Science.gov

Sample records for air breathing pulse

  1. A Performance Map for Ideal Air Breathing Pulse Detonation Engines

    NASA Technical Reports Server (NTRS)

    Paxson, Daniel E.

    2001-01-01

    The performance of an ideal, air breathing Pulse Detonation Engine is described in a manner that is useful for application studies (e.g., as a stand-alone, propulsion system, in combined cycles, or in hybrid turbomachinery cycles). It is shown that the Pulse Detonation Engine may be characterized by an averaged total pressure ratio, which is a unique function of the inlet temperature, the fraction of the inlet flow containing a reacting mixture, and the stoichiometry of the mixture. The inlet temperature and stoichiometry (equivalence ratio) may in turn be combined to form a nondimensional heat addition parameter. For each value of this parameter, the average total enthalpy ratio and total pressure ratio across the device are functions of only the reactant fill fraction. Performance over the entire operating envelope can thus be presented on a single plot of total pressure ratio versus total enthalpy ratio for families of the heat addition parameter. Total pressure ratios are derived from thrust calculations obtained from an experimentally validated, reactive Euler code capable of computing complete Pulse Detonation Engine limit cycles. Results are presented which demonstrate the utility of the described method for assessing performance of the Pulse Detonation Engine in several potential applications. Limitations and assumptions of the analysis are discussed. Details of the particular detonative cycle used for the computations are described.

  2. The Air We Breathe

    NASA Technical Reports Server (NTRS)

    Davila, Dina

    2010-01-01

    Topics discussed include NASA mission to pioneer the future in space exploration, scientific discovery and aeronautics research; the role of Earth's atmosphere, atmospheric gases, layers of the Earth's atmosphere, ozone layer, air pollution, effects of air pollution on people, the Greenhouse Effect, and breathing on the International Space Station.

  3. Thermodynamic Cycle and CFD Analyses for Hydrogen Fueled Air-breathing Pulse Detonation Engines

    NASA Technical Reports Server (NTRS)

    Povinelli, Louis A.; Yungster, Shaye

    2002-01-01

    This paper presents the results of a thermodynamic cycle analysis of a pulse detonation engine (PDE) using a hydrogen-air mixture at static conditions. The cycle performance results, namely the specific thrust, fuel consumption and impulse are compared to a single cycle CFD analysis for a detonation tube which considers finite rate chemistry. The differences in the impulse values were indicative of the additional performance potential attainable in a PDE.

  4. Breathing zone air sampler

    DOEpatents

    Tobin, John

    1989-01-01

    A sampling apparatus is provided which comprises a sampler for sampling air in the breathing zone of a wearer of the apparatus and a support for the sampler preferably in the form of a pair of eyeglasses. The sampler comprises a sampling assembly supported on the frame of the eyeglasses and including a pair of sample transport tubes which are suspended, in use, centrally of the frame so as to be disposed on opposite sides of the nose of the wearer and which each include an inlet therein that, in use, is disposed adjacent to a respective nostril of the nose of the wearer. A filter holder connected to sample transport tubes supports a removable filter for filtering out particulate material in the air sampled by the apparatus. The sample apparatus is connected to a pump for drawing air into the apparatus through the tube inlets so that the air passes through the filter.

  5. Breathing zone air sampler

    SciTech Connect

    Tobin, J.

    1989-08-22

    A sampling apparatus is presented which comprises a sampler for sampling air in the breathing zone of a wearer of the apparatus and a support for the sampler preferably in the form of a pair of eyeglasses. The sampler comprises a sampling assembly supported on the frame of the eyeglasses and including a pair of sample transport tubes which are suspended, in use, centrally of the frame so as to be disposed on opposite sides of the nose of the wearer and which each include an inlet therein that, in use, is disposed adjacent to a respective nostril of the nose of the wearer. A filter holder connected to sample transport tubes supports a removable filter for filtering out particulate material in the air sampled by the apparatus. The sample apparatus is connected to a pump for drawing air into the apparatus through the tube inlets so that the air passes through the filter.

  6. Optimal Area Profiles for Ideal Single Nozzle Air-Breathing Pulse Detonation Engines

    NASA Technical Reports Server (NTRS)

    Paxson, Daniel E.

    2003-01-01

    The effects of cross-sectional area variation on idealized Pulse Detonation Engine performance are examined numerically. A quasi-one-dimensional, reacting, numerical code is used as the kernel of an algorithm that iteratively determines the correct sequencing of inlet air, inlet fuel, detonation initiation, and cycle time to achieve a limit cycle with specified fuel fraction, and volumetric purge fraction. The algorithm is exercised on a tube with a cross sectional area profile containing two degrees of freedom: overall exit-to-inlet area ratio, and the distance along the tube at which continuous transition from inlet to exit area begins. These two parameters are varied over three flight conditions (defined by inlet total temperature, inlet total pressure and ambient static pressure) and the performance is compared to a straight tube. It is shown that compared to straight tubes, increases of 20 to 35 percent in specific impulse and specific thrust are obtained with tubes of relatively modest area change. The iterative algorithm is described, and its limitations are noted and discussed. Optimized results are presented showing performance measurements, wave diagrams, and area profiles. Suggestions for future investigation are also discussed.

  7. Liquid-Air Breathing Apparatus

    NASA Technical Reports Server (NTRS)

    Mills, Robert D.

    1990-01-01

    Compact unit supplies air longer than compressed-air unit. Emergency breathing apparatus stores air as cryogenic liquid instead of usual compressed gas. Intended for firefighting or rescue operations becoming necessary during planned potentially hazardous procedures.

  8. Role of Air-Breathing Pulse Detonation Engines in High Speed Propulsion

    NASA Technical Reports Server (NTRS)

    Povinelli, Louis A.; Lee, Jin-Ho; Anderberg, Michael O.

    2001-01-01

    In this paper, the effect of flight Mach number on the relative performance of pulse detonation engines and gas turbine engines is investigated. The effect of ram and mechanical compression on combustion inlet temperature and the subsequent sensible heat release is determined. Comparison of specific thrust, fuel consumption and impulse for the two engines show the relative benefits over the Mach number range.

  9. Protective supplied breathing air garment

    DOEpatents

    Childers, E.L.; Hortenau, E.F. von.

    1984-07-10

    A breathing air garment is disclosed for isolating a wearer from hostile environments containing toxins or irritants includes a suit and a separate head protective enclosure or hood engaging a suit collar in sealing attachment. The hood and suit collar are cylindrically shaped and dimensioned to enable the wearer to withdraw his hands from the suit sleeves to perform manual tasks within the hood interior. Breathing air is supplied from an external air line with an air delivery hose attached to the hood interior. The hose feeds air into an annular halo-like fiber-filled plenum having spaced discharge orifices attached to the hood top wall. A plurality of air exhaust/check valves located at the suit extremities cooperate with the hood air delivery system to provide a cooling flow of circulating air from the hood throughout the suit interior. A suit entry seal provided on the suit rear torso panel permits access into the suit and is sealed with an adhesive sealing flap. 17 figs.

  10. Protective supplied breathing air garment

    DOEpatents

    Childers, Edward L.; von Hortenau, Erik F.

    1984-07-10

    A breathing air garment for isolating a wearer from hostile environments containing toxins or irritants includes a suit and a separate head protective enclosure or hood engaging a suit collar in sealing attachment. The hood and suit collar are cylindrically shaped and dimensioned to enable the wearer to withdraw his hands from the suit sleeves to perform manual tasks within the hood interior. Breathing air is supplied from an external air line with an air delivery hose attached to the hood interior. The hose feeds air into an annular halo-like fiber-filled plenum having spaced discharge orifices attached to the hood top wall. A plurality of air exhaust/check valves located at the suit extremities cooperate with the hood air delivery system to provide a cooling flow of circulating air from the hood throughout the suit interior. A suit entry seal provided on the suit rear torso panel permits access into the suit and is sealed with an adhesive sealing flap.

  11. Air-Breathing Rocket Engines

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This photograph depicts an air-breathing rocket engine prototype in the test bay at the General Applied Science Lab facility in Ronkonkoma, New York. Air-breathing engines, known as rocket based, combined-cycle engines, get their initial take-off power from specially designed rockets, called air-augmented rockets, that boost performance about 15 percent over conventional rockets. When the vehicle's velocity reaches twice the speed of sound, the rockets are turned off and the engine relies totally on oxygen in the atmosphere to burn hydrogen fuel, as opposed to a rocket that must carry its own oxygen, thus reducing weight and flight costs. Once the vehicle has accelerated to about 10 times the speed of sound, the engine converts to a conventional rocket-powered system to propel the craft into orbit or sustain it to suborbital flight speed. NASA's Advanced Space Transportation Program at Marshall Space Flight Center, along with several industry partners and collegiate forces, is developing this technology to make space transportation affordable for everyone from business travelers to tourists. The goal is to reduce launch costs from today's price tag of $10,000 per pound to only hundreds of dollars per pound. NASA's series of hypersonic flight demonstrators currently include three air-breathing vehicles: the X-43A, X-43B and X-43C.

  12. The indoor air we breathe.

    PubMed Central

    Oliver, L C; Shackleton, B W

    1998-01-01

    Increasingly recognized as a potential public health problem since the outbreak of Legionnaire's disease in Philadelphia in 1976, polluted indoor air has been associated with health problems that include asthma, sick building syndrome, multiple chemical sensitivity, and hypersensitivity pneumonitis. Symptoms are often nonspecific and include headache, eye and throat irritation, chest tightness and shortness of breath, and fatigue. Air-borne contaminants include commonly used chemicals, vehicular exhaust, microbial organisms, fibrous glass particles, and dust. Identified causes include defective building design and construction, aging of buildings and their ventilation systems, poor climate control, inattention to building maintenance. A major contributory factor is the explosion in the use of chemicals in building construction and furnishing materials over the past four decades. Organizational issues and psychological variables often contribute to the problem and hinder its resolution. This article describes the health problems related to poor indoor air quality and offers solutions. Images p398-a p399-a PMID:9769764

  13. Swimming in air-breathing fishes.

    PubMed

    Lefevre, S; Domenici, P; McKenzie, D J

    2014-03-01

    Fishes with bimodal respiration differ in the extent of their reliance on air breathing to support aerobic metabolism, which is reflected in their lifestyles and ecologies. Many freshwater species undertake seasonal and reproductive migrations that presumably involve sustained aerobic exercise. In the six species studied to date, aerobic exercise in swim flumes stimulated air-breathing behaviour, and there is evidence that surfacing frequency and oxygen uptake from air show an exponential increase with increasing swimming speed. In some species, this was associated with an increase in the proportion of aerobic metabolism met by aerial respiration, while in others the proportion remained relatively constant. The ecological significance of anaerobic swimming activities, such as sprinting and fast-start manoeuvres during predator-prey interactions, has been little studied in air-breathing fishes. Some species practise air breathing during recovery itself, while others prefer to increase aquatic respiration, possibly to promote branchial ion exchange to restore acid-base balance, and to remain quiescent and avoid being visible to predators. Overall, the diversity of air-breathing fishes is reflected in their swimming physiology as well, and further research is needed to increase the understanding of the differences and the mechanisms through which air breathing is controlled and used during exercise.

  14. Air breathing direct methanol fuel cell

    DOEpatents

    Ren, Xiaoming

    2002-01-01

    An air breathing direct methanol fuel cell is provided with a membrane electrode assembly, a conductive anode assembly that is permeable to air and directly open to atmospheric air, and a conductive cathode assembly that is permeable to methanol and directly contacting a liquid methanol source.

  15. Protective supplied-breathing-air garment

    DOEpatents

    Childers, E.L.; von Hortenau, E.F.

    1982-05-28

    A breathing-air garment for isolating a wearer from hostile environments containing toxins or irritants is disclosed. The garment includes a suit and a separate head-protective enclosure or hood engaging a suit collar in sealing attachment. The hood and suit collar are cylindrically shaped and dimensioned to enable the wearer to withdraw his hands from the suit sleeves to perform manual tasks within the hood interior. Breathing air is supplied from an external air line with an air-delivery hose attached to the hood interior. The hose feeds air into an annular halo-like fiber-filled plenum having spaced discharge orifices attached to the hood top wall. A plurality of air exhaust/check valves located at the suit extremities cooperate with the hood air-delivery system to provide a cooling flow of circulating air from the hood throughout the suit interior. A suit entry seal provided on the suit sealed with an adhesive sealing flap.

  16. The Air We Breathe. Activity Packet.

    ERIC Educational Resources Information Center

    Connecticut State Dept. of Environmental Protection, Hartford.

    This packet of materials is intended to provide teachers with an interdisciplinary approach to integrating air quality education into the existing curriculum of Connecticut schools. The unit is designed to complement the student booklet "The Air We Breathe," which is included. A major portion of the document is comprised of teaching…

  17. Breathing air purification; Desiccant vs. refrigerated

    SciTech Connect

    McKay, K.L.; Swanson, A.L. )

    1986-07-01

    Carbon monoxide (CO) is a common contaminant of ambient air - levels as high as 200 ppm are not uncommon in urban, industrial, or high automotive-traffic areas. Carbon monoxide may also be produced by the oxidation of lubricating oil in overheated compressors. Air from an oil-lubricated compressor, even when an aftercooler is used, often contains significant quantities of oil mist and vapor. Even where a breathing air (non-oil-lubricated) compressor is used , oil. levels in the air taken into the compressor can still exceed Grade D standards, especially in industrial environments. Other contaminants (gaseous hydrocarbons, particulate matter, and odors), while not addressed by the Grade D criteria, are also present in harmful or objectionable levels in industrial environments; therefore, they must be taken into account in the design of the air purification systems. This paper discusses two basic types of breathing air purifiers: desiccant and refrigerated purifiers.

  18. Air breathing direct methanol fuel cell

    DOEpatents

    Ren, Xiaoming; Gottesfeld, Shimshon

    2002-01-01

    An air breathing direct methanol fuel cell is provided with a membrane electrode assembly, a conductive anode assembly that is permeable to air and directly open to atmospheric air, and a conductive cathode assembly that is permeable to methanol and directly contacting a liquid methanol source. Water loss from the cell is minimized by making the conductive cathode assembly hydrophobic and the conductive anode assembly hydrophilic.

  19. A Breath of Fresh Air

    ERIC Educational Resources Information Center

    Belew, Rachel

    2011-01-01

    One of the most important aspects of a healthy school--and one that, unfortunately, often falls by the wayside--is indoor air quality. The U.S. Government Accountability Office estimates that more than 15,000 schools nationwide report suffering from poor indoor air quality. According to the U.S. Environmental Protection Agency, schools with poor…

  20. Breathing Easy over Air Quality.

    ERIC Educational Resources Information Center

    Greim, Clifton; Turner, William

    1991-01-01

    School systems should test the air in every school building for the presence and level of contaminants such as radon and asbestos and whether the ventilation system is circulating the proper amount of air. Periodic maintenance is required for all mechanical systems. (MLF)

  1. A Breath of Fresh Air.

    ERIC Educational Resources Information Center

    Freeman, Laurie

    1996-01-01

    A new elementary school in New Hampshire uses innovative European ventilation technology to ensure excellent air quality. Combined with high-efficiency lighting, the system should reduce energy consumption by 10 to 20%, compared with a traditional facility. (MLF)

  2. Pulse pressure variation to predict fluid responsiveness in spontaneously breathing patients: tidal vs. forced inspiratory breathing.

    PubMed

    Hong, D M; Lee, J M; Seo, J H; Min, J J; Jeon, Y; Bahk, J H

    2014-07-01

    We evaluated whether pulse pressure variation can predict fluid responsiveness in spontaneously breathing patients. Fifty-nine elective thoracic surgical patients were studied before induction of general anaesthesia. After volume expansion with hydroxyethyl starch 6 ml.kg(-1) , patients were defined as responders by a ≥ 15% increase in the cardiac index. Haemodynamic variables were measured before and after volume expansion and pulse pressure variations were calculated during tidal breathing and during forced inspiratory breathing. Median (IQR [range]) pulse pressure variation during forced inspiratory breathing was significantly higher in responders (n = 29) than in non-responders (n = 30) before volume expansion (18.2 (IQR 14.7-18.2 [9.3-31.3])% vs. 10.1 (IQR 8.3-12.6 [4.8-21.1])%, respectively, p < 0.001). The receiver-operating characteristic curve revealed that pulse pressure variation during forced inspiratory breathing could predict fluid responsiveness (area under the curve 0.910, p < 0.0001). Pulse pressure variation measured during forced inspiratory breathing can be used to guide fluid management in spontaneously breathing patients.

  3. Air-breathing Rocket Engine Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This Quick Time movie depicts the Rocketdyne static test of an air-breathing rocket. Air-breathing engines, known as rocket based, combined-cycle engines, get their initial take-off power from specially designed rockets, called air-augmented rockets, that boost performance about 15 percent over conventional rockets. When the vehicle's velocity reaches twice the speed of sound, the rockets are turned off and the engine relies totally on oxygen in the atmosphere to burn hydrogen fuel, as opposed to a rocket that must carry its own oxygen, thus reducing weight and flight costs. Once the vehicle has accelerated to about 10 times the speed of sound, the engine converts to a conventional rocket-powered system to propel the craft into orbit or sustain it to suborbital flight speed. NASA's advanced Transportation Program at the Marshall Space Flight Center, along with several industry partners and collegiate forces, is developing this technology to make space transportation affordable for everyone from business travelers to tourists. The goal is to reduce launch costs from today's price tag of $10,000 per pound to only hundreds of dollars per pound. NASA's series of hypersonic flight demonstrators currently include three air-breathing vehicles: the X-43A, X-43B and X-43C.

  4. Air-Breathing Rocket Engine Test

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This photograph depicts an air-breathing rocket engine that completed an hour or 3,600 seconds of testing at the General Applied Sciences Laboratory in Ronkonkoma, New York. Referred to as ARGO by its design team, the engine is named after the mythological Greek ship that bore Jason and the Argonauts on their epic voyage of discovery. Air-breathing engines, known as rocket based, combined-cycle engines, get their initial take-off power from specially designed rockets, called air-augmented rockets, that boost performance about 15 percent over conventional rockets. When the vehicle's velocity reaches twice the speed of sound, the rockets are turned off and the engine relies totally on oxygen in the atmosphere to burn hydrogen fuel, as opposed to a rocket that must carry its own oxygen, thus reducing weight and flight costs. Once the vehicle has accelerated to about 10 times the speed of sound, the engine converts to a conventional rocket-powered system to propel the craft into orbit or sustain it to suborbital flight speed. NASA's Advanced SpaceTransportation Program at Marshall Space Flight Center, along with several industry partners and collegiate forces, is developing this technology to make space transportation affordable for everyone from business travelers to tourists. The goal is to reduce launch costs from today's price tag of $10,000 per pound to only hundreds of dollars per pound. NASA's series of hypersonic flight demonstrators currently include three air-breathing vehicles: the X-43A, X-43B and X-43C.

  5. Air breathing engine/rocket trajectory optimization

    NASA Technical Reports Server (NTRS)

    Smith, V. K., III

    1979-01-01

    This research has focused on improving the mathematical models of the air-breathing propulsion systems, which can be mated with the rocket engine model and incorporated in trajectory optimization codes. Improved engine simulations provided accurate representation of the complex cycles proposed for advanced launch vehicles, thereby increasing the confidence in propellant use and payload calculations. The versatile QNEP (Quick Navy Engine Program) was modified to allow treatment of advanced turboaccelerator cycles using hydrogen or hydrocarbon fuels and operating in the vehicle flow field.

  6. 46 CFR 154.1852 - Air breathing equipment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Air breathing equipment. 154.1852 Section 154.1852... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Operations § 154.1852 Air breathing equipment. (a) The master shall ensure that a licensed officer inspects the compressed air...

  7. 46 CFR 154.1852 - Air breathing equipment.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Air breathing equipment. 154.1852 Section 154.1852... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Operations § 154.1852 Air breathing equipment. (a) The master shall ensure that a licensed officer inspects the compressed air...

  8. 46 CFR 154.1852 - Air breathing equipment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Air breathing equipment. 154.1852 Section 154.1852... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Operations § 154.1852 Air breathing equipment. (a) The master shall ensure that a licensed officer inspects the compressed air...

  9. 46 CFR 154.1852 - Air breathing equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Air breathing equipment. 154.1852 Section 154.1852... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Operations § 154.1852 Air breathing equipment. (a) The master shall ensure that a licensed officer inspects the compressed air...

  10. 46 CFR 154.1852 - Air breathing equipment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Air breathing equipment. 154.1852 Section 154.1852... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Operations § 154.1852 Air breathing equipment. (a) The master shall ensure that a licensed officer inspects the compressed air...

  11. Supersonic Air-Breathing Stage For Commercial Launch Rocket

    NASA Technical Reports Server (NTRS)

    Martin, James A.

    1993-01-01

    Concept proposed to expand use of air-breathing, reusable stages to put more payload into orbit at less cost. Stage with supersonic air-breathing engines added to carry expendable stages from subsonic airplane to supersonic velocity. Carry payload to orbit. Expendable stages and payload placed in front of supersonic air-breathing stage. After releasing expendable stages, remotely piloted supersonic air-breathing stage returns to takeoff site and land for reuse. New concept extends use of low-cost reusable hardware and increases payload delivered from B-52.

  12. Optimization of Air-Breathing Engine Concept

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Lavelle, Thomas M.; Hopkins, Dale A.

    1996-01-01

    The design optimization of air-breathing propulsion engine concepts has been accomplished by soft-coupling the NASA Engine Performance Program (NEPP) analyzer with the NASA Lewis multidisciplinary optimization tool COMETBOARDS. Engine problems, with their associated design variables and constraints, were cast as nonlinear optimization problems with thrust as the merit function. Because of the large number of mission points in the flight envelope, the diversity of constraint types, and the overall distortion of the design space; the most reliable optimization algorithm available in COMETBOARDS, when used by itself, could not produce satisfactory, feasible, optimum solutions. However, COMETBOARDS' unique features-which include a cascade strategy, variable and constraint formulations, and scaling devised especially for difficult multidisciplinary applications-successfully optimized the performance of subsonic and supersonic engine concepts. Even when started from different design points, the combined COMETBOARDS and NEPP results converged to the same global optimum solution. This reliable and robust design tool eliminates manual intervention in the design of air-breathing propulsion engines and eases the cycle analysis procedures. It is also much easier to use than other codes, which is an added benefit. This paper describes COMETBOARDS and its cascade strategy and illustrates the capabilities of the combined design tool through the optimization of a high-bypass- turbofan wave-rotor-topped subsonic engine and a mixed-flow-turbofan supersonic engine.

  13. Air-breathing adaptation in a marine Devonian lungfish

    PubMed Central

    Clement, Alice M.; Long, John A.

    2010-01-01

    Recent discoveries of tetrapod trackways in 395 Myr old tidal zone deposits of Poland (Niedźwiedzki et al. 2010 Nature 463, 43–48 (doi:10.1038/nature.08623)) indicate that vertebrates had already ventured out of the water and might already have developed some air-breathing capacity by the Middle Devonian. Air-breathing in lungfishes is not considered to be a shared specialization with tetrapods, but evolved independently. Air-breathing in lungfishes has been postulated as starting in Middle Devonian times (ca 385 Ma) in freshwater habitats, based on a set of skeletal characters involved in air-breathing in extant lungfishes. New discoveries described herein of the lungfish Rhinodipterus from marine limestones of Australia identifies the node in dipnoan phylogeny where air-breathing begins, and confirms that lungfishes living in marine habitats had also developed specializations to breathe air by the start of the Late Devonian (ca 375 Ma). While invasion of freshwater habitats from the marine realm was previously suggested to be the prime cause of aerial respiration developing in lungfishes, we believe that global decline in oxygen levels during the Middle Devonian combined with higher metabolic costs is a more likely driver of air-breathing ability, which developed in both marine and freshwater lungfishes and tetrapodomorph fishes such as Gogonasus. PMID:20147310

  14. Don't You Dare Breathe That Air!

    ERIC Educational Resources Information Center

    American Lung Association, New York, NY.

    Designed for elementary school students, the workbook focuses on the unhealthy and unpleasant effects of air pollution. Space is provided for students to draw pictures of: (1) how breathing polluted air can make people feel, (2) what polluted air can do to people's health--especially if they smoke cigarettes, (3) what air pollution can do to the…

  15. Air-Breathing Launch Vehicle Technology Being Developed

    NASA Technical Reports Server (NTRS)

    Trefny, Charles J.

    2003-01-01

    Of the technical factors that would contribute to lowering the cost of space access, reusability has high potential. The primary objective of the GTX program is to determine whether or not air-breathing propulsion can enable reusable single-stage-to-orbit (SSTO) operations. The approach is based on maturation of a reference vehicle design with focus on the integration and flight-weight construction of its air-breathing rocket-based combined-cycle (RBCC) propulsion system.

  16. Theme and variations: amphibious air-breathing intertidal fishes.

    PubMed

    Martin, K L

    2014-03-01

    Over 70 species of intertidal fishes from 12 families breathe air while emerging from water. Amphibious intertidal fishes generally have no specialized air-breathing organ but rely on vascularized mucosae and cutaneous surfaces in air to exchange both oxygen and carbon dioxide. They differ from air-breathing freshwater fishes in morphology, physiology, ecology and behaviour. Air breathing and terrestrial activity are present to varying degrees in intertidal fish species, correlated with the tidal height of their habitat. The gradient of amphibious lifestyle includes passive remainers that stay in the intertidal zone as tides ebb, active emergers that deliberately leave water in response to poor aquatic conditions and highly mobile amphibious skipper fishes that may spend more time out of water than in it. Normal terrestrial activity is usually aerobic and metabolic rates in air and water are similar. Anaerobic metabolism may be employed during forced exercise or when exposed to aquatic hypoxia. Adaptations for amphibious life include reductions in gill surface area, increased reliance on the skin for respiration and ion exchange, high affinity of haemoglobin for oxygen and adjustments to ventilation and metabolism while in air. Intertidal fishes remain close to water and do not travel far terrestrially, and are unlikely to migrate or colonize new habitats at present, although in the past this may have happened. Many fish species spawn in the intertidal zone, including some that do not breathe air, as eggs and embryos that develop in the intertidal zone benefit from tidal air emergence. With air breathing, amphibious intertidal fishes survive in a variable habitat with minimal adjustments to existing structures. Closely related species in different microhabitats provide unique opportunities for comparative studies.

  17. Wash-out of ambient air contaminations for breath measurements.

    PubMed

    Maurer, F; Wolf, A; Fink, T; Rittershofer, B; Heim, N; Volk, T; Baumbach, J I; Kreuer, S

    2014-06-01

    In breath analysis, ambient air contaminations are ubiquitous and difficult to eliminate. This study was designed to investigate the reduction of ambient air background by a lung wash-out with synthetic air. The reduction of the initial ambient air volatile organic compound (VOC) intensity was investigated in the breath of 20 volunteers inhaling synthetic air via a sealed full face mask in comparison to inhaling ambient air. Over a period of 30 minutes, breath analysis was conducted using ion mobility spectrometry coupled to a multi-capillary column. A total of 68 VOCs were identified for inhaling ambient air or inhaling synthetic air. By treatment with synthetic air, 39 VOCs decreased in intensity, whereas 29 increased in comparison to inhaling ambient air. In total, seven VOCs were significantly reduced (P-value < 0.05). A complete wash-out of VOCs in this setting was not observed, whereby a statistically significant reduction up to 65% as for terpinolene was achieved. Our setting successfully demonstrated a reduction of ambient air contaminations from the airways by a lung wash-out with synthetic air.

  18. Humidifiers: Air Moisture Eases Skin, Breathing Symptoms

    MedlinePlus

    ... Environmental Protection Agency. http://www.epa.gov/indoor-air-quality-iaq. Accessed Jan. 27, 2016. Dirty humidifiers may ... 2016. The inside story: A guide to indoor air quality. U.S. Consumer Product Safety Commission. http://www.cpsc. ...

  19. Improved fireman's compressed air breathing system pressure vessel development program

    NASA Technical Reports Server (NTRS)

    King, H. A.; Morris, E. E.

    1973-01-01

    Prototype high pressure glass filament-wound, aluminum-lined pressurant vessels suitable for use in a fireman's compressed air breathing system were designed, fabricated, and acceptance tested in order to demonstrate the feasibility of producing such high performance, lightweight units. The 4000 psi tanks have a 60 standard cubic foot (SCF) air capacity, and have a 6.5 inch diamter, 19 inch length, 415 inch volume, weigh 13 pounds when empty, and contain 33 percent more air than the current 45 SCF (2250 psi) steel units. The current steel 60 SCF (3000 psi) tanks weigh approximately twice as much as the prototype when empty, and are 2 inches, or 10 percent shorter. The prototype units also have non-rusting aluminum interiors, which removes the hazard of corrosion, the need for internal coatings, and the possibility of rust particles clogging the breathing system.

  20. Clean the Air and Breathe Easier.

    ERIC Educational Resources Information Center

    Guevin, John

    1997-01-01

    Failure to prevent indoor air quality problems or act promptly can result in increased chances for long- or short-term health problems for staff and students, reduced productivity, faster plant deterioration, and strained school-community relations. Basic pollution control measures include source management, local exhausts, ventilation, exposure…

  1. Feedback linearization for control of air breathing engines

    NASA Technical Reports Server (NTRS)

    Phillips, Stephen; Mattern, Duane

    1991-01-01

    The method of feedback linearization for control of the nonlinear nozzle and compressor components of an air breathing engine is presented. This method overcomes the need for a large number of scheduling variables and operating points to accurately model highly nonlinear plants. Feedback linearization also results in linear closed loop system performance simplifying subsequent control design. Feedback linearization is used for the nonlinear partial engine model and performance is verified through simulation.

  2. Optimization of Air-Breathing Propulsion Engine Concepts

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Hopkins, Dale A.

    1997-01-01

    Air-breathing propulsion engines play an important role in the development of both civil and military aircraft Design optimization of such engines can lead to higher power, or more thrust for less fuel consumption. A multimission propulsion engine design can be modeled mathematically as a multivariable global optimization problem, with a sequence of subproblems, which are specific to the mission events defined through Mach number, altitude, and power setting combinations.

  3. Engine Cycle Analysis of Air Breathing Microwave Rocket with Reed Valves

    SciTech Connect

    Fukunari, Masafumi; Komatsu, Reiji; Yamaguchi, Toshikazu; Komurasaki, Kimiya; Arakawa, Yoshihiro; Katsurayama, Hiroshi

    2011-11-10

    The Microwave Rocket is a candidate for a low cost launcher system. Pulsed plasma generated by a high power millimeter wave beam drives a blast wave, and a vehicle acquires impulsive thrust by exhausting the blast wave. The thrust generation process of the Microwave Rocket is similar to a pulse detonation engine. In order to enhance the performance of its air refreshment, the air-breathing mechanism using reed valves is under development. Ambient air is taken to the thruster through reed valves. Reed valves are closed while the inside pressure is high enough. After the time when the shock wave exhausts at the open end, an expansion wave is driven and propagates to the thrust-wall. The reed valve is opened by the negative gauge pressure induced by the expansion wave and its reflection wave. In these processes, the pressure oscillation is important parameter. In this paper, the pressure oscillation in the thruster was calculated by CFD combined with the flux through from reed valves, which is estimated analytically. As a result, the air-breathing performance is evaluated using Partial Filling Rate (PFR), the ratio of thruster length to diameter L/D, and ratio of opening area of reed valves to superficial area {alpha}. An engine cycle and predicted thrust was explained.

  4. A Breath of Fresh Air: Addressing Indoor Air Quality

    ERIC Educational Resources Information Center

    Palliser, Janna

    2011-01-01

    Indoor air pollution refers to "chemical, biological, and physical contamination of indoor air," which may result in adverse health effects (OECD 2003). The causes, sources, and types of indoor air pollutants will be addressed in this article, as well as health effects and how to reduce exposure. Learning more about potential pollutants in home…

  5. Sustained periodic terrestrial locomotion in air-breathing fishes.

    PubMed

    Pace, C M; Gibb, A C

    2014-03-01

    While emergent behaviours have long been reported for air-breathing osteichthyians, only recently have researchers undertaken quantitative analyses of terrestrial locomotion. This review summarizes studies of sustained periodic terrestrial movements by air-breathing fishes and quantifies the contributions of the paired appendages and the axial body to forward propulsion. Elongate fishes with axial-based locomotion, e.g. the ropefish Erpetoichthys calabaricus, generate an anterior-to-posterior wave of undulation that travels down the axial musculoskeletal system and pushes the body against the substratum at multiple points. In contrast, appendage-based locomotors, e.g. the barred mudskipper Periophthalmus argentilineatus, produce no axial bending during sustained locomotion, but instead use repeated protraction-retraction cycles of the pectoral fins to elevate the centre of mass and propel the entire body anteriorly. Fishes that use an axial-appendage-based mechanism, e.g. walking catfishes Clarias spp., produce side-to-side, whole-body bending in co-ordination with protraction-retraction cycles of the pectoral fins. Once the body is maximally bent to one side, the tail is pressed against the substratum and drawn back through the mid-sagittal plane, which elevates the centre of mass and rotates it about a fulcrum formed by the pectoral fin and the ground. Although appendage-based terrestrial locomotion appears to be rare in osteichthyians, many different species appear to have converged upon functionally similar axial-based and axial-appendage-based movements. Based on common forms observed across divergent taxa, it appears that dorsoventral compression of the body, elongation of the axial skeleton or the presence of robust pectoral fins can facilitate effective terrestrial movement by air-breathing fishes.

  6. Prospects for future hypersonic air-breathing vehicles

    NASA Technical Reports Server (NTRS)

    Beach, H. L., Jr.; Blankson, Isaiah M.

    1991-01-01

    The age of hypersonics is (almost) here. This is evident from the amount of activity in the United States, Europe, the USSR and Japan; this activity is a reflection of technical progress in key areas which will enable new vehicle systems, as well as renewed interest in the utilization of these systems. The current situation, at least in the United States, is the product of an interesting history which is briefly reviewed here. The context for hypersonic applications is discussed, but the emphasis is on hypersonic technology issues and needs, particularly for propulsion and technology integration. The paper concludes with prospects for accomplishing the objective of air-breathing hypersonic vehicle systems.

  7. Fluid dynamic problems associated with air-breathing propulsive systems

    NASA Technical Reports Server (NTRS)

    Chow, W. L.

    1979-01-01

    A brief account of research activities on problems related to air-breathing propulsion is made in this final report for the step funded research grant NASA NGL 14-005-140. Problems include the aircraft ejector-nozzle propulsive system, nonconstant pressure jet mixing process, recompression and reattachment of turbulent free shear layer, supersonic turbulent base pressure, low speed separated flows, transonic boattail flow with and without small angle of attack, transonic base pressures, Mach reflection of shocks, and numerical solution of potential equation through hodograph transformation.

  8. Multiple pure tone elimination strut assembly. [air breathing engines

    NASA Technical Reports Server (NTRS)

    Burcham, F. W. (Inventor)

    1981-01-01

    An acoustic noise elimination assembly is disclosed which has a capability for disrupting the continuity of fields of sound pressures forwardly projected from fans or rotors of a type commonly found in the fan or compressor first stage for air-breathing engines, when operating at tip speeds in the supersonic range. The assembly includes a tubular cowl defining a duct for delivering an air stream axially into the intake for a jet engine. A sound barrier, defined by a number of intersecting flat plates or struts has a line of intersection coincident with a longitudinal axis of the tubular cowl, which serves to disrupt the continuity of rotating fields of multiple pure tonal components of noise.

  9. Enriched Air Nitrox Breathing Reduces Venous Gas Bubbles after Simulated SCUBA Diving: A Double-Blind Cross-Over Randomized Trial

    PubMed Central

    Souday, Vincent; Koning, Nick J.; Perez, Bruno; Grelon, Fabien; Mercat, Alain; Boer, Christa; Seegers, Valérie; Radermacher, Peter; Asfar, Pierre

    2016-01-01

    Objective To test the hypothesis whether enriched air nitrox (EAN) breathing during simulated diving reduces decompression stress when compared to compressed air breathing as assessed by intravascular bubble formation after decompression. Methods Human volunteers underwent a first simulated dive breathing compressed air to include subjects prone to post-decompression venous gas bubbling. Twelve subjects prone to bubbling underwent a double-blind, randomized, cross-over trial including one simulated dive breathing compressed air, and one dive breathing EAN (36% O2) in a hyperbaric chamber, with identical diving profiles (28 msw for 55 minutes). Intravascular bubble formation was assessed after decompression using pulmonary artery pulsed Doppler. Results Twelve subjects showing high bubble production were included for the cross-over trial, and all completed the experimental protocol. In the randomized protocol, EAN significantly reduced the bubble score at all time points (cumulative bubble scores: 1 [0–3.5] vs. 8 [4.5–10]; P < 0.001). Three decompression incidents, all presenting as cutaneous itching, occurred in the air versus zero in the EAN group (P = 0.217). Weak correlations were observed between bubble scores and age or body mass index, respectively. Conclusion EAN breathing markedly reduces venous gas bubble emboli after decompression in volunteers selected for susceptibility for intravascular bubble formation. When using similar diving profiles and avoiding oxygen toxicity limits, EAN increases safety of diving as compared to compressed air breathing. Trial Registration ISRCTN 31681480 PMID:27163253

  10. Personal exposure to volatile organic compounds. I. Direct measurements in breathing-zone air, drinking water, food, and exhaled breath.

    PubMed

    Wallace, L A; Pellizzari, E; Hartwell, T; Rosenzweig, M; Erickson, M; Sparacino, C; Zelon, H

    1984-10-01

    A pilot study to test methods of estimating personal exposures to toxic substances and corresponding body burdens was carried out between July and December 1980. Individual exposures to about a dozen volatile organic compounds in air and drinking water were measured for nine volunteers in Bayonne and Elizabeth, New Jersey, and for three volunteers in Research Triangle Park, North Carolina during three 3-day visits over the 6-month period. Breath samples were also collected from all subjects on each visit. Composite food samples were collected in each locality. Sampling and analytical methods for air, water, food, and breath were evaluated and found generally capable of detecting concentrations as low as 1 microgram/m3 in air and breath, and 1 ng/g in water and food. About 230 personal air samples, 170 drinking water samples, 66 breath samples, and 4 food samples (16 composites) were analyzed for the target chemicals. Ten compounds were present in air and eight were transmitted mainly through that medium. The two target trihalomethanes (chloroform and bromodichloromethane) were predominantly transmitted through water and beverages. Food appeared to be a minor route of exposure, except possibly for trichloroethylene in margarine. Seven compounds were present in more than half of the breath samples. Diurnal and seasonal variations were noted in air and water concentrations of some compounds, with summer levels generally higher. For some chemicals, weekday air exposures were significantly higher than weekend exposures. Some, but not all, of the potentially occupationally exposed individuals had significantly higher workplace exposures to several chemicals. Distributions of air exposures were closer to log normal than normal for most chemicals. Several chemicals were highly correlated with each other in personal air samples, indicating possible common sources of exposure.

  11. 2-D Air-Breathing Lightcraft Engine Experiments in Hypersonic Conditions

    NASA Astrophysics Data System (ADS)

    Salvador, Israel I.; Myrabo, Leik N.; Minucci, Marco A. S.; de Oliveira, Antonio C.; Toro, Paulo G. P.; Chanes, José B.; Rego, Israel S.

    2011-11-01

    Experiments were performed with a 2-D, repetitively-pulsed (RP) laser Lightcraft model in hypersonic flow conditions. The main objective was the feasibility analysis for impulse generation with repetitively-pulsed air-breathing laser Lightcraft engines at hypersonic speeds. The future application of interest for this basic research endeavor is the laser launch of pico-, nano-, and micro-satellites (i.e., 0.1-100 kg payloads) into Low-Earth-Orbit, at low-cost and on-demand. The laser propulsion experiments employed a Hypersonic Shock Tunnel integrated with twin gigawatt pulsed Lumonics 620-TEA CO2 lasers (˜ 1 μs pulses), to produce the required test conditions. This hypersonic campaign was carried out at nominal Mach numbers ranging from 6 to 10. Time-dependent surface pressure distributions were recorded together with Schlieren movies of the flow field structure resulting from laser energy deposition. Results indicated laser-induced pressure increases of 0.7-0.9 bar with laser pulse energies of ˜ 170 J, on off-shroud induced breakdown condition, and Mach number of 7.

  12. Hypoxemia with air breathing periods in U.S. NAVY Treatment Table 6.

    PubMed

    Weaver, L K; Churchill, S K

    2006-01-01

    Air breathing is used to lessen hyperbaric oxygen (HBO2) toxicity. Hypoxemia could occur during hyperbaric air breathing in patients with lung dysfunction, although this has not been previously reported. We report two cases of hypoxemia during air breathing with two patients treated with the US Navy Table 6. Patient 1 was an 11-year-old male with cerebral gas embolism (during cardiac transplantation), patient 2 was a 66-year-old female with cerebral gas embolism from a central venous catheter accident. Both were mechanically ventilated. We monitored arterial blood gas (ABG) during therapy. In both patients, ABG measurements showed hypoxia during the first air breathing period at 1.9 atm abs (192.5 kPa). If patients require > or = 40% inspired oxygen before HBO2 therapy, oxygenation monitoring is advisable during air breathing periods, especially at lower chamber pressures (< or = 2.0 atm abs).

  13. Autonomic control of post-air-breathing tachycardia in Clarias gariepinus (Teleostei: Clariidae).

    PubMed

    Teixeira, Mariana Teodoro; Armelin, Vinicius Araújo; Abe, Augusto Shinya; Rantin, Francisco Tadeu; Florindo, Luiz Henrique

    2015-08-01

    The African catfish (Clarias gariepinus) is a teleost with bimodal respiration that utilizes a paired suprabranchial chamber located in the gill cavity as an air-breathing organ. Like all air-breathing fishes studied to date, the African catfish exhibits pronounced changes in heart rate (f H) that are associated with air-breathing events. We acquired f H, gill-breathing frequency (f G) and air-breathing frequency (f AB) in situations that require or do not require air breathing (during normoxia and hypoxia), and we assessed the autonomic control of post-air-breathing tachycardia using an infusion of the β-adrenergic antagonist propranolol and the muscarinic cholinergic antagonist atropine. During normoxia, C. gariepinus presented low f AB (1.85 ± 0.73 AB h(-1)) and a constant f G (43.16 ± 1.74 breaths min(-1)). During non-critical hypoxia (PO2 = 60 mmHg), f AB in the African catfish increased to 5.42 ± 1.19 AB h(-1) and f G decreased to 39.12 ± 1.58 breaths min(-1). During critical hypoxia (PO2 = 20 mmHg), f AB increased to 7.4 ± 1.39 AB h(-1) and f G decreased to 34.97 ± 1.78 breaths min(-1). These results were expected for a facultative air breather. Each air breath (AB) was followed by a brief but significant tachycardia, which in the critical hypoxia trials, reached a maximum of 143 % of the pre-AB f H values of untreated animals. Pharmacological blockade allowed the calculation of cardiac autonomic tones, which showed that post-AB tachycardia is predominantly regulated by the parasympathetic subdivision of the autonomic nervous system.

  14. Air-breathing fishes in aquaculture. What can we learn from physiology?

    PubMed

    Lefevre, S; Wang, T; Jensen, A; Cong, N V; Huong, D T T; Phuong, N T; Bayley, M

    2014-03-01

    During the past decade, the culture of air-breathing fish species has increased dramatically and is now a significant global source of protein for human consumption. This development has generated a need for specific information on how to maximize growth and minimize the environmental effect of culture systems. Here, the existing data on metabolism in air-breathing fishes are reviewed, with the aim of shedding new light on the oxygen requirements of air-breathing fishes in aquaculture, reaching the conclusion that aquatic oxygenation is much more important than previously assumed. In addition, the possible effects on growth of the recurrent exposure to deep hypoxia and associated elevated concentrations of carbon dioxide, ammonia and nitrite, that occurs in the culture ponds used for air-breathing fishes, are discussed. Where data on air-breathing fishes are simply lacking, data for a few water-breathing species will be reviewed, to put the physiological effects into a growth perspective. It is argued that an understanding of air-breathing fishes' respiratory physiology, including metabolic rate, partitioning of oxygen uptake from air and water in facultative air breathers, the critical oxygen tension, can provide important input for the optimization of culture practices. Given the growing importance of air breathers in aquaculture production, there is an urgent need for further data on these issues.

  15. Improved ROS defense in the swimbladder of a facultative air-breathing erythrinid fish, jeju, compared to a non-air-breathing close relative, traira.

    PubMed

    Pelster, Bernd; Giacomin, Marina; Wood, Chris M; Val, Adalberto L

    2016-07-01

    The jeju Hoplerythrinus unitaeniatus and the traira Hoplias malabaricus are two closely related erythrinid fish, both possessing a two-chambered physostomous swimbladder. In the jeju the anterior section of the posterior bladder is highly vascularized and the swimbladder is used for aerial respiration; the traira, in turn, is a water-breather that uses the swimbladder as a buoyancy organ and not for aerial oxygen uptake. Observation of the breathing behavior under different levels of water oxygenation revealed that the traira started aquatic surface respiration only under severe hypoxic conditions and did not breathe air. In the jeju air-breathing behavior was observed under normoxic conditions, and the frequency of air-breathing was significantly increased under hypoxic conditions. Unexpectedly, even under hyperoxic conditions (30 mg O2 L(-1)) the jeju continued to take air breaths, and compared with normoxic conditions the frequency was not reduced. Because the frequently air-exposed swimbladder tissue faces higher oxygen partial pressures than normally experienced by other fish tissues, it was hypothesized that in the facultative air-breathing jeju, swimbladder tissue would have a higher antioxidative capacity than the swimbladder tissue of the water breathing traira. Measurement of total glutathione (GSSG/GSH) concentration in anterior and posterior swimbladder tissue revealed a higher concentration of this antioxidant in swimbladder tissue as compared to muscle tissue in the jeju. Furthermore, the GSSG/GSH concentration in jeju tissues was significantly higher than in traira tissues. Similarly, activities of enzymes involved in the breakdown of reactive oxygen species were significantly higher in the jeju swimbladder as compared to the traira swimbladder. The results show that the jeju, using the swimbladder as an additional breathing organ, has an enhanced antioxidative capacity in the swimbladder as compared to the traira, using the swimbladder only as a

  16. Personal exposure to volatile organic compounds. I. Direct measurements in breathing-zone air, drinking water, food, and exhaled breath

    SciTech Connect

    Wallace, L.A.; Pellizzari, E.; Hartwell, T.; Rosenzweig, M.; Erickson, M.; Sparacino, C.; Zelon, H.

    1984-10-01

    A pilot study to test methods of estimating personal exposures to toxic substances and corresponding body burdens was carried out between July and December 1980. Individual exposures to about a dozen volatile organic compounds in air and drinking water were measured for volunteers in New Jersey and North Carolina. Breath samples were also collected from all subjects. About 230 personal air samples, 170 drinking water samples, 66 breath samples, and 4 food samples (16 composites) were analyzed for the target chemicals. Ten compounds were present in air and eight were transmitted mainly through that medium. Chloroform and bromodichloromethane were predominantly transmitted through water and beverages. Food appeared to be a miner route of exposure, except possibly for trichloroethylene in margarine. Seven compounds were present in more than half of the breath samples. Diurnal and seasonal variations were noted in air and water concentrations of some compounds. Some, but not all, of the potentially occupationally exposed individuals had significantly higher workplace exposures to several chemicals. Distributions of air exposures were closer to log normal than normal for most chemicals. Several chemicals were highly correlated with each other in personal air samples, indicating possible common sources of exposures. Compounds detected included benzene, chlorinated aromatic hydrocarbons, chlorinated aliphatic hydrocarbons, halogens and vinyl chloride.

  17. Benzene levels in ambient air and breath of smokers and nonsmokers in urban and pristine environments

    SciTech Connect

    Wester, R.C.; Maibach, H.I.; Gruenke, L.D.; Craig, J.C.

    1986-01-01

    Benzene levels in human breath and in ambient air were compared in the urban area of San Francisco (SF) and in a more remote coastal pristine setting of Stinson Beach, Calif. (SB). Benzene analysis was done by gas chromatography-mass spectroscopy (GC-MS). Ambient benzene levels were sevenfold higher in SF (2.6 +/- 1.3 ppb, n = 25) than SB (0.38 +/- 0.39 ppb, n = 21). In SF, benzene in smokers' breath (6.8 +/- 3.0 ppb) was greater than in nonsmokers' breath (2.5 +/- 0.8 ppb) and smokers' ambient air (3.3 +/- 0.8 ppb). In SB the same pattern was observed: benzene in smokers' breath was higher than in nonsmokers' breath and ambient air. Benzene in SF nonsmokers' breath was greater than in SB nonsmokers' breath. Marijuana-only smokers had benzene breath levels between those of smokers and nonsmokers. There was little correlation between benzene in breath and number of cigarettes smoked, or with other benzene exposures such as diet. Of special interest was the finding that benzene in breath of SF nonsmokers (2.5 +/- 0.8 ppb) was greater than that in nonsmokers ambient air (1.4 +/- 0.1 ppb). The same was true in SB, where benzene in nonsmokers breath was greater than ambient air (1.8 +/- 0.2 ppb versus 1.0 +/- 0.1 ppb on d 1 and 1.3 +/- 0.3 ppb versus 0.23 +/- 0.18 ppb on d 2). This suggests an additional source of benzene other than outdoor ambient air.

  18. The lung cancer breath signature: a comparative analysis of exhaled breath and air sampled from inside the lungs

    PubMed Central

    Capuano, Rosamaria; Santonico, Marco; Pennazza, Giorgio; Ghezzi, Silvia; Martinelli, Eugenio; Roscioni, Claudio; Lucantoni, Gabriele; Galluccio, Giovanni; Paolesse, Roberto; Di Natale, Corrado; D’Amico, Arnaldo

    2015-01-01

    Results collected in more than 20 years of studies suggest a relationship between the volatile organic compounds exhaled in breath and lung cancer. However, the origin of these compounds is still not completely elucidated. In spite of the simplistic vision that cancerous tissues in lungs directly emit the volatile metabolites into the airways, some papers point out that metabolites are collected by the blood and then exchanged at the air-blood interface in the lung. To shed light on this subject we performed an experiment collecting both the breath and the air inside both the lungs with a modified bronchoscopic probe. The samples were measured with a gas chromatography-mass spectrometer (GC-MS) and an electronic nose. We found that the diagnostic capability of the electronic nose does not depend on the presence of cancer in the sampled lung, reaching in both cases an above 90% correct classification rate between cancer and non-cancer samples. On the other hand, multivariate analysis of GC-MS achieved a correct classification rate between the two lungs of only 76%. GC-MS analysis of breath and air sampled from the lungs demonstrates a substantial preservation of the VOCs pattern from inside the lung to the exhaled breath. PMID:26559776

  19. The lung cancer breath signature: a comparative analysis of exhaled breath and air sampled from inside the lungs.

    PubMed

    Capuano, Rosamaria; Santonico, Marco; Pennazza, Giorgio; Ghezzi, Silvia; Martinelli, Eugenio; Roscioni, Claudio; Lucantoni, Gabriele; Galluccio, Giovanni; Paolesse, Roberto; Di Natale, Corrado; D'Amico, Arnaldo

    2015-11-12

    Results collected in more than 20 years of studies suggest a relationship between the volatile organic compounds exhaled in breath and lung cancer. However, the origin of these compounds is still not completely elucidated. In spite of the simplistic vision that cancerous tissues in lungs directly emit the volatile metabolites into the airways, some papers point out that metabolites are collected by the blood and then exchanged at the air-blood interface in the lung. To shed light on this subject we performed an experiment collecting both the breath and the air inside both the lungs with a modified bronchoscopic probe. The samples were measured with a gas chromatography-mass spectrometer (GC-MS) and an electronic nose. We found that the diagnostic capability of the electronic nose does not depend on the presence of cancer in the sampled lung, reaching in both cases an above 90% correct classification rate between cancer and non-cancer samples. On the other hand, multivariate analysis of GC-MS achieved a correct classification rate between the two lungs of only 76%. GC-MS analysis of breath and air sampled from the lungs demonstrates a substantial preservation of the VOCs pattern from inside the lung to the exhaled breath.

  20. The lung cancer breath signature: a comparative analysis of exhaled breath and air sampled from inside the lungs

    NASA Astrophysics Data System (ADS)

    Capuano, Rosamaria; Santonico, Marco; Pennazza, Giorgio; Ghezzi, Silvia; Martinelli, Eugenio; Roscioni, Claudio; Lucantoni, Gabriele; Galluccio, Giovanni; Paolesse, Roberto; di Natale, Corrado; D'Amico, Arnaldo

    2015-11-01

    Results collected in more than 20 years of studies suggest a relationship between the volatile organic compounds exhaled in breath and lung cancer. However, the origin of these compounds is still not completely elucidated. In spite of the simplistic vision that cancerous tissues in lungs directly emit the volatile metabolites into the airways, some papers point out that metabolites are collected by the blood and then exchanged at the air-blood interface in the lung. To shed light on this subject we performed an experiment collecting both the breath and the air inside both the lungs with a modified bronchoscopic probe. The samples were measured with a gas chromatography-mass spectrometer (GC-MS) and an electronic nose. We found that the diagnostic capability of the electronic nose does not depend on the presence of cancer in the sampled lung, reaching in both cases an above 90% correct classification rate between cancer and non-cancer samples. On the other hand, multivariate analysis of GC-MS achieved a correct classification rate between the two lungs of only 76%. GC-MS analysis of breath and air sampled from the lungs demonstrates a substantial preservation of the VOCs pattern from inside the lung to the exhaled breath.

  1. Stack air-breathing membraneless glucose microfluidic biofuel cell

    NASA Astrophysics Data System (ADS)

    Galindo-de-la-Rosa, J.; Moreno-Zuria, A.; Vallejo-Becerra, V.; Arjona, N.; Guerra-Balcázar, M.; Ledesma-García, J.; Arriaga, L. G.

    2016-11-01

    A novel stacked microfluidic fuel cell design comprising re-utilization of the anodic and cathodic solutions on the secondary cell is presented. This membraneless microfluidic fuel cell employs porous flow-through electrodes in a “V”-shape cell architecture. Enzymatic bioanodic arrays based on glucose oxidase were prepared by immobilizing the enzyme onto Toray carbon paper electrodes using tetrabutylammonium bromide, Nafion and glutaraldehyde. These electrodes were characterized through the scanning electrochemical microscope technique, evidencing a good electrochemical response due to the electronic transference observed with the presence of glucose over the entire of the electrode. Moreover, the evaluation of this microfluidic fuel cell with an air-breathing system in a double-cell mode showed a performance of 0.8951 mWcm-2 in a series connection (2.2822mAcm-2, 1.3607V), and 0.8427 mWcm-2 in a parallel connection (3.5786mAcm-2, 0.8164V).

  2. Experimental Study on Restart Control of Supersonic Air Breathing Engine

    NASA Astrophysics Data System (ADS)

    Kojima, Takayuki; Sato, Tetsuya; Sawai, Shujiro; Tanatsugu, Nobuhiro

    In order to study dynamic response and establish control logic of supersonic air breathing engine, restart control tests of subscale engine model, that consists of axisymmetric intake and turbojet engine are done at ISAS supersonic wind tunnel (Mach 3). Assuming the condition that the combustion flame is blown out by the unstart, restart control sequences are set as follows. First, after a wind tunnel is started, the core engine is ignited. Second, the intake is restarted while the core engine is controlled. Third, the intake spike position and the terminal shock position are controlled and intake total pressure recovery becomes the designed value (60%). Tests are successful and the engine thrust is recovered for approximately 30-40 seconds after the intake unstart. Sudden increase of combustor flame temperature and rotational speed after the intake unstart is shown experimentally. This phenomenon is inevitable for supersonic engines that apply turbojet cycle as a core engine. To reduce sudden increase of the flame temperature, new sequence to close a fuel control valve after detection of the intake unstart is done and an increase of the flame temperature is reduced. Furthermore, necessity of avoidance of the intake buzz is shown experimentally. To avoid the intake buzz, buzz margin control by the bypass door is proposed and succeeded.

  3. Corticosterone promotes emergence of fictive air breathing in Xenopus laevis Daudin tadpole brainstems.

    PubMed

    Fournier, Stéphanie; Dubé, Pierre-Luc; Kinkead, Richard

    2012-04-01

    The emergence of air breathing during amphibian metamorphosis requires significant changes to the brainstem circuits that generate and regulate breathing. However, the mechanisms controlling this developmental process are unknown. Because corticosterone plays an important role in the neuroendocrine regulation of amphibian metamorphosis, we tested the hypothesis that corticosterone augments fictive air breathing frequency in Xenopus laevis. To do so, we compared the fictive air breathing frequency produced by in vitro brainstem preparations from pre-metamorphic tadpoles and adult frogs before and after 1 h application of corticosterone (100 nmol l(-1)). Fictive breathing measurements related to gill and lung ventilation were recorded extracellularly from cranial nerve rootlets V and X. Corticosterone application had no immediate effect on respiratory-related motor output produced by brainstems from either developmental stage. One hour after corticosterone wash out, fictive lung ventilation frequency was increased whereas gill burst frequency was decreased. This effect was stage specific as it was significant only in preparations from tadpoles. GABA application (0.001-0.5 mmol l(-1)) augmented fictive air breathing in tadpole preparations. However, this effect of GABA was no longer observed following corticosterone treatment. An increase in circulating corticosterone is one of the endocrine processes that orchestrate central nervous system remodelling during metamorphosis. The age-specific effects of corticosterone application indicate that this hormone can act as an important regulator of respiratory control development in Xenopus tadpoles. Concurrent changes in GABAergic neurotransmission probably contribute to this maturation process, leading to the emergence of air breathing in this species.

  4. Applications of principal component analysis to breath air absorption spectra profiles classification

    NASA Astrophysics Data System (ADS)

    Kistenev, Yu. V.; Shapovalov, A. V.; Borisov, A. V.; Vrazhnov, D. A.; Nikolaev, V. V.; Nikiforova, O. Y.

    2015-12-01

    The results of numerical simulation of application principal component analysis to absorption spectra of breath air of patients with pulmonary diseases are presented. Various methods of experimental data preprocessing are analyzed.

  5. Health and efficiency in trimix versus air breathing in compressed air workers.

    PubMed

    Van Rees Vellinga, T P; Verhoeven, A C; Van Dijk, F J H; Sterk, W

    2006-01-01

    The Western Scheldt Tunneling Project in the Netherlands provided a unique opportunity to evaluate the effects of trimix usage on the health of compressed air workers and the efficiency of the project. Data analysis addressed 318 exposures to compressed air at 3.9-4.4 bar gauge and 52 exposures to trimix (25% oxygen, 25% helium, and 50% nitrogen) at 4.6-4.8 bar gauge. Results revealed three incidents of decompression sickness all of which involved the use of compressed air. During exposure to compressed air, the effects of nitrogen narcosis were manifested in operational errors and increased fatigue among the workers. When using trimix, less effort was required for breathing, and mandatory decompression times for stays of a specific duration and maximum depth were considerably shorter. We conclude that it might be rational--for both medical and operational reasons--to use breathing gases with lower nitrogen fractions (e.g., trimix) for deep-caisson work at pressures exceeding 3 bar gauge, although definitive studies are needed.

  6. Breathing

    MedlinePlus Videos and Cool Tools

    ... size of the thoracic cavity and decreases the pressure inside. As a result, air rushes in and ... volume of the thoracic cavity decreases, while the pressure within it increases. As a result, the lungs ...

  7. Randomized controlled trial of discontinuation of nasal-CPAP in stable preterm infants breathing room air.

    PubMed

    Abdel-Hady, H; Mohareb, S; Khashaba, M; Abu-Alkhair, M; Greisen, G

    1998-01-01

    This trial assessed the consequences of discontinuation of nasal-CPAP in stable preterm infants breathing room air. Eighty-eight infants with a mean gestational age of 29 (24-33) weeks and a mean birthweight of 1264 (665-2060)g, randomized to either discontinuation of CPAP or its continuation, were clinically observed and monitored for 6 h by cardiorespiratory monitor, pulse oximeter and transcutaneous blood gas monitor. The abdominal circumference and gastric air and aspirate volumes were measured prior to meals at trial entry and after 6 h. Discontinuation of CPAP led to a small but significant decrease in oxygenation at 1 and 6 h. During the trial, five infants in the experimental group required supplemental oxygen and one infant was put back on CPAP owing to excessive apnoeas. Discontinuation of CPAP did not influence the TcPCO2 or the number of apnoeas and bradycardias during the trial, but led to significantly increased respiratory rate, retractions, and flaring at 6 h. It also led to a significant decrease in the abdominal circumference and gastric air volume. Thirty-nine percent of infants were put back on CPAP some time after the trial, mainly because of recurrent apnoeas and bradycardias. Taking the infant off CPAP during the trial reduced subsequent use of CPAP.

  8. Environmental modulation of the onset of air breathing and survival of Betta splendens and Trichopodus trichopterus.

    PubMed

    Mendez-Sanchez, J F; Burggren, W W

    2014-03-01

    The effect of hypoxia on air-breathing onset and survival was determined in larvae of the air-breathing fishes, the three spot gourami Trichopodus trichopterus and the Siamese fighting fish Betta splendens. Larvae were exposed continuously or intermittently (12 h nightly) to an oxygen partial pressure (PO2 ) of 20, 17 and 14 kPa from 1 to 40 days post-fertilization (dpf). Survival and onset of air breathing were measured daily. Continuous normoxic conditions produced a larval survival rate of 65-75% for B. splendens and 15-30% for T. trichopterus, but all larvae of both species died at 9 dpf in continuous hypoxia conditions. Larvae under intermittent (nocturnal) hypoxia showed a 15% elevated survival rate in both species. The same conditions altered the onset of air breathing, advancing onset by 4 days in B. splendens and delaying onset by 9 days in T. trichopterus. These interspecific differences were attributed to air-breathing characteristics: B. splendens was a non-obligatory air breather after 36 dpf, whereas T. trichopterus was an obligatory air breather after 32 dpf.

  9. Benzene and naphthalene in air and breath as indicators of exposure to jet fuel

    PubMed Central

    Egeghy, P; Hauf-Cabalo, L; Gibson, R; Rappaport, S

    2003-01-01

    Aims: To estimate exposures to benzene and naphthalene among military personnel working with jet fuel (JP-8) and to determine whether naphthalene might serve as a surrogate for JP-8 in studies of health effects. Methods: Benzene and naphthalene were measured in air and breath of 326 personnel in the US Air Force, who had been assigned a priori into low, moderate, and high exposure categories for JP-8. Results: Median air concentrations for persons in the low, moderate, and high exposure categories were 3.1, 7.4, and 252 µg benzene/m3 air, 4.6, 9.0, and 11.4 µg benzene/m3 breath, 1.9, 10.3, and 485 µg naphthalene/m3 air, and 0.73, 0.93, and 1.83 µg naphthalene/m3 breath, respectively. In the moderate and high exposure categories, 5% and 15% of the benzene air concentrations, respectively, were above the 2002 threshold limit value (TLV) of 1.6 mg/m3. Multiple regression analyses of air and breath levels revealed prominent background sources of benzene exposure, including cigarette smoke. However, naphthalene exposure was not unduly influenced by sources other than JP-8. Among heavily exposed workers, dermal contact with JP-8 contributed to air and breath concentrations along with several physical and environmental factors. Conclusions: Personnel having regular contact with JP-8 are occasionally exposed to benzene at levels above the current TLV. Among heavily exposed workers, uptake of JP-8 components occurs via both inhalation and dermal contact. Naphthalene in air and breath can serve as useful measures of exposure to JP-8 and uptake of fuel components in the body. PMID:14634191

  10. Spiracular air breathing in polypterid fishes and its implications for aerial respiration in stem tetrapods.

    PubMed

    Graham, Jeffrey B; Wegner, Nicholas C; Miller, Lauren A; Jew, Corey J; Lai, N Chin; Berquist, Rachel M; Frank, Lawrence R; Long, John A

    2014-01-01

    The polypterids (bichirs and ropefish) are extant basal actinopterygian (ray-finned) fishes that breathe air and share similarities with extant lobe-finned sarcopterygians (lungfishes and tetrapods) in lung structure. They are also similar to some fossil sarcopterygians, including stem tetrapods, in having large paired openings (spiracles) on top of their head. The role of spiracles in polypterid respiration has been unclear, with early reports suggesting that polypterids could inhale air through the spiracles, while later reports have largely dismissed such observations. Here we resolve the 100-year-old mystery by presenting structural, behavioural, video, kinematic and pressure data that show spiracle-mediated aspiration accounts for up to 93% of all air breaths in four species of Polypterus. Similarity in the size and position of polypterid spiracles with those of some stem tetrapods suggests that spiracular air breathing may have been an important respiratory strategy during the fish-tetrapod transition from water to land.

