develops and leads to current contraction and plasma channel formation in the soil. The method for determination of the threshold electric field for ionization is proposed. Electrical discharge in wet sand was found to develop with a significant delay time for long discharge gaps similar to thermal breakdown.

  6. Development of open air silicon deposition technology by silane-free atmospheric pressure plasma enhanced chemical transport under local ambient gas control

    NASA Astrophysics Data System (ADS)

    Naito, Teruki; Konno, Nobuaki; Yoshida, Yukihisa

    2016-07-01

    Open air silicon deposition was performed by combining silane-free atmospheric pressure plasma-enhanced chemical transport and a newly developed local ambient gas control technology. The effect of air contamination on silicon deposition was investigated using a vacuum chamber, and the allowable air contamination level was confirmed to be 3 ppm. The capability of the local ambient gas control head was investigated numerically and experimentally. A safe and clean process environment with air contamination less than 1 ppm was achieved. Combining these technologies, a microcrystalline silicon film was deposited in open air, the properties of which were comparable to those of silicon films deposited in a vacuum chamber.

  7. Energy coupling to the plasma in repetitive nanosecond pulse discharges

    SciTech Connect

    Adamovich, Igor V.; Nishihara, Munetake; Choi, Inchul; Uddi, Mruthunjaya; Lempert, Walter R.

    2009-11-15

    A new analytic quasi-one-dimensional model of energy coupling to nanosecond pulse discharge plasmas in plane-to-plane geometry has been developed. The use of a one-dimensional approach is based on images of repetitively pulsed nanosecond discharge plasmas in dry air demonstrating that the plasma remains diffuse and uniform on a nanosecond time scale over a wide range of pressures. The model provides analytic expressions for the time-dependent electric field and electron density in the plasma, electric field in the sheath, sheath boundary location, and coupled pulse energy. The analytic model predictions are in very good agreement with numerical calculations. The model demonstrates that (i) the energy coupled to the plasma during an individual nanosecond discharge pulse is controlled primarily by the capacitance of the dielectric layers and by the breakdown voltage and (ii) the pulse energy coupled to the plasma during a burst of nanosecond pulses decreases as a function of the pulse number in the burst. This occurs primarily because of plasma temperature rise and resultant reduction in breakdown voltage, such that the coupled pulse energy varies approximately proportionally to the number density. Analytic expression for coupled pulse energy scaling has been incorporated into the air plasma chemistry model, validated previously by comparing with atomic oxygen number density measurements in nanosecond pulse discharges. The results of kinetic modeling using the modified air plasma chemistry model are compared with time-resolved temperature measurements in a repetitively pulsed nanosecond discharge in air, by emission spectroscopy, and purely rotational coherent anti-Stokes Raman spectroscopy showing good agreement.

  8. Energy coupling to the plasma in repetitive nanosecond pulse discharges

    NASA Astrophysics Data System (ADS)

    Adamovich, Igor V.; Nishihara, Munetake; Choi, Inchul; Uddi, Mruthunjaya; Lempert, Walter R.

    2009-11-01

    A new analytic quasi-one-dimensional model of energy coupling to nanosecond pulse discharge plasmas in plane-to-plane geometry has been developed. The use of a one-dimensional approach is based on images of repetitively pulsed nanosecond discharge plasmas in dry air demonstrating that the plasma remains diffuse and uniform on a nanosecond time scale over a wide range of pressures. The model provides analytic expressions for the time-dependent electric field and electron density in the plasma, electric field in the sheath, sheath boundary location, and coupled pulse energy. The analytic model predictions are in very good agreement with numerical calculations. The model demonstrates that (i) the energy coupled to the plasma during an individual nanosecond discharge pulse is controlled primarily by the capacitance of the dielectric layers and by the breakdown voltage and (ii) the pulse energy coupled to the plasma during a burst of nanosecond pulses decreases as a function of the pulse number in the burst. This occurs primarily because of plasma temperature rise and resultant reduction in breakdown voltage, such that the coupled pulse energy varies approximately proportionally to the number density. Analytic expression for coupled pulse energy scaling has been incorporated into the air plasma chemistry model, validated previously by comparing with atomic oxygen number density measurements in nanosecond pulse discharges. The results of kinetic modeling using the modified air plasma chemistry model are compared with time-resolved temperature measurements in a repetitively pulsed nanosecond discharge in air, by emission spectroscopy, and purely rotational coherent anti-Stokes Raman spectroscopy showing good agreement.

  9. Numerical simulation of vortex breakdown

    NASA Technical Reports Server (NTRS)

    Shi, X.

    1985-01-01

    The breakdown of an isolated axisymmetric vortex embedded in an unbounded uniform flow is examined by numerical integration of the complete Navier-Stokes equations for unsteady axisymmetric flow. Results show that if the vortex strength is small, the solution approaches a steady flow and the vortex is stable. If the strength is large enough, the solution remains unsteady and a recirculating zone will appear near the axis, its form and internal structure resembling those of the axisymmetric breakdown bubbles with multi-cells observed by Faler and Leibovich (1978). For apppropriate combinations of flow parameters, the flow reveals quasi-periodicity. Parallel calculations with the quasi-cylindrical approximation indicate that so far as predicting of breakdown is concerned, its results coincide quite well with the results mentioned above. Both show that the vortex breakdown has little concern with the Reynolds number or with the critical classification of the upstream flow, at least for the lower range of Reynolds numbers.

  10. Microwave Plasma Window Theory and Experiments

    NASA Astrophysics Data System (ADS)

    McKelvey, Andrew; Zheng, Peng; Franzi, Matthew; Lau, Y. Y.; Gilgenbach, Ronald; Plasma, Pulsed Power,; Microwave Laboratory Team

    2011-10-01

    The microwave plasma window is an experiment designed to promote RF breakdown in a controlled vacuum-gas environment using a DC bias. Experimental data has shown that this DC bias will significantly reduce the RF power required to yield breakdown, a feature also shown in recent simulation. The cross-polarized conducting array is biased at (100's V) DC on the surface of a Lucite vacuum window. Microwave power is supplied to the window's surface by a single 1-kW magnetron operating at 2.45 GHz CW. The goal of this project is to establish controllable characteristics relating vacuum pressure, DC bias, RF power required for surface breakdown, as well as RF transmission after the formation of plasma. Experimental data will be compared with multipactor susceptibility curves generated using a Monte Carlo simulation which incorporates an applied DC bias and finite pressures of air and argon. Research supported by an AFOSR grant on the Basic Physics of Distributed Plasma Discharge, AFRL, L-3 Communications, and Northrop Grumman.

  11. Functionalization of Hydrogen-free Diamond-like Carbon Films using Open-air Dielectric Barrier Discharge Atmospheric Plasma Treatments

    SciTech Connect

    Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Instituto de Materiales de Madrid, C.S.I.C., Cantoblanco, 28049 Madrid, Spain; Instituto de Quimica-Fisica"Rocasolano"C.S.I.C., 28006 Madrid, Spain; Mahasarakham University, Mahasarakham 44150, Thailand; CASTI, CNR-INFM Regional Laboratory, L'Aquila 67100, Italy; SUNY Upstate Medical University, Syracuse, NY 13210, USA; Endrino, Jose; Endrino, J. L.; Marco, J. F.; Poolcharuansin, P.; Phani, A.R.; Allen, M.; Albella, J. M.; Anders, A.

    2007-12-28

    A dielectric barrier discharge (DBD) technique has been employed to produce uniform atmospheric plasmas of He and N2 gas mixtures in open air in order to functionalize the surface of filtered-arc deposited hydrogen-free diamond-like carbon (DLC) films. XPS measurements were carried out on both untreated and He/N2 DBD plasma treated DLC surfaces. Chemical states of the C 1s and N 1s peaks were collected and used to characterize the surface bonds. Contact angle measurements were also used to record the short- and long-term variations in wettability of treated and untreated DLC. In addition, cell viability tests were performed to determine the influence of various He/N2 atmospheric plasma treatments on the attachment of osteoblast MC3T3 cells. Current evidence shows the feasibility of atmospheric plasmas in producing long-lasting variations in the surface bonding and surface energy of hydrogen-free DLC and consequently the potential for this technique in the functionalization of DLC coated devices.

