Science.gov

Sample records for air breathing system

  1. Improved fireman's compressed air breathing system pressure vessel development program

    NASA Technical Reports Server (NTRS)

    King, H. A.; Morris, E. E.

    1973-01-01

    Prototype high pressure glass filament-wound, aluminum-lined pressurant vessels suitable for use in a fireman's compressed air breathing system were designed, fabricated, and acceptance tested in order to demonstrate the feasibility of producing such high performance, lightweight units. The 4000 psi tanks have a 60 standard cubic foot (SCF) air capacity, and have a 6.5 inch diamter, 19 inch length, 415 inch volume, weigh 13 pounds when empty, and contain 33 percent more air than the current 45 SCF (2250 psi) steel units. The current steel 60 SCF (3000 psi) tanks weigh approximately twice as much as the prototype when empty, and are 2 inches, or 10 percent shorter. The prototype units also have non-rusting aluminum interiors, which removes the hazard of corrosion, the need for internal coatings, and the possibility of rust particles clogging the breathing system.

  2. Fluid dynamic problems associated with air-breathing propulsive systems

    NASA Technical Reports Server (NTRS)

    Chow, W. L.

    1979-01-01

    A brief account of research activities on problems related to air-breathing propulsion is made in this final report for the step funded research grant NASA NGL 14-005-140. Problems include the aircraft ejector-nozzle propulsive system, nonconstant pressure jet mixing process, recompression and reattachment of turbulent free shear layer, supersonic turbulent base pressure, low speed separated flows, transonic boattail flow with and without small angle of attack, transonic base pressures, Mach reflection of shocks, and numerical solution of potential equation through hodograph transformation.

  3. Firefighter's compressed air breathing system pressure vessel development program

    NASA Technical Reports Server (NTRS)

    Beck, E. J.

    1974-01-01

    The research to design, fabricate, test, and deliver a pressure vessel for the main component in an improved high-performance firefighter's breathing system is reported. The principal physical and performance characteristics of the vessel which were required are: (1) maximum weight of 9.0 lb; (2) maximum operating pressure of 4500 psig (charge pressure of 4000 psig); (3) minimum contained volume of 280 in. 3; (4) proof pressure of 6750 psig; (5) minimum burst pressure of 9000 psig following operational and service life; and (6) a minimum service life of 15 years. The vessel developed to fulfill the requirements described was completely sucessful, i.e., every category of performence was satisfied. The average weight of the vessel was found to be about 8.3 lb, well below the 9.0 lb specification requirement.

  4. Hybrid membrane contactor system for creating semi-breathing air

    NASA Astrophysics Data System (ADS)

    Timofeev, D. V.

    2012-02-01

    Typically, the equipment to create an artificial climate does not involve changing the composition of the respiratory air. In particular in medical institutions assumes the existence of plant of artificial climate and disinfection in operating rooms and intensive care wards. The use of a hybrid membrane-absorption systems for the generation of artificial atmospheres are improving the respiratory system, blood is enriched or depleted of various gases, resulting in increased stamina, there is a better, faster or slower metabolism, improves concentration and memory. Application of the system contributes to easy and rapid recovery after the operation. By adding a special component, with drug activity, air ionization, and adjust its composition, you can create a special, more favorable for patients with the atmosphere. These factors allow for the treatment and rehabilitation of patients and reduce mortality of heavy patients.

  5. Firefighter's Breathing System

    NASA Technical Reports Server (NTRS)

    Mclaughlan, P. B.; Giorgini, E. A.; Sullivan, J. L.; Simmonds, M. R.; Beck, E. J.

    1976-01-01

    System, based on open-loop demand-type compressed air concept, is lighter and less bulky than former systems, yet still provides thirty minutes of air supply. Comfort, visibility, donning time, and breathing resistance have been improved. Apparatus is simple to recharge and maintain and is comparable in cost to previously available systems.

  6. Breathing zone air sampler

    DOEpatents

    Tobin, John

    1989-01-01

    A sampling apparatus is provided which comprises a sampler for sampling air in the breathing zone of a wearer of the apparatus and a support for the sampler preferably in the form of a pair of eyeglasses. The sampler comprises a sampling assembly supported on the frame of the eyeglasses and including a pair of sample transport tubes which are suspended, in use, centrally of the frame so as to be disposed on opposite sides of the nose of the wearer and which each include an inlet therein that, in use, is disposed adjacent to a respective nostril of the nose of the wearer. A filter holder connected to sample transport tubes supports a removable filter for filtering out particulate material in the air sampled by the apparatus. The sample apparatus is connected to a pump for drawing air into the apparatus through the tube inlets so that the air passes through the filter.

  7. Liquid-Air Breathing Apparatus

    NASA Technical Reports Server (NTRS)

    Mills, Robert D.

    1990-01-01

    Compact unit supplies air longer than compressed-air unit. Emergency breathing apparatus stores air as cryogenic liquid instead of usual compressed gas. Intended for firefighting or rescue operations becoming necessary during planned potentially hazardous procedures.

  8. Compressed air demand-type firefighter's breathing system, volume 1. [design analysis and performance tests

    NASA Technical Reports Server (NTRS)

    Sullivan, J. L.

    1975-01-01

    The commercial availability of lightweight high pressure compressed air vessels has resulted in a lightweight firefighter's breathing apparatus. The improved apparatus, and details of its design and development are described. The apparatus includes a compact harness assembly, a backplate mounted pressure reducer assembly, a lightweight bubble-type facemask with a mask mounted demand breathing regulator. Incorporated in the breathing regulator is exhalation valve, a purge valve and a whistle-type low pressure warning that sounds only during inhalation. The pressure reducer assembly includes two pressure reducers, an automatic transfer valve and a signaling device for the low pressure warning. Twenty systems were fabricated, tested, refined through an alternating development and test sequence, and extensively examined in a field evaluation program. Photographs of the apparatus are included.

  9. Protective supplied breathing air garment

    DOEpatents

    Childers, Edward L.; von Hortenau, Erik F.

    1984-07-10

    A breathing air garment for isolating a wearer from hostile environments containing toxins or irritants includes a suit and a separate head protective enclosure or hood engaging a suit collar in sealing attachment. The hood and suit collar are cylindrically shaped and dimensioned to enable the wearer to withdraw his hands from the suit sleeves to perform manual tasks within the hood interior. Breathing air is supplied from an external air line with an air delivery hose attached to the hood interior. The hose feeds air into an annular halo-like fiber-filled plenum having spaced discharge orifices attached to the hood top wall. A plurality of air exhaust/check valves located at the suit extremities cooperate with the hood air delivery system to provide a cooling flow of circulating air from the hood throughout the suit interior. A suit entry seal provided on the suit rear torso panel permits access into the suit and is sealed with an adhesive sealing flap.

  10. Protective supplied breathing air garment

    DOEpatents

    Childers, E.L.; Hortenau, E.F. von.

    1984-07-10

    A breathing air garment is disclosed for isolating a wearer from hostile environments containing toxins or irritants includes a suit and a separate head protective enclosure or hood engaging a suit collar in sealing attachment. The hood and suit collar are cylindrically shaped and dimensioned to enable the wearer to withdraw his hands from the suit sleeves to perform manual tasks within the hood interior. Breathing air is supplied from an external air line with an air delivery hose attached to the hood interior. The hose feeds air into an annular halo-like fiber-filled plenum having spaced discharge orifices attached to the hood top wall. A plurality of air exhaust/check valves located at the suit extremities cooperate with the hood air delivery system to provide a cooling flow of circulating air from the hood throughout the suit interior. A suit entry seal provided on the suit rear torso panel permits access into the suit and is sealed with an adhesive sealing flap. 17 figs.

  11. Development of mainshaft seals for advanced air breathing propulsion systems

    NASA Technical Reports Server (NTRS)

    Dobek, L. J.

    1973-01-01

    A gas-film face seal design incorporating shrouded Rayleigh step lift pads at the primary sealing face was analyzed for performance over a wide range of gas turbine engine conditions. Acceptable leakage rates and operation without rubbing contact was predicted for engine conditions that included sealed pressures to 500 psi, sliding speeds to 600 ft/sec, and sealed gas temperatures to 1200 F. In the experimental evaluation, measured gas leakage rates were, in general, close to that predicted and sometimes lower. Satisfactory performance of the gas-film seal was demonstrated at the maximum seal seat axial runout expected in present positive contact face seal applications. Stable operation was shown when testing was performed with air-entrained dirt.

  12. Air-Breathing Rocket Engines

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This photograph depicts an air-breathing rocket engine prototype in the test bay at the General Applied Science Lab facility in Ronkonkoma, New York. Air-breathing engines, known as rocket based, combined-cycle engines, get their initial take-off power from specially designed rockets, called air-augmented rockets, that boost performance about 15 percent over conventional rockets. When the vehicle's velocity reaches twice the speed of sound, the rockets are turned off and the engine relies totally on oxygen in the atmosphere to burn hydrogen fuel, as opposed to a rocket that must carry its own oxygen, thus reducing weight and flight costs. Once the vehicle has accelerated to about 10 times the speed of sound, the engine converts to a conventional rocket-powered system to propel the craft into orbit or sustain it to suborbital flight speed. NASA's Advanced Space Transportation Program at Marshall Space Flight Center, along with several industry partners and collegiate forces, is developing this technology to make space transportation affordable for everyone from business travelers to tourists. The goal is to reduce launch costs from today's price tag of $10,000 per pound to only hundreds of dollars per pound. NASA's series of hypersonic flight demonstrators currently include three air-breathing vehicles: the X-43A, X-43B and X-43C.

  13. Experimental Research on Induction Systems of an Air-breathing Valveless Pulse Detonation Engine

    NASA Astrophysics Data System (ADS)

    Wang, Zhi-wu; Chen, Xinggu; Zheng, Long-xi; Peng, Changxin; Yan, Chuan-jun

    2012-06-01

    An air-breathing valveless PDE model was designed and manufactured, which was made up of subsonic inlet, mixing chamber, ignition chamber, detonation chamber. The total pressure recovery coefficient, flux coefficient and intake resistance with six different induction systems were measured by a semi free subsonic flow field. The proof-of-principle experiments of PDE model with different induction systems were all successfully carried out, by using liquid gasoline-air mixture with low-energy system (total stored energy less than 50 mJ). The measured detonation wave pressure ratio was very close to that of C-J detonation. The air-breathing PDE model was easy to initiate and worked in good condition. The deflagration to detonation transition (DDT) and operation frequency effect on pressure traces were also investigated by experiments. The results indicated the oscillation of pressure peak at P6 enhanced with the operation frequency increased. DDT accomplished before P6 and the DDT distance was about 0.9 m (from the ignitor).

  14. The indoor air we breathe.

    PubMed

    Oliver, L C; Shackleton, B W

    1998-01-01

    Increasingly recognized as a potential public health problem since the outbreak of Legionnaire's disease in Philadelphia in 1976, polluted indoor air has been associated with health problems that include asthma, sick building syndrome, multiple chemical sensitivity, and hypersensitivity pneumonitis. Symptoms are often nonspecific and include headache, eye and throat irritation, chest tightness and shortness of breath, and fatigue. Air-borne contaminants include commonly used chemicals, vehicular exhaust, microbial organisms, fibrous glass particles, and dust. Identified causes include defective building design and construction, aging of buildings and their ventilation systems, poor climate control, inattention to building maintenance. A major contributory factor is the explosion in the use of chemicals in building construction and furnishing materials over the past four decades. Organizational issues and psychological variables often contribute to the problem and hinder its resolution. This article describes the health problems related to poor indoor air quality and offers solutions. PMID:9769764

  15. Protective supplied-breathing-air garment

    DOEpatents

    Childers, E.L.; von Hortenau, E.F.

    1982-05-28

    A breathing-air garment for isolating a wearer from hostile environments containing toxins or irritants is disclosed. The garment includes a suit and a separate head-protective enclosure or hood engaging a suit collar in sealing attachment. The hood and suit collar are cylindrically shaped and dimensioned to enable the wearer to withdraw his hands from the suit sleeves to perform manual tasks within the hood interior. Breathing air is supplied from an external air line with an air-delivery hose attached to the hood interior. The hose feeds air into an annular halo-like fiber-filled plenum having spaced discharge orifices attached to the hood top wall. A plurality of air exhaust/check valves located at the suit extremities cooperate with the hood air-delivery system to provide a cooling flow of circulating air from the hood throughout the suit interior. A suit entry seal provided on the suit sealed with an adhesive sealing flap.

  16. Evaluation of an Ejector Ramjet Based Propulsion System for Air-Breathing Hypersonic Flight

    NASA Technical Reports Server (NTRS)

    Thomas, Scott R.; Perkins, H. Douglas; Trefny, Charles J.

    1997-01-01

    A Rocket Based Combined Cycle (RBCC) engine system is designed to combine the high thrust to weight ratio of a rocket along with the high specific impulse of a ramjet in a single, integrated propulsion system. This integrated, combined cycle propulsion system is designed to provide higher vehicle performance than that achievable with a separate rocket and ramjet. The RBCC engine system studied in the current program is the Aerojet strutjet engine concept, which is being developed jointly by a government-industry team as part of the Air Force HyTech program pre-PRDA activity. The strutjet is an ejector-ramjet engine in which small rocket chambers are embedded into the trailing edges of the inlet compression struts. The engine operates as an ejector-ramjet from takeoff to slightly above Mach 3. Above Mach 3 the engine operates as a ramjet and transitions to a scramjet at high Mach numbers. For space launch applications the rockets would be re-ignited at a Mach number or altitude beyond which air-breathing propulsion alone becomes impractical. The focus of the present study is to develop and demonstrate a strutjet flowpath using hydrocarbon fuel at up to Mach 7 conditions.

  17. Cascade Optimization Strategy for Aircraft and Air-Breathing Propulsion System Concepts

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Lavelle, Thomas M.; Hopkins, Dale A.; Coroneos, Rula M.

    1996-01-01

    Design optimization for subsonic and supersonic aircraft and for air-breathing propulsion engine concepts has been accomplished by soft-coupling the Flight Optimization System (FLOPS) and the NASA Engine Performance Program analyzer (NEPP), to the NASA Lewis multidisciplinary optimization tool COMETBOARDS. Aircraft and engine design problems, with their associated constraints and design variables, were cast as nonlinear optimization problems with aircraft weight and engine thrust as the respective merit functions. Because of the diversity of constraint types and the overall distortion of the design space, the most reliable single optimization algorithm available in COMETBOARDS could not produce a satisfactory feasible optimum solution. Some of COMETBOARDS' unique features, which include a cascade strategy, variable and constraint formulations, and scaling devised especially for difficult multidisciplinary applications, successfully optimized the performance of both aircraft and engines. The cascade method has two principal steps: In the first, the solution initiates from a user-specified design and optimizer, in the second, the optimum design obtained in the first step with some random perturbation is used to begin the next specified optimizer. The second step is repeated for a specified sequence of optimizers or until a successful solution of the problem is achieved. A successful solution should satisfy the specified convergence criteria and have several active constraints but no violated constraints. The cascade strategy available in the combined COMETBOARDS, FLOPS, and NEPP design tool converges to the same global optimum solution even when it starts from different design points. This reliable and robust design tool eliminates manual intervention in the design of aircraft and of air-breathing propulsion engines where it eases the cycle analysis procedures. The combined code is also much easier to use, which is an added benefit. This paper describes COMETBOARDS

  18. Integrated engineering modeling for air breathing rockets

    NASA Astrophysics Data System (ADS)

    Chitilappilly, Lazar T.; Subramanyam, J. D. A.

    An innovative aerodynamic-propulsion-flight integrated modeling is carried out for airbreathing rockets, the propulsion of which has primary dependence on flight conditions. The integrated modeling is highly beneficial for design and analysis of accelerating air breathing rockets characterized by continuously varying flight conditions. The details of the modeling is described; the force accounting, trajectory analysis, solving the flow in the sub-systems (air intake, primary rocket, secondary combustion chamber and secondary nozzle), matching the subsystem flow fields and determining the mode of operation. Operational features are listed of the computer software developed, air breathing integrated design and analysis engineering software. It gives all the propulsion and flight parameters from take-off of the rocket to end of flight and has been instrumental in the design of the research air breathing rocket ABR-200(I). The hundreds of flight performance analyses required for design is possible by the engineering approach adopted for solving the propulsor flow field. The software results are compared with ejector mode and connected pipe mode static tests. The overall validation of the software is achieved by flight tests; the performance predictions have matched exactly with that measured during thee first and second flights of the ABR-200(I).

  19. Air-breathing Rocket Engine Test

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This Quick Time movie depicts the Rocketdyne static test of an air-breathing rocket. Air-breathing engines, known as rocket based, combined-cycle engines, get their initial take-off power from specially designed rockets, called air-augmented rockets, that boost performance about 15 percent over conventional rockets. When the vehicle's velocity reaches twice the speed of sound, the rockets are turned off and the engine relies totally on oxygen in the atmosphere to burn hydrogen fuel, as opposed to a rocket that must carry its own oxygen, thus reducing weight and flight costs. Once the vehicle has accelerated to about 10 times the speed of sound, the engine converts to a conventional rocket-powered system to propel the craft into orbit or sustain it to suborbital flight speed. NASA's advanced Transportation Program at the Marshall Space Flight Center, along with several industry partners and collegiate forces, is developing this technology to make space transportation affordable for everyone from business travelers to tourists. The goal is to reduce launch costs from today's price tag of $10,000 per pound to only hundreds of dollars per pound. NASA's series of hypersonic flight demonstrators currently include three air-breathing vehicles: the X-43A, X-43B and X-43C.

  20. Breathing Easy over Air Quality.

    ERIC Educational Resources Information Center

    Greim, Clifton; Turner, William

    1991-01-01

    School systems should test the air in every school building for the presence and level of contaminants such as radon and asbestos and whether the ventilation system is circulating the proper amount of air. Periodic maintenance is required for all mechanical systems. (MLF)

  1. Evaluation of an Ejector Ramjet Based Propulsion System for Air-Breathing Hypersonic Flight

    NASA Technical Reports Server (NTRS)

    Thomas, Scott R.; Perkins, H. Douglas; Trefny, Charles J.

    1997-01-01

    A Rocket Based Combined Cycle (RBCC) engine system is designed to combine the high thrust to weight ratio of a rocket along with the high specific impulse of a ramjet in a single, integrated propulsion system. This integrated, combined cycle propulsion system is designed to provide higher vehicle performance than that achievable with a separate rocket and ramjet. The RBCC engine system studied in the current program is the Aerojet strutjet engine concept, which is being developed jointly by a government-industry team as part of the Air Force HyTech program pre-PRDA activity. The strutjet is an ejector-ramjet engine in which small rocket chambers are embedded into the trailing edges of the inlet compression struts. The engine operates as an ejector-ramjet from take-off to slightly above Mach 3. Above Mach 3 the engine operates as a ramjet and transitions to a scramjet at high Mach numbers. For space launch applications the rockets would be re-ignited at a Mach number or altitude beyond which air-breathing propulsion alone becomes impractical. The focus of the present study is to develop and demonstrate a strutjet flowpath using hydrocarbon fuel at up to Mach 7 conditions. Freejet tests of a candidate flowpath for this RBCC engine were conducted at the NASA Lewis Research Center's Hypersonic Tunnel Facility between July and September 1996. This paper describes the engine flowpath and installation, outlines the primary objectives of the program, and describes the overall results of this activity. Through this program 15 full duration tests, including 13 fueled tests were made. The first major achievement was the further demonstration of the HTF capability. The facility operated at conditions up to 1950 K and 7.34 MPa, simulating approximately Mach 6.6 flight. The initial tests were unfueled and focused on verifying both facility and engine starting. During these runs additional aerodynamic appliances were incorporated onto the facility diffuser to enhance starting

  2. Optimal air-breathing launch vehicle design

    NASA Technical Reports Server (NTRS)

    Hattis, P. D.

    1981-01-01

    A generalized two-point boundary problem methodology, similar to techniques used in deterministic optimal control studies, is applied to the design and flight analysis of a two-stage air-breathing launch vehicle. Simultaneous consideration is given to configuration and trajectory by treating geometry, dynamic discontinuities, and time-dependent flight variables all as controls to be optimized with respect to a single mathematical performance measure. While minimizing fuel consumption, inequality constraints are applied to dynamic pressure and specific force. The optimal system fuel consumption and staging Mach number are found to vary little with changes in the inequality constraints due to substantial geometry and trajectory adjustments. Staging, from an air-breathing first stage to a rocket-powered second stage, consistently occurs near Mach 3.5. The dynamic pressure bound has its most pronounced effects on vehicle geometry, particularly the air-breathing propulsion inlet area, and on the first-stage altitude profile. The specific force has its greatest influence on the second-stage thrust history.

  3. Interactions between Flight Dynamics and Propulsion Systems of Air-Breathing Hypersonic Vehicles

    NASA Astrophysics Data System (ADS)

    Dalle, Derek J.

    The development and application of a first-principles-derived reduced-order model called MASIV (Michigan/AFRL Scramjet In Vehicle) for an air-breathing hypersonic vehicle is discussed. Several significant and previously unreported aspects of hypersonic flight are investigated. A fortunate coupling between increasing Mach number and decreasing angle of attack is shown to extend the range of operating conditions for a class of supersonic inlets. Detailed maps of isolator unstart and ram-to-scram transition are shown on the flight corridor map for the first time. In scram mode the airflow remains supersonic throughout the engine, while in ram mode there is a region of subsonic flow. Accurately predicting the transition between these two modes requires models for complex shock interactions, finite-rate chemistry, fuel-air mixing, pre-combustion shock trains, and thermal choking, which are incorporated into a unified framework here. Isolator unstart occurs when the pre-combustion shock train is longer than the isolator, which blocks airflow from entering the engine. Finally, cooptimization of the vehicle design and trajectory is discussed. An optimal control technique is introduced that greatly reduces the number of computations required to optimize the simulated trajectory.

  4. Breathing hospital air can make you sick.

    PubMed

    Brownson, K

    1999-12-01

    Indoor air quality has deteriorated so much since the 1970s oil shortage and subsequent energy-efficient construction of buildings that people are becoming seriously ill by just breathing the indoor air. This is a problem with all industrial buildings and hospital staff are at particular risk. There are various things that hospital managers from different departments can do to make the air safe for staff and patients to breathe. PMID:10787631

  5. Air-Breathing Rocket Engine Test

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This photograph depicts an air-breathing rocket engine that completed an hour or 3,600 seconds of testing at the General Applied Sciences Laboratory in Ronkonkoma, New York. Referred to as ARGO by its design team, the engine is named after the mythological Greek ship that bore Jason and the Argonauts on their epic voyage of discovery. Air-breathing engines, known as rocket based, combined-cycle engines, get their initial take-off power from specially designed rockets, called air-augmented rockets, that boost performance about 15 percent over conventional rockets. When the vehicle's velocity reaches twice the speed of sound, the rockets are turned off and the engine relies totally on oxygen in the atmosphere to burn hydrogen fuel, as opposed to a rocket that must carry its own oxygen, thus reducing weight and flight costs. Once the vehicle has accelerated to about 10 times the speed of sound, the engine converts to a conventional rocket-powered system to propel the craft into orbit or sustain it to suborbital flight speed. NASA's Advanced SpaceTransportation Program at Marshall Space Flight Center, along with several industry partners and collegiate forces, is developing this technology to make space transportation affordable for everyone from business travelers to tourists. The goal is to reduce launch costs from today's price tag of $10,000 per pound to only hundreds of dollars per pound. NASA's series of hypersonic flight demonstrators currently include three air-breathing vehicles: the X-43A, X-43B and X-43C.

  6. Air breathing engine/rocket trajectory optimization

    NASA Technical Reports Server (NTRS)

    Smith, V. K., III

    1979-01-01

    This research has focused on improving the mathematical models of the air-breathing propulsion systems, which can be mated with the rocket engine model and incorporated in trajectory optimization codes. Improved engine simulations provided accurate representation of the complex cycles proposed for advanced launch vehicles, thereby increasing the confidence in propellant use and payload calculations. The versatile QNEP (Quick Navy Engine Program) was modified to allow treatment of advanced turboaccelerator cycles using hydrogen or hydrocarbon fuels and operating in the vehicle flow field.

  7. Air breathing direct methanol fuel cell

    DOEpatents

    Ren, Xiaoming

    2002-01-01

    An air breathing direct methanol fuel cell is provided with a membrane electrode assembly, a conductive anode assembly that is permeable to air and directly open to atmospheric air, and a conductive cathode assembly that is permeable to methanol and directly contacting a liquid methanol source.

  8. Air-Breathing Launch Vehicle Technology Being Developed

    NASA Technical Reports Server (NTRS)

    Trefny, Charles J.

    2003-01-01

    Of the technical factors that would contribute to lowering the cost of space access, reusability has high potential. The primary objective of the GTX program is to determine whether or not air-breathing propulsion can enable reusable single-stage-to-orbit (SSTO) operations. The approach is based on maturation of a reference vehicle design with focus on the integration and flight-weight construction of its air-breathing rocket-based combined-cycle (RBCC) propulsion system.

  9. Mapleson's Breathing Systems

    PubMed Central

    Kaul, Tej K; Mittal, Geeta

    2013-01-01

    Mapleson breathing systems are used for delivering oxygen and anaesthetic agents and to eliminate carbon dioxide during anaesthesia. They consist of different components: Fresh gas flow, reservoir bag, breathing tubes, expiratory valve, and patient connection. There are five basic types of Mapleson system: A, B, C, D and E depending upon the different arrangements of these components. Mapleson F was added later. For adults, Mapleson A is the circuit of choice for spontaneous respiration where as Mapleson D and its Bains modifications are best available circuits for controlled ventilation. For neonates and paediatric patients Mapleson E and F (Jackson Rees modification) are the best circuits. In this review article, we will discuss the structure of the circuits and functional analysis of various types of Mapleson systems and their advantages and disadvantages. PMID:24249884

  10. The Air We Breathe. Activity Packet.

    ERIC Educational Resources Information Center

    Connecticut State Dept. of Environmental Protection, Hartford.

    This packet of materials is intended to provide teachers with an interdisciplinary approach to integrating air quality education into the existing curriculum of Connecticut schools. The unit is designed to complement the student booklet "The Air We Breathe," which is included. A major portion of the document is comprised of teaching activities.…

  11. Air breathing direct methanol fuel cell

    DOEpatents

    Ren, Xiaoming; Gottesfeld, Shimshon

    2002-01-01

    An air breathing direct methanol fuel cell is provided with a membrane electrode assembly, a conductive anode assembly that is permeable to air and directly open to atmospheric air, and a conductive cathode assembly that is permeable to methanol and directly contacting a liquid methanol source. Water loss from the cell is minimized by making the conductive cathode assembly hydrophobic and the conductive anode assembly hydrophilic.

  12. Breathing air trailer acceptance test procedure

    SciTech Connect

    Kostelnik, A.J.

    1994-09-14

    This Acceptance Test Procedure (ATP) will document compliance with the requirements of WHC-S-0251 Rev. 0 and ECNs 613530 and 606113. The equipment being tested is a Breathing Air Supply Trailer purchased as a Design and Fabrication procurement activity for use in the core sampling program. The ATP was written by the Seller and will be performed by the Seller with representatives of the Westinghouse Hanford Company witnessing the test at the Seller`s location. This test procedure is to verify that the American Bristol Industries, Inc., Model 5014-0001 low pressure Mobile Breathing Air Trailer, meets or exceeds the requirements of the Westinghouse Hanford specification.

  13. A Breath of Fresh Air

    ERIC Educational Resources Information Center

    Belew, Rachel

    2011-01-01

    One of the most important aspects of a healthy school--and one that, unfortunately, often falls by the wayside--is indoor air quality. The U.S. Government Accountability Office estimates that more than 15,000 schools nationwide report suffering from poor indoor air quality. According to the U.S. Environmental Protection Agency, schools with poor…

  14. Effects of the six engine air breathing propulsion system on space shuttle orbiter subsonic stability and control characteristics

    NASA Technical Reports Server (NTRS)

    Mennell, R. C.; Soard, T.

    1974-01-01

    Experimental aerodynamic investigations were conducted on a 0.0405 scale representation of the -89B space shuttle orbiter in the 7.75 x 11.00 foot low speed wind tunnel during the time period September 4 - 14, 1973. The primary test objective was to optimize the air breathing propulsion system nacelle cowl-inlet design and to determine the aerodynamic effects of this design on the orbiter stability and control characteristics. Nacelle cowl-inlet optimization was determined from total pressure - static pressure measurements obtained from pressure rakes located in the left hand nacelle pod at the engine face station. After the optimum cow-inlet design, consisting of a 7 deg cowl lip angle, short cowl, 7 deg short diverter, and a nacelle toe-in angle of 5 deg was selected, the aerodynamic effects of various locations of this design were investigated. The 3 pod - 6 Nacelle configuration was tested both underwing and overwing in three different longitudinal locations. Orbiter control effectiveness, both with and without Nacelles, was investigated at elevon deflections of 0 deg, -10 deg and +15 deg and at aileron deflections of 0 deg and +10 deg about 0 deg elevon.

  15. Breathing air trailer acceptance test report

    SciTech Connect

    Kostelnik, A.J.

    1996-02-12

    This Acceptance Test Report documents compliance with the requirements of specification WHC-S-0251, Rev.0 and ECNs 613530 and 606113. The equipment was tested according to WHC-SD-WM-ATP-104. The equipment tested is a Breathing Air Supply Trailer purchased as a design and fabrication procurement activity. The ATP was written by the Seller and was performed by the Seller with representatives of the Westinghouse Hanford Company witnessing portions of the test at the Seller`s location.

  16. Water cooling system for an air-breathing hypersonic test vehicle

    NASA Technical Reports Server (NTRS)

    Petley, Dennis H.; Dziedzic, William M.

    1993-01-01

    This study provides concepts for hypersonic experimental scramjet test vehicles which have low cost and low risk. Cryogenic hydrogen is used as the fuel and coolant. Secondary water cooling systems were designed. Three concepts are shown: an all hydrogen cooling system, a secondary open loop water cooled system, and a secondary closed loop water cooled system. The open loop concept uses high pressure helium (15,000 psi) to drive water through the cooling system while maintaining the pressure in the water tank. The water flows through the turbine side of the turbopump to pump hydrogen fuel. The water is then allowed to vent. In the closed loop concept high pressure, room temperature, compressed liquid water is circulated. In flight water pressure is limited to 6000 psi by venting some of the water. Water is circulated through cooling channels via an ejector which uses high pressure gas to drive a water jet. The cooling systems are presented along with finite difference steady-state and transient analysis results. The results from this study indicate that water used as a secondary coolant can be designed to increase experimental test time, produce minimum venting of fluid and reduce overall development cost.

  17. Pulse Ejection Presentation System Synchronized with Breathing

    NASA Astrophysics Data System (ADS)

    Kadowaki, Ami; Sato, Junta; Ohtsu, Kaori; Bannai, Yuichi; Okada, Kenichi

    Trials on transmission of olfactory information together with audio/visual information are currently being conducted in the field of multimedia. However, continuous emission of scents in high concentration creates problems of human adaptation and remnant odors in air. To overcome such problems we developed an olfactory display in conjunction with Canon Inc. This display has high emission control in the ink-jet so that it can provide stable pulse emission of scents. Humans catch a scent when they breathe in and inhale smell molecules in air. Therefore, it is important that the timing of scent presentation is synchronized with human breathing. We also developed a breath sensor which detects human inspiration. In this study, we combined the olfactory display with the breath sensor to make a pulse ejection presentation system synchronized the breath. The experimental evaluation showed that the system had more than 90 percent of detection rate. Another evaluation was held at KEIO TECHNO-MALL 2007. From questionnaire results of the participants, we found that the system made the user feel continuous sense of smell avoiding adaptation. It is expected that our system enables olfactory information to be synchronized with audio/visual information in arbitrary duration at any time.

  18. 46 CFR 154.1852 - Air breathing equipment.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Air breathing equipment. 154.1852 Section 154.1852... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Operations § 154.1852 Air breathing equipment. (a) The master shall ensure that a licensed officer inspects the compressed air...

  19. 46 CFR 154.1852 - Air breathing equipment.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Air breathing equipment. 154.1852 Section 154.1852... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Operations § 154.1852 Air breathing equipment. (a) The master shall ensure that a licensed officer inspects the compressed air...

  20. 46 CFR 154.1852 - Air breathing equipment.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Air breathing equipment. 154.1852 Section 154.1852... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Operations § 154.1852 Air breathing equipment. (a) The master shall ensure that a licensed officer inspects the compressed air...

  1. 46 CFR 154.1852 - Air breathing equipment.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Air breathing equipment. 154.1852 Section 154.1852... STANDARDS FOR SELF-PROPELLED VESSELS CARRYING BULK LIQUEFIED GASES Operations § 154.1852 Air breathing equipment. (a) The master shall ensure that a licensed officer inspects the compressed air...

  2. Modification of NASA Langley 8 foot high temperature tunnel to provide a unique national research facility for hypersonic air-breathing propulsion systems

    NASA Technical Reports Server (NTRS)

    Kelly, H. N.; Wieting, A. R.

    1984-01-01

    A planned modification of the NASA Langley 8-Foot High Temperature Tunnel to make it a unique national research facility for hypersonic air-breathing propulsion systems is described, and some of the ongoing supporting research for that modification is discussed. The modification involves: (1) the addition of an oxygen-enrichment system which will allow the methane-air combustion-heated test stream to simulate air for propulsion testing; and (2) supplemental nozzles to expand the test simulation capability from the current nominal Mach number to 7.0 include Mach numbers 3.0, 4.5, and 5.0. Detailed design of the modifications is currently underway and the modified facility is scheduled to be available for tests of large scale propulsion systems by mid 1988.

  3. Modification of NASA Langley 8 Foot High Temperature Tunnel to provide a unique national research facility for hypersonic air-breathing propulsion systems

    NASA Technical Reports Server (NTRS)

    Kelly, H. N.; Wieting, A. R.

    1984-01-01

    A planned modification of the NASA Langley 8-Foot High Temperature Tunnel to make it a unique national research facility for hypersonic air-breathing propulsion systems is described, and some of the ongoing supporting research for that modification is discussed. The modification involves: (1) the addition of an oxygen-enrichment system which will allow the methane-air combustion-heated test stream to simulate air for propulsion testing; and (2) supplemental nozzles to expand the test simulation capability from the current nominal Mach number to 7.0 include Mach numbers 3.0, 4.5, and 5.0. Detailed design of the modifications is currently underway and the modified facility is scheduled to be available for tests of large scale propulsion systems by mid 1988.

  4. Supersonic Air-Breathing Stage For Commercial Launch Rocket

    NASA Technical Reports Server (NTRS)

    Martin, James A.

    1993-01-01

    Concept proposed to expand use of air-breathing, reusable stages to put more payload into orbit at less cost. Stage with supersonic air-breathing engines added to carry expendable stages from subsonic airplane to supersonic velocity. Carry payload to orbit. Expendable stages and payload placed in front of supersonic air-breathing stage. After releasing expendable stages, remotely piloted supersonic air-breathing stage returns to takeoff site and land for reuse. New concept extends use of low-cost reusable hardware and increases payload delivered from B-52.

  5. Optimization of Air-Breathing Engine Concept

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Lavelle, Thomas M.; Hopkins, Dale A.

    1996-01-01

    The design optimization of air-breathing propulsion engine concepts has been accomplished by soft-coupling the NASA Engine Performance Program (NEPP) analyzer with the NASA Lewis multidisciplinary optimization tool COMETBOARDS. Engine problems, with their associated design variables and constraints, were cast as nonlinear optimization problems with thrust as the merit function. Because of the large number of mission points in the flight envelope, the diversity of constraint types, and the overall distortion of the design space; the most reliable optimization algorithm available in COMETBOARDS, when used by itself, could not produce satisfactory, feasible, optimum solutions. However, COMETBOARDS' unique features-which include a cascade strategy, variable and constraint formulations, and scaling devised especially for difficult multidisciplinary applications-successfully optimized the performance of subsonic and supersonic engine concepts. Even when started from different design points, the combined COMETBOARDS and NEPP results converged to the same global optimum solution. This reliable and robust design tool eliminates manual intervention in the design of air-breathing propulsion engines and eases the cycle analysis procedures. It is also much easier to use than other codes, which is an added benefit. This paper describes COMETBOARDS and its cascade strategy and illustrates the capabilities of the combined design tool through the optimization of a high-bypass- turbofan wave-rotor-topped subsonic engine and a mixed-flow-turbofan supersonic engine.

  6. Feedback linearization for control of air breathing engines

    NASA Technical Reports Server (NTRS)

    Phillips, Stephen; Mattern, Duane

    1991-01-01

    The method of feedback linearization for control of the nonlinear nozzle and compressor components of an air breathing engine is presented. This method overcomes the need for a large number of scheduling variables and operating points to accurately model highly nonlinear plants. Feedback linearization also results in linear closed loop system performance simplifying subsequent control design. Feedback linearization is used for the nonlinear partial engine model and performance is verified through simulation.

  7. Prospects for future hypersonic air-breathing vehicles

    NASA Technical Reports Server (NTRS)

    Beach, H. L., Jr.; Blankson, Isaiah M.

    1991-01-01

    The age of hypersonics is (almost) here. This is evident from the amount of activity in the United States, Europe, the USSR and Japan; this activity is a reflection of technical progress in key areas which will enable new vehicle systems, as well as renewed interest in the utilization of these systems. The current situation, at least in the United States, is the product of an interesting history which is briefly reviewed here. The context for hypersonic applications is discussed, but the emphasis is on hypersonic technology issues and needs, particularly for propulsion and technology integration. The paper concludes with prospects for accomplishing the objective of air-breathing hypersonic vehicle systems.

  8. Don't You Dare Breathe That Air!

    ERIC Educational Resources Information Center

    American Lung Association, New York, NY.

    Designed for elementary school students, the workbook focuses on the unhealthy and unpleasant effects of air pollution. Space is provided for students to draw pictures of: (1) how breathing polluted air can make people feel, (2) what polluted air can do to people's health--especially if they smoke cigarettes, (3) what air pollution can do to the…

  9. Effect of air, heliox, and oxygen breathing on air bubbles in aqueous tissues in the rat.

    PubMed

    Hyldegaard, O; Madsen, J

    1994-12-01

    Our purpose was to examine the behavior of air bubbles in three non-lipid tissues (skeletal muscle, tendon, and the anterior chamber of the eye) during breathing of air, helium-oxygen (heliox, 80:20), or oxygen. Air bubbles were injected into skeletal muscle or tendon in rats after decompression from a 1-h air exposure at 3.5 atm abs (355 kPa) or into the anterior chamber of the rat eye without any previous pressure exposure. The bubbles were studied by photomicroscopy at 1 atm abs (101 kPa) during either air breathing or during air breathing followed by heliox or O2 breathing. Muscle: during air breathing, all bubbles initially increased in size for a period of 55-100 min after decompression and then started to shrink. Both heliox and O2 breathing increased the shrinking rate as compared to air. Bubble size decreased more rapidly during O2 than heliox breathing. Tendon: during air breathing, bubble size decreased at a constant rate; in one bubble the decrease was preceded by a small increase. During heliox breathing most bubbles decreased faster than during breathing of air. O2 breathing caused a short-term increase in bubble size in 4 out of 10 bubbles. Otherwise, the shrinkage rate was increased in six bubbles and uninfluenced in four bubbles during breathing of O2. Rat eye: during air breathing all bubbles shrank in the observation period. When heliox breathing was started, all bubbles transiently grew for 10-35 min, after which they began shrinking faster than during air breathing. When O2 breathing was started, five out of seven bubbles initially grew or stopped shrinking for 5-15 min, after which they decreased in size faster than during both air and heliox breathing. We conclude that breathing of either heliox or O2 will cause air bubbles in aqueous tissues to disappear faster than during breathing of air. Since heliox breathing promoted bubble shrinking in both muscle and tendon, gas exchange was probably not primarily limited by extravascular diffusion in

  10. Air-breathing fuel cell stacks for portable power applications

    SciTech Connect

    Wilson, M.S.; DeCaro, D.; Neutzler, J.K.; Zawodzinski, C.; Gottesfeld, S.

    1996-10-01

    Increasing attention is being directed towards polymer electrolyte fuel cells as battery replacements because of their potentially superior energy densities and the possibility of `mechanical` refueling. On the low end of the power requirement scale (ca. 10 W), fuel cells can compete with primary and secondary batteries only if the fuel cell systems are simple, inexpensive, and reliable. Considerations of cost and simplicity (and minimal parasitic power) discourage the use of conventional performance enhancing subsystems (e.g., humidification, cooling, or forced-reactant flow). We are developing a stack design that is inherently self-regulating to allow effective operation without the benefit of such auxiliary components. The air cathode does not use forced flow to replenish the depleted oxygen. Instead, the oxygen in the air must diffuse into the stack from the periphery of the unit cells. For this reason the stack is described as `air-breathing.` This configuration limits the ability of water to escape which prevents the polymer electrolyte membranes from drying out, even at relatively high continuous operation temperatures (+60 degrees C). This results in stacks with reliable and stable performance. This air-breathing configuration assumes a unique stack geometry that utilizes circular flow-field plates with an annular hydrogen feed manifold and the single tie-bolt extending up through the central axis of the stack. With this geometry, the hydrogen supply to the unit cells is radially outward, and the air supply is from the periphery inward. This configuration has several advantages. The entire periphery is free to air access and allows greater heat conduction to enhance cooling. Furthermore, all of the components in the stack (e.g., the flow-fields, seals and membrane/electrode assemblies), are radially symmetrical, so part fabrication is simple and the entire system is potentially low-cost. Lastly, this configuration is compact and lightweight.

  11. Analysis of breathing air flow patterns in thermal imaging.

    PubMed

    Fei, Jin; Pavlidis, Ioannis

    2006-01-01

    We introduce a novel methodology to characterize breathing patterns based on thermal infrared imaging. We have retrofitted a Mid-Wave Infra-Red (MWIR) imaging system with a narrow band-pass filter in the CO(2) absorption band (4130 - 4427 nm). We use this system to record the radiation information from within the breathing flow region. Based on this information we compute the mean dynamic thermal signal of breath. The breath signal is quasi-periodic due to the interleaving of high and low intensities corresponding to expirations and inspirations respectively. We sample the signal at a constant rate and then filter the high frequency noise due to tracking instability. We detect the breathing cycles through zero cross thresholding, which is insensitive to noise around the zero line. We normalize the breathing cycles and align them at the transition point from inhalation to exhalation. Then, we compute the mean breathing cycle. We use the first eight (8) harmonic components of the mean cycle to characterize the breathing pattern. The harmonic analysis highlights the intra-individual similarity of breathing patterns. Our method opens the way for desktop, unobtrusive monitoring of human respiration and may find widespread applications in clinical studies of chronic ailments. It also brings up the intriguing possibility of using breathing patterns as a novel biometric. PMID:17945610

  12. Portable breathing system. [a breathing apparatus using a rebreathing system of heat exchangers for carbon dioxide removal

    NASA Technical Reports Server (NTRS)

    Lovell, J. S. (Inventor)

    1979-01-01

    A semiclosed-loop rebreathing system is discussed for use in a hostile environment. A packed bed regenerative heat exchanger providing two distinct temperature humidity zones of breathing gas with one zone providing cool, relatively dry air and the second zone providing hot, moist air is described.

  13. Computer simulation of breathing systems for divers

    SciTech Connect

    Sexton, P.G.; Nuckols, M.L.

    1983-02-01

    A powerful new tool for the analysis and design of underwater breathing gas systems is being developed. A versatile computer simulator is described which makes possible the modular ''construction'' of any conceivable breathing gas system from computer memory-resident components. The analysis of a typical breathing gas system is demonstrated using this simulation technique, and the effects of system modifications on performance of the breathing system are shown. This modeling technique will ultimately serve as the foundation for a proposed breathing system simulator under development by the Navy. The marriage of this computer modeling technique with an interactive graphics system will provide the designer with an efficient, cost-effective tool for the development of new and improved diving systems.

  14. Validation of a new mixing chamber system for breath-by-breath indirect calorimetry.

    PubMed

    Kim, Do-Yeon; Robergs, Robert Andrew

    2012-02-01

    Limited validation research exists for applications of breath-by-breath systems of expired gas analysis indirect calorimetry (EGAIC) during exercise. We developed improved hardware and software for breath-by-breath indirect calorimetry (NEW) and validated this system as well as a commercial system (COM) against 2 methods: (i) mechanical ventilation with known calibration gas, and (ii) human subjects testing for 5 min each at rest and cycle ergometer exercise at 100 and 175 W. Mechanical calibration consisted of medical grade and certified calibration gas ((4.95% CO(2), 12.01% O(2), balance N(2)), room air (20.95% O(2), 0.03% CO(2), balance N(2)), and 100% nitrogen), and an air flow turbine calibrated with a 3-L calibration syringe. Ventilation was mimicked manually using complete 3-L calibration syringe manouvers at a rate of 10·min(-1) from a Douglas bag reservoir of calibration gas. The testing of human subjects was completed in a counterbalanced sequence based on 5 repeated tests of all conditions for a single subject. Rest periods of 5 and 10 min followed the 100 and 175 W conditions, respectively. COM and NEW had similar accuracy when tested with known ventilation and gas fractions. However, during human subjects testing COM significantly under-measured carbon dioxide gas fractions, over-measured oxygen gas fractions and minute ventilation, and resulted in errors to each of oxygen uptake, carbon dioxide output, and respiratory exchange ratio. These discrepant findings reveal that controlled ventilation and gas fractions are insufficient to validate breath-by-breath, and perhaps even time-averaged, systems of EGAIC. The errors of the COM system reveal the need for concern over the validity of commercial systems of EGAIC. PMID:22300357

  15. Effect of combined recompression and air, oxygen, or heliox breathing on air bubbles in rat tissues.

    PubMed

    Hyldegaard, O; Kerem, D; Melamed, Y

    2001-05-01

    The fate of bubbles formed in tissues during the ascent from a real or simulated air dive and subjected to therapeutic recompression has only been indirectly inferred from theoretical modeling and clinical observations. We visually followed the resolution of micro air bubbles injected into adipose tissue, spinal white matter, muscle, and tendon of anesthetized rats recompressed to and held at 284 kPa while rats breathed air, oxygen, heliox 80:20, or heliox 50:50. The rats underwent a prolonged hyperbaric air exposure before bubble injection and recompression. In all tissues, bubbles disappeared faster during breathing of oxygen or heliox mixtures than during air breathing. In some of the experiments, oxygen breathing caused a transient growth of the bubbles. In spinal white matter, heliox 50:50 or oxygen breathing resulted in significantly faster bubble resolution than did heliox 80:20 breathing. In conclusion, air bubbles in lipid and aqueous tissues shrink and disappear faster during recompression during breathing of heliox mixtures or oxygen compared with air breathing. The clinical implication of these findings might be that heliox 50:50 is the mixture of choice for the treatment of decompression sickness. PMID:11299250

  16. NASA firefighters breathing system program report

    NASA Technical Reports Server (NTRS)

    Wood, W. B.

    1977-01-01

    Because of the rising incidence of respiratory injury to firefighters, local governments expressed the need for improved breathing apparatus. A review of the NASA firefighters breathing system program, including concept definition, design, development, regulatory agency approval, in-house testing, and program conclusion is presented.

  17. Clean the Air and Breathe Easier.

    ERIC Educational Resources Information Center

    Guevin, John

    1997-01-01

    Failure to prevent indoor air quality problems or act promptly can result in increased chances for long- or short-term health problems for staff and students, reduced productivity, faster plant deterioration, and strained school-community relations. Basic pollution control measures include source management, local exhausts, ventilation, exposure…

  18. A probabilistic and multi-objective conceptual design methodology for the evaluation of thermal management systems on air-breathing hypersonic vehicles

    NASA Astrophysics Data System (ADS)

    Ordaz, Irian

    This thesis addresses the challenges associated with thermal management systems (TMS) evaluation and selection in the conceptual design of hypersonic, air-breathing vehicles with sustained cruise. The proposed methodology identifies analysis tools and techniques which allow the proper investigation of the design space for various thermal management technologies. The design space exploration environment and alternative multi-objective decision making technique defined as Pareto-based Joint Probability Decision Making (PJPDM) is based on the approximation of 3-D Pareto frontiers and probabilistic technology effectiveness maps. These are generated through the evaluation of a Pareto Fitness function and Monte Carlo analysis. In contrast to Joint Probability Decision Making (JPDM), the proposed PJPDM technique does not require preemptive knowledge of weighting factors for competing objectives or goal constraints which can introduce bias into the final solution. Preemptive bias in a complex problem can degrade the overall capabilities of the final design. The implementation of PJPDM in this thesis eliminates the need for the numerical optimizer which is required with JPDM in order to improve upon a solution. In addition, a physics-based formulation is presented for the quantification of TMS safety effectiveness corresponding to debris impact/damage and how it can be applied towards risk mitigation. Lastly, a formulation loosely based on non-preemptive Goal Programming with equal weighted deviations is provided for the resolution of the inverse design space. This key step helps link vehicle capabilities to TMS technology subsystems in a top-down design approach. The methodology provides the designer more knowledge up front to help make proper engineering decisions and assumptions in the conceptual design phase regarding which technologies show greatest promise, and how to guide future technology research.

  19. Breathing

    MedlinePlus Videos and Cool Tools

    ... respiratory system conduct air to the lungs, such as the trachea (windpipe) which branches into smaller structures ... the thoracic cavity and decreases the pressure inside. As a result, air rushes in and fills the ...

  20. Optimization of Air-Breathing Propulsion Engine Concepts

    NASA Technical Reports Server (NTRS)

    Patnaik, Surya N.; Hopkins, Dale A.

    1997-01-01

    Air-breathing propulsion engines play an important role in the development of both civil and military aircraft Design optimization of such engines can lead to higher power, or more thrust for less fuel consumption. A multimission propulsion engine design can be modeled mathematically as a multivariable global optimization problem, with a sequence of subproblems, which are specific to the mission events defined through Mach number, altitude, and power setting combinations.

  1. 21 CFR 862.3050 - Breath-alcohol test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Breath-alcohol test system. 862.3050 Section 862....3050 Breath-alcohol test system. (a) Identification. A breath-alcohol test system is a device intened to measure alcohol in the human breath. Measurements obtained by this device are used in...

  2. 21 CFR 862.3050 - Breath-alcohol test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Breath-alcohol test system. 862.3050 Section 862....3050 Breath-alcohol test system. (a) Identification. A breath-alcohol test system is a device intened to measure alcohol in the human breath. Measurements obtained by this device are used in...

  3. 21 CFR 862.3050 - Breath-alcohol test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Breath-alcohol test system. 862.3050 Section 862....3050 Breath-alcohol test system. (a) Identification. A breath-alcohol test system is a device intened to measure alcohol in the human breath. Measurements obtained by this device are used in...

  4. 21 CFR 862.3050 - Breath-alcohol test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Breath-alcohol test system. 862.3050 Section 862....3050 Breath-alcohol test system. (a) Identification. A breath-alcohol test system is a device intened to measure alcohol in the human breath. Measurements obtained by this device are used in...

  5. 21 CFR 862.3050 - Breath-alcohol test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Breath-alcohol test system. 862.3050 Section 862....3050 Breath-alcohol test system. (a) Identification. A breath-alcohol test system is a device intened to measure alcohol in the human breath. Measurements obtained by this device are used in...

  6. The microspace launcher: first step to the fully air-breathing space launcher

    NASA Astrophysics Data System (ADS)

    Falempin, F.; Bouchez, M.; Calabro, M.

    2009-09-01

    A possible application for the high-speed air-breathing propulsion is the fully or partially reusable space launcher. Indeed, by combining the high-speed air-breathing propulsion with a conventional rocket engine (combined cycle or combined propulsion system), it should be possible to improve the average installed specific impulse along the ascent trajectory and then make possible more performing launchers and, hopefully, a fully reusable one. During the last 15 years, a lot of system studies have been performed in France on that subject within the framework of different and consecutive programs. Nevertheless, these studies never clearly demonstrated that a space launcher could take advantage of using a combined propulsion system. During last years, the interest to air-breathing propulsion for space application has been revisited. During this review and taking into account technologies development activities already in progress in Europe, clear priorities have been identified regarding a minimum complementary research and technology program addressing specific needs of space launcher application. It was also clearly identified that there is the need to restart system studies taking advantage of recent progress made regarding knowledge, tools, and technology and focusing on more innovative airframe/propulsion system concepts enabling better trade-off between structural efficiency and propulsion system performance. In that field, a fully axisymmetric configuration has been considered for a microspace launcher (10 kg payload). The vehicle is based on a main stage powered by air-breathing propulsion, combined or not with liquid rocket mode. A "kick stage," powered by a solid rocket engine provides the final acceleration. A preliminary design has been performed for different variants: one using a separated booster and a purely air-breathing main stage, a second one using a booster and a main stage combining air-breathing and rocket mode, a third one without separated

  7. A Performance Map for Ideal Air Breathing Pulse Detonation Engines

    NASA Technical Reports Server (NTRS)

    Paxson, Daniel E.

    2001-01-01

    The performance of an ideal, air breathing Pulse Detonation Engine is described in a manner that is useful for application studies (e.g., as a stand-alone, propulsion system, in combined cycles, or in hybrid turbomachinery cycles). It is shown that the Pulse Detonation Engine may be characterized by an averaged total pressure ratio, which is a unique function of the inlet temperature, the fraction of the inlet flow containing a reacting mixture, and the stoichiometry of the mixture. The inlet temperature and stoichiometry (equivalence ratio) may in turn be combined to form a nondimensional heat addition parameter. For each value of this parameter, the average total enthalpy ratio and total pressure ratio across the device are functions of only the reactant fill fraction. Performance over the entire operating envelope can thus be presented on a single plot of total pressure ratio versus total enthalpy ratio for families of the heat addition parameter. Total pressure ratios are derived from thrust calculations obtained from an experimentally validated, reactive Euler code capable of computing complete Pulse Detonation Engine limit cycles. Results are presented which demonstrate the utility of the described method for assessing performance of the Pulse Detonation Engine in several potential applications. Limitations and assumptions of the analysis are discussed. Details of the particular detonative cycle used for the computations are described.

  8. Transcriptomic Analysis of Compromise Between Air-Breathing and Nutrient Uptake of Posterior Intestine in Loach (Misgurnus anguillicaudatus), an Air-Breathing Fish.

    PubMed

    Huang, Songqian; Cao, Xiaojuan; Tian, Xianchang

    2016-08-01

    Dojo loach (Misgurnus anguillicaudatus) is an air-breathing fish species by using its posterior intestine to breathe on water surface. So far, the molecular mechanism about accessory air-breathing in fish is seldom addressed. Five cDNA libraries were constructed here for loach posterior intestines form T01 (the initial stage group), T02 (mid-stage of normal group), T03 (end stage of normal group), T04 (mid-stage of air-breathing inhibited group), and T05 (the end stage of air-breathing inhibited group) and subjected to perform RNA-seq to compare their transcriptomic profilings. A total of 92,962 unigenes were assembled, while 37,905 (40.77 %) unigenes were successfully annotated. 2298, 1091, and 3275 differentially expressed genes (fn1, ACE, EGFR, Pxdn, SDF, HIF, VEGF, SLC2A1, SLC5A8 etc.) were observed in T04/T02, T05/T03, and T05/T04, respectively. Expression levels of many genes associated with air-breathing and nutrient uptake varied significantly between normal and intestinal air-breathing inhibited group. Intraepithelial capillaries in posterior intestines of loaches from T05 were broken, while red blood cells were enriched at the surface of intestinal epithelial lining with 241 ± 39 cells per millimeter. There were periodic acid-schiff (PAS)-positive epithelial mucous cells in posterior intestines from both normal and air-breathing inhibited groups. Results obtained here suggested an overlap of air-breathing and nutrient uptake function of posterior intestine in loach. Intestinal air-breathing inhibition in loach would influence the posterior intestine's nutrient uptake ability and endothelial capillary structure stability. This study will contribute to our understanding on the molecular regulatory mechanisms of intestinal air-breathing in loach. PMID:27457889

  9. Beach-spawning fishes, terrestrial eggs, and air breathing.

    PubMed

    Martin, K L M; Van Winkle, R C; Drais, J E; Lakisic, H

    2004-01-01

    Many fishes have independently evolved beach spawning with oviposition at the water's edge. These include intertidal, subtidal, and estuarine, as well as a few freshwater, species. Their spectacular reproductive behavior at the boundary of water and land has focused attention on adults, but they emerge either briefly or not at all. The need for air breathing is more apparent in the eggs, and the reasons for emergence are more applicable to eggs than to the adults of most beach-spawning fishes. There is little evidence of air breathing in the adults, unless they are regularly emerged at other times as well. Conversely, eggs metabolize in air and show substantial emergence tolerance. We consider beach spawning a form of parental care in fishes. The adults place eggs so they will be emerged into air during part or all of incubation, providing increased temperatures, oxygen availability, and protection. Beach spawning provides habitat segregation at different points in the life history, with air emergence early in the life cycle and a return to water at hatching. The parents take great risks to spawn at the water's edge to give their offspring the most advantageous beginning in life. PMID:15547793

  10. The NASA firefighter's breathing system program

    NASA Technical Reports Server (NTRS)

    Mclaughlan, P. B.; Carson, M. A.

    1974-01-01

    The research is reported in the development of a firefighter's breathing system (FBS) to satisfy the operational requirements of fire departments while remaining within their cost constraints. System definition for the FBS is discussed, and the program status is reported. It is concluded that the most difficult problem in the FBS Program is the achievement of widespread fire department acceptance of the system.

