Science.gov

Sample records for air breathing equipment

  1. 46 CFR 154.1852 - Air breathing equipment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Air breathing equipment. 154.1852 Section 154.1852... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Operations § 154.1852 Air breathing equipment. (a) The master shall ensure that a licensed officer inspects the compressed air...

  2. 46 CFR 154.1852 - Air breathing equipment.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Air breathing equipment. 154.1852 Section 154.1852... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Operations § 154.1852 Air breathing equipment. (a) The master shall ensure that a licensed officer inspects the compressed air...

  3. 46 CFR 154.1852 - Air breathing equipment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Air breathing equipment. 154.1852 Section 154.1852... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Operations § 154.1852 Air breathing equipment. (a) The master shall ensure that a licensed officer inspects the compressed air...

  4. 46 CFR 154.1852 - Air breathing equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Air breathing equipment. 154.1852 Section 154.1852... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Operations § 154.1852 Air breathing equipment. (a) The master shall ensure that a licensed officer inspects the compressed air...

  5. 46 CFR 154.1852 - Air breathing equipment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Air breathing equipment. 154.1852 Section 154.1852... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Operations § 154.1852 Air breathing equipment. (a) The master shall ensure that a licensed officer inspects the compressed air...

  6. The Air We Breathe

    NASA Technical Reports Server (NTRS)

    Davila, Dina

    2010-01-01

    Topics discussed include NASA mission to pioneer the future in space exploration, scientific discovery and aeronautics research; the role of Earth's atmosphere, atmospheric gases, layers of the Earth's atmosphere, ozone layer, air pollution, effects of air pollution on people, the Greenhouse Effect, and breathing on the International Space Station.

  7. Breathing zone air sampler

    DOEpatents

    Tobin, John

    1989-01-01

    A sampling apparatus is provided which comprises a sampler for sampling air in the breathing zone of a wearer of the apparatus and a support for the sampler preferably in the form of a pair of eyeglasses. The sampler comprises a sampling assembly supported on the frame of the eyeglasses and including a pair of sample transport tubes which are suspended, in use, centrally of the frame so as to be disposed on opposite sides of the nose of the wearer and which each include an inlet therein that, in use, is disposed adjacent to a respective nostril of the nose of the wearer. A filter holder connected to sample transport tubes supports a removable filter for filtering out particulate material in the air sampled by the apparatus. The sample apparatus is connected to a pump for drawing air into the apparatus through the tube inlets so that the air passes through the filter.

  8. Breathing zone air sampler

    SciTech Connect

    Tobin, J.

    1989-08-22

    A sampling apparatus is presented which comprises a sampler for sampling air in the breathing zone of a wearer of the apparatus and a support for the sampler preferably in the form of a pair of eyeglasses. The sampler comprises a sampling assembly supported on the frame of the eyeglasses and including a pair of sample transport tubes which are suspended, in use, centrally of the frame so as to be disposed on opposite sides of the nose of the wearer and which each include an inlet therein that, in use, is disposed adjacent to a respective nostril of the nose of the wearer. A filter holder connected to sample transport tubes supports a removable filter for filtering out particulate material in the air sampled by the apparatus. The sample apparatus is connected to a pump for drawing air into the apparatus through the tube inlets so that the air passes through the filter.

  9. Liquid-Air Breathing Apparatus

    NASA Technical Reports Server (NTRS)

    Mills, Robert D.

    1990-01-01

    Compact unit supplies air longer than compressed-air unit. Emergency breathing apparatus stores air as cryogenic liquid instead of usual compressed gas. Intended for firefighting or rescue operations becoming necessary during planned potentially hazardous procedures.

  10. 14 CFR 25.1439 - Protective breathing equipment.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Protective breathing equipment. 25.1439... Protective breathing equipment. (a) Fixed (stationary, or built in) protective breathing equipment must be installed for the use of the flightcrew, and at least one portable protective breathing equipment shall...

  11. 14 CFR 121.337 - Protective breathing equipment.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Protective breathing equipment. 121.337... Protective breathing equipment. (a) The certificate holder shall furnish approved protective breathing equipment (PBE) meeting the equipment, breathing gas, and communication requirements contained in...

  12. 14 CFR 25.1439 - Protective breathing equipment.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Protective breathing equipment. 25.1439... Protective breathing equipment. (a) Fixed (stationary, or built in) protective breathing equipment must be installed for the use of the flightcrew, and at least one portable protective breathing equipment shall...

  13. 14 CFR 121.337 - Protective breathing equipment.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Protective breathing equipment. 121.337... Protective breathing equipment. (a) The certificate holder shall furnish approved protective breathing equipment (PBE) meeting the equipment, breathing gas, and communication requirements contained in...

  14. 14 CFR 121.337 - Protective breathing equipment.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Protective breathing equipment. 121.337... Protective breathing equipment. (a) The certificate holder shall furnish approved protective breathing equipment (PBE) meeting the equipment, breathing gas, and communication requirements contained in...

  15. 14 CFR 121.337 - Protective breathing equipment.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Protective breathing equipment. 121.337... Protective breathing equipment. (a) The certificate holder shall furnish approved protective breathing equipment (PBE) meeting the equipment, breathing gas, and communication requirements contained in...

  16. 14 CFR 121.337 - Protective breathing equipment.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Protective breathing equipment. 121.337... Protective breathing equipment. (a) The certificate holder shall furnish approved protective breathing equipment (PBE) meeting the equipment, breathing gas, and communication requirements contained in...

  17. 14 CFR 25.1439 - Protective breathing equipment.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Protective breathing equipment. 25.1439... Protective breathing equipment. (a) Fixed (stationary, or built in) protective breathing equipment must be installed for the use of the flightcrew, and at least one portable protective breathing equipment shall...

  18. Crew equipment applications - Firefighter's Breathing System.

    NASA Technical Reports Server (NTRS)

    Smith, W. L.

    1973-01-01

    The Firefighter's Breathing System (FBS) represents a significant step in applying NASA's crew equipment technologists and technologies to civilian sector problems. This paper describes the problem, the utilization of user-design committees as a forum for development of design goals, the design of the FBS, and the field test program to be conducted.

  19. 14 CFR 29.1439 - Protective breathing equipment.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Protective breathing equipment. 29.1439... Protective breathing equipment. (a) If one or more cargo or baggage compartments are to be accessible in flight, protective breathing equipment must be available for an appropriate crewmember. (b)...

  20. 14 CFR 29.1439 - Protective breathing equipment.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Protective breathing equipment. 29.1439... Protective breathing equipment. (a) If one or more cargo or baggage compartments are to be accessible in flight, protective breathing equipment must be available for an appropriate crewmember. (b)...

  1. 14 CFR 29.1439 - Protective breathing equipment.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Protective breathing equipment. 29.1439... Protective breathing equipment. (a) If one or more cargo or baggage compartments are to be accessible in flight, protective breathing equipment must be available for an appropriate crewmember. (b)...

  2. Protective supplied breathing air garment

    DOEpatents

    Childers, E.L.; Hortenau, E.F. von.

    1984-07-10

    A breathing air garment is disclosed for isolating a wearer from hostile environments containing toxins or irritants includes a suit and a separate head protective enclosure or hood engaging a suit collar in sealing attachment. The hood and suit collar are cylindrically shaped and dimensioned to enable the wearer to withdraw his hands from the suit sleeves to perform manual tasks within the hood interior. Breathing air is supplied from an external air line with an air delivery hose attached to the hood interior. The hose feeds air into an annular halo-like fiber-filled plenum having spaced discharge orifices attached to the hood top wall. A plurality of air exhaust/check valves located at the suit extremities cooperate with the hood air delivery system to provide a cooling flow of circulating air from the hood throughout the suit interior. A suit entry seal provided on the suit rear torso panel permits access into the suit and is sealed with an adhesive sealing flap. 17 figs.

  3. Protective supplied breathing air garment

    DOEpatents

    Childers, Edward L.; von Hortenau, Erik F.

    1984-07-10

    A breathing air garment for isolating a wearer from hostile environments containing toxins or irritants includes a suit and a separate head protective enclosure or hood engaging a suit collar in sealing attachment. The hood and suit collar are cylindrically shaped and dimensioned to enable the wearer to withdraw his hands from the suit sleeves to perform manual tasks within the hood interior. Breathing air is supplied from an external air line with an air delivery hose attached to the hood interior. The hose feeds air into an annular halo-like fiber-filled plenum having spaced discharge orifices attached to the hood top wall. A plurality of air exhaust/check valves located at the suit extremities cooperate with the hood air delivery system to provide a cooling flow of circulating air from the hood throughout the suit interior. A suit entry seal provided on the suit rear torso panel permits access into the suit and is sealed with an adhesive sealing flap.

  4. Air-Breathing Rocket Engines

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This photograph depicts an air-breathing rocket engine prototype in the test bay at the General Applied Science Lab facility in Ronkonkoma, New York. Air-breathing engines, known as rocket based, combined-cycle engines, get their initial take-off power from specially designed rockets, called air-augmented rockets, that boost performance about 15 percent over conventional rockets. When the vehicle's velocity reaches twice the speed of sound, the rockets are turned off and the engine relies totally on oxygen in the atmosphere to burn hydrogen fuel, as opposed to a rocket that must carry its own oxygen, thus reducing weight and flight costs. Once the vehicle has accelerated to about 10 times the speed of sound, the engine converts to a conventional rocket-powered system to propel the craft into orbit or sustain it to suborbital flight speed. NASA's Advanced Space Transportation Program at Marshall Space Flight Center, along with several industry partners and collegiate forces, is developing this technology to make space transportation affordable for everyone from business travelers to tourists. The goal is to reduce launch costs from today's price tag of $10,000 per pound to only hundreds of dollars per pound. NASA's series of hypersonic flight demonstrators currently include three air-breathing vehicles: the X-43A, X-43B and X-43C.

  5. The indoor air we breathe.

    PubMed Central

    Oliver, L C; Shackleton, B W

    1998-01-01

    Increasingly recognized as a potential public health problem since the outbreak of Legionnaire's disease in Philadelphia in 1976, polluted indoor air has been associated with health problems that include asthma, sick building syndrome, multiple chemical sensitivity, and hypersensitivity pneumonitis. Symptoms are often nonspecific and include headache, eye and throat irritation, chest tightness and shortness of breath, and fatigue. Air-borne contaminants include commonly used chemicals, vehicular exhaust, microbial organisms, fibrous glass particles, and dust. Identified causes include defective building design and construction, aging of buildings and their ventilation systems, poor climate control, inattention to building maintenance. A major contributory factor is the explosion in the use of chemicals in building construction and furnishing materials over the past four decades. Organizational issues and psychological variables often contribute to the problem and hinder its resolution. This article describes the health problems related to poor indoor air quality and offers solutions. Images p398-a p399-a PMID:9769764

  6. Swimming in air-breathing fishes.

    PubMed

    Lefevre, S; Domenici, P; McKenzie, D J

    2014-03-01

    Fishes with bimodal respiration differ in the extent of their reliance on air breathing to support aerobic metabolism, which is reflected in their lifestyles and ecologies. Many freshwater species undertake seasonal and reproductive migrations that presumably involve sustained aerobic exercise. In the six species studied to date, aerobic exercise in swim flumes stimulated air-breathing behaviour, and there is evidence that surfacing frequency and oxygen uptake from air show an exponential increase with increasing swimming speed. In some species, this was associated with an increase in the proportion of aerobic metabolism met by aerial respiration, while in others the proportion remained relatively constant. The ecological significance of anaerobic swimming activities, such as sprinting and fast-start manoeuvres during predator-prey interactions, has been little studied in air-breathing fishes. Some species practise air breathing during recovery itself, while others prefer to increase aquatic respiration, possibly to promote branchial ion exchange to restore acid-base balance, and to remain quiescent and avoid being visible to predators. Overall, the diversity of air-breathing fishes is reflected in their swimming physiology as well, and further research is needed to increase the understanding of the differences and the mechanisms through which air breathing is controlled and used during exercise.

  7. Air breathing direct methanol fuel cell

    DOEpatents

    Ren, Xiaoming

    2002-01-01

    An air breathing direct methanol fuel cell is provided with a membrane electrode assembly, a conductive anode assembly that is permeable to air and directly open to atmospheric air, and a conductive cathode assembly that is permeable to methanol and directly contacting a liquid methanol source.

  8. Protective supplied-breathing-air garment

    DOEpatents

    Childers, E.L.; von Hortenau, E.F.

    1982-05-28

    A breathing-air garment for isolating a wearer from hostile environments containing toxins or irritants is disclosed. The garment includes a suit and a separate head-protective enclosure or hood engaging a suit collar in sealing attachment. The hood and suit collar are cylindrically shaped and dimensioned to enable the wearer to withdraw his hands from the suit sleeves to perform manual tasks within the hood interior. Breathing air is supplied from an external air line with an air-delivery hose attached to the hood interior. The hose feeds air into an annular halo-like fiber-filled plenum having spaced discharge orifices attached to the hood top wall. A plurality of air exhaust/check valves located at the suit extremities cooperate with the hood air-delivery system to provide a cooling flow of circulating air from the hood throughout the suit interior. A suit entry seal provided on the suit sealed with an adhesive sealing flap.

  9. The Air We Breathe. Activity Packet.

    ERIC Educational Resources Information Center

    Connecticut State Dept. of Environmental Protection, Hartford.

    This packet of materials is intended to provide teachers with an interdisciplinary approach to integrating air quality education into the existing curriculum of Connecticut schools. The unit is designed to complement the student booklet "The Air We Breathe," which is included. A major portion of the document is comprised of teaching…

  10. Breathing air purification; Desiccant vs. refrigerated

    SciTech Connect

    McKay, K.L.; Swanson, A.L. )

    1986-07-01

    Carbon monoxide (CO) is a common contaminant of ambient air - levels as high as 200 ppm are not uncommon in urban, industrial, or high automotive-traffic areas. Carbon monoxide may also be produced by the oxidation of lubricating oil in overheated compressors. Air from an oil-lubricated compressor, even when an aftercooler is used, often contains significant quantities of oil mist and vapor. Even where a breathing air (non-oil-lubricated) compressor is used , oil. levels in the air taken into the compressor can still exceed Grade D standards, especially in industrial environments. Other contaminants (gaseous hydrocarbons, particulate matter, and odors), while not addressed by the Grade D criteria, are also present in harmful or objectionable levels in industrial environments; therefore, they must be taken into account in the design of the air purification systems. This paper discusses two basic types of breathing air purifiers: desiccant and refrigerated purifiers.

  11. Air breathing direct methanol fuel cell

    DOEpatents

    Ren, Xiaoming; Gottesfeld, Shimshon

    2002-01-01

    An air breathing direct methanol fuel cell is provided with a membrane electrode assembly, a conductive anode assembly that is permeable to air and directly open to atmospheric air, and a conductive cathode assembly that is permeable to methanol and directly contacting a liquid methanol source. Water loss from the cell is minimized by making the conductive cathode assembly hydrophobic and the conductive anode assembly hydrophilic.

  12. A Breath of Fresh Air

    ERIC Educational Resources Information Center

    Belew, Rachel

    2011-01-01

    One of the most important aspects of a healthy school--and one that, unfortunately, often falls by the wayside--is indoor air quality. The U.S. Government Accountability Office estimates that more than 15,000 schools nationwide report suffering from poor indoor air quality. According to the U.S. Environmental Protection Agency, schools with poor…

  13. Breathing Easy over Air Quality.

    ERIC Educational Resources Information Center

    Greim, Clifton; Turner, William

    1991-01-01

    School systems should test the air in every school building for the presence and level of contaminants such as radon and asbestos and whether the ventilation system is circulating the proper amount of air. Periodic maintenance is required for all mechanical systems. (MLF)

  14. A Breath of Fresh Air.

    ERIC Educational Resources Information Center

    Freeman, Laurie

    1996-01-01

    A new elementary school in New Hampshire uses innovative European ventilation technology to ensure excellent air quality. Combined with high-efficiency lighting, the system should reduce energy consumption by 10 to 20%, compared with a traditional facility. (MLF)

  15. Air-breathing Rocket Engine Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This Quick Time movie depicts the Rocketdyne static test of an air-breathing rocket. Air-breathing engines, known as rocket based, combined-cycle engines, get their initial take-off power from specially designed rockets, called air-augmented rockets, that boost performance about 15 percent over conventional rockets. When the vehicle's velocity reaches twice the speed of sound, the rockets are turned off and the engine relies totally on oxygen in the atmosphere to burn hydrogen fuel, as opposed to a rocket that must carry its own oxygen, thus reducing weight and flight costs. Once the vehicle has accelerated to about 10 times the speed of sound, the engine converts to a conventional rocket-powered system to propel the craft into orbit or sustain it to suborbital flight speed. NASA's advanced Transportation Program at the Marshall Space Flight Center, along with several industry partners and collegiate forces, is developing this technology to make space transportation affordable for everyone from business travelers to tourists. The goal is to reduce launch costs from today's price tag of $10,000 per pound to only hundreds of dollars per pound. NASA's series of hypersonic flight demonstrators currently include three air-breathing vehicles: the X-43A, X-43B and X-43C.

  16. Air-Breathing Rocket Engine Test

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This photograph depicts an air-breathing rocket engine that completed an hour or 3,600 seconds of testing at the General Applied Sciences Laboratory in Ronkonkoma, New York. Referred to as ARGO by its design team, the engine is named after the mythological Greek ship that bore Jason and the Argonauts on their epic voyage of discovery. Air-breathing engines, known as rocket based, combined-cycle engines, get their initial take-off power from specially designed rockets, called air-augmented rockets, that boost performance about 15 percent over conventional rockets. When the vehicle's velocity reaches twice the speed of sound, the rockets are turned off and the engine relies totally on oxygen in the atmosphere to burn hydrogen fuel, as opposed to a rocket that must carry its own oxygen, thus reducing weight and flight costs. Once the vehicle has accelerated to about 10 times the speed of sound, the engine converts to a conventional rocket-powered system to propel the craft into orbit or sustain it to suborbital flight speed. NASA's Advanced SpaceTransportation Program at Marshall Space Flight Center, along with several industry partners and collegiate forces, is developing this technology to make space transportation affordable for everyone from business travelers to tourists. The goal is to reduce launch costs from today's price tag of $10,000 per pound to only hundreds of dollars per pound. NASA's series of hypersonic flight demonstrators currently include three air-breathing vehicles: the X-43A, X-43B and X-43C.

  17. Air breathing engine/rocket trajectory optimization

    NASA Technical Reports Server (NTRS)

    Smith, V. K., III

    1979-01-01

    This research has focused on improving the mathematical models of the air-breathing propulsion systems, which can be mated with the rocket engine model and incorporated in trajectory optimization codes. Improved engine simulations provided accurate representation of the complex cycles proposed for advanced launch vehicles, thereby increasing the confidence in propellant use and payload calculations. The versatile QNEP (Quick Navy Engine Program) was modified to allow treatment of advanced turboaccelerator cycles using hydrogen or hydrocarbon fuels and operating in the vehicle flow field.

  18. Supersonic Air-Breathing Stage For Commercial Launch Rocket

    NASA Technical Reports Server (NTRS)

    Martin, James A.

    1993-01-01

    Concept proposed to expand use of air-breathing, reusable stages to put more payload into orbit at less cost. Stage with supersonic air-breathing engines added to carry expendable stages from subsonic airplane to supersonic velocity. Carry payload to orbit. Expendable stages and payload placed in front of supersonic air-breathing stage. After releasing expendable stages, remotely piloted supersonic air-breathing stage returns to takeoff site and land for reuse. New concept extends use of low-cost reusable hardware and increases payload delivered from B-52.

  19. Optimization of Air-Breathing Engine Concept

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Lavelle, Thomas M.; Hopkins, Dale A.

    1996-01-01

    The design optimization of air-breathing propulsion engine concepts has been accomplished by soft-coupling the NASA Engine Performance Program (NEPP) analyzer with the NASA Lewis multidisciplinary optimization tool COMETBOARDS. Engine problems, with their associated design variables and constraints, were cast as nonlinear optimization problems with thrust as the merit function. Because of the large number of mission points in the flight envelope, the diversity of constraint types, and the overall distortion of the design space; the most reliable optimization algorithm available in COMETBOARDS, when used by itself, could not produce satisfactory, feasible, optimum solutions. However, COMETBOARDS' unique features-which include a cascade strategy, variable and constraint formulations, and scaling devised especially for difficult multidisciplinary applications-successfully optimized the performance of subsonic and supersonic engine concepts. Even when started from different design points, the combined COMETBOARDS and NEPP results converged to the same global optimum solution. This reliable and robust design tool eliminates manual intervention in the design of air-breathing propulsion engines and eases the cycle analysis procedures. It is also much easier to use than other codes, which is an added benefit. This paper describes COMETBOARDS and its cascade strategy and illustrates the capabilities of the combined design tool through the optimization of a high-bypass- turbofan wave-rotor-topped subsonic engine and a mixed-flow-turbofan supersonic engine.

  20. Air-breathing adaptation in a marine Devonian lungfish

    PubMed Central

    Clement, Alice M.; Long, John A.

    2010-01-01

    Recent discoveries of tetrapod trackways in 395 Myr old tidal zone deposits of Poland (Niedźwiedzki et al. 2010 Nature 463, 43–48 (doi:10.1038/nature.08623)) indicate that vertebrates had already ventured out of the water and might already have developed some air-breathing capacity by the Middle Devonian. Air-breathing in lungfishes is not considered to be a shared specialization with tetrapods, but evolved independently. Air-breathing in lungfishes has been postulated as starting in Middle Devonian times (ca 385 Ma) in freshwater habitats, based on a set of skeletal characters involved in air-breathing in extant lungfishes. New discoveries described herein of the lungfish Rhinodipterus from marine limestones of Australia identifies the node in dipnoan phylogeny where air-breathing begins, and confirms that lungfishes living in marine habitats had also developed specializations to breathe air by the start of the Late Devonian (ca 375 Ma). While invasion of freshwater habitats from the marine realm was previously suggested to be the prime cause of aerial respiration developing in lungfishes, we believe that global decline in oxygen levels during the Middle Devonian combined with higher metabolic costs is a more likely driver of air-breathing ability, which developed in both marine and freshwater lungfishes and tetrapodomorph fishes such as Gogonasus. PMID:20147310

  1. Don't You Dare Breathe That Air!

    ERIC Educational Resources Information Center

    American Lung Association, New York, NY.

    Designed for elementary school students, the workbook focuses on the unhealthy and unpleasant effects of air pollution. Space is provided for students to draw pictures of: (1) how breathing polluted air can make people feel, (2) what polluted air can do to people's health--especially if they smoke cigarettes, (3) what air pollution can do to the…

  2. Air-Breathing Launch Vehicle Technology Being Developed

    NASA Technical Reports Server (NTRS)

    Trefny, Charles J.

    2003-01-01

    Of the technical factors that would contribute to lowering the cost of space access, reusability has high potential. The primary objective of the GTX program is to determine whether or not air-breathing propulsion can enable reusable single-stage-to-orbit (SSTO) operations. The approach is based on maturation of a reference vehicle design with focus on the integration and flight-weight construction of its air-breathing rocket-based combined-cycle (RBCC) propulsion system.

  3. Excretory nitrogen metabolism and defence against ammonia toxicity in air-breathing fishes.

    PubMed

    Chew, S F; Ip, Y K

    2014-03-01

    With the development of air-breathing capabilities, some fishes can emerge from water, make excursions onto land or even burrow into mud during droughts. Air-breathing fishes have modified gill morphology and morphometry and accessory breathing organs, which would tend to reduce branchial ammonia excretion. As ammonia is toxic, air-breathing fishes, especially amphibious ones, are equipped with various strategies to ameliorate ammonia toxicity during emersion or ammonia exposure. These strategies can be categorized into (1) enhancement of ammonia excretion and reduction of ammonia entry, (2) conversion of ammonia to a less toxic product for accumulation and subsequent excretion, (3) reduction of ammonia production and avoidance of ammonia accumulation and (4) tolerance of ammonia at cellular and tissue levels. Active ammonia excretion, operating in conjunction with lowering of ambient pH and reduction in branchial and cutaneous NH₃ permeability, is theoretically the most effective strategy to maintain low internal ammonia concentrations. NH₃ volatilization involves the alkalization of certain epithelial surfaces and requires mechanisms to prevent NH₃ back flux. Urea synthesis is an energy-intensive process and hence uncommon among air-breathing teleosts. Aestivating African lungfishes detoxify ammonia to urea and the accumulated urea is excreted following arousal. Reduction in ammonia production is achieved in some air-breathing fishes through suppression of amino acid catabolism and proteolysis, or through partial amino acid catabolism leading to alanine formation. Others can slow down ammonia accumulation through increased glutamine synthesis in the liver and muscle. Yet, some others develop high tolerance of ammonia at cellular and tissue levels, including tissues in the brain. In summary, the responses of air-breathing fishes to ameliorate ammonia toxicity are many and varied, determined by the behaviour of the species and the nature of the environment in

  4. Theme and variations: amphibious air-breathing intertidal fishes.

    PubMed

    Martin, K L

    2014-03-01

    Over 70 species of intertidal fishes from 12 families breathe air while emerging from water. Amphibious intertidal fishes generally have no specialized air-breathing organ but rely on vascularized mucosae and cutaneous surfaces in air to exchange both oxygen and carbon dioxide. They differ from air-breathing freshwater fishes in morphology, physiology, ecology and behaviour. Air breathing and terrestrial activity are present to varying degrees in intertidal fish species, correlated with the tidal height of their habitat. The gradient of amphibious lifestyle includes passive remainers that stay in the intertidal zone as tides ebb, active emergers that deliberately leave water in response to poor aquatic conditions and highly mobile amphibious skipper fishes that may spend more time out of water than in it. Normal terrestrial activity is usually aerobic and metabolic rates in air and water are similar. Anaerobic metabolism may be employed during forced exercise or when exposed to aquatic hypoxia. Adaptations for amphibious life include reductions in gill surface area, increased reliance on the skin for respiration and ion exchange, high affinity of haemoglobin for oxygen and adjustments to ventilation and metabolism while in air. Intertidal fishes remain close to water and do not travel far terrestrially, and are unlikely to migrate or colonize new habitats at present, although in the past this may have happened. Many fish species spawn in the intertidal zone, including some that do not breathe air, as eggs and embryos that develop in the intertidal zone benefit from tidal air emergence. With air breathing, amphibious intertidal fishes survive in a variable habitat with minimal adjustments to existing structures. Closely related species in different microhabitats provide unique opportunities for comparative studies.

  5. Wash-out of ambient air contaminations for breath measurements.

    PubMed

    Maurer, F; Wolf, A; Fink, T; Rittershofer, B; Heim, N; Volk, T; Baumbach, J I; Kreuer, S

    2014-06-01

    In breath analysis, ambient air contaminations are ubiquitous and difficult to eliminate. This study was designed to investigate the reduction of ambient air background by a lung wash-out with synthetic air. The reduction of the initial ambient air volatile organic compound (VOC) intensity was investigated in the breath of 20 volunteers inhaling synthetic air via a sealed full face mask in comparison to inhaling ambient air. Over a period of 30 minutes, breath analysis was conducted using ion mobility spectrometry coupled to a multi-capillary column. A total of 68 VOCs were identified for inhaling ambient air or inhaling synthetic air. By treatment with synthetic air, 39 VOCs decreased in intensity, whereas 29 increased in comparison to inhaling ambient air. In total, seven VOCs were significantly reduced (P-value < 0.05). A complete wash-out of VOCs in this setting was not observed, whereby a statistically significant reduction up to 65% as for terpinolene was achieved. Our setting successfully demonstrated a reduction of ambient air contaminations from the airways by a lung wash-out with synthetic air.

  6. Breath air measurement using wide-band frequency tuning IR laser photo-acoustic spectroscopy

    NASA Astrophysics Data System (ADS)

    Kistenev, Yury V.; Borisov, Alexey V.; Kuzmin, Dmitry A.; Bulanova, Anna A.; Boyko, Andrey A.; Kostyukova, Nadezhda Y.; Karapuzikov, Alexey A.

    2016-03-01

    The results of measuring of biomarkers in breath air of patients with broncho-pulmonary diseases using wide-band frequency tuning IR laser photo-acoustic spectroscopy and the methods of data mining are presented. We will discuss experimental equipment and various methods of intellectual analysis of the experimental spectra in context of above task. The work was carried out with partial financial support of the FCPIR contract No 14.578.21.0082 (ID RFMEFI57814X0082).

  7. Humidifiers: Air Moisture Eases Skin, Breathing Symptoms

    MedlinePlus

    ... Environmental Protection Agency. http://www.epa.gov/indoor-air-quality-iaq. Accessed Jan. 27, 2016. Dirty humidifiers may ... 2016. The inside story: A guide to indoor air quality. U.S. Consumer Product Safety Commission. http://www.cpsc. ...

  8. 14 CFR 29.1439 - Protective breathing equipment.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... harmful gases while on flight deck duty; (2) That equipment must include— (i) Masks covering the eyes... eyes; and (3) That equipment must supply protective oxygen of 10 minutes duration per crewmember at...

  9. 14 CFR 29.1439 - Protective breathing equipment.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... harmful gases while on flight deck duty; (2) That equipment must include— (i) Masks covering the eyes... eyes; and (3) That equipment must supply protective oxygen of 10 minutes duration per crewmember at...

  10. Improved fireman's compressed air breathing system pressure vessel development program

    NASA Technical Reports Server (NTRS)

    King, H. A.; Morris, E. E.

    1973-01-01

    Prototype high pressure glass filament-wound, aluminum-lined pressurant vessels suitable for use in a fireman's compressed air breathing system were designed, fabricated, and acceptance tested in order to demonstrate the feasibility of producing such high performance, lightweight units. The 4000 psi tanks have a 60 standard cubic foot (SCF) air capacity, and have a 6.5 inch diamter, 19 inch length, 415 inch volume, weigh 13 pounds when empty, and contain 33 percent more air than the current 45 SCF (2250 psi) steel units. The current steel 60 SCF (3000 psi) tanks weigh approximately twice as much as the prototype when empty, and are 2 inches, or 10 percent shorter. The prototype units also have non-rusting aluminum interiors, which removes the hazard of corrosion, the need for internal coatings, and the possibility of rust particles clogging the breathing system.

  11. Clean the Air and Breathe Easier.

    ERIC Educational Resources Information Center

    Guevin, John

    1997-01-01

    Failure to prevent indoor air quality problems or act promptly can result in increased chances for long- or short-term health problems for staff and students, reduced productivity, faster plant deterioration, and strained school-community relations. Basic pollution control measures include source management, local exhausts, ventilation, exposure…

  12. Feedback linearization for control of air breathing engines

    NASA Technical Reports Server (NTRS)

    Phillips, Stephen; Mattern, Duane

    1991-01-01

    The method of feedback linearization for control of the nonlinear nozzle and compressor components of an air breathing engine is presented. This method overcomes the need for a large number of scheduling variables and operating points to accurately model highly nonlinear plants. Feedback linearization also results in linear closed loop system performance simplifying subsequent control design. Feedback linearization is used for the nonlinear partial engine model and performance is verified through simulation.

  13. Optimization of Air-Breathing Propulsion Engine Concepts

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Hopkins, Dale A.

    1997-01-01

    Air-breathing propulsion engines play an important role in the development of both civil and military aircraft Design optimization of such engines can lead to higher power, or more thrust for less fuel consumption. A multimission propulsion engine design can be modeled mathematically as a multivariable global optimization problem, with a sequence of subproblems, which are specific to the mission events defined through Mach number, altitude, and power setting combinations.

  14. 14 CFR 25.1439 - Protective breathing equipment.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... altitude of 8,000 feet with a respiratory minute volume of 30 liters per minute BTPD. The equipment and system must be designed to prevent any inward leakage to the inside of the device and prevent any outward... oxygen system is used, a supply of 300 liters of free oxygen at 70 °F. and 760 mm. Hg. pressure...

  15. 14 CFR 25.1439 - Protective breathing equipment.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... altitude of 8,000 feet with a respiratory minute volume of 30 liters per minute BTPD. The equipment and system must be designed to prevent any inward leakage to the inside of the device and prevent any outward... oxygen system is used, a supply of 300 liters of free oxygen at 70 °F. and 760 mm. Hg. pressure...

  16. A Breath of Fresh Air: Addressing Indoor Air Quality

    ERIC Educational Resources Information Center

    Palliser, Janna

    2011-01-01

    Indoor air pollution refers to "chemical, biological, and physical contamination of indoor air," which may result in adverse health effects (OECD 2003). The causes, sources, and types of indoor air pollutants will be addressed in this article, as well as health effects and how to reduce exposure. Learning more about potential pollutants in home…

  17. Sustained periodic terrestrial locomotion in air-breathing fishes.

    PubMed

    Pace, C M; Gibb, A C

    2014-03-01

    While emergent behaviours have long been reported for air-breathing osteichthyians, only recently have researchers undertaken quantitative analyses of terrestrial locomotion. This review summarizes studies of sustained periodic terrestrial movements by air-breathing fishes and quantifies the contributions of the paired appendages and the axial body to forward propulsion. Elongate fishes with axial-based locomotion, e.g. the ropefish Erpetoichthys calabaricus, generate an anterior-to-posterior wave of undulation that travels down the axial musculoskeletal system and pushes the body against the substratum at multiple points. In contrast, appendage-based locomotors, e.g. the barred mudskipper Periophthalmus argentilineatus, produce no axial bending during sustained locomotion, but instead use repeated protraction-retraction cycles of the pectoral fins to elevate the centre of mass and propel the entire body anteriorly. Fishes that use an axial-appendage-based mechanism, e.g. walking catfishes Clarias spp., produce side-to-side, whole-body bending in co-ordination with protraction-retraction cycles of the pectoral fins. Once the body is maximally bent to one side, the tail is pressed against the substratum and drawn back through the mid-sagittal plane, which elevates the centre of mass and rotates it about a fulcrum formed by the pectoral fin and the ground. Although appendage-based terrestrial locomotion appears to be rare in osteichthyians, many different species appear to have converged upon functionally similar axial-based and axial-appendage-based movements. Based on common forms observed across divergent taxa, it appears that dorsoventral compression of the body, elongation of the axial skeleton or the presence of robust pectoral fins can facilitate effective terrestrial movement by air-breathing fishes.

  18. Prospects for future hypersonic air-breathing vehicles

    NASA Technical Reports Server (NTRS)

    Beach, H. L., Jr.; Blankson, Isaiah M.

    1991-01-01

    The age of hypersonics is (almost) here. This is evident from the amount of activity in the United States, Europe, the USSR and Japan; this activity is a reflection of technical progress in key areas which will enable new vehicle systems, as well as renewed interest in the utilization of these systems. The current situation, at least in the United States, is the product of an interesting history which is briefly reviewed here. The context for hypersonic applications is discussed, but the emphasis is on hypersonic technology issues and needs, particularly for propulsion and technology integration. The paper concludes with prospects for accomplishing the objective of air-breathing hypersonic vehicle systems.

  19. Fluid dynamic problems associated with air-breathing propulsive systems

    NASA Technical Reports Server (NTRS)

    Chow, W. L.

    1979-01-01

    A brief account of research activities on problems related to air-breathing propulsion is made in this final report for the step funded research grant NASA NGL 14-005-140. Problems include the aircraft ejector-nozzle propulsive system, nonconstant pressure jet mixing process, recompression and reattachment of turbulent free shear layer, supersonic turbulent base pressure, low speed separated flows, transonic boattail flow with and without small angle of attack, transonic base pressures, Mach reflection of shocks, and numerical solution of potential equation through hodograph transformation.

  20. Breathing-metabolic simulator

    NASA Technical Reports Server (NTRS)

    Bartlett, R. G.; Hendricks, C. M.; Morison, W. B.

    1972-01-01

    Breathing-metabolic simulator was developed to be used for evaluation of life support equipment. Apparatus simulates human breathing rate and controls temperature and humidity of exhaled air as well as its chemical composition. All functions are designed to correspond to various degrees of human response.

  1. Study of Benefits of Passenger Protective Breathing Equipment from Analysis of Past Accidents

    DTIC Science & Technology

    1988-03-01

    analysis of worldwide transport aircraft accidents involving fire. BACKGROUND. During a cabin fire, smoke and toxic gases may inhibit or prevent passenger...aviation industry focused upon smoke and toxic gases as causal factors of passenger incapacitation, resulting in failure to evacuate the aircraft before... gases . Protective breathing equipment (PBE) is being reevaluated in response to the United Kingdom’s (UK) Department of Transport’s Accident

  2. Multiple pure tone elimination strut assembly. [air breathing engines

    NASA Technical Reports Server (NTRS)

    Burcham, F. W. (Inventor)

    1981-01-01

    An acoustic noise elimination assembly is disclosed which has a capability for disrupting the continuity of fields of sound pressures forwardly projected from fans or rotors of a type commonly found in the fan or compressor first stage for air-breathing engines, when operating at tip speeds in the supersonic range. The assembly includes a tubular cowl defining a duct for delivering an air stream axially into the intake for a jet engine. A sound barrier, defined by a number of intersecting flat plates or struts has a line of intersection coincident with a longitudinal axis of the tubular cowl, which serves to disrupt the continuity of rotating fields of multiple pure tonal components of noise.

  3. Personal exposure to volatile organic compounds. I. Direct measurements in breathing-zone air, drinking water, food, and exhaled breath.

    PubMed

    Wallace, L A; Pellizzari, E; Hartwell, T; Rosenzweig, M; Erickson, M; Sparacino, C; Zelon, H

    1984-10-01

    A pilot study to test methods of estimating personal exposures to toxic substances and corresponding body burdens was carried out between July and December 1980. Individual exposures to about a dozen volatile organic compounds in air and drinking water were measured for nine volunteers in Bayonne and Elizabeth, New Jersey, and for three volunteers in Research Triangle Park, North Carolina during three 3-day visits over the 6-month period. Breath samples were also collected from all subjects on each visit. Composite food samples were collected in each locality. Sampling and analytical methods for air, water, food, and breath were evaluated and found generally capable of detecting concentrations as low as 1 microgram/m3 in air and breath, and 1 ng/g in water and food. About 230 personal air samples, 170 drinking water samples, 66 breath samples, and 4 food samples (16 composites) were analyzed for the target chemicals. Ten compounds were present in air and eight were transmitted mainly through that medium. The two target trihalomethanes (chloroform and bromodichloromethane) were predominantly transmitted through water and beverages. Food appeared to be a minor route of exposure, except possibly for trichloroethylene in margarine. Seven compounds were present in more than half of the breath samples. Diurnal and seasonal variations were noted in air and water concentrations of some compounds, with summer levels generally higher. For some chemicals, weekday air exposures were significantly higher than weekend exposures. Some, but not all, of the potentially occupationally exposed individuals had significantly higher workplace exposures to several chemicals. Distributions of air exposures were closer to log normal than normal for most chemicals. Several chemicals were highly correlated with each other in personal air samples, indicating possible common sources of exposure.

  4. Hypoxemia with air breathing periods in U.S. NAVY Treatment Table 6.

    PubMed

    Weaver, L K; Churchill, S K

    2006-01-01

    Air breathing is used to lessen hyperbaric oxygen (HBO2) toxicity. Hypoxemia could occur during hyperbaric air breathing in patients with lung dysfunction, although this has not been previously reported. We report two cases of hypoxemia during air breathing with two patients treated with the US Navy Table 6. Patient 1 was an 11-year-old male with cerebral gas embolism (during cardiac transplantation), patient 2 was a 66-year-old female with cerebral gas embolism from a central venous catheter accident. Both were mechanically ventilated. We monitored arterial blood gas (ABG) during therapy. In both patients, ABG measurements showed hypoxia during the first air breathing period at 1.9 atm abs (192.5 kPa). If patients require > or = 40% inspired oxygen before HBO2 therapy, oxygenation monitoring is advisable during air breathing periods, especially at lower chamber pressures (< or = 2.0 atm abs).

  5. Autonomic control of post-air-breathing tachycardia in Clarias gariepinus (Teleostei: Clariidae).

    PubMed

    Teixeira, Mariana Teodoro; Armelin, Vinicius Araújo; Abe, Augusto Shinya; Rantin, Francisco Tadeu; Florindo, Luiz Henrique

    2015-08-01

    The African catfish (Clarias gariepinus) is a teleost with bimodal respiration that utilizes a paired suprabranchial chamber located in the gill cavity as an air-breathing organ. Like all air-breathing fishes studied to date, the African catfish exhibits pronounced changes in heart rate (f H) that are associated with air-breathing events. We acquired f H, gill-breathing frequency (f G) and air-breathing frequency (f AB) in situations that require or do not require air breathing (during normoxia and hypoxia), and we assessed the autonomic control of post-air-breathing tachycardia using an infusion of the β-adrenergic antagonist propranolol and the muscarinic cholinergic antagonist atropine. During normoxia, C. gariepinus presented low f AB (1.85 ± 0.73 AB h(-1)) and a constant f G (43.16 ± 1.74 breaths min(-1)). During non-critical hypoxia (PO2 = 60 mmHg), f AB in the African catfish increased to 5.42 ± 1.19 AB h(-1) and f G decreased to 39.12 ± 1.58 breaths min(-1). During critical hypoxia (PO2 = 20 mmHg), f AB increased to 7.4 ± 1.39 AB h(-1) and f G decreased to 34.97 ± 1.78 breaths min(-1). These results were expected for a facultative air breather. Each air breath (AB) was followed by a brief but significant tachycardia, which in the critical hypoxia trials, reached a maximum of 143 % of the pre-AB f H values of untreated animals. Pharmacological blockade allowed the calculation of cardiac autonomic tones, which showed that post-AB tachycardia is predominantly regulated by the parasympathetic subdivision of the autonomic nervous system.

  6. Air-breathing fishes in aquaculture. What can we learn from physiology?

    PubMed

    Lefevre, S; Wang, T; Jensen, A; Cong, N V; Huong, D T T; Phuong, N T; Bayley, M

    2014-03-01

    During the past decade, the culture of air-breathing fish species has increased dramatically and is now a significant global source of protein for human consumption. This development has generated a need for specific information on how to maximize growth and minimize the environmental effect of culture systems. Here, the existing data on metabolism in air-breathing fishes are reviewed, with the aim of shedding new light on the oxygen requirements of air-breathing fishes in aquaculture, reaching the conclusion that aquatic oxygenation is much more important than previously assumed. In addition, the possible effects on growth of the recurrent exposure to deep hypoxia and associated elevated concentrations of carbon dioxide, ammonia and nitrite, that occurs in the culture ponds used for air-breathing fishes, are discussed. Where data on air-breathing fishes are simply lacking, data for a few water-breathing species will be reviewed, to put the physiological effects into a growth perspective. It is argued that an understanding of air-breathing fishes' respiratory physiology, including metabolic rate, partitioning of oxygen uptake from air and water in facultative air breathers, the critical oxygen tension, can provide important input for the optimization of culture practices. Given the growing importance of air breathers in aquaculture production, there is an urgent need for further data on these issues.

  7. Improved ROS defense in the swimbladder of a facultative air-breathing erythrinid fish, jeju, compared to a non-air-breathing close relative, traira.

    PubMed

    Pelster, Bernd; Giacomin, Marina; Wood, Chris M; Val, Adalberto L

    2016-07-01

    The jeju Hoplerythrinus unitaeniatus and the traira Hoplias malabaricus are two closely related erythrinid fish, both possessing a two-chambered physostomous swimbladder. In the jeju the anterior section of the posterior bladder is highly vascularized and the swimbladder is used for aerial respiration; the traira, in turn, is a water-breather that uses the swimbladder as a buoyancy organ and not for aerial oxygen uptake. Observation of the breathing behavior under different levels of water oxygenation revealed that the traira started aquatic surface respiration only under severe hypoxic conditions and did not breathe air. In the jeju air-breathing behavior was observed under normoxic conditions, and the frequency of air-breathing was significantly increased under hypoxic conditions. Unexpectedly, even under hyperoxic conditions (30 mg O2 L(-1)) the jeju continued to take air breaths, and compared with normoxic conditions the frequency was not reduced. Because the frequently air-exposed swimbladder tissue faces higher oxygen partial pressures than normally experienced by other fish tissues, it was hypothesized that in the facultative air-breathing jeju, swimbladder tissue would have a higher antioxidative capacity than the swimbladder tissue of the water breathing traira. Measurement of total glutathione (GSSG/GSH) concentration in anterior and posterior swimbladder tissue revealed a higher concentration of this antioxidant in swimbladder tissue as compared to muscle tissue in the jeju. Furthermore, the GSSG/GSH concentration in jeju tissues was significantly higher than in traira tissues. Similarly, activities of enzymes involved in the breakdown of reactive oxygen species were significantly higher in the jeju swimbladder as compared to the traira swimbladder. The results show that the jeju, using the swimbladder as an additional breathing organ, has an enhanced antioxidative capacity in the swimbladder as compared to the traira, using the swimbladder only as a

  8. Air contaminants in a submarine equipped with air independent propulsion.

    PubMed

    Persson, Ola; Ostberg, Christina; Pagels, Joakim; Sebastian, Aleksandra

    2006-11-01

    The Swedish Navy has operated submarines equipped with air independent propulsion for two decades. This type of submarine can stay submerged for periods far longer than other non-nuclear submarines are capable of. The air quality during longer periods of submersion has so far not been thoroughly investigated. This study presents results for a number of air quality parameters obtained during more than one week of continuous submerged operation. The measured parameters are pressure, temperature, relative humidity, oxygen, carbon dioxide, hydrogen, formaldehyde and other volatile organic compounds, ozone, nitrogen dioxide, particulate matter and microbiological contaminants. The measurements of airborne particles demonstrate that air pollutants typically occur at a low baseline level due to high air exchange rates and efficient air-cleaning devices. However, short-lived peaks with comparatively high concentrations occur, several of the sources for these have been identified. The concentrations of the pollutants measured in this study do not indicate a build-up of hazardous compounds during eight days of submersion. It is reasonable to assume that a substantial build-up of the investigated contaminants is not likely if the submersion period is prolonged several times, which is the case for modern submarines equipped with air independent propulsion.

  9. Personal exposure to volatile organic compounds. I. Direct measurements in breathing-zone air, drinking water, food, and exhaled breath

    SciTech Connect

    Wallace, L.A.; Pellizzari, E.; Hartwell, T.; Rosenzweig, M.; Erickson, M.; Sparacino, C.; Zelon, H.

    1984-10-01

    A pilot study to test methods of estimating personal exposures to toxic substances and corresponding body burdens was carried out between July and December 1980. Individual exposures to about a dozen volatile organic compounds in air and drinking water were measured for volunteers in New Jersey and North Carolina. Breath samples were also collected from all subjects. About 230 personal air samples, 170 drinking water samples, 66 breath samples, and 4 food samples (16 composites) were analyzed for the target chemicals. Ten compounds were present in air and eight were transmitted mainly through that medium. Chloroform and bromodichloromethane were predominantly transmitted through water and beverages. Food appeared to be a miner route of exposure, except possibly for trichloroethylene in margarine. Seven compounds were present in more than half of the breath samples. Diurnal and seasonal variations were noted in air and water concentrations of some compounds. Some, but not all, of the potentially occupationally exposed individuals had significantly higher workplace exposures to several chemicals. Distributions of air exposures were closer to log normal than normal for most chemicals. Several chemicals were highly correlated with each other in personal air samples, indicating possible common sources of exposures. Compounds detected included benzene, chlorinated aromatic hydrocarbons, chlorinated aliphatic hydrocarbons, halogens and vinyl chloride.

  10. Benzene levels in ambient air and breath of smokers and nonsmokers in urban and pristine environments

    SciTech Connect

    Wester, R.C.; Maibach, H.I.; Gruenke, L.D.; Craig, J.C.

    1986-01-01

    Benzene levels in human breath and in ambient air were compared in the urban area of San Francisco (SF) and in a more remote coastal pristine setting of Stinson Beach, Calif. (SB). Benzene analysis was done by gas chromatography-mass spectroscopy (GC-MS). Ambient benzene levels were sevenfold higher in SF (2.6 +/- 1.3 ppb, n = 25) than SB (0.38 +/- 0.39 ppb, n = 21). In SF, benzene in smokers' breath (6.8 +/- 3.0 ppb) was greater than in nonsmokers' breath (2.5 +/- 0.8 ppb) and smokers' ambient air (3.3 +/- 0.8 ppb). In SB the same pattern was observed: benzene in smokers' breath was higher than in nonsmokers' breath and ambient air. Benzene in SF nonsmokers' breath was greater than in SB nonsmokers' breath. Marijuana-only smokers had benzene breath levels between those of smokers and nonsmokers. There was little correlation between benzene in breath and number of cigarettes smoked, or with other benzene exposures such as diet. Of special interest was the finding that benzene in breath of SF nonsmokers (2.5 +/- 0.8 ppb) was greater than that in nonsmokers ambient air (1.4 +/- 0.1 ppb). The same was true in SB, where benzene in nonsmokers breath was greater than ambient air (1.8 +/- 0.2 ppb versus 1.0 +/- 0.1 ppb on d 1 and 1.3 +/- 0.3 ppb versus 0.23 +/- 0.18 ppb on d 2). This suggests an additional source of benzene other than outdoor ambient air.

  11. The lung cancer breath signature: a comparative analysis of exhaled breath and air sampled from inside the lungs

    PubMed Central

    Capuano, Rosamaria; Santonico, Marco; Pennazza, Giorgio; Ghezzi, Silvia; Martinelli, Eugenio; Roscioni, Claudio; Lucantoni, Gabriele; Galluccio, Giovanni; Paolesse, Roberto; Di Natale, Corrado; D’Amico, Arnaldo

    2015-01-01

    Results collected in more than 20 years of studies suggest a relationship between the volatile organic compounds exhaled in breath and lung cancer. However, the origin of these compounds is still not completely elucidated. In spite of the simplistic vision that cancerous tissues in lungs directly emit the volatile metabolites into the airways, some papers point out that metabolites are collected by the blood and then exchanged at the air-blood interface in the lung. To shed light on this subject we performed an experiment collecting both the breath and the air inside both the lungs with a modified bronchoscopic probe. The samples were measured with a gas chromatography-mass spectrometer (GC-MS) and an electronic nose. We found that the diagnostic capability of the electronic nose does not depend on the presence of cancer in the sampled lung, reaching in both cases an above 90% correct classification rate between cancer and non-cancer samples. On the other hand, multivariate analysis of GC-MS achieved a correct classification rate between the two lungs of only 76%. GC-MS analysis of breath and air sampled from the lungs demonstrates a substantial preservation of the VOCs pattern from inside the lung to the exhaled breath. PMID:26559776

  12. The lung cancer breath signature: a comparative analysis of exhaled breath and air sampled from inside the lungs.

    PubMed

    Capuano, Rosamaria; Santonico, Marco; Pennazza, Giorgio; Ghezzi, Silvia; Martinelli, Eugenio; Roscioni, Claudio; Lucantoni, Gabriele; Galluccio, Giovanni; Paolesse, Roberto; Di Natale, Corrado; D'Amico, Arnaldo

    2015-11-12

    Results collected in more than 20 years of studies suggest a relationship between the volatile organic compounds exhaled in breath and lung cancer. However, the origin of these compounds is still not completely elucidated. In spite of the simplistic vision that cancerous tissues in lungs directly emit the volatile metabolites into the airways, some papers point out that metabolites are collected by the blood and then exchanged at the air-blood interface in the lung. To shed light on this subject we performed an experiment collecting both the breath and the air inside both the lungs with a modified bronchoscopic probe. The samples were measured with a gas chromatography-mass spectrometer (GC-MS) and an electronic nose. We found that the diagnostic capability of the electronic nose does not depend on the presence of cancer in the sampled lung, reaching in both cases an above 90% correct classification rate between cancer and non-cancer samples. On the other hand, multivariate analysis of GC-MS achieved a correct classification rate between the two lungs of only 76%. GC-MS analysis of breath and air sampled from the lungs demonstrates a substantial preservation of the VOCs pattern from inside the lung to the exhaled breath.

  13. The lung cancer breath signature: a comparative analysis of exhaled breath and air sampled from inside the lungs

    NASA Astrophysics Data System (ADS)

    Capuano, Rosamaria; Santonico, Marco; Pennazza, Giorgio; Ghezzi, Silvia; Martinelli, Eugenio; Roscioni, Claudio; Lucantoni, Gabriele; Galluccio, Giovanni; Paolesse, Roberto; di Natale, Corrado; D'Amico, Arnaldo

    2015-11-01

    Results collected in more than 20 years of studies suggest a relationship between the volatile organic compounds exhaled in breath and lung cancer. However, the origin of these compounds is still not completely elucidated. In spite of the simplistic vision that cancerous tissues in lungs directly emit the volatile metabolites into the airways, some papers point out that metabolites are collected by the blood and then exchanged at the air-blood interface in the lung. To shed light on this subject we performed an experiment collecting both the breath and the air inside both the lungs with a modified bronchoscopic probe. The samples were measured with a gas chromatography-mass spectrometer (GC-MS) and an electronic nose. We found that the diagnostic capability of the electronic nose does not depend on the presence of cancer in the sampled lung, reaching in both cases an above 90% correct classification rate between cancer and non-cancer samples. On the other hand, multivariate analysis of GC-MS achieved a correct classification rate between the two lungs of only 76%. GC-MS analysis of breath and air sampled from the lungs demonstrates a substantial preservation of the VOCs pattern from inside the lung to the exhaled breath.

  14. Hybrid membrane contactor system for creating semi-breathing air

    NASA Astrophysics Data System (ADS)

    Timofeev, D. V.

