Science.gov

Sample records for air bubble size

  1. Bubble size measurements in a bubbly wake

    NASA Astrophysics Data System (ADS)

    Karn, Ashish; Hong, Jiarong; Ellis, Christopher; Arndt, Roger

    2014-11-01

    Measurements of bubble size distribution are ubiquitous in many industrial applications. Conventional methods using image analysis to measure bubble size are limited in their robustness and applicability in highly turbulent bubbly flows. These flows usually impose significant challenges for image processing such as a wide range of bubble size distribution, spatial and temporal inhomogeneity of image background including in-focus and out-of-focus bubbles, as well as the excessive presence of bubble clusters. This talk introduces a multi-level image analysis approach to detect a wide size range of bubbles and resolve bubble clusters from images obtained in a turbulent bubbly wake of a ventilated hydrofoil. The proposed approach was implemented to derive bubble size and air ventilation rate from the synthetic images and the experiments, respectively. The results show a great promise in its applicability for online monitoring of bubbly flows in a number of industrial applications. Sponsored by Office of Naval Research and the Department of Energy.

  2. Size Distribution of Air Bubbles Entering the Brain during Cardiac Surgery

    PubMed Central

    Janus, Justyna; Marshall, David; Horsfield, Mark A.; Rousseau, Clément; Keelan, Jonathan; Evans, David H.; Hague, James P.

    2015-01-01

    Background Thousands of air bubbles enter the cerebral circulation during cardiac surgery, but whether high numbers of bubbles explain post-operative cognitive decline is currently controversial. This study estimates the size distribution of air bubbles and volume of air entering the cerebral arteries intra-operatively based on analysis of transcranial Doppler ultrasound data. Methods Transcranial Doppler ultrasound recordings from ten patients undergoing heart surgery were analysed for the presence of embolic signals. The backscattered intensity of each embolic signal was modelled based on ultrasound scattering theory to provide an estimate of bubble diameter. The impact of showers of bubbles on cerebral blood-flow was then investigated using patient-specific Monte-Carlo simulations to model the accumulation and clearance of bubbles within a model vasculature. Results Analysis of Doppler ultrasound recordings revealed a minimum of 371 and maximum of 6476 bubbles entering the middle cerebral artery territories during surgery. This was estimated to correspond to a total volume of air ranging between 0.003 and 0.12 mL. Based on analysis of a total of 18667 embolic signals, the median diameter of bubbles entering the cerebral arteries was 33 μm (IQR: 18 to 69 μm). Although bubble diameters ranged from ~5 μm to 3.5 mm, the majority (85%) were less than 100 μm. Numerous small bubbles detected during cardiopulmonary bypass were estimated by Monte-Carlo simulation to be benign. However, during weaning from bypass, showers containing large macro-bubbles were observed, which were estimated to transiently affect up to 2.2% of arterioles. Conclusions Detailed analysis of Doppler ultrasound data can be used to provide an estimate of bubble diameter, total volume of air, and the likely impact of embolic showers on cerebral blood flow. Although bubbles are alarmingly numerous during surgery, our simulations suggest that the majority of bubbles are too small to be harmful

  3. Impact of bubble size in a rat model of cerebral air microembolization

    PubMed Central

    2013-01-01

    Background Cerebral air microembolization (CAM) is a frequent side effect of diagnostic or therapeutic interventions. Besides reduction of the amount of bubbles, filter systems in the clinical setting may also lead to a dispersion of large gas bubbles and therefore to an increase of the gas–liquid-endothelium interface. We evaluated the production and application of different strictly defined bubble diameters in a rat model of CAM and assessed functional outcome and infarct volumes in relation to the bubble diameter. Methods Gas emboli of defined number and diameter were injected into the carotid artery of rats. Group I (n = 7) received 1800 air bubbles with a diameter of 45 μm, group II (n = 7) 40 bubbles of 160 μm, controls (n = 6) saline without gas bubbles; group I and II yielded the same total injection volume of air with 86 nl. Functional outcome was assessed at baseline, after 4 h and 24 h following cerebral MR imaging and infarct size calculation. Results Computer-aided evaluation of bubble diameters showed high constancy (group I: 45.83 μm ± 2.79; group II: 159 μm ± 1.26). Animals in group I and II suffered cerebral ischemia and clinical deterioration without significant difference. Infarct sizes did not differ significantly between the two groups (p = 0.931 u-test). Conclusions We present further development of a new method, which allows reliable and controlled CAM with different bubble diameters, producing neurological deficits due to unilateral cerebral damage. Our findings could not display a strong dependency of stroke frequency and severity on bubble diameter. PMID:24139539

  4. Size distribution of oceanic air bubbles entrained in sea-water by wave-breaking

    NASA Technical Reports Server (NTRS)

    Resch, F.; Avellan, F.

    1982-01-01

    The size of oceanic air bubbles produced by whitecaps and wave-breaking is determined. The production of liquid aerosols at the sea surface is predicted. These liquid aerosols are at the origin of most of the particulate materials exchanged between the ocean and the atmosphere. A prototype was designed and built using an optical technique based on the principle of light scattering at an angle of ninety degrees from the incident light beam. The output voltage is a direct function of the bubble diameter. Calibration of the probe was carried out within a range of 300 microns to 1.2 mm. Bubbles produced by wave-breaking in a large air-sea interaction simulating facility. Experimental results are given in the form of size spectrum.

  5. A model of particle removal in a dissolved air flotation tank: importance of stratified flow and bubble size.

    PubMed

    Lakghomi, B; Lawryshyn, Y; Hofmann, R

    2015-01-01

    An analytical model and a computational fluid dynamic model of particle removal in dissolved air flotation were developed that included the effects of stratified flow and bubble-particle clustering. The models were applied to study the effect of operating conditions and formation of stratified flow on particle removal. Both modeling approaches demonstrated that the presence of stratified flow enhanced particle removal in the tank. A higher air fraction was shown to be needed at higher loading rates to achieve the same removal efficiency. The model predictions showed that an optimum bubble size was present that increased with an increase in particle size.

  6. Quantitative measurement of size and three-dimensional position of fast-moving bubbles in air-water mixture flows using digital holography.

    PubMed

    Tian, Lei; Loomis, Nick; Domínguez-Caballero, José A; Barbastathis, George

    2010-03-20

    We present a digital in-line holographic imaging system for measuring the size and three-dimensional position of fast-moving bubbles in air-water mixture flows. The captured holograms are numerically processed by performing a two-dimensional projection followed by local depth estimation to quickly and efficiently obtain the size and position information of multiple bubbles simultaneously. Statistical analysis on measured bubble size distributions shows that they follow lognormal or gamma distributions.

  7. Fast bubble dynamics and sizing

    NASA Astrophysics Data System (ADS)

    Czarnecki, Krzysztof; Fouan, Damien; Achaoui, Younes; Mensah, Serge

    2015-11-01

    Single bubble sizing is usually performed by measuring the resonant bubble response using the Dual Frequency Ultrasound Method. However, in practice, the use of millisecond-duration chirp-like waves yields nonlinear distortions of the bubble oscillations. In comparison with the resonant curve obtained under harmonic excitation, it was observed that the bubble dynamic response shifted by up to 20 percent of the resonant frequency with bubble radii of less than 100 μm. In the case of low pressure waves (P < 5 kPa), an approximate formula for the apparent frequency shift is derived. Simulated and experimental bubble responses are analyzed in the time-frequency domain using an enhanced concentrated (reassigned) spectrogram. The difference in the resonant frequency resulted from the persistence of the resonant mode in the bubble response. Numerical simulations in which these findings are extended to pairs of coupled bubbles and to bubble clouds are also presented.

  8. Critical angle refractometry and sizing of bubble clouds.

    PubMed

    Onofri, Fabrice; Krysiek, Mariusz; Mroczka, Janusz

    2007-07-15

    The principle of the critical angle refractometry and sizing technique is extended to characterize the size distribution and the mean refractive index of clouds of bubbles. For a log-normal bubble-size distribution, simulations show that the mean size, the relative width of the size distribution, and the mean refractive index of the bubbles have a particular and easily identified influence on the critical scattering patterns. Preliminary experimental results on air bubble/water flows clearly demonstrate the potential and robustness of this new technique for bubbly flow characterization.

  9. Surfactant effects on cumulative drop size distributions produced by air bubbles bursting on a non-quiescent free surface

    NASA Astrophysics Data System (ADS)

    Parmar, K.; Liu, X.; Duncan, J. H.

    2013-11-01

    The generation of droplets when air bubbles travel upwards from within a liquid and burst at a free surface is studied experimentally. The bubbles are generated in a glass water tank that is 0.91 m long and 0.46 m wide with a water depth of 0.5 m. The tank is equipped with an acrylic box at its bottom that creates the bubble field using filtered air injected through an array of 180 hypodermic needles (0.33 mm ID). Two different surface conditions are created by using clean water and a 0.4% aqueous solution of Triton X-100 surfactant. Measurements of the bubble diameters as they approach the free surface are obtained with diffuse light shadowgraph images. The range of bubble diameters studied is 2.885 mm to 3.301 mm for clean water and 2.369 mm to 3.014 mm for the surfactant solution. A laser-light high-speed cinematic shadowgraph system is employed to record and measure the diameters and motions of the droplets at the free surface. This system can measure droplets with diameters <= 50 μm. The results show a clear distinction between the droplet distributions obtained in clean water and the surfactant solution. A bimodal droplet distribution is observed for clean water with at least two dominating peaks. For the surfactant solution, a single distribution peak is seen. This work is supported by the National Science Foundation, Division of Ocean Sciences.

  10. Effect of bubble size on micro-bubble drag reduction

    NASA Astrophysics Data System (ADS)

    Shen, Xiaochun

    2005-11-01

    The effect of bubble size on micro-bubble drag reduction was investigated experimentally in a high-speed turbulent channel flow of water. A variety of near-wall injection techniques were used to create a bubbly turbulent boundary layer. The resulting wall friction force was measured directly by a floating element force balance. The bubble size was determined from photographic imaging. Using compressed nitrogen to force flow through a slot injector located in the plate beneath the boundary layer of the tunnel test section, a surfactant solution (Triton X-100, 19ppm) and salt water solution (35ppt) generated bubbles of average size between ˜500 microns and ˜200 microns and ˜100 microns, respectively (40 < d^+ < 200). In addition hollow spherical glass beads (˜75 microns (d^+ = 30) and specific gravity 0.18) and previously prepared lipid stabilized gas bubbles of ˜ 30 micron (d^+ =12) were injected. The results indicate that the drag reduction is related strongly to the injected gas volume flux and the static pressure in the boundary layer. Changing bubble size had essentially no influence on the measured friction drag, suggesting that friction drag is not a strong function of bubble size. [Sponsored by the Office of Naval Research.

  11. Interaction of equal-size bubbles in shear flow.

    PubMed

    Prakash, Jai; Lavrenteva, Olga M; Byk, Leonid; Nir, Avinoam

    2013-04-01

    The inertia-induced forces on two identical spherical bubbles in a simple shear flow at small but finite Reynolds number, for the case when the bubbles are within each other's inner viscous region, are calculated making use of the reciprocal theorem. This interaction force is further employed to model the dynamics of air bubbles injected to a viscous fluid sheared in a Couette device at the first shear flow instability where the bubbles are trapped inside the stable Taylor vortex. It was shown that, during a long time scale, the inertial interaction between the bubbles in the primary shear flow drives them away from each other and, as a result, equal-size bubbles eventually assume an ordered string with equal separation distances between all neighbors. We report on experiments showing the dynamic evolution of various numbers of bubbles. The results of the theory are in good agreement with the experimental observations.

  12. Generation and characterization of submicron size bubbles.

    PubMed

    Wu, Chendi; Nesset, Kirsten; Masliyah, Jacob; Xu, Zhenghe

    2012-11-01

    A baffled high intensity agitation (BHIA) cell was used to generate submicron size bubbles of an average diameter around 500nm by hydrodynamic cavitation. The generation of submicron size bubbles by BHIA cell was found to be largely dependent on the agitation speed of impellers. The duration of agitation and temperature showed only a marginal effect on generation of submicron size bubbles. Surface properties such as zeta-potential and stability of submicron size bubbles were found to be highly dependent on the chemistry of solutions in which the bubbles are generated. The presence of surfactant and frother in water was found to be beneficial for generating a larger number of submicron size bubbles that are more stable, having a life time of up to 24h.

  13. Cascades of popping bubbles along air/foam interfaces.

    PubMed

    Vandewalle, N; Lentz, J F

    2001-08-01

    We report image analysis of popping bubbles during the collapsing of two-dimensional (2D) and 3D aqueous foams. Although temporal and spatial correlations between successive popping bubbles within avalanches are emphasized, the breaking of a soap film at the air/foam interface seems to be independent of (i) the topology, (ii) the local curvature, and (iii) the size of the popping bubble. Possible mechanisms for cascades of pops are proposed and discussed. PMID:11497589

  14. Air bubble bursting effect of lotus leaf.

    PubMed

    Wang, Jingming; Zheng, Yongmei; Nie, Fu-Qiang; Zhai, Jin; Jiang, Lei

    2009-12-15

    In this paper, a phenomenon of air bubbles quickly bursting within several milliseconds on a "self-cleaning" lotus leaf was described. This observation prompted the synthesis of artificial surfaces similar to that of the lotus leaf. The artificial leaf surfaces, prepared by photolithography and wet etching, showed a similar air bubble bursting effect. Smooth and rough silicon surfaces with an ordered nanostructure or patterned microstructure were utilized to study the contribution of the micro/nano hierarchical structures to this phenomenon of air bubble bursting. Air bubbles were found to burst on some superhydrophobic surfaces with microstructure (within 220 ms). However, air bubbles burst much more rapidly (within 13 ms) on similar surfaces with micro/nanostructure. The height, width, and spacing of hierarchical structures could also affect air bubble bursting, and the effect of the height was more obvious. When the height of hierarchical structures was around the height found in natural lotus papillae, the width and spacing were significant for air bubble bursting. An original model was proposed to further evaluate the reason why the micro/nano hierarchical rough structures had an excellent air bubble bursting effect, and the validity of the model was theoretically demonstrated.

  15. Understanding air-gun bubble behavior

    SciTech Connect

    Johnson, D.T. )

    1994-11-01

    An air-gun bubble behaves approximately as a spherical bubble of an ideal gas in an infinite volume of practically incompressible water. With this simplification, the equation of bubble motion and its far-field signature is more understandable than with the more exact theory commonly cited in the literature. The terms of the equation of bubble motion are explained using elementary physics and mathematics, computation of numerical results is outlined, and an example signature is shown. An air-gun bubble is analogous to a simple harmonic oscillator consisting of a mass on a spring, with an equivalent mass equal three times that of the water displaced by the bubble, and air pressure following an ideal gas law corresponding to a spring. With this understanding, one is prepared to deal with the effects of interactions among air guns and with the high-order terms and other features that must be included to model the air-gun signature of actual seismic source arrays.

  16. Interaction of Two Differently Sized Bubbles in a Free Field

    NASA Astrophysics Data System (ADS)

    Chew, Lup Wai; Khoo, Boo Cheong; Klaseboer, Evert; Ohl, Siew-Wan

    The interaction between two different sized (spark created, non-equilibrium) bubbles is studied by using high speed photography. The bubble size ranges from 2 to 7 mm. The experimental results are compared to that of the similar sized bubbles reported in the literature. Interestingly, all the four major behaviors of bubble-bubble interactions (i.e. 'bubble-collapsed' induced liquid jets directed away from each other, liquid jets directed towards each other, bubble coalescence and the 'catapult' effect) are observed which bear much similarity to that found for similar sized bubbles' interaction. The main parameters studied/varied are the size of the bubbles, the dimensionless separation distance and the phase difference between the two bubbles. The results obtained are consistent with the cases of similar sized bubbles reported in the literature, with each type of behavior occupying a distinct region in the graphical plot. This indicates that the results for the (special) similar sized bubbles can be generalized to cases with different sized bubbles. Many of the real life applications such as cavitations corrosions often involve bubbles with significant size difference, thus the present findings are useful in predicting the behavior of multiple bubbles in many situations.

  17. Effect of an entrained air bubble on the acoustics of an ink channel.

    PubMed

    Jeurissen, Roger; de Jong, Jos; Reinten, Hans; van den Berg, Marc; Wijshoff, Herman; Versluis, Michel; Lohse, Detlef

    2008-05-01

    Piezo-driven inkjet systems are very sensitive to air entrapment. The entrapped air bubbles grow by rectified diffusion in the ink channel and finally result in nozzle failure. Experimental results on the dynamics of fully grown air bubbles are presented. It is found that the bubble counteracts the pressure buildup necessary for the droplet formation. The channel acoustics and the air bubble dynamics are modeled. For good agreement with the experimental data it is crucial to include the confined geometry into the model: The air bubble acts back on the acoustic field in the channel and thus on its own dynamics. This two-way coupling limits further bubble growth and thus determines the saturation size of the bubble.

  18. Numerical Simulation of Air Bubble Characteristics in Stationary Water

    NASA Astrophysics Data System (ADS)

    Zhang, C. X.; Wang, Y. X.

    The motion of air bubble in water plays a key role in such diverse aspects as air bubble curtain breakwater, air curtain drag reduction, air cushion isolation, weakening the shock wave in water by air bubble screen, etc. At present, the research on air bubble behaviors can be subdivided into several processes: air bubble formation from submerged orifices; interaction and coalescence during the ascending. The work presented in this paper focuses on numerical simulation of air bubble characteristics in stationary water, for example, air bubble formation, the ascending speed, the departing period, and so on. A series of models to simulate the characteristics of air bubble are developed by the VOF method in the two phase flow module of FLUENT. The numerical simulation results are consistent with the theoretical characteristics of air bubble in many aspects. So it is concluded that numerical simulation of air bubble characteristics in stationary water based on FLUENT is feasible. Due to the fact that the characteristics of air bubble are complicated questions, it is important that study on the air bubble behaviors in stationary water should be conducted on deeply.

  19. The distribution of bubble sizes during reionization

    NASA Astrophysics Data System (ADS)

    Lin, Yin; Oh, S. Peng; Furlanetto, Steven R.; Sutter, P. M.

    2016-09-01

    A key physical quantity during reionization is the size of H II regions. Previous studies found a characteristic bubble size which increases rapidly during reionization, with apparent agreement between simulations and analytic excursion set theory. Using four different methods, we critically examine this claim. In particular, we introduce the use of the watershed algorithm - widely used for void finding in galaxy surveys - which we show to be an unbiased method with the lowest dispersion and best performance on Monte Carlo realizations of a known bubble size probability density function (PDF). We find that a friends-of-friends algorithm declares most of the ionized volume to be occupied by a network of volume-filling regions connected by narrow tunnels. For methods tuned to detect the volume-filling regions, previous apparent agreement between simulations and theory is spurious, and due to a failure to correctly account for the window function of measurement schemes. The discrepancy is already obvious from visual inspection. Instead, H II regions in simulations are significantly larger (by factors of 10-1000 in volume) than analytic predictions. The size PDF is narrower, and evolves more slowly with time, than predicted. It becomes more sharply peaked as reionization progresses. These effects are likely caused by bubble mergers, which are inadequately modelled by analytic theory. Our results have important consequences for high-redshift 21 cm observations, the mean free path of ionizing photons, and the visibility of Lyα emitters, and point to a fundamental failure in our understanding of the characteristic scales of the reionization process.

  20. Dew and bubble point properties of air

    NASA Astrophysics Data System (ADS)

    Penoncello, S. G.; Jacobsen, R. T.; Lemmon, E. W.

    Four new ancillary functions for the calculation of pressures and densities of states at the bubble and dew points of air are presented. These functions were developed using experimental data and calculated values. The experimental data for the bubble and dew point pressures and densities of air are summarized and evaluated. In the absence of experimental data at high-pressure phase equilibrium states, a Leung-Griffiths model modified for ternary mixtures was used to calculate pseudo-data. This ternary mixture model was also used to calculate new values for the critical point, maxcondenbar and maxcondentherm for air. The calculated properties at the maxcondentherm were used as reducing parameters in the ancillary functions. Graphical comparisons of the ancillary equations to the experimental data and pseudo-data are presented to justify the estimated accuracies of the new ancillary functions. The equations presented here have been used to calculate dew and bubble point pressures and densities for the determination of the phase boundary for a wide-range equation of state for air treated as a pseudo-pure fluid.

  1. Dual-frequency ultrasound for detecting and sizing bubbles.

    PubMed

    Buckey, Jay C; Knaus, Darin A; Alvarenga, Donna L; Kenton, Marc A; Magari, Patrick J

    2005-01-01

    ISS construction and Mars exploration require extensive extravehicular activity (EVA), exposing crewmembers to increased decompression sickness risk. Improved bubble detection technologies could help increase EVA efficiency and safety. Creare Inc. has developed a bubble detection and sizing instrument using dual-frequency ultrasound. The device emits "pump" and "image" signals at two frequencies. The low-frequency pump signal causes an appropriately-sized bubble to resonate. When the image frequency hits a resonating bubble, mixing signals are returned at the sum and difference of the two frequencies. To test the feasibility of transcutaneous intravascular detection, intravascular bubbles in anesthetized swine were produced using agitated saline and decompression stress. Ultrasonic transducers on the chest provided the two frequencies. Mixing signals were detected transthoracically in the right atrium using both methods. A histogram of estimated bubble sizes could be constructed. Bubbles can be detected and sized transthoracically in the right atrium using dual-frequency ultrasound.

  2. Measurement of Bubble Size Distribution Based on Acoustic Propagation in Bubbly Medium

    NASA Astrophysics Data System (ADS)

    Wu, Xiongjun; Hsiao, Chao-Tsung; Choi, Jin-Keun; Chahine, Georges

    2013-03-01

    Acoustic properties are strongly affected by bubble size distribution in a bubbly medium. Measurement of the acoustic transmission becomes increasingly difficulty as the void fraction of the bubbly medium increases due to strong attenuation, while acoustic reflection can be measured more easily with increasing void fraction. The ABS ACOUSTIC BUBBLE SPECTROMETER®\\copyright, an instrument for bubble size measurement that is under development tries to take full advantage of the properties of acoustic propagation in bubbly media to extract bubble size distribution. Properties of both acoustic transmission and reflection in the bubbly medium from a range of short single-frequency bursts of acoustic waves at different frequencies are measured in an effort to deduce the bubble size distribution. With the combination of both acoustic transmission and reflection, assisted with validations from photography, the ABS ACOUSTIC BUBBLE SPECTROMETER®\\copyright has the potential to measure bubble size distributions in a wider void fraction range. This work was sponsored by Department of Energy SBIR program

  3. Automated bubble sizing using two frequency excitation techniques

    NASA Astrophysics Data System (ADS)

    Phelps, Andy D.; Leighton, Timothy G.

    The presence of bubbles in the ocean is an important phenomenon, and studies into a range of effects (atmosphere/ocean gas flux, near surface acoustic propagation, etc.) often require knowledge of their size, number and distribution. Such information is also important for studying bubbles in industrial or clinical systems. Because bubbles are excellent scatterers of sound, with well-defined acoustic resonances which (to a first approximation) are inversely proportional to their size, these measurements lend themselves towards the use of acoustics. At large amplitudes an asymmetry is introduced into the pulsation of the bubble wall, and this nonlinearity is used to detect resonant bubbles. The results presented are of a technique which uses two sound fields incident on the bubble - one high fixed imaging frequency and another lower frequency that is adjusted to match the resonant frequency of the bubble. The nonlinearity gives rise to sum-and-difference coupling of the imaging frequency with the bubble resonance, and with harmonics, subharmonics and ultraharmonics of this resonance. From these the bubble radius can be determined. This paper gives details of investigations into the suitability of this method to actively size bubbles of unknown radius and distribution, and discusses its accuracy and limitations. In addition, the feasibility of automated high-resolution bubble sizing is examined using specialised signal processing and heterodyning techniques.

  4. Air bubble migration rates as a proxy for bubble pressure distribution in ice cores

    NASA Astrophysics Data System (ADS)

    Dadic, Ruzica; Schneebeli, Martin; Bertler, Nancy

    2015-04-01

    Air bubble migration can be used as a proxy to measure the pressure of individual bubbles and can help constrain the gradual close-off of gas bubbles and the resulting age distribution of gases in ice cores. The close-off depth of single bubbles can vary by tens of meters, which leads to a distribution of pressures for bubbles at a given depth. The age distribution of gases (along with gas-age-ice-age differences) decreases the resolution of the gas level reconstructions from ice cores and limits our ability to determine the phase relationship between gas and ice, and thus, the impact of rapid changes of greenhouse gases on surface temperatures. For times of rapid climate change, including the last 150 years, and abrupt climate changes further back in the past, knowledge of the age distribution of the gases trapped in air bubbles will enable us to refine estimates of atmospheric changes. When a temperature gradient is applied to gas bubbles in an ice sample, the bubbles migrate toward warmer ice. This motion is caused by sublimation from the warm wall and subsequent frost deposition on the cold wall. The migration rate depends on ice temperature and bubble pressure and is proportional to the temperature gradient. The spread in migration rates for bubbles in the same samples at given temperatures should therefore reflect the variations in bubble pressures within a sample. Air bubbles with higher pressures would have been closed off higher in the firn column and thus have had time to equilibrate with the surrounding ice pressure, while air bubbles that have been closed off recently would have pressures that are similar to todays atmospheric pressure above the firn column. For ice under pressures up to ~13-16 bar, the pressure distribution of bubbles from a single depth provides a record of the trapping function of air bubbles in the firn column for a certain time in the past. We will present laboratory experiments on air bubble migration, using Antarctic ice core

  5. Influence of bubble size, diffuser width, and flow rate on the integral behavior of bubble plumes

    NASA Astrophysics Data System (ADS)

    Fraga, Bruño.; Stoesser, Thorsten

    2016-06-01

    A large-eddy simulation based Eulerian-Lagrangian model is employed to quantify the impact of bubble size, diffuser diameter, and gas flow rate on integral properties of bubble plumes, such as the plume's width, centerline velocity, and mass flux. Calculated quantities are compared with experimental data and integral model predictions. Furthermore, the LES data were used to assess the behavior of the entrainment coefficient, the momentum amplification factor, and the bubble-to-momentum spread ratio. It is found that bubble plumes with constant bubble size and smaller diameter behave in accordance with integral plume models. Plumes comprising larger and non-uniform bubble sizes appear to deviate from past observations and model predictions. In multi-diameter bubble plumes, a bubble self-organisation takes place, i.e., small bubbles cluster in the center of the plume whilst large bubbles are found at the periphery of the plume. Multi-diameter bubble plumes also feature a greater entrainment rate than single-size bubble plumes, as well as a higher spread ratio and lower turbulent momentum rate. Once the plume is fully established, the size of the diffuser does not appear to affect integral properties of bubble plumes. However, plume development is affected by the diffuser width, as larger release areas lead to a delayed asymptotic behavior of the plume and consequently to a lower entrainment and higher spread ratio. Finally, the effect of the gas flow rate on the integral plume is studied and is deemed very relevant with regards to most integral plume properties and coefficients. This effect is already fairly well described by integral plume models.

  6. Non-intrusive measurements of bubble size and velocity

    NASA Astrophysics Data System (ADS)

    Tassin, A. L.; Nikitopoulos, D. E.

    1995-06-01

    A non-intrusive measuring technique based on video-imaging has been developed for the measurement of bubble size, velocity and frequency. Measurements carried out with this method have been compared to those obtained by an optimized phase-Doppler system in standard configuration, for a wide range of bubble sizes produced from single injectors in a quiescent environment. The two measuring techniques have yielded velocities and frequencies that are in very good agreement while the size of spherical bubbles was consistently measured by both methods. The phase-Doppler system was also used to size oblate-spheroidal bubbles moving with their equatorial plane parallel to the scattering plane, yielding measurements reasonably close to the average radius of curvature of the bubbles in the neighborhood of the equatorial plane, as calculated from the video-imaging data. Both methods were used for detailed velocity measurements of the bubble-stream in the neighborhood of the injector tip. The observed bubble-velocity variation with the distance from the injector tip does not always display the usual increasing trend leading into the terminal velocity. When injection conditions are near the transition from discrete to jet injection mode and the bubbles are small, the latter decelerate into a terminal velocity due to direct interaction of successive bubbles at the injector tip. The measured terminal velocities of bubble-chains for a variety of bubble sizes and injection frequencies, are successfully predicted by using a far-field wake approximation to account for the drafting effect which is responsible for bubble-chain velocities higher than those of single bubbles.

  7. Bubble performance of a novel dissolved air flotation(DAF) unit.

    PubMed

    Chen, Fu-tai; Peng, Feng-xian; Wu, Xiao-qing; Luan, Zhao-kun

    2004-01-01

    ES-DAF, a novel DAF with low cost, high reliability and easy controllability, was studied. Without a costly air saturator, ES-DAF consists of an ejector and a static mixer between the pressure side and suction side of the recycle rotary pump. The bubble size distribution in this novel unit was studied in detail by using a newly developed CCD imagination through a microscope. Compared with M-DAF under the same saturation pressure, ES-DAF can produce smaller bubble size and higher bubble volume concentration, especially in lower pressure. In addition, the bubble size decreases with the increase of reflux ratio or decrease of superficial air-water ratio. These results suggested that smaller bubbles will be formed when the initial number of nucleation sites increases by enhancing the turbulence intensity in the saturation system.

  8. Insertion and confinement of air bubbles inside a liquid marble.

    PubMed

    Sun, Guanqing; Sheng, Yifeng; Ngai, To

    2016-01-14

    Nanoparticles at the air/liquid interface can serve as solid separating barriers to form stable foams or liquid marbles depending on the wettability of the nanoparticles. This paper presents an effect that enables the insertion and confinement of air bubbles inside a liquid marble, based on encapsulating an air bubble surrounded by surfactant molecules or hydrophilic particles. We have demonstrated that more than one bubble can be inserted and trapped inside one liquid marble so that liquid marbles can be divided into several separate compartments. The findings presented here may stimulate fundamental studies of this novel bubble-marble phenomenon, as well as developments of various practical applications.

  9. The impact and bounce of air bubbles at a flat fluid interface.

    PubMed

    Manica, Rogerio; Klaseboer, Evert; Chan, Derek Y C

    2016-04-01

    The rise and impact of bubbles at an initially flat but deformable liquid-air interface in ultraclean liquid systems are modelled by taking into account the buoyancy force, hydrodynamic drag, inertial added mass effect and drainage of the thin film between the bubble and the interface. The bubble-surface interaction is analyzed using lubrication theory that allows for both bubble and surface deformation under a balance of normal stresses and surface tension as well as the long-range nature of deformation along the interface. The quantitative result for collision and bounce is sensitive to the impact velocity of the rising bubble. This velocity is controlled by the combined effects of interfacial tension via the Young-Laplace equation and hydrodynamic stress on the surface, which determine the deformation of the bubble. The drag force that arises from the hydrodynamic stress in turn depends on the hydrodynamic boundary conditions on the bubble surface and its shape. These interrelated factors are accounted for in a consistent manner. The model can predict the rise velocity and shape of millimeter-size bubbles in ultra-clean water, in two silicone oils of different densities and viscosities and in ethanol without any adjustable parameters. The collision and bounce of such bubbles with a flat water/air, silicone oil/air and ethanol/air interface can then be predicted with excellent agreement when compared to experimental observations. PMID:26924623

  10. Using an Ultrasonic Instrument to Size Extravascular Bubbles

    NASA Technical Reports Server (NTRS)

    Magari, Patrick J.; Kline-Schroder, J.; Kenton, Marc A.

    2004-01-01

    In an ongoing development project, microscopic bubbles in extravascular tissue in a human body will be detected by use of an enhanced version of the apparatus described in Ultrasonic Bubble- Sizing Instrument (MSC-22980), NASA Tech Briefs, Vol. 24, No. 10 (October 2000), page 62. To recapitulate: The physical basis of the instrument is the use of ultrasound to excite and measure the resonant behavior (oscillatory expansion and contraction) of bubbles. The resonant behavior is a function of the bubble diameter; the instrument exploits the diameter dependence of the resonance frequency and the general nonlinearity of the ultrasonic response of bubbles to detect bubbles and potentially measure their diameters. In the cited prior article, the application given most prominent mention was the measurement of gaseous emboli (essentially, gas bubbles in blood vessels) that cause decompression sickness and complications associated with cardiopulmonary surgery. According to the present proposal, the instrument capabilities would be extended to measure extravascular bubbles with diameters in the approximate range of 1 to 30 m. The proposed use of the instrument could contribute further to the understanding and prevention of decompression sickness: There is evidence that suggests that prebreathing oxygen greatly reduces the risk of decompression sickness by reducing the number of microscopic extravascular bubbles. By using the ultrasonic bubble-sizing instrument to detect and/or measure the sizes of such bubbles, it might be possible to predict the risk of decompression sickness. The instrument also has potential as a tool to guide the oxygen-prebreathing schedules of astronauts; high-altitude aviators; individuals who undertake high-altitude, low-opening (HALO) parachute jumps; and others at risk of decompression sickness. For example, an individual at serious risk of decompression sickness because of high concentrations of extravascular microscopic bubbles could be given a

  11. Memory encoding vibrations in a disconnecting air bubble

    NASA Astrophysics Data System (ADS)

    Zhang, Wendy

    2009-03-01

    The implosion that disconnects a submerged air bubble into several bubbles provides a simple example of energy focusing. The most efficient disconnection is an entirely symmetric one terminating in a finite-time singularity. At the final moment, the potential energy at the start of the disconnection is entirely condensed into the kinetic energy of a vanishingly small amount of liquid rushing inwards to disconnect the bubble. In reality, however, the initial shape always possesses slight imperfections. We show that a memory of the imperfection remains and controls the final fate of the focusing. Linear stability reveals that even an infinitesimal perturbation is remembered. A slight initial asymmetry excites vibrations in the cross-section shape of the bubble neck. The vibrations persist over time. Near the singularity, their amplitudes freeze, locking onto constant values, while their frequencies chirp, increasing more and more rapidly. The net effect is that the singularity remembers exactly half of the information about the initial imperfection, the half encoded by the vibration amplitudes. We check this scenario in an experiment by releasing an air bubble from a nozzle with an oblong cross-section. This excites an elongation-compression vibrational mode. We measure the vibration excited and find quantitative agreement with linear stability. When the initial distortion has a small, but finite, size, the saturation of the vibration amplitude causes the symmetric singularity to be pre-empted by an asymmetric contact between two distant points on the interface. Numerics reveal that the contact is typically smooth, corresponding to two inward-curving portions of the bubble surface colliding at finite speed. Both the contact speed and curvature vary non-monotonically with the initial distortion size, with abrupt jumps at specific values. This is because the vibration causes contact to occur at different values of the phase. A contact produced when the shape distortion

  12. Acoustic bubble sizes, coalescence, and sonochemical activity in aqueous electrolyte solutions saturated with different gases.

    PubMed

    Brotchie, Adam; Statham, Tom; Zhou, Meifang; Dharmarathne, Leena; Grieser, Franz; Ashokkumar, Muthupandian

    2010-08-01

    Acoustic bubble sizes, coalescence behavior, and sonochemical activity have been investigated in water in the presence of various electrolyte additives (KCl, HCl, and NaNO(3)) and saturating gases-helium, air, and argon. A strong correlation was identified between the bubble radius and the dissolved gas concentration in the cavitation medium. The extent of bubble coalescence for each gas was also studied in different electrolyte solutions. A causal relationship between coalescence and bubble size was inferred. Importantly, the effects of the different electrolytes could be completely attributed to their "salting out" effect on the dissolved gas, providing valuable insight into the contentious issue of ion-specific coalescence inhibition. Extrapolation of the bubble size data to conditions where bubble coalescence is minimal, i.e., zero gas concentration and zero ultrasound exposure time, yielded a bubble radius of 1.5 +/- 0.5 microm at an acoustic frequency of 515 kHz. In addition, the effects of electrolyte concentration and gas type on sonochemical activity were investigated. Sonochemical yields were increased by up to 1 order of magnitude at high electrolyte concentrations. This has been attributed to reduced gas and vapor content in the bubble core prior to collapse and a lower clustering density.

  13. Can airborne ultrasound monitor bubble size in chocolate?

    NASA Astrophysics Data System (ADS)

    Watson, N.; Hazlehurst, T.; Povey, M.; Vieira, J.; Sundara, R.; Sandoz, J.-P.

    2014-04-01

    Aerated chocolate products consist of solid chocolate with the inclusion of bubbles and are a popular consumer product in many countries. The volume fraction and size distribution of the bubbles has an effect on their sensory properties and manufacturing cost. For these reasons it is important to have an online real time process monitoring system capable of measuring their bubble size distribution. As these products are eaten by consumers it is desirable that the monitoring system is non contact to avoid food contaminations. In this work we assess the feasibility of using an airborne ultrasound system to monitor the bubble size distribution in aerated chocolate bars. The experimental results from the airborne acoustic experiments were compared with theoretical results for known bubble size distributions using COMSOL Multiphysics. This combined experimental and theoretical approach is used to develop a greater understanding of how ultrasound propagates through aerated chocolate and to assess the feasibility of using airborne ultrasound to monitor bubble size distribution in these systems. The results indicated that a smaller bubble size distribution would result in an increase in attenuation through the product.