  12. Comparison of atmospheric air plasmas excited by high-voltage nanosecond pulsed discharge and sinusoidal alternating current discharge

    NASA Astrophysics Data System (ADS)

    Zhang, Shuai; Wang, Wen-chun; Jiang, Peng-chao; Yang, De-zheng; Jia, Li; Wang, Sen

    2013-10-01

    In this paper, atmospheric pressure air discharge plasma in quartz tube is excited by 15 ns high-voltage nanosecond pulsed discharge (HVNPD) and sinusoidal alternating current discharge (SACD), respectively, and a comparison study of these two kinds of discharges is made through visual imaging, electrical characterization, optical detection of active species, and plasma gas temperature. The peak voltage of the power supplies is kept at 16 kV while the pulse repetition rate of nanosecond pulse power supply is 100 Hz, and the frequency of sinusoidal power supply is 10 kHz. Results show that the HVNPD is uniform while the SACD presents filamentary mode. For exciting the same cycles of discharge, the average energy consumption in HVNPD is about 1/13 of the SACD. However, the chemical active species generated by the HVNPD is about 2-9 times than that excited by the SACD. Meanwhile, the rotational and vibrational temperatures have been obtained via fitting the simulated spectrum of N2 (C3Πu → B3Πg, 0-2) with the measured one, and the results show that the plasma gas temperature in the HVNPD remains close to room temperature whereas the plasma gas temperature in the SACD is about 200 K higher than that in HVNPD in the initial phase and continually increases as discharge exposure time goes on.

  13. Development of microwave-enhanced spark-induced breakdown spectroscopy

    SciTech Connect

    Ikeda, Yuji; Moon, Ahsa; Kaneko, Masashi

    2010-05-01

    We propose microwave-enhanced spark-induced breakdown spectroscopy with the same measurement and analysis processes as in laser-induced breakdown spectroscopy, but with a different plasma generation mechanism. The size and lifetime of the plasma generated can contribute to increased measurement accuracy and expand its applicability to industrial measurement, such as an exhaust gas analyzer for automobile engine development and its regulation, which has been hard to operate by laser at an engineering evaluation site. The use of microwaves in this application helps lower the cost, reduce the system size, and increase the ease of operation to make it commercially viable. A microwave frequency of 2.45 GHz was used to enhance the volume and lifetime of the plasma at atmospheric condition even at elevated pressure.

  14. Microstructural study of as sprayed and heat treated Ni3Al coatings deposited by air plasma spraying technique

    NASA Astrophysics Data System (ADS)

    Mehmood, K.; Rafiq, M. A.; Nusair Khan, A.; Rauf, M. M.

    2016-08-01

    Air plasma spraying system was utilized to deposit Ni3Al coatings on AISI 321 steel samples. After plasma spraying the coatings were heat treated at different temperatures i.e. 500 °C to 800 °C for 10 to 100 hours. The characterization tools such as, X-Ray diffraction analysis, optical and scanning electron microscopy were used. By comparing the XRD scan data of as sprayed and heat treated coating, it was observed that the formation of NiO increases drastically with time and temperature. Due to the formation of NiO, hardness was also enhanced. The oxidation behavior was observed by using optical microscope and when it was studied that the oxidation was increasing with time and temperature. Further, the SEM tool was utilized to study the detail microstructural behavior such as shrinkage cavity and oxide particles. The other phases like alumina and spinel phases were determined by using Energy dispersive spectrometer method.

  15. Air pollution impact on phagocytic capacity of peripheral blood macrophages and antioxidant activity of plasma among school children

    SciTech Connect

    Ruiz, F.; Videla, L.A.; Vargas, N.; Parra, M.A.; Trier, A.; Silva, C.

    1988-07-01

    Peripheral blood macrophages of school children from downtown Santiago, Chile--a highly polluted city--exhibited a lower phagocytic index with higher percentage of killing than those of the rural village of Maria Pinto. These findings were observed concomitantly with a lower antioxidant activity of plasma in Santiago students. No differences were observed in serum immunoglobulins (IgA, IgG, and IgM), secretory IgA in saliva, and complement component C3. White blood cell count was higher in Maria Pinto residents than in Santiago students, including those cells with phagocytic capacity. It is suggested that particulate air pollution may enhance macrophage activity with impairment of the antioxidant capacity of plasma.

  16. Kinetic study on non-thermal volumetric plasma decay in the early afterglow of air discharge generated by a short pulse microwave or laser

    NASA Astrophysics Data System (ADS)

    Yang, Wei; Zhou, Qianhong; Dong, Zhiwei

    2016-08-01

    This paper reports a kinetic study on non-thermal plasma decay in the early afterglow of air discharge generated by short pulse microwave or laser. A global self-consistent model is based on the particle balance of complex plasma chemistry, electron energy equation, and gas thermal balance equation. Electron-ion Coulomb collision is included in the steady state Boltzmann equation solver to accurately describe the electron mobility and other transport coefficients. The model is used to simulate the afterglow of microsecond to nanosecond pulse microwave discharge in N2, O2, and air, as well as femtosecond laser filament discharge in dry and humid air. The simulated results for electron density decay are in quantitative agreement with the available measured ones. The evolution of plasma decay under an external electric field is also investigated, and the effect of gas heating is considered. The underlying mechanism of plasma density decay is unveiled through the above kinetic modeling.

  17. Absorption of laser radiation by femtosecond laser-induced plasma of air and its emission characteristics

    NASA Astrophysics Data System (ADS)

    Ilyin, A. A.; Golik, S. S.; Shmirko, K. A.

    2015-11-01

    The energy absorbed by femtosecond laser plasma has nonlinear dependence on incident laser energy. The threshold power for plasma formation is 5.2 GW. Emission of nitrogen molecule, nitrogen molecule ion, atomic oxygen (unresolved triplet O I 777 nm) and nitrogen (triplet N I 742.4, 744.3 and 746.8 nm) lines is detected. Molecular emission consists of second positive and firs negative systems of nitrogen. Time-resolved spectroscopy of plasmas shows short molecular line emission (up to 1 ns) and long atomic line emission (up to 150 ns).

  18. Laser-induced breakdown emission in hydrocarbon fuel mixtures

    NASA Astrophysics Data System (ADS)

    Kobayashi, Kazunobu; Bak, Moon Soo; Tanaka, Hiroki; Carter, Campbell; Do, Hyungrok

    2016-04-01

    Time-resolved emission measurements of laser-induced breakdown plasmas have been carried out to investigate the effect that gas species might have on the kinetics, particularly in excited states, and the resulting plasma properties. For this purpose, fuel-oxygen (O2)-carbon dioxide (CO2) mixtures with either helium (He) or nitrogen (N2) balance are prepared while maintaining their atomic compositions. The fuels tested in this study are methane (CH4), ethylene (C2H4), propane (C3H8), and butane (C4H10). The breakdown is produced in the mixtures (CH4/CO2/O2/He, C2H4/O2/He, C3H8/CO2/O2/He and C4H10/CO2/O2/He or CH4/CO2/O2/N2, C2H4/O2/N2, C3H8/CO2/O2/N2 and C4H10/CO2/O2/N2) at room conditions using the second harmonic of a Q-switched Nd:YAG laser (with pulse duration of 10 ns). The temporal evolution of plasma temperature is deduced from the ratio of two oxygen lines (777 nm and 823 nm) through Boltzmann analysis, while the evolution of electron number density is estimated based on Stark broadening of the Balmer-alpha (H α ) line at 656 nm and the measured plasma temperature. From the results, the temporal evolution of emission spectra and decay rates of atomic line-intensities are found to be almost identical between the breakdown plasma in the different mixtures given balancing gases. Furthermore, the temporal evolution of plasma temperature and electron number density are also found to be independent of the species compositions. Therefore, this behavior—of the breakdown emissions and plasma properties in the different mixtures with identical atomic composition—may be because the breakdown gases reach similar thermodynamic and physiochemical states immediately after the breakdown.

  19. Parametric study of Al and Al 2O 3 ceramic coatings deposited by air plasma spray onto polymer substrate

    NASA Astrophysics Data System (ADS)

    Guanhong, Sun; Xiaodong, He; Jiuxing, Jiang; Yue, Sun

    2011-06-01

    Aluminum and ceramic (Al 2O 3) coatings were deposited onto the polymer substrate by air plasma spray (APS) to improve the mechanical properties of the polymer surface. The effect of spray parameters (current and spray distance in this paper) on the phase composition, microstructure and mechanical properties was investigated. Shear adhesion strength between the coatings and the substrates was also examined. The results indicate that the deposition parameters have a significant effect on the phase composition, microstructure and mechanical properties of as-spayed coatings. The maximum shear adhesion strength of the bond coats was 5.21 MPa with the current of 180 A and 190 mm spray distance.

  20. Laminar lean premixed methane/air combustion near the lean flammability limit using nanosecond repetitive pulsed discharge plasmas

    NASA Astrophysics Data System (ADS)

    Bak, Moon Soo; Do, Hyungrok; Mungal, Mark G.; Cappelli, Mark A.