    2012-02-01

    Typically, the equipment to create an artificial climate does not involve changing the composition of the respiratory air. In particular in medical institutions assumes the existence of plant of artificial climate and disinfection in operating rooms and intensive care wards. The use of a hybrid membrane-absorption systems for the generation of artificial atmospheres are improving the respiratory system, blood is enriched or depleted of various gases, resulting in increased stamina, there is a better, faster or slower metabolism, improves concentration and memory. Application of the system contributes to easy and rapid recovery after the operation. By adding a special component, with drug activity, air ionization, and adjust its composition, you can create a special, more favorable for patients with the atmosphere. These factors allow for the treatment and rehabilitation of patients and reduce mortality of heavy patients.

  15. A Performance Map for Ideal Air Breathing Pulse Detonation Engines

    NASA Technical Reports Server (NTRS)

    Paxson, Daniel E.

    2001-01-01

    The performance of an ideal, air breathing Pulse Detonation Engine is described in a manner that is useful for application studies (e.g., as a stand-alone, propulsion system, in combined cycles, or in hybrid turbomachinery cycles). It is shown that the Pulse Detonation Engine may be characterized by an averaged total pressure ratio, which is a unique function of the inlet temperature, the fraction of the inlet flow containing a reacting mixture, and the stoichiometry of the mixture. The inlet temperature and stoichiometry (equivalence ratio) may in turn be combined to form a nondimensional heat addition parameter. For each value of this parameter, the average total enthalpy ratio and total pressure ratio across the device are functions of only the reactant fill fraction. Performance over the entire operating envelope can thus be presented on a single plot of total pressure ratio versus total enthalpy ratio for families of the heat addition parameter. Total pressure ratios are derived from thrust calculations obtained from an experimentally validated, reactive Euler code capable of computing complete Pulse Detonation Engine limit cycles. Results are presented which demonstrate the utility of the described method for assessing performance of the Pulse Detonation Engine in several potential applications. Limitations and assumptions of the analysis are discussed. Details of the particular detonative cycle used for the computations are described.

  16. Stack air-breathing membraneless glucose microfluidic biofuel cell

    NASA Astrophysics Data System (ADS)

    Galindo-de-la-Rosa, J.; Moreno-Zuria, A.; Vallejo-Becerra, V.; Arjona, N.; Guerra-Balcázar, M.; Ledesma-García, J.; Arriaga, L. G.

    2016-11-01

    A novel stacked microfluidic fuel cell design comprising re-utilization of the anodic and cathodic solutions on the secondary cell is presented. This membraneless microfluidic fuel cell employs porous flow-through electrodes in a “V”-shape cell architecture. Enzymatic bioanodic arrays based on glucose oxidase were prepared by immobilizing the enzyme onto Toray carbon paper electrodes using tetrabutylammonium bromide, Nafion and glutaraldehyde. These electrodes were characterized through the scanning electrochemical microscope technique, evidencing a good electrochemical response due to the electronic transference observed with the presence of glucose over the entire of the electrode. Moreover, the evaluation of this microfluidic fuel cell with an air-breathing system in a double-cell mode showed a performance of 0.8951 mWcm-2 in a series connection (2.2822mAcm-2, 1.3607V), and 0.8427 mWcm-2 in a parallel connection (3.5786mAcm-2, 0.8164V).

  17. Experimental Study on Restart Control of Supersonic Air Breathing Engine

    NASA Astrophysics Data System (ADS)

    Kojima, Takayuki; Sato, Tetsuya; Sawai, Shujiro; Tanatsugu, Nobuhiro

    In order to study dynamic response and establish control logic of supersonic air breathing engine, restart control tests of subscale engine model, that consists of axisymmetric intake and turbojet engine are done at ISAS supersonic wind tunnel (Mach 3). Assuming the condition that the combustion flame is blown out by the unstart, restart control sequences are set as follows. First, after a wind tunnel is started, the core engine is ignited. Second, the intake is restarted while the core engine is controlled. Third, the intake spike position and the terminal shock position are controlled and intake total pressure recovery becomes the designed value (60%). Tests are successful and the engine thrust is recovered for approximately 30-40 seconds after the intake unstart. Sudden increase of combustor flame temperature and rotational speed after the intake unstart is shown experimentally. This phenomenon is inevitable for supersonic engines that apply turbojet cycle as a core engine. To reduce sudden increase of the flame temperature, new sequence to close a fuel control valve after detection of the intake unstart is done and an increase of the flame temperature is reduced. Furthermore, necessity of avoidance of the intake buzz is shown experimentally. To avoid the intake buzz, buzz margin control by the bypass door is proposed and succeeded.

  18. Corticosterone promotes emergence of fictive air breathing in Xenopus laevis Daudin tadpole brainstems.

    PubMed

    Fournier, Stéphanie; Dubé, Pierre-Luc; Kinkead, Richard

    2012-04-01

    The emergence of air breathing during amphibian metamorphosis requires significant changes to the brainstem circuits that generate and regulate breathing. However, the mechanisms controlling this developmental process are unknown. Because corticosterone plays an important role in the neuroendocrine regulation of amphibian metamorphosis, we tested the hypothesis that corticosterone augments fictive air breathing frequency in Xenopus laevis. To do so, we compared the fictive air breathing frequency produced by in vitro brainstem preparations from pre-metamorphic tadpoles and adult frogs before and after 1 h application of corticosterone (100 nmol l(-1)). Fictive breathing measurements related to gill and lung ventilation were recorded extracellularly from cranial nerve rootlets V and X. Corticosterone application had no immediate effect on respiratory-related motor output produced by brainstems from either developmental stage. One hour after corticosterone wash out, fictive lung ventilation frequency was increased whereas gill burst frequency was decreased. This effect was stage specific as it was significant only in preparations from tadpoles. GABA application (0.001-0.5 mmol l(-1)) augmented fictive air breathing in tadpole preparations. However, this effect of GABA was no longer observed following corticosterone treatment. An increase in circulating corticosterone is one of the endocrine processes that orchestrate central nervous system remodelling during metamorphosis. The age-specific effects of corticosterone application indicate that this hormone can act as an important regulator of respiratory control development in Xenopus tadpoles. Concurrent changes in GABAergic neurotransmission probably contribute to this maturation process, leading to the emergence of air breathing in this species.

  19. Applications of principal component analysis to breath air absorption spectra profiles classification

    NASA Astrophysics Data System (ADS)

    Kistenev, Yu. V.; Shapovalov, A. V.; Borisov, A. V.; Vrazhnov, D. A.; Nikolaev, V. V.; Nikiforova, O. Y.

    2015-12-01

    The results of numerical simulation of application principal component analysis to absorption spectra of breath air of patients with pulmonary diseases are presented. Various methods of experimental data preprocessing are analyzed.

  20. Health and efficiency in trimix versus air breathing in compressed air workers.

    PubMed

    Van Rees Vellinga, T P; Verhoeven, A C; Van Dijk, F J H; Sterk, W

    2006-01-01

    The Western Scheldt Tunneling Project in the Netherlands provided a unique opportunity to evaluate the effects of trimix usage on the health of compressed air workers and the efficiency of the project. Data analysis addressed 318 exposures to compressed air at 3.9-4.4 bar gauge and 52 exposures to trimix (25% oxygen, 25% helium, and 50% nitrogen) at 4.6-4.8 bar gauge. Results revealed three incidents of decompression sickness all of which involved the use of compressed air. During exposure to compressed air, the effects of nitrogen narcosis were manifested in operational errors and increased fatigue among the workers. When using trimix, less effort was required for breathing, and mandatory decompression times for stays of a specific duration and maximum depth were considerably shorter. We conclude that it might be rational--for both medical and operational reasons--to use breathing gases with lower nitrogen fractions (e.g., trimix) for deep-caisson work at pressures exceeding 3 bar gauge, although definitive studies are needed.

  1. Breathing

    MedlinePlus Videos and Cool Tools

    ... size of the thoracic cavity and decreases the pressure inside. As a result, air rushes in and ... volume of the thoracic cavity decreases, while the pressure within it increases. As a result, the lungs ...

  2. OFFICE EQUIPMENT: DESIGN, INDOOR AIR EMISSIONS, AND POLLUTION PREVENTION OPPORTUNITIES

    EPA Science Inventory

    The report summarizes available information on office equipment design; indoor air emissions of organics, ozone, and particulates from office equipment; and pollution prevention approaches for reducing these emissions. Since much of the existing emissions data from office equipme...

  3. Environmental modulation of the onset of air breathing and survival of Betta splendens and Trichopodus trichopterus.

    PubMed

    Mendez-Sanchez, J F; Burggren, W W

    2014-03-01

    The effect of hypoxia on air-breathing onset and survival was determined in larvae of the air-breathing fishes, the three spot gourami Trichopodus trichopterus and the Siamese fighting fish Betta splendens. Larvae were exposed continuously or intermittently (12 h nightly) to an oxygen partial pressure (PO2 ) of 20, 17 and 14 kPa from 1 to 40 days post-fertilization (dpf). Survival and onset of air breathing were measured daily. Continuous normoxic conditions produced a larval survival rate of 65-75% for B. splendens and 15-30% for T. trichopterus, but all larvae of both species died at 9 dpf in continuous hypoxia conditions. Larvae under intermittent (nocturnal) hypoxia showed a 15% elevated survival rate in both species. The same conditions altered the onset of air breathing, advancing onset by 4 days in B. splendens and delaying onset by 9 days in T. trichopterus. These interspecific differences were attributed to air-breathing characteristics: B. splendens was a non-obligatory air breather after 36 dpf, whereas T. trichopterus was an obligatory air breather after 32 dpf.

  4. 46. Communication equipment room, shock isolator air compressor at right, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    46. Communication equipment room, shock isolator air compressor at right, looking northeast - Ellsworth Air Force Base, Delta Flight, Launch Control Facility, County Road CS23A, North of Exit 127, Interior, Jackson County, SD

  5. 45. Communication equipment room, cable air dryer on left, motorola ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    45. Communication equipment room, cable air dryer on left, motorola base station (vhf) at right, looking southwest - Ellsworth Air Force Base, Delta Flight, Launch Control Facility, County Road CS23A, North of Exit 127, Interior, Jackson County, SD

  6. Benzene and naphthalene in air and breath as indicators of exposure to jet fuel

    PubMed Central

    Egeghy, P; Hauf-Cabalo, L; Gibson, R; Rappaport, S

    2003-01-01

    Aims: To estimate exposures to benzene and naphthalene among military personnel working with jet fuel (JP-8) and to determine whether naphthalene might serve as a surrogate for JP-8 in studies of health effects. Methods: Benzene and naphthalene were measured in air and breath of 326 personnel in the US Air Force, who had been assigned a priori into low, moderate, and high exposure categories for JP-8. Results: Median air concentrations for persons in the low, moderate, and high exposure categories were 3.1, 7.4, and 252 µg benzene/m3 air, 4.6, 9.0, and 11.4 µg benzene/m3 breath, 1.9, 10.3, and 485 µg naphthalene/m3 air, and 0.73, 0.93, and 1.83 µg naphthalene/m3 breath, respectively. In the moderate and high exposure categories, 5% and 15% of the benzene air concentrations, respectively, were above the 2002 threshold limit value (TLV) of 1.6 mg/m3. Multiple regression analyses of air and breath levels revealed prominent background sources of benzene exposure, including cigarette smoke. However, naphthalene exposure was not unduly influenced by sources other than JP-8. Among heavily exposed workers, dermal contact with JP-8 contributed to air and breath concentrations along with several physical and environmental factors. Conclusions: Personnel having regular contact with JP-8 are occasionally exposed to benzene at levels above the current TLV. Among heavily exposed workers, uptake of JP-8 components occurs via both inhalation and dermal contact. Naphthalene in air and breath can serve as useful measures of exposure to JP-8 and uptake of fuel components in the body. PMID:14634191

  7. Spiracular air breathing in polypterid fishes and its implications for aerial respiration in stem tetrapods.

    PubMed

    Graham, Jeffrey B; Wegner, Nicholas C; Miller, Lauren A; Jew, Corey J; Lai, N Chin; Berquist, Rachel M; Frank, Lawrence R; Long, John A

    2014-01-01

    The polypterids (bichirs and ropefish) are extant basal actinopterygian (ray-finned) fishes that breathe air and share similarities with extant lobe-finned sarcopterygians (lungfishes and tetrapods) in lung structure. They are also similar to some fossil sarcopterygians, including stem tetrapods, in having large paired openings (spiracles) on top of their head. The role of spiracles in polypterid respiration has been unclear, with early reports suggesting that polypterids could inhale air through the spiracles, while later reports have largely dismissed such observations. Here we resolve the 100-year-old mystery by presenting structural, behavioural, video, kinematic and pressure data that show spiracle-mediated aspiration accounts for up to 93% of all air breaths in four species of Polypterus. Similarity in the size and position of polypterid spiracles with those of some stem tetrapods suggests that spiracular air breathing may have been an important respiratory strategy during the fish-tetrapod transition from water to land.

  8. MEASUREMENTS OF AIR POLLUTANT BIOMARKERS WITH EXHALED BREATH TECHNIQUES

    EPA Science Inventory

    Use of exhaled breath condensate (EBC) has appeal as a noninvasive surrogate sample for lung-derived fluid. Additionally, EBC can be collected multiple times over the course of a study, unlike many other lung sampling techniques which can be performed fewer times. However validat...

  9. High capacity for extracellular acid-base regulation in the air-breathing fish Pangasianodon hypophthalmus.

    PubMed

    Damsgaard, Christian; Gam, Le Thi Hong; Tuong, Dang Diem; Thinh, Phan Vinh; Huong Thanh, Do Thi; Wang, Tobias; Bayley, Mark

    2015-05-01

    The evolution of accessory air-breathing structures is typically associated with reduction of the gills, although branchial ion transport remains pivotal for acid-base and ion regulation. Therefore, air-breathing fishes are believed to have a low capacity for extracellular pH regulation during a respiratory acidosis. In the present study, we investigated acid-base regulation during hypercapnia in the air-breathing fish Pangasianodon hypophthalmus in normoxic and hypoxic water at 28-30°C. Contrary to previous studies, we show that this air-breathing fish has a pronounced ability to regulate extracellular pH (pHe) during hypercapnia, with complete metabolic compensation of pHe within 72 h of exposure to hypoxic hypercapnia with CO2 levels above 34 mmHg. The high capacity for pHe regulation relies on a pronounced ability to increase levels of HCO3(-) in the plasma. Our study illustrates the diversity in the physiology of air-breathing fishes, such that generalizations across phylogenies may be difficult.

  10. Breathing Problems

    MedlinePlus

    ... getting enough air. Sometimes you can have mild breathing problems because of a stuffy nose or intense ... panic attacks Allergies If you often have trouble breathing, it is important to find out the cause.

  11. Air breathing and aquatic gas exchange during hypoxia in armoured catfish.

    PubMed

    Scott, Graham R; Matey, Victoria; Mendoza, Julie-Anne; Gilmour, Kathleen M; Perry, Steve F; Almeida-Val, Vera M F; Val, Adalberto L

    2017-01-01

    Air breathing in fish is commonly believed to have arisen as an adaptation to aquatic hypoxia. The effectiveness of air breathing for tissue O2 supply depends on the ability to avoid O2 loss as oxygenated blood from the air-breathing organ passes through the gills. Here, we evaluated whether the armoured catfish (Hypostomus aff. pyreneusi)-a facultative air breather-can avoid branchial O2 loss while air breathing in aquatic hypoxia, and we measured various other respiratory and metabolic traits important for O2 supply and utilization. Fish were instrumented with opercular catheters to measure the O2 tension (PO2) of expired water, and air breathing and aquatic respiration were measured during progressive stepwise hypoxia in the water. Armoured catfish exhibited relatively low rates of O2 consumption and gill ventilation, and gill ventilation increased in hypoxia due primarily to increases in ventilatory stroke volume. Armoured catfish began air breathing at a water PO2 of 2.5 kPa, and both air-breathing frequency and hypoxia tolerance (as reflected by PO2 at loss of equilibrium, LOE) was greater in individuals with a larger body mass. Branchial O2 loss, as reflected by higher PO2 in expired than in inspired water, was observed in a minority (4/11) of individuals as water PO2 approached that at LOE. Armoured catfish also exhibited a gill morphology characterized by short filaments bearing short fused lamellae, large interlamellar cell masses, low surface area, and a thick epithelium that increased water-to-blood diffusion distance. Armoured catfish had a relatively low blood-O2 binding affinity when sampled in normoxia (P50 of 3.1 kPa at pH 7.4), but were able to rapidly increase binding affinity during progressive hypoxia exposure (to a P50 of 1.8 kPa). Armoured catfish also had low activities of several metabolic enzymes in white muscle, liver, and brain. Therefore, low rates of metabolism and gill ventilation, and a reduction in branchial gas-exchange capacity

  12. I(sup STAR), NASA's Next Step in Air-Breathing Propulsion for Space Access

    NASA Technical Reports Server (NTRS)

    Hutt, John J.; McArthur, Craig; Cook, Stephen (Technical Monitor)

    2001-01-01

    The United States' National Aeronautics and Space Administration (NASA) has established a strategic plan for future activities in space. A primary goal of this plan is to make drastic improvements in the cost and safety of earth to low-earth-orbit transportation. One approach to achieving this goal is through the development of highly reusable, highly reliable space transportation systems analogous to the commercial airline system. In the year 2000, NASA selected the Rocket Based Combined Cycle (RBCC) engine as the next logical step towards this goal. NASA will develop a complete flight-weight, pump-fed engine system under the Integrated System Test of an Airbreathing Rocket (I(sup STAR)) Project. The objective of this project is develop a reusable engine capable of self-powering a vehicle through the air-augmented rocket, ramjet and scramjet modes required in all RBCC based operational vehicle concepts. The project is currently approved and funded to develop the engine through ground test demonstration. Plans are in place to proceed with flight demonstration pending funding approval. The project is in formulation phase and the Preliminary Requirements Review has been completed. The engine system and vehicle have been selected at the conceptual level. The I(sup STAR) engine concept is based on an air-breathing flowpath downselected from three configurations evaluated in NASA's Advanced Reusable Technology contract. The selected flowpath features rocket thrust chambers integrated into struts separating modular flowpath ducts, a variable geometry inlet, and a thermally choked throat. The engine will be approximately 220 inches long and 79 inches wide and fueled with a hydrocarbon fuel using liquid oxygen as the primary oxidizer candidate. The primary concept for the pump turbine drive is pressure-fed catalyzed hydrogen peroxide. In order to control costs, the flight demonstration vehicle will be launched from a B-52 aircraft. The vehicle concept is based on the Air

  13. Analysis of flight equipment purchasing practices of representative air carriers

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The process through which representative air carriers decide whether or not to purchase flight equipment was investigated as well as their practices and policies in retiring surplus aircraft. An analysis of the flight equipment investment decision process in ten airlines shows that for the airline industry as a whole, the flight equipment investment decision is in a state of transition from a wholly informal process in earliest years to a much more organized and structured process in the future. Individual air carriers are in different stages with respect to the formality and sophistication associated with the flight equipment investment decision.

  14. The Breath of Life. The Problem of Poisoned Air.

    ERIC Educational Resources Information Center

    Carr, Donald E.

    The origins and nature of air pollution, from earliest days to the present, are examined in this book. Although air pollution has been with us since the discovery of fire, it is proffered that the major culprit now is the burning of gasoline and low-grade heating oil. All other sources of air pollution are negligible. The main thesis is that only…

  15. 41. Launch Control Equipment Room, interior. Thalheimer Whiteman Air ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    41. Launch Control Equipment Room, interior. Thalheimer - Whiteman Air Force Base, Oscar O-1 Minuteman Missile Alert Facility, Southeast corner of Twelfth & Vendenberg Avenues, Knob Noster, Johnson County, MO

  16. 64. INTERIOR VIEW LOOKING DOWN LENGTH OF AIR CONDITIONING EQUIPMENT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    64. INTERIOR VIEW LOOKING DOWN LENGTH OF AIR CONDITIONING EQUIPMENT REPAIR SHOP. - Baltimore & Ohio Railroad, Mount Clare Shops, South side of Pratt Street between Carey & Poppleton Streets, Baltimore, Independent City, MD

  17. How the Air Force Trains Its Biomedical Equipment Technicians

    ERIC Educational Resources Information Center

    Raynor, Richard R.

    1976-01-01

    Reports on the U.S. Air Force method of training biomedical equipment technicians. The 50 self-paced modules that make up the course are randomly sequenced to reduce capital investment in training equipment. Other useful bits of information from the military are included in this article. (Editor/HD)

  18. Firefighter's compressed air breathing system pressure vessel development program

    NASA Technical Reports Server (NTRS)

    Beck, E. J.

    1974-01-01

    The research to design, fabricate, test, and deliver a pressure vessel for the main component in an improved high-performance firefighter's breathing system is reported. The principal physical and performance characteristics of the vessel which were required are: (1) maximum weight of 9.0 lb; (2) maximum operating pressure of 4500 psig (charge pressure of 4000 psig); (3) minimum contained volume of 280 in. 3; (4) proof pressure of 6750 psig; (5) minimum burst pressure of 9000 psig following operational and service life; and (6) a minimum service life of 15 years. The vessel developed to fulfill the requirements described was completely sucessful, i.e., every category of performence was satisfied. The average weight of the vessel was found to be about 8.3 lb, well below the 9.0 lb specification requirement.

  19. Dependence of exhaled breath composition on exogenous factors, smoking habits and exposure to air pollutants*

    PubMed Central

    Mochalski, P; Filipiak, A; Bajtarevic, A; Ager, C; Denz, H; Hilbe, W; Jamnig, H; Hackl, M; Dzien, A; Amann, A

    2013-01-01

    Non-invasive disease monitoring on the basis of volatile breath markers is a very attractive but challenging task. Several hundreds of compounds have been detected in exhaled air using modern analytical techniques (e.g. proton-transfer reaction mass spectrometry, gas chromatography-mass spectrometry) and have even been linked to various diseases. However, the biochemical background for most of compounds detected in breath samples has not been elucidated; therefore, the obtained results should be interpreted with care to avoid false correlations. The major aim of this study was to assess the effects of smoking on the composition of exhaled breath. Additionally, the potential origin of breath volatile organic compounds (VOCs) is discussed focusing on diet, environmental exposure and biological pathways based on other’s studies. Profiles of VOCs detected in exhaled breath and inspired air samples of 115 subjects with addition of urine headspace derived from 50 volunteers are presented. Samples were analyzed with GC-MS after preconcentration on multibed sorption tubes in case of breath samples and solid phase micro-extraction (SPME) in the case of urine samples. Altogether 266 compounds were found in exhaled breath of at least 10% of the volunteers. From these, 162 compounds were identified by spectral library match and retention time (based on reference standards). It is shown that the composition of exhaled breath is considerably influenced by exposure to pollution and indoor-air contaminants and particularly by smoking. More than 80 organic compounds were found to be significantly related to smoking, the largest group comprising unsaturated hydrocarbons (29 dienes, 27 alkenes and 3 alkynes). On the basis of the presented results, we suggest that for the future understanding of breath data it will be necessary to carefully investigate the potential biological origin of volatiles, e.g., by means of analysis of tissues, isolated cell lines or other body fluids. In

  20. 30 CFR 49.6 - Equipment and maintenance requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... shall be provided with at least the following equipment: (1) Twelve self-contained breathing apparatus...), and any necessary equipment for testing such breathing apparatus; (2) A portable supply of liquid air..., applicable to the supplied breathing apparatus and sufficient to sustain each team for eight hours...

  1. 30 CFR 49.6 - Equipment and maintenance requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... shall be provided with at least the following equipment: (1) Twelve self-contained breathing apparatus...), and any necessary equipment for testing such breathing apparatus; (2) A portable supply of liquid air..., applicable to the supplied breathing apparatus and sufficient to sustain each team for eight hours...

  2. 44. Communication equipment room, cable air dryer on left, motorola ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    44. Communication equipment room, cable air dryer on left, motorola base station (vhf) in center, telephone repeater group at right, looking west - Ellsworth Air Force Base, Delta Flight, Launch Control Facility, County Road CS23A, North of Exit 127, Interior, Jackson County, SD

  3. Developmental cardiorespiratory physiology of the air-breathing tropical gar, Atractosteus tropicus.

    PubMed

    Burggren, Warren W; Bautista, Gil Martinez; Coop, Susana Camarillo; Couturier, Gabriel Márquez; Delgadillo, Salomón Páramo; García, Rafael Martínez; González, Carlos Alfonso Alvarez

    2016-10-01

    The physiological transition to aerial breathing in larval air-breathing fishes is poorly understood. We investigated gill ventilation frequency (fG), heart rate (fH), and air breathing frequency (fAB) as a function of development, activity, hypoxia, and temperature in embryos/larvae from day (D) 2.5 to D30 posthatch of the tropical gar, Atractosteus tropicus, an obligate air breather. Gill ventilation at 28°C began at approximately D2, peaking at ∼75 beats/min on D5, before declining to ∼55 beats/min at D30. Heart beat began ∼36-48 h postfertilization and ∼1 day before hatching. fH peaked between D3 and D10 at ∼140 beats/min, remaining at this level through D30. Air breathing started very early at D2.5 to D3.5 at 1-2 breaths/h, increasing to ∼30 breaths/h at D15 and D30. Forced activity at all stages resulted in a rapid but brief increase in both fG and fH, (but not fAB), indicating that even in these early larval stages, reflex control existed over both ventilation and circulation prior to its increasing importance in older fishes. Acute progressive hypoxia increased fG in D2.5-D10 larvae, but decreased fG in older larvae (≥D15), possibly to prevent branchial O2 loss into surrounding water. Temperature sensitivity of fG and fH measured at 20°C, 25°C, 28°C and 38°C was largely independent of development, with a Q10 between 20°C and 38°C of ∼2.4 and ∼1.5 for fG and fH, respectively. The rapid onset of air breathing, coupled with both respiratory and cardiovascular reflexes as early as D2.5, indicates that larval A. tropicus develops "in the fast lane."

  4. Radiographic evaluation of positional atelectasis in sedated dogs breathing room air versus 100% oxygen

    PubMed Central

    Barletta, Michele; Almondia, Donna; Williams, Jamie; Crochik, Sonia; Hofmeister, Erik

    2014-01-01

    This study documents the degree of positional atelectasis in sedated dogs receiving 100% oxygen (O2) versus room air. Initial lateral recumbency was determined by an orthopedic study and initial treatment (O2 or room air) was randomized. Each dog was maintained in lateral recumbency for 15 min, at which time ventrodorsal (VD) and opposite lateral thoracic radiographs were obtained. Each dog was then maintained in the opposite lateral recumbency and received the other treatment for 15 min, followed by a VD and opposite lateral radiograph. Radiographs were scored for severity of pulmonary pattern and mediastinal shift by 3 radiologists. Dogs breathing O2 had significantly higher scores than dogs breathing room air. If radiographically detectable dependent atelectasis is present, repeat thoracic images following manual positive ventilation and/or position change to the opposite lateral recumbency should be made to rule out the effect of O2 positional atelectasis and avoid misdiagnosis. PMID:25320389

  5. Compressed air demand-type firefighter's breathing system, volume 1. [design analysis and performance tests

    NASA Technical Reports Server (NTRS)

    Sullivan, J. L.

    1975-01-01

    The commercial availability of lightweight high pressure compressed air vessels has resulted in a lightweight firefighter's breathing apparatus. The improved apparatus, and details of its design and development are described. The apparatus includes a compact harness assembly, a backplate mounted pressure reducer assembly, a lightweight bubble-type facemask with a mask mounted demand breathing regulator. Incorporated in the breathing regulator is exhalation valve, a purge valve and a whistle-type low pressure warning that sounds only during inhalation. The pressure reducer assembly includes two pressure reducers, an automatic transfer valve and a signaling device for the low pressure warning. Twenty systems were fabricated, tested, refined through an alternating development and test sequence, and extensively examined in a field evaluation program. Photographs of the apparatus are included.

  6. The novel selected-ion flow tube approach to trace gas analysis of air and breath.

    PubMed

    Smith, D; Spanel, P

    1996-01-01

    We present an overview of the development and use of our selected-ion flow tube (SIFT) technique as a sensitive, quantitative method for the rapid, real-time analysis of the trace gas content of atmospheric air and human breath, presenting some pilot data from various research areas in which this method will find valuable application. We show that it is capable of detecting and quantifying trace gases, in complex mixtures such as breath, which are present at partial pressures down to about 10 parts per billion. Following discussions of the principles involved in this SIFT method of analysis, of the experiments which we have carried out to establish its quantitative validity, and of the air and breath sampling techniques involved, we present sample data on the detection and quantification of trace gases on the breath of healthy people and of patients suffering from renal failure and diabetes. We also show how breath ammonia can be accurately quantified from a single breath exhalation and used as an indicator of the presence in the stomach of the bacterium Helicobacter pylori. Health and safety applications are exemplified by analyses of the gases of the gases of cigarette smoke and on the breath of smokers. The value of this analytical method in environmental science is demonstrated by the analyses of petrol vapour, car exhaust emissions and the trace organic vapours detected in town air near a busy road. Final examples of the value of this analytical method are the detection and quantification of the gases emitted from crushed garlic and from breath following the chewing of a mint, which demonstrate its potential in food and flavour research. Throughout the paper we stress the advantages of this SIFT method compared to conventional mass spectrometry for trace gas analysis of complex mixtures, emphasizing its selectivity, sensitivity and real-time analysis capability. Finally, we note that whilst the current SIFT is strictly laboratory based, both transportable and

  7. Fast-starting after a breath: air-breathing motions are kinematically similar to escape responses in the catfish Hoplosternum littorale

    PubMed Central

    Domenici, Paolo; Norin, Tommy; Bushnell, Peter G.; Johansen, Jacob L.; Skov, Peter Vilhelm; Svendsen, Morten B. S.; Steffensen, John F.; Abe, Augusto S.

    2015-01-01

    ABSTRACT Fast-starts are brief accelerations commonly observed in fish within the context of predator–prey interactions. In typical C-start escape responses, fish react to a threatening stimulus by bending their body into a C-shape during the first muscle contraction (i.e. stage 1) which provides a sudden acceleration away from the stimulus. Recently, similar C-starts have been recorded in fish aiming at a prey. Little is known about C-starts outside the context of predator–prey interactions, though recent work has shown that escape response can also be induced by high temperature. Here, we test the hypothesis that air-breathing fish may use C-starts in the context of gulping air at the surface. Hoplosternum littorale is an air-breathing freshwater catfish found in South America. Field video observations reveal that their air-breathing behaviour consists of air-gulping at the surface, followed by a fast turn which re-directs the fish towards the bottom. Using high-speed video in the laboratory, we compared the kinematics of the turn immediately following air-gulping performed by H. littorale in normoxia with those of mechanically-triggered C-start escape responses and with routine (i.e. spontaneous) turns. Our results show that air-breathing events overlap considerably with escape responses with a large stage 1 angle in terms of turning rates, distance covered and the relationship between these rates. Therefore, these two behaviours can be considered kinematically comparable, suggesting that air-breathing in this species is followed by escape-like C-start motions, presumably to minimise time at the surface and exposure to avian predators. These findings show that C-starts can occur in a variety of contexts in which fish may need to get away from areas of potential danger. PMID:25527644

  8. Equipment for Measuring Air Flow, Air Temperature, Relative Humidity, and Carbon Dioxide in Schools. Technical Bulletin.

    ERIC Educational Resources Information Center

    Jacobs, Bruce W.

    Information on equipment and techniques that school facility personnel may use to evaluate IAQ conditions are discussed. Focus is placed on the IAQ parameters of air flow, air temperature, relative humidity, as well as carbon dioxide and the equipment used to measure these factors. Reasons for measurement and for when the measurement of these…

  9. Breaking wind to survive: fishes that breathe air with their gut.

    PubMed

    Nelson, J A

    2014-03-01

    Several taxonomically disparate groups of fishes have evolved the ability to extract oxygen from the air with elements of their gut. Despite perceived difficulties with balancing digestive and respiratory function, gut air breathing (GAB) has evolved multiple times in fishes and several GAB families are among the most successful fish families in terms of species numbers. When gut segments evolve into an air-breathing organ (ABO), there is generally a specialized region for exchange of gases where the gut wall has diminished, vascularization has increased, capillaries have penetrated into the luminal epithelium and surfactant is produced. This specialized region is generally separated from digestive portions of the gut by sphincters. GAB fishes tend to be facultative air breathers that use air breathing to supplement aquatic respiration in hypoxic waters. Some hindgut breathers may be continuous, but not obligate air breathers (obligate air breathers drown if denied access to air). Gut ABOs are generally used only for oxygen uptake; CO₂ elimination seems to occur via the gills and skin in all GAB fishes studied. Aerial ventilation in GAB fishes is driven primarily by oxygen partial pressure of the water (PO₂) and possibly also by metabolic demand. The effect of aerial ventilation on branchial ventilation and the cardiovascular system is complex and generalizations across taxa or ABO type are not currently possible. Blood from GAB fishes generally has a low blood oxygen partial pressure that half saturates haemoglobin (p50) with a very low erythrocytic nucleoside triphosphate concentration [NTP]. GAB behaviour in nature depends on the social and ecological context of the animal as well as on physiological factors.

  10. Development Study on a Precooler for the HypersonicAir-Breathing Engine

    NASA Astrophysics Data System (ADS)

    Sato, Tetsuya; Tanatsugu, Nobuhiro; Harada, Kenya; Kobayashi, Hiroaki; Tomike, Jun'Ichiro

    Here is presented an experimental and analytical study on a precooler for hypersonic air-breathing engines. Precooling of the incoming air breathed by an air-inlet gives extension of the flight envelope and improvement of the thrust and specific impulse. Three precooler models were installed into an air-turbo ramjet engine and tested under the sea level static condition. When the fan inlet temperature was down to 180K, the engine thrust and specific impulse increased by 2.0 and 1.2 times respectively. Thick frost formed on the tube surfaces at the entrance part of the precooler blocked the air-flow passage. On the other hand, very thin frost formed at the exit part because the water vapor included in the air was changed to mist particles due to the low temperature of the air in this part. Parametric studies on the precooler design values and a sizing analysis were also performed. Decrease of tube outer diameters on the precooler is only way to increase heat exchange rates without increase of its weight and pressure loss.

  11. An Air-Breathing Launch Vehicle Concept for Single-Stage-to-Orbit

    NASA Technical Reports Server (NTRS)

    Trefny, Charles J.

    1999-01-01

    The "Trailblazer" is a 300-lb payload, single-stage-to-orbit launch vehicle concept that uses air-breathing propulsion to reduce the required propellant fraction. The integration of air-breathing propulsion is done considering performance, structural and volumetric efficiency, complexity, and design risk. The resulting configuration is intended to be viable using near-term materials and structures. The aeropropulsion performance goal for the Trailblazer launch vehicle is an equivalent effective specific impulse (I*) of 500 sec. Preliminary analysis shows that this requires flight in the atmosphere to about Mach 10, and that the gross lift-off weight is 130,000 lb. The Trailblazer configuration and proposed propulsion system operating modes are described. Preliminary performance results are presented, and key technical issues are highlighted. An overview of the proposed program plan is given.

  12. Breathing easier? The known impacts of biodiesel on air quality

    PubMed Central

    Traviss, Nora

    2013-01-01

    Substantial scientific evidence exists on the negative health effects of exposure to petroleum diesel exhaust. Many view biodiesel as a ‘green’, more environmentally friendly alternative fuel, especially with respect to measured reductions of particulate matter in tailpipe emissions. Tailpipe emissions data sets from heavy-duty diesel engines comparing diesel and biodiesel fuels provide important information regarding the composition and potential aggregate contribution of particulate matter and other pollutants to regional airsheds. However, exposure – defined in this instance as human contact with tailpipe emissions – is another key link in the chain between emissions and human health effects. Although numerous biodiesel emissions studies exist, biodiesel exposure studies are nearly absent from the literature. This article summarizes the known impacts of biodiesel on air quality and health effects, comparing emissions and exposure research. In light of rapidly changing engine, fuel and exhaust technologies, both emissions and exposure studies are necessary for developing a fuller understanding of the impact of biodiesel on air quality and human health. PMID:23585814

  13. Breathing easier? The known impacts of biodiesel on air quality.

    PubMed

    Traviss, Nora

    2012-05-01

    Substantial scientific evidence exists on the negative health effects of exposure to petroleum diesel exhaust. Many view biodiesel as a 'green', more environmentally friendly alternative fuel, especially with respect to measured reductions of particulate matter in tailpipe emissions. Tailpipe emissions data sets from heavy-duty diesel engines comparing diesel and biodiesel fuels provide important information regarding the composition and potential aggregate contribution of particulate matter and other pollutants to regional airsheds. However, exposure - defined in this instance as human contact with tailpipe emissions - is another key link in the chain between emissions and human health effects. Although numerous biodiesel emissions studies exist, biodiesel exposure studies are nearly absent from the literature. This article summarizes the known impacts of biodiesel on air quality and health effects, comparing emissions and exposure research. In light of rapidly changing engine, fuel and exhaust technologies, both emissions and exposure studies are necessary for developing a fuller understanding of the impact of biodiesel on air quality and human health.

  14. Minimum-fuel ascent to orbit using air-breathing propulsion

    NASA Technical Reports Server (NTRS)

    Van Buren, Mark A.; Mease, Kenneth D.

    1989-01-01

    Single-stage vehicles using air-breathing propulsion hold promise for more economical delivery of payloads to orbit. The characterization of minimum-fuel trajectories over the range of possible engine and aerodynamic performance of such vehicles provides useful feedback to engine and vehicle designers and paves the way for the development of guidance logic. The minimum-fuel trajectory problem is formulated, propulsion system and aerodynamic models are presented, a numerical solution approach is described, and some preliminary results are discussed.

  15. Investigation of antimatter air-breathing propulsion for single-stage-to-orbit ships

    NASA Astrophysics Data System (ADS)

    Froning, H. D.

    Because the mutual annihilation of matter and antimatter releases all the energy that is stored within the physical structure of material mass, it provides the most powerful reaction that is possible for propulsive thrust. This paper considers the use of such annihilation energy for single-stage-to-orbit vehicles that would be powered by rocket and air-breathing propulsion and would reach and return from orbit with a single propulsive stage.

  16. Fiber optic sensors for measuring angular position and rotational speed. [air breathing engines

    NASA Technical Reports Server (NTRS)

    Baumbick, R. J.

    1980-01-01

    Two optical sensors, a 360 deg rotary encoder and a tachometer, were built for operation with the light source and detectors located remotely from the sensors. The source and detectors were coupled to the passive sensing heads through 3.65 meter fiber optic cables. The rotary encoder and tachometer were subjected to limited environmental testing. They were installed on an air breathing engine during recent altitude tests. Over 100 hours of engine operation were accumulated without any failure of either device.

  17. Development of mainshaft seals for advanced air breathing propulsion systems

    NASA Technical Reports Server (NTRS)

    Dobek, L. J.

    1973-01-01

    A gas-film face seal design incorporating shrouded Rayleigh step lift pads at the primary sealing face was analyzed for performance over a wide range of gas turbine engine conditions. Acceptable leakage rates and operation without rubbing contact was predicted for engine conditions that included sealed pressures to 500 psi, sliding speeds to 600 ft/sec, and sealed gas temperatures to 1200 F. In the experimental evaluation, measured gas leakage rates were, in general, close to that predicted and sometimes lower. Satisfactory performance of the gas-film seal was demonstrated at the maximum seal seat axial runout expected in present positive contact face seal applications. Stable operation was shown when testing was performed with air-entrained dirt.

  18. A fast ascent trajectory optimization method for hypersonic air-breathing vehicles

    NASA Astrophysics Data System (ADS)

    Murillo, Oscar J., Jr.

    The objective of this dissertation is to investigate a fast and reliable method to generate three-dimensional optimal ascent trajectories for hypersonic air-breathing vehicles. The problem is notoriously difficult because of the strong nonlinear coupling amongst aerodynamics, propulsion, vehicle attitude and trajectory state. As such an algorithm matures, the ultimate goal is to realize optimal closed-loop ascent guidance for hypersonic air-breathing vehicles. The problem is formulated as a fuel-optimal control problem. The corresponding necessary conditions are given. It is shown how the original problem of search for the optimal control commands can be reduced to a univariate root-finding problem at each point along the trajectory. A finite difference scheme is used to numerically solve the associated two-point-boundary-value problem. Evaluation of the approach is done through open-loop solutions and closed-loop simulations. The results show promising potential of the proposed approach as a rapid trajectory optimization tool for the class of hypersonic air-breathing vehicles.

  19. Impact of aeroelasticity on propulsion and longitudinal flight dynamics of an air-breathing hypersonic vehicle

    NASA Technical Reports Server (NTRS)

    Raney, David L.; Mcminn, John D.; Pototzky, Anthony S.; Wooley, Christine L.

    1993-01-01

    Many air-breathing hypersonic aerospacecraft design concepts incorporate an elongated fuselage forebody acting as the aerodynamic compression surface for a hypersonic combustion module, or scram jet. This highly integrated design approach creates the potential for an unprecedented form of aero-propulsive-elastic interaction in which deflections of the vehicle fuselage give rise to propulsion transients, producing force and moment variations that may adversely impact the rigid body flight dynamics and/or further excite the fuselage bending modes. To investigate the potential for such interactions, a math model was developed which included the longitudinal flight dynamics, propulsion system, and first seven elastic modes of a hypersonic air-breathing vehicle. Perturbation time histories from a simulation incorporating this math model are presented that quantify the propulsive force and moment variations resulting from aeroelastic vehicle deflections. Root locus plots are presented to illustrate the effect of feeding the propulsive perturbations back into the aeroelastic model. A concluding section summarizes the implications of the observed effects for highly integrated hypersonic air-breathing vehicle concepts.

  20. Impact of aeroelasticity on propulsion and longitudinal flight dynamics of an air-breathing hypersonic vehicle

    NASA Astrophysics Data System (ADS)

    Raney, David L.; McMinn, John D.; Pototzky, Anthony S.; Wooley, Christine L.

    1993-04-01

    Many air-breathing hypersonic aerospacecraft design concepts incorporate an elongated fuselage forebody acting as the aerodynamic compression surface for a hypersonic combustion module, or scram jet. This highly integrated design approach creates the potential for an unprecedented form of aero-propulsive-elastic interaction in which deflections of the vehicle fuselage give rise to propulsion transients, producing force and moment variations that may adversely impact the rigid body flight dynamics and/or further excite the fuselage bending modes. To investigate the potential for such interactions, a math model was developed which included the longitudinal flight dynamics, propulsion system, and first seven elastic modes of a hypersonic air-breathing vehicle. Perturbation time histories from a simulation incorporating this math model are presented that quantify the propulsive force and moment variations resulting from aeroelastic vehicle deflections. Root locus plots are presented to illustrate the effect of feeding the propulsive perturbations back into the aeroelastic model. A concluding section summarizes the implications of the observed effects for highly integrated hypersonic air-breathing vehicle concepts.

  1. Anoxia and Acidosis Tolerance of the Heart in an Air-Breathing Fish (Pangasianodon hypophthalmus).

    PubMed

    Joyce, William; Gesser, Hans; Bayley, Mark; Wang, Tobias

    2015-01-01

    Air breathing has evolved repeatedly in fishes and may protect the heart during stress. We investigated myocardial performance in the air-breathing catfish Pangasianodon hypophthalmus, a species that can withstand prolonged exposure to severe hypoxia and acidosis. Isometric ventricular preparations were exposed to anoxia, lactic acidosis, hypercapnic acidosis, and combinations of these treatments. Ventricular preparations were remarkably tolerant to anoxia, exhibiting an inotropic reduction of only 40%, which fully recovered during reoxygenation. Myocardial anoxia tolerance was unaffected by physiologically relevant elevations of bicarbonate concentration, in contrast to previous results in other fishes. Both lactic acidosis (5 mM; pH 7.10) and hypercapnic acidosis (10% CO2; pH 6.70) elicited a biphasic response, with an initial and transient decrease in force followed by overcompensation above control values. Spongy myocardial preparations were significantly more tolerant to hypercapnic acidosis than compact myocardial preparations. While ventricular preparations were tolerant to the isolated effects of anoxia and acidosis, their combination severely impaired myocardial performance and contraction kinetics. This suggests that air breathing may be a particularly important myocardial oxygen source during combined anoxia and acidosis, which may occur during exercise or environmental stress.

  2. South elevation of equipment building. Hood covers engine room air ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    South elevation of equipment building. Hood covers engine room air intake. Engine exhaust is above hood, and door opens to heater room. Cable duct to tower is at right. - Western Union Telegraph Company, Jennerstown Relay, Laurel Summit Road off U.S. 30, Laughlintown, Westmoreland County, PA

  3. Pollution-control equipment (Brazil). Industrial air-pollution-control equipment, March 1992. Export trade information

    SciTech Connect

    Not Available

    1992-03-01

    The market for air pollution control equipment in Brazil is expected to reach US $120 million in 1992, up 15% from 1991. Imports should also increase to US $17 million as local companies take advantage of the market opening policy implemented by the Brazilian government to raise industrial competitiveness.

  4. Survey of Aerothermodynamics Facilities Useful for the Design of Hypersonic Vehicles Using Air-Breathing Propulsion

    NASA Technical Reports Server (NTRS)

    Arnold, James O.; Deiwert, George S.

    1997-01-01

    This paper surveys the use of aerothermodynamic facilities which have been useful in the study of external flows and propulsion aspects of hypersonic, air-breathing vehicles. While the paper is not a survey of all facilities, it covers the utility of shock tunnels and conventional hypersonic blow-down facilities which have been used for hypersonic air-breather studies. The problems confronting researchers in the field of aerothermodynamics are outlined. Results from the T5 GALCIT tunnel for the shock-on lip problem are outlined. Experiments on combustors and short expansion nozzles using the semi-free jet method have been conducted in large shock tunnels. An example which employed the NASA Ames 16-Inch shock tunnel is outlined, and the philosophy of the test technique is described. Conventional blow-down hypersonic wind tunnels are quite useful in hypersonic air-breathing studies. Results from an expansion ramp experiment, simulating the nozzle on a hypersonic air-breather from the NASA Ames 3.5 Foot Hypersonic wind tunnel are summarized. Similar work on expansion nozzles conducted in the NASA Langley hypersonic wind tunnel complex is cited. Free-jet air-frame propulsion integration and configuration stability experiments conducted at Langley in the hypersonic wind tunnel complex on a small generic model are also summarized.

  5. Effect of isobaric breathing gas shifts from air to heliox mixtures on resolution of air bubbles in lipid and aqueous tissues of recompressed rats.

    PubMed

    Hyldegaard, O; Kerem, D; Melamed, Y

    2011-09-01

    Deep tissue isobaric counterdiffusion that may cause unwanted bubble formation or transient bubble growth has been referred to in theoretical models and demonstrated by intravascular gas formation in animals, when changing inert breathing gas from nitrogen to helium after hyperbaric air breathing. We visually followed the in vivo resolution of extravascular air bubbles injected at 101 kPa into nitrogen supersaturated rat tissues: adipose, spinal white matter, skeletal muscle or tail tendon. Bubbles were observed during isobaric breathing-gas shifts from air to normoxic (80:20) heliox mixture while at 285 kPa or following immediate recompression to either 285 or 405 kPa, breathing 80:20 and 50:50 heliox mixtures. During the isobaric shifts, some bubbles in adipose tissue grew marginally for 10-30 min, subsequently they shrank and disappeared at a rate similar to or faster than during air breathing. No such bubble growth was observed in spinal white matter, skeletal muscle or tendon. In spinal white matter, an immediate breathing gas shift after the hyperbaric air exposure from air to both (80:20) and (50:50) heliox, coincident with recompression to either 285 or 405 kPa, caused consistent shrinkage of all air bubbles, until they disappeared from view. Deep tissue isobaric counterdiffusion may cause some air bubbles to grow transiently in adipose tissue. The effect is marginal and of no clinical consequence. Bubble disappearance rate is faster with heliox breathing mixtures as compared to air. We see no reason for reservations in the use of heliox breathing during treatment of air-diving-induced decompression sickness.

  6. Tumor-dependent kinetics of partial pressure of oxygen fluctuations during air and oxygen breathing.

    PubMed

    Cárdenas-Navia, L Isabel; Yu, Daohai; Braun, Rod D; Brizel, David M; Secomb, Timothy W; Dewhirst, Mark W

    2004-09-01

    The primary purpose of this study was to examine the kinetics of partial pressure of oxygen (pO2) fluctuations in fibrosarcoma (FSA) and 9L tumors under air and O2 breathing conditions. The overall hypothesis was that key factors relating to oxygen tension fluctuations would vary between the two tumor types and as a function of the oxygen content of the breathing gas. To assist in the interpretation of the temporal data, spatial pO2 distributions were measured in 10 FSA and 8 9L tumors transplanted into the subcutis of the hind leg of Nembutal-anesthetized (50 mg/kg) Fischer 344 rats. Recessed-tip oxygen microelectrodes were inserted into the tumor, and linear pO2 measurements were recorded in 50-microm steps along a 3-mm path, and blood pressure was simultaneously measured via femoral arterial access. Additionally, pO2 was measured at a single location for 90 to 120 minutes in FSA (n=11) or 9L tumors (n=12). Rats were switched from air to 100% O2 breathing after 45 minutes. Temporal pO2 records were evaluated for their potential radiobiological significance by assessing the number of times they crossed a 10-mm-Hg threshold. In addition, the data were subjected to Fourier analysis for air and O2 breathing. FSA and 9L tumors had spatial median pO2 measurements of 4 and 1 mm Hg, respectively. 9L had more low pO2 measurements < or =2.5 mm Hg than did FSA, whereas between 2.5 and 10 mm Hg this pattern was reversed. Pimonidazole staining patterns in FSA and 9L tumors supported these results. Temporal pO2 instability was observed in all experiments during air and O2 breathing. Threshold analyses indicated that the 10 mm Hg threshold was crossed 2 to 5 times per hour, independent of tumor type. However, the magnitude of 9L pO2 fluctuations was approximately eight times greater than FSA fluctuations, as assessed with Fourier transform analysis (Wilcoxon, P < 0.005). O2 breathing significantly increased median pO2 in FSA from 3 to 8 mm Hg (P < 0.005) and caused a

  7. Power Reduction of the Air-Breathing Hall-Effect Thruster

    NASA Astrophysics Data System (ADS)

    Kim, Sungrae

    Electric propulsion system is spotlighted as the next generation space propulsion system due to its benefits; one of them is specific impulse. While there are a lot of types in electric propulsion system, Hall-Effect Thruster, one of electric propulsion system, has higher thrust-to-power ratio and requires fewer power supplies for operation in comparison to other electric propulsion systems, which means it is optimal for long space voyage. The usual propellant for Hall-Effect Thruster is Xenon and it is used to be stored in the tank, which may increase the weight of the thruster. Therefore, one theory that uses the ambient air as a propellant has been proposed and it is introduced as Air-Breathing Hall-Effect Thruster. Referring to the analysis on Air-Breathing Hall-Effect Thruster, the goal of this paper is to reduce the power of the thruster so that it can be applied to real mission such as satellite orbit adjustment. To reduce the power of the thruster, two assumptions are considered. First one is changing the altitude for the operation, while another one is assuming the alpha value that is electron density to ambient air density. With assumptions above, the analysis was done and the results are represented. The power could be decreased to 10s˜1000s with the assumptions. However, some parameters that do not satisfy the expectation, which would be the question for future work, and it will be introduced at the end of the thesis.

  8. Engine Cycle Analysis of Air Breathing Microwave Rocket with Reed Valves

    SciTech Connect

    Fukunari, Masafumi; Komatsu, Reiji; Yamaguchi, Toshikazu; Komurasaki, Kimiya; Arakawa, Yoshihiro; Katsurayama, Hiroshi

    2011-11-10

    The Microwave Rocket is a candidate for a low cost launcher system. Pulsed plasma generated by a high power millimeter wave beam drives a blast wave, and a vehicle acquires impulsive thrust by exhausting the blast wave. The thrust generation process of the Microwave Rocket is similar to a pulse detonation engine. In order to enhance the performance of its air refreshment, the air-breathing mechanism using reed valves is under development. Ambient air is taken to the thruster through reed valves. Reed valves are closed while the inside pressure is high enough. After the time when the shock wave exhausts at the open end, an expansion wave is driven and propagates to the thrust-wall. The reed valve is opened by the negative gauge pressure induced by the expansion wave and its reflection wave. In these processes, the pressure oscillation is important parameter. In this paper, the pressure oscillation in the thruster was calculated by CFD combined with the flux through from reed valves, which is estimated analytically. As a result, the air-breathing performance is evaluated using Partial Filling Rate (PFR), the ratio of thruster length to diameter L/D, and ratio of opening area of reed valves to superficial area {alpha}. An engine cycle and predicted thrust was explained.

  9. Partitioning of oxygen uptake and cost of surfacing during swimming in the air-breathing catfish Pangasianodon hypophthalmus.

    PubMed

    Lefevre, Sjannie; Wang, Tobias; Huong, Do Thi Thanh; Phuong, Nguyen Thanh; Bayley, Mark

    2013-02-01

    Though air-breathing has probably evolved mainly as a response to hypoxia, it may provide an important oxygen supplement when metabolism is elevated, as for example during swimming. Due to the increased travelling distance involved when an air-breathing fish swims to and from the surface, and the increased drag when the surface is breached, it can be proposed that air-breathing results in a rise in the apparent cost of transport. In order to investigate this hypothesis, it is necessary to use a fish that is able to swim equally well with and without access to air. The striped catfish Pangasianodon hypophthalmus has been shown to have a sufficiently high capacity for aquatic oxygen uptake in normoxia, to allow for such a comparison. Here, we measured the partitioning of oxygen uptake (MO2) during swimming and recovery, and calculated the apparent cost of transport with and without access to air, under normoxic conditions. Aerial MO2 constituted 25-40 % of the total MO2 during swimming and less than 15 % during recovery. The net cost of transport was 25 % lower in fish that did not air-breathe compared to fish that did, showing that the cost of surfacing can be substantial. This is the first study to measure partitioning in an air-breathing fish during swimming at velocities close to the critical swimming speed.