  11. A Breath of Fresh Air: Addressing Indoor Air Quality

    ERIC Educational Resources Information Center

    Palliser, Janna

    2011-01-01

    Indoor air pollution refers to "chemical, biological, and physical contamination of indoor air," which may result in adverse health effects (OECD 2003). The causes, sources, and types of indoor air pollutants will be addressed in this article, as well as health effects and how to reduce exposure. Learning more about potential pollutants in home…

  12. Effect of heliox, oxygen and air breathing on helium bubbles after heliox diving.

    PubMed

    Hyldegaard, O; Jensen, T

    2007-01-01

    In helium saturated rat abdominal adipose tissue, helium bubbles were studied at 101.3 kPa during breathing of either heliox(80:20), 100% oxygen or air after decompression from an exposure to heliox at 405 kPa for one hour. While breathing heliox bubbles initially grew for 15-115 minutes then shrank slowly; three out of 10 bubbles disappeared in the observation period. During oxygen breathing all bubbles initially grew for 10-80 minutes then shrank until they disappeared from view; in the growing phase, oxygen caused faster growth than heliox breathing, but bubbles disappeared sooner with oxygen breathing than with heliox or air breathing. In the shrinking phase, shrinkage is faster with heliox and oxygen breathing than with air breathing. Air breathing caused consistent growth of all bubbles. With heliox and oxygen breathing, most animals survived during the observation period but with air breathing, most animals died of decompression sickness regardless of whether the surrounding atmosphere was helium or air. If recompression beyond the maximum treatment pressure of oxygen is required, these results indicate that a breathing mixture of heliox may be better than air during the treatment of decompression sickness following heliox diving. PMID:17520862

  13. Crew equipment applications - Firefighter's Breathing System.

    NASA Technical Reports Server (NTRS)

    Smith, W. L.

    1973-01-01

    The Firefighter's Breathing System (FBS) represents a significant step in applying NASA's crew equipment technologists and technologies to civilian sector problems. This paper describes the problem, the utilization of user-design committees as a forum for development of design goals, the design of the FBS, and the field test program to be conducted.

  14. Multiple pure tone elimination strut assembly. [air breathing engines

    NASA Technical Reports Server (NTRS)

    Burcham, F. W. (Inventor)

    1981-01-01

    An acoustic noise elimination assembly is disclosed which has a capability for disrupting the continuity of fields of sound pressures forwardly projected from fans or rotors of a type commonly found in the fan or compressor first stage for air-breathing engines, when operating at tip speeds in the supersonic range. The assembly includes a tubular cowl defining a duct for delivering an air stream axially into the intake for a jet engine. A sound barrier, defined by a number of intersecting flat plates or struts has a line of intersection coincident with a longitudinal axis of the tubular cowl, which serves to disrupt the continuity of rotating fields of multiple pure tonal components of noise.

  15. A breath sampling system assessing the influence of respiratory rate on exhaled breath composition.

    PubMed

    Lomonaco, T; Salvo, P; Ghimenti, S; Biagini, D; Bellagambi, F; Fuoco, R; Di Francesco, F

    2015-08-01

    This work presents a computerized system to monitor mouth pressure, tidal volume, exhaled airflow, respiration rate and end-tidal partial pressure of CO2 during breath collection. The system was used to investigate the effect of different respiratory rates on the volatile organic compounds (VOCs) concentrations in exhaled breath. For this purpose, VOCs with well-defined biochemical pathways and different chemical and physical properties were selected as biomarkers related to metabolism (acetone and isopropyl alcohol), cholesterol synthesis (isoprene) and intestinal microflora activity (ethanol). Mixed breath was collected from a nominally healthy volunteer in resting conditions by filling a Nalophan bag. The subject followed a regimented breathing pattern at different respiratory rates (10, 30 and 50 breaths per minute). Results highlight that ventilation pattern strongly influences the concentration of the selected compounds. The proposed system allows exhaled breath to be collected also in patients showing dyspnea such as in case of chronic heart failure, asthma and pulmonary diseases. PMID:26738056

  16. Minimum-fuel ascent to orbit using air-breathing propulsion

    NASA Technical Reports Server (NTRS)

    Van Buren, Mark A.; Mease, Kenneth D.

    1989-01-01

    Single-stage vehicles using air-breathing propulsion hold promise for more economical delivery of payloads to orbit. The characterization of minimum-fuel trajectories over the range of possible engine and aerodynamic performance of such vehicles provides useful feedback to engine and vehicle designers and paves the way for the development of guidance logic. The minimum-fuel trajectory problem is formulated, propulsion system and aerodynamic models are presented, a numerical solution approach is described, and some preliminary results are discussed.

  17. An Air-Breathing Launch Vehicle Concept for Single-Stage-to-Orbit

    NASA Technical Reports Server (NTRS)

    Trefny, Charles J.

    1999-01-01

    The "Trailblazer" is a 300-lb payload, single-stage-to-orbit launch vehicle concept that uses air-breathing propulsion to reduce the required propellant fraction. The integration of air-breathing propulsion is done considering performance, structural and volumetric efficiency, complexity, and design risk. The resulting configuration is intended to be viable using near-term materials and structures. The aeropropulsion performance goal for the Trailblazer launch vehicle is an equivalent effective specific impulse (I*) of 500 sec. Preliminary analysis shows that this requires flight in the atmosphere to about Mach 10, and that the gross lift-off weight is 130,000 lb. The Trailblazer configuration and proposed propulsion system operating modes are described. Preliminary performance results are presented, and key technical issues are highlighted. An overview of the proposed program plan is given.

  18. Flight test of multi-pulses vertical laser propulsion in air breathing mode

    NASA Astrophysics Data System (ADS)

    Wen, Ming; Wu, Jie; Wang, Guangyu

    2013-05-01

    The air breathing vertical laser propulsion experiment refers to that in the air breathing mode the light craft under the irradiation of incident laser of vertical direction will turn pulse laser energy into the vertical propulsion thrust of the light craft and continue along the fixed rail upward propulsion flight. It is an important experiment to test the minimum single pulse energy, the optimization degree of light craft structure, and the characteristics of turning the laser energy into the thrust. The experiment is to be conducted dozens of meters in height away the ground generally. The article gives a detailed explanation of the whole process of the air breathing vertical propulsion test, including vertical propulsion light craft design, the connections design, the connections performance test, the frictional resistance detection and the whole process of movement performance test. A vertical propulsion tower was used to conduct the single pulse experiment and multi-pulse performance was predicted with a multiple-pulse thrust measuring system. The impulse coupling coefficient was estimated from fight height. Finally, through the experiments of air breathing vertical laser propulsion, the relation of the movement time and flight height was obtained. In the curve, the mean acceleration of the light craft can arrive to 6m/s2 in the first 20 pulses and the propulsion height can reach 3.5m in 1.12s. After 0.65s, the acceleration of the light craft decreased significantly. The results of the article lay the good foundation for the laser propulsion launch system verification.

  19. Impact of aeroelasticity on propulsion and longitudinal flight dynamics of an air-breathing hypersonic vehicle

    NASA Technical Reports Server (NTRS)

    Raney, David L.; Mcminn, John D.; Pototzky, Anthony S.; Wooley, Christine L.

    1993-01-01

    Many air-breathing hypersonic aerospacecraft design concepts incorporate an elongated fuselage forebody acting as the aerodynamic compression surface for a hypersonic combustion module, or scram jet. This highly integrated design approach creates the potential for an unprecedented form of aero-propulsive-elastic interaction in which deflections of the vehicle fuselage give rise to propulsion transients, producing force and moment variations that may adversely impact the rigid body flight dynamics and/or further excite the fuselage bending modes. To investigate the potential for such interactions, a math model was developed which included the longitudinal flight dynamics, propulsion system, and first seven elastic modes of a hypersonic air-breathing vehicle. Perturbation time histories from a simulation incorporating this math model are presented that quantify the propulsive force and moment variations resulting from aeroelastic vehicle deflections. Root locus plots are presented to illustrate the effect of feeding the propulsive perturbations back into the aeroelastic model. A concluding section summarizes the implications of the observed effects for highly integrated hypersonic air-breathing vehicle concepts.

  20. Improved ROS defense in the swimbladder of a facultative air-breathing erythrinid fish, jeju, compared to a non-air-breathing close relative, traira.

    PubMed

    Pelster, Bernd; Giacomin, Marina; Wood, Chris M; Val, Adalberto L

    2016-07-01

    The jeju Hoplerythrinus unitaeniatus and the traira Hoplias malabaricus are two closely related erythrinid fish, both possessing a two-chambered physostomous swimbladder. In the jeju the anterior section of the posterior bladder is highly vascularized and the swimbladder is used for aerial respiration; the traira, in turn, is a water-breather that uses the swimbladder as a buoyancy organ and not for aerial oxygen uptake. Observation of the breathing behavior under different levels of water oxygenation revealed that the traira started aquatic surface respiration only under severe hypoxic conditions and did not breathe air. In the jeju air-breathing behavior was observed under normoxic conditions, and the frequency of air-breathing was significantly increased under hypoxic conditions. Unexpectedly, even under hyperoxic conditions (30 mg O2 L(-1)) the jeju continued to take air breaths, and compared with normoxic conditions the frequency was not reduced. Because the frequently air-exposed swimbladder tissue faces higher oxygen partial pressures than normally experienced by other fish tissues, it was hypothesized that in the facultative air-breathing jeju, swimbladder tissue would have a higher antioxidative capacity than the swimbladder tissue of the water breathing traira. Measurement of total glutathione (GSSG/GSH) concentration in anterior and posterior swimbladder tissue revealed a higher concentration of this antioxidant in swimbladder tissue as compared to muscle tissue in the jeju. Furthermore, the GSSG/GSH concentration in jeju tissues was significantly higher than in traira tissues. Similarly, activities of enzymes involved in the breakdown of reactive oxygen species were significantly higher in the jeju swimbladder as compared to the traira swimbladder. The results show that the jeju, using the swimbladder as an additional breathing organ, has an enhanced antioxidative capacity in the swimbladder as compared to the traira, using the swimbladder only as a

  1. Power Reduction of the Air-Breathing Hall-Effect Thruster

    NASA Astrophysics Data System (ADS)

    Kim, Sungrae

    Electric propulsion system is spotlighted as the next generation space propulsion system due to its benefits; one of them is specific impulse. While there are a lot of types in electric propulsion system, Hall-Effect Thruster, one of electric propulsion system, has higher thrust-to-power ratio and requires fewer power supplies for operation in comparison to other electric propulsion systems, which means it is optimal for long space voyage. The usual propellant for Hall-Effect Thruster is Xenon and it is used to be stored in the tank, which may increase the weight of the thruster. Therefore, one theory that uses the ambient air as a propellant has been proposed and it is introduced as Air-Breathing Hall-Effect Thruster. Referring to the analysis on Air-Breathing Hall-Effect Thruster, the goal of this paper is to reduce the power of the thruster so that it can be applied to real mission such as satellite orbit adjustment. To reduce the power of the thruster, two assumptions are considered. First one is changing the altitude for the operation, while another one is assuming the alpha value that is electron density to ambient air density. With assumptions above, the analysis was done and the results are represented. The power could be decreased to 10s˜1000s with the assumptions. However, some parameters that do not satisfy the expectation, which would be the question for future work, and it will be introduced at the end of the thesis.

  2. Benzene levels in ambient air and breath of smokers and nonsmokers in urban and pristine environments

    SciTech Connect

    Wester, R.C.; Maibach, H.I.; Gruenke, L.D.; Craig, J.C.

    1986-01-01

    Benzene levels in human breath and in ambient air were compared in the urban area of San Francisco (SF) and in a more remote coastal pristine setting of Stinson Beach, Calif. (SB). Benzene analysis was done by gas chromatography-mass spectroscopy (GC-MS). Ambient benzene levels were sevenfold higher in SF (2.6 +/- 1.3 ppb, n = 25) than SB (0.38 +/- 0.39 ppb, n = 21). In SF, benzene in smokers' breath (6.8 +/- 3.0 ppb) was greater than in nonsmokers' breath (2.5 +/- 0.8 ppb) and smokers' ambient air (3.3 +/- 0.8 ppb). In SB the same pattern was observed: benzene in smokers' breath was higher than in nonsmokers' breath and ambient air. Benzene in SF nonsmokers' breath was greater than in SB nonsmokers' breath. Marijuana-only smokers had benzene breath levels between those of smokers and nonsmokers. There was little correlation between benzene in breath and number of cigarettes smoked, or with other benzene exposures such as diet. Of special interest was the finding that benzene in breath of SF nonsmokers (2.5 +/- 0.8 ppb) was greater than that in nonsmokers ambient air (1.4 +/- 0.1 ppb). The same was true in SB, where benzene in nonsmokers breath was greater than ambient air (1.8 +/- 0.2 ppb versus 1.0 +/- 0.1 ppb on d 1 and 1.3 +/- 0.3 ppb versus 0.23 +/- 0.18 ppb on d 2). This suggests an additional source of benzene other than outdoor ambient air.

  3. The lung cancer breath signature: a comparative analysis of exhaled breath and air sampled from inside the lungs

    NASA Astrophysics Data System (ADS)

    Capuano, Rosamaria; Santonico, Marco; Pennazza, Giorgio; Ghezzi, Silvia; Martinelli, Eugenio; Roscioni, Claudio; Lucantoni, Gabriele; Galluccio, Giovanni; Paolesse, Roberto; di Natale, Corrado; D'Amico, Arnaldo

    2015-11-01

    Results collected in more than 20 years of studies suggest a relationship between the volatile organic compounds exhaled in breath and lung cancer. However, the origin of these compounds is still not completely elucidated. In spite of the simplistic vision that cancerous tissues in lungs directly emit the volatile metabolites into the airways, some papers point out that metabolites are collected by the blood and then exchanged at the air-blood interface in the lung. To shed light on this subject we performed an experiment collecting both the breath and the air inside both the lungs with a modified bronchoscopic probe. The samples were measured with a gas chromatography-mass spectrometer (GC-MS) and an electronic nose. We found that the diagnostic capability of the electronic nose does not depend on the presence of cancer in the sampled lung, reaching in both cases an above 90% correct classification rate between cancer and non-cancer samples. On the other hand, multivariate analysis of GC-MS achieved a correct classification rate between the two lungs of only 76%. GC-MS analysis of breath and air sampled from the lungs demonstrates a substantial preservation of the VOCs pattern from inside the lung to the exhaled breath.

  4. The lung cancer breath signature: a comparative analysis of exhaled breath and air sampled from inside the lungs

    PubMed Central

    Capuano, Rosamaria; Santonico, Marco; Pennazza, Giorgio; Ghezzi, Silvia; Martinelli, Eugenio; Roscioni, Claudio; Lucantoni, Gabriele; Galluccio, Giovanni; Paolesse, Roberto; Di Natale, Corrado; D’Amico, Arnaldo

    2015-01-01

    Results collected in more than 20 years of studies suggest a relationship between the volatile organic compounds exhaled in breath and lung cancer. However, the origin of these compounds is still not completely elucidated. In spite of the simplistic vision that cancerous tissues in lungs directly emit the volatile metabolites into the airways, some papers point out that metabolites are collected by the blood and then exchanged at the air-blood interface in the lung. To shed light on this subject we performed an experiment collecting both the breath and the air inside both the lungs with a modified bronchoscopic probe. The samples were measured with a gas chromatography-mass spectrometer (GC-MS) and an electronic nose. We found that the diagnostic capability of the electronic nose does not depend on the presence of cancer in the sampled lung, reaching in both cases an above 90% correct classification rate between cancer and non-cancer samples. On the other hand, multivariate analysis of GC-MS achieved a correct classification rate between the two lungs of only 76%. GC-MS analysis of breath and air sampled from the lungs demonstrates a substantial preservation of the VOCs pattern from inside the lung to the exhaled breath. PMID:26559776

  5. The QED engine spectrum - Fusion-electric propulsion for air-breathing to interstellar flight

    NASA Technical Reports Server (NTRS)

    Bussard, Robert W.; Jameson, Lorin W.

    1993-01-01

    A new inertial-electrostatic-fusion direct electric power source can be used to drive a relativistic e-beam to heat propellant. The resulting system is shown to yield specific impulse and thrust/mass ratio 2-3 orders of magnitude larger than from other advanced propulsion concepts. This QED system can be applied to aerospace vehicles from air-breathing to near-interstellar flight. Examples are given for Earth/Mars flight missions, that show transit times of 40 d with 20 percent payload in single-stage vehicles.

  6. Engine Cycle Analysis of Air Breathing Microwave Rocket with Reed Valves

    SciTech Connect

    Fukunari, Masafumi; Komatsu, Reiji; Yamaguchi, Toshikazu; Komurasaki, Kimiya; Arakawa, Yoshihiro; Katsurayama, Hiroshi

    2011-11-10

    The Microwave Rocket is a candidate for a low cost launcher system. Pulsed plasma generated by a high power millimeter wave beam drives a blast wave, and a vehicle acquires impulsive thrust by exhausting the blast wave. The thrust generation process of the Microwave Rocket is similar to a pulse detonation engine. In order to enhance the performance of its air refreshment, the air-breathing mechanism using reed valves is under development. Ambient air is taken to the thruster through reed valves. Reed valves are closed while the inside pressure is high enough. After the time when the shock wave exhausts at the open end, an expansion wave is driven and propagates to the thrust-wall. The reed valve is opened by the negative gauge pressure induced by the expansion wave and its reflection wave. In these processes, the pressure oscillation is important parameter. In this paper, the pressure oscillation in the thruster was calculated by CFD combined with the flux through from reed valves, which is estimated analytically. As a result, the air-breathing performance is evaluated using Partial Filling Rate (PFR), the ratio of thruster length to diameter L/D, and ratio of opening area of reed valves to superficial area {alpha}. An engine cycle and predicted thrust was explained.

  7. Engine Cycle Analysis of Air Breathing Microwave Rocket with Reed Valves

    NASA Astrophysics Data System (ADS)

    Fukunari, Masafumi; Komatsu, Reiji; Yamaguchi, Toshikazu; Komurasaki, Kimiya; Arakawa, Yoshihiro; Katsurayama, Hiroshi

    2011-11-01

    The Microwave Rocket is a candidate for a low cost launcher system. Pulsed plasma generated by a high power millimeter wave beam drives a blast wave, and a vehicle acquires impulsive thrust by exhausting the blast wave. The thrust generation process of the Microwave Rocket is similar to a pulse detonation engine. In order to enhance the performance of its air refreshment, the air-breathing mechanism using reed valves is under development. Ambient air is taken to the thruster through reed valves. Reed valves are closed while the inside pressure is high enough. After the time when the shock wave exhausts at the open end, an expansion wave is driven and propagates to the thrust-wall. The reed valve is opened by the negative gauge pressure induced by the expansion wave and its reflection wave. In these processes, the pressure oscillation is important parameter. In this paper, the pressure oscillation in the thruster was calculated by CFD combined with the flux through from reed valves, which is estimated analytically. As a result, the air-breathing performance is evaluated using Partial Filling Rate (PFR), the ratio of thruster length to diameter L/D, and ratio of opening area of reed valves to superficial area α. An engine cycle and predicted thrust was explained.

  8. Applications of principal component analysis to breath air absorption spectra profiles classification

    NASA Astrophysics Data System (ADS)

    Kistenev, Yu. V.; Shapovalov, A. V.; Borisov, A. V.; Vrazhnov, D. A.; Nikolaev, V. V.; Nikiforova, O. Y.

    2015-12-01

    The results of numerical simulation of application principal component analysis to absorption spectra of breath air of patients with pulmonary diseases are presented. Various methods of experimental data preprocessing are analyzed.

  9. Comparisons of rocket and air-breathing vehicle concepts for earth-to-orbit transportarion

    NASA Astrophysics Data System (ADS)

    Dorrington, G. E.

    1990-07-01

    To illustrate that there is ample room for improvement in earth-to-orbit reliability, transportation cost and environmental cleanliness, some future European launch vehicle concepts are presented. Varying assumptions of technology level and operational strategy offer a wide range of system/subsystem options for consideration. Specific examples cited include: the advanced reusable single-stage VTOL all-rocket vehicles, the all-liquid hydrogen-oxygen variants of Ariane 5, and the advanced one-and-a-half-stage horizontal take-off air-breathing vehicles.

  10. Affordable Flight Demonstration of the GTX Air-Breathing SSTO Vehicle Concept

    NASA Technical Reports Server (NTRS)

    Krivanek, Thomas M.; Roche, Joseph M.; Riehl, John P.; Kosareo, Daniel N.

    2003-01-01

    The rocket based combined cycle (RBCC) powered single-stage-to-orbit (SSTO) reusable launch vehicle has the potential to significantly reduce the total cost per pound for orbital payload missions. To validate overall system performance, a flight demonstration must be performed. This paper presents an overview of the first phase of a flight demonstration program for the GTX SSTO vehicle concept. Phase 1 will validate the propulsion performance of the vehicle configuration over the supersonic and hypersonic air- breathing portions of the trajectory. The focus and goal of Phase 1 is to demonstrate the integration and performance of the propulsion system flowpath with the vehicle aerodynamics over the air-breathing trajectory. This demonstrator vehicle will have dual mode ramjetkcramjets, which include the inlet, combustor, and nozzle with geometrically scaled aerodynamic surface outer mold lines (OML) defining the forebody, boundary layer diverter, wings, and tail. The primary objective of this study is to demon- strate propulsion system performance and operability including the ram to scram transition, as well as to validate vehicle aerodynamics and propulsion airframe integration. To minimize overall risk and develop ment cost the effort will incorporate proven materials, use existing turbomachinery in the propellant delivery systems, launch from an existing unmanned remote launch facility, and use basic vehicle recovery techniques to minimize control and landing requirements. A second phase would demonstrate propulsion performance across all critical portions of a space launch trajectory (lift off through transition to all-rocket) integrated with flight-like vehicle systems.

  11. 21 CFR 868.5270 - Breathing system heater.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Breathing system heater. 868.5270 Section 868.5270 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5270 Breathing system heater....

  12. 21 CFR 868.5270 - Breathing system heater.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Breathing system heater. 868.5270 Section 868.5270 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5270 Breathing system heater....

  13. 21 CFR 868.5270 - Breathing system heater.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Breathing system heater. 868.5270 Section 868.5270 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5270 Breathing system heater....

  14. 21 CFR 868.5270 - Breathing system heater.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Breathing system heater. 868.5270 Section 868.5270 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5270 Breathing system heater....

  15. 21 CFR 868.5270 - Breathing system heater.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Breathing system heater. 868.5270 Section 868.5270 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) MEDICAL DEVICES ANESTHESIOLOGY DEVICES Therapeutic Devices § 868.5270 Breathing system heater....

  16. Performance Validation Approach for the GTX Air-Breathing Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Trefny, Charles J.; Roche, Joseph M.

    2002-01-01

    The primary objective of the GTX effort is to determine whether or not air-breathing propulsion can enable a launch vehicle to achieve orbit in a single stage. Structural weight, vehicle aerodynamics, and propulsion performance must be accurately known over the entire flight trajectory in order to make a credible assessment. Structural, aerodynamic, and propulsion parameters are strongly interdependent, which necessitates a system approach to design, evaluation, and optimization of a single-stage-to-orbit concept. The GTX reference vehicle serves this purpose, by allowing design, development, and validation of components and subsystems in a system context. The reference vehicle configuration (including propulsion) was carefully chosen so as to provide high potential for structural and volumetric efficiency, and to allow the high specific impulse of air-breathing propulsion cycles to be exploited. Minor evolution of the configuration has occurred as analytical and experimental results have become available. With this development process comes increasing validation of the weight and performance levels used in system performance determination. This paper presents an overview of the GTX reference vehicle and the approach to its performance validation. Subscale test rigs and numerical studies used to develop and validate component performance levels and unit structural weights are outlined. The sensitivity of the equivalent, effective specific impulse to key propulsion component efficiencies is presented. The role of flight demonstration in development and validation is discussed.

  17. Inability to assess breath sounds during air medical transport by helicopter.

    PubMed

    Hunt, R C; Bryan, D M; Brinkley, V S; Whitley, T W; Benson, N H

    1991-04-17

    This study assessed the capabilities of a traditional and an amplified stethoscope used by flight nurses to assess breath sound during air medical transport in an MBB BO-105 helicopter. We developed a normal breath sound model using a prerecorded tape of breath sounds interspersed with segments without breath sounds; the recorder had been placed in the chest wall of a resuscitation training manikin. Flight nurses completed control listening sessions in a quiet environment and experimental sessions during flight using a traditional stethoscope for half of the sessions and an amplified stethoscope for the remaining half. In the quiet environment, flight nurses accurately reported the presence or absence of breath sounds in 110 (92%) of 120 trials. During helicopter flight, none of the flight nurses heard breath sounds during any of the recorded segments with either the traditional stethoscope or the amplified stethoscope. We conclude that flight nurses are unable to hear normal breath sounds using a traditional or amplified stethoscope during flight in a medically configured MBB BO-105 helicopter. Improved stethoscopes, innovative methods of listening, and reduction of aircraft noise are potential solutions to the problems of breath sound assessment during air medical transport. PMID:2008028

  18. Breathing

    MedlinePlus Videos and Cool Tools

    ... size of the thoracic cavity and decreases the pressure inside. As a result, air rushes in and ... volume of the thoracic cavity decreases, while the pressure within it increases. As a result, the lungs ...

  19. Environmental modulation of the onset of air breathing and survival of Betta splendens and Trichopodus trichopterus.

    PubMed

    Mendez-Sanchez, J F; Burggren, W W

    2014-03-01

    The effect of hypoxia on air-breathing onset and survival was determined in larvae of the air-breathing fishes, the three spot gourami Trichopodus trichopterus and the Siamese fighting fish Betta splendens. Larvae were exposed continuously or intermittently (12 h nightly) to an oxygen partial pressure (PO2 ) of 20, 17 and 14 kPa from 1 to 40 days post-fertilization (dpf). Survival and onset of air breathing were measured daily. Continuous normoxic conditions produced a larval survival rate of 65-75% for B. splendens and 15-30% for T. trichopterus, but all larvae of both species died at 9 dpf in continuous hypoxia conditions. Larvae under intermittent (nocturnal) hypoxia showed a 15% elevated survival rate in both species. The same conditions altered the onset of air breathing, advancing onset by 4 days in B. splendens and delaying onset by 9 days in T. trichopterus. These interspecific differences were attributed to air-breathing characteristics: B. splendens was a non-obligatory air breather after 36 dpf, whereas T. trichopterus was an obligatory air breather after 32 dpf. PMID:24502248

  20. Bathroom watching using a breath detection system

    NASA Astrophysics Data System (ADS)

    Nishiura, Tomofumi; Nakajima, Masato

    2004-10-01

    Recently, domestic accidents have been increasing in Japan. These kinds of accidents occur in private areas such as bedrooms, toilets and bathrooms, and tend to be found too late. Accidents, particularly those occurring in the bathroom, can often result in death. Many systems which have been proposed or which are in use are designed to detect body motion in the bathroom, and determine that a bather has suddenly taken ill when movement ceases. However, the relaxed posture of a person bathing is actually very similar to that of a person who has passed out. It is therefore very difficult to differentiate between the two postures. We have developed a watching system for bathrooms. The new feature of this system lies in its ability to detect a person"s breathing by using an FG vision sensor. From the experiment, it was found that the false alarm rate is expected to reach less than 0.0001% when waiting time is set to 36.8 seconds.

  1. MEASUREMENTS OF AIR POLLUTANT BIOMARKERS WITH EXHALED BREATH TECHNIQUES

    EPA Science Inventory

    Use of exhaled breath condensate (EBC) has appeal as a noninvasive surrogate sample for lung-derived fluid. Additionally, EBC can be collected multiple times over the course of a study, unlike many other lung sampling techniques which can be performed fewer times. However validat...

  2. Spiracular air breathing in polypterid fishes and its implications for aerial respiration in stem tetrapods

    NASA Astrophysics Data System (ADS)

    Graham, Jeffrey B.; Wegner, Nicholas C.; Miller, Lauren A.; Jew, Corey J.; Lai, N. Chin; Berquist, Rachel M.; Frank, Lawrence R.; Long, John A.

    2014-01-01

    The polypterids (bichirs and ropefish) are extant basal actinopterygian (ray-finned) fishes that breathe air and share similarities with extant lobe-finned sarcopterygians (lungfishes and tetrapods) in lung structure. They are also similar to some fossil sarcopterygians, including stem tetrapods, in having large paired openings (spiracles) on top of their head. The role of spiracles in polypterid respiration has been unclear, with early reports suggesting that polypterids could inhale air through the spiracles, while later reports have largely dismissed such observations. Here we resolve the 100-year-old mystery by presenting structural, behavioural, video, kinematic and pressure data that show spiracle-mediated aspiration accounts for up to 93% of all air breaths in four species of Polypterus. Similarity in the size and position of polypterid spiracles with those of some stem tetrapods suggests that spiracular air breathing may have been an important respiratory strategy during the fish-tetrapod transition from water to land.

  3. Planar array stack design aided by rapid prototyping in development of air-breathing PEMFC

    NASA Astrophysics Data System (ADS)

    Chen, Chen-Yu; Lai, Wei-Hsiang; Weng, Biing-Jyh; Chuang, Huey-Jan; Hsieh, Ching-Yuan; Kung, Chien-Chih

    The polymer electrolyte membrane fuel cell (PEMFC) is one of the most important research topics in the new and clean energy area. The middle or high power PEMFCs can be applied to the transportation or the distributed power system. But for the small power application, it is needed to match the power requirement of the product generally. On the other hand, the direct methanol fuel cell (DMFC) is one of the most common type that researchers are interested in, but recently the miniature or the micro-PEMFCs attract more attention due to their advantages of high open circuit voltage and high power density. The objective of this study is to develop a new air-breathing planar array fuel cell stacked from 10 cells made by rapid prototyping technology which has potential for fast commercial design, low cost manufacturing, and even without converters/inverters for the system. In this paper, the main material of flow field plates is acrylonitrile-butadiene-styrene (ABS) which allows the fuel cell be mass-manufactured by plastic injection molding technology. The rapid prototyping technology is applied to construct the prototype and verify the practicability of the proposed stack design. A 10-cell air-breathing miniature PEMFC stack with a volume of 6 cm × 6 cm × 0.9 cm is developed and tested. Its segmented membrane electrode assembly (MEA) is designed with the active surface area of 1.3 cm × 1.3 cm in each individual MEA. The platinum loading at anode and cathode are 0.2 mg cm -2 and 0.4 mg cm -2, respectively. Results show that the peak power densities of the parallel connected and serial connected stack are 99 mW cm -2 at 0.425 V and 92 mW cm -2 at 4.25 V, respectively under the conditions of 70 °C relative saturated humidity (i.e., dew point temperature), ambient temperature and free convection air. Besides, the stack performance is increased under forced convection. If the cell surface air is blown by an electric fan, the peak power densities of parallel connected and

  4. Assessment of flying-quality criteria for air-breathing aerospacecraft

    NASA Technical Reports Server (NTRS)

    Mcruer, Duane T.; Myers, Thomas T.; Hoh, Roger H.; Ashkenas, Irving L.; Johnston, Donald E.

    1992-01-01

    A study of flying quality requirements for air breathing aerospacecraft gives special emphasis to the unusual operational requirements and characteristics of these aircraft, including operation at hypersonic speed. The report considers distinguishing characteristics of these vehicles, including dynamic deficiencies and their implications for control. Particular emphasis is given to the interaction of the airframe and propulsion system, and the requirements for dynamic systems integration. Past operational missions are reviewed to define tasks and maneuvers to be considered for this class of aircraft. Areas of special concern with respect to vehicle dynamics and control are identified. Experience with the space shuttle orbiter is reviewed with respect to flight control system mechanization and flight experience in approach and landing flying qualities for the National Aerospace Plane (NASP).

  5. Robust tracking control for an air-breathing hypersonic vehicle with input constraints

    NASA Astrophysics Data System (ADS)

    Gao, Gang; Wang, Jinzhi; Wang, Xianghua

    2014-12-01

    The focus of this paper is on the design and simulation of robust tracking control for an air-breathing hypersonic vehicle (AHV), which is affected by high nonlinearity, uncertain parameters and input constraints. The linearisation method is employed for the longitudinal AHV model about a specific trim condition, and then considering the additive uncertainties of three parameters, the linearised model is just in the form of affine parameter dependence. From this point, the linear parameter-varying method is applied to design the desired controller. The poles for the closed-loop system of the linearised model are placed into a desired vertical strip, and the quadratic stability of the closed-loop system is guaranteed. Input constraints of the AHV are addressed by additional linear matrix inequalities. Finally, the designed controller is evaluated on the nonlinear AHV model and simulation results demonstrate excellent tracking performance with good robustness.

  6. Air-breathing aerospace plane development essential: Hypersonic propulsion flight tests

    NASA Technical Reports Server (NTRS)

    Mehta, Unmeel B.

    1994-01-01

    Hypersonic air-breathing propulsion utilizing scramjets can fundamentally change transatmospheric accelerators for low earth-to-orbit and return transportation. The value and limitations of ground tests, of flight tests, and of computations are presented, and scramjet development requirements are discussed. It is proposed that near full-scale hypersonic propulsion flight tests are essential for developing a prototype hypersonic propulsion system and for developing computational-design technology so that it can be used for designing this system. In order to determine how these objectives should be achieved, some lessons learned from past programs are presented. A conceptual two-stage-to-orbit (TSTO) prototype/experimental aerospace plane is recommended as a means of providing access-to-space and for conducting flight tests. A road map for achieving these objectives is also presented.

  7. Hypersonic propulsion flight tests as essential to air-breathing aerospace plane development

    NASA Technical Reports Server (NTRS)

    Mehta, U.

    1995-01-01

    Hypersonic air-breathing propulsion utilizing scramjets can fundamentally change transatmospheric acclerators for transportation from low Earth orbits (LEOs). The value and limitations of ground tests, of flight tests, and of computations are presented, and scramjet development requirements are discussed. Near-full-scale hypersonic propulsion flight tests are essential for developing a prototype hypersonic propulsion system and for developing computation-design technology that can be used in designing that system. In order to determine how these objectives should be achieved, some lessons learned from past programs are presented. A conceptual two-stage-to-orbit (TSTO) prototype/experimental aerospace plane is recommended as a means of providing access-to-space and for conducting flight tests. A road map for achieving these objectives is also presented.

  8. Geometry Modeling and Adaptive Control of Air-Breathing Hypersonic Vehicles

    NASA Astrophysics Data System (ADS)

    Vick, Tyler Joseph

    Air-breathing hypersonic vehicles have the potential to provide global reach and affordable access to space. Recent technological advancements have made scramjet-powered flight achievable, as evidenced by the successes of the X-43A and X-51A flight test programs over the last decade. Air-breathing hypersonic vehicles present unique modeling and control challenges in large part due to the fact that scramjet propulsion systems are highly integrated into the airframe, resulting in strongly coupled and often unstable dynamics. Additionally, the extreme flight conditions and inability to test fully integrated vehicle systems larger than X-51 before flight leads to inherent uncertainty in hypersonic flight. This thesis presents a means to design vehicle geometries, simulate vehicle dynamics, and develop and analyze control systems for hypersonic vehicles. First, a software tool for generating three-dimensional watertight vehicle surface meshes from simple design parameters is developed. These surface meshes are compatible with existing vehicle analysis tools, with which databases of aerodynamic and propulsive forces and moments can be constructed. A six-degree-of-freedom nonlinear dynamics simulation model which incorporates this data is presented. Inner-loop longitudinal and lateral control systems are designed and analyzed utilizing the simulation model. The first is an output feedback proportional-integral linear controller designed using linear quadratic regulator techniques. The second is a model reference adaptive controller (MRAC) which augments this baseline linear controller with an adaptive element. The performance and robustness of each controller are analyzed through simulated time responses to angle-of-attack and bank angle commands, while various uncertainties are introduced. The MRAC architecture enables the controller to adapt in a nonlinear fashion to deviations from the desired response, allowing for improved tracking performance, stability, and

  9. Design and Evaluation of a Breath Analysis System for Occupational Exposure Assessment

    SciTech Connect

    Soldat, Kelvin L.; Thrall, Karla D.

    2001-06-01

    Exposure assessment is an integral part of industrial hygiene and occupational health. To ensure the health and safety of workers, integrated industrial hygiene methodologies often include biological monitoring strategies. Exhaled breath is an ideal matrix for measuring volatile biomarkers, particularly since the non-invasive collection of breath may improve volunteer participation. A real-time, field-portable system was developed to analyze undiluted exhaled air from experimental animals and humans. The system combines (1) an ion-trap mass spectrometer capable of atmospheric sampling; (2) a breath interface for continual analysis of the exhaled breath stream; (3) chemical dosimeters that are analyzed in the field/workplace; and (4) physiologically based pharmacokinetic (PBPK) models to estimate total exposure and internal target tissue dosimetry. The intent of this development was to provide new instrumentation to evaluate volatile chemical exposures as part of a daily monitoring pro gram. For example, the system was designed to monitor a worker every time they enter and leave a work environment - a vast improvement over current 8-hr integrated monitoring strategies. To evaluate the system in actual work environments, field tests were conducted using volunteers providing exhaled breath samples before and after each specific job task. In these field studies, several volunteers had post-task breath levels higher than pre-task levels. Compared to the breath analysis findings, chemical dosimeters underpredicted exposures, particularly for longer sampling intervals where the volume of air sampled may have diluted exposures. The results of these field studies illustrate the utility of monitoring workers for exposures at numerous times throughout the day, particularly when job-specific tasks may indicate a potential for exposure.

  10. The Breath of Life. The Problem of Poisoned Air.

    ERIC Educational Resources Information Center

    Carr, Donald E.

    The origins and nature of air pollution, from earliest days to the present, are examined in this book. Although air pollution has been with us since the discovery of fire, it is proffered that the major culprit now is the burning of gasoline and low-grade heating oil. All other sources of air pollution are negligible. The main thesis is that only…

  11. Breathing Problems

    MedlinePlus

    ... re not getting enough air. Sometimes mild breathing problems are from a stuffy nose or hard exercise. ... emphysema or pneumonia cause breathing difficulties. So can problems with your trachea or bronchi, which are part ...

  12. Liquid breathing trials and animal studies with a demand-regulated liquid breathing system.

    PubMed

    Moskowitz, G D; Shaffer, T H; Dubin, S E

    1975-01-01

    Experimental results of in vivo animal tests conducted on a demand-regulated liquid breathing system are presented. When a liquid replaces gas as the medium in which oxygen and carbon dioxide are transported, several problems not typical in gas respiration occur. The increased mass and viscosity of a liquid as compared with a gas necessitate some means of mechanical assistance. The lower diffusion rates of gases in liquids as compared with gas rates places several constraints on the design of a mechanically assisted liquid breathing system. The liquid breathing system reported in this study has been designed to be demand-regulated, i.e., the animal has control over cycling the pumps which mechanically assist the circulation of an oxygenated liquid to and from the lungs. This system consists of a gas-operated diaphragm pump, demand controller, liquid regenerator with heater and gas scrubber, and ancillary equipment. A demand controller is described which obtains a control signal from an esophageal balloon catheter in the animal and governs operation of the pneumatically driven diaphragm pump. PMID:1055284

  13. I(sup STAR), NASA's Next Step in Air-Breathing Propulsion for Space Access

    NASA Technical Reports Server (NTRS)

    Hutt, John J.; McArthur, Craig; Cook, Stephen (Technical Monitor)

    2001-01-01

    The United States' National Aeronautics and Space Administration (NASA) has established a strategic plan for future activities in space. A primary goal of this plan is to make drastic improvements in the cost and safety of earth to low-earth-orbit transportation. One approach to achieving this goal is through the development of highly reusable, highly reliable space transportation systems analogous to the commercial airline system. In the year 2000, NASA selected the Rocket Based Combined Cycle (RBCC) engine as the next logical step towards this goal. NASA will develop a complete flight-weight, pump-fed engine system under the Integrated System Test of an Airbreathing Rocket (I(sup STAR)) Project. The objective of this project is develop a reusable engine capable of self-powering a vehicle through the air-augmented rocket, ramjet and scramjet modes required in all RBCC based operational vehicle concepts. The project is currently approved and funded to develop the engine through ground test demonstration. Plans are in place to proceed with flight demonstration pending funding approval. The project is in formulation phase and the Preliminary Requirements Review has been completed. The engine system and vehicle have been selected at the conceptual level. The I(sup STAR) engine concept is based on an air-breathing flowpath downselected from three configurations evaluated in NASA's Advanced Reusable Technology contract. The selected flowpath features rocket thrust chambers integrated into struts separating modular flowpath ducts, a variable geometry inlet, and a thermally choked throat. The engine will be approximately 220 inches long and 79 inches wide and fueled with a hydrocarbon fuel using liquid oxygen as the primary oxidizer candidate. The primary concept for the pump turbine drive is pressure-fed catalyzed hydrogen peroxide. In order to control costs, the flight demonstration vehicle will be launched from a B-52 aircraft. The vehicle concept is based on the Air

  14. Dependence of exhaled breath composition on exogenous factors, smoking habits and exposure to air pollutants*

    PubMed Central

    Mochalski, P; Filipiak, A; Bajtarevic, A; Ager, C; Denz, H; Hilbe, W; Jamnig, H; Hackl, M; Dzien, A; Amann, A

    2013-01-01

    Non-invasive disease monitoring on the basis of volatile breath markers is a very attractive but challenging task. Several hundreds of compounds have been detected in exhaled air using modern analytical techniques (e.g. proton-transfer reaction mass spectrometry, gas chromatography-mass spectrometry) and have even been linked to various diseases. However, the biochemical background for most of compounds detected in breath samples has not been elucidated; therefore, the obtained results should be interpreted with care to avoid false correlations. The major aim of this study was to assess the effects of smoking on the composition of exhaled breath. Additionally, the potential origin of breath volatile organic compounds (VOCs) is discussed focusing on diet, environmental exposure and biological pathways based on other’s studies. Profiles of VOCs detected in exhaled breath and inspired air samples of 115 subjects with addition of urine headspace derived from 50 volunteers are presented. Samples were analyzed with GC-MS after preconcentration on multibed sorption tubes in case of breath samples and solid phase micro-extraction (SPME) in the case of urine samples. Altogether 266 compounds were found in exhaled breath of at least 10% of the volunteers. From these, 162 compounds were identified by spectral library match and retention time (based on reference standards). It is shown that the composition of exhaled breath is considerably influenced by exposure to pollution and indoor-air contaminants and particularly by smoking. More than 80 organic compounds were found to be significantly related to smoking, the largest group comprising unsaturated hydrocarbons (29 dienes, 27 alkenes and 3 alkynes). On the basis of the presented results, we suggest that for the future understanding of breath data it will be necessary to carefully investigate the potential biological origin of volatiles, e.g., by means of analysis of tissues, isolated cell lines or other body fluids. In

  15. Leukotriene-B4 concentrations in exhaled breath condensate and lung function after thirty minutes of breathing technically dried compressed air.

    PubMed

    Neubauer, Birger; Struck, Niclas; Mutzbauer, Till S; Schotte, Ulrich; Langfeldt, Norbert; Tetzlaff, Kay

    2002-01-01

    In previous studies it had been shown that leukotriene-B4 [LTB4] concentrations in the exhaled breath mirror the inflammatory activity of the airways if the respiratory tract has been exposed to occupational hazards. In diving the respiratory tract is exposed to cold and dry air and the nasopharynx, as the site of breathing-gas warming and humidification, is bypassed. The aim of the present study was to obtain LTB4-concentrations in the exhaled breath and spirometric data of 17 healthy subjects before and after thirty minutes of technically dried air breathing at normobar ambient pressure. The exhaled breath was collected non-invasively, via a permanently cooled expiration tube. The condensate was measured by a standard enzyme immunoassay for LTB4. Lung function values (FVC, FEV1, MEF 25, MEF 50) were simultaneously obtained by spirometry. The measured pre- and post-exposure LTB4- concentrations as well as the lung function values were in the normal range. The present data gave no evidence for any inflammatory activity in the subjects' airways after thirty minutes breathing technically dried air. PMID:12608592

  16. Propulsion integration of hypersonic air-breathing vehicles utilizing a top-down design methodology

    NASA Astrophysics Data System (ADS)

    Kirkpatrick, Brad Kenneth

    In recent years, a focus of aerospace engineering design has been the development of advanced design methodologies and frameworks to account for increasingly complex and integrated vehicles. Techniques such as parametric modeling, global vehicle analyses, and interdisciplinary data sharing have been employed in an attempt to improve the design process. The purpose of this study is to introduce a new approach to integrated vehicle design known as the top-down design methodology. In the top-down design methodology, the main idea is to relate design changes on the vehicle system and sub-system level to a set of over-arching performance and customer requirements. Rather than focusing on the performance of an individual system, the system is analyzed in terms of the net effect it has on the overall vehicle and other vehicle systems. This detailed level of analysis can only be accomplished through the use of high fidelity computational tools such as Computational Fluid Dynamics (CFD) or Finite Element Analysis (FEA). The utility of the top-down design methodology is investigated through its application to the conceptual and preliminary design of a long-range hypersonic air-breathing vehicle for a hypothetical next generation hypersonic vehicle (NHRV) program. System-level design is demonstrated through the development of the nozzle section of the propulsion system. From this demonstration of the methodology, conclusions are made about the benefits, drawbacks, and cost of using the methodology.

  17. Nonlinear damage identification of breathing cracks in Truss system

    NASA Astrophysics Data System (ADS)

    Zhao, Jie; DeSmidt, Hans

    2014-03-01

    The breathing cracks in truss system are detected by Frequency Response Function (FRF) based damage identification method. This method utilizes damage-induced changes of frequency response functions to estimate the severity and location of structural damage. This approach enables the possibility of arbitrary interrogation frequency and multiple inputs/outputs which greatly enrich the dataset for damage identification. The dynamical model of truss system is built using the finite element method and the crack model is based on fracture mechanics. Since the crack is driven by tensional and compressive forces of truss member, only one damage parameter is needed to represent the stiffness reduction of each truss member. Assuming that the crack constantly breathes with the exciting frequency, the linear damage detection algorithm is developed in frequency/time domain using Least Square and Newton Raphson methods. Then, the dynamic response of the truss system with breathing cracks is simulated in the time domain and meanwhile the crack breathing status for each member is determined by the feedback from real-time displacements of member's nodes. Harmonic Fourier Coefficients (HFCs) of dynamical response are computed by processing the data through convolution and moving average filters. Finally, the results show the effectiveness of linear damage detection algorithm in identifying the nonlinear breathing cracks using different combinations of HFCs and sensors.

  18. Changes in nasal air flow and school grades after rapid maxillary expansion in oral breathing children

    PubMed Central

    Torre, Hilda

    2012-01-01

    Objective: To analyse the changes in nasal air flow and school grades after rapid maxillary expansion (RME) in oral breathing children with maxillary constriction. Material and Methods: Forty-four oral breathing children (mean age 10.57 y) underwent orthodontic RME with a Hyrax screw. Forty-four age-matched children (mean age 10.64 y) with nasal physiological breathing and adequate transverse maxillary dimensions served as the control group. The maxillary widths, nasal air flow assessed via peak nasal inspiratory flow (PNIF), and school grades were recorded at baseline, and 6 months and one year following RME. Results: After RME, there were significant increases in all the maxillary widths in the study group. PNIF was reduced in the study group (60.91 ± 13.13 l/min) compared to the control group (94.50 ± 9.89 l/min) (P < 0.000) at the beginning of the study. Six months after RME, a significant improvement of PNIF was observed in the study group (36.43 ± 22.61). School grades were lower in the study group (85.52 ± 5.74) than in the control group (89.77 ± 4.44) (P < 0.05) at the baseline, but it increased six months after RME (2.77 ± 3.90) (P < 0.001) and one year later (5.02 ± 15.23) (P < 0.05). Conclusions: Nasal air flow improved in oral breathing children six months and one year after RME. School grades also improved, but not high enough to be academically significant. Key words:Maxillary constriction, oral breathing, nasal air flow, rapid maxillary expansion, school grades. PMID:22322516

  19. Affordable Flight Demonstration of the GTX Air-Breathing SSTO Vehicle Concept

    NASA Technical Reports Server (NTRS)

    Krivanek, Thomas M.; Roche, Joseph M.; Riehl, John P.; Kosareo, Daniel N.

    2002-01-01

    The rocket based combined cycle (RBCC) powered single-stage-to-orbit (SSTO) reusable launch vehicle has the potential to significantly reduce the total cost per pound for orbital payload missions. To validate overall system performance, a flight demonstration must be performed. This paper presents an overview of the first phase of a flight demonstration program for the GTX SSTO vehicle concept. Phase 1 will validate the propulsion performance of the vehicle configuration over the supersonic and hypersonic airbreathing portions of the trajectory. The focus and goal of Phase 1 is to demonstrate the integration and performance of the propulsion system flowpath with the vehicle aerodynamics over the air-breathing trajectory. This demonstrator vehicle will have dual mode ramjet/scramjets, which include the inlet, combustor, and nozzle with geometrically scaled aerodynamic surface outer mold lines (OML) defining the forebody, boundary layer diverter, wings, and tail. The primary objective of this study is to demonstrate propulsion system performance and operability including the ram to scram transition, as well as to validate vehicle aerodynamics and propulsion airframe integration. To minimize overall risk and development cost the effort will incorporate proven materials, use existing turbomachinery in the propellant delivery systems, launch from an existing unmanned remote launch facility, and use basic vehicle recovery techniques to minimize control and landing requirements. A second phase would demonstrate propulsion performance across all critical portions of a space launch trajectory (lift off through transition to all-rocket) integrated with flight-like vehicle systems.

  20. Australian Air Breathing Propulsion Research for Hypersonic, Beamed Energy-Propelled Vehicles

    NASA Astrophysics Data System (ADS)

    Froning, David

    2010-05-01

    A three year laser-propelled vehicle analysis and design investigation has been begun in June, 2009 by Faculty and graduate students at the University of Adelaide under a Grant/Cooperative Agreement Award to the University of Adelaide by the Asian Office of Aerospace Research and Development (AOARD). The major objectives of thsis investigation are: (a) development of hypersonic, air breathing "lightcraft" with innovative air inlets that enable acceptable airflow capture and combustion, and acceptable cowl-lip heating rates during hot, high-speed, high angle-of-attack hypersonic flight; (b) yest of the most promising lightcraft and inlet design in the high power laser beam that is part of the shock tunnel facility at CTO Instituto in Brazil; and (c) plan a series of laser guided and propelled flights that achieve supersonic or higher speed at the Woomera Test Facility (WTF) in South Australia—using the existing WTF launching and tracking facilities and sponsor-provided laser pointing and tracking and illumination systems.

  1. Fast-starting after a breath: air-breathing motions are kinematically similar to escape responses in the catfish Hoplosternum littorale.

    PubMed

    Domenici, Paolo; Norin, Tommy; Bushnell, Peter G; Johansen, Jacob L; Skov, Peter Vilhelm; Svendsen, Morten B S; Steffensen, John F; Abe, Augusto S

    2014-01-01

    Fast-starts are brief accelerations commonly observed in fish within the context of predator-prey interactions. In typical C-start escape responses, fish react to a threatening stimulus by bending their body into a C-shape during the first muscle contraction (i.e. stage 1) which provides a sudden acceleration away from the stimulus. Recently, similar C-starts have been recorded in fish aiming at a prey. Little is known about C-starts outside the context of predator-prey interactions, though recent work has shown that escape response can also be induced by high temperature. Here, we test the hypothesis that air-breathing fish may use C-starts in the context of gulping air at the surface. Hoplosternum littorale is an air-breathing freshwater catfish found in South America. Field video observations reveal that their air-breathing behaviour consists of air-gulping at the surface, followed by a fast turn which re-directs the fish towards the bottom. Using high-speed video in the laboratory, we compared the kinematics of the turn immediately following air-gulping performed by H. littorale in normoxia with those of mechanically-triggered C-start escape responses and with routine (i.e. spontaneous) turns. Our results show that air-breathing events overlap considerably with escape responses with a large stage 1 angle in terms of turning rates, distance covered and the relationship between these rates. Therefore, these two behaviours can be considered kinematically comparable, suggesting that air-breathing in this species is followed by escape-like C-start motions, presumably to minimise time at the surface and exposure to avian predators. These findings show that C-starts can occur in a variety of contexts in which fish may need to get away from areas of potential danger. PMID:25527644

  2. Breathing easier? The known impacts of biodiesel on air quality

    PubMed Central

    Traviss, Nora

    2013-01-01

    Substantial scientific evidence exists on the negative health effects of exposure to petroleum diesel exhaust. Many view biodiesel as a ‘green’, more environmentally friendly alternative fuel, especially with respect to measured reductions of particulate matter in tailpipe emissions. Tailpipe emissions data sets from heavy-duty diesel engines comparing diesel and biodiesel fuels provide important information regarding the composition and potential aggregate contribution of particulate matter and other pollutants to regional airsheds. However, exposure – defined in this instance as human contact with tailpipe emissions – is another key link in the chain between emissions and human health effects. Although numerous biodiesel emissions studies exist, biodiesel exposure studies are nearly absent from the literature. This article summarizes the known impacts of biodiesel on air quality and health effects, comparing emissions and exposure research. In light of rapidly changing engine, fuel and exhaust technologies, both emissions and exposure studies are necessary for developing a fuller understanding of the impact of biodiesel on air quality and human health. PMID:23585814

  3. Development Study on a Precooler for the HypersonicAir-Breathing Engine

    NASA Astrophysics Data System (ADS)

    Sato, Tetsuya; Tanatsugu, Nobuhiro; Harada, Kenya; Kobayashi, Hiroaki; Tomike, Jun'Ichiro

    Here is presented an experimental and analytical study on a precooler for hypersonic air-breathing engines. Precooling of the incoming air breathed by an air-inlet gives extension of the flight envelope and improvement of the thrust and specific impulse. Three precooler models were installed into an air-turbo ramjet engine and tested under the sea level static condition. When the fan inlet temperature was down to 180K, the engine thrust and specific impulse increased by 2.0 and 1.2 times respectively. Thick frost formed on the tube surfaces at the entrance part of the precooler blocked the air-flow passage. On the other hand, very thin frost formed at the exit part because the water vapor included in the air was changed to mist particles due to the low temperature of the air in this part. Parametric studies on the precooler design values and a sizing analysis were also performed. Decrease of tube outer diameters on the precooler is only way to increase heat exchange rates without increase of its weight and pressure loss.

  4. 46 CFR 197.310 - Air compressor system.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Air compressor system. 197.310 Section 197.310 Shipping... GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.310 Air compressor system. A compressor used to supply breathing air to a diver must have— (a) A volume tank that is— (1) Built and stamped...

  5. 46 CFR 197.310 - Air compressor system.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Air compressor system. 197.310 Section 197.310 Shipping... GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.310 Air compressor system. A compressor used to supply breathing air to a diver must have— (a) A volume tank that is— (1) Built and stamped...

  6. Evolution of Air Breathing: Oxygen Homeostasis and the Transitions from Water to Land and Sky

    PubMed Central

    Hsia, Connie C. W.; Schmitz, Anke; Lambertz, Markus; Perry, Steven F.; Maina, John N.

    2014-01-01

    Life originated in anoxia, but many organisms came to depend upon oxygen for survival, independently evolving diverse respiratory systems for acquiring oxygen from the environment. Ambient oxygen tension (PO2) fluctuated through the ages in correlation with biodiversity and body size, enabling organisms to migrate from water to land and air and sometimes in the opposite direction. Habitat expansion compels the use of different gas exchangers, for example, skin, gills, tracheae, lungs, and their intermediate stages, that may coexist within the same species; coexistence may be temporally disjunct (e.g., larval gills vs. adult lungs) or simultaneous (e.g., skin, gills, and lungs in some salamanders). Disparate systems exhibit similar directions of adaptation: toward larger diffusion interfaces, thinner barriers, finer dynamic regulation, and reduced cost of breathing. Efficient respiratory gas exchange, coupled to downstream convective and diffusive resistances, comprise the “oxygen cascade”—step-down of PO2 that balances supply against toxicity. Here, we review the origin of oxygen homeostasis, a primal selection factor for all respiratory systems, which in turn function as gatekeepers of the cascade. Within an organism's lifespan, the respiratory apparatus adapts in various ways to upregulate oxygen uptake in hypoxia and restrict uptake in hyperoxia. In an evolutionary context, certain species also become adapted to environmental conditions or habitual organismic demands. We, therefore, survey the comparative anatomy and physiology of respiratory systems from invertebrates to vertebrates, water to air breathers, and terrestrial to aerial inhabitants. Through the evolutionary directions and variety of gas exchangers, their shared features and individual compromises may be appreciated. PMID:23720333

  7. Breath air measurement using wide-band frequency tuning IR laser photo-acoustic spectroscopy

    NASA Astrophysics Data System (ADS)

    Kistenev, Yury V.; Borisov, Alexey V.; Kuzmin, Dmitry A.; Bulanova, Anna A.; Boyko, Andrey A.; Kostyukova, Nadezhda Y.; Karapuzikov, Alexey A.

    2016-03-01

    The results of measuring of biomarkers in breath air of patients with broncho-pulmonary diseases using wide-band frequency tuning IR laser photo-acoustic spectroscopy and the methods of data mining are presented. We will discuss experimental equipment and various methods of intellectual analysis of the experimental spectra in context of above task. The work was carried out with partial financial support of the FCPIR contract No 14.578.21.0082 (ID RFMEFI57814X0082).