  11. Excretory nitrogen metabolism and defence against ammonia toxicity in air-breathing fishes.

    PubMed

    Chew, S F; Ip, Y K

    2014-03-01

    With the development of air-breathing capabilities, some fishes can emerge from water, make excursions onto land or even burrow into mud during droughts. Air-breathing fishes have modified gill morphology and morphometry and accessory breathing organs, which would tend to reduce branchial ammonia excretion. As ammonia is toxic, air-breathing fishes, especially amphibious ones, are equipped with various strategies to ameliorate ammonia toxicity during emersion or ammonia exposure. These strategies can be categorized into (1) enhancement of ammonia excretion and reduction of ammonia entry, (2) conversion of ammonia to a less toxic product for accumulation and subsequent excretion, (3) reduction of ammonia production and avoidance of ammonia accumulation and (4) tolerance of ammonia at cellular and tissue levels. Active ammonia excretion, operating in conjunction with lowering of ambient pH and reduction in branchial and cutaneous NH₃ permeability, is theoretically the most effective strategy to maintain low internal ammonia concentrations. NH₃ volatilization involves the alkalization of certain epithelial surfaces and requires mechanisms to prevent NH₃ back flux. Urea synthesis is an energy-intensive process and hence uncommon among air-breathing teleosts. Aestivating African lungfishes detoxify ammonia to urea and the accumulated urea is excreted following arousal. Reduction in ammonia production is achieved in some air-breathing fishes through suppression of amino acid catabolism and proteolysis, or through partial amino acid catabolism leading to alanine formation. Others can slow down ammonia accumulation through increased glutamine synthesis in the liver and muscle. Yet, some others develop high tolerance of ammonia at cellular and tissue levels, including tissues in the brain. In summary, the responses of air-breathing fishes to ameliorate ammonia toxicity are many and varied, determined by the behaviour of the species and the nature of the environment in

  12. MEASUREMENTS OF AIR POLLUTANT BIOMARKERS WITH EXHALED BREATH TECHNIQUES

    EPA Science Inventory

    Use of exhaled breath condensate (EBC) has appeal as a noninvasive surrogate sample for lung-derived fluid. Additionally, EBC can be collected multiple times over the course of a study, unlike many other lung sampling techniques which can be performed fewer times. However validat...

  13. High capacity for extracellular acid-base regulation in the air-breathing fish Pangasianodon hypophthalmus.

    PubMed

    Damsgaard, Christian; Gam, Le Thi Hong; Tuong, Dang Diem; Thinh, Phan Vinh; Huong Thanh, Do Thi; Wang, Tobias; Bayley, Mark

    2015-05-01

    The evolution of accessory air-breathing structures is typically associated with reduction of the gills, although branchial ion transport remains pivotal for acid-base and ion regulation. Therefore, air-breathing fishes are believed to have a low capacity for extracellular pH regulation during a respiratory acidosis. In the present study, we investigated acid-base regulation during hypercapnia in the air-breathing fish Pangasianodon hypophthalmus in normoxic and hypoxic water at 28-30°C. Contrary to previous studies, we show that this air-breathing fish has a pronounced ability to regulate extracellular pH (pHe) during hypercapnia, with complete metabolic compensation of pHe within 72 h of exposure to hypoxic hypercapnia with CO2 levels above 34 mmHg. The high capacity for pHe regulation relies on a pronounced ability to increase levels of HCO3(-) in the plasma. Our study illustrates the diversity in the physiology of air-breathing fishes, such that generalizations across phylogenies may be difficult.

  14. Breathing Problems

    MedlinePlus

    ... getting enough air. Sometimes you can have mild breathing problems because of a stuffy nose or intense ... panic attacks Allergies If you often have trouble breathing, it is important to find out the cause.

  15. Air breathing and aquatic gas exchange during hypoxia in armoured catfish.

    PubMed

    Scott, Graham R; Matey, Victoria; Mendoza, Julie-Anne; Gilmour, Kathleen M; Perry, Steve F; Almeida-Val, Vera M F; Val, Adalberto L

    2017-01-01

    Air breathing in fish is commonly believed to have arisen as an adaptation to aquatic hypoxia. The effectiveness of air breathing for tissue O2 supply depends on the ability to avoid O2 loss as oxygenated blood from the air-breathing organ passes through the gills. Here, we evaluated whether the armoured catfish (Hypostomus aff. pyreneusi)-a facultative air breather-can avoid branchial O2 loss while air breathing in aquatic hypoxia, and we measured various other respiratory and metabolic traits important for O2 supply and utilization. Fish were instrumented with opercular catheters to measure the O2 tension (PO2) of expired water, and air breathing and aquatic respiration were measured during progressive stepwise hypoxia in the water. Armoured catfish exhibited relatively low rates of O2 consumption and gill ventilation, and gill ventilation increased in hypoxia due primarily to increases in ventilatory stroke volume. Armoured catfish began air breathing at a water PO2 of 2.5 kPa, and both air-breathing frequency and hypoxia tolerance (as reflected by PO2 at loss of equilibrium, LOE) was greater in individuals with a larger body mass. Branchial O2 loss, as reflected by higher PO2 in expired than in inspired water, was observed in a minority (4/11) of individuals as water PO2 approached that at LOE. Armoured catfish also exhibited a gill morphology characterized by short filaments bearing short fused lamellae, large interlamellar cell masses, low surface area, and a thick epithelium that increased water-to-blood diffusion distance. Armoured catfish had a relatively low blood-O2 binding affinity when sampled in normoxia (P50 of 3.1 kPa at pH 7.4), but were able to rapidly increase binding affinity during progressive hypoxia exposure (to a P50 of 1.8 kPa). Armoured catfish also had low activities of several metabolic enzymes in white muscle, liver, and brain. Therefore, low rates of metabolism and gill ventilation, and a reduction in branchial gas-exchange capacity

  16. The Breath of Life. The Problem of Poisoned Air.

    ERIC Educational Resources Information Center

    Carr, Donald E.

    The origins and nature of air pollution, from earliest days to the present, are examined in this book. Although air pollution has been with us since the discovery of fire, it is proffered that the major culprit now is the burning of gasoline and low-grade heating oil. All other sources of air pollution are negligible. The main thesis is that only…

  17. Firefighter's compressed air breathing system pressure vessel development program

    NASA Technical Reports Server (NTRS)

    Beck, E. J.

    1974-01-01

    The research to design, fabricate, test, and deliver a pressure vessel for the main component in an improved high-performance firefighter's breathing system is reported. The principal physical and performance characteristics of the vessel which were required are: (1) maximum weight of 9.0 lb; (2) maximum operating pressure of 4500 psig (charge pressure of 4000 psig); (3) minimum contained volume of 280 in. 3; (4) proof pressure of 6750 psig; (5) minimum burst pressure of 9000 psig following operational and service life; and (6) a minimum service life of 15 years. The vessel developed to fulfill the requirements described was completely sucessful, i.e., every category of performence was satisfied. The average weight of the vessel was found to be about 8.3 lb, well below the 9.0 lb specification requirement.

  18. Dependence of exhaled breath composition on exogenous factors, smoking habits and exposure to air pollutants*

    PubMed Central

    Mochalski, P; Filipiak, A; Bajtarevic, A; Ager, C; Denz, H; Hilbe, W; Jamnig, H; Hackl, M; Dzien, A; Amann, A

    2013-01-01

    Non-invasive disease monitoring on the basis of volatile breath markers is a very attractive but challenging task. Several hundreds of compounds have been detected in exhaled air using modern analytical techniques (e.g. proton-transfer reaction mass spectrometry, gas chromatography-mass spectrometry) and have even been linked to various diseases. However, the biochemical background for most of compounds detected in breath samples has not been elucidated; therefore, the obtained results should be interpreted with care to avoid false correlations. The major aim of this study was to assess the effects of smoking on the composition of exhaled breath. Additionally, the potential origin of breath volatile organic compounds (VOCs) is discussed focusing on diet, environmental exposure and biological pathways based on other’s studies. Profiles of VOCs detected in exhaled breath and inspired air samples of 115 subjects with addition of urine headspace derived from 50 volunteers are presented. Samples were analyzed with GC-MS after preconcentration on multibed sorption tubes in case of breath samples and solid phase micro-extraction (SPME) in the case of urine samples. Altogether 266 compounds were found in exhaled breath of at least 10% of the volunteers. From these, 162 compounds were identified by spectral library match and retention time (based on reference standards). It is shown that the composition of exhaled breath is considerably influenced by exposure to pollution and indoor-air contaminants and particularly by smoking. More than 80 organic compounds were found to be significantly related to smoking, the largest group comprising unsaturated hydrocarbons (29 dienes, 27 alkenes and 3 alkynes). On the basis of the presented results, we suggest that for the future understanding of breath data it will be necessary to carefully investigate the potential biological origin of volatiles, e.g., by means of analysis of tissues, isolated cell lines or other body fluids. In

  19. Developmental cardiorespiratory physiology of the air-breathing tropical gar, Atractosteus tropicus.

    PubMed

    Burggren, Warren W; Bautista, Gil Martinez; Coop, Susana Camarillo; Couturier, Gabriel Márquez; Delgadillo, Salomón Páramo; García, Rafael Martínez; González, Carlos Alfonso Alvarez

    2016-10-01

    The physiological transition to aerial breathing in larval air-breathing fishes is poorly understood. We investigated gill ventilation frequency (fG), heart rate (fH), and air breathing frequency (fAB) as a function of development, activity, hypoxia, and temperature in embryos/larvae from day (D) 2.5 to D30 posthatch of the tropical gar, Atractosteus tropicus, an obligate air breather. Gill ventilation at 28°C began at approximately D2, peaking at ∼75 beats/min on D5, before declining to ∼55 beats/min at D30. Heart beat began ∼36-48 h postfertilization and ∼1 day before hatching. fH peaked between D3 and D10 at ∼140 beats/min, remaining at this level through D30. Air breathing started very early at D2.5 to D3.5 at 1-2 breaths/h, increasing to ∼30 breaths/h at D15 and D30. Forced activity at all stages resulted in a rapid but brief increase in both fG and fH, (but not fAB), indicating that even in these early larval stages, reflex control existed over both ventilation and circulation prior to its increasing importance in older fishes. Acute progressive hypoxia increased fG in D2.5-D10 larvae, but decreased fG in older larvae (≥D15), possibly to prevent branchial O2 loss into surrounding water. Temperature sensitivity of fG and fH measured at 20°C, 25°C, 28°C and 38°C was largely independent of development, with a Q10 between 20°C and 38°C of ∼2.4 and ∼1.5 for fG and fH, respectively. The rapid onset of air breathing, coupled with both respiratory and cardiovascular reflexes as early as D2.5, indicates that larval A. tropicus develops "in the fast lane."

  20. Radiographic evaluation of positional atelectasis in sedated dogs breathing room air versus 100% oxygen

    PubMed Central

    Barletta, Michele; Almondia, Donna; Williams, Jamie; Crochik, Sonia; Hofmeister, Erik

    2014-01-01

    This study documents the degree of positional atelectasis in sedated dogs receiving 100% oxygen (O2) versus room air. Initial lateral recumbency was determined by an orthopedic study and initial treatment (O2 or room air) was randomized. Each dog was maintained in lateral recumbency for 15 min, at which time ventrodorsal (VD) and opposite lateral thoracic radiographs were obtained. Each dog was then maintained in the opposite lateral recumbency and received the other treatment for 15 min, followed by a VD and opposite lateral radiograph. Radiographs were scored for severity of pulmonary pattern and mediastinal shift by 3 radiologists. Dogs breathing O2 had significantly higher scores than dogs breathing room air. If radiographically detectable dependent atelectasis is present, repeat thoracic images following manual positive ventilation and/or position change to the opposite lateral recumbency should be made to rule out the effect of O2 positional atelectasis and avoid misdiagnosis. PMID:25320389

  1. Compressed air demand-type firefighter's breathing system, volume 1. [design analysis and performance tests

    NASA Technical Reports Server (NTRS)

    Sullivan, J. L.

    1975-01-01

    The commercial availability of lightweight high pressure compressed air vessels has resulted in a lightweight firefighter's breathing apparatus. The improved apparatus, and details of its design and development are described. The apparatus includes a compact harness assembly, a backplate mounted pressure reducer assembly, a lightweight bubble-type facemask with a mask mounted demand breathing regulator. Incorporated in the breathing regulator is exhalation valve, a purge valve and a whistle-type low pressure warning that sounds only during inhalation. The pressure reducer assembly includes two pressure reducers, an automatic transfer valve and a signaling device for the low pressure warning. Twenty systems were fabricated, tested, refined through an alternating development and test sequence, and extensively examined in a field evaluation program. Photographs of the apparatus are included.

  2. Mixing characteristics of pulsed air-assist liquid jet into an internal subsonic cross-flow

    NASA Astrophysics Data System (ADS)

    Lee, Inchul; Kang, Youngsu; Koo, Jaye

    2010-04-01

    Penetration depth, spray dispersion angle, droplet sizes in breakup processes and atomization processes are very important parameters in combustor of air-breathing engine. These processes will enhance air/fuel mixing inside the combustor. Experimental results from the pulsed air-assist liquid jet injected into a cross-flow are investigated. And experiments were conducted to a range of cross-flow velocities from 42˜136 m/s. Air is injected with 0˜300kPa, with air-assist pulsation frequency of 0˜20Hz. Pulsation frequency was modulated by solenoid valve. Phase Doppler Particle Analyzer(PDPA) was utilized to quantitatively measuring droplet characteristics. High-speed CCD camera was used to obtain injected spray structure. Pulsed air-assist liquid jet will offer rapid mixing and good liquid jet penetration. Air-assist makes a very fine droplet which generated mist-like spray. Pulsed air-assist liquid jet will introduce additional supplementary turbulent mixing and control of penetration depth into a cross-flow field. The results show that pulsation frequency has an effect on penetration, transverse velocities and droplet sizes. The experimental data generated in these studies are used for a development of active control strategies to optimize the liquid jet penetration in subsonic cross-flow conditions and predict combustion low frequency instability.

  3. The novel selected-ion flow tube approach to trace gas analysis of air and breath.

    PubMed

    Smith, D; Spanel, P

    1996-01-01

    We present an overview of the development and use of our selected-ion flow tube (SIFT) technique as a sensitive, quantitative method for the rapid, real-time analysis of the trace gas content of atmospheric air and human breath, presenting some pilot data from various research areas in which this method will find valuable application. We show that it is capable of detecting and quantifying trace gases, in complex mixtures such as breath, which are present at partial pressures down to about 10 parts per billion. Following discussions of the principles involved in this SIFT method of analysis, of the experiments which we have carried out to establish its quantitative validity, and of the air and breath sampling techniques involved, we present sample data on the detection and quantification of trace gases on the breath of healthy people and of patients suffering from renal failure and diabetes. We also show how breath ammonia can be accurately quantified from a single breath exhalation and used as an indicator of the presence in the stomach of the bacterium Helicobacter pylori. Health and safety applications are exemplified by analyses of the gases of the gases of cigarette smoke and on the breath of smokers. The value of this analytical method in environmental science is demonstrated by the analyses of petrol vapour, car exhaust emissions and the trace organic vapours detected in town air near a busy road. Final examples of the value of this analytical method are the detection and quantification of the gases emitted from crushed garlic and from breath following the chewing of a mint, which demonstrate its potential in food and flavour research. Throughout the paper we stress the advantages of this SIFT method compared to conventional mass spectrometry for trace gas analysis of complex mixtures, emphasizing its selectivity, sensitivity and real-time analysis capability. Finally, we note that whilst the current SIFT is strictly laboratory based, both transportable and

  4. Fast-starting after a breath: air-breathing motions are kinematically similar to escape responses in the catfish Hoplosternum littorale

    PubMed Central

    Domenici, Paolo; Norin, Tommy; Bushnell, Peter G.; Johansen, Jacob L.; Skov, Peter Vilhelm; Svendsen, Morten B. S.; Steffensen, John F.; Abe, Augusto S.

    2015-01-01

    ABSTRACT Fast-starts are brief accelerations commonly observed in fish within the context of predator–prey interactions. In typical C-start escape responses, fish react to a threatening stimulus by bending their body into a C-shape during the first muscle contraction (i.e. stage 1) which provides a sudden acceleration away from the stimulus. Recently, similar C-starts have been recorded in fish aiming at a prey. Little is known about C-starts outside the context of predator–prey interactions, though recent work has shown that escape response can also be induced by high temperature. Here, we test the hypothesis that air-breathing fish may use C-starts in the context of gulping air at the surface. Hoplosternum littorale is an air-breathing freshwater catfish found in South America. Field video observations reveal that their air-breathing behaviour consists of air-gulping at the surface, followed by a fast turn which re-directs the fish towards the bottom. Using high-speed video in the laboratory, we compared the kinematics of the turn immediately following air-gulping performed by H. littorale in normoxia with those of mechanically-triggered C-start escape responses and with routine (i.e. spontaneous) turns. Our results show that air-breathing events overlap considerably with escape responses with a large stage 1 angle in terms of turning rates, distance covered and the relationship between these rates. Therefore, these two behaviours can be considered kinematically comparable, suggesting that air-breathing in this species is followed by escape-like C-start motions, presumably to minimise time at the surface and exposure to avian predators. These findings show that C-starts can occur in a variety of contexts in which fish may need to get away from areas of potential danger. PMID:25527644

  5. Hybrid membrane contactor system for creating semi-breathing air

    NASA Astrophysics Data System (ADS)

    Timofeev, D. V.

    2012-02-01

    Typically, the equipment to create an artificial climate does not involve changing the composition of the respiratory air. In particular in medical institutions assumes the existence of plant of artificial climate and disinfection in operating rooms and intensive care wards. The use of a hybrid membrane-absorption systems for the generation of artificial atmospheres are improving the respiratory system, blood is enriched or depleted of various gases, resulting in increased stamina, there is a better, faster or slower metabolism, improves concentration and memory. Application of the system contributes to easy and rapid recovery after the operation. By adding a special component, with drug activity, air ionization, and adjust its composition, you can create a special, more favorable for patients with the atmosphere. These factors allow for the treatment and rehabilitation of patients and reduce mortality of heavy patients.

  6. Breaking wind to survive: fishes that breathe air with their gut.

    PubMed

    Nelson, J A

    2014-03-01

    Several taxonomically disparate groups of fishes have evolved the ability to extract oxygen from the air with elements of their gut. Despite perceived difficulties with balancing digestive and respiratory function, gut air breathing (GAB) has evolved multiple times in fishes and several GAB families are among the most successful fish families in terms of species numbers. When gut segments evolve into an air-breathing organ (ABO), there is generally a specialized region for exchange of gases where the gut wall has diminished, vascularization has increased, capillaries have penetrated into the luminal epithelium and surfactant is produced. This specialized region is generally separated from digestive portions of the gut by sphincters. GAB fishes tend to be facultative air breathers that use air breathing to supplement aquatic respiration in hypoxic waters. Some hindgut breathers may be continuous, but not obligate air breathers (obligate air breathers drown if denied access to air). Gut ABOs are generally used only for oxygen uptake; CO₂ elimination seems to occur via the gills and skin in all GAB fishes studied. Aerial ventilation in GAB fishes is driven primarily by oxygen partial pressure of the water (PO₂) and possibly also by metabolic demand. The effect of aerial ventilation on branchial ventilation and the cardiovascular system is complex and generalizations across taxa or ABO type are not currently possible. Blood from GAB fishes generally has a low blood oxygen partial pressure that half saturates haemoglobin (p50) with a very low erythrocytic nucleoside triphosphate concentration [NTP]. GAB behaviour in nature depends on the social and ecological context of the animal as well as on physiological factors.

  7. Restart of theory of air-breathing engines

    NASA Astrophysics Data System (ADS)

    Rester, Austin

    1992-07-01

    Expansion and compression ratios are treated as independent variables in the derivation of new equations for thermal efficiencies. A conceptual process of isentropic compression of exhaust gases to ambient conditions simplifies the equations for piston engines. Expansion is shown to govern thermal efficiency. A variable-process piston engine is introduced in this paper. Relative to 1/2 load conditions, this new engine is 25 percent more efficient than an Otto engine. Relative to full load, the new engine is 35 percent more powerful than a naturally-aspirated Otto engine. New energy-efficient gas turbines and turbo-jets which utilize pulse-combustion to maximize expansion of combustion gases are also introduced.

  8. Development Study on a Precooler for the HypersonicAir-Breathing Engine

    NASA Astrophysics Data System (ADS)

    Sato, Tetsuya; Tanatsugu, Nobuhiro; Harada, Kenya; Kobayashi, Hiroaki; Tomike, Jun'Ichiro

    Here is presented an experimental and analytical study on a precooler for hypersonic air-breathing engines. Precooling of the incoming air breathed by an air-inlet gives extension of the flight envelope and improvement of the thrust and specific impulse. Three precooler models were installed into an air-turbo ramjet engine and tested under the sea level static condition. When the fan inlet temperature was down to 180K, the engine thrust and specific impulse increased by 2.0 and 1.2 times respectively. Thick frost formed on the tube surfaces at the entrance part of the precooler blocked the air-flow passage. On the other hand, very thin frost formed at the exit part because the water vapor included in the air was changed to mist particles due to the low temperature of the air in this part. Parametric studies on the precooler design values and a sizing analysis were also performed. Decrease of tube outer diameters on the precooler is only way to increase heat exchange rates without increase of its weight and pressure loss.

  9. An Air-Breathing Launch Vehicle Concept for Single-Stage-to-Orbit

    NASA Technical Reports Server (NTRS)

    Trefny, Charles J.

    1999-01-01

    The "Trailblazer" is a 300-lb payload, single-stage-to-orbit launch vehicle concept that uses air-breathing propulsion to reduce the required propellant fraction. The integration of air-breathing propulsion is done considering performance, structural and volumetric efficiency, complexity, and design risk. The resulting configuration is intended to be viable using near-term materials and structures. The aeropropulsion performance goal for the Trailblazer launch vehicle is an equivalent effective specific impulse (I*) of 500 sec. Preliminary analysis shows that this requires flight in the atmosphere to about Mach 10, and that the gross lift-off weight is 130,000 lb. The Trailblazer configuration and proposed propulsion system operating modes are described. Preliminary performance results are presented, and key technical issues are highlighted. An overview of the proposed program plan is given.

  10. Breathing easier? The known impacts of biodiesel on air quality

    PubMed Central

    Traviss, Nora

    2013-01-01

    Substantial scientific evidence exists on the negative health effects of exposure to petroleum diesel exhaust. Many view biodiesel as a ‘green’, more environmentally friendly alternative fuel, especially with respect to measured reductions of particulate matter in tailpipe emissions. Tailpipe emissions data sets from heavy-duty diesel engines comparing diesel and biodiesel fuels provide important information regarding the composition and potential aggregate contribution of particulate matter and other pollutants to regional airsheds. However, exposure – defined in this instance as human contact with tailpipe emissions – is another key link in the chain between emissions and human health effects. Although numerous biodiesel emissions studies exist, biodiesel exposure studies are nearly absent from the literature. This article summarizes the known impacts of biodiesel on air quality and health effects, comparing emissions and exposure research. In light of rapidly changing engine, fuel and exhaust technologies, both emissions and exposure studies are necessary for developing a fuller understanding of the impact of biodiesel on air quality and human health. PMID:23585814

  11. Breathing easier? The known impacts of biodiesel on air quality.

    PubMed

    Traviss, Nora

    2012-05-01

    Substantial scientific evidence exists on the negative health effects of exposure to petroleum diesel exhaust. Many view biodiesel as a 'green', more environmentally friendly alternative fuel, especially with respect to measured reductions of particulate matter in tailpipe emissions. Tailpipe emissions data sets from heavy-duty diesel engines comparing diesel and biodiesel fuels provide important information regarding the composition and potential aggregate contribution of particulate matter and other pollutants to regional airsheds. However, exposure - defined in this instance as human contact with tailpipe emissions - is another key link in the chain between emissions and human health effects. Although numerous biodiesel emissions studies exist, biodiesel exposure studies are nearly absent from the literature. This article summarizes the known impacts of biodiesel on air quality and health effects, comparing emissions and exposure research. In light of rapidly changing engine, fuel and exhaust technologies, both emissions and exposure studies are necessary for developing a fuller understanding of the impact of biodiesel on air quality and human health.

  12. Minimum-fuel ascent to orbit using air-breathing propulsion

    NASA Technical Reports Server (NTRS)

    Van Buren, Mark A.; Mease, Kenneth D.

    1989-01-01

    Single-stage vehicles using air-breathing propulsion hold promise for more economical delivery of payloads to orbit. The characterization of minimum-fuel trajectories over the range of possible engine and aerodynamic performance of such vehicles provides useful feedback to engine and vehicle designers and paves the way for the development of guidance logic. The minimum-fuel trajectory problem is formulated, propulsion system and aerodynamic models are presented, a numerical solution approach is described, and some preliminary results are discussed.

  13. Investigation of antimatter air-breathing propulsion for single-stage-to-orbit ships

    NASA Astrophysics Data System (ADS)

    Froning, H. D.

    Because the mutual annihilation of matter and antimatter releases all the energy that is stored within the physical structure of material mass, it provides the most powerful reaction that is possible for propulsive thrust. This paper considers the use of such annihilation energy for single-stage-to-orbit vehicles that would be powered by rocket and air-breathing propulsion and would reach and return from orbit with a single propulsive stage.

  14. Fiber optic sensors for measuring angular position and rotational speed. [air breathing engines

    NASA Technical Reports Server (NTRS)

    Baumbick, R. J.

    1980-01-01

    Two optical sensors, a 360 deg rotary encoder and a tachometer, were built for operation with the light source and detectors located remotely from the sensors. The source and detectors were coupled to the passive sensing heads through 3.65 meter fiber optic cables. The rotary encoder and tachometer were subjected to limited environmental testing. They were installed on an air breathing engine during recent altitude tests. Over 100 hours of engine operation were accumulated without any failure of either device.

  15. Breath air measurement using wide-band frequency tuning IR laser photo-acoustic spectroscopy

    NASA Astrophysics Data System (ADS)

    Kistenev, Yury V.; Borisov, Alexey V.; Kuzmin, Dmitry A.; Bulanova, Anna A.; Boyko, Andrey A.; Kostyukova, Nadezhda Y.; Karapuzikov, Alexey A.

    2016-03-01

    The results of measuring of biomarkers in breath air of patients with broncho-pulmonary diseases using wide-band frequency tuning IR laser photo-acoustic spectroscopy and the methods of data mining are presented. We will discuss experimental equipment and various methods of intellectual analysis of the experimental spectra in context of above task. The work was carried out with partial financial support of the FCPIR contract No 14.578.21.0082 (ID RFMEFI57814X0082).

  16. Development of mainshaft seals for advanced air breathing propulsion systems

    NASA Technical Reports Server (NTRS)

    Dobek, L. J.

    1973-01-01

    A gas-film face seal design incorporating shrouded Rayleigh step lift pads at the primary sealing face was analyzed for performance over a wide range of gas turbine engine conditions. Acceptable leakage rates and operation without rubbing contact was predicted for engine conditions that included sealed pressures to 500 psi, sliding speeds to 600 ft/sec, and sealed gas temperatures to 1200 F. In the experimental evaluation, measured gas leakage rates were, in general, close to that predicted and sometimes lower. Satisfactory performance of the gas-film seal was demonstrated at the maximum seal seat axial runout expected in present positive contact face seal applications. Stable operation was shown when testing was performed with air-entrained dirt.

  17. A fast ascent trajectory optimization method for hypersonic air-breathing vehicles

    NASA Astrophysics Data System (ADS)

    Murillo, Oscar J., Jr.

    The objective of this dissertation is to investigate a fast and reliable method to generate three-dimensional optimal ascent trajectories for hypersonic air-breathing vehicles. The problem is notoriously difficult because of the strong nonlinear coupling amongst aerodynamics, propulsion, vehicle attitude and trajectory state. As such an algorithm matures, the ultimate goal is to realize optimal closed-loop ascent guidance for hypersonic air-breathing vehicles. The problem is formulated as a fuel-optimal control problem. The corresponding necessary conditions are given. It is shown how the original problem of search for the optimal control commands can be reduced to a univariate root-finding problem at each point along the trajectory. A finite difference scheme is used to numerically solve the associated two-point-boundary-value problem. Evaluation of the approach is done through open-loop solutions and closed-loop simulations. The results show promising potential of the proposed approach as a rapid trajectory optimization tool for the class of hypersonic air-breathing vehicles.

  18. Impact of aeroelasticity on propulsion and longitudinal flight dynamics of an air-breathing hypersonic vehicle

    NASA Technical Reports Server (NTRS)

    Raney, David L.; Mcminn, John D.; Pototzky, Anthony S.; Wooley, Christine L.

    1993-01-01

    Many air-breathing hypersonic aerospacecraft design concepts incorporate an elongated fuselage forebody acting as the aerodynamic compression surface for a hypersonic combustion module, or scram jet. This highly integrated design approach creates the potential for an unprecedented form of aero-propulsive-elastic interaction in which deflections of the vehicle fuselage give rise to propulsion transients, producing force and moment variations that may adversely impact the rigid body flight dynamics and/or further excite the fuselage bending modes. To investigate the potential for such interactions, a math model was developed which included the longitudinal flight dynamics, propulsion system, and first seven elastic modes of a hypersonic air-breathing vehicle. Perturbation time histories from a simulation incorporating this math model are presented that quantify the propulsive force and moment variations resulting from aeroelastic vehicle deflections. Root locus plots are presented to illustrate the effect of feeding the propulsive perturbations back into the aeroelastic model. A concluding section summarizes the implications of the observed effects for highly integrated hypersonic air-breathing vehicle concepts.

  19. Impact of aeroelasticity on propulsion and longitudinal flight dynamics of an air-breathing hypersonic vehicle

    NASA Astrophysics Data System (ADS)

    Raney, David L.; McMinn, John D.; Pototzky, Anthony S.; Wooley, Christine L.

    1993-04-01

    Many air-breathing hypersonic aerospacecraft design concepts incorporate an elongated fuselage forebody acting as the aerodynamic compression surface for a hypersonic combustion module, or scram jet. This highly integrated design approach creates the potential for an unprecedented form of aero-propulsive-elastic interaction in which deflections of the vehicle fuselage give rise to propulsion transients, producing force and moment variations that may adversely impact the rigid body flight dynamics and/or further excite the fuselage bending modes. To investigate the potential for such interactions, a math model was developed which included the longitudinal flight dynamics, propulsion system, and first seven elastic modes of a hypersonic air-breathing vehicle. Perturbation time histories from a simulation incorporating this math model are presented that quantify the propulsive force and moment variations resulting from aeroelastic vehicle deflections. Root locus plots are presented to illustrate the effect of feeding the propulsive perturbations back into the aeroelastic model. A concluding section summarizes the implications of the observed effects for highly integrated hypersonic air-breathing vehicle concepts.

  20. Anoxia and Acidosis Tolerance of the Heart in an Air-Breathing Fish (Pangasianodon hypophthalmus).

    PubMed

    Joyce, William; Gesser, Hans; Bayley, Mark; Wang, Tobias

    2015-01-01

    Air breathing has evolved repeatedly in fishes and may protect the heart during stress. We investigated myocardial performance in the air-breathing catfish Pangasianodon hypophthalmus, a species that can withstand prolonged exposure to severe hypoxia and acidosis. Isometric ventricular preparations were exposed to anoxia, lactic acidosis, hypercapnic acidosis, and combinations of these treatments. Ventricular preparations were remarkably tolerant to anoxia, exhibiting an inotropic reduction of only 40%, which fully recovered during reoxygenation. Myocardial anoxia tolerance was unaffected by physiologically relevant elevations of bicarbonate concentration, in contrast to previous results in other fishes. Both lactic acidosis (5 mM; pH 7.10) and hypercapnic acidosis (10% CO2; pH 6.70) elicited a biphasic response, with an initial and transient decrease in force followed by overcompensation above control values. Spongy myocardial preparations were significantly more tolerant to hypercapnic acidosis than compact myocardial preparations. While ventricular preparations were tolerant to the isolated effects of anoxia and acidosis, their combination severely impaired myocardial performance and contraction kinetics. This suggests that air breathing may be a particularly important myocardial oxygen source during combined anoxia and acidosis, which may occur during exercise or environmental stress.

  1. Relationship between heart rate variability, blood pressure and arterial wall properties during air and oxygen breathing in healthy subjects.

    PubMed

    Graff, Beata; Szyndler, Anna; Czechowicz, Krzysztof; Kucharska, Wiesława; Graff, Grzegorz; Boutouyrie, Pierre; Laurent, Stephane; Narkiewicz, Krzysztof

    2013-11-01

    Previous studies reported that normobaric hyperoxia influences heart rate, arterial pressure, cardiac output and systemic vascular resistance, but the mechanisms underlying these changes are still not fully understood. Several factors are considered including degeneration of endothelium-derived nitric oxide by reactive oxygen species, the impact of oxygen-free radicals on tissues and alterations of autonomic nervous system function. Recently, new devices for the detailed non-invasive assessment of large and small arteries have been developed. Therefore, the aim of our study was to assess heart rate variability (HRV) as a potential indicator of autonomic balance and its relation to blood pressure and vascular properties during medical air (MAB) and 100% oxygen breathing (OXB) in healthy volunteers. In 12 healthy subjects we assessed heart rate and blood pressure variability, baroreflex sensitivity, respiratory frequency, common carotid artery diameter and its wall distensibility, as well as changes in the digital artery pulse waveform, stroke index and systemic vascular resistance during MAB and OXB. Mean and systolic blood pressure have increased significantly while digital pulse amplitude and carotid artery diameter were significantly lower during hyperoxia. Heart rate variability measures did not differ during MAB and OXB. However, the correlations between spectral HRV components and those hemodynamic parameters which have changed due to hyperoxia varied substantially during MAB (correlated significantly) and OXB (no significant correlations were noted). Our findings suggest that autonomic nervous system might not be the main mediator of the cardiovascular changes during 100% oxygen breathing in healthy subjects. It seems that the direct vascular responses are initial consequences of hyperoxia and other cardiovascular parameter alterations are secondary to them.

  2. Survey of Aerothermodynamics Facilities Useful for the Design of Hypersonic Vehicles Using Air-Breathing Propulsion

    NASA Technical Reports Server (NTRS)

    Arnold, James O.; Deiwert, George S.

    1997-01-01

    This paper surveys the use of aerothermodynamic facilities which have been useful in the study of external flows and propulsion aspects of hypersonic, air-breathing vehicles. While the paper is not a survey of all facilities, it covers the utility of shock tunnels and conventional hypersonic blow-down facilities which have been used for hypersonic air-breather studies. The problems confronting researchers in the field of aerothermodynamics are outlined. Results from the T5 GALCIT tunnel for the shock-on lip problem are outlined. Experiments on combustors and short expansion nozzles using the semi-free jet method have been conducted in large shock tunnels. An example which employed the NASA Ames 16-Inch shock tunnel is outlined, and the philosophy of the test technique is described. Conventional blow-down hypersonic wind tunnels are quite useful in hypersonic air-breathing studies. Results from an expansion ramp experiment, simulating the nozzle on a hypersonic air-breather from the NASA Ames 3.5 Foot Hypersonic wind tunnel are summarized. Similar work on expansion nozzles conducted in the NASA Langley hypersonic wind tunnel complex is cited. Free-jet air-frame propulsion integration and configuration stability experiments conducted at Langley in the hypersonic wind tunnel complex on a small generic model are also summarized.

  3. Effect of isobaric breathing gas shifts from air to heliox mixtures on resolution of air bubbles in lipid and aqueous tissues of recompressed rats.

    PubMed

    Hyldegaard, O; Kerem, D; Melamed, Y

    2011-09-01

    Deep tissue isobaric counterdiffusion that may cause unwanted bubble formation or transient bubble growth has been referred to in theoretical models and demonstrated by intravascular gas formation in animals, when changing inert breathing gas from nitrogen to helium after hyperbaric air breathing. We visually followed the in vivo resolution of extravascular air bubbles injected at 101 kPa into nitrogen supersaturated rat tissues: adipose, spinal white matter, skeletal muscle or tail tendon. Bubbles were observed during isobaric breathing-gas shifts from air to normoxic (80:20) heliox mixture while at 285 kPa or following immediate recompression to either 285 or 405 kPa, breathing 80:20 and 50:50 heliox mixtures. During the isobaric shifts, some bubbles in adipose tissue grew marginally for 10-30 min, subsequently they shrank and disappeared at a rate similar to or faster than during air breathing. No such bubble growth was observed in spinal white matter, skeletal muscle or tendon. In spinal white matter, an immediate breathing gas shift after the hyperbaric air exposure from air to both (80:20) and (50:50) heliox, coincident with recompression to either 285 or 405 kPa, caused consistent shrinkage of all air bubbles, until they disappeared from view. Deep tissue isobaric counterdiffusion may cause some air bubbles to grow transiently in adipose tissue. The effect is marginal and of no clinical consequence. Bubble disappearance rate is faster with heliox breathing mixtures as compared to air. We see no reason for reservations in the use of heliox breathing during treatment of air-diving-induced decompression sickness.

  4. Tumor-dependent kinetics of partial pressure of oxygen fluctuations during air and oxygen breathing.

    PubMed

    Cárdenas-Navia, L Isabel; Yu, Daohai; Braun, Rod D; Brizel, David M; Secomb, Timothy W; Dewhirst, Mark W

    2004-09-01

    The primary purpose of this study was to examine the kinetics of partial pressure of oxygen (pO2) fluctuations in fibrosarcoma (FSA) and 9L tumors under air and O2 breathing conditions. The overall hypothesis was that key factors relating to oxygen tension fluctuations would vary between the two tumor types and as a function of the oxygen content of the breathing gas. To assist in the interpretation of the temporal data, spatial pO2 distributions were measured in 10 FSA and 8 9L tumors transplanted into the subcutis of the hind leg of Nembutal-anesthetized (50 mg/kg) Fischer 344 rats. Recessed-tip oxygen microelectrodes were inserted into the tumor, and linear pO2 measurements were recorded in 50-microm steps along a 3-mm path, and blood pressure was simultaneously measured via femoral arterial access. Additionally, pO2 was measured at a single location for 90 to 120 minutes in FSA (n=11) or 9L tumors (n=12). Rats were switched from air to 100% O2 breathing after 45 minutes. Temporal pO2 records were evaluated for their potential radiobiological significance by assessing the number of times they crossed a 10-mm-Hg threshold. In addition, the data were subjected to Fourier analysis for air and O2 breathing. FSA and 9L tumors had spatial median pO2 measurements of 4 and 1 mm Hg, respectively. 9L had more low pO2 measurements < or =2.5 mm Hg than did FSA, whereas between 2.5 and 10 mm Hg this pattern was reversed. Pimonidazole staining patterns in FSA and 9L tumors supported these results. Temporal pO2 instability was observed in all experiments during air and O2 breathing. Threshold analyses indicated that the 10 mm Hg threshold was crossed 2 to 5 times per hour, independent of tumor type. However, the magnitude of 9L pO2 fluctuations was approximately eight times greater than FSA fluctuations, as assessed with Fourier transform analysis (Wilcoxon, P < 0.005). O2 breathing significantly increased median pO2 in FSA from 3 to 8 mm Hg (P < 0.005) and caused a

  5. Filamentation in Air with Ultrashort Mid-Infrared Pulses

    DTIC Science & Technology

    2011-05-09

    Filamentation in air with ultrashort mid-infrared pulses Bonggu Shim,1,2 Samuel E. Schrauth,1 and Alexander L. Gaeta1,3 1School of Applied and...filamentation of ultrashort laser pulses in air in the mid-infrared regime under conditions in which the group-velocity dispersion (GVD) is anomalous. When a...and propagates several times its diffraction length. Compared with temporal self-compression in gases due to plasma formation and pulse splitting in the

  6. Power Reduction of the Air-Breathing Hall-Effect Thruster

    NASA Astrophysics Data System (ADS)

    Kim, Sungrae

    Electric propulsion system is spotlighted as the next generation space propulsion system due to its benefits; one of them is specific impulse. While there are a lot of types in electric propulsion system, Hall-Effect Thruster, one of electric propulsion system, has higher thrust-to-power ratio and requires fewer power supplies for operation in comparison to other electric propulsion systems, which means it is optimal for long space voyage. The usual propellant for Hall-Effect Thruster is Xenon and it is used to be stored in the tank, which may increase the weight of the thruster. Therefore, one theory that uses the ambient air as a propellant has been proposed and it is introduced as Air-Breathing Hall-Effect Thruster. Referring to the analysis on Air-Breathing Hall-Effect Thruster, the goal of this paper is to reduce the power of the thruster so that it can be applied to real mission such as satellite orbit adjustment. To reduce the power of the thruster, two assumptions are considered. First one is changing the altitude for the operation, while another one is assuming the alpha value that is electron density to ambient air density. With assumptions above, the analysis was done and the results are represented. The power could be decreased to 10s˜1000s with the assumptions. However, some parameters that do not satisfy the expectation, which would be the question for future work, and it will be introduced at the end of the thesis.

  7. Partitioning of oxygen uptake and cost of surfacing during swimming in the air-breathing catfish Pangasianodon hypophthalmus.

    PubMed

    Lefevre, Sjannie; Wang, Tobias; Huong, Do Thi Thanh; Phuong, Nguyen Thanh; Bayley, Mark

    2013-02-01

    Though air-breathing has probably evolved mainly as a response to hypoxia, it may provide an important oxygen supplement when metabolism is elevated, as for example during swimming. Due to the increased travelling distance involved when an air-breathing fish swims to and from the surface, and the increased drag when the surface is breached, it can be proposed that air-breathing results in a rise in the apparent cost of transport. In order to investigate this hypothesis, it is necessary to use a fish that is able to swim equally well with and without access to air. The striped catfish Pangasianodon hypophthalmus has been shown to have a sufficiently high capacity for aquatic oxygen uptake in normoxia, to allow for such a comparison. Here, we measured the partitioning of oxygen uptake (MO2) during swimming and recovery, and calculated the apparent cost of transport with and without access to air, under normoxic conditions. Aerial MO2 constituted 25-40 % of the total MO2 during swimming and less than 15 % during recovery. The net cost of transport was 25 % lower in fish that did not air-breathe compared to fish that did, showing that the cost of surfacing can be substantial. This is the first study to measure partitioning in an air-breathing fish during swimming at velocities close to the critical swimming speed.

  8. The contribution of air breathing to aerobic scope and exercise performance in the banded knifefish Gymnotus carapo L.

    PubMed

    McKenzie, David J; Steffensen, John F; Taylor, Edwin W; Abe, Augusto S

    2012-04-15

    The contribution of air breathing to aerobic metabolic scope and exercise performance was investigated in a teleost with bimodal respiration, the banded knifefish, submitted to a critical swimming speed (U(crit)) protocol at 30°C. Seven individuals (mean ± s.e.m. mass 89±7 g, total length 230±4 mm) achieved a U(crit) of 2.1±1 body lengths (BL) s(-1) and an active metabolic rate (AMR) of 350±21 mg kg(-1) h(-1), with 38±6% derived from air breathing. All of the knifefish exhibited a significant increase in air-breathing frequency (f(AB)) with swimming speed. If denied access to air in normoxia, these individuals achieved a U(crit) of 2.0±0.2 BL s(-1) and an AMR of 368±24 mg kg(-1) h(-1) by gill ventilation alone. In normoxia, therefore, the contribution of air breathing to scope and exercise was entirely facultative. In aquatic hypoxia (P(O(2))=4 kPa) with access to normoxic air, the knifefish achieved a U(crit) of 2.0±0.1 BL s(-1) and an AMR of 338±29 mg kg(-1) h(-1), similar to aquatic normoxia, but with 55±5% of AMR derived from air breathing. Indeed, f(AB) was higher than in normoxia at all swimming speeds, with a profound exponential increase during exercise. If the knifefish were denied access to air in hypoxia, U(crit) declined to 1.2±0.1 BL s(-1) and AMR declined to 199±29 mg kg(-1) h(-1). Therefore, air breathing allowed the knifefish to avoid limitations to aerobic scope and exercise performance in aquatic hypoxia.

  9. Modeling breathing-zone concentrations of airborne contaminants generated during compressed air spray painting.

    PubMed

    Flynn, M R; Gatano, B L; McKernan, J L; Dunn, K H; Blazicko, B A; Carlton, G N

    1999-01-01

    This paper presents a mathematical model to predict breathing-zone concentrations of airborne contaminants generated during compressed air spray painting in cross-flow ventilated booths. The model focuses on characterizing the generation and transport of overspray mist. It extends previous work on conventional spray guns to include exposures generated by HVLP guns. Dimensional analysis and scale model wind-tunnel studies are employed using non-volatile oils, instead of paint, to produce empirical equations for estimating exposure to total mass. Results indicate that a dimensionless breathing zone concentration is a nonlinear function of the ratio of momentum flux of air from the spray gun to the momentum flux of air passing through the projected area of the worker's body. The orientation of the spraying operation within the booth is also very significant. The exposure model requires an estimate of the contaminant generation rate, which is approximated by a simple impactor model. The results represent an initial step in the construction of more realistic models capable of predicting exposure as a mathematical function of the governing parameters.

  10. Acute toxicity bioassays of mercuric chloride and malathion on air-breathing fish Channa punctatus (Bloch).

    PubMed

    Pandey, Sanjay; Kumar, Ravindra; Sharma, Shilpi; Nagpure, N S; Srivastava, Satish K; Verma, M S

    2005-05-01

    Acute toxicity tests (96 h) were conducted in flow-through systems to determine the lethal toxicity of a heavy metal compound, mercuric chloride, and an organophosphorus pesticide, malathion, to air-breathing teleost fish, Channa punctatus (Bloch) and to study their behavior. The 96-h LC50 values were determined, as well as safe levels. The results indicate that mercuric chloride is more toxic than malathion to the fish species under study. Dose- and dose-time-dependent increases in mortality rate were also observed in response to both test chemicals.

  11. The QED engine spectrum - Fusion-electric propulsion for air-breathing to interstellar flight

    NASA Technical Reports Server (NTRS)

    Bussard, Robert W.; Jameson, Lorin W.

    1993-01-01

    A new inertial-electrostatic-fusion direct electric power source can be used to drive a relativistic e-beam to heat propellant. The resulting system is shown to yield specific impulse and thrust/mass ratio 2-3 orders of magnitude larger than from other advanced propulsion concepts. This QED system can be applied to aerospace vehicles from air-breathing to near-interstellar flight. Examples are given for Earth/Mars flight missions, that show transit times of 40 d with 20 percent payload in single-stage vehicles.

  12. Aerodynamic characteristics of a series of single-inlet air-breathing missile configurations

    NASA Technical Reports Server (NTRS)

    Hayes, C.

    1983-01-01

    A series of air-breathing missile configurations was investigated to provide a data base for the design of such missiles. The model could be configured with either a single axisymmetric or a two dimensional inlet located at the bottom of the body. Two tail configurations were investigated: a tri-tail and an X-tail. The tail surfaces could be deflected to provide pitch control. A wing could be located above the inlet on the center line of the model. Tests were made at supersonic Mach numbers with the inlet open and internal flow, and at subsonic-transonic Mach numbers with the internal duct closed and no internal flow.

  13. Turbulent Mixing and Combustion for High-Speed Air-Breathing Propulsion Application

    DTIC Science & Technology

    2007-08-12

    AIR-BREATHING PROPULSION APPLICATIONS P . E. Dimotakis, Principal Investigator John K. Northrop Professor ofAeronautics and Professor of Applied Physics...performance of the device is the overall pressure coefficient, C = 2(pe- p )/(pU12), where pe and pi are the exit and inlet pressures, respectively. In...1 . O. 1 o-o p ) Fig. 6 Instantaneous passive scalar isosurfaces for a M, 0.5 top stream. 7 Fig. 7 Computed pressure coefficient on the top (solid line

  14. Cubic PdNP-based air-breathing cathodes integrated in glucose hybrid biofuel cells

    NASA Astrophysics Data System (ADS)

    Faggion Junior, D.; Haddad, R.; Giroud, F.; Holzinger, M.; Maduro de Campos, C. E.; Acuña, J. J. S.; Domingos, J. B.; Cosnier, S.

    2016-05-01

    Cubic Pd nanoparticles (PdNPs) were synthesized using ascorbic acid as a reducing agent and were evaluated for the catalytic oxygen reduction reaction. PdNPs were confined with multiwalled carbon nanotube (MWCNT) dispersions to form black suspensions and these inks were dropcast onto glassy carbon electrodes. Different nanoparticle sizes were synthesized and investigated upon oxygen reduction capacities (onset potential and electrocatalytic current densities) under O2 saturated conditions at varying pH values. Strong evidence of O2 diffusion limitation was demonstrated. In order to overcome oxygen concentration and diffusion limitations in solution, we used a gas diffusion layer to create a PdNP-based air-breathing cathode, which delivered -1.5 mA cm-2 at 0.0 V with an onset potential of 0.4 V. This air-breathing cathode was combined with a specially designed phenanthrolinequinone/glucose dehydrogenase-based anode to form a complete glucose/O2 hybrid bio-fuel cell providing an open circuit voltage of 0.554 V and delivering a maximal power output of 184 +/- 21 μW cm-2 at 0.19 V and pH 7.0.Cubic Pd nanoparticles (PdNPs) were synthesized using ascorbic acid as a reducing agent and were evaluated for the catalytic oxygen reduction reaction. PdNPs were confined with multiwalled carbon nanotube (MWCNT) dispersions to form black suspensions and these inks were dropcast onto glassy carbon electrodes. Different nanoparticle sizes were synthesized and investigated upon oxygen reduction capacities (onset potential and electrocatalytic current densities) under O2 saturated conditions at varying pH values. Strong evidence of O2 diffusion limitation was demonstrated. In order to overcome oxygen concentration and diffusion limitations in solution, we used a gas diffusion layer to create a PdNP-based air-breathing cathode, which delivered -1.5 mA cm-2 at 0.0 V with an onset potential of 0.4 V. This air-breathing cathode was combined with a specially designed phenanthrolinequinone

  15. High-voltage air-core pulse transformers

    SciTech Connect

    Rohwein, G. J.

    1981-01-01

    General types of air core pulse transformers designed for high voltage pulse generation and energy transfer applications are discussed with special emphasis on pulse charging systems which operate up to the multi-megavolt range. The design, operation, dielectric materials, and performance are described. It is concluded that high voltage air core pulse transformers are best suited to applications outside the normal ranges of conventional magnetic core transformers. In general these include charge transfer at high power levels and fast pulse generation with comparatively low energy. When properly designed and constructed, they are capable of delivering high energy transfer efficiency and have demonstrated superior high voltage endurance. The principal disadvantage of high voltage air core transformers is that they are not generally available from commercial sources. Consequently, the potential user must become thoroughly familiar with all aspects of design, fabrication and system application before he can produce a high performance transformer system. (LCL)

  16. Filamentational instability of partially coherent femtosecond optical pulses in air.

    PubMed

    Marklund, M; Shukla, P K

    2006-06-15

    The filamentational instability of spatially broadband femtosecond optical pulses in air is investigated by means of a kinetic wave equation for spatially incoherent photons. An explicit expression for the spatial amplification rate is derived and analyzed. It is found that the spatial spectral broadening of the pulse can lead to stabilization of the filamentation instability. Thus optical smoothing techniques could optimize current applications of ultrashort laser pulses, such as atmospheric remote sensing.

  17. Survey of Aerothermodynamics Facilities Useful for the Design of Hypersonic Vehicles Using Air-Breathing Propulsion

    NASA Technical Reports Server (NTRS)

    Arnold, James O.; Deiwert, G. S.

    1997-01-01

    The dream of producing an air-breathing, hydrogen fueled, hypervelocity aircraft has been before the aerospace community for decades. However, such a craft has not yet been realized, even in an experimental form. Despite the simplicity and beauty of the concept, many formidable problems must be overcome to make this dream a reality. This paper summarizes the aero/aerothermodynamic issues that must be addressed to make the dream a reality and discusses how aerothermodynamics facilities and their modem companion, real-gas computational fluid dynamics (CFD), can help solve the problems blocking the way to realizing the dream. The approach of the paper is first to outline the concept of an air-breathing hypersonic vehicle and then discuss the nose-to-tail aerothermodynamics issues and special aerodynamic problems that arise with such a craft. Then the utility of aerothermodynamic facilities and companion CFD analysis is illustrated by reviewing results from recent United States publications wherein these problems have been addressed. Papers selected for the discussion have k e n chosen such that the review will serve to survey important U.S. aero/aerothermodynamic real gas and conventional wind tunnel facilities that are useful in the study of hypersonic, hydrogen propelled hypervelocity vehicles.

  18. Affordable Flight Demonstration of the GTX Air-Breathing SSTO Vehicle Concept

    NASA Technical Reports Server (NTRS)

    Krivanek, Thomas M.; Roche, Joseph M.; Riehl, John P.; Kosareo, Daniel N.

    2003-01-01

    The rocket based combined cycle (RBCC) powered single-stage-to-orbit (SSTO) reusable launch vehicle has the potential to significantly reduce the total cost per pound for orbital payload missions. To validate overall system performance, a flight demonstration must be performed. This paper presents an overview of the first phase of a flight demonstration program for the GTX SSTO vehicle concept. Phase 1 will validate the propulsion performance of the vehicle configuration over the supersonic and hypersonic air- breathing portions of the trajectory. The focus and goal of Phase 1 is to demonstrate the integration and performance of the propulsion system flowpath with the vehicle aerodynamics over the air-breathing trajectory. This demonstrator vehicle will have dual mode ramjetkcramjets, which include the inlet, combustor, and nozzle with geometrically scaled aerodynamic surface outer mold lines (OML) defining the forebody, boundary layer diverter, wings, and tail. The primary objective of this study is to demon- strate propulsion system performance and operability including the ram to scram transition, as well as to validate vehicle aerodynamics and propulsion airframe integration. To minimize overall risk and develop ment cost the effort will incorporate proven materials, use existing turbomachinery in the propellant delivery systems, launch from an existing unmanned remote launch facility, and use basic vehicle recovery techniques to minimize control and landing requirements. A second phase would demonstrate propulsion performance across all critical portions of a space launch trajectory (lift off through transition to all-rocket) integrated with flight-like vehicle systems.

  19. Performance Validation Approach for the GTX Air-Breathing Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Trefny, Charles J.; Roche, Joseph M.

    2002-01-01

    The primary objective of the GTX effort is to determine whether or not air-breathing propulsion can enable a launch vehicle to achieve orbit in a single stage. Structural weight, vehicle aerodynamics, and propulsion performance must be accurately known over the entire flight trajectory in order to make a credible assessment. Structural, aerodynamic, and propulsion parameters are strongly interdependent, which necessitates a system approach to design, evaluation, and optimization of a single-stage-to-orbit concept. The GTX reference vehicle serves this purpose, by allowing design, development, and validation of components and subsystems in a system context. The reference vehicle configuration (including propulsion) was carefully chosen so as to provide high potential for structural and volumetric efficiency, and to allow the high specific impulse of air-breathing propulsion cycles to be exploited. Minor evolution of the configuration has occurred as analytical and experimental results have become available. With this development process comes increasing validation of the weight and performance levels used in system performance determination. This paper presents an overview of the GTX reference vehicle and the approach to its performance validation. Subscale test rigs and numerical studies used to develop and validate component performance levels and unit structural weights are outlined. The sensitivity of the equivalent, effective specific impulse to key propulsion component efficiencies is presented. The role of flight demonstration in development and validation is discussed.

  20. Planar array stack design aided by rapid prototyping in development of air-breathing PEMFC

    NASA Astrophysics Data System (ADS)

    Chen, Chen-Yu; Lai, Wei-Hsiang; Weng, Biing-Jyh; Chuang, Huey-Jan; Hsieh, Ching-Yuan; Kung, Chien-Chih

    The polymer electrolyte membrane fuel cell (PEMFC) is one of the most important research topics in the new and clean energy area. The middle or high power PEMFCs can be applied to the transportation or the distributed power system. But for the small power application, it is needed to match the power requirement of the product generally. On the other hand, the direct methanol fuel cell (DMFC) is one of the most common type that researchers are interested in, but recently the miniature or the micro-PEMFCs attract more attention due to their advantages of high open circuit voltage and high power density. The objective of this study is to develop a new air-breathing planar array fuel cell stacked from 10 cells made by rapid prototyping technology which has potential for fast commercial design, low cost manufacturing, and even without converters/inverters for the system. In this paper, the main material of flow field plates is acrylonitrile-butadiene-styrene (ABS) which allows the fuel cell be mass-manufactured by plastic injection molding technology. The rapid prototyping technology is applied to construct the prototype and verify the practicability of the proposed stack design. A 10-cell air-breathing miniature PEMFC stack with a volume of 6 cm × 6 cm × 0.9 cm is developed and tested. Its segmented membrane electrode assembly (MEA) is designed with the active surface area of 1.3 cm × 1.3 cm in each individual MEA. The platinum loading at anode and cathode are 0.2 mg cm -2 and 0.4 mg cm -2, respectively. Results show that the peak power densities of the parallel connected and serial connected stack are 99 mW cm -2 at 0.425 V and 92 mW cm -2 at 4.25 V, respectively under the conditions of 70 °C relative saturated humidity (i.e., dew point temperature), ambient temperature and free convection air. Besides, the stack performance is increased under forced convection. If the cell surface air is blown by an electric fan, the peak power densities of parallel connected and

  1. International Symposium on Air Breathing Engines, 8th, Cincinnati, OH, June 14-19, 1987, Proceedings

    SciTech Connect

    Billig, F.S.

    1987-01-01

    The present conference on air-breathing aircraft engine technology considers topics in inlet design, radial-flow turbomachinery, fuel injection and combustion systems, axial flow compressor design and performance, ramjet configurations, turbine flow phenomena, engine control and service life, fluid flow-related problems, engine diagnostic methods, propfan design, combustor performance and pollutant chemistry, combustion dynamics, and engine system analysis. Attention is given to thrust-vectoring systems, supersonic missile air intakes, three-dimensional centrifugal compressors, airblast atomizers, secondary flows in axial flow compressors, axial compressor blade tip clearance flows, hydrogen scramjets with sidewall injection, the performance of a variable-geometry turbine, advanced tip clearance control systems, rotary jet mixing, fan blade aeroelastic behavior, flow dynamics in combustion processes, and the technology of low cost turbomachinery.

  2. To boldly gulp: standard metabolic rate and boldness have context-dependent influences on risk-taking to breathe air in a catfish.

    PubMed

    McKenzie, David J; Belão, Thiago C; Killen, Shaun S; Rantin, F Tadeu

    2015-12-01

    The African sharptooth catfish Clarias gariepinus has bimodal respiration, it has a suprabranchial air-breathing organ alongside substantial gills. We used automated bimodal respirometry to reveal that undisturbed juvenile catfish (N=29) breathed air continuously in normoxia, with a marked diurnal cycle. Air breathing and routine metabolic rate (RMR) increased in darkness when, in the wild, this nocturnal predator forages. Aquatic hypoxia (20% air saturation) greatly increased overall reliance on air breathing. We investigated whether two measures of risk taking to breathe air, namely absolute rates of aerial O2 uptake (ṀO2,air) and the percentage of RMR obtained from air (%ṀO2,air), were influenced by individual standard metabolic rate (SMR) and boldness. In particular, whether any influence varied with resource availability (normoxia versus hypoxia) or relative fear of predation (day versus night). Individual SMR, derived from respirometry, had an overall positive influence on ṀO2,air across all contexts but a positive influence on %ṀO2,air only in hypoxia. Thus, a pervasive effect of SMR on air breathing became most acute in hypoxia, when individuals with higher O2 demand took proportionally more risks. Boldness was estimated as time required to resume air breathing after a fearful stimulus in daylight normoxia (Tres). Although Tres had no overall influence on ṀO2,air or %ṀO2,air, there was a negative relationship between Tres and %ṀO2,air in daylight, in normoxia and hypoxia. There were two Tres response groups, 'bold' phenotypes with Tres below 75 min (N=13) which, in daylight, breathed proportionally more air than 'shy' phenotypes with Tres above 115 min (N=16). Therefore, individual boldness influenced air breathing when fear of predation was high. Thus, individual energy demand and personality did not have parallel influences on the emergent tendency to take risks to obtain a resource; their influences varied in strength with context.

  3. High-voltage air-core pulse transformers

    SciTech Connect

    Rohwein, G.J.

    1981-08-01

    High voltage air core pulse transformers are best suited to applications outside the normal ranges of conventional magnetic core transformers. In general these include charge transfer at high power levels and fast pulse generation with comparatively low energy. When properly designed and constructed, they are capable of delivering high energy transfer efficiency and have demonstrated superior high voltage endurance. The general types designed for high voltage pulse generation and energy transfer applications are described. Special emphasis is given to pulse charging systems which operate up to the multi-megavolt range. (WHK)

  4. The association of annual air pollution exposure with blood pressure among patients with sleep-disordered breathing.

    PubMed

    Liu, Wen-Te; Lee, Kang-Yun; Lee, Hsin-Chien; Chuang, Hsiao-Chi; Wu, Dean; Juang, Jer-Nan; Chuang, Kai-Jen

    2016-02-01

    While sleep-disordered breathing (SDB), high blood pressure (BP) and air pollution exposure have separately been associated with increased risk of cardiopulmonary mortality, the association linking air pollution exposure to BP among patients with sleep-disordered breathing is still unclear. We collected 3762 participants' data from the Taipei Medical University Hospital's Sleep Center and air pollution data from the Taiwan Environmental Protection Administration. Associations of 1-year mean criteria air pollutants [particulate matter with aerodynamic diameters ≤10 μm (PM10), particulate matter with aerodynamic diameters ≤2.5 μm (PM2.5), nitrogen dioxide (NO2) and ozone (O3)] with systolic BP (SBP) and diastolic BP (DBP) were investigated by generalized additive models. After controlling for age, sex, body mass index (BMI), temperature and relative humidity, we observed that increases in air pollution levels were associated with decreased SBP and increased DBP. We also found that patients with apnea-hypopnea index (AHI) ≥30 showed a stronger BP response to increased levels of air pollution exposure than those with AHI<30. Stronger effects of air pollution exposure on BP were found in overweight participants than in participants with normal BMI. We concluded that annual exposure to air pollution was associated with change of BP among patients with sleep-disordered breathing. The association between annual air pollution exposure and BP could be modified by AHI and BMI.

  5. Evidence for breathing modes in direct current, pulsed, and high power impulse magnetron sputtering plasmas

    SciTech Connect

    Yang, Yuchen; Zhou, Xue; Liu, Jason X.; Anders, André

    2016-01-18

    We present evidence for breathing modes in magnetron sputtering plasmas: periodic axial variations of plasma parameters with characteristic frequencies between 10 and 100 kHz. A set of azimuthally distributed probes shows synchronous oscillations of the floating potential. They appear most clearly when considering the intermediate current regime in which the direction of azimuthal spoke motion changes. Breathing oscillations were found to be superimposed on azimuthal spoke motion. Depending on pressure and current, one can also find a regime of chaotic fluctuations and one of stable discharges, the latter at high current. A pressure-current phase diagram for the different situations is proposed.

  6. Personal exposures, indoor-outdoor relationships, and breath levels of toxic air pollutants measured for 355 persons in New Jersey

    NASA Astrophysics Data System (ADS)

    Wallace, Lance A.; Pellizzari, Edo D.; Hartwell, Ty D.; Sparacino, Charles M.; Sheldon, Linda S.; Zelon, Harvey

    EPA's TEAM Study has measured exposures to 20 volatile organic compounds in personal air, outdoor air, drinking water and the breath of 355 persons in NJ, in the fall of 1981. The NJ residents were selected by a probability sampling scheme to represent 128,000 inhabitants of Elizabeth and Bayonne. Participants carried a personal monitor to collect two 12-h air samples and gave a breath sample at the end of the day. Two consecutive 12-h outdoor air samples were also collected on identical Tenax cartridges in the back yards of 90 of the participants. About 3000 samples were collected, of which 1000 were quality control samples. Eleven compounds were often present in air. Personal exposures were consistently higher than outdoor concentrations for these chemicals, and were sometimes ten times the outdoor concentrations. Indoor sources appeared responsible for much of the difference. Breath concentrations also usually exceed outdoor concentrations, and correlated more strongly with personal exposures than with outdoor concentrations. Some activities (smoking, driving, visiting dry cleaners or service stations) and occupations (chemical, paint and plastics plants) were associated with significantly elevated exposures and breath levels for certain toxic chemicals.

  7. Infrared pulse characterization using four-wave mixing inside a few cycle pulse filament in air

    SciTech Connect

    Marceau, Claude Thomas, Steven; Kassimi, Yacine; Gingras, Guillaume; Witzel, Bernd

    2014-02-03

    We demonstrate a four-wave mixing (FWM) technique to measure near- and mid-infrared (IR) laser pulse shapes in time domain. Few cycle 800 nm laser pulses were synchronized with the IR pulse and focused colinearly to generate a plasma filament in air. Second harmonic radiation around 400 nm was generated through FWM, with a yield proportional to the IR pulse intensity. Excellent signal to noise ratio was observed from 2.1 μm to 18 μm. With proper phase stabilization of the IR beam, this technique is a promising step toward direct electric field sensing of near-IR pulses in air.

  8. Peak Expiratory Flow, Breath Rate and Blood Pressure in Adults with Changes in Particulate Matter Air Pollution during the Beijing Olympics: A Panel Study

    PubMed Central

    Mu, Lina; Deng, Furong; Tian, Lili; Li, Yanli; Swanson, Mya; Ying, Jingjing; Browne, Richard W; Rittenhouse-Olson, Kate; Zhang, Junfeng (Jim); Zhang, Zuo-Feng; Bonner, Matthew R.