  10. [Design, equipment, and management for air conditioning in operating room].

    PubMed

    Fuji, Kumiko; Mizuno, Ju

    2011-11-01

    In order to maintain air cleanliness in the operating room (OR) permanently, air exchange rate in the OR should be more than 15 times x hr(-1), the laminar air flow should be kept, and the numbers of the persons in the OR and the numbers of opening and closing OR door should be limited. High efficiency particulate air (HEPA) filter is effective in collection and removal of airborne microbes, and is used in the biological clean room. We need to design, equip, and manage the OR environment according to Guideline for Design and Operation of Hospital HVAC Systems HEAS-02-2004 established by Healthcare Engineering Association of Japan and Guideline for Prevention of Surgical Site Infection (SSI) established by the Center for Disease Control and Prevention (CDC) in the USA.

  11. The contribution of air breathing to aerobic scope and exercise performance in the banded knifefish Gymnotus carapo L.

    PubMed

    McKenzie, David J; Steffensen, John F; Taylor, Edwin W; Abe, Augusto S

    2012-04-15

    The contribution of air breathing to aerobic metabolic scope and exercise performance was investigated in a teleost with bimodal respiration, the banded knifefish, submitted to a critical swimming speed (U(crit)) protocol at 30°C. Seven individuals (mean ± s.e.m. mass 89±7 g, total length 230±4 mm) achieved a U(crit) of 2.1±1 body lengths (BL) s(-1) and an active metabolic rate (AMR) of 350±21 mg kg(-1) h(-1), with 38±6% derived from air breathing. All of the knifefish exhibited a significant increase in air-breathing frequency (f(AB)) with swimming speed. If denied access to air in normoxia, these individuals achieved a U(crit) of 2.0±0.2 BL s(-1) and an AMR of 368±24 mg kg(-1) h(-1) by gill ventilation alone. In normoxia, therefore, the contribution of air breathing to scope and exercise was entirely facultative. In aquatic hypoxia (P(O(2))=4 kPa) with access to normoxic air, the knifefish achieved a U(crit) of 2.0±0.1 BL s(-1) and an AMR of 338±29 mg kg(-1) h(-1), similar to aquatic normoxia, but with 55±5% of AMR derived from air breathing. Indeed, f(AB) was higher than in normoxia at all swimming speeds, with a profound exponential increase during exercise. If the knifefish were denied access to air in hypoxia, U(crit) declined to 1.2±0.1 BL s(-1) and AMR declined to 199±29 mg kg(-1) h(-1). Therefore, air breathing allowed the knifefish to avoid limitations to aerobic scope and exercise performance in aquatic hypoxia.

  12. Modeling breathing-zone concentrations of airborne contaminants generated during compressed air spray painting.

    PubMed

    Flynn, M R; Gatano, B L; McKernan, J L; Dunn, K H; Blazicko, B A; Carlton, G N

    1999-01-01

    This paper presents a mathematical model to predict breathing-zone concentrations of airborne contaminants generated during compressed air spray painting in cross-flow ventilated booths. The model focuses on characterizing the generation and transport of overspray mist. It extends previous work on conventional spray guns to include exposures generated by HVLP guns. Dimensional analysis and scale model wind-tunnel studies are employed using non-volatile oils, instead of paint, to produce empirical equations for estimating exposure to total mass. Results indicate that a dimensionless breathing zone concentration is a nonlinear function of the ratio of momentum flux of air from the spray gun to the momentum flux of air passing through the projected area of the worker's body. The orientation of the spraying operation within the booth is also very significant. The exposure model requires an estimate of the contaminant generation rate, which is approximated by a simple impactor model. The results represent an initial step in the construction of more realistic models capable of predicting exposure as a mathematical function of the governing parameters.

  13. Acute toxicity bioassays of mercuric chloride and malathion on air-breathing fish Channa punctatus (Bloch).

    PubMed

    Pandey, Sanjay; Kumar, Ravindra; Sharma, Shilpi; Nagpure, N S; Srivastava, Satish K; Verma, M S

    2005-05-01

    Acute toxicity tests (96 h) were conducted in flow-through systems to determine the lethal toxicity of a heavy metal compound, mercuric chloride, and an organophosphorus pesticide, malathion, to air-breathing teleost fish, Channa punctatus (Bloch) and to study their behavior. The 96-h LC50 values were determined, as well as safe levels. The results indicate that mercuric chloride is more toxic than malathion to the fish species under study. Dose- and dose-time-dependent increases in mortality rate were also observed in response to both test chemicals.

  14. The QED engine spectrum - Fusion-electric propulsion for air-breathing to interstellar flight

    NASA Technical Reports Server (NTRS)

    Bussard, Robert W.; Jameson, Lorin W.

    1993-01-01

    A new inertial-electrostatic-fusion direct electric power source can be used to drive a relativistic e-beam to heat propellant. The resulting system is shown to yield specific impulse and thrust/mass ratio 2-3 orders of magnitude larger than from other advanced propulsion concepts. This QED system can be applied to aerospace vehicles from air-breathing to near-interstellar flight. Examples are given for Earth/Mars flight missions, that show transit times of 40 d with 20 percent payload in single-stage vehicles.

  15. Aerodynamic characteristics of a series of single-inlet air-breathing missile configurations

    NASA Technical Reports Server (NTRS)

    Hayes, C.

    1983-01-01

    A series of air-breathing missile configurations was investigated to provide a data base for the design of such missiles. The model could be configured with either a single axisymmetric or a two dimensional inlet located at the bottom of the body. Two tail configurations were investigated: a tri-tail and an X-tail. The tail surfaces could be deflected to provide pitch control. A wing could be located above the inlet on the center line of the model. Tests were made at supersonic Mach numbers with the inlet open and internal flow, and at subsonic-transonic Mach numbers with the internal duct closed and no internal flow.

  16. Turbulent Mixing and Combustion for High-Speed Air-Breathing Propulsion Application

    DTIC Science & Technology

    2007-08-12

    AIR-BREATHING PROPULSION APPLICATIONS P . E. Dimotakis, Principal Investigator John K. Northrop Professor ofAeronautics and Professor of Applied Physics...performance of the device is the overall pressure coefficient, C = 2(pe- p )/(pU12), where pe and pi are the exit and inlet pressures, respectively. In...1 . O. 1 o-o p ) Fig. 6 Instantaneous passive scalar isosurfaces for a M, 0.5 top stream. 7 Fig. 7 Computed pressure coefficient on the top (solid line

  17. Cubic PdNP-based air-breathing cathodes integrated in glucose hybrid biofuel cells

    NASA Astrophysics Data System (ADS)

    Faggion Junior, D.; Haddad, R.; Giroud, F.; Holzinger, M.; Maduro de Campos, C. E.; Acuña, J. J. S.; Domingos, J. B.; Cosnier, S.

    2016-05-01

    Cubic Pd nanoparticles (PdNPs) were synthesized using ascorbic acid as a reducing agent and were evaluated for the catalytic oxygen reduction reaction. PdNPs were confined with multiwalled carbon nanotube (MWCNT) dispersions to form black suspensions and these inks were dropcast onto glassy carbon electrodes. Different nanoparticle sizes were synthesized and investigated upon oxygen reduction capacities (onset potential and electrocatalytic current densities) under O2 saturated conditions at varying pH values. Strong evidence of O2 diffusion limitation was demonstrated. In order to overcome oxygen concentration and diffusion limitations in solution, we used a gas diffusion layer to create a PdNP-based air-breathing cathode, which delivered -1.5 mA cm-2 at 0.0 V with an onset potential of 0.4 V. This air-breathing cathode was combined with a specially designed phenanthrolinequinone/glucose dehydrogenase-based anode to form a complete glucose/O2 hybrid bio-fuel cell providing an open circuit voltage of 0.554 V and delivering a maximal power output of 184 +/- 21 μW cm-2 at 0.19 V and pH 7.0.Cubic Pd nanoparticles (PdNPs) were synthesized using ascorbic acid as a reducing agent and were evaluated for the catalytic oxygen reduction reaction. PdNPs were confined with multiwalled carbon nanotube (MWCNT) dispersions to form black suspensions and these inks were dropcast onto glassy carbon electrodes. Different nanoparticle sizes were synthesized and investigated upon oxygen reduction capacities (onset potential and electrocatalytic current densities) under O2 saturated conditions at varying pH values. Strong evidence of O2 diffusion limitation was demonstrated. In order to overcome oxygen concentration and diffusion limitations in solution, we used a gas diffusion layer to create a PdNP-based air-breathing cathode, which delivered -1.5 mA cm-2 at 0.0 V with an onset potential of 0.4 V. This air-breathing cathode was combined with a specially designed phenanthrolinequinone

  18. Survey of Aerothermodynamics Facilities Useful for the Design of Hypersonic Vehicles Using Air-Breathing Propulsion

    NASA Technical Reports Server (NTRS)

    Arnold, James O.; Deiwert, G. S.

    1997-01-01

    The dream of producing an air-breathing, hydrogen fueled, hypervelocity aircraft has been before the aerospace community for decades. However, such a craft has not yet been realized, even in an experimental form. Despite the simplicity and beauty of the concept, many formidable problems must be overcome to make this dream a reality. This paper summarizes the aero/aerothermodynamic issues that must be addressed to make the dream a reality and discusses how aerothermodynamics facilities and their modem companion, real-gas computational fluid dynamics (CFD), can help solve the problems blocking the way to realizing the dream. The approach of the paper is first to outline the concept of an air-breathing hypersonic vehicle and then discuss the nose-to-tail aerothermodynamics issues and special aerodynamic problems that arise with such a craft. Then the utility of aerothermodynamic facilities and companion CFD analysis is illustrated by reviewing results from recent United States publications wherein these problems have been addressed. Papers selected for the discussion have k e n chosen such that the review will serve to survey important U.S. aero/aerothermodynamic real gas and conventional wind tunnel facilities that are useful in the study of hypersonic, hydrogen propelled hypervelocity vehicles.

  19. Affordable Flight Demonstration of the GTX Air-Breathing SSTO Vehicle Concept

    NASA Technical Reports Server (NTRS)

    Krivanek, Thomas M.; Roche, Joseph M.; Riehl, John P.; Kosareo, Daniel N.

    2003-01-01

    The rocket based combined cycle (RBCC) powered single-stage-to-orbit (SSTO) reusable launch vehicle has the potential to significantly reduce the total cost per pound for orbital payload missions. To validate overall system performance, a flight demonstration must be performed. This paper presents an overview of the first phase of a flight demonstration program for the GTX SSTO vehicle concept. Phase 1 will validate the propulsion performance of the vehicle configuration over the supersonic and hypersonic air- breathing portions of the trajectory. The focus and goal of Phase 1 is to demonstrate the integration and performance of the propulsion system flowpath with the vehicle aerodynamics over the air-breathing trajectory. This demonstrator vehicle will have dual mode ramjetkcramjets, which include the inlet, combustor, and nozzle with geometrically scaled aerodynamic surface outer mold lines (OML) defining the forebody, boundary layer diverter, wings, and tail. The primary objective of this study is to demon- strate propulsion system performance and operability including the ram to scram transition, as well as to validate vehicle aerodynamics and propulsion airframe integration. To minimize overall risk and develop ment cost the effort will incorporate proven materials, use existing turbomachinery in the propellant delivery systems, launch from an existing unmanned remote launch facility, and use basic vehicle recovery techniques to minimize control and landing requirements. A second phase would demonstrate propulsion performance across all critical portions of a space launch trajectory (lift off through transition to all-rocket) integrated with flight-like vehicle systems.

  20. Performance Validation Approach for the GTX Air-Breathing Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Trefny, Charles J.; Roche, Joseph M.

    2002-01-01

    The primary objective of the GTX effort is to determine whether or not air-breathing propulsion can enable a launch vehicle to achieve orbit in a single stage. Structural weight, vehicle aerodynamics, and propulsion performance must be accurately known over the entire flight trajectory in order to make a credible assessment. Structural, aerodynamic, and propulsion parameters are strongly interdependent, which necessitates a system approach to design, evaluation, and optimization of a single-stage-to-orbit concept. The GTX reference vehicle serves this purpose, by allowing design, development, and validation of components and subsystems in a system context. The reference vehicle configuration (including propulsion) was carefully chosen so as to provide high potential for structural and volumetric efficiency, and to allow the high specific impulse of air-breathing propulsion cycles to be exploited. Minor evolution of the configuration has occurred as analytical and experimental results have become available. With this development process comes increasing validation of the weight and performance levels used in system performance determination. This paper presents an overview of the GTX reference vehicle and the approach to its performance validation. Subscale test rigs and numerical studies used to develop and validate component performance levels and unit structural weights are outlined. The sensitivity of the equivalent, effective specific impulse to key propulsion component efficiencies is presented. The role of flight demonstration in development and validation is discussed.

  1. Evaluation of Contaminant-Promoted Ignition in Scuba Equipment and Breathing Gas Delivery Systems

    NASA Technical Reports Server (NTRS)

    Forsyth, Elliott T.; Durkin, Robert; Beeson, Harold D.

    2000-01-01

    As the underwater diving industry continues to use greater concentrations of oxygen in their scuba systems, ignition of contaminants in these systems becomes a greater concern. Breathing gas makeup and distribution systems typically combine pure oxygen with various diluents to supply high-pressure cylinders for scuba applications. The hazards associated with these applications of oxygen and NITROX (oxygen and nitrogen mixture) gases require an evaluation of inherent contaminant levels and their associated promoted-ignition thresholds in these environments. In this study, several scuba component assemblies were tested after one year of use at the NASA Johnson Space Center Neutral Buoyancy Lab. The components were rapidly impacted with 50% NITROX gas to demonstrate their ignition resistance, then disassembled to evaluate their cleanliness. A follow-up study was then performed on the ignition thresholds of hydrocarbon-bascd oil films in oxygen and NITROX environments in an attempt to define the cleaning requirements for these systems. Stainless steel tubes were contaminated and verified to known levels and placed in a pneumatic impact test system where they were rapidly pressurized with the test gas. Ignitions were determined using a photodiode connected to the end of the contaminated tube. The results of the scuba component tests, cleanliness evaluation, and contaminant ignition study are discussed and compared for 50% NITROX and 100% oxygen environments.

  2. Planar array stack design aided by rapid prototyping in development of air-breathing PEMFC

    NASA Astrophysics Data System (ADS)

    Chen, Chen-Yu; Lai, Wei-Hsiang; Weng, Biing-Jyh; Chuang, Huey-Jan; Hsieh, Ching-Yuan; Kung, Chien-Chih

    The polymer electrolyte membrane fuel cell (PEMFC) is one of the most important research topics in the new and clean energy area. The middle or high power PEMFCs can be applied to the transportation or the distributed power system. But for the small power application, it is needed to match the power requirement of the product generally. On the other hand, the direct methanol fuel cell (DMFC) is one of the most common type that researchers are interested in, but recently the miniature or the micro-PEMFCs attract more attention due to their advantages of high open circuit voltage and high power density. The objective of this study is to develop a new air-breathing planar array fuel cell stacked from 10 cells made by rapid prototyping technology which has potential for fast commercial design, low cost manufacturing, and even without converters/inverters for the system. In this paper, the main material of flow field plates is acrylonitrile-butadiene-styrene (ABS) which allows the fuel cell be mass-manufactured by plastic injection molding technology. The rapid prototyping technology is applied to construct the prototype and verify the practicability of the proposed stack design. A 10-cell air-breathing miniature PEMFC stack with a volume of 6 cm × 6 cm × 0.9 cm is developed and tested. Its segmented membrane electrode assembly (MEA) is designed with the active surface area of 1.3 cm × 1.3 cm in each individual MEA. The platinum loading at anode and cathode are 0.2 mg cm -2 and 0.4 mg cm -2, respectively. Results show that the peak power densities of the parallel connected and serial connected stack are 99 mW cm -2 at 0.425 V and 92 mW cm -2 at 4.25 V, respectively under the conditions of 70 °C relative saturated humidity (i.e., dew point temperature), ambient temperature and free convection air. Besides, the stack performance is increased under forced convection. If the cell surface air is blown by an electric fan, the peak power densities of parallel connected and

  3. International Symposium on Air Breathing Engines, 8th, Cincinnati, OH, June 14-19, 1987, Proceedings

    SciTech Connect

    Billig, F.S.

    1987-01-01

    The present conference on air-breathing aircraft engine technology considers topics in inlet design, radial-flow turbomachinery, fuel injection and combustion systems, axial flow compressor design and performance, ramjet configurations, turbine flow phenomena, engine control and service life, fluid flow-related problems, engine diagnostic methods, propfan design, combustor performance and pollutant chemistry, combustion dynamics, and engine system analysis. Attention is given to thrust-vectoring systems, supersonic missile air intakes, three-dimensional centrifugal compressors, airblast atomizers, secondary flows in axial flow compressors, axial compressor blade tip clearance flows, hydrogen scramjets with sidewall injection, the performance of a variable-geometry turbine, advanced tip clearance control systems, rotary jet mixing, fan blade aeroelastic behavior, flow dynamics in combustion processes, and the technology of low cost turbomachinery.

  4. To boldly gulp: standard metabolic rate and boldness have context-dependent influences on risk-taking to breathe air in a catfish.

    PubMed

    McKenzie, David J; Belão, Thiago C; Killen, Shaun S; Rantin, F Tadeu

    2015-12-01

    The African sharptooth catfish Clarias gariepinus has bimodal respiration, it has a suprabranchial air-breathing organ alongside substantial gills. We used automated bimodal respirometry to reveal that undisturbed juvenile catfish (N=29) breathed air continuously in normoxia, with a marked diurnal cycle. Air breathing and routine metabolic rate (RMR) increased in darkness when, in the wild, this nocturnal predator forages. Aquatic hypoxia (20% air saturation) greatly increased overall reliance on air breathing. We investigated whether two measures of risk taking to breathe air, namely absolute rates of aerial O2 uptake (ṀO2,air) and the percentage of RMR obtained from air (%ṀO2,air), were influenced by individual standard metabolic rate (SMR) and boldness. In particular, whether any influence varied with resource availability (normoxia versus hypoxia) or relative fear of predation (day versus night). Individual SMR, derived from respirometry, had an overall positive influence on ṀO2,air across all contexts but a positive influence on %ṀO2,air only in hypoxia. Thus, a pervasive effect of SMR on air breathing became most acute in hypoxia, when individuals with higher O2 demand took proportionally more risks. Boldness was estimated as time required to resume air breathing after a fearful stimulus in daylight normoxia (Tres). Although Tres had no overall influence on ṀO2,air or %ṀO2,air, there was a negative relationship between Tres and %ṀO2,air in daylight, in normoxia and hypoxia. There were two Tres response groups, 'bold' phenotypes with Tres below 75 min (N=13) which, in daylight, breathed proportionally more air than 'shy' phenotypes with Tres above 115 min (N=16). Therefore, individual boldness influenced air breathing when fear of predation was high. Thus, individual energy demand and personality did not have parallel influences on the emergent tendency to take risks to obtain a resource; their influences varied in strength with context.

  5. 77 FR 21834 - Airborne Radar Altimeter Equipment (For Air Carrier Aircraft)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-11

    ... Federal Aviation Administration Airborne Radar Altimeter Equipment (For Air Carrier Aircraft) AGENCY..., Airborne Radar Altimeter Equipment (For Air Carrier Aircraft). SUMMARY: This is a confirmation notice of the cancellation of TSO-C67, Airborne Radar Altimeter Equipment (For Air Carrier Aircraft). The...

  6. Control of Computer Room Air Conditioning using IT Equipment Sensors

    SciTech Connect

    Bell, Geoffrey C.; Storey, Bill; Patterson, Michael K.

    2009-09-30

    The goal of this demonstration was to show how sensors in IT equipment could be accessed and used to directly control computer room air conditioning. The data provided from the sensors is available on the IT network and the challenge for this project was to connect this information to the computer room air handler's control system. A control strategy was developed to enable separate control of the chilled water flow and the fans in the computer room air handlers. By using these existing sensors in the IT equipment, an additional control system is eliminated (or could be redundant) and optimal cooling can be provided saving significant energy. Using onboard server temperature sensors will yield significant energy reductions in data centers. Intel hosted the demonstration in its Santa Clara, CA data center. Intel collaborated with IBM, HP, Emerson, Wunderlich-Malec Engineers, FieldServer Technologies, and LBNL to install the necessary components and develop the new control scheme. LBNL also validated the results of the demonstration.

  7. The association of annual air pollution exposure with blood pressure among patients with sleep-disordered breathing.

    PubMed

    Liu, Wen-Te; Lee, Kang-Yun; Lee, Hsin-Chien; Chuang, Hsiao-Chi; Wu, Dean; Juang, Jer-Nan; Chuang, Kai-Jen

    2016-02-01

    While sleep-disordered breathing (SDB), high blood pressure (BP) and air pollution exposure have separately been associated with increased risk of cardiopulmonary mortality, the association linking air pollution exposure to BP among patients with sleep-disordered breathing is still unclear. We collected 3762 participants' data from the Taipei Medical University Hospital's Sleep Center and air pollution data from the Taiwan Environmental Protection Administration. Associations of 1-year mean criteria air pollutants [particulate matter with aerodynamic diameters ≤10 μm (PM10), particulate matter with aerodynamic diameters ≤2.5 μm (PM2.5), nitrogen dioxide (NO2) and ozone (O3)] with systolic BP (SBP) and diastolic BP (DBP) were investigated by generalized additive models. After controlling for age, sex, body mass index (BMI), temperature and relative humidity, we observed that increases in air pollution levels were associated with decreased SBP and increased DBP. We also found that patients with apnea-hypopnea index (AHI) ≥30 showed a stronger BP response to increased levels of air pollution exposure than those with AHI<30. Stronger effects of air pollution exposure on BP were found in overweight participants than in participants with normal BMI. We concluded that annual exposure to air pollution was associated with change of BP among patients with sleep-disordered breathing. The association between annual air pollution exposure and BP could be modified by AHI and BMI.

  8. Personal exposures, indoor-outdoor relationships, and breath levels of toxic air pollutants measured for 355 persons in New Jersey

    NASA Astrophysics Data System (ADS)

    Wallace, Lance A.; Pellizzari, Edo D.; Hartwell, Ty D.; Sparacino, Charles M.; Sheldon, Linda S.; Zelon, Harvey

    EPA's TEAM Study has measured exposures to 20 volatile organic compounds in personal air, outdoor air, drinking water and the breath of 355 persons in NJ, in the fall of 1981. The NJ residents were selected by a probability sampling scheme to represent 128,000 inhabitants of Elizabeth and Bayonne. Participants carried a personal monitor to collect two 12-h air samples and gave a breath sample at the end of the day. Two consecutive 12-h outdoor air samples were also collected on identical Tenax cartridges in the back yards of 90 of the participants. About 3000 samples were collected, of which 1000 were quality control samples. Eleven compounds were often present in air. Personal exposures were consistently higher than outdoor concentrations for these chemicals, and were sometimes ten times the outdoor concentrations. Indoor sources appeared responsible for much of the difference. Breath concentrations also usually exceed outdoor concentrations, and correlated more strongly with personal exposures than with outdoor concentrations. Some activities (smoking, driving, visiting dry cleaners or service stations) and occupations (chemical, paint and plastics plants) were associated with significantly elevated exposures and breath levels for certain toxic chemicals.

  9. Hypersonic propulsion flight tests as essential to air-breathing aerospace plane development

    NASA Technical Reports Server (NTRS)

    Mehta, U.

    1995-01-01

    Hypersonic air-breathing propulsion utilizing scramjets can fundamentally change transatmospheric acclerators for transportation from low Earth orbits (LEOs). The value and limitations of ground tests, of flight tests, and of computations are presented, and scramjet development requirements are discussed. Near-full-scale hypersonic propulsion flight tests are essential for developing a prototype hypersonic propulsion system and for developing computation-design technology that can be used in designing that system. In order to determine how these objectives should be achieved, some lessons learned from past programs are presented. A conceptual two-stage-to-orbit (TSTO) prototype/experimental aerospace plane is recommended as a means of providing access-to-space and for conducting flight tests. A road map for achieving these objectives is also presented.

  10. Multi-Disciplinary Design Optimization of Hypersonic Air-Breathing Vehicle

    NASA Astrophysics Data System (ADS)

    Wu, Peng; Tang, Zhili; Sheng, Jianda

    2016-06-01

    A 2D hypersonic vehicle shape with an idealized scramjet is designed at a cruise regime: Mach number (Ma) = 8.0, Angle of attack (AOA) = 0 deg and altitude (H) = 30kms. Then a multi-objective design optimization of the 2D vehicle is carried out by using a Pareto Non-dominated Sorting Genetic Algorithm II (NSGA-II). In the optimization process, the flow around the air-breathing vehicle is simulated by inviscid Euler equations using FLUENT software and the combustion in the combustor is modeled by a methodology based on the well known combination effects of area-varying pipe flow and heat transfer pipe flow. Optimization results reveal tradeoffs among total pressure recovery coefficient of forebody, lift to drag ratio of vehicle, specific impulse of scramjet engine and the maximum temperature on the surface of vehicle.

  11. Analysis of possible improvement of acceleration of a high-velocity air-breathing flying vehicle

    NASA Astrophysics Data System (ADS)

    Goonko, Yu. P.; Mazhul, I. I.

    2008-09-01

    Results of parametric calculations of the total aeropropulsive characteristics and characteristics of acceleration of a small-scale high-velocity flying vehicle with an air-breathing engine are presented. Integral parameters of acceleration from the flight Mach number M∞ = 4 to M∞ = 7 are determined, namely, the time required fuel stock, and range. A schematic configuration of the vehicle is considered, which allows studying the basic parameters, such as the forebody shape, the angles of surfaces of compression of the stream captured by the inlet, angles of external aerodynamic surfaces of the airframe, relative planform area of the wing panels, and relative area of the nozzle cross section. A comparative estimate of the effect of these parameters shows that it is possible to improve the characteristics of acceleration of vehicles of the type considered.

  12. Robust tracking control for an air-breathing hypersonic vehicle with input constraints

    NASA Astrophysics Data System (ADS)

    Gao, Gang; Wang, Jinzhi; Wang, Xianghua

    2014-12-01

    The focus of this paper is on the design and simulation of robust tracking control for an air-breathing hypersonic vehicle (AHV), which is affected by high nonlinearity, uncertain parameters and input constraints. The linearisation method is employed for the longitudinal AHV model about a specific trim condition, and then considering the additive uncertainties of three parameters, the linearised model is just in the form of affine parameter dependence. From this point, the linear parameter-varying method is applied to design the desired controller. The poles for the closed-loop system of the linearised model are placed into a desired vertical strip, and the quadratic stability of the closed-loop system is guaranteed. Input constraints of the AHV are addressed by additional linear matrix inequalities. Finally, the designed controller is evaluated on the nonlinear AHV model and simulation results demonstrate excellent tracking performance with good robustness.

  13. Water management in a planar air-breathing fuel cell array using operando neutron imaging

    NASA Astrophysics Data System (ADS)

    Coz, E.; Théry, J.; Boillat, P.; Faucheux, V.; Alincant, D.; Capron, P.; Gébel, G.

    2016-11-01

    Operando Neutron imaging is used for the investigation of a planar air-breathing array comprising multiple cells in series. The fuel cell demonstrates a stable power density level of 150 mW/cm2. Water distribution and quantification is carried out at different operating points. Drying at high current density is observed and correlated to self-heating and natural convection. Working in dead-end mode, water accumulation at lower current density is largely observed on the anode side. However, flooding mechanisms are found to begin with water condensation on the cathode side, leading to back-diffusion and anodic flooding. Specific in-plane and through-plane water distribution is observed and linked to the planar array design.

  14. Continuous high order sliding mode controller design for a flexible air-breathing hypersonic vehicle.

    PubMed

    Wang, Jie; Zong, Qun; Su, Rui; Tian, Bailing

    2014-05-01

    This paper investigates the problem of tracking control with uncertainties for a flexible air-breathing hypersonic vehicle (FAHV). In order to overcome the analytical intractability of this model, an Input-Output linearization model is constructed for the purpose of feedback control design. Then, the continuous finite time convergence high order sliding mode controller is designed for the Input-Output linearization model without uncertainties. In addition, a nonlinear disturbance observer is applied to estimate the uncertainties in order to compensate the controller and disturbance suppression, where disturbance observer and controller synthesis design is obtained. Finally, the synthesis of controller and disturbance observer is used to achieve the tracking for the velocity and altitude of the FAHV and simulations are presented to illustrate the effectiveness of the control strategies.

  15. Assessment of flying-quality criteria for air-breathing aerospacecraft

    NASA Technical Reports Server (NTRS)

    Mcruer, Duane T.; Myers, Thomas T.; Hoh, Roger H.; Ashkenas, Irving L.; Johnston, Donald E.

    1992-01-01

    A study of flying quality requirements for air breathing aerospacecraft gives special emphasis to the unusual operational requirements and characteristics of these aircraft, including operation at hypersonic speed. The report considers distinguishing characteristics of these vehicles, including dynamic deficiencies and their implications for control. Particular emphasis is given to the interaction of the airframe and propulsion system, and the requirements for dynamic systems integration. Past operational missions are reviewed to define tasks and maneuvers to be considered for this class of aircraft. Areas of special concern with respect to vehicle dynamics and control are identified. Experience with the space shuttle orbiter is reviewed with respect to flight control system mechanization and flight experience in approach and landing flying qualities for the National Aerospace Plane (NASP).

  16. Air-breathing aerospace plane development essential: Hypersonic propulsion flight tests

    NASA Technical Reports Server (NTRS)

    Mehta, Unmeel B.

    1994-01-01

    Hypersonic air-breathing propulsion utilizing scramjets can fundamentally change transatmospheric accelerators for low earth-to-orbit and return transportation. The value and limitations of ground tests, of flight tests, and of computations are presented, and scramjet development requirements are discussed. It is proposed that near full-scale hypersonic propulsion flight tests are essential for developing a prototype hypersonic propulsion system and for developing computational-design technology so that it can be used for designing this system. In order to determine how these objectives should be achieved, some lessons learned from past programs are presented. A conceptual two-stage-to-orbit (TSTO) prototype/experimental aerospace plane is recommended as a means of providing access-to-space and for conducting flight tests. A road map for achieving these objectives is also presented.

  17. Influence of copper treatment on the immune response in an air-breathing teleost, Saccobranchus fossilis

    SciTech Connect

    Khangarot, B.S.; Ray, P.K.; Singh, K.P.

    1988-08-01

    The introduction of small amounts of copper ions from natural and anthropogenic sources into the aquatic environment causes multiple changes in freshwater organisms, even at non-lethal levels. Exposure of mammalian test animals to heavy metals, even at moderate levels of contract, may alter the immunological responses. Therefore, there is an increasing interest in the use of the immune systems as a target organ for detecting toxicity of environmental pollutants. The fish immune system is well defined and has many sensitive parameters whose alteration, as a result of pollutant exposure, are easily determined. The effect of copper on the fish immune system is of particular interest since it is known that chronic treatment of copper decreases resistance of the blue gourami (Trichogaster trichopterus) to virus and bacterial (Roales and Perlmutter 1977). The purpose of this study was to determine if sublethal doses of copper would alter the immune response of the air-breathing fish, Saccobranchus fossilis.

  18. Air-Breathing Hypersonic Vehicle Tracking Control Based on Adaptive Dynamic Programming.

    PubMed

    Mu, Chaoxu; Ni, Zhen; Sun, Changyin; He, Haibo

    2017-03-01

    In this paper, we propose a data-driven supplementary control approach with adaptive learning capability for air-breathing hypersonic vehicle tracking control based on action-dependent heuristic dynamic programming (ADHDP). The control action is generated by the combination of sliding mode control (SMC) and the ADHDP controller to track the desired velocity and the desired altitude. In particular, the ADHDP controller observes the differences between the actual velocity/altitude and the desired velocity/altitude, and then provides a supplementary control action accordingly. The ADHDP controller does not rely on the accurate mathematical model function and is data driven. Meanwhile, it is capable to adjust its parameters online over time under various working conditions, which is very suitable for hypersonic vehicle system with parameter uncertainties and disturbances. We verify the adaptive supplementary control approach versus the traditional SMC in the cruising flight, and provide three simulation studies to illustrate the improved performance with the proposed approach.

  19. Geometry Modeling and Adaptive Control of Air-Breathing Hypersonic Vehicles

    NASA Astrophysics Data System (ADS)

    Vick, Tyler Joseph

    Air-breathing hypersonic vehicles have the potential to provide global reach and affordable access to space. Recent technological advancements have made scramjet-powered flight achievable, as evidenced by the successes of the X-43A and X-51A flight test programs over the last decade. Air-breathing hypersonic vehicles present unique modeling and control challenges in large part due to the fact that scramjet propulsion systems are highly integrated into the airframe, resulting in strongly coupled and often unstable dynamics. Additionally, the extreme flight conditions and inability to test fully integrated vehicle systems larger than X-51 before flight leads to inherent uncertainty in hypersonic flight. This thesis presents a means to design vehicle geometries, simulate vehicle dynamics, and develop and analyze control systems for hypersonic vehicles. First, a software tool for generating three-dimensional watertight vehicle surface meshes from simple design parameters is developed. These surface meshes are compatible with existing vehicle analysis tools, with which databases of aerodynamic and propulsive forces and moments can be constructed. A six-degree-of-freedom nonlinear dynamics simulation model which incorporates this data is presented. Inner-loop longitudinal and lateral control systems are designed and analyzed utilizing the simulation model. The first is an output feedback proportional-integral linear controller designed using linear quadratic regulator techniques. The second is a model reference adaptive controller (MRAC) which augments this baseline linear controller with an adaptive element. The performance and robustness of each controller are analyzed through simulated time responses to angle-of-attack and bank angle commands, while various uncertainties are introduced. The MRAC architecture enables the controller to adapt in a nonlinear fashion to deviations from the desired response, allowing for improved tracking performance, stability, and

  20. Cascade Optimization Strategy for Aircraft and Air-Breathing Propulsion System Concepts

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Lavelle, Thomas M.; Hopkins, Dale A.; Coroneos, Rula M.

    1996-01-01

    Design optimization for subsonic and supersonic aircraft and for air-breathing propulsion engine concepts has been accomplished by soft-coupling the Flight Optimization System (FLOPS) and the NASA Engine Performance Program analyzer (NEPP), to the NASA Lewis multidisciplinary optimization tool COMETBOARDS. Aircraft and engine design problems, with their associated constraints and design variables, were cast as nonlinear optimization problems with aircraft weight and engine thrust as the respective merit functions. Because of the diversity of constraint types and the overall distortion of the design space, the most reliable single optimization algorithm available in COMETBOARDS could not produce a satisfactory feasible optimum solution. Some of COMETBOARDS' unique features, which include a cascade strategy, variable and constraint formulations, and scaling devised especially for difficult multidisciplinary applications, successfully optimized the performance of both aircraft and engines. The cascade method has two principal steps: In the first, the solution initiates from a user-specified design and optimizer, in the second, the optimum design obtained in the first step with some random perturbation is used to begin the next specified optimizer. The second step is repeated for a specified sequence of optimizers or until a successful solution of the problem is achieved. A successful solution should satisfy the specified convergence criteria and have several active constraints but no violated constraints. The cascade strategy available in the combined COMETBOARDS, FLOPS, and NEPP design tool converges to the same global optimum solution even when it starts from different design points. This reliable and robust design tool eliminates manual intervention in the design of aircraft and of air-breathing propulsion engines where it eases the cycle analysis procedures. The combined code is also much easier to use, which is an added benefit. This paper describes COMETBOARDS

  1. [Working ability between air and trimix breathing gas under 8 ATA air condition].

    PubMed

    Shibayama, M; Kosugi, S; Mohri, M; Yamamura, I; Oda, S; Kimura, A; Takeuchi, J; Mano, Y

    1990-04-01

    Pneumatic caisson work in Japan has come into operation since 1924. Afterward, this technique of compressed air work has been widely utilized in the construction of foundation basements, shafts of the bottom tunnel shields for subway and so forth. While using this technique of compressed air work means that workers have to be exposed to hyperbaric environment, this technique has risks of not only decompression sickness (DCS) but also toxicity of poisonous gas and/or oxygen deficiency. However, this technique is independent of city construction work and the operation of compressed air work higher than 5ATA (4.0 kg/cm2G) is actually been planning recently. Accordingly unmanned caisson work is considered as a better technique for such higher pressurized work, even though workers must enter into hyperbaric working fields for maintenance or repair of unmanned operated machinery and materials. This research is to establish the safe work under hyperbaric air environment at 8ATA.

  2. Solubility testing of actinides on breathing-zone and area air samples

    SciTech Connect

    Metzger, R.L.; Jessop, B.H.; McDowell, B.L.

    1996-02-01

    A solubility testing method for several common actinides has been developed with sufficient sensitivity to allow profiles to be determined from routine breathing zone and area air samples in the workplace. Air samples are covered with a clean filter to form a filter-sample-filter sandwich which is immersed in an extracellular lung serum simulant solution. The sample is moved to a fresh beaker of the lung fluid simulant each day for one week, and then weekly until the end of the 28 day test period. The soak solutions are wet ashed with nitric acid and hydrogen peroxide to destroy the organic components of the lung simulant solution prior to extraction of the nuclides of interest directly into an extractive scintillator for subsequent counting on a Photon-Electron Rejecting Alpha Liquid Scintillation (PERALS{reg_sign}) spectrometer. Solvent extraction methods utilizing the extractive scintillators have been developed for the isotopes of uranium, plutonium, and curium. The procedures normally produce an isotopic recovery greater than 95% and have been used to develop solubility profiles from air samples with 40 pCi or less of U{sub 3}O{sub 8}. Profiles developed for U{sub 3}O{sub 8} samples show good agreement with in vitro and in vivo tests performed by other investigators on samples from the same uranium mills.

  3. Randomized controlled trial of discontinuation of nasal-CPAP in stable preterm infants breathing room air.

    PubMed

    Abdel-Hady, H; Mohareb, S; Khashaba, M; Abu-Alkhair, M; Greisen, G

    1998-01-01

    This trial assessed the consequences of discontinuation of nasal-CPAP in stable preterm infants breathing room air. Eighty-eight infants with a mean gestational age of 29 (24-33) weeks and a mean birthweight of 1264 (665-2060)g, randomized to either discontinuation of CPAP or its continuation, were clinically observed and monitored for 6 h by cardiorespiratory monitor, pulse oximeter and transcutaneous blood gas monitor. The abdominal circumference and gastric air and aspirate volumes were measured prior to meals at trial entry and after 6 h. Discontinuation of CPAP led to a small but significant decrease in oxygenation at 1 and 6 h. During the trial, five infants in the experimental group required supplemental oxygen and one infant was put back on CPAP owing to excessive apnoeas. Discontinuation of CPAP did not influence the TcPCO2 or the number of apnoeas and bradycardias during the trial, but led to significantly increased respiratory rate, retractions, and flaring at 6 h. It also led to a significant decrease in the abdominal circumference and gastric air volume. Thirty-nine percent of infants were put back on CPAP some time after the trial, mainly because of recurrent apnoeas and bradycardias. Taking the infant off CPAP during the trial reduced subsequent use of CPAP.

  4. 24 CFR 3280.813 - Outdoor outlets, fixtures, air-conditioning equipment, etc.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...-conditioning equipment, etc. 3280.813 Section 3280.813 Housing and Urban Development Regulations Relating to... Electrical Systems § 3280.813 Outdoor outlets, fixtures, air-conditioning equipment, etc. (a) Outdoor.../or air conditioning equipment located outside the manufactured home, shall have permanently...

  5. 48 CFR 52.223-12 - Refrigeration Equipment and Air Conditioners.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 48 Federal Acquisition Regulations System 2 2014-10-01 2014-10-01 false Refrigeration Equipment... Provisions and Clauses 52.223-12 Refrigeration Equipment and Air Conditioners. As prescribed in 23.804(b), insert the following clause: Refrigeration Equipment and Air Conditioners (MAY 1995) The Contractor...

  6. 48 CFR 52.223-12 - Refrigeration Equipment and Air Conditioners.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 48 Federal Acquisition Regulations System 2 2011-10-01 2011-10-01 false Refrigeration Equipment... Provisions and Clauses 52.223-12 Refrigeration Equipment and Air Conditioners. As prescribed in 23.804(b), insert the following clause: Refrigeration Equipment and Air Conditioners (MAY 1995) The Contractor...

  7. 48 CFR 52.223-12 - Refrigeration Equipment and Air Conditioners.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 48 Federal Acquisition Regulations System 2 2010-10-01 2010-10-01 false Refrigeration Equipment... Provisions and Clauses 52.223-12 Refrigeration Equipment and Air Conditioners. As prescribed in 23.804(b), insert the following clause: Refrigeration Equipment and Air Conditioners (MAY 1995) The Contractor...

  8. 48 CFR 52.223-12 - Refrigeration Equipment and Air Conditioners.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 48 Federal Acquisition Regulations System 2 2012-10-01 2012-10-01 false Refrigeration Equipment... Provisions and Clauses 52.223-12 Refrigeration Equipment and Air Conditioners. As prescribed in 23.804(b), insert the following clause: Refrigeration Equipment and Air Conditioners (MAY 1995) The Contractor...

  9. 48 CFR 52.223-12 - Refrigeration Equipment and Air Conditioners.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 48 Federal Acquisition Regulations System 2 2013-10-01 2013-10-01 false Refrigeration Equipment... Provisions and Clauses 52.223-12 Refrigeration Equipment and Air Conditioners. As prescribed in 23.804(b), insert the following clause: Refrigeration Equipment and Air Conditioners (MAY 1995) The Contractor...

  10. Air breathing in the Arctic: influence of temperature, hypoxia, activity and restricted air access on respiratory physiology of the Alaska blackfish Dallia pectoralis

    PubMed Central

    Lefevre, Sjannie; Damsgaard, Christian; Pascale, Desirae R.; Nilsson, Göran E.; Stecyk, Jonathan A. W.

    2014-01-01

    The Alaska blackfish (Dallia pectoralis) is an air-breathing fish native to Alaska and the Bering Sea islands, where it inhabits lakes that are ice-covered in the winter, but enters warm and hypoxic waters in the summer to forage and reproduce. To understand the respiratory physiology of this species under these conditions and the selective pressures that maintain the ability to breathe air, we acclimated fish to 5°C and 15°C and used respirometry to measure: standard oxygen uptake () in normoxia (19.8 kPa PO2) and hypoxia (2.5 kPa), with and without access to air; partitioning of standard in normoxia and hypoxia; maximum and partitioning after exercise; and critical oxygen tension (Pcrit). Additionally, the effects of temperature acclimation on haematocrit, haemoglobin oxygen affinity and gill morphology were assessed. Standard was higher, but air breathing was not increased, at 15°C or after exercise at both temperatures. Fish acclimated to 5°C or 15°C increased air breathing to compensate and fully maintain standard in hypoxia. Fish were able to maintain through aquatic respiration when air was denied in normoxia, but when air was denied in hypoxia, standard was reduced by ∼30–50%. Pcrit was relatively high (5 kPa) and there were no differences in Pcrit, gill morphology, haematocrit or haemoglobin oxygen affinity at the two temperatures. Therefore, Alaska blackfish depends on air breathing in hypoxia and additional mechanisms must thus be utilised to survive hypoxic submergence during the winter, such as hypoxia-induced enhancement in the capacities for carrying and binding blood oxygen, behavioural avoidance of hypoxia and suppression of metabolic rate. PMID:25394628

  11. Air breathing in the Arctic: influence of temperature, hypoxia, activity and restricted air access on respiratory physiology of the Alaska blackfish Dallia pectoralis.

    PubMed

    Lefevre, Sjannie; Damsgaard, Christian; Pascale, Desirae R; Nilsson, Göran E; Stecyk, Jonathan A W

    2014-12-15

    The Alaska blackfish (Dallia pectoralis) is an air-breathing fish native to Alaska and the Bering Sea islands, where it inhabits lakes that are ice-covered in the winter, but enters warm and hypoxic waters in the summer to forage and reproduce. To understand the respiratory physiology of this species under these conditions and the selective pressures that maintain the ability to breathe air, we acclimated fish to 5°C and 15°C and used respirometry to measure: standard oxygen uptake (Ṁ(O₂)) in normoxia (19.8 kPa P(O₂)) and hypoxia (2.5 kPa), with and without access to air; partitioning of standard Ṁ(O₂) in normoxia and hypoxia; maximum Ṁ(O₂) and partitioning after exercise; and critical oxygen tension (P(crit)). Additionally, the effects of temperature acclimation on haematocrit, haemoglobin oxygen affinity and gill morphology were assessed. Standard Ṁ(O₂) was higher, but air breathing was not increased, at 15°C or after exercise at both temperatures. Fish acclimated to 5°C or 15°C increased air breathing to compensate and fully maintain standard Ṁ(O₂) in hypoxia. Fish were able to maintain Ṁ(O₂) through aquatic respiration when air was denied in normoxia, but when air was denied in hypoxia, standard Ṁ(O₂) was reduced by ∼30-50%. P(crit) was relatively high (5 kPa) and there were no differences in P(crit), gill morphology, haematocrit or haemoglobin oxygen affinity at the two temperatures. Therefore, Alaska blackfish depends on air breathing in hypoxia and additional mechanisms must thus be utilised to survive hypoxic submergence during the winter, such as hypoxia-induced enhancement in the capacities for carrying and binding blood oxygen, behavioural avoidance of hypoxia and suppression of metabolic rate.

  12. Clearing the air and breathing freely: the health politics of air pollution and asthma.

    PubMed

    Brown, Phil; Mayer, Brian; Zavestoski, Stephen; Luebke, Theo; Mandelbaum, Joshua; McCormick, Sabrina

    2004-01-01

    This study examines the growing debate around environmental causes of asthma in the context of federal regulatory disputes, scientific controversy, and environmental justice activism. A multifaceted form of social discovery of the effect of air pollution on asthma has resulted from multipartner and multiorganizational approaches and from intersectoral policy that deals with social inequality and environmental justice. Scientists, activists, health voluntary organizations, and some government agencies and officials have identified various elements of the asthma and air pollution connection. To tackle these issues, they have worked through a variety of collaborations and across different sectors of environmental regulation, public health, health services, housing, transportation, and community development. The authors examine the role of activist groups in discovering the increased rates of asthma and framing it as a social and environmental issue; give an overview of the current knowledge base on air pollution and asthma, and the controversies within science; and situate that science in the regulatory debate, discussing the many challenges to the air quality researchers. They then examine the implications of the scientific and regulatory controversies over linking air pollution to increases in asthma. The article concludes with a discussion of how alliances between activists and scientists lead to new research strategies and innovations.

  13. A breath of fresh air: EPA`s more flexible approach to the Clean Air Act

    SciTech Connect

    Curreri, J.A.

    1996-05-01

    This article highlights the changes in the Clean Air Act rules as defined by the USEPA. The major changes discussed include the following: definition of a `major source`; streamlined Title V Permits; less detailed descriptions; permit revisions may be reduced; periodic and enhanced monitoring; more practical requirements; case-by-case MACT standards.

  14. A flight investigation of oscillating air forces: Equipment and technique

    NASA Technical Reports Server (NTRS)

    Reed, W. H., III

    1975-01-01

    The equipment and techniques are described which are to be used in a project aimed at measuring oscillating air forces and dynamic aeroelastic response of a swept wing airplane at high subsonic speeds. Electro-hydraulic inertia type shakers installed in the wing tips will excite various elastic airplane modes while the related oscillating chordwise pressures at two spanwise wing stations and the wing mode shapes are recorded on magnetic tape. The data reduction technique, following the principle of a wattmeter harmonic analyzer employed by Bratt, Wight, and Tilly, utilizes magnetic tape and high speed electronic multipliers to record directly the real and imaginary components of oscillatory data signals relative to a simple harmonic reference signal. Through an extension of this technique an automatic flight-flutter-test data analyzer is suggested in which vector plots of mechanical admittance or impedance would be plotted during the flight test.

  15. Application of ion chemistry and the SIFT technique to the quantitative analysis of trace gases in air and on breath

    NASA Astrophysics Data System (ADS)

    Smith, David; Španěl, Patrik

    Our major objective in this paper is to describe a new method we have developed for the analysis of trace gases at partial pressures down to the ppb level in atmospheric air, with special emphasis on the detection and quantification of trace gases on human breath. It involves the use of our selected ion flow tube (Sift) technique which we previously developed and used extensively for the study of gas phase ionic reactions occurring in ionized media such as the terrestrial atmosphere and interstellar gas clouds. Before discussing this analytical technique we describe the results of our very recent Sift and flowing afterglow (FA) studies of the reactions of the H3O+ and OH- ions, of their hydrates H3O+(H2O)1,2,3 and OH- (H2O)1,2, and of NO+ and O2+, with several hydrocarbons and oxygen-bearing organic molecules, studies that are very relevant to our trace gas analytical studies. Then follows a detailed discussion of the application of our Sift technique to trace gas analysis, after which we present some results obtained for the analyses of laboratory air, the breath of a healthy non-smoking person, the breath of a person who regularly smokes cigarettes, the complex vapours emitted by banana and onion, and the molecules present in a butane/air flame. We show how the quantitative analysis of breath can be achieved from only a single exhalation and in real time (the time response of the instrument is only about 20 ms). We also show how the time variation of breath gases over long time periods can be followed, using the decay of ethanol on the breath after the ingestion of distilled liquor as an example, yet simultaneously following several other trace gases including acetone and isoprene which are very easily detected on the breath of all individuals because of their relatively high partial pressures (typically 100 to 1000 ppb). The breath of a smoker is richer in complex molecules, some nitrogen containing organics apparently being very evident at the 5 to 50 ppb level

  16. Control of cardiorespiratory function in response to hypoxia in an air-breathing fish, the African sharptooth catfish, Clarias gariepinus.

    PubMed

    Belão, T C; Zeraik, V M; Florindo, L H; Kalinin, A L; Leite, C A C; Rantin, F T

    2015-09-01

    We evaluated the role of the first pair of gill arches in the control of cardiorespiratory responses to normoxia and hypoxia in the air-breathing catfish, Clarias gariepinus. An intact group (IG) and an experimental group (EG, bilateral excision of first gill arch) were submitted to graded hypoxia, with and without access to air. The first pair of gill arches ablations reduced respiratory surface area and removed innervation by cranial nerve IX. In graded hypoxia without access to air, both groups displayed bradycardia and increased ventilatory stroke volume (VT), and the IG showed a significant increase in breathing frequency (fR). The EG exhibited very high fR in normoxia that did not increase further in hypoxia, this was linked to reduced O2 extraction from the ventilatory current (EO2) and a significantly higher critical O2 tension (PcO2) than the IG. In hypoxia with access to air, only the IG showed increased air-breathing, indicating that the first pair of gill arches excision severely attenuated air-breathing responses. Both groups exhibited bradycardia before and tachycardia after air-breaths. The fH and gill ventilation amplitude (VAMP) in the EG were overall higher than the IG. External and internal NaCN injections revealed that O2 chemoreceptors mediating ventilatory hypoxic responses (fR and VT) are internally oriented. The NaCN injections indicated that fR responses were mediated by receptors predominantly in the first pair of gill arches but VT responses by receptors on all gill arches. Receptors eliciting cardiac responses were both internally and externally oriented and distributed on all gill arches or extra-branchially. Air-breathing responses were predominantly mediated by receptors in the first pair of gill arches. In conclusion, the role of the first pair of gill arches is related to: (a) an elevated EO2 providing an adequate O2 uptake to maintain the aerobic metabolism during normoxia; (b) a significant bradycardia and increased fAB elicited

  17. Australian Air Breathing Propulsion Research for Hypersonic, Beamed Energy-Propelled Vehicles

    NASA Astrophysics Data System (ADS)

    Froning, David

    2010-05-01

    A three year laser-propelled vehicle analysis and design investigation has been begun in June, 2009 by Faculty and graduate students at the University of Adelaide under a Grant/Cooperative Agreement Award to the University of Adelaide by the Asian Office of Aerospace Research and Development (AOARD). The major objectives of thsis investigation are: (a) development of hypersonic, air breathing "lightcraft" with innovative air inlets that enable acceptable airflow capture and combustion, and acceptable cowl-lip heating rates during hot, high-speed, high angle-of-attack hypersonic flight; (b) yest of the most promising lightcraft and inlet design in the high power laser beam that is part of the shock tunnel facility at CTO Instituto in Brazil; and (c) plan a series of laser guided and propelled flights that achieve supersonic or higher speed at the Woomera Test Facility (WTF) in South Australia—using the existing WTF launching and tracking facilities and sponsor-provided laser pointing and tracking and illumination systems.

  18. Evaluation of an Ejector Ramjet Based Propulsion System for Air-Breathing Hypersonic Flight

    NASA Technical Reports Server (NTRS)

    Thomas, Scott R.; Perkins, H. Douglas; Trefny, Charles J.

    1997-01-01

    A Rocket Based Combined Cycle (RBCC) engine system is designed to combine the high thrust to weight ratio of a rocket along with the high specific impulse of a ramjet in a single, integrated propulsion system. This integrated, combined cycle propulsion system is designed to provide higher vehicle performance than that achievable with a separate rocket and ramjet. The RBCC engine system studied in the current program is the Aerojet strutjet engine concept, which is being developed jointly by a government-industry team as part of the Air Force HyTech program pre-PRDA activity. The strutjet is an ejector-ramjet engine in which small rocket chambers are embedded into the trailing edges of the inlet compression struts. The engine operates as an ejector-ramjet from takeoff to slightly above Mach 3. Above Mach 3 the engine operates as a ramjet and transitions to a scramjet at high Mach numbers. For space launch applications the rockets would be re-ignited at a Mach number or altitude beyond which air-breathing propulsion alone becomes impractical. The focus of the present study is to develop and demonstrate a strutjet flowpath using hydrocarbon fuel at up to Mach 7 conditions.