  14. Influence of artificially generated air bubbles on a wave breaking

    NASA Astrophysics Data System (ADS)

    Merkoune, D.; Ezersky, A.; Abcha, N.; Amine, F.; Mouazé, D.

    2011-12-01

    We report experimental results on influence of air bubbles curtain on wave breaking. It was found that position of wave breaking point depends on bubble concentration in water. It was revealed that the effect of wave breaking is very sensitive to the concentration of air bubbles which are situated near free surface of water. We showed that small concentration of artificially created bubbles do not lead to additional dissipation of energy in surface waves but change sufficiently the position of breaking point. This phenomenon could synchronize the breaking of irregular surface waves in the ocean and lead to the generation of spatially inhomogeneous turbulence in the upper layer of the ocean.

  15. Effects of system parameters on the physical characteristics of bubbles produced through air sparging.

    PubMed

    Burns, S E; Zhang, M

    2001-01-01

    Air sparging is a relatively new, cost-effective technology for the remediation of soil and groundwater contaminated with volatile organic compounds (VOCs). While the method has met with reasonable success at a large number of field sites, implementation of the technique is restricted to relatively coarse-grained soils with large values of air permeability, which significantly limits its applicability. An understanding of the fundamental parameters that control the formation and distribution of air in the sparging process is useful for optimizing the system implementation and extending its range of applicability. This work presents the results of an experimental investigation into the effect of process control parameters on the size and size distribution of air bubbles produced in aqueous and idealized saturated porous media systems. The experiments used digital image analysis to image and quantify the physical characteristics of the bubbles generated in a bench scale test cell. Results demonstrated that the average bubble size and range of size distribution increased as the injection pressure and size of the injection orifice were increased. Larger diameter bubbles with wider size distributions were produced in the presence of particles when compared to aqueous systems. As the particle size was decreased, the size of bubbles produced increased. Finally, the presence of trace quantities of the surfactant Triton X100 led to uniformly small diameter bubbles under all experimental conditions. The presence of the surfactant coating produced bubbles with physical characteristics that are more suited to in situ stripping of VOCs than the bubbles produced in the absence of a surfactant. PMID:11352012

  16. Effects of system parameters on the physical characteristics of bubbles produced through air sparging.

    PubMed

    Burns, S E; Zhang, M

    2001-01-01

    Air sparging is a relatively new, cost-effective technology for the remediation of soil and groundwater contaminated with volatile organic compounds (VOCs). While the method has met with reasonable success at a large number of field sites, implementation of the technique is restricted to relatively coarse-grained soils with large values of air permeability, which significantly limits its applicability. An understanding of the fundamental parameters that control the formation and distribution of air in the sparging process is useful for optimizing the system implementation and extending its range of applicability. This work presents the results of an experimental investigation into the effect of process control parameters on the size and size distribution of air bubbles produced in aqueous and idealized saturated porous media systems. The experiments used digital image analysis to image and quantify the physical characteristics of the bubbles generated in a bench scale test cell. Results demonstrated that the average bubble size and range of size distribution increased as the injection pressure and size of the injection orifice were increased. Larger diameter bubbles with wider size distributions were produced in the presence of particles when compared to aqueous systems. As the particle size was decreased, the size of bubbles produced increased. Finally, the presence of trace quantities of the surfactant Triton X100 led to uniformly small diameter bubbles under all experimental conditions. The presence of the surfactant coating produced bubbles with physical characteristics that are more suited to in situ stripping of VOCs than the bubbles produced in the absence of a surfactant.

  17. Magnetic susceptibility based magnetic resonance estimation of micro-bubble size for the vertically upward bubbly flow.

    PubMed

    Arbabi, A; Mastikhin, I V

    2012-12-01

    The approach originally developed for the Nuclear Magnetic Resonance analysis of stable micro-bubbles is applied to studies of vertical bubbly flows. A very fast dispersion (diffusion) of water in bubbly flows extends the fast diffusion limit down to short (2-10 ms) measurement times, permitting the use of the simplified analytical expression to extract the micro-bubble size information both in bulk and spatially resolved. The observed strong bubble-induced reduction in T(2)(*) necessitates the use of very short encoding times and pure phase encoding methods to accurately measure the void fraction. There was an expected underestimation of bubble sizes at faster flow rates due to the limitations of the theory derived for small bubble sizes and non-interacting spherical bubbles (low void fractions and slow flow rates). This approach lends itself to studies of bubbly flows and cavitating media characterized by small bubble sizes and low void fractions. PMID:23117260

  18. Magnetic susceptibility based magnetic resonance estimation of micro-bubble size for the vertically upward bubbly flow

    NASA Astrophysics Data System (ADS)

    Arbabi, A.; Mastikhin, I. V.

    2012-12-01

    The approach originally developed for the Nuclear Magnetic Resonance analysis of stable micro-bubbles is applied to studies of vertical bubbly flows. A very fast dispersion (diffusion) of water in bubbly flows extends the fast diffusion limit down to short (2-10 ms) measurement times, permitting the use of the simplified analytical expression to extract the micro-bubble size information both in bulk and spatially resolved. The observed strong bubble-induced reduction in T2∗ necessitates the use of very short encoding times and pure phase encoding methods to accurately measure the void fraction. There was an expected underestimation of bubble sizes at faster flow rates due to the limitations of the theory derived for small bubble sizes and non-interacting spherical bubbles (low void fractions and slow flow rates). This approach lends itself to studies of bubbly flows and cavitating media characterized by small bubble sizes and low void fractions.

  19. Elastic oscillations of bubbles separated from an air cavity in a magnetic fluid

    NASA Astrophysics Data System (ADS)

    Polunin, V. M.; Shabanova, I. A.; Karpova, G. V.; Kobelev, N. S.; Ryabtsev, K. S.; Platonov, V. B.; Aref'ev, I. M.

    2015-07-01

    The elastic oscillations of air bubbles separated from an air cavity compressed by the ponderomotive forces of a magnetic field in a magnetic fluid are accompanied by the appearance of an alternating magnetic field component. The frequency of the alternating component corresponds to the frequency of radial bubble oscillations, and this fact is used to determine the bubble size. A great body of experimental data has been obtained from six magnetic fluid samples with different viscosities. Based on these data, histograms illustrating the bubble radius distribution are plotted. The appearance of the alternating magnetic field component caused by bubble oscillations in a magnetized magnetic fluid can be used to develop a fundamentally new method for supplying small metered gas shots to a reactor, as well as to study the boiling process in a magnetic fluid.

  20. Size limits the formation of liquid jets during bubble bursting

    PubMed Central

    Lee, Ji San; Weon, Byung Mook; Park, Su Ji; Je, Jung Ho; Fezzaa, Kamel; Lee, Wah-Keat

    2011-01-01

    A bubble reaching an air–liquid interface usually bursts and forms a liquid jet. Jetting is relevant to climate and health as it is a source of aerosol droplets from breaking waves. Jetting has been observed for large bubbles with radii of R≫100 μm. However, few studies have been devoted to small bubbles (R<100 μm) despite the entrainment of a large number of such bubbles in sea water. Here we show that jet formation is inhibited by bubble size; a jet is not formed during bursting for bubbles smaller than a critical size. Using ultrafast X-ray and optical imaging methods, we build a phase diagram for jetting and the absence of jetting. Our results demonstrate that jetting in bubble bursting is analogous to pinching-off in liquid coalescence. The coalescence mechanism for bubble bursting may be useful in preventing jet formation in industry and improving climate models concerning aerosol production. PMID:21694715

  1. Interaction of two differently sized oscillating bubbles in a free field.

    PubMed

    Chew, Lup Wai; Klaseboer, Evert; Ohl, Siew-Wan; Khoo, Boo Cheong

    2011-12-01

    Most real life bubble dynamics applications involve multiple bubbles, for example, in cavitation erosion prevention, ultrasonic baths, underwater warfare, and medical applications involving microbubble contrast agents. Most scientific dealings with bubble-bubble interaction focus on two similarly sized bubbles. In this study, the interaction between two oscillating differently sized bubbles (generated in tap water) is studied using high speed photography. Four types of bubble behavior were observed, namely, jetting toward each other, jetting away from each other, bubble coalescence, and a behavior termed the "catapult" effect. In-phase bubbles jet toward each other, while out-of-phase bubbles jet away from each other. There exists a critical phase difference that separates the two regimes. The behavior of the bubbles is fully characterized by their dimensionless separation distance, their phase difference, and their size ratio. It is also found that for bubbles with large size difference, the smaller bubble behaves similarly to a single bubble oscillating near a free surface.

  2. Measuring Technique of Bubble Size Distributions in Dough

    NASA Astrophysics Data System (ADS)

    Maeda, Tatsurou; Do, Gab-Soo; Sugiyama, Junichi; Oguchi, Kosei; Tsuta, Mizuki

    A novel technique to recognize bubbles in bread dough and analyze their size distribution was developed by using a Micro-Slicer Image Processing System (MSIPS). Samples were taken from the final stage of the mixing process of bread dough which generally consists of four distinctive stages. Also, to investigate the effect of freeze preservation on the size distribution of bubbles, comparisons were made between fresh dough and the dough that had been freeze preserved at .30°C for three months. Bubbles in the dough samples were identified in the images of MSIPS as defocusing spots due to the difference in focal distance created by vacant spaces. In case of the fresh dough, a total of 910 bubbles were recognized and their maximum diameter ranged from 0.4 to 70.5μm with an average of 11.1μm. On the other hand, a total of 1,195 bubbles were recognized from the freeze-preserved sample, and the maximum diameter ranged from 0.9 to 32.7μm with an average of 6.7μm. Small bubbles with maximum diameters less than 10μm comprised approximately 59% and 78% of total bubbles for fresh and freeze-preserved dough samples, respectively. The results indicated that the bubble size of frozen dough is smaller than that of unfrozen one. The proposed method can provide a novel tool to investigate the effects of mixing and preservation treatments on the size, morphology and distribution of bubbles in bread dough.

  3. Rise of Air Bubbles in Aircraft Lubricating Oils

    NASA Technical Reports Server (NTRS)

    Robinson, J. V.

    1950-01-01

    Lubricating and antifoaming additives in aircraft lubricating oils may impede the escape of small bubbles from the oil by forming shells of liquid with a quasi-solid or gel structure around the bubbles. The rates of rise of small air bubbles, up to 2 millimeters in diameter, were measured at room temperature in an undoped oil, in the same oil containing foam inhibitors, and in an oil containing lubricating additives. The apparent diameter of the air bubbles was measured visually through an ocular micrometer on a traveling telescope. The bubbles in the undoped oil obeyed Stokes' Law, the rate of rise being proportional to the square of the apparent diameter and inversely proportional to the viscosity of the oil. The bubbles in the oils containing lubricating additives or foam inhibitors rose more slowly than the rate predicted by Stokes 1 Law from the apparent diameter, and the rate of rise decreased as the length of path the bubbles traveled increased. A method is derived to calculate the thickness of the liquid shell which would have to move with the bubbles in the doped oils to account for the abnoi'I!l8.lly slow velocity. The maximum thickness of this shell, calculated from the velocities observed, was equal to the bubble radius.

  4. Void fraction and bubble size in a simulated hydraulic jump

    NASA Astrophysics Data System (ADS)

    Witt, Adam; Gulliver, John; Shen, Lian

    2013-11-01

    Two- and three-dimensional numerical simulations of a hydraulic jump are carried out with the open source software package OpenFOAM using a Volume of Fluid numerical method and a realizable k- ɛ turbulence model. Time-averaged air-water properties are obtained over a 15 second sampling time. Void fraction profiles show good agreement with experimental values in the turbulent shear layer. Sauter mean diameter approaches experimental results in the turbulent shear layer, while showing grid dependence down to a uniform computational cell size of 0.625 mm. Three-dimensional results show a minor improvement in the prediction of entrained air compared to two-dimensional results at a multiple of 341 in increased computational time for the chosen grid. Relative error in bubble diameter is similar between two- and three-dimensional simulations. The results indicate a Volume of Fluid, realizable k- ɛ numerical model accurately predicts the void fraction profile when the Sauter mean diameter to grid size ratio surpasses 8. This research was supported by funding from the U.S. Department of Energy, the Hydro Research Foundation, the University of Minnesota and the University of Minnesota Supercomputing Institute.

  5. Assembly of jammed colloidal shells onto micron-sized bubbles by ultrasound.

    PubMed

    Buchcic, C; Tromp, R H; Meinders, M B J; Cohen Stuart, M A

    2015-02-01

    Stabilization of gas bubbles in water by applying solid particles is a promising technique to ensure long-term stability of the dispersion against coarsening. However, the production of large quantities of particle stabilized bubbles is challenging. The delivery of particles to the interface must occur rapidly compared to the typical time scale of coarsening during production. Furthermore, the production route must be able to overcome the energy barriers for interfacial adsorption of particles. Here we demonstrate that ultrasound can be applied to agitate a colloidal dispersion and supply sufficient energy to ensure particle adsorption onto the air-water interface. With this technique we are able to produce micron-sized bubbles, solely stabilized by particles. The interface of these bubbles is characterized by a colloidal shell, a monolayer of particles which adopt a hexagonal packing. The particles are anchored to the interface owing to partial wetting and experience lateral compression due to bubble shrinkage. The combination of both effects stops coarsening once the interface is jammed with particles. As a result, stable bubbles are formed. Individual particles can desorb from the interface upon surfactant addition, though. The latter fact confirms that the particle shell is not covalently linked due to thermal sintering, but is solely held together by capillary interaction. In summary, we show that our ultrasound approach allows for the straightforward creation of micron-sized particle stabilized bubbles with high stability towards coarsening.

  6. Measurements of Gas Bubble Size Distributions in Flowing Liquid Mercury

    SciTech Connect

    Wendel, Mark W; Riemer, Bernie; Abdou, Ashraf A

    2012-01-01

    ABSTRACT Pressure waves created in liquid mercury pulsed spallation targets have been shown to induce cavitation damage on the target container. One way to mitigate such damage would be to absorb the pressure pulse energy into a dispersed population of small bubbles, however, measuring such a population in mercury is difficult since it is opaque and the mercury is involved in a turbulent flow. Ultrasonic measurements have been attempted on these types of flows, but the flow noise can interfere with the measurement, and the results are unverifiable and often unrealistic. Recently, a flow loop was built and operated at Oak Ridge National Labarotory to assess the capability of various bubbler designs to deliver an adequate population of bubbles to mitigate cavitation damage. The invented diagnostic technique involves flowing the mercury with entrained gas bubbles in a steady state through a horizontal piping section with a glass-window observation port located on the top. The mercury flow is then suddenly stopped and the bubbles are allowed to settle on the glass due to buoyancy. Using a bright-field illumination and a high-speed camera, the arriving bubbles are detected and counted, and then the images can be processed to determine the bubble populations. After using this technique to collect data on each bubbler, bubble size distributions were built for the purpose of quantifying bubbler performance, allowing the selection of the best bubbler options. This paper presents the novel procedure, photographic technique, sample visual results and some example bubble size distributions. The best bubbler options were subsequently used in proton beam irradiation tests performed at the Los Alamos National Laboratory. The cavitation damage results from the irradiated test plates in contact with the mercury are available for correlation with the bubble populations. The most effective mitigating population can now be designed into prototypical geometries for implementation into

  7. Period adding cascades: experiment and modeling in air bubbling.

    PubMed

    Pereira, Felipe Augusto Cardoso; Colli, Eduardo; Sartorelli, José Carlos

    2012-03-01

    Period adding cascades have been observed experimentally/numerically in the dynamics of neurons and pancreatic cells, lasers, electric circuits, chemical reactions, oceanic internal waves, and also in air bubbling. We show that the period adding cascades appearing in bubbling from a nozzle submerged in a viscous liquid can be reproduced by a simple model, based on some hydrodynamical principles, dealing with the time evolution of two variables, bubble position and pressure of the air chamber, through a system of differential equations with a rule of detachment based on force balance. The model further reduces to an iterating one-dimensional map giving the pressures at the detachments, where time between bubbles come out as an observable of the dynamics. The model has not only good agreement with experimental data, but is also able to predict the influence of the main parameters involved, like the length of the hose connecting the air supplier with the needle, the needle radius and the needle length.

  8. Interaction between bubble and air-backed plate with circular hole

    NASA Astrophysics Data System (ADS)

    Liu, Y. L.; Wang, S. P.; Zhang, A. M.

    2016-06-01

    This paper investigates the nonlinear interaction between a violent bubble and an air-backed plate with a circular hole. A numerical model is established using the incompressible potential theory coupled with the boundary integral method. A double-node technique is used to solve the overdetermined problem caused by the intersection between the solid wall and the free surface. A spark-generated bubble near the air-backed plate with a circular hole is observed experimentally using a high-speed camera. Our numerical results agree well with the experimental results. Both experimental and numerical results show that a multilevel spike emerges during the bubble's expansion and contraction. Careful numerical simulation reveals that this special type of spike is caused by the discontinuity in the boundary condition. The influences of the hole size and depth on the bubble and spike dynamics are also analyzed.

  9. Light Scattering by Ice Crystals Containing Air Bubbles

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Panetta, R. L.; Yang, P.; Bi, L.

    2014-12-01

    The radiative effects of ice clouds are often difficult to estimate accurately, but are very important for interpretation of observations and for climate modeling. Our understanding of these effects is primarily based on scattering calculations, but due to the variability in ice habit it is computationally difficult to determine the required scattering and absorption properties, and the difficulties are only compounded by the need to include consideration of air and carbon inclusions of the sort frequently observed in collected samples. Much of the previous work on effects of inclusions in ice particles on scattering properties has been conducted with variants of geometric optics methods. We report on simulations of scattering by ice crystals with enclosed air bubbles using the pseudo-spectral time domain method (PSTD) and improved geometric optics method (IGOM). A Bouncing Ball Model (BBM) is proposed as a parametrization of air bubbles, and the results are compared with Monte Carlo radiative transfer calculations. Consistent with earlier studies, we find that air inclusions lead to a smoothing of variations in the phase function, weakening of halos, and a reduction of backscattering. We extend these studies by examining the effects of the particular arrangement of a fixed number of bubbles, as well as the effects of splitting a given number of bubbles into a greater number of smaller bubbles with the same total volume fraction. The result shows that the phase function will not change much for stochastic distributed air bubbles. It also shows that local maxima of phase functions are smoothed out for backward directions, when we break bubbles into small ones, single big bubble scatter favors more forward scattering than multi small internal scatters.

  10. Amateur scientists - producing light from a bubble of air

    SciTech Connect

    Hiller, R.A.; Barber, B.P.

    1995-02-01

    A glowing bubble of air cannot be bought anywhere at any price. But with an oscilloscope, a moderately precise sound generator, a home stereo amplifier and about $100, readers can turn sound into light through a process called sonoluminescence. The apparatus is relatively simple. A glass spherical flask filled with water serves as the resonator - the cavity in which sound is created to trap and drive the bubble. Small speakers, called piezoelectric transducers, are cemented to the flask and powered by an audo generator and amplifier. Bubbles introduced into the water coalesce at the center of the flask and produce a dim light visible to the unaided eye in a darkened room.

  11. Interaction between Air Bubbles and Superhydrophobic Surfaces in Aqueous Solutions.

    PubMed

    Shi, Chen; Cui, Xin; Zhang, Xurui; Tchoukov, Plamen; Liu, Qingxia; Encinas, Noemi; Paven, Maxime; Geyer, Florian; Vollmer, Doris; Xu, Zhenghe; Butt, Hans-Jürgen; Zeng, Hongbo

    2015-07-01

    Superhydrophobic surfaces are usually characterized by a high apparent contact angle of water drops in air. Here we analyze the inverse situation: Rather than focusing on water repellency in air, we measure the attractive interaction of air bubbles and superhydrophobic surfaces in water. Forces were measured between microbubbles with radii R of 40-90 μm attached to an atomic force microscope cantilever and submerged superhydrophobic surfaces. In addition, forces between macroscopic bubbles (R = 1.2 mm) at the end of capillaries and superhydrophobic surfaces were measured. As superhydrophobic surfaces we applied soot-templated surfaces, nanofilament surfaces, micropillar arrays with flat top faces, and decorated micropillars. Depending on the specific structure of the superhydrophobic surfaces and the presence and amount of entrapped air, different interactions were observed. Soot-templated surfaces in the Cassie state showed superaerophilic behavior: Once the electrostatic double-layer force and a hydrodynamic repulsion were overcome, bubbles jumped onto the surface and fully merged with the entrapped air. On nanofilaments and micropillar arrays we observed in addition the formation of sessile bubbles with finite contact angles below 90° or the attachment of bubbles, which retained their spherical shape.

  12. The role of bubbles during air-sea gas exchange

    NASA Astrophysics Data System (ADS)

    Emerson, Steven; Bushinsky, Seth

    2016-06-01

    The potential for using the air-sea exchange rate of oxygen as a tracer for net community biological production in the ocean is greatly enhanced by recent accuracy improvements for in situ measurements of oxygen on unmanned platforms. A limiting factor for determining the exchange process is evaluating the air-sea flux contributed by bubble processes produced by breaking waves, particularly during winter months under high winds. Highly accurate measurements of noble gases (Ne, Ar & Kr) and nitrogen, N2, in seawater are tracers of the importance of bubble process in the surface mixed layer. We use measured distributions of these gases in the ventilated thermocline of the North Pacific and an annual time series of N2 in the surface ocean of the NE Subarctic Pacific to evaluate four different air-water exchange models chosen to represent the range of model interpretation of bubble processes. We find that models must have an explicit bubble mechanism to reproduce concentrations of insoluble atmospheric gases, but there are periods when they all depart from observations. The recent model of Liang et al. (2013) stems from a highly resolved model of bubble plumes and categorizes bubble mechanisms into those that are small enough to collapse and larger ones that exchange gases before they resurface, both of which are necessary to explain the data.

  13. Numerical Model and Validation for Cryogenic High-Speed Cavitating Flow Based on Bubble Size Distribution Model in Consideration of Rigorous Heat Transfer around Bubble and Bubble Oscillation

    NASA Astrophysics Data System (ADS)

    Ito, Yutaka

    A bubble size distribution model has been developed by the author for a cryogenic high-speed cavitating flow of a turbo-pump in a liquid fuel rocket engine. In this model, bubble growth/decay and bubble advection are solved for each class of the bubble size, strictly mass, when there are various mass bubbles in the same calculation region. The above calculations are treated as Eulerian approach with respect to the bubble mass. The numerical results based on this model have agreed with the experimental results as a whole, however, some inconsistency still remained. It is suspected that the model of the bubble growth/decay causes the difference between the numerical and experimental results because heat transfer around the bubble was approximately computed by an analytical solution of unsteady heat transfer based on the elapsed-time from the bubble nucleation. In this paper, a new bubble size distribution model was redeveloped, in which the bubble growth/decay calculations employ a new method combining two rigorous methods, namely, a Rayleigh-Plesset equation for bubble oscillation, and a heat conduction equation in a thermal boundary layer around the bubble to evaluate mass rate of evaporation/condensation.

  14. The air bubble entrapped under a drop impacting on a solid surface

    NASA Astrophysics Data System (ADS)

    Thoroddsen, S. T.; Etoh, T. G.; Takehara, K.; Ootsuka, N.; Hatsuki, Y.

    2005-12-01

    We present experimental observations of the disk of air caught under a drop impacting onto a solid surface. By imaging the impact through an acrylic plate with an ultra-high-speed video camera, we can follow the evolution of the air disk as it contracts into a bubble under the centre of the drop. The initial size and contraction speed of the disk were measured for a range of impact Weber and Reynolds numbers. The size of the initial disk is related to the bottom curvature of the drop at the initial contact, as measured in free-fall. The initial contact often leaves behind a ring of micro-bubbles, marking its location. The air disk contracts at a speed comparable to the corresponding air disks caught under a drop impacting onto a liquid surface. This speed also seems independent of the wettability of the liquid, which only affects the azimuthal shape of the contact line. For some impact conditions, the dynamics of the contraction leaves a small droplet at the centre of the bubble. This arises from a capillary wave propagating from the edges of the contracting disk towards the centre. As the wave converges its amplitude grows until it touches the solid substrate, thereby pinching off the micro-droplet at the plate, in the centre of the bubble. The effect of increasing liquid viscosity is to slow down the contraction speed and to produce a more irregular contact line leaving more micro-bubbles along the initial ring.

  15. Three-dimensionally ordered array of air bubbles in a polymer film

    NASA Technical Reports Server (NTRS)

    Srinivasarao, M.; Collings, D.; Philips, A.; Patel, S.; Brown, C. S. (Principal Investigator)

    2001-01-01

    We report the formation of a three-dimensionally ordered array of air bubbles of monodisperse pore size in a polymer film through a templating mechanism based on thermocapillary convection. Dilute solutions of a simple, coil-like polymer in a volatile solvent are cast on a glass slide in the presence of moist air flowing across the surface. Evaporative cooling and the generation of an ordered array of breath figures leads to the formation of multilayers of hexagonally packed water droplets that are preserved in the final, solid polymer film as spherical air bubbles. The dimensions of these bubbles can be controlled simply by changing the velocity of the airflow across the surface. When these three-dimensionally ordered macroporous materials have pore dimensions comparable to the wavelength of visible light, they are of interest as photonic band gaps and optical stop-bands.

  16. Nanoscale patterns on micron-sized bubbles in foams

    NASA Astrophysics Data System (ADS)

    Dressaire, Emilie; Bell, David; Bee, Rodney; Lips, Alex; Stone, Howard

    2006-11-01

    The rheology and coarsening of foams is closely related to the microstructural characteristics of the small gas bubbles and their surface properties. We present experimental results of a foam formed upon shearing a mixture composed of glucose syrup and sucrose ester. Transmission Electron Microscopy reveals micron-size bubbles whose surfaces are fully covered with regular nanodimension, generally hexagonal, patterns. The influence of the shear rate during foam generation and the setting time on the development of the nanoscale patterns on the gas microcells are described. Plausible routes, driven by disproportionation of the gas from the small bubbles, for the formation of the nanoscale patterns are considered including a nucleation/crystallization pathway (Kim et al. 2003 Langmuir 19, p. 8455) and the buckling of an elastic insoluble surface film.

  17. Descemet membrane air-bubble separation in donor corneas.

    PubMed

    Venzano, Davide; Pagani, Paola; Randazzo, Nadia; Cabiddu, Francesco; Traverso, Carlo Enrico

    2010-12-01

    We describe a technique to obtain Descemet-endothelium disks from donors. To detach Descemet membrane, an air bubble was introduced in the deep stroma of human donor corneas mounted on an artificial chamber. In Group A (n = 5), the bubble was left inflated. In Group B (n = 4), the bubble was deflated immediately after the membrane was detached. In Group C (n = 7), the Descemet-endothelium disk was trephined and separated from the stroma after the bubble was deflated. All tissues were stored at 4°C. Descemet detachment was achieved in 89% of the tissues. After 48 hours, the mean endothelial loss was 83% ± 10% (SD), 15% ± 11%, and 3% ± 3% in the 3 groups, respectively. With this technique, Descemet-endothelium disks were obtained without significant alterations in the endothelial layer.

  18. Massively-multicellular alignment with the self-aggregate of air bubbles.

    PubMed

    Tanaka, Nobuyuki; Haraguchi, Yuji; Shimizu, Tatsuya; Yamato, Masayuki; Okano, Teruo; Miyake, Jun

    2015-08-01

    This study proposes a cell manipulation method with aggregated air bubbles on cell culture medium. This method requires no additional regents nor devices, except for normal cell-culture materials such as cell culture dishes and pipettes. Bubbles generated by pipetting were spontaneously aggregated with regularity on the whole surface and used as a mask for avoiding cell adhesion after cell-seeding. The diameter of bubbles was able to be controlled by the size of micro-pipette tips. Seeded cells spread to the whole area along the bubble gap. This technique is a surface-tension-driven self-assembly-based method. Using this technique, millions of living cells were successfully aligned into a hexagonal pattern within 300 μm in pattern width on the whole surface of dish for less than 2 h. PMID:26737056

  19. Motion of Air Bubbles in Water Subjected to Microgravity Accelerations

    NASA Technical Reports Server (NTRS)

    DeLombard, Richard; Kelly, Eric M.; Hrovat, Kenneth; Nelson, Emily S.; Pettit, Donald R.

    2006-01-01

    The International Space Station (ISS) serves as a platform for microgravity research for the foreseeable future. A microgravity environment is one in which the effects of gravity are drastically reduced which then allows physical experiments to be conducted without the over powering effects of gravity. During his 6-month stay on the ISS, astronaut Donald R. Pettit performed many informal/impromptu science experiments with available equipment. One such experiment focused on the motion of air bubbles in a rectangular container nearly filled with de-ionized water. Bubbles were introduced by shaking and then the container was secured in place for several hours while motion of the bubbles was recorded using time-lapse photography. This paper shows correlation between bubble motion and quasi-steady acceleration levels during one such experiment operation. The quasi-steady acceleration vectors were measured by the Microgravity Acceleration Measurement System (MAMS). Essentially linear motion was observed in the condition considered here. Dr. Pettit also created other conditions which produced linear and circulating motion, which are the subjects of further study. Initial observations of this bubble motion agree with calculations from many microgravity physical science experiments conducted on shuttle microgravity science missions. Many crystal-growth furnaces involve heavy metals and high temperatures in which undesired acceleration-driven convection during solidification can adversely affect the crystal. Presented in this paper will be results showing correlation between bubble motion and the quasi-steady acceleration vector.

  20. Motion of Air Bubbles in Water Subjected to Microgravity Accelerations

    NASA Technical Reports Server (NTRS)

    DeLombard, Richard; Kelly, Eric M.; Hrovar, Kenneth; Nelson, Emily S.; Pettit, Donald R.

    2004-01-01

    The International Space Station (ISS) serves as a platform for microgravity research for the foreseeable future. A microgravity environment is one in which the effects of gravity are drastically reduced which then allows physical experiments to be conducted without the overpowering effects of gravity. During his six month stay on the ISS, astronaut Donald R Pettit performed many informal/impromptu science experiments with available equipment. One such experiment focused on the motion of air bubbles in a rectangular container nearly filled with de-ionized water. Bubbles were introduced by shaking and the container was secured in place for several hours while motion of the bubbles were recorded using time-lapse photography. This paper shows correlation between bubble motion and quasi-steady acceleration levels during one such experiment operation. The quasi-steady acceleration vectors were measured by the Microgravity Acceleration Measurement System. Essentially linear motion was observed in the condition considered here. Dr. Pettit also created other conditions which produced linear and circulating motion, which are the subjects of further study. Initial observations of this bubble motion agree with calculations from many microgravity physical science experiments conducted on Shuttle microgravity science missions. Many crystal-growth furnaces involve heavy metals and high temperatures in which undesired acceleration-driven convection during solidification can adversely affect the crystal. Presented in this paper will be results showing correlation between bubble motion and the quasi-steady acceleration vector.

  1. Visual observation of the effect of magnetic field on moving air and vapor bubbles in a magnetic fluid

    NASA Astrophysics Data System (ADS)

    Nakatsuka, K.; Jeyadevan, B.; Akagami, Y.; Torigoe, T.; Asari, S.

    1999-07-01

    Theoretical prediction suggests that magnetic fluid (MF) as working liquid in heat pipe could enhance and control the heat transfer under the application of magnetic field. However, heat pipe experiments using ionic MF showed only marginal gain and demands investigation. As an initial step, visualization of air and vapor bubbles behavior under zero and applied magnetic field has been carried out using X-ray. The observations can be summarized as follows; applied magnetic field (a) reduces the size and deforms the shape of the bubble that secede from the heating surface or air supply tube, and (b) accelerates the movement of the bubble in the liquid.

  2. Air bubble-shock wave interaction adjacent to gelantine surface

    NASA Astrophysics Data System (ADS)

    Lush, P. A.; Tomita, Y.; Onodera, O.; Takayama, K.; Sanada, N.; Kuwahara, M.; Ioritani, N.; Kitayama, O.

    1990-07-01

    The interaction between a shock wave and an air bubble-adjacent to a gelatine surface is investigated in order to simulate human tissue damage resulting from extracorporeal shock wave lithotripsy. Using high speed cine photography it is found that a shock wave of strength 11 MPa causes 1-3 mm diameter bubbles to produce high velocity microjets with penetration rates of approximately 110 m/s and penetration depths approximately equal to twice the initial bubble diameter. Theoretical considerations for liquid impact on soft solid of similar density indicate that microjet velocities will be twice the penetration rate, i.e. 220 m/s in the present case. Such events are the probable cause of observed renal tissue damage.

  3. Air-bubble entrapment due to a drop

    NASA Astrophysics Data System (ADS)

    Ootsuka, Nao; Etoh, Takeharu G.; Takehara, Kohsei; Oki, Sachio; Takano, Yasuhide; Hatsuki, Yuya; Thoroddsen, Sigurdur T.

    2005-03-01

    In 2001, an ultra-high-speed video camera of 1,000,000 frames per second was developed in Hydraulics Laboratory of Kinki University. The image sensor of the camera was the ISIS-V2, the In-situ Storage Image Sensor-Version 2. The camera has been applied to visualization of high-speed phenomena in various fields of science and engineering. We observed entrapment phenomena of bubbles resulting from thermal spraying of metals. Thermal spraying is used to improve solid surfaces by spraying melted metal or ceramic particles to the surfaces. One of the problems relating to the thermal spraying is entrapment of air bubbles under the metal or ceramic layers covering the solid surfaces. The bubbles decrease bonding strength of the layers made by the thermal spraying. The entrapment processes were successfully visualized by application of the ultra-high-speed video camera.

  4. [Emphysematous cystitis with air bubbles in the vena cava].

    PubMed

    Yokokawa, Ryusei; Tsuka, Harutoshi; Muranaka, Koji

    2014-01-01

    A 76-year-old diabetic woman was referred to our hospital with an episode of high fever and sub-abdominal pain. Computed tomography (CT) of the pelvis revealed gas accumulation within the lumen and wall of the bladder and CT of the abdomen demonstrated bubbles in the inferior vena cava. She recovered by urinary drainage and antibiotic therapy. Urinary culture revealed Escherichia coli. CT after the therapy didn't demonstrate gas accumulation of the bladder and bubbles in the inferior vena cava. Emphysematous urinary tract infections (UTIs) have the high fatality rate, it seems to be a possibility that venous bubbles with emphysematous UTIs contribute to the high fatality rate such as air embolisms. It was suspected that bacterial injury of the bladder wall and high vesical pressure caused by urinary outlet obstruction such as neurogenic bladder lead gas translocation into the venous system. Six previous cases of emphysematous UTIs (three emphysematous cystitis cases and three emphysematous pyelonephritis cases) with venous bubbles have been reported to this day. Our case is seems to be the fourth case report that venous bubbles with emphysematous cystitis was demonstrated.

  5. Air entrainment and bubble statistics in three-dimensional breaking waves

    NASA Astrophysics Data System (ADS)

    Deike, Luc; Melville, W. K.; Popinet, Stephane

    2015-11-01

    Wave breaking in the ocean is of fundamental importance in order to quantify wave dissipation and air-sea interaction, including gas and momentum exchange, and to improve parametrizationsfor weather and climate models. Here, we investigate air entrainment and bubble statistics in three-dimensional breaking waves through direct numerical simulations of the two-phase air-water flow using the Open Source solver Gerris. As in previous 2D simulations, the dissipation due to breaking is found to be in good agreement with previous experimental observations and inertial-scaling arguments. For radii larger than the Hinze scale, the bubble size distribution, is found to follow a power law of the radius, r-3and to scale linearly with the time dependent turbulent dissipation rate during the active breaking stages. The time-averaged bubble size distribution is found to follow the same power law of the radius and to scale linearly with the wave dissipation rate per unit length of breaking crest. We propose a phenomenological turbulent bubble break-up model that describes the numerical results and existing experimental results.

  6. Interaction of two differently sized oscillating bubbles in a free field

    NASA Astrophysics Data System (ADS)

    Chew, Lup Wai; Klaseboer, Evert; Ohl, Siew-Wan; Khoo, Boo Cheong

    2011-12-01

    Most real life bubble dynamics applications involve multiple bubbles, for example, in cavitation erosion prevention, ultrasonic baths, underwater warfare, and medical applications involving microbubble contrast agents. Most scientific dealings with bubble-bubble interaction focus on two similarly sized bubbles. In this study, the interaction between two oscillating differently sized bubbles (generated in tap water) is studied using high speed photography. Four types of bubble behavior were observed, namely, jetting toward each other, jetting away from each other, bubble coalescence, and a behavior termed the “catapult” effect. In-phase bubbles jet toward each other, while out-of-phase bubbles jet away from each other. There exists a critical phase difference that separates the two regimes. The behavior of the bubbles is fully characterized by their dimensionless separation distance, their phase difference, and their size ratio. It is also found that for bubbles with large size difference, the smaller bubble behaves similarly to a single bubble oscillating near a free surface.