    2014-01-01

    Objectives This study aims to examine whether changes in short-term exposures to particulate matter are associated with changes in lung function, breath rate, and blood pressure among healthy adults and whether smoking status modifies the association. Methods We took advantage of the artificially controlled changes in air pollution levels that occurred during the 2008 Olympic Games in Beijing, China and conducted a panel study of 201 Beijing residents. Data were collected before, during, and after the Olympics, respectively. Linear mixed-effects models and generalized estimating equation models were used to compare measurements of peak expiratory flow, breath rate, blood pressure across the three time points. Results The mean values of peak expiratory flow were 346.0 L/min, 399.3 L/min, and 364.1 L/min over the three study periods. Peak expiratory flow levels increased in 78% of the participants when comparing the during- and pre- Olympics time points, while peak expiratory flow levels decreased in 80% of participants for the post- and during-Olympic periods comparison. In subgroup analyses comparing the during -Olympic to pre-Olympic time points, we found a larger percentage change in peak expiratory flow (+17%) among female, younger and non-smoking participants than among male, elderly and smoking participants (+12%). The percentage of participants with a fast breath rate (>20/min) changed from 9.7%, to 4.9%, to 30.1% among females, and from 7.9%, to 2.6%, to 27.3% among males over the three time points respectively. The changes on blood pressure over the three study periods were not very clear, although there is an increase in diastolic pressure and a decrease in pulse pressure among males during the games. Conclusions The results suggest that exposure to different air pollution levels has significant effects on respiratory function. Smoking, age and gender appear to modify participants’ biological response to changes in air quality. PMID:24906062

  9. Hypersonic propulsion flight tests as essential to air-breathing aerospace plane development

    NASA Technical Reports Server (NTRS)

    Mehta, U.

    1995-01-01

    Hypersonic air-breathing propulsion utilizing scramjets can fundamentally change transatmospheric acclerators for transportation from low Earth orbits (LEOs). The value and limitations of ground tests, of flight tests, and of computations are presented, and scramjet development requirements are discussed. Near-full-scale hypersonic propulsion flight tests are essential for developing a prototype hypersonic propulsion system and for developing computation-design technology that can be used in designing that system. In order to determine how these objectives should be achieved, some lessons learned from past programs are presented. A conceptual two-stage-to-orbit (TSTO) prototype/experimental aerospace plane is recommended as a means of providing access-to-space and for conducting flight tests. A road map for achieving these objectives is also presented.

  10. Multi-Disciplinary Design Optimization of Hypersonic Air-Breathing Vehicle

    NASA Astrophysics Data System (ADS)

    Wu, Peng; Tang, Zhili; Sheng, Jianda

    2016-06-01

    A 2D hypersonic vehicle shape with an idealized scramjet is designed at a cruise regime: Mach number (Ma) = 8.0, Angle of attack (AOA) = 0 deg and altitude (H) = 30kms. Then a multi-objective design optimization of the 2D vehicle is carried out by using a Pareto Non-dominated Sorting Genetic Algorithm II (NSGA-II). In the optimization process, the flow around the air-breathing vehicle is simulated by inviscid Euler equations using FLUENT software and the combustion in the combustor is modeled by a methodology based on the well known combination effects of area-varying pipe flow and heat transfer pipe flow. Optimization results reveal tradeoffs among total pressure recovery coefficient of forebody, lift to drag ratio of vehicle, specific impulse of scramjet engine and the maximum temperature on the surface of vehicle.

  11. Analysis of possible improvement of acceleration of a high-velocity air-breathing flying vehicle

    NASA Astrophysics Data System (ADS)

    Goonko, Yu. P.; Mazhul, I. I.

    2008-09-01

    Results of parametric calculations of the total aeropropulsive characteristics and characteristics of acceleration of a small-scale high-velocity flying vehicle with an air-breathing engine are presented. Integral parameters of acceleration from the flight Mach number M∞ = 4 to M∞ = 7 are determined, namely, the time required fuel stock, and range. A schematic configuration of the vehicle is considered, which allows studying the basic parameters, such as the forebody shape, the angles of surfaces of compression of the stream captured by the inlet, angles of external aerodynamic surfaces of the airframe, relative planform area of the wing panels, and relative area of the nozzle cross section. A comparative estimate of the effect of these parameters shows that it is possible to improve the characteristics of acceleration of vehicles of the type considered.

  12. Robust tracking control for an air-breathing hypersonic vehicle with input constraints

    NASA Astrophysics Data System (ADS)

    Gao, Gang; Wang, Jinzhi; Wang, Xianghua

    2014-12-01

    The focus of this paper is on the design and simulation of robust tracking control for an air-breathing hypersonic vehicle (AHV), which is affected by high nonlinearity, uncertain parameters and input constraints. The linearisation method is employed for the longitudinal AHV model about a specific trim condition, and then considering the additive uncertainties of three parameters, the linearised model is just in the form of affine parameter dependence. From this point, the linear parameter-varying method is applied to design the desired controller. The poles for the closed-loop system of the linearised model are placed into a desired vertical strip, and the quadratic stability of the closed-loop system is guaranteed. Input constraints of the AHV are addressed by additional linear matrix inequalities. Finally, the designed controller is evaluated on the nonlinear AHV model and simulation results demonstrate excellent tracking performance with good robustness.

  13. Water management in a planar air-breathing fuel cell array using operando neutron imaging

    NASA Astrophysics Data System (ADS)

    Coz, E.; Théry, J.; Boillat, P.; Faucheux, V.; Alincant, D.; Capron, P.; Gébel, G.

    2016-11-01

    Operando Neutron imaging is used for the investigation of a planar air-breathing array comprising multiple cells in series. The fuel cell demonstrates a stable power density level of 150 mW/cm2. Water distribution and quantification is carried out at different operating points. Drying at high current density is observed and correlated to self-heating and natural convection. Working in dead-end mode, water accumulation at lower current density is largely observed on the anode side. However, flooding mechanisms are found to begin with water condensation on the cathode side, leading to back-diffusion and anodic flooding. Specific in-plane and through-plane water distribution is observed and linked to the planar array design.

  14. Continuous high order sliding mode controller design for a flexible air-breathing hypersonic vehicle.

    PubMed

    Wang, Jie; Zong, Qun; Su, Rui; Tian, Bailing

    2014-05-01

    This paper investigates the problem of tracking control with uncertainties for a flexible air-breathing hypersonic vehicle (FAHV). In order to overcome the analytical intractability of this model, an Input-Output linearization model is constructed for the purpose of feedback control design. Then, the continuous finite time convergence high order sliding mode controller is designed for the Input-Output linearization model without uncertainties. In addition, a nonlinear disturbance observer is applied to estimate the uncertainties in order to compensate the controller and disturbance suppression, where disturbance observer and controller synthesis design is obtained. Finally, the synthesis of controller and disturbance observer is used to achieve the tracking for the velocity and altitude of the FAHV and simulations are presented to illustrate the effectiveness of the control strategies.

  15. Assessment of flying-quality criteria for air-breathing aerospacecraft

    NASA Technical Reports Server (NTRS)

    Mcruer, Duane T.; Myers, Thomas T.; Hoh, Roger H.; Ashkenas, Irving L.; Johnston, Donald E.

    1992-01-01

    A study of flying quality requirements for air breathing aerospacecraft gives special emphasis to the unusual operational requirements and characteristics of these aircraft, including operation at hypersonic speed. The report considers distinguishing characteristics of these vehicles, including dynamic deficiencies and their implications for control. Particular emphasis is given to the interaction of the airframe and propulsion system, and the requirements for dynamic systems integration. Past operational missions are reviewed to define tasks and maneuvers to be considered for this class of aircraft. Areas of special concern with respect to vehicle dynamics and control are identified. Experience with the space shuttle orbiter is reviewed with respect to flight control system mechanization and flight experience in approach and landing flying qualities for the National Aerospace Plane (NASP).

  16. Air-breathing aerospace plane development essential: Hypersonic propulsion flight tests

    NASA Technical Reports Server (NTRS)

    Mehta, Unmeel B.

    1994-01-01

    Hypersonic air-breathing propulsion utilizing scramjets can fundamentally change transatmospheric accelerators for low earth-to-orbit and return transportation. The value and limitations of ground tests, of flight tests, and of computations are presented, and scramjet development requirements are discussed. It is proposed that near full-scale hypersonic propulsion flight tests are essential for developing a prototype hypersonic propulsion system and for developing computational-design technology so that it can be used for designing this system. In order to determine how these objectives should be achieved, some lessons learned from past programs are presented. A conceptual two-stage-to-orbit (TSTO) prototype/experimental aerospace plane is recommended as a means of providing access-to-space and for conducting flight tests. A road map for achieving these objectives is also presented.

  17. Influence of copper treatment on the immune response in an air-breathing teleost, Saccobranchus fossilis

    SciTech Connect

    Khangarot, B.S.; Ray, P.K.; Singh, K.P.

    1988-08-01

    The introduction of small amounts of copper ions from natural and anthropogenic sources into the aquatic environment causes multiple changes in freshwater organisms, even at non-lethal levels. Exposure of mammalian test animals to heavy metals, even at moderate levels of contract, may alter the immunological responses. Therefore, there is an increasing interest in the use of the immune systems as a target organ for detecting toxicity of environmental pollutants. The fish immune system is well defined and has many sensitive parameters whose alteration, as a result of pollutant exposure, are easily determined. The effect of copper on the fish immune system is of particular interest since it is known that chronic treatment of copper decreases resistance of the blue gourami (Trichogaster trichopterus) to virus and bacterial (Roales and Perlmutter 1977). The purpose of this study was to determine if sublethal doses of copper would alter the immune response of the air-breathing fish, Saccobranchus fossilis.

  18. Air-Breathing Hypersonic Vehicle Tracking Control Based on Adaptive Dynamic Programming.

    PubMed

    Mu, Chaoxu; Ni, Zhen; Sun, Changyin; He, Haibo

    2017-03-01

    In this paper, we propose a data-driven supplementary control approach with adaptive learning capability for air-breathing hypersonic vehicle tracking control based on action-dependent heuristic dynamic programming (ADHDP). The control action is generated by the combination of sliding mode control (SMC) and the ADHDP controller to track the desired velocity and the desired altitude. In particular, the ADHDP controller observes the differences between the actual velocity/altitude and the desired velocity/altitude, and then provides a supplementary control action accordingly. The ADHDP controller does not rely on the accurate mathematical model function and is data driven. Meanwhile, it is capable to adjust its parameters online over time under various working conditions, which is very suitable for hypersonic vehicle system with parameter uncertainties and disturbances. We verify the adaptive supplementary control approach versus the traditional SMC in the cruising flight, and provide three simulation studies to illustrate the improved performance with the proposed approach.

  19. Geometry Modeling and Adaptive Control of Air-Breathing Hypersonic Vehicles

    NASA Astrophysics Data System (ADS)

    Vick, Tyler Joseph

    Air-breathing hypersonic vehicles have the potential to provide global reach and affordable access to space. Recent technological advancements have made scramjet-powered flight achievable, as evidenced by the successes of the X-43A and X-51A flight test programs over the last decade. Air-breathing hypersonic vehicles present unique modeling and control challenges in large part due to the fact that scramjet propulsion systems are highly integrated into the airframe, resulting in strongly coupled and often unstable dynamics. Additionally, the extreme flight conditions and inability to test fully integrated vehicle systems larger than X-51 before flight leads to inherent uncertainty in hypersonic flight. This thesis presents a means to design vehicle geometries, simulate vehicle dynamics, and develop and analyze control systems for hypersonic vehicles. First, a software tool for generating three-dimensional watertight vehicle surface meshes from simple design parameters is developed. These surface meshes are compatible with existing vehicle analysis tools, with which databases of aerodynamic and propulsive forces and moments can be constructed. A six-degree-of-freedom nonlinear dynamics simulation model which incorporates this data is presented. Inner-loop longitudinal and lateral control systems are designed and analyzed utilizing the simulation model. The first is an output feedback proportional-integral linear controller designed using linear quadratic regulator techniques. The second is a model reference adaptive controller (MRAC) which augments this baseline linear controller with an adaptive element. The performance and robustness of each controller are analyzed through simulated time responses to angle-of-attack and bank angle commands, while various uncertainties are introduced. The MRAC architecture enables the controller to adapt in a nonlinear fashion to deviations from the desired response, allowing for improved tracking performance, stability, and

  20. Cascade Optimization Strategy for Aircraft and Air-Breathing Propulsion System Concepts

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Lavelle, Thomas M.; Hopkins, Dale A.; Coroneos, Rula M.

    1996-01-01

    Design optimization for subsonic and supersonic aircraft and for air-breathing propulsion engine concepts has been accomplished by soft-coupling the Flight Optimization System (FLOPS) and the NASA Engine Performance Program analyzer (NEPP), to the NASA Lewis multidisciplinary optimization tool COMETBOARDS. Aircraft and engine design problems, with their associated constraints and design variables, were cast as nonlinear optimization problems with aircraft weight and engine thrust as the respective merit functions. Because of the diversity of constraint types and the overall distortion of the design space, the most reliable single optimization algorithm available in COMETBOARDS could not produce a satisfactory feasible optimum solution. Some of COMETBOARDS' unique features, which include a cascade strategy, variable and constraint formulations, and scaling devised especially for difficult multidisciplinary applications, successfully optimized the performance of both aircraft and engines. The cascade method has two principal steps: In the first, the solution initiates from a user-specified design and optimizer, in the second, the optimum design obtained in the first step with some random perturbation is used to begin the next specified optimizer. The second step is repeated for a specified sequence of optimizers or until a successful solution of the problem is achieved. A successful solution should satisfy the specified convergence criteria and have several active constraints but no violated constraints. The cascade strategy available in the combined COMETBOARDS, FLOPS, and NEPP design tool converges to the same global optimum solution even when it starts from different design points. This reliable and robust design tool eliminates manual intervention in the design of aircraft and of air-breathing propulsion engines where it eases the cycle analysis procedures. The combined code is also much easier to use, which is an added benefit. This paper describes COMETBOARDS

  1. [Working ability between air and trimix breathing gas under 8 ATA air condition].

    PubMed

    Shibayama, M; Kosugi, S; Mohri, M; Yamamura, I; Oda, S; Kimura, A; Takeuchi, J; Mano, Y

    1990-04-01

    Pneumatic caisson work in Japan has come into operation since 1924. Afterward, this technique of compressed air work has been widely utilized in the construction of foundation basements, shafts of the bottom tunnel shields for subway and so forth. While using this technique of compressed air work means that workers have to be exposed to hyperbaric environment, this technique has risks of not only decompression sickness (DCS) but also toxicity of poisonous gas and/or oxygen deficiency. However, this technique is independent of city construction work and the operation of compressed air work higher than 5ATA (4.0 kg/cm2G) is actually been planning recently. Accordingly unmanned caisson work is considered as a better technique for such higher pressurized work, even though workers must enter into hyperbaric working fields for maintenance or repair of unmanned operated machinery and materials. This research is to establish the safe work under hyperbaric air environment at 8ATA.

  2. Solubility testing of actinides on breathing-zone and area air samples

    SciTech Connect

    Metzger, R.L.; Jessop, B.H.; McDowell, B.L.

    1996-02-01

    A solubility testing method for several common actinides has been developed with sufficient sensitivity to allow profiles to be determined from routine breathing zone and area air samples in the workplace. Air samples are covered with a clean filter to form a filter-sample-filter sandwich which is immersed in an extracellular lung serum simulant solution. The sample is moved to a fresh beaker of the lung fluid simulant each day for one week, and then weekly until the end of the 28 day test period. The soak solutions are wet ashed with nitric acid and hydrogen peroxide to destroy the organic components of the lung simulant solution prior to extraction of the nuclides of interest directly into an extractive scintillator for subsequent counting on a Photon-Electron Rejecting Alpha Liquid Scintillation (PERALS{reg_sign}) spectrometer. Solvent extraction methods utilizing the extractive scintillators have been developed for the isotopes of uranium, plutonium, and curium. The procedures normally produce an isotopic recovery greater than 95% and have been used to develop solubility profiles from air samples with 40 pCi or less of U{sub 3}O{sub 8}. Profiles developed for U{sub 3}O{sub 8} samples show good agreement with in vitro and in vivo tests performed by other investigators on samples from the same uranium mills.

  3. Air breathing in the Arctic: influence of temperature, hypoxia, activity and restricted air access on respiratory physiology of the Alaska blackfish Dallia pectoralis

    PubMed Central

    Lefevre, Sjannie; Damsgaard, Christian; Pascale, Desirae R.; Nilsson, Göran E.; Stecyk, Jonathan A. W.

    2014-01-01

    The Alaska blackfish (Dallia pectoralis) is an air-breathing fish native to Alaska and the Bering Sea islands, where it inhabits lakes that are ice-covered in the winter, but enters warm and hypoxic waters in the summer to forage and reproduce. To understand the respiratory physiology of this species under these conditions and the selective pressures that maintain the ability to breathe air, we acclimated fish to 5°C and 15°C and used respirometry to measure: standard oxygen uptake () in normoxia (19.8 kPa PO2) and hypoxia (2.5 kPa), with and without access to air; partitioning of standard in normoxia and hypoxia; maximum and partitioning after exercise; and critical oxygen tension (Pcrit). Additionally, the effects of temperature acclimation on haematocrit, haemoglobin oxygen affinity and gill morphology were assessed. Standard was higher, but air breathing was not increased, at 15°C or after exercise at both temperatures. Fish acclimated to 5°C or 15°C increased air breathing to compensate and fully maintain standard in hypoxia. Fish were able to maintain through aquatic respiration when air was denied in normoxia, but when air was denied in hypoxia, standard was reduced by ∼30–50%. Pcrit was relatively high (5 kPa) and there were no differences in Pcrit, gill morphology, haematocrit or haemoglobin oxygen affinity at the two temperatures. Therefore, Alaska blackfish depends on air breathing in hypoxia and additional mechanisms must thus be utilised to survive hypoxic submergence during the winter, such as hypoxia-induced enhancement in the capacities for carrying and binding blood oxygen, behavioural avoidance of hypoxia and suppression of metabolic rate. PMID:25394628

  4. Air breathing in the Arctic: influence of temperature, hypoxia, activity and restricted air access on respiratory physiology of the Alaska blackfish Dallia pectoralis.

    PubMed

    Lefevre, Sjannie; Damsgaard, Christian; Pascale, Desirae R; Nilsson, Göran E; Stecyk, Jonathan A W

    2014-12-15

    The Alaska blackfish (Dallia pectoralis) is an air-breathing fish native to Alaska and the Bering Sea islands, where it inhabits lakes that are ice-covered in the winter, but enters warm and hypoxic waters in the summer to forage and reproduce. To understand the respiratory physiology of this species under these conditions and the selective pressures that maintain the ability to breathe air, we acclimated fish to 5°C and 15°C and used respirometry to measure: standard oxygen uptake (Ṁ(O₂)) in normoxia (19.8 kPa P(O₂)) and hypoxia (2.5 kPa), with and without access to air; partitioning of standard Ṁ(O₂) in normoxia and hypoxia; maximum Ṁ(O₂) and partitioning after exercise; and critical oxygen tension (P(crit)). Additionally, the effects of temperature acclimation on haematocrit, haemoglobin oxygen affinity and gill morphology were assessed. Standard Ṁ(O₂) was higher, but air breathing was not increased, at 15°C or after exercise at both temperatures. Fish acclimated to 5°C or 15°C increased air breathing to compensate and fully maintain standard Ṁ(O₂) in hypoxia. Fish were able to maintain Ṁ(O₂) through aquatic respiration when air was denied in normoxia, but when air was denied in hypoxia, standard Ṁ(O₂) was reduced by ∼30-50%. P(crit) was relatively high (5 kPa) and there were no differences in P(crit), gill morphology, haematocrit or haemoglobin oxygen affinity at the two temperatures. Therefore, Alaska blackfish depends on air breathing in hypoxia and additional mechanisms must thus be utilised to survive hypoxic submergence during the winter, such as hypoxia-induced enhancement in the capacities for carrying and binding blood oxygen, behavioural avoidance of hypoxia and suppression of metabolic rate.

  5. Clearing the air and breathing freely: the health politics of air pollution and asthma.

    PubMed

    Brown, Phil; Mayer, Brian; Zavestoski, Stephen; Luebke, Theo; Mandelbaum, Joshua; McCormick, Sabrina

    2004-01-01

    This study examines the growing debate around environmental causes of asthma in the context of federal regulatory disputes, scientific controversy, and environmental justice activism. A multifaceted form of social discovery of the effect of air pollution on asthma has resulted from multipartner and multiorganizational approaches and from intersectoral policy that deals with social inequality and environmental justice. Scientists, activists, health voluntary organizations, and some government agencies and officials have identified various elements of the asthma and air pollution connection. To tackle these issues, they have worked through a variety of collaborations and across different sectors of environmental regulation, public health, health services, housing, transportation, and community development. The authors examine the role of activist groups in discovering the increased rates of asthma and framing it as a social and environmental issue; give an overview of the current knowledge base on air pollution and asthma, and the controversies within science; and situate that science in the regulatory debate, discussing the many challenges to the air quality researchers. They then examine the implications of the scientific and regulatory controversies over linking air pollution to increases in asthma. The article concludes with a discussion of how alliances between activists and scientists lead to new research strategies and innovations.

  6. Portable nanosecond pulsed air plasma jet

    SciTech Connect

    Walsh, J. L.; Kong, M. G.

    2011-08-22

    Low-temperature atmospheric pressure plasmas are of great importance in many emerging biomedical and materials processing applications. The redundancy of a vacuum system opens the gateway for highly portable plasma systems, for which air ideally becomes the plasma-forming gas and remote plasma processing is preferred to ensure electrical safety. Typically, the gas temperature observed in air plasma greatly exceeds that suitable for the processing of thermally liable materials; a large plasma-sample distance offers a potential solution but suffers from a diluted downstream plasma chemistry. This Letter reports a highly portable air plasma jet system which delivers enhanced downstream chemistry without compromising the low temperature nature of the discharge, thus forming the basis of a powerful tool for emerging mobile plasma applications.

  7. A breath of fresh air: EPA`s more flexible approach to the Clean Air Act

    SciTech Connect

    Curreri, J.A.

    1996-05-01

    This article highlights the changes in the Clean Air Act rules as defined by the USEPA. The major changes discussed include the following: definition of a `major source`; streamlined Title V Permits; less detailed descriptions; permit revisions may be reduced; periodic and enhanced monitoring; more practical requirements; case-by-case MACT standards.

  8. Application of ion chemistry and the SIFT technique to the quantitative analysis of trace gases in air and on breath

    NASA Astrophysics Data System (ADS)

    Smith, David; Španěl, Patrik

    Our major objective in this paper is to describe a new method we have developed for the analysis of trace gases at partial pressures down to the ppb level in atmospheric air, with special emphasis on the detection and quantification of trace gases on human breath. It involves the use of our selected ion flow tube (Sift) technique which we previously developed and used extensively for the study of gas phase ionic reactions occurring in ionized media such as the terrestrial atmosphere and interstellar gas clouds. Before discussing this analytical technique we describe the results of our very recent Sift and flowing afterglow (FA) studies of the reactions of the H3O+ and OH- ions, of their hydrates H3O+(H2O)1,2,3 and OH- (H2O)1,2, and of NO+ and O2+, with several hydrocarbons and oxygen-bearing organic molecules, studies that are very relevant to our trace gas analytical studies. Then follows a detailed discussion of the application of our Sift technique to trace gas analysis, after which we present some results obtained for the analyses of laboratory air, the breath of a healthy non-smoking person, the breath of a person who regularly smokes cigarettes, the complex vapours emitted by banana and onion, and the molecules present in a butane/air flame. We show how the quantitative analysis of breath can be achieved from only a single exhalation and in real time (the time response of the instrument is only about 20 ms). We also show how the time variation of breath gases over long time periods can be followed, using the decay of ethanol on the breath after the ingestion of distilled liquor as an example, yet simultaneously following several other trace gases including acetone and isoprene which are very easily detected on the breath of all individuals because of their relatively high partial pressures (typically 100 to 1000 ppb). The breath of a smoker is richer in complex molecules, some nitrogen containing organics apparently being very evident at the 5 to 50 ppb level

  9. Control of cardiorespiratory function in response to hypoxia in an air-breathing fish, the African sharptooth catfish, Clarias gariepinus.

    PubMed

    Belão, T C; Zeraik, V M; Florindo, L H; Kalinin, A L; Leite, C A C; Rantin, F T

    2015-09-01

    We evaluated the role of the first pair of gill arches in the control of cardiorespiratory responses to normoxia and hypoxia in the air-breathing catfish, Clarias gariepinus. An intact group (IG) and an experimental group (EG, bilateral excision of first gill arch) were submitted to graded hypoxia, with and without access to air. The first pair of gill arches ablations reduced respiratory surface area and removed innervation by cranial nerve IX. In graded hypoxia without access to air, both groups displayed bradycardia and increased ventilatory stroke volume (VT), and the IG showed a significant increase in breathing frequency (fR). The EG exhibited very high fR in normoxia that did not increase further in hypoxia, this was linked to reduced O2 extraction from the ventilatory current (EO2) and a significantly higher critical O2 tension (PcO2) than the IG. In hypoxia with access to air, only the IG showed increased air-breathing, indicating that the first pair of gill arches excision severely attenuated air-breathing responses. Both groups exhibited bradycardia before and tachycardia after air-breaths. The fH and gill ventilation amplitude (VAMP) in the EG were overall higher than the IG. External and internal NaCN injections revealed that O2 chemoreceptors mediating ventilatory hypoxic responses (fR and VT) are internally oriented. The NaCN injections indicated that fR responses were mediated by receptors predominantly in the first pair of gill arches but VT responses by receptors on all gill arches. Receptors eliciting cardiac responses were both internally and externally oriented and distributed on all gill arches or extra-branchially. Air-breathing responses were predominantly mediated by receptors in the first pair of gill arches. In conclusion, the role of the first pair of gill arches is related to: (a) an elevated EO2 providing an adequate O2 uptake to maintain the aerobic metabolism during normoxia; (b) a significant bradycardia and increased fAB elicited

  10. I(sup STAR), NASA's Next Step in Air-Breathing Propulsion for Space Access

    NASA Technical Reports Server (NTRS)

    Hutt, John J.; McArthur, Craig; Cook, Stephen (Technical Monitor)

    2001-01-01

    The United States' National Aeronautics and Space Administration (NASA) has established a strategic plan for future activities in space. A primary goal of this plan is to make drastic improvements in the cost and safety of earth to low-earth-orbit transportation. One approach to achieving this goal is through the development of highly reusable, highly reliable space transportation systems analogous to the commercial airline system. In the year 2000, NASA selected the Rocket Based Combined Cycle (RBCC) engine as the next logical step towards this goal. NASA will develop a complete flight-weight, pump-fed engine system under the Integrated System Test of an Airbreathing Rocket (I(sup STAR)) Project. The objective of this project is develop a reusable engine capable of self-powering a vehicle through the air-augmented rocket, ramjet and scramjet modes required in all RBCC based operational vehicle concepts. The project is currently approved and funded to develop the engine through ground test demonstration. Plans are in place to proceed with flight demonstration pending funding approval. The project is in formulation phase and the Preliminary Requirements Review has been completed. The engine system and vehicle have been selected at the conceptual level. The I(sup STAR) engine concept is based on an air-breathing flowpath downselected from three configurations evaluated in NASA's Advanced Reusable Technology contract. The selected flowpath features rocket thrust chambers integrated into struts separating modular flowpath ducts, a variable geometry inlet, and a thermally choked throat. The engine will be approximately 220 inches long and 79 inches wide and fueled with a hydrocarbon fuel using liquid oxygen as the primary oxidizer candidate. The primary concept for the pump turbine drive is pressure-fed catalyzed hydrogen peroxide. In order to control costs, the flight demonstration vehicle will be launched from a B-52 aircraft. The vehicle concept is based on the Air

  11. Australian Air Breathing Propulsion Research for Hypersonic, Beamed Energy-Propelled Vehicles

    NASA Astrophysics Data System (ADS)

    Froning, David

    2010-05-01

    A three year laser-propelled vehicle analysis and design investigation has been begun in June, 2009 by Faculty and graduate students at the University of Adelaide under a Grant/Cooperative Agreement Award to the University of Adelaide by the Asian Office of Aerospace Research and Development (AOARD). The major objectives of thsis investigation are: (a) development of hypersonic, air breathing "lightcraft" with innovative air inlets that enable acceptable airflow capture and combustion, and acceptable cowl-lip heating rates during hot, high-speed, high angle-of-attack hypersonic flight; (b) yest of the most promising lightcraft and inlet design in the high power laser beam that is part of the shock tunnel facility at CTO Instituto in Brazil; and (c) plan a series of laser guided and propelled flights that achieve supersonic or higher speed at the Woomera Test Facility (WTF) in South Australia—using the existing WTF launching and tracking facilities and sponsor-provided laser pointing and tracking and illumination systems.

  12. Evaluation of an Ejector Ramjet Based Propulsion System for Air-Breathing Hypersonic Flight

    NASA Technical Reports Server (NTRS)

    Thomas, Scott R.; Perkins, H. Douglas; Trefny, Charles J.

    1997-01-01

    A Rocket Based Combined Cycle (RBCC) engine system is designed to combine the high thrust to weight ratio of a rocket along with the high specific impulse of a ramjet in a single, integrated propulsion system. This integrated, combined cycle propulsion system is designed to provide higher vehicle performance than that achievable with a separate rocket and ramjet. The RBCC engine system studied in the current program is the Aerojet strutjet engine concept, which is being developed jointly by a government-industry team as part of the Air Force HyTech program pre-PRDA activity. The strutjet is an ejector-ramjet engine in which small rocket chambers are embedded into the trailing edges of the inlet compression struts. The engine operates as an ejector-ramjet from takeoff to slightly above Mach 3. Above Mach 3 the engine operates as a ramjet and transitions to a scramjet at high Mach numbers. For space launch applications the rockets would be re-ignited at a Mach number or altitude beyond which air-breathing propulsion alone becomes impractical. The focus of the present study is to develop and demonstrate a strutjet flowpath using hydrocarbon fuel at up to Mach 7 conditions.

  13. Static and Hypersonic Experimental Analysis of Impulse Generation in Air-Breathing Laser-Thermal Propulsion

    NASA Astrophysics Data System (ADS)

    Salvador, Israel Irone

    The present research campaign centered on static and hypersonic experiments performed with a two-dimensional, repetitively-pulsed (RP) laser Lightcraft model. The future application of interest for this basic research endeavor is the laser launch of nano- and micro-satellites (i.e., 1-100 kg payloads) into Low Earth Orbit (LEO), at low-cost and "on-demand". This research began with an international collaboration on Beamed Energy Propulsion between the United States Air Force and Brazilian Air Force to conduct experiments at the Henry T. Nagamatsu Laboratory of Aerothermodynamics and Hypersonics (HTN-LAH). The laser propulsion (LP) experiments employed the T3 Hypersonic Shock Tunnel (HST), integrated with twin gigawatt pulsed Lumonics 620-TEA CO2 lasers to produce the required test conditions. Following an introduction of the pulsed laser thermal propulsion concept and a state-of-the-art review of the topic, the principal physical processes are outlined starting from the onset of the laser pulse and subsequent laser-induced air-breakdown, to the expansion and exhaust of the resulting blast wave. After installation of the 254 mm wide, 2D Lightcraft model into the T3 tunnel, static LP tests were performed under quiescent (no-flow) conditions at ambient pressures of 0.06, 0.15, 0.3 and 1 bar, using the T3 test-section/dump-tank as a vacuum chamber. Time-dependent surface pressure distributions were measured over the engine thrust-generating surfaces following laser energy deposition; the delivered impulse and momentum coupling coefficients (Cm) were calculated from that pressure data. A Schlieren visualization system (using a high-speed Cordin digital camera) captured the laser breakdown and blast wave expansion process. The 2D model's Cm performance of 600 to 3000 N/MW was 2.5-5x higher than theoretical projections available in the literature, but indeed in the realm of feasibility for static conditions. Also, these Cm values exceed that for smaller Lightcraft models

  14. Magneto-impedance sensor for quasi-noncontact monitoring of breathing, pulse rate and activity status

    NASA Astrophysics Data System (ADS)

    Corodeanu, S.; Chiriac, H.; Radulescu, L.; Lupu, N.

    2014-05-01

    Results on the development and testing of a novel magnetic sensor based on the detection of the magneto-impedance variation due to changes in the permeability of an amorphous wire are reported. The proposed application is the quasi-noncontact monitoring of the breathing frequency and heart rate for diagnosing sleep disorders. Patient discomfort is significantly decreased by transversally placing the sensitive element onto the surface of a flexible mattress in order to detect its deformation associated with cardiorespiratory activity and body movements. The developed sensor has a great application potential in monitoring the vital signs during sleep, with special advantages for children sleep monitoring.

  15. Measurements of Intense Femtosecond Laser Pulse Propagation in Air

    NASA Astrophysics Data System (ADS)

    Ting, Antonio

    2004-11-01

    Intense femtosecond pulses generated from chirped pulse amplification (CPA) lasers can deliver laser powers many times above the critical power for self-focusing in air. Catastrophic collapse of the laser pulse is usually prevented by the defocusing of the plasma column formed when the laser intensity gets above the threshold for multiphoton ionization. The resultant laser/plasma filament can extend many meters as the laser pulse propagates in the atmosphere. We have carried out a series of experiments both for understanding the formation mechanisms of the filaments and the nonlinear effects such as white light and harmonics generation associated with them. Many applications of these filaments such as remote atmospheric breakdown, laser induced electrical discharge and femtosecond laser material interactions require direct measurements of their characteristics. Direct measurements of these filaments had been difficult because the high laser intensity ( ˜10^13 W/cm^2) can damage practically any optical diagnostics. A novel technique was invented to obtain the first absolute measurements of laser energy, transverse profile, fluence and spectral content of the filaments. We are investigating a ``remote atmospheric breakdown'' concept of remotely sensing chemical and biological compounds. A short intense laser pulse can be generated at a remote position by using the group velocity dispersion (GVD) of the air to compress an initially long, frequency negatively chirped laser pulse to generate the air breakdown and filaments. We have observed that nonlinear contributions to the laser spectrum through self-phase modulation can lead to modification of the linear GVD compression. We have also observed the generation of ultraviolet (UV) radiations from these filaments in air and the induced fluorescence by the UV radiation of a surrogate biological agent. These and other results such as laser induced electrical discharges will be presented.

  16. Computational fluid dynamics investigation of human aspiration in low velocity air: orientation effects on nose-breathing simulations.

    PubMed

    Anderson, Kimberly R; Anthony, T Renée

    2014-06-01

    An understanding of how particles are inhaled into the human nose is important for developing samplers that measure biologically relevant estimates of exposure in the workplace. While previous computational mouth-breathing investigations of particle aspiration have been conducted in slow moving air, nose breathing still required exploration. Computational fluid dynamics was used to estimate nasal aspiration efficiency for an inhaling humanoid form in low velocity wind speeds (0.1-0.4 m s(-1)). Breathing was simplified as continuous inhalation through the nose. Fluid flow and particle trajectories were simulated over seven discrete orientations relative to the oncoming wind (0, 15, 30, 60, 90, 135, 180°). Sensitivities of the model simplification and methods were assessed, particularly the placement of the recessed nostril surface and the size of the nose. Simulations identified higher aspiration (13% on average) when compared to published experimental wind tunnel data. Significant differences in aspiration were identified between nose geometry, with the smaller nose aspirating an average of 8.6% more than the larger nose. Differences in fluid flow solution methods accounted for 2% average differences, on the order of methodological uncertainty. Similar trends to mouth-breathing simulations were observed including increasing aspiration efficiency with decreasing freestream velocity and decreasing aspiration with increasing rotation away from the oncoming wind. These models indicate nasal aspiration in slow moving air occurs only for particles <100 µm.

  17. Balancing the competing requirements of air-breathing and display behaviour during male-male interactions in Siamese fighting fish Betta splendens.

    PubMed

    Alton, Lesley A; Portugal, Steven J; White, Craig R

    2013-02-01

    Air-breathing fish of the Anabantoidei group meet their metabolic requirements for oxygen through both aerial and aquatic gas exchange. Siamese fighting fish Betta splendens are anabantoids that frequently engage in aggressive male-male interactions which cause significant increases in metabolic rate and oxygen requirements. These interactions involve opercular flaring behaviour that is thought to limit aquatic oxygen uptake, and combines with the increase in metabolic rate to cause an increase in air-breathing behaviour. Air-breathing events interrupt display behaviour and increase risk of predation, raising the question of how Siamese fighting fish manage their oxygen requirements during agonistic encounters. Using open-flow respirometry, we measured rate of oxygen consumption in displaying fish to determine if males increase oxygen uptake per breath to minimise visits to the surface, or increase their reliance on aquatic oxygen uptake. We found that the increased oxygen requirements of Siamese fighting fish during display behaviour were met by increased oxygen uptake from the air with no significant changes in aquatic oxygen uptake. The increased aerial oxygen uptake was achieved almost entirely by an increase in air-breathing frequency. We conclude that limitations imposed by the reduced gill surface area of air-breathing fish restrict the ability of Siamese fighting fish to increase aquatic uptake, and limitations of the air-breathing organ of anabantoids largely restrict their capacity to increase oxygen uptake per breath. The resulting need to increase surfacing frequency during metabolically demanding agonistic encounters has presumably contributed to the evolution of the stereotyped surfacing behaviour seen during male-male interactions, during which one of the fish will lead the other to the surface, and each will take a breath of air.

  18. A novel evacuation passageway formed by a breathing air supply zone combined with upward ventilation

    NASA Astrophysics Data System (ADS)

    Gao, Ran; Li, Angui; Lei, Wenjun; Zhao, Yujiao; Zhang, Ying; Deng, Baoshun

    2013-10-01

    With the development of transportation, the tunnel has become one of the important facilities of railway, highway and subway transportation. However, fire hazards occurring inside the tunnel may incur huge numbers of casualties and property losses. In this paper, a breathing air supply zone combined with an upward ventilation assisted tunnel evacuation system (BTES) is introduced. It can be used to create a safe, smoke-free evacuation passageway out of the tunnel. The BTES is optimized to achieve high-performance. The impacts of heat release rates, fire source locations and fire detection times are also discussed. The carbon monoxide (CO) concentrations found when utilizing the BTES were significantly lower than that found when utilizing the traditional ventilation system. An obvious, clean evacuation passageway was created by the BTES. The maximum CO concentrations in the BTES evacuation passageway were below 10 PPM throughout the entire combustion process. A larger CO concentration gradient in the vertical direction was detected with the BTES than that found in other ventilation systems. This finding means that the lower part of the tunnel has a lower CO concentration with the BTES, which benefits the evacuation process. The impacts of fire source locations and fire detection times were tested to ensure the system reliability, and it was found that the performance of the BTES was not sensitive to them.

  19. Computational modeling of alkaline air-breathing microfluidic fuel cells with an array of cylinder anodes

    NASA Astrophysics Data System (ADS)

    Ye, Ding-Ding; Zhang, Biao; Zhu, Xun; Sui, Pang-Chieh; Djilali, Ned; Liao, Qiang

    2015-08-01

    A three-dimensional computational model is developed for an alkaline air-breathing microfluidic fuel cell (AMFC) with an array of cylinder anodes. The model is validated against experimental data from an in-house prototype AMFC. The distributions of fluid velocity, fuel concentration and current density of the fuel cell are analyzed in detail. The effect of reactant flow rate on the cell performance and electrode potentials is also studied. The model results suggest that fuel crossover is minimized by the fast electrolyte flow in the vicinity of the cathode. The current production of each anode is uneven and is well correlated with internal ohmic resistance. Fuel transfer limitation occurs at low flow rates (<100 μL min-1) but diminishes at high flow rates. The model results also indicate that cathode potential reversal takes place at combined low flow rate and high current density conditions, mainly due to the improved overpotential downstream where fuel starvation occurs. The anode reaction current distribution is found to be relatively uniform, which is a result of a compensating mechanism that improves the current production of the bottom anodes downstream.

  20. Affordable Flight Demonstration of the GTX Air-Breathing SSTO Vehicle Concept

    NASA Technical Reports Server (NTRS)

    Krivanek, Thomas M.; Roche, Joseph M.; Riehl, John P.; Kosareo, Daniel N.

    2002-01-01

    The rocket based combined cycle (RBCC) powered single-stage-to-orbit (SSTO) reusable launch vehicle has the potential to significantly reduce the total cost per pound for orbital payload missions. To validate overall system performance, a flight demonstration must be performed. This paper presents an overview of the first phase of a flight demonstration program for the GTX SSTO vehicle concept. Phase 1 will validate the propulsion performance of the vehicle configuration over the supersonic and hypersonic airbreathing portions of the trajectory. The focus and goal of Phase 1 is to demonstrate the integration and performance of the propulsion system flowpath with the vehicle aerodynamics over the air-breathing trajectory. This demonstrator vehicle will have dual mode ramjet/scramjets, which include the inlet, combustor, and nozzle with geometrically scaled aerodynamic surface outer mold lines (OML) defining the forebody, boundary layer diverter, wings, and tail. The primary objective of this study is to demonstrate propulsion system performance and operability including the ram to scram transition, as well as to validate vehicle aerodynamics and propulsion airframe integration. To minimize overall risk and development cost the effort will incorporate proven materials, use existing turbomachinery in the propellant delivery systems, launch from an existing unmanned remote launch facility, and use basic vehicle recovery techniques to minimize control and landing requirements. A second phase would demonstrate propulsion performance across all critical portions of a space launch trajectory (lift off through transition to all-rocket) integrated with flight-like vehicle systems.

  1. Uncertainty analysis and robust trajectory linearization control of a flexible air-breathing hypersonic vehicle

    NASA Astrophysics Data System (ADS)

    Pu, Zhiqiang; Tan, Xiangmin; Fan, Guoliang; Yi, Jianqiang

    2014-08-01

    Flexible air-breathing hypersonic vehicles feature significant uncertainties which pose huge challenges to robust controller designs. In this paper, four major categories of uncertainties are analyzed, that is, uncertainties associated with flexible effects, aerodynamic parameter variations, external environmental disturbances, and control-oriented modeling errors. A uniform nonlinear uncertainty model is explored for the first three uncertainties which lumps all uncertainties together and consequently is beneficial for controller synthesis. The fourth uncertainty is additionally considered in stability analysis. Based on these analyses, the starting point of the control design is to decompose the vehicle dynamics into five functional subsystems. Then a robust trajectory linearization control (TLC) scheme consisting of five robust subsystem controllers is proposed. In each subsystem controller, TLC is combined with the extended state observer (ESO) technique for uncertainty compensation. The stability of the overall closed-loop system with the four aforementioned uncertainties and additional singular perturbations is analyzed. Particularly, the stability of nonlinear ESO is also discussed from a Liénard system perspective. At last, simulations demonstrate the great control performance and the uncertainty rejection ability of the robust scheme.

  2. Design Evolution and Performance Characterization of the GTX Air-Breathing Launch Vehicle Inlet

    NASA Technical Reports Server (NTRS)

    DeBonis, J. R.; Steffen, C. J., Jr.; Rice, T.; Trefny, C. J.

    2002-01-01

    The design and analysis of a second version of the inlet for the GTX rocket-based combine-cycle launch vehicle is discussed. The previous design did not achieve its predicted performance levels due to excessive turning of low-momentum comer flows and local over-contraction due to asymmetric end-walls. This design attempts to remove these problems by reducing the spike half-angle to 10- from 12-degrees and by implementing true plane of symmetry end-walls. Axisymmetric Reynolds-Averaged Navier-Stokes simulations using both perfect gas and real gas, finite rate chemistry, assumptions were performed to aid in the design process and to create a comprehensive database of inlet performance. The inlet design, which operates over the entire air-breathing Mach number range from 0 to 12, and the performance database are presented. The performance database, for use in cycle analysis, includes predictions of mass capture, pressure recovery, throat Mach number, drag force, and heat load, for the entire Mach range. Results of the computations are compared with experimental data to validate the performance database.

  3. Propulsion integration of hypersonic air-breathing vehicles utilizing a top-down design methodology

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, Brad Kenneth

    In recent years, a focus of aerospace engineering design has been the development of advanced design methodologies and frameworks to account for increasingly complex and integrated vehicles. Techniques such as parametric modeling, global vehicle analyses, and interdisciplinary data sharing have been employed in an attempt to improve the design process. The purpose of this study is to introduce a new approach to integrated vehicle design known as the top-down design methodology. In the top-down design methodology, the main idea is to relate design changes on the vehicle system and sub-system level to a set of over-arching performance and customer requirements. Rather than focusing on the performance of an individual system, the system is analyzed in terms of the net effect it has on the overall vehicle and other vehicle systems. This detailed level of analysis can only be accomplished through the use of high fidelity computational tools such as Computational Fluid Dynamics (CFD) or Finite Element Analysis (FEA). The utility of the top-down design methodology is investigated through its application to the conceptual and preliminary design of a long-range hypersonic air-breathing vehicle for a hypothetical next generation hypersonic vehicle (NHRV) program. System-level design is demonstrated through the development of the nozzle section of the propulsion system. From this demonstration of the methodology, conclusions are made about the benefits, drawbacks, and cost of using the methodology.

  4. An Overview of Air-Breathing Propulsion Efforts for 2015 SBIR Phase I

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.; Steele, Gynelle C.

    2016-01-01

    NASA's Small Business Innovation Research (SBIR) program focuses on technological innovation by investing in development of innovative concepts and technologies to help NASA mission directorates address critical research needs for Agency programs. This report highlights 24 of the innovative SBIR 2015 Phase I projects that emphasize one of NASA Glenn Research Center's six core competencies-Air-Breathing Propulsion. The technologies cover a wide spectrum of applications such as hybrid nanocomposites for efficient aerospace structures; plasma flow control for drag reduction; physics-based aeroanalysis methods for open rotor conceptual designs; vertical lift by series hybrid power; fast pressure-sensitive paint systems for production wind tunnel testing; rugged, compact, and inexpensive airborne fiber sensor interrogators based on monolithic tunable lasers; and high sensitivity semiconductor sensor skins for multi-axis surface pressure characterization. Each featured technology describes an innovation and technical objective and highlights NASA commercial and industrial applications. This report provides an opportunity for NASA engineers, researchers, and program managers to learn how NASA SBIR technologies could help their programs and projects, and lead to collaborations and partnerships between the small SBIR companies and NASA that would benefit both.

  5. An Overview of 2014 SBIR Phase 1 and Phase 2 Air-Breathing Propulsion

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.; Steele, Gynelle C.; Morris, Jessica R.

    2015-01-01

    NASA's Small Business Innovation Research (SBIR) program focuses on technological innovation by investing in development of innovative concepts and technologies to help NASA mission directorates address critical research needs for Agency programs. This report highlights nine of the innovative SBIR 2014 Phase I and Phase II projects that emphasize one of NASA Glenn Research Center's six core competencies-Air-Breathing Propulsion. The technologies cover a wide spectrum of applications such as development of X-ray computed tomography (CT) imaging method for the measurement of complex 3D ice shapes, phased array techniques for low signal-to-noise ratio wind tunnels, compact kinetic mechanisms for petroleum-derived and alternative aviation fuels, and hybrid electric propulsion systems for a multirotor aircraft. Each featured technology describes an innovation, technical objective, and highlights NASA commercial and industrial applications. This report provides as an opportunity for NASA engineers, researchers, and program managers to learn how NASA SBIR technologies could help their programs and projects, and lead to collaborations and partnerships between the small SBIR companies and NASA that would benefit both.

  6. Pulsed particle beam vacuum-to-air interface

    DOEpatents

    Cruz, G.E.; Edwards, W.F.

    1987-06-18

    A vacuum-to-air interface is provided for a high-powered, pulsed particle beam accelerator. The interface comprises a pneumatic high speed gate valve, from which extends a vacuum-tight duct, that terminates in an aperture. Means are provided for periodically advancing a foil strip across the aperture at the repetition rate of the particle pulses. A pneumatically operated hollow sealing band urges foil strip, when stationary, against and into the aperture. Gas pressure means periodically lift off and separate foil strip from aperture, so that it may be readily advanced. 5 figs.

  7. Aerodynamic experimentation with ducted models as applied to hypersonic air-breathing vehicles

    NASA Astrophysics Data System (ADS)

    Goon'ko, Yu. P.

    A methodology of experimentation in high supersonic wind tunnels for studying aerodynamic characteristics of hypersonic flying vehicles powered by air-breathing engines is discussed. Investigations of such total aerodynamic forces as drag, lift and pitching moment at testing the models are implicit when the air flow through the model ducts is accomplished so that to provide the simulation of the external flow around the airplane and flow over the inlets, but the operating engines and, hence, the exhaust jets are not modeled. The methods used for testing such models are based on the measurement of duct stream parameters alongside with the balance measurement of aerodynamic forces acting on the models. In the tests, aerometric tools are used such as narrow metering nozzles (plugs), pitot and static pressure probes, stagnation temperature probes and pressure orifices in walls of the model duct. The aerometric data serve to determine the flow rate and momentum of the stream at the duct exit. The internal non-simulated forces of the model ducts are also determined using the conservation equations for energy, mass flow and momentum, and these forces are eliminated from the aerodynamic test results. The techniques of the said model testing have been well developed as applied to supersonic aircraft, however their application for hypersonic vehicles whose models are tested at high supersonic speeds, Mach number M∞>4, implies some specific features. In the present paper, the results of experimental and theoretical study of these features are discussed. Some experimental data on aerodynamics of hypersonic aircraft models received in methodological tests are also presented. The tunnel experiments have been carried out in the Mach number range M∞=2-6.

  8. Evolution of air breathing: oxygen homeostasis and the transitions from water to land and sky.

    PubMed

    Hsia, Connie C W; Schmitz, Anke; Lambertz, Markus; Perry, Steven F; Maina, John N

    2013-04-01

    Life originated in anoxia, but many organisms came to depend upon oxygen for survival, independently evolving diverse respiratory systems for acquiring oxygen from the environment. Ambient oxygen tension (PO2) fluctuated through the ages in correlation with biodiversity and body size, enabling organisms to migrate from water to land and air and sometimes in the opposite direction. Habitat expansion compels the use of different gas exchangers, for example, skin, gills, tracheae, lungs, and their intermediate stages, that may coexist within the same species; coexistence may be temporally disjunct (e.g., larval gills vs. adult lungs) or simultaneous (e.g., skin, gills, and lungs in some salamanders). Disparate systems exhibit similar directions of adaptation: toward larger diffusion interfaces, thinner barriers, finer dynamic regulation, and reduced cost of breathing. Efficient respiratory gas exchange, coupled to downstream convective and diffusive resistances, comprise the "oxygen cascade"-step-down of PO2 that balances supply against toxicity. Here, we review the origin of oxygen homeostasis, a primal selection factor for all respiratory systems, which in turn function as gatekeepers of the cascade. Within an organism's lifespan, the respiratory apparatus adapts in various ways to upregulate oxygen uptake in hypoxia and restrict uptake in hyperoxia. In an evolutionary context, certain species also become adapted to environmental conditions or habitual organismic demands. We, therefore, survey the comparative anatomy and physiology of respiratory systems from invertebrates to vertebrates, water to air breathers, and terrestrial to aerial inhabitants. Through the evolutionary directions and variety of gas exchangers, their shared features and individual compromises may be appreciated.

  9. Evolution of Air Breathing: Oxygen Homeostasis and the Transitions from Water to Land and Sky

    PubMed Central

    Hsia, Connie C. W.; Schmitz, Anke; Lambertz, Markus; Perry, Steven F.; Maina, John N.

    2014-01-01

    Life originated in anoxia, but many organisms came to depend upon oxygen for survival, independently evolving diverse respiratory systems for acquiring oxygen from the environment. Ambient oxygen tension (PO2) fluctuated through the ages in correlation with biodiversity and body size, enabling organisms to migrate from water to land and air and sometimes in the opposite direction. Habitat expansion compels the use of different gas exchangers, for example, skin, gills, tracheae, lungs, and their intermediate stages, that may coexist within the same species; coexistence may be temporally disjunct (e.g., larval gills vs. adult lungs) or simultaneous (e.g., skin, gills, and lungs in some salamanders). Disparate systems exhibit similar directions of adaptation: toward larger diffusion interfaces, thinner barriers, finer dynamic regulation, and reduced cost of breathing. Efficient respiratory gas exchange, coupled to downstream convective and diffusive resistances, comprise the “oxygen cascade”—step-down of PO2 that balances supply against toxicity. Here, we review the origin of oxygen homeostasis, a primal selection factor for all respiratory systems, which in turn function as gatekeepers of the cascade. Within an organism's lifespan, the respiratory apparatus adapts in various ways to upregulate oxygen uptake in hypoxia and restrict uptake in hyperoxia. In an evolutionary context, certain species also become adapted to environmental conditions or habitual organismic demands. We, therefore, survey the comparative anatomy and physiology of respiratory systems from invertebrates to vertebrates, water to air breathers, and terrestrial to aerial inhabitants. Through the evolutionary directions and variety of gas exchangers, their shared features and individual compromises may be appreciated. PMID:23720333

  10. Determination of hexavalent chromium in exhaled breath condensate and environmental air among chrome plating workers.

    PubMed

    Goldoni, Matteo; Caglieri, Andrea; Poli, Diana; Vettori, Maria Vittoria; Corradi, Massimo; Apostoli, Pietro; Mutti, Antonio

    2006-03-15

    Chromium speciation has attracted attention because of the different toxicity of Cr(III), which is considered relatively non-toxic, and Cr(VI), which can cross cell membranes mainly as a chromate anion and has been classified as a class I human carcinogen. The aims of the present study were to measure soluble Cr(VI) levels in environmental samples, to develop a simple method of quantifying Cr(VI) in exhaled breath condensate (EBC), and to follow the kinetics of EBC Cr(VI) in chrome plating workers.Personal air samples were collected from 10 chrome platers; EBC was collected from the same workers immediately after the work shift on Tuesday and before the work shift on the following Wednesday. Environmental and EBC Cr(VI) levels were determined by means of colorimetry and electrothermal absorption atomic spectrometry, respectively.The method of detecting Cr(VI) in environmental air was based on the extraction of the Cr(VI)-diphenylcarbazide (Cr(VI)-DPC) complex in 1-butanol, whereas EBC Cr(VI) was determined using a solvent extraction of Cr(VI) as an ion pair with tetrabutylammonium ion, and subsequent direct determination of the complex (Cr(VI)-DPC) in EBC.Kinetic data showed that airborne Cr(VI) was reduced by 50% in airway lining fluid sampled at the end of exposure and that there was a further 50% reduction after about 15 h. The persistence of Cr(VI) in EBC supports the use of EBC in assessing target tissue levels of Cr(VI).

  11. Determination of hexavalent chromium in exhaled breath condensate and environmental air among chrome plating workers

    PubMed Central

    Goldoni, Matteo; Caglieri, Andrea; Poli, Diana; Vettori, Maria Vittoria; Corradi, Massimo; Apostoli, Pietro; Mutti, Antonio

    2006-01-01

    Chromium speciation has attracted attention because of the different toxicity of Cr(III), which is considered relatively non-toxic, and Cr(VI), which can cross cell membranes mainly as a chromate anion and has been classified as a class I human carcinogen. The aims of the present study were to measure soluble Cr(VI) levels in environmental samples, to develop a simple method of quantifying Cr(VI) in exhaled breath condensate (EBC), and to follow the kinetics of EBC Cr(VI) in chrome plating workers. Personal air samples were collected from 10 chrome platers; EBC was collected from the same workers immediately after the work shift on Tuesday and before the work shift on the following Wednesday. Environmental and EBC Cr(VI) levels were determined by means of colorimetry and electrothermal absorption atomic spectrometry, respectively. The method of detecting Cr(VI) in environmental air was based on the extraction of the Cr(VI)-diphenylcarbazide (Cr(VI)–DPC) complex in 1-butanol, whereas EBC Cr(VI) was determined using a solvent extraction of Cr(VI) as an ion pair with tetrabutylammonium ion, and subsequent direct determination of the complex (Cr(VI)–DPC) in EBC. Kinetic data showed that airborne Cr(VI) was reduced by 50% in airway lining fluid sampled at the end of exposure and that there was a further 50% reduction after about 15 h. The persistence of Cr(VI) in EBC supports the use of EBC in assessing target tissue levels of Cr(VI). PMID:17047732

  12. The quantification of carbon dioxide in humid air and exhaled breath by selected ion flow tube mass spectrometry.

    PubMed

    Smith, David; Pysanenko, Andriy; Spanel, Patrik

    2009-05-01

    The reactions of carbon dioxide, CO(2), with the precursor ions used for selected ion flow tube mass spectrometry, SIFT-MS, analyses, viz. H(3)O(+), NO(+) and O(2) (+), are so slow that the presence of CO(2) in exhaled breath has, until recently, not had to be accounted for in SIFT-MS analyses of breath. This has, however, to be accounted for in the analysis of acetaldehyde in breath, because an overlap occurs of the monohydrate of protonated acetaldehyde and the weakly bound adduct ion, H(3)O(+)CO(2), formed by the slow association reaction of the precursor ion H(3)O(+) with CO(2) molecules. The understanding of the kinetics of formation and the loss rates of the relevant ions gained from experimentation using the new generation of more sensitive SIFT-MS instruments now allows accurate quantification of CO(2) in breath using the level of the H(3)O(+)CO(2) adduct ion. However, this is complicated by the rapid reaction of H(3)O(+)CO(2) with water vapour molecules, H(2)O, that are in abundance in exhaled breath. Thus, a study has been carried out of the formation of this adduct ion by the slow three-body association reaction of H(3)O(+) with CO(2) and its rapid loss in the two-body reaction with H(2)O molecules. It is seen that the signal level of the H(3)O(+)CO(2) adduct ion is sensitively dependent on the humidity (H(2)O concentration) of the sample to be analysed and a functional form of this dependence has been obtained. This has resulted in an appropriate extension of the SIFT-MS software and kinetics library that allows accurate measurement of CO(2) levels in air samples, ranging from very low percentage levels (0.03% typical of tropospheric air) to the 6% level that is about the upper limit in exhaled breath. Thus, the level of CO(2) can be traced through single time exhalation cycles along with that of water vapour, also close to the 6% level, and of trace gas metabolites that are present at only a few parts-per-billion. This has added a further dimension to

  13. Influence of cathode opening size and wetting properties of diffusion layers on the performance of air-breathing PEMFCs

    NASA Astrophysics Data System (ADS)

    Schmitz, A.; Tranitz, M.; Eccarius, S.; Weil, A.; Hebling, C.

    Air-breathing PEMFCs consist of an open cathodic side to allow an entirely passive supply of oxygen by diffusion. Furthermore, a large fraction of the produced water is removed by evaporation from the open cathode. Gas diffusion layers (GDLs) and the opening size of the cathode have a crucial influence on the performance of an air-breathing PEMFC. In order to assure an unobstructed supply of oxygen the water has to be removed efficiently and condensation in the GDL has to be avoided. On the other hand good humidification of the membrane has to be achieved to obtain high protonic conductivity. In this paper the influence of varying cathodic opening sizes (33%, 50% and 80% opening ratios) and of GDLs with different wetting properties are analysed. GDLs with hydrophobic and hydrophilic properties are prepared by coating of untreated GDLs (Toray ® carbon paper TGP-H-120, thickness of 350 μm). The air-breathing PEMFC test samples are realised using printed circuit board (PCB) technology. The cell samples were characterised over the entire potential range (0-0.95 V) by extensive measurements of the current density, the temperature and the cell impedance at 1 kHz. Additionally, measurements of the water balance were carried out at distinct operation points. The best cell performance was achieved with the largest opening ratio (80%) and an untreated GDL. At the maximum power point, this cell sample achieved a power density of 100 mW cm -2 at a moderate cell temperature of 43 °C. Furthermore, it could be shown that GDLs with hydrophilic or intense hydrophobic properties do not improve the performance of an air-breathing PEMFC. Based on the extensive characterisations, two design rules for air-breathing PEMFCs could be formulated. Firstly, it is crucial to maximise the cathode opening as far as an appropriate compression pressure of the cell assembly and therewith low contact resistance can be assured. Secondly, it is advantageous to use an untreated, slightly hydrophobic

  14. Fabrication of Au nanostructures by pulsed laser deposition in air

    NASA Astrophysics Data System (ADS)

    Nikov, Rumen G.; Dikovska, Anna Og.; Nedyalkov, Nikolay N.; Atanasov, Petar A.

    2016-01-01

    Results on fabrication of Au nanostructures by laser ablation in open air are presented. The ablation of the Au target is performed in air environment by nanosecond laser pulses delivered by Nd:YAG laser system operated at λ = 355 nm. Due to the high density of the ambient atmosphere, the intensive collisions of the plume spices result in formation of nanoparticles and aggregates by condensation close to the target. The produced nanoagregates are deposited on a quartz substrate where grow in a specific nanostructure. Diagnostics of the laser-generated plasma for the laser fluences used in this study is performed. Study based on change of ambient conditions shows that the increase of the air pressure from 10 Torr to atmospheric one leads to transition from thin film to porous structures. It is found that the surface morphology of the structures produced by pulsed laser deposition (PLD) in open air strongly depends on the substrate-target distance. The electrical properties of the obtained structures are studied by measurement of their electrical resistance. It is found that the conductivity of the structures strongly depends on their morphology. The fabricated structures have potential for application in the field of electronics and sensors.

  15. Continuum Generation of the Third-Harmonic Pulse Generated by an Intense Femtosecond IR Laser Pulse in Air

    DTIC Science & Technology

    2003-06-06

    c.m. bowden3 Continuum generation of the third-harmonic pulse generated by an intense femtosecond IR laser pulse in air 1 Time Domain Corporation...picosecond high-peak-power laser pulses are propagated in air. The supercontinuum generated during the filamentation process has been used for time ...collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources

  16. Review of the PDWA Concept for Combustion Enhancement in a Supersonic Air-Breathing Combustor Environment

    NASA Technical Reports Server (NTRS)

    Canbier, Jean-Luc; Edwards, Thomas A. (Technical Monitor)

    1995-01-01

    This paper reviews the design of the Pulsed Detonation Wave Augmentor (PDWA) concept and the preliminary computational fluid dynamics studies that supported it. The PDWA relies on the rapid generation of detonation waves in a small tube, which are then injected into the supersonic stream of the main combustor. The blast waves thus generated are used to stimulate the mixing and combustion inside the main combustor. The mixing enhancement relies on various forms of the baroclinic interaction, where misaligned pressure and density gradients combine to produce vortical flow. By using unsteady shock waves, the concept also uses the Richtmyer-Meshkov effect to further increase the rate of mixing. By carefully designing the respective configurations of the combustor and the detonation tubes, one can also increase the penetration of the fuel into the supersonic air stream. The unsteady shocks produce lower stagnation pressure losses than steady shocks. Combustion enhancement can also be obtained through the transient shock-heating of the fuel-air interface, and the lowering of the ignition delay in these regions. The numerical simulations identify these processes, and show which configurations give the best results. Engineering considerations are also presented, and discuss the feasibility of the concept. Of primary importance are the enhancements in performance, the design simplicity, the minimization of the power, cost, and weight, and the methods to achieve very rapid cycling.

  17. Pulsed positive streamer discharges in air at high temperatures

    NASA Astrophysics Data System (ADS)

    Ono, Ryo; Kamakura, Taku

    2016-08-01

    Atmospheric-pressure air pulsed positive streamer discharges are generated in a 13 mm point-plane gap in the temperature range of 293 K-1136 K, and the effect of temperature on the streamer discharges is studied. When the temperature is increased, the product of applied voltage and temperature VT proportional to the reduced electric field can be used as a primary parameter that determines some discharge parameters regardless of temperature. For a given VT, the transferred charge per pulse, streamer diameter, product of discharge energy and temperature, and length of secondary streamer are almost constant regardless of T, whereas the streamer velocity decreases with increasing T and the decay rate of the discharge current is proportional to 1/T. The N2(C) emission intensity is approximately determined by the discharge energy independent of T. These results are useful to predict the streamer discharge and its reactive species production when the ambient temperature is increased.

  18. Pulsed particle beam vacuum-to-air interface

    DOEpatents

    Cruz, Gilbert E.; Edwards, William F.

    1988-01-01

    A vacuum-to-air interface (10) is provided for a high-powered, pulsed particle beam accelerator. The interface comprises a pneumatic high speed gate valve (18), from which extends a vacuum-tight duct (26), that termintes in an aperture (28). Means (32, 34, 36, 38, 40, 42, 44, 46, 48) are provided for periodically advancing a foil strip (30) across the aperture (28) at the repetition rate of the particle pulses. A pneumatically operated hollow sealing band (62) urges foil strip (30), when stationary, against and into the aperture (28). Gas pressure means (68, 70) periodically lift off and separate foil strip (30) from aperture (28), so that it may be readily advanced.

  19. Shortness of Breath

    MedlinePlus

    Symptoms Shortness of breath By Mayo Clinic Staff Few sensations are as frightening as not being able to get enough air. Shortness of breath — known medically as dyspnea — is often described as an intense tightening in the chest, air hunger or a ...

  20. Cinema audiences reproducibly vary the chemical composition of air during films, by broadcasting scene specific emissions on breath

    NASA Astrophysics Data System (ADS)

    Williams, Jonathan; Stönner, Christof; Wicker, Jörg; Krauter, Nicolas; Derstroff, Bettina; Bourtsoukidis, Efstratios; Klüpfel, Thomas; Kramer, Stefan

    2016-05-01

    Human beings continuously emit chemicals into the air by breath and through the skin. In order to determine whether these emissions vary predictably in response to audiovisual stimuli, we have continuously monitored carbon dioxide and over one hundred volatile organic compounds in a cinema. It was found that many airborne chemicals in cinema air varied distinctively and reproducibly with time for a particular film, even in different screenings to different audiences. Application of scene labels and advanced data mining methods revealed that specific film events, namely “suspense” or “comedy” caused audiences to change their emission of specific chemicals. These event-type synchronous, broadcasted human chemosignals open the possibility for objective and non-invasive assessment of a human group response to stimuli by continuous measurement of chemicals in air. Such methods can be applied to research fields such as psychology and biology, and be valuable to industries such as film making and advertising.