  19. Computational fluid dynamics investigation of human aspiration in low velocity air: orientation effects on nose-breathing simulations.

    PubMed

    Anderson, Kimberly R; Anthony, T Renée

    2014-06-01

    An understanding of how particles are inhaled into the human nose is important for developing samplers that measure biologically relevant estimates of exposure in the workplace. While previous computational mouth-breathing investigations of particle aspiration have been conducted in slow moving air, nose breathing still required exploration. Computational fluid dynamics was used to estimate nasal aspiration efficiency for an inhaling humanoid form in low velocity wind speeds (0.1-0.4 m s(-1)). Breathing was simplified as continuous inhalation through the nose. Fluid flow and particle trajectories were simulated over seven discrete orientations relative to the oncoming wind (0, 15, 30, 60, 90, 135, 180°). Sensitivities of the model simplification and methods were assessed, particularly the placement of the recessed nostril surface and the size of the nose. Simulations identified higher aspiration (13% on average) when compared to published experimental wind tunnel data. Significant differences in aspiration were identified between nose geometry, with the smaller nose aspirating an average of 8.6% more than the larger nose. Differences in fluid flow solution methods accounted for 2% average differences, on the order of methodological uncertainty. Similar trends to mouth-breathing simulations were observed including increasing aspiration efficiency with decreasing freestream velocity and decreasing aspiration with increasing rotation away from the oncoming wind. These models indicate nasal aspiration in slow moving air occurs only for particles <100 µm.

  20. Enriched Air Nitrox Breathing Reduces Venous Gas Bubbles after Simulated SCUBA Diving: A Double-Blind Cross-Over Randomized Trial

    PubMed Central

    Souday, Vincent; Koning, Nick J.; Perez, Bruno; Grelon, Fabien; Mercat, Alain; Boer, Christa; Seegers, Valérie; Radermacher, Peter; Asfar, Pierre

    2016-01-01

    Objective To test the hypothesis whether enriched air nitrox (EAN) breathing during simulated diving reduces decompression stress when compared to compressed air breathing as assessed by intravascular bubble formation after decompression. Methods Human volunteers underwent a first simulated dive breathing compressed air to include subjects prone to post-decompression venous gas bubbling. Twelve subjects prone to bubbling underwent a double-blind, randomized, cross-over trial including one simulated dive breathing compressed air, and one dive breathing EAN (36% O2) in a hyperbaric chamber, with identical diving profiles (28 msw for 55 minutes). Intravascular bubble formation was assessed after decompression using pulmonary artery pulsed Doppler. Results Twelve subjects showing high bubble production were included for the cross-over trial, and all completed the experimental protocol. In the randomized protocol, EAN significantly reduced the bubble score at all time points (cumulative bubble scores: 1 [0–3.5] vs. 8 [4.5–10]; P < 0.001). Three decompression incidents, all presenting as cutaneous itching, occurred in the air versus zero in the EAN group (P = 0.217). Weak correlations were observed between bubble scores and age or body mass index, respectively. Conclusion EAN breathing markedly reduces venous gas bubble emboli after decompression in volunteers selected for susceptibility for intravascular bubble formation. When using similar diving profiles and avoiding oxygen toxicity limits, EAN increases safety of diving as compared to compressed air breathing. Trial Registration ISRCTN 31681480 PMID:27163253

  1. Balancing the competing requirements of air-breathing and display behaviour during male-male interactions in Siamese fighting fish Betta splendens.

    PubMed

    Alton, Lesley A; Portugal, Steven J; White, Craig R

    2013-02-01

    Air-breathing fish of the Anabantoidei group meet their metabolic requirements for oxygen through both aerial and aquatic gas exchange. Siamese fighting fish Betta splendens are anabantoids that frequently engage in aggressive male-male interactions which cause significant increases in metabolic rate and oxygen requirements. These interactions involve opercular flaring behaviour that is thought to limit aquatic oxygen uptake, and combines with the increase in metabolic rate to cause an increase in air-breathing behaviour. Air-breathing events interrupt display behaviour and increase risk of predation, raising the question of how Siamese fighting fish manage their oxygen requirements during agonistic encounters. Using open-flow respirometry, we measured rate of oxygen consumption in displaying fish to determine if males increase oxygen uptake per breath to minimise visits to the surface, or increase their reliance on aquatic oxygen uptake. We found that the increased oxygen requirements of Siamese fighting fish during display behaviour were met by increased oxygen uptake from the air with no significant changes in aquatic oxygen uptake. The increased aerial oxygen uptake was achieved almost entirely by an increase in air-breathing frequency. We conclude that limitations imposed by the reduced gill surface area of air-breathing fish restrict the ability of Siamese fighting fish to increase aquatic uptake, and limitations of the air-breathing organ of anabantoids largely restrict their capacity to increase oxygen uptake per breath. The resulting need to increase surfacing frequency during metabolically demanding agonistic encounters has presumably contributed to the evolution of the stereotyped surfacing behaviour seen during male-male interactions, during which one of the fish will lead the other to the surface, and each will take a breath of air.

  2. A novel evacuation passageway formed by a breathing air supply zone combined with upward ventilation

    NASA Astrophysics Data System (ADS)

    Gao, Ran; Li, Angui; Lei, Wenjun; Zhao, Yujiao; Zhang, Ying; Deng, Baoshun

    2013-10-01

    With the development of transportation, the tunnel has become one of the important facilities of railway, highway and subway transportation. However, fire hazards occurring inside the tunnel may incur huge numbers of casualties and property losses. In this paper, a breathing air supply zone combined with an upward ventilation assisted tunnel evacuation system (BTES) is introduced. It can be used to create a safe, smoke-free evacuation passageway out of the tunnel. The BTES is optimized to achieve high-performance. The impacts of heat release rates, fire source locations and fire detection times are also discussed. The carbon monoxide (CO) concentrations found when utilizing the BTES were significantly lower than that found when utilizing the traditional ventilation system. An obvious, clean evacuation passageway was created by the BTES. The maximum CO concentrations in the BTES evacuation passageway were below 10 PPM throughout the entire combustion process. A larger CO concentration gradient in the vertical direction was detected with the BTES than that found in other ventilation systems. This finding means that the lower part of the tunnel has a lower CO concentration with the BTES, which benefits the evacuation process. The impacts of fire source locations and fire detection times were tested to ensure the system reliability, and it was found that the performance of the BTES was not sensitive to them.

  3. Computational modeling of alkaline air-breathing microfluidic fuel cells with an array of cylinder anodes

    NASA Astrophysics Data System (ADS)

    Ye, Ding-Ding; Zhang, Biao; Zhu, Xun; Sui, Pang-Chieh; Djilali, Ned; Liao, Qiang

    2015-08-01

    A three-dimensional computational model is developed for an alkaline air-breathing microfluidic fuel cell (AMFC) with an array of cylinder anodes. The model is validated against experimental data from an in-house prototype AMFC. The distributions of fluid velocity, fuel concentration and current density of the fuel cell are analyzed in detail. The effect of reactant flow rate on the cell performance and electrode potentials is also studied. The model results suggest that fuel crossover is minimized by the fast electrolyte flow in the vicinity of the cathode. The current production of each anode is uneven and is well correlated with internal ohmic resistance. Fuel transfer limitation occurs at low flow rates (<100 μL min-1) but diminishes at high flow rates. The model results also indicate that cathode potential reversal takes place at combined low flow rate and high current density conditions, mainly due to the improved overpotential downstream where fuel starvation occurs. The anode reaction current distribution is found to be relatively uniform, which is a result of a compensating mechanism that improves the current production of the bottom anodes downstream.

  4. Affordable Flight Demonstration of the GTX Air-Breathing SSTO Vehicle Concept

    NASA Technical Reports Server (NTRS)

    Krivanek, Thomas M.; Roche, Joseph M.; Riehl, John P.; Kosareo, Daniel N.

    2002-01-01

    The rocket based combined cycle (RBCC) powered single-stage-to-orbit (SSTO) reusable launch vehicle has the potential to significantly reduce the total cost per pound for orbital payload missions. To validate overall system performance, a flight demonstration must be performed. This paper presents an overview of the first phase of a flight demonstration program for the GTX SSTO vehicle concept. Phase 1 will validate the propulsion performance of the vehicle configuration over the supersonic and hypersonic airbreathing portions of the trajectory. The focus and goal of Phase 1 is to demonstrate the integration and performance of the propulsion system flowpath with the vehicle aerodynamics over the air-breathing trajectory. This demonstrator vehicle will have dual mode ramjet/scramjets, which include the inlet, combustor, and nozzle with geometrically scaled aerodynamic surface outer mold lines (OML) defining the forebody, boundary layer diverter, wings, and tail. The primary objective of this study is to demonstrate propulsion system performance and operability including the ram to scram transition, as well as to validate vehicle aerodynamics and propulsion airframe integration. To minimize overall risk and development cost the effort will incorporate proven materials, use existing turbomachinery in the propellant delivery systems, launch from an existing unmanned remote launch facility, and use basic vehicle recovery techniques to minimize control and landing requirements. A second phase would demonstrate propulsion performance across all critical portions of a space launch trajectory (lift off through transition to all-rocket) integrated with flight-like vehicle systems.

  5. Uncertainty analysis and robust trajectory linearization control of a flexible air-breathing hypersonic vehicle

    NASA Astrophysics Data System (ADS)

    Pu, Zhiqiang; Tan, Xiangmin; Fan, Guoliang; Yi, Jianqiang

    2014-08-01

    Flexible air-breathing hypersonic vehicles feature significant uncertainties which pose huge challenges to robust controller designs. In this paper, four major categories of uncertainties are analyzed, that is, uncertainties associated with flexible effects, aerodynamic parameter variations, external environmental disturbances, and control-oriented modeling errors. A uniform nonlinear uncertainty model is explored for the first three uncertainties which lumps all uncertainties together and consequently is beneficial for controller synthesis. The fourth uncertainty is additionally considered in stability analysis. Based on these analyses, the starting point of the control design is to decompose the vehicle dynamics into five functional subsystems. Then a robust trajectory linearization control (TLC) scheme consisting of five robust subsystem controllers is proposed. In each subsystem controller, TLC is combined with the extended state observer (ESO) technique for uncertainty compensation. The stability of the overall closed-loop system with the four aforementioned uncertainties and additional singular perturbations is analyzed. Particularly, the stability of nonlinear ESO is also discussed from a Liénard system perspective. At last, simulations demonstrate the great control performance and the uncertainty rejection ability of the robust scheme.

  6. Design Evolution and Performance Characterization of the GTX Air-Breathing Launch Vehicle Inlet

    NASA Technical Reports Server (NTRS)

    DeBonis, J. R.; Steffen, C. J., Jr.; Rice, T.; Trefny, C. J.

    2002-01-01

    The design and analysis of a second version of the inlet for the GTX rocket-based combine-cycle launch vehicle is discussed. The previous design did not achieve its predicted performance levels due to excessive turning of low-momentum comer flows and local over-contraction due to asymmetric end-walls. This design attempts to remove these problems by reducing the spike half-angle to 10- from 12-degrees and by implementing true plane of symmetry end-walls. Axisymmetric Reynolds-Averaged Navier-Stokes simulations using both perfect gas and real gas, finite rate chemistry, assumptions were performed to aid in the design process and to create a comprehensive database of inlet performance. The inlet design, which operates over the entire air-breathing Mach number range from 0 to 12, and the performance database are presented. The performance database, for use in cycle analysis, includes predictions of mass capture, pressure recovery, throat Mach number, drag force, and heat load, for the entire Mach range. Results of the computations are compared with experimental data to validate the performance database.

  7. Propulsion integration of hypersonic air-breathing vehicles utilizing a top-down design methodology

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, Brad Kenneth

    In recent years, a focus of aerospace engineering design has been the development of advanced design methodologies and frameworks to account for increasingly complex and integrated vehicles. Techniques such as parametric modeling, global vehicle analyses, and interdisciplinary data sharing have been employed in an attempt to improve the design process. The purpose of this study is to introduce a new approach to integrated vehicle design known as the top-down design methodology. In the top-down design methodology, the main idea is to relate design changes on the vehicle system and sub-system level to a set of over-arching performance and customer requirements. Rather than focusing on the performance of an individual system, the system is analyzed in terms of the net effect it has on the overall vehicle and other vehicle systems. This detailed level of analysis can only be accomplished through the use of high fidelity computational tools such as Computational Fluid Dynamics (CFD) or Finite Element Analysis (FEA). The utility of the top-down design methodology is investigated through its application to the conceptual and preliminary design of a long-range hypersonic air-breathing vehicle for a hypothetical next generation hypersonic vehicle (NHRV) program. System-level design is demonstrated through the development of the nozzle section of the propulsion system. From this demonstration of the methodology, conclusions are made about the benefits, drawbacks, and cost of using the methodology.

  8. An Overview of Air-Breathing Propulsion Efforts for 2015 SBIR Phase I

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.; Steele, Gynelle C.

    2016-01-01

    NASA's Small Business Innovation Research (SBIR) program focuses on technological innovation by investing in development of innovative concepts and technologies to help NASA mission directorates address critical research needs for Agency programs. This report highlights 24 of the innovative SBIR 2015 Phase I projects that emphasize one of NASA Glenn Research Center's six core competencies-Air-Breathing Propulsion. The technologies cover a wide spectrum of applications such as hybrid nanocomposites for efficient aerospace structures; plasma flow control for drag reduction; physics-based aeroanalysis methods for open rotor conceptual designs; vertical lift by series hybrid power; fast pressure-sensitive paint systems for production wind tunnel testing; rugged, compact, and inexpensive airborne fiber sensor interrogators based on monolithic tunable lasers; and high sensitivity semiconductor sensor skins for multi-axis surface pressure characterization. Each featured technology describes an innovation and technical objective and highlights NASA commercial and industrial applications. This report provides an opportunity for NASA engineers, researchers, and program managers to learn how NASA SBIR technologies could help their programs and projects, and lead to collaborations and partnerships between the small SBIR companies and NASA that would benefit both.

  9. 2-D Air-Breathing Lightcraft Engine Experiments in Hypersonic Conditions

    NASA Astrophysics Data System (ADS)

    Salvador, Israel I.; Myrabo, Leik N.; Minucci, Marco A. S.; de Oliveira, Antonio C.; Toro, Paulo G. P.; Chanes, José B.; Rego, Israel S.

    2011-11-01

    Experiments were performed with a 2-D, repetitively-pulsed (RP) laser Lightcraft model in hypersonic flow conditions. The main objective was the feasibility analysis for impulse generation with repetitively-pulsed air-breathing laser Lightcraft engines at hypersonic speeds. The future application of interest for this basic research endeavor is the laser launch of pico-, nano-, and micro-satellites (i.e., 0.1-100 kg payloads) into Low-Earth-Orbit, at low-cost and on-demand. The laser propulsion experiments employed a Hypersonic Shock Tunnel integrated with twin gigawatt pulsed Lumonics 620-TEA CO2 lasers (˜ 1 μs pulses), to produce the required test conditions. This hypersonic campaign was carried out at nominal Mach numbers ranging from 6 to 10. Time-dependent surface pressure distributions were recorded together with Schlieren movies of the flow field structure resulting from laser energy deposition. Results indicated laser-induced pressure increases of 0.7-0.9 bar with laser pulse energies of ˜ 170 J, on off-shroud induced breakdown condition, and Mach number of 7.

  10. An Overview of 2014 SBIR Phase 1 and Phase 2 Air-Breathing Propulsion

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.; Steele, Gynelle C.; Morris, Jessica R.

    2015-01-01

    NASA's Small Business Innovation Research (SBIR) program focuses on technological innovation by investing in development of innovative concepts and technologies to help NASA mission directorates address critical research needs for Agency programs. This report highlights nine of the innovative SBIR 2014 Phase I and Phase II projects that emphasize one of NASA Glenn Research Center's six core competencies-Air-Breathing Propulsion. The technologies cover a wide spectrum of applications such as development of X-ray computed tomography (CT) imaging method for the measurement of complex 3D ice shapes, phased array techniques for low signal-to-noise ratio wind tunnels, compact kinetic mechanisms for petroleum-derived and alternative aviation fuels, and hybrid electric propulsion systems for a multirotor aircraft. Each featured technology describes an innovation, technical objective, and highlights NASA commercial and industrial applications. This report provides as an opportunity for NASA engineers, researchers, and program managers to learn how NASA SBIR technologies could help their programs and projects, and lead to collaborations and partnerships between the small SBIR companies and NASA that would benefit both.

  11. Aerodynamic experimentation with ducted models as applied to hypersonic air-breathing vehicles

    NASA Astrophysics Data System (ADS)

    Goon'ko, Yu. P.

    A methodology of experimentation in high supersonic wind tunnels for studying aerodynamic characteristics of hypersonic flying vehicles powered by air-breathing engines is discussed. Investigations of such total aerodynamic forces as drag, lift and pitching moment at testing the models are implicit when the air flow through the model ducts is accomplished so that to provide the simulation of the external flow around the airplane and flow over the inlets, but the operating engines and, hence, the exhaust jets are not modeled. The methods used for testing such models are based on the measurement of duct stream parameters alongside with the balance measurement of aerodynamic forces acting on the models. In the tests, aerometric tools are used such as narrow metering nozzles (plugs), pitot and static pressure probes, stagnation temperature probes and pressure orifices in walls of the model duct. The aerometric data serve to determine the flow rate and momentum of the stream at the duct exit. The internal non-simulated forces of the model ducts are also determined using the conservation equations for energy, mass flow and momentum, and these forces are eliminated from the aerodynamic test results. The techniques of the said model testing have been well developed as applied to supersonic aircraft, however their application for hypersonic vehicles whose models are tested at high supersonic speeds, Mach number M∞>4, implies some specific features. In the present paper, the results of experimental and theoretical study of these features are discussed. Some experimental data on aerodynamics of hypersonic aircraft models received in methodological tests are also presented. The tunnel experiments have been carried out in the Mach number range M∞=2-6.

  12. Evolution of air breathing: oxygen homeostasis and the transitions from water to land and sky.

    PubMed

    Hsia, Connie C W; Schmitz, Anke; Lambertz, Markus; Perry, Steven F; Maina, John N

    2013-04-01

    Life originated in anoxia, but many organisms came to depend upon oxygen for survival, independently evolving diverse respiratory systems for acquiring oxygen from the environment. Ambient oxygen tension (PO2) fluctuated through the ages in correlation with biodiversity and body size, enabling organisms to migrate from water to land and air and sometimes in the opposite direction. Habitat expansion compels the use of different gas exchangers, for example, skin, gills, tracheae, lungs, and their intermediate stages, that may coexist within the same species; coexistence may be temporally disjunct (e.g., larval gills vs. adult lungs) or simultaneous (e.g., skin, gills, and lungs in some salamanders). Disparate systems exhibit similar directions of adaptation: toward larger diffusion interfaces, thinner barriers, finer dynamic regulation, and reduced cost of breathing. Efficient respiratory gas exchange, coupled to downstream convective and diffusive resistances, comprise the "oxygen cascade"-step-down of PO2 that balances supply against toxicity. Here, we review the origin of oxygen homeostasis, a primal selection factor for all respiratory systems, which in turn function as gatekeepers of the cascade. Within an organism's lifespan, the respiratory apparatus adapts in various ways to upregulate oxygen uptake in hypoxia and restrict uptake in hyperoxia. In an evolutionary context, certain species also become adapted to environmental conditions or habitual organismic demands. We, therefore, survey the comparative anatomy and physiology of respiratory systems from invertebrates to vertebrates, water to air breathers, and terrestrial to aerial inhabitants. Through the evolutionary directions and variety of gas exchangers, their shared features and individual compromises may be appreciated.

  13. Evolution of Air Breathing: Oxygen Homeostasis and the Transitions from Water to Land and Sky

    PubMed Central

    Hsia, Connie C. W.; Schmitz, Anke; Lambertz, Markus; Perry, Steven F.; Maina, John N.

    2014-01-01

    Life originated in anoxia, but many organisms came to depend upon oxygen for survival, independently evolving diverse respiratory systems for acquiring oxygen from the environment. Ambient oxygen tension (PO2) fluctuated through the ages in correlation with biodiversity and body size, enabling organisms to migrate from water to land and air and sometimes in the opposite direction. Habitat expansion compels the use of different gas exchangers, for example, skin, gills, tracheae, lungs, and their intermediate stages, that may coexist within the same species; coexistence may be temporally disjunct (e.g., larval gills vs. adult lungs) or simultaneous (e.g., skin, gills, and lungs in some salamanders). Disparate systems exhibit similar directions of adaptation: toward larger diffusion interfaces, thinner barriers, finer dynamic regulation, and reduced cost of breathing. Efficient respiratory gas exchange, coupled to downstream convective and diffusive resistances, comprise the “oxygen cascade”—step-down of PO2 that balances supply against toxicity. Here, we review the origin of oxygen homeostasis, a primal selection factor for all respiratory systems, which in turn function as gatekeepers of the cascade. Within an organism's lifespan, the respiratory apparatus adapts in various ways to upregulate oxygen uptake in hypoxia and restrict uptake in hyperoxia. In an evolutionary context, certain species also become adapted to environmental conditions or habitual organismic demands. We, therefore, survey the comparative anatomy and physiology of respiratory systems from invertebrates to vertebrates, water to air breathers, and terrestrial to aerial inhabitants. Through the evolutionary directions and variety of gas exchangers, their shared features and individual compromises may be appreciated. PMID:23720333

  14. Determination of hexavalent chromium in exhaled breath condensate and environmental air among chrome plating workers.

    PubMed

    Goldoni, Matteo; Caglieri, Andrea; Poli, Diana; Vettori, Maria Vittoria; Corradi, Massimo; Apostoli, Pietro; Mutti, Antonio

    2006-03-15

    Chromium speciation has attracted attention because of the different toxicity of Cr(III), which is considered relatively non-toxic, and Cr(VI), which can cross cell membranes mainly as a chromate anion and has been classified as a class I human carcinogen. The aims of the present study were to measure soluble Cr(VI) levels in environmental samples, to develop a simple method of quantifying Cr(VI) in exhaled breath condensate (EBC), and to follow the kinetics of EBC Cr(VI) in chrome plating workers.Personal air samples were collected from 10 chrome platers; EBC was collected from the same workers immediately after the work shift on Tuesday and before the work shift on the following Wednesday. Environmental and EBC Cr(VI) levels were determined by means of colorimetry and electrothermal absorption atomic spectrometry, respectively.The method of detecting Cr(VI) in environmental air was based on the extraction of the Cr(VI)-diphenylcarbazide (Cr(VI)-DPC) complex in 1-butanol, whereas EBC Cr(VI) was determined using a solvent extraction of Cr(VI) as an ion pair with tetrabutylammonium ion, and subsequent direct determination of the complex (Cr(VI)-DPC) in EBC.Kinetic data showed that airborne Cr(VI) was reduced by 50% in airway lining fluid sampled at the end of exposure and that there was a further 50% reduction after about 15 h. The persistence of Cr(VI) in EBC supports the use of EBC in assessing target tissue levels of Cr(VI).

  15. Determination of hexavalent chromium in exhaled breath condensate and environmental air among chrome plating workers

    PubMed Central

    Goldoni, Matteo; Caglieri, Andrea; Poli, Diana; Vettori, Maria Vittoria; Corradi, Massimo; Apostoli, Pietro; Mutti, Antonio

    2006-01-01

    Chromium speciation has attracted attention because of the different toxicity of Cr(III), which is considered relatively non-toxic, and Cr(VI), which can cross cell membranes mainly as a chromate anion and has been classified as a class I human carcinogen. The aims of the present study were to measure soluble Cr(VI) levels in environmental samples, to develop a simple method of quantifying Cr(VI) in exhaled breath condensate (EBC), and to follow the kinetics of EBC Cr(VI) in chrome plating workers. Personal air samples were collected from 10 chrome platers; EBC was collected from the same workers immediately after the work shift on Tuesday and before the work shift on the following Wednesday. Environmental and EBC Cr(VI) levels were determined by means of colorimetry and electrothermal absorption atomic spectrometry, respectively. The method of detecting Cr(VI) in environmental air was based on the extraction of the Cr(VI)-diphenylcarbazide (Cr(VI)–DPC) complex in 1-butanol, whereas EBC Cr(VI) was determined using a solvent extraction of Cr(VI) as an ion pair with tetrabutylammonium ion, and subsequent direct determination of the complex (Cr(VI)–DPC) in EBC. Kinetic data showed that airborne Cr(VI) was reduced by 50% in airway lining fluid sampled at the end of exposure and that there was a further 50% reduction after about 15 h. The persistence of Cr(VI) in EBC supports the use of EBC in assessing target tissue levels of Cr(VI). PMID:17047732

  16. Mechanisms of transepithelial ammonia excretion and luminal alkalinization in the gut of an intestinal air-breathing fish, Misgurnus anguilliacaudatus.

    PubMed

    Wilson, Jonathan M; Moreira-Silva, Joana; Delgado, Inês L S; Ebanks, Sue C; Vijayan, Mathilakath M; Coimbra, João; Grosell, Martin

    2013-02-15

    The weatherloach, Misgurnus angulliacaudatus, is an intestinal air-breathing, freshwater fish that has the unique ability to excrete ammonia through gut volatilization when branchial and cutaneous routes are compromised during high environmental ammonia or air exposure. We hypothesized that transepithelial gut NH(4)(+) transport is facilitated by an apical Na(+)/H(+) (NH(4)(+)) exchanger (NHE) and a basolateral Na(+)/K(+)(NH(4)(+))-ATPase, and that gut boundary layer alkalinization (NH(4)(+) → NH(3) + H(+)) is facilitated by apical HCO(3)(-) secretion through a Cl(-)/HCO(3)(-) anion exchanger. This was tested using a pharmacological approach with anterior (digestive) and posterior (respiratory) intestine preparations mounted in pH-stat-equipped Ussing chambers. The anterior intestine had a markedly higher conductance, increased short-circuit current, and greater net base (J(base)) and ammonia excretion rates (J(amm)) than the posterior intestine. In the anterior intestine, HCO(3)(-) accounted for 70% of J(base). In the presence of an imposed serosal-mucosal ammonia gradient, inhibitors of both NHE (EIPA, 0.1 mmol l(-1)) and Na(+)/K(+)-ATPase (ouabain, 0.1 mmol l(-1)) significantly inhibited J(amm) in the anterior intestine, although only EIPA had an effect in the posterior intestine. In addition, the anion exchange inhibitor DIDS significantly reduced J(base) in the anterior intestine although only at a high dose (1 mmol l(-1)). Carbonic anhydrase does not appear to be associated with gut alkalinization under these conditions as ethoxzolamide was without effect on J(base). Membrane fluidity of the posterior intestine was low, suggesting low permeability, which was also reflected in a lower mucosal-serosal J(amm) in the presence of an imposed gradient, in contrast to that in the anterior intestine. To conclude, although the posterior intestine is highly modified for gas exchange, it is the anterior intestine that is the likely site of ammonia excretion and

  17. The quantification of carbon dioxide in humid air and exhaled breath by selected ion flow tube mass spectrometry.

    PubMed

    Smith, David; Pysanenko, Andriy; Spanel, Patrik

    2009-05-01

    The reactions of carbon dioxide, CO(2), with the precursor ions used for selected ion flow tube mass spectrometry, SIFT-MS, analyses, viz. H(3)O(+), NO(+) and O(2) (+), are so slow that the presence of CO(2) in exhaled breath has, until recently, not had to be accounted for in SIFT-MS analyses of breath. This has, however, to be accounted for in the analysis of acetaldehyde in breath, because an overlap occurs of the monohydrate of protonated acetaldehyde and the weakly bound adduct ion, H(3)O(+)CO(2), formed by the slow association reaction of the precursor ion H(3)O(+) with CO(2) molecules. The understanding of the kinetics of formation and the loss rates of the relevant ions gained from experimentation using the new generation of more sensitive SIFT-MS instruments now allows accurate quantification of CO(2) in breath using the level of the H(3)O(+)CO(2) adduct ion. However, this is complicated by the rapid reaction of H(3)O(+)CO(2) with water vapour molecules, H(2)O, that are in abundance in exhaled breath. Thus, a study has been carried out of the formation of this adduct ion by the slow three-body association reaction of H(3)O(+) with CO(2) and its rapid loss in the two-body reaction with H(2)O molecules. It is seen that the signal level of the H(3)O(+)CO(2) adduct ion is sensitively dependent on the humidity (H(2)O concentration) of the sample to be analysed and a functional form of this dependence has been obtained. This has resulted in an appropriate extension of the SIFT-MS software and kinetics library that allows accurate measurement of CO(2) levels in air samples, ranging from very low percentage levels (0.03% typical of tropospheric air) to the 6% level that is about the upper limit in exhaled breath. Thus, the level of CO(2) can be traced through single time exhalation cycles along with that of water vapour, also close to the 6% level, and of trace gas metabolites that are present at only a few parts-per-billion. This has added a further dimension to

  18. Influence of cathode opening size and wetting properties of diffusion layers on the performance of air-breathing PEMFCs

    NASA Astrophysics Data System (ADS)

    Schmitz, A.; Tranitz, M.; Eccarius, S.; Weil, A.; Hebling, C.

    Air-breathing PEMFCs consist of an open cathodic side to allow an entirely passive supply of oxygen by diffusion. Furthermore, a large fraction of the produced water is removed by evaporation from the open cathode. Gas diffusion layers (GDLs) and the opening size of the cathode have a crucial influence on the performance of an air-breathing PEMFC. In order to assure an unobstructed supply of oxygen the water has to be removed efficiently and condensation in the GDL has to be avoided. On the other hand good humidification of the membrane has to be achieved to obtain high protonic conductivity. In this paper the influence of varying cathodic opening sizes (33%, 50% and 80% opening ratios) and of GDLs with different wetting properties are analysed. GDLs with hydrophobic and hydrophilic properties are prepared by coating of untreated GDLs (Toray ® carbon paper TGP-H-120, thickness of 350 μm). The air-breathing PEMFC test samples are realised using printed circuit board (PCB) technology. The cell samples were characterised over the entire potential range (0-0.95 V) by extensive measurements of the current density, the temperature and the cell impedance at 1 kHz. Additionally, measurements of the water balance were carried out at distinct operation points. The best cell performance was achieved with the largest opening ratio (80%) and an untreated GDL. At the maximum power point, this cell sample achieved a power density of 100 mW cm -2 at a moderate cell temperature of 43 °C. Furthermore, it could be shown that GDLs with hydrophilic or intense hydrophobic properties do not improve the performance of an air-breathing PEMFC. Based on the extensive characterisations, two design rules for air-breathing PEMFCs could be formulated. Firstly, it is crucial to maximise the cathode opening as far as an appropriate compression pressure of the cell assembly and therewith low contact resistance can be assured. Secondly, it is advantageous to use an untreated, slightly hydrophobic

  19. ENERGY STAR Certified Non-AHRI Central Air Conditioner Equipment and Air Source Heat Pump

    EPA Pesticide Factsheets

    Certified models meet all ENERGY STAR requirements as listed in the Version 5.0 ENERGY STAR Program Requirements for Air Source Heat Pump and Central Air Conditioner Equipment that are effective as of September 15, 2015. A detailed listing of key efficiency criteria are available at http://www.energystar.gov/index.cfm?c=airsrc_heat.pr_crit_as_heat_pumps Listed products have been submitted to EPA by ENERGY STAR partners that do not participate in the AHRI certification program. EPA will continue to update this list with products that are certified by EPA-recognized certification bodies other than AHRI. The majority of ENERGY STAR products, certified by AHRI, can be found on the CEE/AHRI Verified Directory at http://www.ceedirectory.org/

  20. Novel methodology to perform sulfur hexafluoride (SF6)-based multiple-breath wash-in and washout in infants using current commercially available equipment.

    PubMed

    Gustafsson, P M; Robinson, P D; Lindblad, A; Oberli, D

    2016-11-01

    Multiple-breath inert gas washout (MBW) is ideally suited for early detection and monitoring of serious lung disease, such as cystic fibrosis, in infants and young children. Validated commercial options for the MBW technique are limited, and suitability of nitrogen (N2)-based MBW is of concern given the detrimental effect of exposure to pure O2 on infant breathing pattern. We propose novel methodology using commercially available N2 MBW equipment to facilitate 4% sulfur hexafluoride (SF6) multiple-breath inert gas wash-in and washout suitable for the infant age range. CO2, O2, and sidestream molar mass sensor signals were used to accurately calculate SF6 concentrations. An improved dynamic method for synchronization of gas and respiratory flow was developed to take into account variations in sidestream sample flow during MBW measurement. In vitro validation of triplicate functional residual capacity (FRC) assessments was undertaken under dry ambient conditions using lung models ranging from 90 to 267 ml, with tidal volumes of 28-79 ml, and respiratory rates 20-60 per minute. The relative mean (SD, 95% confidence interval) error of triplicate FRC determinations by washout was -0.26 (1.84, -3.86 to +3.35)% and by wash-in was 0.57 (2.66, -4.66 to +5.79)%. The standard deviations [mean (SD)] of percentage error among FRC triplicates were 1.40 (1.14) and 1.38 (1.32) for washout and wash-in, respectively. The novel methodology presented achieved FRC accuracy as outlined by current MBW consensus recommendations (95% of measurements within 5% accuracy). Further clinical evaluation is required, but this new technique, using existing commercially available equipment, has exciting potential for research and clinical use.

  1. Shortness of Breath

    MedlinePlus

    Symptoms Shortness of breath By Mayo Clinic Staff Few sensations are as frightening as not being able to get enough air. Shortness of breath — known medically as dyspnea — is often described as an intense tightening in the chest, air hunger or a ...

  2. Cinema audiences reproducibly vary the chemical composition of air during films, by broadcasting scene specific emissions on breath

    NASA Astrophysics Data System (ADS)

    Williams, Jonathan; Stönner, Christof; Wicker, Jörg; Krauter, Nicolas; Derstroff, Bettina; Bourtsoukidis, Efstratios; Klüpfel, Thomas; Kramer, Stefan

    2016-05-01

    Human beings continuously emit chemicals into the air by breath and through the skin. In order to determine whether these emissions vary predictably in response to audiovisual stimuli, we have continuously monitored carbon dioxide and over one hundred volatile organic compounds in a cinema. It was found that many airborne chemicals in cinema air varied distinctively and reproducibly with time for a particular film, even in different screenings to different audiences. Application of scene labels and advanced data mining methods revealed that specific film events, namely “suspense” or “comedy” caused audiences to change their emission of specific chemicals. These event-type synchronous, broadcasted human chemosignals open the possibility for objective and non-invasive assessment of a human group response to stimuli by continuous measurement of chemicals in air. Such methods can be applied to research fields such as psychology and biology, and be valuable to industries such as film making and advertising.

  3. Cinema audiences reproducibly vary the chemical composition of air during films, by broadcasting scene specific emissions on breath.

    PubMed

    Williams, Jonathan; Stönner, Christof; Wicker, Jörg; Krauter, Nicolas; Derstroff, Bettina; Bourtsoukidis, Efstratios; Klüpfel, Thomas; Kramer, Stefan

    2016-05-10

    Human beings continuously emit chemicals into the air by breath and through the skin. In order to determine whether these emissions vary predictably in response to audiovisual stimuli, we have continuously monitored carbon dioxide and over one hundred volatile organic compounds in a cinema. It was found that many airborne chemicals in cinema air varied distinctively and reproducibly with time for a particular film, even in different screenings to different audiences. Application of scene labels and advanced data mining methods revealed that specific film events, namely "suspense" or "comedy" caused audiences to change their emission of specific chemicals. These event-type synchronous, broadcasted human chemosignals open the possibility for objective and non-invasive assessment of a human group response to stimuli by continuous measurement of chemicals in air. Such methods can be applied to research fields such as psychology and biology, and be valuable to industries such as film making and advertising.

  4. Cinema audiences reproducibly vary the chemical composition of air during films, by broadcasting scene specific emissions on breath

    PubMed Central

    Williams, Jonathan; Stönner, Christof; Wicker, Jörg; Krauter, Nicolas; Derstroff, Bettina; Bourtsoukidis, Efstratios; Klüpfel, Thomas; Kramer, Stefan

    2016-01-01

    Human beings continuously emit chemicals into the air by breath and through the skin. In order to determine whether these emissions vary predictably in response to audiovisual stimuli, we have continuously monitored carbon dioxide and over one hundred volatile organic compounds in a cinema. It was found that many airborne chemicals in cinema air varied distinctively and reproducibly with time for a particular film, even in different screenings to different audiences. Application of scene labels and advanced data mining methods revealed that specific film events, namely “suspense” or “comedy” caused audiences to change their emission of specific chemicals. These event-type synchronous, broadcasted human chemosignals open the possibility for objective and non-invasive assessment of a human group response to stimuli by continuous measurement of chemicals in air. Such methods can be applied to research fields such as psychology and biology, and be valuable to industries such as film making and advertising. PMID:27160439

  5. TEAM (Total Exposure Assessment Methodology) Study: personal exposures to toxic substances in air, drinking water, and breath of 400 residents of New Jersey, North Carolina, and North Dakota

    SciTech Connect

    Wallace, L.A.; Pellizzari, E.D.; Hartwell, T.D.; Sparacino, C.; Whitmore, R.; Sheldon, L.; Zelon, H.; Perritt, R.

    1987-08-01

    EPA's TEAM Study has measured exposures to 20 volatile organic compounds in personal air, outdoor air, drinking water, and breath of approximately 400 residents of New Jersey, North Carolina, and North Dakota. All residents were selected by a probability sampling scheme to represent 128,000 inhabitants of Elizabeth and Bayonne, New Jersey, 131,000 residents of Greensboro, North Carolina, and 7000 residents of Devils Lake, North Dakota. Participants carried a personal monitor to collect two 12-hr air samples and gave a breath sample at the end of the day. Two consecutive 12-hr outdoor air samples were also collected on identical Tenax cartridges in the backyards of some of the participants. About 5000 samples were collected, of which 1500 were quality control samples. Ten compounds were often present in personal air and breath samples at all locations. Personal exposures were consistently higher than outdoor concentrations for these chemicals and were sometimes 10 times the outdoor concentrations. Indoor sources appeared to be responsible for much of the difference. Breath concentrations also often exceeded outdoor concentrations and correlated more strongly with personal exposures than with outdoor concentrations. Some activities (smoking, visiting dry cleaners or service stations) and occupations (chemical, paint, and plastics plants) were associated with significantly elevated exposures and breath levels for certain toxic chemicals. Homes with smokers had significantly increased benzene and styrene levels in indoor air. Residence near major point sources did not affect exposure.

  6. Notification: The California Air Resources Board (ARB) Purchase and Use of Selected Equipment

    EPA Pesticide Factsheets

    October 14, 2014. The EPA OIG plans to begin research on the California Air Resources Board (ARB) purchase and use of selected equipment and interrelated service contracts with EPA funds, and reviewing related allegations.

  7. Concentrations of 20 volatile organic compounds in the air and drinking water of 350 residents of New Jersey compared with concentrations in their exhaled breath

    SciTech Connect

    Wallace, L.; Pellizzari, E.; Hartwell, T.; Zelon, H.; Sparacino, C.; Perritt, R.; Whitmore, R.

    1986-08-01

    Twenty volatile organic compounds were measured in the personal air and drinking water of 350 New Jersey residents in the fall of 1981. Two consecutive 12-hour integrated personal air samples and two tap water samples were collected from each participant. At the end of the 24-hour monitoring period, each participant supplied a sample of exhaled breath. Simultaneous outdoor samples were collected in 100 residential locations in two cities. Eleven compounds were present much of the time in air, but only four (the trihalomethanes) in water; wide ranges of exposures (three to four orders of magnitude) were noted for most compounds. Ten of 11 compounds displayed significant correlations between air exposures and breath concentrations; the 11th (chloroform) was correlated with drinking water exposures. It was concluded that breath measurements are a feasible, cost-effective, and highly sensitive way to determine environmental and occupational exposures to volatile organic compounds.

  8. Concentrations of 20 volatile organic compounds in the air and drinking water of 350 residents of New Jersey compared with concentrations in their exhaled breath.

    PubMed

    Wallace, L; Pellizzari, E; Hartwell, T; Zelon, H; Sparacino, C; Perritt, R; Whitmore, R

    1986-08-01

    Twenty volatile organic compounds were measured in the personal air and drinking water of 350 New Jersey residents in the fall of 1981. Two consecutive 12-hour integrated personal air samples and two tap water samples were collected from each participant. At the end of the 24-hour monitoring period, each participant supplied a sample of exhaled breath. Simultaneous outdoor samples were collected in 100 residential locations in two cities. Eleven compounds were present much of the time in air, but only four (the trihalomethanes) in water; wide ranges of exposures (three to four orders of magnitude) were noted for most compounds. Ten of 11 compounds displayed significant correlations between air exposures and breath concentrations; the 11th (chloroform) was correlated with drinking water exposures. It was concluded that breath measurements are a feasible, cost-effective, and highly sensitive way to determine environmental and occupational exposures to volatile organic compounds.

  9. Subterranean heat exchanger for refrigeration air conditioning equipment

    SciTech Connect

    Rothwell, H.

    1980-09-30

    Heat exchanger apparatus for use with refrigeration cycle heating and cooling equipment is disclosed. In the preferred embodiment, it cooperates with and modifies refrigeration equipment including a compressor, an expansion valve, an evaporator coil and a closed loop for cycling refrigerant. This apparatus is a sealed container adapted to be placed in a well extending into artesian (Relatively heated or chilled) formations whereby the water of the formation stabilizes the temperature around the unit and enables heating and cooling. The sealed unit receives refrigerant from the top which flows along the sidewall at a reduced temperature, thereby condensing on the sidewall and trickling down the sidewall to collect in a sump at the bottom where the compressor pump picks up condensed refrigerant as a liquid and pumps it out of the artesian well to the connected refrigeration equipment.

  10. Work of Breathing into Snow in the Presence versus Absence of an Artificial Air Pocket Affects Hypoxia and Hypercapnia of a Victim Covered with Avalanche Snow: A Randomized Double Blind Crossover Study.

    PubMed

    Roubík, Karel; Sieger, Ladislav; Sykora, Karel

    2015-01-01

    Presence of an air pocket and its size play an important role in survival of victims buried in the avalanche snow. Even small air pockets facilitate breathing. We hypothesize that the size of the air pocket significantly affects the airflow resistance and work of breathing. The aims of the study are (1) to investigate the effect of the presence of an air pocket on gas exchange and work of breathing in subjects breathing into the simulated avalanche snow and (2) to test whether it is possible to breathe with no air pocket. The prospective interventional double-blinded study involved 12 male volunteers, from which 10 completed the whole protocol. Each volunteer underwent two phases of the experiment in a random order: phase "AP"--breathing into the snow with a one-liter air pocket, and phase "NP"--breathing into the snow with no air pocket. Physiological parameters, fractions of oxygen and carbon dioxide in the airways and work of breathing expressed as pressure-time product were recorded continuously. The main finding of the study is that it is possible to breath in the avalanche snow even with no air pocket (0 L volume), but breathing under this condition is associated with significantly increased work of breathing. The significant differences were initially observed for end-tidal values of the respiratory gases (EtO2 and EtCO2) and peripheral oxygen saturation (SpO2) between AP and NP phases, whereas significant differences in inspiratory fractions occurred much later (for FIO2) or never (for FICO2). The limiting factor in no air pocket conditions is excessive increase in work of breathing that induces increase in metabolism accompanied by higher oxygen consumption and carbon dioxide production. The presence of even a small air pocket reduces significantly the work of breathing.

  11. Work of Breathing into Snow in the Presence versus Absence of an Artificial Air Pocket Affects Hypoxia and Hypercapnia of a Victim Covered with Avalanche Snow: A Randomized Double Blind Crossover Study

    PubMed Central

    2015-01-01

    Presence of an air pocket and its size play an important role in survival of victims buried in the avalanche snow. Even small air pockets facilitate breathing. We hypothesize that the size of the air pocket significantly affects the airflow resistance and work of breathing. The aims of the study are (1) to investigate the effect of the presence of an air pocket on gas exchange and work of breathing in subjects breathing into the simulated avalanche snow and (2) to test whether it is possible to breathe with no air pocket. The prospective interventional double-blinded study involved 12 male volunteers, from which 10 completed the whole protocol. Each volunteer underwent two phases of the experiment in a random order: phase “AP”—breathing into the snow with a one-liter air pocket, and phase “NP”—breathing into the snow with no air pocket. Physiological parameters, fractions of oxygen and carbon dioxide in the airways and work of breathing expressed as pressure-time product were recorded continuously. The main finding of the study is that it is possible to breath in the avalanche snow even with no air pocket (0 L volume), but breathing under this condition is associated with significantly increased work of breathing. The significant differences were initially observed for end-tidal values of the respiratory gases (EtO2 and EtCO2) and peripheral oxygen saturation (SpO2) between AP and NP phases, whereas significant differences in inspiratory fractions occurred much later (for FIO2) or never (for FICO2). The limiting factor in no air pocket conditions is excessive increase in work of breathing that induces increase in metabolism accompanied by higher oxygen consumption and carbon dioxide production. The presence of even a small air pocket reduces significantly the work of breathing. PMID:26666523

  12. Alternating-Current Equipment for the Measurement of Fluctuations of Air Speed in Turbulent Flow

    NASA Technical Reports Server (NTRS)

    Mock, W C , Jr

    1937-01-01

    Recent electrical and mechanical improvements have been made in the equipment developed at the National Bureau of Standards for measurement of fluctuations of air speed in turbulent flow. Data useful in the design of similar equipment are presented. The design of rectified alternating-current power supplies for such apparatus is treated briefly, and the effect of the power supplies on the performance of the equipment is discussed.

  13. 77 FR 3323 - Airborne Radar Altimeter Equipment (For Air Carrier Aircraft)

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-23

    ... Doc No: 2012-1243] DEPARTMENT OF TRANSPORTATION Federal Aviation Administration Airborne Radar...: Notice of intent to cancel Technical Standard Order (TSO)-C67, Airborne Radar Altimeter Equipment (For... Radar Altimeter Equipment (For Air Carrier Aircraft). The effect of the cancelled TSO will result in...

  14. Evaluation of an Ejector Ramjet Based Propulsion System for Air-Breathing Hypersonic Flight

    NASA Technical Reports Server (NTRS)

    Thomas, Scott R.; Perkins, H. Douglas; Trefny, Charles J.

    1997-01-01

    A Rocket Based Combined Cycle (RBCC) engine system is designed to combine the high thrust to weight ratio of a rocket along with the high specific impulse of a ramjet in a single, integrated propulsion system. This integrated, combined cycle propulsion system is designed to provide higher vehicle performance than that achievable with a separate rocket and ramjet. The RBCC engine system studied in the current program is the Aerojet strutjet engine concept, which is being developed jointly by a government-industry team as part of the Air Force HyTech program pre-PRDA activity. The strutjet is an ejector-ramjet engine in which small rocket chambers are embedded into the trailing edges of the inlet compression struts. The engine operates as an ejector-ramjet from take-off to slightly above Mach 3. Above Mach 3 the engine operates as a ramjet and transitions to a scramjet at high Mach numbers. For space launch applications the rockets would be re-ignited at a Mach number or altitude beyond which air-breathing propulsion alone becomes impractical. The focus of the present study is to develop and demonstrate a strutjet flowpath using hydrocarbon fuel at up to Mach 7 conditions. Freejet tests of a candidate flowpath for this RBCC engine were conducted at the NASA Lewis Research Center's Hypersonic Tunnel Facility between July and September 1996. This paper describes the engine flowpath and installation, outlines the primary objectives of the program, and describes the overall results of this activity. Through this program 15 full duration tests, including 13 fueled tests were made. The first major achievement was the further demonstration of the HTF capability. The facility operated at conditions up to 1950 K and 7.34 MPa, simulating approximately Mach 6.6 flight. The initial tests were unfueled and focused on verifying both facility and engine starting. During these runs additional aerodynamic appliances were incorporated onto the facility diffuser to enhance starting

  15. The classification of the patients with pulmonary diseases using breath air samples spectral analysis

    NASA Astrophysics Data System (ADS)

    Kistenev, Yury V.; Borisov, Alexey V.; Kuzmin, Dmitry A.; Bulanova, Anna A.

    2016-08-01

    Technique of exhaled breath sampling is discussed. The procedure of wavelength auto-calibration is proposed and tested. Comparison of the experimental data with the model absorption spectra of 5% CO2 is conducted. The classification results of three study groups obtained by using support vector machine and principal component analysis methods are presented.

  16. Developmental transcriptome analysis and identification of genes involved in formation of intestinal air-breathing function of Dojo loach, Misgurnus anguillicaudatus.

    PubMed

    Luo, Weiwei; Cao, Xiaojuan; Xu, Xiuwen; Huang, Songqian; Liu, Chuanshu; Tomljanovic, Tea

    2016-08-22

    Dojo loach, Misgurnus anguillicaudatus is a freshwater fish species of the loach family Cobitidae, using its posterior intestine as an accessory air-breathing organ. Little is known about the molecular regulatory mechanisms in the formation of intestinal air-breathing function of M. anguillicaudatus. Here high-throughput sequencing of mRNAs was performed from six developmental stages of posterior intestine of M. anguillicaudatus: 4-Dph (days post hatch) group, 8-Dph group, 12-Dph group, 20-Dph group, 40-Dph group and Oyd (one-year-old) group. These six libraries were assembled into 81300 unigenes. Totally 40757 unigenes were annotated. Subsequently, 35291 differentially expressed genes (DEGs) were scanned among different developmental stages and clustered into 20 gene expression profiles. Finally, 15 key pathways and 25 key genes were mined, providing potential targets for candidate gene selection involved in formation of intestinal air-breathing function in M. anguillicaudatus. This is the first report of developmental transcriptome of posterior intestine in M. anguillicaudatus, offering a substantial contribution to the sequence resources for this species and providing a deep insight into the formation mechanism of its intestinal air-breathing function. This report demonstrates that M. anguillicaudatus is a good model for studies to identify and characterize the molecular basis of accessory air-breathing organ development in fish.

  17. Developmental transcriptome analysis and identification of genes involved in formation of intestinal air-breathing function of Dojo loach, Misgurnus anguillicaudatus

    PubMed Central

    Luo, Weiwei; Cao, Xiaojuan; Xu, Xiuwen; Huang, Songqian; Liu, Chuanshu; Tomljanovic, Tea

    2016-01-01

    Dojo loach, Misgurnus anguillicaudatus is a freshwater fish species of the loach family Cobitidae, using its posterior intestine as an accessory air-breathing organ. Little is known about the molecular regulatory mechanisms in the formation of intestinal air-breathing function of M. anguillicaudatus. Here high-throughput sequencing of mRNAs was performed from six developmental stages of posterior intestine of M. anguillicaudatus: 4-Dph (days post hatch) group, 8-Dph group, 12-Dph group, 20-Dph group, 40-Dph group and Oyd (one-year-old) group. These six libraries were assembled into 81300 unigenes. Totally 40757 unigenes were annotated. Subsequently, 35291 differentially expressed genes (DEGs) were scanned among different developmental stages and clustered into 20 gene expression profiles. Finally, 15 key pathways and 25 key genes were mined, providing potential targets for candidate gene selection involved in formation of intestinal air-breathing function in M. anguillicaudatus. This is the first report of developmental transcriptome of posterior intestine in M. anguillicaudatus, offering a substantial contribution to the sequence resources for this species and providing a deep insight into the formation mechanism of its intestinal air-breathing function. This report demonstrates that M. anguillicaudatus is a good model for studies to identify and characterize the molecular basis of accessory air-breathing organ development in fish. PMID:27545457

  18. Some considerations on noise monitoring for air handling equipments

    NASA Astrophysics Data System (ADS)

    Bujoreanu, C.; Benchea, M.

    2017-02-01

    The HVAC (Heating, Ventilating and Air Conditioning) beneficiaries are in particular annoyed by the noise generated from the radiant unit and the air circulating ducts, since they are located inside the rooms and buildings. The comparatively experimental results highlight the relations between the air flow, pressure, power-charging and the sound level. The measurements are carried out at different fan’s speeds, ranging the power-charge from 30-100% while the duct air flow is slowly adjusted from full open to full closed, between 0-500 Pa. Third-octave band analysis of random noise of the handling units is realized in an anechoic room, using the measurement procedures that agrees the requirements of the ISO 3744:2011 and ISO 5136:2010 standards. For an accurate design of the HVAC system, the designer needs to know not only the sound power of the radiant unit, but also from all of the air paths, since the sound travels along with the conditioned air. The experimental methodology used in the paper is of real interest for the HVAC manufacturers, in order to rate the sound level of their products and to improve the noise attenuation.

  19. Air-breathing hypersonic vehicle guidance and control studies: An integrated trajectory/control analysis methodology, phase 2

    NASA Technical Reports Server (NTRS)

    Hattis, Philip D.; Malchow, Harvey L.