    2011-10-01

    Gas chromatographic and temperature measurements have been carried out to investigate the extent of premixed methane/air combustion with the application of nanosecond repetitive pulsed discharges around the lean flammability limit for laminar flows. The results show that the discharges lead to the complete combustion when the equivalence ratio is above 0.54, but when the ratio is below the limit, the combustion is quenched at the downstream flow. To investigate the kinetics in detail, 2-D simulations of plasma-induced combustion have been conducted for methane/air mixtures at below and above the lean flammability limit. The simulations reveal that methane is mostly combusted in the discharge region since the discharge repetition timescale is much shorter than the species diffusion and advection timescales, and so the discharge serves more as a heat and radical source rather than a small combustor, to flame hold near the lean flammability limit.

  1. Directed transfer of microwave radiation in sliding-mode plasma waveguides produced by ultraviolet laser in atmospheric air.

    PubMed

    Zvorykin, Vladimir D; Ionin, Andrei A; Levchenko, Alexei O; Seleznev, Leonid V; Sinitsyn, Dmitrii V; Smetanin, Igor' V; Ustinovskii, Nikolai N; Shutov, Alexei V

    2014-11-01

    Experiments have been performed at hybrid Ti:sapphire/KrF laser facility GARPUN-MTW to develop a novel technique to create a hollow-core sliding-mode plasma-filament waveguide for directed transfer of microwave radiation. Efficient multiphoton air ionization was produced by a train of picosecond 1-TW UV pulses at 248 nm wavelength, or by amplitude-modulated 100 ns pulse combining a short-pulse train with a free-running 1-GW pulse, which detached electrons off O2- ions. Multiple filamentation of UV laser radiation in air was observed, and filamentation theory based on resonance-enhanced ionization was developed to explain the experimental results.

  2. RF BREAKDOWN STUDIES USING PRESSURIZED CAVITIES

    SciTech Connect

    Johnson, Rolland

    2014-09-21

    Many present and future particle accelerators are limited by the maximum electric gradient and peak surface fields that can be realized in RF cavities. Despite considerable effort, a comprehensive theory of RF breakdown has not been achieved and mitigation techniques to improve practical maximum accelerating gradients have had only limited success. Part of the problem is that RF breakdown in an evacuated cavity involves a complex mixture of effects, which include the geometry, metallurgy, and surface preparation of the accelerating structures and the make-up and pressure of the residual gas in which plasmas form. Studies showed that high gradients can be achieved quickly in 805 MHz RF cavities pressurized with dense hydrogen gas, as needed for muon cooling channels, without the need for long conditioning times, even in the presence of strong external magnetic fields. This positive result was expected because the dense gas can practically eliminate dark currents and multipacting. In this project we used this high pressure technique to suppress effects of residual vacuum and geometry that are found in evacuated cavities in order to isolate and study the role of the metallic surfaces in RF cavity breakdown as a function of magnetic field, frequency, and surface preparation. One of the interesting and useful outcomes of this project was the unanticipated collaborations with LANL and Fermilab that led to new insights as to the operation of evacuated normal-conducting RF cavities in high external magnetic fields. Other accomplishments included: (1) RF breakdown experiments to test the effects of SF6 dopant in H2 and He gases with Sn, Al, and Cu electrodes were carried out in an 805 MHz cavity and compared to calculations and computer simulations. The heavy corrosion caused by the SF6 components led to the suggestion that a small admixture of oxygen, instead of SF6, to the hydrogen would allow the same advantages without the corrosion in a practical muon beam line. (2) A

  3. Short-term effects of air temperature on plasma metabolite concentrations in patients undergoing cardiac cattheterization.

    EPA Science Inventory

    BACKGROUND: Epidemiological studies have shown associations between air temperature and cardiovascular health outcomes. Metabolic dysregulation might also play a role in the development of cardiovascular disease.OBJECTIVES: To investigate short-term temperature effects on metabol...

  4. Simultaneous species concentration and temperature measurements using laser induced breakdown spectroscopy with direct spectrum matching

    NASA Astrophysics Data System (ADS)

    McGann, Brendan J.

    Laser induced breakdown spectroscopy (LIBS) is used to simultaneously measure hydrocarbon fuel concentration and temperature in high temperature, high speed, compressible, and reacting flows, a regime in which LIBS has not been done previously. Emission spectra from the plasma produced from a focused laser pulse is correlated in the combustion region of a model scramjet operating in supersonic wind tunnel. A 532 nm Nd:YAG laser operating at 10 Hz is used to induce break-down. The emissions are captured during a 10 ns gate time approximately 75 ns after the first arrival of photons at the measurement location in order to minimize the measurement uncertainty in the turbulent, compressible, high-speed, and reacting environment. Three methods of emission detection are used and a new backward scattering direction method is developed that is beneficial in reducing the amount of optical access needed to perform LIBS measurements. Measurements are taken in the model supersonic combustion and the ignition process is shown to be highly dependent on fuel concentration and gas density as well as combustion surface temperature, concentration gradient, and flow field. Direct spectrum matching method is developed and used for quantitative measurements. In addition, a comprehensive database of spectra covering the fuel concentrations and gas densities found in the wind tunnel of Research Cell 19 at Wright Patterson Air Force Base is created which can be used for further work.

  5. Unmanned air vehicle flow separation control using dielectric barrier discharge plasma at high wind speed

    NASA Astrophysics Data System (ADS)

    Zhang, Xin; Huang, Yong; Wang, WanBo; Wang, XunNian; Li, HuaXing

    2014-06-01

    The present paper described an experimental investigation of separation control of an Unmanned Aerial Vehicle (UAV) at high wind speeds. The plasma actuator was based on Dielectric Barrier Discharge (DBD) and operated in a steady manner. The flow over a wing of UAV was performed with smoke flow visualization in the ϕ0.75 m low speed wind tunnel to reveal the flow structure over the wing so that the locations of plasma actuators could be optimized. A full model of the UAV was experimentally investigated in the ϕ3.2 m low speed wind tunnel using a six-component internal strain gauge balance. The effects of the key parameters, including the locations of the plasma actuators, the applied voltage amplitude and the operating frequency, were obtained. The whole test model was made of aluminium and acted as a cathode of the actuator. The results showed that the plasma acting on the surface of UAV could obviously suppress the boundary layer separation and reduce the model vibration at the high wind speeds. It was found that the maximum lift coefficient of the UAV was increased by 2.5% and the lift/drag ratio was increased by about 80% at the wind speed of 100 m/s. The control mechanism of the plasma actuator at the test configuration was also analyzed.

  6. The effects of electron thermal radiation on laser ablative shock waves from aluminum plasma into ambient air

    NASA Astrophysics Data System (ADS)

    Sai Shiva, S.; Leela, Ch.; Prem Kiran, P.; Sijoy, C. D.; Chaturvedi, S.

    2016-05-01

    The effect of electron thermal radiation on 7 ns laser ablative shock waves from aluminum (Al) plasma into an ambient atmospheric air has been numerically investigated using a one-dimensional, three-temperature (electron, ion, and radiation) radiation hydrodynamic code MULTI. The governing equations in Lagrangian form are solved using an implicit scheme for planar, cylindrical, and spherical geometries. The shockwave velocities (Vsw) obtained numerically are compared with our experimental values obtained over the intensity range of 2.0 × 1010 to 1.4 × 1011 W/cm2. It is observed that the numerically obtained Vsw is significantly influenced by the thermal radiation effects which are found to be dominant in the initial stage up to 2 μs depending on the input laser energy. Also, the results are found to be sensitive to the co-ordinate geometry used in the simulation (planar, cylindrical, and spherical). Moreover, it is revealed that shock wave undergoes geometrical transitions from planar to cylindrical nature and from cylindrical to spherical nature with time during its propagation into an ambient atmospheric air. It is also observed that the spatio-temporal evolution of plasma electron and ion parameters such as temperature, specific energy, pressure, electron number density, and mass density were found to be modified significantly due to the effects of electron thermal radiation.

  7. Dielectric breakdown of cell membranes.

    PubMed

    Zimmermann, U; Pilwat, G; Riemann, F

    1974-11-01

    With human and bovine red blood cells and Escherichia coli B, dielectric breakdown of cell membranes could be demonstrated using a Coulter Counter (AEG-Telefunken, Ulm, West Germany) with a hydrodynamic focusing orifice. In making measurements of the size distributions of red blood cells and bacteria versus increasing electric field strength and plotting the pulse heights versus the electric field strength, a sharp bend in the otherwise linear curve is observed due to the dielectric breakdown of the membranes. Solution of Laplace's equation for the electric field generated yields a value of about 1.6 V for the membrane potential at which dielectric breakdown occurs with modal volumes of red blood cells and bacteria. The same value is also calculated for red blood cells by applying the capacitor spring model of Crowley (1973. Biophys. J. 13:711). The corresponding electric field strength generated in the membrane at breakdown is of the order of 4 . 10(6) V/cm and, therefore, comparable with the breakdown voltages for bilayers of most oils. The critical detector voltage for breakdown depends on the volume of the cells. The volume-dependence predicted by Laplace theory with the assumption that the potential generated across the membrane is independent of volume, could be verified experimentally. Due to dielectric breakdown the red blood cells lose hemoglobin completely. This phenomenon was used to study dielectric breakdown of red blood cells in a homogeneous electric field between two flat platinum electrodes. The electric field was applied by discharging a high voltage storage capacitor via a spark gap. The calculated value of the membrane potential generated to produce dielectric breakdown in the homogeneous field is of the same order as found by means of the Coulter Counter. This indicates that mechanical rupture of the red blood cells by the hydrodynamic forces in the orifice of the Coulter Counter could also be excluded as a hemolysing mechanism. The detector

  8. COMPARISON OF THERMAL PROPERTIES OF THERMAL BARRIER COATING DEPOSITED ON IN738 USING STANDARD AIR PLASMA SPRAY WITH 100HE PLASMA SPRAY SYSTEM

    SciTech Connect

    Uppu, N.; Mensah, P.F.; Ofori, D.