  7. Hydrostatic pressure effect on micro air bubbles deposited on surfaces with a retreating tip.

    PubMed

    Huynh, So Hung; Wang, Jingming; Yu, Yang; Ng, Tuck Wah

    2014-06-01

    The effect of hydrostatic pressure on 6 μL air bubbles formed on micropillar structured PDMS and silicone surfaces using a 2 mm diameter stainless steel tip retreated at 1 mm/s was investigated. Dimensional analysis of the tip retraction process showed the experiments to be conducted in the condition where fluid inertial forces are comparable in magnitude with surface tension forces, while viscous forces were lower. Larger bubbles could be left behind on the structured PDMS surface. For hydrostatic pressures in excess of 20 mm H2O (196 Pa), the volume of bubble deposited was found to decrease progressively with pressure increase. The differences in width of the deposited bubbles (in contact with the substrate) were significant at any particular pressure but marginal in height. The attainable height before rupture reduced with pressure increase, thereby accounting for the reducing dispensed volume characteristic. On structured PDMS, the gaseous bridge width (in contact with the substrate) was invariant with tip retraction, while on silicone it was initially reducing before becoming invariant in the lead up to rupture. With silicone, hence, reductions in the contact width and height were both responsible for reduced volumes with pressure increase. Increased hydrostatic pressure was also found to restrict the growth in contact width on silicone during the stage when air was injected in through the tip. The ability to effect bubble size in such a simple manner may already be harnessed in nature and suggests possibilities in technological applications.

  8. Influence of acoustic pressure and bubble sizes on the coalescence of two contacting bubbles in an acoustic field.

    PubMed

    Jiao, Junjie; He, Yong; Yasui, Kyuichi; Kentish, Sandra E; Ashokkumar, Muthupandian; Manasseh, Richard; Lee, Judy

    2015-01-01

    In this study, the coalescence time between two contacting sub-resonance size bubbles was measured experimentally under an acoustic pressure ranging from 10kPa to 120kPa, driven at a frequency of 22.4kHz. The coalescence time obtained under sonication was much longer compared to that calculated by the film drainage theory for a free bubble surface without surfactants. It was found that under the influence of an acoustic field, the coalescence time could be probabilistic in nature, exhibiting upper and lower limits of coalescence times which are prolonged when both the maximum surface approach velocity and secondary Bjerknes force increases. The size of the two contacting bubbles is also important. For a given acoustic pressure, bubbles having a larger average size and size difference were observed to exhibit longer coalescence times. This could be caused by the phase difference between the volume oscillations of the two bubbles, which in turn affects the minimum film thickness reached between the bubbles and the film drainage time. These results will have important implications for developing film drainage theory to account for the effect of bubble translational and volumetric oscillations, bubble surface fluctuations and microstreaming.

  9. Measurement of interfacial structures in horizontal air-water bubbly flows

    SciTech Connect

    Talley, J. D.; Worosz, T.; Dodds, M. R.; Kim, S.

    2012-07-01

    In order to predict multi-dimensional phenomena in nuclear reactor systems, methods relying on computational fluid dynamics (CFD) codes are essential. However, to be applicable in assessing thermal-hydraulic safety, these codes must be able to accurately predict the development of two-phase flows. Therefore, before practical application these codes must be assessed using experimental databases that capture multi-dimensional phenomena. While a large database exists that can be employed to assess predictions in vertical flows, the available database for horizontal flows is significantly lacking. Therefore, the current work seeks to develop an additional database in air-water horizontal bubbly flow through a 38.1 mm ID test section with a total development length of approximately 250 diameters. The experimental conditions are chosen to cover a wide range of the bubbly flow regime based upon flow visualization using a high-speed video camera. A database of local time-averaged void fraction, bubble velocity, interfacial area concentration, and bubble Sauter mean diameter are acquired throughout the pipe cross-section using a four-sensor conductivity probe. To investigate the evolution of the flow, measurements are made at axial locations of 44, 116, and 244 diameters downstream of the inlet. In the current work, only measurements obtained at L/D = 244 are presented. It is found that increasing the liquid superficial velocity tends to reduce both the bubble size and the degree of bubble packing near the upper wall. However, it is observed that the position of the maximum void fraction value remains nearly constant and is located approximately one bubble diameter away from the upper wall. It is also found that the bubble velocity exhibits a power law behavior resembling a single phase liquid turbulent velocity profile. Moreover, the local bubble velocity tends to decrease as the local void fraction increases. Conversely, increasing the gas superficial velocity is found to

  10. Finite-sized gas bubble motion in a blood vessel: Non-Newtonian effects

    PubMed Central

    Mukundakrishnan, Karthik; Ayyaswamy, Portonovo S.; Eckmann, David M.

    2009-01-01

    We have numerically investigated the axisymmetric motion of a finite-sized nearly occluding air bubble through a shear-thinning Casson fluid flowing in blood vessels of circular cross section. The numerical solution entails solving a two-layer fluid model—a cell-free layer and a non-Newtonian core together with the gas bubble. This problem is of interest to the field of rheology and for gas embolism studies in health sciences. The numerical method is based on a modified front-tracking method. The viscosity expression in the Casson model for blood (bulk fluid) includes the hematocrit [the volume fraction of red blood cells (RBCs)] as an explicit parameter. Three different flow Reynolds numbers, Reapp=ρlUmaxd/μapp, in the neighborhood of 0.2, 2, and 200 are investigated. Here, ρl is the density of blood, Umax is the centerline velocity of the inlet Casson profile, d is the diameter of the vessel, and μapp is the apparent viscosity of whole blood. Three different hematocrits have also been considered: 0.45, 0.4, and 0.335. The vessel sizes considered correspond to small arteries, and small and large arterioles in normal humans. The degree of bubble occlusion is characterized by the ratio of bubble to vessel radius (aspect ratio), λ, in the range 0.9≤λ≤1.05. For arteriolar flow, where relevant, the Fahraeus-Lindqvist effects are taken into account. Both horizontal and vertical vessel geometries have been investigated. Many significant insights are revealed by our study: (i) bubble motion causes large temporal and spatial gradients of shear stress at the “endothelial cell” (EC) surface lining the blood vessel wall as the bubble approaches the cell, moves over it, and passes it by; (ii) rapid reversals occur in the sign of the shear stress (+ → − → +) imparted to the cell surface during bubble motion; (iii) large shear stress gradients together with sign reversals are ascribable to the development of a recirculation vortex at the rear of the bubble

  11. Bubble Drag Reduction Requires Large Bubbles

    NASA Astrophysics Data System (ADS)

    Verschoof, Ruben A.; van der Veen, Roeland C. A.; Sun, Chao; Lohse, Detlef

    2016-09-01

    In the maritime industry, the injection of air bubbles into the turbulent boundary layer under the ship hull is seen as one of the most promising techniques to reduce the overall fuel consumption. However, the exact mechanism behind bubble drag reduction is unknown. Here we show that bubble drag reduction in turbulent flow dramatically depends on the bubble size. By adding minute concentrations (6 ppm) of the surfactant Triton X-100 into otherwise completely unchanged strongly turbulent Taylor-Couette flow containing bubbles, we dramatically reduce the drag reduction from more than 40% to about 4%, corresponding to the trivial effect of the bubbles on the density and viscosity of the liquid. The reason for this striking behavior is that the addition of surfactants prevents bubble coalescence, leading to much smaller bubbles. Our result demonstrates that bubble deformability is crucial for bubble drag reduction in turbulent flow and opens the door for an optimization of the process.

  12. Bubble Drag Reduction Requires Large Bubbles.

    PubMed

    Verschoof, Ruben A; van der Veen, Roeland C A; Sun, Chao; Lohse, Detlef

    2016-09-01

    In the maritime industry, the injection of air bubbles into the turbulent boundary layer under the ship hull is seen as one of the most promising techniques to reduce the overall fuel consumption. However, the exact mechanism behind bubble drag reduction is unknown. Here we show that bubble drag reduction in turbulent flow dramatically depends on the bubble size. By adding minute concentrations (6 ppm) of the surfactant Triton X-100 into otherwise completely unchanged strongly turbulent Taylor-Couette flow containing bubbles, we dramatically reduce the drag reduction from more than 40% to about 4%, corresponding to the trivial effect of the bubbles on the density and viscosity of the liquid. The reason for this striking behavior is that the addition of surfactants prevents bubble coalescence, leading to much smaller bubbles. Our result demonstrates that bubble deformability is crucial for bubble drag reduction in turbulent flow and opens the door for an optimization of the process.

  13. Bubble Drag Reduction Requires Large Bubbles.

    PubMed

    Verschoof, Ruben A; van der Veen, Roeland C A; Sun, Chao; Lohse, Detlef

    2016-09-01

    In the maritime industry, the injection of air bubbles into the turbulent boundary layer under the ship hull is seen as one of the most promising techniques to reduce the overall fuel consumption. However, the exact mechanism behind bubble drag reduction is unknown. Here we show that bubble drag reduction in turbulent flow dramatically depends on the bubble size. By adding minute concentrations (6 ppm) of the surfactant Triton X-100 into otherwise completely unchanged strongly turbulent Taylor-Couette flow containing bubbles, we dramatically reduce the drag reduction from more than 40% to about 4%, corresponding to the trivial effect of the bubbles on the density and viscosity of the liquid. The reason for this striking behavior is that the addition of surfactants prevents bubble coalescence, leading to much smaller bubbles. Our result demonstrates that bubble deformability is crucial for bubble drag reduction in turbulent flow and opens the door for an optimization of the process. PMID:27636479

  14. Bubble size distribution in acoustic droplet vaporization via dissolution using an ultrasound wide-beam method.

    PubMed

    Xu, Shanshan; Zong, Yujin; Li, Wusong; Zhang, Siyuan; Wan, Mingxi

    2014-05-01

    Performance and efficiency of numerous cavitation enhanced applications in a wide range of areas depend on the cavitation bubble size distribution. Therefore, cavitation bubble size estimation would be beneficial for biological and industrial applications that rely on cavitation. In this study, an acoustic method using a wide beam with low pressure is proposed to acquire the time intensity curve of the dissolution process for the cavitation bubble population and then determine the bubble size distribution. Dissolution of the cavitation bubbles in saline and in phase-shift nanodroplet emulsion diluted with undegassed or degassed saline was obtained to quantify the effects of pulse duration (PD) and acoustic power (AP) or peak negative pressure (PNP) of focused ultrasound on the size distribution of induced cavitation bubbles. It was found that an increase of PD will induce large bubbles while AP had only a little effect on the mean bubble size in saline. It was also recognized that longer PD and higher PNP increases the proportions of large and small bubbles, respectively, in suspensions of phase-shift nanodroplet emulsions. Moreover, degassing of the suspension tended to bring about smaller mean bubble size than the undegassed suspension. In addition, condensation of cavitation bubble produced in diluted suspension of phase-shift nanodroplet emulsion was involved in the calculation to discuss the effect of bubble condensation in the bubble size estimation in acoustic droplet vaporization. It was shown that calculation without considering the condensation might underestimate the mean bubble size and the calculation with considering the condensation might have more influence over the size distribution of small bubbles, but less effect on that of large bubbles. Without or with considering bubble condensation, the accessible minimum bubble radius was 0.4 or 1.7 μm and the step size was 0.3 μm. This acoustic technique provides an approach to estimate the size

  15. The size of active bubbles for the production of hydrogen in sonochemical reaction field.

    PubMed

    Merouani, Slimane; Hamdaoui, Oualid

    2016-09-01

    The sonication of aqueous solution generates microscopic cavitation bubbles that may growth and violently collapse to produce highly reactive species (i.e. OH, HO2 and H2O2), hydrogen and emit light, sonoluminescence. The bubble size is a key parameter that influences the chemical activity of the system. This wok aims to study theoretically the size of active bubbles for the production of hydrogen in ultrasonic cavitation field in water using a single bubble sonochemistry model. The effect of several parameters such as frequency of ultrasound, acoustic intensity and liquid temperature on the range of sonochemically active bubbles for the production of hydrogen was clarified. The numerical simulation results showed that the size of active bubbles is an interval which includes an optimum value at which the production rate of H2 is maximal. It was shown that the range of ambient radius for an active bubble as well as the optimum bubble radius for the production of hydrogen increased with increasing acoustic intensity and decreased with increasing ultrasound frequency and bulk liquid temperature. It was found that the range of ambient bubble radius dependence of the operational conditions followed the same trend as those reported experimentally for sonoluminescing bubbles. Comparison with literature data showed a good agreement between the theoretical determined optimum bubble sizes for the production of hydrogen and the experimental reported sizes for sonoluminescing bubbles. PMID:27150777

  16. The size of active bubbles for the production of hydrogen in sonochemical reaction field.

    PubMed

    Merouani, Slimane; Hamdaoui, Oualid

    2016-09-01

    The sonication of aqueous solution generates microscopic cavitation bubbles that may growth and violently collapse to produce highly reactive species (i.e. OH, HO2 and H2O2), hydrogen and emit light, sonoluminescence. The bubble size is a key parameter that influences the chemical activity of the system. This wok aims to study theoretically the size of active bubbles for the production of hydrogen in ultrasonic cavitation field in water using a single bubble sonochemistry model. The effect of several parameters such as frequency of ultrasound, acoustic intensity and liquid temperature on the range of sonochemically active bubbles for the production of hydrogen was clarified. The numerical simulation results showed that the size of active bubbles is an interval which includes an optimum value at which the production rate of H2 is maximal. It was shown that the range of ambient radius for an active bubble as well as the optimum bubble radius for the production of hydrogen increased with increasing acoustic intensity and decreased with increasing ultrasound frequency and bulk liquid temperature. It was found that the range of ambient bubble radius dependence of the operational conditions followed the same trend as those reported experimentally for sonoluminescing bubbles. Comparison with literature data showed a good agreement between the theoretical determined optimum bubble sizes for the production of hydrogen and the experimental reported sizes for sonoluminescing bubbles.

  17. Correlation of shape and size of methane bubbles in fine-grained muddy aquatic sediments with sediment fracture toughness

    NASA Astrophysics Data System (ADS)

    Katsman, Regina

    2015-01-01

    Gassy sediments contribute to destabilization of aquatic infrastructure, air pollution, and global warming. In the current study a precise shape and size of the buoyant mature methane bubble in fine-grained muddy aquatic sediment is defined by numerical and analytical modeling, their results are in a good agreement. A closed-form analytical solution defining the bubble parameters is developed. It is found that the buoyant mature bubble is elliptical in its front view and resembles an inverted tear drop in its cross-section. The size and shape of the mature bubble strongly correlate with sediment fracture toughness. Bubbles formed in the weaker sediments are smaller and characterized by a larger surface-to-volume ratio that induces their faster growth and may lead to their faster dissolution below the sediment-water interface. This may prevent their release to the water column and to the atmosphere. Shapes of the bubbles in the weaker sediments deviate further from the spherical configuration, than those in the stronger sediments. Modeled bubble characteristics, important for the acoustic applications, are in a good agreement with field observations and lab experiments.

  18. Effect of compressibility on the rise velocity of an air bubble in porous media

    NASA Astrophysics Data System (ADS)

    Cihan, Abdullah; Corapcioglu, M. Yavuz

    2008-04-01

    The objective of this study is to develop a theoretical model to analyze the effect of air compressibility on air bubble migration in porous media. The model is obtained by combining the Newton's second law of motion and the ideal gas law assuming that the air phase in the bubble behaves as an ideal gas. Numerical and analytical solutions are presented for various cases of interest. The model results compare favorably with both experimental data and analytical solutions reported in the literature obtained for an incompressible air bubble migration. The results show that travel velocity of a compressible air bubble in porous media strongly depends on the depth of air phase injection. A bubble released from greater depths travels with a slower velocity than a bubble with an equal volume injected at shallower depths. As an air bubble rises up, it expands with decreasing bubble pressure with depth. The volume of a bubble injected at a 1-m depth increases 10% as the bubble reaches the water table. However, bubble volume increases almost twofold when it reaches to the surface from a depth of 10 m. The vertical rise velocity of a compressible bubble approaches that of an incompressible one regardless of the injection depth and volume as it reaches the water table. The compressible bubble velocity does not exceed 18.8 cm/s regardless of the injection depth and bubble volume. The results demonstrate that the effect of air compressibility on the motion of a bubble cannot be neglected except when the air is injected at very shallow depths.

  19. Bubble size and gas-liquid interfacial area measurements using molten paraffin waxes in bubble columns

    SciTech Connect

    Bukur, D.B.; Patel, S.A.; Daly, J.G.; Raphael, M.L.

    1987-01-01

    Experiments were conducted in 0.05 m ID and 0.23 m ID by 3 m tall bubble columns with different types of molten waxes as the liquid medium and nitrogen as the gas, under processing conditions typical or Fischer-Tropsch synthesis over iron catalysts (i.e. gas velocities up to 0.15 m s, and temperatures between 200 and 270/sup 0/C) to estimate gas liquid interfacial area from measured values of average gas hold-up and Sauter mean bubble diameter. The gas hold-up was estimated from visual observations of the expanded and static liquid heights, and the Sauter was estimated from bubble size measurements obtained by photography and dynamic gas disengagement. The paraffin wax (FT-300) used in the authors' studies is non-coalescing and has a tendency to foam. The amount of foam is greater for runs conducted in the order of increasing gas velocities, than in runs with decreasing velocities. Thus, two values of hold-up are possible and the start-up procedure determines which one will be attained. At higher gas velocities (> 0.05 m/s) the foam disappears and a transition to the slug flow, churn-turbulent regime takes place. Reactor waxes are coalescing in nature and do not produce foam. Despite similar hold-ups for the different waxes at higher gas velocities, the Sauters are significantly different and this is reflected in the specific gas-liquid interfacial areas, with larger values obtained with the paraffin wax compared to values with reactor waxes.

  20. Oxygenation of Stratified Reservoir Using Air Bubble Plume

    NASA Astrophysics Data System (ADS)

    Schladow, S. G.

    2006-12-01

    Excess nutrients loading from urban area and watershed into lakes and reservoirs increases the content of organic matter, which, through decomposition, needs increased dissolve oxygen (DO). Many eutrophic reservoirs and lakes cannot meet the DO requirement during stratified season and suffers from the hypolimnetic anoxia. As a result, benthic sediment produces anoxic products such as methane, hydrogen sulphide, ammonia, iron, manganese, and phosphorus. In order to address the hypolimnetic anoxia, oxygen is artificially supplied into reservoir using an aeration system (i.e., bubbler). The most common result of lake/reservoir aeration is to destratify the reservoir so that the water body may completely mix under natural phenomena and remain well oxygenated throughout. Other advantages of destratification are: (1) allows warm- water fish to inhabit the entire reservoir, (2) suppress the nutrient release from sediment, and (3) decreases the algal growth by sending them to the darker zone. A one-dimensional reservoir-bubbler model is developed and applied to examine the effects of an aeration system on mixing and dissolved oxygen dynamics in the Upper Peirce Reservoir, Singapore. After introduction of the aeration system in the reservoir, it was found that the hypolimnetic DO increased significantly, and the concentration of algae, soluble manganese and iron substantially reduced. It is found that the reservoir-bubbler model predicts the mixing (temperature as mixing parameter) and dissolved oxygen concentration in the reservoir with acceptable accuracy. It is shown in terms of bubbler mechanical efficiency (i.e., operating cost) and total DO contribution from the aeration system into the reservoir that the selections of airflow rate per diffuser, air bubble radius, and total number of diffusers are important design criteria of a bubbler system. However, the overall bubbler design also depends on the reservoir size and stratified area of interest, ambient climate, and

  1. Population Balance Modeling of Polydispersed Bubbly Flow in Continuous-Casting Using Multiple-Size-Group Approach

    NASA Astrophysics Data System (ADS)

    Liu, Zhongqiu; Li, Linmin; Qi, Fengsheng; Li, Baokuan; Jiang, Maofa; Tsukihashi, Fumitaka

    2014-09-01

    A population balance model based on the multiple-size-group (MUSIG) approach has been developed to investigate the polydispersed bubbly flow inside the slab continuous-casting mold and bubble behavior including volume fraction, breakup, coalescence, and size distribution. The Eulerian-Eulerian approach is used to describe the equations of motion of the two-phase flow. All the non-drag forces (lift force, virtual mass force, wall lubrication force, and turbulent dispersion force) and drag force are incorporated in this model. Sato and Sekiguchi model is used to account for the bubble-induced turbulence. Luo and Svendsen model and Prince and Blanch model are used to describe the bubbles breakup and coalescence behavior, respectively. A 1/4th water model of the slab continuous-casting mold was applied to investigate the distribution and size of bubbles by injecting air through a circumferential inlet chamber which was made of the specially-coated samples of mullite porous brick, which is used for the actual upper nozzle. Against experimental data, numerical results showed good agreement for the gas volume fraction and local bubble Sauter mean diameter. The bubble Sauter mean diameter in the upper recirculation zone decreases with increasing water flow rate and increases with increasing gas flow rate. The distribution of bubble Sauter mean diameter along the width direction of the upper mold increases first, and then gradually decreases from the SEN to the narrow wall. Close agreements between the predictions and measurements demonstrate the capability of the MUSIG model in modeling bubbly flow inside the continuous-casting mold.

  2. Population Balance Modeling of Polydispersed Bubbly Flow in Continuous-Casting Using Multiple-Size-Group Approach

    NASA Astrophysics Data System (ADS)

    Liu, Zhongqiu; Li, Linmin; Qi, Fengsheng; Li, Baokuan; Jiang, Maofa; Tsukihashi, Fumitaka

    2015-02-01

    A population balance model based on the multiple-size-group (MUSIG) approach has been developed to investigate the polydispersed bubbly flow inside the slab continuous-casting mold and bubble behavior including volume fraction, breakup, coalescence, and size distribution. The Eulerian-Eulerian approach is used to describe the equations of motion of the two-phase flow. All the non-drag forces (lift force, virtual mass force, wall lubrication force, and turbulent dispersion force) and drag force are incorporated in this model. Sato and Sekiguchi model is used to account for the bubble-induced turbulence. Luo and Svendsen model and Prince and Blanch model are used to describe the bubbles breakup and coalescence behavior, respectively. A 1/4th water model of the slab continuous-casting mold was applied to investigate the distribution and size of bubbles by injecting air through a circumferential inlet chamber which was made of the specially-coated samples of mullite porous brick, which is used for the actual upper nozzle. Against experimental data, numerical results showed good agreement for the gas volume fraction and local bubble Sauter mean diameter. The bubble Sauter mean diameter in the upper recirculation zone decreases with increasing water flow rate and increases with increasing gas flow rate. The distribution of bubble Sauter mean diameter along the width direction of the upper mold increases first, and then gradually decreases from the SEN to the narrow wall. Close agreements between the predictions and measurements demonstrate the capability of the MUSIG model in modeling bubbly flow inside the continuous-casting mold.

  3. Study of drop and bubble sizes in a simulated mycelial fermentation broth of up to four phases.

    PubMed

    Galindo, E; Pacek, A W; Nienow, A W

    2000-07-20

    The mean sizes and size distributions of air bubbles and viscous castor oil drops were studied in a salt-rich aqueous solution (medium), first separately, and then simultaneously as a three-phase system. The dispersion was created in a 150-mm-diameter stirred tank equipped with a Rushton turbine, and the sizes were measured using an advanced video technique. Trichoderma harzianum biomass was added in some experiments to study the effect of a solid phase under unaerated and aerated conditions to give either three-or four-phase systems. In all cases, the different dispersed phases could be clearly seen. Such photoimages have never been obtained previously. For the three phases, air-oil-medium, aeration caused a drastic increase in Sauter mean drop diameter, which was greater than could be accounted for by the reduction in energy dissipation on aeration. Also, as in the unaerated case, larger drops were observed as the oil content increased. On the other hand, mean bubble sizes were significantly reduced with increasing oil phase up to 15% with bubbles inside many of the viscous drops. With the introduction of fungal biomass of increasing concentration (0.5 to 5 g L(-1)) under unaerated conditions, the Sauter mean drop diameter decreased. Finally, in the four-phase system (oil [10%]-medium-air-biomass) as found in many fermentations, all the phases (plus bubbles in drops) could clearly be seen and, as the biomass increased, a decrease in both the bubble and the drop mean diameters was found. The reduction in size of bubbles (and therefore increase in interfacial area) as the oil and bio- mass concentration increased provides a possible explanation as to why the addition of an oil phase has been reported to enhance oxygen transfer during many fermentations. PMID:10861400

  4. The effect of solid surface heterogeneity and roughness on the contact angle/drop (bubble) size relationship

    SciTech Connect

    Drelich, J.; Miller, J.D. . Dept. of Metallurgical Engineering)

    1994-04-01

    The contact angle for varying sizes of drops and air bubbles was measured on clean, heterogeneous, and rough solid surfaces. A linear correlation of the cosine of the contact angle vs reciprocal of the drop (bubble) base radius was obtained for the tetradecane/water/quartz and air/water/polyethylene systems, in which pure single-component liquids and freshly prepared clean solid surfaces were used. It was found that solid surface imperfections, heterogeneity and/or roughness, affect the contact angle /drop (bubble) size relationship. The change in contact angle with bubble size depended on the extent of solid surface heterogeneity, as was observed for the tetradecane/water/methylated quartz system with varying degrees of quartz methylation. For the air/water/polyethylene and air/water/gold systems, it was found that the slope of a plot of cos [theta] vs 1/r increased for rough surfaces when compared to that for smooth surfaces, and that these experimental data qualitatively support the modified Wenzel equation which includes the line-tension term.

  5. Multiple Size Group Modeling of Polydispersed Bubbly Flow in the Mold: An Analysis of Turbulence and Interfacial Force Models

    NASA Astrophysics Data System (ADS)

    Liu, Zhongqiu; Qi, Fengsheng; Li, Baokuan; Jiang, Maofa

    2015-04-01

    An inhomogeneous Multiple Size Group (MUSIG) model based on the Eulerian-Eulerian approach has been developed to describe the polydispersed bubbly flow inside the continuous-casting mold. A laboratory scale mold has been simulated using four different turbulence closure models (modified k - ɛ, RNG k - ɛ, k - ω, and SST) with the purpose of critically comparing their predictions of bubble Sauter mean diameter distribution with previous experimental data. Furthermore, the influences of all the interfacial momentum transfer terms including drag force, lift force, virtual mass force, wall lubrication force, and turbulent dispersion force are investigated. The breakup and coalescence effects of the bubbles are modeled according to the bubble breakup by the impact of turbulent eddies while for bubble coalescence by the random collisions driven by turbulence and wake entrainment. It has been found that the modified k - ɛ model shows better agreement than other models in predicting the bubble Sauter mean diameter profiles. Further, simulations have also been performed to understand the sensitivity of different interfacial forces. The appropriate drag force coefficient, lift force coefficient, virtual mass force coefficient, and turbulent dispersion force coefficient are chosen in accordance with measurements of water model experiments. However, the wall lubrication force does not have much effect on the current polydispersed bubbly flow system. Finally, the MUSIG model is then used to estimate the argon bubble diameter in the molten steel of the mold. The argon bubble Sauter mean diameter generated in molten steel is predicted to be larger than air bubbles in water for the similar conditions.

  6. Ceramic membrane defouling (cleaning) by air Nano Bubbles.

    PubMed

    Ghadimkhani, Aliasghar; Zhang, Wen; Marhaba, Taha

    2016-03-01

    Ceramic membranes are among the most promising technologies for membrane applications, owing to their excellent resistance to mechanical, chemical, and thermal stresses. However, membrane fouling is still an issue that hampers the applications at large scales. Air Nano Bubbles (NBs), due to high mass transfer efficiency, could potentially prevent fouling of ceramic membrane filtration processes. In this study, bench and pilot scale ceramic membrane filtration was performed with air NBs to resist fouling. To simulate fouling, humic acid, as an organic foulant, was applied to the membrane flat sheet surface. Complete membrane clogging was achieved in less than 6 h. Membrane defouling (cleaning) was performed by directly feeding of air NBs to the membrane cells. The surface of the ceramic membrane was superbly cleaned by air NBs, as revealed by atomic force microscope (AFM) images before and after the treatment. The permeate flux recovered to its initial level (e.g., 26.7 × 10(-9) m(3)/m(2)/s at applied pressure of 275.8 kPa), which indicated that NBs successfully unclogged the pores of the membrane. The integrated ceramic membrane and air NBs system holds potential as an innovative sustainable technology.

  7. Ceramic membrane defouling (cleaning) by air Nano Bubbles.

    PubMed

    Ghadimkhani, Aliasghar; Zhang, Wen; Marhaba, Taha

    2016-03-01

    Ceramic membranes are among the most promising technologies for membrane applications, owing to their excellent resistance to mechanical, chemical, and thermal stresses. However, membrane fouling is still an issue that hampers the applications at large scales. Air Nano Bubbles (NBs), due to high mass transfer efficiency, could potentially prevent fouling of ceramic membrane filtration processes. In this study, bench and pilot scale ceramic membrane filtration was performed with air NBs to resist fouling. To simulate fouling, humic acid, as an organic foulant, was applied to the membrane flat sheet surface. Complete membrane clogging was achieved in less than 6 h. Membrane defouling (cleaning) was performed by directly feeding of air NBs to the membrane cells. The surface of the ceramic membrane was superbly cleaned by air NBs, as revealed by atomic force microscope (AFM) images before and after the treatment. The permeate flux recovered to its initial level (e.g., 26.7 × 10(-9) m(3)/m(2)/s at applied pressure of 275.8 kPa), which indicated that NBs successfully unclogged the pores of the membrane. The integrated ceramic membrane and air NBs system holds potential as an innovative sustainable technology. PMID:26741542

  8. In Vitro Observation of Air Bubbles during Delivery of Various Detachable Aneurysm Embolization Coils

    PubMed Central

    Hwang, Seon Moon; Lim, Ok Kyun; Kim, Jae Kyun

    2012-01-01

    Objective Device- or technique-related air embolism is a drawback of various neuro-endovascular procedures. Detachable aneurysm embolization coils can be sources of such air bubbles. We therefore assessed the formation of air bubbles during in vitro delivery of various detachable coils. Materials and Methods A closed circuit simulating a typical endovascular coiling procedure was primed with saline solution degassed by a sonification device. Thirty commercially available detachable coils (7 Axium, 4 GDCs, 5 MicroPlex, 7 Target, and 7 Trufill coils) were tested by using the standard coil flushing and delivery techniques suggested by each manufacturer. The emergence of any air bubbles was monitored with a digital microscope and the images were captured to measure total volumes of air bubbles during coil insertion and detachment and after coil pusher removal. Results Air bubbles were seen during insertion or removal of 23 of 30 coils (76.7%), with volumes ranging from 0 to 23.42 mm3 (median: 0.16 mm3). Air bubbles were observed most frequently after removal of the coil pusher. Significantly larger amounts of air bubbles were observed in Target coils. Conclusion Variable volumes of air bubbles are observed while delivering detachable embolization coils, particularly after removal of the coil pusher and especially with Target coils. PMID:22778562

  9. A novel methodology to measure methane bubble sizes in the water column

    NASA Astrophysics Data System (ADS)

    Hemond, H.; Delwiche, K.; Senft-Grupp, S.; Manganello, T.

    2014-12-01

    The fate of methane ebullition from lake sediments is dependent on initial bubble size. Rising bubbles are subject to dissolution, reducing the fraction of methane that ultimately enters the atmosphere while increasing concentrations of aqueous methane. Smaller bubbles not only rise more slowly, but dissolve more rapidly larger bubbles. Thus, understanding methane bubble size distributions in the water column is critical to predicting atmospheric methane emissions from ebullition. However, current methods of measuring methane bubble sizes in-situ are resource-intensive, typically requiring divers, video equipment, sonar, or hydroacoustic instruments. The complexity and cost of these techniques points to the strong need for a simple, autonomous device that can measure bubble size distributions and be deployed unattended over long periods of time. We describe a bubble sizing device that can be moored in the subsurface and can intercept and measure the size of bubbles as they rise. The instrument uses a novel optical measurement technique with infrared LEDs and IR-sensitive photodetectors combined with a custom-designed printed circuit board. An on-board microcomputer handles raw optical signals and stores the relevant information needed to calculate bubble volume. The electronics are housed within a pressure case fabricated from standard PVC fittings and are powered by size C alkaline batteries. The bill of materials cost is less than $200, allowing us to deploy multiple sensors at various locations within Upper Mystic Lake, MA. This novel device will provide information on how methane bubble sizes may vary both spatially and temporally. We present data from tests under controlled laboratory conditions and from deployments in Upper Mystic Lake.

  10. Evolution of bubble size distribution from gas blowout in shallow water

    NASA Astrophysics Data System (ADS)

    Zhao, Lin; Boufadel, Michel C.; Lee, Kenneth; King, Thomas; Loney, Norman; Geng, Xiaolong

    2016-03-01

    Gas is often emanated from the sea bed during a subsea oil and gas blowout. The size of a gas bubble changes due to gas dissolution in the ambient water and expansion as a result of a decrease in water pressure during the rise. It is important to understand the fate and transport of gas bubbles for the purpose of environmental and safety concerns. In this paper, we used the numerical model, VDROP-J to simulate gas formation in jet/plume upon release, and dissolution and expansion while bubble rising during a relatively shallow subsea gas blowout. The model predictions were an excellent match to the experimental data. Then a gas dissolution and expansion module was included in the VDROP-J model to predict the fate and transport of methane bubbles rising due to a blowout through a 0.10 m vertical orifice. The numerical results indicated that gas bubbles would increase the mixing energy in released jets, especially at small distances and large distances from the orifice. This means that models that predict the bubble size distribution (BSD) should account for this additional mixing energy. It was also found that only bubbles of certain sizes would reach the water surfaces; small bubbles dissolve fast in the water column, while the size of the large bubbles decreases. This resulted in a BSD that was bimodal near the orifice, and then became unimodal.

  11. Bubbles

    NASA Astrophysics Data System (ADS)

    Prosperetti, Andrea

    2004-06-01

    Vanitas vanitatum et omnia vanitas: bubbles are emptiness, non-liquid, a tiny cloud shielding a mathematical singularity. Born from chance, a violent and brief life ending in the union with the (nearly) infinite. But a wealth of phenomena spring forth from this nothingness: underwater noise, sonoluminescence, boiling, and many others. Some recent results on a "blinking bubble" micropump and vapor bubbles in sound fields are outlined. The last section describes Leonardo da Vinci's observation of the non-rectlinear ascent of buoyant bubbles and justifies the name Leonardo's paradox recently attributed to this phenomenon.

  12. Evaluation and interpretation of bubble size distributions in pulsed megasonic fields

    NASA Astrophysics Data System (ADS)

    Hauptmann, M.; Struyf, H.; De Gendt, S.; Glorieux, C.; Brems, S.

    2013-05-01

    The occurrence of acoustic cavitation is incorporating a multitude of interdependent effects that strongly depend on the bubble size. Therefore, bubble size control would be beneficial for biological and industrial processes that rely on acoustic cavitation. A pulsed acoustic field can result in bubble size control and the repeated dissolution and reactivation ("recycling") of potentially active bubbles. As a consequence, a pulsed field can strongly enhance cavitation activity. In this paper, we present a modified methodology for the evaluation of the active bubble size distribution by means of a combination of cavitation noise measurements and ultrasonic pulsing. The key component of this modified methodology is the definition of an upper size limit, below which bubbles—in between subsequent pulses—have to dissolve, in order to be sustainably recycled. This upper limit makes it possible to explain and link the enhancement of cavitation activity to a bubble size distribution. The experimentally determined bubble size distributions for different power densities are interpreted in the frame of numerical calculations of the oscillatory responses of the bubbles to the intermittent driving sound field. The distributions are found to be shaped by the size dependent interplay between bubble pulsations, rectified diffusion, coalescence, and the development of parametrically amplified shape instabilities. Also, a phenomenological reactivation-deactivation model is proposed to explain and quantify the observed enhancement of cavitation activity under pulsed, with respect to continuous sonication. In this model, the pulse-duration determines the magnitude of the reactivation of partially dissolved bubbles and the deactivation of activated bubbles by coalescence. It is shown that the subsequent recycling of previously active bubbles leads to an accumulation of cavitation activity, which saturates after a certain number of pulses. The model is fitted to the experimental

  13. Simple method for high-performance stretchable composite conductors with entrapped air bubbles.

    PubMed

    Hwang, Hyejin; Kim, Dae-Gon; Jang, Nam-Su; Kong, Jeong-Ho; Kim, Jong-Man

    2016-12-01

    We integrate air bubbles into conductive elastic composite-based stretchable conductors to make them mechanically less stiff and electrically more robust against physical deformations. A surfactant facilitates both the formation and maintenance of air bubbles inside the elastic composites, leading to a simple fabrication of bubble-entrapped stretchable conductors. Based on the unique bubble-entrapped architecture, the elastic properties are greatly enhanced and the resistance change in response to tensile strains can clearly be controlled. The bubble-entrapped conductor achieves ~80 % elongation at ~3.4 times lower stress and ~44.8 % smaller change in the electrical resistance at 80 % tensile strain, compared to bare conductor without air bubbles.

  14. Studies on the tempo of bubble formation in recently cavitated vessels: a model to predict the pressure of air bubbles.