    1992-01-01

    An integrated trajectory/control analysis algorithm has been used to generate trajectories and desired control strategies for two different hypersonic air-breathing vehicle models and orbit targets. Both models used cubic spline curve fit tabulated winged-cone accelerator vehicle representations. Near-fuel-optimal, horizontal takeoff trajectories, imposing a dynamic pressure limit of 1000 psf, were developed. The first model analysis case involved a polar orbit and included the dynamic effects of using elevons to maintain longitudinal trim. Analysis results indicated problems with the adequacy of the propulsion model and highlighted dynamic pressure/altitude instabilities when using vehicle angle of attack as a control variable. Also, the magnitude of computed elevon deflections to maintain trim suggested a need for alternative pitch moment management strategies. The second analysis case was reformulated to use vehicle pitch attitude relative to the local vertical as the control variable. A new, more realistic, air-breathing propulsion model was incorporated. Pitch trim calculations were dropped and an equatorial orbit was specified. Changes in flight characteristics due to the new propulsion model have been identified. Flight regimes demanding rapid attitude changes have been noted. Also, some issues that would affect design of closed-loop controllers were ascertained.

  20. Development of the anode bipolar plate/membrane assembly unit for air breathing PEMFC stack using silicone adhesive bonding

    NASA Astrophysics Data System (ADS)

    Kim, Minkook; Lee, Dai Gil

    2016-05-01

    Polymer electrolyte membrane fuel cells (PEMFC) exhibit a wide power range, low operating temperature, high energy density and long life time. These advantages favor PEMFC for applications such as vehicle power sources, portable power, and backup power applications. With the push towards the commercialization of PEMFC, especially for portable power applications, the overall balance of plants (BOPs) of the systems should be minimized. To reduce the mass and complexity of the systems, air-breathing PEMFC stack design with open cathode channel configuration is being developed. However, the open cathode channel configuration incurs hydrogen leakage problem. In this study, the bonding strength of a silicon adhesive between the Nafion membrane and the carbon fiber/epoxy composite bipolar plate was measured. Then, an anode bipolar plate/membrane assembly unit which was bonded with the silicone adhesive was developed to solve the hydrogen leakage problem. The reliability of the anode bipolar plate/membrane assembly unit was estimated under the internal pressure of hydrogen by the FE analysis. Additionally, the gas sealability of the developed air breathing PEMFC unit cell was experimentally measured. Finally, unit cell performance of the developed anode bipolar plate/membrane assembly unit was tested and verified under operating conditions without humidity and temperature control.

  1. Electronic modification of Pt via Ti and Se as tolerant cathodes in air-breathing methanol microfluidic fuel cells.

    PubMed

    Ma, Jiwei; Habrioux, Aurélien; Morais, Cláudia; Alonso-Vante, Nicolas

    2014-07-21

    We reported herein on the use of tolerant cathode catalysts such as carbon supported Pt(x)Ti(y) and/or Pt(x)Se(y) nanomaterials in an air-breathing methanol microfluidic fuel cell. In order to show the improvement of mixed-reactant fuel cell (MRFC) performances obtained with the developed tolerant catalysts, a classical Pt/C nanomaterial was used for comparison. Using 5 M methanol concentration in a situation where the fuel crossover is 100% (MRFC-mixed reactant fuel cell application), the maximum power density of the fuel cell with a Pt/C cathodic catalyst decreased by 80% in comparison with what is observed in the laminar flow fuel cell (LFFC) configuration. With Pt(x)Ti(y)/C and Pt(x)Se(y)/C cathode nanomaterials, the performance loss was only 55% and 20%, respectively. The evaluation of the tolerant cathode catalysts in an air-breathing microfluidic fuel cell suggests the development of a novel nanometric system that will not be size restricted. These interesting results are the consequence of the high methanol tolerance of these advanced electrocatalysts via surface electronic modification of Pt. Herein we used X-ray photoelectron and in situ FTIR spectroscopies to investigate the origin of the high methanol tolerance on modified Pt catalysts.

  2. Dual gas-diffusion membrane- and mediatorless dihydrogen/air-breathing biofuel cell operating at room temperature

    NASA Astrophysics Data System (ADS)

    Xia, Hong-qi; So, Keisei; Kitazumi, Yuki; Shirai, Osamu; Nishikawa, Koji; Higuchi, Yoshiki; Kano, Kenji

    2016-12-01

    A membraneless direct electron transfer (DET)-type dihydrogen (H2)/air-breathing biofuel cell without any mediator was constructed wherein bilirubin oxidase from Myrothecium verrucaria (BOD) and membrane-bound [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F (MBH) were used as biocatalysts for the cathode and the anode, respectively, and Ketjen black-modified water proof carbon paper (KB/WPCC) was used as an electrode material. The KB/WPCC surface was modified with 2-aminobenzoic acid and p-phenylenediamine, respectively, to face the positively charged electron-accepting site of BOD and the negatively charged electron-donating site of MBH to the electrode surface. A gas-diffusion system was employed for the electrodes to realize high-speed substrate supply. As result, great improvement in the current density of O2 reduction with BOD and H2 reduction with MBH were realized at negatively and postively charged surfaces, respectively. Gas diffusion system also suppressed the oxidative inactivation of MBH at high electrode potentials. Finally, based on the improved bioanode and biocathode, a dual gas-diffusion membrane- and mediatorless H2/air-breathing biofuel cell was constructed. The maximum power density reached 6.1 mW cm-2 (at 0.72 V), and the open circuit voltage was 1.12 V using 1 atm of H2 gas as a fuel at room temperature and under passive and quiescent conditions.

  3. Structural Sizing of a 25,000-lb Payload, Air-Breathing Launch Vehicle For Single-Stage-To-Orbit

    NASA Technical Reports Server (NTRS)

    Roche, Joseph M.; Kosareo, Daniel N.; Palac, Don (Technical Monitor)

    2000-01-01

    In support of NASA's Air-Breathing Launch Vehicle (ABLV) study, a 25,000-lb payload version of the GTX (formerly Trailblazer) reference vehicle concept was developed. The GTX is a vertical lift-off, reusable, single-stage-to-orbit launch vehicle concept that uses hypersonic air-breathing propulsion in a rocket-based combined-cycle (RBCC) propulsion system to reduce the required propellant fraction. To achieve this goal the vehicle and propulsion system must be well integrated both aerodynamically and structurally to reduce weight. This study demonstrates the volumetric and structural efficiency of a vertical takeoff, horizontal landing, hypersonic vehicle with a circular cross section. A departure from the lifting body concepts, this design philosophy is even extended to the engines, which have semicircular nacelles symmetrically mounted on the vehicle. Material candidates with a potential for lightweight and simplicity have been selected from a set of near term technologies (5 to 10 years). To achieve the mission trajectory, preliminary weight estimates show the vehicle's gross lift-off weight is 1.26 x 10(exp 6) lb. The structural configuration of the GTX vehicle and its propulsion system are described. The vehicle design benefits are presented, and key technical issues are highlighted.

  4. Structural Sizing of a 25,000-lb Payload, Air-breathing Launch Vehicle for Single-stage-to-orbit

    NASA Technical Reports Server (NTRS)

    Roche, Joseph M.; Kosareo, Daniel N.

    2001-01-01

    In support of NASA's Air-Breathing Launch Vehicle (ABLV) study, a 25,000-lb payload version of the GTX (formerly Trailblazer) reference vehicle concept was developed. The GTX is a vertical lift-off, reusable, single-stage-to-orbit launch vehicle concept that uses hypersonic air-breathing propulsion in a rocket-based combined-cycle (RBCC) propulsion system to reduce the required propellant fraction. To achieve this goal the vehicle and propulsion system must be well integrated both aerodynamically and structurally to reduce weight. This study demonstrates the volumetric and structural efficiency of a vertical takeoff, horizontal landing, hypersonic vehicle with a circular cross section. A departure from the lifting body concepts, this design philosophy is even extended to the engines, which have semicircular nacelles symmetrically mounted on the vehicle. Material candidates with a potential for lightweight and simplicity have been selected from a set of near term technologies (five to ten years). To achieve the mission trajectory, preliminary weight estimates show the vehicle's gross lift-off weight is 1.26 x 10(exp 6) lb. The structural configuration of the GTX vehicle and its propulsion system are described. The vehicle design benefits are presented, and key technical issues are highlighted.

  5. Mitochondrial citrulline synthesis from ammonia and glutamine in the liver of ureogenic air-breathing catfish, Clarias batrachus (Linnaeus).

    PubMed

    Kharbuli, Zaiba Y; Biswas, Kuheli; Saha, Nirmalendu

    2007-12-01

    The possible synthesis of citrulline, a rate limiting step for urea synthesis via the ornithine-urea cycle (OUC) in teleosts was tested both in the presence of ammonia and glutamine as nitrogen-donating substrates by the isolated liver mitochondria of ureogenic air-breathing walking catfish, C. batrachus. Both ammonia and glutamine could be used as nitrogen-donating substrates for the synthesis of citrulline by the isolated liver mitochondria, since the rate of citrulline synthesis was almost equal in presence of both the substrates. The citrulline synthesis by the isolated liver mitochondria requires succinate at a concentration of 0.1 mM as an energy source, and also requires the involvement of intramitochondrial carbonic anhydrase activity for supplying HCO3 as another substrate for citrulline synthesis. The rate of citrulline synthesis was further stimulated significantly by the isolated liver mitochondria of the fish after pre-exposure to 25 mM NH4Cl for 7 days. Due to possessing this biochemical adaptational strategy leading to the amelioration of ammonia toxicity mainly by channeling ammonia directly and/or via the formation of glutamine to the OUC, this air-breathing catfish could succeed in surviving in high external ammonia, which it faces in its natural habitat in certain seasons of the year.

  6. 77 FR 41930 - Bleed Air Cleaning and Monitoring Equipment and Technology

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-17

    ... Equipment and Technology ACTION: Notice; request for information. SUMMARY: The FAA seeks information from industry developers, manufacturers, and the public related to effective air cleaning technology and sensor technology for the engine and auxiliary power unit bleed air supplied to the passenger cabin and flight...

  7. Feasibility study of air-breathing turbo-engines for horizontal take-off and landing space plane

    SciTech Connect

    Minoda, M.; Sakata, K.; Tamaki, T.; Saitoh, T.; Yasuda, A.

    1989-01-01

    Various concepts of air-breathing engines (ABEs) that could be used for a horizontal take-off and landing SSTO vehicle are investigated. The performances (with respect to thrust and the specific fuel consumption) of turboengines based on various technologies, including a turbojet with and without afterburner (TJ), turboramjet, and air-turbo-ram jet engines are compared. The mission capabilities of these ABEs for SSTO and TSTO vehicles is examined in terms of the ratio of the effective remaining weight (i.e., the weight on the orbit) to the take-off gross weight, using two-dimensional flight analysis. It was found that the dry TJ with the turbine inlet temperature 2000 C is one of the most promising candidates for the propulsion system of the SSTO vehicle, because of its small weight and high specific impulse. 6 refs.

  8. Continuous measurement of oxygen tensions in the air-breathing organ of Pacific tarpon (Megalops cyprinoides) in relation to aquatic hypoxia and exercise.

    PubMed

    Seymour, Roger S; Farrell, Anthony P; Christian, Keith; Clark, Timothy D; Bennett, Michael B; Wells, Rufus M G; Baldwin, John

    2007-07-01

    The Pacific tarpon is an elopomorph teleost fish with an air-breathing organ (ABO) derived from a physostomous gas bladder. Oxygen partial pressure (PO(2)) in the ABO was measured on juveniles (238 g) with fiber-optic sensors during exposure to selected aquatic PO(2) and swimming speeds. At slow speed (0.65 BL s(-1)), progressive aquatic hypoxia triggered the first breath at a mean PO(2) of 8.3 kPa. Below this, opercular movements declined sharply and visibly ceased in most fish below 6 kPa. At aquatic PO(2) of 6.1 kPa and swimming slowly, mean air-breathing frequency was 0.73 min(-1), ABO PO(2) was 10.9 kPa, breath volume was 23.8 ml kg(-1), rate of oxygen uptake from the ABO was 1.19 ml kg(-1) min(-1), and oxygen uptake per breath was 2.32 ml kg(-1). At the fastest experimental speed (2.4 BL s(-1)) at 6.1 kPa, ABO oxygen uptake increased to about 1.90 ml kg(-1) min(-1), through a variable combination of breathing frequency and oxygen uptake per breath. In normoxic water, tarpon rarely breathed air and apparently closed down ABO perfusion, indicated by a drop in ABO oxygen uptake rate to about 1% of that in hypoxic water. This occurred at a wide range of ABO PO(2) (1.7-26.4 kPa), suggesting that oxygen level in the ABO was not regulated by intrinsic receptors.

  9. Pollution-control equipment (Chile). Air-pollution-control equipment, September 1991. Export trade information

    SciTech Connect

    Not Available

    1991-09-01

    Chile relies upon imports to satisfy its needs for equipment for environmental control. Despite the lack of specific statistics that could provide precise information, environmental specialists evaluate the U.S. position as quite promising in terms of sales prospects. As far as current market share in domestic market it is estimated that U.S. products have 40% of the Chilean market. U.S. imports should grow at least 30%, at the same growth rate of the total market.

  10. The Mechanics of Air-Breathing in Anuran Larvae: Implications to the Development of Amphibians in Microgravity

    NASA Astrophysics Data System (ADS)

    Wassersug, Richard J.; Yamashita, Masamichi

    Because of their rapid development, amphibians have been important model organisms in studies of how microgravity (μG) affects vertebrate growth and differentiation. Both urodele (salamanders) and anuran (frogs and toads) embryos have been raised in orbital flight, the latter several times. The most commonly reported and striking effects of μG on tadpoles are not in the vestibular system, as one might suppose, but in their lungs and tails. Pathological changes in these organs disrupt behavior and retard larval growth. What causes malformed (typically lordotic) tadpoles in μG is not known, nor have axial pathologies been reported in every flight experiment. Lung pathology, however, has been consistently observed and is understood to result from the failure of the animals to inflate their lungs in a timely and adequate fashion. We suggest that malformities in the axial skeleton of tadpoles raised in μG are secondary to problems in respiratory function. We have used high speed videography to investigate how tadpoles breathe air in the 1G environment. The video images reveal alternative species-specific mechanisms, that allow tadpoles to separate air from water in less that 150 ms. We observed nothing in the biomechanics of air-breathing in 1G that would preclude these same mechanisms from working in μG. Thus our kinematic results suggest that the failure of tadpoles to inflate their lungs properly in μG is due to the tadpoles' inability to locate the air-water interface and not a problem with the inhalation mechanism per se

  11. Mobile selected ion flow tube mass spectrometry (SIFT-MS) devices and their use for pollution exposure monitoring in breath and ambient air-pilot study.

    PubMed

    Storer, Malina; Salmond, Jennifer; Dirks, Kim N; Kingham, Simon; Epton, Michael

    2014-09-01

    Studies of health effects of air pollution exposure are limited by inability to accurately determine dose and exposure of air pollution in field trials. We explored the feasibility of using a mobile selected ion flow tube mass spectrometry (SIFT-MS) device, housed in a van, to determine ambient air and breath levels of benzene, xylene and toluene following exercise in areas of high motor vehicle traffic. The breath toluene, xylene and benzene concentration of healthy subjects were measured before and after exercising close to a busy road. The concentration of the volatile organic compounds (VOCs), in ambient air were also analysed in real time. Exercise close to traffic pollution is associated with a two-fold increase in breath VOCs (benzene, xylene and toluene) with levels returning to baseline within 20 min. This effect is not seen when exercising away from traffic pollution sources. Situating the testing device 50 m from the road reduced any confounding due to VOCs in the inspired air prior to the breath testing manoeuvre itself. Real-time field testing for air pollution exposure is possible using a mobile SIFT-MS device. This device is suitable for exploring exposure and dose relationships in a number of large scale field test scenarios.

  12. Breathing simulator of workers for respirator performance test.

    PubMed

    Yuasa, Hisashi; Kumita, Mikio; Honda, Takeshi; Kimura, Kazushi; Nozaki, Kosuke; Emi, Hitoshi; Otani, Yoshio

    2015-01-01

    Breathing machines are widely used to evaluate respirator performance but they are capable of generating only limited air flow patterns, such as, sine, triangular and square waves. In order to evaluate the respirator performance in practical use, it is desirable to test the respirator using the actual breathing patterns of wearers. However, it has been a difficult task for a breathing machine to generate such complicated flow patterns, since the human respiratory volume changes depending on the human activities and workload. In this study, we have developed an electromechanical breathing simulator and a respiration sampling device to record and reproduce worker's respiration. It is capable of generating various flow patterns by inputting breathing pattern signals recorded by a computer, as well as the fixed air flow patterns. The device is equipped with a self-control program to compensate the difference in inhalation and exhalation volume and the measurement errors on the breathing flow rate. The system was successfully applied to record the breathing patterns of workers engaging in welding and reproduced the breathing patterns.

  13. The Thermal Evaluation of Air-Cooled Electronic Equipment

    DTIC Science & Technology

    1952-09-01

    shielded thermocouple probes lo- cated at various levels and several inches removed from the unit. The mean of the air temperature so determined is the...that the highest is over-estimated more than the lowest, while all are likely to be conserva- tive. The one of the five components, having the...noticeably. In that case, vdth good convective conditions, like at ground level , the component may operate at a surface temperature lower than the

  14. Breathing metabolic simulator

    NASA Technical Reports Server (NTRS)

    Bartlett, R. G.; Hendricks, C. M.; Morison, W. B.

    1972-01-01

    The development of a breathing metabolic simulator (BMS) is reported. This BMS simulates all of the breathing and metabolic parameters required for complete evaluation and test of life support and resuscitation equipment. It is also useful for calibrating and validating mechanical and gaseous pulmonary function test procedures. Breathing rate, breathing depth, breath velocity contour, oxygen uptake, and carbon dioxide release are all variable over wide ranges simulating conditions from sleep to hard work with respiratory exchange ratios covering the range from hypoventilation. In addition, all of these parameters are remotely controllable to facilitate use of the device in hostile or remote environments. The exhaled breath is also maintained at body temperature and a high humidity. The simulation is accurate to the extent of having a variable functional residual capacity independent of other parameters.

  15. C-130J Breathing Resistance Study

    DTIC Science & Technology

    2016-05-01

    the long breathing hose configurations did not provide acceptable breathing resistance in a significant majority of test conditions. 15...requirements in the Air Standard. In general, breathing resistance of the system with the long breathing hoses did not meet the Air Standard

  16. Ventilation during air breathing and in response to hypercapnia in 5 and 16 month-old mdx and C57 mice

    PubMed Central

    Gayraud, Jérome; Matécki, Stefan; Hnia, Karim; Mornet, Dominique; Préfaut, Christian; Mercier, Jacques; Michel, Alain; Ramonatxo, Michèle

    2007-01-01

    Previous studies have shown a blunted ventilatory response to hypercapnia in mdx mice older than 7 months. We test the hypothesis that in the mdx mice ventilatory response changes with age, concomitantly with the increased functional impairment of the respiratory muscles. We thus studied the ventilatory response to CO2 in 5 and 16 month-old mdx and C57BL10 mice (n = 8 for each group). Respiratory rate (RR), tidal volume (VT), and minute ventilation (VE) were measured, using whole-body plethysmography, during air breathing and in response to hypercapnia (3, 5 and 8% CO2). The ventilatory protocol was completed by histological analysis of the diaphragm and intercostals muscles. During air breathing, the 16 month-old mdx mice showed higher RR and, during hypercapnia (at 8% CO2 breathing), significantly lower RR (226 ± 26 vs. 270 ± 21 breaths/min) and VE (1.81 ± 0.35 vs. 3.96 ± 0.59 ml min−1 g−1)(P < 0.001) in comparison to C57BL10 controls. On the other hand, 5 month-old C57BL10 and mdx mice did not present any difference in their ventilatory response to air breathing and to hypercapnia. In conclusion, this study shows similar ventilation during air breathing and in response to hypercapnia in the 5 month-old mdx and control mice, in spite of significant pathological structural changes in the respiratory muscles of the mdx mice. However in the 16 month-old mdx mice we observed altered ventilation under air and blunted ventilation response to hypercapnia compared to age-matched control mice. Ventilatory response to hypercapnia thus changes with age in mdx mice, in line with the increased histological damage of their respiratory muscles. PMID:17431804

  17. Novel prescribed performance neural control of a flexible air-breathing hypersonic vehicle with unknown initial errors.

    PubMed

    Bu, Xiangwei; Wu, Xiaoyan; Zhu, Fujing; Huang, Jiaqi; Ma, Zhen; Zhang, Rui

    2015-11-01

    A novel prescribed performance neural controller with unknown initial errors is addressed for the longitudinal dynamic model of a flexible air-breathing hypersonic vehicle (FAHV) subject to parametric uncertainties. Different from traditional prescribed performance control (PPC) requiring that the initial errors have to be known accurately, this paper investigates the tracking control without accurate initial errors via exploiting a new performance function. A combined neural back-stepping and minimal learning parameter (MLP) technology is employed for exploring a prescribed performance controller that provides robust tracking of velocity and altitude reference trajectories. The highlight is that the transient performance of velocity and altitude tracking errors is satisfactory and the computational load of neural approximation is low. Finally, numerical simulation results from a nonlinear FAHV model demonstrate the efficacy of the proposed strategy.

  18. Bad Breath

    MedlinePlus

    ... Emergency Room? What Happens in the Operating Room? Bad Breath KidsHealth > For Kids > Bad Breath A A ... visit your dentist or doctor . continue What Causes Bad Breath? Here are three common causes of bad ...

  19. "What We Breathe Impacts Our Health: Improving Understanding of the Link between Air Pollution and Health".

    PubMed

    West, J Jason; Cohen, Aaron; Dentener, Frank; Brunekreef, Bert; Zhu, Tong; Armstrong, Ben; Bell, Michelle L; Brauer, Michael; Carmichael, Gregory; Costa, Dan L; Dockery, Douglas W; Kleeman, Michael; Krzyzanowski, Michal; Künzli, Nino; Liousse, Catherine; Lung, Shih-Chun Candice; Martin, Randall V; Pöschl, Ulrich; Pope, C Arden; Roberts, James M; Russell, Armistead G; Wiedinmyer, Christine

    2016-05-17

    Air pollution contributes to the premature deaths of millions of people each year around the world, and air quality problems are growing in many developing nations. While past policy efforts have succeeded in reducing particulate matter and trace gases in North America and Europe, adverse health effects are found at even these lower levels of air pollution. Future policy actions will benefit from improved understanding of the interactions and health effects of different chemical species and source categories. Achieving this new understanding requires air pollution scientists and engineers to work increasingly closely with health scientists. In particular, research is needed to better understand the chemical and physical properties of complex air pollutant mixtures, and to use new observations provided by satellites, advanced in situ measurement techniques, and distributed micro monitoring networks, coupled with models, to better characterize air pollution exposure for epidemiological and toxicological research, and to better quantify the effects of specific source sectors and mitigation strategies.

  20. Development of gas exchange and ion regulation in two species of air-breathing fish, Betta splendens and Macropodus opercularis.

    PubMed

    Huang, Chun-Yen; Lin, Cheng-Huang; Lin, Hui-Chen

    2015-07-01

    Aquatic air-breathing anabantoids, a group of fish species characterized by the presence of a labyrinth organ and some gills, exhibit morphological variations. This study aimed to examine whether unequal gill growth begins during the early stages and described the sequence of the early gill developmental events in Betta splendens and Macropodus opercularis. To determine when the ion regulatory and gas exchange abilities first appear in the gills, mitochondria-rich cells (MRCs) and neuroepithelial cells (NECs) were examined in young B. splendens. To evaluate the relative importance of the gills and the labyrinth organ under different levels of oxygen uptake stress, the levels of carbonic anhydrase II (CAII) and Na(+)/K(+)-ATPase (NKA) protein expressions in 2 gills and the labyrinth organ were examined in M. opercularis. We found that the first 3 gills developed earlier than the 4th gill in both species, an indication that the morphological variation begins early in life. In B. splendens, the MRCs and NECs clearly appeared in the first 3 gills at 4 dph and were first found in the 4th gill until 11 dph. The oxygen-sensing ability of the gills was concordant with the ionoregulatory function. In M. opercularis, the hypoxic group had a significantly higher air-breathing frequency. CAII protein expression was higher in the labyrinth organ in the hypoxic group. The gills exhibited increased NKA protein expression in the hypoxic and restricted groups, respectively. Functional plasticity in CAII and NKA protein expressions was found between the gills and the labyrinth organ in adult M. opercularis.

  1. 46 CFR 154.1415 - Air compressor.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Air compressor. 154.1415 Section 154.1415 Shipping COAST... Equipment § 154.1415 Air compressor. Each vessel must have an air compressor to recharge the bottles for the air-breathing apparatus....

  2. 46 CFR 154.1415 - Air compressor.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Air compressor. 154.1415 Section 154.1415 Shipping COAST... Equipment § 154.1415 Air compressor. Each vessel must have an air compressor to recharge the bottles for the air-breathing apparatus....

  3. Breathing difficulties - first aid

    MedlinePlus

    ... the wound. Bandage such wounds at once. A "sucking" chest wound allows air to enter the person's ... things you can do to help prevent breathing problems: If you have a history of severe allergic ...

  4. Studying the Proteomic Composition of Expired Air Condensate in Newborns on Breathing Support.

    PubMed

    Kononikhin, A S; Ryndin, A Yu; Starodubtseva, N L; Chagovets, V V; Burov, A A; Bugrova, A E; Kostyukevich, Yu I; Popov, I A; Frankevich, V E; Ionov, O V; Zubkov, V V; Nikolaev, E N

    2016-04-01

    This study was designed to collect and perform a proteomic analysis of expired air condensate in newborns receiving respiratory support at the Department of Resuscitation and Intensive Care. The proteomic composition of expired air condensate was evaluated in newborns at various stages of development and with different abnormalities.

  5. Selected Ion Flow-Drift Tube Mass Spectrometry: Quantification of Volatile Compounds in Air and Breath.

    PubMed

    Spesyvyi, Anatolii; Smith, David; Španěl, Patrik

    2015-12-15

    A selected ion flow-drift tube mass spectrometric analytical technique, SIFDT-MS, is described that extends the established selected ion flow tube mass spectrometry, SIFT-MS, by the inclusion of a static but variable E-field along the axis of the flow tube reactor in which the analytical ion-molecule chemistry occurs. The ion axial speed is increased in proportion to the reduced field strength E/N (N is the carrier gas number density), and the residence/reaction time, t, which is measured by Hadamard transform multiplexing, is correspondingly reduced. To ensure a proper understanding of the physics and ion chemistry underlying SIFDT-MS, ion diffusive loss to the walls of the flow-drift tube and the mobility of injected H3O(+) ions have been studied as a function of E/N. It is seen that the derived diffusion coefficient and mobility of H3O(+) ions are consistent with those previously reported. The rate coefficient has been determined at elevated E/N for the association reaction of the H3O(+) reagent ions with H2O molecules, which is the first step in the production of H3O(+)(H2O)1,2,3 reagent hydrate ions. The production of hydrated analyte ion was also experimentally investigated. The analytical performance of SIFDT-MS is demonstrated by the quantification of acetone and isoprene in exhaled breath. Finally, the essential features of SIFDT-MS and SIFT-MS are compared, notably pointing out that a much lower speed of the flow-drive pump is required for SIFDT-MS, which facilitates the development of smaller cost-effective analytical instruments for real time breath and fluid headspace analyses.

  6. An Analysis of Price Determination and Markups in the Air-Conditioning and Heating Equipment Industry

    SciTech Connect

    Dale, Larry; Millstein, Dev; Coughlin, Katie; Van Buskirk, Robert; Rosenquist, Gregory; Lekov, Alex; Bhuyan, Sanjib

    2004-01-30

    In this report we calculate the change in final consumer prices due to minimum efficiency standards, focusing on a standard economic model of the air-conditioning and heating equipment (ACHE) wholesale industry. The model examines the relationship between the marginal cost to distribute and sell equipment and the final consumer price in this industry. The model predicts that the impact of a standard on the final consumer price is conditioned by its impact on marginal distribution costs. For example, if a standard raises the marginal cost to distribute and sell equipment a small amount, the model predicts that the standard will raise the final consumer price a small amount as well. Statistical analysis suggest that standards do not increase the amount of labor needed to distribute equipment the same employees needed to sell lower efficiency equipment can sell high efficiency equipment. Labor is a large component of the total marginal cost to distribute and sell air-conditioning and heating equipment. We infer from this that standards have a relatively small impact on ACHE marginal distribution and sale costs. Thus, our model predicts that a standard will have a relatively small impact on final ACHE consumer prices. Our statistical analysis of U.S. Census Bureau wholesale revenue tends to confirm this model prediction. Generalizing, we find that the ratio of manufacturer price to final consumer price prior to a standard tends to exceed the ratio of the change in manufacturer price to the change in final consumer price resulting from a standard. The appendix expands our analysis through a typical distribution chain for commercial and residential air-conditioning and heating equipment.

  7. Using PHM to measure equipment usable life on the Air Force's next generation reusable space booster

    NASA Astrophysics Data System (ADS)

    Blasdel, A.

    The U.S. Air Force procures many launch vehicles and launch vehicle services to place their satellites at their desired location in space. The equipment on-board these satellite and launch vehicle often suffer from premature failures that result in the total loss of the satellite or a shortened mission life sometimes requiring the purchase of a replacement satellite and launch vehicle. The Air Force uses its EELV to launch its high priority satellites. Due to a rise in the cost of purchasing a launch using the Air Force's EELV from 72M in 1997 to as high as 475M per launch today, the Air Force is working to replace the EELV with a reusable space booster (RSB). The RSB will be similar in design and operations to the recently cancelled NASA reusable space booster known as the Space Shuttle. If the Air Force uses the same process that procures the EELV and other launch vehicles and satellites, the RSB will also suffer from premature equipment failures thus putting the payloads at a similar high risk of mission failure. The RSB is expected to lower each launch cost by 50% compared to the EELV. The development of the RSB offers the Air Force an opportunity to use a new reliability paradigm that includes a prognostic and health management program and a condition-based maintenance program. These both require using intelligent, decision making self-prognostic equipment The prognostic and health management program and its condition-based maintenance program allows increases in RSB equipment usable life, lower logistics and maintenance costs, while increasing safety and mission assurance. The PHM removes many decisions from personnel that, in the past resulted in catastrophic failures and loss of life. Adding intelligent, decision-making self-prognostic equipment to the RSB will further decrease launch costs while decreasing risk and increasing safety and mission assurance.

  8. High-Throughput Sequencing Identifies MicroRNAs from Posterior Intestine of Loach (Misgurnus anguillicaudatus) and Their Response to Intestinal Air-Breathing Inhibition

    PubMed Central

    Huang, Songqian; Cao, Xiaojuan; Tian, Xianchang; Wang, Weimin

    2016-01-01

    MicroRNAs (miRNAs) exert important roles in animal growth, immunity, and development, and regulate gene expression at the post-transcriptional level. Knowledges about the diversities of miRNAs and their roles in accessory air-breathing organs (ABOs) of fish remain unknown. In this work, we used high-throughput sequencing to identify known and novel miRNAs from the posterior intestine, an important ABO, in loach (Misgurnus anguillicaudatus) under normal and intestinal air-breathing inhibited conditions. A total of 204 known and 84 novel miRNAs were identified, while 47 miRNAs were differentially expressed between the two small RNA libraries (i.e. between the normal and intestinal air-breathing inhibited group). Potential miRNA target genes were predicted by combining our transcriptome data of the posterior intestine of the loach under the same conditions, and then annotated using COG, GO, KEGG, Swissprot and Nr databases. The regulatory networks of miRNAs and their target genes were analyzed. The abundances of nine known miRNAs were validated by qRT-PCR. The relative expression profiles of six known miRNAs and their eight corresponding target genes, and two novel potential miRNAs were also detected. Histological characteristics of the posterior intestines in both normal and air-breathing inhibited group were further analyzed. This study contributes to our understanding on the functions and molecular regulatory mechanisms of miRNAs in accessory air-breathing organs of fish. PMID:26872032

  9. 10 CFR 429.43 - Commercial heating, ventilating, air conditioning (HVAC) equipment.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... ensure that— (i) Any represented value of energy consumption or other measure of energy usage of a basic... 10 Energy 3 2012-01-01 2012-01-01 false Commercial heating, ventilating, air conditioning (HVAC) equipment. 429.43 Section 429.43 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION CERTIFICATION,...

  10. 10 CFR 429.43 - Commercial heating, ventilating, air conditioning (HVAC) equipment.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... ensure that— (i) Any represented value of energy consumption or other measure of energy usage of a basic... 10 Energy 3 2013-01-01 2013-01-01 false Commercial heating, ventilating, air conditioning (HVAC) equipment. 429.43 Section 429.43 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION CERTIFICATION,...

  11. 10 CFR 429.43 - Commercial heating, ventilating, air conditioning (HVAC) equipment.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... of energy consumption or other measure of energy usage of a basic model for which consumers would... 10 Energy 3 2014-01-01 2014-01-01 false Commercial heating, ventilating, air conditioning (HVAC) equipment. 429.43 Section 429.43 Energy DEPARTMENT OF ENERGY ENERGY CONSERVATION CERTIFICATION,...

  12. MTR COMPRESSOR BUILDING, TRA651. RELATED AIR COMPRESSOR EQUIPMENT OUTSIDE BUILDING. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MTR COMPRESSOR BUILDING, TRA-651. RELATED AIR COMPRESSOR EQUIPMENT OUTSIDE BUILDING. PIPE LEADS BELOW GRADE INTO MTR BUILDING. CAMERA FACING WEST, IE, EAST SIDE OF MTR BUILDING. INL NEGATIVE NO. 56-1265. Jack L. Larsen, Photographer, 4/20/1956 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  13. EMISSIONS OF AIR TOXICS FROM A SIMULATED CHARCOAL KILN EQUIPPED WITH AN AFTERBURNER

    EPA Science Inventory

    The report discusses emissions of air toxics from a simulated charcoal kiln equipped with an afterburner. A laboratory-scale simulator was constructed and tested to determine if it could be used to produce charcoal that was similar to that produced in Missouri-type charcoal kilns...

  14. 'Every breath we take: the lifelong impact of air pollution' - a call for action.

    PubMed

    Holgate, Stephen T

    2017-02-01

    Air pollution has become one of the major risks to human health because of the progressive increase in the use of vehicles powered by fossil fuels. While the risks of air pollution to health were thought to have been brought under control by the Clean Air Acts of the 1950s and 1960s, the situation of air pollution in the UK has now deteriorated to a point where it is contributing to 40,000 excess deaths each year. Here the findings of the RCP/RCPCH's 2015/16 Working Party on Air Pollution and Health are described and what actions now need to be taken. The UK needs to take a lead and introduce a new Clean Air Act that deals with the vehicle sources of pollution recognising that the toxic particles and gases emitted are effecting individuals from conception to death. This mandates urgent action by government both central and local, but also by all of us who have now become so dependent on road transport.

  15. The induction of an ATP-sensitive K(+) current in cardiac myocytes of air- and water-breathing vertebrates.

    PubMed

    Paajanen, Vesa; Vornanen, Matti

    2002-09-01

    Opening of ATP-sensitive potassium channels (K(ATP)) is an effective cardioprotective mechanism in mammals. The amplitude of the ATP-sensitive K(+) current (I(K,ATP)) and the opening sensitivity of K(ATP) channels are, however, poorly known in ectotherms. As O(2)-sensing mechanisms and reactions to O(2) deficiency differ in aquatic and terrestrial animals, we hypothesised that the response of K(ATP) channels to metabolic inhibition would be different between air- and water-breathers. We therefore compared I(K,ATP) in ventricular myocytes of an anoxia-sensitive (Oncorhynchus mykiss) and an anoxia-tolerant fish (Carassius carassius), two amphibians (Xenopus laevis and Rana temporaria) and a terrestrial reptile (Lacerta vivipara) using the whole-cell patch-clamp method. I(K,ATP) was induced by preventing mitochondrial and/or glycolytic ATP production and perfusing myocytes with an ATP-free pipette solution. All species had a glibenclamide-sensitive I(K,ATP), but the current amplitude was much greater in air-breathers than in water-breathers. Furthermore, the I(K,ATP) in air-breathers was more sensitive to intracellular ATP depletion than in water-breathing animals. These findings indicate that I(K,ATP) is larger and more easily induced in air- than water-breathers. In all ectotherms, the first response to complete metabolic inhibition was the induction of a large inward current, the amplitude of which exceeded that of I(K,ATP). Thus, the protective effect of the I(K,ATP) may be physiologically significant only during partial metabolic blockade.

  16. Breathing difficulty

    MedlinePlus

    ... difficulty in which you make a high-pitched sound when you breathe out. Causes Shortness of breath has many different causes. For ... episode have a similar pattern? Does breathing difficulty cause you to wake up at ... or wheezing sounds while breathing? Tests that may be ordered include: ...

  17. Relationship between heart rate variability, blood pressure and arterial wall properties during air and oxygen breathing in healthy subjects.

    PubMed

    Graff, Beata; Szyndler, Anna; Czechowicz, Krzysztof; Kucharska, Wiesława; Graff, Grzegorz; Boutouyrie, Pierre; Laurent, Stephane; Narkiewicz, Krzysztof

    2013-11-01

    Previous studies reported that normobaric hyperoxia influences heart rate, arterial pressure, cardiac output and systemic vascular resistance, but the mechanisms underlying these changes are still not fully understood. Several factors are considered including degeneration of endothelium-derived nitric oxide by reactive oxygen species, the impact of oxygen-free radicals on tissues and alterations of autonomic nervous system function. Recently, new devices for the detailed non-invasive assessment of large and small arteries have been developed. Therefore, the aim of our study was to assess heart rate variability (HRV) as a potential indicator of autonomic balance and its relation to blood pressure and vascular properties during medical air (MAB) and 100% oxygen breathing (OXB) in healthy volunteers. In 12 healthy subjects we assessed heart rate and blood pressure variability, baroreflex sensitivity, respiratory frequency, common carotid artery diameter and its wall distensibility, as well as changes in the digital artery pulse waveform, stroke index and systemic vascular resistance during MAB and OXB. Mean and systolic blood pressure have increased significantly while digital pulse amplitude and carotid artery diameter were significantly lower during hyperoxia. Heart rate variability measures did not differ during MAB and OXB. However, the correlations between spectral HRV components and those hemodynamic parameters which have changed due to hyperoxia varied substantially during MAB (correlated significantly) and OXB (no significant correlations were noted). Our findings suggest that autonomic nervous system might not be the main mediator of the cardiovascular changes during 100% oxygen breathing in healthy subjects. It seems that the direct vascular responses are initial consequences of hyperoxia and other cardiovascular parameter alterations are secondary to them.

  18. Air-breathing hypersonic vehicle guidance and control studies; An integrated trajectory/control analysis methodology: Phase 1

    NASA Technical Reports Server (NTRS)

    Hattis, Philip D.; Malchow, Harvey L.

    1991-01-01

    A tool which generates optimal trajectory/control histories in an integrated manner is generically adapted to the treatment of single-stage-to-orbit air-breathing hypersonic vehicles. The methodology is implemented as a two point boundary value problem solution technique. Its use permits an assessment of an entire near-minimum-fuel trajectory and desired control strategy from takeoff to orbit while satisfying physically derived inequality constraints and while achieving efficient propulsive mode phasing. A simpler analysis strategy that partitions the trajectory into several boundary condition matched segments is also included to construct preliminary trajectory and control history representations with less computational burden than is required for the overall flight profile assessment. A demonstration was accomplished using a tabulated example (winged-cone accelerator) vehicle model that is combined with a newly developed multidimensional cubic spline data smoothing routine. A constrained near-fuel-optimal trajectory, imposing a dynamic pressure limit of 1000 psf, was developed from horizontal takeoff to 20,000 ft/sec relative air speed while aiming for a polar orbit. Previously unspecified propulsive discontinuities were located. Flight regimes demanding rapid attitude changes were identified, dictating control effector and closed-loop controller authority was ascertained after evaluating effector use for vehicle trim. Also, inadequacies in vehicle model representations and specific subsystem models with insufficient fidelity were determined based on unusual control characteristics and/or excessive sensitivity to uncertainty.

  19. Experimental Analysis of Air Flows in Bronchial Airway Models in the Cases of Natural Breathing and HFOV

    NASA Astrophysics Data System (ADS)

    Lee, Won-Je; Kawahashi, Masaaki; Hirahara, Hiroyuki

    The mechanism of gas transfer, flow pattern and diffusion in respiratory air flow at the end zone of human lung, especially in bronchial and alveoli, has not been clarified in detail. Recently, it is known that high frequency oscillatory ventilation (HFOV) is an effective treatment for respiratory distress syndrome. However, the frequency effect on ventilation in relation to the gas transfer efficiency at the end zone of lungs has not been investigated. The velocity profile of oscillatory air flow in bronchial tube is one of the fundamental factors to consider the frequency effect. In this paper, velocity profiles of oscillatory flows in micro scale models of bronchial airway with single- and multi-bifurcation have been investigated for different frequencies corresponding to resting breathing and HFOV by using micro Particle Image Velocimetry (micro PIV). The temporal changes of velocity profiles were reconstructed by phase-averaged velocity maps obtained by micro PIV measurements, and the effect of frequency on the velocity profile in bronchial models has been discussed.

  20. The preparation of calcium superoxide for air breathing and scrubbing applications

    NASA Technical Reports Server (NTRS)

    Ballou, E. V.; Wood, P. C.; Spitze, L. A.; Wydeven, T.

    1976-01-01

    There is interest in the preparation of high-purity calcium superoxide as an oxygen source for breathing apparatus because both the available oxygen and the capacity for carbon dioxide removal, per unit weight of superoxide, are higher than that of a number of other chemical oxygen sources. A review of earlier findings shows that the general method used by Vol'nov and coworkers for the decomposition of calcium peroxide diperoxyhydrate can yield preparations containing more than 58.4% calcium superoxide maximum predicted for an equimolar disproportionation reaction. The decomposition of solid calcium peroxide diperoxyhydrate is studied using an apparatus that allows good control of the critical reaction parameters. The removal of water from decomposing calcium peroxide diperoxyhydrate, before the same water has an opportunity to back react with the calcium superoxide formed in the reaction, constitutes the rationale of the experiments. Even with allowance for the anomalies observed in the analytical results, the yields appear to be in the 65+ percent range, and optimization of the experimental variables is still being pursued.

  1. Breathing metabolic simulator.

    NASA Technical Reports Server (NTRS)

    Bartlett, R. G., Jr.; Hendricks, C. M.; Morison, W. B.

    1971-01-01

    Description of a device for simulation of the human breathing and metabolic parameters required for the evaluation of respiratory diagnostic, monitoring, support and resuscitation equipment. The remotely controlled device allows wide variations in breathing rate and depth, breath velocity contour, oxygen uptake and carbon dioxide release to simulate conditions from sleep to hard work, with respiration exchange ratios ranging from hypoventilation to hyperventilation. It also reduces the cost of prolonged testing when simulation chambers with human subjects require three shifts of crews and standby physicians. Several block diagrams of the device and subsystems are given.

  2. Effect of High Z material on the performance of an air-breathing laser ablation thruster

    NASA Astrophysics Data System (ADS)

    Shimamura, Kohei; Kiyono, Inoru; Yokota, Ippei; Ozaki, Naoto; Yokota, Shigeru

    2016-09-01

    A Laser propulsion, such as a Lightcraft, is a candidate for the low cost transportation system between the ground to space instead of the chemical rocket. Using the shock wave induced by focusing laser beam on the ablator in air, the huge fuel is unnecessary to generate the thrust. In this study, the high-Z material was doped into the polystyrene to emphasize the ionization effect in air. We evaluate the intensity of the bremsstrahlung radiation, the plasma parameter, and the thrust performance.

  3. An inventory of aeronautical ground research facilities. Volume 2: Air breathing engine test facilities

    NASA Technical Reports Server (NTRS)

    Pirrello, C. J.; Hardin, R. D.; Heckart, M. V.; Brown, K. R.

    1971-01-01

    The inventory covers free jet and direct connect altitude cells, sea level static thrust stands, sea level test cells with ram air, and propulsion wind tunnels. Free jet altitude cells and propulsion wind tunnels are used for evaluation of complete inlet-engine-exhaust nozzle propulsion systems under simulated flight conditions. These facilities are similar in principal of operation and differ primarily in test section concept. The propulsion wind tunnel provides a closed test section and restrains the flow around the test specimen while the free jet is allowed to expand freely. A chamber of large diameter about the free jet is provided in which desired operating pressure levels may be maintained. Sea level test cells with ram air provide controlled, conditioned air directly to the engine face for performance evaluation at low altitude flight conditions. Direct connect altitude cells provide a means of performance evaluation at simulated conditions of Mach number and altitude with air supplied to the flight altitude conditions. Sea level static thrust stands simply provide an instrumented engine mounting for measuring thrust at zero airspeed. While all of these facilities are used for integrated engine testing, a few provide engine component test capability.

  4. Assessment of microbiological indoor air quality in an Italian office building equipped with an HVAC system.

    PubMed

    Bonetta, Sa; Bonetta, Si; Mosso, S; Sampò, S; Carraro, E

    2010-02-01

    The purpose of this study was to evaluate the level and composition of bacteria and fungi in the indoor air of an Italian office building equipped with a heating, ventilation and air conditioning (HVAC) system. Airborne bacteria and fungi were collected in three open-space offices during different seasons. The microbial levels in the outdoor air, supply air diffusers, fan coil air flow and air treatment unit humidification water tank were used to evaluate the influence of the HVAC system on indoor air quality (IAQ). A medium-low level of bacterial contamination (50-500 CFU/m(3)) was found in indoor air. Staphylococcus and Micrococcus were the most commonly found genera, probably due to human presence. A high fungal concentration was measured due to a flood that occurred during the winter. The indoor seasonal distribution of fungal genera was related to the fungal outdoor distribution. Significant seasonal and daily variation in airborne microorganisms was found, underlining a relationship with the frequency of HVAC system switching on/off. The results of this monitoring highlight the role of the HVAC system on IAQ and could be useful to better characterise bacterial and fungal population in the indoor air of office buildings.

  5. Thermodynamic Cycle and CFD Analyses for Hydrogen Fueled Air-breathing Pulse Detonation Engines

    NASA Technical Reports Server (NTRS)

    Povinelli, Louis A.; Yungster, Shaye

    2002-01-01

    This paper presents the results of a thermodynamic cycle analysis of a pulse detonation engine (PDE) using a hydrogen-air mixture at static conditions. The cycle performance results, namely the specific thrust, fuel consumption and impulse are compared to a single cycle CFD analysis for a detonation tube which considers finite rate chemistry. The differences in the impulse values were indicative of the additional performance potential attainable in a PDE.

  6. Effects of He-O2 Breathing during Experimental Decompression Sickness Following Air Dives

    DTIC Science & Technology

    1987-03-01

    ventilator volume or rate was made during the experiment. The oxygen content of the He-0 2 mixture used in the He-Or group was measured using a...e ne modifia pas ces rdponses. mats la respiratton de He-O? produtst une augmentation de 11% dans Ia rdsistance vasculaire pulmonaire (RVP). Chez 3...d’une plong~e A F’air peut aggraver l’obstruction vasculaire pulmonaire. plongde hdlium-oxygtne maladie de decompression suffocation embolie gazeuse

  7. Visual Evoked Responses and EEGS for Divers Breathing Hyperbaric Air: An Assessment of Individual Differences

    DTIC Science & Technology

    1975-06-03

    PAGE THE PROBLEM To find and assess quantitatively electrophysiologieal corre- lates of nitrogen narcosis in divers. FINDINGS Marked decrements in...visual evoked responses were found in most divers under conditions conducive to nitrogen narcosis . Results of this study show the average sizes of...the decrements and their probability of occurrence in a large group of subjects. APPLICATION Since nitrogen narcosis is a major problem deterring air

  8. Active water management at the cathode of a planar air-breathing polymer electrolyte membrane fuel cell using an electroosmotic pump

    NASA Astrophysics Data System (ADS)

    Fabian, T.; O'Hayre, R.; Litster, S.; Prinz, F. B.; Santiago, J. G.

    In a typical air-breathing fuel cell design, ambient air is supplied to the cathode by natural convection and dry hydrogen is supplied to a dead-ended anode. While this design is simple and attractive for portable low-power applications, the difficulty in implementing effective and robust water management presents disadvantages. In particular, excessive flooding of the open-cathode during long-term operation can lead to a dramatic reduction of fuel cell power. To overcome this limitation, we report here on a novel air-breathing fuel cell water management design based on a hydrophilic and electrically conductive wick in conjunction with an electroosmotic (EO) pump that actively pumps water out of the wick. Transient experiments demonstrate the ability of the EO-pump to "resuscitate" the fuel cell from catastrophic flooding events, while longer term galvanostatic measurements suggest that the design can completely eliminate cathode flooding using less than 2% of fuel cell power, and lead to stable operation with higher net power performance than a control design without EO-pump. This demonstrates that active EO-pump water management, which has previously only been demonstrated in forced-convection fuel cell systems, can also be applied effectively to miniaturized (<5 W) air-breathing fuel cell systems.

  9. The transition from water-breathing to air-breathing is associated with a shift in ion uptake from gills to gut: a study of two closely related erythrinid teleosts, Hoplerythrinus unitaeniatus and Hoplias malabaricus.

    PubMed

    Wood, Chris M; Pelster, Bernd; Giacomin, Marina; Sadauskas-Henrique, Helen; Almeida-Val, Vera Maria F; Val, Adalberto Luis

    2016-05-01

    The evolutionary transition from water-breathing to air-breathing involved not only a change in function of the organs of respiratory gas exchange and N-waste excretion, but also in the organs of ion uptake from the environment. A combination of in vivo and in vitro techniques was used to look at the relative importance of the gills versus the gut in Na(+), Cl(-), and K(+) balance in two closely related erythrinid species: a facultative air-breather, the jeju (Hoplerythrinus unitaeniatus) and an obligate water-breather, the traira (Hoplias malabaricus). The jeju has a well-vascularized physostomous swimbladder, while that in the traira is poorly vascularized, but the gills are much larger. Both species are native to the Amazon and are common in the ion-poor, acidic blackwaters of the Rio Negro. Under fasting conditions, the traira was able to maintain positive net Na(+) and Cl(-) balance in this water, and only slightly negative net K(+) balance. However, the jeju was in negative net balance for all three ions and had lower plasma Na(+) and Cl(-) concentrations, despite exhibiting higher branchial Na(+), K(+)ATPase and v-type H(+)ATPase activities. In the intestine, activities of these same enzymes were also higher in the jeju, and in vitro measurements of net area-specific rates of Na(+), Cl(-), and K(+) absorption, as well as the overall intestinal absorption capacities for these three ions, were far greater than in the traira. When acutely exposed to disturbances in water O2 levels (severe hypoxia ~15% or hyperoxia ~420% saturation), gill ionoregulation was greatly perturbed in the traira but less affected in the jeju, which could "escape" the stressor by voluntarily air-breathing. We suggest that a shift of ionoregulatory capacity from the gills to the gut may have occurred in the evolutionary transition to air-breathing in jeju, and in consequence branchial ionoregulation, while less powerful, is also less impacted by variations in water O2 levels.

  10. Novel adaptive neural control design for a constrained flexible air-breathing hypersonic vehicle based on actuator compensation

    NASA Astrophysics Data System (ADS)

    Bu, Xiangwei; Wu, Xiaoyan; He, Guangjun; Huang, Jiaqi

    2016-03-01

    This paper investigates the design of a novel adaptive neural controller for the longitudinal dynamics of a flexible air-breathing hypersonic vehicle with control input constraints. To reduce the complexity of controller design, the vehicle dynamics is decomposed into the velocity subsystem and the altitude subsystem, respectively. For each subsystem, only one neural network is utilized to approach the lumped unknown function. By employing a minimal-learning parameter method to estimate the norm of ideal weight vectors rather than their elements, there are only two adaptive parameters required for neural approximation. Thus, the computational burden is lower than the ones derived from neural back-stepping schemes. Specially, to deal with the control input constraints, additional systems are exploited to compensate the actuators. Lyapunov synthesis proves that all the closed-loop signals involved are uniformly ultimately bounded. Finally, simulation results show that the adopted compensation scheme can tackle actuator constraint effectively and moreover velocity and altitude can stably track their reference trajectories even when the physical limitations on control inputs are in effect.

  11. Effects of the six engine air breathing propulsion system on space shuttle orbiter subsonic stability and control characteristics

    NASA Technical Reports Server (NTRS)

    Mennell, R. C.; Soard, T.

    1974-01-01

    Experimental aerodynamic investigations were conducted on a 0.0405 scale representation of the -89B space shuttle orbiter in the 7.75 x 11.00 foot low speed wind tunnel during the time period September 4 - 14, 1973. The primary test objective was to optimize the air breathing propulsion system nacelle cowl-inlet design and to determine the aerodynamic effects of this design on the orbiter stability and control characteristics. Nacelle cowl-inlet optimization was determined from total pressure - static pressure measurements obtained from pressure rakes located in the left hand nacelle pod at the engine face station. After the optimum cow-inlet design, consisting of a 7 deg cowl lip angle, short cowl, 7 deg short diverter, and a nacelle toe-in angle of 5 deg was selected, the aerodynamic effects of various locations of this design were investigated. The 3 pod - 6 Nacelle configuration was tested both underwing and overwing in three different longitudinal locations. Orbiter control effectiveness, both with and without Nacelles, was investigated at elevon deflections of 0 deg, -10 deg and +15 deg and at aileron deflections of 0 deg and +10 deg about 0 deg elevon.

  12. Influence of ethynylestradiol and methyltestosterone on the hypothalamo-hypophyseal-gonadal axis of adult air-breathing catfish, Clarias gariepinus.