  1. Cinema audiences reproducibly vary the chemical composition of air during films, by broadcasting scene specific emissions on breath.

    PubMed

    Williams, Jonathan; Stönner, Christof; Wicker, Jörg; Krauter, Nicolas; Derstroff, Bettina; Bourtsoukidis, Efstratios; Klüpfel, Thomas; Kramer, Stefan

    2016-05-10

    Human beings continuously emit chemicals into the air by breath and through the skin. In order to determine whether these emissions vary predictably in response to audiovisual stimuli, we have continuously monitored carbon dioxide and over one hundred volatile organic compounds in a cinema. It was found that many airborne chemicals in cinema air varied distinctively and reproducibly with time for a particular film, even in different screenings to different audiences. Application of scene labels and advanced data mining methods revealed that specific film events, namely "suspense" or "comedy" caused audiences to change their emission of specific chemicals. These event-type synchronous, broadcasted human chemosignals open the possibility for objective and non-invasive assessment of a human group response to stimuli by continuous measurement of chemicals in air. Such methods can be applied to research fields such as psychology and biology, and be valuable to industries such as film making and advertising.

  2. Cinema audiences reproducibly vary the chemical composition of air during films, by broadcasting scene specific emissions on breath

    PubMed Central

    Williams, Jonathan; Stönner, Christof; Wicker, Jörg; Krauter, Nicolas; Derstroff, Bettina; Bourtsoukidis, Efstratios; Klüpfel, Thomas; Kramer, Stefan

    2016-01-01

    Human beings continuously emit chemicals into the air by breath and through the skin. In order to determine whether these emissions vary predictably in response to audiovisual stimuli, we have continuously monitored carbon dioxide and over one hundred volatile organic compounds in a cinema. It was found that many airborne chemicals in cinema air varied distinctively and reproducibly with time for a particular film, even in different screenings to different audiences. Application of scene labels and advanced data mining methods revealed that specific film events, namely “suspense” or “comedy” caused audiences to change their emission of specific chemicals. These event-type synchronous, broadcasted human chemosignals open the possibility for objective and non-invasive assessment of a human group response to stimuli by continuous measurement of chemicals in air. Such methods can be applied to research fields such as psychology and biology, and be valuable to industries such as film making and advertising. PMID:27160439

  3. TEAM (Total Exposure Assessment Methodology) Study: personal exposures to toxic substances in air, drinking water, and breath of 400 residents of New Jersey, North Carolina, and North Dakota

    SciTech Connect

    Wallace, L.A.; Pellizzari, E.D.; Hartwell, T.D.; Sparacino, C.; Whitmore, R.; Sheldon, L.; Zelon, H.; Perritt, R.

    1987-08-01

    EPA's TEAM Study has measured exposures to 20 volatile organic compounds in personal air, outdoor air, drinking water, and breath of approximately 400 residents of New Jersey, North Carolina, and North Dakota. All residents were selected by a probability sampling scheme to represent 128,000 inhabitants of Elizabeth and Bayonne, New Jersey, 131,000 residents of Greensboro, North Carolina, and 7000 residents of Devils Lake, North Dakota. Participants carried a personal monitor to collect two 12-hr air samples and gave a breath sample at the end of the day. Two consecutive 12-hr outdoor air samples were also collected on identical Tenax cartridges in the backyards of some of the participants. About 5000 samples were collected, of which 1500 were quality control samples. Ten compounds were often present in personal air and breath samples at all locations. Personal exposures were consistently higher than outdoor concentrations for these chemicals and were sometimes 10 times the outdoor concentrations. Indoor sources appeared to be responsible for much of the difference. Breath concentrations also often exceeded outdoor concentrations and correlated more strongly with personal exposures than with outdoor concentrations. Some activities (smoking, visiting dry cleaners or service stations) and occupations (chemical, paint, and plastics plants) were associated with significantly elevated exposures and breath levels for certain toxic chemicals. Homes with smokers had significantly increased benzene and styrene levels in indoor air. Residence near major point sources did not affect exposure.

  4. Detection and removal of impurities in nitric oxide generated from air by pulsed electrical discharge.

    PubMed

    Yu, Binglan; Blaesi, Aron H; Casey, Noel; Raykhtsaum, Grigory; Zazzeron, Luca; Jones, Rosemary; Morrese, Alexander; Dobrynin, Danil; Malhotra, Rajeev; Bloch, Donald B; Goldstein, Lee E; Zapol, Warren M

    2016-11-30

    Inhalation of nitric oxide (NO) produces selective pulmonary vasodilation without dilating the systemic circulation. However, the current NO/N2 cylinder delivery system is cumbersome and expensive. We developed a lightweight, portable, and economical device to generate NO from air by pulsed electrical discharge. The objective of this study was to investigate and optimize the purity and safety of NO generated by this device. By using low temperature streamer discharges in the plasma generator, we produced therapeutic levels of NO with very low levels of nitrogen dioxide (NO2) and ozone. Despite the low temperature, spark generation eroded the surface of the electrodes, contaminating the gas stream with metal particles. During prolonged NO generation there was gradual loss of the iridium high-voltage tip (-90 μg/day) and the platinum-nickel ground electrode (-55 μg/day). Metal particles released from the electrodes were trapped by a high-efficiency particulate air (HEPA) filter. Quadrupole mass spectroscopy measurements of effluent gas during plasma NO generation showed that a single HEPA filter removed all of the metal particles. Mice were exposed to breathing 50 parts per million of electrically generated NO in air for 28 days with only a scavenger and no HEPA filter; the mice did not develop pulmonary inflammation or structural changes and iridium and platinum particles were not detected in the lungs of these mice. In conclusion, an electric plasma generator produced therapeutic levels of NO from air; scavenging and filtration effectively eliminated metallic impurities from the effluent gas.

  5. Energy balance in nanosecond pulse discharges in nitrogen and air

    NASA Astrophysics Data System (ADS)

    Shkurenkov, Ivan; Adamovich, Igor V.

    2016-02-01

    Kinetic modeling is used to analyze energy partition and energy transfer in nanosecond pulse discharges sustained between two spherical electrodes in nitrogen and air. The modeling predictions are compared with previous time-resolved temperature and {{\\text{N}}2}≤ft(X {}1Σ\\text{g}+,v=0-9\\right) vibrational population measurements by picosecond broadband coherent anti-Stokes Raman spectroscopy (CARS) and phase-locked Schlieren imaging. The model shows good agreement with experimental data, reproducing experimental discharge current pulse waveforms, as well as dominant processes of energy transfer in the discharge and the afterglow. Specifically, the results demonstrate that the temperature rise in the plasma occurs in two stages, (i) ‘rapid’ heating on sub-acoustic time scale, dominated by {{\\text{N}}2}≤ft(A {}3Σ\\text{u}+\\right) energy pooling processes, N2(B 3Πg) and N(2P,2D) quenching (in nitrogen), and by quenching of excited electronic states of N2 molecules by O2 (in air), and (ii) ‘slow’ heating due to N2 vibrational relaxation by O atoms (in air), nearly completely missing in nitrogen. Comparison of the model predictions with N2 vibrational level populations confirms that the N2 vibrational temperature rises after the discharge pulse is caused by the ‘downward’ vibrational-vibrational exchange depopulating higher vibrational levels and populating vibrational level v  =  1. The model reproduces temporal dynamics of vibrational level populations and temperature in the discharge and the afterglow, indicating that energy partition among different modes (vibrational, electronic, dissociation, and ionization) is predicted accurately. At the present conditions, energy fraction coupled to the positive column of the discharge filament in air is approximately 50%, with the rest coupled to the cathode layer. Nearly 10% of the total pulse energy is spent on O atom generation, and about 10% is thermalized on a sub-acoustic time scale

  6. Concentrations of 20 volatile organic compounds in the air and drinking water of 350 residents of New Jersey compared with concentrations in their exhaled breath

    SciTech Connect

    Wallace, L.; Pellizzari, E.; Hartwell, T.; Zelon, H.; Sparacino, C.; Perritt, R.; Whitmore, R.

    1986-08-01

    Twenty volatile organic compounds were measured in the personal air and drinking water of 350 New Jersey residents in the fall of 1981. Two consecutive 12-hour integrated personal air samples and two tap water samples were collected from each participant. At the end of the 24-hour monitoring period, each participant supplied a sample of exhaled breath. Simultaneous outdoor samples were collected in 100 residential locations in two cities. Eleven compounds were present much of the time in air, but only four (the trihalomethanes) in water; wide ranges of exposures (three to four orders of magnitude) were noted for most compounds. Ten of 11 compounds displayed significant correlations between air exposures and breath concentrations; the 11th (chloroform) was correlated with drinking water exposures. It was concluded that breath measurements are a feasible, cost-effective, and highly sensitive way to determine environmental and occupational exposures to volatile organic compounds.

  7. Concentrations of 20 volatile organic compounds in the air and drinking water of 350 residents of New Jersey compared with concentrations in their exhaled breath.

    PubMed

    Wallace, L; Pellizzari, E; Hartwell, T; Zelon, H; Sparacino, C; Perritt, R; Whitmore, R

    1986-08-01

    Twenty volatile organic compounds were measured in the personal air and drinking water of 350 New Jersey residents in the fall of 1981. Two consecutive 12-hour integrated personal air samples and two tap water samples were collected from each participant. At the end of the 24-hour monitoring period, each participant supplied a sample of exhaled breath. Simultaneous outdoor samples were collected in 100 residential locations in two cities. Eleven compounds were present much of the time in air, but only four (the trihalomethanes) in water; wide ranges of exposures (three to four orders of magnitude) were noted for most compounds. Ten of 11 compounds displayed significant correlations between air exposures and breath concentrations; the 11th (chloroform) was correlated with drinking water exposures. It was concluded that breath measurements are a feasible, cost-effective, and highly sensitive way to determine environmental and occupational exposures to volatile organic compounds.

  8. Work of Breathing into Snow in the Presence versus Absence of an Artificial Air Pocket Affects Hypoxia and Hypercapnia of a Victim Covered with Avalanche Snow: A Randomized Double Blind Crossover Study.

    PubMed

    Roubík, Karel; Sieger, Ladislav; Sykora, Karel

    2015-01-01

    Presence of an air pocket and its size play an important role in survival of victims buried in the avalanche snow. Even small air pockets facilitate breathing. We hypothesize that the size of the air pocket significantly affects the airflow resistance and work of breathing. The aims of the study are (1) to investigate the effect of the presence of an air pocket on gas exchange and work of breathing in subjects breathing into the simulated avalanche snow and (2) to test whether it is possible to breathe with no air pocket. The prospective interventional double-blinded study involved 12 male volunteers, from which 10 completed the whole protocol. Each volunteer underwent two phases of the experiment in a random order: phase "AP"--breathing into the snow with a one-liter air pocket, and phase "NP"--breathing into the snow with no air pocket. Physiological parameters, fractions of oxygen and carbon dioxide in the airways and work of breathing expressed as pressure-time product were recorded continuously. The main finding of the study is that it is possible to breath in the avalanche snow even with no air pocket (0 L volume), but breathing under this condition is associated with significantly increased work of breathing. The significant differences were initially observed for end-tidal values of the respiratory gases (EtO2 and EtCO2) and peripheral oxygen saturation (SpO2) between AP and NP phases, whereas significant differences in inspiratory fractions occurred much later (for FIO2) or never (for FICO2). The limiting factor in no air pocket conditions is excessive increase in work of breathing that induces increase in metabolism accompanied by higher oxygen consumption and carbon dioxide production. The presence of even a small air pocket reduces significantly the work of breathing.

  9. Work of Breathing into Snow in the Presence versus Absence of an Artificial Air Pocket Affects Hypoxia and Hypercapnia of a Victim Covered with Avalanche Snow: A Randomized Double Blind Crossover Study

    PubMed Central

    2015-01-01

    Presence of an air pocket and its size play an important role in survival of victims buried in the avalanche snow. Even small air pockets facilitate breathing. We hypothesize that the size of the air pocket significantly affects the airflow resistance and work of breathing. The aims of the study are (1) to investigate the effect of the presence of an air pocket on gas exchange and work of breathing in subjects breathing into the simulated avalanche snow and (2) to test whether it is possible to breathe with no air pocket. The prospective interventional double-blinded study involved 12 male volunteers, from which 10 completed the whole protocol. Each volunteer underwent two phases of the experiment in a random order: phase “AP”—breathing into the snow with a one-liter air pocket, and phase “NP”—breathing into the snow with no air pocket. Physiological parameters, fractions of oxygen and carbon dioxide in the airways and work of breathing expressed as pressure-time product were recorded continuously. The main finding of the study is that it is possible to breath in the avalanche snow even with no air pocket (0 L volume), but breathing under this condition is associated with significantly increased work of breathing. The significant differences were initially observed for end-tidal values of the respiratory gases (EtO2 and EtCO2) and peripheral oxygen saturation (SpO2) between AP and NP phases, whereas significant differences in inspiratory fractions occurred much later (for FIO2) or never (for FICO2). The limiting factor in no air pocket conditions is excessive increase in work of breathing that induces increase in metabolism accompanied by higher oxygen consumption and carbon dioxide production. The presence of even a small air pocket reduces significantly the work of breathing. PMID:26666523

  10. Evaluation of an Ejector Ramjet Based Propulsion System for Air-Breathing Hypersonic Flight

    NASA Technical Reports Server (NTRS)

    Thomas, Scott R.; Perkins, H. Douglas; Trefny, Charles J.

    1997-01-01

    A Rocket Based Combined Cycle (RBCC) engine system is designed to combine the high thrust to weight ratio of a rocket along with the high specific impulse of a ramjet in a single, integrated propulsion system. This integrated, combined cycle propulsion system is designed to provide higher vehicle performance than that achievable with a separate rocket and ramjet. The RBCC engine system studied in the current program is the Aerojet strutjet engine concept, which is being developed jointly by a government-industry team as part of the Air Force HyTech program pre-PRDA activity. The strutjet is an ejector-ramjet engine in which small rocket chambers are embedded into the trailing edges of the inlet compression struts. The engine operates as an ejector-ramjet from take-off to slightly above Mach 3. Above Mach 3 the engine operates as a ramjet and transitions to a scramjet at high Mach numbers. For space launch applications the rockets would be re-ignited at a Mach number or altitude beyond which air-breathing propulsion alone becomes impractical. The focus of the present study is to develop and demonstrate a strutjet flowpath using hydrocarbon fuel at up to Mach 7 conditions. Freejet tests of a candidate flowpath for this RBCC engine were conducted at the NASA Lewis Research Center's Hypersonic Tunnel Facility between July and September 1996. This paper describes the engine flowpath and installation, outlines the primary objectives of the program, and describes the overall results of this activity. Through this program 15 full duration tests, including 13 fueled tests were made. The first major achievement was the further demonstration of the HTF capability. The facility operated at conditions up to 1950 K and 7.34 MPa, simulating approximately Mach 6.6 flight. The initial tests were unfueled and focused on verifying both facility and engine starting. During these runs additional aerodynamic appliances were incorporated onto the facility diffuser to enhance starting

  11. The classification of the patients with pulmonary diseases using breath air samples spectral analysis

    NASA Astrophysics Data System (ADS)

    Kistenev, Yury V.; Borisov, Alexey V.; Kuzmin, Dmitry A.; Bulanova, Anna A.

    2016-08-01

    Technique of exhaled breath sampling is discussed. The procedure of wavelength auto-calibration is proposed and tested. Comparison of the experimental data with the model absorption spectra of 5% CO2 is conducted. The classification results of three study groups obtained by using support vector machine and principal component analysis methods are presented.

  12. Developmental transcriptome analysis and identification of genes involved in formation of intestinal air-breathing function of Dojo loach, Misgurnus anguillicaudatus.

    PubMed

    Luo, Weiwei; Cao, Xiaojuan; Xu, Xiuwen; Huang, Songqian; Liu, Chuanshu; Tomljanovic, Tea

    2016-08-22

    Dojo loach, Misgurnus anguillicaudatus is a freshwater fish species of the loach family Cobitidae, using its posterior intestine as an accessory air-breathing organ. Little is known about the molecular regulatory mechanisms in the formation of intestinal air-breathing function of M. anguillicaudatus. Here high-throughput sequencing of mRNAs was performed from six developmental stages of posterior intestine of M. anguillicaudatus: 4-Dph (days post hatch) group, 8-Dph group, 12-Dph group, 20-Dph group, 40-Dph group and Oyd (one-year-old) group. These six libraries were assembled into 81300 unigenes. Totally 40757 unigenes were annotated. Subsequently, 35291 differentially expressed genes (DEGs) were scanned among different developmental stages and clustered into 20 gene expression profiles. Finally, 15 key pathways and 25 key genes were mined, providing potential targets for candidate gene selection involved in formation of intestinal air-breathing function in M. anguillicaudatus. This is the first report of developmental transcriptome of posterior intestine in M. anguillicaudatus, offering a substantial contribution to the sequence resources for this species and providing a deep insight into the formation mechanism of its intestinal air-breathing function. This report demonstrates that M. anguillicaudatus is a good model for studies to identify and characterize the molecular basis of accessory air-breathing organ development in fish.

  13. Developmental transcriptome analysis and identification of genes involved in formation of intestinal air-breathing function of Dojo loach, Misgurnus anguillicaudatus

    PubMed Central

    Luo, Weiwei; Cao, Xiaojuan; Xu, Xiuwen; Huang, Songqian; Liu, Chuanshu; Tomljanovic, Tea

    2016-01-01

    Dojo loach, Misgurnus anguillicaudatus is a freshwater fish species of the loach family Cobitidae, using its posterior intestine as an accessory air-breathing organ. Little is known about the molecular regulatory mechanisms in the formation of intestinal air-breathing function of M. anguillicaudatus. Here high-throughput sequencing of mRNAs was performed from six developmental stages of posterior intestine of M. anguillicaudatus: 4-Dph (days post hatch) group, 8-Dph group, 12-Dph group, 20-Dph group, 40-Dph group and Oyd (one-year-old) group. These six libraries were assembled into 81300 unigenes. Totally 40757 unigenes were annotated. Subsequently, 35291 differentially expressed genes (DEGs) were scanned among different developmental stages and clustered into 20 gene expression profiles. Finally, 15 key pathways and 25 key genes were mined, providing potential targets for candidate gene selection involved in formation of intestinal air-breathing function in M. anguillicaudatus. This is the first report of developmental transcriptome of posterior intestine in M. anguillicaudatus, offering a substantial contribution to the sequence resources for this species and providing a deep insight into the formation mechanism of its intestinal air-breathing function. This report demonstrates that M. anguillicaudatus is a good model for studies to identify and characterize the molecular basis of accessory air-breathing organ development in fish. PMID:27545457

  14. Intensity noise reduction of a high-power nonlinear femtosecond fiber amplifier based on spectral-breathing self-similar parabolic pulse evolution

    NASA Astrophysics Data System (ADS)

    Wang, Sijia; Liu, Bowen; Song, Youjian; Hu, Minglie

    2016-04-01

    We report on a simple passive scheme to reduce the intensity noise of high-power nonlinear fiber amplifiers by use of the spectral-breathing parabolic evolution of the pulse amplification with an optimized negative initial chirp. In this way, the influences of amplified spontaneous emission (ASE) on the amplifier intensity noise can be efficiently suppressed, owing to the lower overall pulse chirp, shorter spectral broadening distance, as well as the asymptotic attractive nature of self-similar pulse amplification. Systematic characterizations of the relative intensity noise (RIN) of a free-running nonlinear Yb-doped fiber amplifier are performed over a series of initial pulse parameters. Experiments show that the measured amplifier RIN increases respect to the decreased input pulse energy, due to the increased amount of ASE noise. For pulse amplification with a proper negative initial chirp, the increase of RIN is found to be smaller than with a positive initial chirp, confirming the ASE noise tolerance of the proposed spectral-breathing parabolic amplification scheme. At the maximum output average power of 27W (25-dB amplification gain), the incorporation of an optimum negative initial chirp (-0.84 chirp parameter) leads to a considerable amplifier root-mean-square (rms) RIN reduction of ~20.5% (integrated from 10 Hz to 10 MHz Fourier frequency). The minimum amplifier rms RIN of 0.025% (integrated from 1 kHz to 5 MHz Fourier frequency) is obtained along with the transform-limited compressed pulse duration of 55fs. To our knowledge, the demonstrated intensity noise performance is the lowest RIN level measured from highpower free-running femtosecond fiber amplifiers.

  15. Scaled-Up Nonequilibrium Air Plasmas Generated by DC and Pulsed Discharges

    DTIC Science & Technology

    2010-09-08

    scalability of nonequilibrium plasmas produced by electrical discharges in atmospheric pressure air. Both DC and repetitively pulsed discharges ...Key results demonstrate that both DC glow discharge and pulsed transient spark generate air plasmas of required parameters. Glow discharge is easier...Corona discharge as a temperature probe was developed to diagnose the microwave torch preheated air. A new concept of the DC-driven pulsed

  16. Air-breathing hypersonic vehicle guidance and control studies: An integrated trajectory/control analysis methodology, phase 2

    NASA Technical Reports Server (NTRS)

    Hattis, Philip D.; Malchow, Harvey L.

    1992-01-01

    An integrated trajectory/control analysis algorithm has been used to generate trajectories and desired control strategies for two different hypersonic air-breathing vehicle models and orbit targets. Both models used cubic spline curve fit tabulated winged-cone accelerator vehicle representations. Near-fuel-optimal, horizontal takeoff trajectories, imposing a dynamic pressure limit of 1000 psf, were developed. The first model analysis case involved a polar orbit and included the dynamic effects of using elevons to maintain longitudinal trim. Analysis results indicated problems with the adequacy of the propulsion model and highlighted dynamic pressure/altitude instabilities when using vehicle angle of attack as a control variable. Also, the magnitude of computed elevon deflections to maintain trim suggested a need for alternative pitch moment management strategies. The second analysis case was reformulated to use vehicle pitch attitude relative to the local vertical as the control variable. A new, more realistic, air-breathing propulsion model was incorporated. Pitch trim calculations were dropped and an equatorial orbit was specified. Changes in flight characteristics due to the new propulsion model have been identified. Flight regimes demanding rapid attitude changes have been noted. Also, some issues that would affect design of closed-loop controllers were ascertained.

  17. Development of the anode bipolar plate/membrane assembly unit for air breathing PEMFC stack using silicone adhesive bonding

    NASA Astrophysics Data System (ADS)

    Kim, Minkook; Lee, Dai Gil

    2016-05-01

    Polymer electrolyte membrane fuel cells (PEMFC) exhibit a wide power range, low operating temperature, high energy density and long life time. These advantages favor PEMFC for applications such as vehicle power sources, portable power, and backup power applications. With the push towards the commercialization of PEMFC, especially for portable power applications, the overall balance of plants (BOPs) of the systems should be minimized. To reduce the mass and complexity of the systems, air-breathing PEMFC stack design with open cathode channel configuration is being developed. However, the open cathode channel configuration incurs hydrogen leakage problem. In this study, the bonding strength of a silicon adhesive between the Nafion membrane and the carbon fiber/epoxy composite bipolar plate was measured. Then, an anode bipolar plate/membrane assembly unit which was bonded with the silicone adhesive was developed to solve the hydrogen leakage problem. The reliability of the anode bipolar plate/membrane assembly unit was estimated under the internal pressure of hydrogen by the FE analysis. Additionally, the gas sealability of the developed air breathing PEMFC unit cell was experimentally measured. Finally, unit cell performance of the developed anode bipolar plate/membrane assembly unit was tested and verified under operating conditions without humidity and temperature control.

  18. Electronic modification of Pt via Ti and Se as tolerant cathodes in air-breathing methanol microfluidic fuel cells.

    PubMed

    Ma, Jiwei; Habrioux, Aurélien; Morais, Cláudia; Alonso-Vante, Nicolas

    2014-07-21

    We reported herein on the use of tolerant cathode catalysts such as carbon supported Pt(x)Ti(y) and/or Pt(x)Se(y) nanomaterials in an air-breathing methanol microfluidic fuel cell. In order to show the improvement of mixed-reactant fuel cell (MRFC) performances obtained with the developed tolerant catalysts, a classical Pt/C nanomaterial was used for comparison. Using 5 M methanol concentration in a situation where the fuel crossover is 100% (MRFC-mixed reactant fuel cell application), the maximum power density of the fuel cell with a Pt/C cathodic catalyst decreased by 80% in comparison with what is observed in the laminar flow fuel cell (LFFC) configuration. With Pt(x)Ti(y)/C and Pt(x)Se(y)/C cathode nanomaterials, the performance loss was only 55% and 20%, respectively. The evaluation of the tolerant cathode catalysts in an air-breathing microfluidic fuel cell suggests the development of a novel nanometric system that will not be size restricted. These interesting results are the consequence of the high methanol tolerance of these advanced electrocatalysts via surface electronic modification of Pt. Herein we used X-ray photoelectron and in situ FTIR spectroscopies to investigate the origin of the high methanol tolerance on modified Pt catalysts.

  19. Dual gas-diffusion membrane- and mediatorless dihydrogen/air-breathing biofuel cell operating at room temperature

    NASA Astrophysics Data System (ADS)

    Xia, Hong-qi; So, Keisei; Kitazumi, Yuki; Shirai, Osamu; Nishikawa, Koji; Higuchi, Yoshiki; Kano, Kenji

    2016-12-01

    A membraneless direct electron transfer (DET)-type dihydrogen (H2)/air-breathing biofuel cell without any mediator was constructed wherein bilirubin oxidase from Myrothecium verrucaria (BOD) and membrane-bound [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F (MBH) were used as biocatalysts for the cathode and the anode, respectively, and Ketjen black-modified water proof carbon paper (KB/WPCC) was used as an electrode material. The KB/WPCC surface was modified with 2-aminobenzoic acid and p-phenylenediamine, respectively, to face the positively charged electron-accepting site of BOD and the negatively charged electron-donating site of MBH to the electrode surface. A gas-diffusion system was employed for the electrodes to realize high-speed substrate supply. As result, great improvement in the current density of O2 reduction with BOD and H2 reduction with MBH were realized at negatively and postively charged surfaces, respectively. Gas diffusion system also suppressed the oxidative inactivation of MBH at high electrode potentials. Finally, based on the improved bioanode and biocathode, a dual gas-diffusion membrane- and mediatorless H2/air-breathing biofuel cell was constructed. The maximum power density reached 6.1 mW cm-2 (at 0.72 V), and the open circuit voltage was 1.12 V using 1 atm of H2 gas as a fuel at room temperature and under passive and quiescent conditions.

  20. Structural Sizing of a 25,000-lb Payload, Air-Breathing Launch Vehicle For Single-Stage-To-Orbit

    NASA Technical Reports Server (NTRS)

    Roche, Joseph M.; Kosareo, Daniel N.; Palac, Don (Technical Monitor)

    2000-01-01

    In support of NASA's Air-Breathing Launch Vehicle (ABLV) study, a 25,000-lb payload version of the GTX (formerly Trailblazer) reference vehicle concept was developed. The GTX is a vertical lift-off, reusable, single-stage-to-orbit launch vehicle concept that uses hypersonic air-breathing propulsion in a rocket-based combined-cycle (RBCC) propulsion system to reduce the required propellant fraction. To achieve this goal the vehicle and propulsion system must be well integrated both aerodynamically and structurally to reduce weight. This study demonstrates the volumetric and structural efficiency of a vertical takeoff, horizontal landing, hypersonic vehicle with a circular cross section. A departure from the lifting body concepts, this design philosophy is even extended to the engines, which have semicircular nacelles symmetrically mounted on the vehicle. Material candidates with a potential for lightweight and simplicity have been selected from a set of near term technologies (5 to 10 years). To achieve the mission trajectory, preliminary weight estimates show the vehicle's gross lift-off weight is 1.26 x 10(exp 6) lb. The structural configuration of the GTX vehicle and its propulsion system are described. The vehicle design benefits are presented, and key technical issues are highlighted.

  1. Structural Sizing of a 25,000-lb Payload, Air-breathing Launch Vehicle for Single-stage-to-orbit

    NASA Technical Reports Server (NTRS)

    Roche, Joseph M.; Kosareo, Daniel N.

    2001-01-01

    In support of NASA's Air-Breathing Launch Vehicle (ABLV) study, a 25,000-lb payload version of the GTX (formerly Trailblazer) reference vehicle concept was developed. The GTX is a vertical lift-off, reusable, single-stage-to-orbit launch vehicle concept that uses hypersonic air-breathing propulsion in a rocket-based combined-cycle (RBCC) propulsion system to reduce the required propellant fraction. To achieve this goal the vehicle and propulsion system must be well integrated both aerodynamically and structurally to reduce weight. This study demonstrates the volumetric and structural efficiency of a vertical takeoff, horizontal landing, hypersonic vehicle with a circular cross section. A departure from the lifting body concepts, this design philosophy is even extended to the engines, which have semicircular nacelles symmetrically mounted on the vehicle. Material candidates with a potential for lightweight and simplicity have been selected from a set of near term technologies (five to ten years). To achieve the mission trajectory, preliminary weight estimates show the vehicle's gross lift-off weight is 1.26 x 10(exp 6) lb. The structural configuration of the GTX vehicle and its propulsion system are described. The vehicle design benefits are presented, and key technical issues are highlighted.

  2. Mitochondrial citrulline synthesis from ammonia and glutamine in the liver of ureogenic air-breathing catfish, Clarias batrachus (Linnaeus).

    PubMed

    Kharbuli, Zaiba Y; Biswas, Kuheli; Saha, Nirmalendu

    2007-12-01

    The possible synthesis of citrulline, a rate limiting step for urea synthesis via the ornithine-urea cycle (OUC) in teleosts was tested both in the presence of ammonia and glutamine as nitrogen-donating substrates by the isolated liver mitochondria of ureogenic air-breathing walking catfish, C. batrachus. Both ammonia and glutamine could be used as nitrogen-donating substrates for the synthesis of citrulline by the isolated liver mitochondria, since the rate of citrulline synthesis was almost equal in presence of both the substrates. The citrulline synthesis by the isolated liver mitochondria requires succinate at a concentration of 0.1 mM as an energy source, and also requires the involvement of intramitochondrial carbonic anhydrase activity for supplying HCO3 as another substrate for citrulline synthesis. The rate of citrulline synthesis was further stimulated significantly by the isolated liver mitochondria of the fish after pre-exposure to 25 mM NH4Cl for 7 days. Due to possessing this biochemical adaptational strategy leading to the amelioration of ammonia toxicity mainly by channeling ammonia directly and/or via the formation of glutamine to the OUC, this air-breathing catfish could succeed in surviving in high external ammonia, which it faces in its natural habitat in certain seasons of the year.

  3. Producing nitric oxide by pulsed electrical discharge in air for portable inhalation therapy.

    PubMed

    Yu, Binglan; Muenster, Stefan; Blaesi, Aron H; Bloch, Donald B; Zapol, Warren M

    2015-07-01

    Inhalation of nitric oxide (NO) produces selective pulmonary vasodilation and is an effective therapy for treating pulmonary hypertension in adults and children. In the United States, the average cost of 5 days of inhaled NO for persistent pulmonary hypertension of the newborn is about $14,000. NO therapy involves gas cylinders and distribution, a complex delivery device, gas monitoring and calibration equipment, and a trained respiratory therapy staff. The objective of this study was to develop a lightweight, portable device to serve as a simple and economical method of producing pure NO from air for bedside or portable use. Two NO generators were designed and tested: an offline NO generator and an inline NO generator placed directly within the inspiratory line. Both generators use pulsed electrical discharges to produce therapeutic range NO (5 to 80 parts per million) at gas flow rates of 0.5 to 5 liters/min. NO was produced from air, as well as gas mixtures containing up to 90% O2 and 10% N2. Potentially toxic gases produced in the plasma, including nitrogen dioxide (NO2) and ozone (O3), were removed using a calcium hydroxide scavenger. An iridium spark electrode produced the lowest ratio of NO2/NO. In lambs with acute pulmonary hypertension, breathing electrically generated NO produced pulmonary vasodilation and reduced pulmonary arterial pressure and pulmonary vascular resistance index. In conclusion, electrical plasma NO generation produces therapeutic levels of NO from air. After scavenging to remove NO2 and O3 and filtration to remove particles, electrically produced NO can provide safe and effective treatment of pulmonary hypertension.

  4. Feasibility study of air-breathing turbo-engines for horizontal take-off and landing space plane

    SciTech Connect

    Minoda, M.; Sakata, K.; Tamaki, T.; Saitoh, T.; Yasuda, A.

    1989-01-01

    Various concepts of air-breathing engines (ABEs) that could be used for a horizontal take-off and landing SSTO vehicle are investigated. The performances (with respect to thrust and the specific fuel consumption) of turboengines based on various technologies, including a turbojet with and without afterburner (TJ), turboramjet, and air-turbo-ram jet engines are compared. The mission capabilities of these ABEs for SSTO and TSTO vehicles is examined in terms of the ratio of the effective remaining weight (i.e., the weight on the orbit) to the take-off gross weight, using two-dimensional flight analysis. It was found that the dry TJ with the turbine inlet temperature 2000 C is one of the most promising candidates for the propulsion system of the SSTO vehicle, because of its small weight and high specific impulse. 6 refs.

  5. Continuous measurement of oxygen tensions in the air-breathing organ of Pacific tarpon (Megalops cyprinoides) in relation to aquatic hypoxia and exercise.

    PubMed

    Seymour, Roger S; Farrell, Anthony P; Christian, Keith; Clark, Timothy D; Bennett, Michael B; Wells, Rufus M G; Baldwin, John

    2007-07-01

    The Pacific tarpon is an elopomorph teleost fish with an air-breathing organ (ABO) derived from a physostomous gas bladder. Oxygen partial pressure (PO(2)) in the ABO was measured on juveniles (238 g) with fiber-optic sensors during exposure to selected aquatic PO(2) and swimming speeds. At slow speed (0.65 BL s(-1)), progressive aquatic hypoxia triggered the first breath at a mean PO(2) of 8.3 kPa. Below this, opercular movements declined sharply and visibly ceased in most fish below 6 kPa. At aquatic PO(2) of 6.1 kPa and swimming slowly, mean air-breathing frequency was 0.73 min(-1), ABO PO(2) was 10.9 kPa, breath volume was 23.8 ml kg(-1), rate of oxygen uptake from the ABO was 1.19 ml kg(-1) min(-1), and oxygen uptake per breath was 2.32 ml kg(-1). At the fastest experimental speed (2.4 BL s(-1)) at 6.1 kPa, ABO oxygen uptake increased to about 1.90 ml kg(-1) min(-1), through a variable combination of breathing frequency and oxygen uptake per breath. In normoxic water, tarpon rarely breathed air and apparently closed down ABO perfusion, indicated by a drop in ABO oxygen uptake rate to about 1% of that in hypoxic water. This occurred at a wide range of ABO PO(2) (1.7-26.4 kPa), suggesting that oxygen level in the ABO was not regulated by intrinsic receptors.

  6. The Mechanics of Air-Breathing in Anuran Larvae: Implications to the Development of Amphibians in Microgravity

    NASA Astrophysics Data System (ADS)

    Wassersug, Richard J.; Yamashita, Masamichi

    Because of their rapid development, amphibians have been important model organisms in studies of how microgravity (μG) affects vertebrate growth and differentiation. Both urodele (salamanders) and anuran (frogs and toads) embryos have been raised in orbital flight, the latter several times. The most commonly reported and striking effects of μG on tadpoles are not in the vestibular system, as one might suppose, but in their lungs and tails. Pathological changes in these organs disrupt behavior and retard larval growth. What causes malformed (typically lordotic) tadpoles in μG is not known, nor have axial pathologies been reported in every flight experiment. Lung pathology, however, has been consistently observed and is understood to result from the failure of the animals to inflate their lungs in a timely and adequate fashion. We suggest that malformities in the axial skeleton of tadpoles raised in μG are secondary to problems in respiratory function. We have used high speed videography to investigate how tadpoles breathe air in the 1G environment. The video images reveal alternative species-specific mechanisms, that allow tadpoles to separate air from water in less that 150 ms. We observed nothing in the biomechanics of air-breathing in 1G that would preclude these same mechanisms from working in μG. Thus our kinematic results suggest that the failure of tadpoles to inflate their lungs properly in μG is due to the tadpoles' inability to locate the air-water interface and not a problem with the inhalation mechanism per se

  7. Single and double long pulse laser ablation of aluminum induced in air and water ambient

    NASA Astrophysics Data System (ADS)

    Akbari Jafarabadi, Marzieh; Mahdieh, Mohammad Hossein

    2017-02-01

    In this paper, single pulse and double pulse laser ablation of an aluminum target in two interaction ambient was investigated experimentally. The interaction was performed by nanosecond Nd:YAG laser beam in air and four depths (i.e. 9, 13, 17, and 21 mm) of distilled water ambient. The irradiation was carried out in single and collinear double pulse configurations in both air and liquid ambient. Crater geometry (depth and diameter) was measured by an optical microscope. The results indicated that the crater geometry strongly depends on both single pulse and double pulse configurations and interaction ambient. In single pulse regime, the crater diameter is higher for all water depths compared to that of air. However, the crater depth, depend on water depth, is higher or lower than the crater depth in air. In double pulse laser ablation, there are greater values for both crater diameters and crater depths in the water.

  8. Mobile selected ion flow tube mass spectrometry (SIFT-MS) devices and their use for pollution exposure monitoring in breath and ambient air-pilot study.

    PubMed

    Storer, Malina; Salmond, Jennifer; Dirks, Kim N; Kingham, Simon; Epton, Michael

    2014-09-01

    Studies of health effects of air pollution exposure are limited by inability to accurately determine dose and exposure of air pollution in field trials. We explored the feasibility of using a mobile selected ion flow tube mass spectrometry (SIFT-MS) device, housed in a van, to determine ambient air and breath levels of benzene, xylene and toluene following exercise in areas of high motor vehicle traffic. The breath toluene, xylene and benzene concentration of healthy subjects were measured before and after exercising close to a busy road. The concentration of the volatile organic compounds (VOCs), in ambient air were also analysed in real time. Exercise close to traffic pollution is associated with a two-fold increase in breath VOCs (benzene, xylene and toluene) with levels returning to baseline within 20 min. This effect is not seen when exercising away from traffic pollution sources. Situating the testing device 50 m from the road reduced any confounding due to VOCs in the inspired air prior to the breath testing manoeuvre itself. Real-time field testing for air pollution exposure is possible using a mobile SIFT-MS device. This device is suitable for exploring exposure and dose relationships in a number of large scale field test scenarios.

  9. C-130J Breathing Resistance Study

    DTIC Science & Technology

    2016-05-01

    the long breathing hose configurations did not provide acceptable breathing resistance in a significant majority of test conditions. 15...requirements in the Air Standard. In general, breathing resistance of the system with the long breathing hoses did not meet the Air Standard

  10. Ventilation during air breathing and in response to hypercapnia in 5 and 16 month-old mdx and C57 mice

    PubMed Central

    Gayraud, Jérome; Matécki, Stefan; Hnia, Karim; Mornet, Dominique; Préfaut, Christian; Mercier, Jacques; Michel, Alain; Ramonatxo, Michèle

    2007-01-01

    Previous studies have shown a blunted ventilatory response to hypercapnia in mdx mice older than 7 months. We test the hypothesis that in the mdx mice ventilatory response changes with age, concomitantly with the increased functional impairment of the respiratory muscles. We thus studied the ventilatory response to CO2 in 5 and 16 month-old mdx and C57BL10 mice (n = 8 for each group). Respiratory rate (RR), tidal volume (VT), and minute ventilation (VE) were measured, using whole-body plethysmography, during air breathing and in response to hypercapnia (3, 5 and 8% CO2). The ventilatory protocol was completed by histological analysis of the diaphragm and intercostals muscles. During air breathing, the 16 month-old mdx mice showed higher RR and, during hypercapnia (at 8% CO2 breathing), significantly lower RR (226 ± 26 vs. 270 ± 21 breaths/min) and VE (1.81 ± 0.35 vs. 3.96 ± 0.59 ml min−1 g−1)(P < 0.001) in comparison to C57BL10 controls. On the other hand, 5 month-old C57BL10 and mdx mice did not present any difference in their ventilatory response to air breathing and to hypercapnia. In conclusion, this study shows similar ventilation during air breathing and in response to hypercapnia in the 5 month-old mdx and control mice, in spite of significant pathological structural changes in the respiratory muscles of the mdx mice. However in the 16 month-old mdx mice we observed altered ventilation under air and blunted ventilation response to hypercapnia compared to age-matched control mice. Ventilatory response to hypercapnia thus changes with age in mdx mice, in line with the increased histological damage of their respiratory muscles. PMID:17431804

  11. Breathing-metabolic simulator

    NASA Technical Reports Server (NTRS)

    Bartlett, R. G.; Hendricks, C. M.; Morison, W. B.

    1972-01-01

    Breathing-metabolic simulator was developed to be used for evaluation of life support equipment. Apparatus simulates human breathing rate and controls temperature and humidity of exhaled air as well as its chemical composition. All functions are designed to correspond to various degrees of human response.

  12. Characteristics of micro air plasma produced by double femtosecond laser pulses.

    PubMed

    Zhang, Nan; Wu, Zehua; Xu, Kuanhong; Zhu, Xiaonong

    2012-01-30

    Dynamic characteristics of air plasma generated by focused double collinear femtosecond laser pulses with a time interval of 10 ns are experimentally investigated. The air plasma emission changes significantly when altering the energy ratio between the two laser pulses. Time-resolved shadowgraphic measurements reveal that a small volume of transient vacuum is formed inside the air shock wave produced by the first laser pulse, which causes the second laser pulse induced ionization zone to present as two separate sections in space. Also recorded is strong scattering of the second laser pulse by the ionized air just behind the ionization front of the first laser pulse produced shock wave. Due to the high intensity of the scattered light, coherent Thomson scattering enhanced by plasma instabilities is believed to be the main scattering mechanism in this case.

  13. Novel prescribed performance neural control of a flexible air-breathing hypersonic vehicle with unknown initial errors.

    PubMed

    Bu, Xiangwei; Wu, Xiaoyan; Zhu, Fujing; Huang, Jiaqi; Ma, Zhen; Zhang, Rui

    2015-11-01

    A novel prescribed performance neural controller with unknown initial errors is addressed for the longitudinal dynamic model of a flexible air-breathing hypersonic vehicle (FAHV) subject to parametric uncertainties. Different from traditional prescribed performance control (PPC) requiring that the initial errors have to be known accurately, this paper investigates the tracking control without accurate initial errors via exploiting a new performance function. A combined neural back-stepping and minimal learning parameter (MLP) technology is employed for exploring a prescribed performance controller that provides robust tracking of velocity and altitude reference trajectories. The highlight is that the transient performance of velocity and altitude tracking errors is satisfactory and the computational load of neural approximation is low. Finally, numerical simulation results from a nonlinear FAHV model demonstrate the efficacy of the proposed strategy.

  14. Bad Breath

    MedlinePlus

    ... Emergency Room? What Happens in the Operating Room? Bad Breath KidsHealth > For Kids > Bad Breath A A ... visit your dentist or doctor . continue What Causes Bad Breath? Here are three common causes of bad ...

  15. "What We Breathe Impacts Our Health: Improving Understanding of the Link between Air Pollution and Health".

    PubMed

    West, J Jason; Cohen, Aaron; Dentener, Frank; Brunekreef, Bert; Zhu, Tong; Armstrong, Ben; Bell, Michelle L; Brauer, Michael; Carmichael, Gregory; Costa, Dan L; Dockery, Douglas W; Kleeman, Michael; Krzyzanowski, Michal; Künzli, Nino; Liousse, Catherine; Lung, Shih-Chun Candice; Martin, Randall V; Pöschl, Ulrich; Pope, C Arden; Roberts, James M; Russell, Armistead G; Wiedinmyer, Christine

    2016-05-17

    Air pollution contributes to the premature deaths of millions of people each year around the world, and air quality problems are growing in many developing nations. While past policy efforts have succeeded in reducing particulate matter and trace gases in North America and Europe, adverse health effects are found at even these lower levels of air pollution. Future policy actions will benefit from improved understanding of the interactions and health effects of different chemical species and source categories. Achieving this new understanding requires air pollution scientists and engineers to work increasingly closely with health scientists. In particular, research is needed to better understand the chemical and physical properties of complex air pollutant mixtures, and to use new observations provided by satellites, advanced in situ measurement techniques, and distributed micro monitoring networks, coupled with models, to better characterize air pollution exposure for epidemiological and toxicological research, and to better quantify the effects of specific source sectors and mitigation strategies.

  16. Development of gas exchange and ion regulation in two species of air-breathing fish, Betta splendens and Macropodus opercularis.

    PubMed

    Huang, Chun-Yen; Lin, Cheng-Huang; Lin, Hui-Chen

    2015-07-01

    Aquatic air-breathing anabantoids, a group of fish species characterized by the presence of a labyrinth organ and some gills, exhibit morphological variations. This study aimed to examine whether unequal gill growth begins during the early stages and described the sequence of the early gill developmental events in Betta splendens and Macropodus opercularis. To determine when the ion regulatory and gas exchange abilities first appear in the gills, mitochondria-rich cells (MRCs) and neuroepithelial cells (NECs) were examined in young B. splendens. To evaluate the relative importance of the gills and the labyrinth organ under different levels of oxygen uptake stress, the levels of carbonic anhydrase II (CAII) and Na(+)/K(+)-ATPase (NKA) protein expressions in 2 gills and the labyrinth organ were examined in M. opercularis. We found that the first 3 gills developed earlier than the 4th gill in both species, an indication that the morphological variation begins early in life. In B. splendens, the MRCs and NECs clearly appeared in the first 3 gills at 4 dph and were first found in the 4th gill until 11 dph. The oxygen-sensing ability of the gills was concordant with the ionoregulatory function. In M. opercularis, the hypoxic group had a significantly higher air-breathing frequency. CAII protein expression was higher in the labyrinth organ in the hypoxic group. The gills exhibited increased NKA protein expression in the hypoxic and restricted groups, respectively. Functional plasticity in CAII and NKA protein expressions was found between the gills and the labyrinth organ in adult M. opercularis.

  17. Breathing difficulties - first aid

    MedlinePlus

    ... the wound. Bandage such wounds at once. A "sucking" chest wound allows air to enter the person's ... things you can do to help prevent breathing problems: If you have a history of severe allergic ...

  18. Studying the Proteomic Composition of Expired Air Condensate in Newborns on Breathing Support.

    PubMed

    Kononikhin, A S; Ryndin, A Yu; Starodubtseva, N L; Chagovets, V V; Burov, A A; Bugrova, A E; Kostyukevich, Yu I; Popov, I A; Frankevich, V E; Ionov, O V; Zubkov, V V; Nikolaev, E N

    2016-04-01

    This study was designed to collect and perform a proteomic analysis of expired air condensate in newborns receiving respiratory support at the Department of Resuscitation and Intensive Care. The proteomic composition of expired air condensate was evaluated in newborns at various stages of development and with different abnormalities.

  19. Selected Ion Flow-Drift Tube Mass Spectrometry: Quantification of Volatile Compounds in Air and Breath.

    PubMed

    Spesyvyi, Anatolii; Smith, David; Španěl, Patrik

    2015-12-15

    A selected ion flow-drift tube mass spectrometric analytical technique, SIFDT-MS, is described that extends the established selected ion flow tube mass spectrometry, SIFT-MS, by the inclusion of a static but variable E-field along the axis of the flow tube reactor in which the analytical ion-molecule chemistry occurs. The ion axial speed is increased in proportion to the reduced field strength E/N (N is the carrier gas number density), and the residence/reaction time, t, which is measured by Hadamard transform multiplexing, is correspondingly reduced. To ensure a proper understanding of the physics and ion chemistry underlying SIFDT-MS, ion diffusive loss to the walls of the flow-drift tube and the mobility of injected H3O(+) ions have been studied as a function of E/N. It is seen that the derived diffusion coefficient and mobility of H3O(+) ions are consistent with those previously reported. The rate coefficient has been determined at elevated E/N for the association reaction of the H3O(+) reagent ions with H2O molecules, which is the first step in the production of H3O(+)(H2O)1,2,3 reagent hydrate ions. The production of hydrated analyte ion was also experimentally investigated. The analytical performance of SIFDT-MS is demonstrated by the quantification of acetone and isoprene in exhaled breath. Finally, the essential features of SIFDT-MS and SIFT-MS are compared, notably pointing out that a much lower speed of the flow-drive pump is required for SIFDT-MS, which facilitates the development of smaller cost-effective analytical instruments for real time breath and fluid headspace analyses.

  20. High-Throughput Sequencing Identifies MicroRNAs from Posterior Intestine of Loach (Misgurnus anguillicaudatus) and Their Response to Intestinal Air-Breathing Inhibition

    PubMed Central

    Huang, Songqian; Cao, Xiaojuan; Tian, Xianchang; Wang, Weimin

    2016-01-01

    MicroRNAs (miRNAs) exert important roles in animal growth, immunity, and development, and regulate gene expression at the post-transcriptional level. Knowledges about the diversities of miRNAs and their roles in accessory air-breathing organs (ABOs) of fish remain unknown. In this work, we used high-throughput sequencing to identify known and novel miRNAs from the posterior intestine, an important ABO, in loach (Misgurnus anguillicaudatus) under normal and intestinal air-breathing inhibited conditions. A total of 204 known and 84 novel miRNAs were identified, while 47 miRNAs were differentially expressed between the two small RNA libraries (i.e. between the normal and intestinal air-breathing inhibited group). Potential miRNA target genes were predicted by combining our transcriptome data of the posterior intestine of the loach under the same conditions, and then annotated using COG, GO, KEGG, Swissprot and Nr databases. The regulatory networks of miRNAs and their target genes were analyzed. The abundances of nine known miRNAs were validated by qRT-PCR. The relative expression profiles of six known miRNAs and their eight corresponding target genes, and two novel potential miRNAs were also detected. Histological characteristics of the posterior intestines in both normal and air-breathing inhibited group were further analyzed. This study contributes to our understanding on the functions and molecular regulatory mechanisms of miRNAs in accessory air-breathing organs of fish. PMID:26872032

  1. 'Every breath we take: the lifelong impact of air pollution' - a call for action.

    PubMed

    Holgate, Stephen T

    2017-02-01

    Air pollution has become one of the major risks to human health because of the progressive increase in the use of vehicles powered by fossil fuels. While the risks of air pollution to health were thought to have been brought under control by the Clean Air Acts of the 1950s and 1960s, the situation of air pollution in the UK has now deteriorated to a point where it is contributing to 40,000 excess deaths each year. Here the findings of the RCP/RCPCH's 2015/16 Working Party on Air Pollution and Health are described and what actions now need to be taken. The UK needs to take a lead and introduce a new Clean Air Act that deals with the vehicle sources of pollution recognising that the toxic particles and gases emitted are effecting individuals from conception to death. This mandates urgent action by government both central and local, but also by all of us who have now become so dependent on road transport.

  2. The induction of an ATP-sensitive K(+) current in cardiac myocytes of air- and water-breathing vertebrates.

    PubMed

    Paajanen, Vesa; Vornanen, Matti

    2002-09-01

    Opening of ATP-sensitive potassium channels (K(ATP)) is an effective cardioprotective mechanism in mammals. The amplitude of the ATP-sensitive K(+) current (I(K,ATP)) and the opening sensitivity of K(ATP) channels are, however, poorly known in ectotherms. As O(2)-sensing mechanisms and reactions to O(2) deficiency differ in aquatic and terrestrial animals, we hypothesised that the response of K(ATP) channels to metabolic inhibition would be different between air- and water-breathers. We therefore compared I(K,ATP) in ventricular myocytes of an anoxia-sensitive (Oncorhynchus mykiss) and an anoxia-tolerant fish (Carassius carassius), two amphibians (Xenopus laevis and Rana temporaria) and a terrestrial reptile (Lacerta vivipara) using the whole-cell patch-clamp method. I(K,ATP) was induced by preventing mitochondrial and/or glycolytic ATP production and perfusing myocytes with an ATP-free pipette solution. All species had a glibenclamide-sensitive I(K,ATP), but the current amplitude was much greater in air-breathers than in water-breathers. Furthermore, the I(K,ATP) in air-breathers was more sensitive to intracellular ATP depletion than in water-breathing animals. These findings indicate that I(K,ATP) is larger and more easily induced in air- than water-breathers. In all ectotherms, the first response to complete metabolic inhibition was the induction of a large inward current, the amplitude of which exceeded that of I(K,ATP). Thus, the protective effect of the I(K,ATP) may be physiologically significant only during partial metabolic blockade.

  3. Pulsed-flow air classification for waste to energy production. Final report

    SciTech Connect

    Peirce, J.J.; Vesilind, P.A.

    1983-09-30

    The development and testing of pulsed-flow air classification for waste-to-energy production are discussed. Standard designs generally permit large amounts of combustible material to escape as reject while producing a fuel that is high in metal and glass contaminants. Pulsed-flow classification is presented as a concept which can avoid both pitfalls. Each aspect of theory and laboratory testing is summarized: particle characteristics, theory of pulsed-flow classification, laboratory testing, and pulsed-flow air classification for waste-to-energy production. Conclusions from the research are summarized.

  4. Breathing difficulty

    MedlinePlus

    ... difficulty in which you make a high-pitched sound when you breathe out. Causes Shortness of breath has many different causes. For ... episode have a similar pattern? Does breathing difficulty cause you to wake up at ... or wheezing sounds while breathing? Tests that may be ordered include: ...

  5. Air-breathing hypersonic vehicle guidance and control studies; An integrated trajectory/control analysis methodology: Phase 1

    NASA Technical Reports Server (NTRS)

    Hattis, Philip D.; Malchow, Harvey L.

    1991-01-01

    A tool which generates optimal trajectory/control histories in an integrated manner is generically adapted to the treatment of single-stage-to-orbit air-breathing hypersonic vehicles. The methodology is implemented as a two point boundary value problem solution technique. Its use permits an assessment of an entire near-minimum-fuel trajectory and desired control strategy from takeoff to orbit while satisfying physically derived inequality constraints and while achieving efficient propulsive mode phasing. A simpler analysis strategy that partitions the trajectory into several boundary condition matched segments is also included to construct preliminary trajectory and control history representations with less computational burden than is required for the overall flight profile assessment. A demonstration was accomplished using a tabulated example (winged-cone accelerator) vehicle model that is combined with a newly developed multidimensional cubic spline data smoothing routine. A constrained near-fuel-optimal trajectory, imposing a dynamic pressure limit of 1000 psf, was developed from horizontal takeoff to 20,000 ft/sec relative air speed while aiming for a polar orbit. Previously unspecified propulsive discontinuities were located. Flight regimes demanding rapid attitude changes were identified, dictating control effector and closed-loop controller authority was ascertained after evaluating effector use for vehicle trim. Also, inadequacies in vehicle model representations and specific subsystem models with insufficient fidelity were determined based on unusual control characteristics and/or excessive sensitivity to uncertainty.

  6. Experimental Analysis of Air Flows in Bronchial Airway Models in the Cases of Natural Breathing and HFOV

    NASA Astrophysics Data System (ADS)

    Lee, Won-Je; Kawahashi, Masaaki; Hirahara, Hiroyuki

    The mechanism of gas transfer, flow pattern and diffusion in respiratory air flow at the end zone of human lung, especially in bronchial and alveoli, has not been clarified in detail. Recently, it is known that high frequency oscillatory ventilation (HFOV) is an effective treatment for respiratory distress syndrome. However, the frequency effect on ventilation in relation to the gas transfer efficiency at the end zone of lungs has not been investigated. The velocity profile of oscillatory air flow in bronchial tube is one of the fundamental factors to consider the frequency effect. In this paper, velocity profiles of oscillatory flows in micro scale models of bronchial airway with single- and multi-bifurcation have been investigated for different frequencies corresponding to resting breathing and HFOV by using micro Particle Image Velocimetry (micro PIV). The temporal changes of velocity profiles were reconstructed by phase-averaged velocity maps obtained by micro PIV measurements, and the effect of frequency on the velocity profile in bronchial models has been discussed.

  7. The preparation of calcium superoxide for air breathing and scrubbing applications

    NASA Technical Reports Server (NTRS)

    Ballou, E. V.; Wood, P. C.; Spitze, L. A.; Wydeven, T.

    1976-01-01

    There is interest in the preparation of high-purity calcium superoxide as an oxygen source for breathing apparatus because both the available oxygen and the capacity for carbon dioxide removal, per unit weight of superoxide, are higher than that of a number of other chemical oxygen sources. A review of earlier findings shows that the general method used by Vol'nov and coworkers for the decomposition of calcium peroxide diperoxyhydrate can yield preparations containing more than 58.4% calcium superoxide maximum predicted for an equimolar disproportionation reaction. The decomposition of solid calcium peroxide diperoxyhydrate is studied using an apparatus that allows good control of the critical reaction parameters. The removal of water from decomposing calcium peroxide diperoxyhydrate, before the same water has an opportunity to back react with the calcium superoxide formed in the reaction, constitutes the rationale of the experiments. Even with allowance for the anomalies observed in the analytical results, the yields appear to be in the 65+ percent range, and optimization of the experimental variables is still being pursued.

  8. Two stroke homogenous charge compression ignition engine with pulsed air supplier

    DOEpatents

    Clarke, John M.

    2003-08-05

    A two stroke homogenous charge compression ignition engine includes a volume pulsed air supplier, such as a piston driven pump, for efficient scavenging. The usage of a homogenous charge tends to decrease emissions. The use of a volume pulsed air supplier in conjunction with conventional poppet type intake and exhaust valves results in a relatively efficient scavenging mode for the engine. The engine preferably includes features that permit valving event timing, air pulse event timing and injection event timing to be varied relative to engine crankshaft angle. The principle use of the invention lies in improving diesel engines.

  9. Effect of High Z material on the performance of an air-breathing laser ablation thruster

    NASA Astrophysics Data System (ADS)

    Shimamura, Kohei; Kiyono, Inoru; Yokota, Ippei; Ozaki, Naoto; Yokota, Shigeru

    2016-09-01

    A Laser propulsion, such as a Lightcraft, is a candidate for the low cost transportation system between the ground to space instead of the chemical rocket. Using the shock wave induced by focusing laser beam on the ablator in air, the huge fuel is unnecessary to generate the thrust. In this study, the high-Z material was doped into the polystyrene to emphasize the ionization effect in air. We evaluate the intensity of the bremsstrahlung radiation, the plasma parameter, and the thrust performance.

  10. Optimally enhanced optical emission in laser-induced air plasma by femtosecond double-pulse

    SciTech Connect

    Chen, Anmin; Li, Suyu; Li, Shuchang; Jiang, Yuanfei; Ding, Dajun; Shao, Junfeng; Wang, Tingfeng; Huang, Xuri; Jin, Mingxing

    2013-10-15

    In laser-induced breakdown spectroscopy, a femtosecond double-pulse laser was used to induce air plasma. The plasma spectroscopy was observed to lead to significant increase of the intensity and reproducibility of the optical emission signal compared to femtosecond single-pulse laser. In particular, the optical emission intensity can be optimized by adjusting the delay time of femtosecond double-pulse. An appropriate pulse-to-pulse delay was selected, that was typically about 50 ps. This effect can be especially advantageous in the context of femtosecond laser-induced breakdown spectroscopy, plasma channel, and so on.

  11. An inventory of aeronautical ground research facilities. Volume 2: Air breathing engine test facilities

    NASA Technical Reports Server (NTRS)

    Pirrello, C. J.; Hardin, R. D.; Heckart, M. V.; Brown, K. R.

    1971-01-01

    The inventory covers free jet and direct connect altitude cells, sea level static thrust stands, sea level test cells with ram air, and propulsion wind tunnels. Free jet altitude cells and propulsion wind tunnels are used for evaluation of complete inlet-engine-exhaust nozzle propulsion systems under simulated flight conditions. These facilities are similar in principal of operation and differ primarily in test section concept. The propulsion wind tunnel provides a closed test section and restrains the flow around the test specimen while the free jet is allowed to expand freely. A chamber of large diameter about the free jet is provided in which desired operating pressure levels may be maintained. Sea level test cells with ram air provide controlled, conditioned air directly to the engine face for performance evaluation at low altitude flight conditions. Direct connect altitude cells provide a means of performance evaluation at simulated conditions of Mach number and altitude with air supplied to the flight altitude conditions. Sea level static thrust stands simply provide an instrumented engine mounting for measuring thrust at zero airspeed. While all of these facilities are used for integrated engine testing, a few provide engine component test capability.

  12. A fast pulsed power source applied to treatment of conducting liquids and air

    SciTech Connect

    Heesch, E.J.M. van; Pemen, A.J.M.; Huijbrechts, P.A.H.J.; Laan, P.C.T. van der; Ptasinski, K.J.; Zanstra, G.J.; Jong, P. de

    2000-02-01

    Two pilot pulsed power sources were developed for fundamental investigations and industrial demonstrations of treatment of conducting liquids. The developed heavy-duty power sources have an output voltage of 100 kV (rise time 10 ns, pulse duration 150 ns, pulse repetition rate maximum 1,000 pps). A pulse energy of 0.5--3 J/pulse and an average pulse power of 1.5 kW have been achieved with an efficiency of about 80%. In addition, adequate electromagnetic compatibility is achieved between the high-voltage pulse sources and the surrounding equipment. Various applications, such as the use of pulsed electric fields (PEF's) or pulsed corona discharges for inactivation of microorganisms in liquids or air, have been tested in the laboratory. For PEF treatment, homogeneous electric fields in the liquid of up to 70 kV/cm at a pulse repetition rate of 10--400 pps could be achieved. The inactivation is found to be 85 kJ/L per log reduction for Pseudomonas fluorescens and 500 kJ/L per log reduction for spores of Bacillus cereus. Corona directly applied to the liquid is found to be more efficient than PEF. With direct corona they achieve 25 kJ/L per log reduction for both Gram positive and Gram negative bacteria. For air disinfection using their corona pulse source, the measured efficiencies are excellent: 2 J/L per log reduction.

  13. Effects of He-O2 Breathing during Experimental Decompression Sickness Following Air Dives

    DTIC Science & Technology

    1987-03-01

    ventilator volume or rate was made during the experiment. The oxygen content of the He-0 2 mixture used in the He-Or group was measured using a...e ne modifia pas ces rdponses. mats la respiratton de He-O? produtst une augmentation de 11% dans Ia rdsistance vasculaire pulmonaire (RVP). Chez 3...d’une plong~e A F’air peut aggraver l’obstruction vasculaire pulmonaire. plongde hdlium-oxygtne maladie de decompression suffocation embolie gazeuse

  14. Visual Evoked Responses and EEGS for Divers Breathing Hyperbaric Air: An Assessment of Individual Differences

    DTIC Science & Technology

    1975-06-03

    PAGE THE PROBLEM To find and assess quantitatively electrophysiologieal corre- lates of nitrogen narcosis in divers. FINDINGS Marked decrements in...visual evoked responses were found in most divers under conditions conducive to nitrogen narcosis . Results of this study show the average sizes of...the decrements and their probability of occurrence in a large group of subjects. APPLICATION Since nitrogen narcosis is a major problem deterring air

  15. Active water management at the cathode of a planar air-breathing polymer electrolyte membrane fuel cell using an electroosmotic pump

    NASA Astrophysics Data System (ADS)

    Fabian, T.; O'Hayre, R.; Litster, S.; Prinz, F. B.; Santiago, J. G.

    In a typical air-breathing fuel cell design, ambient air is supplied to the cathode by natural convection and dry hydrogen is supplied to a dead-ended anode. While this design is simple and attractive for portable low-power applications, the difficulty in implementing effective and robust water management presents disadvantages. In particular, excessive flooding of the open-cathode during long-term operation can lead to a dramatic reduction of fuel cell power. To overcome this limitation, we report here on a novel air-breathing fuel cell water management design based on a hydrophilic and electrically conductive wick in conjunction with an electroosmotic (EO) pump that actively pumps water out of the wick. Transient experiments demonstrate the ability of the EO-pump to "resuscitate" the fuel cell from catastrophic flooding events, while longer term galvanostatic measurements suggest that the design can completely eliminate cathode flooding using less than 2% of fuel cell power, and lead to stable operation with higher net power performance than a control design without EO-pump. This demonstrates that active EO-pump water management, which has previously only been demonstrated in forced-convection fuel cell systems, can also be applied effectively to miniaturized (<5 W) air-breathing fuel cell systems.

  16. The transition from water-breathing to air-breathing is associated with a shift in ion uptake from gills to gut: a study of two closely related erythrinid teleosts, Hoplerythrinus unitaeniatus and Hoplias malabaricus.