    2006-07-01

    A typical blade material is made of Nickel super alloy and can bear temperatures up to 950°C. But the operating temperature of a gas turbine is above the melting point of super alloy nearly at 1500°C. This could lead to hot corrosions, high temperature oxidation, creep, thermal fatigue may takes place on the blade material. Though the turbine has an internal cooling system, the cooling is not adequate to reduce the temperature of the blade substrate. Therefore to protect the blade material as well as increase the efficiency of the turbine, thermal barrier coatings (TBCs) must be used. A TBC coating of 250 μm thick can reduce the temperature by up to 200° C. Air Plasma Spray Process (APS) and High Enthalpy Plasma Spray Process (100HE) were the processes used for coating the blades with the TBCs. Because thermal conductivity increases with increase in temperature, it is desired that these processes yield very low thermal conductivities at high temperatures in order not to damage the blade. An experiment was carried out using Flash line 5000 apparatus to compare the thermal conductivity of both processes.The apparatus could also be used to determine the thermal diffusivity and specific heat of the TBCs. 75 to 2800 K was the temperature range used in the experimentation. It was found out that though 100HE has high deposition efficiency, the thermal conductivity increases with increase in temperatures whiles APS yielded low thermal conductivities.

  9. Calculation and measurement of terahertz radio emissions from a thin plasma filament in the tropospheric air

    NASA Astrophysics Data System (ADS)

    Isham, B.; Kunhardt, E.

    2012-12-01

    Recent advances in terawatt laser technology have made it possible to ionize the troposphere in long (centimeters to kilometers), narrow (less than 1 mm), wire-like plasma filaments. These filaments emit high-power stimulated electromagnetic emissions (SEE) in the terahertz (submillimeter) radio band, a frontier in the electromagnetic spectrum lying between the microwave and far infrared. Using an accepted model for the plasma oscillations in the filament, and a thin-wire approximation, we have calculated the current density and the resulting pattern of terahertz radiation emitted from the filament. The conical shape and opening angle match match those of recent measurements. Plans for future experiments and modeling include measurements of the radiation pattern and frequency spectrum for comparison with detailed calculations of filament plasma processes. Potential applications include safe high-resolution imaging and remote spectroscopic identification of chemical substances.

  10. Microwave interaction with air

    NASA Astrophysics Data System (ADS)

    Bollen, W. M.; Pershing, D.

    1985-06-01

    Microwave breakdown studies of gaseous elements have been carried out extensively over a wide range of pressures and for several microwave frequencies using CW and pulsed radiation sources. The main emphasis in these studies was on the determination of the breakdown power threshold and its dependence on the gas pressure and the microwave frequency. The coupling of mircowave energy into the breakdown plasma and neutral gas has not been studied in detail. The reason for this is that, until recently, no high-power microwave sources have been available to perform such studies. Most of the early work performed on breakdown thresholds was performed using high Q-cavities to obtain the necessary electric field to break down the gas. Once breakdown of the gas occurred, the Q of the cavity dropped and the interaction changed. Using the NRL high-power gyrotron facility, we have been able to eliminate the need for cavities and have performed experiments using a focused geometry to examine the coupling of microwave energy to nitrogen gas during breakdown. We have also modeled the experiments using a 1-D computer simulation code. Simulations were performed in a spherical geometry using a self-consistent, nitrogen chemistry, wave optics, microwave breakdown simulation code, MINI. The main emphasis of past work was on the ionization front created during nitrogen breakdown and its motion and plasma properties, as observed experimentally.

  11. Wind tunnel experiments on flow separation control of an Unmanned Air Vehicle by nanosecond discharge plasma aerodynamic actuation

    NASA Astrophysics Data System (ADS)

    Kang, Chen; Hua, Liang

    2016-02-01

    Plasma flow control (PFC) is a new kind of active flow control technology, which can improve the aerodynamic performances of aircrafts remarkably. The flow separation control of an unmanned air vehicle (UAV) by nanosecond discharge plasma aerodynamic actuation (NDPAA) is investigated experimentally in this paper. Experimental results show that the applied voltages for both the nanosecond discharge and the millisecond discharge are nearly the same, but the current for nanosecond discharge (30 A) is much bigger than that for millisecond discharge (0.1 A). The flow field induced by the NDPAA is similar to a shock wave upward, and has a maximal velocity of less than 0.5 m/s. Fast heating effect for nanosecond discharge induces shock waves in the quiescent air. The lasting time of the shock waves is about 80 μs and its spread velocity is nearly 380 m/s. By using the NDPAA, the flow separation on the suction side of the UAV can be totally suppressed and the critical stall angle of attack increases from 20° to 27° with a maximal lift coefficient increment of 11.24%. The flow separation can be suppressed when the discharge voltage is larger than the threshold value, and the optimum operation frequency for the NDPAA is the one which makes the Strouhal number equal one. The NDPAA is more effective than the millisecond discharge plasma aerodynamic actuation (MDPAA) in boundary layer flow control. The main mechanism for nanosecond discharge is shock effect. Shock effect is more effective in flow control than momentum effect in high speed flow control. Project supported by the National Natural Science Foundation of China (Grant Nos. 61503302, 51207169, and 51276197), the China Postdoctoral Science Foundation (Grant No. 2014M562446), and the Natural Science Foundation of Shaanxi Province, China (Grant No. 2015JM1001).

  12. Electrical Breakdown in Water Vapor

    SciTech Connect

    Skoro, N.; Maric, D.; Malovic, G.; Petrovic, Z. Lj.; Graham, W. G.

    2011-11-15

    In this paper investigations of the voltage required to break down water vapor are reported for the region around the Paschen minimum and to the left of it. In spite of numerous applications of discharges in biomedicine, and recent studies of discharges in water and vapor bubbles and discharges with liquid water electrodes, studies of the basic parameters of breakdown are lacking. Paschen curves have been measured by recording voltages and currents in the low-current Townsend regime and extrapolating them to zero current. The minimum electrical breakdown voltage for water vapor was found to be 480 V at a pressure times electrode distance (pd) value of around 0.6 Torr cm ({approx}0.8 Pa m). The present measurements are also interpreted using (and add additional insight into) the developing understanding of relevant atomic and particularly surface processes associated with electrical breakdown.

  13. Electrical breakdown in tissue electroporation.

    PubMed

    Guenther, Enric; Klein, Nina; Mikus, Paul; Stehling, Michael K; Rubinsky, Boris

    2015-11-27

    Electroporation, the permeabilization of the cell membrane by brief, high electric fields, has become an important technology in medicine for diverse application ranging from gene transfection to tissue ablation. There is ample anecdotal evidence that the clinical application of electroporation is often associated with loud sounds and extremely high currents that exceed the devices design limit after which the devices cease to function. The goal of this paper is to elucidate and quantify the biophysical and biochemical basis for this phenomenon. Using an experimental design that includes clinical data, a tissue phantom, sound, optical, ultrasound and MRI measurements, we show that the phenomenon is caused by electrical breakdown across ionized electrolysis produced gases near the electrodes. The breakdown occurs primarily near the cathode. Electrical breakdown during electroporation is a biophysical phenomenon of substantial importance to the outcome of clinical applications. It was ignored, until now.