    PubMed

    Swapna, I; Senthilkumaran, B

    2009-11-27

    Adult male and female air-breathing catfish Clarias gariepinus were treated with ethynylestradiol (EE(2)) and methyltestosterone (MT) at concentrations of 1microg/L, respectively for 21 days. EE(2) treatment caused disappearance of spermatids/sperm from several testicular lumen/lobules in males while MT treatment to females led to precocious ovarian development. EE(2) caused significant fluid retention in all tissues including peritoneal cavity and seminal vesicles. Immunocytochemical localization of catfish GnRH (cfGnRH) and luteinizing hormone (LH) in preoptic area-hypothalamus (POA-H) and pituitary, respectively, revealed decreased immunoreactivity (ir-) following EE(2) treatment in males. MT treatment however caused no observable change in cfGnRH ir- and a significant increase in LH ir- in females. Semi-quantitative RT-PCR analysis indicated that cfGnRH transcripts in POA-H decreased significantly following EE(2) and MT treatment in males and females, respectively. Levels of POA-H dopamine (inhibitory monoamine for gonadotropin [GTH] synthesis and release) increased following EE(2) and MT treatment in males and females while levels of serotonin and norepinephrine (GTH-stimulatory monoamines) decreased significantly. The results demonstrate a direct in vivo effect of sex steroid analogs on cfGnRH-LH axis and monoaminergic system vis-à-vis on gonads in addition to probable direct action on gonads.

  13. Breathing hot humid air induces airway irritation and cough in patients with allergic rhinitis.

    PubMed

    Khosravi, Mehdi; Collins, Paul B; Lin, Ruei-Lung; Hayes, Don; Smith, Jaclyn A; Lee, Lu-Yuan

    2014-07-01

    We studied the respiratory responses to an increase in airway temperature in patients with allergic rhinitis (AR). Responses to isocapnic hyperventilation (40% of maximal voluntary ventilation) for 4min of humidified hot air (HA; 49°C) and room air (RA; 21°C) were compared between AR patients (n=7) and healthy subjects (n=6). In AR patients, cough frequency increased pronouncedly from 0.10±0.07 before to 2.37±0.73 during, and 1.80±0.79coughs/min for the first 8min after the HA challenge, but not during the RA challenge. In contrast, neither HA nor RA had any significant tussive effect in healthy subjects. The HA challenge also caused respiratory discomfort (mainly throat irritation) measured by the handgrip dynamometry in AR patients, but not in healthy subjects. Bronchoconstriction was not detected after the HA challenge in either group of subjects. In conclusion, hyperventilation of HA triggered vigorous cough response and throat irritation in AR patients, indicating the involvement of sensory nerves innervating upper airways.

  14. Review of the PDWA Concept for Combustion Enhancement in a Supersonic Air-Breathing Combustor Environment

    NASA Technical Reports Server (NTRS)

    Canbier, Jean-Luc; Edwards, Thomas A. (Technical Monitor)

    1995-01-01

    This paper reviews the design of the Pulsed Detonation Wave Augmentor (PDWA) concept and the preliminary computational fluid dynamics studies that supported it. The PDWA relies on the rapid generation of detonation waves in a small tube, which are then injected into the supersonic stream of the main combustor. The blast waves thus generated are used to stimulate the mixing and combustion inside the main combustor. The mixing enhancement relies on various forms of the baroclinic interaction, where misaligned pressure and density gradients combine to produce vortical flow. By using unsteady shock waves, the concept also uses the Richtmyer-Meshkov effect to further increase the rate of mixing. By carefully designing the respective configurations of the combustor and the detonation tubes, one can also increase the penetration of the fuel into the supersonic air stream. The unsteady shocks produce lower stagnation pressure losses than steady shocks. Combustion enhancement can also be obtained through the transient shock-heating of the fuel-air interface, and the lowering of the ignition delay in these regions. The numerical simulations identify these processes, and show which configurations give the best results. Engineering considerations are also presented, and discuss the feasibility of the concept. Of primary importance are the enhancements in performance, the design simplicity, the minimization of the power, cost, and weight, and the methods to achieve very rapid cycling.

  15. Small-size mass spectrometer for determining gases and volatile compounds in air during breathing

    NASA Astrophysics Data System (ADS)

    Kogan, V. T.; Kozlenok, A. V.; Chichagov, Yu. V.; Antonov, A. S.; Lebedev, D. S.; Bogdanov, A. A.; Moroshkin, V. S.; Berezina, A. V.; Viktorova-Leclerc, O. S.; Vlasov, S. A.; Tubol'tsev, Yu. V.

    2015-10-01

    We describe an automated mass spectrometer for diagnostics of deceases from the composition of exhaled air. It includes a capillary system, which performs a rapid direct feeding of the sample to the instrument without changing substantially its composition and serves for studying the dynamics of variation of the ratio between various components of exhaled air. The membrane system for introducing the sample is intended for determining low concentrations of volatile organic compounds which are biomarkers of pathologies. It is characterized by selective transmittance and ensures the detection limits of target compounds at the parts per million-parts per billion (ppm-ppb) level. A static mass analyzer operating on permanent magnets possesses advantages important for mobile devices as compared to its dynamic analogs: it is more reliable in operation, has a larger dynamic range, and can be used for determining the concentration of components in the mixture one-by-one or simultaneously. The curvilinear output boundary of the magnetic lens of the mass analyzer makes it possible to reduce its weight and size by 2.5 times without deteriorating the mass resolution. We report on the results of testing of the instrument and consider the possibility of its application for early detection of deceases of respiratory and blood circulation system, gastrointestinal tract, and endocrine system.

  16. From breathing to respiration.

    PubMed

    Fitting, Jean-William

    2015-01-01

    The purpose of breathing remained an enigma for a long time. The Hippocratic school described breathing patterns but did not associate breathing with the lungs. Empedocles and Plato postulated that breathing was linked to the passage of air through pores of the skin. This was refuted by Aristotle who believed that the role of breathing was to cool the heart. In Alexandria, breakthroughs were accomplished in the anatomy and physiology of the respiratory system. Later, Galen proposed an accurate description of the respiratory muscles and the mechanics of breathing. However, his heart-lung model was hampered by the traditional view of two non-communicating vascular systems - veins and arteries. After a period of stagnation in the Middle Ages, knowledge progressed with the discovery of pulmonary circulation. The comprehension of the purpose of breathing progressed by steps thanks to Boyle and Mayow among others, and culminated with the contribution of Priestley and the discovery of oxygen by Lavoisier. Only then was breathing recognized as fulfilling the purpose of respiration, or gas exchange. A century later, a controversy emerged concerning the active or passive transfer of oxygen from alveoli to the blood. August and Marie Krogh settled the dispute, showing that passive diffusion was sufficient to meet the oxygen needs.

  17. Enzymatic Fuel Cells: Integrating Flow-Through Anode and Air-Breathing Cathode into a Membrane-Less Biofuel Cell Design (Postprint)

    DTIC Science & Technology

    2011-06-01

    with poly- methylene green (poly-MG) catalyst for biofuel cell anode fabrication. A fungal laccase that catalyzes oxygen reduction via direct electron...enzyme, Poly- methylene green, Membrane-less U U U UU 6 Glenn R. Johnson Reset This article appeared in a journal published by Elsevier. The attached copy...2011 Keywords: Biofuel cell Flow-through Air-breathing cathode NAD+-dependent enzyme Poly- methylene green Membrane-less a b s t r a c t One

  18. Air Quality Impacts of Electrifying Vehicles and Equipment Across the United States.

    PubMed

    Nopmongcol, Uarporn; Grant, John; Knipping, Eladio; Alexander, Mark; Schurhoff, Rob; Young, David; Jung, Jaegun; Shah, Tejas; Yarwood, Greg

    2017-03-07

    U.S.-wide air quality impacts of electrifying vehicles and off-road equipment are estimated for 2030 using 3-D photochemical air quality model and detailed emissions inventories. Electrification reduces tailpipe emissions and emissions from petroleum refining, transport, and storage, but increases electricity demand. The Electrification Case assumes approximately 17% of light duty and 8% of heavy duty vehicle miles traveled and from 17% to 79% of various off-road equipment types considered good candidates for electrification is powered by electricity. The Electrification Case raises electricity demand by 5% over the 2030 Base Case but nitrogen oxide (NOx) emissions decrease by 209 thousand tons (3%) overall. Emissions of other criteria pollutants also decrease. Air quality benefits of electrification are modest, mostly less than 1 ppb for ozone and 0.5 μg m(-3) for fine particulate matter (PM2.5), but widespread. The largest reductions for ozone and PM occur in urban areas due to lower mobile source emissions. Electrifying off-road equipment yields more benefits than electrifying on-road vehicles. Reduced crude oil imports and associated marine vessel emissions cause additional benefits in port cities. Changes in other gas and PM emissions, as well as impacts on acid and nutrient deposition, are discussed.

  19. Bad Breath

    MedlinePlus

    ... breath? Maybe you shouldn't have put extra onions on your hamburger at lunch. What's a kid ... bad breath: foods and drinks, such as garlic, onions, cheese, orange juice, and soda poor dental hygiene ( ...

  20. Air Breathing Propulsion Controls and Diagnostics Research at NASA Glenn Under NASA Aeronautics Research Mission Programs

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay

    2015-01-01

    The Intelligent Control and Autonomy Branch (ICA) at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC) in Cleveland, Ohio, is leading and participating in various projects in partnership with other organizations within GRC and across NASA, the U.S. aerospace industry, and academia to develop advanced controls and health management technologies that will help meet the goals of the NASA Aeronautics Research Mission Directorate (ARMD) Programs. These efforts are primarily under the various projects under the Advanced Air Vehicles Program (AAVP), Airspace Operations and Safety Program (AOSP) and Transformative Aeronautics Concepts Program (TAC). The ICA Branch is focused on advancing the state-of-the-art of aero-engine control and diagnostics technologies to help improve aviation safety, increase efficiency, and enable operation with reduced emissions. This paper describes the various ICA research efforts under the NASA Aeronautics Research Mission Programs with a summary of motivation, background, technical approach, and recent accomplishments for each of the research tasks.

  1. Static and Hypersonic Experimental Analysis of Impulse Generation in Air-Breathing Laser-Thermal Propulsion

    NASA Astrophysics Data System (ADS)

    Salvador, Israel Irone

    The present research campaign centered on static and hypersonic experiments performed with a two-dimensional, repetitively-pulsed (RP) laser Lightcraft model. The future application of interest for this basic research endeavor is the laser launch of nano- and micro-satellites (i.e., 1-100 kg payloads) into Low Earth Orbit (LEO), at low-cost and "on-demand". This research began with an international collaboration on Beamed Energy Propulsion between the United States Air Force and Brazilian Air Force to conduct experiments at the Henry T. Nagamatsu Laboratory of Aerothermodynamics and Hypersonics (HTN-LAH). The laser propulsion (LP) experiments employed the T3 Hypersonic Shock Tunnel (HST), integrated with twin gigawatt pulsed Lumonics 620-TEA CO2 lasers to produce the required test conditions. Following an introduction of the pulsed laser thermal propulsion concept and a state-of-the-art review of the topic, the principal physical processes are outlined starting from the onset of the laser pulse and subsequent laser-induced air-breakdown, to the expansion and exhaust of the resulting blast wave. After installation of the 254 mm wide, 2D Lightcraft model into the T3 tunnel, static LP tests were performed under quiescent (no-flow) conditions at ambient pressures of 0.06, 0.15, 0.3 and 1 bar, using the T3 test-section/dump-tank as a vacuum chamber. Time-dependent surface pressure distributions were measured over the engine thrust-generating surfaces following laser energy deposition; the delivered impulse and momentum coupling coefficients (Cm) were calculated from that pressure data. A Schlieren visualization system (using a high-speed Cordin digital camera) captured the laser breakdown and blast wave expansion process. The 2D model's Cm performance of 600 to 3000 N/MW was 2.5-5x higher than theoretical projections available in the literature, but indeed in the realm of feasibility for static conditions. Also, these Cm values exceed that for smaller Lightcraft models

  2. What is the most efficient respiratory organ for the loricariid air-breathing fish Pterygoplichthys anisitsi, gills or stomach? A quantitative morphological study.

    PubMed

    da Cruz, André Luis; Fernandes, Marisa Narciso

    2016-12-01

    The purpose of the present study was to evaluate the morphometric respiratory potential of gills compared to the stomach in obtaining oxygen for aerobic metabolism in Pterygoplichthys anisitsi, a facultative air-breathing fish. The measurements were done using stereological methods. The gills showed greater total volume, volume-to-body mass ratio, potential surface area, and surface-to-volume ratio than the stomach. The water-blood diffusion barrier of the gills is thicker than the air-blood diffusion barrier of the stomach. Taken together, the surface area, the surface-to-volume ratio and the diffusion distance for O2 transfer from the respiratory medium to blood yield a greater diffusing capacity for gills than for the stomach, suggesting greater importance of aquatic respiration in this species. On the other hand, water breathing is energetically more expensive than breathing air. Under severe hypoxic conditions, O2 uptake by the stomach is more efficient than by the gills, although the stomach has a much lower diffusing capacity. Thus, P. anisitsi uses gills under normoxic conditions but the stomach may also support aerobic metabolism depending on environmental conditions.

  3. Aspiration tests in aqueous foam using a breathing simulator

    SciTech Connect

    Archuleta, M.M.

    1995-12-01

    Non-toxic aqueous foams are being developed by Sandia National Laboratories (SNL) for the National Institute of Justice (NIJ) for use in crowd control, cell extractions, and group disturbances in the criminal justice prison systems. The potential for aspiration of aqueous foam during its use and the resulting adverse effects associated with complete immersion in aqueous foam is of major concern to the NIJ when examining the effectiveness and safety of using this technology as a Less-Than-Lethal weapon. This preliminary study was designed to evaluate the maximum quantity of foam that might be aspirated by an individual following total immersion in an SNL-developed aqueous foam. A.T.W. Reed Breathing simulator equipped with a 622 Silverman cam was used to simulate the aspiration of an ammonium laureth sulfate aqueous foam developed by SNL and generated at expansion ratios in the range of 500:1 to 1000:1. Although the natural instinct of an individual immersed in foam is to cover their nose and mouth with a hand or cloth, thus breaking the bubbles and decreasing the potential for aspiration, this study was performed to examine a worst case scenario where mouth breathing only was examined, and no attempt was made to block foam entry into the breathing port. Two breathing rates were examined: one that simulated a sedentary individual with a mean breathing rate of 6.27 breaths/minute, and one that simulated an agitated or heavily breathing individual with a mean breathing rate of 23.7 breaths/minute. The results of this study indicate that, if breathing in aqueous foam without movement, an air pocket forms around the nose and mouth within one minute of immersion.

  4. 40 CFR 62.14441 - When must I inspect my HMIWI equipment and air pollution control devices?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... and air pollution control devices? 62.14441 Section 62.14441 Protection of Environment ENVIRONMENTAL... my HMIWI equipment and air pollution control devices? (a) You must inspect your large, medium, small... inspect the air pollution control devices on your large, medium, small or small rural HMIWI by May...

  5. 40 CFR 62.14441 - When must I inspect my HMIWI equipment and air pollution control devices?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... and air pollution control devices? 62.14441 Section 62.14441 Protection of Environment ENVIRONMENTAL... my HMIWI equipment and air pollution control devices? (a) You must inspect your large, medium, small... inspect the air pollution control devices on your large, medium, small or small rural HMIWI by May...

  6. CHARACTERIZATION OF OZONE EMISSIONS FROM AIR CLEANERS EQUIPPED WITH OZONE GENERATORS AND SENSOR AND FEEDBACK CONTROL CIRCUITRY

    EPA Science Inventory

    The paper give results of a characterization of ozone emissions from air cleaners equipped with ozone generators and sensor and feedback control circuitry. Ozone emission rates of several consumer appliances, marketed as indoor air treatment or air purification systems, were det...

  7. Optimal Area Profiles for Ideal Single Nozzle Air-Breathing Pulse Detonation Engines

    NASA Technical Reports Server (NTRS)

    Paxson, Daniel E.

    2003-01-01

    The effects of cross-sectional area variation on idealized Pulse Detonation Engine performance are examined numerically. A quasi-one-dimensional, reacting, numerical code is used as the kernel of an algorithm that iteratively determines the correct sequencing of inlet air, inlet fuel, detonation initiation, and cycle time to achieve a limit cycle with specified fuel fraction, and volumetric purge fraction. The algorithm is exercised on a tube with a cross sectional area profile containing two degrees of freedom: overall exit-to-inlet area ratio, and the distance along the tube at which continuous transition from inlet to exit area begins. These two parameters are varied over three flight conditions (defined by inlet total temperature, inlet total pressure and ambient static pressure) and the performance is compared to a straight tube. It is shown that compared to straight tubes, increases of 20 to 35 percent in specific impulse and specific thrust are obtained with tubes of relatively modest area change. The iterative algorithm is described, and its limitations are noted and discussed. Optimized results are presented showing performance measurements, wave diagrams, and area profiles. Suggestions for future investigation are also discussed.

  8. Thermal chemical energy of ablating silica surfaces in air breathing solid rocket engines

    NASA Astrophysics Data System (ADS)

    Cornwell, Michael D.

    1993-11-01

    This paper provides theoretical adaptation and extension of current industry methodologies for analytical predictions of insulation ablation in solid fuel ramjets. Solid fuel ramjets predominantly operate in a fuel-lean state and require thermal protection systems that are highly oxidation resistant, such as insulation materials that form silica-based char. However, local regions of fuel rich gases exist in ramjets where mixing and combustion of fuel and air is incomplete. Modeling corrosion of silica based char in fuel rich regions of the combustor requires new methods. Accurate ablation prediction of these fuel rich regions are in the design of ramjets. Current analytical methods used to model the ablation of insulation are most suitable for oxidative corrosion of carbonaceous insulation char. Silica-based insulation will ablate corrosively by reduction reactions with carbon and carbon based fuels. Silica ablation by carbon reduction reactions with silica is not correctly modeled by the current industry code, ACE. This paper describes the causes of the current limitations and provides extensions to the ACE methodology to allow for the modeling of silica ablation.

  9. 46 CFR 108.703 - Self-contained breathing apparatus.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Self-contained breathing apparatus. 108.703 Section 108... DESIGN AND EQUIPMENT Miscellaneous Equipment § 108.703 Self-contained breathing apparatus. (a) Each unit must be equipped with a self-contained breathing apparatus described in § 108.497(a) to use...

  10. 46 CFR 108.703 - Self-contained breathing apparatus.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Self-contained breathing apparatus. 108.703 Section 108... DESIGN AND EQUIPMENT Miscellaneous Equipment § 108.703 Self-contained breathing apparatus. (a) Each unit must be equipped with a self-contained breathing apparatus described in § 108.497(a) to use...

  11. 46 CFR 108.703 - Self-contained breathing apparatus.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Self-contained breathing apparatus. 108.703 Section 108... DESIGN AND EQUIPMENT Miscellaneous Equipment § 108.703 Self-contained breathing apparatus. (a) Each unit must be equipped with a self-contained breathing apparatus described in § 108.497(a) to use...

  12. 46 CFR 108.703 - Self-contained breathing apparatus.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... DESIGN AND EQUIPMENT Miscellaneous Equipment § 108.703 Self-contained breathing apparatus. (a) Each unit must be equipped with a self-contained breathing apparatus described in § 108.497(a) to use as... 46 Shipping 4 2011-10-01 2011-10-01 false Self-contained breathing apparatus. 108.703 Section...

  13. 46 CFR 108.703 - Self-contained breathing apparatus.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... DESIGN AND EQUIPMENT Miscellaneous Equipment § 108.703 Self-contained breathing apparatus. (a) Each unit must be equipped with a self-contained breathing apparatus described in § 108.497(a) to use as... 46 Shipping 4 2010-10-01 2010-10-01 false Self-contained breathing apparatus. 108.703 Section...

  14. Tip-to-tail numerical simulation of a hypersonic air-breathing engine with ethylene fuel

    NASA Astrophysics Data System (ADS)

    Dharavath, Malsur; Manna, P.; Chakraborty, Debasis

    2016-11-01

    End to end CFD simulations of external and internal flow paths of an ethylene fueled hypersonic airbreathing vehicle with including forebody, horizontal fins, vertical fins, intake, combustor, single expansion ramp nozzle are carried out. The performance of the scramjet combustor and vehicle net thrust-drag is calculated for hypersonic cruise condition. Three-dimensional Navier-Stokes equations are solved along with SST-k-ω turbulence model using the commercial CFD software CFX-14. Single step chemical reaction based on fast chemistry assumption is used for combustion of gaseous ethylene fuel. Simulations captured complex shock structures including the shocks generated from the vehicle nose and compression ramps, impingement of cowl-shock on vehicle undersurface and its reflection in the intake and combustor etc. Various thermochemical parameters are analyzed and performance parameters are evaluated for nonreacting and reacting cases. Very good mixing ( 98%) of fuel with incoming air stream is observed. Positive thrust-drag margins are obtained for fuel equivalence ratio of 0.6 and computed combustion efficiency is observed to be 94 %. Effect of equivalence ratio on the vehicle performance is studied parametrically. Though the combustion efficiency has come down by 8% for fuel equivalence ratio of 0.8, net vehicle thrust is increased by 44%. Heat flux distribution on the various walls of the whole vehicle including combustor is estimated for the isothermal wall condition of 1000 K in reacting flow. Higher local heat flux values are observed at all the leading edges of the vehicle (i.e., nose, wing, fin and cowl leading edges) and strut regions of the combustor.

  15. Anatomical Details of the Rabbit Nasal Passages and Their Implications in Breathing, Air Conditioning, and Olfaction.

    PubMed

    Xi, Jinxiang; Si, Xiuhua A; Kim, Jongwon; Zhang, Yu; Jacob, Richard E; Kabilan, Senthil; Corley, Richard A

    2016-07-01

    The rabbit is commonly used as a laboratory animal for inhalation toxicology tests and detail knowledge of the rabbit airway morphometry is needed for outcome analysis or theoretical modeling. The objective of this study is to quantify the morphometric dimension of the nasal airway of a New Zealand white rabbit and to relate the morphology and functions through analytical and computational methods. Images of high-resolution MRI scans of the rabbit were processed to measure the axial distribution of the cross-sectional areas, perimeter, and complexity level. The lateral recess, which has functions other than respiration or olfaction, was isolated from the nasal airway and its dimension was quantified separately. A low Reynolds number turbulence model was implemented to simulate the airflow, heat transfer, vapor transport, and wall shear stress. Results of this study provide detailed morphological information of the rabbit that can be used in the studies of olfaction, inhalation toxicology, drug delivery, and physiology-based pharmacokinetics modeling. For the first time, we reported a spiral nasal vestibule that splits into three paths leading to the dorsal meatus, maxilloturbinate, and ventral meatus, respectively. Both non-dimensional functional analysis and CFD simulations suggested that the airflow in the rabbit nose is laminar and the unsteady effect is only significantly during sniffing. Due to the large surface-to-volume ratio, the maxilloturbinate is highly effective in warming and moistening the inhaled air to body conditions. The unique anatomical structure and respiratory airflow pattern may have important implications for designing new odorant detectors or electronic noses. Anat Rec, 299:853-868, 2016. © 2016 Wiley Periodicals, Inc.

  16. Quantification of carbon dioxide poisoning in air breathing alkaline fuel cells

    NASA Astrophysics Data System (ADS)

    Tewari, A.; Sambhy, V.; Urquidi Macdonald, M.; Sen, A.

    Carbon dioxide intolerance has impeded the development of alkaline fuel cells as an alternate source of power supply. The CO 2, in a fuel cell system, could come from the anode side (if "dirty" H 2 is used as fuel), from the cathode side (if air instead of pure O 2 is used as an oxidant) or from inside the electrolyte (if methanol is used as a fuel). In this work, an novel analytical approach is proposed to study and quantify the carbon dioxide poisoning problem. Accelerated tests were carried out in an alkaline fuel cell using methanol as a fuel with different electrical loads and varying the concentration of carbon dioxide in a mixture CO 2/O 2 used as oxidant. Two characteristic quantities, t max and R max, were specified which were shown to comprehensively define the nature and extent of carbon dioxide poisoning in alkaline fuel cells. The poisoning phenomenon was successfully quantified by determining the dependence of these characteristic quantities on the operating parameters, viz. atmospheric carbon dioxide concentration and applied electrical load. Such quantification enabled the prediction of the output of a fuel cell operating in a carbon dioxide enriched atmosphere. In addition, static and dynamic analyses of electrolytes were carried out to determine the dependence of cell current on the electrolyte composition in a fuel cell undergoing poisoning. It was observed that there is a critical concentration of KOH in the electrolyte only below which the effect of carbon dioxide poisoning is reflected on the cell performance. Potentiostatic polarization tests confirmed that the underlying reason for the decreased cell performance because of carbon dioxide poisoning is the sluggish kinetics of methanol oxidation in the presence of potassium carbonate in the electrolyte. Moreover, the decreased conductivity of the electrolyte resulting from hydroxide to carbonate conversion was also shown to increase the ohmic loses in an alkaline fuel cell leading to lower

  17. Lamaze Breathing

    PubMed Central

    Lothian, Judith A.

    2011-01-01

    Lamaze breathing historically is considered the hallmark of Lamaze preparation for childbirth. This column discusses breathing in the larger context of contemporary Lamaze. Controlled breathing enhances relaxation and decreases perception of pain. It is one of many comfort strategies taught in Lamaze classes. In restricted birthing environments, breathing may be the only nonpharmacological comfort strategy available to women. Conscious breathing and relaxation, especially in combination with a wide variety of comfort strategies, can help women avoid unnecessary medical intervention and have a safe, healthy birth. PMID:22379360

  18. Breathing metabolic simulator

    NASA Technical Reports Server (NTRS)

    Bartlett, R. G., Jr.; Hendricks, C. M.; Morison, W. B.

    1972-01-01

    A description is given of an automatic computer controlled second generation breathing metabolic simulator (BMS). The simulator is used for evaluating and testing respiratory diagnostic, monitoring, support, and resuscitation equipment. Any desired sequence of metabolic activities can be simulated on the device for up to 15 hours. The computer monitors test procedures and provides printouts of test results.

  19. 42 CFR 84.79 - Breathing gas; minimum requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Breathing gas; minimum requirements. 84.79 Section...-Contained Breathing Apparatus § 84.79 Breathing gas; minimum requirements. (a) Breathing gas used to supply... respiratory tract irritating compounds. (c) Compressed, gaseous breathing air shall meet the...

  20. 42 CFR 84.79 - Breathing gas; minimum requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Breathing gas; minimum requirements. 84.79 Section...-Contained Breathing Apparatus § 84.79 Breathing gas; minimum requirements. (a) Breathing gas used to supply... respiratory tract irritating compounds. (c) Compressed, gaseous breathing air shall meet the...

  1. 42 CFR 84.79 - Breathing gas; minimum requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Breathing gas; minimum requirements. 84.79 Section...-Contained Breathing Apparatus § 84.79 Breathing gas; minimum requirements. (a) Breathing gas used to supply... respiratory tract irritating compounds. (c) Compressed, gaseous breathing air shall meet the...

  2. 42 CFR 84.79 - Breathing gas; minimum requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Breathing gas; minimum requirements. 84.79 Section...-Contained Breathing Apparatus § 84.79 Breathing gas; minimum requirements. (a) Breathing gas used to supply... respiratory tract irritating compounds. (c) Compressed, gaseous breathing air shall meet the...

  3. 42 CFR 84.79 - Breathing gas; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Breathing gas; minimum requirements. 84.79 Section...-Contained Breathing Apparatus § 84.79 Breathing gas; minimum requirements. (a) Breathing gas used to supply... respiratory tract irritating compounds. (c) Compressed, gaseous breathing air shall meet the...

  4. Portable air pollution control equipment for the control of toxic particulate emissions

    SciTech Connect

    Chaurushia, A.; Odabashian, S.; Busch, E.

    1997-12-31

    Chromium VI (Cr VI) has been identified by the environmental regulatory agencies as a potent carcinogen among eleven heavy metals. A threshold level of 0.0001 lb/year for Cr VI emissions has been established by the California Air Resources Board for reporting under Assembly Bill 2588. A need for an innovative control technology to reduce fugitive emissions of Cr VI was identified during the Air Toxic Emissions Reduction Program at Northrop Grumman Military Aircraft Systems Division (NGMASD). NGMASD operates an aircraft assembly facility in El Segundo, CA. Nearly all of the aircraft components are coated with a protective coating (primer) prior to assembly. The primer has Cr VI as a component for its excellent corrosion resistance property. The complex assembly process requires fasteners which also need primer coating. Therefore, NGMASD utilizes High Volume Low Pressure (HVLP) guns for the touch-up spray coating operations. During the touch-up spray coating operations, Cr VI particles are atomized and transferred to the aircraft surface. The South Coast Air Quality Management District (SCAQMD) has determined that the HVLP gun transfers 65% of the paint particles onto the substrate and the remaining 35% are emitted as an overspray if air pollution controls are not applied. NGMASD has developed the Portable Air Pollution Control Equipment (PAPCE) to capture and control the overspray in order to reduce fugitive Cr VI emissions from the touch-up spray coating operations. A source test was performed per SCAQMD guidelines and the final report has been approved by the SCAQMD.

  5. Experimental and modeling study of thermal exposure of a self-contained breathing apparatus (SCBA).

    PubMed

    Donnelly, Michelle K; Yang, Jiann C

    2015-08-01

    An experimental apparatus designed to study firefighter safety equipment exposed to a thermal environment was developed. The apparatus consisted of an elevated temperature flow loop with the ability to heat the air stream up to 200°C. The thermal and flow conditions at the test section were characterized using thermocouples and bi-directional probes. The safety equipment examined in this study was a self-contained breathing apparatus (SCBA), including a facepiece and an air cylinder. The SCBA facepiece was placed on a mannequin headform and coupled to a breathing simulator that was programmed with a prescribed breathing pattern. The entire SCBA assembly was placed in the test section of the flow loop for these thermal exposure experiments. Three air stream temperatures, 100°C, 150°C, and 200°C, were used with the average air speed at the test section set at 1.4m/s and thermal exposure durations up to 1200 s. Measurements were made using type-K bare-bead thermocouples located in the mannequin's mouth and on the outer surface of the SCBA cylinder. The experimental results indicated that increasing the thermal exposure severity and duration increased the breathing air temperatures supplied by the SCBA. Temperatures of breathing air from the SCBA cylinder in excess of 60°C were observed over the course of the thermal exposure conditions used in most of the experiments. A mathematical model for transient heat transfer was developed to complement the thermal exposure experimental study. The model took into consideration forced convective heat transfer, quasi-steady heat conduction through the composite layers of the SCBA cylinder wall, the breathing pattern and action of the breathing simulator, and predicted air temperatures from the thermally exposed SCBA cylinder and temperatures at the outer surface of the SCBA cylinder. Model predictions agreed reasonably well with the experimental measurements.

  6. Los Alamos Controlled Air Incinerator for radioactive waste. Volume I. Rationale, process, equipment, performance, and recommendations

    SciTech Connect

    Neuls, A.S.; Draper, W.E.; Koenig, R.A.; Newmyer, J.M.; Warner, C.L.

    1982-08-01

    This two-volume report is a detailed design and operating documentation of the Los Alamos National Laboratory Controlled Air Incinerator (CAI) and is an aid to technology transfer to other Department of Energy contractor sites and the commercial sector. Volume I describes the CAI process, equipment, and performance, and it recommends modifications based on Los Alamos experience. It provides the necessary information for conceptual design and feasibility studies. Volume II provides descriptive engineering information such as drawing, specifications, calculations, and costs. It aids duplication of the process at other facilities.

  7. 30 CFR 75.524 - Electric face equipment; electric equipment used in return air outby the last open crosscut...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the last open crosscut; maximum level of alternating or direct electric current between frames of equipment. The maximum level of alternating or direct electric current that exists between the frames of any... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Electric face equipment; electric...

  8. 30 CFR 75.524 - Electric face equipment; electric equipment used in return air outby the last open crosscut...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... the last open crosscut; maximum level of alternating or direct electric current between frames of equipment. The maximum level of alternating or direct electric current that exists between the frames of any... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Electric face equipment; electric...

  9. 30 CFR 75.524 - Electric face equipment; electric equipment used in return air outby the last open crosscut...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... the last open crosscut; maximum level of alternating or direct electric current between frames of equipment. The maximum level of alternating or direct electric current that exists between the frames of any... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Electric face equipment; electric...

  10. 30 CFR 75.524 - Electric face equipment; electric equipment used in return air outby the last open crosscut...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... the last open crosscut; maximum level of alternating or direct electric current between frames of equipment. The maximum level of alternating or direct electric current that exists between the frames of any... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Electric face equipment; electric...

  11. 30 CFR 75.524 - Electric face equipment; electric equipment used in return air outby the last open crosscut...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... the last open crosscut; maximum level of alternating or direct electric current between frames of equipment. The maximum level of alternating or direct electric current that exists between the frames of any... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Electric face equipment; electric...

  12. 42 CFR 84.141 - Breathing gas; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Breathing gas; minimum requirements. 84.141 Section... Respirators § 84.141 Breathing gas; minimum requirements. (a) Breathing gas used to supply supplied-air respirators shall be respirable breathing air and contain no less than 19.5 volume-percent of oxygen....

  13. 42 CFR 84.141 - Breathing gas; minimum requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Breathing gas; minimum requirements. 84.141 Section... Respirators § 84.141 Breathing gas; minimum requirements. (a) Breathing gas used to supply supplied-air respirators shall be respirable breathing air and contain no less than 19.5 volume-percent of oxygen....

  14. 42 CFR 84.141 - Breathing gas; minimum requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Breathing gas; minimum requirements. 84.141 Section... Respirators § 84.141 Breathing gas; minimum requirements. (a) Breathing gas used to supply supplied-air respirators shall be respirable breathing air and contain no less than 19.5 volume-percent of oxygen....

  15. 42 CFR 84.141 - Breathing gas; minimum requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Breathing gas; minimum requirements. 84.141 Section... Respirators § 84.141 Breathing gas; minimum requirements. (a) Breathing gas used to supply supplied-air respirators shall be respirable breathing air and contain no less than 19.5 volume-percent of oxygen....

  16. 42 CFR 84.141 - Breathing gas; minimum requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Breathing gas; minimum requirements. 84.141 Section... Respirators § 84.141 Breathing gas; minimum requirements. (a) Breathing gas used to supply supplied-air respirators shall be respirable breathing air and contain no less than 19.5 volume-percent of oxygen....

  17. Our Breaths We Take: Outdoor Air Quality, Health, and Climate Change Consequences of Household Heating and Cooking with Solid Fuels

    NASA Astrophysics Data System (ADS)

    Chafe, Zoe Anna

    Worldwide, nearly 3 billion people--40% of the global population--burn wood, coal, and other solid fuels every day to cook their food; this number is even larger when including those who heat their homes with solid fuels as well. Exposure to pollution from heating and cooking fires causes about 3 million deaths each year, making it one of the biggest environmental health problems the world faces. The harm from this smoke is not restricted to those who breathe it, however: it contains gases and particles that contribute to global climate change as well. Chapter 2 shows that household cooking with solid fuels caused an estimated 12% of population-weighted ambient PM2.5 worldwide in 2010. Exposure to this air pollution caused the loss of 370,000 lives and 9.9 million disability-adjusted life years (DALYs) globally in the same year. In Chapter 3 I demonstrate that household heating with solid fuels caused an estimated 21% of population-weighted ambient PM2.5 in 2010 in Central Europe, 13% in Eastern Europe, 12% in Western Europe, and 8% in North America. Exposure to this air pollution results caused approximately 60,000 premature deaths in Europe, and nearly 10,000 deaths in North America, as well as an estimated 1.0 million disability-adjusted life years (DALYs) in Europe and 160,000 DALYs in North America. Chapter 4 addresses drivers of household wood combustion pollution in the San Francisco Bay Area, where the sector is the largest source of PM 2.5 and regulators recently introduced amendments to wood burning rules for the airshed. Fireplaces are the source of the vast majority (84%) of PM 2.5 from residential wood combustion in the San Francisco Bay Area, despite their use primarily as an aesthetic or recreational combustion activity. By evaluating hypothetical fuel and combustion device changeouts, I find that replacing fireplaces with gas would yield significant health and economic benefits. Specifically, retrofitting frequently used fireplaces (300,000 units

  18. Modification of NASA Langley 8 Foot High Temperature Tunnel to provide a unique national research facility for hypersonic air-breathing propulsion systems

    NASA Technical Reports Server (NTRS)

    Kelly, H. N.; Wieting, A. R.

    1984-01-01

    A planned modification of the NASA Langley 8-Foot High Temperature Tunnel to make it a unique national research facility for hypersonic air-breathing propulsion systems is described, and some of the ongoing supporting research for that modification is discussed. The modification involves: (1) the addition of an oxygen-enrichment system which will allow the methane-air combustion-heated test stream to simulate air for propulsion testing; and (2) supplemental nozzles to expand the test simulation capability from the current nominal Mach number to 7.0 include Mach numbers 3.0, 4.5, and 5.0. Detailed design of the modifications is currently underway and the modified facility is scheduled to be available for tests of large scale propulsion systems by mid 1988.

  19. Modification of NASA Langley 8 foot high temperature tunnel to provide a unique national research facility for hypersonic air-breathing propulsion systems

    NASA Technical Reports Server (NTRS)

    Kelly, H. N.; Wieting, A. R.

    1984-01-01

    A planned modification of the NASA Langley 8-Foot High Temperature Tunnel to make it a unique national research facility for hypersonic air-breathing propulsion systems is described, and some of the ongoing supporting research for that modification is discussed. The modification involves: (1) the addition of an oxygen-enrichment system which will allow the methane-air combustion-heated test stream to simulate air for propulsion testing; and (2) supplemental nozzles to expand the test simulation capability from the current nominal Mach number to 7.0 include Mach numbers 3.0, 4.5, and 5.0. Detailed design of the modifications is currently underway and the modified facility is scheduled to be available for tests of large scale propulsion systems by mid 1988.

  20. The TEAM (Total Exposure Assessment Methodology) Study: personal exposures to toxic substances in air, drinking water, and breath of 400 residents of New Jersey, North Carolina, and North Dakota.

    PubMed

    Wallace, L A; Pellizzari, E D; Hartwell, T D; Sparacino, C; Whitmore, R; Sheldon, L; Zelon, H; Perritt, R

    1987-08-01

    EPA's TEAM Study has measured exposures to 20 volatile organic compounds in personal air, outdoor air, drinking water, and breath of approximately 400 residents of New Jersey, North Carolina, and North Dakota. All residents were selected by a probability sampling scheme to represent 128,000 inhabitants of Elizabeth and Bayonne, New Jersey, 131,000 residents of Greensboro, North Carolina, and 7000 residents of Devils Lake, North Dakota. Participants carried a personal monitor to collect two 12-hr air samples and gave a breath sample at the end of the day. Two consecutive 12-hr outdoor air samples were also collected on identical Tenax cartridges in the backyards of some of the participants. About 5000 samples were collected, of which 1500 were quality control samples. Ten compounds were often present in personal air and breath samples at all locations. Personal exposures were consistently higher than outdoor concentrations for these chemicals and were sometimes 10 times the outdoor concentrations. Indoor sources appeared to be responsible for much of the difference. Breath concentrations also often exceeded outdoor concentrations and correlated more strongly with personal exposures than with outdoor concentrations. Some activities (smoking, visiting dry cleaners or service stations) and occupations (chemical, paint, and plastics plants) were associated with significantly elevated exposures and breath levels for certain toxic chemicals. Homes with smokers had significantly increased benzene and styrene levels in indoor air. Residence near major point sources did not affect exposure.

  1. Analysis of the Magneto-Hydrodynamic (MHD) Energy Bypass Engine for High-Speed Air-Breathing Propulsion

    NASA Technical Reports Server (NTRS)

    Riggins, David W.

    2002-01-01

    The performance of the MHD energy bypass air-breathing engine for high-speed propulsion is analyzed in this investigation. This engine is a specific type of the general class of inverse cycle engines. In this paper, the general relationship between engine performance (specific impulse and specific thrust) and the overall total pressure ratio through an engine (from inlet plane to exit plane) is first developed and illustrated. Engines with large total pressure decreases, regardless of cause or source, are seen to have exponentially decreasing performance. The ideal inverse cycle engine (of which the MHD engine is a sub-set) is then demonstrated to have a significant total pressure decrease across the engine; this total pressure decrease is cycle-driven, degrades rapidly with energy bypass ratio, and is independent of any irreversibility. The ideal MHD engine (inverse cycle engine with no irreversibility other than that inherent in the MHD work interaction processes) is next examined and is seen to have an additional large total pressure decrease due to MHD-generated irreversibility in the decelerator and the accelerator. This irreversibility mainly occurs in the deceleration process. Both inherent total pressure losses (inverse cycle and MHD irreversibility) result in a significant narrowing of the performance capability of the MHD bypass engine. The fundamental characteristics of MHD flow acceleration and flow deceleration from the standpoint of irreversibility and second-law constraints are next examined in order to clarify issues regarding flow losses and parameter selection in the MM modules. Severe constraints are seen to exist in the decelerator in terms of allowable deceleration Mach numbers and volumetric (length) required for meaningful energy bypass (work interaction). Considerable difficulties are also encountered and discussed due to thermal/work choking phenomena associated with the deceleration process. Lastly, full engine simulations utilizing inlet

  2. Peak Expiratory Flow, Breath Rate and Blood Pressure in Adults with Changes in Particulate Matter Air Pollution during the Beijing Olympics: A Panel Study

    PubMed Central

    Mu, Lina; Deng, Furong; Tian, Lili; Li, Yanli; Swanson, Mya; Ying, Jingjing; Browne, Richard W; Rittenhouse-Olson, Kate; Zhang, Junfeng (Jim); Zhang, Zuo-Feng; Bonner, Matthew R.

    2014-01-01

    Objectives This study aims to examine whether changes in short-term exposures to particulate matter are associated with changes in lung function, breath rate, and blood pressure among healthy adults and whether smoking status modifies the association. Methods We took advantage of the artificially controlled changes in air pollution levels that occurred during the 2008 Olympic Games in Beijing, China and conducted a panel study of 201 Beijing residents. Data were collected before, during, and after the Olympics, respectively. Linear mixed-effects models and generalized estimating equation models were used to compare measurements of peak expiratory flow, breath rate, blood pressure across the three time points. Results The mean values of peak expiratory flow were 346.0 L/min, 399.3 L/min, and 364.1 L/min over the three study periods. Peak expiratory flow levels increased in 78% of the participants when comparing the during- and pre- Olympics time points, while peak expiratory flow levels decreased in 80% of participants for the post- and during-Olympic periods comparison. In subgroup analyses comparing the during -Olympic to pre-Olympic time points, we found a larger percentage change in peak expiratory flow (+17%) among female, younger and non-smoking participants than among male, elderly and smoking participants (+12%). The percentage of participants with a fast breath rate (>20/min) changed from 9.7%, to 4.9%, to 30.1% among females, and from 7.9%, to 2.6%, to 27.3% among males over the three time points respectively. The changes on blood pressure over the three study periods were not very clear, although there is an increase in diastolic pressure and a decrease in pulse pressure among males during the games. Conclusions The results suggest that exposure to different air pollution levels has significant effects on respiratory function. Smoking, age and gender appear to modify participants’ biological response to changes in air quality. PMID:24906062

  3. Lung anatomy and histology of the extant coelacanth shed light on the loss of air-breathing during deep-water adaptation in actinistians

    PubMed Central

    Meunier, François J.; Herbin, Marc; Clément, Gaël; Brito, Paulo M.

    2017-01-01

    Lungs are specialized organs originated from the posterior pharyngeal cavity and considered as plesiomorphic for osteichthyans, as they are found in extant basal actinopterygians (i.e. Polypterus) and in all major groups of extant sarcopterygians. The presence of a vestigial lung in adult stages of the extant coelacanth Latimeria chalumnae is the result of allometric growth during ontogeny, in relation with long-time adaptation to deep water. Here, we present the first detailed histological and anatomical description of the lung of Latimeria chalumnae, providing new insights into its arrested differentiation in an air-breathing complex, mainly represented by the absence of pneumocytes and of compartmentalization in the latest ontogenetic stages.

  4. Lung anatomy and histology of the extant coelacanth shed light on the loss of air-breathing during deep-water adaptation in actinistians.

    PubMed

    Cupello, Camila; Meunier, François J; Herbin, Marc; Clément, Gaël; Brito, Paulo M

    2017-03-01

    Lungs are specialized organs originated from the posterior pharyngeal cavity and considered as plesiomorphic for osteichthyans, as they are found in extant basal actinopterygians (i.e. Polypterus) and in all major groups of extant sarcopterygians. The presence of a vestigial lung in adult stages of the extant coelacanth Latimeria chalumnae is the result of allometric growth during ontogeny, in relation with long-time adaptation to deep water. Here, we present the first detailed histological and anatomical description of the lung of Latimeria chalumnae, providing new insights into its arrested differentiation in an air-breathing complex, mainly represented by the absence of pneumocytes and of compartmentalization in the latest ontogenetic stages.

  5. Understanding the Dehumidification Performance of Air-Conditioning Equipment at Part-Load Conditions

    SciTech Connect

    Don B. Shirey III; Hugh I. Henderson Jr; Richard A. Raustad

    2006-01-01

    Air conditioner cooling coils typically provide both sensible cooling and moisture removal. Data from a limited number of field studies (Khattar et al. 1985; Henderson and Rengarajan 1996; Henderson 1998) have demonstrated that the moisture removal capacity of a cooling coil degrades at part-load conditions--especially when the supply fan operates continuously while the cooling coil cycles on and off. Degradation occurs because moisture that condenses on the coil surfaces during the cooling cycle evaporates back into air stream when the coil is off. This degradation affects the ability of cooling equipment to maintain proper indoor humidity levels and may negatively impact indoor air quality. This report summarizes the results of a comprehensive project to better understand and quantify the moisture removal (dehumidification) performance of cooling coils at part-load conditions. A review of the open literature was initially conducted to learn from previous research on this topic. Detailed performance measurements were then collected for eight cooling coils in a controlled laboratory setting to understand the impact of coil geometry and operating conditions on transient moisture condensation and evaporation by the coils. Measurements of cooling coil dehumidification performance and space humidity levels were also collected at seven field test sites. Finally, an existing engineering model to predict dehumidification performance degradation for single-stage cooling equipment at part-load conditions (Henderson and Rengarajan 1996) was enhanced to include a broader range of fan control strategies and an improved theoretical basis for modeling off-cycle moisture evaporation from cooling coils. The improved model was validated with the laboratory measurements, and this report provides guidance for users regarding proper model inputs. The model is suitable for use in computerized calculation procedures such as hourly or sub-hourly building energy simulation programs (e

  6. Metabolic breath analyzer

    NASA Technical Reports Server (NTRS)

    Perry, C. L.

    1971-01-01

    Instrument measures metabolic breathing rate and dynamics of human beings in atmospheres ranging from normal air to 100 percent oxygen at ambient pressures from 14.7 to 3.0 psia. Measurements are made at rest or performing tasks up to maximum physical capacity under either zero or normal gravity.

  7. Life and Breath

    ERIC Educational Resources Information Center

    Ellis, Helen D.

    1974-01-01

    This article describes a public education program combining the screening process and a follow-up program for teaching victims of emphysema and other respiratory diseases how to better their living condition through proper breathing, avoidance of air pollutants and cigarette smoking, and taking better care of themselves physically. (PD)

  8. 46 CFR 197.310 - Air compressor system.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Air compressor system. 197.310 Section 197.310 Shipping... GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.310 Air compressor system. A compressor used to supply breathing air to a diver must have— (a) A volume tank that is— (1) Built and stamped...

  9. Emergency Response Breathing Apparatus

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Aerospace Design & Development, Inc.'s (ADD's) SCAMP was developed under an SBIR contract through Kennedy Space Center. SCAMP stands for Supercritical Air Mobility Pack. The technology came from the life support fuel cell support systems used for the Apollo and Space Shuttle programs. It uses supercritical cryogenic air and is able to function in microgravity environments. SCAMP's self-contained breathing apparatus(SCBA) systems are also ground-based and can provide twice as much air than traditional SCBA's due to its high-density capacity. The SCAMP system was designed for use in launch pad emergency rescues. ADD also developed a protective suit for use with SCAMP that is smaller and lighter system than the old ones. ADD's SCAMP allows for body cooling and breathing from the supercritical cryogenic air, requiring no extra systems. The improvement over the traditional SCBA allows for a reduction of injuries, such as heat stress, and makes it easier for rescuers to save lives.

  10. Mobile Sensors and Applications for Air Pollutants

    EPA Science Inventory

    Executive Summary The public has long been interested in understanding what pollutants are in the air they breathe so they can best protect their environmental health and welfare. The current air quality monitoring network consists of discrete stations with expensive equipment ...

  11. 46 CFR 108.635 - Self-contained breathing apparatus.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Self-contained breathing apparatus. 108.635 Section 108... DESIGN AND EQUIPMENT Equipment Markings and Instructions § 108.635 Self-contained breathing apparatus. Each locker or space containing self-contained breathing apparatus must be marked: “SELF...

  12. 46 CFR 108.635 - Self-contained breathing apparatus.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Self-contained breathing apparatus. 108.635 Section 108... DESIGN AND EQUIPMENT Equipment Markings and Instructions § 108.635 Self-contained breathing apparatus. Each locker or space containing self-contained breathing apparatus must be marked: “SELF...

  13. 46 CFR 108.635 - Self-contained breathing apparatus.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Self-contained breathing apparatus. 108.635 Section 108... DESIGN AND EQUIPMENT Equipment Markings and Instructions § 108.635 Self-contained breathing apparatus. Each locker or space containing self-contained breathing apparatus must be marked: “SELF...

  14. 46 CFR 108.635 - Self-contained breathing apparatus.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... DESIGN AND EQUIPMENT Equipment Markings and Instructions § 108.635 Self-contained breathing apparatus. Each locker or space containing self-contained breathing apparatus must be marked: “SELF CONTAINED... 46 Shipping 4 2010-10-01 2010-10-01 false Self-contained breathing apparatus. 108.635 Section...

  15. 46 CFR 108.635 - Self-contained breathing apparatus.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... DESIGN AND EQUIPMENT Equipment Markings and Instructions § 108.635 Self-contained breathing apparatus. Each locker or space containing self-contained breathing apparatus must be marked: “SELF CONTAINED... 46 Shipping 4 2011-10-01 2011-10-01 false Self-contained breathing apparatus. 108.635 Section...

  16. Regional variability in diving physiology and behavior in a widely distributed air-breathing marine predator, the South American sea lion (Otaria byronia).

    PubMed

    Hückstädt, Luis A; Tift, Michael S; Riet-Sapriza, Federico; Franco-Trecu, Valentina; Baylis, Alastair M M; Orben, Rachael A; Arnould, John P Y; Sepulveda, Maritza; Santos-Carvallo, Macarena; Burns, Jennifer M; Costa, Daniel P

    2016-08-01

    Our understanding of how air-breathing marine predators cope with environmental variability is limited by our inadequate knowledge of their ecological and physiological parameters. Because of their wide distribution along both coasts of the sub-continent, South American sea lions (Otaria byronia) provide a valuable opportunity to study the behavioral and physiological plasticity of a marine predator in different environments. We measured the oxygen stores and diving behavior of South American sea lions throughout most of its range, allowing us to demonstrate that diving ability and behavior vary across its range. We found no significant differences in mass-specific blood volumes of sea lions among field sites and a negative relationship between mass-specific oxygen storage and size, which suggests that exposure to different habitats and geographical locations better explains oxygen storage capacities and diving capability in South American sea lions than body size alone. The largest animals in our study (individuals from Uruguay) were the shallowest and shortest duration divers, and had the lowest mass-specific total body oxygen stores, while the deepest and longest duration divers (individuals from southern Chile) had significantly larger mass-specific oxygen stores, despite being much smaller animals. Our study suggests that the physiology of air-breathing diving predators is not fixed, but that it can be adjusted, to a certain extent, depending on the ecological setting and or habitat. These adjustments can be thought of as a 'training effect': as the animal continues to push its physiological capacity through greater hypoxic exposure, its breath-holding capacity increases.

  17. EVALUATION OF FOAMING/ANTIFOAMING IN WTP TANKS EQUIPPED WITH PULSE JET MIXERS AND AIR SPARGERS

    SciTech Connect

    JONES, TIMOTHYM.

    2004-09-01

    has no significant effect on pH or chemical composition of the slurry. The rheology is also not impacted by air sparging. The primary effect of air sparging is the removal of water by the dry air passing through the column and exiting in a saturated condition. This effect can be mitigated by adding water back to the column or vessel during sparging. Therefore, an initial charge of 350 mg/L antifoam (Dow Q2-3183A) followed by small batch additions of 70 mg/LQ2-3183A every 24 hours is recommended for use in WTP tanks equipped with air spargers and pulse jets based upon the testing done in this study. However, this recommendation is based upon a limited set of antifoam degradation data developed for the WTP evaporator R and T program. Therefore, additional investigation into refining the kinetic behavior of Q2 antifoam under radiation dose is recommended.

  18. High-efficiency gas heat pump air-conditioner equipped with absorption refrigerator

    NASA Astrophysics Data System (ADS)

    Imai, Yosuke; Ohashi, Toshinori; Okamoto, Hiroaki; Hihara, Eiji; Kawakami, Ryuichiro

    On conventional gas heat pump(GHP), waste heat from gas engine that uses as driving source is emitted into outside. So from the standpoint of efficient use of waste heat, it is assumed that waste heat from gas engine is used as driving source of absorption chiller, and high temperature condensate refrigerant in GHP is subcooled to middle temperature by cold source from absorption cycle, and as a result, GHP makes more efficiency. However, in equipping GHP with absorption cycle, downsizing and high-efficiency of absorption cycle is required. In this study, air-cooled subcooled adiabatic absorber is focused and physical phenomenon in it is analyzed, and finally one perception of the optimized designing is shown.