  8. Uncertainty analysis and robust trajectory linearization control of a flexible air-breathing hypersonic vehicle

    NASA Astrophysics Data System (ADS)

    Pu, Zhiqiang; Tan, Xiangmin; Fan, Guoliang; Yi, Jianqiang

    2014-08-01

    Flexible air-breathing hypersonic vehicles feature significant uncertainties which pose huge challenges to robust controller designs. In this paper, four major categories of uncertainties are analyzed, that is, uncertainties associated with flexible effects, aerodynamic parameter variations, external environmental disturbances, and control-oriented modeling errors. A uniform nonlinear uncertainty model is explored for the first three uncertainties which lumps all uncertainties together and consequently is beneficial for controller synthesis. The fourth uncertainty is additionally considered in stability analysis. Based on these analyses, the starting point of the control design is to decompose the vehicle dynamics into five functional subsystems. Then a robust trajectory linearization control (TLC) scheme consisting of five robust subsystem controllers is proposed. In each subsystem controller, TLC is combined with the extended state observer (ESO) technique for uncertainty compensation. The stability of the overall closed-loop system with the four aforementioned uncertainties and additional singular perturbations is analyzed. Particularly, the stability of nonlinear ESO is also discussed from a Liénard system perspective. At last, simulations demonstrate the great control performance and the uncertainty rejection ability of the robust scheme.

  9. Navier-Stokes predictions of dynamic stability derivatives for air-breathing hypersonic vehicle

    NASA Astrophysics Data System (ADS)

    Liu, Xu; Liu, Wei; Zhao, Yunfei

    2016-01-01

    Dynamic derivatives are important parameters for designing vehicle trajectory and attitude control system that directly decide the divergence behavior of vibration of the aircraft open-loop system under interference. After calibration model validation, the dynamic behavior of air-breathing hypersonic vehicle WR-A is characterized. The unsteady flow field of aircraft forced simple harmonic vibration (SHV) is simulated using N-S equation. The direct damping derivatives, cross derivatives, acceleration derivatives and rotary derivatives of WR-A under different frequencies, amplitudes and positions of centroid are obtained. Research demonstrates that the proportion of acceleration derivatives, which represents the flow time lag effect, in the direct damping derivatives can be as high as 40% but is opposite to the damping derivative value symbols in some cases, contributing to dynamic instability. Numerical simulation on large-amplitude forced vibration of WR-A indicates that the aerodynamic behavior predicted by the dynamic derivative model agrees well with unsteady calculations. The inlet performance parameter derivatives are solved using the Etkin theory. The inlet performance parameters under large-amplitude vibration are successfully predicted using the dynamic derivative model. This offers a guideline for characterizing the dynamic internal flow field and unsteady inlet performance.

  10. Artist's Concept of Magnetic Launch Assisted Air-Breathing Rocket

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This artist's concept depicts a Magnetic Launch Assist vehicle in orbit. Formerly referred to as the Magnetic Levitation (Maglev) system, the Magnetic Launch Assist system is a launch system developed and tested by engineers at the Marshall Space Flight Center (MSFC) that could levitate and accelerate a launch vehicle along a track at high speeds before it leaves the ground. Using electricity and magnetic fields, a Magnetic Launch Assist system would drive a spacecraft along a horizontal track until it reaches desired speeds. The system is similar to high-speed trains and roller coasters that use high-strength magnets to lift and propel a vehicle a couple of inches above a guideway. A full-scale, operational track would be about 1.5-miles long, capable of accelerating a vehicle to 600 mph in 9.5 seconds, and the vehicle would then shift to rocket engines for launch into orbit. The major advantages of launch assist for NASA launch vehicles is that it reduces the weight of the take-off, the landing gear, the wing size, and less propellant resulting in significant cost savings. The US Navy and the British MOD (Ministry of Defense) are planning to use magnetic launch assist for their next generation aircraft carriers as the aircraft launch system. The US Army is considering using this technology for launching target drones for anti-aircraft training.

  11. Effect of oxygen and heliox breathing on air bubbles in adipose tissue during 25-kPa altitude exposures.

    PubMed

    Randsøe, T; Kvist, T M; Hyldegaard, O

    2008-11-01

    At altitude, bubbles are known to form and grow in blood and tissues causing altitude decompression sickness. Previous reports indicate that treatment of decompression sickness by means of oxygen breathing at altitude may cause unwanted bubble growth. In this report we visually followed the in vivo changes of micro air bubbles injected into adipose tissue of anesthetized rats at 101.3 kPa (sea level) after which they were decompressed from 101.3 kPa to and held at 25 kPa (10,350 m), during breathing of oxygen or a heliox(34:66) mixture (34% helium and 66% oxygen). Furthermore, bubbles were studied during oxygen breathing preceded by a 3-h period of preoxygenation to eliminate tissue nitrogen before decompression. During oxygen breathing, bubbles grew from 11 to 198 min (mean: 121 min, +/-SD 53.4) after which they remained stable or began to shrink slowly. During heliox breathing bubbles grew from 30 to 130 min (mean: 67 min, +/-SD 31.0) from which point they stabilized or shrank slowly. No bubbles disappeared during either oxygen or heliox breathing. Preoxygenation followed by continuous oxygen breathing at altitude caused most bubbles to grow from 19 to 179 min (mean: 51 min, +/-SD 47.7) after which they started shrinking or remained stable throughout the observation period. Bubble growth time was significantly longer during oxygen breathing compared with heliox breathing and preoxygenated animals. Significantly more bubbles disappeared in preoxygenated animals compared with oxygen and heliox breathing. Preoxygenation enhanced bubble disappearance compared with oxygen and heliox breathing but did not prevent bubble growth. The results indicate that oxygen breathing at 25 kPa promotes air bubble growth in adipose tissue regardless of the tissue nitrogen pressure. PMID:18756005

  12. The patient inflating valve in anaesthesia and resuscitation breathing systems.

    PubMed

    Fenton, P M; Bell, G

    2013-03-01

    Patient inflating valves combined with self-inflating bags are known to all anaesthetists as resuscitation devices and are familiar as components of draw-over anaesthesia systems. Their variants are also commonplace in transfer and home ventilators. However, the many variations in structure and function have led to difficulties in their optimal use, definition and classification. After reviewing the relevant literature, we defined a patient inflating valve as a one-way valve that closes an exit port to enable lung inflation, also permitting exhalation and spontaneous breathing, the actions being automatic. We present a new classification based on the mechanism of valve opening/closure; namely elastic recoil of a flexible flap/diaphragm, sliding spindle opened by a spring/magnet or a hollow balloon collapsed by external pressure. The evolution of these valves has been driven by the difficulties documented in critical incidents, which we have used along with information from modern International Organization for Standardization standards to identify 13 ideal properties, the top six of which are non-jamming, automatic, no bypass effect, no rebreathing or air entry at patient end, low resistance, robust and easy to service. The Ambu and the Laerdal valves have remained popular due to their simplicity and reliability. Two new alternatives, the Fenton and Diamedica valves, offer the benefits of location away from the patient while retaining a small functional dead space. They also offer the potential for greater use of hybrid continuous flow/draw-over systems that can operate close to atmospheric pressure. The reliable application of positive end-expiratory pressure/continuous positive airway pressure remains a challenge. PMID:23530783

  13. An Overview of 2014 SBIR Phase 1 and Phase 2 Air-Breathing Propulsion

    NASA Technical Reports Server (NTRS)

    Nguyen, Hung D.; Steele, Gynelle C.; Morris, Jessica R.

    2015-01-01

    NASA's Small Business Innovation Research (SBIR) program focuses on technological innovation by investing in development of innovative concepts and technologies to help NASA mission directorates address critical research needs for Agency programs. This report highlights nine of the innovative SBIR 2014 Phase I and Phase II projects that emphasize one of NASA Glenn Research Center's six core competencies-Air-Breathing Propulsion. The technologies cover a wide spectrum of applications such as development of X-ray computed tomography (CT) imaging method for the measurement of complex 3D ice shapes, phased array techniques for low signal-to-noise ratio wind tunnels, compact kinetic mechanisms for petroleum-derived and alternative aviation fuels, and hybrid electric propulsion systems for a multirotor aircraft. Each featured technology describes an innovation, technical objective, and highlights NASA commercial and industrial applications. This report provides as an opportunity for NASA engineers, researchers, and program managers to learn how NASA SBIR technologies could help their programs and projects, and lead to collaborations and partnerships between the small SBIR companies and NASA that would benefit both.

  14. Survey of Aerothermodynamics Facilities Useful for the Design of Hypersonic Vehicles Using Air-Breathing Propulsion

    NASA Technical Reports Server (NTRS)

    Arnold, James O.; Deiwert, George S.

    1997-01-01

    This paper surveys the use of aerothermodynamic facilities which have been useful in the study of external flows and propulsion aspects of hypersonic, air-breathing vehicles. While the paper is not a survey of all facilities, it covers the utility of shock tunnels and conventional hypersonic blow-down facilities which have been used for hypersonic air-breather studies. The problems confronting researchers in the field of aerothermodynamics are outlined. Results from the T5 GALCIT tunnel for the shock-on lip problem are outlined. Experiments on combustors and short expansion nozzles using the semi-free jet method have been conducted in large shock tunnels. An example which employed the NASA Ames 16-Inch shock tunnel is outlined, and the philosophy of the test technique is described. Conventional blow-down hypersonic wind tunnels are quite useful in hypersonic air-breathing studies. Results from an expansion ramp experiment, simulating the nozzle on a hypersonic air-breather from the NASA Ames 3.5 Foot Hypersonic wind tunnel are summarized. Similar work on expansion nozzles conducted in the NASA Langley hypersonic wind tunnel complex is cited. Free-jet air-frame propulsion integration and configuration stability experiments conducted at Langley in the hypersonic wind tunnel complex on a small generic model are also summarized.

  15. The NASA Firefighter's Breathing System Program: A Status Report

    NASA Technical Reports Server (NTRS)

    McLaughlan, Pat B.

    1973-01-01

    The National Aeronautics and Space Administration (NASA), through its Technology Utilization Program, has been making its advanced technology developments available to the public. This has coincided in recent years with a growing demand within the fire service for improved protective equipment. A better breathing system for firefighters was one of the more immediate needs identified by the firefighting organizations. The Johnson Space Center (JSC), based upon their experience in providing life support systems for space flight, was subsequently requested to determine the feasibility of providing an improved breathing system for firefighters. Such a system was determined to be well within the current state of the art, and the Center is well into a development program to provide design verification of this improved protective' equipment. This report - outlines the overall objectives of this program, progress to date, and future planned activities.

  16. Lung function measurement with multiple-breath-helium washout system.

    PubMed

    Wang, J-Y; Suddards, M E; Mellor, C J; Owers-Bradley, J R

    2013-04-01

    Multiple-breath-washout (MBW) measurements are regarded as a sensitive technique which can reflect the ventilation inhomogeneity of respiratory airways. Typically nitrogen is used as the tracer gas and is washed out by pure oxygen in multiple-breath-nitrogen washout (MBNW) tests. In this study, instead of using nitrogen, (4)He is used as the tracer gas with smaller gas density which may be able to reach deeper into our lungs in a given time and the helium washout results may be more sensitive to the ventilation inhomogeneity in small airways. A multiple-breath-helium-washout (MBHW) system developed for the lung function study is also presented. Quartz tuning forks with a resonance frequency of 32,768Hz have been used for detecting the change of the respiratory gas density. The resonance frequency of the quartz tuning fork decreases linearly with increasing density of the surrounding gas. Knowing the CO2 concentration from the infrared carbon dioxide detector, the helium concentration can be determined. Results from 14 volunteers (3 mild asthmatics, 4 tobacco smokers, 1 with asthma history, 1 with COPD history, 5 normal) have shown that mild asthmatics have higher ventilation inhomogeneity in either conducting or acinar airways (or both). A feature has been found in washout curve of single breaths from 4 tobacco smokers with different length of smoking history which may indicate the early stage of respiratory ventilation inhomogeneity in acinar airways. PMID:22835436

  17. Effect of isobaric breathing gas shifts from air to heliox mixtures on resolution of air bubbles in lipid and aqueous tissues of recompressed rats.

    PubMed

    Hyldegaard, O; Kerem, D; Melamed, Y

    2011-09-01

    Deep tissue isobaric counterdiffusion that may cause unwanted bubble formation or transient bubble growth has been referred to in theoretical models and demonstrated by intravascular gas formation in animals, when changing inert breathing gas from nitrogen to helium after hyperbaric air breathing. We visually followed the in vivo resolution of extravascular air bubbles injected at 101 kPa into nitrogen supersaturated rat tissues: adipose, spinal white matter, skeletal muscle or tail tendon. Bubbles were observed during isobaric breathing-gas shifts from air to normoxic (80:20) heliox mixture while at 285 kPa or following immediate recompression to either 285 or 405 kPa, breathing 80:20 and 50:50 heliox mixtures. During the isobaric shifts, some bubbles in adipose tissue grew marginally for 10-30 min, subsequently they shrank and disappeared at a rate similar to or faster than during air breathing. No such bubble growth was observed in spinal white matter, skeletal muscle or tendon. In spinal white matter, an immediate breathing gas shift after the hyperbaric air exposure from air to both (80:20) and (50:50) heliox, coincident with recompression to either 285 or 405 kPa, caused consistent shrinkage of all air bubbles, until they disappeared from view. Deep tissue isobaric counterdiffusion may cause some air bubbles to grow transiently in adipose tissue. The effect is marginal and of no clinical consequence. Bubble disappearance rate is faster with heliox breathing mixtures as compared to air. We see no reason for reservations in the use of heliox breathing during treatment of air-diving-induced decompression sickness. PMID:21318313

  18. Design considerations for divers' breathing gas systems

    NASA Technical Reports Server (NTRS)

    Hansen, O. R.

    1972-01-01

    Some of the design methods used to establish the gas storage, mixing, and transfer requirements for existing deep dive systems are discussed. Gas mixing systems appear essential to provide the low oxygen concentration mixtures within the converging tolerance range dictated by applications to increasing depths. Time related use of gas together with the performance of the gas transfer system insures a reasonable time frame for systems application.

  19. Effect of hypobaric air, oxygen, heliox (50:50), or heliox (80:20) breathing on air bubbles in adipose tissue.

    PubMed

    Hyldegaard, O; Madsen, J

    2007-09-01

    The fate of bubbles formed in tissues during decompression to altitude after diving or due to accidental loss of cabin pressure during flight has only been indirectly inferred from theoretical modeling and clinical observations with noninvasive bubble-measuring techniques of intravascular bubbles. In this report we visually followed the in vivo resolution of micro-air bubbles injected into adipose tissue of anesthetized rats decompressed from 101.3 kPa to and held at 71 kPa corresponding to approximately 2.750 m above sea level, while the rats breathed air, oxygen, heliox (50:50), or heliox (80:20). During air breathing, bubbles initially grew for 30-80 min, after which they remained stable or began to shrink slowly. Oxygen breathing caused an initial growth of all bubbles for 15-85 min, after which they shrank until they disappeared from view. Bubble growth was significantly greater during breathing of oxygen compared with air and heliox breathing mixtures. During heliox (50:50) breathing, bubbles initially grew for 5-30 min, from which point they shrank until they disappeared from view. After a shift to heliox (80:20) breathing, some bubbles grew slightly for 20-30 min, then shrank until they disappeared from view. Bubble disappearance was significantly faster during breathing of oxygen and heliox mixtures compared with air. In conclusion, the present results show that oxygen breathing at 71 kPa promotes bubble growth in lipid tissue, and it is possible that breathing of heliox may be beneficial in treating decompression sickness during flight. PMID:17600159

  20. Structural Sizing of a 25,000-lb Payload, Air-breathing Launch Vehicle for Single-stage-to-orbit

    NASA Technical Reports Server (NTRS)

    Roche, Joseph M.; Kosareo, Daniel N.

    2001-01-01

    In support of NASA's Air-Breathing Launch Vehicle (ABLV) study, a 25,000-lb payload version of the GTX (formerly Trailblazer) reference vehicle concept was developed. The GTX is a vertical lift-off, reusable, single-stage-to-orbit launch vehicle concept that uses hypersonic air-breathing propulsion in a rocket-based combined-cycle (RBCC) propulsion system to reduce the required propellant fraction. To achieve this goal the vehicle and propulsion system must be well integrated both aerodynamically and structurally to reduce weight. This study demonstrates the volumetric and structural efficiency of a vertical takeoff, horizontal landing, hypersonic vehicle with a circular cross section. A departure from the lifting body concepts, this design philosophy is even extended to the engines, which have semicircular nacelles symmetrically mounted on the vehicle. Material candidates with a potential for lightweight and simplicity have been selected from a set of near term technologies (five to ten years). To achieve the mission trajectory, preliminary weight estimates show the vehicle's gross lift-off weight is 1.26 x 10(exp 6) lb. The structural configuration of the GTX vehicle and its propulsion system are described. The vehicle design benefits are presented, and key technical issues are highlighted.

  1. Structural Sizing of a 25,000-lb Payload, Air-Breathing Launch Vehicle For Single-Stage-To-Orbit

    NASA Technical Reports Server (NTRS)

    Roche, Joseph M.; Kosareo, Daniel N.; Palac, Don (Technical Monitor)

    2000-01-01

    In support of NASA's Air-Breathing Launch Vehicle (ABLV) study, a 25,000-lb payload version of the GTX (formerly Trailblazer) reference vehicle concept was developed. The GTX is a vertical lift-off, reusable, single-stage-to-orbit launch vehicle concept that uses hypersonic air-breathing propulsion in a rocket-based combined-cycle (RBCC) propulsion system to reduce the required propellant fraction. To achieve this goal the vehicle and propulsion system must be well integrated both aerodynamically and structurally to reduce weight. This study demonstrates the volumetric and structural efficiency of a vertical takeoff, horizontal landing, hypersonic vehicle with a circular cross section. A departure from the lifting body concepts, this design philosophy is even extended to the engines, which have semicircular nacelles symmetrically mounted on the vehicle. Material candidates with a potential for lightweight and simplicity have been selected from a set of near term technologies (5 to 10 years). To achieve the mission trajectory, preliminary weight estimates show the vehicle's gross lift-off weight is 1.26 x 10(exp 6) lb. The structural configuration of the GTX vehicle and its propulsion system are described. The vehicle design benefits are presented, and key technical issues are highlighted.

  2. Aerosol Deposition in the Human Respiratory Tract Breathing Air and 80:20 Heliox

    PubMed Central

    DARQUENNE, CHANTAL; PRISK, G. KIM

    2005-01-01

    Aerosol mixing resulting from turbulent flows is thought to be an important mechanism of deposition in the upper respiratory tract (URT). Since turbulence levels are a function of gas density, the use of a low density carrier gas would be expected to reduce deposition in the URT. We measured aerosol deposition in the respiratory tract of 8 healthy subjects using both air and heliox, a low density gas mixture containing 80% helium and 20% oxygen, as the carrier gas. The subjects breathed 0.5, 1, and 2 μm-diameter monodisperse polystyrene latex particles from a reservoir at a constant flow rate (~450 mL/sec) and tidal volume (~900 mL). Aerosol concentration and flow rate were measured at the mouth using a photometer and a pneumotachograph, respectively. Deposition was 17.0%, 20.3%, and 38.9% in air and 16.8%, 18.5%, and 36.9% in heliox for 0.5, 1, and 2 μm-diameter particles, respectively. There was a small but statistically significant decrease in deposition when using heliox compared to air for 1 and 2 μm-diameter particles (p < 0.05). While it could not be directly measured from these data, it is likely that when breathing heliox instead of air, deposition is reduced in the URT and increased in the small airways and alveoli. PMID:15625820

  3. The Sensitivity of Precooled Air-Breathing Engine Performance to Heat Exchanger Design Parameters

    NASA Astrophysics Data System (ADS)

    Webber, H.; Bond, A.; Hempsell, M.

    The issues relevant to propulsion design for Single Stage To Orbit (SSTO) vehicles are considered. In particular two air- breathing engine concepts involving precooling are compared; SABRE (Synergetic Air-Breathing and Rocket Engine) as designed for the Skylon SSTO launch vehicle, and a LACE (Liquid Air Cycle Engine) considered in the 1960's by the Americans for an early generation spaceplane. It is shown that through entropy minimisation the SABRE has made substantial gains in performance over the traditional LACE precooled engine concept, and has shown itself as the basis of a viable means of realising a SSTO vehicle. Further, it is demonstrated that the precooler is a major source of thermodynamic irreversibility within the engine cycle and that further reduction in entropy can be realised by increasing the heat transfer coefficient on the air side of the precooler. If this were to be achieved, it would improve the payload mass delivered to orbit by the Skylon launch vehicle by between 5 and 10%.

  4. 78 FR 25475 - Certain Sleep-Disordered Breathing Treatment Systems and Components Thereof: Institution of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-01

    ... COMMISSION Certain Sleep-Disordered Breathing Treatment Systems and Components Thereof: Institution of... importation, and the sale within the United States after importation of certain sleep-disordered breathing... after importation of certain sleep- disordered breathing treatment systems and components thereof...

  5. Development of the anode bipolar plate/membrane assembly unit for air breathing PEMFC stack using silicone adhesive bonding

    NASA Astrophysics Data System (ADS)

    Kim, Minkook; Lee, Dai Gil

    2016-05-01

    Polymer electrolyte membrane fuel cells (PEMFC) exhibit a wide power range, low operating temperature, high energy density and long life time. These advantages favor PEMFC for applications such as vehicle power sources, portable power, and backup power applications. With the push towards the commercialization of PEMFC, especially for portable power applications, the overall balance of plants (BOPs) of the systems should be minimized. To reduce the mass and complexity of the systems, air-breathing PEMFC stack design with open cathode channel configuration is being developed. However, the open cathode channel configuration incurs hydrogen leakage problem. In this study, the bonding strength of a silicon adhesive between the Nafion membrane and the carbon fiber/epoxy composite bipolar plate was measured. Then, an anode bipolar plate/membrane assembly unit which was bonded with the silicone adhesive was developed to solve the hydrogen leakage problem. The reliability of the anode bipolar plate/membrane assembly unit was estimated under the internal pressure of hydrogen by the FE analysis. Additionally, the gas sealability of the developed air breathing PEMFC unit cell was experimentally measured. Finally, unit cell performance of the developed anode bipolar plate/membrane assembly unit was tested and verified under operating conditions without humidity and temperature control.

  6. Direct Detection of C_2H_2 in Air and Human Breath by Cw-Crds

    NASA Astrophysics Data System (ADS)

    Schmidt, Florian M.; Vaittinen, Olavi; Metsälä, Markus; Halonen, Lauri

    2010-06-01

    Continuous wave cavity ring-down spectroscopy (cw-CRDS) is an established cavity-enhanced absorption technique that can provide the necessary sensitivity, selectivity and fast acquisition time for many applications involving the detection of trace species. We present a simple but highly sensitive cw-CRDS spectrometer based on an external cavity diode laser operating in the near-infrared region. This instrument allows us to directly detect acetylene (C_2H_2) mixing ratios in air with a detection limit of 120 parts per trillion by volume (pptv) measuring on a C_2H_2 absorption line at 6565.620 cm-1. Acetylene is a combustion product that is routinely used in environmental monitoring as a marker for anthropogenic emissions. In a recent work, the spectrometer was employed to measure the level of acetylene in indoor and outdoor air in Helsinki. Continuous flow measurements with high time resolution (one minute) revealed strong fluctuations in the acetylene mixing ratio in outdoor air during daytime. Due to its non-invasive nature and fast response time, the analysis of exhaled breath for medical diagnostics is an excellent and straightforward alternative to methods using urine or blood samples. In an ongoing study, the cw-CRDS instrument is used to establish the baseline level of acetylene in the breath of the healthy population. An elevated amount of acetylene in breath could indicate exposure to combustion exhausts or other volatile organic compound (VOC) rich sources. The latest results of this investigation will be presented. F. M. Schmidt, O. Vaittinen, M. Metsälä, P. Kraus and L. Halonen, submitted for publication in Appl. Phys. B.

  7. Application of end-expired breath sampling to estimate carboxyhemoglobin levels in community air pollution exposure assessments

    NASA Astrophysics Data System (ADS)

    Lambert, William E.; Colome, Steven D.; Wojciechowski, Sandra L.

    Measurement of carbon monoxide (CO) in end-expired air after breath-holding permits the estimation of blood carboxyhemoglobin (COHb) levels. Some literature suggests that the precision of the method decreases at low COHb levels. As part of a community exposure and health study, the end-expired breath method was applied to estimate COHb levels in 28 men with ischemic heart disease. Paired samples of blood and breath were collected at the beginning and end of the 24-h CO monitoring periods. The aggregate regression of all subjects' COHb on breath CO displayed high variability. However, the variability was substantially reduced for any particular subject, promoting the use of individualized blood-breath standard curves to improve the precision of COHb estimates made from breath CO. The ultimate accuracy of the blood-breath relationship could not be resolved by our data. Two major sources of error are identified. The observed person-to-person variability may be caused by physiologic factors or differences in ability to deliver an end-expired breath sample representative of alveolar air. This variation may also be due to instrumentation factors, specifically the accuracy of the IL282 CO-Oximeter at 0-3% levels. Further research into the sources of variability in the end-expired breath method is recommended. Epidemiologists using similar end-expired breath measurements to predict COHb levels should be cognizant of the magnitude and probable direction of the error in COHb estimates. This non-invasive method should continue to allow evaluation of the success of personal monitoring efforts and pharmacokinetic modeling of CO uptake in community exposure research.

  8. Ammonia as a respiratory gas in water and air-breathing fishes.

    PubMed

    Randall, David J; Ip, Yuen K

    2006-11-01

    Ammonia is produced in the liver and excreted as NH(3) by diffusion across the gills. Elevated ammonia results in an increase in gill ventilation, perhaps via stimulation of gill oxygen chemo-receptors. Acidification of the water around the fish by carbon dioxide and acid excretion enhances ammonia excretion and constitutes "environmental ammonia detoxification". Fish have difficulties in excreting ammonia in alkaline water or high concentrations of environmental ammonia, or when out of water. The mudskipper, Periphthalmodon schlosseri, is capable of active NH(4)(+) transport, maintaining low internal levels of ammonia. To prevent a back flux of NH(3), these air-breathing fish can increase gill acid excretion and reduce the membrane NH(3) permeability by modifying the phospholipid and cholesterol compositions of their skin. Several air-breathing fish species can excrete ammonia into air through NH(3) volatilization. Some fish detoxify ammonia to glutamine or urea. The brains of some fish can tolerate much higher levels of ammonia than other animals. Studies of these fish may offer insights into the nature of ammonia toxicity in general. PMID:16731054

  9. Cubic PdNP-based air-breathing cathodes integrated in glucose hybrid biofuel cells

    NASA Astrophysics Data System (ADS)

    Faggion Junior, D.; Haddad, R.; Giroud, F.; Holzinger, M.; Maduro de Campos, C. E.; Acuña, J. J. S.; Domingos, J. B.; Cosnier, S.

    2016-05-01

    Cubic Pd nanoparticles (PdNPs) were synthesized using ascorbic acid as a reducing agent and were evaluated for the catalytic oxygen reduction reaction. PdNPs were confined with multiwalled carbon nanotube (MWCNT) dispersions to form black suspensions and these inks were dropcast onto glassy carbon electrodes. Different nanoparticle sizes were synthesized and investigated upon oxygen reduction capacities (onset potential and electrocatalytic current densities) under O2 saturated conditions at varying pH values. Strong evidence of O2 diffusion limitation was demonstrated. In order to overcome oxygen concentration and diffusion limitations in solution, we used a gas diffusion layer to create a PdNP-based air-breathing cathode, which delivered -1.5 mA cm-2 at 0.0 V with an onset potential of 0.4 V. This air-breathing cathode was combined with a specially designed phenanthrolinequinone/glucose dehydrogenase-based anode to form a complete glucose/O2 hybrid bio-fuel cell providing an open circuit voltage of 0.554 V and delivering a maximal power output of 184 +/- 21 μW cm-2 at 0.19 V and pH 7.0.Cubic Pd nanoparticles (PdNPs) were synthesized using ascorbic acid as a reducing agent and were evaluated for the catalytic oxygen reduction reaction. PdNPs were confined with multiwalled carbon nanotube (MWCNT) dispersions to form black suspensions and these inks were dropcast onto glassy carbon electrodes. Different nanoparticle sizes were synthesized and investigated upon oxygen reduction capacities (onset potential and electrocatalytic current densities) under O2 saturated conditions at varying pH values. Strong evidence of O2 diffusion limitation was demonstrated. In order to overcome oxygen concentration and diffusion limitations in solution, we used a gas diffusion layer to create a PdNP-based air-breathing cathode, which delivered -1.5 mA cm-2 at 0.0 V with an onset potential of 0.4 V. This air-breathing cathode was combined with a specially designed phenanthrolinequinone

  10. Aerodynamic characteristics of a series of single-inlet air-breathing missile configurations

    NASA Technical Reports Server (NTRS)

    Hayes, C.

    1983-01-01

    A series of air-breathing missile configurations was investigated to provide a data base for the design of such missiles. The model could be configured with either a single axisymmetric or a two dimensional inlet located at the bottom of the body. Two tail configurations were investigated: a tri-tail and an X-tail. The tail surfaces could be deflected to provide pitch control. A wing could be located above the inlet on the center line of the model. Tests were made at supersonic Mach numbers with the inlet open and internal flow, and at subsonic-transonic Mach numbers with the internal duct closed and no internal flow.

  11. The Mechanics of Air-Breathing in Anuran Larvae: Implications to the Development of Amphibians in Microgravity

    NASA Astrophysics Data System (ADS)

    Wassersug, Richard J.; Yamashita, Masamichi

    Because of their rapid development, amphibians have been important model organisms in studies of how microgravity (μG) affects vertebrate growth and differentiation. Both urodele (salamanders) and anuran (frogs and toads) embryos have been raised in orbital flight, the latter several times. The most commonly reported and striking effects of μG on tadpoles are not in the vestibular system, as one might suppose, but in their lungs and tails. Pathological changes in these organs disrupt behavior and retard larval growth. What causes malformed (typically lordotic) tadpoles in μG is not known, nor have axial pathologies been reported in every flight experiment. Lung pathology, however, has been consistently observed and is understood to result from the failure of the animals to inflate their lungs in a timely and adequate fashion. We suggest that malformities in the axial skeleton of tadpoles raised in μG are secondary to problems in respiratory function. We have used high speed videography to investigate how tadpoles breathe air in the 1G environment. The video images reveal alternative species-specific mechanisms, that allow tadpoles to separate air from water in less that 150 ms. We observed nothing in the biomechanics of air-breathing in 1G that would preclude these same mechanisms from working in μG. Thus our kinematic results suggest that the failure of tadpoles to inflate their lungs properly in μG is due to the tadpoles' inability to locate the air-water interface and not a problem with the inhalation mechanism per se

  12. Changes in the blood parameters of an air-breathing fish during different respiratory conditions.

    PubMed

    Singh, B R; Thakur, R N; Yadav, A N

    1976-01-01

    Some of the blood parameters recorded in an air-breathing eel, Amphipnous cuchia under normal respiratory condition during non-breeding period (September-April) are haemoglobin (Hb) concentration 19.26%, haematocrit value 56.16%, RBC number 1.71 million/mm3, RBC size 18.86 X 9.70 mum, mean corpuscular haemoglobin (MCH) 113.4 ng, mean corpuscular haemoglobin concentration (MCHC) 34.2%, blood sugar 77 mg% and ascorbic acid 0.435 mg%. The higher concentration of haemoglobin (19.26%) appears to be related to its obligatory air breathing habit and habitat in a water of low oxygen content. Though a definite trend of increase in the haemoglobin and haematocrit concentration with an increase in the body weight of the fish was lacking, variations were clearly marked related to intrinsic activity of the fish connected with different respiratory conditions. Asphyxiation in a submerged but continuous flow of water (liter/h) for 5 1/2 h resulted in an increase in the above-mentioned parameters to an appreciable extent. These increases were 0.23 million/mm3 in the number of erythrocytes, 6.16% in haemoglobin concentration, 10% in haematocrit value, 20% in blood sugar and 35% in ascorbic acid content. The mean corpuscular haemoglobin showed a decline of 6.2%. Exclusive aerial breathing for 5 1/2 h also caused 7.4% increase in haemoglobin concentration, 9.4% in haematocrit value, 0.14 million/mm3 in RBC number, 20% in blood sugar level, 9% in ascorbic acid content but almost no change in mean corpuscular haemoglobin. The average surface area for diffusion of gases appeared to have reduced by 6.8 mum2 per RBC. PMID:61915

  13. Survey of Aerothermodynamics Facilities Useful for the Design of Hypersonic Vehicles Using Air-Breathing Propulsion

    NASA Technical Reports Server (NTRS)

    Arnold, James O.; Deiwert, G. S.

    1997-01-01

    The dream of producing an air-breathing, hydrogen fueled, hypervelocity aircraft has been before the aerospace community for decades. However, such a craft has not yet been realized, even in an experimental form. Despite the simplicity and beauty of the concept, many formidable problems must be overcome to make this dream a reality. This paper summarizes the aero/aerothermodynamic issues that must be addressed to make the dream a reality and discusses how aerothermodynamics facilities and their modem companion, real-gas computational fluid dynamics (CFD), can help solve the problems blocking the way to realizing the dream. The approach of the paper is first to outline the concept of an air-breathing hypersonic vehicle and then discuss the nose-to-tail aerothermodynamics issues and special aerodynamic problems that arise with such a craft. Then the utility of aerothermodynamic facilities and companion CFD analysis is illustrated by reviewing results from recent United States publications wherein these problems have been addressed. Papers selected for the discussion have k e n chosen such that the review will serve to survey important U.S. aero/aerothermodynamic real gas and conventional wind tunnel facilities that are useful in the study of hypersonic, hydrogen propelled hypervelocity vehicles.

  14. Cubic PdNP-based air-breathing cathodes integrated in glucose hybrid biofuel cells.

    PubMed

    Faggion Junior, D; Haddad, R; Giroud, F; Holzinger, M; Maduro de Campos, C E; Acuña, J J S; Domingos, J B; Cosnier, S

    2016-05-21

    Cubic Pd nanoparticles (PdNPs) were synthesized using ascorbic acid as a reducing agent and were evaluated for the catalytic oxygen reduction reaction. PdNPs were confined with multiwalled carbon nanotube (MWCNT) dispersions to form black suspensions and these inks were dropcast onto glassy carbon electrodes. Different nanoparticle sizes were synthesized and investigated upon oxygen reduction capacities (onset potential and electrocatalytic current densities) under O2 saturated conditions at varying pH values. Strong evidence of O2 diffusion limitation was demonstrated. In order to overcome oxygen concentration and diffusion limitations in solution, we used a gas diffusion layer to create a PdNP-based air-breathing cathode, which delivered -1.5 mA cm(-2) at 0.0 V with an onset potential of 0.4 V. This air-breathing cathode was combined with a specially designed phenanthrolinequinone/glucose dehydrogenase-based anode to form a complete glucose/O2 hybrid bio-fuel cell providing an open circuit voltage of 0.554 V and delivering a maximal power output of 184 ± 21 μW cm(-2) at 0.19 V and pH 7.0. PMID:27142300

  15. Solubility testing of actinides on breathing-zone and area air samples

    NASA Astrophysics Data System (ADS)

    Metzger, Robert Lawrence

    The solubility of inhaled radionuclides in the human lung is an important characteristic of the compounds needed to perform internal dosimetry assessments for exposed workers. A solubility testing method for uranium and several common actinides has been developed with sufficient sensitivity to allow profiles to be determined from routine breathing zone and area air samples in the workplace. Air samples are covered with a clean filter to form a filter-sample-filter sandwich which is immersed in an extracellular lung serum simulant solution. The sample is moved to a fresh beaker of the lung fluid simulant each day for one week, and then weekly until the end of the 28 day test period. The soak solutions are wet ashed with nitric acid and hydrogen peroxide to destroy the organic components of the lung simulant solution prior to extraction of the nuclides of interest directly into an extractive scintillator for subsequent counting on a Photon-Electron Rejecting Alpha Liquid Scintillation (PERALSsp°ler ) spectrometer. Solvent extraction methods utilizing the extractive scintillators have been developed for the isotopes of uranium, plutonium, and curium. The procedures normally produce an isotopic recovery greater than 95% and have been used to develop solubility profiles from air samples with 40 pCi or less of Usb3Osb8. This makes it possible to characterize solubility profiles in every section of operating facilities where airborne nuclides are found using common breathing zone air samples. The new method was evaluated by analyzing uranium compounds from two uranium mills whose product had been previously analyzed by in vitro solubility testing in the laboratory and in vivo solubility testing in rodents. The new technique compared well with the in vivo rodent solubility profiles. The method was then used to evaluate the solubility profiles in all process sections of an operating in situ uranium plant using breathing zone and area air samples collected during routine

  16. Active water management at the cathode of a planar air-breathing polymer electrolyte membrane fuel cell using an electroosmotic pump

    NASA Astrophysics Data System (ADS)

    Fabian, T.; O'Hayre, R.; Litster, S.; Prinz, F. B.; Santiago, J. G.

    In a typical air-breathing fuel cell design, ambient air is supplied to the cathode by natural convection and dry hydrogen is supplied to a dead-ended anode. While this design is simple and attractive for portable low-power applications, the difficulty in implementing effective and robust water management presents disadvantages. In particular, excessive flooding of the open-cathode during long-term operation can lead to a dramatic reduction of fuel cell power. To overcome this limitation, we report here on a novel air-breathing fuel cell water management design based on a hydrophilic and electrically conductive wick in conjunction with an electroosmotic (EO) pump that actively pumps water out of the wick. Transient experiments demonstrate the ability of the EO-pump to "resuscitate" the fuel cell from catastrophic flooding events, while longer term galvanostatic measurements suggest that the design can completely eliminate cathode flooding using less than 2% of fuel cell power, and lead to stable operation with higher net power performance than a control design without EO-pump. This demonstrates that active EO-pump water management, which has previously only been demonstrated in forced-convection fuel cell systems, can also be applied effectively to miniaturized (<5 W) air-breathing fuel cell systems.

  17. The association of annual air pollution exposure with blood pressure among patients with sleep-disordered breathing.

    PubMed

    Liu, Wen-Te; Lee, Kang-Yun; Lee, Hsin-Chien; Chuang, Hsiao-Chi; Wu, Dean; Juang, Jer-Nan; Chuang, Kai-Jen

    2016-02-01

    While sleep-disordered breathing (SDB), high blood pressure (BP) and air pollution exposure have separately been associated with increased risk of cardiopulmonary mortality, the association linking air pollution exposure to BP among patients with sleep-disordered breathing is still unclear. We collected 3762 participants' data from the Taipei Medical University Hospital's Sleep Center and air pollution data from the Taiwan Environmental Protection Administration. Associations of 1-year mean criteria air pollutants [particulate matter with aerodynamic diameters ≤10 μm (PM10), particulate matter with aerodynamic diameters ≤2.5 μm (PM2.5), nitrogen dioxide (NO2) and ozone (O3)] with systolic BP (SBP) and diastolic BP (DBP) were investigated by generalized additive models. After controlling for age, sex, body mass index (BMI), temperature and relative humidity, we observed that increases in air pollution levels were associated with decreased SBP and increased DBP. We also found that patients with apnea-hypopnea index (AHI) ≥30 showed a stronger BP response to increased levels of air pollution exposure than those with AHI<30. Stronger effects of air pollution exposure on BP were found in overweight participants than in participants with normal BMI. We concluded that annual exposure to air pollution was associated with change of BP among patients with sleep-disordered breathing. The association between annual air pollution exposure and BP could be modified by AHI and BMI. PMID:26580727

  18. Emergency Response Breathing Apparatus

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Aerospace Design & Development, Inc.'s (ADD's) SCAMP was developed under an SBIR contract through Kennedy Space Center. SCAMP stands for Supercritical Air Mobility Pack. The technology came from the life support fuel cell support systems used for the Apollo and Space Shuttle programs. It uses supercritical cryogenic air and is able to function in microgravity environments. SCAMP's self-contained breathing apparatus(SCBA) systems are also ground-based and can provide twice as much air than traditional SCBA's due to its high-density capacity. The SCAMP system was designed for use in launch pad emergency rescues. ADD also developed a protective suit for use with SCAMP that is smaller and lighter system than the old ones. ADD's SCAMP allows for body cooling and breathing from the supercritical cryogenic air, requiring no extra systems. The improvement over the traditional SCBA allows for a reduction of injuries, such as heat stress, and makes it easier for rescuers to save lives.

  19. [Working ability between air and trimix breathing gas under 8 ATA air condition].

    PubMed

    Shibayama, M; Kosugi, S; Mohri, M; Yamamura, I; Oda, S; Kimura, A; Takeuchi, J; Mano, Y

    1990-04-01

    Pneumatic caisson work in Japan has come into operation since 1924. Afterward, this technique of compressed air work has been widely utilized in the construction of foundation basements, shafts of the bottom tunnel shields for subway and so forth. While using this technique of compressed air work means that workers have to be exposed to hyperbaric environment, this technique has risks of not only decompression sickness (DCS) but also toxicity of poisonous gas and/or oxygen deficiency. However, this technique is independent of city construction work and the operation of compressed air work higher than 5ATA (4.0 kg/cm2G) is actually been planning recently. Accordingly unmanned caisson work is considered as a better technique for such higher pressurized work, even though workers must enter into hyperbaric working fields for maintenance or repair of unmanned operated machinery and materials. This research is to establish the safe work under hyperbaric air environment at 8ATA. PMID:2400467

  20. Continuous high order sliding mode controller design for a flexible air-breathing hypersonic vehicle.

    PubMed

    Wang, Jie; Zong, Qun; Su, Rui; Tian, Bailing

    2014-05-01

    This paper investigates the problem of tracking control with uncertainties for a flexible air-breathing hypersonic vehicle (FAHV). In order to overcome the analytical intractability of this model, an Input-Output linearization model is constructed for the purpose of feedback control design. Then, the continuous finite time convergence high order sliding mode controller is designed for the Input-Output linearization model without uncertainties. In addition, a nonlinear disturbance observer is applied to estimate the uncertainties in order to compensate the controller and disturbance suppression, where disturbance observer and controller synthesis design is obtained. Finally, the synthesis of controller and disturbance observer is used to achieve the tracking for the velocity and altitude of the FAHV and simulations are presented to illustrate the effectiveness of the control strategies. PMID:24534328

  1. Multi-Disciplinary Design Optimization of Hypersonic Air-Breathing Vehicle

    NASA Astrophysics Data System (ADS)

    Wu, Peng; Tang, Zhili; Sheng, Jianda

    2016-06-01

    A 2D hypersonic vehicle shape with an idealized scramjet is designed at a cruise regime: Mach number (Ma) = 8.0, Angle of attack (AOA) = 0 deg and altitude (H) = 30kms. Then a multi-objective design optimization of the 2D vehicle is carried out by using a Pareto Non-dominated Sorting Genetic Algorithm II (NSGA-II). In the optimization process, the flow around the air-breathing vehicle is simulated by inviscid Euler equations using FLUENT software and the combustion in the combustor is modeled by a methodology based on the well known combination effects of area-varying pipe flow and heat transfer pipe flow. Optimization results reveal tradeoffs among total pressure recovery coefficient of forebody, lift to drag ratio of vehicle, specific impulse of scramjet engine and the maximum temperature on the surface of vehicle.

  2. Clearing the air and breathing freely: the health politics of air pollution and asthma.

    PubMed

    Brown, Phil; Mayer, Brian; Zavestoski, Stephen; Luebke, Theo; Mandelbaum, Joshua; McCormick, Sabrina

    2004-01-01

    This study examines the growing debate around environmental causes of asthma in the context of federal regulatory disputes, scientific controversy, and environmental justice activism. A multifaceted form of social discovery of the effect of air pollution on asthma has resulted from multipartner and multiorganizational approaches and from intersectoral policy that deals with social inequality and environmental justice. Scientists, activists, health voluntary organizations, and some government agencies and officials have identified various elements of the asthma and air pollution connection. To tackle these issues, they have worked through a variety of collaborations and across different sectors of environmental regulation, public health, health services, housing, transportation, and community development. The authors examine the role of activist groups in discovering the increased rates of asthma and framing it as a social and environmental issue; give an overview of the current knowledge base on air pollution and asthma, and the controversies within science; and situate that science in the regulatory debate, discussing the many challenges to the air quality researchers. They then examine the implications of the scientific and regulatory controversies over linking air pollution to increases in asthma. The article concludes with a discussion of how alliances between activists and scientists lead to new research strategies and innovations. PMID:15088672

  3. Solubility testing of actinides on breathing-zone and area air samples

    SciTech Connect

    Metzger, R.L.; Jessop, B.H.; McDowell, B.L.

    1996-02-01

    A solubility testing method for several common actinides has been developed with sufficient sensitivity to allow profiles to be determined from routine breathing zone and area air samples in the workplace. Air samples are covered with a clean filter to form a filter-sample-filter sandwich which is immersed in an extracellular lung serum simulant solution. The sample is moved to a fresh beaker of the lung fluid simulant each day for one week, and then weekly until the end of the 28 day test period. The soak solutions are wet ashed with nitric acid and hydrogen peroxide to destroy the organic components of the lung simulant solution prior to extraction of the nuclides of interest directly into an extractive scintillator for subsequent counting on a Photon-Electron Rejecting Alpha Liquid Scintillation (PERALS{reg_sign}) spectrometer. Solvent extraction methods utilizing the extractive scintillators have been developed for the isotopes of uranium, plutonium, and curium. The procedures normally produce an isotopic recovery greater than 95% and have been used to develop solubility profiles from air samples with 40 pCi or less of U{sub 3}O{sub 8}. Profiles developed for U{sub 3}O{sub 8} samples show good agreement with in vitro and in vivo tests performed by other investigators on samples from the same uranium mills.

  4. Human breath measurements in a clean-air chamber to determine half-lives for volatile organic compounds

    NASA Astrophysics Data System (ADS)

    Gordon, Sydney M.; Wallace, Lance A.; Pelllzzari, Edo D.; O'Neill, Hugh J.

    The expired breath of four non-occupationally exposed subjects was monitored following exposure at near-normal environmental concentrations using a specially developed pulmonary clearance technique. The four were exposed to polluted air on a heavily trafficked freeway or at a local dry-cleaning establishment, then spent the next 10 h in a clean-air environmental chamber. Breath and chamber-air samples were collected at regular intervals throughout the 10-h period and analyzed for the presence of selected target compounds. The breath levels of two of the compounds were elevated and decreased slowly with time once the subjects began to breathe clean air. Nonlinear least-squares fitting of the decay-uptake curves permitted the calculation of biological half-lives. Several of the target compounds occurred, however, at very low levels, and the resultant experimental scatter limited the value of these measurements. Higher initial exposures to most of the target compounds would have improved the reliability of the estimates.

  5. Air breathing in the Arctic: influence of temperature, hypoxia, activity and restricted air access on respiratory physiology of the Alaska blackfish Dallia pectoralis

    PubMed Central

    Lefevre, Sjannie; Damsgaard, Christian; Pascale, Desirae R.; Nilsson, Göran E.; Stecyk, Jonathan A. W.

    2014-01-01

    The Alaska blackfish (Dallia pectoralis) is an air-breathing fish native to Alaska and the Bering Sea islands, where it inhabits lakes that are ice-covered in the winter, but enters warm and hypoxic waters in the summer to forage and reproduce. To understand the respiratory physiology of this species under these conditions and the selective pressures that maintain the ability to breathe air, we acclimated fish to 5°C and 15°C and used respirometry to measure: standard oxygen uptake () in normoxia (19.8 kPa PO2) and hypoxia (2.5 kPa), with and without access to air; partitioning of standard in normoxia and hypoxia; maximum and partitioning after exercise; and critical oxygen tension (Pcrit). Additionally, the effects of temperature acclimation on haematocrit, haemoglobin oxygen affinity and gill morphology were assessed. Standard was higher, but air breathing was not increased, at 15°C or after exercise at both temperatures. Fish acclimated to 5°C or 15°C increased air breathing to compensate and fully maintain standard in hypoxia. Fish were able to maintain through aquatic respiration when air was denied in normoxia, but when air was denied in hypoxia, standard was reduced by ∼30–50%. Pcrit was relatively high (5 kPa) and there were no differences in Pcrit, gill morphology, haematocrit or haemoglobin oxygen affinity at the two temperatures. Therefore, Alaska blackfish depends on air breathing in hypoxia and additional mechanisms must thus be utilised to survive hypoxic submergence during the winter, such as hypoxia-induced enhancement in the capacities for carrying and binding blood oxygen, behavioural avoidance of hypoxia and suppression of metabolic rate. PMID:25394628

  6. A breath of fresh air: EPA`s more flexible approach to the Clean Air Act

    SciTech Connect

    Curreri, J.A.

    1996-05-01

    This article highlights the changes in the Clean Air Act rules as defined by the USEPA. The major changes discussed include the following: definition of a `major source`; streamlined Title V Permits; less detailed descriptions; permit revisions may be reduced; periodic and enhanced monitoring; more practical requirements; case-by-case MACT standards.

  7. The absence of ion-regulatory suppression in the gills of the aquatic air-breathing fish Trichogaster lalius during oxygen stress.

    PubMed

    Huang, Chun-Yen; Lin, Hsueh-Hsi; Lin, Cheng-Huang; Lin, Hui-Chen

    2015-01-01

    The strategy for most teleost to survive in hypoxic or anoxic conditions is to conserve energy expenditure, which can be achieved by suppressing energy-consuming activities such as ion regulation. However, an air-breathing fish can cope with hypoxic stress using a similar adjustment or by enhancing gas exchange ability, both behaviorally and physiologically. This study examined Trichogaster lalius, an air-breathing fish without apparent gill modification, for their gill ion-regulatory abilities and glycogen utilization under a hypoxic treatment. We recorded air-breathing frequency, branchial morphology, and the expression of ion-regulatory proteins (Na(+)/K(+)-ATPase and vacuolar-type H(+)-ATPase) in the 1(st) and 4(th) gills and labyrinth organ (LO), and the expression of glycogen utilization (GP, glycogen phosphorylase protein expression and glycogen content) and other protein responses (catalase, CAT; carbonic anhydrase II, CAII; heat shock protein 70, HSP70; hypoxia-inducible factor-1α, HIF-1α; proliferating cell nuclear antigen, PCNA; superoxidase dismutase, SOD) in the gills of T. lalius after 3 days in hypoxic and restricted conditions. No morphological modification of the 1(st) and 4(th) gills was observed. The air-breathing behavior of the fish and CAII protein expression both increased under hypoxia. Ion-regulatory abilities were not suppressed in the hypoxic or restricted groups, but glycogen utilization was enhanced within the groups. The expression of HIF-1α, HSP70 and PCNA did not vary among the treatments. Regarding the antioxidant system, decreased CAT enzyme activity was observed among the groups. In conclusion, during hypoxic stress, T. lalius did not significantly reduce energy consumption but enhanced gas exchange ability and glycogen expenditure. PMID:25194989

  8. High efficiency air cycle air conditioning system

    SciTech Connect

    Rannenberg, G. C.

    1985-11-19

    An air cycle air conditioning system is provided with regenerative heat exchangers upstream and downstream of an expansion turbine. A closedloop liquid circulatory system serially connects the two regenerative heat exchangers for regeneration without the bulk associated with air-to-air heat exchange. The liquid circulatory system may also provide heat transport to a remote sink heat exchanger and from a remote load as well as heat exchange within the sink heat exchanger and load for enhanced compactness and efficiency.

  9. A membraneless air-breathing hydrogen biofuel cell based on direct wiring of thermostable enzymes on carbon nanotube electrodes.

    PubMed

    Lalaoui, Noémie; de Poulpiquet, Anne; Haddad, Raoudha; Le Goff, Alan; Holzinger, Michael; Gounel, Sébastien; Mermoux, Michel; Infossi, Pascale; Mano, Nicolas; Lojou, Elisabeth; Cosnier, Serge

    2015-05-01

    A biocathode was designed by the modification of a carbon nanotube (CNT) gas-diffusion electrode with bilirubin oxidase from Bacillus pumilus, achieving high current densities up to 3 mA cm(-2) for the reduction of O2 from air. A membraneless air-breathing hydrogen biofuel cell was designed by combination of this cathode with a functionalized CNT-based hydrogenase anode. PMID:25845356

  10. Technology transfer from space to earth - The NASA Firefighter's Breathing System

    NASA Technical Reports Server (NTRS)

    Mclaughlan, P. B.; Anuskiewicz, T.; Keune, F. A.

    1976-01-01

    Responding to the recent demand of fire services for a better equipment, NASA has prepared two improved versions of Firefighter's Breathing System (FBS) by taking advantage of the spacesuit design. In the new FBS, the conventional oxygen tube is replaced by a 40% lighter air tube with twice as much pressure. The load is attached to a wide waist belt and distributed on the hips instead of the shoulder, thus making it easier to carry. The two versions of the FBS are essentially the same, the only difference being the capacities of the air tubes. Also the face mask used is smaller, lighter and provides better vision and mobility. The FBS had a notable impact, with the fire departments reporting improved efficiency. Unlike other technology transfer cases, the FBS concept is commercially successful in finding diverse fields of application.

  11. Application of ion chemistry and the SIFT technique to the quantitative analysis of trace gases in air and on breath

    NASA Astrophysics Data System (ADS)

    Smith, David; Španěl, Patrik

    Our major objective in this paper is to describe a new method we have developed for the analysis of trace gases at partial pressures down to the ppb level in atmospheric air, with special emphasis on the detection and quantification of trace gases on human breath. It involves the use of our selected ion flow tube (Sift) technique which we previously developed and used extensively for the study of gas phase ionic reactions occurring in ionized media such as the terrestrial atmosphere and interstellar gas clouds. Before discussing this analytical technique we describe the results of our very recent Sift and flowing afterglow (FA) studies of the reactions of the H3O+ and OH- ions, of their hydrates H3O+(H2O)1,2,3 and OH- (H2O)1,2, and of NO+ and O2+, with several hydrocarbons and oxygen-bearing organic molecules, studies that are very relevant to our trace gas analytical studies. Then follows a detailed discussion of the application of our Sift technique to trace gas analysis, after which we present some results obtained for the analyses of laboratory air, the breath of a healthy non-smoking person, the breath of a person who regularly smokes cigarettes, the complex vapours emitted by banana and onion, and the molecules present in a butane/air flame. We show how the quantitative analysis of breath can be achieved from only a single exhalation and in real time (the time response of the instrument is only about 20 ms). We also show how the time variation of breath gases over long time periods can be followed, using the decay of ethanol on the breath after the ingestion of distilled liquor as an example, yet simultaneously following several other trace gases including acetone and isoprene which are very easily detected on the breath of all individuals because of their relatively high partial pressures (typically 100 to 1000 ppb). The breath of a smoker is richer in complex molecules, some nitrogen containing organics apparently being very evident at the 5 to 50 ppb level

  12. 78 FR 76858 - Certain Sleep-Disordered Breathing Treatment Systems and Components Thereof; Commission...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-19

    ..., ``Complainants''). 78 FR 52563 (August 23, 2013). The complaint alleged violations of Section 337 of the Tariff... COMMISSION Certain Sleep-Disordered Breathing Treatment Systems and Components Thereof; Commission... United States after importation of certain sleep- disordered breathing treatment systems and...

  13. 78 FR 52563 - Certain Sleep-Disordered Breathing Treatment Systems and Components Thereof; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-23

    ... COMMISSION Certain Sleep-Disordered Breathing Treatment Systems and Components Thereof; Notice of Institution... within the United States after importation of certain sleep- disordered breathing treatment systems and... States, the sale for importation, or the sale within the United States after importation of certain...

  14. 78 FR 49763 - Certain Sleep-Disordered Breathing Treatment Systems and Components Thereof; Commission...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-15

    ... Diego, California; ResMed Incorporated of San Diego, California; and ResMed Limited of Australia. 78 FR... COMMISSION Certain Sleep-Disordered Breathing Treatment Systems and Components Thereof; Commission... importation of certain sleep- disordered breathing treatment systems and components thereof by reason...

  15. Can a breathing biocover system enhance methane emission reduction from landfill?

    PubMed

    Lu, Wen-Jing; Chi, Zi-Fang; Mou, Zi-Shen; Long, Yu-Yang; Wang, Hong-Tao; Zhu, Yong

    2011-07-15

    Based on the aerothermodynamic principles, a kind of breathing biocover system was designed to enhance O(2) supply efficiency and methane (CH(4)) oxidation capacity. The research showed that O(2) concentration (v/v) considerably increased throughout whole profiles of the microcosm (1m) equipped with passive air venting system (MPAVS). When the simulated landfill gas SLFG flow was 771 g m(-3) d(-1) and 1028 g m(-3) d(-1), the O(2) concentration in MPAVS increased gradually and tended to be stable at the atmospheric level after 10 days. The CH(4) oxidation rate was 100% when the SLFG flow rate was no more than 1285 g m(-3) d(-1), which also was confirmed by the mass balance calculations. The breathing biocover system with in situ self-oxygen supply can address the problem of O(2) insufficient in conventional landfill covers and/or biocovers. The proposed system presents high potential for improving CH(4) emission reduction in landfills. PMID:21592654

  16. Computational fluid dynamics investigation of human aspiration in low velocity air: orientation effects on nose-breathing simulations.