    PubMed

    Wang, Yujie; Pan, Ruihua; Tyree, Melvin T

    2015-06-01

    A cavitation event in a vessel replaces water with a mixture of water vapor and air. A quantitative theory is presented to argue that the tempo of filling of vessels with air has two phases: a fast process that extracts air from stem tissue adjacent to the cavitated vessels (less than 10 s) and a slow phase that extracts air from the atmosphere outside the stem (more than 10 h). A model was designed to estimate how water tension (T) near recently cavitated vessels causes bubbles in embolized vessels to expand or contract as T increases or decreases, respectively. The model also predicts that the hydraulic conductivity of a stem will increase as bubbles collapse. The pressure of air bubbles trapped in vessels of a stem can be predicted from the model based on fitting curves of hydraulic conductivity versus T. The model was validated using data from six stem segments each of Acer mono and the clonal hybrid Populus 84 K (Populus alba × Populus glandulosa). The model was fitted to results with root mean square error less than 3%. The model provided new insight into the study of embolism formation in stem tissue and helped quantify the bubble pressure immediately after the fast process referred to above.

  15. Hydrodynamic effects of air sparging on hollow fiber membranes in a bubble column reactor.

    PubMed

    Xia, Lijun; Law, Adrian Wing-Keung; Fane, Anthony G

    2013-07-01

    Air sparging is now a standard approach to reduce concentration polarization and fouling of membrane modules in membrane bioreactors (MBRs). The hydrodynamic shear stresses, bubble-induced turbulence and cross flows scour the membrane surfaces and help reduce the deposit of foulants onto the membrane surface. However, the detailed quantitative knowledge on the effect of air sparging remains lacking in the literature due to the complex hydrodynamics generated by the gas-liquid flows. To date, there is no valid model that describes the relationship between the membrane fouling performance and the flow hydrodynamics. The present study aims to examine the impact of hydrodynamics induced by air sparging on the membrane fouling mitigation in a quantitative manner. A modelled hollow fiber module was placed in a cylindrical bubble column reactor at different axial heights with the trans-membrane pressure (TMP) monitored under constant flux conditions. The configuration of bubble column without the membrane module immersed was identical to that studied by Gan et al. (2011) using Phase Doppler Anemometry (PDA), to ensure a good quantitative understanding of turbulent flow conditions along the column height. The experimental results showed that the meandering flow regime which exhibits high flow instability at the 0.3 m is more beneficial to fouling alleviation compared with the steady flow circulation regime at the 0.6 m. The filtration tests also confirmed the existence of an optimal superficial air velocity beyond which a further increase is of no significant benefit on the membrane fouling reduction. In addition, the alternate aeration provided by two air stones mounted at the opposite end of the diameter of the bubble column was also studied to investigate the associated flow dynamics and its influence on the membrane filtration performance. It was found that with a proper switching interval and membrane module orientation, the membrane fouling can be effectively

  16. Hydrodynamic effects of air sparging on hollow fiber membranes in a bubble column reactor.

    PubMed

    Xia, Lijun; Law, Adrian Wing-Keung; Fane, Anthony G

    2013-07-01

    Air sparging is now a standard approach to reduce concentration polarization and fouling of membrane modules in membrane bioreactors (MBRs). The hydrodynamic shear stresses, bubble-induced turbulence and cross flows scour the membrane surfaces and help reduce the deposit of foulants onto the membrane surface. However, the detailed quantitative knowledge on the effect of air sparging remains lacking in the literature due to the complex hydrodynamics generated by the gas-liquid flows. To date, there is no valid model that describes the relationship between the membrane fouling performance and the flow hydrodynamics. The present study aims to examine the impact of hydrodynamics induced by air sparging on the membrane fouling mitigation in a quantitative manner. A modelled hollow fiber module was placed in a cylindrical bubble column reactor at different axial heights with the trans-membrane pressure (TMP) monitored under constant flux conditions. The configuration of bubble column without the membrane module immersed was identical to that studied by Gan et al. (2011) using Phase Doppler Anemometry (PDA), to ensure a good quantitative understanding of turbulent flow conditions along the column height. The experimental results showed that the meandering flow regime which exhibits high flow instability at the 0.3 m is more beneficial to fouling alleviation compared with the steady flow circulation regime at the 0.6 m. The filtration tests also confirmed the existence of an optimal superficial air velocity beyond which a further increase is of no significant benefit on the membrane fouling reduction. In addition, the alternate aeration provided by two air stones mounted at the opposite end of the diameter of the bubble column was also studied to investigate the associated flow dynamics and its influence on the membrane filtration performance. It was found that with a proper switching interval and membrane module orientation, the membrane fouling can be effectively

  17. Probing the interaction between air bubble and sphalerite mineral surface using atomic force microscope.

    PubMed

    Xie, Lei; Shi, Chen; Wang, Jingyi; Huang, Jun; Lu, Qiuyi; Liu, Qingxia; Zeng, Hongbo

    2015-03-01

    The interaction between air bubbles and solid surfaces plays important roles in many engineering processes, such as mineral froth flotation. In this work, an atomic force microscope (AFM) bubble probe technique was employed, for the first time, to directly measure the interaction forces between an air bubble and sphalerite mineral surfaces of different hydrophobicity (i.e., sphalerite before/after conditioning treatment) under various hydrodynamic conditions. The direct force measurements demonstrate the critical role of the hydrodynamic force and surface forces in bubble-mineral interaction and attachment, which agree well with the theoretical calculations based on Reynolds lubrication theory and augmented Young-Laplace equation by including the effect of disjoining pressure. The hydrophobic disjoining pressure was found to be stronger for the bubble-water-conditioned sphalerite interaction with a larger hydrophobic decay length, which enables the bubble attachment on conditioned sphalerite at relatively higher bubble approaching velocities than that of unconditioned sphalerite. Increasing the salt concentration (i.e., NaCl, CaCl2) leads to weakened electrical double layer force and thereby facilitates the bubble-mineral attachment, which follows the classical Derjaguin-Landau-Verwey-Overbeek (DLVO) theory by including the effects of hydrophobic interaction. The results provide insights into the basic understanding of the interaction mechanism between bubbles and minerals at nanoscale in froth flotation processes, and the methodology on probing the interaction forces of air bubble and sphalerite surfaces in this work can be extended to many other mineral and particle systems.

  18. A study of the accuracy of neutrally buoyant bubbles used as flow tracers in air

    NASA Technical Reports Server (NTRS)

    Kerho, Michael F.

    1993-01-01

    Research has been performed to determine the accuracy of neutrally buoyant and near neutrally buoyant bubbles used as flow tracers in air. Theoretical, computational, and experimental results are presented to evaluate the dynamics of bubble trajectories and factors affecting their ability to trace flow-field streamlines. The equation of motion for a single bubble was obtained and evaluated using a computational scheme to determine the factors which affect a bubble's trajectory. A two-dimensional experiment was also conducted to experimentally determine bubble trajectories in the stagnation region of NACA 0012 airfoil at 0 deg angle of attack using a commercially available helium bubble generation system. Physical properties of the experimental bubble trajectories were estimated using the computational scheme. These properties included the density ratio and diameter of the individual bubbles. the helium bubble system was then used to visualize and document the flow field about a 30 deg swept semispan wing with simulated glaze ice. Results were compared to Navier-Stokes calculations and surface oil flow visualization. The theoretical and computational analysis have shown that neutrally buoyant bubbles will trace even the most complex flow patterns. Experimental analysis revealed that the use of bubbles to trace flow patterns should be limited to qualitative measurements unless care is taken to ensure neutral buoyancy. This is due to the difficulty in the production of neutrally buoyant bubbles.

  19. Nonlinear dynamics of a vapor bubble expanding in a superheated region of finite size

    NASA Astrophysics Data System (ADS)

    Annenkova, E. A.; Kreider, W.; Sapozhnikov, O. A.

    2015-10-01

    Growth of a vapor bubble in a superheated liquid is studied theoretically. Contrary to the typical situation of boiling, when bubbles grow in a uniformly heated liquid, here the superheated region is considered in the form of a millimeter-sized spherical hot spot. An initial micron-sized bubble is positioned at the hot spot center and a theoretical model is developed that is capable of studying bubble growth caused by vapor pressure inside the bubble and corresponding hydrodynamic and thermal processes in the surrounding liquid. Such a situation is relevant to the dynamics of vapor cavities that are created in soft biological tissue in the focal region of a high-intensity focused ultrasound beam with a shocked pressure waveform. Such beams are used in the recently proposed treatment called boiling histotripsy. Knowing the typical behavior of vapor cavities during boiling histotripsy could help to optimize the therapeutic procedure.

  20. Nonlinear dynamics of a vapor bubble expanding in a superheated region of finite size

    SciTech Connect

    Annenkova, E. A.; Kreider, W.; Sapozhnikov, O. A.

    2015-10-28

    Growth of a vapor bubble in a superheated liquid is studied theoretically. Contrary to the typical situation of boiling, when bubbles grow in a uniformly heated liquid, here the superheated region is considered in the form of a millimeter-sized spherical hot spot. An initial micron-sized bubble is positioned at the hot spot center and a theoretical model is developed that is capable of studying bubble growth caused by vapor pressure inside the bubble and corresponding hydrodynamic and thermal processes in the surrounding liquid. Such a situation is relevant to the dynamics of vapor cavities that are created in soft biological tissue in the focal region of a high-intensity focused ultrasound beam with a shocked pressure waveform. Such beams are used in the recently proposed treatment called boiling histotripsy. Knowing the typical behavior of vapor cavities during boiling histotripsy could help to optimize the therapeutic procedure.

  1. Use of an ultrasonic reflectance technique to examine bubble size changes in dough

    NASA Astrophysics Data System (ADS)

    Strybulevych, A.; Leroy, V.; Shum, A. L.; Koksel, H. F.; Scanlon, M. G.; Page, J. H.

    2012-12-01

    Bread quality largely depends on the manner in which bubbles are created and manipulated in the dough during processing. We have developed an ultrasonic reflectance technique to monitor bubbles in dough, even at high volume fractions, where near the bubble resonances it is difficult to make measurements using transmission techniques. A broadband transducer centred at 3.5 MHz in a normal incidence wave reflection set-up is used to measure longitudinal velocity and attenuation from acoustic impedance measurements. The technique is illustrated by examining changes in bubbles in dough due to two very different physical effects. In dough made without yeast, a peak in attenuation due to bubble resonance is observed at approximately 2 MHz. This peak diminishes rapidly and shifts to lower frequencies, indicative of Ostwald ripening of bubbles within the dough. The second effect involves the growth of bubble sizes due to gas generated by yeast during fermentation. This process is experimentally challenging to investigate with ultrasound because of very high attenuation. The reflectance technique allows the changes of the velocity and attenuation during fermentation to be measured as a function of frequency and time, indicating bubble growth effects that can be monitored even at high volume fractions of bubbles.

  2. Solution-Processed Ultraelastic and Strong Air-Bubbled Graphene Foams.

    PubMed

    Lv, Lingxiao; Zhang, Panpan; Cheng, Huhu; Zhao, Yang; Zhang, Zhipan; Shi, Gaoquan; Qu, Liangti

    2016-06-01

    Solution-processed ultraelastic graphene foams are prepared via a convenient air-bubble-promoted synthesis. These foams can dissipate external compression through the ordered interconnecting graphene network between the bubbles without causing a local fracture and thus reliably show compressive stress of 5.4 MPa at a very high strain of 99%, setting a new benchmark for solution-processed graphene foams.

  3. Fine bubble mixing (FBM) culture of E. coli: a highly cost-effective middle scale-size culture system.

    PubMed

    Yasumitsu, Hidetaro; Tajima, Hitoshi; Isobe, Masaharu; Kutsuna, Sinsuke; Kawsar, Sarkar M A; Fujii, Yuki; Kanaly, Robert A; Ozeki, Yasuhiro; Yokota, Eriko

    2013-02-01

    A highly cost-effective and easy-to-assemble cultivation system suitable for middle scale-size culturing of bacterial cells is described. In the culture, from a flat-shaped air-stone with large surface area, fine bubbles are generated with a low-cost air pump available in an aquarium fish shop, and cell-agitation and oxygen supply are efficiently conducted by fine bubbles simultaneously. Growth properties of the cells and their saturation density are comparable to those in a conventional culture system. The expression of recombinant protein was revealed to be similar to conventional methods. The system does not require any expensive machines or equipments. In addition, all equipments except plastic flat-shaped airstone are reusable after sterilization. Due to the low cost, the ease to use and multiple cultivations at once, our system may enable to find better culture conditions, to scale-up with ease and to perform timesaving efficient protein production. PMID:22894161

  4. Gas and liquid measurements in air-water bubbly flows

    SciTech Connect

    Zhou, X.; Doup, B.; Sun, X.

    2012-07-01

    Local measurements of gas- and liquid-phase flow parameters are conducted in an air-water two-phase flow loop. The test section is a vertical pipe with an inner diameter of 50 mm and a height of 3.2 m. The measurements are performed at z/D = 10. The gas-phase measurements are performed using a four-sensor conductivity probe. The data taken from this probe are processed using a signal processing program to yield radial profiles of the void fraction, bubble velocity, and interfacial area concentration. The velocity measurements of the liquid-phase are performed using a state-of-the-art Particle Image Velocimetry (PIV) system. The raw PIV images are acquired using fluorescent particles and an optical filtration device. Image processing is used to remove noise in the raw PIV images. The statistical cross correlation is introduced to determine the axial velocity field and turbulence intensity of the liquid-phase. Measurements are currently being performed at z/D = 32 to provide a more complete data set. These data can be used for computational fluid dynamic model development and validation. (authors)

  5. Controlling the size distribution of lipid-coated bubbles via fluidity regulation.

    PubMed

    Wang, Chung-Hsin; Yeh, Chih-Kuang

    2013-05-01

    Lipid-coated bubbles exhibit oscillation responses capable of enhancing the sensitivity of ultrasound imaging by improving contrast. Further improvements in performance enhancement require control of the size distribution of bubbles to promote correspondence between their resonance frequency and the frequency of the ultrasound. Here we describe a size-controlling technique that can shift the size distribution using a currently available agitation method. This technique is based on regulating the membrane dynamic fluidity of lipid mixtures and provides a general size-controlling variable that could also be applied in other fabrication methods. Three materials (1,2-dihexadecanoyl-sn-glycero-3-phosphocholine, 1,2-dioctadecanoyl-sn-glycero-3-phospho-(1'-rac-glycerol) and polyethylene glycol 40 stearate) with distinct initial fluidities and phase behaviors were used to demonstrate the use of fluidity regulation to control bubble sizes. Bubble size distributions of different formulations were determined by electrical impedance sensing, and bubble volumes and surface areas were calculated. To confirm the relationship between regulated fluidity and mean bubble size, the membrane fluidity of each composition was determined by fluorescence anisotropy, with the results indicating linear relations in the compositions with similar main transition temperatures. Compositions with a higher molar proportion of polyethylene glycol 40 stearate showed higher fluidities and larger bubbles. B-mode ultrasound imaging was performed to investigate the echogenicity and lifetime of the fabricated bubbles, with the results indicating that co-mixing a high-transition-temperature charged lipid (i.e., 1,2-dioctadecanoyl-sn-glycero-3-phospho-(1'-rac-glycerol)) extends the tailoring range of this fluidity regulation technique, allowing refined and continuous changes in mean bubble size (from 0.93 to 2.86 μm in steps of ∼0.5 μm), and also prolongs bubble lifetime. The polydispersity of each

  6. Role of air bubbles overlooked in the adsorption of perfluorooctanesulfonate on hydrophobic carbonaceous adsorbents.

    PubMed

    Meng, Pingping; Deng, Shubo; Lu, Xinyu; Du, Ziwen; Wang, Bin; Huang, Jun; Wang, Yujue; Yu, Gang; Xing, Baoshan

    2014-12-01

    Hydrophobic interaction has been considered to be responsible for adsorption of perfluorooctanesulfonate (PFOS) on the surface of hydrophobic adsorbents, but the long C-F chain in PFOS is not only hydrophobic but also oleophobic. In this study, for the first time we propose that air bubbles on the surface of hydrophobic carbonaceous adsorbents play an important role in the adsorption of PFOS. The level of adsorption of PFOS on carbon nanotubes (CNTs), graphite (GI), graphene (GE), and powdered activated carbon (PAC) decreases after vacuum degassing. Vacuum degassing time and pressure significantly affect the removal of PFOS by these adsorbents. After vacuum degassing at 0.01 atm for 36 h, the extent of removal of PFOS by the pristine CNTs and GI decreases 79% and 74%, respectively, indicating the main contribution of air bubbles to PFOS adsorption. When the degassed solution is recontacted with air during the adsorption process, the removal of PFOS recovers to the value obtained without vacuum degassing, further verifying the key role of air bubbles in PFOS adsorption. By theoretical calculation, the distribution of PFOS in air bubbles on the adsorbent surfaces is discussed, and a new schematic sorption model of PFOS on carbonaceous adsorbents in the presence of air bubbles is proposed. The accumulation of PFOS at the interface of air bubbles on the adsorbents is primarily responsible for its adsorption, providing a new mechanistic insight into the transport, fate, and removal of PFOS. PMID:25365738

  7. Role of air bubbles overlooked in the adsorption of perfluorooctanesulfonate on hydrophobic carbonaceous adsorbents.

    PubMed

    Meng, Pingping; Deng, Shubo; Lu, Xinyu; Du, Ziwen; Wang, Bin; Huang, Jun; Wang, Yujue; Yu, Gang; Xing, Baoshan

    2014-12-01

    Hydrophobic interaction has been considered to be responsible for adsorption of perfluorooctanesulfonate (PFOS) on the surface of hydrophobic adsorbents, but the long C-F chain in PFOS is not only hydrophobic but also oleophobic. In this study, for the first time we propose that air bubbles on the surface of hydrophobic carbonaceous adsorbents play an important role in the adsorption of PFOS. The level of adsorption of PFOS on carbon nanotubes (CNTs), graphite (GI), graphene (GE), and powdered activated carbon (PAC) decreases after vacuum degassing. Vacuum degassing time and pressure significantly affect the removal of PFOS by these adsorbents. After vacuum degassing at 0.01 atm for 36 h, the extent of removal of PFOS by the pristine CNTs and GI decreases 79% and 74%, respectively, indicating the main contribution of air bubbles to PFOS adsorption. When the degassed solution is recontacted with air during the adsorption process, the removal of PFOS recovers to the value obtained without vacuum degassing, further verifying the key role of air bubbles in PFOS adsorption. By theoretical calculation, the distribution of PFOS in air bubbles on the adsorbent surfaces is discussed, and a new schematic sorption model of PFOS on carbonaceous adsorbents in the presence of air bubbles is proposed. The accumulation of PFOS at the interface of air bubbles on the adsorbents is primarily responsible for its adsorption, providing a new mechanistic insight into the transport, fate, and removal of PFOS.

  8. Feasibility of an in situ measurement device for bubble size and distribution

    PubMed Central

    Maciejak, Walter; Darnell, Branson; Lester, Michael; Pollack, Michael

    2007-01-01

    The feasibility of in situ measurement device for bubble size and distribution was explored. A novel in situ probe measurement system, the EnviroCam™, was developed. Where possible, this probe incorporated strengths, and minimized weaknesses of historical and currently available real-time measurement methods for bubbles. The system was based on a digital, high-speed, high resolution, modular camera system, attached to a stainless steel shroud, compatible with standard Ingold ports on fermenters. Still frames and/or video were produced, capturing bubbles passing through the notch of the shroud. An LED light source was integral with the shroud. Bubbles were analyzed using customized commercially available image analysis software and standard statistical methods. Using this system, bubble sizes were measured as a function of various operating parameters (e.g., agitation rate, aeration rate) and as a function of media properties (e.g., viscosity, antifoam, cottonseed flour, and microbial/animal cell broths) to demonstrate system performance and its limitations. For selected conditions, mean bubble size changes qualitatively compared favorably with published relationships. Current instrument measurement capabilities were limited primarily to clear solutions that did not contain large numbers of overlapping bubbles. PMID:17566786

  9. Increased stability and size of a bubble on a superhydrophobic surface.

    PubMed

    Ling, William Yeong Liang; Lu, Gabriel; Ng, Tuck Wah

    2011-04-01

    Computational and theoretical models of millimeter-sized bubbles placed on upright hydrophobic and superhydrophobic surfaces are compared with experimental data here. Although the experimental data for a hydrophobic surface corroborated the computational and theoretical data, the case of a superhydrophobic surface showed the bubbles to be able to contain significantly larger volumes than predicted. This is attributed to the greater ability of the bubble contact line to advance compared with its tendency to detach from the surface because of buoyancy. We surmise that a static model therefore describes only an unstable equilibrium for these bubbles, which unless heavily isolated from external influences are more likely to assume a larger stable size. PMID:21361315

  10. Effect of a soluble surfactant on a finite sized bubble motion in a blood vessel

    PubMed Central

    Swaminathan, T. N.; Mukundakrishnan, K.; Ayyaswamy, P. S.; Eckmann, D. M.

    2009-01-01

    We present detailed results for the motion of a finite sized gas bubble in a blood vessel. The bubble (dispersed phase) size is taken to be such as to nearly occlude the vessel. The bulk medium is treated as a shear thinning Casson fluid and contains a soluble surfactant that adsorbs and desorbs from the interface. Three different vessel sizes, corresponding to a small artery, a large arteriole, and a small arteriole, in normal humans, are considered. The hematocrit (volume fraction of RBCs) has been taken to be 0.45. For arteriolar flow, where relevant, the Fahraeus-Lindqvist effect is taken into account. Bubble motion cause temporal and spatial gradients of shear stress at the cell surface lining the vessel wall as the bubble approaches the cell, moves over it and passes it by. Rapid reversals occur in the sign of the shear stress imparted to the cell surface during this motion. Shear stress gradients together with sign reversals are associated with a recirculation vortex at the rear of the moving bubble. The presence of the surfactant reduces the level of the shear stress gradients imparted to the cell surface as compared to an equivalent surfactant-free system. Our numerical results for bubble shapes and wall shear stresses may help explain phenomena observed in experimental studies related to gas embolism, a significant problem in cardiac surgery and decompression sickness. PMID:20305744

  11. Electric Field Effects on an Injected Air Bubble at Detachment in a Low Gravity Environment

    NASA Technical Reports Server (NTRS)

    Iacona, Estelle; Herman, Cila; Chang, Shinan

    2002-01-01

    The objective of the study is to investigate the behavior of individual air bubbles injected through an orifice into an electrically insulating liquid under the influence of a static and uniform electric field. Bubble formation and detachment were visualized and recorded in microgravity using a high-speed video camera. Bubble volume, dimensions and contact angle at detachment were measured. In addition to the experimental studies, a simple model, predicting bubble characteristics at detachment was developed. The model, based on thermodynamic considerations, accounts for the level of gravity as well as the magnitude of the uniform electric field. Measured data and model predictions show good agreement, and indicate that the level of gravity and the electric field magnitude significantly affect bubble shape, volume and dimensions.

  12. Noise reduction by the application of an air-bubble curtain in offshore pile driving

    NASA Astrophysics Data System (ADS)

    Tsouvalas, A.; Metrikine, A. V.

    2016-06-01

    Underwater noise pollution is a by-product of marine industrial operations. In particular, the noise generated when a foundation pile is driven into the soil with an impact hammer is considered to be harmful for the aquatic species. In an attempt to reduce the ecological footprint, several noise mitigation techniques have been investigated. Among the various solutions proposed, the air-bubble curtain is often applied due to its efficacy in noise reduction. In this paper, a model is proposed for the investigation of the sound reduction during marine piling when an air-bubble curtain is placed around the pile. The model consists of the pile, the surrounding water and soil media, and the air-bubble curtain which is positioned at a certain distance from the pile surface. The solution approach is semi-analytical and is based on the dynamic sub-structuring technique and the modal decomposition method. Two main results of the paper can be distinguished. First, a new model is proposed that can be used for predictions of the noise levels in a computationally efficient manner. Second, an analysis is presented of the principal mechanisms that are responsible for the noise reduction due to the application of the air-bubble curtain in marine piling. The understanding of these mechanisms turns to be crucial for the exploitation of the maximum efficiency of the system. It is shown that the principal mechanism of noise reduction depends strongly on the frequency content of the radiated sound and the characteristics of the bubbly medium. For piles of large diameter which radiate most of the acoustic energy at relatively low frequencies, the noise reduction is mainly attributed to the mismatch of the acoustic impedances between the seawater and the bubbly layer. On the contrary, for smaller piles and when the radiated acoustic energy is concentrated at frequencies close to, or higher than, the resonance frequency of the air bubbles, the sound absorption within the bubbly layer

  13. Growth of oxygen bubbles during recharge process in zinc-air battery

    NASA Astrophysics Data System (ADS)

    Wang, Keliang; Pei, Pucheng; Ma, Ze; Chen, Huicui; Xu, Huachi; Chen, Dongfang; Xing, Haoqiang

    2015-11-01

    Rechargeable zinc-air battery used for energy storage has a serious problem of charging capacity limited by oxygen bubble coalescence. Fast removal of oxygen bubbles adhered to the charging electrode surface is of great importance for improving the charging performance of the battery. Here we show that the law of oxygen bubble growth can be achieved by means of phase-field simulation, revealing two phenomena of bubble detachment and bubble coalescence located in the charging electrode on both sides. Hydrodynamic electrolyte and partial insulation structure of the charging electrode are investigated to solve the problem of oxygen bubble coalescence during charging. Two types of rechargeable zinc-air battery are developed on the basis of different tri-electrode configurations, demonstrating that the charging performance of the battery with electrolyte flow (Ⅰ) is better than that of the battery with the partially insulated electrode (Ⅱ), while the battery Ⅱ is superior to the battery Ⅰ in the discharging performance, cost and portability. The proposed solutions and results would be available for promoting commercial application of rechargeable zinc-air batteries or other metal-air batteries.

  14. Laser induced fluorescence measurements of dissolved oxygen concentration fields near air bubble surfaces

    NASA Astrophysics Data System (ADS)

    Roy, Sabita; Duke, Steve R.

    2000-09-01

    This article describes a laser-induced fluorescence (LIF) technique for measuring dissolved oxygen concentration gradients in water near the surface of an air bubble. Air bubbles are created at the tip of a needle in a rectangular bubble column filled with water that contains pyrenebutyric acid (PBA). The fluorescence of the PBA is induced by a planar pulse of nitrogen laser light. Oxygen transferring from the air bubble to the deoxygenated water quenches the fluorescence of the PBA. Images of the instantaneous and two-dimensional fluorescence field are obtained by a UV-intensified charge-coupled device (CCD) camera. Quenching of fluorescence intensity is determined at each pixel in the CCD image to measure dissolved oxygen concentration. Two-dimensional concentration fields are presented for a series of measurements of oxygen transfer from 1.6 mm bubbles suspended on the tip of a needle in a quiescent fluid. The images show the spatially varying concentration profiles, gradients, and boundary layer thicknesses at positions around the bubble surfaces. These direct and local measurements of concentration behavior within the mass transfer boundary layer show the potential of this LIF technique for the development of general and mechanistic models for oxygen transport across the air-water interface.

  15. Acoustic wave propagation in air-bubble curtains in water. Part 2. Field experiment

    SciTech Connect

    Domenico, S.N.

    1982-03-01

    A field experiment consisted of hydrophone recordings in a pond, 25 ft deep, of signals transmitted through air-bubble curtains from a water gun source. The air curtains issued from one to 13 pipes (20 ft long and spaced at 1.67-ft intervals). Air pressures used in the pipes were 15, 25, and 50 psi. Length and complexity of the signals indicate that reverberations occurred to an increasing extent as the number of consecutive air curtains was increased. Analysis of the first pulse in the recorded signals, after approximate removal of hydrophone and recorder response, indicates that the reverberations occur principally in the bubble-free corridors between air curtains. This pulse broadens and its peak amplitude is delayed linearly as the number of successive air curtains is increased. The peak amplitude is decreased substantially by the first air curtain and thereafter remains between 0.1 and 0.2 of the amplitude without air curtains.

  16. Gas bubble dimensions in Archean lava flows indicate low air pressure at 2.7 Ga

    NASA Astrophysics Data System (ADS)

    Som, S. M.; Buick, R.; Hagadorn, J.; Blake, T.; Perreault, J.; Harnmeijer, J.; Catling, D. C.

    2014-12-01

    Air pressure constrains atmospheric composition, which, in turn, is linked to the Earth system through biogeochemical cycles and fluxes of volatiles from and to the Earth's interior. Previous studies have only placed maximum levels on surface air pressure for the early Earth [1]. Here, we calculate an absolute value for Archean barometric pressure using gas bubble size (vesicle) distributions in uninflated basaltic lava flows that solidified at sea level 2.7 billion years ago in the Pilbara Craton, Western Australia. These vesicles have been filled in by secondary minerals deposited during metasomatism and so are now amydules, but thin sections show that infilling did not change vesicle dimensions. Amygdule dimensions are measured using high-resolution X-ray tomography from core samples obtained from the top and bottom of the lava flows. The modal size expressed at the top and at the bottom of an uninflated flow can be linked to atmospheric pressure using the ideal gas law. Such a technique has been verified as a paleoaltimeter using Hawaiian Quaternary lava flows [2]. We use statistical methods to estimate the mean and standard deviation of the volumetric size of the amygdules by applying 'bootstrap'resampling and the Central Limit Theorem. Our data indicate a surprisingly low atmospheric pressure. Greater nitrogen burial under anaerobic conditions likely explains lower pressure. Refs: [1] Som et al. (2012) Nature 484, 359-262. D. L. Sahagian et al. (2002) J. Geol., 110, 671-685.

  17. Hydrophilic strips for preventing air bubble formation in a microfluidic chamber.

    PubMed

    Choi, Munseok; Na, Yang; Kim, Sung-Jin

    2015-12-01

    In a microfluidic chamber, unwanted formation of air bubbles is a critical problem. Here, we present a hydrophilic strip array that prevents air bubble formation in a microfluidic chamber. The array is located on the top surface of the chamber, which has a large variation in width, and consists of a repeated arrangement of super- and moderately hydrophilic strips. This repeated arrangement allows a flat meniscus (i.e. liquid front) to form when various solutions consisting of a single stream or two parallel streams with different hydrophilicities move through the chamber. The flat meniscus produced by the array completely prevents the formation of bubbles. Without the array in the chamber, the meniscus shape is highly convex, and bubbles frequently form in the chamber. This hydrophilic strip array will facilitate the use of a microfluidic chamber with a large variation in width for various microfluidic applications. PMID:26382942

  18. Hydrophilic strips for preventing air bubble formation in a microfluidic chamber.

    PubMed

    Choi, Munseok; Na, Yang; Kim, Sung-Jin

    2015-12-01

    In a microfluidic chamber, unwanted formation of air bubbles is a critical problem. Here, we present a hydrophilic strip array that prevents air bubble formation in a microfluidic chamber. The array is located on the top surface of the chamber, which has a large variation in width, and consists of a repeated arrangement of super- and moderately hydrophilic strips. This repeated arrangement allows a flat meniscus (i.e. liquid front) to form when various solutions consisting of a single stream or two parallel streams with different hydrophilicities move through the chamber. The flat meniscus produced by the array completely prevents the formation of bubbles. Without the array in the chamber, the meniscus shape is highly convex, and bubbles frequently form in the chamber. This hydrophilic strip array will facilitate the use of a microfluidic chamber with a large variation in width for various microfluidic applications.

  19. [Air Bubble in the Left Ventricle due to Computed Tomography Guided Lung Needle Biopsy].

    PubMed

    Matsuda, Eisuke; Yoshida, Kumiko; Yoshiyama, Koichi; Hayashi, Tatsuro; Tanaka, Toshiki; Tao, Hiroyuki; Okabe, Kazunori

    2015-11-01

    Computed tomography (CT) guided lung biopsy is a useful examination in diagnosing pulmonary diseases, but the complications such as pneumothorax or pulmonary hemorrhage can not be ignored. Among them, air embolization is a severe complication, although it is infrequently encountered. Forty two-year-old man admitted to our department for the examination of left lung tumor. CT guided lung biopsy was performed. After examination, the patient showed disturbance in cardiac function, which recovered in several minutes. Chest CT revealed air bubble in the left ventricle. After 2-hours head down position followed by bed rest, air bubble is confirmed to be dissappeared by CT.

  20. The production of drops by the bursting of a bubble at an air liquid interface

    NASA Technical Reports Server (NTRS)

    Darrozes, J. S.; Ligneul, P.

    1982-01-01

    The fundamental mechanism arising during the bursting of a bubble at an air-liquid interface is described. A single bubble was followed from an arbitrary depth in the liquid, up to the creation and motion of the film and jet drops. Several phenomena were involved and their relative order of magnitude was compared in order to point out the dimensionless parameters which govern each step of the motion. High-speed cinematography is employed. The characteristic bubble radius which separates the creation of jet drops from cap bursting without jet drops is expressed mathematically. The corresponding numerical value for water is 3 mm and agrees with experimental observations.

  1. Methods for advanced hepatocyte cell culture in microwells utilizing air bubbles.

    PubMed

    Goral, Vasiliy N; Au, Sam H; Faris, Ronald A; Yuen, Po Ki

    2015-02-21

    Flat, two-dimensional (2D) cell culture substrates are simple to use but offer little control over cell morphologies and behavior. In this article, we present a number of novel and unique methods for advanced cell culture in microwells utilizing air bubbles as a way to seed cells in order to provide substantial control over cellular microenvironments and organization to achieve specific cell-based applications. These cell culture methods enable controlled formation of stable air bubbles in the microwells that spontaneously formed when polar solvents such as cell culture media are loaded. The presence of air bubbles (air bubble masking) enables highly controllable cell patterning and organization of seeded cells as well as cell co-culture in microwells. In addition, these cell culture methods are simple to use and implement, yet versatile, and have the potential to provide a wide range of microenvironments to improve in vivo-like behavior for a number of cell types and applications. The air bubble masking technique can also be used to produce a micron thick layer of collagen film suspended on top of the microwells. These collagen film enclosed microwells could provide an easy way for high throughput drug screening and cytotoxicity assays as different drug compounds could be pre-loaded and dried in selected microwells and then released during cell culture.

  2. Effect of air bubble on inflammation after cataract surgery in rabbit eyes

    PubMed Central

    Demirci, Goktug; Karabaş, Levent; Maral, Hale; Ozdek, Şengül; Gülkılık, Gökhan

    2013-01-01

    Purpose: Intense inflammation after cataract surgery can cause cystoid macular edema, posterior synechia and posterior capsule opacification. This experimental study was performed to investigate the effect of air bubble on inflammation when given to anterior chamber of rabbit eyes after cataract surgery. Materials and Methods: 30 eyes of 15 rabbits were enrolled in the study. One of the two eyes was in the study group and the other eye was in the control group. After surgery air bubble was given to the anterior chamber of the study group eye and balanced salt solution (BSS; Alcon) was left in the anterior chamber of control eye. Results: On the first, second, fourth and fifth days, anterior chamber inflammations of the eyes were examined by biomicroscopy. On the sixth day anterior chamber fluid samples were taken for evaluation of nitric oxide levels as an inflammation marker. When the two groups were compared, in the air bubble group there was statistically less inflammation was seen. (1, 2, 4. days P = 0,001, and 5. day P = 0,009). Conclusions: These results have shown that when air bubble is left in anterior chamber of rabbits’ eyes after cataract surgery, it reduced inflammation. We believe that, air bubble in the anterior chamber may be more beneficial in the cataract surgery of especially pediatric age group, uveitis patients and diabetics where we see higher inflammation. However, greater and long termed experimental and clinical studies are necessary for more accurate findings. PMID:23571264

  3. Ex vivo bubble production from ovine large blood vessels: size on detachment and evidence of "active spots".

    PubMed

    Arieli, R; Marmur, A

    2014-08-15

    Nanobubbles formed on the hydrophobic silicon wafer were shown to be the source of gas micronuclei from which bubbles evolved during decompression. Bubbles were also formed after decompression on the luminal surface of ovine blood vessels. Four ovine blood vessels: aorta, pulmonary vein, pulmonary artery, and superior vena cava, were compressed to 1013 kPa for 21 h. They were then decompressed, photographed at 1-s intervals, and bubble size was measured on detachment. There were certain spots at which bubbles appeared, either singly or in a cluster. Mean detachment diameter was between 0.7 and 1.0 mm. The finding of active spots at which bubbles nucleate is a new, hitherto unreported observation. It is possible that these are the hydrophobic spots at which bubbles nucleate, stabilise, and later transform into the gas micronuclei that grow into bubbles. The possible neurological effects of these large arterial bubbles should be further explored.

  4. Acoustic localization in weakly compressible elastic media containing random air bubbles.

    PubMed

    Liang, Bin; Cheng, Jian-chun

    2007-01-01

    We study theoretically the propagation of longitudinal wave in weakly compressible elastic media containing random air bubbles by using a self-consistent method. By inspecting the scattering cross section of an individual bubble and estimating the mean free paths of the elastic wave propagating in the bubbly weakly compressible media, the mode conversion is numerically proved negligible as the longitudinal wave is scattered by the bubbles. On the basis of the bubble dynamic equation, the wave propagation is solved rigorously with the multiple scattering effects incorporated. In a range of frequency slightly above the bubble resonance frequency, the acoustic localization in such a class of media is theoretically identified with even a very small volume fraction of bubbles. We present a method by analyzing the spatial correlation of wave field to identify the phenomenon of localization, which turns out to be effective. The sensibility of the features of localization to the structure parameters is numerically investigated. The spatial distribution of acoustic energy is also studied and the results show that the waves are trapped within a spatial domain adjacent to the source when localization occurs.

  5. A simple technique for evacuating air bubbles with scum from the bladder dome during transurethral resection of bladder tumor.