    PubMed

    Wood, Chris M; Pelster, Bernd; Giacomin, Marina; Sadauskas-Henrique, Helen; Almeida-Val, Vera Maria F; Val, Adalberto Luis

    2016-05-01

    The evolutionary transition from water-breathing to air-breathing involved not only a change in function of the organs of respiratory gas exchange and N-waste excretion, but also in the organs of ion uptake from the environment. A combination of in vivo and in vitro techniques was used to look at the relative importance of the gills versus the gut in Na(+), Cl(-), and K(+) balance in two closely related erythrinid species: a facultative air-breather, the jeju (Hoplerythrinus unitaeniatus) and an obligate water-breather, the traira (Hoplias malabaricus). The jeju has a well-vascularized physostomous swimbladder, while that in the traira is poorly vascularized, but the gills are much larger. Both species are native to the Amazon and are common in the ion-poor, acidic blackwaters of the Rio Negro. Under fasting conditions, the traira was able to maintain positive net Na(+) and Cl(-) balance in this water, and only slightly negative net K(+) balance. However, the jeju was in negative net balance for all three ions and had lower plasma Na(+) and Cl(-) concentrations, despite exhibiting higher branchial Na(+), K(+)ATPase and v-type H(+)ATPase activities. In the intestine, activities of these same enzymes were also higher in the jeju, and in vitro measurements of net area-specific rates of Na(+), Cl(-), and K(+) absorption, as well as the overall intestinal absorption capacities for these three ions, were far greater than in the traira. When acutely exposed to disturbances in water O2 levels (severe hypoxia ~15% or hyperoxia ~420% saturation), gill ionoregulation was greatly perturbed in the traira but less affected in the jeju, which could "escape" the stressor by voluntarily air-breathing. We suggest that a shift of ionoregulatory capacity from the gills to the gut may have occurred in the evolutionary transition to air-breathing in jeju, and in consequence branchial ionoregulation, while less powerful, is also less impacted by variations in water O2 levels.

  17. Novel adaptive neural control design for a constrained flexible air-breathing hypersonic vehicle based on actuator compensation

    NASA Astrophysics Data System (ADS)

    Bu, Xiangwei; Wu, Xiaoyan; He, Guangjun; Huang, Jiaqi

    2016-03-01

    This paper investigates the design of a novel adaptive neural controller for the longitudinal dynamics of a flexible air-breathing hypersonic vehicle with control input constraints. To reduce the complexity of controller design, the vehicle dynamics is decomposed into the velocity subsystem and the altitude subsystem, respectively. For each subsystem, only one neural network is utilized to approach the lumped unknown function. By employing a minimal-learning parameter method to estimate the norm of ideal weight vectors rather than their elements, there are only two adaptive parameters required for neural approximation. Thus, the computational burden is lower than the ones derived from neural back-stepping schemes. Specially, to deal with the control input constraints, additional systems are exploited to compensate the actuators. Lyapunov synthesis proves that all the closed-loop signals involved are uniformly ultimately bounded. Finally, simulation results show that the adopted compensation scheme can tackle actuator constraint effectively and moreover velocity and altitude can stably track their reference trajectories even when the physical limitations on control inputs are in effect.

  18. Effects of the six engine air breathing propulsion system on space shuttle orbiter subsonic stability and control characteristics

    NASA Technical Reports Server (NTRS)

    Mennell, R. C.; Soard, T.

    1974-01-01

    Experimental aerodynamic investigations were conducted on a 0.0405 scale representation of the -89B space shuttle orbiter in the 7.75 x 11.00 foot low speed wind tunnel during the time period September 4 - 14, 1973. The primary test objective was to optimize the air breathing propulsion system nacelle cowl-inlet design and to determine the aerodynamic effects of this design on the orbiter stability and control characteristics. Nacelle cowl-inlet optimization was determined from total pressure - static pressure measurements obtained from pressure rakes located in the left hand nacelle pod at the engine face station. After the optimum cow-inlet design, consisting of a 7 deg cowl lip angle, short cowl, 7 deg short diverter, and a nacelle toe-in angle of 5 deg was selected, the aerodynamic effects of various locations of this design were investigated. The 3 pod - 6 Nacelle configuration was tested both underwing and overwing in three different longitudinal locations. Orbiter control effectiveness, both with and without Nacelles, was investigated at elevon deflections of 0 deg, -10 deg and +15 deg and at aileron deflections of 0 deg and +10 deg about 0 deg elevon.

  19. Influence of ethynylestradiol and methyltestosterone on the hypothalamo-hypophyseal-gonadal axis of adult air-breathing catfish, Clarias gariepinus.

    PubMed

    Swapna, I; Senthilkumaran, B

    2009-11-27

    Adult male and female air-breathing catfish Clarias gariepinus were treated with ethynylestradiol (EE(2)) and methyltestosterone (MT) at concentrations of 1microg/L, respectively for 21 days. EE(2) treatment caused disappearance of spermatids/sperm from several testicular lumen/lobules in males while MT treatment to females led to precocious ovarian development. EE(2) caused significant fluid retention in all tissues including peritoneal cavity and seminal vesicles. Immunocytochemical localization of catfish GnRH (cfGnRH) and luteinizing hormone (LH) in preoptic area-hypothalamus (POA-H) and pituitary, respectively, revealed decreased immunoreactivity (ir-) following EE(2) treatment in males. MT treatment however caused no observable change in cfGnRH ir- and a significant increase in LH ir- in females. Semi-quantitative RT-PCR analysis indicated that cfGnRH transcripts in POA-H decreased significantly following EE(2) and MT treatment in males and females, respectively. Levels of POA-H dopamine (inhibitory monoamine for gonadotropin [GTH] synthesis and release) increased following EE(2) and MT treatment in males and females while levels of serotonin and norepinephrine (GTH-stimulatory monoamines) decreased significantly. The results demonstrate a direct in vivo effect of sex steroid analogs on cfGnRH-LH axis and monoaminergic system vis-à-vis on gonads in addition to probable direct action on gonads.

  20. Breathing hot humid air induces airway irritation and cough in patients with allergic rhinitis.

    PubMed

    Khosravi, Mehdi; Collins, Paul B; Lin, Ruei-Lung; Hayes, Don; Smith, Jaclyn A; Lee, Lu-Yuan

    2014-07-01

    We studied the respiratory responses to an increase in airway temperature in patients with allergic rhinitis (AR). Responses to isocapnic hyperventilation (40% of maximal voluntary ventilation) for 4min of humidified hot air (HA; 49°C) and room air (RA; 21°C) were compared between AR patients (n=7) and healthy subjects (n=6). In AR patients, cough frequency increased pronouncedly from 0.10±0.07 before to 2.37±0.73 during, and 1.80±0.79coughs/min for the first 8min after the HA challenge, but not during the RA challenge. In contrast, neither HA nor RA had any significant tussive effect in healthy subjects. The HA challenge also caused respiratory discomfort (mainly throat irritation) measured by the handgrip dynamometry in AR patients, but not in healthy subjects. Bronchoconstriction was not detected after the HA challenge in either group of subjects. In conclusion, hyperventilation of HA triggered vigorous cough response and throat irritation in AR patients, indicating the involvement of sensory nerves innervating upper airways.

  1. Small-size mass spectrometer for determining gases and volatile compounds in air during breathing

    NASA Astrophysics Data System (ADS)

    Kogan, V. T.; Kozlenok, A. V.; Chichagov, Yu. V.; Antonov, A. S.; Lebedev, D. S.; Bogdanov, A. A.; Moroshkin, V. S.; Berezina, A. V.; Viktorova-Leclerc, O. S.; Vlasov, S. A.; Tubol'tsev, Yu. V.

    2015-10-01

    We describe an automated mass spectrometer for diagnostics of deceases from the composition of exhaled air. It includes a capillary system, which performs a rapid direct feeding of the sample to the instrument without changing substantially its composition and serves for studying the dynamics of variation of the ratio between various components of exhaled air. The membrane system for introducing the sample is intended for determining low concentrations of volatile organic compounds which are biomarkers of pathologies. It is characterized by selective transmittance and ensures the detection limits of target compounds at the parts per million-parts per billion (ppm-ppb) level. A static mass analyzer operating on permanent magnets possesses advantages important for mobile devices as compared to its dynamic analogs: it is more reliable in operation, has a larger dynamic range, and can be used for determining the concentration of components in the mixture one-by-one or simultaneously. The curvilinear output boundary of the magnetic lens of the mass analyzer makes it possible to reduce its weight and size by 2.5 times without deteriorating the mass resolution. We report on the results of testing of the instrument and consider the possibility of its application for early detection of deceases of respiratory and blood circulation system, gastrointestinal tract, and endocrine system.

  2. From breathing to respiration.

    PubMed

    Fitting, Jean-William

    2015-01-01

    The purpose of breathing remained an enigma for a long time. The Hippocratic school described breathing patterns but did not associate breathing with the lungs. Empedocles and Plato postulated that breathing was linked to the passage of air through pores of the skin. This was refuted by Aristotle who believed that the role of breathing was to cool the heart. In Alexandria, breakthroughs were accomplished in the anatomy and physiology of the respiratory system. Later, Galen proposed an accurate description of the respiratory muscles and the mechanics of breathing. However, his heart-lung model was hampered by the traditional view of two non-communicating vascular systems - veins and arteries. After a period of stagnation in the Middle Ages, knowledge progressed with the discovery of pulmonary circulation. The comprehension of the purpose of breathing progressed by steps thanks to Boyle and Mayow among others, and culminated with the contribution of Priestley and the discovery of oxygen by Lavoisier. Only then was breathing recognized as fulfilling the purpose of respiration, or gas exchange. A century later, a controversy emerged concerning the active or passive transfer of oxygen from alveoli to the blood. August and Marie Krogh settled the dispute, showing that passive diffusion was sufficient to meet the oxygen needs.

  3. Enzymatic Fuel Cells: Integrating Flow-Through Anode and Air-Breathing Cathode into a Membrane-Less Biofuel Cell Design (Postprint)

    DTIC Science & Technology

    2011-06-01

    with poly- methylene green (poly-MG) catalyst for biofuel cell anode fabrication. A fungal laccase that catalyzes oxygen reduction via direct electron...enzyme, Poly- methylene green, Membrane-less U U U UU 6 Glenn R. Johnson Reset This article appeared in a journal published by Elsevier. The attached copy...2011 Keywords: Biofuel cell Flow-through Air-breathing cathode NAD+-dependent enzyme Poly- methylene green Membrane-less a b s t r a c t One

  4. Bad Breath

    MedlinePlus

    ... breath? Maybe you shouldn't have put extra onions on your hamburger at lunch. What's a kid ... bad breath: foods and drinks, such as garlic, onions, cheese, orange juice, and soda poor dental hygiene ( ...

  5. Air Breathing Propulsion Controls and Diagnostics Research at NASA Glenn Under NASA Aeronautics Research Mission Programs

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay

    2015-01-01

    The Intelligent Control and Autonomy Branch (ICA) at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC) in Cleveland, Ohio, is leading and participating in various projects in partnership with other organizations within GRC and across NASA, the U.S. aerospace industry, and academia to develop advanced controls and health management technologies that will help meet the goals of the NASA Aeronautics Research Mission Directorate (ARMD) Programs. These efforts are primarily under the various projects under the Advanced Air Vehicles Program (AAVP), Airspace Operations and Safety Program (AOSP) and Transformative Aeronautics Concepts Program (TAC). The ICA Branch is focused on advancing the state-of-the-art of aero-engine control and diagnostics technologies to help improve aviation safety, increase efficiency, and enable operation with reduced emissions. This paper describes the various ICA research efforts under the NASA Aeronautics Research Mission Programs with a summary of motivation, background, technical approach, and recent accomplishments for each of the research tasks.

  6. What is the most efficient respiratory organ for the loricariid air-breathing fish Pterygoplichthys anisitsi, gills or stomach? A quantitative morphological study.

    PubMed

    da Cruz, André Luis; Fernandes, Marisa Narciso

    2016-12-01

    The purpose of the present study was to evaluate the morphometric respiratory potential of gills compared to the stomach in obtaining oxygen for aerobic metabolism in Pterygoplichthys anisitsi, a facultative air-breathing fish. The measurements were done using stereological methods. The gills showed greater total volume, volume-to-body mass ratio, potential surface area, and surface-to-volume ratio than the stomach. The water-blood diffusion barrier of the gills is thicker than the air-blood diffusion barrier of the stomach. Taken together, the surface area, the surface-to-volume ratio and the diffusion distance for O2 transfer from the respiratory medium to blood yield a greater diffusing capacity for gills than for the stomach, suggesting greater importance of aquatic respiration in this species. On the other hand, water breathing is energetically more expensive than breathing air. Under severe hypoxic conditions, O2 uptake by the stomach is more efficient than by the gills, although the stomach has a much lower diffusing capacity. Thus, P. anisitsi uses gills under normoxic conditions but the stomach may also support aerobic metabolism depending on environmental conditions.

  7. Air Ejector Pumping Enhancement Through Pulsing Primary Flow

    DTIC Science & Technology

    2005-12-01

    CFD ) analysis show that pulsing the primary jet flow, an active metho of flow control, improved ejector performance. The physics of this improvement...without an entrance shape was found to be still reasonably efficient. Both experiments and Computer Fluid Dynamics( CFD ) analysis show that pulsing the...other shapes. A tube without an entrance shape was found to be still reasonably efficient. Both experiments and Computer Fluid Dynamics( CFD ) analysis

  8. All-fiber chirped pulse amplification using highly-dispersive air-core photonic bandgap fiber.

    PubMed

    de Matos, C; Taylor, J; Hansen, T; Hansen, K; Broeng, J

    2003-11-03

    We show, for the first time to our knowledge, all-fiber chirped pulse amplification using an air-core photonic bandgap fiber. Pulses from a wavelength- and duration-tunable femtosecond/picosecond source at 10 GHz were dispersed in 100 m of dispersion compensating fiber before being amplified in an erbium-doped fiber amplifier and subsequently recompressed in 10 m of the anomalously dispersive photonic bandgap fiber. Pulses as short as 1.1 ps were obtained. As air-core fibers present negligible nonlinearity, the presented configuration can potentially be used to obtain ultra-high pulse peak powers. A study of the air-core fiber dispersion and dispersion slope is also presented.

  9. Thermal chemical energy of ablating silica surfaces in air breathing solid rocket engines

    NASA Astrophysics Data System (ADS)

    Cornwell, Michael D.

    1993-11-01

    This paper provides theoretical adaptation and extension of current industry methodologies for analytical predictions of insulation ablation in solid fuel ramjets. Solid fuel ramjets predominantly operate in a fuel-lean state and require thermal protection systems that are highly oxidation resistant, such as insulation materials that form silica-based char. However, local regions of fuel rich gases exist in ramjets where mixing and combustion of fuel and air is incomplete. Modeling corrosion of silica based char in fuel rich regions of the combustor requires new methods. Accurate ablation prediction of these fuel rich regions are in the design of ramjets. Current analytical methods used to model the ablation of insulation are most suitable for oxidative corrosion of carbonaceous insulation char. Silica-based insulation will ablate corrosively by reduction reactions with carbon and carbon based fuels. Silica ablation by carbon reduction reactions with silica is not correctly modeled by the current industry code, ACE. This paper describes the causes of the current limitations and provides extensions to the ACE methodology to allow for the modeling of silica ablation.

  10. Breath-hold Multi-Echo Fast Spin-Echo Pulse Sequence for Accurate R2 Measurement in the Heart and Liver

    PubMed Central

    Kim, Daniel; Jensen, Jens H.; Wu, Ed X.; Sheth, Sujit S.; Brittenham, Gary M.

    2009-01-01

    Measurement of proton transverse relaxation rates (R2) is a generally useful means for quantitative characterization of pathological changes in tissue with a variety of clinical applications. The most widely used R2 measurement method is the Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence but its relatively long scan time requires respiratory gating for chest or body MRI, rendering this approach impractical for comprehensive assessment within a clinically acceptable examination time. The purpose of our study was to develop a breath-hold multi-echo fast spin-echo (FSE) sequence for accurate measurement of R2 in the liver and heart. Phantom experiments and studies of subjects in vivo were performed to compare the FSE data with the corresponding even-echo CPMG data. For pooled data, the R2 measurements were strongly correlated (Pearson correlation coefficient = 0.99) and in excellent agreement (mean difference [CPMG-FSE] = 0.10 s−1; 95% limits of agreement were 1.98 and −1.78 s−1) between the two pulse sequences. PMID:19526516

  11. Tip-to-tail numerical simulation of a hypersonic air-breathing engine with ethylene fuel

    NASA Astrophysics Data System (ADS)

    Dharavath, Malsur; Manna, P.; Chakraborty, Debasis

    2016-11-01

    End to end CFD simulations of external and internal flow paths of an ethylene fueled hypersonic airbreathing vehicle with including forebody, horizontal fins, vertical fins, intake, combustor, single expansion ramp nozzle are carried out. The performance of the scramjet combustor and vehicle net thrust-drag is calculated for hypersonic cruise condition. Three-dimensional Navier-Stokes equations are solved along with SST-k-ω turbulence model using the commercial CFD software CFX-14. Single step chemical reaction based on fast chemistry assumption is used for combustion of gaseous ethylene fuel. Simulations captured complex shock structures including the shocks generated from the vehicle nose and compression ramps, impingement of cowl-shock on vehicle undersurface and its reflection in the intake and combustor etc. Various thermochemical parameters are analyzed and performance parameters are evaluated for nonreacting and reacting cases. Very good mixing ( 98%) of fuel with incoming air stream is observed. Positive thrust-drag margins are obtained for fuel equivalence ratio of 0.6 and computed combustion efficiency is observed to be 94 %. Effect of equivalence ratio on the vehicle performance is studied parametrically. Though the combustion efficiency has come down by 8% for fuel equivalence ratio of 0.8, net vehicle thrust is increased by 44%. Heat flux distribution on the various walls of the whole vehicle including combustor is estimated for the isothermal wall condition of 1000 K in reacting flow. Higher local heat flux values are observed at all the leading edges of the vehicle (i.e., nose, wing, fin and cowl leading edges) and strut regions of the combustor.

  12. Anatomical Details of the Rabbit Nasal Passages and Their Implications in Breathing, Air Conditioning, and Olfaction.

    PubMed

    Xi, Jinxiang; Si, Xiuhua A; Kim, Jongwon; Zhang, Yu; Jacob, Richard E; Kabilan, Senthil; Corley, Richard A

    2016-07-01

    The rabbit is commonly used as a laboratory animal for inhalation toxicology tests and detail knowledge of the rabbit airway morphometry is needed for outcome analysis or theoretical modeling. The objective of this study is to quantify the morphometric dimension of the nasal airway of a New Zealand white rabbit and to relate the morphology and functions through analytical and computational methods. Images of high-resolution MRI scans of the rabbit were processed to measure the axial distribution of the cross-sectional areas, perimeter, and complexity level. The lateral recess, which has functions other than respiration or olfaction, was isolated from the nasal airway and its dimension was quantified separately. A low Reynolds number turbulence model was implemented to simulate the airflow, heat transfer, vapor transport, and wall shear stress. Results of this study provide detailed morphological information of the rabbit that can be used in the studies of olfaction, inhalation toxicology, drug delivery, and physiology-based pharmacokinetics modeling. For the first time, we reported a spiral nasal vestibule that splits into three paths leading to the dorsal meatus, maxilloturbinate, and ventral meatus, respectively. Both non-dimensional functional analysis and CFD simulations suggested that the airflow in the rabbit nose is laminar and the unsteady effect is only significantly during sniffing. Due to the large surface-to-volume ratio, the maxilloturbinate is highly effective in warming and moistening the inhaled air to body conditions. The unique anatomical structure and respiratory airflow pattern may have important implications for designing new odorant detectors or electronic noses. Anat Rec, 299:853-868, 2016. © 2016 Wiley Periodicals, Inc.

  13. Quantification of carbon dioxide poisoning in air breathing alkaline fuel cells

    NASA Astrophysics Data System (ADS)

    Tewari, A.; Sambhy, V.; Urquidi Macdonald, M.; Sen, A.

    Carbon dioxide intolerance has impeded the development of alkaline fuel cells as an alternate source of power supply. The CO 2, in a fuel cell system, could come from the anode side (if "dirty" H 2 is used as fuel), from the cathode side (if air instead of pure O 2 is used as an oxidant) or from inside the electrolyte (if methanol is used as a fuel). In this work, an novel analytical approach is proposed to study and quantify the carbon dioxide poisoning problem. Accelerated tests were carried out in an alkaline fuel cell using methanol as a fuel with different electrical loads and varying the concentration of carbon dioxide in a mixture CO 2/O 2 used as oxidant. Two characteristic quantities, t max and R max, were specified which were shown to comprehensively define the nature and extent of carbon dioxide poisoning in alkaline fuel cells. The poisoning phenomenon was successfully quantified by determining the dependence of these characteristic quantities on the operating parameters, viz. atmospheric carbon dioxide concentration and applied electrical load. Such quantification enabled the prediction of the output of a fuel cell operating in a carbon dioxide enriched atmosphere. In addition, static and dynamic analyses of electrolytes were carried out to determine the dependence of cell current on the electrolyte composition in a fuel cell undergoing poisoning. It was observed that there is a critical concentration of KOH in the electrolyte only below which the effect of carbon dioxide poisoning is reflected on the cell performance. Potentiostatic polarization tests confirmed that the underlying reason for the decreased cell performance because of carbon dioxide poisoning is the sluggish kinetics of methanol oxidation in the presence of potassium carbonate in the electrolyte. Moreover, the decreased conductivity of the electrolyte resulting from hydroxide to carbonate conversion was also shown to increase the ohmic loses in an alkaline fuel cell leading to lower

  14. Lamaze Breathing

    PubMed Central

    Lothian, Judith A.

    2011-01-01

    Lamaze breathing historically is considered the hallmark of Lamaze preparation for childbirth. This column discusses breathing in the larger context of contemporary Lamaze. Controlled breathing enhances relaxation and decreases perception of pain. It is one of many comfort strategies taught in Lamaze classes. In restricted birthing environments, breathing may be the only nonpharmacological comfort strategy available to women. Conscious breathing and relaxation, especially in combination with a wide variety of comfort strategies, can help women avoid unnecessary medical intervention and have a safe, healthy birth. PMID:22379360

  15. Propagation of long, high-power microwave pulses through the air

    SciTech Connect

    Khanaka, G.H.; Yee, J.H.

    1986-03-01

    The passage of long, high-power microwave pulses in the atmosphere was studied using a one-dimensional computer code. The objective of this study was to obtain a time history of the electron conductivity and peak density, as well as the peak plasma density. The results are summarized as follows: (1) the threshold level depends on pulse frequency and length; (2) electron avalanche occurs only when the pulse intensity exceeds the threshold level for air break-down, and this results in tail erosion; (3) for higher pulse intensities, it requires less time to initiate electron avalanche, which results in transmitting smaller portions of the pulse; (4) the general characteristics of the electron density, conductivity, and plasma frequency are quite similar for both cases; and (5) as the pulse amplitude rises, the electron conductivity and density and the plasma frequency also rise. 10 figs.

  16. Pulsed power corona discharges for air pollution control

    SciTech Connect

    Smulders, E.H.W.M.; Heesch, B.E.J.M. van; Paasen, S.S.V.B. van

    1998-10-01

    Successful introduction of pulsed corona for industrial purposes very much depends on the reliability of high-voltage and pulsed power technology and on the efficiency of energy transfer. In addition, it is of the utmost importance that adequate electromagnetic compatibility (EMC) is achieved between the high-voltage pulse source and the surrounding equipment. Pulsed corona is generated in a pilot unit that produces narrow 50 MW pulses at 1000 pps (net average corona power 1.5 kW). The pilot unit can run continuously for use in industrial applications such as cleaning of gases (100 m{sup 3}/h) containing NO or volatile organic compounds (VOC`s) or fluids (e.g., waste water). Simultaneous removal of NO and ethylene to obtain clean CO{sub 2} from the exhaust of a combustion engine was tested at an industrial site. Various chemical processes, such as removal of toluene or styrene from an airflow are tested in the laboratory. The authors developed a model to analyze the conversion of these pollutants. To examine the discharges in the reactor they use current, voltage, and E-field sensors as well as a fast charge-coupled device (CCD) camera. Detailed energy input measurements are compared with CCD movies to investigate the efficiency of different streamer phases. EMC techniques incorporated in the pilot unit are based on the successful concept of constructing a low transfer impedance between common mode currents induced by pulsed power and differential mode voltages in signal lines and external main lines.

  17. LASER PLASMA: Experimental confirmation of the erosion origin of pulsed low-threshold surface optical breakdown of air

    NASA Astrophysics Data System (ADS)

    Min'ko, L. Ya; Chumakou, A. N.; Chivel', Yu A.

    1988-08-01

    Nanosecond kinetic spectroscopy techniques were used to identify the erosion origin of pulsed low-threshold surface optical breakdown of air as a result of interaction of microsecond neodymium and CO2 laser pulses with some metals (indium, lead).

  18. 42 CFR 84.79 - Breathing gas; minimum requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Breathing gas; minimum requirements. 84.79 Section...-Contained Breathing Apparatus § 84.79 Breathing gas; minimum requirements. (a) Breathing gas used to supply... respiratory tract irritating compounds. (c) Compressed, gaseous breathing air shall meet the...

  19. 42 CFR 84.79 - Breathing gas; minimum requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Breathing gas; minimum requirements. 84.79 Section...-Contained Breathing Apparatus § 84.79 Breathing gas; minimum requirements. (a) Breathing gas used to supply... respiratory tract irritating compounds. (c) Compressed, gaseous breathing air shall meet the...

  20. 42 CFR 84.79 - Breathing gas; minimum requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Breathing gas; minimum requirements. 84.79 Section...-Contained Breathing Apparatus § 84.79 Breathing gas; minimum requirements. (a) Breathing gas used to supply... respiratory tract irritating compounds. (c) Compressed, gaseous breathing air shall meet the...

  1. 42 CFR 84.79 - Breathing gas; minimum requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Breathing gas; minimum requirements. 84.79 Section...-Contained Breathing Apparatus § 84.79 Breathing gas; minimum requirements. (a) Breathing gas used to supply... respiratory tract irritating compounds. (c) Compressed, gaseous breathing air shall meet the...

  2. 42 CFR 84.79 - Breathing gas; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Breathing gas; minimum requirements. 84.79 Section...-Contained Breathing Apparatus § 84.79 Breathing gas; minimum requirements. (a) Breathing gas used to supply... respiratory tract irritating compounds. (c) Compressed, gaseous breathing air shall meet the...

  3. Nitric oxide density measurements in air and air/fuel nanosecond pulse discharges by laser induced fluorescence

    NASA Astrophysics Data System (ADS)

    Uddi, M.; Jiang, N.; Adamovich, I. V.; Lempert, W. R.

    2009-04-01

    Laser induced fluorescence is used to measure absolute nitric oxide concentrations in air, methane-air and ethylene-air non-equilibrium plasmas, as a function of time after initiation of a single pulse, 20 kV peak voltage, 25 ns pulse duration discharge. A mixture of NO and nitrogen with known composition (4.18 ppm NO) is used for calibration. Peak NO density in air at 60 Torr, after a single pulse, is ~8 × 1012 cm-3 (~4.14 ppm) occurring at ~250 µs after the pulse, with decay time of ~16.5 ms. Peak NO atom mole fraction in a methane-air mixture with equivalence ratio of phiv = 0.5 is found to be approximately equal to that in air, with approximately the same rise and decay rate. In an ethylene-air mixture (also with equivalence ratio of phiv = 0.5), the rise and decay times are comparable to air and methane-air, but the peak NO concentration is reduced by a factor of approximately 2.5. Spontaneous emission measurements show that excited electronic states N2(C 3Π) and NO(A 2Σ) in air at P = 60 Torr decay within ~20 ns and ~1 µs, respectively. Kinetic modelling calculations incorporating air plasma kinetics complemented with the GRI Mech 3.0 hydrocarbon oxidation mechanism are compared with the experimental data using three different NO production mechanisms. It is found that NO concentration rise after the discharge pulse is much faster than predicted by Zel'dovich mechanism reactions, by two orders of magnitude, but much slower compared with reactions of electronically excited nitrogen atoms and molecules, also by two orders of magnitude. It is concluded that processes involving long lifetime (~100 µs) metastable states, such as N2(X 1Σ,v) and O2(b 1Σ), formed by quenching of the metastable N2(A 3Σ) state by ground electronic state O2, may play a dominant role in NO formation. NO decay, in all cases, is found to be dominated by the reverse Zel'dovich reaction, NO + O → N + O2, as well as by conversion into NO2 in a reaction of NO with ozone.

  4. A compact, high-voltage pulsed charging system based on an air-core pulse transformer.

    PubMed

    Zhang, Tianyang; Chen, Dongqun; Liu, Jinliang; Liu, Chebo; Yin, Yi

    2015-09-01

    Charging systems of pulsed power generators on mobile platforms are expected to be compact and provide high pulsed power, high voltage output, and high repetition rate. In this paper, a high-voltage pulsed charging system with the aforementioned characteristics is introduced, which can be applied to charge a high-voltage load capacitor. The operating principle of the system and the technical details of the components in the system are described in this paper. The experimental results show that a 600 nF load capacitor can be charged to 60 kV at 10 Hz by the high-voltage pulsed charging system for a burst of 0.5 s. The weight and volume of the system are 60 kg and 600 × 500 × 380 mm(3), respectively.

  5. A compact, high-voltage pulsed charging system based on an air-core pulse transformer

    NASA Astrophysics Data System (ADS)

    Zhang, Tianyang; Chen, Dongqun; Liu, Jinliang; Liu, Chebo; Yin, Yi

    2015-09-01

    Charging systems of pulsed power generators on mobile platforms are expected to be compact and provide high pulsed power, high voltage output, and high repetition rate. In this paper, a high-voltage pulsed charging system with the aforementioned characteristics is introduced, which can be applied to charge a high-voltage load capacitor. The operating principle of the system and the technical details of the components in the system are described in this paper. The experimental results show that a 600 nF load capacitor can be charged to 60 kV at 10 Hz by the high-voltage pulsed charging system for a burst of 0.5 s. The weight and volume of the system are 60 kg and 600 × 500 × 380 mm3, respectively.

  6. Quasi-steady-state air plasma channel produced by a femtosecond laser pulse sequence

    PubMed Central

    Lu, Xin; Chen, Shi-You; Ma, Jing-Long; Hou, Lei; Liao, Guo-Qian; Wang, Jin-Guang; Han, Yu-Jing; Liu, Xiao-Long; Teng, Hao; Han, Hai-Nian; Li, Yu-Tong; Chen, Li-Ming; Wei, Zhi-Yi; Zhang, Jie

    2015-01-01

    A long air plasma channel can be formed by filamentation of intense femtosecond laser pulses. However, the lifetime of the plasma channel produced by a single femtosecond laser pulse is too short (only a few nanoseconds) for many potential applications based on the conductivity of the plasma channel. Therefore, prolonging the lifetime of the plasma channel is one of the key challenges in the research of femtosecond laser filamentation. In this study, a unique femtosecond laser source was developed to produce a high-quality femtosecond laser pulse sequence with an interval of 2.9 ns and a uniformly distributed single-pulse energy. The metre scale quasi-steady-state plasma channel with a 60–80 ns lifetime was formed by such pulse sequences in air. The simulation study for filamentation of dual femtosecond pulses indicated that the plasma channel left by the previous pulse was weakly affected the filamentation of the next pulse in sequence under our experimental conditions. PMID:26493279

  7. Mechanisms of transepithelial ammonia excretion and luminal alkalinization in the gut of an intestinal air-breathing fish, Misgurnus anguilliacaudatus.

    PubMed

    Wilson, Jonathan M; Moreira-Silva, Joana; Delgado, Inês L S; Ebanks, Sue C; Vijayan, Mathilakath M; Coimbra, João; Grosell, Martin

    2013-02-15

    The weatherloach, Misgurnus angulliacaudatus, is an intestinal air-breathing, freshwater fish that has the unique ability to excrete ammonia through gut volatilization when branchial and cutaneous routes are compromised during high environmental ammonia or air exposure. We hypothesized that transepithelial gut NH(4)(+) transport is facilitated by an apical Na(+)/H(+) (NH(4)(+)) exchanger (NHE) and a basolateral Na(+)/K(+)(NH(4)(+))-ATPase, and that gut boundary layer alkalinization (NH(4)(+) → NH(3) + H(+)) is facilitated by apical HCO(3)(-) secretion through a Cl(-)/HCO(3)(-) anion exchanger. This was tested using a pharmacological approach with anterior (digestive) and posterior (respiratory) intestine preparations mounted in pH-stat-equipped Ussing chambers. The anterior intestine had a markedly higher conductance, increased short-circuit current, and greater net base (J(base)) and ammonia excretion rates (J(amm)) than the posterior intestine. In the anterior intestine, HCO(3)(-) accounted for 70% of J(base). In the presence of an imposed serosal-mucosal ammonia gradient, inhibitors of both NHE (EIPA, 0.1 mmol l(-1)) and Na(+)/K(+)-ATPase (ouabain, 0.1 mmol l(-1)) significantly inhibited J(amm) in the anterior intestine, although only EIPA had an effect in the posterior intestine. In addition, the anion exchange inhibitor DIDS significantly reduced J(base) in the anterior intestine although only at a high dose (1 mmol l(-1)). Carbonic anhydrase does not appear to be associated with gut alkalinization under these conditions as ethoxzolamide was without effect on J(base). Membrane fluidity of the posterior intestine was low, suggesting low permeability, which was also reflected in a lower mucosal-serosal J(amm) in the presence of an imposed gradient, in contrast to that in the anterior intestine. To conclude, although the posterior intestine is highly modified for gas exchange, it is the anterior intestine that is the likely site of ammonia excretion and

  8. 42 CFR 84.141 - Breathing gas; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Breathing gas; minimum requirements. 84.141 Section... Respirators § 84.141 Breathing gas; minimum requirements. (a) Breathing gas used to supply supplied-air respirators shall be respirable breathing air and contain no less than 19.5 volume-percent of oxygen....

  9. 42 CFR 84.141 - Breathing gas; minimum requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Breathing gas; minimum requirements. 84.141 Section... Respirators § 84.141 Breathing gas; minimum requirements. (a) Breathing gas used to supply supplied-air respirators shall be respirable breathing air and contain no less than 19.5 volume-percent of oxygen....

  10. 42 CFR 84.141 - Breathing gas; minimum requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Breathing gas; minimum requirements. 84.141 Section... Respirators § 84.141 Breathing gas; minimum requirements. (a) Breathing gas used to supply supplied-air respirators shall be respirable breathing air and contain no less than 19.5 volume-percent of oxygen....

  11. 42 CFR 84.141 - Breathing gas; minimum requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Breathing gas; minimum requirements. 84.141 Section... Respirators § 84.141 Breathing gas; minimum requirements. (a) Breathing gas used to supply supplied-air respirators shall be respirable breathing air and contain no less than 19.5 volume-percent of oxygen....

  12. 42 CFR 84.141 - Breathing gas; minimum requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Breathing gas; minimum requirements. 84.141 Section... Respirators § 84.141 Breathing gas; minimum requirements. (a) Breathing gas used to supply supplied-air respirators shall be respirable breathing air and contain no less than 19.5 volume-percent of oxygen....

  13. Modeling and Numerical Simulation of Microwave Pulse Propagation in Air Breakdown Environment

    NASA Technical Reports Server (NTRS)

    Kuo, S. P.; Kim, J.

    1991-01-01

    Numerical simulation is used to investigate the extent of the electron density at a distant altitude location which can be generated by a high-power ground-transmitted microwave pulse. This is done by varying the power, width, shape, and carrier frequency of the pulse. The results show that once the breakdown threshold field is exceeded in the region below the desired altitude location, electron density starts to build up in that region through cascading breakdown. The generated plasma attenuates the pulse energy (tail erosion) and thus deteriorates the energy transmission to the destined altitude. The electron density saturates at a level limited by the pulse width and the tail erosion process. As the pulse continues to travel upward, though the breakdown threshold field of the background air decreases, the pulse energy (width) is reduced more severely by the tail erosion process. Thus, the electron density grows more quickly at the higher altitude, but saturates at a lower level. Consequently, the maximum electron density produced by a single pulse at 50 km altitude, for instance, is limited to a value below 10(exp 6) cm(exp -3). Three different approaches are examined to determine if the ionization at the destined location can be improved: a repetitive pulse approach, a focused pulse approach, and two intersecting beams. Only the intersecting beam approach is found to be practical for generating the desired density level.

  14. Experimental study of pulsed corona discharge in air at high pressures

    NASA Astrophysics Data System (ADS)

    Lin, Yunghsu; Singleton, Dan; Sanders, Jason; Kuthi, Andras; Gundersen, Martin A.

    2012-10-01

    Understanding of the dynamics of nanosecond scale pulse discharges in air at multiatmospheric pressure is essential for the development of transient plasma enhanced combustion in internal combustion engines. Here we report the result of our experimental investigation of cathode-directed streamer discharges in synthetic air at pressures ranging from 1 to 20 bar. Two pulse generators with maximum pulse amplitudes of 50 kV and 65 kV, pulse width of approximately 12 ns and 85 ns and pulse rise times of 5 ns and 50 ns are used to generate streamers. The electrodes are coaxial with various radial gaps up to 11.75 mm. The discharge chamber is evacuated and backfilled with synthetic dry air at room temperature. Optical data is obtained from PI-MAX 3 ICCD camera with 3 ns gate width. The streamer propagation velocity variation with applied voltage, different pressures and reduced electric field, E/P, will be shown. Preliminary results indicate that the (pd) similarity law is violated at high pressures in agreement with other recent experiments [1].[4pt] [1] ``Nanosecond Scale Discharge Dynamics in High Pressure Air,'' Pierre Tardiveau, Nicolas Moreau, Francois Jorand, Christian Postel, St'ephane Pasquiers, and Pierre Vervisch, IEEE Trans. on Plasma Sci., Vol. 36, No. 4, 2008.

  15. Magnetic-field generation by pulsed irradiation of aluminium in air

    SciTech Connect

    Chumakov, A N; Chekan, P V

    2015-03-31

    Magnetic-field generation arising under irradiation of an aluminium barrier in the air by a series of laser pulses is studied experimentally. It is found that the magnetic field increases nonlinearly from 10{sup -5} to 10{sup -3} T with increasing laser power density from 10{sup 7} to 10{sup 9} W cm{sup -2}, the degree of nonlinearity being different for single nanosecond pulses, for a series of such pulses with a repetition rate of 100 – 150 μs and for a combination of a millisecond laser pulse and a series of nanosecond laser pulses. The dependences of the magnetic-field induction on the power density of laser radiation in the above-mentioned regimes are established. (interaction of laser radiation with matter)

  16. Effects of pulse width and coding on radar returns from clear air

    NASA Technical Reports Server (NTRS)

    Cornish, C. R.

    1983-01-01

    In atmospheric radar studies it is desired to obtain maximum information about the atmosphere and to use efficiently the radar transmitter and processing hardware. Large pulse widths are used to increase the signal to noise ratio since clear air returns are generally weak and maximum height coverage is desired. Yet since good height resolution is equally important, pulse compression techniques such as phase coding are employed to optimize the average power of the transmitter. Considerations in implementing a coding scheme and subsequent effects of an impinging pulse on the atmosphere are investigated.

  17. [Negative air ions generated by plants upon pulsed electric field stimulation applied to soil].

    PubMed

    Wu, Ren-ye; Deng, Chuan-yuan; Yang, Zhi-jian; Weng, Hai-yong; Zhu, Tie-jun-rong; Zheng, Jin-gui

    2015-02-01

    This paper investigated the capacity of plants (Schlumbergera truncata, Aloe vera var. chinensis, Chlorophytum comosum, Schlumbergera bridgesii, Gymnocalycium mihanovichii var. friedrichii, Aspidistra elatior, Cymbidium kanran, Echinocactus grusonii, Agave americana var. marginata, Asparagus setaceus) to generate negative air ions (NAI) under pulsed electric field stimulation. The results showed that single plant generated low amounts of NAI in natural condition. The capacity of C. comosum and G. mihanovichii var. friedrichii generated most NAI among the above ten species, with a daily average of 43 ion · cm(-3). The least one was A. americana var. marginata with the value of 19 ion · cm(-3). When proper pulsed electric field stimulation was applied to soil, the NAI of ten plant species were greatly improved. The effect of pulsed electric field u3 (average voltage over the pulse period was 2.0 x 10(4) V, pulse frequency was 1 Hz, and pulse duration was 50 ms) was the greatest. The mean NAI concentration of C. kanran was the highest 1454967 ion · cm(-3), which was 48498.9 times as much as that in natural condition. The lowest one was S. truncata with the value of 34567 ion · cm(-3), which was 843.1 times as much as that in natural condition. The capacity of the same plants to generate negative air ion varied extremely under different intensity pulsed electric fields.

  18. Our Breaths We Take: Outdoor Air Quality, Health, and Climate Change Consequences of Household Heating and Cooking with Solid Fuels

    NASA Astrophysics Data System (ADS)

    Chafe, Zoe Anna

    Worldwide, nearly 3 billion people--40% of the global population--burn wood, coal, and other solid fuels every day to cook their food; this number is even larger when including those who heat their homes with solid fuels as well. Exposure to pollution from heating and cooking fires causes about 3 million deaths each year, making it one of the biggest environmental health problems the world faces. The harm from this smoke is not restricted to those who breathe it, however: it contains gases and particles that contribute to global climate change as well. Chapter 2 shows that household cooking with solid fuels caused an estimated 12% of population-weighted ambient PM2.5 worldwide in 2010. Exposure to this air pollution caused the loss of 370,000 lives and 9.9 million disability-adjusted life years (DALYs) globally in the same year. In Chapter 3 I demonstrate that household heating with solid fuels caused an estimated 21% of population-weighted ambient PM2.5 in 2010 in Central Europe, 13% in Eastern Europe, 12% in Western Europe, and 8% in North America. Exposure to this air pollution results caused approximately 60,000 premature deaths in Europe, and nearly 10,000 deaths in North America, as well as an estimated 1.0 million disability-adjusted life years (DALYs) in Europe and 160,000 DALYs in North America. Chapter 4 addresses drivers of household wood combustion pollution in the San Francisco Bay Area, where the sector is the largest source of PM 2.5 and regulators recently introduced amendments to wood burning rules for the airshed. Fireplaces are the source of the vast majority (84%) of PM 2.5 from residential wood combustion in the San Francisco Bay Area, despite their use primarily as an aesthetic or recreational combustion activity. By evaluating hypothetical fuel and combustion device changeouts, I find that replacing fireplaces with gas would yield significant health and economic benefits. Specifically, retrofitting frequently used fireplaces (300,000 units

  19. Modification of NASA Langley 8 Foot High Temperature Tunnel to provide a unique national research facility for hypersonic air-breathing propulsion systems

    NASA Technical Reports Server (NTRS)

    Kelly, H. N.; Wieting, A. R.

    1984-01-01

    A planned modification of the NASA Langley 8-Foot High Temperature Tunnel to make it a unique national research facility for hypersonic air-breathing propulsion systems is described, and some of the ongoing supporting research for that modification is discussed. The modification involves: (1) the addition of an oxygen-enrichment system which will allow the methane-air combustion-heated test stream to simulate air for propulsion testing; and (2) supplemental nozzles to expand the test simulation capability from the current nominal Mach number to 7.0 include Mach numbers 3.0, 4.5, and 5.0. Detailed design of the modifications is currently underway and the modified facility is scheduled to be available for tests of large scale propulsion systems by mid 1988.

  20. Modification of NASA Langley 8 foot high temperature tunnel to provide a unique national research facility for hypersonic air-breathing propulsion systems

    NASA Technical Reports Server (NTRS)

    Kelly, H. N.; Wieting, A. R.

    1984-01-01

    A planned modification of the NASA Langley 8-Foot High Temperature Tunnel to make it a unique national research facility for hypersonic air-breathing propulsion systems is described, and some of the ongoing supporting research for that modification is discussed. The modification involves: (1) the addition of an oxygen-enrichment system which will allow the methane-air combustion-heated test stream to simulate air for propulsion testing; and (2) supplemental nozzles to expand the test simulation capability from the current nominal Mach number to 7.0 include Mach numbers 3.0, 4.5, and 5.0. Detailed design of the modifications is currently underway and the modified facility is scheduled to be available for tests of large scale propulsion systems by mid 1988.

  1. The TEAM (Total Exposure Assessment Methodology) Study: personal exposures to toxic substances in air, drinking water, and breath of 400 residents of New Jersey, North Carolina, and North Dakota.

    PubMed

    Wallace, L A; Pellizzari, E D; Hartwell, T D; Sparacino, C; Whitmore, R; Sheldon, L; Zelon, H; Perritt, R

    1987-08-01

    EPA's TEAM Study has measured exposures to 20 volatile organic compounds in personal air, outdoor air, drinking water, and breath of approximately 400 residents of New Jersey, North Carolina, and North Dakota. All residents were selected by a probability sampling scheme to represent 128,000 inhabitants of Elizabeth and Bayonne, New Jersey, 131,000 residents of Greensboro, North Carolina, and 7000 residents of Devils Lake, North Dakota. Participants carried a personal monitor to collect two 12-hr air samples and gave a breath sample at the end of the day. Two consecutive 12-hr outdoor air samples were also collected on identical Tenax cartridges in the backyards of some of the participants. About 5000 samples were collected, of which 1500 were quality control samples. Ten compounds were often present in personal air and breath samples at all locations. Personal exposures were consistently higher than outdoor concentrations for these chemicals and were sometimes 10 times the outdoor concentrations. Indoor sources appeared to be responsible for much of the difference. Breath concentrations also often exceeded outdoor concentrations and correlated more strongly with personal exposures than with outdoor concentrations. Some activities (smoking, visiting dry cleaners or service stations) and occupations (chemical, paint, and plastics plants) were associated with significantly elevated exposures and breath levels for certain toxic chemicals. Homes with smokers had significantly increased benzene and styrene levels in indoor air. Residence near major point sources did not affect exposure.

  2. Analysis of the Magneto-Hydrodynamic (MHD) Energy Bypass Engine for High-Speed Air-Breathing Propulsion

    NASA Technical Reports Server (NTRS)

    Riggins, David W.

    2002-01-01

    The performance of the MHD energy bypass air-breathing engine for high-speed propulsion is analyzed in this investigation. This engine is a specific type of the general class of inverse cycle engines. In this paper, the general relationship between engine performance (specific impulse and specific thrust) and the overall total pressure ratio through an engine (from inlet plane to exit plane) is first developed and illustrated. Engines with large total pressure decreases, regardless of cause or source, are seen to have exponentially decreasing performance. The ideal inverse cycle engine (of which the MHD engine is a sub-set) is then demonstrated to have a significant total pressure decrease across the engine; this total pressure decrease is cycle-driven, degrades rapidly with energy bypass ratio, and is independent of any irreversibility. The ideal MHD engine (inverse cycle engine with no irreversibility other than that inherent in the MHD work interaction processes) is next examined and is seen to have an additional large total pressure decrease due to MHD-generated irreversibility in the decelerator and the accelerator. This irreversibility mainly occurs in the deceleration process. Both inherent total pressure losses (inverse cycle and MHD irreversibility) result in a significant narrowing of the performance capability of the MHD bypass engine. The fundamental characteristics of MHD flow acceleration and flow deceleration from the standpoint of irreversibility and second-law constraints are next examined in order to clarify issues regarding flow losses and parameter selection in the MM modules. Severe constraints are seen to exist in the decelerator in terms of allowable deceleration Mach numbers and volumetric (length) required for meaningful energy bypass (work interaction). Considerable difficulties are also encountered and discussed due to thermal/work choking phenomena associated with the deceleration process. Lastly, full engine simulations utilizing inlet

  3. Diffuse discharge produced by repetitive nanosecond pulses in open air, nitrogen, and helium

    NASA Astrophysics Data System (ADS)

    Shao, Tao; Tarasenko, Victor F.; Zhang, Cheng; Baksht, Evgeni Kh.; Zhang, Dongdong; Erofeev, Mikhail V.; Ren, Chengyan; Shutko, Yuliya V.; Yan, Ping

    2013-03-01

    Atmospheric-pressure gas discharge driven by high voltage pulses with fast rise-time and short duration has attracted significant attention for various plasma applications. In this paper, discharges were generated in a highly non-uniform electric field by point-plane gaps in open air by four repetitive nanosecond-pulse generators with repetition rate up to 1 kHz. The rise time of generators was 25 (generator #1), 15 (generator #2), 3 (generator #3), and 0.2 ns (generator #4) and a full width at half maximum was 40, 30-40, 5, and 1 ns, respectively. The experimental results show that there were typical discharge fashions, i.e., corona, diffuse, spark, or arc modes. The variables affecting the discharge characteristics, including the gap spacing and applied pulse parameters, were investigated. Especially, the diffuse discharges were investigated and discussed. With generator #1 at voltage 70-120 kV, characteristics of measured x-rays on the discharge modes were studied, and it indicates that counts of x-rays in a diffuse discharge are up to a peak value under the experimental conditions. With amplitude of voltage pulses in incident wave up to 18 (generator #3) and 12.5 kV (generator #4), runaway electron beam in low pressure helium, nitrogen, and air in a pulse-periodic mode of discharge with repetition rate up to 1 kHz was obtained. Electron beam was registered behind a thin foil in a pressure range from several to tens of Torr. X-ray radiation was obtained in a wide range of pressures, as well as at atmospheric pressure of helium, nitrogen, and air. Voltage pulses of positive and negative polarities were used. Generation of runaway electrons with pulses of positive polarity appeared because of reflected voltage pulses of reverse polarity.

  4. Lung anatomy and histology of the extant coelacanth shed light on the loss of air-breathing during deep-water adaptation in actinistians

    PubMed Central

    Meunier, François J.; Herbin, Marc; Clément, Gaël; Brito, Paulo M.

    2017-01-01

    Lungs are specialized organs originated from the posterior pharyngeal cavity and considered as plesiomorphic for osteichthyans, as they are found in extant basal actinopterygians (i.e. Polypterus) and in all major groups of extant sarcopterygians. The presence of a vestigial lung in adult stages of the extant coelacanth Latimeria chalumnae is the result of allometric growth during ontogeny, in relation with long-time adaptation to deep water. Here, we present the first detailed histological and anatomical description of the lung of Latimeria chalumnae, providing new insights into its arrested differentiation in an air-breathing complex, mainly represented by the absence of pneumocytes and of compartmentalization in the latest ontogenetic stages.

  5. Lung anatomy and histology of the extant coelacanth shed light on the loss of air-breathing during deep-water adaptation in actinistians.

    PubMed

    Cupello, Camila; Meunier, François J; Herbin, Marc; Clément, Gaël; Brito, Paulo M

    2017-03-01

    Lungs are specialized organs originated from the posterior pharyngeal cavity and considered as plesiomorphic for osteichthyans, as they are found in extant basal actinopterygians (i.e. Polypterus) and in all major groups of extant sarcopterygians. The presence of a vestigial lung in adult stages of the extant coelacanth Latimeria chalumnae is the result of allometric growth during ontogeny, in relation with long-time adaptation to deep water. Here, we present the first detailed histological and anatomical description of the lung of Latimeria chalumnae, providing new insights into its arrested differentiation in an air-breathing complex, mainly represented by the absence of pneumocytes and of compartmentalization in the latest ontogenetic stages.

  6. Metabolic breath analyzer

    NASA Technical Reports Server (NTRS)

    Perry, C. L.

    1971-01-01

    Instrument measures metabolic breathing rate and dynamics of human beings in atmospheres ranging from normal air to 100 percent oxygen at ambient pressures from 14.7 to 3.0 psia. Measurements are made at rest or performing tasks up to maximum physical capacity under either zero or normal gravity.

  7. Life and Breath

    ERIC Educational Resources Information Center

    Ellis, Helen D.

    1974-01-01

    This article describes a public education program combining the screening process and a follow-up program for teaching victims of emphysema and other respiratory diseases how to better their living condition through proper breathing, avoidance of air pollutants and cigarette smoking, and taking better care of themselves physically. (PD)

  8. Influence of air pressure on the detailed characteristics of corona current pulse due to positive corona discharge

    NASA Astrophysics Data System (ADS)

    Li, Xuebao; Cui, Xiang; Lu, Tiebing; Li, Dayong; Chen, Bo; Fu, Yuke

    2016-12-01

    Air pressure is one of the main factors affecting the corona discharge and influence of air pressure should be carefully investigated. In order to obtain the influence of air pressure on the detailed characteristics of corona current pulse, such as pulse amplitude, rise time, pulse width, duration time, and pulse repetition frequency, a systematic investigation is carried out though a coaxial conductor-cylinder electrode structure with a corona point on the conductor. The electrodes are put into a pressure chamber for adjusting the air pressure. The results show that pulse amplitude increases with the increase of air pressure, while rise time, pulse width, duration time, and pulse repetition frequency decrease significantly at the same ratio between applied voltage and onset voltage (U/U0). Empirical formulas for the pulse amplitude, rise time, pulse width, and duration time varying with air pressure are first established. On the basis of the development of positive corona discharge, the influence of air pressure on the typical time intervals and experimental results are qualitatively explained.

  9. Emergency Response Breathing Apparatus

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Aerospace Design & Development, Inc.'s (ADD's) SCAMP was developed under an SBIR contract through Kennedy Space Center. SCAMP stands for Supercritical Air Mobility Pack. The technology came from the life support fuel cell support systems used for the Apollo and Space Shuttle programs. It uses supercritical cryogenic air and is able to function in microgravity environments. SCAMP's self-contained breathing apparatus(SCBA) systems are also ground-based and can provide twice as much air than traditional SCBA's due to its high-density capacity. The SCAMP system was designed for use in launch pad emergency rescues. ADD also developed a protective suit for use with SCAMP that is smaller and lighter system than the old ones. ADD's SCAMP allows for body cooling and breathing from the supercritical cryogenic air, requiring no extra systems. The improvement over the traditional SCBA allows for a reduction of injuries, such as heat stress, and makes it easier for rescuers to save lives.

  10. Dynamics of optical breakdown in air induced by single and double nanosecond laser pulses

    SciTech Connect

    Mahdieh, Mohammad Hossein Akbari Jafarabadi, Marzieh

    2015-12-15

    In this paper, an optical breakdown in air induced by single and double nanosecond laser pulses was studied. A high power Nd:YAG laser beam was used for producing optical breakdown plasma in the air. The dynamics of breakdown plasma were studied using an optical probe beam. A portion of the laser beam was used, as the probe beam and was aligned to propagate (perpendicular to the pump beam) through the breakdown region. The transmission of the probe beam (through the breakdown region) was temporally measured for both single and double pulse irradiations. The results were used to describe the evolution of the induced plasma in both conditions. These results show that the plasma formation time and its absorptivity are strongly dependent on the single or double pulse configurations.

  11. Application of P4 Polyphase codes pulse compression method to air-coupled ultrasonic testing systems.

    PubMed

    Li, Honggang; Zhou, Zhenggan

    2017-03-03

    Air-coupled ultrasonic testing systems are usually restricted by low signal-to-noise ratios (SNR). The use of pulse compression techniques based on P4 Polyphase codes can improve the ultrasound SNR. This type of codes can generate higher Peak Side Lobe (PSL) ratio and lower noise of compressed signal. This paper proposes the use of P4 Polyphase sequences to code ultrasound with a NDT system based on air-coupled piezoelectric transducer. Furthermore, the principle of selecting parameters of P4 Polyphase sequence for obtaining optimal pulse compression effect is also studied. Successful results are presented in molded composite material. A hybrid signal processing method for improvement in SNR up to 12.11dB and in time domain resolution about 35% are achieved when compared with conventional pulse compression technique.

  12. Terahertz-pulse generation by photoionization of air with laser pulses composed of both fundamental and second-harmonic waves.

    PubMed

    Kress, Markus; Löffler, Torsten; Eden, Susanne; Thomson, Mark; Roskos, Hartmut G

    2004-05-15

    Intense radiation in the terahertz (THz) frequency range can be generated by focusing of an ultrashort laser pulse composed of both a fundamental wave and its second-harmonic field into air, as reported previously by Cook et al. [Opt. Lett. 25, 1210 (2000)]. We identify a threshold for THz generation that proves that generation of a plasma is required and that the nonlinearity of air is insufficient to explain our measurements. An additional THz field component generated in the type I beta-barium borate crystal used for second-harmonic generation has to be considered if one is to avoid misinterpretation of this kind of experiment. We conclude with a comparison that shows that the plasma emitter is competitive with other state-of-the-art THz emitters.

  13. Regional variability in diving physiology and behavior in a widely distributed air-breathing marine predator, the South American sea lion (Otaria byronia).

    PubMed

    Hückstädt, Luis A; Tift, Michael S; Riet-Sapriza, Federico; Franco-Trecu, Valentina; Baylis, Alastair M M; Orben, Rachael A; Arnould, John P Y; Sepulveda, Maritza; Santos-Carvallo, Macarena; Burns, Jennifer M; Costa, Daniel P

    2016-08-01

    Our understanding of how air-breathing marine predators cope with environmental variability is limited by our inadequate knowledge of their ecological and physiological parameters. Because of their wide distribution along both coasts of the sub-continent, South American sea lions (Otaria byronia) provide a valuable opportunity to study the behavioral and physiological plasticity of a marine predator in different environments. We measured the oxygen stores and diving behavior of South American sea lions throughout most of its range, allowing us to demonstrate that diving ability and behavior vary across its range. We found no significant differences in mass-specific blood volumes of sea lions among field sites and a negative relationship between mass-specific oxygen storage and size, which suggests that exposure to different habitats and geographical locations better explains oxygen storage capacities and diving capability in South American sea lions than body size alone. The largest animals in our study (individuals from Uruguay) were the shallowest and shortest duration divers, and had the lowest mass-specific total body oxygen stores, while the deepest and longest duration divers (individuals from southern Chile) had significantly larger mass-specific oxygen stores, despite being much smaller animals. Our study suggests that the physiology of air-breathing diving predators is not fixed, but that it can be adjusted, to a certain extent, depending on the ecological setting and or habitat. These adjustments can be thought of as a 'training effect': as the animal continues to push its physiological capacity through greater hypoxic exposure, its breath-holding capacity increases.

  14. Experiment and theoretical study of the propagation of high power microwave pulse in air breakdown environment

    NASA Technical Reports Server (NTRS)

    Kuo, S. P.; Ren, A.; Zhang, Y. S.

    1991-01-01

    In the study of the propagation of high power microwave pulse, one of the main concerns is how to minimize the energy loss of the pulse before reaching the destination. In the very high power region, one has to prevent the cutoff reflection caused by the excessive ionization in the background air. A frequency auto-conversion process which can lead to reflectionless propagation of powerful EM pulses in self-generated plasmas is studied. The theory shows that under the proper conditions the carrier frequency, omega, of the pulse will indeed shift upward with the growth of plasma frequency, omega(sub pe). Thus, the plasma during breakdown will always remain transparent to the pulse (i.e., omega greater than omega(sub pe)). A chamber experiment to demonstrate the frequency auto-conversion during the pulse propagation through the self-generated plasma is then conducted in a chamber. The detected frequency shift is compared with the theoretical result calculated y using the measured electron density distribution along the propagation path of the pulse. Good agreement between the theory and the experiment results is obtained.

  15. Response of air-filled ion chambers to high-intensity radiation pulses

    SciTech Connect

    Plum, M.; Brown, D.

    1993-06-01

    Ion chambers are one of the most popular types of detectors used for beam loss-monitor systems. To provide a foundation for the development of future loss-monitor systems, and to fully characterize the ion chambers in use at LAMPF, we have studied the response of air-filled cylindrical ion chambers to high-intensity, short-duration radiation pulses. The most intense pulses were about 180 rad in 250 ns (the equivalent steady-state dose rate was about 700 Mrad/h). We filled our chambers with nitrogen gas at 760 Torr and air at 600 Torr. The ion chambers were driven into extreme nonlinear response. We hope these data will be used to design loss-monitor systems based on air-filled ion chambers, thus eliminating the need for gas-flow systems and/or airtight ion chambers.

  16. Response of air-filled ion chambers to high-intensity radiation pulses

    SciTech Connect

    Plum, M.; Brown, D.

    1993-01-01

    Ion chambers are one of the most popular types of detectors used for beam loss-monitor systems. To provide a foundation for the development of future loss-monitor systems, and to fully characterize the ion chambers in use at LAMPF, we have studied the response of air-filled cylindrical ion chambers to high-intensity, short-duration radiation pulses. The most intense pulses were about 180 rad in 250 ns (the equivalent steady-state dose rate was about 700 Mrad/h). We filled our chambers with nitrogen gas at 760 Torr and air at 600 Torr. The ion chambers were driven into extreme nonlinear response. We hope these data will be used to design loss-monitor systems based on air-filled ion chambers, thus eliminating the need for gas-flow systems and/or airtight ion chambers.

  17. Effects of nitrite exposure on functional haemoglobin levels, bimodal respiration, and swimming performance in the facultative air-breathing fish Pangasianodon hypophthalmus.

    PubMed

    Lefevre, Sjannie; Jensen, Frank B; Huong, Do T T; Wang, Tobias; Phuong, Nguyen T; Bayley, Mark

    2011-07-01

    In this study we investigated nitrite (NO₂⁻) effects in striped catfish, a facultative air-breather. Fish were exposed to 0, 0.4, and 0.9 mM nitrite for 0, 1, 2, 4, and 7 days, and levels of functional haemoglobin, methaemoglobin (metHb) and nitrosyl haemoglobin (HbNO) were assessed using spectral deconvolution. Plasma concentrations of nitrite, nitrate, chloride, potassium, and sodium were also measured. Partitioning of oxygen consumption was determined to reveal whether elevated metHb (causing functional hypoxia) induced air-breathing. The effects of nitrite on maximum oxygen uptake (MO(2max)) and critical swimming speed (U(crit)) were also assessed. Striped catfish was highly tolerant to nitrite exposure, as reflected by a 96 h LC₅₀ of 1.65 mM and a moderate nitrite uptake into the blood. Plasma levels of nitrite reached a maximum after 1 day of exposure, and then decreased, never exceeding ambient levels. MetHb, HbNO and nitrate (a nitrite detoxification product) also peaked after 1 day and then decreased. Only high levels of nitrite and metHb caused reductions in MO(2max) and U(crit). The response of striped catfish contrasts with that seen in most other fish species and discloses efficient mechanisms of combating nitrite threats. Furthermore, even though striped catfish is an efficient air-breather, this species has the ability to sustain aerobic scope and swimming performance without air-breathing, even when faced with nitrite-induced reductions in blood oxygen carrying capacity. Our study is the first to confirm that high levels of nitrite and metHb reduce MO(2max) and thereby aerobic scope, while more moderate elevations fail to do so. Further studies are needed to elucidate the mechanisms underlying the low nitrite accumulation in striped catfish.

  18. Bad Breath

    MedlinePlus

    ... for lunch. But certain strong-smelling foods like onions and garlic can cause bad breath. So can ... leave behind strong smells, like cabbage, garlic, raw onions, and coffee. If you’re trying to lose ...

  19. Breath odor

    MedlinePlus

    ... drain their stomach. The breath may have an ammonia-like odor (also described as urine-like or " ... Is there a specific odor (such as fish, ammonia, fruit, feces, or alcohol)? Have you recently eaten ...

  20. Air Research

    EPA Pesticide Factsheets

    EPA's air research provides the critical science to develop and implement outdoor air regulations under the Clean Air Act and puts new tools and information in the hands of air quality managers and regulators to protect the air we breathe.

  1. 42 CFR 84.88 - Breathing bag test.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Breathing bag test. 84.88 Section 84.88 Public... RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Self-Contained Breathing Apparatus § 84.88 Breathing bag test. (a) Breathing bags will be tested in an air atmosphere saturated...

  2. 42 CFR 84.88 - Breathing bag test.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Breathing bag test. 84.88 Section 84.88 Public... RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Self-Contained Breathing Apparatus § 84.88 Breathing bag test. (a) Breathing bags will be tested in an air atmosphere saturated...

  3. 42 CFR 84.88 - Breathing bag test.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Breathing bag test. 84.88 Section 84.88 Public... RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Self-Contained Breathing Apparatus § 84.88 Breathing bag test. (a) Breathing bags will be tested in an air atmosphere saturated...

  4. 42 CFR 84.88 - Breathing bag test.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Breathing bag test. 84.88 Section 84.88 Public... RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Self-Contained Breathing Apparatus § 84.88 Breathing bag test. (a) Breathing bags will be tested in an air atmosphere saturated...

  5. 42 CFR 84.88 - Breathing bag test.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Breathing bag test. 84.88 Section 84.88 Public... RESEARCH AND RELATED ACTIVITIES APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Self-Contained Breathing Apparatus § 84.88 Breathing bag test. (a) Breathing bags will be tested in an air atmosphere saturated...

  6. Increased temperature tolerance of the air-breathing Asian swamp eel Monopterus albus after high-temperature acclimation is not explained by improved cardiorespiratory performance.

    PubMed

    Lefevre, S; Findorf, I; Bayley, M; Huong, D T T; Wang, T

    2016-01-01

    This study investigated the hypothesis that in the Asian swamp eel Monopterus albus, an air-breathing fish from south-east Asia that uses the buccopharyngeal cavity for oxygen uptake, the upper critical temperature (TU) is increased by acclimation to higher temperature, and that the increased TU is associated with improved cardiovascular and respiratory function. Monopterus albus were therefore acclimated to 27° C (current average) and 32° C (current maximum temperature as well as projected average within 100-200 years), and both the effect of acclimation and acute temperature increments on cardiovascular and respiratory functions were investigated. Two weeks of heat acclimation increased upper tolerated temperature (TU ) by 2° C from 36·9 ± 0·1° C to 38·9 ± 0·1° C (mean ± s.e.). Oxygen uptake (M˙O2) increased with acclimation temperature, accommodated by increases in both aerial and aquatic respiration. Overall, M˙O2 from air (M˙O2a ) was predominant, representing 85% in 27° C acclimated fish and 80% in 32° C acclimated fish. M˙O2 increased with acute increments in temperature and this increase was entirely accommodated by an increase in air-breathing frequency and M˙O2a . Monopterus albus failed to upregulate stroke volume; rather, cardiac output was maintained through increased heart rate with rising temperature. Overall, acclimation of M. albus to 32° C did not improve its cardiovascular and respiratory performance at higher temperatures, and cardiovascular adaptations, therefore, do not appear to contribute to the observed increase in TU.