    PubMed

    Anderson, Kimberly R; Anthony, T Renée

    2014-06-01

    An understanding of how particles are inhaled into the human nose is important for developing samplers that measure biologically relevant estimates of exposure in the workplace. While previous computational mouth-breathing investigations of particle aspiration have been conducted in slow moving air, nose breathing still required exploration. Computational fluid dynamics was used to estimate nasal aspiration efficiency for an inhaling humanoid form in low velocity wind speeds (0.1-0.4 m s(-1)). Breathing was simplified as continuous inhalation through the nose. Fluid flow and particle trajectories were simulated over seven discrete orientations relative to the oncoming wind (0, 15, 30, 60, 90, 135, 180°). Sensitivities of the model simplification and methods were assessed, particularly the placement of the recessed nostril surface and the size of the nose. Simulations identified higher aspiration (13% on average) when compared to published experimental wind tunnel data. Significant differences in aspiration were identified between nose geometry, with the smaller nose aspirating an average of 8.6% more than the larger nose. Differences in fluid flow solution methods accounted for 2% average differences, on the order of methodological uncertainty. Similar trends to mouth-breathing simulations were observed including increasing aspiration efficiency with decreasing freestream velocity and decreasing aspiration with increasing rotation away from the oncoming wind. These models indicate nasal aspiration in slow moving air occurs only for particles <100 µm. PMID:24665111

  17. Computational Fluid Dynamics Investigation of Human Aspiration in Low Velocity Air: Orientation Effects on Nose-Breathing Simulations

    PubMed Central

    Anderson, Kimberly R.; Anthony, T. Renée

    2014-01-01

    An understanding of how particles are inhaled into the human nose is important for developing samplers that measure biologically relevant estimates of exposure in the workplace. While previous computational mouth-breathing investigations of particle aspiration have been conducted in slow moving air, nose breathing still required exploration. Computational fluid dynamics was used to estimate nasal aspiration efficiency for an inhaling humanoid form in low velocity wind speeds (0.1–0.4 m s−1). Breathing was simplified as continuous inhalation through the nose. Fluid flow and particle trajectories were simulated over seven discrete orientations relative to the oncoming wind (0, 15, 30, 60, 90, 135, 180°). Sensitivities of the model simplification and methods were assessed, particularly the placement of the recessed nostril surface and the size of the nose. Simulations identified higher aspiration (13% on average) when compared to published experimental wind tunnel data. Significant differences in aspiration were identified between nose geometry, with the smaller nose aspirating an average of 8.6% more than the larger nose. Differences in fluid flow solution methods accounted for 2% average differences, on the order of methodological uncertainty. Similar trends to mouth-breathing simulations were observed including increasing aspiration efficiency with decreasing freestream velocity and decreasing aspiration with increasing rotation away from the oncoming wind. These models indicate nasal aspiration in slow moving air occurs only for particles <100 µm. PMID:24665111

  18. 21 CFR 862.3080 - Breath nitric oxide test system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... fractional nitric oxide concentration in expired breath aids in evaluating an asthma patient's response to anti-inflammatory therapy, as an adjunct to established clinical and laboratory assessments of...

  19. 21 CFR 862.3080 - Breath nitric oxide test system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... fractional nitric oxide concentration in expired breath aids in evaluating an asthma patient's response to anti-inflammatory therapy, as an adjunct to established clinical and laboratory assessments of...

  20. 21 CFR 862.3080 - Breath nitric oxide test system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... fractional nitric oxide concentration in expired breath aids in evaluating an asthma patient's response to anti-inflammatory therapy, as an adjunct to established clinical and laboratory assessments of...

  1. 21 CFR 862.3080 - Breath nitric oxide test system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... fractional nitric oxide concentration in expired breath aids in evaluating an asthma patient's response to anti-inflammatory therapy, as an adjunct to established clinical and laboratory assessments of...

  2. 21 CFR 862.3080 - Breath nitric oxide test system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... fractional nitric oxide concentration in expired breath aids in evaluating an asthma patient's response to anti-inflammatory therapy, as an adjunct to established clinical and laboratory assessments of...

  3. Enriched Air Nitrox Breathing Reduces Venous Gas Bubbles after Simulated SCUBA Diving: A Double-Blind Cross-Over Randomized Trial

    PubMed Central

    Souday, Vincent; Koning, Nick J.; Perez, Bruno; Grelon, Fabien; Mercat, Alain; Boer, Christa; Seegers, Valérie; Radermacher, Peter; Asfar, Pierre

    2016-01-01

    Objective To test the hypothesis whether enriched air nitrox (EAN) breathing during simulated diving reduces decompression stress when compared to compressed air breathing as assessed by intravascular bubble formation after decompression. Methods Human volunteers underwent a first simulated dive breathing compressed air to include subjects prone to post-decompression venous gas bubbling. Twelve subjects prone to bubbling underwent a double-blind, randomized, cross-over trial including one simulated dive breathing compressed air, and one dive breathing EAN (36% O2) in a hyperbaric chamber, with identical diving profiles (28 msw for 55 minutes). Intravascular bubble formation was assessed after decompression using pulmonary artery pulsed Doppler. Results Twelve subjects showing high bubble production were included for the cross-over trial, and all completed the experimental protocol. In the randomized protocol, EAN significantly reduced the bubble score at all time points (cumulative bubble scores: 1 [0–3.5] vs. 8 [4.5–10]; P < 0.001). Three decompression incidents, all presenting as cutaneous itching, occurred in the air versus zero in the EAN group (P = 0.217). Weak correlations were observed between bubble scores and age or body mass index, respectively. Conclusion EAN breathing markedly reduces venous gas bubble emboli after decompression in volunteers selected for susceptibility for intravascular bubble formation. When using similar diving profiles and avoiding oxygen toxicity limits, EAN increases safety of diving as compared to compressed air breathing. Trial Registration ISRCTN 31681480 PMID:27163253

  4. 2-D Air-Breathing Lightcraft Engine Experiments in Hypersonic Conditions

    NASA Astrophysics Data System (ADS)

    Salvador, Israel I.; Myrabo, Leik N.; Minucci, Marco A. S.; de Oliveira, Antonio C.; Toro, Paulo G. P.; Chanes, José B.; Rego, Israel S.

    2011-11-01

    Experiments were performed with a 2-D, repetitively-pulsed (RP) laser Lightcraft model in hypersonic flow conditions. The main objective was the feasibility analysis for impulse generation with repetitively-pulsed air-breathing laser Lightcraft engines at hypersonic speeds. The future application of interest for this basic research endeavor is the laser launch of pico-, nano-, and micro-satellites (i.e., 0.1-100 kg payloads) into Low-Earth-Orbit, at low-cost and on-demand. The laser propulsion experiments employed a Hypersonic Shock Tunnel integrated with twin gigawatt pulsed Lumonics 620-TEA CO2 lasers (˜ 1 μs pulses), to produce the required test conditions. This hypersonic campaign was carried out at nominal Mach numbers ranging from 6 to 10. Time-dependent surface pressure distributions were recorded together with Schlieren movies of the flow field structure resulting from laser energy deposition. Results indicated laser-induced pressure increases of 0.7-0.9 bar with laser pulse energies of ˜ 170 J, on off-shroud induced breakdown condition, and Mach number of 7.

  5. Bilirubin oxidase based enzymatic air-breathing cathode: Operation under pristine and contaminated conditions.

    PubMed

    Santoro, Carlo; Babanova, Sofia; Erable, Benjamin; Schuler, Andrew; Atanassov, Plamen

    2016-04-01

    The performance of bilirubin oxidase (BOx) based air breathing cathode was constantly monitored over 45 days. The effect of electrolyte composition on the cathode oxygen reduction reaction (ORR) output was investigated. Particularly, deactivation of the electrocatalytic activity of the enzyme in phosphate buffer saline (PBS) solution and in activated sludge (AS) was evaluated. The greatest drop in current density was observed during the first 3 days of constant operation with a decrease of ~60 μA cm(-2) day(-1). The rate of decrease slowed to ~10 μA cm(-2) day(-1) (day 3 to 9) and then to ~1.5 μA cm(-2)day(-1) thereafter (day 9 to 45). Despite the constant decrease in output, the BOx cathode generated residual current after 45 days operations with an open circuit potential (OCP) of 475 mV vs. Ag/AgCl. Enzyme deactivation was also studied in AS to simulate an environment close to the real waste operation with pollutants, solid particles and bacteria. The presence of low-molecular weight soluble contaminants was identified as the main reason for an immediate enzymatic deactivation within few hours of cathode operation. The presence of solid particles and bacteria does not affect the natural degradation of the enzyme. PMID:26544631

  6. Air-breathing direct formic acid microfluidic fuel cell with an array of cylinder anodes

    NASA Astrophysics Data System (ADS)

    Zhu, Xun; Zhang, Biao; Ye, Ding-Ding; Li, Jun; Liao, Qiang

    2014-02-01

    An air-breathing direct formic acid membraneless microfluidic fuel cell using graphite cylinder arrays as the anode is proposed. The three dimensional anode volumetrically extends the reactive surface area and improves fuel utilization. The effects of spacer configuration, fuel and electrolyte concentration as well as reactant flow rate on the species transport and cell performance are investigated. The dynamic behavior of generated CO2 bubbles is visualized and its effect on current generation is discussed. The results show that the absence of two spacers adjacent to the cathode surface improves the cell performance by reducing the proton transfer resistance. The CO2 gas bubbles are constrained within the anode array and expelled by the fluid flow periodically. Proper reactant concentration and flow rate are crucial for cell operation. At optimum conditions, a maximum current density of 118.3 mA cm-3 and a peak power density of 21.5 mW cm-3 are obtained. In addition, benefit from the volumetrically stacked anodes and enhanced fuel transfer, the maximum single pass fuel utilization rate reaches up to 87.6% at the flow rate of 1 mL h-1.

  7. Computational modeling of alkaline air-breathing microfluidic fuel cells with an array of cylinder anodes

    NASA Astrophysics Data System (ADS)

    Ye, Ding-Ding; Zhang, Biao; Zhu, Xun; Sui, Pang-Chieh; Djilali, Ned; Liao, Qiang

    2015-08-01

    A three-dimensional computational model is developed for an alkaline air-breathing microfluidic fuel cell (AMFC) with an array of cylinder anodes. The model is validated against experimental data from an in-house prototype AMFC. The distributions of fluid velocity, fuel concentration and current density of the fuel cell are analyzed in detail. The effect of reactant flow rate on the cell performance and electrode potentials is also studied. The model results suggest that fuel crossover is minimized by the fast electrolyte flow in the vicinity of the cathode. The current production of each anode is uneven and is well correlated with internal ohmic resistance. Fuel transfer limitation occurs at low flow rates (<100 μL min-1) but diminishes at high flow rates. The model results also indicate that cathode potential reversal takes place at combined low flow rate and high current density conditions, mainly due to the improved overpotential downstream where fuel starvation occurs. The anode reaction current distribution is found to be relatively uniform, which is a result of a compensating mechanism that improves the current production of the bottom anodes downstream.

  8. Migration history of air-breathing fishes reveals Neogene atmospheric circulation patterns

    NASA Astrophysics Data System (ADS)

    Böhme, M.

    2004-05-01

    The migration history of an air-breathing fish group (Channidae; snakehead fishes) is used for reconstructing Neogene Eurasian precipitation and atmospheric circulation patterns. The study shows that snakeheads are sensitive indicators of summer precipitation maxima in subtropical and temperate regions, and are present regularly if the wettest month exceeds 150 mm precipitation and 20 °C mean temperature. The analysis of 515 fossil freshwater fish deposits of the past 50 m.y. from Africa and Eurasia shows two continental-scale migration events from the snakeheads' center of origin in the south Himalayan region, events that can be related to changes in the Northern Hemisphere circulation pattern. The first migration, ca. 17.5 Ma, into western and central Eurasia may have been caused by a northward shift of the Intertropical Convergence Zone that brought western Eurasia under the influence of trade winds that produced a zonal and meridional precipitation gradient in Europe. During the second migration, between 8 and 4 Ma, into Africa and East Asia, snakeheads reached their present-day distribution. This migration could have been related to the intensification of the Asian monsoon that brought summer precipitation to their migratory pathways in East Africa Arabia and East Asia.

  9. Design Evolution and Performance Characterization of the GTX Air-Breathing Launch Vehicle Inlet

    NASA Technical Reports Server (NTRS)

    DeBonis, J. R.; Steffen, C. J., Jr.; Rice, T.; Trefny, C. J.

    2002-01-01

    The design and analysis of a second version of the inlet for the GTX rocket-based combine-cycle launch vehicle is discussed. The previous design did not achieve its predicted performance levels due to excessive turning of low-momentum comer flows and local over-contraction due to asymmetric end-walls. This design attempts to remove these problems by reducing the spike half-angle to 10- from 12-degrees and by implementing true plane of symmetry end-walls. Axisymmetric Reynolds-Averaged Navier-Stokes simulations using both perfect gas and real gas, finite rate chemistry, assumptions were performed to aid in the design process and to create a comprehensive database of inlet performance. The inlet design, which operates over the entire air-breathing Mach number range from 0 to 12, and the performance database are presented. The performance database, for use in cycle analysis, includes predictions of mass capture, pressure recovery, throat Mach number, drag force, and heat load, for the entire Mach range. Results of the computations are compared with experimental data to validate the performance database.

  10. Balancing the competing requirements of air-breathing and display behaviour during male-male interactions in Siamese fighting fish Betta splendens.

    PubMed

    Alton, Lesley A; Portugal, Steven J; White, Craig R

    2013-02-01

    Air-breathing fish of the Anabantoidei group meet their metabolic requirements for oxygen through both aerial and aquatic gas exchange. Siamese fighting fish Betta splendens are anabantoids that frequently engage in aggressive male-male interactions which cause significant increases in metabolic rate and oxygen requirements. These interactions involve opercular flaring behaviour that is thought to limit aquatic oxygen uptake, and combines with the increase in metabolic rate to cause an increase in air-breathing behaviour. Air-breathing events interrupt display behaviour and increase risk of predation, raising the question of how Siamese fighting fish manage their oxygen requirements during agonistic encounters. Using open-flow respirometry, we measured rate of oxygen consumption in displaying fish to determine if males increase oxygen uptake per breath to minimise visits to the surface, or increase their reliance on aquatic oxygen uptake. We found that the increased oxygen requirements of Siamese fighting fish during display behaviour were met by increased oxygen uptake from the air with no significant changes in aquatic oxygen uptake. The increased aerial oxygen uptake was achieved almost entirely by an increase in air-breathing frequency. We conclude that limitations imposed by the reduced gill surface area of air-breathing fish restrict the ability of Siamese fighting fish to increase aquatic uptake, and limitations of the air-breathing organ of anabantoids largely restrict their capacity to increase oxygen uptake per breath. The resulting need to increase surfacing frequency during metabolically demanding agonistic encounters has presumably contributed to the evolution of the stereotyped surfacing behaviour seen during male-male interactions, during which one of the fish will lead the other to the surface, and each will take a breath of air. PMID:23178457

  11. Air heating system

    DOEpatents

    Primeau, John J.

    1983-03-01

    A self-starting, fuel-fired, air heating system including a vapor generator, a turbine, and a condenser connected in a closed circuit such that the vapor output from the vapor generator is conducted to the turbine and then to the condenser where it is condensed for return to the vapor generator. The turbine drives an air blower which passes air over the condenser for cooling the condenser. Also, a condensate pump is driven by the turbine. The disclosure is particularly concerned with the provision of heat exchanger and circuitry for cooling the condensed fluid output from the pump prior to its return to the vapor generator.

  12. Determination of hexavalent chromium in exhaled breath condensate and environmental air among chrome plating workers

    PubMed Central

    Goldoni, Matteo; Caglieri, Andrea; Poli, Diana; Vettori, Maria Vittoria; Corradi, Massimo; Apostoli, Pietro; Mutti, Antonio

    2006-01-01

    Chromium speciation has attracted attention because of the different toxicity of Cr(III), which is considered relatively non-toxic, and Cr(VI), which can cross cell membranes mainly as a chromate anion and has been classified as a class I human carcinogen. The aims of the present study were to measure soluble Cr(VI) levels in environmental samples, to develop a simple method of quantifying Cr(VI) in exhaled breath condensate (EBC), and to follow the kinetics of EBC Cr(VI) in chrome plating workers. Personal air samples were collected from 10 chrome platers; EBC was collected from the same workers immediately after the work shift on Tuesday and before the work shift on the following Wednesday. Environmental and EBC Cr(VI) levels were determined by means of colorimetry and electrothermal absorption atomic spectrometry, respectively. The method of detecting Cr(VI) in environmental air was based on the extraction of the Cr(VI)-diphenylcarbazide (Cr(VI)–DPC) complex in 1-butanol, whereas EBC Cr(VI) was determined using a solvent extraction of Cr(VI) as an ion pair with tetrabutylammonium ion, and subsequent direct determination of the complex (Cr(VI)–DPC) in EBC. Kinetic data showed that airborne Cr(VI) was reduced by 50% in airway lining fluid sampled at the end of exposure and that there was a further 50% reduction after about 15 h. The persistence of Cr(VI) in EBC supports the use of EBC in assessing target tissue levels of Cr(VI). PMID:17047732

  13. Influence of cathode opening size and wetting properties of diffusion layers on the performance of air-breathing PEMFCs

    NASA Astrophysics Data System (ADS)

    Schmitz, A.; Tranitz, M.; Eccarius, S.; Weil, A.; Hebling, C.

    Air-breathing PEMFCs consist of an open cathodic side to allow an entirely passive supply of oxygen by diffusion. Furthermore, a large fraction of the produced water is removed by evaporation from the open cathode. Gas diffusion layers (GDLs) and the opening size of the cathode have a crucial influence on the performance of an air-breathing PEMFC. In order to assure an unobstructed supply of oxygen the water has to be removed efficiently and condensation in the GDL has to be avoided. On the other hand good humidification of the membrane has to be achieved to obtain high protonic conductivity. In this paper the influence of varying cathodic opening sizes (33%, 50% and 80% opening ratios) and of GDLs with different wetting properties are analysed. GDLs with hydrophobic and hydrophilic properties are prepared by coating of untreated GDLs (Toray ® carbon paper TGP-H-120, thickness of 350 μm). The air-breathing PEMFC test samples are realised using printed circuit board (PCB) technology. The cell samples were characterised over the entire potential range (0-0.95 V) by extensive measurements of the current density, the temperature and the cell impedance at 1 kHz. Additionally, measurements of the water balance were carried out at distinct operation points. The best cell performance was achieved with the largest opening ratio (80%) and an untreated GDL. At the maximum power point, this cell sample achieved a power density of 100 mW cm -2 at a moderate cell temperature of 43 °C. Furthermore, it could be shown that GDLs with hydrophilic or intense hydrophobic properties do not improve the performance of an air-breathing PEMFC. Based on the extensive characterisations, two design rules for air-breathing PEMFCs could be formulated. Firstly, it is crucial to maximise the cathode opening as far as an appropriate compression pressure of the cell assembly and therewith low contact resistance can be assured. Secondly, it is advantageous to use an untreated, slightly hydrophobic

  14. Environmental Hypertonicity Causes Induction of Gluconeogenesis in the Air-Breathing Singhi Catfish, Heteropneustes fossilis

    PubMed Central

    Das, Manas; Banerjee, Bodhisattwa; Choudhury, Mahua G.; Saha, Nirmalendu

    2013-01-01

    The air-breathing singhi catfish (Heteropneustes fossilis) is frequently being challenged by different environmental insults such as hyper-ammonia, dehydration and osmotic stresses in their natural habitats throughout the year. The present study investigated the effect of hyperosmotic stress, due to exposure to hypertonic environment (300 mM mannitol) for 14 days, on gluconeogenesis in this catfish. In situ exposure to hypertonic environment led to significant stimulation of gluconeogenic fluxes from the perfused liver after 7 days of exposure, followed by further increase after 14 days in presence of three different potential gluconeogenic substrates (lactate, pyruvate and glutamate). Environmental hypertonicity also caused a significant increase of activities of key gluconeogenic enzymes, namely phosphoenolpyruvate carboxykinase, fructose 1, 6-bisphosphatase and glucose 6-phosphatase by about 2-6 fold in liver, and 3-6 fold in kidney tissues. This was accompanied by more abundance of enzyme proteins by about 1.8–3.7 fold and mRNAs by about 2.2–5.2 fold in both the tissues with a maximum increase after 14 days of exposure. Hence, the increase in activities of key gluconeogenic enzymes under hypertonic stress appeared to be as a result of transcriptional regulation of genes. Immunocytochemical analysis further confirmed the tissue specific localized expression of these enzymes in both the tissues with the possibility of expressing more in the same localized places. The induction of gluconeogenesis during exposure to environmental hypertonicity possibly occurs as a consequence of changes in hydration status/cell volume of different cell types. Thus, these adaptational strategies related to gluconeogenesis that are observed in this catfish under hypertonic stress probably help in maintaining glucose homeostasis and also for a proper energy supply to support metabolic demands mainly for ion transport and other altered metabolic processes under various

  15. Unusual hepatic mitochondrial arginase in an Indian air-breathing teleost, Heteropneustes fossilis: purification and characterization.

    PubMed

    Srivastava, Shilpee; Ratha, B K

    2013-02-01

    A functional urea cycle with both cytosolic (ARG I) and mitochondrial (ARG II) arginase activity is present in the liver of an ureogenic air-breathing teleost, Heteropneustes fossilis. Antibodies against mammalian ARG II showed no cross-reactivity with the H. fossilis ARG II. ARG II was purified to homogeneity from H. fossilis liver. Purified ARG II showed a native molecular mass of 96 kDa. SDS-PAGE showed a major band at 48 kDa. The native enzyme, therefore, appears to be a homodimer. The pI value of the enzyme was 7.5. The purified enzyme showed maximum activity at pH 10.5 and 55 °C. The K(m) of purified ARG II for l-arginine was 5.25±1.12 mM. L-Ornithine and N(ω)-hydroxy-L-arginine showed mixed inhibition with K(i) values 2.16±0.08 and 0.02±0.004 mM respectively. Mn(+2) and Co(+2) were effective activators of arginase activity. Antibody raised against purified H. fossilis ARG II did not cross-react with fish ARG I, and mammalian ARG I and ARG II. Western blot with the antibodies against purified H. fossilis hepatic ARG II showed cross reactivity with a 96 kDa band on native PAGE and a 48 kDa band on SDS-PAGE. The molecular, immunological and kinetic properties suggest uniqueness of the hepatic mitochondrial ARG II in H. fossilis. PMID:23195132

  16. Unique hepatic cytosolic arginase evolved independently in ureogenic freshwater air-breathing teleost, Heteropneustes fossilis.

    PubMed

    Srivastava, Shilpee; Ratha, B K

    2013-01-01

    Hepatic cytosolic arginase (ARG I), an enzyme of the urea cycle operating in the liver of ureotelic animals, is reported to be present in an ammoniotelic freshwater air-breathing teleost, Heteropneustes fossilis which has ureogenic potential. Antibodies available against mammalian ARG I showed no cross reactivity with the H. fossilis ARG I. We purified unique ARG I from H. fossilis liver. Purified ARG I is a homotrimer with molecular mass 75 kDa and subunit molecular mass of 24 kDa. The pI value of the enzyme was 8.5. It showed maximum activity at pH 10.5 and 55°C. The Km of purified enzyme for L-arginine was 2.65±0.39 mM. L-ornithine and N(ω)-hydroxy-L-arginine showed inhibition of the ARG I activity, with Ki values 0.52±0.02mM and 0.08±0.006mM, respectively. Antibody raised against the purified fish liver ARG I showed exclusive specificity, and has no cross reactivity against fish liver ARG II and mammalian liver ARG I and ARG II. We found another isoform of arginase bound to the outer membrane of the mitochondria which was released by 150-200 mM KCl in the extraction medium. This isoform was immunologically different from the soluble cytosolic and mitochondrial arginase. The results of present study support that hepatic cytosolic arginase evolved in this ureogenic freshwater teleost, H. fossilis. Phylogenetic analysis confirms an independent evolution event that occurred much after the evolution of the cytosolic arginase of ureotelic vertebrates. PMID:23840400

  17. Unique Hepatic Cytosolic Arginase Evolved Independently in Ureogenic Freshwater Air-Breathing Teleost, Heteropneustes fossilis

    PubMed Central

    Srivastava, Shilpee; Ratha, B. K.

    2013-01-01

    Hepatic cytosolic arginase (ARG I), an enzyme of the urea cycle operating in the liver of ureotelic animals, is reported to be present in an ammoniotelic freshwater air-breathing teleost, Heteropneustes fossilis which has ureogenic potential. Antibodies available against mammalian ARG I showed no cross reactivity with the H. fossilis ARG I. We purified unique ARG I from H. fossilis liver. Purified ARG I is a homotrimer with molecular mass 75 kDa and subunit molecular mass of 24 kDa. The pI value of the enzyme was 8.5. It showed maximum activity at pH 10.5 and 55°C. The Km of purified enzyme for L-arginine was 2.65±0.39 mM. L-ornithine and Nω-hydroxy-L-arginine showed inhibition of the ARG I activity, with Ki values 0.52±0.02mM and 0.08±0.006mM, respectively. Antibody raised against the purified fish liver ARG I showed exclusive specificity, and has no cross reactivity against fish liver ARG II and mammalian liver ARG I and ARG II. We found another isoform of arginase bound to the outer membrane of the mitochondria which was released by 150–200 mM KCl in the extraction medium. This isoform was immunologically different from the soluble cytosolic and mitochondrial arginase. The results of present study support that hepatic cytosolic arginase evolved in this ureogenic freshwater teleost, H. fossilis. Phylogenetic analysis confirms an independent evolution event that occurred much after the evolution of the cytosolic arginase of ureotelic vertebrates. PMID:23840400

  18. Haematological and ion regulatory effects of nitrite in the air-breathing snakehead fish Channa striata.

    PubMed

    Lefevre, Sjannie; Jensen, Frank B; Huong, Do T T; Wang, Tobias; Phuong, Nguyen T; Bayley, Mark

    2012-08-15

    The tolerance and effects of nitrite on ion balance and haematology were investigated in the striped snakehead, Channa striata Bloch 1793, which is an air-breathing fish with reduced gills of importance for aquaculture in South East Asia. C. striata was nitrite tolerant with a 96 h LC50 of 4.7 mM. Effects of sub-lethal exposures to nitrite (0mM, 1.4mM, and 3.0mM) were determined during a 7-day exposure period. Plasma nitrite increased, but the internal concentration remained well below ambient levels. Extracellular nitrate rose by several mM, indicating that a large proportion of the nitrite taken up was converted to nitrate. Nitrite reacted with erythrocyte haemoglobin (Hb) causing methaemoglobin (metHb) to increase to 30% and nitrosylhaemoglobin (HbNO) to increase to 10% of total Hb. Both metHb and HbNO stabilised after 4 days, and functional Hb levels accordingly never fell below 60% of total Hb. Haematocrit and total Hb were unaffected by nitrite. Although the effects of nitrite exposure seemed minor in terms of plasma nitrite and metHb increases, ion balance was strongly affected. In the high exposure group, total osmolality decreased from 320 mOsm to 260 mOsm, and plasma sodium from 150 mM to 120 mM, while plasma chloride fell from 105 mM to 60mM and plasma bicarbonate rose from 12 mM in controls to 20mM in exposed fish. The extreme changes in ion balance in C. striata are different from the response reported in other fish, and further studies are needed to investigate the mechanism behind the observed changes in regulation. PMID:22516674

  19. Novel adaptive neural control design for a constrained flexible air-breathing hypersonic vehicle based on actuator compensation

    NASA Astrophysics Data System (ADS)

    Bu, Xiangwei; Wu, Xiaoyan; He, Guangjun; Huang, Jiaqi

    2016-03-01

    This paper investigates the design of a novel adaptive neural controller for the longitudinal dynamics of a flexible air-breathing hypersonic vehicle with control input constraints. To reduce the complexity of controller design, the vehicle dynamics is decomposed into the velocity subsystem and the altitude subsystem, respectively. For each subsystem, only one neural network is utilized to approach the lumped unknown function. By employing a minimal-learning parameter method to estimate the norm of ideal weight vectors rather than their elements, there are only two adaptive parameters required for neural approximation. Thus, the computational burden is lower than the ones derived from neural back-stepping schemes. Specially, to deal with the control input constraints, additional systems are exploited to compensate the actuators. Lyapunov synthesis proves that all the closed-loop signals involved are uniformly ultimately bounded. Finally, simulation results show that the adopted compensation scheme can tackle actuator constraint effectively and moreover velocity and altitude can stably track their reference trajectories even when the physical limitations on control inputs are in effect.

  20. Dynamic output feedback control of a flexible air-breathing hypersonic vehicle via T-S fuzzy approach

    NASA Astrophysics Data System (ADS)

    Hu, Xiaoxiang; Wu, Ligang; Hu, Changhua; Wang, Zhaoqiang; Gao, Huijun

    2014-08-01

    By utilising Takagi-Sugeno (T-S) fuzzy set approach, this paper addresses the robust H∞ dynamic output feedback control for the non-linear longitudinal model of flexible air-breathing hypersonic vehicles (FAHVs). The flight control of FAHVs is highly challenging due to the unique dynamic characteristics, and the intricate couplings between the engine and fight dynamics and external disturbance. Because of the dynamics' enormous complexity, currently, only the longitudinal dynamics models of FAHVs have been used for controller design. In this work, T-S fuzzy modelling technique is utilised to approach the non-linear dynamics of FAHVs, then a fuzzy model is developed for the output tracking problem of FAHVs. The fuzzy model contains parameter uncertainties and disturbance, which can approach the non-linear dynamics of FAHVs more exactly. The flexible models of FAHVs are difficult to measure because of the complex dynamics and the strong couplings, thus a full-order dynamic output feedback controller is designed for the fuzzy model. A robust H∞ controller is designed for the obtained closed-loop system. By utilising the Lyapunov functional approach, sufficient solvability conditions for such controllers are established in terms of linear matrix inequalities. Finally, the effectiveness of the proposed T-S fuzzy dynamic output feedback control method is demonstrated by numerical simulations.

  1. Phase equilibria in a system of 'breathing' molecules

    SciTech Connect

    Wu, Jianzhong; Prausnitz, John

    2001-09-30

    It is now well known that details in the intermolecular potential can significantly affect the qualitative features of a phase diagram where temperature is plotted against density for the coexistence curves among fluid and solid phases. While previous calculations of phase diagrams have assumed a time-invariant potential function, this report concerns the phase diagram for ''breathing'' molecules, i.e., molecules whose strength of intermolecular attraction fluctuates in time. Such fluctuations can occur in biomacromolecules where an active site can switch between ''on'' and ''off'' positions. Phase-equilibrium calculations were performed for molecules that have a periodic (breathing) attractive force in addition to the conventional intermolecular forces. The phase diagram for such molecules is as expected when the ''breathing'' properties are independent of density. However, when (more realistically), the ''breathing'' properties are density dependent, the phase diagram exhibits dramatic changes. These calculations may be useful for interpreting experimental data for protein precipitation, for plaque formation in blood vessels and for scaffold-supported tissue formation.

  2. Air cleaning system

    SciTech Connect

    Tidwell, J.H.

    1987-06-16

    This patent describes an air cleaning system comprising: a motor housing; a motor mounted within the housing; a fan attached to and rotatably driven by the motor; a fan chamber surrounding the fan and having an air inlet and outlet; a separator housing means mounted adjacent to and in spaced relation with the motor housing, the separator housing means having an inlet disposed in communication with a chamber within separator housing means; an outlet disposed in communication with the fan chamber; an air driven separator means mounted in chamber of the separator housing means to receive airflow from inlet for rotation of the separator means and removal of foreign matter from airflow by centrifugal force responsive to rotation of the separator means; the airflow is further directed through the outlet of separator housing means to the fan chamber to be ejected by the fan.

  3. Air System Information Management

    NASA Technical Reports Server (NTRS)

    Filman, Robert E.

    2004-01-01

    I flew to Washington last week, a trip rich in distributed information management. Buying tickets, at the gate, in flight, landing and at the baggage claim, myriad messages about my reservation, the weather, our flight plans, gates, bags and so forth flew among a variety of travel agency, airline and Federal Aviation Administration (FAA) computers and personnel. By and large, each kind of information ran on a particular application, often specialized to own data formats and communications network. I went to Washington to attend an FAA meeting on System-Wide Information Management (SWIM) for the National Airspace System (NAS) (http://www.nasarchitecture.faa.gov/Tutorials/NAS101.cfm). NAS (and its information infrastructure, SWIM) is an attempt to bring greater regularity, efficiency and uniformity to the collection of stovepipe applications now used to manage air traffic. Current systems hold information about flight plans, flight trajectories, weather, air turbulence, current and forecast weather, radar summaries, hazardous condition warnings, airport and airspace capacity constraints, temporary flight restrictions, and so forth. Information moving among these stovepipe systems is usually mediated by people (for example, air traffic controllers) or single-purpose applications. People, whose intelligence is critical for difficult tasks and unusual circumstances, are not as efficient as computers for tasks that can be automated. Better information sharing can lead to higher system capacity, more efficient utilization and safer operations. Better information sharing through greater automation is possible though not necessarily easy.

  4. Perspective use of direct human blood as an energy source in air-breathing hybrid microfluidic fuel cells

    NASA Astrophysics Data System (ADS)

    Dector, A.; Escalona-Villalpando, R. A.; Dector, D.; Vallejo-Becerra, V.; Chávez-Ramírez, A. U.; Arriaga, L. G.; Ledesma-García, J.

    2015-08-01

    This work presents a flexible and light air-breathing hybrid microfluidic fuel cell (HμFC) operated under biological conditions. A mixture of glucose oxidase, glutaraldehyde, multi-walled carbon nanotubes and vulcan carbon (GOx/VC-MWCNT-GA) was used as the bioanode. Meanwhile, integrating an air-exposed electrode (Pt/C) as the cathode enabled direct oxygen delivery from air. The microfluidic fuel cell performance was evaluated using glucose obtained from three different sources as the fuel: 5 mM glucose in phosphate buffer, human serum and human blood. For the last fuel, an open circuit voltage and maximum power density of 0.52 V and 0.20 mW cm-2 (at 0.38 V) were obtained respectively; meanwhile the maximum current density was 1.1 mA cm-2. Furthermore, the stability of the device was measured in terms of recovery after several polarization curves, showing excellent results. Although this air-breathing HμFC requires technological improvements before being tested in a biomedical device, it represents the best performance to date for a microfluidic fuel cell using human blood as glucose source.

  5. Effects of hypoxia on ionic regulation, glycogen utilization and antioxidative ability in the gills and liver of the aquatic air-breathing fish Trichogaster microlepis.

    PubMed

    Huang, Chun-Yen; Lin, Hui-Chen; Lin, Cheng-Huang

    2015-01-01

    We examined the hypothesis that Trichogaster microlepis, a fish with an accessory air-breathing organ, uses a compensatory strategy involving changes in both behavior and protein levels to enhance its gas exchange ability. This compensatory strategy enables the gill ion-regulatory metabolism to maintain homeostasis during exposure to hypoxia. The present study aimed to determine whether ionic regulation, glycogen utilization and antioxidant activity differ in terms of expression under hypoxic stresses; fish were sampled after being subjected to 3 or 12h of hypoxia and 12h of recovery under normoxia. The air-breathing behavior of the fish increased under hypoxia. No morphological modification of the gills was observed. The expression of carbonic anhydrase II did not vary among the treatments. The Na(+)/K(+)-ATPase enzyme activity did not decrease, but increases in Na(+)/K(+)-ATPase protein expression and ionocyte levels were observed. The glycogen utilization increased under hypoxia as measured by glycogen phosphorylase protein expression and blood glucose level, whereas the glycogen content decreased. The enzyme activity of several components of the antioxidant system in the gills, including catalase, glutathione peroxidase, and superoxidase dismutase, increased in enzyme activity. Based on the above data, we concluded that T. microlepis is a hypoxia-tolerant species that does not exhibit ion-regulatory suppression but uses glycogen to maintain energy utilization in the gills under hypoxic stress. Components of the antioxidant system showed increased expression under the applied experimental treatments. PMID:25218942

  6. Cinema audiences reproducibly vary the chemical composition of air during films, by broadcasting scene specific emissions on breath

    PubMed Central

    Williams, Jonathan; Stönner, Christof; Wicker, Jörg; Krauter, Nicolas; Derstroff, Bettina; Bourtsoukidis, Efstratios; Klüpfel, Thomas; Kramer, Stefan

    2016-01-01

    Human beings continuously emit chemicals into the air by breath and through the skin. In order to determine whether these emissions vary predictably in response to audiovisual stimuli, we have continuously monitored carbon dioxide and over one hundred volatile organic compounds in a cinema. It was found that many airborne chemicals in cinema air varied distinctively and reproducibly with time for a particular film, even in different screenings to different audiences. Application of scene labels and advanced data mining methods revealed that specific film events, namely “suspense” or “comedy” caused audiences to change their emission of specific chemicals. These event-type synchronous, broadcasted human chemosignals open the possibility for objective and non-invasive assessment of a human group response to stimuli by continuous measurement of chemicals in air. Such methods can be applied to research fields such as psychology and biology, and be valuable to industries such as film making and advertising. PMID:27160439

  7. Cinema audiences reproducibly vary the chemical composition of air during films, by broadcasting scene specific emissions on breath

    NASA Astrophysics Data System (ADS)

    Williams, Jonathan; Stönner, Christof; Wicker, Jörg; Krauter, Nicolas; Derstroff, Bettina; Bourtsoukidis, Efstratios; Klüpfel, Thomas; Kramer, Stefan

    2016-05-01

    Human beings continuously emit chemicals into the air by breath and through the skin. In order to determine whether these emissions vary predictably in response to audiovisual stimuli, we have continuously monitored carbon dioxide and over one hundred volatile organic compounds in a cinema. It was found that many airborne chemicals in cinema air varied distinctively and reproducibly with time for a particular film, even in different screenings to different audiences. Application of scene labels and advanced data mining methods revealed that specific film events, namely “suspense” or “comedy” caused audiences to change their emission of specific chemicals. These event-type synchronous, broadcasted human chemosignals open the possibility for objective and non-invasive assessment of a human group response to stimuli by continuous measurement of chemicals in air. Such methods can be applied to research fields such as psychology and biology, and be valuable to industries such as film making and advertising.

  8. Cinema audiences reproducibly vary the chemical composition of air during films, by broadcasting scene specific emissions on breath.

    PubMed

    Williams, Jonathan; Stönner, Christof; Wicker, Jörg; Krauter, Nicolas; Derstroff, Bettina; Bourtsoukidis, Efstratios; Klüpfel, Thomas; Kramer, Stefan

    2016-01-01

    Human beings continuously emit chemicals into the air by breath and through the skin. In order to determine whether these emissions vary predictably in response to audiovisual stimuli, we have continuously monitored carbon dioxide and over one hundred volatile organic compounds in a cinema. It was found that many airborne chemicals in cinema air varied distinctively and reproducibly with time for a particular film, even in different screenings to different audiences. Application of scene labels and advanced data mining methods revealed that specific film events, namely "suspense" or "comedy" caused audiences to change their emission of specific chemicals. These event-type synchronous, broadcasted human chemosignals open the possibility for objective and non-invasive assessment of a human group response to stimuli by continuous measurement of chemicals in air. Such methods can be applied to research fields such as psychology and biology, and be valuable to industries such as film making and advertising. PMID:27160439

  9. Computational Fluid Dynamics Investigation of Human Aspiration in Low-Velocity Air: Orientation Effects on Mouth-Breathing Simulations

    PubMed Central

    Anthony, T. Renée

    2013-01-01

    Computational fluid dynamics was used to investigate particle aspiration efficiency in low-moving air typical of occupational settings (0.1–0.4 m s−1). Fluid flow surrounding an inhaling humanoid form and particle trajectories traveling into the mouth were simulated for seven discrete orientations relative to the oncoming wind (0°, 15°, 30°, 60°, 90°, 135° and 180°). Three continuous inhalation velocities (1.81, 4.33, and 12.11 m s−1), representing the mean inhalation velocity associated with sinusoidal at-rest, moderate, and heavy breathing (7.5, 20.8, and 50.3 l min−1, respectively) were simulated. These simulations identified a decrease in aspiration efficiency below the inhalable particulate mass (IPM) criterion of 0.5 for large particles, with no aspiration of particles 100 µm and larger for at-rest breathing and no aspiration of particles 116 µm for moderate breathing, over all freestream velocities and orientations relative to the wind. For particles smaller than 100 µm, orientation-averaged aspiration efficiency exceeded the IPM criterion, with increased aspiration efficiency as freestream velocity decreased. Variability in aspiration efficiencies between velocities was low for small (<22 µm) particles, but increased with increasing particle size over the range of conditions studied. Orientation-averaged simulation estimates of aspiration efficiency agree with the linear form of the proposed linear low-velocity inhalable convention through 100 µm, based on laboratory studies using human mannequins. PMID:23316076

  10. An inventory of aeronautical ground research facilities. Volume 2: Air breathing engine test facilities

    NASA Technical Reports Server (NTRS)

    Pirrello, C. J.; Hardin, R. D.; Heckart, M. V.; Brown, K. R.

    1971-01-01

    The inventory covers free jet and direct connect altitude cells, sea level static thrust stands, sea level test cells with ram air, and propulsion wind tunnels. Free jet altitude cells and propulsion wind tunnels are used for evaluation of complete inlet-engine-exhaust nozzle propulsion systems under simulated flight conditions. These facilities are similar in principal of operation and differ primarily in test section concept. The propulsion wind tunnel provides a closed test section and restrains the flow around the test specimen while the free jet is allowed to expand freely. A chamber of large diameter about the free jet is provided in which desired operating pressure levels may be maintained. Sea level test cells with ram air provide controlled, conditioned air directly to the engine face for performance evaluation at low altitude flight conditions. Direct connect altitude cells provide a means of performance evaluation at simulated conditions of Mach number and altitude with air supplied to the flight altitude conditions. Sea level static thrust stands simply provide an instrumented engine mounting for measuring thrust at zero airspeed. While all of these facilities are used for integrated engine testing, a few provide engine component test capability.

  11. Experimental Study of the Momentum Coupling Coefficient with the Pulse Frequency and Ambient Pressure for Air-Breathing Laser Propulsion

    NASA Astrophysics Data System (ADS)

    Tang, Zhiping; Cai, Jian; Gong, Ping; Hu, Xiaojun; Tan, Rongqin; Zheng, Zhijun; Wu, Jin; Lu, Yan

    2006-05-01

    The air-breathing laser propulsion tests are conducted for parabolic models by using a high power TEA-CO2 pulsed laser. It is found the momentum coupling coefficient Cm varies with the pulse repeatable frequency and reaches the maximum near 50Hz. With a multi-use pendulum chamber, the change of Cm at different ambient pressure is measured. The experimental results show that the propulsion efficiency Cm does not decrease below the altitude of 10km, even increases a little bit. The calculated Cm fits the experimental result up to altitude 3km, then, they are separated. One possible reason is the temperature which is constant in the experiments.

  12. The classification of the patients with pulmonary diseases using breath air samples spectral analysis

    NASA Astrophysics Data System (ADS)

    Kistenev, Yury V.; Borisov, Alexey V.; Kuzmin, Dmitry A.; Bulanova, Anna A.

    2016-08-01

    Technique of exhaled breath sampling is discussed. The procedure of wavelength auto-calibration is proposed and tested. Comparison of the experimental data with the model absorption spectra of 5% CO2 is conducted. The classification results of three study groups obtained by using support vector machine and principal component analysis methods are presented.

  13. Future Air Force systems.

    PubMed

    Tremaine, S A

    1986-10-01

    Planning for the future is under way in earnest at the Aeronautical Systems Division (ASD) at Wright-Patterson Air Force Base. It has been statistically established that it takes from 14-16 years from the generation of a new system idea to enter into engineering development. With this unpleasing, but realistic, schedule in mind, ASD has, during the last 3 years, been initiating long-term planning projects that are pre-starts for new system ideas. They are generated from throughout the Air Force and are locally managed and funded. Through this process, which spans from 12-14 months, specific and revolutionary new ideas for the systems of the future are generated. This article addresses more than a dozen specific new ideas in work at ASD today. These ideas range from a need to replace the C-130 type aircraft after the year 2000 to planning a follow-on to the B-18 well into the 21st century. Among other specific projects are investigation into an immortal fighter intended to be free of reliability and maintenance demands for an especially long period of operation, a new training system and advanced trainer to replace the T-38, a transatmospheric vehicle that could operate in the 100,000-500,000 foot flight region (30,480-152,400 m), and a new means of defending against hostile cruise missile launchers and cruise missiles. Other ideas are also addressed. The article concludes with emphasis on systems that can operate hypersonically in and out of the known atmosphere and greater use of airbreathing propulsion systems operating between Mach 3 and Mach 6. PMID:3778403

  14. Work of Breathing into Snow in the Presence versus Absence of an Artificial Air Pocket Affects Hypoxia and Hypercapnia of a Victim Covered with Avalanche Snow: A Randomized Double Blind Crossover Study.

    PubMed

    Roubík, Karel; Sieger, Ladislav; Sykora, Karel

    2015-01-01

    Presence of an air pocket and its size play an important role in survival of victims buried in the avalanche snow. Even small air pockets facilitate breathing. We hypothesize that the size of the air pocket significantly affects the airflow resistance and work of breathing. The aims of the study are (1) to investigate the effect of the presence of an air pocket on gas exchange and work of breathing in subjects breathing into the simulated avalanche snow and (2) to test whether it is possible to breathe with no air pocket. The prospective interventional double-blinded study involved 12 male volunteers, from which 10 completed the whole protocol. Each volunteer underwent two phases of the experiment in a random order: phase "AP"--breathing into the snow with a one-liter air pocket, and phase "NP"--breathing into the snow with no air pocket. Physiological parameters, fractions of oxygen and carbon dioxide in the airways and work of breathing expressed as pressure-time product were recorded continuously. The main finding of the study is that it is possible to breath in the avalanche snow even with no air pocket (0 L volume), but breathing under this condition is associated with significantly increased work of breathing. The significant differences were initially observed for end-tidal values of the respiratory gases (EtO2 and EtCO2) and peripheral oxygen saturation (SpO2) between AP and NP phases, whereas significant differences in inspiratory fractions occurred much later (for FIO2) or never (for FICO2). The limiting factor in no air pocket conditions is excessive increase in work of breathing that induces increase in metabolism accompanied by higher oxygen consumption and carbon dioxide production. The presence of even a small air pocket reduces significantly the work of breathing. PMID:26666523

  15. Work of Breathing into Snow in the Presence versus Absence of an Artificial Air Pocket Affects Hypoxia and Hypercapnia of a Victim Covered with Avalanche Snow: A Randomized Double Blind Crossover Study

    PubMed Central

    2015-01-01

    Presence of an air pocket and its size play an important role in survival of victims buried in the avalanche snow. Even small air pockets facilitate breathing. We hypothesize that the size of the air pocket significantly affects the airflow resistance and work of breathing. The aims of the study are (1) to investigate the effect of the presence of an air pocket on gas exchange and work of breathing in subjects breathing into the simulated avalanche snow and (2) to test whether it is possible to breathe with no air pocket. The prospective interventional double-blinded study involved 12 male volunteers, from which 10 completed the whole protocol. Each volunteer underwent two phases of the experiment in a random order: phase “AP”—breathing into the snow with a one-liter air pocket, and phase “NP”—breathing into the snow with no air pocket. Physiological parameters, fractions of oxygen and carbon dioxide in the airways and work of breathing expressed as pressure-time product were recorded continuously. The main finding of the study is that it is possible to breath in the avalanche snow even with no air pocket (0 L volume), but breathing under this condition is associated with significantly increased work of breathing. The significant differences were initially observed for end-tidal values of the respiratory gases (EtO2 and EtCO2) and peripheral oxygen saturation (SpO2) between AP and NP phases, whereas significant differences in inspiratory fractions occurred much later (for FIO2) or never (for FICO2). The limiting factor in no air pocket conditions is excessive increase in work of breathing that induces increase in metabolism accompanied by higher oxygen consumption and carbon dioxide production. The presence of even a small air pocket reduces significantly the work of breathing. PMID:26666523

  16. Developmental transcriptome analysis and identification of genes involved in formation of intestinal air-breathing function of Dojo loach, Misgurnus anguillicaudatus.

    PubMed

    Luo, Weiwei; Cao, Xiaojuan; Xu, Xiuwen; Huang, Songqian; Liu, Chuanshu; Tomljanovic, Tea

    2016-01-01

    Dojo loach, Misgurnus anguillicaudatus is a freshwater fish species of the loach family Cobitidae, using its posterior intestine as an accessory air-breathing organ. Little is known about the molecular regulatory mechanisms in the formation of intestinal air-breathing function of M. anguillicaudatus. Here high-throughput sequencing of mRNAs was performed from six developmental stages of posterior intestine of M. anguillicaudatus: 4-Dph (days post hatch) group, 8-Dph group, 12-Dph group, 20-Dph group, 40-Dph group and Oyd (one-year-old) group. These six libraries were assembled into 81300 unigenes. Totally 40757 unigenes were annotated. Subsequently, 35291 differentially expressed genes (DEGs) were scanned among different developmental stages and clustered into 20 gene expression profiles. Finally, 15 key pathways and 25 key genes were mined, providing potential targets for candidate gene selection involved in formation of intestinal air-breathing function in M. anguillicaudatus. This is the first report of developmental transcriptome of posterior intestine in M. anguillicaudatus, offering a substantial contribution to the sequence resources for this species and providing a deep insight into the formation mechanism of its intestinal air-breathing function. This report demonstrates that M. anguillicaudatus is a good model for studies to identify and characterize the molecular basis of accessory air-breathing organ development in fish. PMID:27545457

  17. Developmental transcriptome analysis and identification of genes involved in formation of intestinal air-breathing function of Dojo loach, Misgurnus anguillicaudatus

    PubMed Central

    Luo, Weiwei; Cao, Xiaojuan; Xu, Xiuwen; Huang, Songqian; Liu, Chuanshu; Tomljanovic, Tea

    2016-01-01

    Dojo loach, Misgurnus anguillicaudatus is a freshwater fish species of the loach family Cobitidae, using its posterior intestine as an accessory air-breathing organ. Little is known about the molecular regulatory mechanisms in the formation of intestinal air-breathing function of M. anguillicaudatus. Here high-throughput sequencing of mRNAs was performed from six developmental stages of posterior intestine of M. anguillicaudatus: 4-Dph (days post hatch) group, 8-Dph group, 12-Dph group, 20-Dph group, 40-Dph group and Oyd (one-year-old) group. These six libraries were assembled into 81300 unigenes. Totally 40757 unigenes were annotated. Subsequently, 35291 differentially expressed genes (DEGs) were scanned among different developmental stages and clustered into 20 gene expression profiles. Finally, 15 key pathways and 25 key genes were mined, providing potential targets for candidate gene selection involved in formation of intestinal air-breathing function in M. anguillicaudatus. This is the first report of developmental transcriptome of posterior intestine in M. anguillicaudatus, offering a substantial contribution to the sequence resources for this species and providing a deep insight into the formation mechanism of its intestinal air-breathing function. This report demonstrates that M. anguillicaudatus is a good model for studies to identify and characterize the molecular basis of accessory air-breathing organ development in fish. PMID:27545457

  18. Small-size mass spectrometer for determining gases and volatile compounds in air during breathing

    NASA Astrophysics Data System (ADS)

    Kogan, V. T.; Kozlenok, A. V.; Chichagov, Yu. V.; Antonov, A. S.; Lebedev, D. S.; Bogdanov, A. A.; Moroshkin, V. S.; Berezina, A. V.; Viktorova-Leclerc, O. S.; Vlasov, S. A.; Tubol'tsev, Yu. V.

    2015-10-01

    We describe an automated mass spectrometer for diagnostics of deceases from the composition of exhaled air. It includes a capillary system, which performs a rapid direct feeding of the sample to the instrument without changing substantially its composition and serves for studying the dynamics of variation of the ratio between various components of exhaled air. The membrane system for introducing the sample is intended for determining low concentrations of volatile organic compounds which are biomarkers of pathologies. It is characterized by selective transmittance and ensures the detection limits of target compounds at the parts per million-parts per billion (ppm-ppb) level. A static mass analyzer operating on permanent magnets possesses advantages important for mobile devices as compared to its dynamic analogs: it is more reliable in operation, has a larger dynamic range, and can be used for determining the concentration of components in the mixture one-by-one or simultaneously. The curvilinear output boundary of the magnetic lens of the mass analyzer makes it possible to reduce its weight and size by 2.5 times without deteriorating the mass resolution. We report on the results of testing of the instrument and consider the possibility of its application for early detection of deceases of respiratory and blood circulation system, gastrointestinal tract, and endocrine system.

  19. Computational modeling of air-breathing microfluidic fuel cells with flow-over and flow-through anodes

    NASA Astrophysics Data System (ADS)

    Zhang, Biao; Ye, Ding-ding; Sui, Pang-Chieh; Djilali, Ned; Zhu, Xun

    2014-08-01

    A three-dimensional computational model for air-breathing microfluidic fuel cells (AMFCs) with flow-over and flow-through anodes is developed. The coupled multiphysics phenomena of fluid flow, species transport and electrochemical reactions are resolved numerically. The model has been validated against experimental data using an in-house AMFC prototype with a flow-through anode. Characteristics of fuel transfer and fuel crossover for both types of anodes are investigated. The model results reveal that the fuel transport to the flow-over anode is intrinsically limited by the fuel concentration boundary layer. Conversely, fuel transport for the flow-through anode is convectively enhanced by the permeate flow, and no concentration boundary layer is observed. An unexpected additional advantage of the flow-through anode configuration is lower parasitic (crossover) current density than the flow-over case at practical low flow rates. Cell performance of the flow-through case is found to be limited by reaction kinetics. The present model provides insights into the fuel transport and fuel crossover in air-breathing microfluidic fuel cells and provides guidance for further design and operation optimization.

  20. Air-breathing hypersonic vehicle guidance and control studies: An integrated trajectory/control analysis methodology, phase 2

    NASA Technical Reports Server (NTRS)

    Hattis, Philip D.; Malchow, Harvey L.

    1992-01-01

    An integrated trajectory/control analysis algorithm has been used to generate trajectories and desired control strategies for two different hypersonic air-breathing vehicle models and orbit targets. Both models used cubic spline curve fit tabulated winged-cone accelerator vehicle representations. Near-fuel-optimal, horizontal takeoff trajectories, imposing a dynamic pressure limit of 1000 psf, were developed. The first model analysis case involved a polar orbit and included the dynamic effects of using elevons to maintain longitudinal trim. Analysis results indicated problems with the adequacy of the propulsion model and highlighted dynamic pressure/altitude instabilities when using vehicle angle of attack as a control variable. Also, the magnitude of computed elevon deflections to maintain trim suggested a need for alternative pitch moment management strategies. The second analysis case was reformulated to use vehicle pitch attitude relative to the local vertical as the control variable. A new, more realistic, air-breathing propulsion model was incorporated. Pitch trim calculations were dropped and an equatorial orbit was specified. Changes in flight characteristics due to the new propulsion model have been identified. Flight regimes demanding rapid attitude changes have been noted. Also, some issues that would affect design of closed-loop controllers were ascertained.

  1. Was the appearance of surfactants in air breathing vertebrates ultimately the cause of decompression sickness and autoimmune disease?

    PubMed

    Arieli, Ran

    2015-01-15

    All air breathing vertebrates are endowed with pulmonary surfactants, surface-active lipoprotein complexes formed by type II alveolar cells. Surfactants are deposited in clearly defined areas on the luminal aspect of blood vessels, producing hydrophobic spots. Gas nanobubbles measuring 5-100nm form spontaneously on the smooth hydrophobic spot from dissolved gas. Bubbles nucleate and grow at these spots after decompression from high pressure. Proteins with hydrophobic regions circulating in the blood will adhere to the gas phase-plasma interface. Deformation of their secondary and tertiary configuration will present them as foreign molecules or autoantigens. Components of the intact protein which are also present in a deformed protein may be recognized as foreign too. This process is proposed as the trigger for autoimmune diseases. The presence of autoimmune disease in air breathing vertebrates, increased autoimmunity and the elevated risk of decompression sickness with age, as well as variable sensitivity to both diseases, can be matched with the appearance of surfactant spots. Eliminating these spots may provide protection against both diseases. PMID:25462836

  2. Continuous measurement of oxygen tensions in the air-breathing organ of Pacific tarpon (Megalops cyprinoides) in relation to aquatic hypoxia and exercise.