    PubMed

    Takeshita, Hideki; Moriyama, Shingo; Chiba, Koji; Noro, Akira

    2014-12-01

    Air bubbles floating in the bladder dome during transurethral resection of a bladder tumor can interfere with the resection, causing intravesical explosion and increasing the potential risk of tumor cell reimplantation. We describe a simple and effective technique for evacuating air bubbles from the bladder dome using routine resectoscopes. First, the beak of the resectoscope is positioned near the air bubble in the bladder dome. Second, the drainage channel of the resectoscope is closed. Third, the irrigation tube is detached from the irrigation channel, and then the channel is opened. Subsequently, the air bubble with entangled scum will be retrogradely aspirated from the beak of the resectoscope to the irrigation channel. Reversing the direction of the water stream enables evacuation of the air bubble with the scum under direct vision. This simple and effective technique may assist surgeons and ensure the safety of patients during a transurethral procedure. PMID:25562002

  6. Using strobe lights, air bubble curtains for cost-effective fish diversion

    SciTech Connect

    McCauley, D.J.; Navarro, J.E.; Mountouri, L.

    1996-04-01

    Faced with a high, and potentially costly, rate of fish turbine passage, a northern Michigan hydro project owner began investigating the use of behavioral barriers to divert fish away from turbines. Strobe lights, with and without air bubbles, proved to be highly effective, yielding dramatic reductions in the number of fish entrained.

  7. Power induced by bubbles of different sizes and frequencies on to hollow fibers in submerged membrane systems.

    PubMed

    Jankhah, Sepideh; Bérubé, Pierre R

    2013-11-01

    To shed light onto the relationship between sparging conditions and fouling control in submerged hollow fiber membranes, the effects of bubble size and frequency on the hydrodynamic conditions induced in membrane system were studied. Two general classes of bubbles were considered: coarse (0.75-2.5 mL) and pulse (100-500 mL). The power transferred (P(trans)) onto membranes could be used to characterise the multiple effects induced under different sparging conditions. P(trans) is proportional to root mean square of shear stress (τ(rms)), the area of zone of influence (i.e. the fraction in the system where high velocity and high vorticity (turbulence) are induced by the bubble) and their rise velocity. At a given sparging rate, the power transferred onto membranes was less with coarse bubble sparging than pulse bubble sparging and increased with the size of pulse bubbles. For all cases, the power transfer efficiency was consistently higher for pulse bubble sparging than for coarse bubble sparging. The power transfer efficiency to the system was greatest for the small pulse bubbles considered when a small amount of power is required for fouling control. However, when fouling is extensive, large pulse bubbles may be required to generate the required amount of power for fouling control.

  8. Dependence of pulsed focused ultrasound induced thrombolysis on duty cycle and cavitation bubble size distribution.

    PubMed

    Xu, Shanshan; Zong, Yujin; Feng, Yi; Liu, Runna; Liu, Xiaodong; Hu, Yaxin; Han, Shimin; Wan, Mingxi

    2015-01-01

    In this study, we investigated the relationship between the efficiency of pulsed, focused ultrasound (FUS)-induced thrombolysis, the duty cycle (2.3%, 9%, and 18%) and the size distribution of cavitation bubbles. The efficiency of thrombolysis was evaluated through the degree of mechanical fragmentation, namely the number, mass, and size of clot debris particles. First, we found that the total number and mass of clot debris particles were highest when a duty cycle of 9% was used and that the mean diameter of clot debris particles was smallest. Second, we found that the size distribution of cavitation bubbles was mainly centered around the linear resonance radius (2.5μm) of the emission frequency (1.2MHz) of the FUS transducer when a 9% duty cycle was used, while the majority of cavitation bubbles became smaller or larger than the linear resonance radius when a 2.3% or 18% duty cycle was used. In addition, the inertial cavitation dose from the treatment performed at 9% duty cycle was much higher than the dose obtained with the other two duty cycles. The data presented here suggest that there is an optimal duty cycle at which the thrombolysis efficiency and cavitation activity are strongest. They further indicate that using a pulsed FUS may help control the size distribution of cavitation nuclei within an active size range, which we found to be near the linear resonance radius of the emission frequency of the FUS transducer.

  9. Numerical and experimental study of dissociation in an air-water single-bubble sonoluminescence system.

    PubMed

    Puente, Gabriela F; Urteaga, Raúl; Bonetto, Fabián J

    2005-10-01

    We performed a comprehensive numerical and experimental analysis of dissociation effects in an air bubble in water acoustically levitated in a spherical resonator. Our numerical approach is based on suitable models for the different effects considered. We compared model predictions with experimental results obtained in our laboratory in the whole phase parameter space, for acoustic pressures from the bubble dissolution limit up to bubble extinction. The effects were taken into account simultaneously to consider the transition from nonsonoluminescence to sonoluminescence bubbles. The model includes (1) inside the bubble, transient and spatially nonuniform heat transfer using a collocation points method, dissociation of O2 and N2, and mass diffusion of vapor in the noncondensable gases; (2) at the bubble interface, nonequilibrium evaporation and condensation of water and a temperature jump due to the accommodation coefficient; (3) in the liquid, transient and spatially nonuniform heat transfer using a collocation points method, and mass diffusion of the gas in the liquid. The model is completed with a Rayleigh-Plesset equation with liquid compressible terms and vapor mass transfer. We computed the boundary for the shape instability based on the temporal evolution of the computed radius. The model is valid for an arbitrary number of dissociable gases dissolved in the liquid. We also obtained absolute measurements for R(t) using two photodetectors and Mie scattering calculations. The robust technique used allows the estimation of experimental results of absolute R0 and P(a). The technique is based on identifying the bubble dissolution limit coincident with the parametric instability in (P(a),R0) parameter space. We take advantage of the fact that this point can be determined experimentally with high precision and replicability. We computed the equilibrium concentration of the different gaseous species and water vapor during collapse as a function of P(a) and R0. The

  10. Simulation study on the effect of air distribution on the bed height and bubble formation in bubbling fluidization reactor

    NASA Astrophysics Data System (ADS)

    bin Ibrahim, Muhamad Hilmee; Mohd Najib, Nur Khadijah; Karuppanan, Saravanan; Sinnathambi, Chandra Mohan

    2012-09-01

    This paper describes the numerical study on the effect of inlet air distribution in the Bubbling Fluidized Bed (BFB) riser of diameter 0.18 m and 1.44 m of length using a 3-hole orifice plate. A 2D model has been developed and meshed using Gambit software version 2.4.6 and was simulated using CFD code, fluent version 6.3. Laminar model has been used for the modeling and Eulerian-Eulerian multiphase model coupled with kinetic theory of granular flow was employed. For the drag, Gidaspow Drag Model was used to calculate the phase interaction between the gas and solid particles. The simulation results obtained for the validation purpose showed good agreement with the results available in the literature. The model with orifice plate gives a better and clear bubble shape with improved turbulent and better mixing compared to the model without the orifice plate. The model with orifice plate is also more realistic and ideal as compared to the model without the orifice plate.

  11. Coalescence of bubbles translating through a tube.

    PubMed

    Almatroushi, Eisa; Borhan, Ali

    2006-09-01

    The results of an experimental study of the interaction and coalescence of two air bubbles translating in a cylindrical tube are presented. Both pressure- and buoyancy-driven motion of the two bubbles in a Newtonian suspending fluid within the tube are considered. The close approach of the two bubbles is examined using image analysis, and measurements of the coalescence time are reported for various bubble size ratios and capillary numbers. For pressure-driven motion of bubbles, coalescence is found to occur in an axisymmetric configuration for all bubble size ratios considered in the experiments. For buoyancy-driven motion, on the other hand, the disturbance flow behind the leading bubble causes the trailing bubble to move radially out toward the tube wall when the trailing bubble size becomes very small compared to the size of the leading bubble. In that case, coalescence occurs in a nonaxisymmetric configuration, with a time scale for coalescence that is substantially larger than that for coalescence in the axisymmetric configuration. When the imposed flow is in the direction of the buoyancy force, coalescence time is independent of bubble size ratio, and decreases as the capillary number increases. Experimental measurements of the radius of the thin liquid film separating the two bubbles are used in conjunction with a simple film drainage model to predict the dependence of the coalescence time on the bubble size ratio. PMID:17124143

  12. Emergence of granular-sized magnetic bubbles through the solar atmosphere. I. Spectropolarimetric observations and simulations

    SciTech Connect

    Ortiz, Ada; Hansteen, Viggo H.; Van der Voort, Luc Rouppe; Bellot Rubio, Luis R.; De la Cruz Rodríguez, Jaime

    2014-02-01

    We study a granular-sized magnetic flux emergence event that occurred in NOAA 11024 in 2009 July. The observations were made with the CRISP spectropolarimeter at the Swedish 1 m Solar Telescope achieving a spatial resolution of 0.''14. Simultaneous full Stokes observations of the two photospheric Fe I lines at 630.2 nm and the chromospheric Ca II 854.2 nm line allow us to describe in detail the emergence process across the solar atmosphere. We report here on three-dimensional (3D) semi-spherical bubble events, where instead of simple magnetic footpoints, we observe complex semi-circular feet straddling a few granules. Several phenomena occur simultaneously, namely, abnormal granulation, separation of opposite-polarity legs, and brightenings at chromospheric heights. However, the most characteristic signature in these events is the observation of a dark bubble in filtergrams taken in the wings of the Ca II 854.2 nm line. There is a clear coincidence between the emergence of horizontal magnetic field patches and the formation of the dark bubble. We can infer how the bubble rises through the solar atmosphere as we see it progressing from the wings to the core of Ca II 854.2 nm. In the photosphere, the magnetic bubble shows mean upward Doppler velocities of 2 km s{sup –1} and expands at a horizontal speed of 4 km s{sup –1}. In about 3.5 minutes it travels some 1100 km to reach the mid chromosphere, implying an average ascent speed of 5.2 km s{sup –1}. The maximum separation attained by the magnetic legs is 6.''6. From an inversion of the observed Stokes spectra with the SIR code, we find maximum photospheric field strengths of 480 G and inclinations of nearly 90° in the magnetic bubble interior, along with temperature deficits of up to 250 K at log τ = –2 and above. To aid the interpretation of the observations, we carry out 3D numerical simulations of the evolution of a horizontal, untwisted magnetic flux sheet injected in the convection zone, using the

  13. High-sensitivity strain sensor based on in-fiber rectangular air bubble.

    PubMed

    Liu, Shen; Yang, Kaiming; Wang, Yiping; Qu, Junle; Liao, Changrui; He, Jun; Li, Zhengyong; Yin, Guolu; Sun, Bing; Zhou, Jiangtao; Wang, Guanjun; Tang, Jian; Zhao, Jing

    2015-01-01

    We demonstrated a unique rectangular air bubble by means of splicing two sections of standard single mode fibers together and tapering the splicing joint. Such an air bubble can be used to develop a promising high-sensitivity strain sensor based on Fabry-Perot interference. The sensitivity of the strain sensor with a cavity length of about 61 μm and a wall thickness of about 1 μm was measured to be up to 43.0 pm/με and is the highest strain sensitivity among the in-fiber FPI-based strain sensors with air cavities reported so far. Moreover, our strain sensor has a very low temperature sensitivity of about 2.0 pm/°C. Thus, the temperature-induced strain measurement error is less than 0.046 με/°C. PMID:25557614

  14. Effective medium method for sound propagation in a soft medium containing air bubbles.

    PubMed

    Liang, Bin; Zou, Xinye; Cheng, Jianchun

    2008-09-01

    An effective medium method (EMM) is developed to investigate the nonlinear propagation of acoustic waves for soft media containing air bubbles, which accounts for the effects of weak compressibility, viscosity, surrounding pressure, surface tension, and encapsulating shells. Based on the dynamics model of an individual bubble that has included these effects, the EMM is presented by employing a simple perturbation approach to "homogenize" the bubbly soft media. The equations describing the fundamental and the second harmonic waves are derived that applies to three-dimensional cases, and then solved in a one-dimensional case to obtain the effective acoustical parameters of a longitudinal wave. The EMM is compared with the previous theories in three representative cases regarded as simple models of significant practical applications. The results show that the EMM agrees well with the previous theories and can incorporate the additional effects, which may notably affect the accuracy of the results. The limitations of the EMM are also identified and stated.

  15. Study of interfacial area transport and sensitivity analysis for air-water bubbly flow

    SciTech Connect

    Kim, S.; Sun, X.; Ishii, M.; Beus, S.G.

    2000-09-01

    The interfacial area transport equation applicable to the bubbly flow is presented. The model is evaluated against the data acquired by the state-of-the-art miniaturized double-sensor conductivity probe in an adiabatic air-water co-current vertical test loop under atmospheric pressure condition. In general, a good agreement, within the measurement error of plus/minus 10%, is observed for a wide range in the bubbly flow regime. The sensitivity analysis on the individual particle interaction mechanisms demonstrates the active interactions between the bubbles and highlights the mechanisms playing the dominant role in interfacial area transport. The analysis employing the drift flux model is also performed for the data acquired. Under the given flow conditions, the distribution parameter of 1.076 yields the best fit to the data.

  16. Experimental study of the effect of a small bubble at the nose of a larger bubble in a Hele-Shaw cell

    NASA Astrophysics Data System (ADS)

    Ikeda, E.; Maxworthy, T.

    1990-04-01

    The effect of a small air bubble attached to the nose of a much larger air bubble in a viscous liquid in a Hele-Shaw cell has been studied. The Hele-Shaw cell was tilted to an angle alpha, measured from the horizontal, so that the buoyancy force allowed the bubbles to rise. The larger bubble became elongated to a nearly elliptical shape and its velocity increased above the value for a circular bubble of the same area. For a given size of main bubble, as the size of the nose bubble decreased, the aspect ratio and velocity of the larger bubble increased. The velocity for a given size bubble could be approximated by the theory presented by Maxworthy (1986) for small values of the bubble ellipticity and large values of alpha. At small values of alpha, modification of the bubble drag by gravitational distortion could partially explain the deviation from the simpler theory.

  17. Blood platelet-derived microparticles release and bubble formation after an open-sea air dive.

    PubMed

    Pontier, Jean-Michel; Gempp, Emmanuel; Ignatescu, Mihaela

    2012-10-01

    Bubble-induced platelet aggregation offers an index for evaluating decompression severity in humans and in a rat model of decompression sickness. Endothelial cells, blood platelets, or leukocytes shed microparticles (MP) upon activation and during cell apoptosis. The aim was to study blood platelet MP (PMP) release and bubble formation after a scuba-air dive in field conditions. Healthy, experienced divers were assigned to 1 experimental group (n = 10) with an open-sea air dive to 30 msw for 30 min and 1 control group (n = 5) during head-out water immersion for the same period. Bubble grades were monitored with a pulsed doppler according to Kissman Integrated Severity Score (KISS). Blood samples for platelet count (PC) and PMP (annexin V and CD41) were taken 1 h before and after exposure in both groups. The result showed a decrease in post-dive PC compared with pre-dive values in experimental group with no significant change in the control group. We observed a significant increase in PMP values after the dive while no change was revealed in the control group. There was a significant positive correlation between the PMP values after the dive and the KISS bubble score. The present study highlighted a relationship between the post-dive decrease in PC, platelet MP release, and bubble formation. Release of platelet MPs could reflect bubble-induced platelet aggregation and could play a key role in alteration of the coagulation. Further studies must investigate endothelial and leukocyte MP release in the same field conditions.

  18. Comparison of the bubble size distribution in silicate foams using 2-dimensional images and 3-dimensional x-ray microtomography

    SciTech Connect

    Robert, G.; Baker, D.R.; Rivers, M.L.; Allard, E.; Larocque, J.

    2005-02-03

    Three silicate glasses were hydrated at high pressure and then heated at atmospheric pressure to exsolve the water into bubbles and create foams. The bubble size distribution in these foams was measured by x-ray microtomography on the GSECARS BM-13 beamline at the Advanced Photon Source. The bubble area distributions were measured in two dimensions using the image slices produced from the microtomography and the software ImageJ. The bubble volume distributions were measured from the three-dimensional tomographic images with the BLOB3D software. We found that careful analysis of the microtomography data in both two and three dimensions was necessary to avoid the physically unrealistic, experimental artifact of identifying and counting many small bubbles whose surfaces were not defined by a septum of glass. When this artifact was avoided the foams demonstrated power-law distributions of bubble sizes in both two and three dimensions. Conversion of the power-law exponents for bubble areas measured in two dimensions to exponents for bubble volumes usually agreed with the measured three dimensional volume exponents. Furthermore, the power-law distributions for bubble volumes typically agree with multiple theories of bubble growth, all of which yield an exponent of 1 for the cumulative bubble volume distribution. The measured bubble volume distributions with exponents near 0.3 can be explained by diffusive growth as proposed by other authors, but distributions with exponents near 1.4 remain to be explained and are the subject of continuing research on the effects of water concentration and melt viscosity on foaming behavior.

  19. Tunneling effects in resonant acoustic scattering of an air bubble in unbounded water.

    PubMed

    Simão, André G; Guimarães, Luiz G

    2016-01-01

    The problem of acoustic scattering of a gaseous spherical bubble immersed within unbounded liquid surrounding is considered in this work. The theory of partial wave expansion related to this problem is revisited. A physical model based on the analogy between acoustic scattering and potential scattering in quantum mechanics is proposed to describe and interpret the acoustical natural oscillation modes of the bubble, namely, the resonances. In this context, a physical model is devised in order to describe the air water interface and the implications of the high density contrast on the various regimes of the scattering resonances. The main results are presented in terms of resonance lifetime periods and quality factors. The explicit numerical calculations are undertaken through an asymptotic analysis considering typical bubble dimensions and underwater sound wavelengths. It is shown that the resonance periods are scaled according to the Minnaert's period, which is the short lived resonance mode, called breathing mode of the bubble. As expected, resonances with longer lifetimes lead to impressive cavity quality Q-factor ranging from 1010 to 105. The present theoretical findings lead to a better understanding of the energy storage mechanism in a bubbly medium. PMID:27331803

  20. Influence of surface active solute on ultrasonic waveform distortion in liquid containing air bubbles.

    PubMed

    Tuziuti, Toru; Yasui, Kyuichi; Lee, Judy; Kozuka, Teruyuki; Towata, Atsuya; Iida, Yasuo

    2009-08-01

    The influence of sodium dodecyl sulfate (SDS) on waveform distortion of 141 kHz ultrasonic standing waves in liquids containing air bubbles was investigated for various transducer powers. Fast Fourier transform (FFT) operations were performed on the pressure waveform to obtain the harmonic components. In addition, the intensity of sonoluminescence (SL) was measured as a function of the power. Waveform distortion was observed for water at high applied power, with the curve exhibiting a steeper gradient for positive pressures and a broadened minimum for negative pressures. This was in reasonable agreement with theoretical studies reported in the literature. Much less distortion was found for a 1 mM SDS solution as the applied power was increased than for water or a 10 mM SDS solution. This may be attributed to a lower population of large coalesced bubbles in the 1 mM solution due to electrostatic repulsion, leading to damping of the sound energy and little cavitation noise because of viscous resistance to bubble radial motion in addition to adsorption and desorption of surfactant molecules at the bubble-liquid interface. For 10 mM SDS, the power threshold for the harmonic components was lower than that for the SL. In this case, it appears that there is a range of applied powers where most bubbles are stable and cannot collapse. The influence of the addition of an electrolyte and a nonionic surfactant was also investigated.

  1. Effect of oxygen breathing and perfluorocarbon emulsion treatment on air bubbles in adipose tissue during decompression sickness.

    PubMed

    Randsoe, T; Hyldegaard, O

    2009-12-01

    Decompression sickness (DCS) after air diving has been treated with success by means of combined normobaric oxygen breathing and intravascular perfluorocarbon (PFC) emulsions causing increased survival rate and faster bubble clearance from the intravascular compartment. The beneficial PFC effect has been explained by the increased transport capacity of oxygen and inert gases in blood. However, previous reports have shown that extravascular bubbles in lipid tissue of rats suffering from DCS will initially grow during oxygen breathing at normobaric conditions. We hypothesize that the combined effect of normobaric oxygen breathing and intravascular PFC infusion could lead to either enhanced extravascular bubble growth on decompression due to the increased oxygen supply, or that PFC infusion could lead to faster bubble elimination due to the increased solubility and transport capacity in blood for nitrogen causing faster nitrogen tissue desaturation. In anesthetized rats decompressed from a 60-min hyperbaric exposure breathing air at 385 kPa, we visually followed the resolution of micro-air bubbles injected into abdominal adipose tissue while the rats breathed either air, oxygen, or oxygen breathing combined with PFC infusion. All bubble observations were done at 101.3 kPa pressure. During oxygen breathing with or without combined PFC infusion, bubbles disappeared faster compared with air breathing. Combined oxygen breathing and PFC infusion caused faster bubble disappearance compared with oxygen breathing. The combined effect of oxygen breathing and PFC infusion neither prevented nor increased transient bubble growth time, rate, or growth ratio compared with oxygen breathing alone. We conclude that oxygen breathing in combination with PFC infusion causes faster bubble disappearance and does not exacerbate transient bubble growth. PFC infusion may be a valuable adjunct therapy during the first-aid treatment of DCS at normobaric conditions.

  2. Air bubbles in water: a strongly multiple scattering medium for acoustic waves.

    PubMed

    Kafesaki, M; Penciu, R S; Economou, E N

    2000-06-26

    Using a newly developed multiple scattering scheme, we calculate band structure and transmission properties for acoustic waves propagating in bubbly water. We prove that the multiple scattering effects are responsible for the creation of wide gaps in the transmission even in the presence of strong positional and size disorder.

  3. Effect of isobaric breathing gas shifts from air to heliox mixtures on resolution of air bubbles in lipid and aqueous tissues of recompressed rats.

    PubMed

    Hyldegaard, O; Kerem, D; Melamed, Y

    2011-09-01

    Deep tissue isobaric counterdiffusion that may cause unwanted bubble formation or transient bubble growth has been referred to in theoretical models and demonstrated by intravascular gas formation in animals, when changing inert breathing gas from nitrogen to helium after hyperbaric air breathing. We visually followed the in vivo resolution of extravascular air bubbles injected at 101 kPa into nitrogen supersaturated rat tissues: adipose, spinal white matter, skeletal muscle or tail tendon. Bubbles were observed during isobaric breathing-gas shifts from air to normoxic (80:20) heliox mixture while at 285 kPa or following immediate recompression to either 285 or 405 kPa, breathing 80:20 and 50:50 heliox mixtures. During the isobaric shifts, some bubbles in adipose tissue grew marginally for 10-30 min, subsequently they shrank and disappeared at a rate similar to or faster than during air breathing. No such bubble growth was observed in spinal white matter, skeletal muscle or tendon. In spinal white matter, an immediate breathing gas shift after the hyperbaric air exposure from air to both (80:20) and (50:50) heliox, coincident with recompression to either 285 or 405 kPa, caused consistent shrinkage of all air bubbles, until they disappeared from view. Deep tissue isobaric counterdiffusion may cause some air bubbles to grow transiently in adipose tissue. The effect is marginal and of no clinical consequence. Bubble disappearance rate is faster with heliox breathing mixtures as compared to air. We see no reason for reservations in the use of heliox breathing during treatment of air-diving-induced decompression sickness.

  4. Effect of isobaric breathing gas shifts from air to heliox mixtures on resolution of air bubbles in lipid and aqueous tissues of recompressed rats.

    PubMed

    Hyldegaard, O; Kerem, D; Melamed, Y

    2011-09-01

    Deep tissue isobaric counterdiffusion that may cause unwanted bubble formation or transient bubble growth has been referred to in theoretical models and demonstrated by intravascular gas formation in animals, when changing inert breathing gas from nitrogen to helium after hyperbaric air breathing. We visually followed the in vivo resolution of extravascular air bubbles injected at 101 kPa into nitrogen supersaturated rat tissues: adipose, spinal white matter, skeletal muscle or tail tendon. Bubbles were observed during isobaric breathing-gas shifts from air to normoxic (80:20) heliox mixture while at 285 kPa or following immediate recompression to either 285 or 405 kPa, breathing 80:20 and 50:50 heliox mixtures. During the isobaric shifts, some bubbles in adipose tissue grew marginally for 10-30 min, subsequently they shrank and disappeared at a rate similar to or faster than during air breathing. No such bubble growth was observed in spinal white matter, skeletal muscle or tendon. In spinal white matter, an immediate breathing gas shift after the hyperbaric air exposure from air to both (80:20) and (50:50) heliox, coincident with recompression to either 285 or 405 kPa, caused consistent shrinkage of all air bubbles, until they disappeared from view. Deep tissue isobaric counterdiffusion may cause some air bubbles to grow transiently in adipose tissue. The effect is marginal and of no clinical consequence. Bubble disappearance rate is faster with heliox breathing mixtures as compared to air. We see no reason for reservations in the use of heliox breathing during treatment of air-diving-induced decompression sickness. PMID:21318313

  5. Simple test to confirm cleavage with air between Descemet's membrane and stroma during big-bubble deep anterior lamellar keratoplasty.

    PubMed

    Fontana, Luigi; Parente, Gabriella; Tassinari, Giorgio

    2007-04-01

    We describe a simple test to confirm big-bubble formation in deep anterior lamellar keratoplasty by observing the position and movements of small air bubbles injected into the anterior chamber through a limbal paracentesis. The test also allows evaluation of the extension of Descemet's membrane cleavage from the posterior stroma relative to the margins of the corneal trephination.

  6. Studies on the Tempo of Bubble Formation in Recently Cavitated Vessels: A Model to Predict the Pressure of Air Bubbles1

    PubMed Central

    Wang, Yujie; Pan, Ruihua; Tyree, Melvin T.

    2015-01-01

    A cavitation event in a vessel replaces water with a mixture of water vapor and air. A quantitative theory is presented to argue that the tempo of filling of vessels with air has two phases: a fast process that extracts air from stem tissue adjacent to the cavitated vessels (less than 10 s) and a slow phase that extracts air from the atmosphere outside the stem (more than 10 h). A model was designed to estimate how water tension (T) near recently cavitated vessels causes bubbles in embolized vessels to expand or contract as T increases or decreases, respectively. The model also predicts that the hydraulic conductivity of a stem will increase as bubbles collapse. The pressure of air bubbles trapped in vessels of a stem can be predicted from the model based on fitting curves of hydraulic conductivity versus T. The model was validated using data from six stem segments each of Acer mono and the clonal hybrid Populus 84K (Populus alba × Populus glandulosa). The model was fitted to results with root mean square error less than 3%. The model provided new insight into the study of embolism formation in stem tissue and helped quantify the bubble pressure immediately after the fast process referred to above. PMID:25907963

  7. Importance of flow stratification and bubble aggregation in the separation zone of a dissolved air flotation tank.

    PubMed

    Lakghomi, B; Lawryshyn, Y; Hofmann, R

    2012-09-15

    The importance of horizontal flow patterns and bubble aggregation on the ability of dissolved air flotation (DAF) systems to improve bubble removal during drinking water treatment were explored using computational fluid dynamics (CFD) modeling. Both analytical and CFD analyses demonstrated benefits to horizontal flow. Two dimensional CFD modeling of a DAF system showed that increasing the amount of air in the system improved the bubble removal and generated a beneficial stratified horizontal flow pattern. Loading rates beyond a critical level disrupted the horizontal flow pattern, leading to significantly lower bubble removal. The results also demonstrated that including the effects of bubble aggregation in CFD modeling of DAF systems is an essential component toward achieving realistic modeling results.

  8. Dual gas-bubble-assisted solvothermal synthesis of magnetite with tunable size and structure.

    PubMed

    He, Quanguo; Wu, Zhaohui; Huang, Chunyan

    2011-10-01

    We present a facile solvothermal approach by employing ammonium bicarbonate (NH4HCO3) and ammonium acetate (NH4Ac) as dual gas-bubble-generating structure-directing agent to produce of magnetite (Fe3O4) particles with tunable size ranging from 90 nm to 400 nm and controllable structures including porous and hollow construction. The size, morphology and structure of the final products are achieved by simple adjustment of the molar ratio of NH4HCO3 and NH4Ac, ammonium ion concentration and the reaction time. The results reveal that the molar ratio of NH4HCO3 and NH4Ac strongly influenced the morphology and size of magnetite particles, even could decide the kind of architecture including solid, hollow and porous to form. Particularly, ammonium ion molar concentration plays a significant role in controlling size and magnetic property for magnetite particles. Simultaneously, prolonging the reaction time is beneficial to the magnetite particles growth and inner space escalation with altered reaction time at a certain concentration of ammonium and molar ratio of NH4HCO3 and NH4Ac. Such a design conception of dual gas-bubble-assistance used here is promisingly positive and significant for hollow magnetic particles fabrication and may be extended to other nano-scale hollow construction. PMID:22400226

  9. Dual gas-bubble-assisted solvothermal synthesis of magnetite with tunable size and structure.

    PubMed

    He, Quanguo; Wu, Zhaohui; Huang, Chunyan

    2011-10-01

    We present a facile solvothermal approach by employing ammonium bicarbonate (NH4HCO3) and ammonium acetate (NH4Ac) as dual gas-bubble-generating structure-directing agent to produce of magnetite (Fe3O4) particles with tunable size ranging from 90 nm to 400 nm and controllable structures including porous and hollow construction. The size, morphology and structure of the final products are achieved by simple adjustment of the molar ratio of NH4HCO3 and NH4Ac, ammonium ion concentration and the reaction time. The results reveal that the molar ratio of NH4HCO3 and NH4Ac strongly influenced the morphology and size of magnetite particles, even could decide the kind of architecture including solid, hollow and porous to form. Particularly, ammonium ion molar concentration plays a significant role in controlling size and magnetic property for magnetite particles. Simultaneously, prolonging the reaction time is beneficial to the magnetite particles growth and inner space escalation with altered reaction time at a certain concentration of ammonium and molar ratio of NH4HCO3 and NH4Ac. Such a design conception of dual gas-bubble-assistance used here is promisingly positive and significant for hollow magnetic particles fabrication and may be extended to other nano-scale hollow construction.

  10. Lightweight polyester composites. [Microcellular structure of @ 10-. mu. m-size bubbles

    SciTech Connect

    Youn Jae Ryoun.

    1984-01-01

    A new method of producing lightweight polyester composites (LPC) is developed to replace the conventional short-fiber composites such as SMC (Sheet Molding Compound) and BMC (Bulk Molding Compound). The LPC has a microcellular structure which consists of about 10-{mu}m-size bubbles. By substituting the microcells for the heavy particulate fillers, the weight of the composites is reduced by 30% to 40% without any loss in the strength of material. The specific modulus and strength are improved remarkably. The microcellular foam was produced by an uncoupled process: supersaturation of the polyester resin with nitrogen and dielectric curing of the resin. Bubble nucleation rate and bubble growth were controlled independently by the uncoupled process. Mechanical behavior of the microcellular composite was examined and compared to that of a conventional SMC. The flexural strength of the lightweight composite is almost the same as that of SMC. But specific flexural strength is about 80% larger than that of SMC because of the large weight reduction. Toughness is improved significantly and the specific toughness becomes even larger.

  11. Direct AFM force measurements between air bubbles in aqueous monodisperse sodium poly(styrene sulfonate) solutions.

    PubMed

    Browne, Christine; Tabor, Rico F; Grieser, Franz; Dagastine, Raymond R

    2015-08-01

    Structural forces play an important role in the rheology, processing and stability of colloidal systems and complex fluids, with polyelectrolytes representing a key class of structuring colloids. Here, we explore the interactions between soft colloids, in the form of air bubbles, in solutions of monodisperse sodium poly(styrene sulfonate) as a model polyelectrolyte. It is found that by self-consistently modelling the force oscillations due to structuring of the polymer chains along with deformation of the bubbles, it is possible to precisely predict the interaction potential between approaching bubbles. In line with polyelectrolyte scaling theory, two distinct regimes of behaviour are seen, corresponding to dilute and semi-dilute polymer solutions. It is also seen that by blending monodisperse systems to give a bidisperse sample, the interaction forces between soft colloids can be controlled with a high degree of precision. At increasing bubble collision velocity, it is revealed that hydrodynamic flow overwhelms oscillatory structural interactions, showing the important disparity between equilibrium behaviour and dynamic interactions.

  12. Effect of bubble size and density on methane conversion to hydrate

    SciTech Connect

    Leske, J.; Taylor, C.E.; Ladner, E.P.

    2007-03-01

    Research is underway at NETL to understand the physical properties of methane hydrates. One area of investigation is the storage of methane as methane hydrates. An economical and efficient means of storing methane in hydrates opens many commercial opportunities such as transport of stranded gas, off-peak storage of line gas, etc.We have observed during our investigations that the ability to convert methane to methane hydrate is enhanced by foaming of the methane–water solution using a surfactant. The density of the foam, along with the bubble size, is important in the conversion of methane to methane hydrate.

  13. An experimental study on resonance of oscillating air/vapor bubbles in water using a two-frequency acoustic apparatus

    NASA Astrophysics Data System (ADS)

    Ohsaka, K.

    2003-05-01

    A two-frequency acoustic apparatus is employed to study the growth behavior of vapor-saturated bubbles driven in a volumetric mode. A unique feature of the apparatus is its capability of trapping a bubble by an ultrasonic standing wave while independently driving it into oscillations by a second lower-frequency acoustic wave. It is observed that the growing vapor bubbles exhibit a periodic shape transition between the volumetric and shape modes due to resonant coupling. In order to explain this observation, we performed an experimental investigation on resonant coupling of air bubbles and obtained the following results: First, the induced shape oscillations are actually a mixed mode that contains the volume component, thus, vapor bubbles can grow while they exhibit shape oscillations. Second, the acoustically levitated bubbles are deformed and therefore, degeneracy in resonant frequency is partially removed. As a result, the vapor bubbles exhibit the shape oscillations in both the axisymmetric mode and asymmetric (three-dimensional) modes. Nonlinear effects in addition to the frequency shift and split due to deformation creates overlapping of the coupling ranges for different modes, which leads to the continuous shape oscillations above a certain bubble radius as the bubble grows.

  14. Interfacial structures of confined air-water two-phase bubbly flow

    SciTech Connect

    Kim, S.; Ishii, M.; Wu, Q.; McCreary, D.; Beus, S.G.

    2000-08-01

    The interfacial structure of the two-phase flows is of great importance in view of theoretical modeling and practical applications. In the present study, the focus is made on obtaining detailed local two-phase parameters in the air-water bubbly flow in a rectangular vertical duct using the double-sensor conductivity probe. The characteristic wall-peak is observed in the profiles of the interracial area concentration and the void fraction. The development of the interfacial area concentration along the axial direction of the flow is studied in view of the interfacial area transport and bubble interactions. The experimental data is compared with the drift flux model with C{sub 0} = 1.35.

  15. Trapping of Sodium Dodecyl Sulfate at the Air-Water Interface of Oscillating Bubbles.

    PubMed

    Corti, Mario; Pannuzzo, Martina; Raudino, Antonio

    2015-06-16

    We report that at very low initial bulk concentrations, a couple of hundred times below the critical micellar concentration (CMC), anionic surfactant sodium dodecyl sulfate (SDS) adsorbed at the air-water interface of a gas bubble cannot be removed, on the time scale of the experiment (hours), when the surrounding solution is gently replaced by pure water. Extremely sensitive interferometric measurements of the resonance frequency of the bubble-forced oscillations give precise access to the concentration of the surfactant monolayer. The bulk-interface dynamic exchange of SDS molecules is shown to be inhibited below a concentration which we believe refers to a kind of gas-liquid phase transition of the surface monolayer. Above this threshold we recover the expected concentration-dependent desorption. The experimental observations are interpreted within simple energetic considerations supported by molecular dynamics (MD) calculations. PMID:26039913

  16. Protective effects of Healon and Occucoat against air bubble endothelial damage during ultrasonic agitation of the anterior chamber.

    PubMed

    Monson, M C; Tamura, M; Mamalis, N; Olson, R J; Olson, R J

    1991-09-01

    An important aspect of any new viscoelastic substance is the corneal endothelial protection. We compared the protective effects of sodium hyaluronate (Healon) and hydroxypropylmethylcellulose (Occucoat) by introducing a controlled volume of air bubbles into the anterior chamber of human eye bank eyes during ultrasonic agitation of the anterior chamber. Eight eyes received Healon and 11 eyes received Occucoat. Damage to endothelial cells in the central cornea was quantified by vital staining. Endothelial damage averaged 4.5% in eyes in which no viscoelastic was used (positive control); damage was 0.4% in eyes in which a viscoelastic was injected but no air bubbles were introduced (negative control). We found that endothelial damage averaged 4.25% in specimens that received air plus Healon and 1.4% in specimens that received air plus Occucoat. Occucoat appeared to have somewhat better protective effects than Healon against air bubble damage to the corneal endothelium during ultrasonic agitation of the anterior chamber.

  17. Experiments of air bubbles impacting a rigid wall in tap water

    NASA Astrophysics Data System (ADS)

    Pelletier, Etienne; Béguin, Cédric; Étienne, Stéphane

    2015-12-01

    Trajectory and impact dynamics of bubbles in tap water were studied. Results confirm that bubbles with identical radii can be classified in two categories: fast bubbles and slow bubbles. Each category of bubble can describe zig-zag or helical motion. The aspect ratio and terminal velocity of a bubble depend on its radius and category. Restitution relations are also presented for the two categories of bubble after impact with an horizontal wall. With these relations, the state of a bubble after rebound can be predicted from its state before rebound. The aspect ratio before rebound of the bubble is found to play a key role in the dynamics of the impacts.