  7. Wideband Arrhythmia-Insensitive-Rapid (AIR) Pulse Sequence for Cardiac T1 mapping without Image Artifacts induced by ICD

    PubMed Central

    Hong, KyungPyo; Jeong, Eun-Kee; Wall, T. Scott; Drakos, Stavros G.; Kim, Daniel

    2015-01-01

    Purpose To develop and evaluate a wideband arrhythmia-insensitive-rapid (AIR) pulse sequence for cardiac T1 mapping without image artifacts induced by implantable-cardioverter-defibrillator (ICD). Methods We developed a wideband AIR pulse sequence by incorporating a saturation pulse with wide frequency bandwidth (8.9 kHz), in order to achieve uniform T1 weighting in the heart with ICD. We tested the performance of original and “wideband” AIR cardiac T1 mapping pulse sequences in phantom and human experiments at 1.5T. Results In 5 phantoms representing native myocardium and blood and post-contrast blood/tissue T1 values, compared with the control T1 values measured with an inversion-recovery pulse sequence without ICD, T1 values measured with original AIR with ICD were considerably lower (absolute percent error >29%), whereas T1 values measured with wideband AIR with ICD were similar (absolute percent error <5%). Similarly, in 11 human subjects, compared with the control T1 values measured with original AIR without ICD, T1 measured with original AIR with ICD was significantly lower (absolute percent error >10.1%), whereas T1 measured with wideband AIR with ICD was similar (absolute percent error <2.0%). Conclusion This study demonstrates the feasibility of a wideband pulse sequence for cardiac T1 mapping without significant image artifacts induced by ICD. PMID:25975192

  8. Subnanosecond pulsed X-ray source based on nanosecond discharge in air at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Kostyrya, I. D.; Tarasenko, V. F.

    2009-06-01

    We have studied the characteristics of an X-ray source based on a gas diode filled with air at atmospheric pressure. Driven by a SLEP-150 pulser with a maximum voltage amplitude of ˜140 kV, a pulse full width at half maximum (FWHM) of ˜1 ns, and a leading front width of ˜0.3 ns, a soft X-ray source produces subnanosecond pulses with an FWHM not exceeding 600 ps and an exposure dose of ˜3 mR per pulse. It is shown that the main contribution to the measured exposure dose is due to X-ray quanta with an effective energy of ˜7.5 keV.

  9. Enhanced third harmonic generation in air by two-colour ultrashort laser pulses

    NASA Astrophysics Data System (ADS)

    Nath, Arpita; Dharmadhikari, J. A.; Mathur, D.; Dharmadhikari, A. K.

    2016-09-01

    We report on third harmonic generation in air in a non-filamentation regime using tightly focused, ultrashort laser pulses (1-2 µm wavelength). Enhancement in the third harmonic efficiency is observed from co-propagating laser pulses of two different wavelengths which emanate from the same source—an optical parametric amplifier—and are spatially and temporally overlapped. The third harmonic efficiency for signal wavelength (1.35 µm) is measured to be 4 × 10-3 %; in the presence of idler wavelength (2.09 µm), the corresponding value becomes 1.6 × 10-2 %—a fourfold enhancement in efficiency. The pulse duration of the generated third harmonic is measured to be 37 fs. We examine the possible role of plasma to account for the observed enhancement in third harmonic generation.

  10. High-resolution ion pulse ionization chamber with air filling for the 222Rn decays detection

    NASA Astrophysics Data System (ADS)

    Gavrilyuk, Yu. M.; Gangapshev, A. M.; Gezhaev, A. M.; Etezov, R. A.; Kazalov, V. V.; Kuzminov, V. V.; Panasenko, S. I.; Ratkevich, S. S.; Tekueva, D. A.; Yakimenko, S. P.

    2015-11-01

    The construction and characteristics of the cylindrical ion pulse ionization chamber (CIPIC) with a working volume of 3.2 L are described. The chamber is intended to register α-particles from the 222Rn and its daughter's decays in the filled air sample. The detector is less sensitive to electromagnetic pick-ups and mechanical noises. The digital pulse processing method is proposed to improve the energy resolution of the ion pulse ionization chamber. An energy resolution of 1.6% has been achieved for the 5.49 MeV α-line. The dependence of the energy resolution on high voltage and working media pressure has been investigated and the results are presented.

  11. How to breathe when you are short of breath

    MedlinePlus

    Pursed lip breathing; COPD - pursed lip breathing; Emphysema - pursed lip breathing; Chronic bronchitis - pursed lip breathing; Pulmonary fibrosis - pursed lip breathing; Interstitial lung disease - pursed lip breathing; Hypoxia - pursed lip breathing; ...

  12. Foaming/antifoaming in WTP Tanks Equipped with Pulse Jet Mixer and Air Spargers

    SciTech Connect

    HASSAN, NEGUIB

    2004-06-29

    The River Protection Project-Waste Treatment Plant (RPP-WTP) requested Savannah River National Laboratory (SRNL) to conduct small-scale foaming and antifoam testing using actual Hanford waste and simulants subjected to air sparging. The foaminess of Hanford tank waste solutions was previously demonstrated in SRNL during WTP evaporator foaming and ultrafiltration studies and commercial antifoam DOW Q2-3183A was recommended to mitigate the foam in the evaporators. Currently, WTP is planning to use air spargers in the HLW Lag Storage Vessels, HLW Concentrate Receipt Vessel, and the Ultrafiltration Vessels to assist the performance of the Jet Pulse Mixers (JPM). Sparging of air into WTP tanks will induce a foam layer within the process vessels. The air dispersion in the waste slurries and generated foams could present problems during plant operation. Foam in the tanks could also adversely impact hydrogen removal and mitigation. Antifoam (DOW Q2-3183A) will be used to control foaming in Hanford sparged waste processing tanks. These tanks will be mixed by a combination of pulse-jet mixers and air spargers. The percent allowable foaminess or freeboard in WTP tanks are shown in tables.

  13. Optical emission spectroscopy of nanosecond repetitively pulsed microplasmas generated in air at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Orriere, Thomas; Moreau, Eric; Benard, Nicolas; Pai, David

    2015-09-01

    Nanosecond repetitively pulsed (NRP) microplasmas are generated in room temperature air at atmospheric pressure, in order to investigate the enhanced control of discharge properties via the combined effects of spatial confinement and nanosecond repetitive pulsing. Discharges were generated using high-voltage pulses of 15-ns duration applied to a tungsten pin-to-pin reactor, with inter-electrode gap distances (d) from 2 mm down to 0.2 mm. Optical emission spectroscopy and electrical characterization performed on the discharge indicate that heat transfer and plasma chemistry are influenced by the microplasma geometry. Ultrafast gas heating is observed upon deducing the rotational temperature of N2 from the measured emission spectrum of the N2 (C -->B) (0, 2) and (1, 3) transition bands, but use of the microplasma geometry (d = 0.2 mm) results in lower gas temperatures than in larger discharge gaps (d = 2 mm), including at high pulse repetition frequency (30 kHz) where substantial steady-state gas heating can occur. The measured Stark broadening of the Hα transition is significantly greater than for previously studied NRP discharges in air at atmospheric pressure, indicating that the maximum electron number density may be correspondingly much greater, up to 1018 cm-3. Furthermore, for NRP microplasmas, the intensities of emission from excited atomic ions (O+ and N+) are much higher than those of excited neutral atoms (O and N), in contrast to NRP discharges generated in larger discharge gaps.

  14. Breath sounds

    MedlinePlus

    ... are believed to occur when air opens closed air spaces. Rales can be further described as moist, dry, fine, and coarse. Rhonchi. Sounds that resemble snoring. They occur when air is blocked or air flow becomes rough through ...

  15. How Does a Hopping Kangaroo Breathe?

    ERIC Educational Resources Information Center

    Giuliodori, Mauricio J.; Lujan, Heidi L.; Janbaih, Hussein; DiCarlo, Stephen E.

    2010-01-01

    We developed a model to demonstrate how a hopping kangaroo breathes. Interestingly, a kangaroo uses less energy to breathe while hopping than while standing still. This occurs, in part, because rather than using muscle power to move air into and out of the lungs, air is pulled into (inspiration) and pushed out of (expiration) the lungs as the…

  16. Limiting of microjoule femtosecond pulses in air-guided modes of a hollow photonic-crystal fiber

    SciTech Connect

    Konorov, S.O.; Serebryannikov, E.E.; Sidorov-Biryukov, D.A.; Bugar, I.; Chorvat, D. Jr.; Chorvat, D.; Bloemer, M.J.; Scalora, M.; Miles, R.B.; Zheltikov, A.M.

    2004-08-01

    Self-phase-modulation-induced spectral broadening of laser pulses in air-guided modes of hollow photonic-crystal fibers (PCFs) is shown to allow the creation of fiber-optic limiters for high-intensity ultrashort laser pulses. The performance of PCF limiters is analyzed in terms of elementary theory of self-phase modulation. Experiments performed with 100 fs microjoule pulses of 800 nm Ti:sapphire laser radiation demonstrate the potential of hollow PCFs as limiters for 10 MW ultrashort laser pulses and show the possibility to switch the limiting level of output radiation energy by guiding femtosecond pulses in different PCF modes.

  17. LPV H-infinity Control for the Longitudinal Dynamics of a Flexible Air-Breathing Hypersonic Vehicle

    NASA Astrophysics Data System (ADS)

    Hughes, Hunter Douglas

    This dissertation establishes the method needed to synthesize and simulate an Hinfinity Linear Parameter-Varying (LPV) controller for a flexible air-breathing hypersonic vehicle model. A study was conducted to gain the understanding of the elastic effects on the open loop system. It was determined that three modes of vibration would be suitable for the hypersonic vehicle model. It was also discovered from the open loop study that there is strong coupling in the hypersonic vehicle states, especially between the angle of attack, pitch rate, pitch attitude, and the exible modes of the vehicle. This dissertation outlines the procedure for synthesizing a full state feedback Hinfinity LPV controller for the hypersonic vehicle. The full state feedback study looked at both velocity and altitude tracking for the exible vehicle. A parametric study was conducted on each of these controllers to see the effects of changing the number of gridding points in the parameter space and changing the parameter variation rate limits in the system on the robust performance of the controller. As a result of the parametric study, a 7 x 7 grid ranging from Mach 7 to Mach 9 in velocity and from 70,000 feet to 90,000 feet in altitude, and a parameter variation rate limit of [.5 200]T was used for both the velocity tracking and altitude tracking cases. The resulting Hinfinity robust performances were gamma = 2.2224 for the velocity tracking case and = 1:7582 for the altitude tracking case. A linear analysis was then conducted on five different selected trim points from the Hinfinity LPV controller. This was conducted for the velocity tracking and altitude tracking cases. The results of linear analysis show that there is a slight difference in the response of the Hinfinity LPV controller and the fixed point H infinity controller. For the tracking task, the Hinfinity controller responds more quickly, and has a lower Hinfinity performance value. Next, the H infinity LPV controller was simulated

  18. Nanosecond repetitively pulsed discharges in air at atmospheric pressure—the spark regime

    NASA Astrophysics Data System (ADS)

    Pai, David Z.; Lacoste, Deanna A.; Laux, Christophe O.

    2010-12-01

    Nanosecond repetitively pulsed (NRP) spark discharges have been studied in atmospheric pressure air preheated to 1000 K. Measurements of spark initiation and stability, plasma dynamics, gas temperature and current-voltage characteristics of the spark regime are presented. Using 10 ns pulses applied repetitively at 30 kHz, we find that 2-400 pulses are required to initiate the spark, depending on the applied voltage. Furthermore, about 30-50 pulses are required for the spark discharge to reach steady state, following initiation. Based on space- and time-resolved optical emission spectroscopy, the spark discharge in steady state is found to ignite homogeneously in the discharge gap, without evidence of an initial streamer. Using measured emission from the N2 (C-B) 0-0 band, it is found that the gas temperature rises by several thousand Kelvin in the span of about 30 ns following the application of the high-voltage pulse. Current-voltage measurements show that up to 20-40 A of conduction current is generated, which corresponds to an electron number density of up to 1015 cm-3 towards the end of the high-voltage pulse. The discharge dynamics, gas temperature and electron number density are consistent with a streamer-less spark that develops homogeneously through avalanche ionization in volume. This occurs because the pre-ionization electron number density of about 1011 cm-3 produced by the high frequency train of pulses is above the critical density for streamer-less discharge development, which is shown to be about 108 cm-3.

  19. Aerodynamic characteristics of a series of twin-inlet air-breathing missile configurations. 2: Two-dimensional inlets at supersonic speeds

    NASA Technical Reports Server (NTRS)

    Hayes, C.

    1983-01-01

    A series of air-breathing missile configurations was investigated to provide a data base for the design of such missiles. The model could be configured with either twin axisymmetric or two dimensional inlets. Three circumferential inlet locations were investigated: 90 deg, 115 deg, and 135 deg from the top center. Two vertical wing locations, as well as wingless configurations, were used. Three tail configurations were formed by locating the tail surfaces either on the inlet fairings or on fairings on the body. The surfaces were used to provide pitch control. Two dimensional inlets with extended compression surfaces, used to improve the angle-of-attack performance of the inlets for wingless configurations, were also investigated. The two dimensional inlet configurations are covered.

  20. Design of experiments and principal component analysis as approaches for enhancing performance of gas-diffusional air-breathing bilirubin oxidase cathode

    NASA Astrophysics Data System (ADS)

    Babanova, Sofia; Artyushkova, Kateryna; Ulyanova, Yevgenia; Singhal, Sameer; Atanassov, Plamen

    2014-01-01

    Two statistical methods, design of experiments (DOE) and principal component analysis (PCA) are employed to investigate and improve performance of air-breathing gas-diffusional enzymatic electrodes. DOE is utilized as a tool for systematic organization and evaluation of various factors affecting the performance of the composite system. Based on the results from the DOE, an improved cathode is constructed. The current density generated utilizing the improved cathode (755 ± 39 μA cm-2 at 0.3 V vs. Ag/AgCl) is 2-5 times higher than the highest current density previously achieved. Three major factors contributing to the cathode performance are identified: the amount of enzyme, the volume of phosphate buffer used to immobilize the enzyme, and the thickness of the gas-diffusion layer (GDL). PCA is applied as an independent confirmation tool to support conclusions made by DOE and to visualize the contribution of factors in individual cathode configurations.

  1. Determination of the temporal structure of femtosecond laser pulses by means of laser-induced air plasma

    NASA Astrophysics Data System (ADS)

    Zhang, Nan; Bao, Wen-Xia; Yang, Jing-Hui; Zhu, Xiao-Nong

    2013-05-01

    A new approach is presented to reveal the temporal structure of femtosecond laser pulses by recording the corresponding time-resolved shadowgraphs of the laser-induced air plasma. It is shown that the temporal structures of femtosecond laser pulses, normally not observable by the ordinary intensity autocorrelator, can be detected through intuitively analyzing the ultrafast evolution process of the air plasma induced by the femtosecond laser pulses under examination. With this method, existence of pre- and post-pulses has been clearly unveiled within the time window of ±150 fs in reference with the main 50-fs laser pulses output from a commercial 1-kHz femtosecond laser amplifier. The unique advantage of the proposed method is that it can directly provide valuable information about the pulse temporal structures' effect on the laser-induced ionization or material ablation.

  2. Expression of inducible nitric oxide synthase and nitric oxide production in the mud-dwelled air-breathing singhi catfish, Heteropneustes fossilis under condition of water shortage.

    PubMed

    Choudhury, Mahua G; Saha, Nirmalendu

    2012-12-01

    Nitric oxide (NO) is known to be an important regulator molecule for regulating the multiple signaling pathways and also to play diverse physiological functions in mammals including that of adaptation to various stresses. The present study reports on the production of nitric oxide (NO) and the expression of inducible nitric oxide synthase (iNOS) enzyme that produces NO from l-arginine in the freshwater air-breathing catfish (Heteropneustes fossilis) while dwelling inside the mud peat under semidry conditions. Desiccation stress, due to mud-dwelling for 2 weeks, led to significant increase of NO concentration in different tissues and in plasma of singhi catfish, and also the increase of NO efflux from the perfused liver with an accompanying increase of toxic ammonia level in different tissues. Mud-dwelling also resulted to induction of iNOS activity, expression of iNOS protein in different tissues after 7 days with further increase after 14 days, which otherwise was not detectable in control fish. Further, mud-dwelling also resulted to a significant expression of iNOS mRNA after 7 days with a more increase of mRNA level after 14 days, suggesting that the desiccation stress caused transcriptional regulation of iNOS gene. Immunocytochemical analysis indicated the zonal specific expression of iNOS protein in different tissues. Desiccation stress also led to activation and nuclear translocation of nuclear factor кB (NFкB) in hepatic cells. These results suggest that the activation of iNOS gene under desiccation-induced stresses such as high ammonia load was probably mediated through the activation of one of the major transcription factors, the NFкB. This is the first report of desiccation-induced induction of iNOS gene, iNOS protein expression leading to more generation of NO while living inside the mud peat under condition of water shortage in any air-breathing teleosts.

  3. Molecular cloning, expression analysis and miRNA prediction of vascular endothelial growth factor A (VEGFAa and VEGFAb) in pond loach Misgurnus anguillicaudatus, an air-breathing fish.

    PubMed

    Luo, Weiwei; Liang, Xiao; Huang, Songqian; Cao, Xiaojuan

    2016-12-01

    Vascular endothelial growth factor A (VEGFA) is the most studied and the best characterized member of the VEGF family and is a key regulator of angiogenesis via its ability to affect the proliferation, migration, and differentiation of endothelial cells. In this study, the full-length cDNAs encoding VEGFAa and VEGFAb from pond loach, Misgurnus anguillicaudatus, were isolated. The VEGFAa is constituted by an open reading frame (ORF) of 570bp encoding for a peptide of 189 amino acid residues, a 639bp 5'-untranslated region (UTR) and a 2383bp 3' UTR. The VEGFAb is constituted by an ORF of 687bp encoding for a peptide of 228 amino acid residues, a 560bp 5' UTR and a 1268bp 3' UTR. Phylogenetic analysis indicated that the VEGFAa and VEGFAb of pond loach were conserved in vertebrates. Expression levels of VEGFAa and VEGFAb were detected by RT-qPCR at different development stages of pond loach and in different tissues of 6-month-old, 12-month-old and 24-month-old pond loach. Moreover, eight predicted miRNAs (miR-200, miR-29, miR-218, miR-338, miR-103, miR-15, miR-17 and miR-223) targeting VEGFAa and VEGFAb were validated by an intestinal air-breathing inhibition experiment. This study will be of value for further studies into the function of VEGFA and its corresponding miRNAs, which will shed a light on the vascularization and accessory air-breathing process in pond loach.

  4. Capillary thermal desorption unit for near real-time analysis of VOCs at sub-trace levels. Application to the analysis of environmental air contamination and breath samples.

    PubMed

    Alonso, Mónica; Castellanos, Mar; Martín, José; Sanchez, Juan M

    2009-05-15

    A capillary microtrap thermal desorption module is developed for near real-time analysis of volatile organic compounds (VOCs) at sub-ppbv levels in air samples. The device allows the direct injection of the thermally desorbed VOCs into a chromatographic column. It does not use a second cryotrap to focalize the adsorbed compounds before entering the separation column so reducing the formation of artifacts. The connection of the microtrap to a GC-MS allows the quantitative determination of VOCs in less than 40 min with detection limits of between 5 and 10 pptv (25 degrees C and 760 mm Hg), which correspond to 19-43 ng m(-3), using sampling volumes of 775 cm(3). The microtrap is applied to the analysis of environmental air contamination in different laboratories of our faculty. The results obtained indicate that most volatile compounds are easily diffused through the air and that they also may contaminate the surrounding areas when the habitual safety precautions (e.g., working under fume hoods) are used during the manipulation of solvents. The application of the microtrap to the analysis of VOCs in breath samples suggest that 2,5-dimethylfuran may be a strong indicator of a person's smoking status.

  5. Medical Issues: Breathing

    MedlinePlus

    ... support & care > living with sma > medical issues > breathing Breathing Breathing problems are the most common cause of illness for children with SMA. Breathing Risks In healthy individuals, the muscles between the ...

  6. Acute changes in pulse pressure in relation to constituents of particulate air pollution in elderly persons

    SciTech Connect

    Jacobs, Lotte; Buczynska, Anna; Walgraeve, Christophe; Delcloo, Andy; Potgieter-Vermaak, Sanja; Van Grieken, Rene; Demeestere, Kristof; Dewulf, Jo; Van Langenhove, Herman; De Backer, Hugo; Nemery, Benoit; Nawrot, Tim S.

    2012-08-15

    An increased pulse pressure (difference between systolic and diastolic blood pressure) suggests aortic stiffening. The objective of this study was to examine the acute effects of both particulate matter (PM) mass and composition on blood pressure, among elderly persons. We carried out a panel study in persons living in elderly homes in Antwerp, Belgium. We recruited 88 non-smoking persons, 70% women with a mean age of 83 years (standard deviation: 5.2). Blood pressure was measured and a blood sample was collected on two time points, which were chosen so that there was an exposure contrast in ambient PM exposure. The elemental content of the collected indoor and outdoor PM{sub 2.5} (particulate matter with an aerodynamic diameter <2.5 {mu}m) mass concentration was measured. Oxygenated polycyclic aromatic hydrocarbons (oxy-PAHs) on outdoor PM{sub 10} (particulate matter with an aerodynamic diameter <10 {mu}m) were measured. Each interquartile range increase of 20.8 {mu}g/m Superscript-Three in 24-h mean outdoor PM{sub 2.5} was associated with an increase in pulse pressure of 4.0 mmHg (95% confidence interval: 1.8-6.2), in persons taking antihypertensive medication (n=57), but not in persons not using antihypertensive medication (n=31) (p for interaction: 0.02). Vanadium, iron and nickel contents of PM{sub 2.5} were significantly associated with systolic blood pressure and pulse pressure, among persons on antihypertensive medication. Similar results were found for indoor concentrations. Of the oxy-PAHs, chrysene-5,6-dione and benzo[a]pyrene-3,6-dione were significantly associated with increases in systolic blood pressure and pulse pressure. In elderly, pulse pressure was positively associated with acute increases in outdoor and indoor air pollution, among persons taking antihypertensive medication. These results might form a mechanistic pathway linking air pollution as a trigger of cardiovascular events.

  7. Study of the expansion characteristics of a pulsed plasma jet in air

    NASA Astrophysics Data System (ADS)

    Xuewei, ZHAO; Yonggang, YU; Shanshan, MANG; Xiaochun, XUE

    2017-04-01

    In the background of electrothermal-chemical (ETC) emission, an investigation has been conducted on the characteristics of a freely expanding pulsed plasma jet in air. The evolutionary process of the plasma jet is experimentally investigated using a piezoelectric pressure sensor and a digital high-speed video system. The variation relation in the extended volume, axial displacement and radial displacement of the pulsed plasma jet in atmosphere with time under different discharge voltages and jet breaking pressures is obtained. Based on experiments, a two-dimensional axisymmetric unsteady model is established to analyze the characteristics of the two-phase interface and the variation of flow-field parameters resulting from a pulsed plasma jet into air at a pressure of 1.5–3.5 MPa under three nozzle diameters (3 mm, 4 mm and 5 mm, respectively). The images of the plasma jet reveal a changing shape process, from a quasi-ellipsoid to a conical head and an elongated cylindrical tail. The axial displacement of the jet is always larger than that along the radial direction. The extended volume reveals a single peak distribution with time. Compared to the experiment, the numerical simulation agrees well with the experimental data. The parameters of the jet field mutate at the nozzle exit with a decrease in the parameter pulse near the nozzle, and become more and more gradual and close to environmental parameters. Increasing the injection pressure and nozzle diameter can increase the parameters of the flow field such as the expansion volume of the pulsed plasma jet, the size of the Mach disk and the pressure. In addition, the turbulent mixing in the expansion process is also enhanced.

  8. Nanosecond-pulsed plasma actuation in quiescent air and laminar boundary layer

    NASA Astrophysics Data System (ADS)

    Correale, G.; Michelis, T.; Ragni, D.; Kotsonis, M.; Scarano, F.

    2014-03-01

    An experimental investigation of the working principles of a nanosecond-pulsed dielectric barrier discharge (ns-DBD) plasma actuator has been conducted. Special emphasis is given on the thermal effects accompanying the rapid deposition of energy associated with this kind of actuation. A ns-DBD plasma actuator has been operated in quiescent air conditions as well as in a flat plate laminar boundary layer, with external flow velocity of 5 and 10 m s-1. Schlieren imaging and particle image velocimetry have been used to characterize the actuation. Additionally, the back-current shunt technique has been used for current measurements, from which energy input (per pulse) is calculated. Cases of 10-, 20- and 50-pulse bursts are tested. Schlieren imaging in still air conditions shows the formation of a high-temperature region in the vicinity of the discharge volume. The spatial extent of the visible ‘hot spot’ depends upon the number of pulses within the burst, following a power law. Schlieren imaging of the span-wise effect of the plasma actuator reveals weak compression waves originating from the loci of discharge filaments. The thermal ‘hot spots’ exhibit significant three-dimensionality. Particle image velocimetry is used to measure the velocity field resulting from the ns-DBDs acting on a laminar boundary layer. The disturbance leads to formation of a Tollmien-Schlichting wave train, with spectral content in good agreement with linear stability theory. It is observed that the group length of the wave train is proportional to the number of pulses within the burst.

  9. 1981 AFOSR Contractors Meeting on Air Breathing Combustion Dynamics and Explosion Research, 16-20 November 1981, Clearwater Beach, Florida

    DTIC Science & Technology

    1981-09-01

    Atomi:Mation, Ignition and Combustion of Liquid and Multiphase Fuels in High -Speed Air StreamsIi J. Schetz VPI and State University 9:00 Turbulent Mixing and...Aeronautical Laboratories (AFWAL) 8:35 Injection, Atomt:ation, Ignition and Combustion of Liquid and Multiphase Fuels in High -Speed Air Streams J...State University Transverse injection of liquid and/or liquid -slurry jets into high speed airstreams finds application in several propulsion-related

  10. Filamentation of femtosecond light pulses in the air: Turbulent cells versus long-range clusters

    SciTech Connect

    Skupin, S.; Berge, L.; Mejean, G.; Yu, J.; Kasparian, J.; Salmon, E.; Wolf, J.P.; Rodriguez, M.; Woeste, L.; Bourayou, R.; Sauerbrey, R.

    2004-10-01

    The filamentation of ultrashort pulses in air is investigated theoretically and experimentally. From the theoretical point of view, beam propagation is shown to be driven by the interplay between random nucleation of small-scale cells and relaxation to long waveguides. After a transient stage along which they vary in location and in amplitude, filaments triggered by an isotropic noise are confined into distinct clusters, called 'optical pillars', whose evolution can be approximated by an averaged-in-time two-dimensional (2D) model derived from the standard propagation equations for ultrashort pulses. Results from this model are compared with space- and time-resolved numerical simulations. From the experimental point of view, similar clusters of filaments emerge from the defects of initial beam profiles delivered by the Teramobile laser facility. Qualitative features in the evolution of the filament patterns are reproduced by the 2D reduced model.

  11. Few-cycle pulse laser-induced damage of thin films in air and vacuum ambience

    NASA Astrophysics Data System (ADS)

    Kafka, Kyle R. P.; Talisa, Noah; Tempea, Gabriel; Austin, Drake R.; Neacsu, Catalin; Chowdhury, Enam A.

    2016-12-01

    Laser-induced damage mechanisms were investigated for an ultra-broadband chirped mirror, as part of a systematic study of few-cycle pulse laser-induced damage threshold (LIDT) of widely-used ultra-broadband optics, in vacuum and in air, for single and multi-pulse regimes (S-on-1). Microscopic analysis of damage morphology suggests that three different damage mechanisms occur across the fluence range 0.15-0.4J/cm2, while no ablation was yet observed. The three regimes resulted in shallow swelling (< 10 nm tall), tall blistering ( 150 nm tall), and annular blistering (damage suppressed at highest intensity, forming a ring shape). Descriptions of the potential mechanisms are discussed.

  12. The impacts of magnetic field on repetitive nanosecond pulsed dielectric barrier discharge in air

    NASA Astrophysics Data System (ADS)

    Liu, Yidi; Qi, Haicheng; Fan, Zhihui; Yan, Huijie; Ren, ChunSheng

    2016-11-01

    In this paper, the impacts of the parallel magnetic field on the repetitive nanosecond pulsed dielectric barrier discharge (DBD) are experimentally investigated by optical and electrical measurements. The DBD is generated between two parallel-plate electrodes in the ambient air with the stationary magnetic field on the order of 1 T. The experimental results show that additional microdischarge channels are generated and the photocurrent intensity of the plasma is increased by the magnetic field. The microdischarge channels develop along the magnetic field lines and the diffuse background emission of the discharge is stronger in the DBD with the magnetic field. As the pulse repetition frequency decreases from 1200 Hz to 100 Hz, only the photocurrent intensity of the third discharge that occurred at about 500 ns is noticeably increased by the additional magnetic field. It is believed that the enhancement of the memory effect and the confinement of the magnetic field on electrons are the main reasons.

  13. Nanograting formation on metals in air with interfering femtosecond laser pulses

    SciTech Connect

    Miyazaki, Kenzo E-mail: kmiyazaki@wind.ocn.ne.jp; Miyaji, Godai; Inoue, Toshishige

    2015-08-17

    It is demonstrated that a homogeneous nanograting having the groove period much smaller than the laser wavelength (∼800 nm) can be fabricated on metals in air through ablation induced by interfering femtosecond laser pulses (100 fs at a repetition rate of 10 Hz). Morphological changes on stainless steel and Ti surfaces, observed with an increase in superimposed shots of the laser pulses at a low fluence, have shown that the nanograting is developed through bonding structure change at the interference fringes, plasmonic near-field ablation to create parallel grooves on the fringe, and subsequent excitation of surface plasmon polaritons to regulate the groove intervals at 1/3 or 1/4 of the fringe period over the whole irradiated area. Calculation for a model target having a thin oxide layer on the metal substrate reproduces well the observed groove periods and explains the mechanism for the nanograting formation.

  14. Performance of the AIRS Pulse Tube Coolers and Instrument—A First Year in Space

    NASA Astrophysics Data System (ADS)

    Ross, R. G.; Rodriguez, J. I.

    2004-06-01

    Launched on NASA's Aqua platform on May 4, 2002, JPL's Atmospheric Infrared Sounder (AIRS) instrument has completed a successful first year in space and captured a number of important lessons. AIRS is designed to make precision measurements of air temperature over the surface of the Earth and uses a redundant pair of TRW 55 K pulse tube cryocoolers to cool its sensitive IR focal plane. Soon after the instrument went cold, contamination of cryogenic surfaces led to increased cooler loads and the need for decontamination cycles. In addition, single event transients occurred while passing through the South Atlantic Anomaly (SAA) necessitating corrective actions. In November 2002 the fundamental operating strategy of the AIRS instrument was changed from the original strategy of running a single cooler and having the second cooler as a non-operating backup. Instead, based on a new system-level reliability analysis, both coolers began operation simultaneously. This change resolved the contamination and SAA driven interruptions and has enabled unprecedented levels of continuous science measurements. A review of the AIRS instrument cryogenic performance over the past year is presented including its contamination buildup and interrupt history. The reliability analysis conducted to justify two-cooler operation is also reviewed.

  15. A Novel Method for Quantifying the Inhaled Dose of Air Pollutants Based on Heart Rate, Breathing Rate and Forced Vital Capacity

    PubMed Central

    Greenwald, Roby; Hayat, Matthew J.; Barton, Jerusha; Lopukhin, Anastasia

    2016-01-01

    To better understand the interaction of physical activity and air pollution exposure, it is important to quantify the change in ventilation rate incurred by activity. In this paper, we describe a method for estimating ventilation using easily-measured variables such as heart rate (HR), breathing rate (fB), and forced vital capacity (FVC). We recruited healthy adolescents to use a treadmill while we continuously measured HR, fB, and the tidal volume (VT) of each breath. Participants began at rest then walked and ran at increasing speed until HR was 160–180 beats per minute followed by a cool down period. The novel feature of this method is that minute ventilation (V˙E) was normalized by FVC. We used general linear mixed models with a random effect for subject and identified nine potential predictor variables that influence either V˙E or FVC. We assessed predictive performance with a five-fold cross-validation procedure. We used a brute force selection process to identify the best performing models based on cross-validation percent error, the Akaike Information Criterion and the p-value of parameter estimates. We found a two-predictor model including HR and fB to have the best predictive performance (V˙E/FVC = -4.247+0.0595HR+0.226fB, mean percent error = 8.1±29%); however, given the ubiquity of HR measurements, a one-predictor model including HR may also be useful (V˙E/FVC = -3.859+0.101HR, mean percent error = 11.3±36%). PMID:26809066

  16. Numerical simulations of a pulsed detonation wave augmentation device

    NASA Technical Reports Server (NTRS)

    Cambier, Jean-Luc; Adelman, Henry; Menees, Gene P.

    1993-01-01

    We present here the concept of a hybrid engine for Single Stage To Orbit (SSTO) air-breathing hypersonic vehicle. This concept relies on the use of pulsed detonation waves, both for thrust generation and mixing/combustion augmentation. We describe the principles behind the engine concept, which we call the Pulsed Detonation Wave Augmentor (PDWA). We demonstrate the principles of operation for two possible configurations through numerical simulations. We also attempt a first approximation to engine design, and propose various applications.

  17. Pulse

    MedlinePlus

    ... the underside of the opposite wrist, below the base of the thumb. Press with flat fingers until ... determine if the patient's heart is pumping. Pulse measurement has other uses as well. During or immediately ...

  18. 'Relax and take a deep breath': print media coverage of asthma and air pollution in the United States.

    PubMed

    Mayer, Brian

    2012-09-01

    The media are an important social actor in the construction of the public's understanding of the complex relationships between the environment and their health. This paper explores the print media's coverage of the relationship between asthma and air pollution, focusing on the portrayal of causal certainty between exposure to various forms of air pollution and the etiology and exacerbation of the disease. By examining twenty years of newspaper articles from the New York Timeş Los Angeles Times, and the Washington Post, this paper presents findings on trends across time, within papers, and across key themes. Although the print media's coverage of asthma and its environmental correlates has increased over time, this paper finds relatively little coherence in whether asthma is portrayed as directly caused by air pollution or triggered by exposures. In terms of coverage, outdoor sources of air pollution are covered more frequently - but with less certainty in the discussion of specific relationships. This lack of coherence and specificity in the portrayal of asthma as an environmental disease may weaken regulators' ability to act in passing air pollution reforms by lowering the public's interest and concern.

  19. Spectroscopic and electrical characters of SBD plasma excited by bipolar nanosecond pulse in atmospheric air

    NASA Astrophysics Data System (ADS)

    Zhao, Zi-Lu; Yang, De-Zheng; Wang, Wen-Chun; Yuan, Hao; Zhang, Li; Wang, Sen; Liu, Zhi-Jie; Zhang, Shuai

    2016-05-01

    In this paper, an atmospheric surface barrier discharge (SBD) generated by annular electrodes in quartz tube is presented through employing bipolar nanosecond pulse voltage in air. The discharge images, waveforms of pulse voltage and discharge current, and optical emission spectra emitted from the discharges are recorded and calculated. A spectra simulation method is developed to separate the overlap of the secondary diffraction spectra which are produced by grating in monochromator, and N2 (B3Πg → A3Σu+) and O (3p5P → 3s5S2o) are extracted. The effects of pulse voltage and discharge power on the emission intensities of OH (A2Σ+ → X2Пi), N2+ (B2Σu+ → X2Σg+), N2 (C3Πu → B3Πg), N2 (B3Πg → A3Σu+), and O (3p5P → 3s5S2o) are investigated. It is found that increasing the pulse peak voltage can lead to an easier formation of N2+ (B2Σu+) than that of N2 (C3Πu). Additionally, vibrational and rotational temperatures of the plasma are determined by comparing the experimental and simulated spectra of N2+ (B2Σu+ → X2Σg+), and the results show that the vibrational and rotational temperatures are 3250 ± 20 K and 350 ± 5 K under the pulse peak voltage of 28 kV, respectively.

  20. Cleaning air from multicomponent impurities of volatile organic compounds by pulsed corona discharge

    NASA Astrophysics Data System (ADS)

    Filatov, I. E.; Uvarin, V. V.; Kuznetsov, D. L.

    2016-09-01

    The relative efficiency of the removal of impurities from airflow under the action of pulsed corona discharge has been studied by processing model mixtures of air with volatile organic compounds (VOCs). A method is proposed that allows the influence of the VOC structure on its reactivity to be directly determined. For this purpose, it is suggested to calculate a relative energy parameter characterizing the reactivity of a given impurity component in the framework of the method employed. This approach significantly intensifies the process of determination of the energy parameters of impurity removal and can be used as a criterion for comparative estimation of the efficiency of various methods employing nonequilibrium plasma for cleaning air from VOCs.

  1. Filamentation of femtosecond laser pulse influenced by the air turbulence at various propagation distances

    NASA Astrophysics Data System (ADS)

    Hu, Yuze; Nie, Jinsong; Sun, Ke; Wang, Lei

    2017-01-01

    The spatial and temporal features of femtosecond laser filamentation, which are induced by a laser with power several times higher than the critical power, influenced by strong air turbulence at various propagation distances have been studied numerically. First, a strong turbulence occurring right before focal lens induces a few counter-balanced energy spikes which prevent the filament generation. Second, with the turbulence right before the filamentation, side filaments formed in the periphery towards the outside area leads the filament to be slightly short. Third, with the turbulence right after the lens, numerous energy spikes of the wave profile arise, but they will merge into one filament gradually, leading to a delayed filamentation onset and a shorter filamentation length. The deformation of temporal pulse shape become more sensitive and the supercontinuum (SC) can be weakened more significantly when strong turbulence takes place in air more previously.

  2. 3-D Surface Depression Profiling Using High Frequency Focused Air-Coupled Ultrasonic Pulses

    NASA Technical Reports Server (NTRS)

    Roth, Don J.; Kautz, Harold E.; Abel, Phillip B.; Whalen, Mike F.; Hendricks, J. Lynne; Bodis, James R.

    1999-01-01

    Surface topography is an important variable in the performance of many industrial components and is normally measured with diamond-tip profilometry over a small area or using optical scattering methods for larger area measurement. This article shows quantitative surface topography profiles as obtained using only high-frequency focused air-coupled ultrasonic pulses. The profiles were obtained using a profiling system developed by NASA Glenn Research Center and Sonix, Inc (via a formal cooperative agreement). (The air transducers are available as off-the-shelf items from several companies.) The method is simple and reproducible because it relies mainly on knowledge and constancy of the sound velocity through the air. The air transducer is scanned across the surface and sends pulses to the sample surface where they are reflected back from the surface along the same path as the incident wave. Time-of-flight images of the sample surface are acquired and converted to depth/surface profile images using the simple relation (d = V*t/2) between distance (d), time-of-flight (t), and the velocity of sound in air (V). The system has the ability to resolve surface depression variations as small as 25 microns, is useable over a 1.4 mm vertical depth range, and can profile large areas only limited by the scan limits of the particular ultrasonic system. (Best-case depth resolution is 0.25 microns which may be achievable with improved isolation from vibration and air currents.) The method using an optimized configuration is reasonably rapid and has all quantitative analysis facilities on-line including 2-D and 3-D visualization capability, extreme value filtering (for faulty data), and leveling capability. Air-coupled surface profilometry is applicable to plate-like and curved samples. In this article, results are shown for several proof-of-concept samples, plastic samples burned in microgravity on the STS-54 space shuttle mission, and a partially-coated cylindrical ceramic

  3. The use of superoxide mixtures as air-revitalization chemicals in hyperbaric, self-contained, closed-circuit breathing apparatus

    NASA Technical Reports Server (NTRS)

    Wood, P. C.; Wydeven, T.

    1985-01-01

    In portable breathing apparatus applications at 1 atm, potassium superoxide (KO2) has exhibited low-utilization efficiency of the available oxygen (O2) and diminished carbon dioxide-(CO2) scrubbing capacity caused by the formation of a fused, hydrated-hydroxide/carbonate product coating on the superoxide granules. In earlier work, it was discovered that granules fabricated from an intimate mixture of KO2 and calcium superoxide, Ca(O2)2, did not exhibit formation of a fused product coating and the utilization efficiency with respect to both O2 release and CO2 absorption was superior to KO2 granules when both types of granules were reacted with humidified CO2 under identified conditions. In the work described here, single pellets of KO2, KO2/Ca(O2), mixtures and commercially available KO2 tables and granules were reacted with a flow of humidified CO2 in helium at 1- and 10-atm total pressure and at an initial temperature of 40 C. In the 1-atm flow tests, the reaction rates and utilization efficiency of the KO2/Ca(O2)2 pellets were markedly superior to the KO2 pellets, tablets, and granules when the samples were reacted under identical conditions. However, at 10 atm, the rates of O2 release and CO2 absorption, as well as the utilization efficiencies of all the superoxide samples, were one-third to one-eighth of the values observed at 1 atm. The decrease in reaction performance at 10 atm compared to that at 1 atm has been attributed principally to the lower bulk diffusivity of the CO2 and H2O reactants in helium at the higher pressure and secondarily to the moderation of the reaction temperature caused by the higher heat capacity of the 10-atm helium.

  4. Breathe Deeply.

    ERIC Educational Resources Information Center

    Milshtein, Amy

    2000-01-01

    Discusses the special indoor air quality issues confronting school gyms, locker rooms, and pools; and explores ways to keep the indoor environment healthy. Included are discussions of mold and fungus control and air issues stemming from indoor pools. (GR)

  5. Microwave interferometry of laser induced air plasmas formed by short laser pulses

    SciTech Connect

    Jungwirth, P.W.

    1993-08-01

    Applications for the interaction of laser induced plasmas with electromagnetic probes requires time varying complex conductivity data for specific laser/electromagnetic probe geometries. Applications for this data include plasma switching (Q switching) and the study of ionization fronts. The plasmas were created in laboratory air by 100 ps laser pulses at a wavelength of 1 {mu}m. A long focal length lens focused the laser pulse into WR90 (X band) rectangular waveguide. Two different laser beam/electromagnetic probe geometries were investigated. For the longitudinal geometry, the laser pulse and the microwave counterpropagated inside the waveguide. For the transverse geometry, the laser created a plasma ``post`` inside the waveguide. The effects of the laser beam deliberately hitting the waveguide were also investigated. Each geometry exhibits its own characteristics. This research project focused on the longitudinal geometry. Since the laser beam intensity varies inside the waveguide, the charge distribution inside the waveguide also varies. A 10 GHz CW microwave probe traveled through the laser induced plasma. From the magnitude and phase of the microwave probe, a spatially integrated complex conductivity was calculated. No measurements of the temporal or spatial variation of the laser induced plasma were made. For the ``plasma post,`` the electron density is more uniform.

  6. Weather and air pollutants have an impact on patients with respiratory diseases and breathing difficulties in Munich, Germany

    NASA Astrophysics Data System (ADS)

    Wanka, E. R.; Bayerstadler, A.; Heumann, C.; Nowak, D.; Jörres, R. A.; Fischer, R.

    2014-03-01

    This study determined the influence of various meteorological variables and air pollutants on airway disorders in general, and asthma and/or chronic obstructive pulmonary disease in particular, in Munich, Bavaria, during 2006 and 2007. This was achieved through an evaluation of the daily frequency of calls to medical and emergency call centres, ambulatory medical care visits at general practitioners, and prescriptions of antibiotics for respiratory diseases. Meteorological parameters were extracted from data supplied by the European Centre for Medium Range Weather Forecast. Data on air pollutant levels were extracted from the air quality database of the European Environmental Agency for different measurement sites. In addition to descriptive analyses, a backward elimination procedure was performed to identify variables associated with medical outcome variables. Afterwards, generalised additive models (GAM) were used to verify whether the selected variables had a linear or nonlinear impact on the medical outcomes. The analyses demonstrated associations between environmental parameters and daily frequencies of different medical outcomes, such as visits at GPs and air pressure (-27 % per 10 hPa change) or ozone (-24 % per 10 μg/m3 change). The results of the GAM indicated that the effects of some covariates, such as carbon monoxide on consultations at GPs, or humidity on medical calls in general, were nonlinear, while the type of association varied between medical outcomes. These data suggest that the multiple, complex effect of environmental factors on medical outcomes should not be assumed homogeneous or linear a priori and that different settings might be associated with different types of associations.

  7. Weather and air pollutants have an impact on patients with respiratory diseases and breathing difficulties in Munich, Germany.

    PubMed

    Wanka, E R; Bayerstadler, A; Heumann, C; Nowak, D; Jörres, R A; Fischer, R

    2014-03-01

    This study determined the influence of various meteorological variables and air pollutants on airway disorders in general, and asthma and/or chronic obstructive pulmonary disease in particular, in Munich, Bavaria, during 2006 and 2007. This was achieved through an evaluation of the daily frequency of calls to medical and emergency call centres, ambulatory medical care visits at general practitioners, and prescriptions of antibiotics for respiratory diseases. Meteorological parameters were extracted from data supplied by the European Centre for Medium Range Weather Forecast. Data on air pollutant levels were extracted from the air quality database of the European Environmental Agency for different measurement sites. In addition to descriptive analyses, a backward elimination procedure was performed to identify variables associated with medical outcome variables. Afterwards, generalised additive models (GAM) were used to verify whether the selected variables had a linear or nonlinear impact on the medical outcomes. The analyses demonstrated associations between environmental parameters and daily frequencies of different medical outcomes, such as visits at GPs and air pressure (-27 % per 10 hPa change) or ozone (-24 % per 10 μg/m(3) change). The results of the GAM indicated that the effects of some covariates, such as carbon monoxide on consultations at GPs, or humidity on medical calls in general, were nonlinear, while the type of association varied between medical outcomes. These data suggest that the multiple, complex effect of environmental factors on medical outcomes should not be assumed homogeneous or linear a priori and that different settings might be associated with different types of associations.

  8. Laser prepulse induced plasma channel formation in air and relativistic self focusing of an intense short pulse

    SciTech Connect

    Kumar, Ashok; Dahiya, Deepak; Sharma, A. K.

    2011-02-15

    An analytical formalism is developed and particle-in-cell simulations are carried out to study plasma channel formation in air by a two pulse technique and subsequent relativistic self focusing of the third intense laser through it. The first prepulse causes tunnel ionization of air. The second pulse heats the plasma electrons and establishes a prolonged channel. The third pulse focuses under the combined effect of density nonuniformity of the channel and relativistic mass nonlinearity. A channel with 20% density variation over the spot size of the third pulse is seen to strongly influence relativistic self focusing at normalized laser amplitude {approx}0.4-1. In deeper plasma channels, self focusing is less sensitive to laser amplitude variation. These results are reproduced in particle-in-cell simulations. The present treatment is valid for millimeter range plasma channels.

  9. Seasonality Influence on Biochemical and Hematological Indicators of Stress and Growth of Pirarucu (Arapaima gigas), an Amazonian Air-Breathing Fish

    PubMed Central

    Bezerra, Rosiely Felix; Soares, Maria do Carmo Figueiredo; Santos, Athiê Jorge Guerra; Maciel Carvalho, Elba Verônica Matoso; Coelho, Luana Cassandra Breitenbach Barroso

    2014-01-01

    Environmental factors such as seasonal cycles are the main chronic stress cause in fish increasing incidence of disease and mortality and affecting productive performance. Arapaima gigas (pirarucu) is an Amazonian air-breathing and largest freshwater fish with scales in the world. The captivity development of pirarucu is expanding since it can fatten up over 1 kg per month reaching 10 kg body mass in the first year of fattening. This work was conducted in three periods (April to July 2010, August to November 2010, and December 2010 to March 2011) defined according to rainfall and medium temperatures. Seasonality effect analysis was performed on biochemical (lectin activity, lactate dehydrogenase, and alkaline phosphatase activities) and hematological (total count of red blood cells, hematocrit, hemoglobin, and hematimetric Wintrobe indexes) stress indicators, as well as on growth and wellbeing degree expressed by pirarucu condition factor developed in captivity. All biochemical and hematological stress indicators showed seasonal variations. However, the fish growth was allometrically positive; condition factor high values indicated good state of healthiness in cultivation. These results reinforce the robust feature of pirarucu and represent a starting point for understanding stress physiology and environmental changes during cultivation enabling identification and prevention of fish adverse health conditions. PMID:24578643

  10. Tracking control of a class of non-linear systems with applications to cruise control of air-breathing hypersonic vehicles

    NASA Astrophysics Data System (ADS)

    Sun, Hongfei; Yang, Zhiling; Meng, Bin

    2015-05-01

    A new tracking-control method for general non-linear systems is proposed. A virtual controller and some command references are introduced to asymptotically stabilise the system of the tracking error dynamics. Then, the actual controller and command references are derived by solving a system of linear algebraic equations. Compared with other tracking-control methods in the literature, the tracking-controller design in this paper is simple because it needs only to solve a system of linear algebraic equations. The boundedness of the tracking controller and command references is guaranteed by the solvability of the terminal value problem (TVP) of an ordinary differential equation. For non-linear systems with minimum-phase properties, the TVP is automatically solvable. A numerical example shows that the tracking-control method is still available for some systems with non-minimum-phase properties. To enhance the robustness of the tracking controller, a non-linear disturbance observer (NDO) is introduced to estimate the disturbance. The combination of the tracking controller and the NDO is applied to the tracking control of an air-breathing hypersonic vehicle.

  11. Cloning and expression of StAR during gonadal cycle and hCG-induced oocyte maturation of air-breathing catfish, Clarias gariepinus.

    PubMed

    Sreenivasulu, G; Sridevi, P; Sahoo, P K; Swapna, I; Ge, W; Kirubagaran, R; Dutta-Gupta, A; Senthilkumaran, B

    2009-09-01

    Complementary DNAs encoding steroidogenic acute regulatory protein (StAR) have been isolated from different fish species, yet the relevance of StAR during gonadal cycle and more importantly in final oocyte maturation has not been assessed so far. A cDNA encoding StAR was isolated from the ovarian follicles of air-breathing catfish, Clarias gariepinus. Catfish StAR exhibited 55 to 72% identity at nucleotide level with other vertebrate orthologs. RT-PCR analysis of tissue distribution pattern demonstrated the presence of StAR mRNA in various tissues including gonads, kidney, liver, brain and intestine of catfish. Real-time RT-PCR analysis revealed high expression of StAR mRNA in the pre-spawning phase of ovary while it was low in preparatory, spawning and regressed phases. In testis, maximum expression was noticed during the preparatory phase. During human chorionic gonadotropin (hCG)-induced oocyte maturation, both in vitro and in vivo, StAR mRNA levels were augmented by 2 h and then declined gradually to reach basal levels by 12 h as that of saline-treated controls. Taken together, high level of expression during hCG-induced oocyte maturation vis-à-vis in spawning suggests a role for StAR, in addition to the steroidogenic enzyme genes in final oocyte maturation.

  12. Autochthonous Gut Bacteria in Two Indian Air-breathing Fish, Climbing Perch (Anabas testudineus) and Walking Catfish (Clarias batrachus): Mode of Association, Identification and Enzyme Producing Ability.

    PubMed

    Banerjee, Goutam; Dan, Suhas K; Nandi, Ankita; Ghosh, Pinki; Ray, Arun K

    2015-01-01

    Scanning electron microscopy (SEM) was used to define the location of epithelium-associated bacteria in the gastrointestinal (GI) tract of two Indian air-breathing fish, the climbing perch (Anabas testudineus) and walking catfish (Clarias batrachus). The SEM examination revealed substantial numbers of rod shaped bacterial cells associated with the microvillus brush borders of enterocytes in proximal (PI) and distal regions (DI) of the GI tract of both the fish species. Ten (two each from the PI and DI of climbing perch and three each from the PI and DI of walking catfish) isolated bacterial strains were evaluated for extracellular protease, amylase and cellulase production quantitatively. All the bacterial strains exhibited high cellulolytic activity compared to amylolytic and proteolytic activites. Only two strains, CBH6 and CBH7, isolated from the DI of walking catfish exhibited high proteolytic activity. Maximum cellulase activity was exhibited by the strain, CBF2, isolated from the PI of climbing perch. Six most promising enzyme-producing adherent bacterial strains were identified by 16S rDNA gene sequence analysis. The strain ATH1 (isolated from climbing perch) showed high similarity fo Bacillus amyloliquefaciens whereas, the remaining five strains (isolated from walking catfish) were most closely related to Bacillus licheniformis.

  13. Effect of chemically modified Vulcan XC-72R on the performance of air-breathing cathode in a single-chamber microbial fuel cell.

    PubMed

    Duteanu, N; Erable, B; Senthil Kumar, S M; Ghangrekar, M M; Scott, K

    2010-07-01

    The catalytic activity of modified carbon powder (Vulcan XC-72R) for oxygen reduction reaction (ORR) in an air-breathing cathode of a microbial fuel cell (MFC) has been investigated. Chemical modification was carried out by using various chemicals, namely 5% nitric acid, 0.2N phosphoric acid, 0.2N potassium hydroxide and 10% hydrogen peroxide. Electrochemical study was performed for ORR of these modified carbon materials in the buffer solution pH range of 6-7.5 in the anodic compartment. Although, these treatments influenced the surface properties of the carbon material, as evident from the SEM-EDX analysis, treatment with H(2)PO(4), KOH, and H(2)O(2) did not show significant activity during the electrochemical test. The HNO(3) treated Vulcan demonstrated significant ORR activity and when used in the single-chamber MFC cathode, current densities (1115mA/m(2), at 5.6mV) greater than those for a Pt-supported un-treated carbon cathode were achieved. However, the power density for the latter was higher. Such chemically modified carbon material can be a cheaper alternative for expensive platinum catalyst used in MFC cathode construction.

  14. Nanosecond discharge in air at atmospheric pressure as an x-ray source with high pulse repetition rates

    NASA Astrophysics Data System (ADS)

    Tarasenko, Victor F.

    2006-02-01

    The properties of x-ray radiation and runaway electrons produced using a nanosecond volume discharge are examined. X-ray radiation at a pulse repetition rate of 3kHz was obtained time in a gas diode filled with air at atmospheric pressure. The current pulse width (FWHM) for runaway electrons generated in the gas diode was ˜100ps. A prepulse was observed on an oscilloscope trace of the main runaway electron beam current.

  15. Nanosecond discharge in air at atmospheric pressure as an x-ray source with high pulse repetition rates

    SciTech Connect

    Tarasenko, Victor F.

    2006-02-20

    The properties of x-ray radiation and runaway electrons produced using a nanosecond volume discharge are examined. X-ray radiation at a pulse repetition rate of 3 kHz was obtained time in a gas diode filled with air at atmospheric pressure. The current pulse width (FWHM) for runaway electrons generated in the gas diode was {approx}100 ps. A prepulse was observed on an oscilloscope trace of the main runaway electron beam current.

  16. Breathing and Relaxation

    MedlinePlus

    ... Home Health Insights Stress & Relaxation Breathing and Relaxation Breathing and Relaxation Make an Appointment Ask a Question ... level is often dependent on his or her breathing pattern. Therefore, people with chronic lung conditions may ...

  17. Deep breathing after surgery

    MedlinePlus

    ... page: //medlineplus.gov/ency/patientinstructions/000440.htm Deep breathing after surgery To use the sharing features on ... way to do so is by doing deep breathing exercises. Deep breathing keeps your lungs well-inflated ...

  18. Rapid shallow breathing

    MedlinePlus

    Tachypnea; Breathing - rapid and shallow; Fast shallow breathing; Respiratory rate - rapid and shallow ... Shallow, rapid breathing has many possible medical causes, including: Asthma Blood clot in an artery in the lung Choking Chronic obstructive ...

  19. Characterization of nanosecond, femtosecond and dual pulse laser energy deposition in air for flow control and diagnostic applications

    NASA Astrophysics Data System (ADS)

    Limbach, Christopher M.

    The non-resonant heating of gases by laser irradiation and plasma formation has been under investigation since the development of 100 megawatt peak power, Q-switched, nanosecond pulse duration lasers and the commensurate discovery of laser air sparks. More recently, advances in mode-locking and chirped pulse amplification have led to commercially available 100 gigawatt peak power, femtosecond pulse duration lasers with a rapidly increasing number of applications including remote sensing, laser spectroscopy, aerodynamic flow control, and molecular tagging velocimetry and thermometry diagnostics. This work investigates local energy deposition and gas heating produced by focused, non-resonant, nanosecond and femtosecond laser pulses in the context of flow control and laser diagnostic applications. Three types of pulse configurations were examined: single nanosecond pulses, single femtosecond pulses and a dual pulse approach whereby a femtosecond pre-ionizing pulse is followed by a nanosecond pulse. For each pulse configuration, optical and laser diagnostic techniques were applied in order to qualitatively and quantitatively measure the plasmadynamic and hydrodynamic processes accompanying laser energy deposition. Time resolved imaging of optical emission from the plasma and excited species was used to qualitatively examine the morphology and decay of the excited gas. Additionally, Thomson scattering and Rayleigh scattering diagnostics were applied towards measurements of electron temperature, electron density, gas temperature and gas density. Gas heating by nanosecond and dual pulse laser plasmas was found to be considerably more intense than femtosecond plasmas, irrespective of pressure, while the dual pulse approach provided substantially more controllability than nanosecond pulses alone. In comparison, measurements of femtosecond laser heating showed a strong and nonlinearly dependence on focusing strength. With comparable pulse energy, measurements of maximum

  20. A large-area diffuse air discharge plasma excited by nanosecond pulse under a double hexagon needle-array electrode.

    PubMed

    Liu, Zhi-Jie; Wang, Wen-Chun; Yang, De-Zheng; Wang, Sen; Zhang, Shuai; Tang, Kai; Jiang, Peng-Chao

    2014-01-01

    A large-area diffuse air discharge plasma excited by bipolar nanosecond pulse is generated under a double hexagon needle-array electrode at atmospheric pressure. The images of the diffuse discharge, electric characteristics, and the optical emission spectra emitted from the diffuse air discharge plasma are obtained. Based on the waveforms of pulse voltage and current, the power consumption, and the power density of the diffuse air discharge plasma are investigated under different pulse peak voltages. The electron density and the electron temperature of the diffuse plasma are estimated to be approximately 1.42×10(11) cm(-3) and 4.4 eV, respectively. The optical emission spectra are arranged to determine the rotational and vibrational temperatures by comparing experimental with simulated spectra. Meanwhile, the rotational and vibrational temperatures of the diffuse discharge plasma are also discussed under different pulse peak voltages and pulse repetition rates, respectively. In addition, the diffuse air discharge plasma can form an area of about 70×50 mm(2) on the surface of dielectric layer and can be scaled up to the required size.

  1. Development and Characterization Testing of an Air Pulsation Valve for a Pulse Detonation Engine Supersonic Parametric Inlet Test Section

    NASA Technical Reports Server (NTRS)

    Tornabene, Robert

    2005-01-01

    In pulse detonation engines, the potential exists for gas pulses from the combustor to travel upstream and adversely affect the inlet performance of the engine. In order to determine the effect of these high frequency pulses on the inlet performance, an air pulsation valve was developed to provide air pulses downstream of a supersonic parametric inlet test section. The purpose of this report is to document the design and characterization tests that were performed on a pulsation valve that was tested at the NASA Glenn Research Center 1x1 Supersonic Wind Tunnel (SWT) test facility. The high air flow pulsation valve design philosophy and analyses performed are discussed and characterization test results are presented. The pulsation valve model was devised based on the concept of using a free spinning ball valve driven from a variable speed electric motor to generate air flow pulses at preset frequencies. In order to deliver the proper flow rate, the flow port was contoured to maximize flow rate and minimize pressure drop. To obtain sharp pressure spikes the valve flow port was designed to be as narrow as possible to minimize port dwell time.

  2. Generation of sub-two-cycle mid-infrared pulses by four-wave mixing through filamentation in air.

    PubMed

    Fuji, Takao; Suzuki, Toshinori

    2007-11-15

    Generation of sub-two-cycle, microjoule pulses in the mid-infrared region is demonstrated. Fundamental and second-harmonic pulses of 25 fs Ti:sapphire amplifier output were focused into the air to produce extremely broadband mid-infrared pulses by four-wave difference-frequency generation through the filamentation. The full width at half-maximum of the spectral bandwidth reaches one octave (2.5-5.5 microm), which is sufficiently broad for sub-single-cycle pulse generation. The pulse width was estimated to be 13 fs, without any compressors, by cross-correlation frequency resolved optical gating. The output energy of more than a few microjoule is sufficient for spectroscopy.

  3. Evolution of archosaurian body plans: skeletal adaptations of an air-sac-based breathing apparatus in birds and other archosaurs.

    PubMed

    O'Connor, Patrick Michael

    2009-10-01

    Living birds represent the only extant sauropsid group in which pulmonary air sacs pneumatize the postcranial skeleton. Notable in this regard is an extraordinary degree of variability, ranging from species that are completely apneumatic to those characterized by air within the entire postcranial skeleton. Although numerous factors (e.g., body size) have been linked with "relative" pneumaticity, comparative studies examining this system remain sparse. This project sought to (1) characterize whole-body patterns of skeletal pneumaticity in distantly related neognath birds and (2) evaluate putative relationships among relative pneumaticity, body size and locomotor specializations. Pneumaticity profiles were established for 52 species representing 10 higher-level groups. Although comparisons reveal relatively conserved patterns within most lower-level clades, apparent size- and locomotor-thresholds do impart predictable deviations from the clade norm. For example, the largest flying birds (vultures, pelicans) exhibit hyperpneumaticity (i.e., pneumaticity of distal limb segments) relative to smaller members of their respective clades. In contrast, skeletal pneumaticity has been independently lost in multiple lineages of diving specialists (e.g., penguins, auks). The application of pneumaticity profiling to extinct archosaurs reveals similar trends in body size evolution, particularly when examining patterns of pneumaticity in a size-diverse assemblage of pterosaurs (flying "reptiles"). As a fundamental organizing system, skeletal pneumaticity may play a role in relaxing constraints on body size evolution by allowing volumetric increases without concomitant increases in body mass. Not only might this be critical for taxa (birds, pterosaurs) exploiting the energetically costly aerial environment, but could be beneficial for any large-bodied terrestrial vertebrates such as the dinosaurs.

  4. 46 CFR 197.450 - Breathing gas tests.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Breathing gas tests. 197.450 Section 197.450 Shipping....450 Breathing gas tests. The diving supervisor shall insure that— (a) The output of each air... or modification. (b) Purchased supplies of breathing mixtures supplied to a diver are checked...

  5. 46 CFR 197.450 - Breathing gas tests.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Breathing gas tests. 197.450 Section 197.450 Shipping....450 Breathing gas tests. The diving supervisor shall insure that— (a) The output of each air... or modification. (b) Purchased supplies of breathing mixtures supplied to a diver are checked...

  6. 46 CFR 197.450 - Breathing gas tests.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Breathing gas tests. 197.450 Section 197.450 Shipping....450 Breathing gas tests. The diving supervisor shall insure that— (a) The output of each air... or modification. (b) Purchased supplies of breathing mixtures supplied to a diver are checked...

  7. 46 CFR 197.450 - Breathing gas tests.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Breathing gas tests. 197.450 Section 197.450 Shipping....450 Breathing gas tests. The diving supervisor shall insure that— (a) The output of each air... or modification. (b) Purchased supplies of breathing mixtures supplied to a diver are checked...

  8. 46 CFR 197.450 - Breathing gas tests.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Breathing gas tests. 197.450 Section 197.450 Shipping....450 Breathing gas tests. The diving supervisor shall insure that— (a) The output of each air... or modification. (b) Purchased supplies of breathing mixtures supplied to a diver are checked...

  9. 42 CFR 84.152 - Breathing tube test; minimum requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Breathing tube test; minimum requirements. 84.152... Respirators § 84.152 Breathing tube test; minimum requirements. (a)(1) Type A and Type B supplied-air respirators shall employ one or two flexible breathing tubes of the nonkinking type which extend from...

  10. 42 CFR 84.172 - Breathing tubes; minimum requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Breathing tubes; minimum requirements. 84.172... Air-Purifying Particulate Respirators § 84.172 Breathing tubes; minimum requirements. Flexible breathing tubes used in conjunction with respirators shall be designed and constructed to prevent:...

  11. 42 CFR 84.172 - Breathing tubes; minimum requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Breathing tubes; minimum requirements. 84.172... Air-Purifying Particulate Respirators § 84.172 Breathing tubes; minimum requirements. Flexible breathing tubes used in conjunction with respirators shall be designed and constructed to prevent:...

  12. 42 CFR 84.152 - Breathing tube test; minimum requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Breathing tube test; minimum requirements. 84.152... Respirators § 84.152 Breathing tube test; minimum requirements. (a)(1) Type A and Type B supplied-air respirators shall employ one or two flexible breathing tubes of the nonkinking type which extend from...