    PubMed

    Seymour, Roger S; Farrell, Anthony P; Christian, Keith; Clark, Timothy D; Bennett, Michael B; Wells, Rufus M G; Baldwin, John

    2007-07-01

    The Pacific tarpon is an elopomorph teleost fish with an air-breathing organ (ABO) derived from a physostomous gas bladder. Oxygen partial pressure (PO(2)) in the ABO was measured on juveniles (238 g) with fiber-optic sensors during exposure to selected aquatic PO(2) and swimming speeds. At slow speed (0.65 BL s(-1)), progressive aquatic hypoxia triggered the first breath at a mean PO(2) of 8.3 kPa. Below this, opercular movements declined sharply and visibly ceased in most fish below 6 kPa. At aquatic PO(2) of 6.1 kPa and swimming slowly, mean air-breathing frequency was 0.73 min(-1), ABO PO(2) was 10.9 kPa, breath volume was 23.8 ml kg(-1), rate of oxygen uptake from the ABO was 1.19 ml kg(-1) min(-1), and oxygen uptake per breath was 2.32 ml kg(-1). At the fastest experimental speed (2.4 BL s(-1)) at 6.1 kPa, ABO oxygen uptake increased to about 1.90 ml kg(-1) min(-1), through a variable combination of breathing frequency and oxygen uptake per breath. In normoxic water, tarpon rarely breathed air and apparently closed down ABO perfusion, indicated by a drop in ABO oxygen uptake rate to about 1% of that in hypoxic water. This occurred at a wide range of ABO PO(2) (1.7-26.4 kPa), suggesting that oxygen level in the ABO was not regulated by intrinsic receptors. PMID:17387483

  3. Technical evaluation of different respiratory monitoring systems used for 4D CT acquisition under free breathing.

    PubMed

    Heinz, Christian; Reiner, Michael; Belka, Claus; Walter, Franziska; Söhn, Matthias

    2015-01-01

    Respiratory monitoring systems are required to supply CT scanners with information on the patient's breathing during the acquisition of a respiration-correlated computer tomography (RCCT), also referred to as 4D CT. The information a respiratory monitoring system has to provide to the CT scanner depends on the specific scanner. The purpose of this study is to compare two different respiratory monitoring systems (Anzai Respiratory Gating System; C-RAD Sentinel) with respect to their applicability in combination with an Aquilion Large Bore CT scanner from Toshiba. The scanner used in our clinic does not make use of the full time dependent breathing signal, but only single trigger pulses indicating the beginning of a new breathing cycle. Hence the attached respiratory monitoring system is expected to deliver accurate online trigger pulse for each breathing cycle. The accuracy of the trigger pulses sent to the CT scanner has to be ensured by the selected respiratory monitoring system. Since a trigger pulse (output signal) of a respiratory monitoring system is a function of the measured breathing signal (input signal), the typical clinical range of the input signal is estimated for both examined respiratory monitoring systems. Both systems are analyzed based on the following parameters: time resolution, signal amplitude, noise, signal-to-noise ratio (SNR), signal linearity, trigger compatibility, and clinical examples. The Anzai system shows a better SNR (≥ 28 dB) than the Sentinel system (≥ 14.6 dB). In terms of compatibility with the cycle-based image sorting algorithm of the Toshiba CT scanner, the Anzai system benefits from the possibility to generate cycle-based triggers, whereas the Sentinel system is only able to generate amplitude-based triggers. In clinical practice, the combination of a Toshiba CT scanner and the Anzai system will provide better results due to the compatibility of the image sorting and trigger release methods. PMID:26103168

  4. Laser 3-D measuring system and real-time visual feedback for teaching and correcting breathing

    NASA Astrophysics Data System (ADS)

    Povšič, Klemen; Fležar, Matjaž; Možina, Janez; Jezeršek, Matija

    2012-03-01

    We present a novel method for real-time 3-D body-shape measurement during breathing based on the laser multiple-line triangulation principle. The laser projector illuminates the measured surface with a pattern of 33 equally inclined light planes. Simultaneously, the camera records the distorted light pattern from a different viewpoint. The acquired images are transferred to a personal computer, where the 3-D surface reconstruction, shape analysis, and display are performed in real time. The measured surface displacements are displayed with a color palette, which enables visual feedback to the patient while breathing is being taught. The measuring range is approximately 400×600×500 mm in width, height, and depth, respectively, and the accuracy of the calibrated apparatus is +/-0.7 mm. The system was evaluated by means of its capability to distinguish between different breathing patterns. The accuracy of the measured volumes of chest-wall deformation during breathing was verified using standard methods of volume measurements. The results show that the presented 3-D measuring system with visual feedback has great potential as a diagnostic and training assistance tool when monitoring and evaluating the breathing pattern, because it offers a simple and effective method of graphical communication with the patient.

  5. Facilitation of breathing by leptin effects in the central nervous system.

    PubMed

    Bassi, M; Furuya, W I; Zoccal, D B; Menani, J V; Colombari, D S A; Mulkey, D K; Colombari, E

    2016-03-15

    With the global epidemic of obesity, breathing disorders associated with excess body weight have markedly increased. Respiratory dysfunctions caused by obesity were originally attributed to mechanical factors; however, recent studies have suggested a pathophysiological component that involves the central nervous system (CNS) and hormones such as leptin produced by adipocytes as well as other cells. Leptin is suggested to stimulate breathing and leptin deficiency causes an impairment of the chemoreflex, which can be reverted by leptin therapy. This facilitation of the chemoreflex may depend on the action of leptin in the hindbrain areas involved in the respiratory control such as the nucleus of the solitary tract (NTS), a site that receives chemosensory afferents, and the ventral surface of the medulla that includes the retrotrapezoid nucleus (RTN), a central chemosensitive area, and the rostral ventrolateral medulla (RVLM). Although the mechanisms and pathways activated by leptin to facilitate breathing are still not completely clear, evidence suggests that the facilitatory effects of leptin on breathing require the brain melanocortin system, including the POMC-MC4R pathway, a mechanism also activated by leptin to modulate blood pressure. The results of all the studies that have investigated the effect of leptin on breathing suggest that disruption of leptin signalling as caused by obesity-induced reduction of central leptin function (leptin resistance) is a relevant mechanism that may contribute to respiratory dysfunctions associated with obesity. PMID:26095748

  6. Artificial Air Control System

    NASA Astrophysics Data System (ADS)

    Timofeev, D. V.; Laguntsov, N. I.; Kurchatov, I. M.

    Due to constant changes in the composition of the atmosphere, the human has a need to provide themselves with a necessary content of available oxygen for breathing. Particularly strong impact on the atmosphere was exerted by the advent of the technological revolution. Human activity started affecting the atmosphere at the beginning of the XIX century due to the development of heavy industry. Smog is a widespread problem of the contemporary world, which is connected with the industry development, manufactures, mankind activity. The problem of smog has not been solved in many countries yet.

  7. Ventilation during air breathing and in response to hypercapnia in 5 and 16 month-old mdx and C57 mice

    PubMed Central

    Gayraud, Jérome; Matécki, Stefan; Hnia, Karim; Mornet, Dominique; Préfaut, Christian; Mercier, Jacques; Michel, Alain; Ramonatxo, Michèle

    2007-01-01

    Previous studies have shown a blunted ventilatory response to hypercapnia in mdx mice older than 7 months. We test the hypothesis that in the mdx mice ventilatory response changes with age, concomitantly with the increased functional impairment of the respiratory muscles. We thus studied the ventilatory response to CO2 in 5 and 16 month-old mdx and C57BL10 mice (n = 8 for each group). Respiratory rate (RR), tidal volume (VT), and minute ventilation (VE) were measured, using whole-body plethysmography, during air breathing and in response to hypercapnia (3, 5 and 8% CO2). The ventilatory protocol was completed by histological analysis of the diaphragm and intercostals muscles. During air breathing, the 16 month-old mdx mice showed higher RR and, during hypercapnia (at 8% CO2 breathing), significantly lower RR (226 ± 26 vs. 270 ± 21 breaths/min) and VE (1.81 ± 0.35 vs. 3.96 ± 0.59 ml min−1 g−1)(P < 0.001) in comparison to C57BL10 controls. On the other hand, 5 month-old C57BL10 and mdx mice did not present any difference in their ventilatory response to air breathing and to hypercapnia. In conclusion, this study shows similar ventilation during air breathing and in response to hypercapnia in the 5 month-old mdx and control mice, in spite of significant pathological structural changes in the respiratory muscles of the mdx mice. However in the 16 month-old mdx mice we observed altered ventilation under air and blunted ventilation response to hypercapnia compared to age-matched control mice. Ventilatory response to hypercapnia thus changes with age in mdx mice, in line with the increased histological damage of their respiratory muscles. PMID:17431804

  8. 78 FR 44970 - Certain Sleep-Disordered Breathing Treatment Systems and Components Thereof: Notice of Receipt of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-25

    ... COMMISSION Certain Sleep-Disordered Breathing Treatment Systems and Components Thereof: Notice of Receipt of... received a complaint entitled Certain Sleep-Disordered Breathing Treatment Systems and Components Thereof... for importation, and the sale within the United States after importation of certain sleep-...

  9. 78 FR 20137 - Certain Sleep-Disordered Breathing Treatment Systems and Components Thereof; Notice of Receipt of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-03

    ... COMMISSION Certain Sleep-Disordered Breathing Treatment Systems and Components Thereof; Notice of Receipt of... received a complaint entitled Certain Sleep-Disordered Breathing Treatment Systems and Components Thereof... for importation, and the sale within the United States after importation of certain sleep-...

  10. 78 FR 76320 - Advisory Opinion Proceeding; Certain Sleep-Disordered Breathing Treatment Systems and Components...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-17

    ..., California; and ResMed Ltd. of Australia (collectively, ``ResMed''). 78 FR 25475 (May 1, 2013). The complaint... COMMISSION Advisory Opinion Proceeding; Certain Sleep-Disordered Breathing Treatment Systems and Components... importation, importation, or sale within the United States after importation of certain...

  11. Fundamentals of breath malodour.

    PubMed

    Sanz, M; Roldán, S; Herrera, D

    2001-11-15

    Breath malodour is a condition that has health and social implications. The origin of breath malodour problems are related to both systemic and oral conditions. The advice of dental professionals for treatment of this condition occurs with regularity since 90% of breath odor problems emanate from the oral cavity. This paper provides a comprehensive review of the etiology of breath odor, its prevalence, diagnosis, and treatment strategies for the condition. PMID:12167916

  12. "What We Breathe Impacts Our Health: Improving Understanding of the Link between Air Pollution and Health".

    PubMed

    West, J Jason; Cohen, Aaron; Dentener, Frank; Brunekreef, Bert; Zhu, Tong; Armstrong, Ben; Bell, Michelle L; Brauer, Michael; Carmichael, Gregory; Costa, Dan L; Dockery, Douglas W; Kleeman, Michael; Krzyzanowski, Michal; Künzli, Nino; Liousse, Catherine; Lung, Shih-Chun Candice; Martin, Randall V; Pöschl, Ulrich; Pope, C Arden; Roberts, James M; Russell, Armistead G; Wiedinmyer, Christine

    2016-05-17

    Air pollution contributes to the premature deaths of millions of people each year around the world, and air quality problems are growing in many developing nations. While past policy efforts have succeeded in reducing particulate matter and trace gases in North America and Europe, adverse health effects are found at even these lower levels of air pollution. Future policy actions will benefit from improved understanding of the interactions and health effects of different chemical species and source categories. Achieving this new understanding requires air pollution scientists and engineers to work increasingly closely with health scientists. In particular, research is needed to better understand the chemical and physical properties of complex air pollutant mixtures, and to use new observations provided by satellites, advanced in situ measurement techniques, and distributed micro monitoring networks, coupled with models, to better characterize air pollution exposure for epidemiological and toxicological research, and to better quantify the effects of specific source sectors and mitigation strategies. PMID:27010639

  13. Development of a bathroom watching system based on breath detection and silhouette extraction

    NASA Astrophysics Data System (ADS)

    Nishiura, Tomofumi; Nakajima, Masato

    2005-12-01

    Sudden death in bathrooms is an important social problem in Japan. This paper proposes a bathroom watching system with the aim of detecting bathing people who are drowning. This system employs a fiber grating vision system and a color camera to detect breathing and the position of a bather, as well as to perform a self-diagnosis of the system operational state. The effectiveness of these functions was verified through experiments.

  14. Novel prescribed performance neural control of a flexible air-breathing hypersonic vehicle with unknown initial errors.

    PubMed

    Bu, Xiangwei; Wu, Xiaoyan; Zhu, Fujing; Huang, Jiaqi; Ma, Zhen; Zhang, Rui

    2015-11-01

    A novel prescribed performance neural controller with unknown initial errors is addressed for the longitudinal dynamic model of a flexible air-breathing hypersonic vehicle (FAHV) subject to parametric uncertainties. Different from traditional prescribed performance control (PPC) requiring that the initial errors have to be known accurately, this paper investigates the tracking control without accurate initial errors via exploiting a new performance function. A combined neural back-stepping and minimal learning parameter (MLP) technology is employed for exploring a prescribed performance controller that provides robust tracking of velocity and altitude reference trajectories. The highlight is that the transient performance of velocity and altitude tracking errors is satisfactory and the computational load of neural approximation is low. Finally, numerical simulation results from a nonlinear FAHV model demonstrate the efficacy of the proposed strategy. PMID:26456727

  15. Critical importance of humidification of the anode in miniature air-breathing polymer electrolyte membrane fuel cells

    NASA Astrophysics Data System (ADS)

    Hamel, Simon; Fréchette, Luc G.

    2011-08-01

    Although water management at the cathode is known to be critical in miniature polymer electrolyte membrane fuel cells (mPEMFCs), this study shows that control of water transport towards the anode is a determining factor to increase air-breathing mPEMFC performances. An analytical 1D model is developed to capture the water transport and water content profile in the membrane. It shows that drying at the anode and flooding at the cathode can happen simultaneously, mainly due to dominant electro-osmotic drag at low cell temperatures. Experimental results demonstrate that injecting water at the anode, at a rate of 3 times the amount produced at the cathode, increases the cell performances at high current densities. By this method, the limiting current and maximum power densities have been raised by 100% and 30% respectively.

  16. Analysis of the Magneto-Hydrodynamic (MHD) Energy Bypass Engine for High-Speed Air-Breathing Propulsion

    NASA Technical Reports Server (NTRS)

    Riggins, David W.

    2002-01-01

    The performance of the MHD energy bypass air-breathing engine for high-speed propulsion is analyzed in this investigation. This engine is a specific type of the general class of inverse cycle engines. In this paper, the general relationship between engine performance (specific impulse and specific thrust) and the overall total pressure ratio through an engine (from inlet plane to exit plane) is first developed and illustrated. Engines with large total pressure decreases, regardless of cause or source, are seen to have exponentially decreasing performance. The ideal inverse cycle engine (of which the MHD engine is a sub-set) is then demonstrated to have a significant total pressure decrease across the engine; this total pressure decrease is cycle-driven, degrades rapidly with energy bypass ratio, and is independent of any irreversibility. The ideal MHD engine (inverse cycle engine with no irreversibility other than that inherent in the MHD work interaction processes) is next examined and is seen to have an additional large total pressure decrease due to MHD-generated irreversibility in the decelerator and the accelerator. This irreversibility mainly occurs in the deceleration process. Both inherent total pressure losses (inverse cycle and MHD irreversibility) result in a significant narrowing of the performance capability of the MHD bypass engine. The fundamental characteristics of MHD flow acceleration and flow deceleration from the standpoint of irreversibility and second-law constraints are next examined in order to clarify issues regarding flow losses and parameter selection in the MM modules. Severe constraints are seen to exist in the decelerator in terms of allowable deceleration Mach numbers and volumetric (length) required for meaningful energy bypass (work interaction). Considerable difficulties are also encountered and discussed due to thermal/work choking phenomena associated with the deceleration process. Lastly, full engine simulations utilizing inlet

  17. Development of gas exchange and ion regulation in two species of air-breathing fish, Betta splendens and Macropodus opercularis.

    PubMed

    Huang, Chun-Yen; Lin, Cheng-Huang; Lin, Hui-Chen

    2015-07-01

    Aquatic air-breathing anabantoids, a group of fish species characterized by the presence of a labyrinth organ and some gills, exhibit morphological variations. This study aimed to examine whether unequal gill growth begins during the early stages and described the sequence of the early gill developmental events in Betta splendens and Macropodus opercularis. To determine when the ion regulatory and gas exchange abilities first appear in the gills, mitochondria-rich cells (MRCs) and neuroepithelial cells (NECs) were examined in young B. splendens. To evaluate the relative importance of the gills and the labyrinth organ under different levels of oxygen uptake stress, the levels of carbonic anhydrase II (CAII) and Na(+)/K(+)-ATPase (NKA) protein expressions in 2 gills and the labyrinth organ were examined in M. opercularis. We found that the first 3 gills developed earlier than the 4th gill in both species, an indication that the morphological variation begins early in life. In B. splendens, the MRCs and NECs clearly appeared in the first 3 gills at 4 dph and were first found in the 4th gill until 11 dph. The oxygen-sensing ability of the gills was concordant with the ionoregulatory function. In M. opercularis, the hypoxic group had a significantly higher air-breathing frequency. CAII protein expression was higher in the labyrinth organ in the hypoxic group. The gills exhibited increased NKA protein expression in the hypoxic and restricted groups, respectively. Functional plasticity in CAII and NKA protein expressions was found between the gills and the labyrinth organ in adult M. opercularis. PMID:25783787

  18. Static and Hypersonic Experimental Analysis of Impulse Generation in Air-Breathing Laser-Thermal Propulsion

    NASA Astrophysics Data System (ADS)

    Salvador, Israel Irone

    The present research campaign centered on static and hypersonic experiments performed with a two-dimensional, repetitively-pulsed (RP) laser Lightcraft model. The future application of interest for this basic research endeavor is the laser launch of nano- and micro-satellites (i.e., 1-100 kg payloads) into Low Earth Orbit (LEO), at low-cost and "on-demand". This research began with an international collaboration on Beamed Energy Propulsion between the United States Air Force and Brazilian Air Force to conduct experiments at the Henry T. Nagamatsu Laboratory of Aerothermodynamics and Hypersonics (HTN-LAH). The laser propulsion (LP) experiments employed the T3 Hypersonic Shock Tunnel (HST), integrated with twin gigawatt pulsed Lumonics 620-TEA CO2 lasers to produce the required test conditions. Following an introduction of the pulsed laser thermal propulsion concept and a state-of-the-art review of the topic, the principal physical processes are outlined starting from the onset of the laser pulse and subsequent laser-induced air-breakdown, to the expansion and exhaust of the resulting blast wave. After installation of the 254 mm wide, 2D Lightcraft model into the T3 tunnel, static LP tests were performed under quiescent (no-flow) conditions at ambient pressures of 0.06, 0.15, 0.3 and 1 bar, using the T3 test-section/dump-tank as a vacuum chamber. Time-dependent surface pressure distributions were measured over the engine thrust-generating surfaces following laser energy deposition; the delivered impulse and momentum coupling coefficients (Cm) were calculated from that pressure data. A Schlieren visualization system (using a high-speed Cordin digital camera) captured the laser breakdown and blast wave expansion process. The 2D model's Cm performance of 600 to 3000 N/MW was 2.5-5x higher than theoretical projections available in the literature, but indeed in the realm of feasibility for static conditions. Also, these Cm values exceed that for smaller Lightcraft models

  19. A study on supersonic mixing by circular nozzle with various injection angles for air breathing engine

    NASA Astrophysics Data System (ADS)

    Aso, S.; Inoue, K.; Yamaguchi, K.; Tani, Y.

    2009-09-01

    SCRAM-jet engine is considered to be one of the useful system propulsion for super/hypersonic transportation vehicle and various researches were made to develop the engine. However, there are a lot of problems to be solved to develop it and one of them is the problem of supersonic mixing. In the SCRAM-jet engine combustor, main airflow is supersonic and residence time of the air is very short (about 1 ms). Hence rapid mixing of air and fuel is necessary. However, usually it is quite difficult to mix fuel with air in very short distance. Also total pressure loss occurs by flow interaction the air and fuel. Total pressure loss is not preferable because it causes the thrust loss. Therefore, supersonic mixing with very rapid mixing and lower total pressure loss ratio is highly requested. In order to develop the supersonic mixing, it is very important to understand the effect of injection angle. In present study, we investigate the effect of injection angle with circular sonic nozzle by changing the injection angle. Experimental and computational studies on supersonic mixing phenomena of two-dimensional slot injector with various injection angles were conducted. Supersonic wind tunnel was used for the experiments. The free stream Mach number is 3.8, total pressure is 1.1 MPa and total temperature is 287 K on average. As a secondary gas, helium gas was injected at sonic speed from the circular nozzle. The injection angle is 30°, 90° and 150°. Its total pressure is 0.4 MPa and total temperature is 287 K on average. The same flow field was also simulated by solving three-dimensional full Navier-Stokes equation with AUSM-DV scheme [Y. Wada, M.S. Liou, A flux splitting scheme with high-resolution and robustness for discontinuities, AIAA Paper 94-0083, 1994] for convective terms and full implicit LU-ADI factorization method [S. Obayashi, K. Matsushima, K. Fujii, K. Kuwahara, Improvements in efficiency and reliability for Navier-Stokes computations using the LU

  20. Selected Ion Flow-Drift Tube Mass Spectrometry: Quantification of Volatile Compounds in Air and Breath.

    PubMed

    Spesyvyi, Anatolii; Smith, David; Španěl, Patrik

    2015-12-15

    A selected ion flow-drift tube mass spectrometric analytical technique, SIFDT-MS, is described that extends the established selected ion flow tube mass spectrometry, SIFT-MS, by the inclusion of a static but variable E-field along the axis of the flow tube reactor in which the analytical ion-molecule chemistry occurs. The ion axial speed is increased in proportion to the reduced field strength E/N (N is the carrier gas number density), and the residence/reaction time, t, which is measured by Hadamard transform multiplexing, is correspondingly reduced. To ensure a proper understanding of the physics and ion chemistry underlying SIFDT-MS, ion diffusive loss to the walls of the flow-drift tube and the mobility of injected H3O(+) ions have been studied as a function of E/N. It is seen that the derived diffusion coefficient and mobility of H3O(+) ions are consistent with those previously reported. The rate coefficient has been determined at elevated E/N for the association reaction of the H3O(+) reagent ions with H2O molecules, which is the first step in the production of H3O(+)(H2O)1,2,3 reagent hydrate ions. The production of hydrated analyte ion was also experimentally investigated. The analytical performance of SIFDT-MS is demonstrated by the quantification of acetone and isoprene in exhaled breath. Finally, the essential features of SIFDT-MS and SIFT-MS are compared, notably pointing out that a much lower speed of the flow-drive pump is required for SIFDT-MS, which facilitates the development of smaller cost-effective analytical instruments for real time breath and fluid headspace analyses. PMID:26583448

  1. Bioanalysis of uranium, plutonium, and curium on breathing zone air samples by solvent extraction and PERALS spectroscopy

    SciTech Connect

    Metzger, R.L.; Jessop, B.H.; McDowell, B.L.

    1995-12-31

    Breathing zone air samples are commonly used to monitor airborne concentrate of radionuclides in ions the workplace and to assess the efficacy of respiratory protection programs. Radioactive isotopes of actinides have very low allowable airborne concentrations, so knowledge of the airborne activities of these nuclides is crucial. The air samples are typically analyzed for alpha-particle-emitting radionuclides by direct counting of the filters or by conventional separation chemistry and alpha-particle spectrometry. These techniques do not normally provide a sample turnaround that is sufficiently rapid to allow a change in the respiratory protection program, if necessary. In this work we have developed straightforward solvent extraction separation procedures that can rapidly phase transfer isotopes of uranium, plutonium, and americium or curium from a dissolved filter medium to an extractive scintillator for counting on a Photon/Electron-Rejecting Alpha Liquid Scintillation (PERALS{sup {reg_sign}}) Spectrometer. Results can normally be obtained within eight hours from the receipt of the air filter.

  2. Studying the Proteomic Composition of Expired Air Condensate in Newborns on Breathing Support.

    PubMed

    Kononikhin, A S; Ryndin, A Yu; Starodubtseva, N L; Chagovets, V V; Burov, A A; Bugrova, A E; Kostyukevich, Yu I; Popov, I A; Frankevich, V E; Ionov, O V; Zubkov, V V; Nikolaev, E N

    2016-04-01

    This study was designed to collect and perform a proteomic analysis of expired air condensate in newborns receiving respiratory support at the Department of Resuscitation and Intensive Care. The proteomic composition of expired air condensate was evaluated in newborns at various stages of development and with different abnormalities. PMID:27165072

  3. Air injection project breathes fire into aging West Hackberry oil field

    SciTech Connect

    Duey, R.

    1996-02-01

    Amoco, the DOE and LSU seek more oil from Gulf Coast salt dome fields with air injection technique. The West Hackberry Field in Louisiana is a water-driven reservoir. By injecting air into the high-pressure, high-temperature reservoir rock, the water is backed down, allowing the oil to drain off the steeply dipped rock.

  4. Air conditioning system

    DOEpatents

    Lowenstein, Andrew; Miller, Jeffrey; Gruendeman, Peter; DaSilva, Michael

    2005-02-01

    An air conditioner comprises a plurality of plates arranged in a successively stacked configuration with portions thereof having a spaced apart arrangement, and defining between successive adjacent pairs of plates at the spaced apart portions a first and second series of discrete alternating passages wherein a first air stream is passed through the first series of passages and a second air stream is passed through the second series of passages; and said stacked configuration of plates forming integrally therewith a liquid delivery means for delivering from a source a sufficient quantity of a liquid to the inside surfaces of the first series of fluid passages in a manner which provides a continuous flow of the liquid from a first end to a second end of the plurality of plates while in contact with the first air stream.

  5. Breathing-metabolic simulator

    NASA Technical Reports Server (NTRS)

    Bartlett, R. G.; Hendricks, C. M.; Morison, W. B.

    1972-01-01

    Breathing-metabolic simulator was developed to be used for evaluation of life support equipment. Apparatus simulates human breathing rate and controls temperature and humidity of exhaled air as well as its chemical composition. All functions are designed to correspond to various degrees of human response.

  6. Breath tests sustainability in hospital settings: cost analysis and reimbursement in the Italian National Health System.

    PubMed

    Volpe, M; Scaldaferri, F; Ojetti, V; Poscia, A

    2013-01-01

    The high demand of Breath Tests (BT) in many gastroenterological conditions in time of limited resources for health care systems, generates increased interest in cost analysis from the point of view of the delivery of services to better understand how use the money to generate value. This study aims to measure the cost of C13 Urea and other most utilized breath tests in order to describe key aspects of costs and reimbursements looking at the economic sustainability for the hospital. A hospital based cost-analysis of the main breath tests commonly delivery in an ambulatory setting is performed. Mean salary for professional nurses and gastroenterologists, drugs/preparation used and disposable materials, purchase and depreciation of the instrument and the testing time was used to estimate the cost, while reimbursements are based on the 2013 Italian National Health System ambulatory pricelist. Variables that could influence the model are considered in the sensitivity analyses. The mean cost for C13--Urea, Lactulose and Lactose BT are, respectively, Euros 30,59; 45,20 and 30,29. National reimbursement often doesn't cover the cost of the analysis, especially considering the scenario with lower number of exam. On the contrary, in high performance scenario all the reimbursement could cover the cost, except for the C13 Urea BT that is high influenced by the drugs cost. However, consideration about the difference between Italian Regional Health System ambulatory pricelist are done. Our analysis shows that while national reimbursement rates cover the costs of H2 breath testing, they do not cover sufficiently C13 BT, particularly urea breath test. The real economic strength of these non invasive tests should be considered in the overall organization of inpatient and outpatient clinic, accounting for complete diagnostic pathway for each gastrointestinal disease. PMID:24443075

  7. Fundamentals of air quality systems

    SciTech Connect

    Noll, K.E.

    1999-08-01

    The book uses numerous examples to demonstrate how basic design concepts can be applied to the control of air emissions from industrial sources. It focuses on the design of air pollution control devices for the removal of gases and particles from industrial sources, and provides detailed, specific design methods for each major air pollution control system. Individual chapters provide design methods that include both theory and practice with emphasis on the practical aspect by providing numerous examples that demonstrate how air pollution control devices are designed. Contents include air pollution laws, air pollution control devices; physical properties of air, gas laws, energy concepts, pressure; motion of airborne particles, filter and water drop collection efficiency; fundamentals of particulate emission control; cyclones; fabric filters; wet scrubbers; electrostatic precipitators; control of volatile organic compounds; adsorption; incineration; absorption; control of gaseous emissions from motor vehicles; practice problems (with solutions) for the P.E. examination in environmental engineering. Design applications are featured throughout.

  8. High-Throughput Sequencing Identifies MicroRNAs from Posterior Intestine of Loach (Misgurnus anguillicaudatus) and Their Response to Intestinal Air-Breathing Inhibition

    PubMed Central

    Huang, Songqian; Cao, Xiaojuan; Tian, Xianchang; Wang, Weimin

    2016-01-01

    MicroRNAs (miRNAs) exert important roles in animal growth, immunity, and development, and regulate gene expression at the post-transcriptional level. Knowledges about the diversities of miRNAs and their roles in accessory air-breathing organs (ABOs) of fish remain unknown. In this work, we used high-throughput sequencing to identify known and novel miRNAs from the posterior intestine, an important ABO, in loach (Misgurnus anguillicaudatus) under normal and intestinal air-breathing inhibited conditions. A total of 204 known and 84 novel miRNAs were identified, while 47 miRNAs were differentially expressed between the two small RNA libraries (i.e. between the normal and intestinal air-breathing inhibited group). Potential miRNA target genes were predicted by combining our transcriptome data of the posterior intestine of the loach under the same conditions, and then annotated using COG, GO, KEGG, Swissprot and Nr databases. The regulatory networks of miRNAs and their target genes were analyzed. The abundances of nine known miRNAs were validated by qRT-PCR. The relative expression profiles of six known miRNAs and their eight corresponding target genes, and two novel potential miRNAs were also detected. Histological characteristics of the posterior intestines in both normal and air-breathing inhibited group were further analyzed. This study contributes to our understanding on the functions and molecular regulatory mechanisms of miRNAs in accessory air-breathing organs of fish. PMID:26872032

  9. Advanced air revitalization system testing

    NASA Technical Reports Server (NTRS)

    Heppner, D. B.; Hallick, T. M.; Schubert, F. H.

    1983-01-01

    A previously developed experimental air revitalization system was tested cyclically and parametrically. One-button startup without manual interventions; extension by 1350 hours of tests with the system; capability for varying process air carbon dioxide partial pressure and humidity and coolant source for simulation of realistic space vehicle interfaces; dynamic system performance response on the interaction of the electrochemical depolarized carbon dioxide concentrator, the Sabatier carbon dioxide reduction subsystem, and the static feed water electrolysis oxygen generation subsystem, the carbon dioxide concentrator module with unitized core technology for the liquid cooled cell; and a preliminary design for a regenerative air revitalization system for the space station are discussed.

  10. The orbiter air data system

    NASA Technical Reports Server (NTRS)

    Hillje, E. R.

    1985-01-01

    Air data parameters are required during Orbiter atmospheric entry for use by the autoguidance, navigation, and flight control systems, and for crew displays. Conventional aircraft calibrations of the Orbiter air data system were not practicable for the Space Shuttle, therefore extensive wind tunnel testing was required to give confidence in the preflight calibrations. Many challenges became apparent as the program developed; in the overall system design, in the wind tunnel testing program, in the implementation of the air data system calibration, and in the use of the flight data to modify the wind tunnel results. These challenges are discussed along with the methods used to solve the problems.

  11. Air Pollution Surveillance Systems

    ERIC Educational Resources Information Center

    Morgan, George B.; And Others

    1970-01-01

    Describes atmospheric data monitoring as part of total airpollution control effort. Summarizes types of gaseous, liquid and solid pollutants and their sources; contrast between urban and rural environmental air quality; instrumentation to identify pollutants; and anticipated new non-wet chemical physical and physiochemical techniques tor cetection…

  12. Air ejector augmented compressed air energy storage system

    DOEpatents

    Ahrens, Frederick W.; Kartsounes, George T.

    1980-01-01

    Energy is stored in slack demand periods by charging a plurality of underground reservoirs with air to the same peak storage pressure, during peak demand periods throttling the air from one storage reservoir into a gas turbine system at a constant inlet pressure until the air pressure in the reservoir falls to said constant inlet pressure, thereupon permitting air in a second reservoir to flow into said gas turbine system while drawing air from the first reservoir through a variable geometry air ejector and adjusting said variable geometry air ejector, said air flow being essentially at the constant inlet pressure of the gas turbine system.

  13. Air ejector augmented compressed air energy storage system

    DOEpatents

    Ahrens, F.W.; Kartsounes, G.T.

    Energy is stored in slack demand periods by charging a plurality of underground reservoirs with air to the same peak storage pressure, during peak demand periods throttling the air from one storage reservoir into a gas turbine system at a constant inlet pressure until the air presure in the reservoir falls to said constant inlet pressure, thereupon permitting air in a second reservoir to flow into said gas turbine system while drawing air from the first reservoir through a variable geometry air ejector and adjusting said variable geometry air ejector, said air flow being essentially at the constant inlet pressure of the gas turbine system.

  14. Air-breathing hypersonic vehicle guidance and control studies; An integrated trajectory/control analysis methodology: Phase 1

    NASA Technical Reports Server (NTRS)

    Hattis, Philip D.; Malchow, Harvey L.

    1991-01-01

    A tool which generates optimal trajectory/control histories in an integrated manner is generically adapted to the treatment of single-stage-to-orbit air-breathing hypersonic vehicles. The methodology is implemented as a two point boundary value problem solution technique. Its use permits an assessment of an entire near-minimum-fuel trajectory and desired control strategy from takeoff to orbit while satisfying physically derived inequality constraints and while achieving efficient propulsive mode phasing. A simpler analysis strategy that partitions the trajectory into several boundary condition matched segments is also included to construct preliminary trajectory and control history representations with less computational burden than is required for the overall flight profile assessment. A demonstration was accomplished using a tabulated example (winged-cone accelerator) vehicle model that is combined with a newly developed multidimensional cubic spline data smoothing routine. A constrained near-fuel-optimal trajectory, imposing a dynamic pressure limit of 1000 psf, was developed from horizontal takeoff to 20,000 ft/sec relative air speed while aiming for a polar orbit. Previously unspecified propulsive discontinuities were located. Flight regimes demanding rapid attitude changes were identified, dictating control effector and closed-loop controller authority was ascertained after evaluating effector use for vehicle trim. Also, inadequacies in vehicle model representations and specific subsystem models with insufficient fidelity were determined based on unusual control characteristics and/or excessive sensitivity to uncertainty.

  15. Experimental Analysis of Air Flows in Bronchial Airway Models in the Cases of Natural Breathing and HFOV

    NASA Astrophysics Data System (ADS)

    Lee, Won-Je; Kawahashi, Masaaki; Hirahara, Hiroyuki

    The mechanism of gas transfer, flow pattern and diffusion in respiratory air flow at the end zone of human lung, especially in bronchial and alveoli, has not been clarified in detail. Recently, it is known that high frequency oscillatory ventilation (HFOV) is an effective treatment for respiratory distress syndrome. However, the frequency effect on ventilation in relation to the gas transfer efficiency at the end zone of lungs has not been investigated. The velocity profile of oscillatory air flow in bronchial tube is one of the fundamental factors to consider the frequency effect. In this paper, velocity profiles of oscillatory flows in micro scale models of bronchial airway with single- and multi-bifurcation have been investigated for different frequencies corresponding to resting breathing and HFOV by using micro Particle Image Velocimetry (micro PIV). The temporal changes of velocity profiles were reconstructed by phase-averaged velocity maps obtained by micro PIV measurements, and the effect of frequency on the velocity profile in bronchial models has been discussed.

  16. Breathing variability and brainstem serotonergic loss in a genetic model of multiple system atrophy.

    PubMed

    Flabeau, Olivier; Meissner, Wassilios G; Ozier, Annaig; Berger, Patrick; Tison, François; Fernagut, Pierre-Olivier

    2014-03-01

    Breathing disorders like sleep apnea, stridor, and dysrythmic breathing are frequent in patients with multiple system atrophy (MSA). These observations have been related to neurodegeneration in several pontomedullary respiratory nuclei and may explain the occurrence of sudden death. In this study, we sought to determine whether these functional and neuropathological characteristics could be replicated in a transgenic model of MSA. Mice expressing human wild-type α-synuclein under the control of the proteolipid promoter (PLP-αSYN) were compared with age-matched controls. Using whole-body, unrestrained plethysmography, the following breathing parameters were measured: inspiratory and expiratory times, tidal volume, expiratory volume, peak inspiratory and expiratory flows, and respiratory frequency. For each category, the mean, coefficient of variation, and irregularity score were analyzed. Brains were then processed for stereological cell counts of pontomedullary respiratory nuclei. A significant increase in the coefficient of variation and irregularity score was observed for inspiratory time, tidal volume, and expiratory volume in PLP-αSYN mice (P < 0.05). Glial cytoplasmic inclusions were found in the medullary raphe of PLP-αSYN mice, together with a loss of serotonergic immunoreactivity in the raphe obscurus (P < 0.001) and pallidus (P < 0.01). There was a negative correlation between α-synuclein burden and raphe pallidus cell counts (P < 0.05). There was no significant neuronal loss in the pre-Botzinger complex. The PLP-αSYN mouse model replicates the breathing variability and part of the neuronal depletion in pontomedullary respiratory nuclei observed in patients with MSA. Our findings support the use of this model for future candidate drugs in the breathing disorders observed in MSA. PMID:24442757

  17. Fourier-based linear systems description of free-breathing pulmonary magnetic resonance imaging

    NASA Astrophysics Data System (ADS)

    Capaldi, D. P. I.; Svenningsen, S.; Cunningham, I. A.; Parraga, G.

    2015-03-01

    Fourier-decomposition of free-breathing pulmonary magnetic resonance imaging (FDMRI) was recently piloted as a way to provide rapid quantitative pulmonary maps of ventilation and perfusion without the use of exogenous contrast agents. This method exploits fast pulmonary MRI acquisition of free-breathing proton (1H) pulmonary images and non-rigid registration to compensate for changes in position and shape of the thorax associated with breathing. In this way, ventilation imaging using conventional MRI systems can be undertaken but there has been no systematic evaluation of fundamental image quality measurements based on linear systems theory. We investigated the performance of free-breathing pulmonary ventilation imaging using a Fourier-based linear system description of each operation required to generate FDMRI ventilation maps. Twelve subjects with chronic obstructive pulmonary disease (COPD) or bronchiectasis underwent pulmonary function tests and MRI. Non-rigid registration was used to co-register the temporal series of pulmonary images. Pulmonary voxel intensities were aligned along a time axis and discrete Fourier transforms were performed on the periodic signal intensity pattern to generate frequency spectra. We determined the signal-to-noise ratio (SNR) of the FDMRI ventilation maps using a conventional approach (SNRC) and using the Fourier-based description (SNRF). Mean SNR was 4.7 ± 1.3 for subjects with bronchiectasis and 3.4 ± 1.8, for COPD subjects (p>.05). SNRF was significantly different than SNRC (p<.01). SNRF was approximately 50% of SNRC suggesting that the linear system model well-estimates the current approach.

  18. Cold air systems: Sleeping giant

    SciTech Connect

    MacCracken, C.D. )

    1994-04-01

    This article describes how cold air systems help owners increase the profits from their buildings by reducing electric costs and improving indoor air quality through lower relative humidity levels. Cold air distribution involves energy savings, cost savings, space savings, greater comfort, cleaner air, thermal storage, tighter ducting, coil redesign, lower relative humidities, retrofitting, and improved indoor air quality (IAQ). It opens a door for architects, engineers, owners, builders, environmentalists, retrofitters, designers, occupants, and manufacturers. Three things have held up cold air's usage: multiple fan-powered boxes that ate up the energy savings of primary fans. Cold air room diffusers that provided inadequate comfort. Condensation from ducts, boxes, and diffusers. Such problems have been largely eliminated through research and development by utilities and manufacturers. New cold air diffusers no longer need fan powered boxes. It has also been found that condensation is not a concern so long as the ducts are located in air conditioned space, such as drop ceilings or central risers, where relative humidity falls quickly during morning startup.

  19. Thermodynamic Cycle and CFD Analyses for Hydrogen Fueled Air-breathing Pulse Detonation Engines

    NASA Technical Reports Server (NTRS)

    Povinelli, Louis A.; Yungster, Shaye

    2002-01-01

    This paper presents the results of a thermodynamic cycle analysis of a pulse detonation engine (PDE) using a hydrogen-air mixture at static conditions. The cycle performance results, namely the specific thrust, fuel consumption and impulse are compared to a single cycle CFD analysis for a detonation tube which considers finite rate chemistry. The differences in the impulse values were indicative of the additional performance potential attainable in a PDE.

  20. Cave air ventilation and CO 2 outgassing by radon-222 modeling: How fast do caves breathe?

    NASA Astrophysics Data System (ADS)

    Kowalczk, Andrew J.; Froelich, Philip N.

    2010-01-01

    In general, the rate and timing of calcite precipitation is in part affected by variations in cave air CO 2 concentrations. Knowledge of cave ventilation processes is required to quantify the effect variations in CO 2 concentrations have on speleothem deposition rates and thus paleoclimate records. In this study we use radon-222 ( 222Rn) as a proxy of ventilation to estimate CO 2 outgassing from the cave to the atmosphere, which can be used to infer relative speleothem deposition rates. Hollow Ridge Cave, a wild cave preserve in Marianna, Florida, is instrumented inside and out with multiple micro-meteorological sensor stations that record continuous physical and air chemistry time-series data. Our time series datasets indicate diurnal and seasonal variations in cave air 222Rn and CO 2 concentrations, punctuated by events that provide clues to ventilation and drip water degassing mechanisms. Average cave air 222Rn and CO 2 concentrations vary seasonally between winter ( 222Rn = 50 dpm L - 1 , where 1 dpm L - 1 = 60 Bq m - 3 ; CO 2 = 360 ppmv) and summer ( 222Rn = 1400 dpm L - 1 ; CO 2 = 3900 ppmv). Large amplitude diurnal variations are observed during late summer and autumn ( 222Rn = 6 to 581 dpm L - 1 ; CO 2 = 360 to 2500 ppmv). We employ a simple first-order 222Rn mass balance model to estimate cave air exchange rates with the outside atmosphere. Ventilation occurs via density driven flow and by winds across the entrances which create a 'venturi' effect. The most rapid ventilation occurs 25 m inside the cave near the entrance: 45 h - 1 (1.33 min turnover time). Farther inside (175 m) exchange is slower and maximum ventilation rates are 3 h - 1 (22 min turnover time). We estimate net CO 2 flux from the epikarst to the cave atmosphere using a CO 2 mass balance model tuned with the 222Rn model. Net CO 2 flux from the epikarst is highest in summer (72 mmol m - 2 day - 1 ) and lowest in late autumn and winter (12 mmol m - 2 day - 1 ). Modeled ventilation and net CO 2

  1. pH in exhaled breath condensate and nasal lavage as a biomarker of air pollution-related inflammation in street traffic-controllers and office-workers

    PubMed Central

    de Lima, Thamires Marques; Kazama, Cristiane Mayumi; Koczulla, Andreas Rembert; Hiemstra, Pieter S.; Macchione, Mariangela; Fernandes, Ana Luisa Godoy; de Paula Santos, Ubiratan; Bueno-Garcia, Maria Lucia; Zanetta, Dirce Maria; de André, Carmen Diva Saldiva; Saldiva, Paulo Hilario Nascimento; Nakagawa, Naomi Kondo

    2013-01-01

    OBJECTIVE: To utilize low-cost and simple methods to assess airway and lung inflammation biomarkers related to air pollution. METHODS: A total of 87 male, non-smoking, healthy subjects working as street traffic-controllers or office-workers were examined to determine carbon monoxide in exhaled breath and to measure the pH in nasal lavage fluid and exhaled breath condensate. Air pollution exposure was measured by particulate matter concentration, and data were obtained from fixed monitoring stations (8-h work intervals per day, during the 5 consecutive days prior to the study). RESULTS: Exhaled carbon monoxide was two-fold greater in traffic-controllers than in office-workers. The mean pH values were 8.12 in exhaled breath condensate and 7.99 in nasal lavage fluid in office-workers; these values were lower in traffic-controllers (7.80 and 7.30, respectively). Both groups presented similar cytokines concentrations in both substrates, however, IL-1β and IL-8 were elevated in nasal lavage fluid compared with exhaled breath condensate. The particulate matter concentration was greater at the workplace of traffic-controllers compared with that of office-workers. CONCLUSION: The pH values of nasal lavage fluid and exhaled breath condensate are important, robust, easy to measure and reproducible biomarkers that can be used to monitor occupational exposure to air pollution. Additionally, traffic-controllers are at an increased risk of airway and lung inflammation during their occupational activities compared with office-workers. PMID:24473505

  2. Health effects from breathing air near CAFOs for feeder cattle or hogs.

    PubMed

    Von Essen, Susanna G; Auvermann, Brent W

    2005-01-01

    There is concern that livestock operations for fattening cattle and raising hogs known as concentrated animal feeding operations (CAFOs) release substances into the air that have negative effects on the health of persons living nearby. These substances include dust containing endotoxin and other microbial products as well as ammonia, hydrogen sulfide and a variety of volatile organic compounds. Odors from these farms are considered offensive by some neighbors. A variety of medical complaints are reported to be more common in those people who live near CAFOs for raising hogs than in people without this exposure. Respiratory health effects, including symptoms of pulmonary disease and lung function test result abnormalities, have been described in workers employed in CAFOs where hogs are raised. Health effects after inhalation exposure of neighbors to substances released into the ambient air from these farms is less well characterized. It must be noted that CAFO workers may differ from neighbors in terms of their exposures and general health status. The presence of dust and other substances from cattle feedlots also causes some neighbors to voice concerns about the impact on their health but this exposure has been studied less extensively than exposure to substances released from CAFOs where hogs are raised. Further research needs to be done to look for measurable health effects attributable to living near all CAFOs in order to better understand the impact of these farms. PMID:16702123

  3. Review of the PDWA Concept for Combustion Enhancement in a Supersonic Air-Breathing Combustor Environment

    NASA Technical Reports Server (NTRS)

    Canbier, Jean-Luc; Edwards, Thomas A. (Technical Monitor)

    1995-01-01

    This paper reviews the design of the Pulsed Detonation Wave Augmentor (PDWA) concept and the preliminary computational fluid dynamics studies that supported it. The PDWA relies on the rapid generation of detonation waves in a small tube, which are then injected into the supersonic stream of the main combustor. The blast waves thus generated are used to stimulate the mixing and combustion inside the main combustor. The mixing enhancement relies on various forms of the baroclinic interaction, where misaligned pressure and density gradients combine to produce vortical flow. By using unsteady shock waves, the concept also uses the Richtmyer-Meshkov effect to further increase the rate of mixing. By carefully designing the respective configurations of the combustor and the detonation tubes, one can also increase the penetration of the fuel into the supersonic air stream. The unsteady shocks produce lower stagnation pressure losses than steady shocks. Combustion enhancement can also be obtained through the transient shock-heating of the fuel-air interface, and the lowering of the ignition delay in these regions. The numerical simulations identify these processes, and show which configurations give the best results. Engineering considerations are also presented, and discuss the feasibility of the concept. Of primary importance are the enhancements in performance, the design simplicity, the minimization of the power, cost, and weight, and the methods to achieve very rapid cycling.

  4. Biofuel cell for generating power from methanol substrate using alcohol oxidase bioanode and air-breathed laccase biocathode.

    PubMed

    Das, Madhuri; Barbora, Lepakshi; Das, Priyanki; Goswami, Pranab

    2014-09-15

    We report here an alcohol oxidase (AOx) based third generation bioanode for generating power from methanol substrate in a fuel cell setup using air breathed laccase biocathode. A composite three dimensional microporous matrix containing multiwalled carbon nanotubes, carbon paste and nafion was used as electroactive support for immobilization of the enzymes on toray carbon paper as supporting electrode in the fabrication of the bioelectrodes. Polyethylenimine was used to electrostatically stabilize the AOx (pI 4.3) on the anode operating on direct electrochemistry principle. Osmium tetroxide on poly (4-vinylpyridine) was used to wire the laccase for electron transfer in the biocathode. The enzymatic biofuel cell (EFC) generated an open circuit potential of 0.61 (±0.02) V with a maximum power density of 46 (±0.002) µW cm(-2) at an optimum of 1M methanol, 25 °C and an internal resistance of 0.024 µΩ. The operation and storage half life (t1/2) of the EFC were 17.22 h and 52 days, respectively at a fixed load of 1.85 Ω. The findings have demonstrated the feasibility of developing EFC using AOx based bioanode and laccase based biocathode without applying any toxic free mediator and metal electrode supports for generating electricity. PMID:24727604

  5. MWCNT-supported phthalocyanine cobalt as air-breathing cathodic catalyst in glucose/O2 fuel cells

    NASA Astrophysics Data System (ADS)

    Elouarzaki, Kamal; Haddad, Raoudha; Holzinger, Michael; Le Goff, Alan; Thery, Jessica; Cosnier, Serge

    2014-06-01

    Simple and highly efficient glucose fuel cells using abiotic catalysts and different ion exchange membranes were designed. The glucose fuel cells are based on a multi-walled carbon nanotube (MWCNT)-supported cobalt phthalocyanine (CoPc) cathode and a carbon black/platinum (C/Pt) anode. The electrocatalytic activity of the MWCNT/CoPc electrode for oxygen reduction was investigated by cyclic and linear sweep voltammetry. The electrochemical experiments show that CoPc exhibits promising catalytic properties for oxygen reduction due to its high overpotential and efficiency at reduced metal load. The MWCNT/CoPc electrodes were applied to the oxygen reduction reaction as air-breathing cathode in a single-chambered glucose fuel cell. This cathode was associated with a C/Pt anode in fuel cell configurations using either an anion (Nafion®) or a cation (Tokuyama) exchange membrane. The best fuel cell configuration delivered a maximum power density of 2.3 mW cm-2 and a cell voltage of 0.8 V in 0.5 M KOH solution containing 0.5 M glucose using the Tokuyama membrane at ambient conditions. Beside the highest power density per cathodic catalyst mass (383 W g-1), these glucose fuel cells exhibit a high operational stability, delivering 0.3 mW cm-2 after 50 days.

  6. The transition from water-breathing to air-breathing is associated with a shift in ion uptake from gills to gut: a study of two closely related erythrinid teleosts, Hoplerythrinus unitaeniatus and Hoplias malabaricus.

    PubMed

    Wood, Chris M; Pelster, Bernd; Giacomin, Marina; Sadauskas-Henrique, Helen; Almeida-Val, Vera Maria F; Val, Adalberto Luis

    2016-05-01

    The evolutionary transition from water-breathing to air-breathing involved not only a change in function of the organs of respiratory gas exchange and N-waste excretion, but also in the organs of ion uptake from the environment. A combination of in vivo and in vitro techniques was used to look at the relative importance of the gills versus the gut in Na(+), Cl(-), and K(+) balance in two closely related erythrinid species: a facultative air-breather, the jeju (Hoplerythrinus unitaeniatus) and an obligate water-breather, the traira (Hoplias malabaricus). The jeju has a well-vascularized physostomous swimbladder, while that in the traira is poorly vascularized, but the gills are much larger. Both species are native to the Amazon and are common in the ion-poor, acidic blackwaters of the Rio Negro. Under fasting conditions, the traira was able to maintain positive net Na(+) and Cl(-) balance in this water, and only slightly negative net K(+) balance. However, the jeju was in negative net balance for all three ions and had lower plasma Na(+) and Cl(-) concentrations, despite exhibiting higher branchial Na(+),K(+)ATPase and v-type H(+)ATPase activities. In the intestine, activities of these same enzymes were also higher in the jeju, and in vitro measurements of net area-specific rates of Na(+), Cl(-), and K(+) absorption, as well as the overall intestinal absorption capacities for these three ions, were far greater than in the traira. When acutely exposed to disturbances in water O2 levels (severe hypoxia ~15 % or hyperoxia ~420 % saturation), gill ionoregulation was greatly perturbed in the traira but less affected in the jeju, which could "escape" the stressor by voluntarily air-breathing. We suggest that a shift of ionoregulatory capacity from the gills to the gut may have occurred in the evolutionary transition to air-breathing in jeju, and in consequence branchial ionoregulation, while less powerful, is also less impacted by variations in water O2 levels. PMID

  7. Overview of the development of heat exchangers for use in air-breathing propulsion pre-coolers

    NASA Astrophysics Data System (ADS)

    Murray, James J.; Guha, Abhijit; Bond, Alan

    High pressure heat exchangers used in closed cycle rocket engines and air-breathing propulsion pre-coolers are required to work at very high heat transfer rates. They work with high fluid flow rates and are fabricated from tubes or channels which have small hydraulic diameters. This increases the compactness of the unit and therefore reduces its mass. Novel designs of the manifold are required so that the pressure drop remains within acceptable limit. This paper reports on the progress of research work to investigate the manufacture of such heat exchangers and characterise their performance. The investigations centre on a heat exchanger constructed from tube of 0.4 mm diameter with potential heat transfer coefficients of up to 5000 W/m 2/K. The heat exchanger is subjected to pre-cooler operating conditions of 1000 K simulated air external flow and supercritical cryogenic internal flow. It seeks to validate extrapolations of aerodynamic and heat transfer design data under extreme temperatures and high mass flow rates. Due to the small size of the heat exchanger and the thin walls of the tubes, novel manufacturing methods are required. Work is being done to investigate compatibility of various high temperature brazing materials with thin walled tubes and special manufacturing automation processes to allow cost effective constant-quality fabrication of production units. It is concluded that heat exchangers capable of power transfer rates of up to 1 megawatt per kilogram mass are capable of being manufactured and used operationally. This is a technology where production to satisfy future aerospace demands for single-stage-to-orbit and hypersonic propulsion can be envisaged.

  8. Air Breathing Propulsion Controls and Diagnostics Research at NASA Glenn Under NASA Aeronautics Research Mission Programs

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay

    2015-01-01

    The Intelligent Control and Autonomy Branch (ICA) at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC) in Cleveland, Ohio, is leading and participating in various projects in partnership with other organizations within GRC and across NASA, the U.S. aerospace industry, and academia to develop advanced controls and health management technologies that will help meet the goals of the NASA Aeronautics Research Mission Directorate (ARMD) Programs. These efforts are primarily under the various projects under the Advanced Air Vehicles Program (AAVP), Airspace Operations and Safety Program (AOSP) and Transformative Aeronautics Concepts Program (TAC). The ICA Branch is focused on advancing the state-of-the-art of aero-engine control and diagnostics technologies to help improve aviation safety, increase efficiency, and enable operation with reduced emissions. This paper describes the various ICA research efforts under the NASA Aeronautics Research Mission Programs with a summary of motivation, background, technical approach, and recent accomplishments for each of the research tasks.

  9. [Aerosol deposition in nasal passages of burrowing and ground rodents when breathing dust-laden air].

    PubMed

    Moshkin, M P; Petrovskiĭ, D V; Akulov, A E; Romashchenko, A V; Gerlinskaia, L A; Muchnaia, M I; Ganimedov, V L; Sadovskiĭ, A S; Savelov, A A; Koptiug, I V; Troitskiĭ, S Iu; Bukhtiiarov, V I; Kolchanov, N A; Sagdeev, R Z; Fomin, V M

    2014-01-01

    In subterranean rodents, which dig down the passages with frontal teeth, adaptation to the underground mode of life presumes forming of mechanisms that provide protection against inhaling dust particles of different size when digging. One of such mechanisms can be specific pattern of air flow organization in the nasal cavity. To test this assumption, comparative study of geometry and aerodynamics of nasal passages has been conducted with regard to typical representative of subterranean rodents, the mole vole, and a representative of ground rodents, the house mouse. Numerical modeling of air flows and deposition of micro- and nanoparticle aerosols indicates that sedimentation of model particles over the whole surface of nasal cavity is higher in mole vole than in house mouse. On the contrary, particles deposition on the surface of olfactory epithelium turns out to be substantially less in the burrowing rodent as compared to the ground one. Adaptive significance of the latter observation has been substantiated by experimental study on the uptake ofnanoparticles of hydrated manganese oxide MnO x (H2O)x and Mn ions from nasal cavity into brain. It has been shown with use of magnetic resonance tomography method that there is no difference between studied species with respect to intake of particles or ions by olfactory bulb when they are introduced intranasally. Meanwhile, when inhaling nanoparticle aerosol of MnCl2, deposition of Mn in mouse's olfactory bulbs surpasses markedly that in vole's bulbs. Thereby, the morphology of nasal passages as a factor determining the aerodynamics of upper respiratory tract ensures for burrowing rodents more efficient protection of both lungs and brain against inhaled aerosols than for ground ones. PMID:25771679

  10. Aerodynamic characteristics of a series of twin-inlet air-breathing missile configurations. 3: Axisymmetric and two-dimensional inlets at subsonic-transonic speeds

    NASA Technical Reports Server (NTRS)

    Hayes, C.

    1983-01-01

    A series of air-breathing missile configurations was investigated to provide a data base for the design of such missiles. The model could be configurated with either twin axisymmetric or two dimensional inlets. Three circumferential inlet locations were investigated: 90 deg, 115 deg, and 135 deg from the top center. Two vertical wing locations, as well as wingless configurations, were used. Three tail configurations were formed by locating the tail surfaces either on the inlet fairing or on the inlet fairing or on fairings on the body. The surfaces were used to provide pitch control. Two dimensional inlets with extended compression surfaces, used to improve the angle-of-attack performance of the inlets for wingless configurations, were also investigated. The twin axisymmetric two dimensional inlet types without internal flow are covered, and the boost configuration of an air-breathing missile is simulated.

  11. Multiview 3-D Echocardiography Fusion with Breath-Hold Position Tracking Using an Optical Tracking System.

    PubMed

    Punithakumar, Kumaradevan; Hareendranathan, Abhilash R; McNulty, Alexander; Biamonte, Marina; He, Allen; Noga, Michelle; Boulanger, Pierre; Becher, Harald

    2016-08-01

    Recent advances in echocardiography allow real-time 3-D dynamic image acquisition of the heart. However, one of the major limitations of 3-D echocardiography is the limited field of view, which results in an acquisition insufficient to cover the whole geometry of the heart. This study proposes the novel approach of fusing multiple 3-D echocardiography images using an optical tracking system that incorporates breath-hold position tracking to infer that the heart remains at the same position during different acquisitions. In six healthy male volunteers, 18 pairs of apical/parasternal 3-D ultrasound data sets were acquired during a single breath-hold as well as in subsequent breath-holds. The proposed method yielded a field of view improvement of 35.4 ± 12.5%. To improve the quality of the fused image, a wavelet-based fusion algorithm was developed that computes pixelwise likelihood values for overlapping voxels from multiple image views. The proposed wavelet-based fusion approach yielded significant improvement in contrast (66.46 ± 21.68%), contrast-to-noise ratio (49.92 ± 28.71%), signal-to-noise ratio (57.59 ± 47.85%) and feature count (13.06 ± 7.44%) in comparison to individual views. PMID:27166019

  12. LPV H-infinity Control for the Longitudinal Dynamics of a Flexible Air-Breathing Hypersonic Vehicle

    NASA Astrophysics Data System (ADS)

    Hughes, Hunter Douglas

    This dissertation establishes the method needed to synthesize and simulate an Hinfinity Linear Parameter-Varying (LPV) controller for a flexible air-breathing hypersonic vehicle model. A study was conducted to gain the understanding of the elastic effects on the open loop system. It was determined that three modes of vibration would be suitable for the hypersonic vehicle model. It was also discovered from the open loop study that there is strong coupling in the hypersonic vehicle states, especially between the angle of attack, pitch rate, pitch attitude, and the exible modes of the vehicle. This dissertation outlines the procedure for synthesizing a full state feedback Hinfinity LPV controller for the hypersonic vehicle. The full state feedback study looked at both velocity and altitude tracking for the exible vehicle. A parametric study was conducted on each of these controllers to see the effects of changing the number of gridding points in the parameter space and changing the parameter variation rate limits in the system on the robust performance of the controller. As a result of the parametric study, a 7 x 7 grid ranging from Mach 7 to Mach 9 in velocity and from 70,000 feet to 90,000 feet in altitude, and a parameter variation rate limit of [.5 200]T was used for both the velocity tracking and altitude tracking cases. The resulting Hinfinity robust performances were gamma = 2.2224 for the velocity tracking case and = 1:7582 for the altitude tracking case. A linear analysis was then conducted on five different selected trim points from the Hinfinity LPV controller. This was conducted for the velocity tracking and altitude tracking cases. The results of linear analysis show that there is a slight difference in the response of the Hinfinity LPV controller and the fixed point H infinity controller. For the tracking task, the Hinfinity controller responds more quickly, and has a lower Hinfinity performance value. Next, the H infinity LPV controller was simulated

  13. Optimal Area Profiles for Ideal Single Nozzle Air-Breathing Pulse Detonation Engines

    NASA Technical Reports Server (NTRS)

    Paxson, Daniel E.