  18. Importance of air bubbles in the core of coated pellets: Synchrotron X-ray microtomography allows for new insights.

    PubMed

    Fahier, J; Muschert, S; Fayard, B; Velghe, C; Byrne, G; Doucet, J; Siepmann, F; Siepmann, J

    2016-09-10

    High-resolution X-ray microtomography was used to get deeper insight into the underlying mass transport mechanisms controlling drug release from coated pellets. Sugar starter cores were layered with propranolol HCl and subsequently coated with Kollicoat SR, plasticized with 10% TEC. Importantly, synchrotron X-ray computed microtomography (SR-μCT) allowed direct, non-invasive monitoring of crack formation in the film coatings upon exposure to the release medium. Propranolol HCl, as well as very small sugar particles from the pellets' core, were expulsed through these cracks into the surrounding bulk fluid. Interestingly, SR-μCT also revealed the existence of numerous tiny, air-filled pores (varying in size and shape) in the pellet cores before exposure to the release medium. Upon water penetration into the system, the contents of the pellet cores became semi-solid/liquid. Consequently, the air-pockets became mobile and fused together. They steadily increased in size (and decreased in number). Importantly, "big" air bubbles were often located in close vicinity of a crack within the film coating. Thus, they play a potentially crucial role for the control of drug release from coated pellets. PMID:27374626

  19. Measurement and modeling on hydrodynamic forces and deformation of an air bubble approaching a solid sphere in liquids.

    PubMed

    Shahalami, Mansoureh; Wang, Louxiang; Wu, Chu; Masliyah, Jacob H; Xu, Zhenghe; Chan, Derek Y C

    2015-03-01

    The interaction between bubbles and solid surfaces is central to a broad range of industrial and biological processes. Various experimental techniques have been developed to measure the interactions of bubbles approaching solids in a liquid. A main challenge is to accurately and reliably control the relative motion over a wide range of hydrodynamic conditions and at the same time to determine the interaction forces, bubble-solid separation and bubble deformation. Existing experimental methods are able to focus only on one of the aspects of this problem, mostly for bubbles and particles with characteristic dimensions either below 100 μm or above 1 cm. As a result, either the interfacial deformations are measured directly with the forces being inferred from a model, or the forces are measured directly with the deformations to be deduced from the theory. The recently developed integrated thin film drainage apparatus (ITFDA) filled the gap of intermediate bubble/particle size ranges that are commonly encountered in mineral and oil recovery applications. Equipped with side-view digital cameras along with a bimorph cantilever as force sensor and speaker diaphragm as the driver for bubble to approach a solid sphere, the ITFDA has the capacity to measure simultaneously and independently the forces and interfacial deformations as a bubble approaches a solid sphere in a liquid. Coupled with the thin liquid film drainage modeling, the ITFDA measurement allows the critical role of surface tension, fluid viscosity and bubble approach speed in determining bubble deformation (profile) and hydrodynamic forces to be elucidated. Here we compare the available methods of studying bubble-solid interactions and demonstrate unique features and advantages of the ITFDA for measuring both forces and bubble deformations in systems of Reynolds numbers as high as 10. The consistency and accuracy of such measurement are tested against the well established Stokes-Reynolds-Young-Laplace model

  20. Measurement and modeling on hydrodynamic forces and deformation of an air bubble approaching a solid sphere in liquids.

    PubMed

    Shahalami, Mansoureh; Wang, Louxiang; Wu, Chu; Masliyah, Jacob H; Xu, Zhenghe; Chan, Derek Y C

    2015-03-01

    The interaction between bubbles and solid surfaces is central to a broad range of industrial and biological processes. Various experimental techniques have been developed to measure the interactions of bubbles approaching solids in a liquid. A main challenge is to accurately and reliably control the relative motion over a wide range of hydrodynamic conditions and at the same time to determine the interaction forces, bubble-solid separation and bubble deformation. Existing experimental methods are able to focus only on one of the aspects of this problem, mostly for bubbles and particles with characteristic dimensions either below 100 μm or above 1 cm. As a result, either the interfacial deformations are measured directly with the forces being inferred from a model, or the forces are measured directly with the deformations to be deduced from the theory. The recently developed integrated thin film drainage apparatus (ITFDA) filled the gap of intermediate bubble/particle size ranges that are commonly encountered in mineral and oil recovery applications. Equipped with side-view digital cameras along with a bimorph cantilever as force sensor and speaker diaphragm as the driver for bubble to approach a solid sphere, the ITFDA has the capacity to measure simultaneously and independently the forces and interfacial deformations as a bubble approaches a solid sphere in a liquid. Coupled with the thin liquid film drainage modeling, the ITFDA measurement allows the critical role of surface tension, fluid viscosity and bubble approach speed in determining bubble deformation (profile) and hydrodynamic forces to be elucidated. Here we compare the available methods of studying bubble-solid interactions and demonstrate unique features and advantages of the ITFDA for measuring both forces and bubble deformations in systems of Reynolds numbers as high as 10. The consistency and accuracy of such measurement are tested against the well established Stokes-Reynolds-Young-Laplace model

  1. Observations of internal flow inside an evaporating nanofluid sessile droplet in the presence of an entrapped air bubble

    NASA Astrophysics Data System (ADS)

    Shin, Dong Hwan; Allen, Jeffrey S.; Lee, Seong Hyuk; Choi, Chang Kyoung

    2016-09-01

    Using a unique, near-field microscopy technique, fringe patterns and nanoparticle motions are visualized immediately following a nanofluid droplet deposition on a glass substrate in which an air bubble is entrapped. The nanofluid consists of DI-water, 0.10% Aluminum Oxide nanoparticles with an average diameter of 50 nm, and 0.0005% yellow-green polystyrene fluorescent particles of 1 μm diameter. High-speed, fluorescent-mode confocal imaging enables investigation of depth-wise sectioned particle movements in the nanofluid droplet inside which a bubble is entrapped. The static contact angle is increased when a bubble is applied. In the presence of the bubble in the droplet, the observed flow toward the center of the droplet is opposite to the flow observed in a droplet without the bubble. When the bubble is present, the evaporation process is retarded. Also, random motion is observed in the contact line region instead of the typical evaporation-driven flow toward the droplet edge. Once the bubble bursts, however, the total evaporation time decreases due to the change in the contact line characteristics. Moreover, the area of fringe patterns beneath the bubble increases with time. Discussed herein is a unique internal flow that has not been observed in nanofluid droplet evaporation.

  2. Observations of internal flow inside an evaporating nanofluid sessile droplet in the presence of an entrapped air bubble.

    PubMed

    Shin, Dong Hwan; Allen, Jeffrey S; Lee, Seong Hyuk; Choi, Chang Kyoung

    2016-01-01

    Using a unique, near-field microscopy technique, fringe patterns and nanoparticle motions are visualized immediately following a nanofluid droplet deposition on a glass substrate in which an air bubble is entrapped. The nanofluid consists of DI-water, 0.10% Aluminum Oxide nanoparticles with an average diameter of 50 nm, and 0.0005% yellow-green polystyrene fluorescent particles of 1 μm diameter. High-speed, fluorescent-mode confocal imaging enables investigation of depth-wise sectioned particle movements in the nanofluid droplet inside which a bubble is entrapped. The static contact angle is increased when a bubble is applied. In the presence of the bubble in the droplet, the observed flow toward the center of the droplet is opposite to the flow observed in a droplet without the bubble. When the bubble is present, the evaporation process is retarded. Also, random motion is observed in the contact line region instead of the typical evaporation-driven flow toward the droplet edge. Once the bubble bursts, however, the total evaporation time decreases due to the change in the contact line characteristics. Moreover, the area of fringe patterns beneath the bubble increases with time. Discussed herein is a unique internal flow that has not been observed in nanofluid droplet evaporation. PMID:27615999

  3. Observations of internal flow inside an evaporating nanofluid sessile droplet in the presence of an entrapped air bubble

    PubMed Central

    Shin, Dong Hwan; Allen, Jeffrey S.; Lee, Seong Hyuk; Choi, Chang Kyoung

    2016-01-01

    Using a unique, near-field microscopy technique, fringe patterns and nanoparticle motions are visualized immediately following a nanofluid droplet deposition on a glass substrate in which an air bubble is entrapped. The nanofluid consists of DI-water, 0.10% Aluminum Oxide nanoparticles with an average diameter of 50 nm, and 0.0005% yellow-green polystyrene fluorescent particles of 1 μm diameter. High-speed, fluorescent-mode confocal imaging enables investigation of depth-wise sectioned particle movements in the nanofluid droplet inside which a bubble is entrapped. The static contact angle is increased when a bubble is applied. In the presence of the bubble in the droplet, the observed flow toward the center of the droplet is opposite to the flow observed in a droplet without the bubble. When the bubble is present, the evaporation process is retarded. Also, random motion is observed in the contact line region instead of the typical evaporation-driven flow toward the droplet edge. Once the bubble bursts, however, the total evaporation time decreases due to the change in the contact line characteristics. Moreover, the area of fringe patterns beneath the bubble increases with time. Discussed herein is a unique internal flow that has not been observed in nanofluid droplet evaporation. PMID:27615999

  4. Influence of water depth on the sound generated by air-bubble vibration in the water musical instrument

    NASA Astrophysics Data System (ADS)

    Ohuchi, Yoshito; Nakazono, Yoichi

    2014-06-01

    We have developed a water musical instrument that generates sound by the falling of water drops within resonance tubes. The instrument can give people who hear it the healing effect inherent in the sound of water. The sound produced by falling water drops arises from air- bubble vibrations. To investigate the impact of water depth on the air-bubble vibrations, we conducted experiments at varying values of water pressure and nozzle shape. We found that air-bubble vibration frequency does not change at a water depth of 50 mm or greater. Between 35 and 40 mm, however, the frequency decreases. At water depths of 30 mm or below, the air-bubble vibration frequency increases. In our tests, we varied the nozzle diameter from 2 to 4 mm. In addition, we discovered that the time taken for air-bubble vibration to start after the water drops start falling is constant at water depths of 40 mm or greater, but slower at depths below 40 mm.

  5. Measuring forces and spatiotemporal evolution of thin water films between an air bubble and solid surfaces of different hydrophobicity.

    PubMed

    Shi, Chen; Cui, Xin; Xie, Lei; Liu, Qingxia; Chan, Derek Y C; Israelachvili, Jacob N; Zeng, Hongbo

    2015-01-27

    A combination of atomic force microscopy (AFM) and reflection interference contrast microscopy (RICM) was used to measure simultaneously the interaction force and the spatiotemporal evolution of the thin water film between a bubble in water and mica surfaces with varying degrees of hydrophobicity. Stable films, supported by the repulsive van der Waals-Casimir-Lifshitz force were always observed between air bubble and hydrophilic mica surfaces (water contact angle, θ(w) < 5°) whereas bubble attachment occurred on hydrophobized mica surfaces. A theoretical model, based on the Reynolds lubrication theory and the augmented Young-Laplace equation including the effects of disjoining pressure, provided excellent agreement with experiment results, indicating the essential physics involved in the interaction between air bubble and solid surfaces can be elucidated. A hydrophobic interaction free energy per unit area of the form: WH(h) = -γ(1 - cos θ(w))exp(-h/D(H)) can be used to quantify the attraction between bubble and hydrophobized solid substrate at separation, h, with γ being the surface tension of water. For surfaces with water contact angle in the range 45° < θ(w) < 90°, the decay length DH varied between 0.8 and 1.0 nm. This study quantified the hydrophobic interaction in asymmetric system between air bubble and hydrophobic surfaces, and provided a feasible method for synchronous measurements of the interaction forces with sub-nN resolution and the drainage dynamics of thin films down to nm thickness.

  6. Measuring forces and spatiotemporal evolution of thin water films between an air bubble and solid surfaces of different hydrophobicity.

    PubMed

    Shi, Chen; Cui, Xin; Xie, Lei; Liu, Qingxia; Chan, Derek Y C; Israelachvili, Jacob N; Zeng, Hongbo

    2015-01-27

    A combination of atomic force microscopy (AFM) and reflection interference contrast microscopy (RICM) was used to measure simultaneously the interaction force and the spatiotemporal evolution of the thin water film between a bubble in water and mica surfaces with varying degrees of hydrophobicity. Stable films, supported by the repulsive van der Waals-Casimir-Lifshitz force were always observed between air bubble and hydrophilic mica surfaces (water contact angle, θ(w) < 5°) whereas bubble attachment occurred on hydrophobized mica surfaces. A theoretical model, based on the Reynolds lubrication theory and the augmented Young-Laplace equation including the effects of disjoining pressure, provided excellent agreement with experiment results, indicating the essential physics involved in the interaction between air bubble and solid surfaces can be elucidated. A hydrophobic interaction free energy per unit area of the form: WH(h) = -γ(1 - cos θ(w))exp(-h/D(H)) can be used to quantify the attraction between bubble and hydrophobized solid substrate at separation, h, with γ being the surface tension of water. For surfaces with water contact angle in the range 45° < θ(w) < 90°, the decay length DH varied between 0.8 and 1.0 nm. This study quantified the hydrophobic interaction in asymmetric system between air bubble and hydrophobic surfaces, and provided a feasible method for synchronous measurements of the interaction forces with sub-nN resolution and the drainage dynamics of thin films down to nm thickness. PMID:25514470

  7. Mechanism of bubble detachment from vibrating walls

    SciTech Connect

    Kim, Dongjun; Park, Jun Kwon Kang, Kwan Hyoung; Kang, In Seok

    2013-11-15

    We discovered a previously unobserved mechanism by which air bubbles detach from vibrating walls in glasses containing water. Chaotic oscillation and subsequent water jets appeared when a wall vibrated at greater than a critical level. Wave forms were developed at water-air interface of the bubble by the wall vibration, and water jets were formed when sufficiently grown wave-curvatures were collapsing. Droplets were pinched off from the tip of jets and fell to the surface of the glass. When the solid-air interface at the bubble-wall attachment point was completely covered with water, the bubble detached from the wall. The water jets were mainly generated by subharmonic waves and were generated most vigorously when the wall vibrated at the volume resonant frequency of the bubble. Bubbles of specific size can be removed by adjusting the frequency of the wall's vibration.

  8. Pachymetry-guided intrastromal air injection ("pachy-bubble") for deep anterior lamellar keratoplasty.

    PubMed

    Ghanem, Ramon C; Ghanem, Marcielle A

    2012-09-01

    To evaluate an innovative technique for intrastromal air injection to achieve deep anterior lamellar keratoplasty (DALK) with bare Descemet membrane (DM). Thirty-four eyes with anterior corneal pathology, including 27 with keratoconus, underwent DALK. After 400 μm trephination with a suction trephine, ultrasound pachymetry was performed 0.8 mm internally from the trephination groove in the 11 to 1 o'clock position. In this area, a 2-mm incision was created, parallel to the groove, with a micrometer diamond knife calibrated to 90% depth of the thinnest measurement. A cannula was inserted through the incision and 0.5 mL of air was injected to dissect the DM from the stroma. After peripheral paracentesis, anterior keratectomy was carried out to bare the DM. A 0.25-mm oversized graft was sutured in place. Overall, 94.1% of eyes achieved DALK. Bare DM was achieved in 30 eyes, and a pre-DM dissection was performed in 2 eyes. Air injection was successful in detaching the DM (achieving the big bubble) in 88.2% of the eyes. In keratoconus eyes, the rate was 88.9%. All cases but one required a single air injection to achieve DM detachment. Microperforations occurred in 5 cases: 3 during manual layer-by-layer dissection after air injection failed to detach the DM, 1 during removal of the residual stroma after big-bubble formation, and 1 during the diamond knife incision. Two cases (5.9%) were converted to penetrating keratoplasty because of macroperforations. The technique was reproducible, safe, and highly effective in promoting DALK with bare DM. PMID:22367050

  9. Enriched Air Nitrox Breathing Reduces Venous Gas Bubbles after Simulated SCUBA Diving: A Double-Blind Cross-Over Randomized Trial

    PubMed Central

    Souday, Vincent; Koning, Nick J.; Perez, Bruno; Grelon, Fabien; Mercat, Alain; Boer, Christa; Seegers, Valérie; Radermacher, Peter; Asfar, Pierre

    2016-01-01

    Objective To test the hypothesis whether enriched air nitrox (EAN) breathing during simulated diving reduces decompression stress when compared to compressed air breathing as assessed by intravascular bubble formation after decompression. Methods Human volunteers underwent a first simulated dive breathing compressed air to include subjects prone to post-decompression venous gas bubbling. Twelve subjects prone to bubbling underwent a double-blind, randomized, cross-over trial including one simulated dive breathing compressed air, and one dive breathing EAN (36% O2) in a hyperbaric chamber, with identical diving profiles (28 msw for 55 minutes). Intravascular bubble formation was assessed after decompression using pulmonary artery pulsed Doppler. Results Twelve subjects showing high bubble production were included for the cross-over trial, and all completed the experimental protocol. In the randomized protocol, EAN significantly reduced the bubble score at all time points (cumulative bubble scores: 1 [0–3.5] vs. 8 [4.5–10]; P < 0.001). Three decompression incidents, all presenting as cutaneous itching, occurred in the air versus zero in the EAN group (P = 0.217). Weak correlations were observed between bubble scores and age or body mass index, respectively. Conclusion EAN breathing markedly reduces venous gas bubble emboli after decompression in volunteers selected for susceptibility for intravascular bubble formation. When using similar diving profiles and avoiding oxygen toxicity limits, EAN increases safety of diving as compared to compressed air breathing. Trial Registration ISRCTN 31681480 PMID:27163253

  10. Observations of the collapses and rebounds of millimeter-sized lithotripsy bubbles.

    PubMed

    Kreider, Wayne; Crum, Lawrence A; Bailey, Michael R; Sapozhnikov, Oleg A

    2011-11-01

    Bubbles excited by lithotripter shock waves undergo a prolonged growth followed by an inertial collapse and rebounds. In addition to the relevance for clinical lithotripsy treatments, such bubbles can be used to study the mechanics of inertial collapses. In particular, both phase change and diffusion among vapor and noncondensable gas molecules inside the bubble are known to alter the collapse dynamics of individual bubbles. Accordingly, the role of heat and mass transport during inertial collapses is explored by experimentally observing the collapses and rebounds of lithotripsy bubbles for water temperatures ranging from 20 to 60 °C and dissolved gas concentrations from 10 to 85% of saturation. Bubble responses were characterized through high-speed photography and acoustic measurements that identified the timing of individual bubble collapses. Maximum bubble diameters before and after collapse were estimated and the corresponding ratio of volumes was used to estimate the fraction of energy retained by the bubble through collapse. The rebounds demonstrated statistically significant dependencies on both dissolved gas concentration and temperature. In many observations, liquid jets indicating asymmetric bubble collapses were visible. Bubble rebounds were sensitive to these asymmetries primarily for water conditions corresponding to the most dissipative collapses.

  11. Observations of the collapses and rebounds of millimeter-sized lithotripsy bubbles

    PubMed Central

    Kreider, Wayne; Crum, Lawrence A.; Bailey, Michael R.; Sapozhnikov, Oleg A.

    2011-01-01

    Bubbles excited by lithotripter shock waves undergo a prolonged growth followed by an inertial collapse and rebounds. In addition to the relevance for clinical lithotripsy treatments, such bubbles can be used to study the mechanics of inertial collapses. In particular, both phase change and diffusion among vapor and noncondensable gas molecules inside the bubble are known to alter the collapse dynamics of individual bubbles. Accordingly, the role of heat and mass transport during inertial collapses is explored by experimentally observing the collapses and rebounds of lithotripsy bubbles for water temperatures ranging from 20 to 60 °C and dissolved gas concentrations from 10 to 85% of saturation. Bubble responses were characterized through high-speed photography and acoustic measurements that identified the timing of individual bubble collapses. Maximum bubble diameters before and after collapse were estimated and the corresponding ratio of volumes was used to estimate the fraction of energy retained by the bubble through collapse. The rebounds demonstrated statistically significant dependencies on both dissolved gas concentration and temperature. In many observations, liquid jets indicating asymmetric bubble collapses were visible. Bubble rebounds were sensitive to these asymmetries primarily for water conditions corresponding to the most dissipative collapses. PMID:22088027

  12. Effects of coupling, bubble size, and spatial arrangement on chaotic dynamics of microbubble cluster in ultrasonic fields.

    PubMed

    Dzaharudin, Fatimah; Suslov, Sergey A; Manasseh, Richard; Ooi, Andrew

    2013-11-01

    Microbubble clustering may occur when bubbles become bound to targeted surfaces or are grouped by acoustic radiation forces in medical diagnostic applications. The ability to identify the formation of such clusters from the ultrasound echoes may be of practical use. Nonlinear numerical simulations were performed on clusters of microbubbles modeled by the modified Keller-Miksis equations. Encapsulated bubbles were considered to mimic practical applications but the aim of the study was to examine the effects of inter-bubble spacing and bubble size on the dynamical behavior of the cluster and to see if chaotic or bifurcation characteristics could be helpful in diagnostics. It was found that as microbubbles were clustered closer together, their oscillation amplitude for a given applied ultrasound power was reduced, and for inter-bubble spacing smaller than about ten bubble radii nonlinear subharmonics and ultraharmonics were eliminated. For clustered microbubbles, as for isolated microbubbles, an increase in the applied acoustic power caused bifurcations and transition to chaos. The bifurcations preceding chaotic behavior were identified by Floquet analysis and confirmed to be of the period-doubling type. It was found that as the number of microbubbles in a cluster increased, regularization occurred at lower ultrasound power and more windows of order appeared.

  13. Scale dependence of bubble creation mechanisms in breaking waves.

    PubMed

    Deane, Grant B; Stokes, M Dale

    2002-08-22

    Breaking ocean waves entrain air bubbles that enhance air-sea gas flux, produce aerosols, generate ambient noise and scavenge biological surfactants. The size distribution of the entrained bubbles is the most important factor in controlling these processes, but little is known about bubble properties and formation mechanisms inside whitecaps. We have measured bubble size distributions inside breaking waves in the laboratory and in the open ocean, and provide a quantitative description of bubble formation mechanisms in the laboratory. We find two distinct mechanisms controlling the size distribution, depending on bubble size. For bubbles larger than about 1 mm, turbulent fragmentation determines bubble size distribution, resulting in a bubble density proportional to the bubble radius to the power of -10/3. Smaller bubbles are created by jet and drop impact on the wave face, with a -3/2 power-law scaling. The length scale separating these processes is the scale where turbulent fragmentation ceases, also known as the Hinze scale. Our results will have important implications for the study of air-sea gas transfer.

  14. Variation of Local Surface Properties of an Air Bubble in Water Caused by Its Interaction with Another Surface.

    PubMed

    Del Castillo, Lorena A; Ohnishi, Satomi; Carnie, Steven L; Horn, Roger G

    2016-08-01

    Surface and hydrodynamic forces acting between an air bubble and a flat mica surface in surfactant-free water and in 1 mM KCl solution have been investigated by observing film drainage using a modified surface force apparatus (SFA). The bubble shapes observed with the SFA are compared to theoretical profiles computed from a model that considers hydrodynamic interactions, surface curvature, and disjoining pressure arising from electrical double layer and van der Waals interactions. It is shown that the bubble experiences double-layer forces, and a final equilibrium wetting film between the bubble and mica surfaces is formed by van der Waals repulsion. However, comparison with the theoretical model reveals that the double-layer forces are not simply a function of surface separation. Rather, they appear to be changed by one of more of the following: the bubble's dynamic deformation, its proximity to another surface, and/or hydrodynamic flow in the aqueous film that separate them. The same comments apply to the hydrodynamic mobility or immobility of the air-water interface. Together the results show that the bubble's surface is "soft" in two senses: in addition to its well-known deformability, its local properties are affected by weak external forces, in this case the electrical double-layer interactions with a nearby surface and hydrodynamic flow in the neighboring aqueous phase. PMID:27391417

  15. Acoustic Cluster Therapy: In Vitro and Ex Vivo Measurement of Activated Bubble Size Distribution and Temporal Dynamics.

    PubMed

    Healey, Andrew John; Sontum, Per Christian; Kvåle, Svein; Eriksen, Morten; Bendiksen, Ragnar; Tornes, Audun; Østensen, Jonny

    2016-05-01

    Acoustic cluster technology (ACT) is a two-component, microparticle formulation platform being developed for ultrasound-mediated drug delivery. Sonazoid microbubbles, which have a negative surface charge, are mixed with micron-sized perfluoromethylcyclopentane droplets stabilized with a positively charged surface membrane to form microbubble/microdroplet clusters. On exposure to ultrasound, the oil undergoes a phase change to the gaseous state, generating 20- to 40-μm ACT bubbles. An acoustic transmission technique is used to measure absorption and velocity dispersion of the ACT bubbles. An inversion technique computes bubble size population with temporal resolution of seconds. Bubble populations are measured both in vitro and in vivo after activation within the cardiac chambers of a dog model, with catheter-based flow through an extracorporeal measurement flow chamber. Volume-weighted mean diameter in arterial blood after activation in the left ventricle was 22 μm, with no bubbles >44 μm in diameter. After intravenous administration, 24.4% of the oil is activated in the cardiac chambers. PMID:26831341

  16. Acoustic Cluster Therapy: In Vitro and Ex Vivo Measurement of Activated Bubble Size Distribution and Temporal Dynamics.

    PubMed

    Healey, Andrew John; Sontum, Per Christian; Kvåle, Svein; Eriksen, Morten; Bendiksen, Ragnar; Tornes, Audun; Østensen, Jonny

    2016-05-01

    Acoustic cluster technology (ACT) is a two-component, microparticle formulation platform being developed for ultrasound-mediated drug delivery. Sonazoid microbubbles, which have a negative surface charge, are mixed with micron-sized perfluoromethylcyclopentane droplets stabilized with a positively charged surface membrane to form microbubble/microdroplet clusters. On exposure to ultrasound, the oil undergoes a phase change to the gaseous state, generating 20- to 40-μm ACT bubbles. An acoustic transmission technique is used to measure absorption and velocity dispersion of the ACT bubbles. An inversion technique computes bubble size population with temporal resolution of seconds. Bubble populations are measured both in vitro and in vivo after activation within the cardiac chambers of a dog model, with catheter-based flow through an extracorporeal measurement flow chamber. Volume-weighted mean diameter in arterial blood after activation in the left ventricle was 22 μm, with no bubbles >44 μm in diameter. After intravenous administration, 24.4% of the oil is activated in the cardiac chambers.

  17. Is mudflow in Sidoarjo, East Java due to the pumping mechanism of hot air bubbles? : Laboratory simulations and field observations

    NASA Astrophysics Data System (ADS)

    Nurhandoko, Bagus Endar B.

    2015-09-01

    Extraordinary mudflow has happened in Sidoarjo, East Java, Indonesia since 2006. This mud comes from the giant crater that is located close to the BJP - 01. Thousands of homes have been submerged due to mudflow. Till today this giant mud crater is still has great strength despite the mud flowing over 8 years. This is a very rare phenomenon in the world. This mud flow mechanism raises big questions, because it has been going on for years, naturally the mudflow will stop by itself because the pressure should be reduced. This research evaluates all aspects of integrated observations, laboratory tests and field observations since the beginning of this ongoing mudflow. Laboratory tests were done by providing hot air bubbles into the fluid inside the inverted funnel showed that the fluid can flow with a high altitude. It is due to the mechanism of buoyant force from air bubbles to the water where the contrast density of the water and the air is quite large. Quantity of air bubbles provides direct effect to the debit of fluid flow. Direct observation in the field, in 2006 and 2007, with TIMNAS and LPPM ITB showed the large number of air bubbles on the surface of the mud craters. Temperature observation on the surface of mud crater is around 98 degree C whereas at greater depth shows the temperature is increasingly rising. This strengthens the hypothesis or proves that the mud pumping mechanism comes from buoyant force of hot air bubbles. Inversion gravity images show that the deep subsurface of main crater is close to volcanic layers or root of Arjuna mountain. Based on the simulation laboratory and field observation data, it can be concluded that the geothermal factor plays a key role in the mudflow mechanism.

  18. Effects of ultrasound frequency and acoustic amplitude on the size of sonochemically active bubbles - Theoretical study.

    PubMed

    Merouani, Slimane; Hamdaoui, Oualid; Rezgui, Yacine; Guemini, Miloud

    2013-05-01

    Numerical simulation of chemical reactions inside an isolated spherical bubble of oxygen has been performed for various ambient bubble radii at different frequencies and acoustic amplitudes to study the effects of these two parameters on the range of ambient radius for an active bubble in sonochemical reactions. The employed model combines the dynamic of bubble collapse with the chemical kinetics of single cavitation bubble. Results from this model were compared with some experimental results presented in the literature and good apparent trends between them were observed. The numerical calculations of this study showed that there always exists an optimal ambient bubble radius at which the production of oxidizing species at the end of the bubble collapse attained their upper limit. It was shown that the range of ambient radius for an active bubble increased with increasing acoustic amplitude and decreased with increasing ultrasound frequency. The optimal ambient radius decreased with increasing frequency. Analysis of curves showing optimal ambient radius versus acoustic amplitude for different ultrasonic frequencies indicated that for 200 and 300kHz, the optimal ambient radius increased linearly with increasing acoustic amplitude up to 3atm. However, slight minima of optimal radius were observed for the curves obtained at 500 and 1000kHz. PMID:23187064

  19. Hydrophobically-associating cationic polymers as micro-bubble surface modifiers in dissolved air flotation for cyanobacteria cell separation.

    PubMed

    Yap, R K L; Whittaker, M; Diao, M; Stuetz, R M; Jefferson, B; Bulmus, V; Peirson, W L; Nguyen, A V; Henderson, R K

    2014-09-15

    Dissolved air flotation (DAF), an effective treatment method for clarifying algae/cyanobacteria-laden water, is highly dependent on coagulation-flocculation. Treatment of algae can be problematic due to unpredictable coagulant demand during blooms. To eliminate the need for coagulation-flocculation, the use of commercial polymers or surfactants to alter bubble charge in DAF has shown potential, termed the PosiDAF process. When using surfactants, poor removal was obtained but good bubble adherence was observed. Conversely, when using polymers, effective cell removal was obtained, attributed to polymer bridging, but polymers did not adhere well to the bubble surface, resulting in a cationic clarified effluent that was indicative of high polymer concentrations. In order to combine the attributes of both polymers (bridging ability) and surfactants (hydrophobicity), in this study, a commercially-available cationic polymer, poly(dimethylaminoethyl methacrylate) (polyDMAEMA), was functionalised with hydrophobic pendant groups of various carbon chain lengths to improve adherence of polymer to a bubble surface. Its performance in PosiDAF was contrasted against commercially-available poly(diallyl dimethyl ammonium chloride) (polyDADMAC). All synthesised polymers used for bubble surface modification were found to produce positively charged bubbles. When applying these cationic micro-bubbles in PosiDAF, in the absence of coagulation-flocculation, cell removals in excess of 90% were obtained, reaching a maximum of 99% cell removal and thus demonstrating process viability. Of the synthesised polymers, the polymer containing the largest hydrophobic functionality resulted in highly anionic treated effluent, suggesting stronger adherence of polymers to bubble surfaces and reduced residual polymer concentrations.

  20. Micro bubbles at interfaces

    NASA Astrophysics Data System (ADS)

    Keshavarzi, Gholamreza; Wang, Anna; Barber, Tracie; Manoharan, Vinothan

    2014-03-01

    The behaviour of a small micron sized bubbles close to an interface is vital to various interface interaction applications in several industries. Previous studies have focused on understanding the behaviour of large millimetric bubbles reaching an interface. Some of these millimetric bubbles are shown to bounce back, while others penetrate and burst on the interface resulting in possible small micron sized bubbles. However, small micron sized bubble may act different. It has been observed that small microbubbles can act as if they are stabilized at the interface without merging to the fluid over the interface. The dynamics of the microbubble adsorption close to an interface has yet to be well understood.In this study we used digital holography microscopy to explore detailed information on the behaviour of the air microbubble at the interface. This study investigates the position and shape of a microbubble with respect to the interface. The dynamic behavior close to the interface along with where the small microbubble is positioned near an interface will help us in understanding the probability of penetration and merging back to the fluid on top.

  1. A characteristic size of approximately 10 Mpc for the ionized bubbles at the end of cosmic reionization.

    PubMed

    Wyithe, J Stuart B; Loeb, Abraham

    2004-11-11

    The first galaxies to appear in the Universe at redshifts z > 20 created ionized bubbles in the intergalactic medium of neutral hydrogen left over from the Big Bang. The ionized bubbles grew with time, surrounding clusters of dwarf galaxies and eventually overlapped quickly throughout the Universe over a narrow redshift interval near z approximately 6. This event signalled the end of the reionization epoch when the Universe was a billion years old. Measuring the size distribution of the bubbles at their final overlap phase is a focus of forthcoming programmes to observe highly redshifted radio emission from atomic hydrogen. Here we show that the combined constraints of cosmic variance and light travel time imply an observed bubble size at the end of the overlap epoch of approximately 10 physical Mpc, and a scatter in the observed redshift of overlap along different lines-of-sight of approximately 0.15. This scatter is consistent with observational constraints from recent spectroscopic data on the farthest known quasars. This implies that future radio experiments should be tuned to a characteristic angular scale of 0.5 degrees and have a minimum frequency bandwidth of approximately 8 MHz for an optimal detection of 21-cm flux fluctuations near the end of reionization.

  2. A characteristic size of approximately 10 Mpc for the ionized bubbles at the end of cosmic reionization.

    PubMed

    Wyithe, J Stuart B; Loeb, Abraham

    2004-11-11

    The first galaxies to appear in the Universe at redshifts z > 20 created ionized bubbles in the intergalactic medium of neutral hydrogen left over from the Big Bang. The ionized bubbles grew with time, surrounding clusters of dwarf galaxies and eventually overlapped quickly throughout the Universe over a narrow redshift interval near z approximately 6. This event signalled the end of the reionization epoch when the Universe was a billion years old. Measuring the size distribution of the bubbles at their final overlap phase is a focus of forthcoming programmes to observe highly redshifted radio emission from atomic hydrogen. Here we show that the combined constraints of cosmic variance and light travel time imply an observed bubble size at the end of the overlap epoch of approximately 10 physical Mpc, and a scatter in the observed redshift of overlap along different lines-of-sight of approximately 0.15. This scatter is consistent with observational constraints from recent spectroscopic data on the farthest known quasars. This implies that future radio experiments should be tuned to a characteristic angular scale of 0.5 degrees and have a minimum frequency bandwidth of approximately 8 MHz for an optimal detection of 21-cm flux fluctuations near the end of reionization. PMID:15538361

  3. Generation of Bubbly Suspensions in Low Gravity

    NASA Technical Reports Server (NTRS)

    Nahra, Henry K.; Hoffmann, Monica I.; Hussey, Sam; Bell, Kimberly R.

    2000-01-01

    Generation of a uniform monodisperse bubbly suspension in low gravity is a rather difficult task because bubbles do not detach as easily as on Earth. Under microgravity, the buoyancy force is not present to detach the bubbles as they are formed from the nozzles. One way to detach the bubbles is to establish a detaching force that helps their detachment from the orifice. The drag force, established by flowing a liquid in a cross or co-flow configuration with respect to the nozzle direction, provides this additional force and helps detach the bubbles as they are being formed. This paper is concerned with studying the generation of a bubbly suspension in low gravity in support of a flight definition experiment titled "Behavior of Rapidly Sheared Bubbly Suspension." Generation of a bubbly suspension, composed of 2 and 3 mm diameter bubbles with a standard deviation <10% of the bubble diameter, was identified as one of the most important engineering/science issues associated with the flight definition experiment. This paper summarizes the low gravity experiments that were conducted to explore various ways of making the suspension. Two approaches were investigated. The first was to generate the suspension via a chemical reaction between the continuous and dispersed phases using effervescent material, whereas the second considered the direct injection of air into the continuous phase. The results showed that the reaction method did not produce the desired bubble size distribution compared to the direct injection of bubbles. However, direct injection of air into the continuous phase (aqueous salt solution) resulted in uniform bubble-diameter distribution with acceptable bubble-diameter standard deviation.

  4. Field-scale tests for determining mixing patterns associated with coarse-bubble air diffuser configurations, Egan Quarry, Illinois

    USGS Publications Warehouse

    Hornewer, N.J.; Johnson, G.P.; Robertson, D.M.; Hondzo, Miki

    1997-01-01

    The U.S. Geological Survey in cooperation with the U.S. Army Corps of Engineers, Chicago District did field-scale tests in August-September 1996 to determine mixing patterns associated with different configurations of coarse-bubble air diffusers. The tests were done in an approximately 13-meter deep quarry near Chicago, Ill. Three-dimensional velocity, water-temperature, dissolved oxygen concentration, and specific-conductivity profiles were collected from locations between approximately 2 to 30 meters from the diffusers for two sets of five test configurations; one set for stratified and one set for destratified conditions in the quarry. The data-collection methods and instrumentation used to characterize mixing patterns and interactions of coarse-bubble diffusers were successful. An extensive data set was collected and is available to calibrate and verify aeration and stratification models, and to characterize basic features of bubble-plume interaction.