  14. Three-dimensional effects of curved plasma actuators in quiescent air

    SciTech Connect

    Wang Chincheng; Durscher, Ryan; Roy, Subrata

    2011-04-15

    This paper presents results on a new class of curved plasma actuators for the inducement of three-dimensional vortical structures. The nature of the fluid flow inducement on a flat plate, in quiescent conditions, due to four different shapes of dielectric barrier discharge (DBD) plasma actuators is numerically investigated. The three-dimensional plasma kinetic equations are solved using our in-house, finite element based, multiscale ionized gas (MIG) flow code. Numerical results show electron temperature and three dimensional plasma force vectors for four shapes, which include linear, triangular, serpentine, and square actuators. Three-dimensional effects such as pinching and spreading the neighboring fluid are observed for serpentine and square actuators. The mechanisms of vorticity generation for DBD actuators are discussed. Also the influence of geometric wavelength ({lambda}) and amplitude ({Lambda}) of the serpentine and square actuators on vectored thrust inducement is predicted. This results in these actuators producing significantly better flow mixing downstream as compared to the standard linear actuator. Increasing the wavelengths of serpentine and square actuators in the spanwise direction is shown to enhance the pinching effect giving a much higher vertical velocity. On the contrary, changing the amplitude of the curved actuator varies the streamwise velocity significantly influencing the near wall jet. Experimental data for a serpentine actuator are also reported for validation purpose.

  15. On the dynamics of hot air plasmas related to lightning discharges: 2. Electrodynamics

    NASA Astrophysics Data System (ADS)

    Ripoll, Jean-François; Zinn, John; Colestock, Patrick L.; Jeffery, Christopher A.

    2014-08-01

    In this paper, we develop a model of electrical discharge in air for the simulation of some of the electrical processes involved in lightning discharges, as in lightning return strokes and dart leaders. The discharge is initiated by a vertical electrical field and modeled using a nonlinear R-L-C circuit model, with which we attempt to simulate initiation, growth, radial expansion, and decay of electrical discharges related to lightning. This gas dynamic type model includes also both detailed air chemistry and accurate air radiation transport, as described in the first part of this article. For certain parameter configurations, our first lightning-related discharge simulations compare well with lightning observations and actual knowledge in terms of chronology, charge and energy depleted, current created, electron concentration, temperature, pressure, and optical signature. We also discuss the difficulties to obtain fully consistent results due to the wide parameter variability, their uncertainty, and the complexity of the physics involved.

  16. Novel laser breakdown spectrometer for environmental monitoring

    NASA Astrophysics Data System (ADS)

    Mirov, Sergey B.; Pitt, Robert E.; Dergachev, Alex Y.; Lee, Wonwoo; Martyshkin, Dmitri V.; Mirov, Olga D.; Randolph, Jeremy J.; DeLucas, Lawrence J.; Brouillette, Christie G.; Basiev, Tasoltan T.; Orlovskii, Yurii V.; Alimov, Olimkhon K.; Vorob'ev, Ivan N.

    1999-11-01

    A novel experimental set-up using laser-induced breakdown spectroscopy (LIBS) for environmental analyses of heavy metals is described in this paper. It is based on state-of-the-art spectroscopic equipment, advanced detectors, and laser atomizers: a 0.75 m spectrometer ARC-750, intensified TE- cooled 256 X 1024 CCD camera, probe with fiber optic guide for signal transportation, and Nd:YAG laser plasma atomizers with two different methods for sample delivery. In the first method the liquid solution containing the atoms to be investigated is drawn into the chamber of the nebulizer. The mixture passes through the nozzle, accompanied by argon gas along with formed aerosol, and enters the plasma plume, which is generated by the laser spark in argon. The second method is based on direct generating of the plasma in the water jet of a continuously circulating sample. LIBS testing of samples containing Al, Cd, Cu, Fe, Pb, Zn, and Cr ions was compared with results using atomic absorption spectrophotometry. Initial indications showed good agreement between these two methods. Detection levels of less than 100 ppb were observed for copper and chromium. The described spectroscopic system exhibits high sensitivity, accumulation of luminescence spectrum in real time; and high dynamic range for concentrations detection from 100 ppb to 1000 ppm.

  17. Measurement of breakdown current in dielectric materials

    NASA Astrophysics Data System (ADS)

    Pakhotin, V. A.; Zakrevskii, V. A.; Sudar', N. T.

    2015-08-01

    A new method to determine the resistance of the breakdown channel, current, and characteristic time is based on the measurements of the breakdown current pulse in a wide range of parameters of the measurement circuit. A problem with time-dependent resistance of the breakdown channel is numerically solved. An experimental variation in the resistance of the breakdown channel can be used to estimate the breakdown time. The method is tested with the aid of computer experiments and employed in the analysis of oscillograms of breakdown current in experiments with a dielectric polymer.

  18. Review of recent theories and experiments for improving high-power microwave window breakdown thresholds

    SciTech Connect

    Chang Chao; Liu Guozhi; Tang Chuanxiang; Chen Changhua; Fang Jinyong

    2011-05-15

    Dielectric window breakdown is a serious challenge in high-power microwave (HPM) transmission and radiation. Breakdown at the vacuum/dielectric interface is triggered by multipactor and finally realized by plasma avalanche in the ambient desorbed or evaporated gas layer above the dielectric. Methods of improving breakdown thresholds are key challenges in HPM systems. First, the main theoretical and experimental progress is reviewed. Next, the mechanisms of multipactor suppression for periodic rectangular and triangular surface profiles by dynamic analysis and particle-in-cell simulations are surveyed. Improved HPM breakdown thresholds are demonstrated by proof-of-principle and multigigawatt experiments. The current theories and experiments of using dc magnetic field to resonantly accelerate electrons to suppress multipactor are also synthesized. These methods of periodic profiles and magnetic field may solve the key issues of HPM vacuum dielectric breakdown.

  19. Investigation on the effect of RF air plasma and neem leaf extract treatment on the surface modification and antimicrobial activity of cotton fabric

    NASA Astrophysics Data System (ADS)

    Vaideki, K.; Jayakumar, S.; Rajendran, R.; Thilagavathi, G.

    2008-02-01

    A thorough investigation on the antimicrobial activity of RF air plasma and azadirachtin (neem leaf extract) treated cotton fabric has been dealt with in this paper. The cotton fabric was given a RF air plasma treatment to improve its hydrophilicity. The process parameters such as electrode gap, time of exposure and RF power have been varied to study their effect in improving the hydrophilicity of the cotton fabric and they were optimized based on the static immersion test results. The neem leaf extract (azadirachtin) was applied on fabric samples to impart antimicrobial activity. The antimicrobial efficacy of the samples have been analysed and compared with the efficacy of the cotton fabric treated with the antimicrobial finish alone. The investigation reveals that the RF air plasma has modified the surface of the fabric, which in turn increased the antimicrobial activity of the fabric when treated with azadirachtin. The surface modification due to RF air plasma treatment has been analysed by comparing the FTIR spectra of the untreated and plasma treated samples. The molecular interaction between the fabric, azadirachtin and citric acid which was used as a cross linking agent to increase the durability of the antimicrobial finish has also been analysed using FTIR spectra.

  20. Oxidation mechanisms of CF2Br2 and CH2Br2 induced by air nonthermal plasma.

    PubMed

    Schiorlin, Milko; Marotta, Ester; Dal Molin, Marta; Paradisi, Cristina

    2013-01-01

    Oxidation mechanisms in air nonthermal plasma (NTP) at room temperature and atmospheric pressure were investigated in a corona reactor energized by +dc, -dc, or +pulsed high voltage.. The two bromomethanes CF(2)Br(2) and CH(2)Br(2) were chosen as model organic pollutants because of their very different reactivities with OH radicals. Thus, they served as useful mechanistic probes: they respond differently to the presence of humidity in the air and give different products. By FT-IR analysis of the postdischarge gas the following products were detected and quantified: CO(2) and CO in the case of CH(2)Br(2), CO(2) and F(2)C ═ O in the case of CF(2)Br(2). F(2)C ═ O is a long-lived oxidation intermediate due to its low reactivity with atmospheric radicals. It is however removed from the NTP processed gas by passage through a water scrubber resulting in hydrolysis to CO(2) and HF. Other noncarbon containing products of the discharge were also monitored by FT-IR analysis, including HNO(3) and N(2)O. Ozone, an important product of air NTP, was never detected in experiments with CF(2)Br(2) and CH(2)Br(2) because of the highly efficient ozone depleting cycles catalyzed by BrOx species formed from the bromomethanes. It is concluded that, regardless of the type of corona applied, CF(2)Br(2) reacts in air NTP via a common intermediate, the CF(2)Br radical. The possible reactions leading to this radical are discussed, including, for -dc activation, charge exchange with O(2)(-), a species detected by APCI mass spectrometry. PMID:23190335

  1. Volume Diffuse Dielectric Barrier Discharge Plasma Produced by Nanosecond High Voltage Pulse in Airflow

    NASA Astrophysics Data System (ADS)

    Qi, Haicheng; Gao, Wei; Fan, Zhihui; Liu, Yidi; Ren, Chunsheng

    2016-05-01

    Volume diffuse dielectric barrier discharge (DBD) plasma is produced in subsonic airflow by nanosecond high-voltage pulse power supply with a plate-to-plate discharge cell at 6 mm air gap length. The discharge images, optical emission spectra (OES), the applied voltage and current waveforms of the discharge at the changed airflow rates are obtained. When airflow rate is increased, the transition of the discharge mode and the variations of discharge intensity, breakdown characteristics and the temperature of the discharge plasma are investigated. The results show that the discharge becomes more diffuse, discharge intensity is decreased accompanied by the increased breakdown voltage and time lag, and the temperature of the discharge plasma reduces when airflow of small velocity is introduced into the discharge gap. These phenomena are because that the airflow changes the spatial distribution of the heat and the space charge in the discharge gap. supported by National Natural Science Foundation of China (No. 51437002)

  2. Low friction stainless steel coatings graphite doped elaborated by air plasma sprayed

    NASA Astrophysics Data System (ADS)

    Harir, A.; Ageorges, H.; Grimaud, A.; Fauchais, P.; Platon, F.