    2003-01-01

    The effects of cross-sectional area variation on idealized Pulse Detonation Engine performance are examined numerically. A quasi-one-dimensional, reacting, numerical code is used as the kernel of an algorithm that iteratively determines the correct sequencing of inlet air, inlet fuel, detonation initiation, and cycle time to achieve a limit cycle with specified fuel fraction, and volumetric purge fraction. The algorithm is exercised on a tube with a cross sectional area profile containing two degrees of freedom: overall exit-to-inlet area ratio, and the distance along the tube at which continuous transition from inlet to exit area begins. These two parameters are varied over three flight conditions (defined by inlet total temperature, inlet total pressure and ambient static pressure) and the performance is compared to a straight tube. It is shown that compared to straight tubes, increases of 20 to 35 percent in specific impulse and specific thrust are obtained with tubes of relatively modest area change. The iterative algorithm is described, and its limitations are noted and discussed. Optimized results are presented showing performance measurements, wave diagrams, and area profiles. Suggestions for future investigation are also discussed.

  14. High-order tracking differentiator based adaptive neural control of a flexible air-breathing hypersonic vehicle subject to actuators constraints.

    PubMed

    Bu, Xiangwei; Wu, Xiaoyan; Tian, Mingyan; Huang, Jiaqi; Zhang, Rui; Ma, Zhen

    2015-09-01

    In this paper, an adaptive neural controller is exploited for a constrained flexible air-breathing hypersonic vehicle (FAHV) based on high-order tracking differentiator (HTD). By utilizing functional decomposition methodology, the dynamic model is reasonably decomposed into the respective velocity subsystem and altitude subsystem. For the velocity subsystem, a dynamic inversion based neural controller is constructed. By introducing the HTD to adaptively estimate the newly defined states generated in the process of model transformation, a novel neural based altitude controller that is quite simpler than the ones derived from back-stepping is addressed based on the normal output-feedback form instead of the strict-feedback formulation. Based on minimal-learning parameter scheme, only two neural networks with two adaptive parameters are needed for neural approximation. Especially, a novel auxiliary system is explored to deal with the problem of control inputs constraints. Finally, simulation results are presented to test the effectiveness of the proposed control strategy in the presence of system uncertainties and actuators constraints. PMID:26142218

  15. Air support facilities. [interface between air and surface transportation systems

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Airports are discussed in terms of the interface between the ground and air for transportation systems. The classification systems, design, facilities, administration, and operations of airports are described.

  16. System for routine testing of self-contained and airline breathing equipment.

    PubMed

    McDermott, H J; Hermens, G A

    1980-07-01

    Airline respirators and self-contained breathing equipment are tested in a Shell refinery/petrochemical complex before issue and use of a specially designed system. The pressure-demand devices are tested for: adequate positive pressure inside the facemask during rest and inhalation; sufficient airflow during worker inhalation; and proper operation of the mask exhalation valve. Routine testing after cleaning and maintenance indicates that, although most equipment checks out satisfactorily, the system helps to identify problems that could impair performance. Workers also have added confidence in the respiratory protective equipment because of this testing program. PMID:7415969

  17. Anatomical Details of the Rabbit Nasal Passages and Their Implications in Breathing, Air Conditioning, and Olfaction.

    PubMed

    Xi, Jinxiang; Si, Xiuhua A; Kim, Jongwon; Zhang, Yu; Jacob, Richard E; Kabilan, Senthil; Corley, Richard A

    2016-07-01

    The rabbit is commonly used as a laboratory animal for inhalation toxicology tests and detail knowledge of the rabbit airway morphometry is needed for outcome analysis or theoretical modeling. The objective of this study is to quantify the morphometric dimension of the nasal airway of a New Zealand white rabbit and to relate the morphology and functions through analytical and computational methods. Images of high-resolution MRI scans of the rabbit were processed to measure the axial distribution of the cross-sectional areas, perimeter, and complexity level. The lateral recess, which has functions other than respiration or olfaction, was isolated from the nasal airway and its dimension was quantified separately. A low Reynolds number turbulence model was implemented to simulate the airflow, heat transfer, vapor transport, and wall shear stress. Results of this study provide detailed morphological information of the rabbit that can be used in the studies of olfaction, inhalation toxicology, drug delivery, and physiology-based pharmacokinetics modeling. For the first time, we reported a spiral nasal vestibule that splits into three paths leading to the dorsal meatus, maxilloturbinate, and ventral meatus, respectively. Both non-dimensional functional analysis and CFD simulations suggested that the airflow in the rabbit nose is laminar and the unsteady effect is only significantly during sniffing. Due to the large surface-to-volume ratio, the maxilloturbinate is highly effective in warming and moistening the inhaled air to body conditions. The unique anatomical structure and respiratory airflow pattern may have important implications for designing new odorant detectors or electronic noses. Anat Rec, 299:853-868, 2016. © 2016 Wiley Periodicals, Inc. PMID:27145450

  18. Magnus air turbine system

    DOEpatents

    Hanson, Thomas F.

    1982-01-01

    A Magnus effect windmill for generating electrical power is disclosed. A large nacelle-hub mounted pivotally (in Azimuth) atop a support tower carries, in the example disclosed, three elongated barrels arranged in a vertical plane and extending symmetrically radially outwardly from the nacelle. The system provides spin energy to the barrels by internal mechanical coupling in the proper sense to cause, in reaction to an incident wind, a rotational torque of a predetermined sense on the hub. The rotating hub carries a set of power take-off rollers which ride on a stationary circular track in the nacelle. Shafts carry the power, given to the rollers by the wind driven hub, to a central collector or accumulator gear assembly whose output is divided to drive the spin mechanism for the Magnus barrels and the main electric generator. A planetary gear assembly is interposed between the collector gears and the spin mechanism functioning as a differential which is also connected to an auxiliary electric motor whereby power to the spin mechanism may selectively be provided by the motor. Generally, the motor provides initial spin to the barrels for start-up after which the motor is braked and the spin mechanism is driven as though by a fixed ratio coupling from the rotor hub. During high wind or other unusual conditions, the auxiliary motor may be unbraked and excess spin power may be used to operate the motor as a generator of additional electrical output. Interposed between the collector gears of the rotating hub and the main electric generator is a novel variable speed drive-fly wheel system which is driven by the variable speed of the wind driven rotor and which, in turn, drives the main electric generator at constant angular speed. Reference is made to the complete specification for disclosure of other novel aspects of the system such as, for example, the aerodynamic and structural aspects of the novel Magnus barrels as well as novel gearing and other power coupling

  19. Breath odor

    MedlinePlus

    ... tube) in place. The breath may have an ammonia-like odor (also described as urine-like or " ... kidney failure (can cause breath to smell like ammonia ) Diabetes (fruity or sweet chemical smell associated with ...

  20. Breathing difficulty

    MedlinePlus

    ... pulmonary disease (COPD), such as chronic bronchitis or emphysema Other lung disease Pneumonia Pulmonary hypertension Problems with ... of breath; Breathlessness; Difficulty breathing; Dyspnea Images Lungs Emphysema References Kraft M. Approach to the patient with ...

  1. Breath odor

    MedlinePlus

    ... is a potentially life-threatening condition. Breath that smells like feces can occur with prolonged vomiting , especially ... renal failure Bowel obstruction (can cause breath to smell like feces) Bronchiectasis Chronic kidney failure (can cause ...

  2. Jet engine air intake system

    NASA Technical Reports Server (NTRS)

    Sorensen, N. E.; Latham, E. A. (Inventor)

    1977-01-01

    An axisymmetric air intake system for a jet aircraft engine comprising a fixed cowl extending outwardly from the face of the engine, a centerbody coaxially disposed within the cowl, and an actuator for axially displacing the centerbody within the cowl was developed. The cowl and centerbody define a main airflow passageway therebetween, the configuration of which is changed by displacement of the centerbody. The centerbody includes a forwardly-located closeable air inlet which communicates with a centerbody auxiliary airflow passageway to provide auxiliary airflow to the engine. In one embodiment, a system for opening and closing the centerbody air inlet is provided by a dual-member centerbody, the forward member of which may be displaced axially with respect to the aft member.

  3. Air Breathing Propulsion Controls and Diagnostics Research at NASA Glenn Under NASA Aeronautics Research Mission Programs

    NASA Technical Reports Server (NTRS)

    Garg, Sanjay

    2014-01-01

    This lecture will provide an overview of the aircraft turbine engine control research at NASA (National Aeronautics and Space Administration) Glenn Research Center (GRC). A brief introduction to the engine control problem is first provided with a description of the current state-of-the-art control law structure. A historical aspect of engine control development since the 1940s is then provided with a special emphasis on the contributions of GRC. The traditional engine control problem has been to provide a means to safely transition the engine from one steady-state operating point to another based on the pilot throttle inputs. With the increased emphasis on aircraft safety, enhanced performance and affordability, and the need to reduce the environmental impact of aircraft, there are many new challenges being faced by the designers of aircraft propulsion systems. The Controls and Dynamics Branch (CDB) at GRC is leading and participating in various projects in partnership with other organizations within GRC and across NASA, other government agencies, the U.S. aerospace industry, and academia to develop advanced propulsion controls and diagnostics technologies that will help meet the challenging goals of NASA programs under the Aeronautics Research Mission. The second part of the lecture provides an overview of the various CDB technology development activities in aircraft engine control and diagnostics, both current and some accomplished in the recent past. The motivation for each of the research efforts, the research approach, technical challenges and the key progress to date are summarized. The technologies to be discussed include system level engine control concepts, gas path diagnostics, active component control, and distributed engine control architecture. The lecture will end with a futuristic perspective of how the various current technology developments will lead to an Intelligent and Autonomous Propulsion System requiring none to very minimum pilot interface

  4. Air-breathing aerospace plane development essential: Hypersonic propulsion flight tests

    NASA Technical Reports Server (NTRS)

    Mehta, Unmeel B.

    1995-01-01

    Hypersonic airbreathing propulsion utilizing scramjets can change transatmospheric accelerators for low earth-to-orbit and return transportation. The value and limitation of ground tests, of flight tests, and of computations are presented, and scramjet development requirements are discussed. It is proposed that near full-scale hypersonic propulsion flight tests are essential for developing computational design technology so that it can be used for designing this system. In order to determine how these objectives should be achieved, some lessons learned from past programs are presented. A conceptual two-stage-to-orbit (TSTO) prototype/experimental aerospace plane is recommended as a means of providing access-to-space and for conducting flight tests.

  5. Shuttle Entry Air Data System

    NASA Technical Reports Server (NTRS)

    Siemers, P. M., III

    1978-01-01

    The SEADS system (Shuttle Entry Air Data System) is being developed to provide research quality hypersonic (M greater than 3.5) air data. SEADS will accomplish this through the instrumentation of the orbiter's baseline nose cap. The SEADS development program consists of (1) the design and testing program required to define a reinforced carbon-carbon (RCC) nose cap penetration concept which will not degrade nose cap performance, (2) the definition of analytical techniques and design criteria for array definition and flight data analysis, (3) the verification of these analytical techniques and array criteria through a comprehensive wind-tunnel test program, (4) the demonstration of the system concept through detailed testing, and (5) the analyses and tests required to flight-certify the SEADS system.

  6. A miniature optical breathing sensor

    PubMed Central

    Mathew, Jinesh; Semenova, Yuliya; Farrell, Gerald

    2012-01-01

    We demonstrate a novel miniature optical breathing sensor based on an Agarose infiltrated photonic crystal fiber interferometer. The sensor detects the variation in relative humidity that occurs between inhaled and exhaled breath. The sensor interrogation system can determine the breathing pattern in real time and can also predict the breathing rate and the breathing status during respiration. The sensor is suitable for monitoring patients during a magnetic resonance imaging scan where use of sedatives and anesthetics necessitates breathing monitoring; electronic sensors are not suitable in such an environment and a visual observation of the patient's respiratory efforts is often difficult. PMID:23243581

  7. Steerable percussion air drilling system

    SciTech Connect

    Bui, H.D.; Meyers, J.A.; Yost, A.B. II

    1998-12-31

    By increasing penetration rates and bit life, especially in hard formations, the use of down-hole air hammers in the oil field has significantly reduced drilling costs in the Northeast US and West Texas. Unfortunately, drilling by this percussion method has been limited mostly to straight hole applications. This paper presents a new concept of a percussion drilling tool which performs both the function of a down-hole hammer as well as that of a down-hole motor. Such a drilling tool, being introduced here as Steerable Percussion Air Drilling System (SPADS), eliminates the necessity to rotate the drill string and, consequently, enables the use of down-hole air hammers to drill directional wells.

  8. Air quality data systems integration

    SciTech Connect

    Row, V.K.; Wilson, J.F.

    1998-12-31

    Traditionally, data used for compliance with air quality programs are obtained from various sources within the plant, on site lab, or perhaps from a product movement accounting program. For the most part, the data processing and subsequent calculations and reports were handled individually, thus generating huge spreadsheets and mounds of process data in paper format. The natural reaction to this overwhelming data management problem is to search for an off-the-shelf software package that will hopefully cover all of the plant`s needs for compliance with air quality regulations. Rather than searching for or trying to custom build a single electronic system, the authors suggest using internet browsing software to create links between existing repositories of air quality data and related information.

  9. Evaluation of a novel tracking system in a breathing lung model.

    PubMed

    O'Donoghue, Kilian; Corvo, Alberto; Nardelli, Pietro; O'Shea, Conor; Khan, Kashif Ali; Kennedy, Marcus; Cantillon-Murphy, Padraig

    2014-01-01

    We present the evaluation of an electromagnetic position tracking system for use with virtual bronchoscopy systems. Our system utilises a planar magnetic coil array and commercially available search coil sensors. Experimental results show the EM tracking accuracy to be in the range of 11.5mm, which is comparable to both commercial and research systems. The use of a bench-top breathing lung model is used to verify system operation in the in vitro setting. A novel fiducial-free registration method is implemented to reduce errors resulting from inaccurate landmark identification commonly associated with point-based registration. After registration, there is good agreement between the measured position of the sensor probe during endoscopic navigation and the lung airways as visualised in a 3D model of the phantom. PMID:25570880

  10. Optical air data systems and methods

    NASA Technical Reports Server (NTRS)

    Caldwell, Loren M. (Inventor); O'Brien, Martin J. (Inventor); Weimer, Carl S. (Inventor); Nelson, Loren D. (Inventor)

    2008-01-01

    Systems and methods for sensing air outside a moving aircraft are presented. In one embodiment, a system includes a laser for generating laser energy. The system also includes one or more transceivers for projecting the laser energy as laser radiation to the air. Subsequently, each transceiver receives laser energy as it is backscattered from the air. A computer processes signals from the transceivers to distinguish molecular scattered laser radiation from aerosol scattered laser radiation and determines one or more air parameters based on the scattered laser radiation. Such air parameters may include air speed, air pressure, air temperature and aircraft orientation angle, such as yaw, angle of attack and sideslip.

  11. Optical air data systems and methods

    NASA Technical Reports Server (NTRS)

    Caldwell, Loren M. (Inventor); Tang, Shoou-yu (Inventor); O'Brien, Martin (Inventor)

    2010-01-01

    Systems and methods for sensing air outside a moving aircraft are presented. In one embodiment, a system includes a laser for generating laser energy. The system also includes one or more transceivers for projecting the laser energy as laser radiation to the air. Subsequently, each transceiver receives laser energy as it is backscattered from the air. A computer processes signals from the transceivers to distinguish molecular scattered laser radiation from aerosol scattered laser radiation and determines one or more air parameters based on the scattered laser radiation. Such air parameters may include air speed, air pressure, air temperature and aircraft orientation angle, such as yaw, angle of attack and sideslip.

  12. Optical air data systems and methods

    NASA Technical Reports Server (NTRS)

    Caldwell, Loren M. (Inventor); O'Brien, Martin J. (Inventor); Weimer, Carl S. (Inventor); Nelson, Loren D. (Inventor)

    2005-01-01

    Systems and methods for sensing air outside a moving aircraft are presented. In one embodiment, a system includes a laser for generating laser energy. The system also includes one or more transceivers for projecting the laser energy as laser radiation to the air. Subsequently, each transceiver receives laser energy as it is backscattered from the air. A computer processes signals from the transceivers to distinguish molecular scattered laser radiation from aerosol scattered laser radiation and determines one or more air parameters based on the scattered laser radiation. Such air parameters may include air speed, air pressure, air temperature and aircraft orientation angle, such as yaw, angle of attack and sideslip.

  13. A computational physiology approach to personalized treatment models: the beneficial effects of slow breathing on the human cardiovascular system

    PubMed Central

    Fonoberova, Maria; Mezić, Igor; Buckman, Jennifer F.; Fonoberov, Vladimir A.; Mezić, Adriana; Vaschillo, Evgeny G.; Mun, Eun-Young; Vaschillo, Bronya

    2014-01-01

    Heart rate variability biofeedback intervention involves slow breathing at a rate of ∼6 breaths/min (resonance breathing) to maximize respiratory and baroreflex effects on heart period oscillations. This intervention has wide-ranging clinical benefits and is gaining empirical support as an adjunct therapy for biobehavioral disorders, including asthma and depression. Yet, little is known about the system-level cardiovascular changes that occur during resonance breathing or the extent to which individuals differ in cardiovascular benefit. This study used a computational physiology approach to dynamically model the human cardiovascular system at rest and during resonance breathing. Noninvasive measurements of heart period, beat-to-beat systolic and diastolic blood pressure, and respiration period were obtained from 24 healthy young men and women. A model with respiration as input was parameterized to better understand how the cardiovascular processes that control variability in heart period and blood pressure change from rest to resonance breathing. The cost function used in model calibration corresponded to the difference between the experimental data and model outputs. A good match was observed between the data and model outputs (heart period, blood pressure, and corresponding power spectral densities). Significant improvements in several modeled cardiovascular functions (e.g., blood flow to internal organs, sensitivity of the sympathetic component of the baroreflex, ventricular elastance) were observed during resonance breathing. Individual differences in the magnitude and nature of these dynamic responses suggest that computational physiology may be clinically useful for tailoring heart rate variability biofeedback interventions for the needs of individual patients. PMID:25063789

  14. A computational physiology approach to personalized treatment models: the beneficial effects of slow breathing on the human cardiovascular system.

    PubMed

    Fonoberova, Maria; Mezić, Igor; Buckman, Jennifer F; Fonoberov, Vladimir A; Mezić, Adriana; Vaschillo, Evgeny G; Mun, Eun-Young; Vaschillo, Bronya; Bates, Marsha E

    2014-10-01

    Heart rate variability biofeedback intervention involves slow breathing at a rate of ∼6 breaths/min (resonance breathing) to maximize respiratory and baroreflex effects on heart period oscillations. This intervention has wide-ranging clinical benefits and is gaining empirical support as an adjunct therapy for biobehavioral disorders, including asthma and depression. Yet, little is known about the system-level cardiovascular changes that occur during resonance breathing or the extent to which individuals differ in cardiovascular benefit. This study used a computational physiology approach to dynamically model the human cardiovascular system at rest and during resonance breathing. Noninvasive measurements of heart period, beat-to-beat systolic and diastolic blood pressure, and respiration period were obtained from 24 healthy young men and women. A model with respiration as input was parameterized to better understand how the cardiovascular processes that control variability in heart period and blood pressure change from rest to resonance breathing. The cost function used in model calibration corresponded to the difference between the experimental data and model outputs. A good match was observed between the data and model outputs (heart period, blood pressure, and corresponding power spectral densities). Significant improvements in several modeled cardiovascular functions (e.g., blood flow to internal organs, sensitivity of the sympathetic component of the baroreflex, ventricular elastance) were observed during resonance breathing. Individual differences in the magnitude and nature of these dynamic responses suggest that computational physiology may be clinically useful for tailoring heart rate variability biofeedback interventions for the needs of individual patients. PMID:25063789

  15. Air Sampling System Evaluation Template

    2000-05-09

    The ASSET1.0 software provides a template with which a user can evaluate an Air Sampling System against the latest version of ANSI N13.1 "Sampling and Monitoring Releases of Airborne Radioactive Substances from the Stacks and Ducts of Nuclear Facilities". The software uses the ANSI N13.1 PIC levels to establish basic design criteria for the existing or proposed sampling system. The software looks at such criteria as PIC level, type of radionuclide emissions, physical state ofmore » the radionuclide, nozzle entrance effects, particulate transmission effects, system and component accuracy and precision evaluations, and basic system operations to provide a detailed look at the subsystems of a monitoring and sampling system/program. A GAP evaluation can then be completed which leads to identification of design and operational flaws in the proposed systems. Corrective measures can then be limited to the GAPs.« less

  16. Dirhythmic breathing.

    PubMed

    Flemister, G; Goldberg, N B; Sharp, J T

    1981-01-01

    Four patients with severe chronic obstructive lung disease and recent respiratory failure are described in whom two distinct simultaneous respiratory rhythms were identified, one at 8 to 13 breaths per minute and the other at 39 to 65 per minute. Magnetometer measurements of thoracoabdominal motion together with simultaneous electromyograms of multiple inspiratory muscles suggested that both rhythms were the result of coordinated action of several inspiratory muscles. We suggest that this phenomenon, which we have called dirhythmic breathing, results from the conflicting influence upon respiratory centers and motoneurons of two or more stimuli, some favoring rapid shallow breaths and others slow deep breaths. PMID:7449504

  17. Breath analysis system for early detection of lung diseases based on multi-sensor array

    NASA Astrophysics Data System (ADS)

    Jeon, Jin-Young; Yu, Joon-Boo; Shin, Jeong-Suk; Byun, Hyung-Gi; Lim, Jeong-Ok

    2013-05-01

    Expiratory breath contains various VOCs(Volatile Organic Compounds) produced from the human. When a certain disease exists, the exhalation has specific VOCs which may be generated from diseases. Many researchers have been actively working to find different types of biomarkers which are characteristic for particular diseases. Research regarding the identification of specific diseases from exhalation is still in progress. The aim of this research is to implement early detection of lung disease such as lung cancer and COPD(Chronic Obstructive Pulmonary Disease), which was nominated on the 6th of domestic death rate in 2010, based on multi-sensor array system. The system has been used to acquire sampled expiratory gases data and PCA(Principle Component Analysis) technique was applied to analyze signals from multi-sensor array. Throughout the experimental trials, a clearly distinguishable difference between lung disease patients and healthy controls was found from the measurement and analysis of their respective expiratory gases.

  18. SU-C-19A-01: A Simple Deep Inspiration Breath Hold System

    SciTech Connect

    Rasmussen, B; Kaznowski, L; Blackburn, J; Chu, K; Duelge, J; Baldwin, B; Valenti, M; Hunsader, A

    2014-06-15

    Purpose: Deep Inspiration Breath Hold (DIBH) Radiation therapy for left sided breast can reduce dose to the lungs and heart. The purpose of this work is to illustrate how to implement a simple method of DIBH for simulation and treatment using equipment readily available in most radiation oncology clinics. Methods: For simulation and treatment, a foam block is placed on the patient's abdomen or chest and a horizontal laser mounted on a movable slide is aimed at the center of the foam block. After a coaching session the block is marked at the average free breathing position and average DIBH position. The position of block relative to laser can be seen by the patient via prism glasses as well as the radiation therapists via a video camera system. Simulation CT scans and treatment delivery are performed under DIBH conditions. Imaging and treatment are performed by manually turning the beam on once the patient has achieved DIBH after being given verbal instructions. Results: Manually triggered imaging was used daily to verify DIBH reproducibility for all patients treated using this system. Sets of before and during port images were used to ensure patient position was appropriate for treatment. Results of the laser on block method were compared to a sister facility using surface mapping techniques for DIBH and the two methods were found to have clinically equivalent reproducibility. Conclusion: The laser and block system was found to be simple to implement and robust during patient treatment. This system can be created from readily available materials at low cost and provides adequate feedback to patient and therapists. During treatment images document the reproducibility of setup and give confidence to clinicians that this method is reproducible from day to day.

  19. Design and control of a demand flow system assuring spontaneous breathing of a patient connected to an HFO ventilator.

    PubMed

    Roubík, Karel; Ráfl, Jakub; van Heerde, Marc; Markhorst, Dick G

    2011-11-01

    Lung protective ventilation is intended to minimize the risk of ventilator induced lung injury and currently aimed at preservation of spontaneous breathing during mechanical ventilation. High-frequency oscillatory ventilation (HFOV) is a lung protective ventilation strategy. Commonly used high-frequency oscillatory (HFO) ventilators, SensorMedics 3100, were not designed to tolerate spontaneous breathing. Respiratory efforts in large pediatric and adult patients impose a high workload to the patient and may cause pressure swings that impede ventilator function. A Demand Flow System (DFS) was designed to facilitate spontaneous breathing during HFOV. Using a linear quadratic Gaussian state feedback controller, the DFS alters the inflow of gas into the ventilator circuit, so that it instantaneously compensates for the changes in mean airway pressure (MAP) in the ventilator circuit caused by spontaneous breathing. The undesired swings in MAP are thus eliminated. The DFS significantly reduces the imposed work of breathing and improves ventilator function. In a bench test the performance of the DFS was evaluated using a simulator ASL 5000. With the gas inflow controlled, MAP was returned to its preset value within 115 ms after the beginning of inspiration. The DFS might help to spread the use of HFOV in clinical practice. PMID:21859597

  20. Breathing Problems

    MedlinePlus

    When you're short of breath, it's hard or uncomfortable for you to take in the oxygen your body needs. You may feel as if you're ... stuffy nose or hard exercise. But shortness of breath can also be a sign of a serious ...

  1. Regional variability in diving physiology and behavior in a widely distributed air-breathing marine predator, the South American sea lion (Otaria byronia).

    PubMed

    Hückstädt, Luis A; Tift, Michael S; Riet-Sapriza, Federico; Franco-Trecu, Valentina; Baylis, Alastair M M; Orben, Rachael A; Arnould, John P Y; Sepulveda, Maritza; Santos-Carvallo, Macarena; Burns, Jennifer M; Costa, Daniel P

    2016-08-01

    Our understanding of how air-breathing marine predators cope with environmental variability is limited by our inadequate knowledge of their ecological and physiological parameters. Because of their wide distribution along both coasts of the sub-continent, South American sea lions (Otaria byronia) provide a valuable opportunity to study the behavioral and physiological plasticity of a marine predator in different environments. We measured the oxygen stores and diving behavior of South American sea lions throughout most of its range, allowing us to demonstrate that diving ability and behavior vary across its range. We found no significant differences in mass-specific blood volumes of sea lions among field sites and a negative relationship between mass-specific oxygen storage and size, which suggests that exposure to different habitats and geographical locations better explains oxygen storage capacities and diving capability in South American sea lions than body size alone. The largest animals in our study (individuals from Uruguay) were the shallowest and shortest duration divers, and had the lowest mass-specific total body oxygen stores, while the deepest and longest duration divers (individuals from southern Chile) had significantly larger mass-specific oxygen stores, despite being much smaller animals. Our study suggests that the physiology of air-breathing diving predators is not fixed, but that it can be adjusted, to a certain extent, depending on the ecological setting and or habitat. These adjustments can be thought of as a 'training effect': as the animal continues to push its physiological capacity through greater hypoxic exposure, its breath-holding capacity increases. PMID:27247316

  2. Increased cardiac output, not pulmonary artery systolic pressure, increases intrapulmonary shunt in healthy humans breathing room air and 40% O2

    PubMed Central

    Elliott, Jonathan E; Duke, Joseph W; Hawn, Jerold A; Halliwill, John R; Lovering, Andrew T

    2014-01-01

    Blood flow through intrapulmonary arteriovenous anastomoses (IPAVAs) has been demonstrated to increase in healthy humans during a variety of conditions; however, whether or not this blood flow represents a source of venous admixture (/) that impairs pulmonary gas exchange efficiency (i.e. increases the alveolar-to-arterial difference (A–aDO2)) remains controversial and unknown. We hypothesized that blood flow through IPAVAs does provide a source of /. To test this, blood flow through IPAVAs was increased in healthy humans at rest breathing room air and 40% O2: (1) during intravenous adrenaline (epinephrine) infusion at 320 ng kg−1 min−1 (320 ADR), and (2) with vagal blockade (2 mg atropine), before and during intravenous adrenaline infusion at 80 ng kg−1 min−1 (ATR + 80 ADR). When breathing room air the A–aDO2 increased by 6 ± 2 mmHg during 320 ADR and by 5 ± 2 mmHg during ATR + 80 ADR, and the change in calculated / was +2% in both conditions. When breathing 40% O2, which minimizes contributions from diffusion limitation and alveolar ventilation-to-perfusion inequality, the A–aDO2 increased by 12 ± 7 mmHg during 320 ADR, and by 9 ± 6 mmHg during ATR + 80 ADR, and the change in calculated / was +2% in both conditions. During 320 ADR cardiac output () and pulmonary artery systolic pressure (PASP) were significantly increased; however, during ATR + 80 ADR only was significantly increased, yet blood flow through IPAVAs as detected with saline contrast echocardiography was not different between conditions. Accordingly, we suggest that blood flow through IPAVAs provides a source of intrapulmonary shunt, and is mediated primarily by increases in rather than PASP. PMID:25085889

  3. Compressed air energy storage system

    SciTech Connect

    Ahrens, F.W.; Kartsounes, G.T.

    1981-07-28

    An internal combustion reciprocating engine is operable as a compressor during slack demand periods utilizing excess power from a power grid to charge air into an air storage reservoir and as an expander during peak demand periods to feed power into the power grid utilizing air obtained from the air storage reservoir together with combustible fuel. Preferably the internal combustion reciprocating engine is operated at high pressure and a low pressure turbine and compressor are also employed for air compression and power generation.

  4. Compressed air energy storage system

    DOEpatents

    Ahrens, Frederick W.; Kartsounes, George T.

    1981-01-01

    An internal combustion reciprocating engine is operable as a compressor during slack demand periods utilizing excess power from a power grid to charge air into an air storage reservoir and as an expander during peak demand periods to feed power into the power grid utilizing air obtained from the air storage reservoir together with combustible fuel. Preferably the internal combustion reciprocating engine is operated at high pressure and a low pressure turbine and compressor are also employed for air compression and power generation.

  5. Compressed air energy storage system

    DOEpatents

    Ahrens, F.W.; Kartsounes, G.T.

    An internal combustion reciprocating engine is operable as a compressor during slack demand periods utilizing excess power from a power grid to charge air into an air storage reservoir and as an expander during peak demand periods to feed power into the power grid utilizing air obtained from the air storage reservoir together with combustion reciprocating engine is operated at high pressure and a low pressure turbine and compressor are also employed for air compression and power generation.

  6. Life and Breath

    ERIC Educational Resources Information Center

    Ellis, Helen D.

    1974-01-01

    This article describes a public education program combining the screening process and a follow-up program for teaching victims of emphysema and other respiratory diseases how to better their living condition through proper breathing, avoidance of air pollutants and cigarette smoking, and taking better care of themselves physically. (PD)

  7. Metabolic breath analyzer

    NASA Technical Reports Server (NTRS)

    Perry, C. L.

    1971-01-01

    Instrument measures metabolic breathing rate and dynamics of human beings in atmospheres ranging from normal air to 100 percent oxygen at ambient pressures from 14.7 to 3.0 psia. Measurements are made at rest or performing tasks up to maximum physical capacity under either zero or normal gravity.

  8. Strategy Guideline. Compact Air Distribution Systems

    SciTech Connect

    Burdick, Arlan

    2013-06-01

    This guideline discusses the benefits and challenges of using a compact air distribution system to handle the reduced loads and reduced air volume needed to condition the space within an energy efficient home. The decision criteria for a compact air distribution system must be determined early in the whole-house design process, considering both supply and return air design. However, careful installation of a compact air distribution system can result in lower material costs from smaller equipment, shorter duct runs, and fewer outlets; increased installation efficiencies, including ease of fitting the system into conditioned space; lower loads on a better balanced HVAC system, and overall improved energy efficiency of the home.

  9. Strategy Guideline: Compact Air Distribution Systems

    SciTech Connect

    Burdick, A.

    2013-06-01

    This Strategy Guideline discusses the benefits and challenges of using a compact air distribution system to handle the reduced loads and reduced air volume needed to condition the space within an energy efficient home. Traditional systems sized by 'rule of thumb' (i.e., 1 ton of cooling per 400 ft2 of floor space) that 'wash' the exterior walls with conditioned air from floor registers cannot provide appropriate air mixing and moisture removal in low-load homes. A compact air distribution system locates the HVAC equipment centrally with shorter ducts run to interior walls, and ceiling supply outlets throw the air toward the exterior walls along the ceiling plane; alternatively, high sidewall supply outlets throw the air toward the exterior walls. Potential drawbacks include resistance from installing contractors or code officials who are unfamiliar with compact air distribution systems, as well as a lack of availability of low-cost high sidewall or ceiling supply outlets to meet the low air volumes with good throw characteristics. The decision criteria for a compact air distribution system must be determined early in the whole-house design process, considering both supply and return air design. However, careful installation of a compact air distribution system can result in lower material costs from smaller equipment, shorter duct runs, and fewer outlets; increased installation efficiencies, including ease of fitting the system into conditioned space; lower loads on a better balanced HVAC system, and overall improved energy efficiency of the home.

  10. Air Force Training for Instructional Systems Development.

    ERIC Educational Resources Information Center

    Calkins, Ronald R.

    Detailed information is provided about the Air Force Instructional System Development (ISD) Model to supplement the 1979 AECT presentation made in New Orleans. Information of interest to instructional systems designers includes (1) a short overview of the Air Force ISD model, (2) an extended example which demonstrates the Air Training Command…

  11. Evaluation of Contaminant-Promoted Ignition in Scuba Equipment and Breathing Gas Delivery Systems

    NASA Technical Reports Server (NTRS)

    Forsyth, Elliott T.; Durkin, Robert; Beeson, Harold D.

    2000-01-01

    As the underwater diving industry continues to use greater concentrations of oxygen in their scuba systems, ignition of contaminants in these systems becomes a greater concern. Breathing gas makeup and distribution systems typically combine pure oxygen with various diluents to supply high-pressure cylinders for scuba applications. The hazards associated with these applications of oxygen and NITROX (oxygen and nitrogen mixture) gases require an evaluation of inherent contaminant levels and their associated promoted-ignition thresholds in these environments. In this study, several scuba component assemblies were tested after one year of use at the NASA Johnson Space Center Neutral Buoyancy Lab. The components were rapidly impacted with 50% NITROX gas to demonstrate their ignition resistance, then disassembled to evaluate their cleanliness. A follow-up study was then performed on the ignition thresholds of hydrocarbon-bascd oil films in oxygen and NITROX environments in an attempt to define the cleaning requirements for these systems. Stainless steel tubes were contaminated and verified to known levels and placed in a pneumatic impact test system where they were rapidly pressurized with the test gas. Ignitions were determined using a photodiode connected to the end of the contaminated tube. The results of the scuba component tests, cleanliness evaluation, and contaminant ignition study are discussed and compared for 50% NITROX and 100% oxygen environments.

  12. Industrial Compressed Air System Energy Efficiency Guidebook.

    SciTech Connect

    United States. Bonneville Power Administration.

    1993-12-01

    Energy efficient design, operation and maintenance of compressed air systems in industrial plants can provide substantial reductions in electric power and other operational costs. This guidebook will help identify cost effective, energy efficiency opportunities in compressed air system design, re-design, operation and maintenance. The guidebook provides: (1) a broad overview of industrial compressed air systems, (2) methods for estimating compressed air consumption and projected air savings, (3) a description of applicable, generic energy conservation measures, and, (4) a review of some compressed air system demonstration projects that have taken place over the last two years. The primary audience for this guidebook includes plant maintenance supervisors, plant engineers, plant managers and others interested in energy management of industrial compressed air systems.

  13. Bad Breath

    MedlinePlus

    ... mouth and between your teeth produce the bad odor. Other problems in your mouth, such as gum ... and medicines are associated with a specific breath odor. Having good dental habits, like brushing and flossing ...

  14. Bad Breath

    MedlinePlus

    ... hygiene leads to bad breath because when food particles are left in your mouth, they can rot ... Flossing once a day helps get rid of particles wedged between your teeth. Also, visit your dentist ...

  15. Breath sounds

    MedlinePlus

    The lung sounds are best heard with a stethoscope. This is called auscultation. Normal lung sounds occur ... the bottom of the rib cage. Using a stethoscope, the doctor may hear normal breathing sounds, decreased ...

  16. Increased temperature tolerance of the air-breathing Asian swamp eel Monopterus albus after high-temperature acclimation is not explained by improved cardiorespiratory performance.

    PubMed

    Lefevre, S; Findorf, I; Bayley, M; Huong, D T T; Wang, T

    2016-01-01

    This study investigated the hypothesis that in the Asian swamp eel Monopterus albus, an air-breathing fish from south-east Asia that uses the buccopharyngeal cavity for oxygen uptake, the upper critical temperature (TU) is increased by acclimation to higher temperature, and that the increased TU is associated with improved cardiovascular and respiratory function. Monopterus albus were therefore acclimated to 27° C (current average) and 32° C (current maximum temperature as well as projected average within 100-200 years), and both the effect of acclimation and acute temperature increments on cardiovascular and respiratory functions were investigated. Two weeks of heat acclimation increased upper tolerated temperature (TU ) by 2° C from 36·9 ± 0·1° C to 38·9 ± 0·1° C (mean ± s.e.). Oxygen uptake (M˙O2) increased with acclimation temperature, accommodated by increases in both aerial and aquatic respiration. Overall, M˙O2 from air (M˙O2a ) was predominant, representing 85% in 27° C acclimated fish and 80% in 32° C acclimated fish. M˙O2 increased with acute increments in temperature and this increase was entirely accommodated by an increase in air-breathing frequency and M˙O2a . Monopterus albus failed to upregulate stroke volume; rather, cardiac output was maintained through increased heart rate with rising temperature. Overall, acclimation of M. albus to 32° C did not improve its cardiovascular and respiratory performance at higher temperatures, and cardiovascular adaptations, therefore, do not appear to contribute to the observed increase in TU. PMID:26563596

  17. HESTIA Phase I Test Results: The Air Revitalization System

    NASA Technical Reports Server (NTRS)

    Wright, Sarah E.; Hansen, Scott W.

    2016-01-01

    In any human spaceflight mission, a number of Environmental Control & Life Support System (ECLSS) technologies work together to provide the conditions astronauts need to live healthily, productively, and comfortably in space. In a long-duration mission, many of these ECLSS technologies may use materials supplied by In-Situ Resource Utilization (ISRU), introducing more interactions between systems. The Human Exploration Spacecraft Test-bed for Integration & Advancement (HESTIA) Project aims to create a test-bed to evaluate ECLSS and ISRU technologies and how they interact in a high-fidelity, closed-loop, human-rated analog habitat. Air purity and conditioning are essential components within any ECLSS and for HESTIA's first test they were achieved with the Air Revitalization System (ARS) described below. The ARS provided four essential functions to the test-bed chamber: cooling the air, removing humidity from the air, removing trace contaminants, and scrubbing carbon dioxide (CO2) from the air. In this case, the oxygen supply function was provided by ISRU. In the current configuration, the ARS is a collection of different subsystems. A fan circulates the air, while a condensing heat exchanger (CHX) pulls humidity out of the air. A Trace Contaminant Removal System (TCRS) filters the air of potentially harmful contaminants. Lastly, a Reactive Plastic Lithium Hydroxide (RP-LiOH) unit removes CO2 from the breathing air. During the HESTIA Phase I test in September 2015, the ARS and its individual components each functioned as expected, although further analysis is underway. During the Phase I testing and in prior bench-top tests, the energy balance of heat removed by the CHX was not equal to the cooling it received. This indicated possible instrument error and therefore recalibration of the instruments and follow-up testing is planned in 2016 to address the issue. The ARS was tested in conjunction with two other systems: the Human Metabolic Simulator (HMS) and the

  18. Aspiration tests in aqueous foam using a breathing simulator

    SciTech Connect

    Archuleta, M.M.

    1995-12-01

    Non-toxic aqueous foams are being developed by Sandia National Laboratories (SNL) for the National Institute of Justice (NIJ) for use in crowd control, cell extractions, and group disturbances in the criminal justice prison systems. The potential for aspiration of aqueous foam during its use and the resulting adverse effects associated with complete immersion in aqueous foam is of major concern to the NIJ when examining the effectiveness and safety of using this technology as a Less-Than-Lethal weapon. This preliminary study was designed to evaluate the maximum quantity of foam that might be aspirated by an individual following total immersion in an SNL-developed aqueous foam. A.T.W. Reed Breathing simulator equipped with a 622 Silverman cam was used to simulate the aspiration of an ammonium laureth sulfate aqueous foam developed by SNL and generated at expansion ratios in the range of 500:1 to 1000:1. Although the natural instinct of an individual immersed in foam is to cover their nose and mouth with a hand or cloth, thus breaking the bubbles and decreasing the potential for aspiration, this study was performed to examine a worst case scenario where mouth breathing only was examined, and no attempt was made to block foam entry into the breathing port. Two breathing rates were examined: one that simulated a sedentary individual with a mean breathing rate of 6.27 breaths/minute, and one that simulated an agitated or heavily breathing individual with a mean breathing rate of 23.7 breaths/minute. The results of this study indicate that, if breathing in aqueous foam without movement, an air pocket forms around the nose and mouth within one minute of immersion.

  19. Understanding the rhythm of breathing: so near yet so far

    PubMed Central

    Feldman, Jack L.; Del Negro, Christopher A.; Gray, Paul A.

    2013-01-01

    Understanding the mechanisms leading from DNA to molecules to neurons to networks to behavior is a major goal for neuroscience, but largely out of reach for many fundamental and interesting behaviors. The neural control of breathing may be a rare exception, presenting a unique opportunity to understand how the nervous system functions normally, how it balances inherent robustness with a highly regulated lability, how it adapts to rapidly and slowly changing conditions, and how particular dysfunctions result in disease. Why can we assert this? First and foremost, the functions of breathing are clearly definable, starting with its regulatory job of maintaining blood (and brain) O2, CO2 and pH; failure is not an option. Breathing is also an essential component of many vocal and emotive behaviors including, e.g., crying, laughing, singing, and sniffing, and must be coordinated with such vital behaviors as suckling and swallowing, even at birth. Second, the regulated variables, O2, CO2 and pH (and temperature in non-primate mammals), are continuous and are readily and precisely quantifiable, as is ventilation itself along with the underlying rhythmic motor activity, i.e., respiratory muscle EMGs. Third, we breathe all the time, except for short breaks as during breath-holding (which can be especially long in diving or hibernating mammals) or sleep apnea. Mammals (including humans) breathe in all behavioral states, e.g., sleep-wake, rest, exercise, panic, or fear, during anesthesia and even following decerebration. Moreover, essential aspects of the neural mechanisms driving breathing, including rhythmicity, are present at levels of reduction down to a medullary slice. Fourth, the relevant circuits exhibit a remarkable combination of extraordinary reliability, starting ex utero with the first air breath – intermittent breathing movements actually start in utero during the third trimester – and continuing for as many as ~109 breaths, as well as considerable lability

  20. 42 CFR 84.152 - Breathing tube test; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Breathing tube test; minimum requirements. 84.152... Respirators § 84.152 Breathing tube test; minimum requirements. (a)(1) Type A and Type B supplied-air... employed in lieu of the breathing tubes required. (c)(1) A flexible, nonkinking type breathing tube...

  1. 42 CFR 84.152 - Breathing tube test; minimum requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 42 Public Health 1 2011-10-01 2011-10-01 false Breathing tube test; minimum requirements. 84.152... Respirators § 84.152 Breathing tube test; minimum requirements. (a)(1) Type A and Type B supplied-air... employed in lieu of the breathing tubes required. (c)(1) A flexible, nonkinking type breathing tube...

  2. 42 CFR 84.152 - Breathing tube test; minimum requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 42 Public Health 1 2014-10-01 2014-10-01 false Breathing tube test; minimum requirements. 84.152... Respirators § 84.152 Breathing tube test; minimum requirements. (a)(1) Type A and Type B supplied-air... employed in lieu of the breathing tubes required. (c)(1) A flexible, nonkinking type breathing tube...

  3. 42 CFR 84.152 - Breathing tube test; minimum requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 42 Public Health 1 2013-10-01 2013-10-01 false Breathing tube test; minimum requirements. 84.152... Respirators § 84.152 Breathing tube test; minimum requirements. (a)(1) Type A and Type B supplied-air... employed in lieu of the breathing tubes required. (c)(1) A flexible, nonkinking type breathing tube...

  4. Aerodynamic characteristics of a series of twin-inlet air-breathing missile configurations. 2: Two-dimensional inlets at supersonic speeds

    NASA Technical Reports Server (NTRS)

    Hayes, C.

    1983-01-01

    A series of air-breathing missile configurations was investigated to provide a data base for the design of such missiles. The model could be configured with either twin axisymmetric or two dimensional inlets. Three circumferential inlet locations were investigated: 90 deg, 115 deg, and 135 deg from the top center. Two vertical wing locations, as well as wingless configurations, were used. Three tail configurations were formed by locating the tail surfaces either on the inlet fairings or on fairings on the body. The surfaces were used to provide pitch control. Two dimensional inlets with extended compression surfaces, used to improve the angle-of-attack performance of the inlets for wingless configurations, were also investigated. The two dimensional inlet configurations are covered.

  5. Patient's breath controls comfort devices

    NASA Technical Reports Server (NTRS)

    Schrader, M.; Carpenter, B.; Nichols, C. D.

    1972-01-01

    Patient assist system for totally disabled persons was developed which permits a person, so paralyzed as to be unable to move, to activate by breathing, a call system to summon assistance, turn the page of a book, ajust his bed, or do any one of a number of other things. System consists of patient assist control and breath actuated switch.

  6. Comparison of two respiration monitoring systems for 4D imaging with a Siemens CT using a new dynamic breathing phantom

    NASA Astrophysics Data System (ADS)

    Vásquez, A. C.; Runz, A.; Echner, G.; Sroka-Perez, G.; Karger, C. P.

    2012-05-01

    Four-dimensional computed tomography (4D-CT) requires breathing information from the patient, and for this, several systems are available. Testing of these systems, under realistic conditions, requires a phantom with a moving target and an expandable outer contour. An anthropomorphic phantom was developed to simulate patient breathing as well as lung tumor motion. Using the phantom, an optical camera system (GateCT) and a pressure sensor (AZ-733V) were simultaneously operated, and 4D-CTs were reconstructed with a Siemens CT using the provided local-amplitude-based sorting algorithm. The comparison of the tumor trajectories of both systems revealed discrepancies up to 9.7 mm. Breathing signal differences, such as baseline drift, temporal resolution and noise level were shown not to be the reason for this. Instead, the variability of the sampling interval and the accuracy of the sampling rate value written on the header of the GateCT-signal file were identified as the cause. Interpolation to regular sampling intervals and correction of the sampling rate to the actual value removed the observed discrepancies. Consistently, the introduction of sampling interval variability and inaccurate sampling rate values into the header of the AZ-733V file distorted the tumor trajectory for this system. These results underline the importance of testing new equipment thoroughly, especially if components of different manufacturers are combined.

  7. How to breathe when you are short of breath

    MedlinePlus

    Pursed lip breathing; COPD - pursed lip breathing; Emphysema - pursed lip breathing; Chronic bronchitis - pursed lip breathing; Pulmonary fibrosis - pursed lip breathing; Interstitial lung disease - pursed lip breathing; Hypoxia - pursed lip breathing; ...

  8. Maintenance requirements in solar air heating systems

    SciTech Connect

    Lof, G.O.G.; Junk, J.P.

    1983-06-01

    The maintenance requirements of a well designed and constructed solar air-heating system are comparable to those of conventional, forced warm air heating systems. One of the major reasons for this low maintenance is the absence of problems associated with corrosion, freezing, boiling, and leakage often encountered in solar liquid systems. Experience shows that most problems are due to overly complex designs, control problems, faulty installation, and adjustment of the moving parts in the system. Operational histories show negligible requirements for maintenance of air collectors, pebble-bed heat-storage bins, and system ducts and connections. Good quality control in the manufacture and installation of airtight collectors, heat-storage bins, and interconnecting ductwork is essential, however. The paper includes a description of solar air-heating systems and their characteristics, an evaluation of the various maintenance requirements, and several case histories illustrating the handling of solar air system maintenance.

  9. SpaceX Dragon Air Circulation System

    NASA Technical Reports Server (NTRS)

    Hernandez, Brenda; Piatrovich, Siarhei; Prina, Mauro

    2011-01-01

    The Dragon capsule is a reusable vehicle being developed by Space Exploration Technologies (SpaceX) that will provide commercial cargo transportation to the International Space Station (ISS). Dragon is designed to be a habitable module while it is berthed to ISS. As such, the Dragon Environmental Control System (ECS) consists of pressure control and pressure equalization, air sampling, fire detection, illumination, and an air circulation system. The air circulation system prevents pockets of stagnant air in Dragon that can be hazardous to the ISS crew. In addition, through the inter-module duct, the air circulation system provides fresh air from ISS into Dragon. To utilize the maximum volume of Dragon for cargo packaging, the Dragon ECS air circulation system is designed around cargo rack optimization. At the same time, the air circulation system is designed to meet the National Aeronautics Space Administration (NASA) inter-module and intra-module ventilation requirements and acoustic requirements. A flight like configuration of the Dragon capsule including the air circulation system was recently assembled for testing to assess the design for inter-module and intra-module ventilation and acoustics. The testing included the Dragon capsule, and flight configuration in the pressure section with cargo racks, lockers, all of the air circulation components, and acoustic treatment. The air circulation test was also used to verify the Computational Fluid Dynamics (CFD) model of the Dragon capsule. The CFD model included the same Dragon internal geometry that was assembled for the test. This paper will describe the Dragon air circulation system design which has been verified by testing the system and with CFD analysis.

  10. Breathing difficulty - lying down

    MedlinePlus

    ... breath; Paroxysmal nocturnal dyspnea; PND; Difficulty breathing while lying down; Orthopnea ... Obesity (does not directly cause difficulty breathing while lying down but often worsens other conditions that lead ...

  11. Rooftop Unitary Air Conditioner with Integral Dedicated Outdoor Air System

    SciTech Connect

    Tiax Llc

    2006-02-28

    Energy use of rooftop and other unitary air-conditioners in commercial applications accounts for about 1 quad (10{sup 15} Btu) of primary energy use annually in the U.S. [Reference 7]. The realization that this cooling equipment accounts for the majority of commercial building cooled floorspace and the majority also of commercial building energy use has spurred development of improved-efficiency equipment as well as development of stricter standards addressing efficiency levels. Another key market driver affecting design of rooftop air-conditioning equipment has been concern regarding comfort and the control of humidity. Trends for increases in outdoor air ventilation rates in certain applications, and the increasing concern about indoor air quality problems associated with humidity levels and moisture in buildings points to a need for improved dehumidification capability in air-conditioning equipment of all types. In many cases addressing this issue exacerbates energy efficiency, and vice versa. The integrated dedicated outdoor air system configuration developed in this project addresses both energy and comfort/humidity issues.

  12. How Does a Hopping Kangaroo Breathe?

    ERIC Educational Resources Information Center

    Giuliodori, Mauricio J.; Lujan, Heidi L.; Janbaih, Hussein; DiCarlo, Stephen E.

    2010-01-01

    We developed a model to demonstrate how a hopping kangaroo breathes. Interestingly, a kangaroo uses less energy to breathe while hopping than while standing still. This occurs, in part, because rather than using muscle power to move air into and out of the lungs, air is pulled into (inspiration) and pushed out of (expiration) the lungs as the…

  13. Modeling-based determination of physiological parameters of systemic VOCs by breath gas analysis: a pilot study

    PubMed Central

    Unterkofler, Karl; King, Julian; Mochalski, Pawel; Jandacka, Martin; Koc, Helin; Teschl, Susanne; Amann, Anton; Teschl, Gerald

    2016-01-01

    In this paper we develop a simple two compartment model which extends the Farhi equation to the case when the inhaled concentration of a volatile organic compound (VOC) is not zero. The model connects the exhaled breath concentration of systemic VOCs with physiological parameters such as endogenous production rates and metabolic rates. Its validity is tested with data obtained for isoprene and inhaled deuterated isoprene-D5. PMID:25972041

  14. Solar Hot-Air System --Memphis, Tennessee

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Solar collectors using air as collection medium provide space heating for four-building office complex in Memphis. 98 page report furnishes details on installation, including: description of system; system startup and acceptance-test results; technical data on collector; installation manuals for collectors, air handler and heat-storage unit.

  15. Submarines, spacecraft and exhaled breath.

    PubMed

    Pleil, Joachim D; Hansel, Armin

    2012-03-01

    Foreword The International Association of Breath Research (IABR) meetings are an eclectic gathering of researchers in the medical, environmental and instrumentation fields; our focus is on human health as assessed by the measurement and interpretation of trace chemicals in human exhaled breath. What may have escaped our notice is a complementary field of research that explores the creation and maintenance of artificial atmospheres practised by the submarine air monitoring and air purification (SAMAP) community. SAMAP is comprised of manufacturers, researchers and medical professionals dealing with the engineering and instrumentation to support human life in submarines and spacecraft (including shuttlecraft and manned rockets, high-altitude aircraft, and the International Space Station (ISS)). Here, the immediate concerns are short-term survival and long-term health in fairly confined environments where one cannot simply 'open the window' for fresh air. As such, one of the main concerns is air monitoring and the main sources of contamination are CO(2) and other constituents of human exhaled breath. Since the inaugural meeting in 1994 in Adelaide, Australia, SAMAP meetings have been held every two or three years alternating between the North American and European continents. The meetings are organized by Dr Wally Mazurek (a member of IABR) of the Defense Systems Technology Organization (DSTO) of Australia, and individual meetings are co-hosted by the navies of the countries in which they are held. An overriding focus at SAMAP is life support (oxygen availability and carbon dioxide removal). Certainly, other air constituents are also important; for example, the closed environment of a submarine or the ISS can build up contaminants from consumer products, cooking, refrigeration, accidental fires, propulsion and atmosphere maintenance. However, the most immediate concern is sustaining human metabolism: removing exhaled CO(2) and replacing metabolized O(2). Another

  16. Optical air data systems and methods

    NASA Technical Reports Server (NTRS)

    Caldwell, Loren M. (Inventor); Tang, Shoou-yu (Inventor); Acott, Phillip E. (Inventor); Spaeth, Lisa G. (Inventor); O'Brien, Martin (Inventor)

    2011-01-01

    Systems and methods for sensing air includes at least one, and in some embodiments three, transceivers for projecting the laser energy as laser radiation to the air. The transceivers are scanned or aligned along several different axes. Each transceiver receives laser energy as it is backscattered from the air. A computer processes signals from the transceivers to distinguish molecular scattered laser radiation from aerosol scattered laser radiation and determines air temperatures, wind speeds, and wind directions based on the scattered laser radiation. Applications of the system to wind power site evaluation, wind turbine control, traffic safety, general meteorological monitoring and airport safety are presented.

  17. Traveling with breathing problems

    MedlinePlus

    If you have breathing problems and you: Are short of breath most of the time Get short of breath when you walk 150 ... or less Have been in the hospital for breathing problems recently Use oxygen at home, even if ...

  18. Ventilation patterns of the songbird lung/air sac system during different behaviors

    PubMed Central

    Mackelprang, Rebecca; Goller, Franz

    2013-01-01

    SUMMARY Unidirectional, continuous airflow through the avian lung is achieved through an elaborate air sac system with a sequential, posterior to anterior ventilation pattern. This classical model was established through various approaches spanning passively ventilated systems to mass spectrometry analysis of tracer gas flow into various air sacs during spontaneous breathing in restrained ducks. Information on flow patterns in other bird taxa is missing, and these techniques do not permit direct tests of whether the basic flow pattern can change during different behaviors. Here we use thermistors implanted into various locations of the respiratory system to detect small pulses of tracer gas (helium) to reconstruct airflow patterns in quietly breathing and behaving (calling, wing flapping) songbirds (zebra finch and yellow-headed blackbird). The results illustrate that the basic pattern of airflow in these two species is largely consistent with the model. However, two notable differences emerged. First, some tracer gas arrived in the anterior set of air sacs during the inspiration during which it was inhaled, suggesting a more rapid throughput through the lung than previously assumed. Second, differences in ventilation between the two anterior air sacs emerged during calling and wing flapping, indicating that adjustments in the flow pattern occur during dynamic behaviors. It is unclear whether this modulation in ventilation pattern is passive or active. This technique for studying ventilation patterns during dynamic behaviors proves useful for establishing detailed timing of airflow and modulation of ventilation in the avian respiratory system. PMID:23788706

  19. Air leakage in residential solar heating systems

    NASA Astrophysics Data System (ADS)

    Shingleton, J. G.; Cassel, D. E.; Overton, R. L.