  19. Effects of nitrite exposure on functional haemoglobin levels, bimodal respiration, and swimming performance in the facultative air-breathing fish Pangasianodon hypophthalmus.

    PubMed

    Lefevre, Sjannie; Jensen, Frank B; Huong, Do T T; Wang, Tobias; Phuong, Nguyen T; Bayley, Mark

    2011-07-01

    In this study we investigated nitrite (NO₂⁻) effects in striped catfish, a facultative air-breather. Fish were exposed to 0, 0.4, and 0.9 mM nitrite for 0, 1, 2, 4, and 7 days, and levels of functional haemoglobin, methaemoglobin (metHb) and nitrosyl haemoglobin (HbNO) were assessed using spectral deconvolution. Plasma concentrations of nitrite, nitrate, chloride, potassium, and sodium were also measured. Partitioning of oxygen consumption was determined to reveal whether elevated metHb (causing functional hypoxia) induced air-breathing. The effects of nitrite on maximum oxygen uptake (MO(2max)) and critical swimming speed (U(crit)) were also assessed. Striped catfish was highly tolerant to nitrite exposure, as reflected by a 96 h LC₅₀ of 1.65 mM and a moderate nitrite uptake into the blood. Plasma levels of nitrite reached a maximum after 1 day of exposure, and then decreased, never exceeding ambient levels. MetHb, HbNO and nitrate (a nitrite detoxification product) also peaked after 1 day and then decreased. Only high levels of nitrite and metHb caused reductions in MO(2max) and U(crit). The response of striped catfish contrasts with that seen in most other fish species and discloses efficient mechanisms of combating nitrite threats. Furthermore, even though striped catfish is an efficient air-breather, this species has the ability to sustain aerobic scope and swimming performance without air-breathing, even when faced with nitrite-induced reductions in blood oxygen carrying capacity. Our study is the first to confirm that high levels of nitrite and metHb reduce MO(2max) and thereby aerobic scope, while more moderate elevations fail to do so. Further studies are needed to elucidate the mechanisms underlying the low nitrite accumulation in striped catfish.

  20. Bad Breath

    MedlinePlus

    ... for lunch. But certain strong-smelling foods like onions and garlic can cause bad breath. So can ... leave behind strong smells, like cabbage, garlic, raw onions, and coffee. If you’re trying to lose ...

  1. Breath odor

    MedlinePlus

    ... drain their stomach. The breath may have an ammonia-like odor (also described as urine-like or " ... Is there a specific odor (such as fish, ammonia, fruit, feces, or alcohol)? Have you recently eaten ...

  2. Air Research

    EPA Pesticide Factsheets

    EPA's air research provides the critical science to develop and implement outdoor air regulations under the Clean Air Act and puts new tools and information in the hands of air quality managers and regulators to protect the air we breathe.

  3. 42 CFR 84.88 - Breathing bag test.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Breathing bag test. 84.88 Section 84.88 Public... RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Self-Contained Breathing Apparatus § 84.88 Breathing bag test. (a) Breathing bags will be tested in an air atmosphere saturated...

  4. 42 CFR 84.88 - Breathing bag test.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Breathing bag test. 84.88 Section 84.88 Public... RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Self-Contained Breathing Apparatus § 84.88 Breathing bag test. (a) Breathing bags will be tested in an air atmosphere saturated...

  5. 42 CFR 84.88 - Breathing bag test.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Breathing bag test. 84.88 Section 84.88 Public... RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Self-Contained Breathing Apparatus § 84.88 Breathing bag test. (a) Breathing bags will be tested in an air atmosphere saturated...

  6. 42 CFR 84.88 - Breathing bag test.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Breathing bag test. 84.88 Section 84.88 Public... RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Self-Contained Breathing Apparatus § 84.88 Breathing bag test. (a) Breathing bags will be tested in an air atmosphere saturated...

  7. 42 CFR 84.88 - Breathing bag test.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Breathing bag test. 84.88 Section 84.88 Public... RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Self-Contained Breathing Apparatus § 84.88 Breathing bag test. (a) Breathing bags will be tested in an air atmosphere saturated...

  8. Increased temperature tolerance of the air-breathing Asian swamp eel Monopterus albus after high-temperature acclimation is not explained by improved cardiorespiratory performance.

    PubMed

    Lefevre, S; Findorf, I; Bayley, M; Huong, D T T; Wang, T

    2016-01-01

    This study investigated the hypothesis that in the Asian swamp eel Monopterus albus, an air-breathing fish from south-east Asia that uses the buccopharyngeal cavity for oxygen uptake, the upper critical temperature (TU) is increased by acclimation to higher temperature, and that the increased TU is associated with improved cardiovascular and respiratory function. Monopterus albus were therefore acclimated to 27° C (current average) and 32° C (current maximum temperature as well as projected average within 100-200 years), and both the effect of acclimation and acute temperature increments on cardiovascular and respiratory functions were investigated. Two weeks of heat acclimation increased upper tolerated temperature (TU ) by 2° C from 36·9 ± 0·1° C to 38·9 ± 0·1° C (mean ± s.e.). Oxygen uptake (M˙O2) increased with acclimation temperature, accommodated by increases in both aerial and aquatic respiration. Overall, M˙O2 from air (M˙O2a ) was predominant, representing 85% in 27° C acclimated fish and 80% in 32° C acclimated fish. M˙O2 increased with acute increments in temperature and this increase was entirely accommodated by an increase in air-breathing frequency and M˙O2a . Monopterus albus failed to upregulate stroke volume; rather, cardiac output was maintained through increased heart rate with rising temperature. Overall, acclimation of M. albus to 32° C did not improve its cardiovascular and respiratory performance at higher temperatures, and cardiovascular adaptations, therefore, do not appear to contribute to the observed increase in TU.

  9. How to breathe when you are short of breath

    MedlinePlus

    Pursed lip breathing; COPD - pursed lip breathing; Emphysema - pursed lip breathing; Chronic bronchitis - pursed lip breathing; Pulmonary fibrosis - pursed lip breathing; Interstitial lung disease - pursed lip breathing; Hypoxia - pursed lip breathing; ...

  10. Breath sounds

    MedlinePlus

    ... are believed to occur when air opens closed air spaces. Rales can be further described as moist, dry, fine, and coarse. Rhonchi. Sounds that resemble snoring. They occur when air is blocked or air flow becomes rough through ...

  11. How Does a Hopping Kangaroo Breathe?

    ERIC Educational Resources Information Center

    Giuliodori, Mauricio J.; Lujan, Heidi L.; Janbaih, Hussein; DiCarlo, Stephen E.

    2010-01-01

    We developed a model to demonstrate how a hopping kangaroo breathes. Interestingly, a kangaroo uses less energy to breathe while hopping than while standing still. This occurs, in part, because rather than using muscle power to move air into and out of the lungs, air is pulled into (inspiration) and pushed out of (expiration) the lungs as the…

  12. LPV H-infinity Control for the Longitudinal Dynamics of a Flexible Air-Breathing Hypersonic Vehicle

    NASA Astrophysics Data System (ADS)

    Hughes, Hunter Douglas

    This dissertation establishes the method needed to synthesize and simulate an Hinfinity Linear Parameter-Varying (LPV) controller for a flexible air-breathing hypersonic vehicle model. A study was conducted to gain the understanding of the elastic effects on the open loop system. It was determined that three modes of vibration would be suitable for the hypersonic vehicle model. It was also discovered from the open loop study that there is strong coupling in the hypersonic vehicle states, especially between the angle of attack, pitch rate, pitch attitude, and the exible modes of the vehicle. This dissertation outlines the procedure for synthesizing a full state feedback Hinfinity LPV controller for the hypersonic vehicle. The full state feedback study looked at both velocity and altitude tracking for the exible vehicle. A parametric study was conducted on each of these controllers to see the effects of changing the number of gridding points in the parameter space and changing the parameter variation rate limits in the system on the robust performance of the controller. As a result of the parametric study, a 7 x 7 grid ranging from Mach 7 to Mach 9 in velocity and from 70,000 feet to 90,000 feet in altitude, and a parameter variation rate limit of [.5 200]T was used for both the velocity tracking and altitude tracking cases. The resulting Hinfinity robust performances were gamma = 2.2224 for the velocity tracking case and = 1:7582 for the altitude tracking case. A linear analysis was then conducted on five different selected trim points from the Hinfinity LPV controller. This was conducted for the velocity tracking and altitude tracking cases. The results of linear analysis show that there is a slight difference in the response of the Hinfinity LPV controller and the fixed point H infinity controller. For the tracking task, the Hinfinity controller responds more quickly, and has a lower Hinfinity performance value. Next, the H infinity LPV controller was simulated

  13. Aerodynamic characteristics of a series of twin-inlet air-breathing missile configurations. 2: Two-dimensional inlets at supersonic speeds

    NASA Technical Reports Server (NTRS)

    Hayes, C.

    1983-01-01

    A series of air-breathing missile configurations was investigated to provide a data base for the design of such missiles. The model could be configured with either twin axisymmetric or two dimensional inlets. Three circumferential inlet locations were investigated: 90 deg, 115 deg, and 135 deg from the top center. Two vertical wing locations, as well as wingless configurations, were used. Three tail configurations were formed by locating the tail surfaces either on the inlet fairings or on fairings on the body. The surfaces were used to provide pitch control. Two dimensional inlets with extended compression surfaces, used to improve the angle-of-attack performance of the inlets for wingless configurations, were also investigated. The two dimensional inlet configurations are covered.

  14. Design of experiments and principal component analysis as approaches for enhancing performance of gas-diffusional air-breathing bilirubin oxidase cathode

    NASA Astrophysics Data System (ADS)

    Babanova, Sofia; Artyushkova, Kateryna; Ulyanova, Yevgenia; Singhal, Sameer; Atanassov, Plamen

    2014-01-01

    Two statistical methods, design of experiments (DOE) and principal component analysis (PCA) are employed to investigate and improve performance of air-breathing gas-diffusional enzymatic electrodes. DOE is utilized as a tool for systematic organization and evaluation of various factors affecting the performance of the composite system. Based on the results from the DOE, an improved cathode is constructed. The current density generated utilizing the improved cathode (755 ± 39 μA cm-2 at 0.3 V vs. Ag/AgCl) is 2-5 times higher than the highest current density previously achieved. Three major factors contributing to the cathode performance are identified: the amount of enzyme, the volume of phosphate buffer used to immobilize the enzyme, and the thickness of the gas-diffusion layer (GDL). PCA is applied as an independent confirmation tool to support conclusions made by DOE and to visualize the contribution of factors in individual cathode configurations.

  15. The roles of vibration analysis and infrared thermography in monitoring air-handling equipment

    NASA Astrophysics Data System (ADS)

    Wurzbach, Richard N.

    2003-04-01

    Industrial and commercial building equipment maintenance has not historically been targeted for implementation of PdM programs. The focus instead has been on manufacturing, aerospace and energy industries where production interruption has significant cost implications. As cost-effectiveness becomes more pervasive in corporate culture, even office space and labor activities housed in large facilities are being scrutinized for cost-cutting measures. When the maintenance costs for these facilities are reviewed, PdM can be considered for improving the reliability of the building temperature regulation, and reduction of maintenance repair costs. An optimized program to direct maintenance resources toward a cost effective and pro-active management of the facility can result in reduced operating budgets, and greater occupant satisfaction. A large majority of the significant rotating machinery in a large building environment are belt-driven air handling units. These machines are often poorly designed or utilized within the facility. As a result, the maintenance staff typically find themselves scrambling to replace belts and bearings, going from one failure to another. Instead of the reactive-mode maintenance, some progressive and critical institutions are adopting predictive and proactive technologies of infrared thermography and vibration analysis. Together, these technologies can be used to identify design and installation problems, that when corrected, significantly reduce maintenance and increase reliability. For critical building use, such as laboratories, research facilities, and other high value non-industrial settings, the cost-benefits of more reliable machinery can contribute significantly to the operational success.

  16. Expression of inducible nitric oxide synthase and nitric oxide production in the mud-dwelled air-breathing singhi catfish, Heteropneustes fossilis under condition of water shortage.

    PubMed

    Choudhury, Mahua G; Saha, Nirmalendu

    2012-12-01

    Nitric oxide (NO) is known to be an important regulator molecule for regulating the multiple signaling pathways and also to play diverse physiological functions in mammals including that of adaptation to various stresses. The present study reports on the production of nitric oxide (NO) and the expression of inducible nitric oxide synthase (iNOS) enzyme that produces NO from l-arginine in the freshwater air-breathing catfish (Heteropneustes fossilis) while dwelling inside the mud peat under semidry conditions. Desiccation stress, due to mud-dwelling for 2 weeks, led to significant increase of NO concentration in different tissues and in plasma of singhi catfish, and also the increase of NO efflux from the perfused liver with an accompanying increase of toxic ammonia level in different tissues. Mud-dwelling also resulted to induction of iNOS activity, expression of iNOS protein in different tissues after 7 days with further increase after 14 days, which otherwise was not detectable in control fish. Further, mud-dwelling also resulted to a significant expression of iNOS mRNA after 7 days with a more increase of mRNA level after 14 days, suggesting that the desiccation stress caused transcriptional regulation of iNOS gene. Immunocytochemical analysis indicated the zonal specific expression of iNOS protein in different tissues. Desiccation stress also led to activation and nuclear translocation of nuclear factor кB (NFкB) in hepatic cells. These results suggest that the activation of iNOS gene under desiccation-induced stresses such as high ammonia load was probably mediated through the activation of one of the major transcription factors, the NFкB. This is the first report of desiccation-induced induction of iNOS gene, iNOS protein expression leading to more generation of NO while living inside the mud peat under condition of water shortage in any air-breathing teleosts.

  17. Molecular cloning, expression analysis and miRNA prediction of vascular endothelial growth factor A (VEGFAa and VEGFAb) in pond loach Misgurnus anguillicaudatus, an air-breathing fish.

    PubMed

    Luo, Weiwei; Liang, Xiao; Huang, Songqian; Cao, Xiaojuan

    2016-12-01

    Vascular endothelial growth factor A (VEGFA) is the most studied and the best characterized member of the VEGF family and is a key regulator of angiogenesis via its ability to affect the proliferation, migration, and differentiation of endothelial cells. In this study, the full-length cDNAs encoding VEGFAa and VEGFAb from pond loach, Misgurnus anguillicaudatus, were isolated. The VEGFAa is constituted by an open reading frame (ORF) of 570bp encoding for a peptide of 189 amino acid residues, a 639bp 5'-untranslated region (UTR) and a 2383bp 3' UTR. The VEGFAb is constituted by an ORF of 687bp encoding for a peptide of 228 amino acid residues, a 560bp 5' UTR and a 1268bp 3' UTR. Phylogenetic analysis indicated that the VEGFAa and VEGFAb of pond loach were conserved in vertebrates. Expression levels of VEGFAa and VEGFAb were detected by RT-qPCR at different development stages of pond loach and in different tissues of 6-month-old, 12-month-old and 24-month-old pond loach. Moreover, eight predicted miRNAs (miR-200, miR-29, miR-218, miR-338, miR-103, miR-15, miR-17 and miR-223) targeting VEGFAa and VEGFAb were validated by an intestinal air-breathing inhibition experiment. This study will be of value for further studies into the function of VEGFA and its corresponding miRNAs, which will shed a light on the vascularization and accessory air-breathing process in pond loach.

  18. Capillary thermal desorption unit for near real-time analysis of VOCs at sub-trace levels. Application to the analysis of environmental air contamination and breath samples.

    PubMed

    Alonso, Mónica; Castellanos, Mar; Martín, José; Sanchez, Juan M

    2009-05-15

    A capillary microtrap thermal desorption module is developed for near real-time analysis of volatile organic compounds (VOCs) at sub-ppbv levels in air samples. The device allows the direct injection of the thermally desorbed VOCs into a chromatographic column. It does not use a second cryotrap to focalize the adsorbed compounds before entering the separation column so reducing the formation of artifacts. The connection of the microtrap to a GC-MS allows the quantitative determination of VOCs in less than 40 min with detection limits of between 5 and 10 pptv (25 degrees C and 760 mm Hg), which correspond to 19-43 ng m(-3), using sampling volumes of 775 cm(3). The microtrap is applied to the analysis of environmental air contamination in different laboratories of our faculty. The results obtained indicate that most volatile compounds are easily diffused through the air and that they also may contaminate the surrounding areas when the habitual safety precautions (e.g., working under fume hoods) are used during the manipulation of solvents. The application of the microtrap to the analysis of VOCs in breath samples suggest that 2,5-dimethylfuran may be a strong indicator of a person's smoking status.

  19. Medical Issues: Breathing

    MedlinePlus

    ... support & care > living with sma > medical issues > breathing Breathing Breathing problems are the most common cause of illness for children with SMA. Breathing Risks In healthy individuals, the muscles between the ...

  20. Optimizing the Disposition and Retrograde of United States Air Force Class VII Equipment from Afghanistan

    DTIC Science & Technology

    2014-03-27

    SCMS ). Within the Equipment Requirements System , USAF equipment managers apply a criticality assessment to all equipment requirements. This...defined and operated systems add significant cost and produce slow responsiveness (Kocabasoglu et al. 2007). With the drawdown deadline now less than... systems who, responding to increasing environmental regulations or business incentives have created completely closed-loop supply chains (CLSC). The

  1. 30 CFR 75.507-1 - Electric equipment other than power-connection points; outby the last open crosscut; return air...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... other than power-connection points; outby the last open crosscut; return air; permissibility requirements. (a) All electric equipment, other than power-connection points, used in return air outby the last... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Electric equipment other than...

  2. Portable breathing apparatus for coal mines

    NASA Technical Reports Server (NTRS)

    Vandolah, R. W.

    1972-01-01

    The state of the art in portable oxygen breathing equipment is reported. Considered are self-containing as well as chemically generating oxygen sources and their effectiveness and limitations in mine rescue operations.

  3. 1981 AFOSR Contractors Meeting on Air Breathing Combustion Dynamics and Explosion Research, 16-20 November 1981, Clearwater Beach, Florida

    DTIC Science & Technology

    1981-09-01

    Atomi:Mation, Ignition and Combustion of Liquid and Multiphase Fuels in High -Speed Air StreamsIi J. Schetz VPI and State University 9:00 Turbulent Mixing and...Aeronautical Laboratories (AFWAL) 8:35 Injection, Atomt:ation, Ignition and Combustion of Liquid and Multiphase Fuels in High -Speed Air Streams J...State University Transverse injection of liquid and/or liquid -slurry jets into high speed airstreams finds application in several propulsion-related

  4. Heart rates in fire fighters using light and heavy breathing equipment: similar near-maximal exertion in response to multiple work load conditions.

    PubMed

    Manning, J E; Griggs, T R

    1983-03-01

    Intense exertion is an occupational hazard inherent to fire fighting. This study was designed to look at the exertion levels that fire fighters attain during a fire fighting exercise when using (1) no self-contained breathing apparatus (SCBA), (2) light SCBA, and (3) heavy SCBA. Exertion levels were measured as a function of the heart rate increase relative to the maximum predicted heart rate determined by a standard treadmill exercise test. Five fire fighters wore electrocardiographic monitors during a routine fire fighting exercise. Heart rates increased rapidly to 70% to 80% of maximum within the first minute and then plateaued at 90% to 100% until the attack on the fire was completed. There was no significant difference between exertion levels when using no SCBA, light SCBA, and heavy SCBA (split-plot analysis of variance, p greater than .25). These results suggest that fire fighters attain an intense level of physical activity quickly and maintain that level as long as they are actively engaged in fighting fire. These results also suggest that regardless of the weight of the SCBA, if employed, fire fighters exert themselves from 85% to 100% of their maximum and adjust their work output to maintain that near-maximal level.

  5. Validation of a CFD Model by Using 3D Sonic Anemometers to Analyse the Air Velocity Generated by an Air-Assisted Sprayer Equipped with Two Axial Fans

    PubMed Central

    García-Ramos, F. Javier; Malón, Hugo; Aguirre, A. Javier; Boné, Antonio; Puyuelo, Javier; Vidal, Mariano

    2015-01-01

    A computational fluid dynamics (CFD) model of the air flow generated by an air-assisted sprayer equipped with two axial fans was developed and validated by practical experiments in the laboratory. The CFD model was developed by considering the total air flow supplied by the sprayer fan to be the main parameter, rather than the outlet air velocity. The model was developed for three air flows corresponding to three fan blade settings and assuming that the sprayer is stationary. Actual measurements of the air velocity near the sprayer were taken using 3D sonic anemometers. The workspace sprayer was divided into three sections, and the air velocity was measured in each section on both sides of the machine at a horizontal distance of 1.5, 2.5, and 3.5 m from the machine, and at heights of 1, 2, 3, and 4 m above the ground The coefficient of determination (R2) between the simulated and measured values was 0.859, which demonstrates a good correlation between the simulated and measured data. Considering the overall data, the air velocity values produced by the CFD model were not significantly different from the measured values. PMID:25621611

  6. A Novel Method for Quantifying the Inhaled Dose of Air Pollutants Based on Heart Rate, Breathing Rate and Forced Vital Capacity

    PubMed Central

    Greenwald, Roby; Hayat, Matthew J.; Barton, Jerusha; Lopukhin, Anastasia

    2016-01-01

    To better understand the interaction of physical activity and air pollution exposure, it is important to quantify the change in ventilation rate incurred by activity. In this paper, we describe a method for estimating ventilation using easily-measured variables such as heart rate (HR), breathing rate (fB), and forced vital capacity (FVC). We recruited healthy adolescents to use a treadmill while we continuously measured HR, fB, and the tidal volume (VT) of each breath. Participants began at rest then walked and ran at increasing speed until HR was 160–180 beats per minute followed by a cool down period. The novel feature of this method is that minute ventilation (V˙E) was normalized by FVC. We used general linear mixed models with a random effect for subject and identified nine potential predictor variables that influence either V˙E or FVC. We assessed predictive performance with a five-fold cross-validation procedure. We used a brute force selection process to identify the best performing models based on cross-validation percent error, the Akaike Information Criterion and the p-value of parameter estimates. We found a two-predictor model including HR and fB to have the best predictive performance (V˙E/FVC = -4.247+0.0595HR+0.226fB, mean percent error = 8.1±29%); however, given the ubiquity of HR measurements, a one-predictor model including HR may also be useful (V˙E/FVC = -3.859+0.101HR, mean percent error = 11.3±36%). PMID:26809066

  7. 46 CFR 197.340 - Breathing gas supply.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... diver. (d) A primary breathing gas supply for SCUBA diving must be sufficient to support the diver for...) A diver-carried reserve breathing gas supply for SCUBA diving must be sufficient to allow the diver... GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.340 Breathing gas supply. (a) A...

  8. 46 CFR 197.340 - Breathing gas supply.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... diver. (d) A primary breathing gas supply for SCUBA diving must be sufficient to support the diver for...) A diver-carried reserve breathing gas supply for SCUBA diving must be sufficient to allow the diver... GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.340 Breathing gas supply. (a) A...

  9. 46 CFR 197.340 - Breathing gas supply.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... diver. (d) A primary breathing gas supply for SCUBA diving must be sufficient to support the diver for...) A diver-carried reserve breathing gas supply for SCUBA diving must be sufficient to allow the diver... GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.340 Breathing gas supply. (a) A...

  10. 46 CFR 197.340 - Breathing gas supply.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... diver. (d) A primary breathing gas supply for SCUBA diving must be sufficient to support the diver for...) A diver-carried reserve breathing gas supply for SCUBA diving must be sufficient to allow the diver... GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.340 Breathing gas supply. (a) A...

  11. 46 CFR 197.340 - Breathing gas supply.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... diver. (d) A primary breathing gas supply for SCUBA diving must be sufficient to support the diver for...) A diver-carried reserve breathing gas supply for SCUBA diving must be sufficient to allow the diver... GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.340 Breathing gas supply. (a) A...

  12. 46 CFR 197.312 - Breathing supply hoses.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Breathing supply hoses. 197.312 Section 197.312 Shipping... GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.312 Breathing supply hoses. (a) Each breathing supply hose must— (1) Have a maximum working pressure that is equal to or exceeds— (i) The...

  13. 46 CFR 197.312 - Breathing supply hoses.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Breathing supply hoses. 197.312 Section 197.312 Shipping... GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.312 Breathing supply hoses. (a) Each breathing supply hose must— (1) Have a maximum working pressure that is equal to or exceeds— (i) The...

  14. 46 CFR 169.736 - Self-contained breathing apparatus.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Self-contained breathing apparatus. 169.736 Section 169... VESSELS Vessel Control, Miscellaneous Systems, and Equipment Markings § 169.736 Self-contained breathing apparatus. Each locker or space containing self-contained breathing apparatus must be marked...

  15. 46 CFR 197.312 - Breathing supply hoses.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Breathing supply hoses. 197.312 Section 197.312 Shipping... GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.312 Breathing supply hoses. (a) Each breathing supply hose must— (1) Have a maximum working pressure that is equal to or exceeds— (i) The...

  16. 46 CFR 197.312 - Breathing supply hoses.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Breathing supply hoses. 197.312 Section 197.312 Shipping... GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.312 Breathing supply hoses. (a) Each breathing supply hose must— (1) Have a maximum working pressure that is equal to or exceeds— (i) The...

  17. 46 CFR 169.736 - Self-contained breathing apparatus.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Self-contained breathing apparatus. 169.736 Section 169... VESSELS Vessel Control, Miscellaneous Systems, and Equipment Markings § 169.736 Self-contained breathing apparatus. Each locker or space containing self-contained breathing apparatus must be marked...

  18. 46 CFR 169.736 - Self-contained breathing apparatus.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Self-contained breathing apparatus. 169.736 Section 169... VESSELS Vessel Control, Miscellaneous Systems, and Equipment Markings § 169.736 Self-contained breathing apparatus. Each locker or space containing self-contained breathing apparatus must be marked...

  19. 46 CFR 197.312 - Breathing supply hoses.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Breathing supply hoses. 197.312 Section 197.312 Shipping... GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.312 Breathing supply hoses. (a) Each breathing supply hose must— (1) Have a maximum working pressure that is equal to or exceeds— (i) The...

  20. 46 CFR 169.736 - Self-contained breathing apparatus.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Self-contained breathing apparatus. 169.736 Section 169... VESSELS Vessel Control, Miscellaneous Systems, and Equipment Markings § 169.736 Self-contained breathing apparatus. Each locker or space containing self-contained breathing apparatus must be marked...

  1. 46 CFR 169.736 - Self-contained breathing apparatus.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Self-contained breathing apparatus. 169.736 Section 169... VESSELS Vessel Control, Miscellaneous Systems, and Equipment Markings § 169.736 Self-contained breathing apparatus. Each locker or space containing self-contained breathing apparatus must be marked...

  2. 'Relax and take a deep breath': print media coverage of asthma and air pollution in the United States.

    PubMed

    Mayer, Brian

    2012-09-01

    The media are an important social actor in the construction of the public's understanding of the complex relationships between the environment and their health. This paper explores the print media's coverage of the relationship between asthma and air pollution, focusing on the portrayal of causal certainty between exposure to various forms of air pollution and the etiology and exacerbation of the disease. By examining twenty years of newspaper articles from the New York Timeş Los Angeles Times, and the Washington Post, this paper presents findings on trends across time, within papers, and across key themes. Although the print media's coverage of asthma and its environmental correlates has increased over time, this paper finds relatively little coherence in whether asthma is portrayed as directly caused by air pollution or triggered by exposures. In terms of coverage, outdoor sources of air pollution are covered more frequently - but with less certainty in the discussion of specific relationships. This lack of coherence and specificity in the portrayal of asthma as an environmental disease may weaken regulators' ability to act in passing air pollution reforms by lowering the public's interest and concern.

  3. The use of superoxide mixtures as air-revitalization chemicals in hyperbaric, self-contained, closed-circuit breathing apparatus

    NASA Technical Reports Server (NTRS)

    Wood, P. C.; Wydeven, T.

    1985-01-01

    In portable breathing apparatus applications at 1 atm, potassium superoxide (KO2) has exhibited low-utilization efficiency of the available oxygen (O2) and diminished carbon dioxide-(CO2) scrubbing capacity caused by the formation of a fused, hydrated-hydroxide/carbonate product coating on the superoxide granules. In earlier work, it was discovered that granules fabricated from an intimate mixture of KO2 and calcium superoxide, Ca(O2)2, did not exhibit formation of a fused product coating and the utilization efficiency with respect to both O2 release and CO2 absorption was superior to KO2 granules when both types of granules were reacted with humidified CO2 under identified conditions. In the work described here, single pellets of KO2, KO2/Ca(O2), mixtures and commercially available KO2 tables and granules were reacted with a flow of humidified CO2 in helium at 1- and 10-atm total pressure and at an initial temperature of 40 C. In the 1-atm flow tests, the reaction rates and utilization efficiency of the KO2/Ca(O2)2 pellets were markedly superior to the KO2 pellets, tablets, and granules when the samples were reacted under identical conditions. However, at 10 atm, the rates of O2 release and CO2 absorption, as well as the utilization efficiencies of all the superoxide samples, were one-third to one-eighth of the values observed at 1 atm. The decrease in reaction performance at 10 atm compared to that at 1 atm has been attributed principally to the lower bulk diffusivity of the CO2 and H2O reactants in helium at the higher pressure and secondarily to the moderation of the reaction temperature caused by the higher heat capacity of the 10-atm helium.

  4. Allergies to molds caused by fungal spores in air conditioning equipment

    SciTech Connect

    Schata, M.; Jorde, W. ); Elixmann, J.H.; Linskens, H.F. )

    1989-01-01

    People suffering from various symptoms while in air-conditioned rooms often show sensitizations to fungi that can be isolated when the fungi are removed from air conditioners. By using specific challenge tests it was shown that fungal spores in air conditioners can evoke allergic symptoms. Hyposensitization was the specific therapy prescribed for such allergic reactions. After hyposensitization therapy, more than 70% of the patients so treated could live and work again in air-conditioned rooms without developing specific symptoms.

  5. Analysis of the air flow generated by an air-assisted sprayer equipped with two axial fans using a 3D sonic anemometer.

    PubMed

    García-Ramos, F Javier; Vidal, Mariano; Boné, Antonio; Malón, Hugo; Aguirre, Javier

    2012-01-01

    The flow of air generated by a new design of air assisted sprayer equipped with two axial fans of reversed rotation was analyzed. For this goal, a 3D sonic anemometer has been used (accuracy: 1.5%; measurement range: 0 to 45 m/s). The study was divided into a static test and a dynamic test. During the static test, the air velocity in the working vicinity of the sprayer was measured considering the following machine configurations: (1) one activated fan regulated at three air flows (machine working as a traditional sprayer); (2) two activated fans regulated at three air flows for each fan. In the static test 72 measurement points were considered. The location of the measurement points was as follow: left and right sides of the sprayer; three sections of measurement (A, B and C); three measurement distances from the shaft of the machine (1.5 m, 2.5 m and 3.5 m); and four measurement heights (1 m, 2 m, 3 m and 4 m). The static test results have shown significant differences in the module and the vertical angle of the air velocity vector in function of the regulations of the sprayer. In the dynamic test, the air velocity was measured at 2.5 m from the axis of the sprayer considering four measurement heights (1 m, 2 m, 3 m and 4 m). In this test, the sprayer regulations were: one or two activated fans; one air flow for each fan; forward speed of 2.8 km/h. The use of one fan (back) or two fans (back and front) produced significant differences on the duration of the presence of wind in the measurement point and on the direction of the air velocity vector. The module of the air velocity vector was not affected by the number of activated fans.

  6. Organizing, Training, and Equipping the Air Force for Crises and Lesser Conflicts,

    DTIC Science & Technology

    1995-01-01

    forces; • surveillance, from air and space, especially airborne warning and control systems (AWACS) for the enforcement of air security; Summary...APADS Advanced precision airborne delivery system AWACS Airborne warning and control system C3I Command, control , communications, and intelligence...munition PME Professional military education PSYOPS Psychological operations RAF Royal Air Force (British) RED HORSE Rapid engineer deployable

  7. Breathe Deeply.

    ERIC Educational Resources Information Center

    Milshtein, Amy

    2000-01-01

    Discusses the special indoor air quality issues confronting school gyms, locker rooms, and pools; and explores ways to keep the indoor environment healthy. Included are discussions of mold and fungus control and air issues stemming from indoor pools. (GR)

  8. Weather and air pollutants have an impact on patients with respiratory diseases and breathing difficulties in Munich, Germany

    NASA Astrophysics Data System (ADS)

    Wanka, E. R.; Bayerstadler, A.; Heumann, C.; Nowak, D.; Jörres, R. A.; Fischer, R.

    2014-03-01

    This study determined the influence of various meteorological variables and air pollutants on airway disorders in general, and asthma and/or chronic obstructive pulmonary disease in particular, in Munich, Bavaria, during 2006 and 2007. This was achieved through an evaluation of the daily frequency of calls to medical and emergency call centres, ambulatory medical care visits at general practitioners, and prescriptions of antibiotics for respiratory diseases. Meteorological parameters were extracted from data supplied by the European Centre for Medium Range Weather Forecast. Data on air pollutant levels were extracted from the air quality database of the European Environmental Agency for different measurement sites. In addition to descriptive analyses, a backward elimination procedure was performed to identify variables associated with medical outcome variables. Afterwards, generalised additive models (GAM) were used to verify whether the selected variables had a linear or nonlinear impact on the medical outcomes. The analyses demonstrated associations between environmental parameters and daily frequencies of different medical outcomes, such as visits at GPs and air pressure (-27 % per 10 hPa change) or ozone (-24 % per 10 μg/m3 change). The results of the GAM indicated that the effects of some covariates, such as carbon monoxide on consultations at GPs, or humidity on medical calls in general, were nonlinear, while the type of association varied between medical outcomes. These data suggest that the multiple, complex effect of environmental factors on medical outcomes should not be assumed homogeneous or linear a priori and that different settings might be associated with different types of associations.

  9. Weather and air pollutants have an impact on patients with respiratory diseases and breathing difficulties in Munich, Germany.

    PubMed

    Wanka, E R; Bayerstadler, A; Heumann, C; Nowak, D; Jörres, R A; Fischer, R

    2014-03-01

    This study determined the influence of various meteorological variables and air pollutants on airway disorders in general, and asthma and/or chronic obstructive pulmonary disease in particular, in Munich, Bavaria, during 2006 and 2007. This was achieved through an evaluation of the daily frequency of calls to medical and emergency call centres, ambulatory medical care visits at general practitioners, and prescriptions of antibiotics for respiratory diseases. Meteorological parameters were extracted from data supplied by the European Centre for Medium Range Weather Forecast. Data on air pollutant levels were extracted from the air quality database of the European Environmental Agency for different measurement sites. In addition to descriptive analyses, a backward elimination procedure was performed to identify variables associated with medical outcome variables. Afterwards, generalised additive models (GAM) were used to verify whether the selected variables had a linear or nonlinear impact on the medical outcomes. The analyses demonstrated associations between environmental parameters and daily frequencies of different medical outcomes, such as visits at GPs and air pressure (-27 % per 10 hPa change) or ozone (-24 % per 10 μg/m(3) change). The results of the GAM indicated that the effects of some covariates, such as carbon monoxide on consultations at GPs, or humidity on medical calls in general, were nonlinear, while the type of association varied between medical outcomes. These data suggest that the multiple, complex effect of environmental factors on medical outcomes should not be assumed homogeneous or linear a priori and that different settings might be associated with different types of associations.

  10. Seasonality Influence on Biochemical and Hematological Indicators of Stress and Growth of Pirarucu (Arapaima gigas), an Amazonian Air-Breathing Fish

    PubMed Central

    Bezerra, Rosiely Felix; Soares, Maria do Carmo Figueiredo; Santos, Athiê Jorge Guerra; Maciel Carvalho, Elba Verônica Matoso; Coelho, Luana Cassandra Breitenbach Barroso

    2014-01-01

    Environmental factors such as seasonal cycles are the main chronic stress cause in fish increasing incidence of disease and mortality and affecting productive performance. Arapaima gigas (pirarucu) is an Amazonian air-breathing and largest freshwater fish with scales in the world. The captivity development of pirarucu is expanding since it can fatten up over 1 kg per month reaching 10 kg body mass in the first year of fattening. This work was conducted in three periods (April to July 2010, August to November 2010, and December 2010 to March 2011) defined according to rainfall and medium temperatures. Seasonality effect analysis was performed on biochemical (lectin activity, lactate dehydrogenase, and alkaline phosphatase activities) and hematological (total count of red blood cells, hematocrit, hemoglobin, and hematimetric Wintrobe indexes) stress indicators, as well as on growth and wellbeing degree expressed by pirarucu condition factor developed in captivity. All biochemical and hematological stress indicators showed seasonal variations. However, the fish growth was allometrically positive; condition factor high values indicated good state of healthiness in cultivation. These results reinforce the robust feature of pirarucu and represent a starting point for understanding stress physiology and environmental changes during cultivation enabling identification and prevention of fish adverse health conditions. PMID:24578643

  11. Tracking control of a class of non-linear systems with applications to cruise control of air-breathing hypersonic vehicles

    NASA Astrophysics Data System (ADS)

    Sun, Hongfei; Yang, Zhiling; Meng, Bin

    2015-05-01

    A new tracking-control method for general non-linear systems is proposed. A virtual controller and some command references are introduced to asymptotically stabilise the system of the tracking error dynamics. Then, the actual controller and command references are derived by solving a system of linear algebraic equations. Compared with other tracking-control methods in the literature, the tracking-controller design in this paper is simple because it needs only to solve a system of linear algebraic equations. The boundedness of the tracking controller and command references is guaranteed by the solvability of the terminal value problem (TVP) of an ordinary differential equation. For non-linear systems with minimum-phase properties, the TVP is automatically solvable. A numerical example shows that the tracking-control method is still available for some systems with non-minimum-phase properties. To enhance the robustness of the tracking controller, a non-linear disturbance observer (NDO) is introduced to estimate the disturbance. The combination of the tracking controller and the NDO is applied to the tracking control of an air-breathing hypersonic vehicle.

  12. Cloning and expression of StAR during gonadal cycle and hCG-induced oocyte maturation of air-breathing catfish, Clarias gariepinus.

    PubMed

    Sreenivasulu, G; Sridevi, P; Sahoo, P K; Swapna, I; Ge, W; Kirubagaran, R; Dutta-Gupta, A; Senthilkumaran, B

    2009-09-01

    Complementary DNAs encoding steroidogenic acute regulatory protein (StAR) have been isolated from different fish species, yet the relevance of StAR during gonadal cycle and more importantly in final oocyte maturation has not been assessed so far. A cDNA encoding StAR was isolated from the ovarian follicles of air-breathing catfish, Clarias gariepinus. Catfish StAR exhibited 55 to 72% identity at nucleotide level with other vertebrate orthologs. RT-PCR analysis of tissue distribution pattern demonstrated the presence of StAR mRNA in various tissues including gonads, kidney, liver, brain and intestine of catfish. Real-time RT-PCR analysis revealed high expression of StAR mRNA in the pre-spawning phase of ovary while it was low in preparatory, spawning and regressed phases. In testis, maximum expression was noticed during the preparatory phase. During human chorionic gonadotropin (hCG)-induced oocyte maturation, both in vitro and in vivo, StAR mRNA levels were augmented by 2 h and then declined gradually to reach basal levels by 12 h as that of saline-treated controls. Taken together, high level of expression during hCG-induced oocyte maturation vis-à-vis in spawning suggests a role for StAR, in addition to the steroidogenic enzyme genes in final oocyte maturation.

  13. Autochthonous Gut Bacteria in Two Indian Air-breathing Fish, Climbing Perch (Anabas testudineus) and Walking Catfish (Clarias batrachus): Mode of Association, Identification and Enzyme Producing Ability.

    PubMed

    Banerjee, Goutam; Dan, Suhas K; Nandi, Ankita; Ghosh, Pinki; Ray, Arun K

    2015-01-01

    Scanning electron microscopy (SEM) was used to define the location of epithelium-associated bacteria in the gastrointestinal (GI) tract of two Indian air-breathing fish, the climbing perch (Anabas testudineus) and walking catfish (Clarias batrachus). The SEM examination revealed substantial numbers of rod shaped bacterial cells associated with the microvillus brush borders of enterocytes in proximal (PI) and distal regions (DI) of the GI tract of both the fish species. Ten (two each from the PI and DI of climbing perch and three each from the PI and DI of walking catfish) isolated bacterial strains were evaluated for extracellular protease, amylase and cellulase production quantitatively. All the bacterial strains exhibited high cellulolytic activity compared to amylolytic and proteolytic activites. Only two strains, CBH6 and CBH7, isolated from the DI of walking catfish exhibited high proteolytic activity. Maximum cellulase activity was exhibited by the strain, CBF2, isolated from the PI of climbing perch. Six most promising enzyme-producing adherent bacterial strains were identified by 16S rDNA gene sequence analysis. The strain ATH1 (isolated from climbing perch) showed high similarity fo Bacillus amyloliquefaciens whereas, the remaining five strains (isolated from walking catfish) were most closely related to Bacillus licheniformis.

  14. Effect of chemically modified Vulcan XC-72R on the performance of air-breathing cathode in a single-chamber microbial fuel cell.

    PubMed

    Duteanu, N; Erable, B; Senthil Kumar, S M; Ghangrekar, M M; Scott, K

    2010-07-01

    The catalytic activity of modified carbon powder (Vulcan XC-72R) for oxygen reduction reaction (ORR) in an air-breathing cathode of a microbial fuel cell (MFC) has been investigated. Chemical modification was carried out by using various chemicals, namely 5% nitric acid, 0.2N phosphoric acid, 0.2N potassium hydroxide and 10% hydrogen peroxide. Electrochemical study was performed for ORR of these modified carbon materials in the buffer solution pH range of 6-7.5 in the anodic compartment. Although, these treatments influenced the surface properties of the carbon material, as evident from the SEM-EDX analysis, treatment with H(2)PO(4), KOH, and H(2)O(2) did not show significant activity during the electrochemical test. The HNO(3) treated Vulcan demonstrated significant ORR activity and when used in the single-chamber MFC cathode, current densities (1115mA/m(2), at 5.6mV) greater than those for a Pt-supported un-treated carbon cathode were achieved. However, the power density for the latter was higher. Such chemically modified carbon material can be a cheaper alternative for expensive platinum catalyst used in MFC cathode construction.

  15. Breathing and Relaxation

    MedlinePlus

    ... Home Health Insights Stress & Relaxation Breathing and Relaxation Breathing and Relaxation Make an Appointment Ask a Question ... level is often dependent on his or her breathing pattern. Therefore, people with chronic lung conditions may ...

  16. Deep breathing after surgery

    MedlinePlus

    ... page: //medlineplus.gov/ency/patientinstructions/000440.htm Deep breathing after surgery To use the sharing features on ... way to do so is by doing deep breathing exercises. Deep breathing keeps your lungs well-inflated ...

  17. Rapid shallow breathing

    MedlinePlus

    Tachypnea; Breathing - rapid and shallow; Fast shallow breathing; Respiratory rate - rapid and shallow ... Shallow, rapid breathing has many possible medical causes, including: Asthma Blood clot in an artery in the lung Choking Chronic obstructive ...

  18. 46 CFR 78.47-27 - Self-contained breathing apparatus.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 3 2014-10-01 2014-10-01 false Self-contained breathing apparatus. 78.47-27 Section 78... Markings for Fire and Emergency Equipment, Etc. § 78.47-27 Self-contained breathing apparatus. Lockers or spaces containing self-contained breathing apparatus shall be marked “SELF-CONTAINED BREATHING APPARATUS.”...

  19. 46 CFR 78.47-27 - Self-contained breathing apparatus.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 3 2013-10-01 2013-10-01 false Self-contained breathing apparatus. 78.47-27 Section 78... Markings for Fire and Emergency Equipment, Etc. § 78.47-27 Self-contained breathing apparatus. Lockers or spaces containing self-contained breathing apparatus shall be marked “SELF-CONTAINED BREATHING APPARATUS.”...

  20. 46 CFR 78.47-27 - Self-contained breathing apparatus.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 3 2012-10-01 2012-10-01 false Self-contained breathing apparatus. 78.47-27 Section 78... Markings for Fire and Emergency Equipment, Etc. § 78.47-27 Self-contained breathing apparatus. Lockers or spaces containing self-contained breathing apparatus shall be marked “SELF-CONTAINED BREATHING APPARATUS.”...

  1. 46 CFR 78.47-27 - Self-contained breathing apparatus.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Markings for Fire and Emergency Equipment, Etc. § 78.47-27 Self-contained breathing apparatus. Lockers or spaces containing self-contained breathing apparatus shall be marked “SELF-CONTAINED BREATHING APPARATUS.” ... 46 Shipping 3 2010-10-01 2010-10-01 false Self-contained breathing apparatus. 78.47-27 Section...

  2. 46 CFR 78.47-27 - Self-contained breathing apparatus.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Markings for Fire and Emergency Equipment, Etc. § 78.47-27 Self-contained breathing apparatus. Lockers or spaces containing self-contained breathing apparatus shall be marked “SELF-CONTAINED BREATHING APPARATUS.” ... 46 Shipping 3 2011-10-01 2011-10-01 false Self-contained breathing apparatus. 78.47-27 Section...

  3. Normal people working in normal organizations with normal equipment: system safety and cognition in a mid-air collision.

    PubMed

    de Carvalho, Paulo Victor Rodrigues; Gomes, José Orlando; Huber, Gilbert Jacob; Vidal, Mario Cesar

    2009-05-01

    A fundamental challenge in improving the safety of complex systems is to understand how accidents emerge in normal working situations, with equipment functioning normally in normally structured organizations. We present a field study of the en route mid-air collision between a commercial carrier and an executive jet, in the clear afternoon Amazon sky in which 154 people lost their lives, that illustrates one response to this challenge. Our focus was on how and why the several safety barriers of a well structured air traffic system melted down enabling the occurrence of this tragedy, without any catastrophic component failure, and in a situation where everything was functioning normally. We identify strong consistencies and feedbacks regarding factors of system day-to-day functioning that made monitoring and awareness difficult, and the cognitive strategies that operators have developed to deal with overall system behavior. These findings emphasize the active problem-solving behavior needed in air traffic control work, and highlight how the day-to-day functioning of the system can jeopardize such behavior. An immediate consequence is that safety managers and engineers should review their traditional safety approach and accident models based on equipment failure probability, linear combinations of failures, rules and procedures, and human errors, to deal with complex patterns of coincidence possibilities, unexpected links, resonance among system functions and activities, and system cognition.

  4. Evolution of archosaurian body plans: skeletal adaptations of an air-sac-based breathing apparatus in birds and other archosaurs.

    PubMed

    O'Connor, Patrick Michael

    2009-10-01

    Living birds represent the only extant sauropsid group in which pulmonary air sacs pneumatize the postcranial skeleton. Notable in this regard is an extraordinary degree of variability, ranging from species that are completely apneumatic to those characterized by air within the entire postcranial skeleton. Although numerous factors (e.g., body size) have been linked with "relative" pneumaticity, comparative studies examining this system remain sparse. This project sought to (1) characterize whole-body patterns of skeletal pneumaticity in distantly related neognath birds and (2) evaluate putative relationships among relative pneumaticity, body size and locomotor specializations. Pneumaticity profiles were established for 52 species representing 10 higher-level groups. Although comparisons reveal relatively conserved patterns within most lower-level clades, apparent size- and locomotor-thresholds do impart predictable deviations from the clade norm. For example, the largest flying birds (vultures, pelicans) exhibit hyperpneumaticity (i.e., pneumaticity of distal limb segments) relative to smaller members of their respective clades. In contrast, skeletal pneumaticity has been independently lost in multiple lineages of diving specialists (e.g., penguins, auks). The application of pneumaticity profiling to extinct archosaurs reveals similar trends in body size evolution, particularly when examining patterns of pneumaticity in a size-diverse assemblage of pterosaurs (flying "reptiles"). As a fundamental organizing system, skeletal pneumaticity may play a role in relaxing constraints on body size evolution by allowing volumetric increases without concomitant increases in body mass. Not only might this be critical for taxa (birds, pterosaurs) exploiting the energetically costly aerial environment, but could be beneficial for any large-bodied terrestrial vertebrates such as the dinosaurs.

  5. 46 CFR 197.450 - Breathing gas tests.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Breathing gas tests. 197.450 Section 197.450 Shipping....450 Breathing gas tests. The diving supervisor shall insure that— (a) The output of each air... or modification. (b) Purchased supplies of breathing mixtures supplied to a diver are checked...

  6. 46 CFR 197.450 - Breathing gas tests.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Breathing gas tests. 197.450 Section 197.450 Shipping....450 Breathing gas tests. The diving supervisor shall insure that— (a) The output of each air... or modification. (b) Purchased supplies of breathing mixtures supplied to a diver are checked...

  7. 46 CFR 197.450 - Breathing gas tests.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Breathing gas tests. 197.450 Section 197.450 Shipping....450 Breathing gas tests. The diving supervisor shall insure that— (a) The output of each air... or modification. (b) Purchased supplies of breathing mixtures supplied to a diver are checked...

  8. 46 CFR 197.450 - Breathing gas tests.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Breathing gas tests. 197.450 Section 197.450 Shipping....450 Breathing gas tests. The diving supervisor shall insure that— (a) The output of each air... or modification. (b) Purchased supplies of breathing mixtures supplied to a diver are checked...

  9. 46 CFR 197.450 - Breathing gas tests.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Breathing gas tests. 197.450 Section 197.450 Shipping....450 Breathing gas tests. The diving supervisor shall insure that— (a) The output of each air... or modification. (b) Purchased supplies of breathing mixtures supplied to a diver are checked...

  10. 42 CFR 84.152 - Breathing tube test; minimum requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Breathing tube test; minimum requirements. 84.152... Respirators § 84.152 Breathing tube test; minimum requirements. (a)(1) Type A and Type B supplied-air respirators shall employ one or two flexible breathing tubes of the nonkinking type which extend from...

  11. 42 CFR 84.172 - Breathing tubes; minimum requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Breathing tubes; minimum requirements. 84.172... Air-Purifying Particulate Respirators § 84.172 Breathing tubes; minimum requirements. Flexible breathing tubes used in conjunction with respirators shall be designed and constructed to prevent:...

  12. 42 CFR 84.172 - Breathing tubes; minimum requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Breathing tubes; minimum requirements. 84.172... Air-Purifying Particulate Respirators § 84.172 Breathing tubes; minimum requirements. Flexible breathing tubes used in conjunction with respirators shall be designed and constructed to prevent:...

  13. 42 CFR 84.152 - Breathing tube test; minimum requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Breathing tube test; minimum requirements. 84.152... Respirators § 84.152 Breathing tube test; minimum requirements. (a)(1) Type A and Type B supplied-air respirators shall employ one or two flexible breathing tubes of the nonkinking type which extend from...

  14. 42 CFR 84.172 - Breathing tubes; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Breathing tubes; minimum requirements. 84.172... Air-Purifying Particulate Respirators § 84.172 Breathing tubes; minimum requirements. Flexible breathing tubes used in conjunction with respirators shall be designed and constructed to prevent:...

  15. 42 CFR 84.152 - Breathing tube test; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Breathing tube test; minimum requirements. 84.152... Respirators § 84.152 Breathing tube test; minimum requirements. (a)(1) Type A and Type B supplied-air respirators shall employ one or two flexible breathing tubes of the nonkinking type which extend from...

  16. 42 CFR 84.172 - Breathing tubes; minimum requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Breathing tubes; minimum requirements. 84.172... Air-Purifying Particulate Respirators § 84.172 Breathing tubes; minimum requirements. Flexible breathing tubes used in conjunction with respirators shall be designed and constructed to prevent:...

  17. 42 CFR 84.172 - Breathing tubes; minimum requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Breathing tubes; minimum requirements. 84.172... Air-Purifying Particulate Respirators § 84.172 Breathing tubes; minimum requirements. Flexible breathing tubes used in conjunction with respirators shall be designed and constructed to prevent:...

  18. 42 CFR 84.152 - Breathing tube test; minimum requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Breathing tube test; minimum requirements. 84.152... Respirators § 84.152 Breathing tube test; minimum requirements. (a)(1) Type A and Type B supplied-air respirators shall employ one or two flexible breathing tubes of the nonkinking type which extend from...

  19. 42 CFR 84.152 - Breathing tube test; minimum requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Breathing tube test; minimum requirements. 84.152... Respirators § 84.152 Breathing tube test; minimum requirements. (a)(1) Type A and Type B supplied-air respirators shall employ one or two flexible breathing tubes of the nonkinking type which extend from...

  20. Breathing In

    ERIC Educational Resources Information Center

    Mahoney, Daniel P.