    2004-10-01

    A new process has been developed to incorporate graphite particles into a stainless steel coating during its formation. Four means have been tested to inject the graphite particles outside the plasma jet and its plume: graphite suspension, a graphite rod rubbed on the rotating sample, powder injection close to the substrate with an injector, or a specially designed guide. The last process has been shown to be the most versatile and the most easily controllable. It allows the incorporation of between 2 and 12 vol.% of graphite particles (2 15 µm) within the plasma sprayed stainless steel coatings. A volume fraction of 2% seems to give the best results with a slight decrease (6%) of the coating hardness. This volume fraction also gave the best results in dry friction on the pin-on-disk apparatus. Depending on the sliding velocity (0.1 0.5 m/s) and loads (3.7 28 N), the dry friction coefficient against a 100C6 pin is reduced by between 1.5 and 4 compared with that obtained with plasma sprayed stainless steel.

  3. Effects of Ambient Humidity on Plant Growth Enhancement by Atmospheric Air Plasma Irradiation to Plant Seeds

    NASA Astrophysics Data System (ADS)

    Sarinont, Thapanut; Amano, Takaaki; Koga, Kazunori; Shiratani, Masaharu

    2015-09-01

    Humidity is an important factor for plasma-bio applications because composition of species generated by atmospheric pressure plasmas significantly depends on the humidity. Here we have examined effects of humidity on the growth enhancement to study the mechanism. Experiments were carried out with a scalable DBD device. 10 seeds of Raphanus sativus L. were set for x = 5 mm and y = 3 mm below the electrodes. The humidity Hair was 10 - 90 %Rh. The ratio of length of plants with plasma irradiation to that of control increases from 1.2 for Hair = 10 %Rh to 2.5 for Hair = 50 %Rh. The ratio is 2.5 for Hair = 50-90 %Rh. This humidity dependence is similar to the humidity dependence of O2+-H2O,H3O*, NO2--H2Oand NO3--H2Odensities, whereas it is different from that of other species such as O3, NO, and so on. The similarity gives information on key species for the growth enhancement.

  4. Fundamentals of undervoltage breakdown through the Townsend mechanism

    NASA Astrophysics Data System (ADS)

    Cooley, James E.

    The conditions under which an externally supplied pulse of electrons will induce breakdown in an undervoltaged, low-gain, DC discharge gap are experimentally and theoretically explored. The phenomenon is relevant to fundamental understanding of breakdown physics, to switching applications such as triggered spark gaps and discharge initiation in pulsed-plasma thrusters, and to gas-avalanche particle counters. A dimensionless theoretical description of the phenomenon is formulated and solved numerically. It is found that a significant fraction of the charge on the plates must be injected for breakdown to be achieved at low avalanche-ionization gain, when an electron undergoes fewer than approximately 10 ionizing collisions during one gap transit. It is also found that fewer injected electrons are required as the gain due to electron-impact ionization (alpha process) is increased, or as the sensitivity of the alpha process to electric field is enhanced by decreasing the reduced electric field (electric field divided by pressure, E/p). A predicted insensitivity to ion mobility implies that breakdown is determined during the first electron avalanche when space charge distortion is greatest. A dimensionless, theoretical study of the development of this avalanche reveals a critical value of the reduced electric field to be the value at the Paschen curve minimum divided by 1.6. Below this value, the net result of the electric field distortion is to increase ionization for subsequent avalanches, making undervoltage breakdown possible. Above this value, ionization for subsequent avalanches will be suppressed and undervoltage breakdown is not possible. Using an experimental apparatus in which ultraviolet laser pulses are directed onto a photo-emissive cathode of a parallel-plate discharge gap, it is found that undervoltage breakdown can occur through a Townsend-like mechanism through the buildup of successively larger avalanche generations. The minimum number of injected

  5. Runaway breakdown and hydrometeors in lightning initiation.

    PubMed

    Gurevich, A V; Karashtin, A N

    2013-05-01

    The particular electric pulse discharges are observed in thunderclouds during the initiation stage of negative cloud-to-ground lightning. The discharges are quite different from conventional streamers or leaders. A detailed analysis reveals that the shape of the pulses is determined by the runaway breakdown of air in the thundercloud electric field initiated by extensive atmospheric showers (RB-EAS). The high amplitude of the pulse electric current is due to the multiple microdischarges at hydrometeors stimulated and synchronized by the low-energy electrons generated in the RB-EAS process. The series of specific pulse discharges leads to charge reset from hydrometeors to the free ions and creates numerous stretched ion clusters, both positive and negative. As a result, a wide region in the thundercloud with a sufficiently high fractal ion conductivity is formed. The charge transport by ions plays a decisive role in the lightning leader preconditioning. PMID:23683210

  6. Threshold criteria for undervoltage breakdown

    NASA Astrophysics Data System (ADS)

    Cooley, James E.; Choueiri, Edgar Y.

    2008-05-01

    The conditions under which an externally supplied pulse of electrons will induce breakdown in an undervoltaged, low-gain discharge gap are experimentally and theoretically explored. The minimum number of injected electrons required to achieve breakdown in a parallel-plate gap is measured in argon at pd values of 3-10 Torr m using ultraviolet laser pulses to photoelectrically release electrons from the cathode. This value was found to scale inversely with voltage at constant pd and with pressure within the parameter range explored. A dimensionless theoretical description of the phenomenon is formulated and numerically solved. It is found that a significant fraction of the charge on the plates must be injected for breakdown to be achieved at low gain. It is also found that fewer electrons are required as the gain due to electron-impact ionization (α process) is increased, or as the sensitivity of the α process to electric field is enhanced by increasing the gas pressure. A predicted insensitivity to ion mobility implies that the breakdown is determined during the first electron avalanche when space-charge distortion is greatest.

  7. The structure of vortex breakdown

    NASA Technical Reports Server (NTRS)

    Leibovich, S.

    1978-01-01

    The term 'vortex breakdown', as used in the reported investigation, refers to a disturbance characterized by the formation of an internal stagnation point on the vortex axis, followed by reversed flow in a region of limited axial extent. Two forms of vortex breakdown, which predominate, are shown in photographs. One form is called 'near-axisymmetric' (sometimes 'axisymmetric'), and the other is called 'spiral'. A survey is presented of work published since the 1972 review by Hall. Most experimental data taken since Hall's review have been in tubes, and the survey deals primarily with such cases. It is found that the assumption of axial-symmetry has produced useful results. The classification of flows as supercritical or subcritical, a step that assumes symmetry, has proved universally useful. Experiments show that vortex breakdown is always preceded by an upstream supercritical flow and followed by a subcritical wake. However, a comparison between experiments and attempts at prediction is less than encouraging. For a satisfactory understanding of the structure of vortex breakdown it is apparently necessary to take into account also aspects of asymmetry.

  8. On the dynamics of hot air plasmas related to lightning discharges: 1. Gas dynamics

    NASA Astrophysics Data System (ADS)

    Ripoll, Jean-François; Zinn, John; Jeffery, Christopher A.; Colestock, Patrick L.

    2014-08-01

    In this paper, we first study the dynamics of hot shocks in air in cylindrical geometry coupled to multiband radiation transport and detailed air chemistry. The wide energy and length scale ranges which are covered herein includes and exceeds the ones of first and subsequent return strokes happening during lightning discharges. An emphasis is put on the NOx production and the optical power emitted by strong shocks as the ones generated by Joule heating of the air from intense current flows. The production rate of NOx, which is useful for atmospheric global modeling, is found to be between 4.5 × 1016 and 8.6 × 1016 molecules/J for all computed cases, which is in agreement with the literature. Two different radiation transport methods are used to characterize the variability of the results according to the radiation transport method. With the exact radiation solver, we show that between 15 and 40% of the energy is lost by radiation, with a percentage between 20 and 25% for averaged lightning energies. The maximal visible peak is between 7 × 108 W/m and 3 × 107 W/m obtained for, respectively, a 19 kJ/cm and a 28 J/cm energy input. The mean radiated powers in the visible range are found between 9 × 106 W/m and 2 × 105 W/m for the energies just mentioned. We discuss the agreement of these values with previous studies.