    1981-02-01

    A series of computer simulations was performed to evaluate the effects of component air leakage on system thermal performance for a typical residential solar heating system, located in Madison, Wisconsin. Auxiliary energy required to supplement solar energy for space heating was determined using the TRNSYS computer program, for a range of air leakage rates at the solar collector and pebble bed storage unit. The effects of heat transfer and mass transfer between the solar equipment room and the heated building were investigated. The effect of reduced air infiltration into the building due to pressurized by the solar air heating system were determined. A simple method of estimating the effect of collector array air leakage on system thermal performance was evaluated, using the f CHART method.

  20. Fluid-bed air-supply system

    DOEpatents

    Zielinski, Edward A.; Comparato, Joseph R.

    1979-01-01

    The air-supply system for a fluidized-bed furnace includes two air conduits for the same combustion zone. The conduits feed separate sets of holes in a distributor plate through which fluidizing air flows to reach the bed. During normal operation, only one conduit and set of holes is used, but the second conduit and set of holes is employed during start-up.

  1. A Novel Method for Quantifying the Inhaled Dose of Air Pollutants Based on Heart Rate, Breathing Rate and Forced Vital Capacity

    PubMed Central

    Greenwald, Roby; Hayat, Matthew J.; Barton, Jerusha; Lopukhin, Anastasia

    2016-01-01

    To better understand the interaction of physical activity and air pollution exposure, it is important to quantify the change in ventilation rate incurred by activity. In this paper, we describe a method for estimating ventilation using easily-measured variables such as heart rate (HR), breathing rate (fB), and forced vital capacity (FVC). We recruited healthy adolescents to use a treadmill while we continuously measured HR, fB, and the tidal volume (VT) of each breath. Participants began at rest then walked and ran at increasing speed until HR was 160–180 beats per minute followed by a cool down period. The novel feature of this method is that minute ventilation (V˙E) was normalized by FVC. We used general linear mixed models with a random effect for subject and identified nine potential predictor variables that influence either V˙E or FVC. We assessed predictive performance with a five-fold cross-validation procedure. We used a brute force selection process to identify the best performing models based on cross-validation percent error, the Akaike Information Criterion and the p-value of parameter estimates. We found a two-predictor model including HR and fB to have the best predictive performance (V˙E/FVC = -4.247+0.0595HR+0.226fB, mean percent error = 8.1±29%); however, given the ubiquity of HR measurements, a one-predictor model including HR may also be useful (V˙E/FVC = -3.859+0.101HR, mean percent error = 11.3±36%). PMID:26809066

  2. Chemically Polymerized Polypyrrole for On-Chip Concentration of Volatile Breath Metabolites

    PubMed Central

    Strand, Nicholas; Bhushan, Abhinav; Schivo, Michael; Kenyon, Nicholas J.; Davis, Cristina E.

    2009-01-01

    A wide range of metabolites are measured in the gas phase of exhaled human breath, and some of these biomarkers are frequently observed to be up- or down-regulated in certain disease states. Portable breath analysis systems have the potential for a wide range of applications in health diagnostics. However, this is currently limited by the lack of concentration mechanisms to enhance trace metabolites found in the breath to levels that can be adequately recorded using miniaturized gas-phase sensors. In this study we have created chip-based polymeric pre-concentration devices capable of absorbing and desorbing breath volatiles for subsequent chemical analysis. These devices appear to concentrate chemicals from both environmental air samples as well as directly from exhaled human breath, and these devices may have applications in lab-on-a-chip-based environmental and health monitoring systems. PMID:20161533

  3. Oronasal breathing during exercise.

    PubMed

    Saibene, F; Mognoni, P; Lafortuna, C L; Mostardi, R

    1978-12-15

    The shift from nasal to oronasal breathing (ONBS) has been observed on 73 subjects with two independent methods. A first group of 63 subjects exercising on a bicycle ergometer at increasing work load (98--196 W) has been observed. On 35 subjects the highest value of ventilation attained with nasal breathing was 40.2 +/- 9.41 . min-1 S.D. Ten subjects breathed through the mouth at all loads, while 5 never opened the mouth. On 13 subjects it was not possible to make reliable measurements. On a second group of 10 subjects utilizing a different techniques which did not need a face mask, the ventilation at which one changes the pattern of breathing was found to be 44.2 +/- 13.51 . min-1 S.D. On the same subjects nasal resistance did not show any correlation with ONBS. It is concluded that ONBS is not solely determined by nasal resistance, though an indirect effect due to hypoventilation and hence to changes in alveolar air composition cannot be ruled out. It is likely that ONBS is also influenced by psychological factors. PMID:569826

  4. TOPICAL REVIEW: Breathing mode excitation in near-harmonic systems: resonant mass capture, desorption and atoms in optical lattices

    NASA Astrophysics Data System (ADS)

    Gadzuk, J. W.

    1998-09-01

    The phenomenon of breathing mode excitation or bound-state wavepacket squeezing and spreading driven by a time-dependent oscillator frequency (due to either a transient force constant or mass) is considered here. An easily implemented theory of stimulated wavepacket dynamics for near-harmonic systems is presented which describes a variety of generic time dependences such as single sudden excitation, double switching (excitation/time delay/de-excitation) and decaying initially excited states which characterize many processes in spectroscopy, pump-probe control in intramolecular dynamics, and femtochemistry. The model is used as the theoretical basis for understanding such diverse phenomena as quantum excitation due to temporary neutron capture, stimulated bond-breaking resulting in delocalization, desorption, or dissociation, and breathing mode excitation of ultracold atoms trapped in optical lattices. Whilst the first two examples are speculative, results for transient wavepacket dynamics of the occupied excited optical lattice are in accord with recent experimental observations reported by the NIST Laser Cooling Group. Emphasis on the inherent theoretical simplicity and the multidisciplinary aspects of near-harmonic breathing mode excitation, as exemplified by the specific realizations considered here, has been a major intent of this topical review.

  5. Troubleshooting the residential air conditioning system

    SciTech Connect

    Puzio, H.

    1996-01-01

    In order to effectively diagnose problems in a residential air conditioning system, the technician should develop and follow a logical step-by-step troubleshooting procedure. A list of problems, along with possible causes and solutions, that a technician may encounter when servicing a residential air conditioner is presented.

  6. Solar-powered hot-air system

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Solar-powered air heater supplies part or all of space heating requirements of residential or commercial buildings and is interfaced with air to water heat exchanger to heat domestic hot water. System has potential application in drying agricultural products such as cotton, lumber, corn, grains, and peanuts.

  7. Air Systems Provide Life Support to Miners

    NASA Technical Reports Server (NTRS)

    2014-01-01

    Through a Space Act Agreement with Johnson Space Center, Paragon Space Development Corporation, of Tucson, Arizona, developed the Commercial Crew Transport-Air Revitalization System, designed to provide clean air for crewmembers on short-duration space flights. The technology is now being used to help save miners' lives in the event of an underground disaster.

  8. AEROMETRIC INFORMATION RETRIEVAL SYSTEM (AIRS) - GRAPHICS

    EPA Science Inventory

    Aerometric Information Retrieval System (AIRS) is a computer-based repository of information about airborne pollution in the United States and various World Health Organization (WHO) member countries. AIRS is administered by the U.S. Environmental Protection Agency, and runs on t...

  9. AEROMETRIC INFORMATION RETRIEVAL SYSTEM (AIRS) EXECUTIVE

    EPA Science Inventory

    Aerometric Information Retrieval System (AIRS) is a computer-based repository of information about airborne pollution in the United States and various World Health Organization (WHO) member countries. AIRS is administered by the U.S. Environmental Protection Agency, and runs on t...

  10. AEROMETRIC INFORMATION RETRIEVAL SYSTEM - AIRS FACILITY SUBSYSTEM

    EPA Science Inventory

    Aerometric Information Retrieval System (AIRS) is a computer-based repository of information about airborne pollution in the United States and various World Health Organization (WHO) member countries. AIRS is administered by the U.S. Environmental Protection Agency, and runs on t...

  11. Testing Air-Filtering Systems

    PubMed Central

    Songer, Joseph R.; Sullivan, James F.; Hurd, James W.

    1963-01-01

    A procedure was developed for evaluating high-efficiency filters mounted in exhaust ducts at the National Animal Disease Laboratory. An aerosol of the test organism, Escherichia coli B T3 bacteriophage, was generated in a chamber attached to a ceiling exhaust register in concentrations of at least 1000 viable organisms per ft3 of air. Samples were collected from both the pre- and postfilter areas, and the number of organisms per ft3 of air was determined. The efficiency of the filter was calculated from these figures. A total of 269 high-efficiency filters were tested. Of these, 249 had efficiencies of 98% or greater. The remaining 20, with efficiencies of less than 98%, were repaired and retested. No filter was accepted with an efficiency of less than 98%. Images Fig. 2 PMID:14063779

  12. The use of superoxide mixtures as air-revitalization chemicals in hyperbaric, self-contained, closed-circuit breathing apparatus

    NASA Technical Reports Server (NTRS)

    Wood, P. C.; Wydeven, T.

    1985-01-01

    In portable breathing apparatus applications at 1 atm, potassium superoxide (KO2) has exhibited low-utilization efficiency of the available oxygen (O2) and diminished carbon dioxide-(CO2) scrubbing capacity caused by the formation of a fused, hydrated-hydroxide/carbonate product coating on the superoxide granules. In earlier work, it was discovered that granules fabricated from an intimate mixture of KO2 and calcium superoxide, Ca(O2)2, did not exhibit formation of a fused product coating and the utilization efficiency with respect to both O2 release and CO2 absorption was superior to KO2 granules when both types of granules were reacted with humidified CO2 under identified conditions. In the work described here, single pellets of KO2, KO2/Ca(O2), mixtures and commercially available KO2 tables and granules were reacted with a flow of humidified CO2 in helium at 1- and 10-atm total pressure and at an initial temperature of 40 C. In the 1-atm flow tests, the reaction rates and utilization efficiency of the KO2/Ca(O2)2 pellets were markedly superior to the KO2 pellets, tablets, and granules when the samples were reacted under identical conditions. However, at 10 atm, the rates of O2 release and CO2 absorption, as well as the utilization efficiencies of all the superoxide samples, were one-third to one-eighth of the values observed at 1 atm. The decrease in reaction performance at 10 atm compared to that at 1 atm has been attributed principally to the lower bulk diffusivity of the CO2 and H2O reactants in helium at the higher pressure and secondarily to the moderation of the reaction temperature caused by the higher heat capacity of the 10-atm helium.

  13. Wavelet based de-noising of breath air absorption spectra profiles for improved classification by principal component analysis

    NASA Astrophysics Data System (ADS)

    Kistenev, Yu. V.; Shapovalov, A. V.; Borisov, A. V.; Vrazhnov, D. A.; Nikolaev, V. V.; Nikiforova, O. Yu.

    2015-11-01

    The comparison results of different mother wavelets used for de-noising of model and experimental data which were presented by profiles of absorption spectra of exhaled air are presented. The impact of wavelets de-noising on classification quality made by principal component analysis are also discussed.

  14. Weather and air pollutants have an impact on patients with respiratory diseases and breathing difficulties in Munich, Germany

    NASA Astrophysics Data System (ADS)

    Wanka, E. R.; Bayerstadler, A.; Heumann, C.; Nowak, D.; Jörres, R. A.; Fischer, R.

    2014-03-01

    This study determined the influence of various meteorological variables and air pollutants on airway disorders in general, and asthma and/or chronic obstructive pulmonary disease in particular, in Munich, Bavaria, during 2006 and 2007. This was achieved through an evaluation of the daily frequency of calls to medical and emergency call centres, ambulatory medical care visits at general practitioners, and prescriptions of antibiotics for respiratory diseases. Meteorological parameters were extracted from data supplied by the European Centre for Medium Range Weather Forecast. Data on air pollutant levels were extracted from the air quality database of the European Environmental Agency for different measurement sites. In addition to descriptive analyses, a backward elimination procedure was performed to identify variables associated with medical outcome variables. Afterwards, generalised additive models (GAM) were used to verify whether the selected variables had a linear or nonlinear impact on the medical outcomes. The analyses demonstrated associations between environmental parameters and daily frequencies of different medical outcomes, such as visits at GPs and air pressure (-27 % per 10 hPa change) or ozone (-24 % per 10 μg/m3 change). The results of the GAM indicated that the effects of some covariates, such as carbon monoxide on consultations at GPs, or humidity on medical calls in general, were nonlinear, while the type of association varied between medical outcomes. These data suggest that the multiple, complex effect of environmental factors on medical outcomes should not be assumed homogeneous or linear a priori and that different settings might be associated with different types of associations.

  15. Weather and air pollutants have an impact on patients with respiratory diseases and breathing difficulties in Munich, Germany.

    PubMed

    Wanka, E R; Bayerstadler, A; Heumann, C; Nowak, D; Jörres, R A; Fischer, R

    2014-03-01

    This study determined the influence of various meteorological variables and air pollutants on airway disorders in general, and asthma and/or chronic obstructive pulmonary disease in particular, in Munich, Bavaria, during 2006 and 2007. This was achieved through an evaluation of the daily frequency of calls to medical and emergency call centres, ambulatory medical care visits at general practitioners, and prescriptions of antibiotics for respiratory diseases. Meteorological parameters were extracted from data supplied by the European Centre for Medium Range Weather Forecast. Data on air pollutant levels were extracted from the air quality database of the European Environmental Agency for different measurement sites. In addition to descriptive analyses, a backward elimination procedure was performed to identify variables associated with medical outcome variables. Afterwards, generalised additive models (GAM) were used to verify whether the selected variables had a linear or nonlinear impact on the medical outcomes. The analyses demonstrated associations between environmental parameters and daily frequencies of different medical outcomes, such as visits at GPs and air pressure (-27 % per 10 hPa change) or ozone (-24 % per 10 μg/m(3) change). The results of the GAM indicated that the effects of some covariates, such as carbon monoxide on consultations at GPs, or humidity on medical calls in general, were nonlinear, while the type of association varied between medical outcomes. These data suggest that the multiple, complex effect of environmental factors on medical outcomes should not be assumed homogeneous or linear a priori and that different settings might be associated with different types of associations. PMID:24091656

  16. Radiated Emission of Breath Monitoring System Based on UWB Pulses in Spacecraft Modules

    NASA Astrophysics Data System (ADS)

    Russo, P.; Mariani Primiani, V.; De Leo, A.; Cerri, G.

    2012-05-01

    The paper describes some EMC aspects related to a UWB radar for monitoring astronauts breathing activity. Compliance to EMC space standards forces some design aspects, in particular the peak voltage and the pulse waveform. Moreover some simulations were carried out to consider realistic operating condition. In the first case the interference towards a victim wifi circuit was analyzed, in the second case the effect of the environment on the radiated pulse was studied.

  17. Air quality and future energy system planning

    NASA Astrophysics Data System (ADS)

    Sobral Mourao, Zenaida; Konadu, Dennis; Lupton, Rick

    2016-04-01

    Ambient air pollution has been linked to an increasing number of premature deaths throughout the world. Projected increases in demand for food, energy resources and manufactured products will likely contribute to exacerbate air pollution with an increasing impact on human health, agricultural productivity and climate change. Current events such as tampering emissions tests by VW car manufacturers, failure to comply with EU Air Quality directives and WHO guidelines by many EU countries, the problem of smog in Chinese cities and new industrial emissions regulations represent unique challenges but also opportunities for regulators, local authorities and industry. However current models and practices of energy and resource use do not consider ambient air impacts as an integral part of the planing process. Furthermore the analysis of drivers, sources and impacts of air pollution is often fragmented, difficult to understand and lacks effective visualization tools that bring all of these components together. This work aims to develop a model that links impacts of air quality on human health and ecosystems to current and future developments in the energy system, industrial and agricultural activity and patterns of land use. The model will be added to the ForeseerTM tool, which is an integrated resource analysis platform that has been developed at the University of Cambridge initially with funding from BP and more recently through the EPSRC funded Whole Systems Energy Modeling (WholeSEM) project. The basis of the tool is a set of linked physical models for energy, water and land, including the technologies that are used to transform these resources into final services such as housing, food, transport and household goods. The new air quality model will explore different feedback effects between energy, land and atmospheric systems with the overarching goal of supporting better communication about the drivers of air quality and to incorporate concerns about air quality into

  18. Breathing Like a Fish

    ERIC Educational Resources Information Center

    Katsioloudis, Petros J.

    2010-01-01

    Being able to dive and breathe underwater has been a challenge for thousands of years. In 1980, Fuji Systems of Tokyo developed a series of prototype gills for divers as a way of demonstrating just how good its membranes are. Even though gill technology has not yet reached the point where recipients can efficiently use implants to dive underwater,…

  19. Systemic Analysis Approaches for Air Transportation

    NASA Technical Reports Server (NTRS)

    Conway, Sheila

    2005-01-01

    Air transportation system designers have had only limited success using traditional operations research and parametric modeling approaches in their analyses of innovations. They need a systemic methodology for modeling of safety-critical infrastructure that is comprehensive, objective, and sufficiently concrete, yet simple enough to be used with reasonable investment. The methodology must also be amenable to quantitative analysis so issues of system safety and stability can be rigorously addressed. However, air transportation has proven itself an extensive, complex system whose behavior is difficult to describe, no less predict. There is a wide range of system analysis techniques available, but some are more appropriate for certain applications than others. Specifically in the area of complex system analysis, the literature suggests that both agent-based models and network analysis techniques may be useful. This paper discusses the theoretical basis for each approach in these applications, and explores their historic and potential further use for air transportation analysis.

  20. Functional Analysis and Intervention for Breath Holding.

    ERIC Educational Resources Information Center

    Kern, Lee; And Others

    1995-01-01

    A functional analysis of breath-holding episodes in a 7-year-old girl with severe mental retardation and Cornelia-de-Lange syndrome indicated that breath holding served an operant function, primarily to gain access to attention. Use of extinction, scheduled attention, and a picture card communication system decreased breath holding. (Author/SW)

  1. Effect of chemically modified Vulcan XC-72R on the performance of air-breathing cathode in a single-chamber microbial fuel cell.

    PubMed

    Duteanu, N; Erable, B; Senthil Kumar, S M; Ghangrekar, M M; Scott, K

    2010-07-01

    The catalytic activity of modified carbon powder (Vulcan XC-72R) for oxygen reduction reaction (ORR) in an air-breathing cathode of a microbial fuel cell (MFC) has been investigated. Chemical modification was carried out by using various chemicals, namely 5% nitric acid, 0.2N phosphoric acid, 0.2N potassium hydroxide and 10% hydrogen peroxide. Electrochemical study was performed for ORR of these modified carbon materials in the buffer solution pH range of 6-7.5 in the anodic compartment. Although, these treatments influenced the surface properties of the carbon material, as evident from the SEM-EDX analysis, treatment with H(2)PO(4), KOH, and H(2)O(2) did not show significant activity during the electrochemical test. The HNO(3) treated Vulcan demonstrated significant ORR activity and when used in the single-chamber MFC cathode, current densities (1115mA/m(2), at 5.6mV) greater than those for a Pt-supported un-treated carbon cathode were achieved. However, the power density for the latter was higher. Such chemically modified carbon material can be a cheaper alternative for expensive platinum catalyst used in MFC cathode construction. PMID:20171090

  2. Seasonality influence on biochemical and hematological indicators of stress and growth of pirarucu (Arapaima gigas), an Amazonian air-breathing fish.

    PubMed

    Bezerra, Rosiely Felix; Soares, Maria do Carmo Figueiredo; Santos, Athiê Jorge Guerra; Carvalho, Elba Verônica Matoso Maciel; Coelho, Luana Cassandra Breitenbach Barroso

    2014-01-01

    Environmental factors such as seasonal cycles are the main chronic stress cause in fish increasing incidence of disease and mortality and affecting productive performance. Arapaima gigas (pirarucu) is an Amazonian air-breathing and largest freshwater fish with scales in the world. The captivity development of pirarucu is expanding since it can fatten up over 1 kg per month reaching 10 kg body mass in the first year of fattening. This work was conducted in three periods (April to July 2010, August to November 2010, and December 2010 to March 2011) defined according to rainfall and medium temperatures. Seasonality effect analysis was performed on biochemical (lectin activity, lactate dehydrogenase, and alkaline phosphatase activities) and hematological (total count of red blood cells, hematocrit, hemoglobin, and hematimetric Wintrobe indexes) stress indicators, as well as on growth and wellbeing degree expressed by pirarucu condition factor developed in captivity. All biochemical and hematological stress indicators showed seasonal variations. However, the fish growth was allometrically positive; condition factor high values indicated good state of healthiness in cultivation. These results reinforce the robust feature of pirarucu and represent a starting point for understanding stress physiology and environmental changes during cultivation enabling identification and prevention of fish adverse health conditions. PMID:24578643

  3. Two-dimensional two-phase mass transport model for methanol and water crossover in air-breathing direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Ye, Dingding; Zhu, Xun; Liao, Qiang; Li, Jun; Fu, Qian

    A two-dimensional two-phase mass transport model has been developed to predict methanol and water crossover in a semi-passive direct methanol fuel cell with an air-breathing cathode. The mass transport in the catalyst layer and the discontinuity in liquid saturation at the interface between the diffusion layer and catalyst layer are particularly considered. The modeling results agree well with the experimental data of a home-assembled cell. Further studies on the typical two-phase flow and mass transport distributions including species, pressure and liquid saturation in the membrane electrode assembly are investigated. Finally, the methanol crossover flux, the net water transport coefficient, the water crossover flux, and the total water flux at the cathode as well as their contributors are predicted with the present model. The numerical results indicate that diffusion predominates the methanol crossover at low current densities, while electro-osmosis is the dominator at high current densities. The total water flux at the cathode is originated primarily from the water generated by the oxidation reaction of the permeated methanol at low current densities, while the water crossover flux is the main source of the total water flux at high current densities.

  4. System for controlling air-fuel ratio

    SciTech Connect

    Morozumi, T.

    1982-09-14

    A system for controlling the air-fuel ratio for an internal combustion engine having an induction passage, an exhaust passage , a choke valve in the induction passage, an automatic choke device comprising a positive temperature coefficient (Ptc) heater and a bimetal element connected to the choke valve, a detector for detecting the concentration of a constituent of exhaust gases passing through the exhaust passage, an electronic control circuit, an on-off type electromagnetic valve actuated by the output signal from the electronic control circuit for correcting the air-fuel ratio of the air-fuel mixture supplied by an airfuel mixture supplier, and means for actuating the on-off type electromagnetic valve at a fixed duty ratio during cold engine operation. The electronic control circuit comprises a vacuum sensor for converting the amount of the induced air to an electric quantity, an engine temperature detector for converting the engine temperature to an electric quantity, a first calculating circuit for producing a proper desired air-fuel mixture ratio signal from the output signals of the vacuum sensor and of the engine temperature detector, and a second calculation circuit for producing an actual air-fuel ratio signal from output signals of the vacuum sensor and of the ptc heater. A summing circuit for summing the proper air-fuel ratio signal and the actual air-fuel ratio signal produces a pulse duty ratio correcting signal which is applied to the electronic control circuit for correcting the fixed duty ratio.

  5. 30 CFR 75.1730 - Compressed air; general; compressed air systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Compressed air; general; compressed air systems... Compressed air; general; compressed air systems. (a) All pressure vessels shall be constructed, installed... Safety and Health district office. (b) Compressors and compressed-air receivers shall be equipped...

  6. 30 CFR 75.1730 - Compressed air; general; compressed air systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Compressed air; general; compressed air systems... Compressed air; general; compressed air systems. (a) All pressure vessels shall be constructed, installed... Safety and Health district office. (b) Compressors and compressed-air receivers shall be equipped...

  7. 30 CFR 75.1730 - Compressed air; general; compressed air systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Compressed air; general; compressed air systems... Compressed air; general; compressed air systems. (a) All pressure vessels shall be constructed, installed... Safety and Health district office. (b) Compressors and compressed-air receivers shall be equipped...

  8. 30 CFR 75.1730 - Compressed air; general; compressed air systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Compressed air; general; compressed air systems... Compressed air; general; compressed air systems. (a) All pressure vessels shall be constructed, installed... Safety and Health district office. (b) Compressors and compressed-air receivers shall be equipped...

  9. 30 CFR 75.1730 - Compressed air; general; compressed air systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Compressed air; general; compressed air systems... Compressed air; general; compressed air systems. (a) All pressure vessels shall be constructed, installed... Safety and Health district office. (b) Compressors and compressed-air receivers shall be equipped...

  10. 49 CFR 570.57 - Air brake system and air-over-hydraulic brake subsystem.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 6 2010-10-01 2010-10-01 false Air brake system and air-over-hydraulic brake... STANDARDS Vehicles With GVWR of More Than 10,000 Pounds § 570.57 Air brake system and air-over-hydraulic brake subsystem. The following requirements apply to vehicles with air brake and...

  11. Breathe Deeply.

    ERIC Educational Resources Information Center

    Milshtein, Amy

    2000-01-01

    Discusses the special indoor air quality issues confronting school gyms, locker rooms, and pools; and explores ways to keep the indoor environment healthy. Included are discussions of mold and fungus control and air issues stemming from indoor pools. (GR)

  12. Prediction of blood:air and fat:air partition coefficients of volatile organic compounds for the interpretation of data in breath gas analysis6

    PubMed Central

    Kramer, Christian; Mochalski, Paweł; Unterkofler, Karl; Agapiou, Agapios; Ruzsanyi, Veronika; Liedl, Klaus R

    2016-01-01

    In this article, a database of blood:air and fat:air partition coefficients (λb:a and λf:a) is reported for estimating 1678 volatile organic compounds recently reported to appear in the volatilome of the healthy human. For this purpose, a quantitative structure-property relationship (QSPR) approach was applied and a novel method for Henry’s law constants prediction developed. A random forest model based on Molecular Operating Environment 2D (MOE2D) descriptors based on 2619 literature-reported Henry’s constant values was built. The calculated Henry’s law constants correlate very well (R2test = 0.967) with the available experimental data. Blood:air and fat:air partition coefficients were calculated according to the method proposed by Poulin and Krishnan using the estimated Henry’s constant values. The obtained values correlate reasonably well with the experimentally determined ones for a test set of 90 VOCs (R2 = 0.95). The provided data aim to fill in the literature data gap and further assist the interpretation of results in studies of the human volatilome. PMID:26815030

  13. Prediction of blood:air and fat:air partition coefficients of volatile organic compounds for the interpretation of data in breath gas analysis.

    PubMed

    Kramer, Christian; Mochalski, Paweł; Unterkofler, Karl; Agapiou, Agapios; Ruzsanyi, Veronika; Liedl, Klaus R

    2016-03-01

    In this article, a database of blood:air and fat:air partition coefficients (λ b:a and λ f:a) is reported for estimating 1678 volatile organic compounds recently reported to appear in the volatilome of the healthy human. For this purpose, a quantitative structure-property relationship (QSPR) approach was applied and a novel method for Henry's law constants prediction developed. A random forest model based on Molecular Operating Environment 2D (MOE2D) descriptors based on 2619 literature-reported Henry's constant values was built. The calculated Henry's law constants correlate very well (R(2) test  =  0.967) with the available experimental data. Blood:air and fat:air partition coefficients were calculated according to the method proposed by Poulin and Krishnan using the estimated Henry's constant values. The obtained values correlate reasonably well with the experimentally determined ones for a test set of 90 VOCs (R(2)  =  0.95). The provided data aim to fill in the literature data gap and further assist the interpretation of results in studies of the human volatilome. PMID:26815030

  14. Advanced Overfire Air system and design

    SciTech Connect

    Gene berkau

    2004-07-30

    The objective of the proposed project is to design, install and optimize a prototype advanced tangential OFA air system on two mass feed stoker boilers that can burn coal, biomass and a mixture of these fuels. The results will be used to develop a generalized methodology for retrofit designs and optimization of advanced OFA air systems. The advanced OFA system will reduce particulate and NOx emissions and improve overall efficiency by reducing carbon in the ash and excess oxygen. The advanced OFA will also provide capabilities for carrying full load and improved load following and transitional operations.

  15. Electrochemically exfoliated graphene anodes with enhanced biocurrent production in single-chamber air-breathing microbial fuel cells.

    PubMed

    Najafabadi, Amin Taheri; Ng, Norvin; Gyenge, Előd

    2016-07-15

    Microbial fuel cells (MFCs) present promising options for environmentally sustainable power generation especially in conjunction with waste water treatment. However, major challenges remain including low power density, difficult scale-up, and durability of the cell components. This study reports enhanced biocurrent production in a membrane-free MFC, using graphene microsheets (GNs) as anode and MnOx catalyzed air cathode. The GNs are produced by ionic liquid assisted simultaneous anodic and cathodic electrochemical exfoliation of iso-molded graphite electrodes. The GNs produced by anodic exfoliation increase the MFC peak power density by over 300% compared to plain carbon cloth (i.e., 2.85Wm(-2) vs 0.66Wm(-2), respectively), and by 90% compared to conventional carbon black (i.e., Vulcan XC-72) anode. These results exceed previously reported power densities for graphene-containing MFC anodes. The fuel cell polarization results are corroborated by electrochemical impedance spectroscopy indicating three times lower charge transfer resistance for the GN anode. Material characterizations suggest that the best performing GN samples were of relatively smaller size (~500nm), with higher levels of ionic liquid induced surface functionalization during the electrochemical exfoliation process. PMID:26926591

  16. The Integrated Air Transportation System Evaluation Tool

    NASA Technical Reports Server (NTRS)

    Wingrove, Earl R., III; Hees, Jing; Villani, James A.; Yackovetsky, Robert E. (Technical Monitor)

    2002-01-01

    Throughout U.S. history, our nation has generally enjoyed exceptional economic growth, driven in part by transportation advancements. Looking forward 25 years, when the national highway and skyway systems are saturated, the nation faces new challenges in creating transportation-driven economic growth and wealth. To meet the national requirement for an improved air traffic management system, NASA developed the goal of tripling throughput over the next 20 years, in all weather conditions while maintaining safety. Analysis of the throughput goal has primarily focused on major airline operations, primarily through the hub and spoke system.However, many suggested concepts to increase throughput may operate outside the hub and spoke system. Examples of such concepts include the Small Aircraft Transportation System, civil tiltrotor, and improved rotorcraft. Proper assessment of the potential contribution of these technologies to the domestic air transportation system requires a modeling capability that includes the country's numerous smaller airports, acting as a fundamental component of the National Air space System, and the demand for such concepts and technologies. Under this task for NASA, the Logistics Management Institute developed higher fidelity demand models that capture the interdependence of short-haul air travel with other transportation modes and explicitly consider the costs of commercial air and other transport modes. To accomplish this work, we generated forecasts of the distribution of general aviation based aircraft and GA itinerant operations at each of nearly 3.000 airport based on changes in economic conditions and demographic trends. We also built modules that estimate the demand for travel by different modes, particularly auto, commercial air, and GA. We examined GA demand from two perspectives: top-down and bottom-up, described in detail.

  17. 14 CFR 23.1109 - Turbocharger bleed air system.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Turbocharger bleed air system. 23.1109... Induction System § 23.1109 Turbocharger bleed air system. The following applies to turbocharged bleed air systems used for cabin pressurization: (a) The cabin air system may not be subject to...

  18. 14 CFR 23.1109 - Turbocharger bleed air system.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Turbocharger bleed air system. 23.1109... Induction System § 23.1109 Turbocharger bleed air system. The following applies to turbocharged bleed air systems used for cabin pressurization: (a) The cabin air system may not be subject to...

  19. 14 CFR 23.1109 - Turbocharger bleed air system.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Turbocharger bleed air system. 23.1109... Induction System § 23.1109 Turbocharger bleed air system. The following applies to turbocharged bleed air systems used for cabin pressurization: (a) The cabin air system may not be subject to...

  20. 14 CFR 23.1109 - Turbocharger bleed air system.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Turbocharger bleed air system. 23.1109... Induction System § 23.1109 Turbocharger bleed air system. The following applies to turbocharged bleed air systems used for cabin pressurization: (a) The cabin air system may not be subject to...

  1. 14 CFR 23.1109 - Turbocharger bleed air system.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Induction System § 23.1109 Turbocharger bleed air system. The following applies to turbocharged bleed air systems used for cabin pressurization: (a) The cabin air system may not be subject to hazardous... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Turbocharger bleed air system....

  2. Shortness of Breath

    MedlinePlus

    ... Body & lifestyle changes > Shortness of breath Shortness of breath E-mail to a friend Please fill in ... oxygen your baby gets. Causes of shortness of breath during pregnancy Early pregnancy In the first few ...

  3. What Controls Your Breathing?

    MedlinePlus

    ... To a limited degree, you can change your breathing rate, such as by breathing faster or holding your ... oxygen levels in your blood and change your breathing rate as needed. Sensors in the airways detect lung ...

  4. Breath alcohol test

    MedlinePlus

    Alcohol test - breath ... There are various brands of breath alcohol tests. Each one uses a different method to test the level of alcohol in the breath. The machine may be electronic or manual. One ...

  5. Breath-Holding Spells

    MedlinePlus

    ... less than a minute before a child regains consciousness and resumes breathing normally. Breath-holding spells can ... spells cause kids to stop breathing and lose consciousness for up to a minute. In the most ...

  6. Rapid shallow breathing

    MedlinePlus

    Tachypnea; Breathing - rapid and shallow; Fast shallow breathing; Respiratory rate - rapid and shallow ... Shallow, rapid breathing has many possible medical causes, including: Asthma Blood clot in an artery in the lung Choking Chronic obstructive ...

  7. Air Storage System Energy Transfer (ASSET) plants

    NASA Astrophysics Data System (ADS)

    Stys, Z. S.

    1983-09-01

    The design features and performance capabilities of Air Storage System Energy Transfer (ASSET) plants for transferring off-peak utility electricity to on-peak hours are described. The plant operations involve compressing ambient air with an axial flow compressor and depositing it in an underground reservoir at 70 bar pressure. Released during a peaking cycle, the pressure is reduced to 43 bar, the air is heated to 550 C, passed through an expander after a turbine, and passed through a low pressure combustion chamber to be heated to 850 C. A West German plant built in 1978 to supply over 300 MW continuous power for up to two hours is detailed, noting its availability factor of nearly 98 percent and power delivery cost of $230/kW installed. A plant being constructed in Illinois will use limestone caverns as the air storage tank.

  8. Combined air and water pollution control system

    NASA Technical Reports Server (NTRS)

    Wolverton, Billy C. (Inventor); Jarrell, Lamont (Inventor)

    1990-01-01

    A bioaquatic air pollution control system for controlling both water and atmospheric pollution is disclosed. The pollution control system includes an exhaust for directing polluted gases out of a furnace and a fluid circulating system which circulates fluid, such as waste water, from a source, past the furnace where the fluid flow entrains the pollutants from the furnace. The combined fluid and pollutants are then directed through a rock/plant/microbial filtering system. A suction pump pumps the treated waste water from the filter system past the exhaust to again entrain more pollutants from the furnace where they are combined with the fluid (waste water) and directed to the filter system.

  9. Breathing In

    ERIC Educational Resources Information Center

    Mahoney, Daniel P.

    2008-01-01

    Healthful indoor air quality (IAQ) in education facilities can improve the learning environment for students, enhance teacher job satisfaction, and reduce staff complaints. A proactive indoor air quality program helps identify and eliminate conditions that could lead to IAQ complaints, building-related illnesses, and workers' compensation claims.…

  10. Breathing Easier.

    ERIC Educational Resources Information Center

    Smolkin, Rachel

    2003-01-01

    Describes use of Environmental Protection Agency's Tools for Schools tool kit to improve indoor air quality aimed specifically at eliminating asthma triggers such as dust mites and mold. Includes several examples of school district efforts to reduce or eliminate student health problems associated with poor indoor air quality. (PKP)

  11. Air Pressure Controlled Mass Measurement System

    NASA Astrophysics Data System (ADS)

    Zhong, Ruilin; Wang, Jian; Cai, Changqing; Yao, Hong; Ding, Jin'an; Zhang, Yue; Wang, Xiaolei

    Mass measurement is influenced by air pressure, temperature, humidity and other facts. In order to reduce the influence, mass laboratory of National Institute of Metrology, China has developed an air pressure controlled mass measurement system. In this system, an automatic mass comparator is installed in an airtight chamber. The Chamber is equipped with a pressure controller and associate valves, thus the air pressure can be changed and stabilized to the pre-set value, the preferred pressure range is from 200 hPa to 1100 hPa. In order to keep the environment inside the chamber stable, the display and control part of the mass comparator are moved outside the chamber, and connected to the mass comparator by feed-throughs. Also a lifting device is designed for this system which can easily lift up the upper part of the chamber, thus weights can be easily put inside the mass comparator. The whole system is put on a marble platform, and the temperature and humidity of the laboratory is very stable. The temperature, humidity, and carbon dioxide content inside the chamber are measured in real time and can be used to get air density. Mass measurement cycle from 1100 hPa to 200 hPa and back to 1100 hPa shows the effective of the system.

  12. Secondary air injection system and method

    DOEpatents

    Wu, Ko-Jen; Walter, Darrell J.

    2014-08-19

    According to one embodiment of the invention, a secondary air injection system includes a first conduit in fluid communication with at least one first exhaust passage of the internal combustion engine and a second conduit in fluid communication with at least one second exhaust passage of the internal combustion engine, wherein the at least one first and second exhaust passages are in fluid communication with a turbocharger. The system also includes an air supply in fluid communication with the first and second conduits and a flow control device that controls fluid communication between the air supply and the first conduit and the second conduit and thereby controls fluid communication to the first and second exhaust passages of the internal combustion engine.

  13. 42 CFR 84.172 - Breathing tubes; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 42 Public Health 1 2010-10-01 2010-10-01 false Breathing tubes; minimum requirements. 84.172... Air-Purifying Particulate Respirators § 84.172 Breathing tubes; minimum requirements. Flexible breathing tubes used in conjunction with respirators shall be designed and constructed to prevent:...

  14. Influence of environmental hypertonicity on the induction of ureogenesis and amino acid metabolism in air-breathing walking catfish (Clarias batrachus, Bloch).

    PubMed

    Banerjee, Bodhisattwa; Bhuyan, Gitalee; Saha, Nirmalendu

    2014-07-01

    Effect of environmental hypertonicity, due to exposure to 300 mM mannitol solution for 7 days, on the induction of ureogenesis and also on amino acid metabolism was studied in the air-breathing walking catfish, C. batrachus, which is already known to have the capacity to face the problem of osmolarity stress in addition to other environmental stresses in its natural habitats. Exposure to hypertonic mannitol solution led to reduction of ammonia excretion rate by about 2-fold with a concomitant increase of urea-N excretion rate by about 2-fold. This was accompanied by significant increase in the levels of both ammonia and urea in different tissues and also in plasma. Further, the environmental hypertonicity also led to significant accumulation of different non-essential free amino acids (FAAs) and to some extent the essential FAAs, thereby causing a total increase of non-essential FAA pool by 2-3-fold and essential FAA pool by 1.5-2.0-fold in most of the tissues studied including the plasma. The activities of three ornithine-urea cycle (OUC) enzymes such as carbamoyl phosphate synthetase, argininosuccinate synthetase and argininosuccinate lyase in liver and kidney tissues, and four key amino acid metabolism-related enzymes such as glutamine synthetase, glutamate dehydrogenase (reductive amination), alanine aminotransaminase and aspartate aminotransaminase were also significantly up-regulated in different tissues of the fish while exposing to hypertonic environment. Thus, more accumulation and excretion of urea-N observed during hypertonic exposure were probably associated with the induction of ureogenesis through the induced OUC, and the increase of amino acid pool was probably mainly associated with the up-regulation of amino acid synthesizing machineries in this catfish in hypertonic environment. These might have helped the walking catfish in defending the osmotic stress and to acclimatize better under hypertonic environment, which is very much uncommon among

  15. Advanced Air Data Systems for Commercial Aircraft

    NASA Technical Reports Server (NTRS)

    2006-01-01

    It is possible to get a crude estimate of wind speed and direction while driving a car at night in the rain, with the motion of the raindrop reflections in the headlights providing clues about the wind. The clues are difficult to interpret, though, because of the relative motions of ground, car, air, and raindrops. More subtle interpretation is possible if the rain is replaced by fog, because the tiny droplets would follow the swirling currents of air around an illuminated object, like, for example, a walking pedestrian. Microscopic particles in the air (aerosols) are better for helping make assessments of the wind, and reflective air molecules are best of all, providing the most refined measurements. It takes a bright light to penetrate fog, so it is easy to understand how other factors, like replacing the headlights with the intensity of a searchlight, can be advantageous. This is the basic principle behind a lidar system. While a radar system transmits a pulse of radiofrequency energy and interprets the received reflections, a lidar system works in a similar fashion, substituting a near-optical laser pulse. The technique allows the measurement of relative positions and velocities between the transmitter and the air, which allows measurements of relative wind and of air temperature (because temperature is associated with high-frequency random motions on a molecular level). NASA, as well as the National Oceanic and Atmospheric Administration (NOAA), have interests in this advanced lidar technology, as much of their explorative research requires the ability to measure winds and turbulent regions within the atmosphere. Lidar also shows promise for providing warning of turbulent regions within the National Airspace System to allow commercial aircraft to avoid encounters with turbulence and thereby increase the safety of the traveling public. Both agencies currently employ lidar and optical sensing for a variety of weather-related research projects, such as analyzing

  16. Solar powered desiccant air conditioning system

    NASA Astrophysics Data System (ADS)

    1981-07-01

    A solar-powered desiccant air conditioning system using silica gel was developed, and modifications to the existing unit and additional testing are proposed to demonstrate the feasibility of the unit. Conversion from a rotating bed to a fixed bed of silica gel is proposed. Some general plans for commercialization are briefly discussed.

  17. Tomorrows' Air Transportation System Breakout Series Report

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The purpose of this presentation is to discuss tomorrow's air transportation system. Section of this presentation includes: chair comments; other general comments; surface congestion alleviation; runway productivity; enhanced arrival/departure tools; integrated airspace decision support tools; national traffic flow management, runway independent operations; ATM TFM weather; and terminal weather.

  18. CONTROLLING AIR TOXICS: AN ADVISORY SYSTEM

    EPA Science Inventory

    The paper discusses the development and use of a computerized advisory system for the control of air toxics. The program, is written for the IBM PC using Microsoft C V3.0 compiler and Windows for Data Library V1.0 for screen and keyboard interaction. The permit reviewer inputs in...

  19. Integrated System Test of an Airbreathing Rocket

    NASA Technical Reports Server (NTRS)

    Mack, Gregory; Beaudry, Charles; Ketchum, Andrew; McArthur, J. Craig (Technical Monitor)

    2002-01-01

    This viewgraph presentation provides information on NASA's attempts to develop an air-breathing propulsion in an effort to make future space transportation safer, more reliable and significantly less expensive than today's missions. Spacecraft powered by air-breathing rocket engines would be completely reusable, able to take off and land at airport runways and ready to fly again within days. A radical new engine project is called the Integrated System Tests of an Air-breathing Rocket, or ISTAR.

  20. Testing the Patriot air defense weapon system

    NASA Astrophysics Data System (ADS)

    Graham, W. L.; McClay, L. F.

    1983-11-01

    A summary of the overall test program of the Patriot air defense weapon system is presented, including preparations for system integration tests and surveillance tests, with particular emphasis placed on the guidance flight test program. The major components of the system are described, and subsystem tests consisting of static and dynamic plume tests, static propulsion tests, dynamic propulsion test firings, and control system test firings are discussed. A series of system-level preflight guidance tests which consisted of a captive carry flight test program and other tests is considered. Tests on more sophisticated missions such as ECM, jamming, and combinations of ECM and chaff are addressed. Test data collection techniques are covered.

  1. Air Conditioning System using Rankine Cycle

    NASA Astrophysics Data System (ADS)

    Nagatomo, Shigemi; Yamaguchi, Hiroichi; Hattori, Hitoshi; Futamura, Motonori

    Natural gas is used as the energy source to cope with the recent situation of increasing demand for electricity especially in summer. In this paper, the performance of a Rankine cycle air conditioning system driven by natural gas was studied. The following results were obtained : (1) Basic equations of performance, refrigerant mass flow rate and expander volume were developed by using the values of heating efficiency, regeneration efficiency, expander efficiency and compressor efficiency. (2) R134a refrigerant has been considered to be suitable for the Rankine cycle air conditioning system, compared with other refrigerants. (3)A Rankine cycle cooling system using R134a refrigerant as a single working fluid was developed. System COP of 0.47 was attained at typical operating condition.

  2. Clear air turbulence - An airborne alert system

    NASA Technical Reports Server (NTRS)

    Stearns, L. P.; Caracena, F.; Kuhn, P. M.; Kurkowski, R. L.

    1981-01-01

    An infrared radiometer system has been developed that can alert a pilot of an aircraft 2 to 9 minutes in advance of an encounter with clear air turbulence. The time between the warning and the clear air turbulence event varies with the flight altitude of the aircraft. In turbulence-free areas, the incidence of false alarms is found to be less than one in 3.4 hours of flight time compared to less than one per 10 hours of flight time in areas with turbulence.

  3. 42 CFR 84.81 - Compressed breathing gas and liquefied breathing gas containers; minimum requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies may be obtained from American National Standards... APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Self-Contained Breathing Apparatus § 84.81 Compressed breathing... the container. (d) Compressed breathing gas contained valves or a separate charging system or...

  4. 42 CFR 84.81 - Compressed breathing gas and liquefied breathing gas containers; minimum requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies may be obtained from American National Standards... APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Self-Contained Breathing Apparatus § 84.81 Compressed breathing... the container. (d) Compressed breathing gas contained valves or a separate charging system or...

  5. 42 CFR 84.81 - Compressed breathing gas and liquefied breathing gas containers; minimum requirements.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies may be obtained from American National Standards... APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Self-Contained Breathing Apparatus § 84.81 Compressed breathing... the container. (d) Compressed breathing gas contained valves or a separate charging system or...

  6. 42 CFR 84.81 - Compressed breathing gas and liquefied breathing gas containers; minimum requirements.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... accordance with 5 U.S.C. 552(a) and 1 CFR part 51. Copies may be obtained from American National Standards... APPROVAL OF RESPIRATORY PROTECTIVE DEVICES Self-Contained Breathing Apparatus § 84.81 Compressed breathing... the container. (d) Compressed breathing gas contained valves or a separate charging system or...

  7. Breathe Easy.

    ERIC Educational Resources Information Center

    Epstien, Barb

    1999-01-01

    Examines the different indoor air pollutants that can be found in schools and tips for controlling them. Also discussed is building analysis for monitoring biocontaminants including allergens and molds. (GR)

  8. Breathing difficulty

    MedlinePlus

    ... defects from birth ( congenital heart disease ) Heart failure Heart rhythm disturbances ( arrhythmias ) Other causes: Allergies (such as to mold, dander, or pollen) High altitudes where there is less oxygen in the air ...

  9. Breathing (image)

    MedlinePlus

    ... flow into the lungs. The second phase is expiration. Expiration involves gases leaving the lungs. During inspiration, the ... contract allowing air to enter the lungs. During expiration, the inspiration muscles relax forcing gases to flow ...

  10. Evaluating Radionuclide Air Emission Stack Sampling Systems

    SciTech Connect

    Ballinger, Marcel Y.

    2002-12-16

    The Pacific Northwest National Laboratory (PNNL) operates a number of research and development (R&D) facilities for the U.S. Department of Energy at the Hanford Site, Washington. These facilities are subject to Clean Air Act regulations that require sampling of radionuclide air emissions from some of these facilities. A revision to an American National Standards Institute (ANSI) standard on sampling radioactive air emissions has recently been incorporated into federal and state regulations and a re-evaluation of affected facilities is being performed to determine the impact. The revised standard requires a well-mixed sampling location that must be demonstrated through tests specified in the standard. It also carries a number of maintenance requirements, including inspections and cleaning of the sampling system. Evaluations were performed in 2000 – 2002 on two PNNL facilities to determine the operational and design impacts of the new requirements. The evaluation included inspection and cleaning maintenance activities plus testing to determine if the current sampling locations meet criteria in the revised standard. Results show a wide range of complexity in inspection and cleaning activities depending on accessibility of the system, ease of removal, and potential impact on building operations (need for outages). As expected, these High Efficiency Particulate Air (HEPA)-filtered systems did not show deposition significant enough to cause concerns with blocking of the nozzle or other parts of the system. The tests for sampling system location in the revised standard also varied in complexity depending on accessibility of the sample site and use of a scale model can alleviate many issues. Previous criteria to locate sampling systems at eight duct diameters downstream and two duct diameters upstream of the nearest disturbances is no guarantee of meeting criteria in the revised standard. A computational fluid dynamics model was helpful in understanding flow and

  11. 14 CFR 23.1091 - Air induction system.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Air induction system. 23.1091 Section 23... § 23.1091 Air induction system. (a) The air induction system for each engine and auxiliary power unit and their accessories must supply the air required by that engine and auxiliary power unit and...

  12. 14 CFR 23.1091 - Air induction system.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Air induction system. 23.1091 Section 23... § 23.1091 Air induction system. (a) The air induction system for each engine and auxiliary power unit and their accessories must supply the air required by that engine and auxiliary power unit and...

  13. 14 CFR 23.1091 - Air induction system.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Air induction system. 23.1091 Section 23... § 23.1091 Air induction system. (a) The air induction system for each engine and auxiliary power unit and their accessories must supply the air required by that engine and auxiliary power unit and...

  14. 30 CFR 77.412 - Compressed air systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Compressed air systems. 77.412 Section 77.412... for Mechanical Equipment § 77.412 Compressed air systems. (a) Compressors and compressed-air receivers... involving the pressure system of compressors, receivers, or compressed-air-powered equipment shall not...

  15. Medical devices; clinical chemistry and clinical toxicology devices; classification of the breath nitric oxide test system. Final rule.

    PubMed

    2003-07-01

    The Food and Drug Administration (FDA) is classifying the breath nitric oxide test system into class II (special controls). The agency is taking this action in response to a petition submitted under the Federal Food, Drug, and Cosmetic Act (the act) as amended by the Medical Device Amendments of 1976 (the 1976 amendments), the Safe Medical Devices Act of 1990 (the SMDA), and the Food and Drug Administration Modernization Act of 1997 (FDAMA). The agency is classifying this device into class II (special controls) in order to provide a reasonable assurance of safety and effectiveness of the device. Elsewhere in this issue of the Federal Register, FDA is announcing the availability of a guidance document that will serve as the special control for the device. PMID:12858842

  16. A Breath of Spring Air

    ERIC Educational Resources Information Center

    Grady, Marilyn L.

    2009-01-01

    The most promising sights of spring in Nebraska this year were two conferences for women. One event, sponsored by Metropolitan Community College in Omaha, was a Women's History Month Tea. A second conference was the meeting of the Nebraska Women in Higher Education. These two events suggest that there is a continuing interest in women's leadership…

  17. Breath of Fresh Air Act

    THOMAS, 112th Congress

    Rep. Richardson, Laura [D-CA-37

    2012-08-02

    09/26/2012 Referred to the Subcommittee on Early Childhood, Elementary, and Secondary Education. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  18. Breath of Fresh Air Act

    THOMAS, 113th Congress

    Rep. Jackson Lee, Sheila [D-TX-18

    2014-02-27

    06/13/2014 Referred to the Subcommittee on Early Childhood, Elementary, and Secondary Education. (All Actions) Tracker: This bill has the status IntroducedHere are the steps for Status of Legislation:

  19. Air breathing lithium power cells

    DOEpatents

    Farmer, Joseph C.

    2014-07-15

    A cell suitable for use in a battery according to one embodiment includes a catalytic oxygen cathode; a stabilized zirconia electrolyte for selective oxygen anion transport; a molten salt electrolyte; and a lithium-based anode. A cell suitable for use in a battery according to another embodiment includes a catalytic oxygen cathode; an electrolyte; a membrane selective to molecular oxygen; and a lithium-based anode.

  20. Observing System Simulation Experiments for air quality

    NASA Astrophysics Data System (ADS)

    Timmermans, R. M. A.; Lahoz, W. A.; Attié, J.-L.; Peuch, V.-H.; Curier, R. L.; Edwards, D. P.; Eskes, H. J.; Builtjes, P. J. H.

    2015-08-01

    This review paper provides a framework for the application of the Observing System Simulation Experiment (OSSE) methodology to satellite observations of atmospheric constituents relevant for air quality. The OSSEs are experiments used to determine the potential benefit of future observing systems using an existing monitoring or forecasting system and by this can help to define optimal characteristics of future instruments. To this end observations from future instruments are simulated from a model representing the realistic state of the atmosphere and an instrument simulator. The added value of the new observations is evaluated through assimilation into another model or model version and comparison with the simulated true state and a control run. This paper provides an overview of existing air quality OSSEs focusing on ozone, CO and aerosol. Using illustrative examples from these studies we present the main elements of an air quality OSSE and associated requirements based on evaluation of the existing studies and experience within the meteorological community. The air quality OSSEs performed hitherto provide evidence of their usefulness for evaluation of future observations although most studies published do not meet all the identified requirements. Especially the evaluation of the OSSE set-up requires more attention; the differences between the assimilation model and the simulated truth should approximate differences between models and real observations. Although this evaluation is missing in many studies, it is required to ensure realistic results. Properly executed air quality OSSEs are a valuable and cost effective tool to space agencies and instrument builders when applied at the start of the development stage to ensure future observations provide added value to users of Earth Observation data.

  1. 49 CFR 570.57 - Air brake system and air-over-hydraulic brake subsystem.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...-tension shall be sufficient to prevent slippage. Inspection procedure. With the air system charged, open... sufficient to prevent slippage. Inspection procedure. With the air system charged, open the drain cocks...

  2. 49 CFR 570.57 - Air brake system and air-over-hydraulic brake subsystem.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...-tension shall be sufficient to prevent slippage. Inspection procedure. With the air system charged, open... sufficient to prevent slippage. Inspection procedure. With the air system charged, open the drain cocks...

  3. 49 CFR 570.57 - Air brake system and air-over-hydraulic brake subsystem.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...-tension shall be sufficient to prevent slippage. Inspection procedure. With the air system charged, open... sufficient to prevent slippage. Inspection procedure. With the air system charged, open the drain cocks...

  4. 49 CFR 570.57 - Air brake system and air-over-hydraulic brake subsystem.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...-tension shall be sufficient to prevent slippage. Inspection procedure. With the air system charged, open... sufficient to prevent slippage. Inspection procedure. With the air system charged, open the drain cocks...

  5. Qigong and L-1 straining maneuver oxygen system requirements with and without positive pressure breathing.

    PubMed

    Zhang, S X; Guo, H Z; Zhu, J; Jing, B S

    1994-11-01

    Based on the characteristics of respiration and the intrathoracic pressure in Qigong (Q-G) maneuvering, it has been theorized that the Q-G maneuver may lessen the lack of coordination between aircraft oxygen apparatus and anti-G maneuvers and may be more compatible with positive pressure breathing (PPB). In an experiment intended to test this hypothesis, 5 male volunteers, trained in Q-G and L-1 maneuvers, performed the Q-G and the L-1 maneuvers without and with (PPB) at 4 and 6 kPa, respectively, with 14 respiratory parameters being measured. The results demonstrated that, when performing Q-G maneuver, the maximal expiratory flow rate averaged 1.175-1.645 L.s-1, the inspiratory peak flow, 1.003-1.297 L.s-1. Both these values were markedly lower than those of the L-1 maneuver, and matched well the performance of current aircraft oxygen apparatus. From the blood pressure and heart rate values, it is evident that PPB can further promote the blood pressure-raising effect of the Q-G maneuver, and alleviate pilots' fatigue. PMID:7840751

  6. Aperitif effects on gastric emptying: a crossover study using continuous real-time 13C breath test (BreathID System).

    PubMed

    Inamori, M; Iida, H; Endo, H; Hosono, K; Akiyama, T; Yoneda, K; Fujita, K; Iwasaki, T; Takahashi, H; Yoneda, M; Goto, A; Abe, Y; Kobayashi, N; Kubota, K; Nakajima, A

    2009-04-01

    The aim of this study was to determine whether there is a correlation between aperitif and gastric emptying. Ten healthy male volunteers participated in this randomized, two-way crossover study. Under two conditions (after drinking an aperitif versus not), the (13)C breath test was performed for 4 h with a liquid meal (200 kcal/200 ml) containing 100 mg (13)C acetate. We used 50 ml of umeshu as the aperitif. This is a traditional Japanese plum liqueur, and contains 7 ml alcohol (14%). In the aperitif group, T(1/2), T(lag), and T(peak) were significantly delayed [T(1/2) (132: 113-174) versus (112: 92-134) (P = 0.0069); T(lag) (80: 63-94) versus (55: 47-85) (P = 0.0069); and T(peak) (81: 62-96) versus (54: 34-84) (P = 0.0069), (median: range, aperitif versus control, min)]. Gastric emptying was significantly delayed in the aperitif group as compared with the control group. This study revealed that even a small amount of alcohol such as an aperitif may contribute to delayed gastric emptying. PMID:18688714

  7. News from the Breath Analysis Summit 2011.

    PubMed

    Corradi, Massimo; Mutti, Antonio

    2012-05-23

    analysis is now used to diagnose and monitor asthma, check for transplant organ rejection, detect lung cancer and test for Helicobacter pyloriinfection-and the list is growing. A major milestone in the scientific study of breath was marked in the 1970s when Linus Pauling demonstrated that there is more to exhaled breath than the classic gases of nitrogen, oxygen, carbon dioxide and water vapour-a lot more. Based on the gas-liquid partition chromatography analysis, Pauling reported the presence of 250 substances in exhaled breath. We now have the technology to test for any and all of these components. The field of breath analysis has made considerable advances in the 21st century and the utility of breath analysis in health care is advancing quickly. The science is rapidly expanding, the technology is improving and several new applications have been developed or are under commercial development. Breath analysis may rely on both direct (on line) and indirect (off line) reading methods: in the on-line method, breath analysis is immediately available, whereas the use of indirect methods generally involves collecting and trapping the breath sample and subsequently transferring it to an analytical instrument for analysis. Various kinds of breath samples have been used in biological monitoring, including mixed expired air and end expired air: end exhaled air represents the alveolar air concentration and mixed exhaled air represents the gas mixture coming from the dead space of the bronchial tree and the alveolar gas-exchange space. Exhaled breath analysis is an area where the modern day advances in technology and engineering meet the ever expanding need in medicine for more sensitive, specific and non-invasive tests which makes this area a major front in the interface between medicine and engineering. A major breakthrough over the past decade has been the increase in breath-based tests approved by the US Food and Drug Administration (FDA). Devices measuring common breath gases

  8. Integrated gasification iron-air electrical system

    SciTech Connect

    Brown, J.T.