  13. 42 CFR 84.172 - Breathing tubes; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Breathing tubes; minimum requirements. 84.172... Air-Purifying Particulate Respirators § 84.172 Breathing tubes; minimum requirements. Flexible breathing tubes used in conjunction with respirators shall be designed and constructed to prevent:...

  14. 42 CFR 84.152 - Breathing tube test; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Breathing tube test; minimum requirements. 84.152... Respirators § 84.152 Breathing tube test; minimum requirements. (a)(1) Type A and Type B supplied-air respirators shall employ one or two flexible breathing tubes of the nonkinking type which extend from...

  15. 42 CFR 84.172 - Breathing tubes; minimum requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Breathing tubes; minimum requirements. 84.172... Air-Purifying Particulate Respirators § 84.172 Breathing tubes; minimum requirements. Flexible breathing tubes used in conjunction with respirators shall be designed and constructed to prevent:...

  16. 42 CFR 84.172 - Breathing tubes; minimum requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Breathing tubes; minimum requirements. 84.172... Air-Purifying Particulate Respirators § 84.172 Breathing tubes; minimum requirements. Flexible breathing tubes used in conjunction with respirators shall be designed and constructed to prevent:...

  17. 42 CFR 84.152 - Breathing tube test; minimum requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Breathing tube test; minimum requirements. 84.152... Respirators § 84.152 Breathing tube test; minimum requirements. (a)(1) Type A and Type B supplied-air respirators shall employ one or two flexible breathing tubes of the nonkinking type which extend from...

  18. 42 CFR 84.152 - Breathing tube test; minimum requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Breathing tube test; minimum requirements. 84.152... Respirators § 84.152 Breathing tube test; minimum requirements. (a)(1) Type A and Type B supplied-air respirators shall employ one or two flexible breathing tubes of the nonkinking type which extend from...

  19. Breathing In

    ERIC Educational Resources Information Center

    Mahoney, Daniel P.

    2008-01-01

    Healthful indoor air quality (IAQ) in education facilities can improve the learning environment for students, enhance teacher job satisfaction, and reduce staff complaints. A proactive indoor air quality program helps identify and eliminate conditions that could lead to IAQ complaints, building-related illnesses, and workers' compensation claims.…

  20. Breathing Easier.

    ERIC Educational Resources Information Center

    Smolkin, Rachel

    2003-01-01

    Describes use of Environmental Protection Agency's Tools for Schools tool kit to improve indoor air quality aimed specifically at eliminating asthma triggers such as dust mites and mold. Includes several examples of school district efforts to reduce or eliminate student health problems associated with poor indoor air quality. (PKP)

  1. Prediction of blood:air and fat:air partition coefficients of volatile organic compounds for the interpretation of data in breath gas analysis6

    PubMed Central

    Kramer, Christian; Mochalski, Paweł; Unterkofler, Karl; Agapiou, Agapios; Ruzsanyi, Veronika; Liedl, Klaus R

    2016-01-01

    In this article, a database of blood:air and fat:air partition coefficients (λb:a and λf:a) is reported for estimating 1678 volatile organic compounds recently reported to appear in the volatilome of the healthy human. For this purpose, a quantitative structure-property relationship (QSPR) approach was applied and a novel method for Henry’s law constants prediction developed. A random forest model based on Molecular Operating Environment 2D (MOE2D) descriptors based on 2619 literature-reported Henry’s constant values was built. The calculated Henry’s law constants correlate very well (R2test = 0.967) with the available experimental data. Blood:air and fat:air partition coefficients were calculated according to the method proposed by Poulin and Krishnan using the estimated Henry’s constant values. The obtained values correlate reasonably well with the experimentally determined ones for a test set of 90 VOCs (R2 = 0.95). The provided data aim to fill in the literature data gap and further assist the interpretation of results in studies of the human volatilome. PMID:26815030

  2. Spectrum superbroadening in self-focusing of pulsed vortex beams in air

    SciTech Connect

    Vlasov, R A; Volkov, V M; Dedkov, D Yu

    2013-02-28

    Based on numerical simulations, self-focusing of conventional and vortex optical beams produced by femtosecond pulses in air is comparatively analysed. It is shown that, other things being equal, in the case of self-focusing of vortex beams, a significantly higher concentration of energy is observed in the focal spot. As a consequence, there also arises a significant broadening of the space - time spectrum of the focused vortex beam as compared with the vortex-free self-focusing regime. The azimuthal instability of the vortex structure at small initial perturbations of the wave front leads to filamentation of radiation at distances greater than is usually the length of self-focusing. (nonlinear optical phenomena)

  3. Pulsed laser deposition of air-sensitive hydride epitaxial thin films: LiH

    SciTech Connect

    Oguchi, Hiroyuki; Isobe, Shigehito; Kuwano, Hiroki; Shiraki, Susumu; Hitosugi, Taro; Orimo, Shin-ichi

    2015-09-01

    We report on the epitaxial thin film growth of an air-sensitive hydride, lithium hydride (LiH), using pulsed laser deposition (PLD). We first synthesized a dense LiH target, which is key for PLD growth of high-quality hydride films. Then, we obtained epitaxial thin films of [100]-oriented LiH on a MgO(100) substrate at 250 °C under a hydrogen pressure of 1.3 × 10{sup −2} Pa. Atomic force microscopy revealed that the film demonstrates a Stranski-Krastanov growth mode and that the film with a thickness of ∼10 nm has a good surface flatness, with root-mean-square roughness R{sub RMS} of ∼0.4 nm.

  4. EVALUATION OF FOAMING/ANTIFOAMING IN WTP TANKS EQUIPPED WITH PULSE JET MIXERS AND AIR SPARGERS

    SciTech Connect

    JONES, TIMOTHYM.

    2004-09-01

    has no significant effect on pH or chemical composition of the slurry. The rheology is also not impacted by air sparging. The primary effect of air sparging is the removal of water by the dry air passing through the column and exiting in a saturated condition. This effect can be mitigated by adding water back to the column or vessel during sparging. Therefore, an initial charge of 350 mg/L antifoam (Dow Q2-3183A) followed by small batch additions of 70 mg/LQ2-3183A every 24 hours is recommended for use in WTP tanks equipped with air spargers and pulse jets based upon the testing done in this study. However, this recommendation is based upon a limited set of antifoam degradation data developed for the WTP evaporator R and T program. Therefore, additional investigation into refining the kinetic behavior of Q2 antifoam under radiation dose is recommended.

  5. Electrochemically exfoliated graphene anodes with enhanced biocurrent production in single-chamber air-breathing microbial fuel cells.

    PubMed

    Najafabadi, Amin Taheri; Ng, Norvin; Gyenge, Előd

    2016-07-15

    Microbial fuel cells (MFCs) present promising options for environmentally sustainable power generation especially in conjunction with waste water treatment. However, major challenges remain including low power density, difficult scale-up, and durability of the cell components. This study reports enhanced biocurrent production in a membrane-free MFC, using graphene microsheets (GNs) as anode and MnOx catalyzed air cathode. The GNs are produced by ionic liquid assisted simultaneous anodic and cathodic electrochemical exfoliation of iso-molded graphite electrodes. The GNs produced by anodic exfoliation increase the MFC peak power density by over 300% compared to plain carbon cloth (i.e., 2.85Wm(-2) vs 0.66Wm(-2), respectively), and by 90% compared to conventional carbon black (i.e., Vulcan XC-72) anode. These results exceed previously reported power densities for graphene-containing MFC anodes. The fuel cell polarization results are corroborated by electrochemical impedance spectroscopy indicating three times lower charge transfer resistance for the GN anode. Material characterizations suggest that the best performing GN samples were of relatively smaller size (~500nm), with higher levels of ionic liquid induced surface functionalization during the electrochemical exfoliation process.

  6. Streamer-to-spark transition initiated by a nanosecond overvoltage pulsed discharge in air

    NASA Astrophysics Data System (ADS)

    Lo, A.; Cessou, A.; Lacour, C.; Lecordier, B.; Boubert, P.; Xu, D. A.; Laux, C. O.; Vervisch, P.

    2017-04-01

    This study is focused on the streamer-to-spark transition generated by an overvoltage nanosecond pulsed discharge under atmospheric pressure air in order to provide a quantitative insight into plasma-assisted ignition. The discharge is generated in atmospheric pressure air by the application of a positive high voltage pulse of 35 kV to pin-to-pin electrodes and a rise time of 5 ns. The generated discharge consists of a streamer phase with high voltage and high current followed by a spark phase characterized by a low voltage and a decreasing current in several hundreds of nanosecond. During the streamer phase, the gas temperature measured by optical emission spectroscopy related to the second positive system of nitrogen shows an ultra-fast gas heating up to 1200 K at 15 ns after the current rise. This ultra-fast gas heating, due to the quenching of electronically excited species by oxygen molecules, is followed by a quick dissociation of molecules and then the discharge transition to a spark. At this transition, the discharge contracts toward the channel axis and evolves into a highly conducting thin column. The spark phase is characterized by a high degree of ionization of nitrogen and oxygen atoms shown by the electron number density and temperature measured from optical emission spectroscopy measurements of N+ lines. Schlieren imaging and optical emission spectroscopy techniques provide the time evolution of the spark radius, from which the initial pressure in the spark is estimated. The expansion of the plasma is adiabatic in the early phase. The electronic temperature and density during this phase allows the determination of the isentropic coefficient. The value around 1.2–1.3 is coherent with the high ionization rate of the plasma in the early phase. The results obtained in this study provide a database and the initial conditions for the validation of numerical simulations of the ignition by plasma discharge.

  7. Dynamic Characteristics of Positive Pulsed Dielectric Barrier Discharge for Ozone Generation in Air

    NASA Astrophysics Data System (ADS)

    Wei, Linsheng; Peng, Bangfa; Li, Ming; Zhang, Yafang; Hu, Zhaoji

    2016-02-01

    A comprehensive dynamic model consisting of 66 reactions and 24 species is developed to investigate the dynamic characteristics of ozone generation by positive pulsed dielectric barrier discharge (DBD) using parallel-plate reactor in air. The electron energy conservation equation is coupled to the electron continuity equation, the heavy species continuity equation, and Poisson's equation for a better description. The reliability of the model is experimentally confirmed. The model can be used to predict the temporal and spatial evolution of species, as well as streamer propagation. The simulation results show that electron density increases nearly exponentially in the direction to the anode at the electron avalanche. Streamer propagation velocity is about 5.26 × 104 m/s from anode to cathode in the simulated condition. The primary positive ion, negative ion, and excited species are O2+, O3- and O2(1Δg) in pulsed DBD in air, respectively. N2O has the largest density among nitrogen oxides. e and N2+ densities in the streamer head increase gradually to maximum values with the development of the streamer. Meanwhile, the O2+, O, O3, N2(A3Σ) and N2O densities reach maximum values in the vicinity of the anode. supported by National Natural Science Foundation of China (Nos. 51366012 and 11105067), Jiangxi Province Young Scientists (Jinggang Star) Cultivation Plan of China (No. 20133BCB23008), Natural Science Foundation of Jiangxi, China (No. 20151BAB206047) and Jiangxi Province Higher School Science and Technology Landing Plan of China (No. KJLD-14015)

  8. An air-cooled pulse tube cryocooler with 50 W cooling capacity at 77 K

    NASA Astrophysics Data System (ADS)

    Hu, Jianying; Wang, Xiaotao; Zhu, Jian; Chen, Shuai; Luo, Ercang; Li, Haibin

    2014-01-01

    A pulse tube cryocooler with 50 W cooling capacity at 77 K is developed to cool superconducting devices mounted on automobiles. The envisioned cryocooler weight is less than 40 kg, and the input electric power is less than 1 kW. To achieve these requirements, the working frequency is increased to 75 Hz, and the dual-opposed pistons use gas bearings to reduce compressor weight and volume. The heat from the main heat exchanger is rejected by forced convective air instead of water. The compressor and the cold finger are carefully matched to improve the efficiency. The details of these will be presented in this paper. After some adjustment, a no load temperature for the pulse tube cryocooler of 40 K was achieved with 1 kW input electric power in surroundings at 298 K. At 77 K, the cooling capacity is 50 W. If the main heat exchanger is cooled by water at 293 K, the cooling capacity increases to 64 W, corresponding to a relative Carnot efficiency of 18%.

  9. Nanosecond Repetitively Pulsed Discharges in Air at Atmospheric Pressure -- Experiment and Theory of Regime Transitions

    NASA Astrophysics Data System (ADS)

    Pai, David; Lacoste, Deanna; Laux, Christophe

    2009-10-01

    In atmospheric pressure air preheated from 300 to 1000 K, the Nanosecond Repetitively Pulsed (NRP) method has been used to generate corona, glow, and spark discharges. Experiments have been performed to determine the parameter space (applied voltage, pulse repetition frequency, ambient gas temperature, and inter-electrode gap distance) of each discharge regime. Notably, there is a minimum gap distance for the existence of the glow regime that increases with decreasing gas temperature. A theory is developed to describe the Corona-to-Glow (C-G) and Glow-to-Spark (G-S) transitions for NRP discharges. The C-G transition is shown to depend on the Avalanche-to-Streamer Transition (AST) as well as the electric field strength in the positive column. The G-S transition is due to the thermal ionization instability. The minimum gap distance for the existence of the glow regime can be understood by considering that the applied voltage of the AST must be lower than that of the thermal ionization instability. This is a previously unknown criterion for generating glow discharges, as it does not correspond to the Paschen minimum or to the Meek-Raether criterion.

  10. Experimental establishment of the erosion nature of the pulsed low-threshold optical breakdown of air near the surface

    NASA Astrophysics Data System (ADS)

    Min'ko, L. Ia.; Chumakov, A. N.; Chivel', Iu. A.

    1988-08-01

    Nanosecond kinetic spectroscopy methods are used to establish the erosion nature of the pulsed low-threshold optical breakdown of air near the surface upon exposure of certain metals (indium, lead) to microsecond neodymium and CO2 laser radiation. It is shown that this optical breakdown of air by CO2 laser radiation is accompanied by the formation of a plasma spectrum which is optically thin in the visible range.

  11. Respiratory symptoms and peak expiratory flow in children with asthma in relation to volatile organic compounds in exhaled breath and ambient air.

    PubMed

    Delfino, Ralph J; Gong, Henry; Linn, William S; Hu, Ye; Pellizzari, Edo D

    2003-09-01

    Indoor volatile organic compounds (VOCs) have been associated with asthma, but there is little epidemiologic work on ambient exposures, and no data on relationships between respiratory health and exhaled breath VOCs, which is a biomarker of VOC exposure. We recruited 26 Hispanic children with mild asthma in a Los Angeles community with high VOC levels near major freeways and trucking routes. Two dropped out, three had invalid peak expiratory flow (PEF) or breath VOC data, leaving 21. Children filled out symptom diaries and performed PEF maneuvers daily, November 1999-January 2000. We aimed to collect breath VOC samples on asthma episode and baseline symptom-free days, but six subjects only gave samples on symptom-free days. We analyzed 106 breath samples by GC-MS. Eight VOCs were quantifiable in >75% of breath samples (benzene, methylene chloride, styrene, tetrachloroethylene, toluene, m,p-xylene, o-xylene, and p-dichlorobenzene). Generalized estimating equation and mixed linear regression models for VOC exposure-response relationships controlled for temperature and respiratory infections. We found marginally positive associations between bothersome or more severe asthma symptoms and same day breath concentrations of benzene [odds ratio (OR) 2.03, 95% confidence interval (CI) 0.80, 5.11] but not other breath VOCs. Ambient petroleum-related VOCs measured on the same person-days as breath VOCs showed notably stronger associations with symptoms, including toluene, m,p-xylene, o-xylene, and benzene (OR 5.93, 95% CI 1.64, 21.4). On breath sample days, symptoms were also associated with 1-h ambient NO(2), OR 8.13 (1.52, 43.4), and SO(2), OR 2.36 (1.16, 4.81). Consistent inverse relationships were found between evening PEF and the same ambient VOCs, NO(2), and SO(2). There were no associations with O(3). Given the high traffic density of the region, stronger associations for ambient than for breath VOCs suggest that ambient VOC measurements were better markers for daily

  12. Breathe Easy.

    ERIC Educational Resources Information Center

    Epstien, Barb

    1999-01-01

    Examines the different indoor air pollutants that can be found in schools and tips for controlling them. Also discussed is building analysis for monitoring biocontaminants including allergens and molds. (GR)

  13. Study on decomposition of indoor air contaminants by pulsed atmospheric microplasma.

    PubMed

    Shimizu, Kazuo; Kuwabara, Tomoya; Blajan, Marius

    2012-10-29

    Decomposition of formaldehyde (HCHO) by a microplasma reactor in order to improve Indoor Air Quality (IAQ) was achieved. HCHO was removed from air using one pass through reactor treatment (5 L/min). From an initial concentration of HCHO of 0.7 ppm about 96% was removed in one pass treatment using a discharge power of 0.3 W provided by a high voltage amplifier and a Marx Generator with MOSFET switches as pulsed power supplies. Moreover microplasma driven by the Marx Generator did not generate NOx as detected by a chemiluminescence NOx analyzer. In the case of large volume treatment the removal ratio of HCHO (initial concentration: 0.5 ppm) after 60 minutes was 51% at 1.2 kV when using HV amplifier considering also a 41% natural decay ratio of HCHO. The removal ratio was 54% at 1.2 kV when a Marx Generator energized the electrodes with a 44% natural decay ratio after 60 minutes of treatment.

  14. Ambient salinity modifies the action of triiodothyronine in the air-breathing fish Anabas testudineus Bloch: effects on mitochondria-rich cell distribution, osmotic and metabolic regulations.

    PubMed

    Peter, M C Subhash; Leji, J; Peter, Valsa S

    2011-04-01

    The hydromineral and metabolic actions of thyroid hormone on osmotic acclimation in fish is less understood. We, therefore, studied the short-term action of triiodothyronine (T(3)), the potent thyroid hormone, on the distribution and the function of gill mitochondria-rich (MR) cells and on the whole body hydromineral and metabolic regulations of air-breathing fish (Anabas testudineus) adapted to either freshwater (FW) or acclimated to seawater (SA; 30 g L(-1)). As expected, 24 h T(3) injection (100 ng g(-1)) elevated (P<0.05) plasma T(3) but classically reduced (P<0.05) plasma T(4). The higher Na(+), K(+)-ATPase immunoreactivity and the varied distribution pattern of MR cells in the gills of T(3)-treated FW and SA fish, suggest an action of T(3) on gill MR cell migration, though the density of these cells remained unchanged after T(3) treatment. The ouabain-sensitive Na(+), K(+)-ATPase activity, a measure of hydromineral competence, showed increases (P<0.05) in the gills of both FW and SA fish after T(3) administration, but inhibited (P<0.05) in the kidney of the FW fish and not in the SA fish. Exogenous T(3) reduced glucose (P<0.05) and urea (P<0.05) in the plasma of FW fish, whereas these metabolites were elevated (P<0.05) in the SA fish, suggesting a modulatory effect of ambient salinity on the T(3)-driven metabolic actions. Our data identify gill MR cell as a target for T(3) action as it promotes the spatial distribution and the osmotic function of these cells in both fresh water and in seawater. The results besides confirming the metabolic and osmotic actions of T(3) in fish support the hypothesis that the differential actions of T(3) may be due to the direct influence of ambient salinity, a major environmental determinant that alters the osmotic and metabolic strategies of fish.

  15. S(p)O(2) values in acute medical admissions breathing air--implications for the British Thoracic Society guideline for emergency oxygen use in adult patients?

    PubMed

    Smith, Gary B; Prytherch, David R; Watson, Duncan; Forde, Val; Windsor, Alastair; Schmidt, Paul E; Featherstone, Peter I; Higgins, Bernie; Meredith, Paul

    2012-10-01

    S(p)O(2) is routinely used to assess the well-being of patients, but it is difficult to find an evidence-based description of its normal range. The British Thoracic Society (BTS) has published guidance for oxygen administration and recommends a target S(p)O(2) of 94-98% for most adult patients. These recommendations rely on consensus opinion and small studies using arterial blood gas measurements of saturation (S(a)O(2)). Using large datasets of routinely collected vital signs from four hospitals, we analysed the S(p)O(2) range of 37,593 acute general medical inpatients (males: 47%) observed to be breathing room air. Age at admission ranged from 16 to 105 years with a mean (SD) of 64 (21) years. 19,642 admissions (52%) were aged <70 years. S(p)O(2) ranged from 70% to 100% with a median (IQR) of 97% (95-98%). S(p)O(2) values for males and females were similar. In-hospital mortality for the study patients was 5.27% (range 4.80-6.27%). Mortality (95% CI) for patients with initial S(p)O(2) values of 97%, 96% and 95% was 3.65% (3.22-4.13); 4.47% (3.99-5.00); and 5.67% (5.03-6.38), respectively. Additional analyses of S(p)O(2) values for 37,299 medical admissions aged ≥18 years provided results that were distinctly different to those upon which the current BTS guidelines based their definition of normality. Our findings suggest that the BTS should consider changing its target saturation for actively treated patients not at risk of hypercapnic respiratory failure to 96-98%.

  16. Air breathing cathodes for microbial fuel cell using Mn-, Fe-, Co- and Ni-containing platinum group metal-free catalysts

    DOE PAGES

    Kodali, Mounika; Santoro, Carlo; Serov, Alexey; ...

    2017-02-07

    Here we discuss the oxygen reduction reaction (ORR) is one of the major factors that is limiting the overall performance output of microbial fuel cells (MFC). In this study, Platinum Group Metal-free (PGM-free) ORR catalysts based on Fe, Co, Ni, Mn and the same precursor (Aminoantipyrine, AAPyr) were synthesized using identical sacrificial support method (SSM). The catalysts were investigated for their electrochemical performance, and then integrated into an air-breathing cathode to be tested in “clean” environment and in a working microbial fuel cell (MFC). Their performances were also compared to activated carbon (AC) based cathode under similar conditions. Results showedmore » that the addition of Mn, Fe, Co and Ni to AAPyr increased the performances compared to AC. Fe-AAPyr showed the highest open circuit potential (OCP) that was 0.307 ± 0.001 V (vs. Ag/AgCl) and the highest electrocatalytic activity at pH 7.5. On the contrary, AC had an OCP of 0.203 ± 0.002 V (vs. Ag/AgCl) and had the lowest electrochemical activity. In MFC, Fe-AAPyr also had the highest output of 251 ± 2.3 μWcm–2, followed by Co-AAPyr with 196 ± 1.5 μWcm–2, Ni-AAPyr with 171 ± 3.6 μWcm–2, Mn-AAPyr with 160 ± 2.8 μWcm–2 and AC 129 ± 4.2 μWcm–2. The best performing catalyst (Fe-AAPyr) was then tested in MFC with increasing solution conductivity from 12.4 mScm–1 to 63.1 mScm–1. A maximum power density of 482 ± 5 μWcm–2 was obtained with increasing solution conductivity, which is one of the highest values reported in the field.« less

  17. Cloning and expression of 3β-hydroxysteroid dehydrogenase during gonadal recrudescence and after hCG induction in the air-breathing catfish, Clarias gariepinus.

    PubMed

    Raghuveer, Kavarthapu; Senthilkumaran, Balasubramanian

    2012-09-01

    3β-hydroxysteroid dehydrogenase (3β-hsd) plays an important role in biosynthesis of both androgens and estrogens during steroidogenesis. In this study, we report the cloning of a full-length cDNA of 3β-hsd from gonads of the air-breathing catfish, Clarias gariepinus a seasonally reproducing teleost fish. We studied the expression pattern of 3β-hsd during gonadal ontogeny and recrudescence (flanking two years of reproductive cycle) using real-time PCR. We also examined the influence of gonadotropin on 3β-hsd expression in gonads of catfish by human chorionic gonadotropin (hCG) induction. The real-time PCR results revealed that 3β-hsd transcript was detectable much earlier in undifferentiated gonads i.e. before the sex differentiation and later on its expression was seen in both male and female gonads throughout the development. The expression analysis during subsequent seasonal reproductive cycle in catfish (older than one year) showed that in adult males, the transcripts were significantly high during prespawning phase (spermatogenesis) and declined during spermiation. In adult females, the transcripts were abundantly expressed in the ovarian follicles both at prespawning and spawning phases. Furthermore, the 3β-hsd mRNA levels in different follicular stages were markedly high in vitellogenic follicles (maturing oocytes; stage III) compared to other stages. Treatment of hCG in recrudescing female fish, in vivo as well as in testicular slices, in vitro resulted in the up-regulation of gonadal 3β-hsd mRNA indicating that it is under the regulation of gonadotropins. These results together suggest that 3β-hsd gene plays an important role during spermatogenesis and oogenesis as well as in the gonadal recrudescence of catfish.

  18. Remote generation of high-energy terahertz pulses from two-color femtosecond laser filamentation in air

    SciTech Connect

    Wang, T.-J.; Daigle, J.-F.; Yuan, S.; Chin, S. L.; Theberge, F.; Chateauneuf, M.; Dubois, J.; Roy, G.; Zeng, H.

    2011-05-15

    We experimentally investigated the dynamic behavior of remote terahertz (THz) generation from two-color femtosecond laser-induced filamentation in air. A record-high THz pulse energy of 570 nJ at frequency below 5.5 THz was measured by optimizing the pump parameters at a controllable remote distance of 16 m, while super-broadband THz (<300 THz) pulse energy was up to 2.8 {mu}J. A further energy-scaling possibility was proposed. By analyzing simultaneously the fluorescence from both neutral N{sub 2} and N{sub 2}{sup +} in the filament, we found that the enhancement of THz radiation was due principally to guiding of the weak second-harmonic pulse inside the filament of the first strong fundamental pulse.

  19. An uniform DBD plasma excited by bipolar nanosecond pulse using wire-cylinder electrode configuration in atmospheric air.

    PubMed

    Jiang, Peng-Chao; Wang, Wen-Chun; Zhang, Shuai; Jia, Li; Yang, De-Zheng; Tang, Kai; Liu, Zhi-Jie

    2014-03-25

    In this study, a bipolar nanosecond pulsed power supply with 15 ns rising time is employed to generate an uniform dielectric barrier discharge using the wire-cylinder electrode configuration in atmospheric air. The images, waveforms of pulse voltage and discharge current, and the optical emission spectra of the discharges are recorded. The rotational and vibrational temperatures of plasma are determined by comparing the simulated spectra with the experimental spectra. The effects of pulse peak voltage, pulse repetition rate and quartz tube diameter on the emission intensities of N2 (C(3)Πu→B(3)Πg, 0-0) and N2(+)B(2)Σu(+)→X(2)Σg(+),0-0 and the rotational and vibrational temperatures have been investigated. It is found that the uniform plasma with low gas temperature can be obtained, and the emission intensities of N2 (C(3)Πu→B(3)Πg, 0-0) and N2(+)B(2)Σu(+)→X(2)Σg(+),0-0 rise with increasing the pulse peak voltage and pulse repetition rate, while decrease as the increase of quartz tube diameter. In addition, under the condition of 28 kV pulse peak voltage, 150 Hz pulse repetition rate and 7 mm quartz tube diameter, the plasma gas temperature is determined to be 330 K. The results also indicate that the plasma gas temperature keep almost constant when increasing the pulse peak voltage and pulse repetition rate but increase with the increase of the quartz tube diameter.

  20. Breath testing and personal exposure--SIFT-MS detection of breath acetonitrile for exposure monitoring.

    PubMed

    Storer, Malina; Curry, Kirsty; Squire, Marie; Kingham, Simon; Epton, Michael

    2015-05-26

    Breath testing has potential for the rapid assessment of the source and impact of exposure to air pollutants. During the development of a breath test for acetonitrile using selected ion flow tube mass spectrometry (SIFT-MS) raised acetonitrile concentrations in the breath of volunteers were observed that could not be explained by known sources of exposure. Workplace/laboratory exposure to acetonitrile was proposed since this was common to the volunteers with increased breath concentrations. SIFT-MS measurements of acetonitrile in breath and air were used to confirm that an academic chemistry laboratory was the source of exposure to acetonitrile, and quantify the changes that occurred to exhaled acetonitrile after exposure. High concentrations of acetonitrile were detected in the air of the chemistry laboratory. However, concentrations in the offices were not significantly different across the campus. There was a significant difference in the exhaled acetonitrile concentrations of people who worked in the chemistry laboratories (exposed) and those who did not (non-exposed). SIFT-MS testing of air and breath made it possible to determine that occupational exposure to acetonitrile in the chemistry laboratory was the cause of increased exhaled acetonitrile. Additionally, the sensitivity was adequate to measure the changes to exhaled amounts and found that breath concentrations increased quickly with short exposure and remained increased even after periods of non-exposure. There is potential to add acetonitrile to a suite of VOCs to investigate source and impact of poor air quality.

  1. Note: Measurement of extreme-short current pulse duration of runaway electron beam in atmospheric pressure air

    SciTech Connect

    Tarasenko, V. F.; Rybka, D. V.; Burachenko, A. G.; Lomaev, M. I.; Balzovsky, E. V.

    2012-08-15

    This note reports the time-amplitude characteristic of the supershort avalanche electron beam with up to 20 ps time resolution. For the first time it is shown that the electron beam downstream of small-diameter diaphragms in atmospheric pressure air has a complex structure which depends on the interelectrode gap width and cathode design. With a spherical cathode and collimator the minimum duration at half maximum of the supershort avalanche electron beam current pulse was shown to be {approx}25 ps. The minimum duration at half maximum of one peak in the pulses with two peaks can reach {approx}25 ps too.

  2. Note: measurement of extreme-short current pulse duration of runaway electron beam in atmospheric pressure air.

    PubMed

    Tarasenko, V F; Rybka, D V; Burachenko, A G; Lomaev, M I; Balzovsky, E V

    2012-08-01

    This note reports the time-amplitude characteristic of the supershort avalanche electron beam with up to 20 ps time resolution. For the first time it is shown that the electron beam downstream of small-diameter diaphragms in atmospheric pressure air has a complex structure which depends on the interelectrode gap width and cathode design. With a spherical cathode and collimator the minimum duration at half maximum of the supershort avalanche electron beam current pulse was shown to be ~25 ps. The minimum duration at half maximum of one peak in the pulses with two peaks can reach ~25 ps too.

  3. A Breath of Fresh Air

    ERIC Educational Resources Information Center

    Romano, Katherine

    2004-01-01

    One of many reasons that keep Orem, Utah's residents firmly planted right where they are may have something to do with the superior schools--and teachers--in the Alpine School District. This article describes one such teacher, Toni Zundel Boyer. Boyer, a third grade teacher and literacy coach, developed her own reading and writing materials that…

  4. Air breathing lithium power cells

    SciTech Connect

    Farmer, Joseph C.

    2014-07-15

    A cell suitable for use in a battery according to one embodiment includes a catalytic oxygen cathode; a stabilized zirconia electrolyte for selective oxygen anion transport; a molten salt electrolyte; and a lithium-based anode. A cell suitable for use in a battery according to another embodiment includes a catalytic oxygen cathode; an electrolyte; a membrane selective to molecular oxygen; and a lithium-based anode.

  5. Breath of Fresh Air Act

    THOMAS, 112th Congress

    Rep. Richardson, Laura [D-CA-37

    2012-08-02

    09/26/2012 Referred to the Subcommittee on Early Childhood, Elementary, and Secondary Education. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  6. Breath of Fresh Air Act

    THOMAS, 113th Congress

    Rep. Jackson Lee, Sheila [D-TX-18

    2014-02-27

    06/13/2014 Referred to the Subcommittee on Early Childhood, Elementary, and Secondary Education. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  7. A Breath of Spring Air

    ERIC Educational Resources Information Center

    Grady, Marilyn L.

    2009-01-01

    The most promising sights of spring in Nebraska this year were two conferences for women. One event, sponsored by Metropolitan Community College in Omaha, was a Women's History Month Tea. A second conference was the meeting of the Nebraska Women in Higher Education. These two events suggest that there is a continuing interest in women's leadership…

  8. Cell volume regulation in the perfused liver of a freshwater air-breathing cat fish Clarias batrachus under aniso-osmotic conditions: roles of inorganic ions and taurine.

    PubMed

    Goswami, Carina; Saha, Nirmalendu

    2006-12-01

    The roles of various inorganic ions and taurine, an organic osmolyte, in cell volume regulation were investigated in the perfused liver of a freshwater air-breathing catfish Clarias batrachus under aniso-osmotic conditions. There was a transient increase and decrease of liver cell volume following hypotonic (-80 mOsmol/l) and hypertonic (+80 mOsmol/l) exposures,respectively, which gradually decreased/increased near to the control level due to release/uptake of water within a period of 25-30 min. Liver volume decrease was accompanied by enhanced efflux of K+ (9.45 +/- 0.54 micromol/g liver) due to activation of Ba(2+)- and quinidine-sensitive K(+) channel, and to a lesser extent due to enhanced efflux of Cl(-) (4.35+/- 0.25 micromol/g liver) and Na+ (3.68+/- 0.37 micromol/g liver). Conversely, upon hypertonic exposure, there was amiloride-and ouabain-sensitive uptake of K+ (9.78+/- 0.65 micromol/g liver), and also Cl(-) (3.72 +/- 0.25 micromol/g liver).The alkalization/acidification of the liver effluents under hypo-/hypertonicity was mainly due to movement of various ions during volume regulatory processes. Taurine,an important organic osmolyte, appears also to play a very important role in hepatocyte cell volume regulation in the walking catfish as evidenced by the fact that hypo- and hyper-osmolarity caused transient efflux (5.68 +/- 0.38 micromol/g liver) and uptake (6.38 +/- 0.45 micromol/g liver) of taurine, respectively. The taurine efflux was sensitive to 4,4' -di-isothiocyanatostilbene-2,2'-disulphonic acid (DIDS, an anion channel blocker), but the uptake was insensitive to DIDS, thus indicating that the release and uptake of taurine during volume regulatory processes are unidirectional. Although the liver of walking catfish possesses the RVD and RVI mechanisms, it is to be noted that liver cells remain partly swollen and shrunken during anisotonic exposures,thereby possibly causing various volume-sensitive metabolic changes in the liver as reported earlier.

  9. Breathing Monitor Using Dye-Doped Optical Fiber

    NASA Astrophysics Data System (ADS)

    Muto, Shinzo; Fukasawa, Akihiko; Ogawa, Takayuki; Morisawa, Masayuki; Ito, Hiroshi

    1990-08-01

    A new monitoring system of human breathing using umbelliferon dye-doped plastic fiber has been studied. Under UV light pumping, the fiber which was used as a sensor head generates blue fluorescence depending on human expiration. By converting the light signal to electronic pulses, the counting of breathing and real-time monitoring of abnormal breathing such as a heavy cough or a cloggy sputum have easily been obtained.

  10. Optical and application study of gas-liquid discharge excited by bipolar nanosecond pulse in atmospheric air

    NASA Astrophysics Data System (ADS)

    Wang, Sen; Wang, Wen-chun; Yang, De-zheng; Liu, Zhi-jie; Zhang, Shuai

    2014-10-01

    In this study, a bipolar nanosecond pulse with 20 ns rising time is employed to generate air gas-liquid diffuse discharge plasma with room gas temperature in quartz tube at atmospheric pressure. The image of the discharge and optical emission spectra of active species in the plasma are recorded. The plasma gas temperature is determined to be approximately 390 K by compared the experimental spectra with the simulated spectra, which is slightly higher than the room temperature. The result indicated that the gas temperature rises gradually with pulse peak voltage increasing, while decreases slightly with the electrode gap distance increasing. As an important application, bipolar nanosecond pulse discharge is used to sterilize the common microorganisms (Actinomycetes, Candida albicans and Escherichia coli) existing in drinking water, which performs high sterilization efficiency.

  11. Nonlinear compression of high energy fiber amplifier pulses in air-filled hypocycloid-core Kagome fiber.

    PubMed

    Guichard, Florent; Giree, Achut; Zaouter, Yoann; Hanna, Marc; Machinet, Guillaume; Debord, Benoît; Gérôme, Frédéric; Dupriez, Pascal; Druon, Frédéric; Hönninger, Clemens; Mottay, Eric; Benabid, Fetah; Georges, Patrick

    2015-03-23

    We report on the generation of 34 fs and 50 µJ pulses from a high energy fiber amplifier system with nonlinear compression in an air-filled hypocycloid-core Kagome fiber. The unique properties of such fibers allow bridging the gap between solid core fibers-based and hollow capillary-based post-compression setups, thereby operating with pulse energies obtained with current state-of-the-art fiber systems. The overall transmission of the compression setup is over 70%. Together with Yb-doped fiber amplifier technologies, Kagome fibers therefore appear as a promising tool for efficient generation of pulses with durations below 50 fs, energies ranging from 10 to several hundreds of µJ, and high average powers.

  12. Assessing the changes in the biomechanical properties of the crystalline lens induced by cold cataract with air-pulse OCE

    NASA Astrophysics Data System (ADS)

    Wu, C.; Singh, M.; Liu, C.-H.; Han, Z.; Li, J.; Raghunathan, R.; Larin, K. V.

    2015-11-01

    A cataract is the increase in opacity of the crystalline lens that can pathologically degrade visual acuity. In this study, we utilized a phase-sensitive optical coherence elastography (OCE) system to study the effects of a cold cataract on the biomechanical properties of the porcine crystalline lens in vitro. The cold cataract was induced by placing the whole lens in a low temperature environment until the lens was obviously clouded. Air-pulse OCE measurements were conducted on 6 lenses before and after cold cataract induction. A low amplitude displacement (≤ 10 µm) was induced by a focused air-pulse and the temporal deformation profiles from the surface and within the lenses were analyzed. The results demonstrated that the stiffness of the porcine lens increased after induction of the cold cataract, and it demonstrated the feasibility of OCE to assess the biomechanical changes in the lens due to cataract.

  13. Single pulse vibrational Raman scattering by a broadband KrF excimer laser in a hydrogen-air flame

    NASA Technical Reports Server (NTRS)

    Pitz, Robert W.; Wehrmeyer, Joseph A.; Bowling, J. M.; Cheng, Tsarng-Sheng

    1990-01-01

    Spontaneous vibrational Raman scattering (VRS) is produced by a broadband excimer laser at 248 nm (KrF) in a H2-air flame, and VRS spectra are recorded for lean, stoichiometric, and rich flames. Except at very lean flame conditions, laser-induced fluorescence (LIF) processes interfere with VRS Stokes lines from H2, H2O, and O2. No interference is found for the N2 Stokes and N2 anti-Stokes lines. In a stoichiometric H2/air flame, single-pulse measurements of N2 concentration and temperature (by the VRS Stokes to anti-Stokes ratio) have a relative standard deviation of 7.7 and 10 percent, respectively. These single pulse measurement errors compare well with photon statistics calculations using measured Raman cross sections.

  14. Effects of higher-order Kerr nonlinearity and plasma diffraction on multiple filamentation of ultrashort laser pulses in air

    SciTech Connect

    Huang, T. W.; Zhou, C. T.; Zhang, H.; He, X. T.

    2013-07-15

    The effect of higher-order Kerr nonlinearity on channel formation by, and filamentation of, ultrashort laser pulses propagating in air is considered. Filament patterns originating from multiphoton ionization of the air molecules with and without the higher-order Kerr and molecular-rotation effects are investigated. It is found that diverging multiple filaments are formed if only the plasma-induced defocusing effect is included. In the presence of the higher-order Kerr effects, the light channel can exist for a long distance. The effect of noise on the filament patterns is also discussed.

  15. Minimizing Shortness of Breath

    MedlinePlus

    ... postures and exposure to environmental irritants. Pursed-Lip Breathing One focus of occupational therapy is to teach ... the accessory muscles and manage respiratory symptoms. Monitor Breathing During an activity, it is important to pause ...

  16. Breathing difficulty - lying down

    MedlinePlus

    Waking at night short of breath; Paroxysmal nocturnal dyspnea; PND; Difficulty breathing while lying down; Orthopnea ... obstructive pulmonary disease (COPD) Cor pulmonale Heart failure ... conditions that lead to it) Panic disorder Sleep apnea Snoring

  17. Dissociation and Recombination Effects on the Performance of Pulse Detonation Engines

    NASA Technical Reports Server (NTRS)

    Povinelli, Louis A.

    2003-01-01

    This paper summarizes major theoretical results for pulse detonation engine performance taking into account real gas chemistry, as well as significant performance differences resulting from the presence of ram and compression heating. An unsteady CFD analysis, as well as a thermodynamic cycle analysis, was conducted in order to determine the actual and the ideal performance for an air-breathing pulse detonation engine (PDE) using either a hydrogen-air or ethylene-air mixture over a flight Mach number range from 0 to 4. The results clearly elucidate the competitive regime of PDE application relative to ramjets and gas turbines.

  18. Application of a pulse-discharge helium detector to the determination of neon in air and water.

    PubMed

    Lasa, J; Mochalski, P; Lokas, E; Kedzior, L

    2002-08-30

    A pulse-discharge helium detector (Valco, PD-D2-I) is used to measure neon concentrations in air and water. The detection level is 0.5 x 10(-8) g/cm3 (0.2 ppm). Discharge gas doped with neon results in a linear response to the neon mass up to 10(-6) g. For measuring the neon concentration in water, a simple enrichment system is used.

  19. Mask-Free Patterning of High-Conductivity Metal Nanowires in Open Air by Spatially Modulated Femtosecond Laser Pulses.

    PubMed

    Wang, Andong; Jiang, Lan; Li, Xiaowei; Liu, Yang; Dong, Xianzi; Qu, Liangti; Duan, Xuanming; Lu, Yongfeng

    2015-10-28

    A novel high-resolution nanowire fabrication method is developed by thin-film patterning using a spatially modulated femtosecond laser pulse. Deep subwavelength (≈1/13 of the laser wavelength) and high conductivity (≈1/4 of the bulk gold) nanowires are fabricated in the open air without using masks, which offers a single-step arbitrary direct patterning approach for electronics, plasmonics, and optoelectronics nanodevices.

  20. What Causes Bad Breath?

    MedlinePlus

    ... A Week of Healthy Breakfasts Shyness What Causes Bad Breath? KidsHealth > For Teens > What Causes Bad Breath? A A A en español ¿Qué es lo que provoca el mal aliento? Bad breath, or halitosis , can be a major problem, ...

  1. Pulsed positive discharges in air at moderate pressures near a dielectric rod

    NASA Astrophysics Data System (ADS)

    Dubinova, A.; Trienekens, D.; Ebert, U.; Nijdam, S.; Christen, T.

    2016-10-01

    We study pulsed positive discharges in air in a cylindrically symmetric setup with an electrode needle close (about 1 mm) above the top of a dielectric cylindrical rod of 4 mm in diameter mounted at its bottom on a grounded plate electrode. We present ICCD (intensified charge-coupled device) pictures and evaluations of experiments as well as simulations with a fluid discharge model; the simulations use cylindrical symmetry. In the experiments, there is an initial inception cloud phase, where the cylindrical symmetry is maintained, and later a streamer phase, where it is broken spontaneously. At 75-150 mbar, discharges with cylindrical symmetry are not attracted to the dielectric rod, but move away from it. The dielectric rod plays the sole role of an obstacle that shades (in the context of photoionization) a cone-shaped part of the inception cloud; the cone size is determined by the geometry of the setup. The material properties of the dielectric rod, such as its dielectric permittivity and the efficiency of the photon induced secondary electron emission do not have a noticeable effect. This is due to the abundance of photoionization in air, which supplies a positive discharge with free electrons and allows it to propagate along the electric field lines. Using some simple field calculations, we show that field enhancement due to dielectric polarization does not play a significant role in our geometry as long as the discharge maintains its cylindrical symmetry. The field component towards the rod is insufficiently enhanced to cause the discharge to move towards the rod. Any additional electrons produced by the dielectric surface do not influence this discharge morphology. This interpretation is supported by both experiments and simulations. At higher pressures (400-600 mbar) or for larger gaps between the needle and the dielectric rod, the inception cloud reaches its maximal radius within the gap between needle and rod and destabilizes there. In those cases

  2. Effect of pulse duration on the acoustic frequency emissions during the laser-induced breakdown of atmospheric air.

    PubMed

    Manikanta, E; Vinoth Kumar, L; Venkateshwarlu, P; Leela, Ch; Kiran, P Prem

    2016-01-20

    Acoustic shock waves (ASWs) in the frequency range of 30-120 kHz generated during laser-induced breakdown (LIB) of ambient air using 7 ns and 30 ps pulse durations are studied. The specific frequency range and peak amplitudes are observed to be different for nanosecond (ns) and picosecond (ps) LIB. The ASW frequencies for ps-LIB lie between 90 and 120 kHz with one dominant peak, whereas for ns-LIB, two dominant peaks with frequencies in the 30-70 kHz and 80-120 kHz range are observed. These frequencies are observed to be laser pulse intensity dependent. With increasing energy of ns laser pulses, acoustic frequencies move toward the audible frequency range. The variation in the acoustic parameters, such as peak-to-peak pressures, signal energy, frequency and acoustic pulse widths as a function of laser energy, for two different pulse durations are presented in detail and compared. The acoustic emissions are observed to be higher for ns-LIB than ps-LIB, indicating higher conversion efficiency of optical energy into mechanical energy.

  3. Backward Lasing of Air plasma pumped by Circularly polarized femtosecond pulses for the saKe of remote sensing (BLACK).

    PubMed

    Ding, Pengji; Mitryukovskiy, Sergey; Houard, Aurélien; Oliva, Eduardo; Couairon, Arnaud; Mysyrowicz, André; Liu, Yi

    2014-12-01

    Recently, S. Mitryukovskiy et al. presented experimental evidence showing that backward Amplified Spontaneous Emission (ASE) at 337 nm can be obtained from plasma filaments in nitrogen gas pumped by circularly polarized 800 nm femtosecond pulses (Opt. Express, 22, 12750 (2014)). Here, we report that a seed pulse injected in the backward direction can be amplified by ~200 times inside this plasma amplifier. The amplified 337 nm radiation can be either linearly or circularly polarized, dictated by the seeding pulse, which is distinct from the non-polarized nature of the ASE. We performed comprehensive measurements of the spatial profile, optical gain dynamics, and seed pulse energy dependence of this amplification process. These measurements allow us to deduce the pulse duration of the ASE and the amplified 337 nm radiation as well as the corresponding laser intensity inside the plasma amplifier. It indicates that the amplification is largely in the unsaturated regime and that further improvement of laser energy is possible. Moreover, we observed optical gain in plasma created in ambient air. This represents an important step towards future applications exploiting backward lasing for remote atmospheric sensing.

  4. Effect of lens tilt on SCE and filamentation characteristics of femtosecond pulses in air

    NASA Astrophysics Data System (ADS)

    Sreeja, S.; Prashant, T. Shuvan; Leela, Ch.; Kumar, V. Rakesh; Tewari, Surya P.; Venugopal Rao, S.; Kiran, P. Prem

    2012-06-01

    We present the evolution of SCE associated with filaments due to the tilt of focusing lens under tight focusing geometries. Transform limited femtosecond (fs) pulses (800 nm, 45 fs, 1 kHz repetition rate) were focused in ambient air using three different focusing geometries f/#6, f/#7.5, and f/#12 corresponding to numerical apertures (NA) of 0.08, 0.06, and 0.04, respectively. The focusing lens was tilted from zero up to 20 degrees. The filaments decayed into two shorter parts through tilting of the lens and the separation between shorter filaments increased with increasing lens tilt, in tune with earlier reports [Kamali et al., Opt. Commun. 282, 950-954 (2009)]. The separation between the filaments matched well with the predicted distances due to astigmatism induced in loose focusing geometries. However the deviation increased as we moved to the tighter focusing geometries. The SCE spectrum demonstrated an anomalous behaviour. The SCE spectrum was suppressed at larger tilt angles of 12 - 20°. However at lower tilt angles, up to 8°, the SCE was observed to be same to that measured without any tilt of the focusing lens. This behaviour is predominant with tighter focusing geometries of f/#6 and f/#7.5, wherein the SCE was observed to be higher at 4° and 8° in comparison with that observed at an angle of 0°. Systematic study of the focusing lens tilt on anomalous SCE spectra and filament characteristics in the tight focusing geometry are presented.

  5. Control of breathing in the echidna (Tachyglossus aculeatus) during hibernation.

    PubMed

    Nicol, Stewart; Andersen, Niels A

    2003-12-01

    Resting non-hibernating echidnas are characterised by low metabolic rates, but also have a very low respiratory frequency and a variable respiratory minute volume, often resulting in low levels of arterial O(2) and high CO(2). As the echidna lies at one physiological extreme among the hibernators, in terms of its large size and low metabolism and ventilatory requirement when not hibernating, a study of control of breathing during hibernation in echidnas should provide a useful test of the generality of various models. We used non-invasive techniques to study breathing patterns and the control of ventilation in 6 echidnas. Hibernating echidnas (T(b) range 7-10 degrees C) showed episodic breathing with bursts of breaths (average 36+/-16 breaths in 24+/-5 min) followed by a period of apnea (76+/-17 min) then a series (8+/-4) of slow breaths at 14+/-1 min intervals leading up to the next burst. Increasing CO(2) levels in the inspired air increased the number of breaths in a burst, eventually leading to continuous breathing. Inter burst breaths were controlled by O(2): hypoxia increased inter burst breaths, and decreased burst length, while hyperoxia abolished inter burst breaths and increased the apneic period. Overall, while CO(2) was a strong respiratory stimulus in hibernating echidnas, O(2) had little effect on total ventilation, but did have a strong effect on the breathing pattern.

  6. Pulse wave transit time for monitoring respiration rate.

    PubMed

    Johansson, A; Ahlstrom, C; Lanne, T; Ask, P

    2006-06-01

    In this study, we investigate the beat-to-beat respiratory fluctuations in pulse wave transit time (PTT) and its subcomponents, the cardiac pre-ejection period (PEP) and the vessel transit time (VTT) in ten healthy subjects. The three transit times were found to fluctuate in pace with respiration. When applying a simple breath detecting algorithm, 88% of the breaths seen in a respiration air-flow reference could be detected correctly in PTT. Corresponding numbers for PEP and VTT were 76 and 81%, respectively. The performance during hypo- and hypertension was investigated by invoking blood pressure changes. In these situations, the error rates in breath detection were significantly higher. PTT can be derived from signals already present in most standard monitoring set-ups. The transit time technology thus has prospects to become an interesting alternative for respiration rate monitoring.

  7. Study on electrical characteristics of barrier-free atmospheric air diffuse discharge generated by nanosecond pulses and long wire electrodes

    SciTech Connect

    Li, Lee Liu, Yun-Long; Teng, Yun; Liu, Lun; Pan, Yuan

    2014-07-15

    In room-temperature atmospheric air, the large-scale diffuse plasmas can be generated via high-voltage nanosecond pulses with short rise-time and wire electrodes. Diffuse discharge with the wire electrode length up to 110.0 cm and the discharge spacing of several centimeters has been investigated in this paper. Electrical characteristics of diffuse discharge have been analyzed by their optical photographs and measuring of the voltage and current waveforms. Experimental results show the electrode spacing, and the length of wire electrodes can influence the intensity and mode transition of diffuse discharge. The characteristic of current waveforms is that there are several current oscillation peaks at the time of applied pulsed voltage peak, and at the tail of applied pulse, the conduction current component will compensate the displacement one so that the measured current is unidirectional in diffuse discharge mode. The transition from diffuse discharge to arc discharge is always with the increasing of conduction current density. As for nanosecond pulses with long tail, the long wire electrodes are help for generating non-equilibrium diffuse plasmas.

  8. Atmospheric air homogenous DBD plasma excited by bipolar nanosecond pulse used for improving the hydrophilic property of polypropylene

    NASA Astrophysics Data System (ADS)

    Yang, Dezheng; Wang, Wenchun; Zhang, Shuai; Liu, Zhijie; Jia, Li; Dai, Leyang

    2013-06-01

    In this paper, an air homogenous dielectric barrier discharge excited by bipolar nanosecond pulse voltage is obtained and used for the surface modification of polypropylene non-woven fabric at atmospheric pressure. Compared with the DBD plasma excited by sine alternating current (AC) voltage, nanosecond pulsed dielectric barrier discharge exhibits obvious advantages, e.g., better discharge homogeneity, lower energy cost, and lower plasma gas temperature etc. Hence it presents the potential application in improving the hydrophilic property of polypropylene non-woven fabric with high energy efficiency and without surface damage. To reduce the water contact angle of the polypropylene surface from 145° to 110°, the average energy cost of the nanosecond pulsed dielectric barrier discharge is only about 0.1 J/cm2, which is about 1/20 of AC dielectric barrier discharge. On the other hand, the surface damage of non-woven fabric induced by nanosecond pulsed dielectric barrier discharge plasma cannot be distinguished by SEM photographs.

  9. Early Stages of Pulsed-Laser Growth of Silicon Microcolumns and Microcones in Air and SF6

    SciTech Connect

    Lowndes, Douglas H.; Fowlkes, Jason D.; Pedraza, Antonio J.

    1999-07-29

    Dense arrays of high-aspect-ratio silicon microcolumns and microcones are formed by cumulative nanosecond pulsed excimer laser irradiation of single-crystal silicon in oxidizing atmospheres such as air and SF6. Growth of such surface microstructures requires a redeposition model and also involves elements of self-organization. The shape of the microstructures, i.e. straight columns vs steeply sloping cones and connecting walls, is governed by the type and concentration of the oxidizing species, e.g. oxygen vs fluorine. Growth is believed to occur by a "catalyst-free" VLS (vapor-liquid-solid) mechanism that involves repetitive melting of the tips of the columns/cones and deposition there of the ablated flux of Si-containing vapor. Results are presented of a new investigation of how such different final microstructures as microcolumns or microcones joined by walls nucleate and develop. The changes in silicon surface morphology were systematically determined and compared as the number of pulsed KrF (248 nm) laser shots was increased from 25 to several thousand in both air and SF6. The experiments in air and SF6 reveal significant differences in initial surface cracking and pattern formation. Consequently, local protrusions are first produced and column or cone/wall growth is initiated by different processes and at different rates. Differences in the spatial organization of column or cone/wall growth also are apparent.

  10. Post-filamentation propagation of high-power laser pulses in air in the regime of narrowly focused light channels

    NASA Astrophysics Data System (ADS)

    Geints, Yu. E.; Zemlyanov, A. A.; Ionin, A. A.; Mokrousova, D. V.; Seleznev, L. V.; Sinitsyn, D. V.; Sunchugasheva, E. S.

    2016-11-01

    We report the results of experimental and theoretical studies of the post-filamentation stage of nonlinear propagation of high-power pulsed radiation from a Ti : sapphire laser in air. We have for the first time obtained the experimental dependences of the angular divergence of specific spatially localised high-intensity light structures that are observed in the beam after its multiple filamentation (post-filamentation of channels) when varying the initial focusing of laser radiation and its energy. It is found that the angular divergence of the post-filamentation channels decreases with increasing pulse energy and reducing beam numerical aperture. The experimental dependences are qualitatively interpreted based on the diffraction model of the Bessel - Gaussian beam.

  11. Simulation study on nitrogen vibrational and translational temperature in air breakdown plasma generated by 110 GHz focused microwave pulse

    NASA Astrophysics Data System (ADS)

    Yang, Wei; Zhou, Qianhong; Dong, Zhiwei

    2017-01-01

    We report a simulation study on nitrogen vibrational and translational temperature in 3 μs pulse 110 GHz microwave air breakdown at pressure from 1 Torr to 100 Torr. The one-dimensional model is based on a self-consistent solution to Helmholtz equation for microwave field, electron density equation, and the average energy equation for electrons, nitrogen vibrational, and translational degrees. The breakdown threshold is calculated from the transmitted microwave profile, and it agrees well with that from experiment. The spatio-temporal characteristics of vibrational and translational temperature are shown, and the peak values at the end of pulse are compared to the results fitted from optical emission spectroscopy. The dependences of vibrational and translational temperature on normalized microwave fields and gas pressure are investigated, and the underlying mechanisms are unveiled.

  12. Creation of the reduced-density region by a pulsing optical discharge in the supersonic air flow

    NASA Astrophysics Data System (ADS)

    Kiseleva, T. A.; Orishich, A. M.; Chirkashenko, V. F.; Yakovlev, V. I.

    2016-10-01

    As a result of optical and pneumometric measurements is defined the flow shock wave structure that is formed by the optical breakdown, due to focused repetitively pulsed CO2 laser radiation when entering perpendicular to a supersonic (M = 1.36, 1.9) air flow direction. The dynamics of the bow shock formation in front of the energy input area is shown, depending on the frequency of energy impulse sequence. A flow structure is defined in the thermal wake behind pulsing laser plasma as well as wake's length with low thermal heterogeneity. A three-dimensional configuration of the energy area is defined in accordance with pneumometric and optical measuring results. It is shown that Pitot pressure decreases in thermal wake at a substantially constant static pressure, averaged flow parameters weakly depend on the energy impulse's frequency in range of 45-150 kHz.

  13. Optimization of a pulsed air core transformer for low impedance inductive ignition

    NASA Astrophysics Data System (ADS)

    Zielinski, Alexander E.; Bennett, John A.

    1990-01-01

    A design analysis was conducted to develop an inductive ignition concept for ordnance. Mathematical models were developed to examine the transformer for optimum performance. Results indicate that significant energy transfer to an electric primer can be obtained using a simple pulse transformer. Experimental results using a capacitive pulsed power supply indicate reasonable agreement with the models for short times. Deviations from the theoretical model can be explained by nonlinear materials effects and field diffusion in the surrounding barrel walls.

  14. Breathing metabolic simulator

    NASA Technical Reports Server (NTRS)

    Bartlett, R. G.; Hendricks, C. M.; Morison, W. B.

    1972-01-01

    The development of a breathing metabolic simulator (BMS) is reported. This BMS simulates all of the breathing and metabolic parameters required for complete evaluation and test of life support and resuscitation equipment. It is also useful for calibrating and validating mechanical and gaseous pulmonary function test procedures. Breathing rate, breathing depth, breath velocity contour, oxygen uptake, and carbon dioxide release are all variable over wide ranges simulating conditions from sleep to hard work with respiratory exchange ratios covering the range from hypoventilation. In addition, all of these parameters are remotely controllable to facilitate use of the device in hostile or remote environments. The exhaled breath is also maintained at body temperature and a high humidity. The simulation is accurate to the extent of having a variable functional residual capacity independent of other parameters.

  15. FAST TRACK COMMUNICATION: Contrasting characteristics of sub-microsecond pulsed atmospheric air and atmospheric pressure helium-oxygen glow discharges

    NASA Astrophysics Data System (ADS)

    Walsh, J. L.; Liu, D. X.; Iza, F.; Rong, M. Z.; Kong, M. G.

    2010-01-01

    Glow discharges in air are often considered to be the ultimate low-temperature atmospheric pressure plasmas for numerous chamber-free applications. This is due to the ubiquitous presence of air and the perceived abundance of reactive oxygen and nitrogen species in air plasmas. In this paper, sub-microsecond pulsed atmospheric air plasmas are shown to produce a low concentration of excited oxygen atoms but an abundance of excited nitrogen species, UV photons and ozone molecules. This contrasts sharply with the efficient production of excited oxygen atoms in comparable helium-oxygen discharges. Relevant reaction chemistry analysed with a global model suggests that collisional excitation of O2 by helium metastables is significantly more efficient than electron dissociative excitation of O2, electron excitation of O and ion-ion recombination. These results suggest different practical uses of the two oxygen-containing atmospheric discharges, with air plasmas being well suited for nitrogen and UV based chemistry and He-O2 plasmas for excited atomic oxygen based chemistry.

  16. Measurement of nitric oxide in human exhaled breath

    SciTech Connect

    Gordon, S.M.; Spicer, C.W.; Ollison, W.M.

    1997-12-31

    This project was initiated to confirm the reliability of nitric oxide (NO) measurement in the breath matrix, using two different analytical techniques - ozone and luminol chemiluminescence - and to corroborate literature reports of elevated breath NO values. To measure peak oral and nasal NO levels, subjects performed slow vital capacity and breath holding maneuvers directly into the monitors through the mouth and the nose, respectively. Additional measurements were made using normal breathing techniques. Initial interferent tests indicate that measured NO signals are real and are not confounded by measurement artifacts. Similar results were obtained using the two independent analytical methods in dry or humid air. The NO signal was unaffected by maximum concentrations of potential breath interferents, such as sulfur compounds and alkenes. The measured breath NO concentrations were greater than typical room air levels and differed significantly with the breathing technique used. During these tests room air averaged 4-5 ppb NO. Peak oral NO levels were 4.3 {+-} 1.5 ppb during a slow vital capacity maneuver and 8.0 {+-} 5.0 ppb during a breath holding maneuver. By contrast, higher peak nasal NO levels were measured for both slow vital capacity (17.8 {+-} 7.8 ppb) and breath holding maneuvers (45.4 {+-} 29.5 ppb).

  17. Pulsed nanosecond discharge in air at high specific deposited energy: fast gas heating and active particle production

    NASA Astrophysics Data System (ADS)

    Popov, N. A.

    2016-08-01

    The results of a numerical study on kinetic processes initiated by a pulsed nanosecond discharge in air at high specific deposited energy, when the dissociation degree of oxygen molecules is high, are presented. The calculations of the temporal dynamics of the electron concentration, density of atomic oxygen, vibrational distribution function of nitrogen molecules, and gas temperature agree with the experimental data. It is shown that quenching of electronically excited states of nitrogen N2(B3Πg), N2(C3Πu), N2(a‧1 Σ \\text{u}- ) by oxygen molecules leads to the dissociation of O2. This conclusion is based on the comparison of calculated dynamics of atomic oxygen in air, excited by a pulsed nanosecond discharge, with experimental data. In air plasma at a high dissociation degree of oxygen molecules ([O]/[O2] > 10%), relaxation of the electronic energy of atoms and molecules in reactions with O atoms becomes extremely important. Active production of NO molecules and fast gas heating in the discharge plasma due to the quenching of electronically excited N2(B3Πg, C3Πu, a‧1 Σ \\text{u}- ) molecules by oxygen atoms is notable. Owing to the high O atom density, electrons are effectively detached from negative ions in the discharge afterglow. As a result, the decay of plasma in the afterglow is determined by electron-ion recombination, and the electron density remains relatively high between the pulses. An increase in the vibrational temperature of nitrogen molecules at the periphery of the plasma channel at time delay t = 1-30 μs after the discharge is obtained. This is due to intense gas heating and, as a result, gas-dynamic expansion of a hot gas channel. Vibrationally excited N2(v) molecules produced near the discharge axis move from the axial region to the periphery. Consequently, at the periphery the vibrational temperature of nitrogen molecules is increased.

  18. Octave-spanning mid-infrared pulses by plasma generation in air pumped with an Yb:KGW source

    PubMed Central

    Huang, Jinqing; Parobek, Alexander; Ganim, Ziad

    2016-01-01

    Femtosecond mid-infrared (IR) supercontinuum generation in gas media provides a broadband source suited for time-domain spectroscopies and microscopies. This technology has largely utilized <100 fs Ti:sapphire pump lasers. In this Letter, we describe the first plasma generation mid-IR source based on a 1030 nm, 171 fs Yb:KGW laser system; when its first three harmonics are focused in air, a conical mode supercontinuum is generated that spans <1000 to 2700 cm−1 with a 190 pJ pulse energy and 0.5% RMS stability. PMID:27805634

  19. Octave-spanning mid-infrared pulses by plasma generation in air pumped with an Yb:KGW source.

    PubMed

    Huang, Jinqing; Parobek, Alexander; Ganim, Ziad

    2016-11-01

    Femtosecond mid-infrared (IR) supercontinuum generation in gas media provides a broadband source suited for time-domain spectroscopies and microscopies. This technology has largely utilized <100  fs Ti:sapphire pump lasers. In this Letter, we describe the first plasma generation mid-IR source based on a 1030 nm, 171 fs Yb:KGW laser system; when its first three harmonics are focused in air, a conical mode supercontinuum is generated that spans <1000 to 2700  cm-1 with a 190 pJ pulse energy and 0.5% RMS stability.

  20. Zymosan-induced immune challenge modifies the stress response of hypoxic air-breathing fish (Anabas testudineus Bloch): Evidence for reversed patterns of cortisol and thyroid hormone interaction, differential ion transporter functions and non-specific immune response.