  9. Interferometric and schlieren characterization of the plasmas and shock wave dynamics during laser-triggered discharge in atmospheric air

    SciTech Connect

    Wei, Wenfu; Li, Xingwen Wu, Jian; Yang, Zefeng; Jia, Shenli; Qiu, Aici

    2014-08-15

    This paper describes our efforts to reveal the underlying physics of laser-triggered discharges in atmospheric air using a Mach-Zehnder interferometer and schlieren photography. Unlike the hemispherical shock waves that are produced by laser ablation, bell-like morphologies are observed during laser-triggered discharges. Phase shifts are recovered from the interferograms at a time of 1000 ns by the 2D fast Fourier transform method, and then the values of the refractive index are deduced using the Abel inversion. An abundance of free electrons is expected near the cathode surface. The schlieren photographs visualize the formation of stagnation layers at ∼600 ns in the interaction zones of the laser- and discharge-produced plasmas. Multiple reflected waves are observed at later times with the development of shock wave propagations. Estimations using the Taylor-Sedov self-similar solution indicated that approximately 45.8% and 51.9% of the laser and electrical energies are transferred into the gas flow motions, respectively. Finally, numerical simulations were performed, which successfully reproduced the main features of the experimental observations, and provided valuable insights into the plasma and shock wave dynamics during the laser-triggered discharge.

  10. Contribution of a portable air plasma torch to rapid blood coagulation as a method of preventing bleeding

    NASA Astrophysics Data System (ADS)

    Kuo, S. P.; Tarasenko, O.; Chang, J.; Popovic, S.; Chen, C. Y.; Fan, H. W.; Scott, A.; Lahiani, M.; Alusta, P.; Drake, J. D.; Nikolic, M.

    2009-11-01

    The effectiveness and mechanism of a low temperature air plasma torch in clotting blood are explored. Both blood droplets and smeared blood samples were used in the tests. The treated droplet samples reveal how blood clotting depends on the distance at which the torch operated, and for how long the droplets have been exposed to the torch. Microscopy and cell count of smeared blood samples shed light on dependencies of erythrocyte and platelet counts on torch distance and exposure time. With an increase of torch distance, the platelet count of treated blood samples increases but is less than that of the control. The flux of reactive atomic oxygen (RAO) and the degree of blood clotting decreased. With an increase of exposure time, platelet count of treated samples decreased, while the degree of clot increased. The correlation among these dependencies and published data support a blood clotting mechanism that RAO as well as other likely reactive oxygen species generated by the plasma torch activate erythrocyte-platelets interactions and induces blood coagulation.

  11. The interaction of polarized microwaves with planar arrays of femtosecond laser-produced plasma filaments in air

    SciTech Connect

    Marian, Anca; El Morsli, Mbark; Vidal, Francois; Payeur, Stephane; Kieffer, Jean-Claude; Chateauneuf, Marc; Theberge, Francis; Dubois, Jacques

    2013-02-15

    The interaction of polarized microwaves with subwavelength arrays of parallel plasma filaments, such as those produced by the propagation of high-power femtosecond laser pulses in ambient air, was investigated by calculating the reflection and transmission coefficients as a function of the incidence angles using the finite-difference time-domain (FDTD) method. The time evolution of these coefficients was calculated and compared with experiments. It is found that the plasma filaments array becomes transparent when the polarization of the microwave radiation is perpendicular to the filaments axis, regardless the incidence angle of the microwave with respect to the filaments, except near grazing incidence. Increasing the filaments electron density or diameter, or decreasing the electron collision frequency or filaments spacing, decreases the transmission and increases the reflection. Transmission decreases when increasing the number of filament layers while reflection remains unchanged as the number of filament layers exceeds a given number ({approx}3 in our case). Transmission slightly increases when disorder is introduced in the filament arrays. The detailed calculation results are compared with those obtained from the simple birefringent slab model, which provides a convenient framework to calculate approximately the properties of filament arrays.

  12. Low Pressure DC Glow Discharge Air Plasma Surface Treatment of Polyethylene (PE) Film for Improvement of Adhesive Properties

    NASA Astrophysics Data System (ADS)

    Krishnasamy Navaneetha, Pandiyaraj; Vengatasamy, Selvarajan; Rajendrasing, R. Deshmukh; Paramasivam, Yoganand; Suresh, Balasubramanian; Sundaram, Maruthamuthu

    2013-01-01

    The present work deals with the change in surface properties of polyethylene (PE) film using DC low pressure glow discharge air plasma and makes it useful for technical applications. The change in hydrophilicity of the modified PE film surface was investigated by measuring contact angle and surface energy as a function of exposure time. Changes in the morphological and chemical composition of PE films were analyzed by atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). The improvement in adhesion was studied by measuring T-peel and lap-shear strength. The results show that the wettability and surface energy of the PE film has been improved due to the introduction of oxygen-containing polar groups and an increase in surface roughness. The XPS result clearly shows the increase in concentration of oxygen content and the formation of polar groups on the polymer surface. The AFM observation on PE film shows that the roughness of the surface increased due to plasma treatment. The above morphological and chemical changes enhanced the adhesive properties of the PE film surfaces, which was confirmed by T-peel and lap-shear tests.

  13. Interferometric and schlieren characterization of the plasmas and shock wave dynamics during laser-triggered discharge in atmospheric air

    NASA Astrophysics Data System (ADS)

    Wei, Wenfu; Li, Xingwen; Wu, Jian; Yang, Zefeng; Jia, Shenli; Qiu, Aici

    2014-08-01

    This paper describes our efforts to reveal the underlying physics of laser-triggered discharges in atmospheric air using a Mach-Zehnder interferometer and schlieren photography. Unlike the hemispherical shock waves that are produced by laser ablation, bell-like morphologies are observed during laser-triggered discharges. Phase shifts are recovered from the interferograms at a time of 1000 ns by the 2D fast Fourier transform method, and then the values of the refractive index are deduced using the Abel inversion. An abundance of free electrons is expected near the cathode surface. The schlieren photographs visualize the formation of stagnation layers at ˜600 ns in the interaction zones of the laser- and discharge-produced plasmas. Multiple reflected waves are observed at later times with the development of shock wave propagations. Estimations using the Taylor-Sedov self-similar solution indicated that approximately 45.8% and 51.9% of the laser and electrical energies are transferred into the gas flow motions, respectively. Finally, numerical simulations were performed, which successfully reproduced the main features of the experimental observations, and provided valuable insights into the plasma and shock wave dynamics during the laser-triggered discharge.

  14. A passive measurement of dissociated atom densities in atmospheric pressure air discharge plasmas using vacuum ultraviolet self-absorption spectroscopy

    SciTech Connect

    Laity, George; Fierro, Andrew; Dickens, James; Neuber, Andreas; Frank, Klaus

    2014-03-28

    We demonstrate a method for determining the dissociation degree of atmospheric pressure air discharges by measuring the self-absorption characteristics of vacuum ultraviolet radiation from O and N atoms in the plasma. The atom densities are determined by modeling the amount of radiation trapping present in the discharge, without the use of typical optical absorption diagnostic techniques which require external sources of probing radiation into the experiment. For an 8.0 mm spark discharge between needle electrodes at atmospheric pressure, typical peak O atom densities of 8.5 × 10{sup 17} cm{sup −3} and peak N atom densities of 9.9 × 10{sup 17} cm{sup −3} are observed within the first ∼1.0 mm of plasma near the anode tip by analyzing the OI and NI transitions in the 130.0–132.0 nm band of the vacuum ultraviolet spectrum.

  15. Molecular formation dynamics of 5-nitro-2,4-dihydro-3H-1,2,4-triazol-3-one, 1,3,5-trinitroperhydro-1,3,5-triazine, and 2,4,6-trinitrotoluene in air, nitrogen, and argon atmospheres studied using femtosecond laser induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Sreedhar, Sunku; Nageswara Rao, E.; Manoj Kumar, G.; Tewari, Surya P.; Venugopal Rao, S.

    2013-09-01

    Femtosecond laser induced breakdown spectroscopic (LIBS) studies were performed on three high energy materials namely 5-nitro-2,4-dihydro-3H-1,2,4-triazol-3-one (NTO), 1,3,5-trinitroperhydro-1,3,5-triazine (RDX), and 2,4,6-trinitrotoluene (TNT). LIBS spectral features were obtained for these samples in three different atmospheres i.e. air, nitrogen, and argon. Different molecular to elemental ratios in these three atmospheres were investigated in detail. CN/C and CN/N ratios were observed to be prominent in nitrogen and air atmospheres. We attempt to elucidate the role of several reactions involving CN molecular formation in connection with discrepancies obtained in the measured ratios. The complete temporal dynamics of atomic C (247.82 nm) and CN (388.20 nm) molecular species in three different atmospheres are elaborated. The decay rates of C peak were found to be longest (96 ns-121 ns) in argon atmosphere for all the samples. The decay rates of CN peak (388.2 nm) were longer (161 ns-364 ns) in nitrogen compared to air and argon atmospheres. We also attempt to explicate the decay mechanisms with respect to the molecular species formation dynamics in different atmospheres.