  5. Preliminary investigation of air bubbling and dietary sulfur reduction to mitigate hydrogen sulfide and odor from swine waste.

    PubMed

    Clark, O Grant; Morin, Brent; Zhang, Yongcheng; Sauer, Willem C; Feddes, John J R

    2005-01-01

    When livestock manure slurry is agitated, the sudden release of hydrogen sulfide (H(2)S) can raise concentrations to dangerous levels. Low-level air bubbling and dietary S reduction were evaluated as methods for reducing peak H(2)S emissions from swine (Sus scrofa) manure slurry samples. In a first experiment, 15-L slurry samples were stored in bench-scale digesters and continuously bubbled with air at 0 (control), 5, or 10 mL min(-1) for 28 d. The 5-L headspace of each digester was also continuously ventilated at 40 mL min(-1) and the mean H(2)S concentration in the outlet air was <10 microL L(-1). On Day 28, the slurry was agitated suddenly. The peak H(2)S concentration exceeded instrument range (>120 microL L(-1)) from the control treatment, and was 47 and 3.4 microL L(-1) for the 5 and 10 mL min(-1) treatments, respectively. In a second experiment, individually penned barrows were fed rations with dietary S concentrations of 0.34, 0.24, and 0.15% (w/w). Slurry derived from each diet was bubbled with air in bench-scale digesters, as before, at 10 mL min(-1) for 12 d and the mean H(2)S concentration in the digester outlet air was 11 microL L(-1). On Day 12, the slurry was agitated but the H(2)S emissions did not change significantly. Both low-level bubbling of air through slurry and dietary S reduction appear to be viable methods for reducing peak H(2)S emissions from swine manure slurry at a bench scale, but these approaches must be validated at larger scales. PMID:16221821

  6. Prediction of Bubble Growth and Size Distribution in Polymer Foaming Based on a New Heterogeneous Nucleation Model

    NASA Astrophysics Data System (ADS)

    Feng, Jimmy; Bertelo, Christopher A.

    2003-11-01

    The cell size distribution in a thermoplastic foam to a large extent determines its mechanical and thermal properties. It is difficult to predict because of the many physical processes involved, each affected in turn by an array of factors and parameters. In this work, we consider foaming by a physical blowing agent dissolved in a polymer melt that contains particulate nucleating agents. We propose a nucleation model based on the concept that heterogeneous nucleation originates from pre-existing microvoids on the solid particles. Once nucleated, the bubbles grow as the dissolved gas diffuses through the polymer melt into the bubbles, a processes that couples mass and momentum transport. By using the Oldroyd-B constitutive equation, we explore the role of melt viscoelasticity in this process. Finally, we integrate the nucleation and growth models to predict the evolution of the bubble size distribution. Using the physical and operating parameters of a recent foam extrusion experiment, we are able to predict a cell size distribution in reasonable agreement with measurements.

  7. Cold Heat Release Characteristics of Solidified Oil Droplet-Water Solution Latent Heat Emulsion by Air Bubbles

    NASA Astrophysics Data System (ADS)

    Inaba, Hideo; Morita, Shin-Ichi

    The present work investigates the cold heat-release characteristics of the solidified oil droplets (tetradecane, C14H30, freezing point 278.9 K)/water solution emulsion as a latent heat-storage material having a low melting point. An air bubbles-emulsion direct-contact heat exchange method is selected for the cold heat-results from the solidified oil droplet-emulsion layer. This type of direct-contact method results in the high thermal efficiency. The diameter of air bubbles in the emulsion increases as compared with that in the pure water. The air bubbles blown from a nozzle show a strong mixing behavior during rising in the emulsion. The temperature effectiveness, the sensible heat release time and the latent heat release time have been measured as experimental parameters. The useful nondimensional emulsion level equations for these parameters have been derived in terms of the nondimensional emalsion level expressed the emulsion layer dimensions, Reynolds number for air flow, Stefan number and heat capacity ratio.

  8. Bubble Combustion

    NASA Technical Reports Server (NTRS)

    Corrigan, Jackie

    2004-01-01

    , a computational model developed at Glenn, that simulates the cavitational collapse of a single bubble in a liquid (water) and the subsequent combustion of the gaseous contents inside the bubble. The model solves the time-dependent, compressible Navier-Stokes equations in one-dimension with finite-rate chemical kinetics using the CHEMKIN package. Specifically, parameters such as frequency, pressure, bubble radius, and the equivalence ratio were varied while examining their effect on the maximum temperature, radius, and chemical species. These studies indicate that the radius of the bubble is perhaps the most critical parameter governing bubble combustion dynamics and its efficiency. Based on the results of the parametric studies, we plan on conducting experiments to study the effect of ultrasonic perturbations on the bubble generation process with respect to the bubble radius and size distribution.

  9. The relation between pre-eruptive bubble size distribution, ash particle morphology, and their internal density: Implications to volcanic ash transport and dispersion models

    NASA Astrophysics Data System (ADS)

    Proussevitch, Alexander

    2014-05-01

    Parameterization of volcanic ash transport and dispersion (VATD) models strongly depends on particle morphology and their internal properties. Shape of ash particles affects terminal fall velocities (TFV) and, mostly, dispersion. Internal density combined with particle size has a very strong impact on TFV and ultimately on the rate of ash cloud thinning and particle sedimentation on the ground. Unlike other parameters, internal particle density cannot be measured directly because of the micron scale sizes of fine ash particles, but we demonstrate that it varies greatly depending on the particle size. Small simple type ash particles (fragments of bubble walls, 5-20 micron size) do not contain whole large magmatic bubbles inside and their internal density is almost the same as that of volcanic glass matrix. On the other side, the larger compound type ash particles (>40 microns for silicic fine ashes) always contain some bubbles or the whole spectra of bubble size distribution (BSD), i.e. bubbles of all sizes, bringing their internal density down as compared to simple ash. So, density of the larger ash particles is a function of the void fraction inside them (magmatic bubbles) which, in turn, is controlled by BSD. Volcanic ash is a product of the fragmentation of magmatic foam formed by pre-eruptive bubble population and characterized by BSD. The latter can now be measured from bubble imprints on ash particle surfaces using stereo-scanning electron microscopy (SSEM) and BubbleMaker software developed at UNH, or using traditional high-resolution X-Ray tomography. In this work we present the mathematical and statistical formulation for this problem connecting internal ash density with particle size and BSD, and demonstrate how the TFV of the ash population is affected by variation of particle density.

  10. From Nanomotors to Micromotors: The Influence of the Size of an Autonomous Bubble-Propelled Device upon Its Motion.

    PubMed

    Wang, Hong; Moo, James Guo Sheng; Pumera, Martin

    2016-05-24

    Synthetic autonomously moving nano and micromotors are in the forefront of nanotechnology. Different sizes of nano and micromotors have been prepared, but the systematic study of the influence of their sizes on motion is lacking. We synthesized different sizes of tubular micro/nanomotors by membrane template-assisted electrodeposition. The influence of dimensions on the dynamics of micro/nanotubes was studied at a significantly reduced scale than rolled-up microtubes, down to the nanometer regime. Both the geometric parameters and the chemical environment can affect the dynamics of micro/nanotubes. The bubble size and ejection frequency were investigated in correlation with the velocity of micro/nanotubes. The comparison between different sizes of micro/nanotubes showed that geometric parameters of micro/nanotubes will influence the velocity of micro/nanotubes at moderate fuel concentrations. Furthermore, it also affects the activity of micro/nanotubes at low fuel concentrations and imposes limitations on the velocity at very high fuel concentrations. Nanotubes with nanometer-sized openings need a higher concentration of H2O2 to be activated. Larger tubes can possess a higher absolute value of velocity than smaller tubes, but do not necessarily have a higher velocity by body lengths per unit time. Insight into bubble ejection/propulsion cycle is also provided. The results presented here provide important implications for the consideration of dimensions in the fabrication of tubular micro/nanomotors.

  11. Gas bubbles in fossil amber as possible indicators of the major gas composition of ancient air

    USGS Publications Warehouse

    Berner, R.A.; Landis, G.P.

    1988-01-01

    Gases trapped in Miocene to Upper Cretaceous amber were released by gently crushing the amber under vacuum and were analyzed by quadrupole mass spectrometry. After discounting the possibility that the major gases N2, O2, and CO2 underwent appreciable diffusion and diagenetic exchange with their surroundings or reaction with the amber, it has been concluded that in primary bubbles (gas released during initial breakage) these gases represent mainly original ancient air modified by the aerobic respiration of microorganisms. Values of N2/(CO2+O2) for each time period give consistent results despite varying O2/CO2 ratios that presumably were due to varying degrees of respiration. This allows calculation of original oxygen concentrations, which, on the basis of these preliminary results, appear to have changed from greater than 30 percent O2 during one part ofthe Late Cretaceous (between 75 and 95 million years ago) to 21 percent during the Eocene-Oligocene and for present-day samples, with possibly lower values during the Oligocene-Early Miocene. Variable O2 levels over time in general confirm theoretical isotope-mass balance calculations and suggest that the atmosphere has evolved over Phanerozoic time.

  12. Polymer Brush Surfaces Showing Superhydrophobicity and Air-Bubble Repellency in a Variety of Organic Liquids.

    PubMed

    Dunderdale, Gary J; England, Matt W; Urata, Chihiro; Hozumi, Atsushi

    2015-06-10

    Silicon (Si) substrates were modified with polyalkyl methacrylate brushes having different alkyl chain lengths (C(n), where n = 1, 4, 8, and 18) using ARGET-ATRP at ambient temperature without purging the reaction solution of oxygen. The dynamic hydrophobicity of these polymer brush-covered Si surfaces when submerged in a variety of organic solvents (1-butanol, dichloromethane, toluene, n-hexane) depended markedly on the alkyl chain length and to a lesser extent polymer solubility. Long-chain poly(stearyl methacrylate) brushes (C(n) = 18) submerged in toluene showed excellent water-repellant properties, having large advancing/receding contact angles (CAs) of 169°/168° with negligible CA hysteresis (1°). Whereas polymer brushes with short alkyl-chain (C(n) ≤ 4) had significantly worse water drop mobility because of small CAs (as low as 125°/55°) and large CA hysteresis (up to 70°). However, such poor dynamic dewetting behavior of these surfaces was found to significantly improve when water drops impacted onto the surfaces at moderate velocities. Under these conditions, all brush surfaces were able to expel water drops from their surface. In addition, our brush surfaces were also highly repellant toward air bubbles under all conditions, irrespective of C(n) or polymer solubility. These excellent surface properties were found to be vastly superior to the performance of conventional perfluoroalkylsilane-derived surfaces. PMID:25988214

  13. Gasification of torrefied Miscanthus × giganteus in an air-blown bubbling fluidized bed gasifier.

    PubMed

    Xue, G; Kwapinska, M; Horvat, A; Kwapinski, W; Rabou, L P L M; Dooley, S; Czajka, K M; Leahy, J J

    2014-05-01

    Torrefaction is suggested to be an effective method to improve the fuel properties of biomass and gasification of torrefied biomass should provide a higher quality product gas than that from unprocessed biomass. In this study, both raw and torrefied Miscanthus × giganteus (M×G) were gasified in an air-blown bubbling fluidized bed (BFB) gasifier using olivine as the bed material. The effects of equivalence ratio (ER) (0.18-0.32) and bed temperature (660-850°C) on the gasification performance were investigated. The results obtained suggest the optimum gasification conditions for the torrefied M × G are ER 0.21 and 800°C. The product gas from these process conditions had a higher heating value (HHV) of 6.70 MJ/m(3), gas yield 2m(3)/kg biomass (H2 8.6%, CO 16.4% and CH4 4.4%) and cold gas efficiency 62.7%. The comparison between raw and torrefied M × G indicates that the torrefied M × G is more suitable BFB gasification.

  14. Full size zinc-air battery

    SciTech Connect

    Goldstein, J.R.; Koretz, B.

    1993-11-01

    The Electric Fuel zinc-air battery yielded energy densities from 6.8 to 10.2 times higher than those of the lead-acid batteries. The higher the power and the more difficult the driving cycle, the higher this ratio of energy densities grew. Not only was the Electric Fuel battery capable of extended high-power discharge, the impact of such discharge conditions on energy and driving range was show to be quite small, and was much smaller than the comparable impact on lead-acid traction batteries. At the time of writing this paper, tests are scheduled to continue with the 110-kWh battery in the Mercedes van, and preliminary plans have been made for testing of additional batteries on other vehicle types.

  15. The use of an air bubble curtain to reduce the received sound levels for harbor porpoises (Phocoena phocoena).

    PubMed

    Lucke, Klaus; Lepper, Paul A; Blanchet, Marie-Anne; Siebert, Ursula

    2011-11-01

    In December 2005 construction work was started to replace a harbor wall in Kerteminde harbor, Denmark. A total of 175 wooden piles were piled into the ground at the waters edge over a period of 3 months. During the same period three harbor porpoises were housed in a marine mammal facility on the opposite side of the harbor. All animals showed strong avoidance reactions after the start of the piling activities. As a measure to reduce the sound exposure for the animals an air bubble curtain was constructed and operated in a direct path between the piling site and the opening of the animals' semi-natural pool. The sound attenuation effect achieved with this system was determined by quantitative comparison of pile driving impulses simultaneously measured in front of and behind the active air bubble curtain. Mean levels of sound attenuation over a sequence of 95 consecutive pile strikes were 14 dB (standard deviation (s.d.) 3.4 dB) for peak to peak values and 13 dB (s.d. 2.5 dB) for SEL values. As soon as the air bubble curtain was installed and operated, no further avoidance reactions of the animals to the piling activities were apparent.

  16. The Dueling Bubble Experiment

    NASA Astrophysics Data System (ADS)

    Roy, Anshuman; Borrell, Marcos; Felts, John; Leal, Gary; Hirsa, Amir

    2007-11-01

    When two drops or bubbles are brought into close proximity to each other, the thin film of the fluid between them drains as they are squeezed together. If the film becomes thin enough that intermolecular forces of attraction overwhelm capillary forces, the drops/bubbles coalesce and the time it takes for this to happen, starting from the point of apparent contact is referred to as the drainage time. One practical version of this scenario occurs during the formation of foams, when the thin film forms between gas bubbles that are growing in volume with time. We performed an experimental study that is intended to mimic this process in which the two drops (or bubbles) in the size range of 50-100 microns diameter are created by oozing a liquid/gas out of two capillaries of diameter less than 100 microns directly facing each other and immersed in a second fluid. We present measurements of drainage times for the cases of very low viscosity ratios PDMS drops in Castor oil (less than 0.05) and bubbles of air in PDMS, and highlight the differences that arise in part due to the different boundary conditions for thin film drainage for liquid-liquid versus gas-liquid systems, and in part due to the different Hamaker constants for the two systems.

  17. Impact of bubble size on growth and CO2 uptake of Arthrospira (Spirulina) platensis KMMCC CY-007.

    PubMed

    Kim, Kisok; Choi, Jaeho; Ji, Yosep; Park, Soyoung; Do, Hyungki; Hwang, Cherwon; Lee, Bongju; Holzapfel, Wilhelm

    2014-10-01

    Optimisation of cyanobacterial cell productivity should consider the key factors light cycle and carbon source. We studied the influence of CO2 bubble size on carbon uptake and fixation, on basis of mRNA expression levels in Arthrospira platensis KMMCC CY-007 at 30°C (light intensity: 40μmolm(-2)s(-1); 1% CO2). Growth rate, carbon fixation and lipid accumulation were examined over 7days under fine bubble (FB) (100μm Ø) bulk bubble (BB) (5000μm Ø) and non-CO2 (NB) aeration. The low affinity CO2 uptake mRNA (NDH-I4 complex) was stronger expressed than the high affinity NDH-I3 complex (bicA and sbtA) under 1% CO2 and FB conditions, with no expression of bicA1 and sbtA1 after 4days. The high affinity CO2 uptake mRNA levels corresponded to biomass, carbon content and lipid accumulation, and increase in NDH-I3 complex (9.72-fold), bicA (5.69-fold), and sbtA (10.61-fold), compared to NB, or BB conditions. PMID:25151075

  18. Impact of bubble size on growth and CO2 uptake of Arthrospira (Spirulina) platensis KMMCC CY-007.

    PubMed

    Kim, Kisok; Choi, Jaeho; Ji, Yosep; Park, Soyoung; Do, Hyungki; Hwang, Cherwon; Lee, Bongju; Holzapfel, Wilhelm

    2014-10-01

    Optimisation of cyanobacterial cell productivity should consider the key factors light cycle and carbon source. We studied the influence of CO2 bubble size on carbon uptake and fixation, on basis of mRNA expression levels in Arthrospira platensis KMMCC CY-007 at 30°C (light intensity: 40μmolm(-2)s(-1); 1% CO2). Growth rate, carbon fixation and lipid accumulation were examined over 7days under fine bubble (FB) (100μm Ø) bulk bubble (BB) (5000μm Ø) and non-CO2 (NB) aeration. The low affinity CO2 uptake mRNA (NDH-I4 complex) was stronger expressed than the high affinity NDH-I3 complex (bicA and sbtA) under 1% CO2 and FB conditions, with no expression of bicA1 and sbtA1 after 4days. The high affinity CO2 uptake mRNA levels corresponded to biomass, carbon content and lipid accumulation, and increase in NDH-I3 complex (9.72-fold), bicA (5.69-fold), and sbtA (10.61-fold), compared to NB, or BB conditions.

  19. Development of an air bubble curtain to reduce underwater noise of percussive piling.

    PubMed

    Würsig, B; Greene, C R; Jefferson, T A

    2000-02-01

    Underwater bubbles can inhibit sound transmission through water due to density mismatch and concomitant reflection and absorption of sound waves. For the present study, a perforated rubber hose was used to produce a bubble curtain, or screen, around pile-driving activity in 6-8-m depth waters of western Hong Kong. The percussive hammer blow sounds of the pile driver were measured on 2 days at distances of 250, 500, and 1000 m; broadband pulse levels were reduced by 3-5 dB by the bubble curtain. Sound intensities were measured from 100 Hz to 25.6 kHz, and greatest sound reduction by the bubble curtain was evident from 400 to 6400 Hz. Indo-Pacific hump-backed dolphins (Sousa chinensis) occurred in the immediate area of the industrial activity before and during pile driving, but with a lower abundance immediately after it. While hump-backed dolphins generally showed no overt behavioral changes with and without pile driving, their speeds of travel increased during pile driving, indicating that bubble screening did not eliminate all behavioral responses to the loud noise. Because the bubble curtain effectively lowered sound levels within 1 km of the activity, the experiment and its application during construction represented a success, and this measure should be considered for other appropriate areas with high industrial noises and resident or migrating sound-sensitive animals.

  20. Using MRI to detect and differentiate calcium oxalate and calcium hydroxyapatite crystals in air-bubble-free phantom.

    PubMed

    Mustafi, Devkumar; Fan, Xiaobing; Peng, Bo; Foxley, Sean; Palgen, Jeremy; Newstead, Gillian M

    2015-12-01

    Calcium oxalate (CaOX) crystals and calcium hydroxyapatite (CaHA) crystals were commonly associated with breast benign and malignant lesions, respectively. In this research, CaOX (n = 6) and CaHA (n = 6) crystals in air-bubble-free agarose phantom were studied and characterized by using MRI at 9.4 T scanner. Calcium micro-crystals, with sizes that ranged from 200 to 500 µm, were made with either 99% pure CaOX or CaHA powder and embedded in agar to mimic the dimensions and calcium content of breast microcalcifications in vivo. MRI data were acquired with high spatial resolution T2-weighted (T2W) images and gradient echo images with five different echo times (TEs). The crystal areas were determined by setting the threshold relative to agarose signal. The ratio of crystal areas was calculated by the measurements from gradient echo images divided by T2W images. Then the ratios as a function of TE were fitted with the radical function. The results showed that the blooming artifacts due to magnetic susceptibility between agar and CaHA crystals were more than twice as large as the susceptibility in CaOX crystals (p < 0.05). In addition, larger bright rings were observed on gradient echo images around CaHA crystals compared to CaOX crystals. Our results suggest that MRI may provide useful information regarding breast microcalcifications by evaluating the apparent area of crystal ratios obtained between gradient echo and T2W images.

  1. A technique for automatic tubing occlusion in response to air bubble detection when using a centrifugal pump.

    PubMed

    Paulsen, A W; Hargadine, W L; Lambert, G S; Long, A C

    1990-01-01

    A double acting pneumatically powered cylinder, energized by an electrically activated solenoid valve, is used to occlude the outflow line from a Bio-Medicus (a) constrained vortex pump. The cylinder is mounted on a tubing guide that is fastened to a pole clamp. A Sarns (b) air bubble detector, placed on the pump inflow line is used to provide the signal to activate the solenoid valve. The outflow occluder is capable of 100% occlusion of 3/8 x 3/32 inch Tygon tubing up to pressures of 2586 mmHg. The occluder system is able to work with many types of bubble detectors and is applicable to any form of non-occlusive pump.

  2. Design of slurry bubble column reactors: novel technique for optimum catalyst size selection contractual origin of the invention

    DOEpatents

    Gamwo, Isaac K.; Gidaspow, Dimitri; Jung, Jonghwun

    2009-11-17

    A method for determining optimum catalyst particle size for a gas-solid, liquid-solid, or gas-liquid-solid fluidized bed reactor such as a slurry bubble column reactor (SBCR) for converting synthesis gas into liquid fuels considers the complete granular temperature balance based on the kinetic theory of granular flow, the effect of a volumetric mass transfer coefficient between the liquid and the gas, and the water gas shift reaction. The granular temperature of the catalyst particles representing the kinetic energy of the catalyst particles is measured and the volumetric mass transfer coefficient between the gas and liquid phases is calculated using the granular temperature. Catalyst particle size is varied from 20 .mu.m to 120 .mu.m and a maximum mass transfer coefficient corresponding to optimum liquid hydrocarbon fuel production is determined. Optimum catalyst particle size for maximum methanol production in a SBCR was determined to be in the range of 60-70 .mu.m.

  3. Asymmetric motion of bubble in nematic liquid crystal induced by symmetry-broken evaporation

    NASA Astrophysics Data System (ADS)

    Kim, Sung-Jo; Lev, Bohdan; Kim, Jong-Hyun

    2016-07-01

    The size of air bubbles in nematic liquid crystals can be continuously decreased through the absorption of air molecules into the host liquid crystal. A bubble and its accompanying hyperbolic hedgehog point defect undergo a continuous asymmetric motion, while the bubble decreases in size. In this study, a mechanism is proposed to theoretically explain both the motion of the air bubble and the point defect observed experimentally. Anisotropic evaporation of air molecules may occur because of the symmetry breaking of the director configuration near the point defect. The motion of the center of the air bubble to the hyperbolic hedgehog point defect is induced by the anisotropic force due to evaporation of air molecules and Stokes drag force.

  4. Calibration of a bubble evolution model to observed bubble incidence in divers.

    PubMed

    Gault, K A; Tikuisis, P; Nishi, R Y

    1995-09-01

    The method of maximum likelihood was used to calibrate a probabilistic bubble evolution model against data of bubbles detected in divers. These data were obtained from a diverse set of 2,064 chamber man-dives involving air and heliox with and without oxygen decompression. Bubbles were measured with Doppler ultrasound and graded according to the Kisman-Masurel code from which a single maximum bubble grade (BG) per diver was compared to the maximum bubble radius (Rmax) predicted by the model. This comparison was accomplished using multinomial statistics by relating BG to Rmax through a series of probability functions. The model predicted the formation of the bubble according to the critical radius concept and its evolution was predicted by assuming a linear rate of inert gas exchange across the bubble boundary. Gas exchange between the model compartment and blood was assumed to be perfusion-limited. The most successful calibration of the model was found using a trinomial grouping of BG according to no bubbles, low, and high bubble activity, and by assuming a single tissue compartment. Parameter estimations converge to a tissue volume of 0.00036 cm3, a surface tension of 5.0 dyne.cm-1, respective time constants of 27.9 and 9.3 min for nitrogen and helium, and respective Ostwald tissue solubilities of 0.0438 and 0.0096. Although not part of the calibration algorithm, the predicted evolution of bubble size compares reasonably well with the temporal recordings of BGs.

  5. Bubble pinch-off and scaling during liquid drop impact on liquid pool

    NASA Astrophysics Data System (ADS)

    Ray, Bahni; Biswas, Gautam; Sharma, Ashutosh

    2012-08-01

    Simulations are performed to show entrapment of air bubble accompanied by high speed upward and downward water jets when a water drop impacts a pool of water surface. A new bubble entrapment zone characterised by small bubble pinch-off and long thick jet is found. Depending on the bubble and jet behaviour, the bubble entrapment zone is subdivided into three sub-regimes. The entrapped bubble size and jet height depends on the crater shape and its maximum depth. During the bubble formation, bubble neck develops an almost singular shape as it pinches off. The final pinch-off shape and the power law governing the pinching, rneck ∝ A(t0 - t)αvaries with the Weber number. Weber dependence of the function describing the radius of the bubble during the pinch-off only affects the coefficient A and not the power exponent α.

  6. Fuel system bubble dissipation device

    SciTech Connect

    Iseman, W.J.

    1987-11-03

    This patent describes a bubble dissipation device for a fuel system wherein fuel is delivered through a fuel line from a fuel tank to a fuel control with the pressure of the fuel being progressively increased by components including at least one pump stage and an ejector in advance of the pump state. The ejector an ejector casing with a wall defining an elongate tubular flow passage which forms a portion of the fuel line to have all of the fuel flow through the tubular flow passage in flowing from the fuel tank to the fuel control, a nozzle positioned entirely within the tubular flow passage and spaced from the wall to permit fuel flow. The nozzle has an inlet and an outlet with the inlet connected to the pump stage to receive fuel under pressure continuously from the pump stage, a bubble accumulation chamber adjoining and at a level above the ejector casing and operatively connected to the fuel line in advance of the ejector casing. The bubble accumulation chamber is of a size to function as a fuel reservoir and hold an air bubble containing vapor above the level of fuel therein and having an outlet adjacent the bottom thereof operatively connected to the tubular flow passage in the ejector casing at an inlet end, a bubble accumulation chamber inlet above the level of the bubble accumulation chamber outlet whereby fuel can flow through the bubble accumulation chamber from the inlet to the outlet thereof with a bubble in the fuel rising above the fuel level in the bubble accumulation chamber.

  7. EMERGENCE OF GRANULAR-SIZED MAGNETIC BUBBLES THROUGH THE SOLAR ATMOSPHERE. II. NON-LTE CHROMOSPHERIC DIAGNOSTICS AND INVERSIONS

    SciTech Connect

    Rodríguez, Jaime de la Cruz; Hansteen, Viggo; Ortiz, Ada; Bellot-Rubio, Luis

    2015-09-10

    Magnetic flux emergence into the outer layers of the Sun is a fundamental mechanism for releasing energy into the chromosphere and the corona. In this paper, we study the emergence of granular-sized flux concentrations and the structuring of the corresponding physical parameters and atmospheric diagnostics in the upper photosphere and in the chromosphere. We make use of a realistic 3D MHD simulation of the outer layers of the Sun to study the formation of the Ca ii 8542 line. We also derive semi-empirical 3D models from non-LTE inversions of our observations. These models contain information on the line-of-sight stratifications of temperature, velocity, and the magnetic field. Our analysis explains the peculiar Ca ii 8542 Å profiles observed in the flux emerging region. Additionally, we derive detailed temperature and velocity maps describing the ascent of a magnetic bubble from the photosphere to the chromosphere. The inversions suggest that, in active regions, granular-sized bubbles emerge up to the lower chromosphere where the existing large-scale field hinders their ascent. We report hints of heating when the field reaches the chromosphere.

  8. Forces on ellipsoidal bubbles in a turbulent shear layer

    NASA Astrophysics Data System (ADS)

    Ford, Barry; Loth, Eric

    1998-01-01

    The objective of this research was to gain fundamental knowledge of the drag and lift forces on ellipsoidal air bubbles in water in a turbulent flow. This was accomplished by employing a cinematic two-phase particle image velocimetry (PIV) system to evaluate bubbly flow in a two-stream, turbulent, planar free shear layer of filtered tap water. Ellipsoidal air bubbles with nominal diameters from 1.5 to 4.5 mm were injected directly into the shear layer through a single slender tube. The cinematic PIV allowed for high resolution of the unsteady liquid velocity vector field. Triple-pulsed bubble images were obtained in a temporal sequence, such that the bubble size and bubble trajectory could be accurately determined. The bubble's oscillation characteristics, velocity, acceleration, and buoyancy force were obtained from the trajectory data. A bubble dynamic equation was then applied to allow determination of the time-evolving lift and drag forces acting upon bubbles within the shear layer. The results indicate that for a fixed bubble diameter (and fixed Bond and Morton numbers), the drag coefficient decreases for an increasing Reynolds number. This is fundamentally different than the increasing drag coefficient trend seen for ellipsoidal bubbles rising in quiescent baths for increasing diameter (and increasing Bond number), but is qualitatively consistent with the trend for spherical bubbles. A new empirical expression for the dependence of the drag coefficient on Reynolds number for air bubbles in tap water for both quiescent and turbulent flows is constructed herein. Finally, the instantaneous side forces measured in this study were dominated by the inherent deformation-induced vortex shedding of the bubble wake rather than the inviscid lift force based on the background fluid vorticity.

  9. Heat Storage Characteristics of Latent-Heat Microcapsule Slurry Using Hot Air Bubbles by Direct-Contact Heat Exchange

    NASA Astrophysics Data System (ADS)

    Inaba, Hideo; Horibe, Akihiko; Kim, Myoung-Jun; Tsukamoto, Hirofumi

    This study deals with the heat storage characteristics of latent-heat microcapsule slurry consisting of a mixture of fine microcapsules packed with latent-heat storage material and water. The heat storage operation for the latent-heat microcapsules was carried out by the direct-contact heat exchange method using hot air bubbles. The latent-heat microcapsule consisted of n-paraffin as a core latent-heat storage material and melamine resin as a coating substance. The relationship between the completion time of latent-heat storage and some parameters was examined experimentally. The nondimensional correlation equations for temperature efficiency, the completion time period of the latent-heat storage process and variation in the enthalpy of air through the microcapsule slurry layer were derived in terms of the ratio of microcapsule slurry layer height to microcapsule diameter, Reynolds number for airflow, Stefan number and modified Stefan number for absolute humidity of flowing air.

  10. What is the Shape of an Air Bubble on a Liquid Surface?

    PubMed

    Teixeira, Miguel A C; Arscott, Steve; Cox, Simon J; Teixeira, Paulo I C

    2015-12-29

    We have calculated the equilibrium shape of the axially symmetric meniscus along which a spherical bubble contacts a flat liquid surface by analytically integrating the Young-Laplace equation in the presence of gravity, in the limit of large Bond numbers. This method has the advantage that it provides semianalytical expressions for key geometrical properties of the bubble in terms of the Bond number. Results are in good overall agreement with experimental data and are consistent with fully numerical (Surface Evolver) calculations. In particular, we are able to describe how the bubble shape changes from hemispherical, with a flat, shallow bottom, to lenticular, with a deeper, curved bottom, as the Bond number is decreased.

  11. Bubble diagnostics

    DOEpatents

    Visuri, Steven R.; Mammini, Beth M.; Da Silva, Luiz B.; Celliers, Peter M.

    2003-01-01

    The present invention is intended as a means of diagnosing the presence of a gas bubble and incorporating the information into a feedback system for opto-acoustic thrombolysis. In opto-acoustic thrombolysis, pulsed laser radiation at ultrasonic frequencies is delivered intraluminally down an optical fiber and directed toward a thrombus or otherwise occluded vessel. Dissolution of the occlusion is therefore mediated through ultrasonic action of propagating pressure or shock waves. A vapor bubble in the fluid surrounding the occlusion may form as a result of laser irradiation. This vapor bubble may be used to directly disrupt the occlusion or as a means of producing a pressure wave. It is desirable to detect the formation and follow the lifetime of the vapor bubble. Knowledge of the bubble formation and lifetime yields critical information as to the maximum size of the bubble, density of the absorbed radiation, and properties of the absorbing material. This information can then be used in a feedback system to alter the irradiation conditions.

  12. Buoyancy effects in steeply inclined air-water bubbly shear flow in a rectangular channel

    NASA Astrophysics Data System (ADS)

    Sanaullah, K.; Arshad, M.; Khan, A.; Chughtai, I. R.

    2015-07-01

    We report measurements of two-dimensional ( B/ D = 5) fully turbulent and developed duct flows (overall length/depth, L/ D = 60; D-based Reynolds number Re > 104) for inclinations to 30° from vertical at low voidages (< 5 % sectional average) representative of disperse regime using tap water bubbles (4-6 mm) and smaller bubbles (2 mm) stabilised in ionic solution. Pitot and static probe instrumentation, primitive but validated, provided adequate (10 % local value) discrimination of main aspects of the mean velocity and voidage profiles at representative streamwise station i.e L/ D = 40. Our results can be divided into three categories of behaviour. For vertical flow (0°) the evidence is inconclusive as to whether bubbles are preferentially trapped within the wall-layer as found in some, may be most earlier experimental works. Thus, the 4-mm bubbles showed indication of voidage retention but the 2-mm bubbles did not. For nearly vertical flow (5°) there was pronounced profiling of voidage especially with 4-mm bubbles but the transverse transport was not suppressed sufficiently to induce any obvious layering. In this context, we also refer to similarities with previous work on one-phase vertical and nearly vertical mixed convection flows displaying buoyancy inhibited mean shear turbulence. However, with inclined flow (10+ degrees) a distinctively layered pattern was invariably manifested in which voidage confinement increased with increasing inclination. In this paper we address flow behavior at near vertical conditions. Eulerian, mixed and VOF models were used to compute voidage and mean velocity profiles.

  13. EXPERIMENTAL BUBBLE FORMATION IN A LARGE SCALE SYSTEM FOR NEWTONIAN AND NONNEWTONIAN FLUIDS

    SciTech Connect

    Leishear, R; Michael Restivo, M

    2008-06-26

    The complexities of bubble formation in liquids increase as the system size increases, and a photographic study is presented here to provide some insight into the dynamics of bubble formation for large systems. Air was injected at the bottom of a 28 feet tall by 30 inch diameter column. Different fluids were subjected to different air flow rates at different fluid depths. The fluids were water and non-Newtonian, Bingham plastic fluids, which have yield stresses requiring an applied force to initiate movement, or shearing, of the fluid. Tests showed that bubble formation was significantly different in the two types of fluids. In water, a field of bubbles was formed, which consisted of numerous, distributed, 1/4 to 3/8 inch diameter bubbles. In the Bingham fluid, large bubbles of 6 to 12 inches in diameter were formed, which depended on the air flow rate. This paper provides comprehensive photographic results related to bubble formation in these fluids.

  14. Air bubble in anterior chamber as indicator of full-thickness incisions in femtosecond-assisted astigmatic keratotomy.

    PubMed

    Vaddavalli, Pravin K; Hurmeric, Volkan; Yoo, Sonia H

    2011-09-01

    Femtosecond-assisted astigmatic keratotomy is predictable and precise but may occasionally lead to a full-thickness incision on the cornea and the attendant complications. The presence of an air bubble in the anterior chamber soon after creation of the keratotomy by the femtosecond laser may indicate a full-thickness incision. We present a case in which recognition of this clinical finding early in the procedure might have prevented undesirable complications, such as leakage of aqueous and the potential for intraocular infection.

  15. Particle impactor assembly for size selective high volume air sampler

    DOEpatents

    Langer, Gerhard

    1988-08-16

    Air containing entrained particulate matter is directed through a plurality of parallel, narrow, vertically oriented impactor slots of an inlet element toward an adjacently located, relatively large, dust impaction surface preferably covered with an adhesive material. The air flow turns over the impaction surface, leaving behind the relatively larger particles according to the human thoracic separation system and passes through two elongate exhaust apertures defining the outer bounds of the impaction collection surface to pass through divergent passages which slow down and distribute the air flow, with entrained smaller particles, over a fine filter element that separates the fine particles from the air. The elongate exhaust apertures defining the impaction collection surface are spaced apart by a distance greater than the lengths of elongate impactor slots in the inlet element and are oriented to be normal thereto. By appropriate selection of dimensions and the number of impactor slots air flow through the inlet element is provided a nonuniform velocity distribution with the lower velocities being obtained near the center of the impactor slots, in order to separate out particles larger than a certain predetermined size on the impaction collection surface. The impaction collection surface, even in a moderately sized apparatus, is thus relatively large and permits the prolonged sampling of air for periods extending to four weeks.

  16. AIRBORNE PARTICLE SIZES AND SOURCES FOUND IN INDOOR AIR

    EPA Science Inventory

    The paper summarizes results of a literature search into the sources, sizes, and concentrations of particles in indoor air, including the various types: plant, animal, mineral, combustion, home/personal care, and radioactive aerosols. This information, presented in a summary figu...

  17. Nanoemulsions obtained via bubble-bursting at a compound interface

    NASA Astrophysics Data System (ADS)

    Feng, Jie; Roché, Matthieu; Vigolo, Daniele; Arnaudov, Luben N.; Stoyanov, Simeon D.; Gurkov, Theodor D.; Tsutsumanova, Gichka G.; Stone, Howard A.