    PubMed

    Simi, S; Peter, Valsa S; Peter, M C Subhash

    2016-11-18

    Fishes have evolved physiological mechanisms to exhibit stress response, where hormonal signals interact with an array of ion transporters and regulate homeostasis. As major ion transport regulators in fish, cortisol and thyroid hormones have been shown to interact and fine-tune the stress response. Likewise, in fishes many interactions have been identified between stress and immune components, but the physiological basis of such interaction has not yet delineated particularly in air-breathing fish. We, therefore, investigated the responses of thyroid hormones and cortisol, ion transporter functions and non-specific immune response of an obligate air-breathing fish Anabas testudineus Bloch to zymosan treatment or hypoxia stress or both, to understand how immune challenge modifies the pattern of stress response in this fish. Induction of experimental peritonitis in these fish by zymosan treatment (200ngg(-1)) for 24h produced rise in respiratory burst and lysozomal activities in head kidney phagocytes. In contrast, hypoxia stress for 30min in immune-challenged fish reversed these non-specific responses of head kidney phagocytes. The decline in plasma cortisol in zymosan-treated fish and its further suppression by hypoxia stress indicate that immune challenge suppresses the cortisol-driven stress response of this fish. Likewise, the decline in plasma T3 and T4 after zymosan-treatment and the rise in plasma T4 after hypoxia stress in immune-challenged fish indicate a critical role for thyroid hormone in immune-stress response due to its differential sensitivity to both immune and stress challenges. Further, analysis of the activity pattern of ion-dependent ATPases viz. Na(+)/K(+)-ATPase, H(+)/K(+)-ATPase and Na(+)/NH4(+)-ATPase indicates a functional interaction of ion transport system with the immune response as evident in its differential and spatial modifications after hypoxia stress in immune-challenged fish. The immune-challenge that produced differential pattern

  1. Cheyne-Stokes respiration: hypoxia plus a deep breath that interrupts hypoxic drive, initiating cyclic breathing.

    PubMed

    Guntheroth, Warren G

    2011-11-01

    In the 19th Century, Cheyne and Stokes independently reported cycles of respiration in patients with heart failure, beginning with apnea, followed by a few breaths. However Cheyne-Stokes respiration (C-SR) can also occur in healthy individuals with sleep, and was demonstrated in 1908 with voluntary hyperventilation, followed by apnea that Haldane blamed on hypoxia, subsequently called post-hyperventilation apnea. Additional theories explaining C-SR did not appear until 1954, based on control theory, specifically a feed-back regulator controlling CO(2). This certainly describes control of normal respiration, but to produce an unstable state such as C-SR requires either a very long transit time (3½ min) or an increase of the controller gain (13 times), physiologically improbable. There is general agreement that apnea initiates C-SR but that has not been well explained except for post-hyperventilation apnea, and that explanation is not compatible with a study by Nielsen and Smith in 1951. They plotted the effects of diminished oxygen on ventilation (V) in relation to CO(2) (Fig. 1). They found that the slope of V/CO(2) (gain) increased with hypoxia, but it flattened at a moderate CO(2) level and had nointercept with zero (apnea). It is also incompatible with our published findings in 1975 that showed that apnea did not occur until an extreme level of hypoxia occurred (the PO(2) fell below 10 mmHg), followed shortly by gasping. Much milder hypoxia underlies most cases of C-SR, when hypoxic drive replaces the normal CO(2)-based respiratory drive, in a failsafe role. I hypothesize that the cause of apnea is a brief interruption of hypoxic drive caused by a pulse of oxygen from a stronger than average breath, such as a sigh. The rapidity of onset of apnea in response to a pulse of oxygen, reflects the large pressure gradient for oxygen from air to lung with each breath, in contrast to CO(2). With apnea, there is a gradual fall in oxygen, resulting in a resumption of

  2. Pattern dynamics and filamentation of femtosecond terawatt laser pulses in air including the higher-order Kerr effects.

    PubMed

    Huang, T W; Zhou, C T; He, X T

    2013-05-01

    Plasma defocusing and higher-order Kerr effects on multiple filamentation and pattern formation of ultrashort laser pulse propagation in air are investigated. Linear analyses and numerical results show that these two saturable nonlinear effects can destroy the coherent evolution of the laser field, and small-scale spatial turbulent structures rapidly appear. For the two-dimensional case, numerical simulations show that blow-up-like solutions, spatial chaos, and pseudorecurrence can appear at higher laser intensities if only plasma defocusing is included. These complex patterns result from the stochastic evolution of the higher- or shorter-wavelength modes of the laser light spectrum. From the viewpoint of nonlinear dynamics, filamentation can be attributed to the modulational instability of these spatial incoherent localized structures. Furthermore, filament patterns associated with multiphoton ionization of the air molecules with and without higher-order Kerr effects are compared.

  3. Effects of picosecond terawatt UV laser beam filamentation and a repetitive pulse train on creation of prolonged plasma channels in atmospheric air

    NASA Astrophysics Data System (ADS)

    Zvorykin, V. D.; Ionin, A. A.; Levchenko, A. O.; Seleznev, L. V.; Shutov, A. V.; Sinitsyn, D. V.; Smetanin, I. V.; Ustinovskii, N. N.

    2013-08-01

    Amplitude-modulated UV laser pulse of up to 30 J energy was produced at hybrid Ti:Sapphire/KrF GARPUN-MTW laser facility when a preliminary amplified train of short pulses was injected into unstable resonator cavity of the main e-beam-pumped KrF amplifier. The combined radiation consisted of regeneratively amplified picosecond pulses with subTW peak power overlapped with 100-ns pulse of a free-running lasing. The advantages of combined radiation for production of long-lived prolonged plasma channels in air and HV discharge triggering were demonstrated: photocurrent sustained by modulated pulse is two orders of magnitude higher and HV breakdown distance is twice longer than for a smooth UV pulse. It was found that in contrast to IR radiation multiple filamentation of high-power UV laser beam does not produce extended nonlinear focusing of UV radiation.

  4. Thermal Blooming and Air Breakdown Interaction for Pulsed High Energy Lasers,

    DTIC Science & Technology

    1978-06-01

    illustrates the exoerimental arrangement. A single shot Lumonics 602A CO2 Transversely Excited Atmospheric (TEA) laser beam, 45 3 energy output, with...BREAKDOWN INTERACTION (~~~~ Jf~fl fl~~~~ThFOR PULSED HIGH ENERGY LASERS fl ~~~~~~~~~~~~~~~~~ ~,; JUN~~~ U JUL 12 1918 j ’ *~OBERF $ / I~QHDE,~~~ RUDOLF G... Laser pulse transmission as related to Army high energy laser systems involves many interacting effects which generally degrade the performance of the

  5. Investigation on Multiple-Pulse Propulsion Performance for a Parabolic Nozzle with Inlet Slit

    NASA Astrophysics Data System (ADS)

    Wen, Ming; Hong, Yanji; Song, Junling

    2011-11-01

    The multiple-pulse impulse coupling coefficient Cm is lower than the single pulse one with the same laser parameters. It is always explained that air recovery in nozzle does not work on time. Three kinds of parabolic nozzles are employed to improve air recovery in the experiments and simulation. There exist inlet slits on side wall of them with width of 1 mm, 2 mm, respectively. The curves of thrust and the process of flow fluid field are presented to study the slit effects on Cm under 20 Hz pulse frequency. The results show: an inlet slit can accelerate the air breathing process in the nozzle and Cm for each pulse exhibits a little variation; the lower Cm is obtained due to the increasing energy loss by a larger size slit; the flat-roofed nozzle gets higher Cm than others.

  6. Multi-kilowatt, all-fiber integrated chirped-pulse amplification system yielding 40x pulse compression using air-core fiber and conventional erbium-doped fiber amplifier.

    PubMed

    de Matos, C; Taylor, J

    2004-02-09

    We present a totally fiber integrated chirped-pulse amplification system using air-core photonic bandgap fiber and a conventional erbium-doped fiber amplifier. ~40-ps input pulses, generated in a Mach-Zehnder modulator, were stretched and spectrally broadened in a dispersion-shifted fiber before being amplified and subsequently compressed in 10 m of anomalously-dispersive photonic bandgap fiber to yield ~960 fs pulses. The system gives multi-kilowatt peak powers while the amplifier nonlinearity threshold is as low as ~150 W. Higher peak powers could be obtained by the use of an amplifier with higher nonlinearity threshold.

  7. Fast fabrication of copper nanowire transparent electrodes by a high intensity pulsed light sintering technique in air.

    PubMed

    Ding, Su; Jiu, Jinting; Tian, Yanhong; Sugahara, Tohru; Nagao, Shijo; Suganuma, Katsuaki

    2015-12-14

    Copper nanowire transparent electrodes have received increasing interest due to the low price and nearly equal electrical conductivity compared with other TEs based on silver nanowires and indium tin oxide (ITO). However, a post-treatment at high temperature in an inert atmosphere or a vacuum environment was necessary to improve the conductivity of Cu NW TEs due to the easy oxidation of copper in air atmosphere, which greatly cancelled out the low price advantage of Cu NWs. Here, a high intensity pulsed light technique was introduced to sinter and simultaneously deoxygenate these Cu NWs into a highly conductive network at room temperature in air. The strong light absorption capacity of Cu NWs enabled the welding of the nanowires at contact spots, as well as the removal of the thin layer of residual organic compounds, oxides and hydroxide of copper even in air. The Cu NW TE with a sheet resistance of 22.9 Ohm sq(-1) and a transparency of 81.8% at 550 nm has been successfully fabricated within only 6 milliseconds exposure treatment, which is superior to other films treated at high temperature in a hydrogen atmosphere. The HIPL process was simple, convenient and fast to fabricate easily oxidized Cu NW TEs in large scale in an air atmosphere, which will largely extend the application of cheap Cu NW TEs.

  8. Indoor Air Quality

    MedlinePlus

    ... can protect yourself and your family. Learn more Air Quality at Work Workers should breathe easy while on the job, but worksites with poor air quality put employees at risk. Healthy air is essential ...

  9. What Controls Your Breathing?

    MedlinePlus

    ... Explore How the Lungs Work What Are... The Respiratory System What Happens When You Breathe What Controls Your Breathing Lung Diseases & Conditions Clinical Trials Links Related Topics Asthma Bronchitis COPD How the Heart Works Respiratory Failure Send a link to NHLBI to someone ...

  10. Transitions between corona, glow, and spark regimes of nanosecond repetitively pulsed discharges in air at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Pai, David Z.; Lacoste, Deanna A.; Laux, Christophe O.

    2010-05-01

    In atmospheric pressure air preheated from 300 to 1000 K, the nanosecond repetitively pulsed (NRP) method has been used to generate corona, glow, and spark discharges. Experiments have been performed to determine the parameter space (applied voltage, pulse repetition frequency, ambient gas temperature, and interelectrode gap distance) of each discharge regime. In particular, the experimental conditions necessary for the glow regime of NRP discharges have been determined, with the notable result that there exists a minimum and maximum gap distance for its existence at a given ambient gas temperature. The minimum gap distance increases with decreasing gas temperature, whereas the maximum does not vary appreciably. To explain the experimental results, an analytical model is developed to explain the corona-to-glow (C-G) and glow-to-spark (G-S) transitions. The C-G transition is analyzed in terms of the avalanche-to-streamer transition and the breakdown field during the conduction phase following the establishment of a conducting channel across the discharge gap. The G-S transition is determined by the thermal ionization instability, and we show analytically that this transition occurs at a certain reduced electric field for the NRP discharges studied here. This model shows that the electrode geometry plays an important role in the existence of the NRP glow regime at a given gas temperature. We derive a criterion for the existence of the NRP glow regime as a function of the ambient gas temperature, pulse repetition frequency, electrode radius of curvature, and interelectrode gap distance.

  11. Influence of air flow parameters on nanosecond repetitively pulsed discharges in a pin-annular electrode configuration

    NASA Astrophysics Data System (ADS)

    Heitz, Sylvain A.; Moeck, Jonas P.; Schuller, Thierry; Veynante, Denis; Lacoste, Deanna A.

    2016-04-01

    The effect of various air flow parameters on the plasma regimes of nanosecond repetitively pulsed (NRP) discharges is investigated at atmospheric pressure. The two electrodes are in a pin-annular configuration, transverse to the mean flow. The voltage pulses have amplitudes up to 15 kV, a duration of 10 ns and a repetition frequency ranging from 15 to 30 kHz. The NRP corona to NRP spark (C-S) regime transition and the NRP spark to NRP corona (S-C) regime transition are investigated for different steady and harmonically oscillating flows. First, the strong effect of a transverse flow on the C-S and S-C transitions, as reported in previous studies, is verified. Second, it is shown that the azimuthal flow imparted by a swirler does not affect the regime transition voltages. Finally, the influence of low frequency harmonic oscillations of the air flow, generated by a loudspeaker, is studied. A strong effect of frequency and amplitude of the incoming flow modulation on the NRP plasma regime is observed. Results are interpreted based on the cumulative effect of the NRP discharges and an analysis of the residence times of fluid particles in the inter-electrode region.

  12. Application of wavelet filtering and Barker-coded pulse compression hybrid method to air-coupled ultrasonic testing

    NASA Astrophysics Data System (ADS)

    Zhou, Zhenggan; Ma, Baoquan; Jiang, Jingtao; Yu, Guang; Liu, Kui; Zhang, Dongmei; Liu, Weiping

    2014-10-01

    Air-coupled ultrasonic testing (ACUT) technique has been viewed as a viable solution in defect detection of advanced composites used in aerospace and aviation industries. However, the giant mismatch of acoustic impedance in air-solid interface makes the transmission efficiency of ultrasound low, and leads to poor signal-to-noise (SNR) ratio of received signal. The utilisation of signal-processing techniques in non-destructive testing is highly appreciated. This paper presents a wavelet filtering and phase-coded pulse compression hybrid method to improve the SNR and output power of received signal. The wavelet transform is utilised to filter insignificant components from noisy ultrasonic signal, and pulse compression process is used to improve the power of correlated signal based on cross-correction algorithm. For the purpose of reasonable parameter selection, different families of wavelets (Daubechies, Symlet and Coiflet) and decomposition level in discrete wavelet transform are analysed, different Barker codes (5-13 bits) are also analysed to acquire higher main-to-side lobe ratio. The performance of the hybrid method was verified in a honeycomb composite sample. Experimental results demonstrated that the proposed method is very efficient in improving the SNR and signal strength. The applicability of the proposed method seems to be a very promising tool to evaluate the integrity of high ultrasound attenuation composite materials using the ACUT.

  13. Cardiorespiratory responses to exercise in air and underwater.

    NASA Technical Reports Server (NTRS)

    Denison, D. M.; Wagner, P. D.; Kingaby, G. L.; West, J. B.

    1972-01-01

    Respiratory gas exchange, end-tidal gas tensions, alveolar ventilation, respiratory frequency, cardiac output, and pulse rate were measured in four healthy adult males at rest and during mild and moderate exercise in air at 18-22 C and underwater at 35.0-35.5 C. Immersion was associated with a 10% increase in pulse rate and cardiac output at all levels of exercise. There were no changes in end-tidal CO2 tension or alveolar ventilation. It is concluded that horizontal subjects breathing at eupneic pressures and working against mild and moderate loads in warm water show the same responses to exercise as in air.-

  14. Sub-nanosecond time resolved light emission study for diffuse discharges in air under steep high voltage pulses

    NASA Astrophysics Data System (ADS)

    Tardiveau, P.; Magne, L.; Marode, E.; Ouaras, K.; Jeanney, P.; Bournonville, B.

    2016-10-01

    Pin-to-plane discharges in centimetre air gaps and standard conditions of pressure and temperature are generated under very high positive nanosecond scale voltage pulses. The experimental study is based on recordings of sub-nanosecond time resolved and Abel-processed light emission profiles and their complete correlation to electrical current waveforms. The effects of the voltage pulse features (amplitude between 20 and 90 kV, rise time between 2 and 5.2 ns, and time rate between 4 and 40 kV · ns-1) and the electrode configuration (gap distance between 10 and 30 mm, pin radius between 10 and 200 µm, copper, molybdenum or tungsten pin material) are described. A three time period development can be found: a glow-like structure with monotonic light profiles during the first 1.5 ns whose size depends on time voltage rate, a shell-like structure with bimodal profiles whose duration and extension in space depends on rise time, and either diffuse or multi-channel regime for the connection to the cathode plane according to gap distance. The transition of the light from monotonic to bimodal patterns reveals the relative effects and dynamics of streamer space charge and external laplacian field. A classical 2D-fluid model for streamer propagation has been used and adapted for very high and steep voltage pulses. It shows the formation of a strong space charge (streamer) very close to the pin, but also a continuity of emission between the pin and the streamer, and electric fields higher than the critical ionization field (28 kV · cm-1 in air) almost in the whole gap and very early in the discharge propagation.

  15. Measurement of Absolute Hydroxyl Radical Concentration in Lean Fuel-Air Mixtures Excited by Nanosecond Pulsed Discharge.

    NASA Astrophysics Data System (ADS)

    Yin, Z.; Lempert, W. R.; Adamovich, I. V.

    2013-06-01

    The focus in plasma assisted combustion research has been on the evaluation of conventional plasma/combustion mechanisms in predicting oxidation and ignition processes initiated and/or sustained by non-equilibrium, nanosecond discharges. Accurate quantitative data such as temperature and species concentration are needed for assessing and improving numerical modeling. As an important intermediate species, the concentration of hydroxyl radical (OH) is very sensitive to the combustion environment (e.g., temperature, equivalence ratio), and therefore is of great interest to kinetic study. In this work, Laser-Induced Fluorescence (LIF) was used for time-resolved temperature and OH number density measurements in lean H_2-, CH_4-, C_2H_4-, and C_3H_8- air mixtures in a plasma flow reactor inside a tube furnace. The premixed fuel-air flow in the reactor, initially at T_0=500 K and P=100 torr, was excited by a burst of repetitive nanosecond electric pulses in a dielectric-barrier plane-to-plane geometry (˜28 kV peak voltage and ˜5 nsec pulse width, estimated 1.25 mJ/pulse coupled energy). Laser was timed to probe after the discharge burst was over to avoid strong plasma emission interference. Relative fluorescence signal was put on an absolute scale by calibrating against Rayleigh scattering signal in the same flow reactor. Experimental results were compared to predictions from a 0-D plasma/combustion chemistry model employing several well-established combustion mechanisms. 2-D temperature and OH concentration distributions in the discharge volume were obtained by planar LIF and was used to quantitatively evaluate plasma uniformity in the reactor. These results were used to determine the validity of the 0-D model. thanks

  16. Petroleum mass removal from low permeability sediment using air sparging/soil vapor extraction: impact of continuous or pulsed operation

    NASA Astrophysics Data System (ADS)

    Kirtland, Brian C.; Aelion, C. Marjorie

    2000-02-01

    Air sparging and soil vapor extraction (AS/SVE) are innovative remediation techniques that utilize volatilization and microbial degradation to remediate petroleum spills from soils and groundwater. This in situ study investigated the use of AS/SVE to remediate a gasoline spill from a leaking underground storage tank (UST) in the low permeability, clayey soil of the Appalachian Piedmont. The objectives of this study were to evaluate AS/SVE in low permeability soils by quantifying petroleum mass removal rates, monitoring vadose zone contaminant levels, and comparing the mass extraction rates of continuous AS/SVE to 8 and 24 h pulsed operation. The objectives were met by collecting AS/SVE exhaust gas samples and vadose zone air from multi-depth soil vapor probes. Samples were analyzed for O 2, CO 2, BTEX (benzene, toluene, ethylbenzene, xylene), and total combustible hydrocarbon (TCH) concentrations using portable hand meters and gas chromatography. Continuous AS/SVE was effective in removing 608 kg of petroleum hydrocarbons from low permeability soil in 44 days (14.3 kg day -1). Mass removal rates ranged from 2.6 times higher to 5.1 times lower than other AS/SVE studies performed in sandy sediments. BTEX levels in the vadose zone were reduced from about 5 ppm to 1 ppm. Ten pulsed AS/SVE tests removed 78 kg in 23 days and the mean mass removal rate (17.6 kg day -1) was significantly higher than the last 15 days of continuous extraction. Pulsed operation may be preferable to continuous operation because of increased mass removal and decreased energy consumption.

  17. Ozone generation in a kHz-pulsed He-O2 capillary dielectric barrier discharge operated in ambient air

    NASA Astrophysics Data System (ADS)

    Sands, Brian L.; Ganguly, Biswa N.

    2013-12-01

    The generation of reactive oxygen species using nonequilibrium atmospheric pressure plasma jet devices has been a subject of recent interest due to their ability to generate localized concentrations from a compact source. To date, such studies with plasma jet devices have primarily utilized radio-frequency excitation. In this work, we characterize ozone generation in a kHz-pulsed capillary dielectric barrier discharge configuration comprised of an active discharge plasma jet operating in ambient air that is externally grounded. The plasma jet flow gas was composed of helium with an admixture of up to 5% oxygen. A unipolar voltage pulse train with a 20 ns pulse risetime was used to drive the discharge at repetition rates between 2-25 kHz. Using UVLED absorption spectroscopy centered at 255 nm near the Hartley-band absorption peak, ozone was detected over 1 cm from the capillary axis. We observed roughly linear scaling of ozone production with increasing pulse repetition rate up to a "turnover frequency," beyond which ozone production steadily dropped and discharge current and 777 nm O(5P→5S°) emission sharply increased. The turnover in ozone production occurred at higher pulse frequencies with increasing flow rate and decreasing applied voltage with a common energy density of 55 mJ/cm3 supplied to the discharge. The limiting energy density and peak ozone production both increased with increasing O2 admixture. The power dissipated in the discharge was obtained from circuit current and voltage measurements using a modified parallel plate dielectric barrier discharge circuit model and the volume-averaged ozone concentration was derived from a 2D ozone absorption measurement. From these measurements, the volume-averaged efficiency of ozone production was calculated to be 23 g/kWh at conditions for peak ozone production of 41 mg/h at 11 kV applied voltage, 3% O2, 2 l/min flow rate, and 13 kHz pulse repetition rate, with 1.79 W dissipated in the discharge.

  18. INTERACTION OF LASER RADIATION WITH MATTER. LASER PLASMA: Structure of flows due to interaction of CO2 laser pulse pairs with a target in air

    NASA Astrophysics Data System (ADS)

    Bakeev, A. A.; Nikolashina, L. I.; Potashkin, M. N.; Prokopenko, N. V.

    1991-06-01

    An analysis is made of two pulses from an electric-discharge CO2 laser, of 6-12 μs duration and separated in time, incident on a target surrounded by air of normal density. The main attention is concentrated on breakdown of air by the second pulse at a boundary separating the "cold gas" and the plasma generated by the first pulse ("hot gas"). A gasdynamic system of waves is then generated. It consists of an absorption wave traveling along the cold gas opposite to the laser radiation and a wave propagating along the hot gas toward the target. The best agreement between the theory and experiment is obtained employing a model in which an absorption wave travels along the hot gas in an overcompressed detonation regime. The density of the radiation flux needed to maintain such a wave is 20-30% of the average density of the laser radiation flux carried by the second pulse.

  19. Health Effects of Air Pollution

    MedlinePlus

    ... Health effects of air pollution Health effects of air pollution Breathing air that is not clean can hurt ... important to know about the health effects that air pollution can have on you and others. Once you ...

  20. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  1. Electron emission mechanism during the nanosecond high-voltage pulsed discharge in pressurized air

    NASA Astrophysics Data System (ADS)

    Levko, D.; Yatom, S.; Vekselman, V.; Krasik, Ya. E.

    2012-02-01

    A comparison between the results of x-ray absorption spectroscopy of runaway electrons (RAEs) generated during nanosecond timescale high-voltage (HV) gas discharge and the simulated attenuation of the x-ray flux produced by the runaway electron spectrum calculated using particle-in-cell numerical modeling of such a type of discharge is presented. The particle-in-cell simulation considered the field and explosive emissions (EEs) of the electrons from the cathode. It is shown that the field emission is the dominant emission mechanism for the short-duration (<2.5 ns) high-voltage pulses, while for the long-duration (>5 ns) high-voltage pulses, the explosive emission is likely to play a significant role.

  2. A pulsed wire probe for the measurement of velocity and flow direction in slowly moving air.

    PubMed

    Olson, D E; Parker, K H; Snyder, B

    1984-02-01

    This report describes the theory and operation of a pulsed-probe anemometer designed to measure steady three-dimensional velocity fields typical of pulmonary tracheo-bronchial airflows. Local velocities are determined by measuring the transport time and orientation of a thermal pulse initiated at an upstream wire and sensed at a downstream wire. The transport time is a reproducible function of velocity and the probe wire spacing, as verified by a theoretical model of convective heat transfer. When calibrated the anemometer yields measurements of velocity accurate to +/- 5 percent and resolves flow direction to within 1 deg at airspeeds greater than or equal to 10 cm/s. Spatial resolution is +/- 0.5 mm. Measured flow patterns typical of curved circular pipes are included as examples of its application.

  3. Needle-array to Plate DBD Plasma Using Sine AC and Nanosecond Pulse Excitations for Purpose of Improving Indoor Air Quality

    PubMed Central

    Zhang, Li; Yang, Dezheng; Wang, Wenchun; Wang, Sen; Yuan, Hao; Zhao, Zilu; Sang, Chaofeng; Jia, Li

    2016-01-01

    In this study, needle-array to plate electrode configuration was employed to generate an atmospheric air diffuse discharge using both nanosecond pulse and sine AC voltage as excitation voltage for the purpose of improving indoor air quality. Different types of voltage sources and electrode configurations are employed to optimize electrical field distribution and improve discharge stability. Discharge images, electrical characteristics, optical emission spectra, and plasma gas temperatures in both sine AC discharge and nanosecond pulse discharge were compared and the discharge stability during long operating time were discussed. Compared with the discharge excited by sine AC voltage, the nanosecond pulsed discharge is more homogenous and stable, besides, the plasma gas temperature of nanosecond pulse discharge is much lower. Using packed-bed structure, where γ- Al2O3 pellets are filled in the electrode gap, has obvious efficacy in the production of homogenous discharge. Furthermore, both sine AC discharge and nanosecond pulse discharge were used for removing formaldehyde from flowing air. It shows that nanosecond pulse discharge has a significant advantage in energy cost. And the main physiochemical processes for the generation of active species and the degradation of formaldehyde were discussed. PMID:27125663

  4. Needle-array to Plate DBD Plasma Using Sine AC and Nanosecond Pulse Excitations for Purpose of Improving Indoor Air Quality.

    PubMed

    Zhang, Li; Yang, Dezheng; Wang, Wenchun; Wang, Sen; Yuan, Hao; Zhao, Zilu; Sang, Chaofeng; Jia, Li

    2016-04-29

    In this study, needle-array to plate electrode configuration was employed to generate an atmospheric air diffuse discharge using both nanosecond pulse and sine AC voltage as excitation voltage for the purpose of improving indoor air quality. Different types of voltage sources and electrode configurations are employed to optimize electrical field distribution and improve discharge stability. Discharge images, electrical characteristics, optical emission spectra, and plasma gas temperatures in both sine AC discharge and nanosecond pulse discharge were compared and the discharge stability during long operating time were discussed. Compared with the discharge excited by sine AC voltage, the nanosecond pulsed discharge is more homogenous and stable, besides, the plasma gas temperature of nanosecond pulse discharge is much lower. Using packed-bed structure, where γ- Al2O3 pellets are filled in the electrode gap, has obvious efficacy in the production of homogenous discharge. Furthermore, both sine AC discharge and nanosecond pulse discharge were used for removing formaldehyde from flowing air. It shows that nanosecond pulse discharge has a significant advantage in energy cost. And the main physiochemical processes for the generation of active species and the degradation of formaldehyde were discussed.

  5. Submarines, spacecraft and exhaled breath.

    PubMed

    Pleil, Joachim D; Hansel, Armin

    2012-03-01

    Foreword The International Association of Breath Research (IABR) meetings are an eclectic gathering of researchers in the medical, environmental and instrumentation fields; our focus is on human health as assessed by the measurement and interpretation of trace chemicals in human exhaled breath. What may have escaped our notice is a complementary field of research that explores the creation and maintenance of artificial atmospheres practised by the submarine air monitoring and air purification (SAMAP) community. SAMAP is comprised of manufacturers, researchers and medical professionals dealing with the engineering and instrumentation to support human life in submarines and spacecraft (including shuttlecraft and manned rockets, high-altitude aircraft, and the International Space Station (ISS)). Here, the immediate concerns are short-term survival and long-term health in fairly confined environments where one cannot simply 'open the window' for fresh air. As such, one of the main concerns is air monitoring and the main sources of contamination are CO(2) and other constituents of human exhaled breath. Since the inaugural meeting in 1994 in Adelaide, Australia, SAMAP meetings have been held every two or three years alternating between the North American and European continents. The meetings are organized by Dr Wally Mazurek (a member of IABR) of the Defense Systems Technology Organization (DSTO) of Australia, and individual meetings are co-hosted by the navies of the countries in which they are held. An overriding focus at SAMAP is life support (oxygen availability and carbon dioxide removal). Certainly, other air constituents are also important; for example, the closed environment of a submarine or the ISS can build up contaminants from consumer products, cooking, refrigeration, accidental fires, propulsion and atmosphere maintenance. However, the most immediate concern is sustaining human metabolism: removing exhaled CO(2) and replacing metabolized O(2). Another

  6. Breathing metabolic simulator.

    NASA Technical Reports Server (NTRS)

    Bartlett, R. G., Jr.; Hendricks, C. M.; Morison, W. B.

    1971-01-01

    Description of a device for simulation of the human breathing and metabolic parameters required for the evaluation of respiratory diagnostic, monitoring, support and resuscitation equipment. The remotely controlled device allows wide variations in breathing rate and depth, breath velocity contour, oxygen uptake and carbon dioxide release to simulate conditions from sleep to hard work, with respiration exchange ratios ranging from hypoventilation to hyperventilation. It also reduces the cost of prolonged testing when simulation chambers with human subjects require three shifts of crews and standby physicians. Several block diagrams of the device and subsystems are given.

  7. Electrophysical and optophysical properties of air ionized by a short pulse of fast electrons

    NASA Astrophysics Data System (ADS)

    Vagin, Iu. P.; Stal', N. L.; Khokhlov, V. D.; Chernoiarskii, A. A.

    A method for solving the nonstationary kinetic equation of electron deceleration is developed which is based on the multigroup approximation. The electron distribution function in air ionized by nonstationary sources of primary electrons is determined, and the avalanche formation of secondary electrons is considered. Theoretical and experimental results are presented on the time dependence of the air luminescence intensity in two spectral intervals, one including the 391.4 nm N2(+) band and the other including the 337.1 nm N2 band, for different values of gas pressure under the effect of a short beam of electrons with energies of 100 keV.

  8. Changes In Arterial Hemoglobin Oxygen Saturation During Transport From the Operating Room to the Postanesthesia Care Unit In Healthy Patients Breathing Room Air

    DTIC Science & Technology

    1998-12-16

    This occurs because nitrous oxide is 31 times more soluble in blood than nitrogen. If nitrogen was more soluble in blood than nitrous oxide this would...lack of data on pat i ent oxygenation during postoperative transfer, explainable in part by the difficulty of measuring blood gases under s uch...noninvasively measure the oxygen saturation of hemoglobin in arterial blood . The two types of oximeters are transmissive pulse oximeters and

  9. Abstracts. 1978 AFOSR Contractors Meeting on Air-Breathing Combustion Dynamics and Kinetics, Ramada Inn-Downtown Dayton, Ohio, 10 - 13 October 1978

    DTIC Science & Technology

    1978-10-13

    aircraft operations, jet fuels of the future are likely to be produced from a combination of basic synthetic crudes; ie, coal, oil, shale , tar sand, etc...a mechanical shaker . A pulse generator-function generator-power amplifier combination was used to generate a 2-cycle burst of a given frequency which...above 300 Hz). In the other configuration, the piston- shaker was used to establish first a standing wave in the reaction tube at one of its resonant

  10. Breath-Holding Spells

    MedlinePlus

    ... cause kids to stop breathing and sometimes lose consciousness for up to a minute. In the most ... pose a choking hazard once your child regains consciousness roll your child over onto his or her ...

  11. Breathing - slowed or stopped

    MedlinePlus

    ... who is not responsive is called cardiac (or cardiopulmonary) arrest. In infants and children, the most common ... brain inflammation and infection that affects vital brain functions) Gastroesophageal reflux (heartburn) Holding one's breath Meningitis (inflammation ...

  12. Shortness of Breath

    MedlinePlus

    ... with blood clots in the legs or pelvis (deep venous thrombosis), debilitating medical conditions, immobility, or inherited ... it hard for a person to take a deep breath, which usually results in retention of carbon ...

  13. Shortness-of-Breath

    MedlinePlus

    ... can lead to shortness of breath include anxiety, panic attacks, anemia and even constipation. The experience of shortness ... are used to treat patients with anxiety or panic attacks. Other commonly used drugs include bronchodilators to widen ...

  14. PULSED AIR SPARGING IN AQUIFERS CONTAMINATED WITH DENSE NONAQUEOUS PHASE LIQUIDS

    EPA Science Inventory

    Air sparging was evaluated for remediation of tetrachloroethylene (PCE) present as dense nonaqueous phase liquid (DNAPL) in aquifers. A two-dimensional laboratory tank with a transparent front wall allowed for visual observation of DNAPL mobilization. A DNAPL zone 50 cm high was ...

  15. Investigation of the mechanism in Rijke pulse combustors with tangential air and fuel injection. Final report

    SciTech Connect

    Zinn, B.T.; Jagoda, J.I.; Daniel, B.R.; Bai, T.

    1993-03-01

    To study the mechanisms that control the operation of this combustor, an experimental setup is developed with access for detailed optical measurements. Propane is employed as fuel because the absence of liquid drops and combustion generated particulates in the combustion region significantly simplifies the optical diagnostics. The experimental techniques utilized include acoustic pressure measurements, space and time resolved radiation measurements, steady temperature measurements, exhaust flow chemical analysis, high speed video and intensified images of the reacting flow field by a computer based CCD camera imaging system. Flow visualization by the imaging system and the results from radiation intensity distribution measurements suggest that the periodic combustion processes caused by periodic vortex shedding and impingement provide the energy required to sustain the pressure oscillations. High radiation intensity occurs during a relatively short period of time and is in phase with the pressure oscillations, indicating that Rayleigh`s criterion is satisfied. Periodic variations of the air and fuel flow rates and, consequently, the air/fuel ratio of the reacting mixture inside the combustor appear to be another mechanism that contributes to the occurrence of periodic combustion and heat release processes. The presence of this mechanism has been uncovered by acoustic pressure measurements that revealed the presence of traveling pressure waves inside the air and fuel feed lines. These traveling waves produce periodic fuel and air feed rates which, in turn, result in periodic combustion and heat release processes within the combustor.

  16. Control of the domain of multiple filamentation of terawatt laser pulses along a hundred-meter air path

    SciTech Connect

    Apeksimov, D V; Geints, Yu E; Zemlyanov, A A; Kabanov, A M; Matvienko, G G; Oshlakov, V K

    2015-05-31

    We report the results of experiments and numerical simulation for multiple filamentation of terawatt femtosecond pulses of a Ti : sapphire laser on a 106-meter long air path under varied initial spatial focusing and laser output power. Highly efficient control of the position and length of the filamentation domain is realised by varying the initial focusing of the laser beam, which provides the movement of the filamentation domain along the entire optical path. The unimodal character of the distribution of the number of plasma channels formed by the laser beam along the optical path is revealed and a correlation of the coordinates corresponding to the maximal number of plasma channels and to the nonlinear focus of the beam as a whole is established. (extreme light fields and their applications)

  17. Numerical simulation of nanosecond pulsed DBD in lean methane-air mixture for typical conditions in internal engines

    NASA Astrophysics Data System (ADS)

    Takana, Hidemasa; Nishiyama, Hideya

    2014-06-01

    Detailed two-dimensional numerical simulations of a high energy loading nanosecond dc pulse DBD in a lean methane-air mixture were conducted for plasma-assisted combustion by integrating individual models of plasma chemistry, photoionization and energy loading. The DBD streamer propagation process with radical productions was clarified at 10 atm and 600 K as under the condition of actual internal engines at ignition. Energy is loaded to the streamer first by the formation of plasma channel and then ceased due to the self-shielding effect. Because of the inversed electric field in a discharge space during decrease in applied voltage, energy is loaded to the discharge again. It was found that higher energy is loaded to the DBD streamer for larger dielectric constant even at lower applied voltage, and higher number density of oxygen radical is produced at almost the same radical production efficiency.

  18. Synthesis of nanoparticles by pulsed laser ablation in air: a versatile means for flexible synthesis and separation

    NASA Astrophysics Data System (ADS)

    Zhou, R.; Huang, T. T.; Lin, S. D.

    2016-11-01

    In this work, various types of pure nanoparticles are synthesized by pulsed laser ablation. A novel method using laser ablation is presented to synthesize and separate different sizes of nanoparticles. Laser ablation is applied as a physical and environmental friendly method to generate a variety of nanoparticles in air-based environments. By tuning laser beam horizontal and placing target materials vertically to the substrate, nanoparticles can be generated and separated automatically depending on their sizes. The size distribution is evaluated by optical microscope and nanoparticles are counted according to their diameters. The diameter of the particles ranges from 30nm to 5000nm. This work provides a versatile means to collect many types of uniform functional nanoparticles for a wide range of applications.

  19. The Effect of Breathing Elevated CO2 Gas Mixtures on Tracking Performance, Blood Pressure, and Subjective Tolerance at 1Gz

    DTIC Science & Technology

    1986-03-01

    subjects. The following is a collection of those comments. Mlen breathing the air mixture six subjects reported no problem and one subject reported an...complained of being short of breath ; the remainirg five subjects reported no problems with 100% 0 2* During the exposure to 2.5% CO2 , one subject...more difficult to breathe than breathing ambient air. The remaining five reported no problems . Using 3.5% CO2, one subject aborted after being on the

  20. Breath-Holding Spells

    MedlinePlus

    ... Lessons? Visit KidsHealth in the Classroom What Other Parents Are Reading Your Child's Development (Birth to 3 Years) Feeding Your 1- to 3-Month-Old Feeding Your 4- to 7-Month-Old Feeding Your 8- to 12-Month-Old Feeding Your 1- to 2-Year-Old Breath-Holding ... > For Parents > Breath-Holding Spells Print A A A What's ...

  1. Kinetics of excited states and radicals in a nanosecond pulse discharge and afterglow in nitrogen and air

    NASA Astrophysics Data System (ADS)

    Shkurenkov, Ivan; Burnette, David; Lempert, Walter R.; Adamovich, Igor V.

    2014-12-01

    The present kinetic modelling calculation results provide key new insights into the kinetics of vibrational excitation of nitrogen and plasma chemical reactions in nanosecond pulse, ‘diffuse filament’ discharges in nitrogen and dry air at a moderate energy loading per molecule, ˜0.1 eV per molecule. It is shown that it is very important to take into account Coulomb collisions between electrons because they change the electron energy distribution function and, as a result, strongly affect populations of excited states and radical concentrations in the discharge. The results demonstrate that the apparent transient rise of N2 ‘first level’ vibrational temperature after the discharge pulse, as detected in the experiments, is due to the net downward V-V energy transfer in N2-N2 collisions, which increases the N2(X 1Σ, v = 1) population. Finally, a comparison of the model's predictions with the experimental data shows that NO formation in the afterglow occurs via reactive quenching of multiple excited electronic levels of nitrogen molecule, N2\\ast , by O atoms. ) published in this volume, which focuses on the kinetic modelling of the experiments. This paper presents the results of the experiments.

  2. Characterization of Wet Air Plasma Jet Powered by Sinusoidal High Voltage and Nanosecond Pulses for Plasma Agricultural Application

    NASA Astrophysics Data System (ADS)

    Takashima, Keisuke; Shimada, Keisuke; Konishi, Hideaki; Kaneko, Toshiro

    2015-09-01

    Not only for the plasma sterilization but also for many of plasma life-science applications, atmospheric pressure plasma devices that allowed us to control its state and reactive species production are deserved to resolve the roles of the chemical species. Influence of the hydroxyl radical and ozone on germination of conidia of a strawberry pathogen is presented. Water addition to air plasma jet significantly improves germination suppression performance, while measured reactive oxygen species (ROS) are reduced. Although the results show a negative correlation between ROS and the germination suppression, this infers the importance of chemical composition generated by plasma. For further control of the plasma product, a plasma jet powered by sinusoidal high voltage and nanosecond pulses is developed and characterized with the voltage-charge Lissajous. Control of breakdown phase and discharge power by pulse-imposed phase is presented. This work is supported by JSPS KAKENHI Grant-in-Aid for Young Scientists (B) Grant Number 15K17480 and Exploratory Research Grant Number 23644199.

  3. 2D positive streamer modelling in NTP air under extreme pulse fronts. What about runaway electrons?

    NASA Astrophysics Data System (ADS)

    Marode, E.; Dessante, Ph; Tardiveau, P.

    2016-12-01

    Using a 2D model, an attempt is made to understand the properties and aspects of a diffuse discharge, appearing in a positive point-to-plane gap submitted to very high voltage pulses. After presenting the model, comparisons between the computed low and high pulse heights of 10 kV and 50 kV, respectively, will be shown and analysed. A streamer ionising wave is still formed, but its role in ionising a region of low field is replaced by the role of providing a plasma within which the electrons will benefit from the presence of a high electrical field meant to induce strong electron collision activities. A comparison between the aspect of the computed and experimental discharge carried out in the same conditions at 50 kV will be presented, which seems to be in agreement with the diffuse aspect. Although the difference in order of magnitude of the speed of development and the height of the current must be underlined, similarities between the structures of both situations will, however, be recognised. A high probability of obtaining highly energetic electrons and runaways (RAEs) will also be derived following a simple approach.

  4. Breathing simulator of workers for respirator performance test.

    PubMed

    Yuasa, Hisashi; Kumita, Mikio; Honda, Takeshi; Kimura, Kazushi; Nozaki, Kosuke; Emi, Hitoshi; Otani, Yoshio

    2015-01-01

    Breathing machines are widely used to evaluate respirator performance but they are capable of generating only limited air flow patterns, such as, sine, triangular and square waves. In order to evaluate the respirator performance in practical use, it is desirable to test the respirator using the actual breathing patterns of wearers. However, it has been a difficult task for a breathing machine to generate such complicated flow patterns, since the human respiratory volume changes depending on the human activities and workload. In this study, we have developed an electromechanical breathing simulator and a respiration sampling device to record and reproduce worker's respiration. It is capable of generating various flow patterns by inputting breathing pattern signals recorded by a computer, as well as the fixed air flow patterns. The device is equipped with a self-control program to compensate the difference in inhalation and exhalation volume and the measurement errors on the breathing flow rate. The system was successfully applied to record the breathing patterns of workers engaging in welding and reproduced the breathing patterns.

  5. Sports-related lung injury during breath-hold diving.

    PubMed

    Mijacika, Tanja; Dujic, Zeljko

    2016-12-01

    The number of people practising recreational breath-hold diving is constantly growing, thereby increasing the need for knowledge of the acute and chronic effects such a sport could have on the health of participants. Breath-hold diving is potentially dangerous, mainly because of associated extreme environmental factors such as increased hydrostatic pressure, hypoxia, hypercapnia, hypothermia and strenuous exercise.In this article we focus on the effects of breath-hold diving on pulmonary function. Respiratory symptoms have been reported in almost 25% of breath-hold divers after repetitive diving sessions. Acutely, repetitive breath-hold diving may result in increased transpulmonary capillary pressure, leading to noncardiogenic oedema and/or alveolar haemorrhage. Furthermore, during a breath-hold dive, the chest and lungs are compressed by the increasing pressure of water. Rapid changes in lung air volume during descent or ascent can result in a lung injury known as pulmonary barotrauma. Factors that may influence individual susceptibility to breath-hold diving-induced lung injury range from underlying pulmonary or cardiac dysfunction to genetic predisposition.According to the available data, breath-holding does not result in chronic lung injury. However, studies of large populations of breath-hold divers are necessary to firmly exclude long-term lung damage.

  6. Breath hydrogen reflects canine intestinal ischemia.

    PubMed

    Perman, J A; Waters, L A; Harrison, M R; Yee, E S; Heldt, G P

    1981-09-01

    The relationship between breath hydrogen excretion and intestinal ischemia was investigated in nine mechanically ventilated dogs under pentobarbital anesthesia. An ileal segment was isolated in situ, ligated at each end, and insufflated with hydrogen. Expired air was collected at intervals. Blood volume was reduced 30% by three successive equivalent hemorrhages 10 min apart. Local bowel ischemia was produced by clamping the blood supply to the isolated segment for 10 min. Graded hemorrhage produced step-wise reductions in breath hydrogen concentration, to 77 +/- 13, 66 +/- 15, and 35 +/- 8% (mean +/- S.E.) of baseline after the first, second, and third hemorrhages, respectively. These reductions correlated highly (r = 0.84; P less than 0.01) with declines in mean aortic blood pressure. Occlusion of blood supply caused a significant (P less than 0.025) decrease in breath hydrogen concentration and excretion to 39 +/- 14% of baseline. Termination of occlusion was followed within 2 min by a 7-fold increase in breath H2 concentration above the original baseline, probably reflecting reactive hyperemia. Breath hydrogen measurements appear to reflect functional (hemorrhagic shock-induced) and mechanical (vascular occlusion induced) enteric ischemia in dogs.

  7. Acute Effects of Continuous Positive Air way Pressure on Pulse Pressure in Chronic Heart Failure

    PubMed Central

    Quintão, Mônica; Chermont, Sérgio; Marchese, Luana; Brandão, Lúcia; Bernardez, Sabrina Pereira; Mesquita, Evandro Tinoco; Rocha, Nazareth de Novaes; Nóbrega, Antônio Claudio L.

    2014-01-01

    Background Patients with heart failure (HF) have left ventricular dysfunction and reduced mean arterial pressure (MAP). Increased adrenergic drive causes vasoconstriction and vessel resistance maintaining MAP, while increasing peripheral vascular resistance and conduit vessel stiffness. Increased pulse pressure (PP) reflects a complex interaction of the heart with the arterial and venous systems. Increased PP is an important risk marker in patients with chronic HF (CHF). Non-invasive ventilation (NIV) has been used for acute decompensated HF, to improve congestion and ventilation through both respiratory and hemodynamic effects. However, none of these studies have reported the effect of NIV on PP. Objective The objective of this study was to determine the acute effects of NIV with CPAP on PP in outpatients with CHF. Methods Following a double-blind, randomized, cross-over, and placebo-controlled protocol, twenty three patients with CHF (17 males; 60 ± 11 years; BMI 29 ± 5 kg/cm2, NYHA class II, III) underwent CPAP via nasal mask for 30 min in a recumbent position. Mask pressure was 6 cmH2O, whereas placebo was fixed at 0-1 cmH2O. PP and other non invasive hemodynamics variables were assessed before, during and after placebo and CPAP mode. Results CPAP decreased resting heart rate (Pre: 72 ± 9; vs. Post 5 min: 67 ± 10 bpm; p < 0.01) and MAP (CPAP: 87 ± 11; vs. control 96 ± 11 mmHg; p < 0.05 post 5 min). CPAP decreased PP (CPAP: 47 ± 20 pre to 38 ± 19 mmHg post; vs. control: 42 ± 12 mmHg, pre to 41 ± 18 post p < 0.05 post 5 min). Conclusion NIV with CPAP decreased pulse pressure in patients with stable CHF. Future clinical trials should investigate whether this effect is associated with improved clinical outcome. PMID:24676373

  8. Antennas for the detection of radio emission pulses from cosmic-ray induced air showers at the Pierre Auger Observatory

    NASA Astrophysics Data System (ADS)

    Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Albuquerque, I. F. M.; Allard, D.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Antičić, T.; Aramo, C.; Arganda, E.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Badescu, A. M.; Balzer, M.; Barber, K. B.; Barbosa, A. F.; Bardenet, R.; Barroso, S. L. C.; Baughman, B.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellétoile, A.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Bruijn, R.; Buchholz, P.; Bueno, A.; Buroker, L.; Burton, R. E.; Caballero-Mora, K. S.; Caccianiga, B.; Caramete, L.; Caruso, R.; Castellina, A.; Catalano, O.; Cataldi, G.; Cazon, L.; Cester, R.; Chauvin, J.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chirinos Diaz, J.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cook, H.; Cooper, M. J.; Coppens, J.; Cordier, A.; Coutu, S.; Covault, C. E.; Creusot, A.; Criss, A.; Cronin, J.; Curutiu, A.; Dagoret-Campagne, S.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; De Donato, C.; de Jong, S. J.; De La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; de Vries, K. D.; del Peral, L.; del Río, M.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Díaz Castro, M. L.; Diep, P. N.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; D'Urso, D.; Dutan, I.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fliescher, S.; Fracchiolla, C. E.; Fraenkel, E. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Gaior, R.; Gamarra, R. F.; Gambetta, S.; García, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Gascon Bravo, A.; Gemmeke, H.; Ghia, P. L.; Giller, M.; Gitto, J.; Glass, H.; Gold, M. S.; Golup, G.; Gomez Albarracin, F.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; Gookin, B.; Gorgi, A.; Gouffon, P.; Grashorn, E.; Grebe, S.; Griffith, N.; Grigat, M.; Grillo, A. F.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hojvat, C.; Hollon, N.; Holmes, V. C.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Ionita, F.; Italiano, A.; Jansen, S.; Jarne, C.; Jiraskova, S.; Josebachuili, M.; Kadija, K.; Kampert, K. H.; Karhan, P.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kelley, J. L.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapp, J.; Koang, D.-H.; Kotera, K.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kulbartz, J. K.; Kunka, N.; La Rosa, G.; Lachaud, C.; LaHurd, D.; Latronico, L.; Lauer, R.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Macolino, C.; Maldera, S.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, J.; Marin, V.; Maris, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mazur, P. O.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Mertsch, P.; Meurer, C.; Meyhandan, R.; Mićanović, S.; Micheletti, M. I.; Minaya, I. A.; Miramonti, L.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morales, B.; Morello, C.; Moreno, E.; Moreno, J. C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Nhung, P. T.; Niechciol, M.; Niemietz, L.; Nierstenhoefer, N.; Nitz, D.; Nosek, D.; Nožka, L.; Oehlschläger, J.; Olinto, A.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parizot, E.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; Pekala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrolini, A.; Petrov, Y.; Pfendner, C.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Ponce, V. H.; Pontz, M.; Porcelli, A.; Privitera, P.; Prouza, M.; Quel, E. J.; Querchfeld, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rivera, H.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez, G.; Rodriguez Cabo, I.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouillé-d'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Rühle, C.; Saftoiu, A.; Salamida, F.; Salazar, H.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarkar, S.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Scholten, O.; Schoorlemmer, H.; Schovancova, J.; Schovánek, P.; Schröder, F.; Schulte, S.; Schuster, D.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Silva Lopez, H. H.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Srivastava, Y. N.; Stanic, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Šuša, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Tapia, A.; Tartare, M.; Taşcău, O.; Tcaciuc, R.; Thao, N. T.; Thomas, D.; Tiffenberg, J.; Timmermans, C.; Tkaczyk, W.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Travnicek, P.; Tridapalli, D. B.; Tristram, G.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van den Berg, A. M.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Westerhoff, S.; Whelan, B. J.; Widom, A.; Wieczorek, G.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wommer, M.; Wundheiler, B.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano Garcia, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.; Charrier, D.; Denis, L.; Hilgers, G.; Mohrmann, L.; Philipps, B.; Seeger, O.

    2012-10-01

    The Pierre Auger Observatory is exploring the potential of the radio detection technique to study extensive air showers induced by ultra-high energy cosmic rays. The Auger Engineering Radio Array (AERA) addresses both technological and scientific aspects of the radio technique. A first phase of AERA has been operating since September 2010 with detector stations observing radio signals at frequencies between 30 and 80 MHz. In this paper we present comparative studies to identify and optimize the antenna design for the final configuration of AERA consisting of 160 individual radio detector stations. The transient nature of the air shower signal requires a detailed description of the antenna sensor. As the ultra-wideband reception of pulses is not widely discussed in antenna literature, we review the relevant antenna characteristics and enhance theoretical considerations towards the impulse response of antennas including polarization effects and multiple signal reflections. On the basis of the vector effective length we study the transient response characteristics of three candidate antennas in the time domain. Observing the variation of the continuous galactic background intensity we rank the antennas with respect to the noise level added to the galactic signal.

  9. STUDENT AWARD FINALIST: Study of Self-Absorbed Vacuum Ultraviolet Radiation during Pulsed Atmospheric Breakdown in Air

    NASA Astrophysics Data System (ADS)

    Laity, George; Fierro, Andrew; Hatfield, Lynn; Neuber, Andreas

    2011-10-01

    This paper describes recent experiments to investigate the role of self-produced vacuum ultraviolet (VUV) radiation in the physics of pulsed atmospheric breakdown. A unique apparatus was constructed which enables the detailed exploration of VUV light in the range 115-135 nm, which is emitted from breakdown between two point-point electrodes in an air environment at atmospheric pressure. Time-resolved diagnostics include VUV sensitive photomultipliers, intensified CCD imaging, optically isolated high voltage probes, and fast rise-time Rogowski current monitors. Temporally resolved spectroscopy from air breakdowns revealed VUV emission is released during the initial streamer phase before voltage collapse, with the majority of the emission lines identified from various atmospheric gases or surface impurities. Imaging of VUV radiation was performed which conserved the spatial emission profile, and distinct differences between nitrogen and oxygen VUV emission during onset of breakdown have been observed. Specifically, the self-absorption of HI, OI, and NI lines is addressed which elucidates the role of radiation transport during the photon-dominated streamer breakdown process. Supported by AFOSR, NASA / TSGC, DEPS, and IEEE DEIS.

  10. Experimental and numerical analysis of atmospheric air plasma induced by multi-MeV pulsed X-ray

    NASA Astrophysics Data System (ADS)

    Maulois, Mélissa; Ribière, Maxime; Eichwald, Olivier; Yousfi, Mohammed; Pouzalgues, Romain; Garrigues, Alain; Delbos, Christophe; Azaïs, Bruno

    2016-10-01

    Quantification of electromagnetic stresses on electronic systems, following irradiation of the air by ionizing radiations, requires a thorough study of the plasma generated. In this work, the temporal evolution of non-equilibrium air plasmas self-induced by energetic X-rays is experimentally and theoretically investigated at atmospheric pressure. Time resolved electron density measurements are based on transmission measurements of an electromagnetic wave in the microwave range. The electromagnetic wave is launched into a wave guide, which is irradiated by a high flux of multi-MeV pulsed X-rays. For different X-ray fluxes, the electron density is determined from the comparison between the transmitted microwave signal at the waveguide output, and the result of the calculation of the propagation of an electromagnetic wave through time varying plasma contained in a waveguide. These measurements require a priori assumptions on electron temperature, which is obtained and confirmed by a reaction kinetics model of the evolution of the electron energy and the densities of the different humid air plasma species inside the waveguide. The considered chemical kinetics scheme involves 39 influent species (electrons, positive ions, negative ions, and neutral atoms and molecules in their ground or metastable excited states) reacting following 265 selected reactions. A good agreement is observed between the calculated and measured time evolution of the transmitted signal for specific profiles of electron energy and density. In our experiments, the maximum electron density is of the order of few 1012 cm-3, for a mean electron energy of about 0.5 eV. For doses range from 3 Gy to 21 Gy, the discrepancies between the measurements and the model for the maximum of the electron density are within a factor of 2.

  11. Comparative analysis of post-focal filamentation of focused UV and IR laser pulses in air

    SciTech Connect

    Geints, Yu E; Zemlyanov, A A; Ionin, A A; Mokrousova, D V; Seleznev, L V; Sinitsyn, D V; Sunchugasheva, E S

    2015-04-30

    We report the results of laboratory experiments and numerical calculations of the spatial position and structure of a plasma channel produced in air by high-power focused femtosecond laser radiation with wavelengths of 740 and 248 nm as a result of its self-focusing and filamentation. A comparative analysis of the physical patterns of filamentation of IR and UV laser beams with variations in the beam focal length, transverse size and power is performed. It is found that a plasma channel beyond the linear focal waist of the laser beam is formed differently for two different spectral ranges. (nonlinear optical phenomena)

  12. Investigation of the mechanism in RIJKE pulse combustors with tangential air and fuel injection. Progress report, August 1, 1992--January 31, 1993

    SciTech Connect

    Zinn, B.T.; Jagoda, J.I.; Daniel, B.R.; Bai, T.

    1993-02-01

    This report summarizes the accomplishments of DOE Contract No. DE-AS04-85AL31881. This three year investigation started in August 1989 and its objective was to elucidate the mechanisms that control the driving of pulsations in the liquid fuel burning, Rijke type, pulse combustor developed under a preceding DOE contracts. It was demonstrated in that contract that the developed Rijke type pulse combustor can burn a variety of light and heavy liquid fuel oils with high combustion efficiencies while using low excess air, which produces high thermal efficiencies. Since the elucidation of the driving mechanism in the Rijke pulse combustor required the use of optical diagnostics (e.g., radiation measurements), it was decided to perform these investigations in a Rijke pulse combustor that burned propane instead of a liquid fuel in order to avoid difficulties that are often encountered due to the presence of liquid droplets in the combustion region. Consequently, an effort was made to develop a Rijke pulse combustor that is similar to the one developed in the preceding program and demonstrated similar performance characteristics. Such a pulse combustor was developed in the early phases of this program. The developed experimental setup was provided with capabilities for measuring steady combustor temperature distributions, the characteristics of the excited pressure oscillations, the exhaust flow composition, the characteristics of the flow field and the reaction rates. This pulse combustor consists of a cylindrical tube that is attached to a decoupling chamber at each end. Fuel and air are supplied via a tangential air/fuel injection system that is located at a distance of L/4 from the combustor entrance, where L is the combustor length. Part of the combustor tube, where combustion occurs, is water cooled. This section is also equipped with flat quartz windows to permit optical diagnostics.

  13. UWB pulse propagation into human tissues

    NASA Astrophysics Data System (ADS)

    Cavagnaro, Marta; Pittella, Erika; Pisa, Stefano

    2013-12-01

    In this paper the propagation of a UWB pulse into a layered model of the human body is studied to characterize absorption and reflection of the UWB signal due to the different body tissues. Several time behaviours for the incident UWB pulse are considered and compared with reference to the feasibility of breath and heartbeat activity monitoring. Results show that if the UWB source is placed far from the human body, the reflection coming from the interface between air and skin can be used to detect the respiratory activity. On the contrary, if the UWB source is placed close to the human body, a small reflection due to the interface between the posterior lung wall and the bone, which is well distanced in time from the reflections due to the first layers of the body model, can be used to detect lung and heart changes associated with the cardio-respiratory activity.

  14. Pulse Detonation Engines for High Speed Flight

    NASA Technical Reports Server (NTRS)

    Povinelli, Louis A.

    2002-01-01

    Revolutionary concepts in propulsion are required in order to achieve high-speed cruise capability in the atmosphere and for low cost reliable systems for earth to orbit missions. One of the advanced concepts under study is the air-breathing pulse detonation engine. Additional work remains in order to establish the role and performance of a PDE in flight applications, either as a stand-alone device or as part of a combined cycle system. In this paper, we shall offer a few remarks on some of these remaining issues, i.e., combined cycle systems, nozzles and exhaust systems and thrust per unit frontal area limitations. Currently, an intensive experimental and numerical effort is underway in order to quantify the propulsion performance characteristics of this device. In this paper, we shall highlight our recent efforts to elucidate the propulsion potential of pulse detonation engines and their possible application to high-speed or hypersonic systems.

  15. A Simulation of the Effects of Varying Repetition Rate and Pulse Width of Nanosecond Discharges on Premixed Lean Methane-Air Combustion

    DOE PAGES

    Bak, Moon Soo; Cappelli, Mark A.

    2012-01-01

    Two-dimensional kinetic simulation has been carried out to investigate the effects of repetition rate and pulse width of nanosecond repetitively pulsed discharges on stabilizing premixed lean methane-air combustion. The repetition rate and pulse width are varied from 10 kHz to 50 kHz and from 9 ns to 2 ns while the total power is kept constant. The lower repetition rates provide larger amounts of radicals such as O, H, and OH. However, the effect on stabilization is found to be the same for all of the tested repetition rates. The shorter pulse width is found to favor the production of species in higher electronicmore » states, but the varying effects on stabilization are also found to be small. Our results indicate that the total deposited power is the critical element that determines the extent of stabilization over this range of discharge properties studied.« less

  16. Hypoxia switches episodic breathing to singlet breathing in red-eared slider turtles (Trachemys scripta) via a tropisetron-sensitive mechanism.

    PubMed

    Johnson, Stephen M; Krisp, Ashley R; Bartman, Michelle E

    2015-02-01

    Hypoxia-induced changes in the chelonian breathing pattern are poorly understood. Thus, breathing was measured in freely swimming adult red-eared slider turtles breathing air prior to breathing nitrogen for 4h. Ventilation increased 10-fold within 10min due to increased breath frequency and tidal volume. Breaths/episode decreased by ∼50% within after 1h of hypoxia while the number of singlet breaths increased from 3.1±1.6singlets/h to a maximum of 66.1±23.5singlets/h. Expiratory and inspiratory duration increased during hypoxia. For doublet and triplet breaths, expiratory duration increased during the first breath only, while inspiratory duration increased for all breaths. Tropisetron (5-HT3 receptor antagonist, 5mg/kg) administration prior to hypoxia attenuated the hypoxia-induced increase in singlet breath frequency. Along with results from previous in vitro studies, this study suggests that 5-HT3 receptor activation may be required for the hypoxia-induced increase in singlet breathing pattern in red-eared slider turtles.

  17. Open-air type plasma chemical vaporization machining by applying pulse-width modulation control

    NASA Astrophysics Data System (ADS)

    Takeda, Yoshiki; Hata, Yuki; Endo, Katsuyoshi; Yamamura, Kazuya

    2014-03-01

    Photolithography techniques have been used to enable the low-cost and high-speed transfer of a pattern onto a silicon wafer. However, owing to the high integration of semiconductors, extreme ultraviolet will be increasingly used as the exposure light source and all optics must be reflective to focus light because the wavelength of the light will be so short that it cannot pass through a lens. The form accuracy of reflective optics affects the accuracy of transfer, and a flatness of less than 32 nm on a 6 inch photomask substrate is required according to the International Technology Roadmap for Semiconductors roadmap. Plasma chemical vaporization machining is an ultraprecise figuring technique that enables a form accuracy of nanometre order to be obtained. In our previous study, the removal volume was controlled by changing the scanning speed of the worktable. However, a discrepancy between the theoretical scanning speed and the actual scanning speed occurred owing to the inertia of the worktable when the change in speed was rapid. As an attempt to resolve this issue, we controlled the removal volume by controlling the electric power applied during plasma generation while maintaining a constant scanning speed. The methods that we adapted to control the applied electric power were amplitude-modulation (AM) control and pulse-width modulation (PWM) control. In this work, we evaluate the controllability of the material removal rate in the AM and PWM control modes.

  18. Experimental study of plume induced by nanosecond repetitively pulsed spark microdischarges in air at atmospheric pressure

    NASA Astrophysics Data System (ADS)

    Orriere, Thomas; Benard, Nicolas; Moreau, Eric; Pai, David

    2016-09-01

    Nanosecond repetitively pulsed (NRP) spark discharges have been widely studied due to their high chemical reactivity, low gas temperature, and high ionization efficiency. They are useful in many research areas: nanomaterials synthesis, combustion, and aerodynamic flow control. In all of these fields, particular attention has been devoted to chemical species transport and/or hydrodynamic and thermal effects for applications. The aim of this study is to generate an electro-thermal plume by combining an NRP spark microdischarge in a pin-to-pin configuration with a third DC-biased electrode placed a few centimeters away. First, electrical characterization and optical emission spectroscopy were performed to reveal important plasma processes. Second, particle image velocimetry was combined with schlieren photography to investigate the main characteristics of the generated flow. Heating processes are measured by using the N2(C ->B) (0,2) and (1,3) vibrational bands, and effects due to the confinement of the discharge are described. Moreover, the presence of atomic ions N+ and O+ is discussed. Finally, the electro-thermal plume structure is characterized by a flow velocity around 1.8 m.s-1, and the thermal kernel has a spheroidal shape.

  19. The inception of pulsed discharges in air: simulations in background fields above and below breakdown

    NASA Astrophysics Data System (ADS)

    Sun, Anbang; Teunissen, Jannis; Ebert, Ute

    2014-11-01

    We investigate discharge inception in air, in uniform background electric fields above and below the breakdown threshold. We perform 3D particle simulations that include a natural level of background ionization in the form of positive and \\text{O}2- ions. In background fields below breakdown, we use a strongly ionized seed of electrons and positive ions to enhance the field locally. In the region of enhanced field, we observe the growth of positive streamers, as in previous simulations with 2D plasma fluid models. The inclusion of background ionization has little effect in this case. When the background field is above the breakdown threshold, the situation is very different. Electrons can then detach from \\text{O}2- and start ionization avalanches in the whole volume. These avalanches together create one extended discharge, in contrast to the ‘double-headed’ streamers found in many fluid simulations.

  20. Comparison of maximal oxygen consumption with oral and nasal breathing.

    PubMed

    Morton, A R; King, K; Papalia, S; Goodman, C; Turley, K R; Wilmore, J H

    1995-09-01

    The major cause of exercise-induced asthma (EIA) is thought to be the drying and cooling of the airways during the 'conditioning' of the inspired air. Nasal breathing increases the respiratory system's ability to warm and humidity the inspired air compared to oral breathing and reduces the drying and cooling effects of the increased ventilation during exercise. This will reduce the severity of EIA provoked by a given intensity and duration of exercise. The purpose of the study was to determine the exercise intensity (%VO2 max) at which healthy subjects, free from respiratory disease, could perform while breathing through the nose-only and to compare this with mouth-only and mouth plus nose breathing. Twenty subjects (11 males and 9 females) ranging from 18-55 years acted as subjects in this study. They were all non-smokers and non-asthmatic. At the time of the study, all subjects were involved in regular physical activity and were classified, by a physician, as free from nasal polyps or other nasal obstruction. The percentage decrease in maximal ventilation with nose-only breathing compare to mouth and mouth plus nose breathing was three times the percentage decrease in maximal oxygen consumption. The pattern of nose-only breathing at maximal work showed a small reduction in tidal volume and large reduction in breathing frequency. Nasal breathing resulted in a reduction in FEO2 and an increase in FECO2. While breathing through the nose-only, all subjects could attain a work intensity great enough to produce an aerobic training effect (based on heart rate and percentage of VO2 max).