  16. Phase Evolution upon Aging of Air-Plasma Sprayed t'-Zirconia Coatings: I-Synchrotron X-Ray Diffraction

    SciTech Connect

    Lipkin, Don M; Krogstad, Jessica A; Gao, Yan; Johnson, Curtis A; Nelson, Warren A; Levi, Carlos G

    2012-10-08

    Phase evolution accompanying the isothermal aging of free-standing air-plasma sprayed (APS) 7–8 wt% yttria-stabilized zirconia (8YSZ) thermal barrier coatings (TBCs) is described. Aging was carried out at temperatures ranging from 982°C to 1482°C in air. The high-temperature kinetics of the phase evolution from the metastable t' phase into a mixture of transformable Y-rich (cubic) and Y-lean (tetragonal) phases are documented through ambient temperature X-ray diffraction (XRD) characterization. A Hollomon–Jaffe parameter (HJP), T[27 + ln(t)], was used to satisfactorily normalize the extent of phase decomposition over the full range of times and temperatures. Comparison to vapor deposited TBCs reveal potential differences in the destabilization mechanism in APS coatings. Furthermore, the lattice parameters extracted from Rietveld refinement of the XRD patterns were used to deduce the stabilizer concentrations of the respective phases, which suggest a retrograde tetragonal solvus over the temperature range studied. In concert with a complementary microstructural study presented in Part II, this effort offers new insights into the mechanisms governing the phase evolution and raises implications for the high-temperature use of 8YSZ ceramics.

  17. Novel atmospheric pressure plasma device releasing atomic hydrogen: reduction of microbial-contaminants and OH radicals in the air

    NASA Astrophysics Data System (ADS)

    Nojima, Hideo; Park, Rae-Eun; Kwon, Jun-Hyoun; Suh, Inseon; Jeon, Junsang; Ha, Eunju; On, Hyeon-Ki; Kim, Hye-Ryung; Choi, Kyoung Hui; Lee, Kwang-Hee; Seong, Baik-Lin; Jung, Hoon; Kang, Shin Jung; Namba, Shinichi; Takiyama, Ken

    2007-01-01

    A novel atmospheric pressure plasma device releasing atomic hydrogen has been developed. This device has specific properties such as (1) deactivation of airborne microbial-contaminants, (2) neutralization of indoor OH radicals and (3) being harmless to the human body. It consists of a ceramic plate as a positive ion generation electrode and a needle-shaped electrode as an electron emission electrode. Release of atomic hydrogen from the device has been investigated by the spectroscopic method. Optical emission of atomic hydrogen probably due to recombination of positive ions, H+(H2O)n, generated from the ceramic plate electrode and electrons emitted from the needle-shaped electrode have been clearly observed in the He gas (including water vapour) environment. The efficacy of the device to reduce airborne concentrations of influenza virus, bacteria, mould fungi and allergens has been evaluated. 99.6% of airborne influenza virus has been deactivated with the operation of the device compared with the control test in a 1 m3 chamber after 60 min. The neutralization of the OH radical has been investigated by spectroscopic and biological methods. A remarkable reduction of the OH radical in the air by operation of the device has been observed by laser-induced fluorescence spectroscopy. The cell protection effects of the device against OH radicals in the air have been observed. Furthermore, the side effects have been checked by animal experiments. The harmlessness of the device has been confirmed.

  18. Atmospheric Ball Plasma Interactions

    NASA Astrophysics Data System (ADS)

    Wurden, C. J. V.; Wurden, G. A.

    2008-11-01

    Free-floating atmospheric pressure copper hydroxyl ball plasmas have been studied in air and helium atmospheres, using still and high speed photography (up to 20,000 fps), collimated photodiodes, and spectroscopy. A fine boundary layer between the greenish Cu-OH cloud, and the air, is orange in color. However, when the discharge is initiated into a helium atmosphere, the boundary layer is no longer visible, suggesting that the visible boundary was caused by interactions with oxygen. We have studied scaling of the 10-cm diameter ball plasmas with both the size of the water bucket, and the applied discharge voltage, over the range of 500-5000 volts. When looking at the initial spider-leg breakdown above the water surface, the ratio of H-alpha to H-beta lines suggests a temperature of ˜0.3 eV. This is also consistent with the presence of molecular lines of OH, and perhaps CuOH2 in the rising cloud. The cloud is affected by, but can penetrate through an aluminum window screen mesh.

  19. Cellular Attachment and Differentiation on Titania Nanotubes Exposed to Air- or Nitrogen-Based Non-Thermal Atmospheric Pressure Plasma

    PubMed Central

    Seo, Hye Yeon; Kwon, Jae-Sung; Choi, Yu-Ri; Kim, Kwang-Mahn; Choi, Eun Ha; Kim, Kyoung-Nam

    2014-01-01

    The surface topography and chemistry of titanium implants are important factors for successful osseointegration. However, chemical modification of an implant surface using currently available methods often results in the disruption of topographical features and the loss of beneficial effects during the shelf life of the implant. Therefore, the aim of this study was to apply the recently highlighted portable non-thermal atmospheric pressure plasma jet (NTAPPJ), elicited from one of two different gas sources (nitrogen and air), to TiO2 nanotube surfaces to further improve their osteogenic properties while preserving the topographical morphology. The surface treatment was performed before implantation to avoid age-related decay. The surface chemistry and morphology of the TiO2 nanotube surfaces before and after the NTAPPJ treatment were determined using a field-emission scanning electron microscope, a surface profiler, a contact angle goniometer, and an X-ray photoelectron spectroscope. The MC3T3-E1 cell viability, attachment and morphology were confirmed using calcein AM and ethidium homodimer-1 staining, and analysis of gene expression using rat mesenchymal stem cells was performed using a real-time reverse-transcription polymerase chain reaction. The results indicated that both portable nitrogen- and air-based NTAPPJ could be used on TiO2 nanotube surfaces easily and without topographical disruption. NTAPPJ resulted in a significant increase in the hydrophilicity of the surfaces as well as changes in the surface chemistry, which consequently increased the cell viability, attachment and differentiation compared with the control samples. The nitrogen-based NTAPPJ treatment group exhibited a higher osteogenic gene expression level than the air-based NTAPPJ treatment group due to the lower atomic percentage of carbon on the surface that resulted from treatment. It was concluded that NTAPPJ treatment of TiO2 nanotube surfaces results in an increase in cellular activity

  20. Cellular attachment and differentiation on titania nanotubes exposed to air- or nitrogen-based non-thermal atmospheric pressure plasma.

    PubMed

    Seo, Hye Yeon; Kwon, Jae-Sung; Choi, Yu-Ri; Kim, Kwang-Mahn; Choi, Eun Ha; Kim, Kyoung-Nam

    2014-01-01

    The surface topography and chemistry of titanium implants are important factors for successful osseointegration. However, chemical modification of an implant surface using currently available methods often results in the disruption of topographical features and the loss of beneficial effects during the shelf life of the implant. Therefore, the aim of this study was to apply the recently highlighted portable non-thermal atmospheric pressure plasma jet (NTAPPJ), elicited from one of two different gas sources (nitrogen and air), to TiO2 nanotube surfaces to further improve their osteogenic properties while preserving the topographical morphology. The surface treatment was performed before implantation to avoid age-related decay. The surface chemistry and morphology of the TiO2 nanotube surfaces before and after the NTAPPJ treatment were determined using a field-emission scanning electron microscope, a surface profiler, a contact angle goniometer, and an X-ray photoelectron spectroscope. The MC3T3-E1 cell viability, attachment and morphology were confirmed using calcein AM and ethidium homodimer-1 staining, and analysis of gene expression using rat mesenchymal stem cells was performed using a real-time reverse-transcription polymerase chain reaction. The results indicated that both portable nitrogen- and air-based NTAPPJ could be used on TiO2 nanotube surfaces easily and without topographical disruption. NTAPPJ resulted in a significant increase in the hydrophilicity of the surfaces as well as changes in the surface chemistry, which consequently increased the cell viability, attachment and differentiation compared with the control samples. The nitrogen-based NTAPPJ treatment group exhibited a higher osteogenic gene expression level than the air-based NTAPPJ treatment group due to the lower atomic percentage of carbon on the surface that resulted from treatment. It was concluded that NTAPPJ treatment of TiO2 nanotube surfaces results in an increase in cellular activity