    2008-01-01

    Healthful indoor air quality (IAQ) in education facilities can improve the learning environment for students, enhance teacher job satisfaction, and reduce staff complaints. A proactive indoor air quality program helps identify and eliminate conditions that could lead to IAQ complaints, building-related illnesses, and workers' compensation claims.…

  1. Breathing Easier.

    ERIC Educational Resources Information Center

    Smolkin, Rachel

    2003-01-01

    Describes use of Environmental Protection Agency's Tools for Schools tool kit to improve indoor air quality aimed specifically at eliminating asthma triggers such as dust mites and mold. Includes several examples of school district efforts to reduce or eliminate student health problems associated with poor indoor air quality. (PKP)

  2. Prediction of blood:air and fat:air partition coefficients of volatile organic compounds for the interpretation of data in breath gas analysis6

    PubMed Central

    Kramer, Christian; Mochalski, Paweł; Unterkofler, Karl; Agapiou, Agapios; Ruzsanyi, Veronika; Liedl, Klaus R

    2016-01-01

    In this article, a database of blood:air and fat:air partition coefficients (λb:a and λf:a) is reported for estimating 1678 volatile organic compounds recently reported to appear in the volatilome of the healthy human. For this purpose, a quantitative structure-property relationship (QSPR) approach was applied and a novel method for Henry’s law constants prediction developed. A random forest model based on Molecular Operating Environment 2D (MOE2D) descriptors based on 2619 literature-reported Henry’s constant values was built. The calculated Henry’s law constants correlate very well (R2test = 0.967) with the available experimental data. Blood:air and fat:air partition coefficients were calculated according to the method proposed by Poulin and Krishnan using the estimated Henry’s constant values. The obtained values correlate reasonably well with the experimentally determined ones for a test set of 90 VOCs (R2 = 0.95). The provided data aim to fill in the literature data gap and further assist the interpretation of results in studies of the human volatilome. PMID:26815030

  3. AIR CONTAMINANT EXPOSURE DURING THE OPERATION OF LAWN AND GARDEN EQUIPMENT

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) initiated the Small Engine Exposure Study (SEES) to evaluate potential exposures among users of small, gasoline-powered, non-road spark-ignition (SI) lawn and garden engines. Equipment tested included riding tractors, walk-behind la...

  4. 40 CFR 86.1832-01 - Optional equipment and air conditioning for test vehicles.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... conditioner will be included in the equivalent test weight calculations for emission testing. ... estimated weight of that item must be included in the curb weight computation for each vehicle available... equipment or an option), no weight for that item will be added in computing the curb weight for any...

  5. Electrochemically exfoliated graphene anodes with enhanced biocurrent production in single-chamber air-breathing microbial fuel cells.

    PubMed

    Najafabadi, Amin Taheri; Ng, Norvin; Gyenge, Előd

    2016-07-15

    Microbial fuel cells (MFCs) present promising options for environmentally sustainable power generation especially in conjunction with waste water treatment. However, major challenges remain including low power density, difficult scale-up, and durability of the cell components. This study reports enhanced biocurrent production in a membrane-free MFC, using graphene microsheets (GNs) as anode and MnOx catalyzed air cathode. The GNs are produced by ionic liquid assisted simultaneous anodic and cathodic electrochemical exfoliation of iso-molded graphite electrodes. The GNs produced by anodic exfoliation increase the MFC peak power density by over 300% compared to plain carbon cloth (i.e., 2.85Wm(-2) vs 0.66Wm(-2), respectively), and by 90% compared to conventional carbon black (i.e., Vulcan XC-72) anode. These results exceed previously reported power densities for graphene-containing MFC anodes. The fuel cell polarization results are corroborated by electrochemical impedance spectroscopy indicating three times lower charge transfer resistance for the GN anode. Material characterizations suggest that the best performing GN samples were of relatively smaller size (~500nm), with higher levels of ionic liquid induced surface functionalization during the electrochemical exfoliation process.

  6. Respiratory symptoms and peak expiratory flow in children with asthma in relation to volatile organic compounds in exhaled breath and ambient air.

    PubMed

    Delfino, Ralph J; Gong, Henry; Linn, William S; Hu, Ye; Pellizzari, Edo D

    2003-09-01

    Indoor volatile organic compounds (VOCs) have been associated with asthma, but there is little epidemiologic work on ambient exposures, and no data on relationships between respiratory health and exhaled breath VOCs, which is a biomarker of VOC exposure. We recruited 26 Hispanic children with mild asthma in a Los Angeles community with high VOC levels near major freeways and trucking routes. Two dropped out, three had invalid peak expiratory flow (PEF) or breath VOC data, leaving 21. Children filled out symptom diaries and performed PEF maneuvers daily, November 1999-January 2000. We aimed to collect breath VOC samples on asthma episode and baseline symptom-free days, but six subjects only gave samples on symptom-free days. We analyzed 106 breath samples by GC-MS. Eight VOCs were quantifiable in >75% of breath samples (benzene, methylene chloride, styrene, tetrachloroethylene, toluene, m,p-xylene, o-xylene, and p-dichlorobenzene). Generalized estimating equation and mixed linear regression models for VOC exposure-response relationships controlled for temperature and respiratory infections. We found marginally positive associations between bothersome or more severe asthma symptoms and same day breath concentrations of benzene [odds ratio (OR) 2.03, 95% confidence interval (CI) 0.80, 5.11] but not other breath VOCs. Ambient petroleum-related VOCs measured on the same person-days as breath VOCs showed notably stronger associations with symptoms, including toluene, m,p-xylene, o-xylene, and benzene (OR 5.93, 95% CI 1.64, 21.4). On breath sample days, symptoms were also associated with 1-h ambient NO(2), OR 8.13 (1.52, 43.4), and SO(2), OR 2.36 (1.16, 4.81). Consistent inverse relationships were found between evening PEF and the same ambient VOCs, NO(2), and SO(2). There were no associations with O(3). Given the high traffic density of the region, stronger associations for ambient than for breath VOCs suggest that ambient VOC measurements were better markers for daily

  7. Breathe Easy.

    ERIC Educational Resources Information Center

    Epstien, Barb

    1999-01-01

    Examines the different indoor air pollutants that can be found in schools and tips for controlling them. Also discussed is building analysis for monitoring biocontaminants including allergens and molds. (GR)

  8. Pavements Maintenance and Construction Equipment Operator Career Ladders: United States Air Force Job Inventory. AFSCs 55130/31, 55150/51, 55170/71, and 55191.

    ERIC Educational Resources Information Center

    Air Force Personnel and Training Research Center, Lackland AFB, TX.

    The U. S. Air Force job inventory for the pavements maintenance and construction equipment operator career ladders is divided into 26 categories, each of which is broken down into a duty-task list. Space is provided for Air Force personnel filling out the inventory to check whether each task is at present part of their duties. The 26 categories…

  9. Foaming/antifoaming in WTP Tanks Equipped with Pulse Jet Mixer and Air Spargers

    SciTech Connect

    HASSAN, NEGUIB

    2004-06-29

    The River Protection Project-Waste Treatment Plant (RPP-WTP) requested Savannah River National Laboratory (SRNL) to conduct small-scale foaming and antifoam testing using actual Hanford waste and simulants subjected to air sparging. The foaminess of Hanford tank waste solutions was previously demonstrated in SRNL during WTP evaporator foaming and ultrafiltration studies and commercial antifoam DOW Q2-3183A was recommended to mitigate the foam in the evaporators. Currently, WTP is planning to use air spargers in the HLW Lag Storage Vessels, HLW Concentrate Receipt Vessel, and the Ultrafiltration Vessels to assist the performance of the Jet Pulse Mixers (JPM). Sparging of air into WTP tanks will induce a foam layer within the process vessels. The air dispersion in the waste slurries and generated foams could present problems during plant operation. Foam in the tanks could also adversely impact hydrogen removal and mitigation. Antifoam (DOW Q2-3183A) will be used to control foaming in Hanford sparged waste processing tanks. These tanks will be mixed by a combination of pulse-jet mixers and air spargers. The percent allowable foaminess or freeboard in WTP tanks are shown in tables.

  10. Ambient salinity modifies the action of triiodothyronine in the air-breathing fish Anabas testudineus Bloch: effects on mitochondria-rich cell distribution, osmotic and metabolic regulations.

    PubMed

    Peter, M C Subhash; Leji, J; Peter, Valsa S

    2011-04-01

    The hydromineral and metabolic actions of thyroid hormone on osmotic acclimation in fish is less understood. We, therefore, studied the short-term action of triiodothyronine (T(3)), the potent thyroid hormone, on the distribution and the function of gill mitochondria-rich (MR) cells and on the whole body hydromineral and metabolic regulations of air-breathing fish (Anabas testudineus) adapted to either freshwater (FW) or acclimated to seawater (SA; 30 g L(-1)). As expected, 24 h T(3) injection (100 ng g(-1)) elevated (P<0.05) plasma T(3) but classically reduced (P<0.05) plasma T(4). The higher Na(+), K(+)-ATPase immunoreactivity and the varied distribution pattern of MR cells in the gills of T(3)-treated FW and SA fish, suggest an action of T(3) on gill MR cell migration, though the density of these cells remained unchanged after T(3) treatment. The ouabain-sensitive Na(+), K(+)-ATPase activity, a measure of hydromineral competence, showed increases (P<0.05) in the gills of both FW and SA fish after T(3) administration, but inhibited (P<0.05) in the kidney of the FW fish and not in the SA fish. Exogenous T(3) reduced glucose (P<0.05) and urea (P<0.05) in the plasma of FW fish, whereas these metabolites were elevated (P<0.05) in the SA fish, suggesting a modulatory effect of ambient salinity on the T(3)-driven metabolic actions. Our data identify gill MR cell as a target for T(3) action as it promotes the spatial distribution and the osmotic function of these cells in both fresh water and in seawater. The results besides confirming the metabolic and osmotic actions of T(3) in fish support the hypothesis that the differential actions of T(3) may be due to the direct influence of ambient salinity, a major environmental determinant that alters the osmotic and metabolic strategies of fish.

  11. S(p)O(2) values in acute medical admissions breathing air--implications for the British Thoracic Society guideline for emergency oxygen use in adult patients?

    PubMed

    Smith, Gary B; Prytherch, David R; Watson, Duncan; Forde, Val; Windsor, Alastair; Schmidt, Paul E; Featherstone, Peter I; Higgins, Bernie; Meredith, Paul

    2012-10-01

    S(p)O(2) is routinely used to assess the well-being of patients, but it is difficult to find an evidence-based description of its normal range. The British Thoracic Society (BTS) has published guidance for oxygen administration and recommends a target S(p)O(2) of 94-98% for most adult patients. These recommendations rely on consensus opinion and small studies using arterial blood gas measurements of saturation (S(a)O(2)). Using large datasets of routinely collected vital signs from four hospitals, we analysed the S(p)O(2) range of 37,593 acute general medical inpatients (males: 47%) observed to be breathing room air. Age at admission ranged from 16 to 105 years with a mean (SD) of 64 (21) years. 19,642 admissions (52%) were aged <70 years. S(p)O(2) ranged from 70% to 100% with a median (IQR) of 97% (95-98%). S(p)O(2) values for males and females were similar. In-hospital mortality for the study patients was 5.27% (range 4.80-6.27%). Mortality (95% CI) for patients with initial S(p)O(2) values of 97%, 96% and 95% was 3.65% (3.22-4.13); 4.47% (3.99-5.00); and 5.67% (5.03-6.38), respectively. Additional analyses of S(p)O(2) values for 37,299 medical admissions aged ≥18 years provided results that were distinctly different to those upon which the current BTS guidelines based their definition of normality. Our findings suggest that the BTS should consider changing its target saturation for actively treated patients not at risk of hypercapnic respiratory failure to 96-98%.

  12. Air breathing cathodes for microbial fuel cell using Mn-, Fe-, Co- and Ni-containing platinum group metal-free catalysts

    DOE PAGES

    Kodali, Mounika; Santoro, Carlo; Serov, Alexey; ...

    2017-02-07

    Here we discuss the oxygen reduction reaction (ORR) is one of the major factors that is limiting the overall performance output of microbial fuel cells (MFC). In this study, Platinum Group Metal-free (PGM-free) ORR catalysts based on Fe, Co, Ni, Mn and the same precursor (Aminoantipyrine, AAPyr) were synthesized using identical sacrificial support method (SSM). The catalysts were investigated for their electrochemical performance, and then integrated into an air-breathing cathode to be tested in “clean” environment and in a working microbial fuel cell (MFC). Their performances were also compared to activated carbon (AC) based cathode under similar conditions. Results showedmore » that the addition of Mn, Fe, Co and Ni to AAPyr increased the performances compared to AC. Fe-AAPyr showed the highest open circuit potential (OCP) that was 0.307 ± 0.001 V (vs. Ag/AgCl) and the highest electrocatalytic activity at pH 7.5. On the contrary, AC had an OCP of 0.203 ± 0.002 V (vs. Ag/AgCl) and had the lowest electrochemical activity. In MFC, Fe-AAPyr also had the highest output of 251 ± 2.3 μWcm–2, followed by Co-AAPyr with 196 ± 1.5 μWcm–2, Ni-AAPyr with 171 ± 3.6 μWcm–2, Mn-AAPyr with 160 ± 2.8 μWcm–2 and AC 129 ± 4.2 μWcm–2. The best performing catalyst (Fe-AAPyr) was then tested in MFC with increasing solution conductivity from 12.4 mScm–1 to 63.1 mScm–1. A maximum power density of 482 ± 5 μWcm–2 was obtained with increasing solution conductivity, which is one of the highest values reported in the field.« less

  13. Cloning and expression of 3β-hydroxysteroid dehydrogenase during gonadal recrudescence and after hCG induction in the air-breathing catfish, Clarias gariepinus.

    PubMed

    Raghuveer, Kavarthapu; Senthilkumaran, Balasubramanian

    2012-09-01

    3β-hydroxysteroid dehydrogenase (3β-hsd) plays an important role in biosynthesis of both androgens and estrogens during steroidogenesis. In this study, we report the cloning of a full-length cDNA of 3β-hsd from gonads of the air-breathing catfish, Clarias gariepinus a seasonally reproducing teleost fish. We studied the expression pattern of 3β-hsd during gonadal ontogeny and recrudescence (flanking two years of reproductive cycle) using real-time PCR. We also examined the influence of gonadotropin on 3β-hsd expression in gonads of catfish by human chorionic gonadotropin (hCG) induction. The real-time PCR results revealed that 3β-hsd transcript was detectable much earlier in undifferentiated gonads i.e. before the sex differentiation and later on its expression was seen in both male and female gonads throughout the development. The expression analysis during subsequent seasonal reproductive cycle in catfish (older than one year) showed that in adult males, the transcripts were significantly high during prespawning phase (spermatogenesis) and declined during spermiation. In adult females, the transcripts were abundantly expressed in the ovarian follicles both at prespawning and spawning phases. Furthermore, the 3β-hsd mRNA levels in different follicular stages were markedly high in vitellogenic follicles (maturing oocytes; stage III) compared to other stages. Treatment of hCG in recrudescing female fish, in vivo as well as in testicular slices, in vitro resulted in the up-regulation of gonadal 3β-hsd mRNA indicating that it is under the regulation of gonadotropins. These results together suggest that 3β-hsd gene plays an important role during spermatogenesis and oogenesis as well as in the gonadal recrudescence of catfish.

  14. Regenerable device for scrubbing breathable air of CO2 and moisture without special heat exchanger equipment

    NASA Technical Reports Server (NTRS)

    Tepper, E. H. (Inventor)

    1977-01-01

    The device concerns the circulation of cabin air through canisters which absorb and adsorb carbon dioxide, together with excess moisture, and return the scrubbed air to the cabin for recirculation. A coating on an inert substrate in granular form absorbs and adsorbs the impurities at standard temperatures and pressures, but desorbs such impurities at low pressures (vacuum) and standard temperatures. This fact is exploited by making the device in a stack of cells consisting of layers or cells which are isolated from one another flow-wise and are connected to separate manifolds and valving systems into two separate subsets. A first subset may be connected for the flow breathable air therethrough until the polyethyleneimine of its cells is saturated with CO2 and H2O. During the same period the second subset of cells is manifolded to a vacuum source.

  15. Case Studies of the Air Force Aerospace Ground Equipment (AGE) acquisition Management Process

    DTIC Science & Technology

    1975-12-01

    the methods for evaluating alternatives. A previous LMI study (LMI Task 72-1 Rev.) was undertaken at the request of the Air Force during 1972. That...developed for the sample. The sets of characteristics chosen include various functional types, levels of use, methods of procurement including Air... methods of procurement of the 76 items selected. >’ - ’•^•"^M’"iiirtnri,B’r’iäjiriMirlM ^ji^frito^»..*-,.^.«*).,.^.;.,. . ... ,.,..^.-^^;.- .: .fa

  16. Evaluation of rotor-bearing system dynamic response to unbalance. [air conditioning equipment

    NASA Technical Reports Server (NTRS)

    Thaller, R. E.; Ozimek, D. W.

    1979-01-01

    The vibration environment within air conditioner rotating machinery referred to as an air cycle machine (ACM) was investigated to effectively increase ACM reliability. To assist in the selection of design changes which would result in improved ACM performance, various design modifications were incorporated into a baseline ACM configuration. For each design change, testing was conducted with the best balance achieveable (baseline) and with various degrees of unbalance. Relationships between unbalance (within the context of design changes) and the parameters associated with design goals were established. The results of rotor dynamics tests used to establish these relationships are presented.

  17. Refrigeration and Air Conditioning Equipment, 11-9. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This military-developed text consists of three blocks of instructional materials for use by those studying to become refrigeration and air conditioning specialists. Covered in the individual course blocks are the following topics: refrigeration and trouble analysis, thermodynamics, and principles of refrigeration; major components and domestic and…

  18. 40 CFR 86.1832-01 - Optional equipment and air conditioning for test vehicles.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In... and 86.1828-01: (a)(1) Where it is expected that more than 33 percent of a car line, within a test... with that item in that car line, within that test group. (2) Where it is expected that 33 percent...

  19. 40 CFR 86.1832-01 - Optional equipment and air conditioning for test vehicles.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... VEHICLES AND ENGINES General Compliance Provisions for Control of Air Pollution From New and In-Use Light...-01: (a)(1) Where it is expected that more than 33 percent of a car line, within a test group, will be... that car line, within that test group. (2) Where it is expected that 33 percent or less of the car...

  20. 40 CFR 86.1832-01 - Optional equipment and air conditioning for test vehicles.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In... and 86.1828-01: (a)(1) Where it is expected that more than 33 percent of a car line, within a test... with that item in that car line, within that test group. (2) Where it is expected that 33 percent...

  1. 40 CFR 86.1832-01 - Optional equipment and air conditioning for test vehicles.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... VEHICLES AND ENGINES (CONTINUED) General Compliance Provisions for Control of Air Pollution From New and In... and 86.1828-01: (a)(1) Where it is expected that more than 33 percent of a car line, within a test... with that item in that car line, within that test group. (2) Where it is expected that 33 percent...

  2. R and D opportunities for commercial HVAC (heating, air conditioning, and ventilation) equipment

    SciTech Connect

    Chiu, S.A.; Zaloudek, F.R.

    1987-03-01

    The overall objective of this project is to identify and characterize generic HVAC equipment research that will provide the best investment opportunities for DOE R and D funds. The prerequisites of a DOE research program include research efforts that are potentially significant in energy conservation impact and that are cost-effective, long-term, and high risk. These prerequisites form the basic guidelines for the R and D opportunities assessed. The assessment excludes the R and D areas that have potential or current private sector sponsors. Finally, R and D areas which are included in DOE programs generally are not addressed.

  3. High-efficiency gas heat pump air-conditioner equipped with absorption refrigerator

    NASA Astrophysics Data System (ADS)

    Kawakami, Ryuichiro; Imai, Kazuya; Nakajima, Hidekazu; Okamoto, Hiroaki; Hihara, Eiji

    To improve rated efficiency and partial load efficiency of gas engine heat pump (GHP), we are developing a new type air-cooled absorption refrigerator which is driven by the engine waste hot water. To shape the compact absorption refrigerator body that was able to be built into the space of a GHP outdoor-unit, an air-cooled sub-cooled adiabatic absorber and flowing liquid film plate type generator were newly developed. Maximum cooling capacity was increased about 20%, rated load COP was increased 40%, and partial load COP was increased 46% or less, as a result of the combination examination of a prototype 8.0kW absorption refrigerator and a 56kW GHP at a laboratory.

  4. The Human Side of Cyber Conflict: Organizing, Training, and Equipping the Air Force Cyber Workforce

    DTIC Science & Technology

    2016-06-01

    toward cyber operations but also a grasp of legal , policy, and ethical issues related to cyber operations and national se- curity. However, this cadre is...competitions provide legal outlets for students with creative computer skills. From these competitions and through its sponsorship of and advertising at these...flexibility to reliably move Airmen as needed, we recommend that the Air Force explore the legalities of including noncompete clauses to restrict

  5. Breath testing and personal exposure--SIFT-MS detection of breath acetonitrile for exposure monitoring.

    PubMed

    Storer, Malina; Curry, Kirsty; Squire, Marie; Kingham, Simon; Epton, Michael

    2015-05-26

    Breath testing has potential for the rapid assessment of the source and impact of exposure to air pollutants. During the development of a breath test for acetonitrile using selected ion flow tube mass spectrometry (SIFT-MS) raised acetonitrile concentrations in the breath of volunteers were observed that could not be explained by known sources of exposure. Workplace/laboratory exposure to acetonitrile was proposed since this was common to the volunteers with increased breath concentrations. SIFT-MS measurements of acetonitrile in breath and air were used to confirm that an academic chemistry laboratory was the source of exposure to acetonitrile, and quantify the changes that occurred to exhaled acetonitrile after exposure. High concentrations of acetonitrile were detected in the air of the chemistry laboratory. However, concentrations in the offices were not significantly different across the campus. There was a significant difference in the exhaled acetonitrile concentrations of people who worked in the chemistry laboratories (exposed) and those who did not (non-exposed). SIFT-MS testing of air and breath made it possible to determine that occupational exposure to acetonitrile in the chemistry laboratory was the cause of increased exhaled acetonitrile. Additionally, the sensitivity was adequate to measure the changes to exhaled amounts and found that breath concentrations increased quickly with short exposure and remained increased even after periods of non-exposure. There is potential to add acetonitrile to a suite of VOCs to investigate source and impact of poor air quality.

  6. The detection of breathing behavior using Eulerian-enhanced thermal video.

    PubMed

    Bennett, Stephanie L; Goubran, Rafik; Knoefel, Frank

    2015-01-01

    The current gold standard for detecting and distinguishing between types of sleep apnea is expensive and invasive. This paper aims to examine the potential of inexpensive and unobtrusive thermal cameras in the identification and distinction between types of sleep apnea. A thermal camera was used to gather video of a subject performing regular nasal breathing, nasal hyperventilation and an additional trial simulating one type of sleep apnea. Simultaneously, a respiratory inductance plethysmography (RIP) band gathered respiratory data. Thermal video of all three trials were subjected to Eulerian Video Magnification; a procedure developed at MIT for enhancing subtle color variations in video data. Post magnification, nasal regions of interest were defined and mean region intensities were found for each frame of each trial. These signals were compared to determine the best performing region and compared to RIP data to validate breathing behavior. While some regions performed better, all region intensity signals depicted correct breathing behavior. The mean intensity signals for normal breathing and hyperventilation were correct and correlated well with RIP data. Furthermore, the RIP data resulting from the sleep apnea simulation clearly depicted chest movement while the corresponding mean intensity signal depicted lack of cyclical air flow. These results indicate that a subject's breathing behavior can be captured using thermal video and suggest that, with further development and additional equipment, thermal video can be used to detect and distinguish between types of sleep apnea.

  7. A Breath of Fresh Air

    ERIC Educational Resources Information Center

    Romano, Katherine

    2004-01-01

    One of many reasons that keep Orem, Utah's residents firmly planted right where they are may have something to do with the superior schools--and teachers--in the Alpine School District. This article describes one such teacher, Toni Zundel Boyer. Boyer, a third grade teacher and literacy coach, developed her own reading and writing materials that…

  8. Air breathing lithium power cells

    SciTech Connect

    Farmer, Joseph C.

    2014-07-15

    A cell suitable for use in a battery according to one embodiment includes a catalytic oxygen cathode; a stabilized zirconia electrolyte for selective oxygen anion transport; a molten salt electrolyte; and a lithium-based anode. A cell suitable for use in a battery according to another embodiment includes a catalytic oxygen cathode; an electrolyte; a membrane selective to molecular oxygen; and a lithium-based anode.

  9. Breath of Fresh Air Act

    THOMAS, 112th Congress

    Rep. Richardson, Laura [D-CA-37

    2012-08-02

    09/26/2012 Referred to the Subcommittee on Early Childhood, Elementary, and Secondary Education. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  10. Breath of Fresh Air Act

    THOMAS, 113th Congress

    Rep. Jackson Lee, Sheila [D-TX-18

    2014-02-27

    06/13/2014 Referred to the Subcommittee on Early Childhood, Elementary, and Secondary Education. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  11. A Breath of Spring Air

    ERIC Educational Resources Information Center

    Grady, Marilyn L.

    2009-01-01

    The most promising sights of spring in Nebraska this year were two conferences for women. One event, sponsored by Metropolitan Community College in Omaha, was a Women's History Month Tea. A second conference was the meeting of the Nebraska Women in Higher Education. These two events suggest that there is a continuing interest in women's leadership…

  12. Cell volume regulation in the perfused liver of a freshwater air-breathing cat fish Clarias batrachus under aniso-osmotic conditions: roles of inorganic ions and taurine.

    PubMed

    Goswami, Carina; Saha, Nirmalendu

    2006-12-01

    The roles of various inorganic ions and taurine, an organic osmolyte, in cell volume regulation were investigated in the perfused liver of a freshwater air-breathing catfish Clarias batrachus under aniso-osmotic conditions. There was a transient increase and decrease of liver cell volume following hypotonic (-80 mOsmol/l) and hypertonic (+80 mOsmol/l) exposures,respectively, which gradually decreased/increased near to the control level due to release/uptake of water within a period of 25-30 min. Liver volume decrease was accompanied by enhanced efflux of K+ (9.45 +/- 0.54 micromol/g liver) due to activation of Ba(2+)- and quinidine-sensitive K(+) channel, and to a lesser extent due to enhanced efflux of Cl(-) (4.35+/- 0.25 micromol/g liver) and Na+ (3.68+/- 0.37 micromol/g liver). Conversely, upon hypertonic exposure, there was amiloride-and ouabain-sensitive uptake of K+ (9.78+/- 0.65 micromol/g liver), and also Cl(-) (3.72 +/- 0.25 micromol/g liver).The alkalization/acidification of the liver effluents under hypo-/hypertonicity was mainly due to movement of various ions during volume regulatory processes. Taurine,an important organic osmolyte, appears also to play a very important role in hepatocyte cell volume regulation in the walking catfish as evidenced by the fact that hypo- and hyper-osmolarity caused transient efflux (5.68 +/- 0.38 micromol/g liver) and uptake (6.38 +/- 0.45 micromol/g liver) of taurine, respectively. The taurine efflux was sensitive to 4,4' -di-isothiocyanatostilbene-2,2'-disulphonic acid (DIDS, an anion channel blocker), but the uptake was insensitive to DIDS, thus indicating that the release and uptake of taurine during volume regulatory processes are unidirectional. Although the liver of walking catfish possesses the RVD and RVI mechanisms, it is to be noted that liver cells remain partly swollen and shrunken during anisotonic exposures,thereby possibly causing various volume-sensitive metabolic changes in the liver as reported earlier.

  13. A chlorate candle/lithium hydroxide personal breathing apparatus

    NASA Technical Reports Server (NTRS)

    Martin, F. E.

    1972-01-01

    A portable coal mine rescue and survival equipment is reported that consists of a chlorate candle with a lithium hydroxide carbon-dioxide absorbent for oxygen generation, a breathing bag and tubing to conduct breathing to and from the man. A plastic hood incorporating a mouth piece for communication provides also eye protection and prevents inhalation through the nose. Manned testing of a prototype system demonstrated the feasibility of this closed circuit no-maintenance breathing apparatus that provides for good voice communication.

  14. Minimizing Shortness of Breath

    MedlinePlus

    ... postures and exposure to environmental irritants. Pursed-Lip Breathing One focus of occupational therapy is to teach ... the accessory muscles and manage respiratory symptoms. Monitor Breathing During an activity, it is important to pause ...

  15. Breathing difficulty - lying down

    MedlinePlus

    Waking at night short of breath; Paroxysmal nocturnal dyspnea; PND; Difficulty breathing while lying down; Orthopnea ... obstructive pulmonary disease (COPD) Cor pulmonale Heart failure ... conditions that lead to it) Panic disorder Sleep apnea Snoring

  16. What Causes Bad Breath?

    MedlinePlus

    ... A Week of Healthy Breakfasts Shyness What Causes Bad Breath? KidsHealth > For Teens > What Causes Bad Breath? A A A en español ¿Qué es lo que provoca el mal aliento? Bad breath, or halitosis , can be a major problem, ...

  17. The Influence of Shale Rock Fracturing Equipment Operation on Atmospheric Air Quality

    NASA Astrophysics Data System (ADS)

    Bogacki, Marek; Macuda, Jan

    2014-12-01

    The hydraulic fracturing jobs performed on shale rocks are connected with atmospheric emissions of dusts and exhaust gases from high-power motors supplying pump aggregates used for fracturing operations and from other technological devices. The total power of motors driving technological systems depends on the specific character of deposit and well and may range between a dozen to tens of thousands kW. An exemplary set of technological systems used for frac jobs is presented in figure 1. The following substances are emitted to the atmosphere during engine operation, e.g. nitrogen oxides (NOx), sulfur dioxide (SO2), carbon oxide (CO), dust PM10, ammonia, benzo(a)pyrene (B(a)P), benzene, toluene, xylene, formaldehyde, acetaldehyde, acrolein. As a consequence admissible concentrations of these substances in air can be exceeded. The influence of dust and gaseous emissions accompanying shale rock fracturing jobs is addressed in this paper. Model analyses were performed. An exemplary model of a process used for simulating propagation of atmospheric emissions in a specified calculation area (1,150 m × 1,150 m) were based on the analysis of hydraulic fracturing jobs performed in wells in Poland and abroad. For making calculations more actual, the model was located in the Gdańsk area and was ascribed its typical meteorological and orographic parameters. In the center of this area a rig site 150 m x 150 m was distinguished. The emission field was generated by 12 high-power engines supplying pump aggregates, 1680 kW each. The time of work of particular engines was established for 52 hrs (13 frac jobs, each lasting 4 hrs). It was assumed that all engines will operate simultaneously and using 100% of their power. Attention was paid to the correct modelling of the real emission field. Technical parameters of motors and the applied fuels were characterized. Emission indices were worked out by, e.g. U.S. Environmental Protection Agency or European Environment Agency. The

  18. Two New Pieces of Emergency Response Equipment for use in Confined Space Environments

    NASA Technical Reports Server (NTRS)

    Graf, John

    2011-01-01

    NASA is developing two new pieces of emergency response equipment that recognize and address the constraints of a confined space environment. One piece of equipment is a respirator designed for use in a post fire environment. Traditional first responders generally use supplied air respirators - they provide cool, dry, safe breathing air to the first responder, and because they are supplied at above ambient pressure, the system is tolerant to a loose-fitting mask. Supplied air respirators have a limited supply of air, but because the traditional first responder intends to address the emergency from outside and then retreat, this limited air supply does not pose a serious problem. NASA uses a supplied oxygen respirator for first response to an emergency affecting air quality on the International Space Station. The air supply is rated for 15 minutes - ISS program managers sponsored a hardware development activity to provide the astronauts up to 8 hours of breathing protection after the supplied air system is exhausted. Size and weight limitations prevent the use of a supplied air system for 8 hours for six crew members. A trade study resulted in the selection of a filtering respirator system over a re-breather system; due to design simplicity, operational simplicity, and likely threats to air quality on ISS. The respirator cartridge that filters smoke particles, adsorbs organics and acid gases, and catalytically converts carbon monoxide to carbon dioxide has been qualified for use on ISS, and was delivered on STS-135, the final mission of the Space Shuttle Program.

  19. Control of breathing in the echidna (Tachyglossus aculeatus) during hibernation.

    PubMed

    Nicol, Stewart; Andersen, Niels A

    2003-12-01

    Resting non-hibernating echidnas are characterised by low metabolic rates, but also have a very low respiratory frequency and a variable respiratory minute volume, often resulting in low levels of arterial O(2) and high CO(2). As the echidna lies at one physiological extreme among the hibernators, in terms of its large size and low metabolism and ventilatory requirement when not hibernating, a study of control of breathing during hibernation in echidnas should provide a useful test of the generality of various models. We used non-invasive techniques to study breathing patterns and the control of ventilation in 6 echidnas. Hibernating echidnas (T(b) range 7-10 degrees C) showed episodic breathing with bursts of breaths (average 36+/-16 breaths in 24+/-5 min) followed by a period of apnea (76+/-17 min) then a series (8+/-4) of slow breaths at 14+/-1 min intervals leading up to the next burst. Increasing CO(2) levels in the inspired air increased the number of breaths in a burst, eventually leading to continuous breathing. Inter burst breaths were controlled by O(2): hypoxia increased inter burst breaths, and decreased burst length, while hyperoxia abolished inter burst breaths and increased the apneic period. Overall, while CO(2) was a strong respiratory stimulus in hibernating echidnas, O(2) had little effect on total ventilation, but did have a strong effect on the breathing pattern.

  20. FIELD METHODS TO MEASURE CONTAMINANT REMOVAL EFFECTIVENESS OF GAS-PHASE AIR FILTRATION EQUIPMENT - PHASE 1: SEARCH OF LITERATURE AND PRIOR ART

    EPA Science Inventory

    The report, Phase 1 of a two-phase research project, gives results of a literature search into the
    effectiveness of in-field gas-phase air filtration equipment (GPAFE) test methods, including required instrumentation and costs. GPAFE has been used in heating, ventilation, and ...

  1. 30 CFR 75.507-1 - Electric equipment other than power-connection points; outby the last open crosscut; return air...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Electric equipment other than power-connection points; outby the last open crosscut; return air; permissibility requirements. 75.507-1 Section 75.507-1 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY...

  2. 41 CFR 109-50.203 - Eligible equipment.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    .... 41Refrigeration, Air Conditioning and Air Circulating Equipment. 52Measuring Tools 60Fiber Optics Materials... Equipment (Including Firmware), Software, Supplies and Support Equipment 74Office Machines, Text...

  3. 41 CFR 109-50.203 - Eligible equipment.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... 41Refrigeration, Air Conditioning and Air Circulating Equipment. 52Measuring Tools 60Fiber Optics Materials... Equipment (Including Firmware), Software, Supplies and Support Equipment 74Office Machines, Text...

  4. 41 CFR 109-50.203 - Eligible equipment.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    .... 41Refrigeration, Air Conditioning and Air Circulating Equipment. 52Measuring Tools 60Fiber Optics Materials... Equipment (Including Firmware), Software, Supplies and Support Equipment 74Office Machines, Text...

  5. 46 CFR 28.205 - Fireman's outfits and self-contained breathing apparatus.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 1 2012-10-01 2012-10-01 false Fireman's outfits and self-contained breathing apparatus... the Aleutian Trade § 28.205 Fireman's outfits and self-contained breathing apparatus. (a) Each vessel... equipped with at least two self-contained breathing apparatuses. (c) A fireman's outfit must consist of...

  6. 46 CFR 167.45-60 - Emergency breathing apparatus and flame safety lamps.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Emergency breathing apparatus and flame safety lamps... Emergency breathing apparatus and flame safety lamps. Each nautical-school ship must be equipped with the following devices: (a) Two pressure-demand, open circuit, self-contained breathing apparatus, approved...

  7. 46 CFR 167.45-60 - Emergency breathing apparatus and flame safety lamps.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Emergency breathing apparatus and flame safety lamps... Emergency breathing apparatus and flame safety lamps. Each nautical-school ship must be equipped with the following devices: (a) Two pressure-demand, open circuit, self-contained breathing apparatus, approved...

  8. 46 CFR 97.37-20 - Self-contained breathing apparatus.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Self-contained breathing apparatus. 97.37-20 Section 97... VESSELS OPERATIONS Markings for Fire and Emergency Equipment, Etc. § 97.37-20 Self-contained breathing apparatus. (a) Lockers or spaces containing self-contained breathing apparatus shall be marked...

  9. 46 CFR 28.205 - Fireman's outfits and self-contained breathing apparatus.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 1 2013-10-01 2013-10-01 false Fireman's outfits and self-contained breathing apparatus... the Aleutian Trade § 28.205 Fireman's outfits and self-contained breathing apparatus. (a) Each vessel... equipped with at least two self-contained breathing apparatuses. (c) A fireman's outfit must consist of...

  10. 46 CFR 97.37-20 - Self-contained breathing apparatus.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Self-contained breathing apparatus. 97.37-20 Section 97... VESSELS OPERATIONS Markings for Fire and Emergency Equipment, Etc. § 97.37-20 Self-contained breathing apparatus. (a) Lockers or spaces containing self-contained breathing apparatus shall be marked...

  11. 46 CFR 28.205 - Fireman's outfits and self-contained breathing apparatus.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 1 2014-10-01 2014-10-01 false Fireman's outfits and self-contained breathing apparatus... the Aleutian Trade § 28.205 Fireman's outfits and self-contained breathing apparatus. (a) Each vessel... equipped with at least two self-contained breathing apparatuses. (c) A fireman's outfit must consist of...

  12. 46 CFR 97.37-20 - Self-contained breathing apparatus.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Self-contained breathing apparatus. 97.37-20 Section 97... VESSELS OPERATIONS Markings for Fire and Emergency Equipment, Etc. § 97.37-20 Self-contained breathing apparatus. (a) Lockers or spaces containing self-contained breathing apparatus shall be marked...

  13. 46 CFR 167.45-60 - Emergency breathing apparatus and flame safety lamps.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Emergency breathing apparatus and flame safety lamps... Emergency breathing apparatus and flame safety lamps. Each nautical-school ship must be equipped with the following devices: (a) Two pressure-demand, open circuit, self-contained breathing apparatus, approved...

  14. 46 CFR 196.37-20 - Self-contained breathing apparatus and gas masks.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Self-contained breathing apparatus and gas masks. 196.37... RESEARCH VESSELS OPERATIONS Markings for Fire and Emergency Equipment, etc. § 196.37-20 Self-contained breathing apparatus and gas masks. (a) Lockers or spaces containing self-contained breathing apparatus...

  15. 30 CFR 57.22315 - Self-contained breathing apparatus (V-A mines).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Self-contained breathing apparatus (V-A mines... NONMETAL MINES Safety Standards for Methane in Metal and Nonmetal Mines Equipment § 57.22315 Self-contained breathing apparatus (V-A mines). Self-contained breathing apparatus of a duration to allow for escape...

  16. 46 CFR 196.37-20 - Self-contained breathing apparatus and gas masks.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Self-contained breathing apparatus and gas masks. 196.37... RESEARCH VESSELS OPERATIONS Markings for Fire and Emergency Equipment, etc. § 196.37-20 Self-contained breathing apparatus and gas masks. (a) Lockers or spaces containing self-contained breathing apparatus...

  17. 46 CFR 195.30-15 - Self-contained breathing apparatus.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Self-contained breathing apparatus. 195.30-15 Section... VESSELS VESSEL CONTROL AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Protection From Refrigerants § 195.30-15 Self-contained breathing apparatus. (a) Each vessel must have a self-contained breathing apparatus...

  18. 46 CFR 96.30-15 - Self-contained breathing apparatus.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Self-contained breathing apparatus. 96.30-15 Section 96... VESSELS VESSEL CONTROL AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Protection From Refrigerants § 96.30-15 Self-contained breathing apparatus. (a) Each vessel must have a self-contained breathing apparatus...

  19. 46 CFR 97.37-20 - Self-contained breathing apparatus.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Self-contained breathing apparatus. 97.37-20 Section 97... VESSELS OPERATIONS Markings for Fire and Emergency Equipment, Etc. § 97.37-20 Self-contained breathing apparatus. (a) Lockers or spaces containing self-contained breathing apparatus shall be marked...

  20. 46 CFR 28.205 - Fireman's outfits and self-contained breathing apparatus.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 1 2011-10-01 2011-10-01 false Fireman's outfits and self-contained breathing apparatus... the Aleutian Trade § 28.205 Fireman's outfits and self-contained breathing apparatus. (a) Each vessel... equipped with at least two self-contained breathing apparatuses. (c) A fireman's outfit must consist of...

  1. 46 CFR 96.30-15 - Self-contained breathing apparatus.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Self-contained breathing apparatus. 96.30-15 Section 96... VESSELS VESSEL CONTROL AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Protection From Refrigerants § 96.30-15 Self-contained breathing apparatus. (a) Each vessel must have a self-contained breathing apparatus...

  2. 46 CFR 167.45-60 - Emergency breathing apparatus and flame safety lamps.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Emergency breathing apparatus and flame safety lamps... Emergency breathing apparatus and flame safety lamps. Each nautical-school ship must be equipped with the following devices: (a) Two pressure-demand, open circuit, self-contained breathing apparatus, approved...

  3. 46 CFR 167.45-60 - Emergency breathing apparatus and flame safety lamps.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Emergency breathing apparatus and flame safety lamps... Emergency breathing apparatus and flame safety lamps. Each nautical-school ship must be equipped with the following devices: (a) Two pressure-demand, open circuit, self-contained breathing apparatus, approved...

  4. 46 CFR 28.205 - Fireman's outfits and self-contained breathing apparatus.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 1 2010-10-01 2010-10-01 false Fireman's outfits and self-contained breathing apparatus... the Aleutian Trade § 28.205 Fireman's outfits and self-contained breathing apparatus. (a) Each vessel... equipped with at least two self-contained breathing apparatuses. (c) A fireman's outfit must consist of...

  5. 46 CFR 195.30-15 - Self-contained breathing apparatus.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Self-contained breathing apparatus. 195.30-15 Section... VESSELS VESSEL CONTROL AND MISCELLANEOUS SYSTEMS AND EQUIPMENT Protection From Refrigerants § 195.30-15 Self-contained breathing apparatus. (a) Each vessel must have a self-contained breathing apparatus...

  6. 30 CFR 57.22315 - Self-contained breathing apparatus (V-A mines).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Self-contained breathing apparatus (V-A mines... NONMETAL MINES Safety Standards for Methane in Metal and Nonmetal Mines Equipment § 57.22315 Self-contained breathing apparatus (V-A mines). Self-contained breathing apparatus of a duration to allow for escape...

  7. 46 CFR 97.37-20 - Self-contained breathing apparatus.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Self-contained breathing apparatus. 97.37-20 Section 97... VESSELS OPERATIONS Markings for Fire and Emergency Equipment, Etc. § 97.37-20 Self-contained breathing apparatus. (a) Lockers or spaces containing self-contained breathing apparatus shall be marked...

  8. Measurement of nitric oxide in human exhaled breath

    SciTech Connect

    Gordon, S.M.; Spicer, C.W.; Ollison, W.M.

    1997-12-31

    This project was initiated to confirm the reliability of nitric oxide (NO) measurement in the breath matrix, using two different analytical techniques - ozone and luminol chemiluminescence - and to corroborate literature reports of elevated breath NO values. To measure peak oral and nasal NO levels, subjects performed slow vital capacity and breath holding maneuvers directly into the monitors through the mouth and the nose, respectively. Additional measurements were made using normal breathing techniques. Initial interferent tests indicate that measured NO signals are real and are not confounded by measurement artifacts. Similar results were obtained using the two independent analytical methods in dry or humid air. The NO signal was unaffected by maximum concentrations of potential breath interferents, such as sulfur compounds and alkenes. The measured breath NO concentrations were greater than typical room air levels and differed significantly with the breathing technique used. During these tests room air averaged 4-5 ppb NO. Peak oral NO levels were 4.3 {+-} 1.5 ppb during a slow vital capacity maneuver and 8.0 {+-} 5.0 ppb during a breath holding maneuver. By contrast, higher peak nasal NO levels were measured for both slow vital capacity (17.8 {+-} 7.8 ppb) and breath holding maneuvers (45.4 {+-} 29.5 ppb).

  9. International Energy Agency Building Energy Simulation Test and Diagnostic Method for Heating, Ventilating, and Air-Conditioning Equipment Models (HVAC BESTEST); Volume 1: Cases E100-E200

    SciTech Connect

    Neymark, J.; Judkoff, R.

    2002-01-01

    This report describes the Building Energy Simulation Test for Heating, Ventilating, and Air-Conditioning Equipment Models (HVAC BESTEST) project conducted by the Tool Evaluation and Improvement International Energy Agency (IEA) Experts Group. The group was composed of experts from the Solar Heating and Cooling (SHC) Programme, Task 22, Subtask A. The current test cases, E100-E200, represent the beginning of work on mechanical equipment test cases; additional cases that would expand the current test suite have been proposed for future development.

  10. Respirator studies for the Nuclear Regulatory Commission. Evaluation and performance of escape-type self-contained breathing apparatus. Progress report, October 1, 1978-September 30, 1979

    SciTech Connect

    Hack, A.; Trujillo, A.; Carter, K.; Bradley, O.D.

    1980-07-01

    The performance of escape type breathing apparatus was evaluated for weight, comfort, ease of use, and protection factor (calculated from facepiece leakage). All of the devices tested provided a self-contained air supply of 5- to 15-min duration. Five of them have the provision to connect an air line but allow the use of the self-contained supply for safe egress. The air supply was stored in cylinders, tubing, or disposable containers. Respiratory inlet coverings were half masks, full facepieces, hoods, and mouthpieces. An estimate is given for the ease of quick donning. Recommendations for conditions of use of the equipment are given. 8 refs., 10 figs., 3 tabs.

  11. Zymosan-induced immune challenge modifies the stress response of hypoxic air-breathing fish (Anabas testudineus Bloch): Evidence for reversed patterns of cortisol and thyroid hormone interaction, differential ion transporter functions and non-specific immune response.

    PubMed

    Simi, S; Peter, Valsa S; Peter, M C Subhash

    2016-11-18

    Fishes have evolved physiological mechanisms to exhibit stress response, where hormonal signals interact with an array of ion transporters and regulate homeostasis. As major ion transport regulators in fish, cortisol and thyroid hormones have been shown to interact and fine-tune the stress response. Likewise, in fishes many interactions have been identified between stress and immune components, but the physiological basis of such interaction has not yet delineated particularly in air-breathing fish. We, therefore, investigated the responses of thyroid hormones and cortisol, ion transporter functions and non-specific immune response of an obligate air-breathing fish Anabas testudineus Bloch to zymosan treatment or hypoxia stress or both, to understand how immune challenge modifies the pattern of stress response in this fish. Induction of experimental peritonitis in these fish by zymosan treatment (200ngg(-1)) for 24h produced rise in respiratory burst and lysozomal activities in head kidney phagocytes. In contrast, hypoxia stress for 30min in immune-challenged fish reversed these non-specific responses of head kidney phagocytes. The decline in plasma cortisol in zymosan-treated fish and its further suppression by hypoxia stress indicate that immune challenge suppresses the cortisol-driven stress response of this fish. Likewise, the decline in plasma T3 and T4 after zymosan-treatment and the rise in plasma T4 after hypoxia stress in immune-challenged fish indicate a critical role for thyroid hormone in immune-stress response due to its differential sensitivity to both immune and stress challenges. Further, analysis of the activity pattern of ion-dependent ATPases viz. Na(+)/K(+)-ATPase, H(+)/K(+)-ATPase and Na(+)/NH4(+)-ATPase indicates a functional interaction of ion transport system with the immune response as evident in its differential and spatial modifications after hypoxia stress in immune-challenged fish. The immune-challenge that produced differential pattern

  12. 46 CFR 148.85 - Required equipment for confined spaces.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... the manufacturer's instructions. (b) At least two self-contained, pressure-demand-type, air breathing... master must ensure that the breathing apparatus is used only by persons trained in its use....

  13. Characteristics of ashes from different locations at the MSW incinerator equipped with various air pollution control devices.

    PubMed

    Song, Geum-Ju; Kim, Ki-Heon; Seo, Yong-Chil; Kim, Sam-Cwan

    2004-01-01

    The characteristics of ashes from different locations at a municipal solid waste incinerator (MSWI) equipped with a water spray tower (WST) as a cooling system, and a spray dryer adsorber (SDA), a bag filter (BF) and a selective catalytic reactor (SCR) as air pollution control devices (APCD) was investigated to provide the basic data for further treatment of ashes. A commercial MSWI with a capacity of 100 tons per day was selected. Ash was sampled from different locations during the normal operation of the MSWI and was analyzed to obtain chemical composition, basicity, metal contents and leaching behavior of heavy metals. Basicity and pH of ash showed a broad range between 0.08-9.07 and 3.5-12.3, respectively. Some major inorganics in ash were identified and could affect the basicity. This could be one of the factors to determine further treatment means. Partitioning of hazardous heavy metals such as Pb, Cu, Cr, Hg and Cd was investigated. Large portions of Hg and Cd were emitted from the furnace while over 90% of Pb, Cu and Cr remained in bottom ash. However 54% of Hg was captured by WST and 41% by SDA/BF and 3.6% was emitted through the stack, while 81.5% of Cd was captured by SDA/BF. From the analysis data of various metal contents in ash and leach analysis, such capturing of metal was confirmed and some heavy metals found to be easily released from ash. Based on the overall characteristics of ash in different locations at the MSWI during the investigation, some considerations and suggestions for determining the appropriate treatment methods of ash were made as conclusions.

  14. Characteristics of ashes from different locations at the MSW incinerator equipped with various air pollution control devices

    SciTech Connect

    Song, Geum-Ju; Kim, Ki-Heon; Seo, Yong-Chil; Kim, Sam-Cwan

    2004-07-01

    The characteristics of ashes from different locations at a municipal solid waste incinerator (MSWI) equipped with a water spray tower (WST) as a cooling system, and a spray dryer adsorber (SDA), a bag filter (BF) and a selective catalytic reactor (SCR) as air pollution control devices (APCD) was investigated to provide the basic data for further treatment of ashes. A commercial MSWI with a capacity of 100 tons per day was selected. Ash was sampled from different locations during the normal operation of the MSWI and was analyzed to obtain chemical composition, basicity, metal contents and leaching behavior of heavy metals. Basicity and pH of ash showed a broad range between 0.08-9.07 and 3.5-12.3, respectively. Some major inorganics in ash were identified and could affect the basicity. This could be one of the factors to determine further treatment means. Partitioning of hazardous heavy metals such as Pb, Cu, Cr, Hg and Cd was investigated. Large portions of Hg and Cd were emitted from the furnace while over 90% of Pb, Cu and Cr remained in bottom ash. However 54% of Hg was captured by WST and 41% by SDA/BF and 3.6% was emitted through the stack, while 81.5% of Cd was captured by SDA/BF. From the analysis data of various metal contents in ash and leach analysis, such capturing of metal was confirmed and some heavy metals found to be easily released from ash. Based on the overall characteristics of ash in different locations at the MSWI during the investigation, some considerations and suggestions for determining the appropriate treatment methods of ash were made as conclusions.

  15. 30 CFR 49.6 - Equipment and maintenance requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...: (1) Twelve self-contained breathing apparatus, each with a minimum of 4 hours capacity (approved by MSHA and NIOSH under 42 CFR Part 84, Subpart H), and any necessary equipment for testing such breathing... chemicals, and carbon dioxide absorbent chemicals, applicable to the supplied breathing apparatus...

  16. 30 CFR 49.6 - Equipment and maintenance requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...: (1) Twelve self-contained breathing apparatus, each with a minimum of 4 hours capacity (approved by MSHA and NIOSH under 42 CFR Part 84, Subpart H), and any necessary equipment for testing such breathing... chemicals, and carbon dioxide absorbent chemicals, applicable to the supplied breathing apparatus...

  17. Indoor Air Quality

    MedlinePlus

    ... can protect yourself and your family. Learn more Air Quality at Work Workers should breathe easy while on the job, but worksites with poor air quality put employees at risk. Healthy air is essential ...

  18. What Controls Your Breathing?

    MedlinePlus

    ... Explore How the Lungs Work What Are... The Respiratory System What Happens When You Breathe What Controls Your Breathing Lung Diseases & Conditions Clinical Trials Links Related Topics Asthma Bronchitis COPD How the Heart Works Respiratory Failure Send a link to NHLBI to someone ...

  19. Air purification equipment combining a filter coated by silver nanoparticles with a nano-TiO2 photocatalyst for use in hospitals

    NASA Astrophysics Data System (ADS)

    Son Le, Thanh; Hien Dao, Trong; Nguyen, Dinh Cuong; Chau Nguyen, Hoai; Balikhin, I. L.

    2015-03-01

    X-ray diffraction, scanning electron microscopy and transmission electron microscopy showed that TiO2 particles synthesized by a sol-gel procedure exhibited uniform size about 16-20 nm. This nanopowder was deposited on a porous quartz tube (D = 74 mm, L = 418 mm, deposit density ˜16.4 mg cm-2) through an intermediate adhesive polymethylmethacrylate layer to manufacture a photocatalytic filter tube. A polypropylene pre-filter was coated with a nanosilver layer (particle size ˜20 nm) prepared by aqueous molecular solution method. An air cleaner of 250 m3 h-1 capacity equipped with this pre-filter, an electrostatic air filter, 4 photocatalytic filter tubes and 4 UV-A lamps (36 W) presented the high degradation ability for certain volatile organic compounds (VOCs), bacteria and fungi. The VOCs degradation performances of the equipment with respect to divers compounds are different: in a 10 m3 box, 91.6% of butanol was removed within 55 min, 80% of acetone within 100 min, 70.1% of diethyl ether within 120 min and only 43% of benzene was oxidized within 150 min. Over 99% of bacteria and fungi were killed after the air passage through the equipment. For application, it was placed in the intensive care room (volume of 125 m3) of E hospital in Hanoi; 69% of bacteria and 63% of fungi were killed within 6 h.

  20. Automating the Air Force Retail-Level Equipment Management Process: An Application of Microcomputer-Based Information Systems Techniques

    DTIC Science & Technology

    1988-09-01

    could use the assistance of a microcomputer-based management information system . However, adequate system design and development requires an in-depth...understanding of the Equipment Management Section and the environment in which it functions were asked and answered. Then, a management information system was...designed, developed, and tested. The management information system is called the Equipment Management Information System (EMIS).