    1988-05-17

    An integrated, gasification, iron-air electrical system, capable of generating electrical energy from a carbonaceous material is described comprising: (A) a gasification means for carbonaceous materials comprising at least one gasification reactor, where a carbonaceous material is contacted and reacted with a gaseous medium containing steam and air, at a temperature and for a time effective to gasify the carbonaceous material and produce a hot gaseous reaction product comprising CO and H/sub 2/; (B) an iron-air cell containing at least one discharged iron electrode; (C) means to remove the discharged iron electrode from the cell of (B), and contact it with the gaseous reaction product produced in (A); (D) the discharged iron electrode removed from the cell of (B), containing material consisting essentially of Fe and Fe(OH)/sub 2/, which electrode is contacted with the hot gaseous reaction product produced in the gasification reactor of (A), directly, at a temperature of from about 450/sup 0/C to about 700/sup 0/C, for a time effective to convert, by reduction, discharged iron compounds consisting essentially of Fe and Fe(OH)/sub 2/ to charge iron compounds in the electrode and provide a recharged iron electrode; (E) an iron-air cell into which the recharged iron electrode provided in (D) is placed; (F) means to transport the recharged iron electrode provided in (D) to the iron-air cell of (E); and (G) electrical connection means attached to the iron-air cell of (E), providing the cell with capability of generating electrical energy.

  9. HEDL air filter examination system software

    SciTech Connect

    Stapleton, E.E.

    1984-10-01

    This document describes the system software and operation of the Hanford Engineering Development Laboratory (HEDL) air filter sample counting systems. Included are a description of how each program functions with flow charts, sample printouts, program listings and a listing with comments of test routines that exercise the hardware. This effort is a result of a work order from HEDL Operational Safety to the Instrument Calibration and Evaluations section of the Pacific Northwest Laboratory (PNL) to upgrade the HEDL counting systems to include standardization, radon subtraction, and detector cooling.

  10. On an invariance property of acoustic waveguides. [for air breathing propulsion system design

    NASA Technical Reports Server (NTRS)

    Davis, S. S.

    1976-01-01

    The acoustic power transmitted by a variable-area duct section which carries a steady subsonic flow is investigated under the conditions of both upstream- and downstream-propagating incident plane waves. It is found that the ratio of the power transmitted by incident waves moving against the flow to the power transmitted by incident waves moving with the flow is equal to the ratio of the difference between the Mach number and unity to the square of the sum of the Mach number and unity.

  11. Accuracy Evaluation of a 3-Dimensional Surface Imaging System for Guidance in Deep-Inspiration Breath-Hold Radiation Therapy

    SciTech Connect

    Alderliesten, Tanja; Sonke, Jan-Jakob; Betgen, Anja; Honnef, Joeri; Vliet-Vroegindeweij, Corine van; Remeijer, Peter

    2013-02-01

    Purpose: To investigate the applicability of 3-dimensional (3D) surface imaging for image guidance in deep-inspiration breath-hold radiation therapy (DIBH-RT) for patients with left-sided breast cancer. For this purpose, setup data based on captured 3D surfaces was compared with setup data based on cone beam computed tomography (CBCT). Methods and Materials: Twenty patients treated with DIBH-RT after breast-conserving surgery (BCS) were included. Before the start of treatment, each patient underwent a breath-hold CT scan for planning purposes. During treatment, dose delivery was preceded by setup verification using CBCT of the left breast. 3D surfaces were captured by a surface imaging system concurrently with the CBCT scan. Retrospectively, surface registrations were performed for CBCT to CT and for a captured 3D surface to CT. The resulting setup errors were compared with linear regression analysis. For the differences between setup errors, group mean, systematic error, random error, and 95% limits of agreement were calculated. Furthermore, receiver operating characteristic (ROC) analysis was performed. Results: Good correlation between setup errors was found: R{sup 2}=0.70, 0.90, 0.82 in left-right, craniocaudal, and anterior-posterior directions, respectively. Systematic errors were {<=}0.17 cm in all directions. Random errors were {<=}0.15 cm. The limits of agreement were -0.34-0.48, -0.42-0.39, and -0.52-0.23 cm in left-right, craniocaudal, and anterior-posterior directions, respectively. ROC analysis showed that a threshold between 0.4 and 0.8 cm corresponds to promising true positive rates (0.78-0.95) and false positive rates (0.12-0.28). Conclusions: The results support the application of 3D surface imaging for image guidance in DIBH-RT after BCS.

  12. Monitoring ABC-assisted deep inspiration breath hold for left-sided breast radiotherapy with an optical tracking system

    SciTech Connect

    Mittauer, Kathryn E.; Deraniyagala, Rohan; Li, Jonathan G.; Lu, Bo; Liu, Chihray; Samant, Sanjiv S.; Lightsey, Judith L.; Yan, Guanghua

    2015-01-15

    Purpose: Recent knowledge on the effects of cardiac toxicity warrants greater precision for left-sided breast radiotherapy. Different breath-hold (BH) maneuvers (abdominal vs thoracic breathing) can lead to chest wall positional variations, even though the patient’s tidal volume remains consistent. This study aims to investigate the feasibility of using optical tracking for real-time quality control of active breathing coordinator (ABC)-assisted deep inspiration BH (DIBH). Methods: An in-house optical tracking system (OTS) was used to monitor ABC-assisted DIBH. The stability and localization accuracy of the OTS were assessed with a ball-bearing phantom. Seven patients with left-sided breast cancer were included. A free-breathing (FB) computed tomography (CT) scan and an ABC-assisted BH CT scan were acquired for each patient. The OTS tracked an infrared (IR) marker affixed over the patient’s xiphoid process to measure the positional variation of each individual BH. Using the BH within which the CT scan was performed as the reference, the authors quantified intra- and interfraction BH variations for each patient. To estimate the dosimetric impact of BH variations, the authors studied the positional correlation between the marker and the left breast using the FB CT and BH CT scans. The positional variations of 860 BHs as measured by the OTS were retrospectively incorporated into the original treatment plans to evaluate their dosimetric impact on breast and cardiac organs [heart and left anterior descending (LAD) artery]. Results: The stability and localization accuracy of the OTS was within 0.2 mm along each direction. The mean intrafraction variation among treatment BHs was less than 2.8 mm in all directions. Up to 12.6 mm anteroposterior undershoot, where the patient’s chest wall displacement of a BH is less than that of a reference BH, was observed with averages of 4.4, 3.6, and 0.1 mm in the anteroposterior, craniocaudal, and mediolateral directions

  13. Air intake side secondary air supply system for an internal combustion engine

    SciTech Connect

    Kobayashi, H.; Tomobe, N.

    1987-03-10

    This patent describes an air intake side secondary air supply system for an internal combustion engine having a choke valve and a throttle valve in an intake air passage. The system is adapted to supply an air intake side secondary air into an intake air passage downstream of the throttle valve by a control valve and in response to an operating condition of the engine during a cold operation of the engine. The improvement described here comprises means for detecting a no-load operating state of the engine during the cold operation of the engine in which the choke valve is actuated to close the intake air passage, and means for stopping a supply of the air intake side secondary air upon detection of the non-load operating state so as to enrich an air-fuel mixture supplied to the engine.

  14. 14 CFR 23.1091 - Air induction system.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Air induction system. 23.1091 Section 23... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Induction System § 23.1091 Air induction system. (a) The air induction system for each engine and auxiliary power...

  15. 14 CFR 23.1111 - Turbine engine bleed air system.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Turbine engine bleed air system. 23.1111 Section 23.1111 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Induction System § 23.1111 Turbine engine bleed air system. For turbine engine bleed air systems,...

  16. 14 CFR 23.1111 - Turbine engine bleed air system.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Turbine engine bleed air system. 23.1111 Section 23.1111 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Induction System § 23.1111 Turbine engine bleed air system. For turbine engine bleed air systems,...

  17. 14 CFR 23.1111 - Turbine engine bleed air system.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Turbine engine bleed air system. 23.1111 Section 23.1111 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Induction System § 23.1111 Turbine engine bleed air system. For turbine engine bleed air systems,...

  18. 14 CFR 23.1111 - Turbine engine bleed air system.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Turbine engine bleed air system. 23.1111 Section 23.1111 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Induction System § 23.1111 Turbine engine bleed air system. For turbine engine bleed air systems,...

  19. 14 CFR 23.1111 - Turbine engine bleed air system.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Turbine engine bleed air system. 23.1111 Section 23.1111 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Induction System § 23.1111 Turbine engine bleed air system. For turbine engine bleed air systems,...

  20. Air Force geographic information and analysis system

    SciTech Connect

    Henney, D.A.; Jansing, D.S.; Durfee, R.C.; Margle, S.M.; Till, L.E.

    1987-01-01

    A microcomputer-based geographic information and analysis system (GIAS) was developed to assist Air Force planners with environmental analysis, natural resources management, and facility and land-use planning. The system processes raster image data, topological data structures, and geometric or vector data similar to that produced by computer-aided design and drafting (CADD) systems, integrating the data where appropriate. Data types included Landsat imagery, scanned images of base maps, digitized point and chain features, topographic elevation data, USGS stream course data, highway networks, railroad networks, and land use/land cover information from USGS interpreted aerial photography. The system is also being developed to provide an integrated display and analysis capability with base maps and facility data bases prepared on CADD systems. 3 refs.

  1. 42 CFR 84.152 - Breathing tube test; minimum requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 42 Public Health 1 2012-10-01 2012-10-01 false Breathing tube test; minimum requirements. 84.152... Respirators § 84.152 Breathing tube test; minimum requirements. (a)(1) Type A and Type B supplied-air... employed on Type C supplied-air respirators of the continuous flow class shall meet the...

  2. Electrochemical air revitalization system optimization investigation

    NASA Technical Reports Server (NTRS)

    Woods, R. R.; Schubert, F. H.; Hallick, T. M.

    1975-01-01

    A program to characterize a Breadboard of an Electrochemical Air Revitalization System (BEARS) was successfully completed. The BEARS is composed of three components: (1) a water vapor electrolysis module (WVEM) for O2 production and partial humidity control, (2) an electrochemical depolarized carbon dioxide concentrator module (EDCM) for CO2 control, and (3) a power-sharing controller, designed to utilize the power produced by the EDCM to partially offset the WVEM power requirements. It is concluded from the results of this work that the concept of electrochemical air revitalization with power-sharing is a viable solution to the problem of providing a localized topping force for O2 generation, CO2 removal and partial humidity control aboard manned spacecraft. Continued development of the EARS concept is recommended, applying the operational experience and limits identified during the BEARS program to testing of a one-man capacity system and toward the development of advanced system controls to optimize EARS operation for given interfaces and requirements. Successful completion of this development will produce timely technology necessary to plan future advanced environmental control and life support system programs and experiments.

  3. Every Breath You Take

    NASA Technical Reports Server (NTRS)

    1998-01-01

    As a result of SBIR (Small Business Innovative Research) work for Johnson Space Center, KSE, Inc., developed a photocatalytic Adsorption-Integrated-Reaction (AIR) air purification process originally used for air revitalization in life support systems during extended space operations. A unit has been purchased by a commercial customer for control of emissions of airborne chlorinated hydrocarbons at a Superfund site.

  4. 24 CFR 3280.715 - Circulating air systems.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 5 2014-04-01 2014-04-01 false Circulating air systems. 3280.715... Systems § 3280.715 Circulating air systems. Link to an amendment published at 78 FR 73989, Dec. 9, 2013... steel, tin-plated steel, or aluminum, or shall be listed Class 0, Class 1, or Class 2 air ducts. Class...

  5. Breathing exercises: influence on breathing patterns and thoracoabdominal motion in healthy subjects

    PubMed Central

    Vieira, Danielle S. R.; Mendes, Liliane P. S.; Elmiro, Nathália S.; Velloso, Marcelo; Britto, Raquel R.; Parreira, Verônica F.

    2014-01-01

    BACKGROUND: The mechanisms underlying breathing exercises have not been fully elucidated. OBJECTIVES: To evaluate the impact of four on breathing exercises (diaphragmatic breathing, inspiratory sighs, sustained maximal inspiration and intercostal exercise) the on breathing pattern and thoracoabdominal motion in healthy subjects. METHOD: Fifteen subjects of both sexes, aged 23±1.5 years old and with normal pulmonary function tests, participated in the study. The subjects were evaluated using the optoelectronic plethysmography system in a supine position with a trunk inclination of 45° during quiet breathing and the breathing exercises. The order of the breathing exercises was randomized. Statistical analysis was performed by the Friedman test and an ANOVA for repeated measures with one factor (breathing exercises), followed by preplanned contrasts and Bonferroni correction. A p<0.005 value was considered significant. RESULTS: All breathing exercises significantly increased the tidal volume of the chest wall (Vcw) and reduced the respiratory rate (RR) in comparison to quiet breathing. The diaphragmatic breathing exercise was responsible for the lowest Vcw, the lowest contribution of the rib cage, and the highest contribution of the abdomen. The sustained maximal inspiration exercise promoted greater reduction in RR compared to the diaphragmatic and intercostal exercises. Inspiratory sighs and intercostal exercises were responsible for the highest values of minute ventilation. Thoracoabdominal asynchrony variables increased significantly during diaphragmatic breathing. CONCLUSIONS: The results showed that the breathing exercises investigated in this study produced modifications in the breathing pattern (e.g., increase in tidal volume and decrease in RR) as well as in thoracoabdominal motion (e.g., increase in abdominal contribution during diaphragmatic breathing), among others. PMID:25590447

  6. Assessment of regional ventilation and deformation using 4D-CT imaging for healthy human lungs during tidal breathing.

    PubMed

    Jahani, Nariman; Choi, Sanghun; Choi, Jiwoong; Iyer, Krishna; Hoffman, Eric A; Lin, Ching-Long

    2015-11-15

    This study aims to assess regional ventilation, nonlinearity, and hysteresis of human lungs during dynamic breathing via image registration of four-dimensional computed tomography (4D-CT) scans. Six healthy adult humans were studied by spiral multidetector-row CT during controlled tidal breathing as well as during total lung capacity and functional residual capacity breath holds. Static images were utilized to contrast static vs. dynamic (deep vs. tidal) breathing. A rolling-seal piston system was employed to maintain consistent tidal breathing during 4D-CT spiral image acquisition, providing required between-breath consistency for physiologically meaningful reconstructed respiratory motion. Registration-derived variables including local air volume and anisotropic deformation index (ADI, an indicator of preferential deformation in response to local force) were employed to assess regional ventilation and lung deformation. Lobar distributions of air volume change during tidal breathing were correlated with those of deep breathing (R(2) ≈ 0.84). Small discrepancies between tidal and deep breathing were shown to be likely due to different distributions of air volume change in the left and the right lungs. We also demonstrated an asymmetric characteristic of flow rate between inhalation and exhalation. With ADI, we were able to quantify nonlinearity and hysteresis of lung deformation that can only be captured in dynamic images. Nonlinearity quantified by ADI is greater during inhalation, and it is stronger in the lower lobes (P < 0.05). Lung hysteresis estimated by the difference of ADI between inhalation and exhalation is more significant in the right lungs than that in the left lungs. PMID:26316512

  7. Breath holding spell

    MedlinePlus

    ... confronted Breath holding spells are more common in children with: Genetic conditions, such as Riley-Day syndrome or Rett syndrome Iron deficiency anemia A family history of breath holding spells (parents ...

  8. Minimizing Shortness of Breath

    MedlinePlus

    ... Top Doctors in the Nation Departments & Divisions Home Health Insights Stress & Relaxation Breathing and Relaxation Minimizing Shortness of Breath ... Management Assess Your Stress Coping Strategies Identifying ... & Programs Health Insights Doctors & Departments Research & Science Education & Training Make ...

  9. Breathing and Relaxation

    MedlinePlus

    ... Top Doctors in the Nation Departments & Divisions Home Health Insights Stress & Relaxation Breathing and Relaxation Breathing and Relaxation Make ... Management Assess Your Stress Coping Strategies Identifying ... & Programs Health Insights Doctors & Departments Research & Science Education & Training Make ...

  10. Operating systems in the air transportation environment.

    NASA Technical Reports Server (NTRS)

    Cherry, G. W.

    1971-01-01

    Consideration of the problems facing air transport at present, and to be expected in the future. In the Northeast Corridor these problems involve community acceptance, airway and airport congestion and delays, passenger acceptance, noise reduction, and improvements in low-density short-haul economics. In the development of a superior short-haul operating system, terminal-configured vs cruise-configured vehicles are evaluated. CTOL, STOL, and VTOL aircraft of various types are discussed. In the field of noise abatement, it is shown that flight procedural techniques are capable of supplementing ?quiet engine' technology.

  11. Air and sea rescue via satellite systems

    NASA Astrophysics Data System (ADS)

    Scales, W. C.; Swanson, R.

    1984-03-01

    Two approaches to a satellite system for air and sea rescue to be put into use by the 1990s, one employing polar-orbiting satellites and the other using fixed geosynchronous satellites over the equator, are discussed. A battery-powered transmitter on a ship or aircraft would be activated in an accident to emit a low-power omnidirectional signal that would be relayed by a satellite to an earth station. The polar-orbiting approach, now being evaluated on a small-scale with the Cospas-Sarsat system, allows complete coverage of the earth, including the poles, and provides a fix on the origin of the distress signals by means of the Doppler shift. A parallel effort for the testing of geostationary satellites to measure system sensitivity to various interference sources, to optimize design, and to measure land and sea performance is reviewed.

  12. The promise of air cargo: System aspects and vehicle design

    NASA Technical Reports Server (NTRS)

    Whitehead, A. H., Jr.

    1976-01-01

    The current operation of the air cargo system is reviewed. An assessment of the future of air cargo is provided by: (1) analyzing statistics and trends, (2) by noting system problems and inefficiencies, (3) by analyzing characteristics of 'air eligible' commodities, and (4) by showing the promise of new technology for future cargo aircraft with significant improvements in costs and efficiency. The following topics are discussed: (1) air cargo demand forecasts; (2) economics of air cargo transport; (3) the integrated air cargo system; (4) evolution of airfreighter design; and (5) the span distributed load concept.

  13. UV disinfection system for cabin air

    NASA Astrophysics Data System (ADS)

    Lim, Soojung; Blatchley, Ernest R.

    2009-10-01

    The air of indoor cabin environments is susceptible to contamination by airborne microbial pathogens. A number of air treatment processes are available for inactivation or removal of airborne pathogens; included among these processes is ultraviolet (UV) irradiation. The effectiveness of UV-based processes is known to be determined by the combined effects of UV dose delivery by the reactor and the UV dose-response behavior of the target microbe(s). To date, most UV system designs for air treatment have been based on empirical approaches, often involving crude representations of dose delivery and dose-response behavior. The objective of this research was to illustrate the development of a UV system for disinfection of cabin air based on well-defined methods of reactor and reaction characterization. UV dose-response behavior of a test microorganism was measured using a laboratory (bench-scale) system. Target microorganisms (bacterial spores) were first applied to membrane filters at sub-monolayer coverage. The filters were then transferred to a humidity chamber at fixed relative humidity (RH) and allowed to equilibrate with their surroundings. Microorganisms were then subjected to UV exposure under a collimated beam. The experiment was repeated at RH values ranging from 20% to 100%. UV dose-response behavior was observed to vary with RH. For example, at 100% RH, a UV dose of 20 mJ/cm 2 accomplished 99.7% (2.5 log10 U) of the Bacillus subtilis spore inactivation, whereas 99.94% (3.2 log10 U) inactivation was accomplished at this same UV dose under 20% RH conditions. To determine reactor behavior, UV dose-response behavior was combined with simulated results of computational fluid dynamics (CFD) and radiation intensity field models. This modeling approach allowed estimating the UV dose distribution delivered by the reactor. The advantage of this approach is that simulation of many reactor configurations can be done in a relatively short period of time. Moreover, by

  14. LOx breathing system with gas permeable-liquid impermeable heat exchange and delivery hose

    DOEpatents

    Hall, M.N.

    1996-04-30

    Life support apparatus is composed of: a garment for completely enclosing a wearer and constructed for preventing passage of gas from the environment surrounding the garment; a portable receptacle holding a quantity of an oxygen-containing fluid in liquid state, the fluid being in a breathable gaseous state when at standard temperature and pressure; a fluid flow member secured within the garment and coupled to the receptacle for conducting the fluid in liquid state from the receptacle to the interior of the garment; and a fluid flow control device connected for causing fluid to flow from the receptacle to the fluid flow member at a rate determined by the breathable air requirement of the wearer, wherein fluid in liquid state is conducted into the interior of the garment at a rate to be vaporized and heated to a breathable temperature by body heat produced by the wearer. 6 figs.

  15. Lox breathing system with gas permeable-liquid impermeable heat exchange and delivery hose

    DOEpatents

    Hall, Mark N.

    1996-01-01

    Life support apparatus composed of: a garment (2): for completely enclosing a wearer and constructed for preventing passage of gas from the environment surrounding the garment (2); a portable receptacle (6) holding a quantity of an oxygen-containing fluid in liquid state, the fluid being in a breathable gaseous; state when at standard temperature and pressure; a fluid flow member (16) secured within the garment (2) and coupled to the receptacle (6) for conducting the fluid in liquid state from the receptacle (6) to the interior of the garment (2); and a fluid flow control device (14) connected for causing fluid to flow from the receptacle (6) to the fluid flow member (16) at a rate determined by the breathable air requirement of the wearer, wherein fluid in liquid state is conducted into the interior of the garment (2) at a rate to be vaporized and heated to a breathable temperature by body heat produced by the wearer.

  16. What Causes Bad Breath?

    MedlinePlus

    ... I Help a Friend Who Cuts? What Causes Bad Breath? KidsHealth > For Teens > What Causes Bad Breath? Print A A A Text Size en ... Qué es lo que provoca el mal aliento? Bad breath, or halitosis , can be a major problem, ...

  17. Optical system for trapping particles in air.

    PubMed

    Kampmann, R; Chall, A K; Kleindienst, R; Sinzinger, S

    2014-02-01

    An innovative optical system for trapping particles in air is presented. We demonstrate an optical system specifically optimized for high precision positioning of objects with a size of several micrometers within a nanopositioning and nanomeasuring machine (NPMM). Based on a specification sheet, an initial system design was calculated and optimized in an iterative design process. By combining optical design software with optical force simulation tools, a highly efficient optical system was developed. Both components of the system, which include a refractive double axicon and a parabolic ring mirror, were fabricated by ultra-precision turning. The characterization of the optical elements and the whole system, especially the force simulations based on caustic measurements, represent an important interim result for the subsequently performed trapping experiments. The caustic of the trapping beam produced by the system was visualized with the help of image processing techniques. Finally, we demonstrated the unique efficiency of the configuration by reproducibly trapping fused silica spheres with a diameter of 10 μm at a distance of 2.05 mm from the final optical surface. PMID:24514197

  18. Research on Air Flow Measurement and Optimization of Control Algorithm in Air Disinfection System

    NASA Astrophysics Data System (ADS)

    Bing-jie, Li; Jia-hong, Zhao; Xu, Wang; Amuer, Mohamode; Zhi-liang, Wang

    2013-01-01

    As the air flow control system has the characteristics of delay and uncertainty, this research designed and achieved a practical air flow control system by using the hydrodynamic theory and the modern control theory. Firstly, the mathematical model of the air flow distribution of the system is analyzed from the hydrodynamics perspective. Then the model of the system is transformed into a lumped parameter state space expression by using the Galerkin method. Finally, the air flow is distributed more evenly through the estimation of the system state and optimal control. The simulation results show that this algorithm has good robustness and anti-interference ability

  19. One man electrochemical air revitalization system

    NASA Technical Reports Server (NTRS)

    Huddleston, J. C.; Aylward, J. R.

    1975-01-01

    An integrated water vapor electrolysis (WVE) hydrogen depolarized CO2 concentrator (HDC) system sized for one man support over a wide range of inlet air conditions was designed, fabricated, and tested. Data obtained during 110 days of testing verified that this system can provide the necessary oxygen, CO2 removal, and partial humidity control to support one man (without exceeding a cabin partial pressure of 3.0 mmHg for CO2 and while maintaining a 20% oxygen level), when operated at a WVE current of 50 amperes and an HDC current of 18 amperes. An evaluation to determine the physical properties of tetramethylammonium bicarbonate (TMAC) and hydroxide was made. This provides the necessary electrolyte information for designing an HDC cell using TMAC.

  20. Development of the Bathroom Watching System Supported by the Breath Detection

    NASA Astrophysics Data System (ADS)

    Tomofumi, Nishiura; Masato, Nakajima

    Recently, domestic accidents caused by sudden illness are increasing in Japan. We developed a detection and alarming system for the dangerous state in a bathroom. FG sensor which has been developed in our laboratory is used in this system to get respiratory information of bathing person. It becomes possible to watch the person in a bathroom by this sensor, without invading his privacy. We applied the developed system to an actual bathroom, and carried out several experiments supposing various situations. As a result of the experiment, we confirmed that this system can acquire the person's respiratory information and can emit alarms correctly for emergency.

  1. [MECHANISMS OF MODULATION OF REFLEX CONTROL OF BREATHING AT ELEVATED SYSTEMIC LEVEL OF PROINFLAMMATORY CYTOKINE INTERLEUKIN-1β].

    PubMed

    Aleksandrova, N P; Merkuriev, V A; Tumanova, T S; Aleksandrov, V G

    2015-10-01

    This study explores the hypothesis about the possible involvement of the cyclooxygenase pathway in the effects of interleukin-1beta (IL-1β) on the breathing pattern and Heuring-Breuer respiratory reflexes. Respiratory frequency (fR), tidal volume (VT) and esophageal pressure were recorded in 29 adult male Wistar rats anaesthetized with urethane. Heuring-Breuer reflexes were tested by airway occlusion at achieving functional residual capacity (inspiratory-inhibitory reflex), and at the height of inspiration (expiratory-promoting reflex). It had been shown that an elevation of IL-1β in the systemic circulation causes an increase in VT, fR, lung ventilation and strengthens respiratory reflexes. These respiratory effects had not been shown if IL-1β administered after intraperitoneal injection of diclofenac, which had not any significant respiratory effects by itself. Because diclofenac is a non-specific antagonist of cyclooxygenases, it had been concluded that the prostaglandins mediate respiratory effects of IL-1β in point of fact. PMID:26827495

  2. Fish Swim, Rocks Sit, and Lungs Breathe: Expert-Novice Understanding of Complex Systems

    ERIC Educational Resources Information Center

    Hmelo-Silver, Cindy E.; Marathe, Surabhi; Liu, Lei

    2007-01-01

    Understanding complex systems is fundamental to understanding science. The complexity of such systems makes them very difficult to understand because they are composed of multiple interrelated levels that interact in dynamic ways. The goal of this study was to understand how experts and novices differed in their understanding of two complex…

  3. Gas turbine engine and its associated air intake system

    SciTech Connect

    Ballard, J.R.; Bennett, G.H.; Lee, L.A.

    1984-01-17

    A gas turbine engine and its associated air intake system are disclosed in which the air intake system comprises a generally horizontally extending duct through which an airflow is induced by an ejector pump powered by the engine. A portion of the air passing through the duct is directed through a second duct to the air inlet of the engine. The second duct is connected to the first duct in such a manner that the air directed to the engine air inlet is derived from a vertically upper region of the first duct. The arrangement is intended to reduce the amount of airborne particulate material ingested by the gas turbine engine.

  4. HVAC system performance and indoor air quality

    SciTech Connect

    Newman, J.L. )

    1991-01-01

    This paper reports that in the mid-seventies, the American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE) promulgated ASHRAE Standard 90-75 Energy Conservation in New Building Design, which called for revised minimum ventilation rates and the elimination of energy-wasting HVAC systems. Most building codes which cover energy conservation in the late seventies and eighties referred to this standard. This lowering of ventilation rates, coupled with the tighter building envelope (walls, windows, doors and roof) led to a reduction in outside air, both by engineering design and by minimizing infiltration through the structure. The minimum ventilation rates are based on the assumption that average concentrations of tobacco smoke exist in all enclosed spaces (30 percent of the population being smokers at two cigarettes per hour), rather than having separate rates for smoking and nonsmoking areas, as in the 1981 revision of the Standard. If tobacco smoke is ever declared a carcinogen, it will undoubtedly prompt a review of Standard 62-1989, as well as hasten totally smoke-free buildings.

  5. Active breathing control (ABC): Determination and reduction of breathing-induced organ motion in the chest

    SciTech Connect

    Gagel, Bernd . E-mail: BGagel@UKAachen.de; Demirel, Cengiz M.P.; Kientopf, Aline; Pinkawa, Michael; Piroth, Marc; Stanzel, Sven; Breuer, Christian; Asadpour, Branka; Jansen, Thomas; Holy, Richard; Wildberger, Joachim E.; Eble, Michael J.

    2007-03-01

    Purpose: Extensive radiotherapy volumes for tumors of the chest are partly caused by interfractional organ motion. We evaluated the feasibility of respiratory observation tools using the active breathing control (ABC) system and the effect on breathing cycle regularity and reproducibility. Methods and Materials: Thirty-six patients with unresectable tumors of the chest were selected for evaluation of the ABC system. Computed tomography scans were performed at various respiratory phases starting at the same couch position without patient movement. Threshold levels were set at minimum and maximum volume during normal breathing cycles and at a volume defined as shallow breathing, reflecting the subjective maximal tolerable reduction of breath volume. To evaluate the extent of organ movement, 13 landmarks were considering using commercial software for image coregistration. In 4 patients, second examinations were performed during therapy. Results: Investigating the differences in a normal breathing cycle versus shallow breathing, a statistically significant reduction of respiratory motion in the upper, middle, and lower regions of the chest could be detected, representing potential movement reduction achieved through reduced breath volume. Evaluating interfraction reproducibility, the mean displacement ranged between 0.24 mm (chest wall/tracheal bifurcation) to 3.5 mm (diaphragm) for expiration and shallow breathing and 0.24 mm (chest wall) to 5.25 mm (diaphragm) for normal inspiration. Conclusions: By modifying regularity of the respiratory cycle through reduction of breath volume, a significant and reproducible reduction of chest and diaphragm motion is possible, enabling reduction of treatment planning margins.

  6. Heating, ventilation and air conditioning systems

    SciTech Connect

    Kyle, D.M.; Sullivan, R.A.

    1993-02-01

    A study is made of several outstanding issues concerning the commercial development of environmental control systems for electric vehicles (EVs). Engineering design constraints such as federal regulations and consumer requirements are first identified. Next, heating and cooling loads in a sample automobile are calculated using a computer model available from the literature. The heating and cooling loads are then used as a basis for estimating the electrical consumption that is to be expected for heat pumps installed in EVs. The heat pump performance is evaluated using an automobile heat pump computer model which has been developed recently at Oak Ridge National Laboratory (ORNL). The heat pump design used as input to the model consists of typical finned-tube heat exchangers and a hermetic compressor driven by a variable-speed brushless dc motor. The simulations suggest that to attain reasonable system efficiencies, the interior heat exchangers that are currently installed as automobile air conditioning will need to be enlarged. Regarding the thermal envelope of the automobile itself, calculations are made which show that considerable energy savings will result if steps are taken to reduce {open_quote}hot soak{close_quote} temperatures and if the outdoor air ventilation rate is well controlled. When these changes are made, heating and cooling should consume less than 10% of the total stored electrical energy for steady driving in most U.S. climates. However, this result depends strongly upon the type of driving: The fraction of total power for heating and cooling ({open_quote}range penalty{close_quote}) increases sharply for driving scenarios having low average propulsion power, such as stop-and-go driving.

  7. Washout kinetics of inhaled hydrogen cyanide in breath.

    PubMed

    Stamyr, Kristin; Nord, Pierre; Johanson, Gunnar

    2008-06-10

    Hydrogen cyanide (HCN) intoxication causes or contributes significantly to many of the fatalities among fire victims. To enable fast treatment of HCN poisoning, a more rapid diagnostic method than currently available is required. One possibility would be measurement in exhaled air. However, as HCN is highly water soluble, it may be absorbed during inhalation and reabsorbed during exhalation. If this, so-called, washin-washout effect is substantial it may interfere with the diagnosis, as a major part of breath HCN may originate from the respiratory tract, due to recent exposure, and not from systemic exposure. The aim of this study was to estimate the importance of the washin-washout effect of HCN. The time-course of cyanide in exhaled air was measured with an electrochemical detector in 10 volunteers during and after a 1 min x 10 ppm exposure to HCN. The experiment revealed an average half-life of 16s (range 10-24s) in breath. Extrapolating the results to higher exposures suggests that the contribution from washin-washout from the airways will be negligible even at fatal exposures. The results support the use of breath HCN as a potential indicator of systemic intoxication. PMID:18490114

  8. Thermodynamic Analysis of a Novel Liquid Air Energy Storage System

    NASA Astrophysics Data System (ADS)

    Xue, X. D.; Wang, S. X.; Zhang, X. L.; Cui, C.; Chen, L. B.; Zhou, Y.; Wang, J. J.

    In this study, a novel liquid air energy storage system for electrical power load shifting application is introduced. It is a combination of an air liquefaction cycle and a gas turbine power generation cycle without fuel combustion. Thermodynamic analysis is conducted to investigate the performance of this system. The results show that liquid air energy storage systems could be very effective systems for electrical power storage with high efficiency, high energy density and extensive application prospects.

  9. Can breathing circuit filters help prevent the spread of influenza A (H1N1) virus from intubated patients?

    PubMed Central

    Heuer, Jan F.; Crozier, Thomas A.; Howard, Glenn; Quintel, Michael

    2013-01-01

    Introduction: In March 2010, more than 213 countries worldwide reported laboratory confirmed cases of influenza H1N1 infections with at least 16,813 deaths. In some countries, roughly 10 to 30% of the hospitalized patients were admitted to the ICU and up to 70% of those required mechanical ventilation. The question now arises whether breathing system filters can prevent virus particles from an infected patient from entering the breathing system and passing through the ventilator into the ambient air. We tested the filters routinely used in our institution for their removal efficacy and efficiency for the influenza virus A H1N1 (A/PR/8/34). Methods: Laboratory investigation of three filters (PALL Ultipor® 25, Ultipor® 100 and Pall BB50T Breathing Circuit Filter, manufactured by Pall Life Sciences) using a monodispersed aerosol of human influenza A (H1N1) virus in an air stream model with virus particles quantified as cytopathic effects in cultured canine kidney cells (MDCK). Results: The initial viral load of 7.74±0.27 log10 was reduced to a viral load of ≤2.43 log10, behind the filter. This represents a viral filtration efficiency of ≥99.9995%. Conclusion: The three tested filters retained the virus input, indicating that their use in the breathing systems of intubated and mechanically ventilated patients can reduce the risk of spreading the virus to the breathing system and the ambient air. PMID:23967395

  10. An Ultrasonic Contactless Sensor for Breathing Monitoring

    PubMed Central

    Arlotto, Philippe; Grimaldi, Michel; Naeck, Roomila; Ginoux, Jean-Marc

    2014-01-01

    The monitoring of human breathing activity during a long period has multiple fundamental applications in medicine. In breathing sleep disorders such as apnea, the diagnosis is based on events during which the person stops breathing for several periods during sleep. In polysomnography, the standard for sleep disordered breathing analysis, chest movement and airflow are used to monitor the respiratory activity. However, this method has serious drawbacks. Indeed, as the subject should sleep overnight in a laboratory and because of sensors being in direct contact with him, artifacts modifying sleep quality are often observed. This work investigates an analysis of the viability of an ultrasonic device to quantify the breathing activity, without contact and without any perception by the subject. Based on a low power ultrasonic active source and transducer, the device measures the frequency shift produced by the velocity difference between the exhaled air flow and the ambient environment, i.e., the Doppler effect. After acquisition and digitization, a specific signal processing is applied to separate the effects of breath from those due to subject movements from the Doppler signal. The distance between the source and the sensor, about 50 cm, and the use of ultrasound frequency well above audible frequencies, 40 kHz, allow monitoring the breathing activity without any perception by the subject, and therefore without any modification of the sleep quality which is very important for sleep disorders diagnostic applications. This work is patented (patent pending 2013-7-31 number FR.13/57569). PMID:25140632

  11. An ultrasonic contactless sensor for breathing monitoring.

    PubMed

    Arlotto, Philippe; Grimaldi, Michel; Naeck, Roomila; Ginoux, Jean-Marc

    2014-01-01

    The monitoring of human breathing activity during a long period has multiple fundamental applications in medicine. In breathing sleep disorders such as apnea, the diagnosis is based on events during which the person stops breathing for several periods during sleep. In polysomnography, the standard for sleep disordered breathing analysis, chest movement and airflow are used to monitor the respiratory activity. However, this method has serious drawbacks. Indeed, as the subject should sleep overnight in a laboratory and because of sensors being in direct contact with him, artifacts modifying sleep quality are often observed. This work investigates an analysis of the viability of an ultrasonic device to quantify the breathing activity, without contact and without any perception by the subject. Based on a low power ultrasonic active source and transducer, the device measures the frequency shift produced by the velocity difference between the exhaled air flow and the ambient environment, i.e., the Doppler effect. After acquisition and digitization, a specific signal processing is applied to separate the effects of breath from those due to subject movements from the Doppler signal. The distance between the source and the sensor, about 50 cm, and the use of ultrasound frequency well above audible frequencies, 40 kHz, allow monitoring the breathing activity without any perception by the subject, and therefore without any modification of the sleep quality which is very important for sleep disorders diagnostic applications. This work is patented (patent pending 2013-7-31 number FR.13/57569). PMID:25140632

  12. The technology application process as applied to a firefighter's breathing system

    NASA Technical Reports Server (NTRS)

    Mclaughlan, P. B.

    1974-01-01

    The FBS Program indicated that applications of advanced technology can result in an improved FBS that will satisfy the requirements defined by municipal fire departments. To accomplish this technology transfer, a substantial commitment of resources over an extended period of time has been required. This program has indicated that the ability of NASA in terms of program management such as requirement definition, system analysis, and industry coordination may play as important a role as specific sources of hardware technology. As a result of the FBS program, a sequence of milestones was passed that may have applications as generalized milestones and objectives for any technical application program.

  13. Imaging Breathing Rate in the CO2Absorption Band.

    PubMed

    Fei, Jin; Zhu, Zhen; Pavlidis, Ioannis

    2005-01-01

    Following up on our previous work, we have developed one more non-contact method to measure human breathing rate. We have retrofitted our Mid-Wave Infra-Red (MWIR) imaging system with a narrow band-pass filter in the CO2absorption band (4.3 µm). This improves the contrast between the foreground (i.e., expired air) and background (e.g., wall). Based on the radiation information within the breath flow region, we get the mean dynamic thermal signal. This signal is quasi-periodic due to the interleaving of high and low intensities corresponding to expirations and inspirations respectively. We sample the signal at a constant rate and then determine the breathing frequency through Fourier analysis. We have performed experiments on 9 subjects at distances ranging from 6-8 ft. We compared the breathing rate computed by our novel method with ground-truth measurements obtained via a traditional contact device (PowerLab/4SP from ADInstruments with an abdominal transducer). The results show high correlation between the two modalities. For the first time, we report a Fourier based breathing rate computation method on a MWIR signal in the CO2absorption band. The method opens the way for desktop, unobtrusive monitoring of an important vital sign, that is, breathing rate. It may find widespread applications in preventive medicine as well as sustained physiological monitoring of subjects suffering from chronic ailments. PMID:17282279

  14. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  15. Systems evaluation of low density air transportation concepts

    NASA Technical Reports Server (NTRS)

    Bruce, R. W.; Webb, H. M.

    1972-01-01

    Methods were studied for improving air transportation to low-density population regions in the U.S. through the application of new aeronautical technology. The low-density air service concepts are developed for selected regions, and critical technologies that presently limit the effective application of low-density air transportation systems are identified.

  16. AIR TEMPERATURE DISTRIBUTION IN SEED COTTON DRYING SYSTEMS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ten tests were conducted in the fall of 2007 to measure air temperature variation within various heated air seed cotton drying systems with the purpose of: checking validation of recommendations by a professional engineering society and measuring air temperature variation across the airflow ductwork...

  17. INTEGRATED AIR POLLUTION CONTROL SYSTEM (IAPCS) COST MODEL (AIR POLLUTION TECHNOLOGY BRANCH, AIR POLLUTION PREVENTION AND CONTROL DIVISION, NRMRL)

    EPA Science Inventory

    The Air Pollution Technology Branch's (APPCD, NRMRL) Integrated Air Pollution Control System Cost Model is a compiled model written in FORTRAN and C language that is designed to be used on an IBM or compatible PC with 640K or lower RAM and at least 1.5 Mb of hard drive space. It ...

  18. The role of local renin-angiotensin system in arterial chemoreceptors in sleep-breathing disorders

    PubMed Central

    Fung, Man Lung

    2014-01-01

    The renin-angiotensin system (RAS) plays pivotal roles in the regulation of cardiovascular and renal functions to maintain the fluid and electrolyte homeostasis. Experimental studies have demonstrated a locally expressed RAS in the carotid body, which is functional significant in the effect of angiotensin peptides on the regulation of the activity of peripheral chemoreceptors and the chemoreflex. The physiological and pathophysiological implications of the RAS in the carotid body have been proposed upon recent studies showing a significant upregulation of the RAS expression under hypoxic conditions relevant to altitude acclimation and sleep apnea and also in animal model of heart failure. Specifically, the increased expression of angiotensinogen, angiotensin-converting enzyme and angiotensin AT1 receptors plays significant roles in the augmented carotid chemoreceptor activity and inflammation of the carotid body. This review aims to summarize these results with highlights on the pathophysiological function of the RAS under hypoxic conditions. It is concluded that the maladaptive changes of the RAS in the carotid body plays a pathogenic role in sleep apnea and heart failure, which could potentially be a therapeutic target for the treatment of the pathophysiological consequence of sleep apnea. PMID:25249981

  19. 46 CFR 169.736 - Self-contained breathing apparatus.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... VESSELS Vessel Control, Miscellaneous Systems, and Equipment Markings § 169.736 Self-contained breathing apparatus. Each locker or space containing self-contained breathing apparatus must be marked “SELF-CONTAINED... 46 Shipping 7 2010-10-01 2010-10-01 false Self-contained breathing apparatus. 169.736 Section...

  20. 46 CFR 169.736 - Self-contained breathing apparatus.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... VESSELS Vessel Control, Miscellaneous Systems, and Equipment Markings § 169.736 Self-contained breathing apparatus. Each locker or space containing self-contained breathing apparatus must be marked “SELF-CONTAINED... 46 Shipping 7 2012-10-01 2012-10-01 false Self-contained breathing apparatus. 169.736 Section...

  1. 46 CFR 169.736 - Self-contained breathing apparatus.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... VESSELS Vessel Control, Miscellaneous Systems, and Equipment Markings § 169.736 Self-contained breathing apparatus. Each locker or space containing self-contained breathing apparatus must be marked “SELF-CONTAINED... 46 Shipping 7 2013-10-01 2013-10-01 false Self-contained breathing apparatus. 169.736 Section...

  2. 46 CFR 169.736 - Self-contained breathing apparatus.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... VESSELS Vessel Control, Miscellaneous Systems, and Equipment Markings § 169.736 Self-contained breathing apparatus. Each locker or space containing self-contained breathing apparatus must be marked “SELF-CONTAINED... 46 Shipping 7 2014-10-01 2014-10-01 false Self-contained breathing apparatus. 169.736 Section...

  3. 46 CFR 169.736 - Self-contained breathing apparatus.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Self-contained breathing apparatus. 169.736 Section 169... VESSELS Vessel Control, Miscellaneous Systems, and Equipment Markings § 169.736 Self-contained breathing apparatus. Each locker or space containing self-contained breathing apparatus must be marked...

  4. Breathing metabolic simulator

    NASA Technical Reports Server (NTRS)

    Bartlett, R. G.; Hendricks, C. M.; Morison, W. B.

    1972-01-01

    The development of a breathing metabolic simulator (BMS) is reported. This BMS simulates all of the breathing and metabolic parameters required for complete evaluation and test of life support and resuscitation equipment. It is also useful for calibrating and validating mechanical and gaseous pulmonary function test procedures. Breathing rate, breathing depth, breath velocity contour, oxygen uptake, and carbon dioxide release are all variable over wide ranges simulating conditions from sleep to hard work with respiratory exchange ratios covering the range from hypoventilation. In addition, all of these parameters are remotely controllable to facilitate use of the device in hostile or remote environments. The exhaled breath is also maintained at body temperature and a high humidity. The simulation is accurate to the extent of having a variable functional residual capacity independent of other parameters.

  5. Closed-loop air cooling system for a turbine engine

    DOEpatents

    North, William Edward

    2000-01-01

    Method and apparatus are disclosed for providing a closed-loop air cooling system for a turbine engine. The method and apparatus provide for bleeding pressurized air from a gas turbine engine compressor for use in cooling the turbine components. The compressed air is cascaded through the various stages of the turbine. At each stage a portion of the compressed air is returned to the compressor where useful work is recovered.

  6. Energy savings potential in air conditioners and chiller systems

    SciTech Connect

    Kaya, Durmus; Alidrisi, Hisham

    2014-01-22

    In the current paper we quantified and evaluated the energy saving potential in air conditioners and chiller systems. Here, we also showed how to reduce the cost of air conditioners and chiller systems in existing facilities on the basis of payback periods. Among the measures investigated were: (1) installing higher efficiency air conditioners, (2) installing higher efficiency chillers, (3) duty cycling air conditioning units, and (4) utilizing existing economizers on air conditioning units. For each method, examples were provided from Arizona, USA. In these examples, the amount of saved energy, the financial evaluation of this energy, and the investment cost and pay back periods were calculated.

  7. Energy savings potential in air conditioners and chiller systems

    DOE PAGESBeta

    Kaya, Durmus; Alidrisi, Hisham

    2014-01-22

    In the current paper we quantified and evaluated the energy saving potential in air conditioners and chiller systems. Here, we also showed how to reduce the cost of air conditioners and chiller systems in existing facilities on the basis of payback periods. Among the measures investigated were: (1) installing higher efficiency air conditioners, (2) installing higher efficiency chillers, (3) duty cycling air conditioning units, and (4) utilizing existing economizers on air conditioning units. For each method, examples were provided from Arizona, USA. In these examples, the amount of saved energy, the financial evaluation of this energy, and the investment costmore » and pay back periods were calculated.« less

  8. Measurement of nitric oxide in human exhaled breath

    SciTech Connect

    Gordon, S.M.; Spicer, C.W.; Ollison, W.M.

    1997-12-31

    This project was initiated to confirm the reliability of nitric oxide (NO) measurement in the breath matrix, using two different analytical techniques - ozone and luminol chemiluminescence - and to corroborate literature reports of elevated breath NO values. To measure peak oral and nasal NO levels, subjects performed slow vital capacity and breath holding maneuvers directly into the monitors through the mouth and the nose, respectively. Additional measurements were made using normal breathing techniques. Initial interferent tests indicate that measured NO signals are real and are not confounded by measurement artifacts. Similar results were obtained using the two independent analytical methods in dry or humid air. The NO signal was unaffected by maximum concentrations of potential breath interferents, such as sulfur compounds and alkenes. The measured breath NO concentrations were greater than typical room air levels and differed significantly with the breathing technique used. During these tests room air averaged 4-5 ppb NO. Peak oral NO levels were 4.3 {+-} 1.5 ppb during a slow vital capacity maneuver and 8.0 {+-} 5.0 ppb during a breath holding maneuver. By contrast, higher peak nasal NO levels were measured for both slow vital capacity (17.8 {+-} 7.8 ppb) and breath holding maneuvers (45.4 {+-} 29.5 ppb).

  9. The air transportation/energy system

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The changing pattern of transportation is discussed, and the energy intensiveness of various modes of transportation is also analyzed. Sociopsychological data affecting why people travel by air are presented, along with governmental regulation and air transportation economics. The aviation user tax structure is shown in tabular form.

  10. PremAir{trademark} catalyst systems: A new approach to clean air

    SciTech Connect

    Poles, T.; Anderson, D.R.; Durilla, M.; Heck, R.; Hoke, J.; Ober, R.; Rudy, W.

    1996-12-01

    PremAir{trademark} catalyst systems represents a new approach to air pollution control--one that focuses on destroying pollutants already in the air. PremAir is the trademark for a family of developmental catalysts capable of reducing ozone, carbon monoxide and potentially other pollutants in ambient air that comes into contact with catalyst-coated surfaces. The more air that comes into contact with the surface the more pollutants that can be destroyed. For this reason, Engelhard has focused its attention on heat-exchange equipment such as automotive radiators and air-conditioner condensers. It is because of advances in catalysis achieved at Engelhard that PremAir catalysts are active at the low temperatures found in these environments. In Los Angeles, which has the country`s worst smog problem, approximately one trillion cubic feet per day of air pass through car radiators and five trillion cubic feet per day pass through air conditioners. Most of the research, development and testing work performed to date has been on ozone catalysts and their application to car radiators. This paper discusses that work and the potential benefits associated with the PremAir technology. In addition, preliminary work on stationary applications of this new technology is discussed.

  11. The microbiological quality of air improves when using air conditioning systems in cars

    PubMed Central

    2010-01-01

    Background Because of better comfort, air conditioning systems are a common feature in automobiles these days. However, its impact on the number of particles and microorganisms inside the vehicle - and by this its impact on the risk of an allergic reaction - is yet unknown. Methods Over a time period of 30 months, the quality of air was investigated in three different types of cars (VW Passat, VW Polo FSI, Seat Alhambra) that were all equipped with a automatic air conditioning system. Operation modes using fresh air from outside the car as well as circulating air from inside the car were examined. The total number of microorganisms and the number of mold spores were measured by impaction in a high flow air sampler. Particles of 0.5 to 5.0 μm diameter were counted by a laser particle counter device. Results Overall 32 occasions of sampling were performed. The concentration of microorganisms outside the cars was always higher than it was inside the cars. Few minutes after starting the air conditioning system the total number of microorganisms was reduced by 81.7%, the number of mold spores was reduced by 83.3%, and the number of particles was reduced by 87.8%. There were no significant differences neither between the types of cars nor between the types of operation mode of the air conditioning system (fresh air vs. circulating air). All parameters that were looked for in this study improved during utilization of the car's air conditioning system. Conclusions We believe that the risk of an allergic reaction will be reduced during use also. Nevertheless, we recommend regular maintenance of the system and replacement of older filters after defined changing intervals. PMID:20515449

  12. Urban air quality simulation with community multi-scale air quality (CMAQ) modeling system

    SciTech Connect

    Byun, D.; Young, J.; Gipson, G.; Schere, K.; Godowitch, J.

    1998-11-01

    In an effort to provide a state-of-the-science air quality modeling capability, US EPA has developed a new comprehensive and flexible Models-3 Community Multi-scale Air Quality (CMAQ) modeling system. The authors demonstrate CMAQ simulations for a high ozone episode in the northeastern US during 12-15 July 1995 and discuss meteorological issues important for modeling of urban air quality.

  13. SU-E-J-32: Calypso(R) and Laser-Based Localization Systems Comparison for Left-Sided Breast Cancer Patients Using Deep Inspiration Breath Hold

    SciTech Connect

    Robertson, S; Kaurin, D; Sweeney, L; Kim, J; Fang, L; Tran, A; Holloway, K

    2014-06-01

    Purpose: Our institution uses a manual laser-based system for primary localization and verification during radiation treatment of left-sided breast cancer patients using deep inspiration breath hold (DIBH). This primary system was compared with sternum-placed Calypso(R) beacons (Varian Medical Systems, CA). Only intact breast patients are considered for this analysis. Methods: During computed tomography (CT) simulation, patients have BB and Calypso(R) surface beacons positioned sternally and marked for free-breathing and DIBH CTs. During dosimetry planning, BB longitudinal displacement between free breathing and DIBH CT determines laser mark (BH mark) location. Calypso(R) beacon locations from the DIBH CT are entered at the Tracking Station. During Linac simulation and treatment, patients inhale until the cross-hair and/or lasers coincide with the BH Mark, which can be seen using our high quality cameras (Pelco, CA). Daily Calypso(R) displacement values (difference from the DIBH-CT-based plan) are recorded.The displacement mean and standard deviation was calculated for each patient (77 patients, 1845 sessions). An aggregate mean and standard deviation was calculated weighted by the number of patient fractions.Some patients were shifted based on MV ports. A second data set was calculated with Calypso(R) values corrected by these shifts. Results: Mean displacement values indicate agreement within 1±3mm, with improvement for shifted data (Table). Conclusion: Both unshifted and shifted data sets show the Calypso(R) system coincides with the laser system within 1±3mm, demonstrating either localization/verification system will Resultin similar clinical outcomes. Displacement value uncertainty unilaterally reduces when shifts are taken into account.

  14. 46 CFR 197.450 - Breathing gas tests.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... GENERAL PROVISIONS Commercial Diving Operations Periodic Tests and Inspections of Diving Equipment § 197.450 Breathing gas tests. The diving supervisor shall insure that— (a) The output of each air... commencement of diving operations, at the umbilical or underwater breathing apparatus connection point for...

  15. 46 CFR 197.450 - Breathing gas tests.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... GENERAL PROVISIONS Commercial Diving Operations Periodic Tests and Inspections of Diving Equipment § 197.450 Breathing gas tests. The diving supervisor shall insure that— (a) The output of each air... commencement of diving operations, at the umbilical or underwater breathing apparatus connection point for...

  16. Temperature and humidity control of simulated human breath

    NASA Technical Reports Server (NTRS)

    Bartlett, R. G.; Hendricks, C. M.

    1972-01-01

    Subsystem was developed for breathing metabolic simulator which adjusts temperature and humidity of air to levels of human exhaled breath. Temperature-humidity subsystem is described, consisting of aluminum enclosure with 400 watt heat sheet glued to bottom, vertical separators, inlet connection, and check valve.

  17. Ventilation System Effectiveness and Tested Indoor Air Quality Impacts

    SciTech Connect

    Rudd, A.; Bergey, D.

    2014-02-01

    Ventilation system effectiveness testing was conducted at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy. It was inferior because the source of outside air was not direct from outside, the ventilation air was not distributed, and no provision existed for air filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the Exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four System Factor Categories: Balance, Distribution, Outside Air Source, and Recirculation Filtration. Recommended System Factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year.

  18. Ventilation System Effectiveness and Tested Indoor Air Quality Impacts

    SciTech Connect

    Rudd, Armin; Bergey, Daniel

    2014-02-01

    In this project, Building America research team Building Science Corporation tested the effectiveness of ventilation systems at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy. This was because the source of outside air was not direct from outside, the ventilation air was not distributed, and no provision existed for air filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four system factor categories: balance, distribution, outside air source, and recirculation filtration. Recommended system factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year.

  19. Optical air data systems and methods

    NASA Technical Reports Server (NTRS)

    Caldwell, Loren M. (Inventor); Tang, Shoou-Yu (Inventor); O'Brien, Martin J. (Inventor)

    2009-01-01

    A method for remotely sensing air outside a moving aircraft includes generating laser radiation within a swept frequency range. A portion of the laser radiation is projected from the aircraft into the air to induce scattered laser radiation. Filtered scattered laser radiation, filtered laser radiation, and unfiltered laser radiation are detected. At least one actual ratio is determined from data corresponding to the filtered scattered laser radiation and the unfiltered laser radiation. One or more air parameters are determined by correlating the actual ratio to at least one reference ratio.

  20. Optical air data systems and methods

    NASA Technical Reports Server (NTRS)

    Caldwell, Loren M. (Inventor); Tang, Shoou-Yu (Inventor); O'Brien, Martin J. (Inventor)

    2011-01-01

    A method for remotely sensing air outside a moving aircraft includes generating laser radiation within a swept frequency range. A portion of the laser radiation is projected from the aircraft into the air to induce scattered laser radiation. Filtered scattered laser radiation, filtered laser radiation, and unfiltered laser radiation are detected. At least one actual ratio is determined from data corresponding to the filtered scattered laser radiation and the unfiltered laser radiation. One or more air parameters are determined by correlating the actual ratio to at least one reference ratio.