    2014-08-01

    Bursting of bubbles at an air/liquid interface is a familiar occurrence relevant to foam stability, cell cultures in bioreactors and ocean-atmosphere mass transfer. In the latter case, bubble-bursting leads to the dispersal of sea-water aerosols in the surrounding air. Here we show that bubbles bursting at a compound air/oil/water-with-surfactant interface can disperse submicrometre oil droplets in water. Dispersal results from the detachment of an oil spray from the bottom of the bubble towards water during bubble collapse. We provide evidence that droplet size is selected by physicochemical interactions between oil molecules and the surfactants rather than by hydrodynamics. We demonstrate the unrecognized role that this dispersal mechanism may play in the fate of the sea surface microlayer and of pollutant spills by dispersing petroleum in the water column. Finally, our system provides an energy-efficient route, with potential upscalability, for applications in drug delivery, food production and materials science.

  18. The Making of an Air-Supported Campus. Antioch's Bubble. Final Report.

    ERIC Educational Resources Information Center

    Brann, James

    The inflation of the vinyl bubble by Antioch students and faculty climaxed more than a year of study, planning, dealing with contractors, county officials, manufacturers of equipment and materials--and maturing the technology of pneumatic buildings. These activities were combined into what Antioch calls a "process-oriented curriculum." This…

  19. Bias structure to efficiently package a magnetic bubble domain device

    NASA Technical Reports Server (NTRS)

    Chen, Thomas T. (Inventor)

    1978-01-01

    A single, compact bias structure to efficiently package a plurality of magnetic bubble domain device chips having different bias requirements. The vertical magnetic field distribution within the bias structure air gap is selectively controlled by a magnetically soft field adjusting assembly suitably attached within the bias structure. The size and configuration of the field adjusting assembly tailors local field variations within the air gap to correspond with the bias requirements of the bubble domain chips disposed therein.

  20. The injection of air/oxygen bubble into the anterior chamber of rabbits as a treatment for hyphema in patients with sickle cell disease.

    PubMed

    Ayintap, Emre; Keskin, Uğurcan; Sadigov, Fariz; Coskun, Mesut; Ilhan, Nilufer; Motor, Sedat; Semiz, Hilal; Parlakfikirer, Nihan

    2014-01-01

    Purpose. To investigate the changes of partial oxygen pressure (PaO2) in aqueous humour after injecting air or oxygen bubble into the anterior chamber in sickle cell hyphema. Methods. Blood samples were taken from the same patient with sickle cell disease. Thirty-two rabbits were divided into 4 groups. In group 1 (n = 8), there was no injection. Only blood injection constituted group 2 (n = 8), both blood and air bubble injection constituted group 3 (n = 8), and both blood and oxygen bubble injection constituted group 4 (n = 8). Results. The PaO2 in the aqueous humour after 10 hours from the injections was 78.45 ± 9.9 mmHg (Mean ± SD) for group 1, 73.97 ± 8.86 mmHg for group 2, 123.35 ± 13.6 mmHg for group 3, and 306.47 ± 16.5 mmHg for group 4. There was statistically significant difference between group 1 and group 2, when compared with group 3 and group 4. Conclusions. PaO2 in aqueous humour was increased after injecting air or oxygen bubble into the anterior chamber. We offer to leave an air bubble in the anterior chamber of patients with sickle cell hemoglobinopathies and hyphema undergoing an anterior chamber washout. PMID:24808955

  1. The injection of air/oxygen bubble into the anterior chamber of rabbits as a treatment for hyphema in patients with sickle cell disease.

    PubMed

    Ayintap, Emre; Keskin, Uğurcan; Sadigov, Fariz; Coskun, Mesut; Ilhan, Nilufer; Motor, Sedat; Semiz, Hilal; Parlakfikirer, Nihan

    2014-01-01

    Purpose. To investigate the changes of partial oxygen pressure (PaO2) in aqueous humour after injecting air or oxygen bubble into the anterior chamber in sickle cell hyphema. Methods. Blood samples were taken from the same patient with sickle cell disease. Thirty-two rabbits were divided into 4 groups. In group 1 (n = 8), there was no injection. Only blood injection constituted group 2 (n = 8), both blood and air bubble injection constituted group 3 (n = 8), and both blood and oxygen bubble injection constituted group 4 (n = 8). Results. The PaO2 in the aqueous humour after 10 hours from the injections was 78.45 ± 9.9 mmHg (Mean ± SD) for group 1, 73.97 ± 8.86 mmHg for group 2, 123.35 ± 13.6 mmHg for group 3, and 306.47 ± 16.5 mmHg for group 4. There was statistically significant difference between group 1 and group 2, when compared with group 3 and group 4. Conclusions. PaO2 in aqueous humour was increased after injecting air or oxygen bubble into the anterior chamber. We offer to leave an air bubble in the anterior chamber of patients with sickle cell hemoglobinopathies and hyphema undergoing an anterior chamber washout.

  2. Repeated growth and bubbling transfer of graphene with millimetre-size single-crystal grains using platinum.

    PubMed

    Gao, Libo; Ren, Wencai; Xu, Huilong; Jin, Li; Wang, Zhenxing; Ma, Teng; Ma, Lai-Peng; Zhang, Zhiyong; Fu, Qiang; Peng, Lian-Mao; Bao, Xinhe; Cheng, Hui-Ming

    2012-02-28

    Large single-crystal graphene is highly desired and important for the applications of graphene in electronics, as grain boundaries between graphene grains markedly degrade its quality and properties. Here we report the growth of millimetre-sized hexagonal single-crystal graphene and graphene films joined from such grains on Pt by ambient-pressure chemical vapour deposition. We report a bubbling method to transfer these single graphene grains and graphene films to arbitrary substrate, which is nondestructive not only to graphene, but also to the Pt substrates. The Pt substrates can be repeatedly used for graphene growth. The graphene shows high crystal quality with the reported lowest wrinkle height of 0.8 nm and a carrier mobility of greater than 7,100 cm(2) V(-1) s(-1) under ambient conditions. The repeatable growth of graphene with large single-crystal grains on Pt and its nondestructive transfer may enable various applications.

  3. Direct AFM force measurements between air bubbles in aqueous polydisperse sodium poly(styrene sulfonate) solutions: effect of collision speed, polyelectrolyte concentration and molar mass.

    PubMed

    Browne, Christine; Tabor, Rico F; Grieser, Franz; Dagastine, Raymond R

    2015-07-01

    Interactions between colliding air bubbles in aqueous solutions of polydisperse sodium poly(styrene sulfonate) (NaPSS) using direct force measurements were studied. The forces measured with deformable interfaces were shown to be more sensitive to the presence of the polyelectrolytes when compared to similar measurements using rigid interfaces. The experimental factors that were examined were NaPSS concentration, bubble collision velocity and polyelectrolyte molar mass. These measurements were then compared with an analytical model based on polyelectrolyte scaling theory in order to explain the effects of concentration and bubble deformation on the interaction between bubbles. Typically structural forces from the presence of monodisperse polyelectrolyte between interacting surfaces may be expected, however, it was found that the polydispersity in molar mass resulted in the structural forces to be smoothed and only a depletion interaction was able to be measured between interacting bubbles. It was found that an increase in number density of NaPSS molecules resulted in an increase in the magnitude of the depletion interaction. Conversely this interaction was overwhelmed by an increase in the fluid flow in the system at higher bubble collision velocities. Polymer molar mass dispersity plays a significant role in the interactions present between the bubbles and has implications that also affect the polyelectrolyte overlap concentration of the solution. Further understanding of these implications can be expected to play a role in the improvement in operations in such fields as water treatment and mineral processing where polyelectrolytes are used extensively.

  4. Dexterous ultrasonic levitation of millimeter-sized objects in air.

    PubMed

    Seah, Sue Ann; Drinkwater, Bruce W; Carter, Tom; Malkin, Rob; Subramanian, Sriram

    2014-07-01

    Acoustic levitation in air has applications in contactless handling and processing. Here a first-order Bessel function-shaped acoustic field, generated using an 8-element circular array operating at 40 kHz, traps millimeter-sized objects against gravity. The device can manipulate objects in a vertical plane over a few millimeters with an accuracy of ± 0.09 mm. PMID:24960712

  5. In Search of the Big Bubble

    ERIC Educational Resources Information Center

    Simoson, Andrew; Wentzky, Bethany

    2011-01-01

    Freely rising air bubbles in water sometimes assume the shape of a spherical cap, a shape also known as the "big bubble". Is it possible to find some objective function involving a combination of a bubble's attributes for which the big bubble is the optimal shape? Following the basic idea of the definite integral, we define a bubble's surface as…

  6. Body fat does not affect venous bubble formation after air dives of moderate severity: theory and experiment.

    PubMed

    Schellart, Nico A M; van Rees Vellinga, Tjeerd P; van Hulst, Rob A

    2013-03-01

    For over a century, studies on body fat (BF) in decompression sickness and venous gas embolism of divers have been inconsistent. A major problem is that age, BF, and maximal oxygen consumption (Vo2max) show high multicollinearity. Using the Bühlmann model with eight parallel compartments, preceded by a blood compartment in series, nitrogen tensions and loads were calculated with a 40 min/3.1 bar (absolute) profile. Compared with Haldanian models, the new model showed a substantial delay in N2 uptake and (especially) release. One hour after surfacing, an increase of 14-28% in BF resulted in a whole body increase of the N2 load of 51%, but in only 15% in the blood compartment. This would result in an increase in the bubble grade of only 0.01 Kisman-Masurel (KM) units at the scale near KM = I-. This outcome was tested indirectly by a dry dive simulation (air breathing) with 53 male divers with a small range in age and Vo2max to suppress multicollinearity. BF was determined with the four-skinfold method. Precordial Doppler bubble grades determined at 40, 80, 120, and 160 min after surfacing were used to calculate the Kisman Integrated Severity Score and were also transformed to the logarithm of the number of bubbles/cm(2) (logB). The highest of the four scores yielded logB = -1.78, equivalent to KM = I-. All statistical outcomes of partial correlations with BF were nonsignificant. These results support the model outcomes. Although this and our previous study suggest that BF does not influence venous gas embolism (Schellart NAM, van Rees Vellinga TP, van Dijk FH, Sterk W. Aviat Space Environ Med 83: 951-957, 2012), more studies with different profiles under various conditions are needed to establish whether BF remains (together with age and Vo2max) a basic physical characteristic or will become less important for the medical examination and for risk assessment.

  7. Drop size distribution and air velocity measurements in air assist swirl atomizer sprays

    NASA Technical Reports Server (NTRS)

    Mao, C.-P.; Oechsle, V.; Chigier, N.

    1987-01-01

    Detailed measurements of mean drop size (SMD) and size distribution parameters have been made using a Fraunhofer diffraction particle sizing instrument in a series of sprays generated by an air assist swirl atomizer. Thirty-six different combinations of fuel and air mass flow rates were examined with liquid flow rates up to 14 lbm/hr and atomizing air flow rates up to 10 lbm/hr. Linear relationships were found between SMD and liquid to air mass flow rate ratios. SMD increased with distance downstream along the center line and also with radial distance from the axis. Increase in obscuration with distance downstream was due to an increase in number density of particles as the result of deceleration of drops and an increase in the exposed path length of the laser beam. Velocity components of the atomizing air flow field measured by a laser anemometer show swirling jet air flow fields with solid body rotation in the core and free vortex flow in the outer regions.

  8. Leverage bubble

    NASA Astrophysics Data System (ADS)

    Yan, Wanfeng; Woodard, Ryan; Sornette, Didier

    2012-01-01

    Leverage is strongly related to liquidity in a market and lack of liquidity is considered a cause and/or consequence of the recent financial crisis. A repurchase agreement is a financial instrument where a security is sold simultaneously with an agreement to buy it back at a later date. Repurchase agreement (repo) market size is a very important element in calculating the overall leverage in a financial market. Therefore, studying the behavior of repo market size can help to understand a process that can contribute to the birth of a financial crisis. We hypothesize that herding behavior among large investors led to massive over-leveraging through the use of repos, resulting in a bubble (built up over the previous years) and subsequent crash in this market in early 2008. We use the Johansen-Ledoit-Sornette (JLS) model of rational expectation bubbles and behavioral finance to study the dynamics of the repo market that led to the crash. The JLS model qualifies a bubble by the presence of characteristic patterns in the price dynamics, called log-periodic power law (LPPL) behavior. We show that there was significant LPPL behavior in the market before that crash and that the predicted range of times predicted by the model for the end of the bubble is consistent with the observations.

  9. Emergence of Granular-sized Magnetic Bubbles Through the Solar Atmosphere. III. The Path to the Transition Region

    NASA Astrophysics Data System (ADS)

    Ortiz, Ada; Hansteen, Viggo H.; Ramón Bellot Rubio, Luis; de la Cruz Rodríguez, Jaime; De Pontieu, Bart; Carlsson, Mats; Rouppe van der Voort, Luc

    2016-07-01

    We study, for the first time, the ascent of granular-sized magnetic bubbles from the solar photosphere through the chromosphere into the transition region and above. Such events occurred in a flux emerging region in NOAA 11850 on 2013 September 25. During that time, the first co-observing campaign between the Swedish 1-m Solar Telescope (SST) and the Interface Region Imaging Spectrograph (IRIS) spacecraft was carried out. Simultaneous observations of the chromospheric Hα 656.28 nm and Ca ii 854.2 nm lines, plus the photospheric Fe i 630.25 nm line, were made with the CRISP spectropolarimeter at the Spitzer Space Telescope (SST) reaching a spatial resolution of 0.″14. At the same time, IRIS was performing a four-step dense raster of the emerging flux region, taking slit jaw images at 133 (C ii, transition region), 140 (Si iv, transition region), 279.6 (Mg ii k, core, upper chromosphere), and 283.2 nm (Mg ii k, wing, photosphere). Spectroscopy of several lines was performed by the IRIS spectrograph in the far- and near-ultraviolet, of which we have used the Si iv 140.3 and the Mg ii k 279.6 nm lines. Coronal images from the Atmospheric Imaging Assembly of the Solar Dynamics Observatory were used to investigate the possible coronal signatures of the flux emergence events. The photospheric and chromospheric properties of small-scale emerging magnetic bubbles have been described in detail in Ortiz et al. Here we are able to follow such structures up to the transition region. We describe the properties, including temporal delays, of the observed flux emergence in all layers. We believe this may be an important mechanism of transporting energy and magnetic flux from subsurface layers to the transition region and corona.

  10. [Relationship between the state of intravascular bubbles and microcirculation system].

    PubMed

    Yuan, J; Pan, L; Wang, Q; Ji, Z; Gao, J

    1996-08-01

    To confirm the hypothesis that air bubbles were unable to block the blood vessels and that the state of the intravascular bubbles was determined by the function of the circulatory system, 35 guinea pigs were pressurized then were decompressed to normal pressure. Microscopic observation was made of the bulbar conjunctival, dorsum auricular and subcutaneous vessels in 33 surviving animals. Air bubbles of different amounts, sizes and shapes were found in the dorsum auricular and subcutaneous vein of all the amimals and in the bulbar conjunctival oriridal artery of 16 animals, and in some cases the vessels were even filled with bubbles. The bubbles ran in the same direction and at the same speed as the blood flow. They could run in a backward, to-and-fro or sluggish flow. The bubbles looked shapeless and tended to break and divided into branch flows where the vessel branches. The bubbles were motionless at the proximal end of the artery occluded due to spasm or when the blood was stagnated. Under the action of the blood pressure the bubbles could expand the vessel and push forward. The bubbles showed a tendency of flowing with ease with the function of the vessel recovered. The results suggest that bubbles of any size in the vessel could easily change their shape under the action of the blood flow and pressure, and pass through vessels of any diameter and circulate with the blood. Only when a vessel was occluded due to spasm or the blood in a vessel was stagnated could the bubbles be motionless, but it was not that the bubbles blocked the vessel.

  11. Size measurement of plutonium particles from internal sputtering into air

    NASA Astrophysics Data System (ADS)

    Cheng, Yung-Sung; Holmes, Thomas D.; George, Timothy G.; Marlow, William H.

    2005-06-01

    During the past century, the results of spontaneous translocation of radioactivity in air, biological media and groundwater have been reported. Here, we report the first measurements of the size characteristics in air of the particles participating in this translocation phenomenon. For the plutonium material powering radioisotope thermal generators, we find two narrow, well-separated fractions, one corresponding to particles below a nanometer and one at or below 10 nm. These results are interpreted as a gas-phase nucleation phenomenon arising from internal sputtering. They suggest fruitful directions for further research with immediate implications for accounting for the effects of radiological terrorism, for identifying new signatures for nuclear materials of possible use in antiterrorism and other covert nuclear materials operations, for radioactive and mixed materials storage handling, for reactor safety and source term modeling and for other materials processes.

  12. Forward glory scattering from bubbles.

    PubMed

    Langley, D S; Marston, P L

    1991-08-20

    The scattering enhancement known as the glory was observed in forward scattering from bubbles in liquids. A physical-optics model of the forward glory is detailed, based on transmitted waves reflected within the bubble. Some aspects of the model are compared with the Mie theory and with features in the cross-polarized light from single bubbles. Clouds of small bubbles rising in water show an angular structure in the forward glory light that is useful for estimating the bubble size.

  13. Structure of Air-Water Bubbly Flow in a Vertical Annulus

    SciTech Connect

    Rong Situ; Takashi Hibiki; Ye Mi; Mamoru Ishii; Michitsugu Mori

    2002-07-01

    Local measurements of flow parameters were performed for vertical upward bubbly flows in an annulus. The annulus channel consisted of an inner rod with a diameter of 19.1 mm and an outer round tube with an inner diameter of 38.1 mm, and the hydraulic equivalent diameter was 19.1 mm. Double-sensor conductivity probe was used for measuring void fraction, interfacial area concentration, and interfacial velocity, and Laser Doppler anemometer was utilized for measuring liquid velocity and turbulence intensity. The mechanisms to form the radial profiles of local flow parameters were discussed in detail. The constitutive equations for distribution parameter and drift velocity in the drift-flux model, and the semi-theoretical correlation for Sauter mean diameter namely interfacial area concentration, which were proposed previously, were validated by local flow parameters obtained in the experiment using the annulus. (authors)

  14. Bubble size on detachment from the luminal aspect of ovine large blood vessels after decompression: The effect of mechanical disturbance.

    PubMed

    Arieli, Ran; Arieli, Uri; Marmur, Abraham

    2015-09-15

    Bubbles nucleate and develop after decompression at active spots on the luminal aspect of ovine large blood vessels. Series of bubbles were shown to detach from the active spot with a mean diameter of 0.7-1.0mm in calm conditions. The effect of mechanical disturbance (striking the bowl containing the vessel or tangential flow) was studied on ovine blood vessels stretched on microscope slides and photographed after hyperbaric exposure. Diameter on detachment after a heavy blow to the bowl was 0.87 ± 0.43 mm (mean ± SD), no different from bubbles which detached without striking the bowl (0.86 ± 0.28 mm). Bubble diameter on detachment during pulsatile tangential flow at 234 cm/min, 0.99 ± 0.36 mm, was not smaller than that seen in the same blood vessels in calm conditions (0.81 ± 0.34 mm). The active spots were stained for lipids, proving their hydrophobicity. The most abundant active spots, which produced only a few bubbles, did not stain for lipids thereafter. The possibility that phospholipids were removed along with detached bubbles may correlate with acclimation to diving. The finding of bubble production at the active spots matches observed phenomena in divers: variable sensitivity to decompression, acclimation to diving, the effect of elevated gas load on increased bubble formation, a higher bubble score in the second dive on the same day, and unexplained neurological symptoms after decompression. Large bubbles released from the arterial circulation give serious cause for concern.

  15. Introductory Applicaton of Defocusing DPIV to the Study of Bubbly Shear Flows

    NASA Astrophysics Data System (ADS)

    Pereira, Francisco; Gharib, Morteza; Dabiri, Dana; Modarress, Darius

    1999-11-01

    A study of a three-dimensional bubbly flow is presented to demonstrate the applicability of the newly developed defocusing digital particle image velocimetry technique. The DDPIV instrument provides bubble size and location information within a one cubic foot volume. A three-dimensional two-phase flow measurement is performed to obtain a full-field quantitative description of the global dynamics of air bubbles in a vortical shear flow generated by a model boat propeller. Clouds of sub-millimeter air bubbles are injected upstream the propeller. The velocity field is calculated from volumetric cross-correlation of consecutive three-dimensional sets of bubble locations, whereas the bubble size information is estimated from the blurred image of bubbles. Flow analysis is presented in terms of vorticity and bubble trajectory. The bubble size distribution upstream and downstream the propeller is discussed. Growth and collapse of bubbles are detected and related to the respective velocity field in the suction and high-pressure regions of the propeller.

  16. Spreading of Bubbles after Contacting the Lower Side of an Aerophilic Slide Immersed in Water

    NASA Astrophysics Data System (ADS)

    de Maleprade, Hélène; Clanet, Christophe; Quéré, David

    2016-08-01

    While the dynamics of complete wetting has been widely studied for liquids, the way a gas spreads on a solid is by far less known. We report here the events following the rise of a millimeter-size air bubble towards a textured material immersed in water and covered by a thin plastron of air. Bubbles contact the material either directly at the end of the rise, or after a few rebounds, which affects the initial shape of the bubble and the resulting dynamics of contact. Then, air spreads on the material, owing to surface tension and later buoyance, which tends to flatten further the bubble. The corresponding dynamics are shown to result from the inertial resistance of water, which explains how spreading bubbles reach centimeter sizes in typically 10 ms.

  17. Spreading of Bubbles after Contacting the Lower Side of an Aerophilic Slide Immersed in Water.

    PubMed

    de Maleprade, Hélène; Clanet, Christophe; Quéré, David

    2016-08-26

    While the dynamics of complete wetting has been widely studied for liquids, the way a gas spreads on a solid is by far less known. We report here the events following the rise of a millimeter-size air bubble towards a textured material immersed in water and covered by a thin plastron of air. Bubbles contact the material either directly at the end of the rise, or after a few rebounds, which affects the initial shape of the bubble and the resulting dynamics of contact. Then, air spreads on the material, owing to surface tension and later buoyance, which tends to flatten further the bubble. The corresponding dynamics are shown to result from the inertial resistance of water, which explains how spreading bubbles reach centimeter sizes in typically 10 ms. PMID:27610858

  18. Spreading of Bubbles after Contacting the Lower Side of an Aerophilic Slide Immersed in Water.

    PubMed

    de Maleprade, Hélène; Clanet, Christophe; Quéré, David

    2016-08-26

    While the dynamics of complete wetting has been widely studied for liquids, the way a gas spreads on a solid is by far less known. We report here the events following the rise of a millimeter-size air bubble towards a textured material immersed in water and covered by a thin plastron of air. Bubbles contact the material either directly at the end of the rise, or after a few rebounds, which affects the initial shape of the bubble and the resulting dynamics of contact. Then, air spreads on the material, owing to surface tension and later buoyance, which tends to flatten further the bubble. The corresponding dynamics are shown to result from the inertial resistance of water, which explains how spreading bubbles reach centimeter sizes in typically 10 ms.

  19. Air distribution and size changes in the remediated zone after air sparging for soil particle movement.

    PubMed

    Tsai, Yih-Jin

    2008-10-30

    In an unconsolidated porous medium, soil particles can be mobilized by physical perturbation. In model systems of fluids flowing over spherical particles attached to flat surfaces, the hydrodynamic shear force depends on the fluid viscosity, particle radius, and flow velocity. Soil particles can be reasonably expected to be transported by flowing water during air sparging when the particle-size distribution does not fit the densest possible particle arrangement. If soil particles are transported during air sparging, then the distribution of the porosity and reservoir permeability will change. The remediated zone changes because of the changes in soil characteristics. This study applied some mathematical models to elucidate the mobilization process of soil particles during in situ air sparging. The changes in the characteristics of the soil and the swept volume of injected air during air sparging were also investigated. The results demonstrated that particle movement reduced the radius of influence (ROI) and the swept volume of injected air. In this case study, the maximum reducing rates in ROI and the swept volume were 24% and 26% for the zone where the gas saturation exceeded 10%.

  20. Airborne particle sizes and sources found in indoor air

    NASA Astrophysics Data System (ADS)

    Owen, M. K.; Ensor, D. S.; Sparks, L. E.

    As concern about indoor air quality (IAQ) has grown in recent years, understanding indoor aerosols has become increasingly important so that control techniques may be implemented to reduce damaging health effects and soiling problems. This paper begins with a brief look at the mechanics of deposition in the lungs and the aerosol dynamics that influence particles at all times. This discussion shows that the particle diameters must be known to predict dose or soiling and to determine efficient mitigation techniques. The particle sizes produced by the various indoor sources, as well as unusual aspects of each type of source, must be known so that this process may begin. This paper summarizes the results of a literature search into the sources, sizes and concentrations of indoor particles. There are several types of indoor particles: plant and animal bioaerosols and mineral, combustion and home/personal care aerosols. These types may be produced indoors or outdoors, entering through building openings. The sources may be short term, seasonal or continuous. Particle sizes produced vary from submicrometer to larger than 10 μm. The particles may be toxic or allergenic. This information is presented in a summary table and is discussed in the text.

  1. Gas bubble detector

    NASA Technical Reports Server (NTRS)

    Mount, Bruce E. (Inventor); Burchfield, David E. (Inventor); Hagey, John M. (Inventor)

    1995-01-01

    A gas bubble detector having a modulated IR source focused through a bandpass filter onto a venturi, formed in a sample tube, to illuminate the venturi with modulated filtered IR to detect the presence of gas bubbles as small as 0.01 cm or about 0.004 in diameter in liquid flowing through the venturi. Means are provided to determine the size of any detected bubble and to provide an alarm in the absence of liquid in the sample tube.

  2. Bubble reconstruction method for wire-mesh sensors measurements

    NASA Astrophysics Data System (ADS)

    Mukin, Roman V.

    2016-08-01

    A new algorithm is presented for post-processing of void fraction measurements with wire-mesh sensors, particularly for identifying and reconstructing bubble surfaces in a two-phase flow. This method is a combination of the bubble recognition algorithm presented in Prasser (Nuclear Eng Des 237(15):1608, 2007) and Poisson surface reconstruction algorithm developed in Kazhdan et al. (Poisson surface reconstruction. In: Proceedings of the fourth eurographics symposium on geometry processing 7, 2006). To verify the proposed technique, a comparison was done of the reconstructed individual bubble shapes with those obtained numerically in Sato and Ničeno (Int J Numer Methods Fluids 70(4):441, 2012). Using the difference between reconstructed and referenced bubble shapes, the accuracy of the proposed algorithm was estimated. At the next step, the algorithm was applied to void fraction measurements performed in Ylönen (High-resolution flow structure measurements in a rod bundle (Diss., Eidgenössische Technische Hochschule ETH Zürich, Nr. 20961, 2013) by means of wire-mesh sensors in a rod bundle geometry. The reconstructed bubble shape yields bubble surface area and volume, hence its Sauter diameter d_{32} as well. Sauter diameter is proved to be more suitable for bubbles size characterization compared to volumetric diameter d_{30}, proved capable to capture the bi-disperse bubble size distribution in the flow. The effect of a spacer grid was studied as well: For the given spacer grid and considered flow rates, bubble size frequency distribution is obtained almost at the same position for all cases, approximately at d_{32} = 3.5 mm. This finding can be related to the specific geometry of the spacer grid or the air injection device applied in the experiments, or even to more fundamental properties of the bubble breakup and coagulation processes. In addition, an application of the new algorithm for reconstruction of a large air-water interface in a tube bundle is

  3. Long Pathways for Outgassing Generated by a Rapid and Large Shear Strain of Bubbly Fluids Reducing Effective Viscosity and Affecting Eruption Styles

    NASA Astrophysics Data System (ADS)

    Namiki, A.; Tanaka, Y.

    2015-12-01

    The styles of basaltic explosive eruptions have a wide variety, which is usually attributed to the separation of volcanic gas from the surrounding silicate melt. As a mechanism of gas separation, shear deformation has been suggested. However, the bubble shape evolution under large strain at high strain rate and its effects on viscosity have not yet understood well. We thus performed shear deformation experiments of bubbly liquid under high shear rate and large strain with in situ observation of bubble deformation and viscosity measurements. We used syrup solution as a magma analogue whose viscosity of 3, 50, 500 Pa s, similar to that of basaltic magma. We rotated disc-shaped bubbly syrup at shear rates of 0.03-10 s-1 with strains of 3-1000. Experiments show that deformed bubbles coalesce into larger bubbles and finally generate concentric air rings, resulting that the striped shape of air and liquid parts appears. The widths of air rings greatly exceed the bubble sizes and can be long outgassing pathways if those exist in a volcanic conduit. During the evolution of air rings the measured effective viscosity decreases, while after reaching to a steady state, viscous resistance increases again. At this stage, bubble volume and size in the liquid parts become considerably small. Time evolution of bubble size distribution suggests that most of bubbles are assimilated into the air rings and the remnants in the liquid parts break up into small bubbles. Similar shear deformation of bubbly magma could occur in volcanic conduits, which generates large bubbles at a depth where the lower effective viscosity enhances the ascending velocity. The large bubbles may originate Strombolian eruption or suppresses the explosive eruption by making the long outgassing pathways reaching to the Earth's surface. In both cases, bubble free dense melt accumulates at a shallow conduit. Our experiments suggest that, for larger melt viscosity and narrower conduit, the gas separation occurs

  4. Technique for air bubble management during endothelial keratoplasty in eyes after penetrating glaucoma surgery.

    PubMed

    Banitt, Michael; Arrieta-Quintero, Esdras; Parel, Jean-Marie; Fantes, Francisco

    2011-02-01

    Our purpose was to develop a technique for maintaining air within the anterior chamber during endothelial keratoplasty in eyes that have previously undergone trabeculectomy or a glaucoma drainage implant. Whole human globes and rabbits underwent penetrating glaucoma surgery to develop the technique. Without the aid of any additional device or manipulation, continuing to inject air into the anterior chamber as it escapes through the sclerostomy or tube eventually fills the subconjunctival space and allows for back pressure. This allows for a full anterior chamber air fill and brief elevation of intraocular pressure. We employed this overfilling technique on 3 patients with previous incisional glaucoma surgery to perform successful Descemet stripping endothelial keratoplasty without complication. We recommend using the overfilling technique when performing Descemet stripping endothelial keratoplasty surgery in eyes with previous penetrating glaucoma surgery because it is a simple technique without the need for pre- or postoperative manipulation.

  5. Bubble stimulation efficiency of dinoflagellate bioluminescence.

    PubMed

    Deane, Grant B; Stokes, M Dale; Latz, Michael I

    2016-02-01

    Dinoflagellate bioluminescence, a common source of bioluminescence in coastal waters, is stimulated by flow agitation. Although bubbles are anecdotally known to be stimulatory, the process has never been experimentally investigated. This study quantified the flash response of the bioluminescent dinoflagellate Lingulodinium polyedrum to stimulation by bubbles rising through still seawater. Cells were stimulated by isolated bubbles of 0.3-3 mm radii rising at their terminal velocity, and also by bubble clouds containing bubbles of 0.06-10 mm radii for different air flow rates. Stimulation efficiency, the proportion of cells producing a flash within the volume of water swept out by a rising bubble, decreased with decreasing bubble radius for radii less than approximately 1 mm. Bubbles smaller than a critical radius in the range 0.275-0.325 mm did not stimulate a flash response. The fraction of cells stimulated by bubble clouds was proportional to the volume of air in the bubble cloud, with lower stimulation levels observed for clouds with smaller bubbles. An empirical model for bubble cloud stimulation based on the isolated bubble observations successfully reproduced the observed stimulation by bubble clouds for low air flow rates. High air flow rates stimulated more light emission than expected, presumably because of additional fluid shear stress associated with collective buoyancy effects generated by the high air fraction bubble cloud. These results are relevant to bioluminescence stimulation by bubbles in two-phase flows, such as in ship wakes, breaking waves, and sparged bioreactors.

  6. Skin formation and bubble growth during drying process of polymer solution.

    PubMed

    Arai, S; Doi, M

    2012-07-01

    When a polymer solution with volatile solvent is dried, skins are often formed at the surface of the solution. It has been observed that after the skin is formed, bubbles often appear in the solution. We conducted experiments to clarify the relation between the skin formation and the bubble formation. We measured the time dependence of the thickness of the skin layer, the size of the bubbles, and the pressure in the solution. From our experiments, we concluded that i) the gas in the bubble is a mixture of solvent vapor and air dissolved in the solution, ii) the bubble nucleation is assisted by the pressure decrease in the solution covered by the skin layer, and iii) the growth of the bubbles is diffusion limited, mainly limited by the diffusion of air molecules dissolved in the solution.

  7. Symmetric mode resonance of bubbles attached to a rigid boundary

    NASA Astrophysics Data System (ADS)

    Payne, Edward M. B.; Illesinghe, Suhith J.; Ooi, Andrew; Manasseh, Richard

    2005-11-01

    Experimental results are compared with a theoretical analysis concerning wall effects on the symmetric mode resonance frequency of millimeter-sized air bubbles in water. An analytical model based on a linear coupled-oscillator approximation is used to describe the oscillations of the bubbles, while the method of images is used to model the effect of the wall. Three situations are considered: a single bubble, a group of two bubbles, and a group of three bubbles. The results show that bubbles attached to a rigid boundary have lower resonance frequencies compared to when they are in an infinite uniform liquid domain (referred to as free space). Both the experimental data and theoretical analysis show that the symmetric mode resonance frequency decreases with the number of bubbles but increases as the bubbles are moved apart. Discrepancies between theory and experiment can be explained by the fact that distortion effects due to buoyancy forces and surface tension were ignored. The data presented here are intended to guide future investigations into the resonances of larger arrays of bubbles on rigid surfaces, which may assist in surface sonochemistry, sonic cleaning, and micro-mixing applications.

  8. Optimization of bubble column performance for nanoparticle collection.

    PubMed

    Cadavid-Rodriguez, M C; Charvet, A; Bemer, D; Thomas, D

    2014-04-30

    Fibrous media embody the most effective and widely used method of separating ultrafine particles from a carrier fluid. The main problem associated with them is filter clogging, which induces an increasingly marked pressure drop with time and thus imposes regular media cleaning or replacement. This context has prompted the idea of investigating bubble columns, which operate at constant pressure drop, as alternatives to fibrous filters. This study examines the influence of different operating conditions, such as liquid height, air flow rate, bubble size and presence of granular beds on ultrafine particle collection. Experimental results show that bubble columns are characterised by high collection efficiency, when they feature a large liquid height and small diameter bubbling orifices, while their efficiencies remain lower than those of fibrous filters. Gas velocity does not greatly influence collection efficiency, but the inclusion of a granular bed, composed of beads, increases the bubble residence time in the column, thereby increasing the column collection efficiency.

  9. Capillary tube wetting induced by particles: towards armoured bubbles tailoring.

    PubMed

    Zoueshtiagh, Farzam; Baudoin, Michael; Guerrin, David

    2014-12-21

    In this paper, we report on the strongly modified dynamics of a liquid finger pushed inside a capillary tube, when partially wettable particles are lying on the walls. Particles promote the appearance of new regimes and enable the tailored synthesis of bubbles encapsulated in a monolayer of particles (so-called "armoured bubbles"). This remarkable behavior arises due to the collection of particles at the air-liquid interface, which modify the global energy balance and stabilize the interface. Armoured-bubbles are of primary interest in industrial processes since they display increased stability, interfacial rigidity and can even sustain non-spherical shapes. This work opens perspective for a low cost bubbles-on-demand technology enabling the synthesis of armoured bubbles with specific sizes, shapes and composition.

  10. Optimization of bubble column performance for nanoparticle collection.

    PubMed

    Cadavid-Rodriguez, M C; Charvet, A; Bemer, D; Thomas, D

    2014-04-30

    Fibrous media embody the most effective and widely used method of separating ultrafine particles from a carrier fluid. The main problem associated with them is filter clogging, which induces an increasingly marked pressure drop with time and thus imposes regular media cleaning or replacement. This context has prompted the idea of investigating bubble columns, which operate at constant pressure drop, as alternatives to fibrous filters. This study examines the influence of different operating conditions, such as liquid height, air flow rate, bubble size and presence of granular beds on ultrafine particle collection. Experimental results show that bubble columns are characterised by high collection efficiency, when they feature a large liquid height and small diameter bubbling orifices, while their efficiencies remain lower than those of fibrous filters. Gas velocity does not greatly influence collection efficiency, but the inclusion of a granular bed, composed of beads, increases the bubble residence time in the column, thereby increasing the column collection efficiency. PMID:24584069

  11. Acoustic radiation force on an air bubble and soft fluid spheres in ideal liquids: Example of a high-order Bessel beam of quasi-standing waves

    NASA Astrophysics Data System (ADS)

    Mitri, F. G.

    2009-04-01

    The partial wave series for the scattering of a high-order Bessel beam (HOBB) of acoustic quasi-standing waves by an air bubble and fluid spheres immersed in water and centered on the axis of the beam is applied to the calculation of the acoustic radiation force. A HOBB refers to a type of beam having an axial amplitude null and an azimuthal phase gradient. Radiation force examples obtained through numerical evaluation of the radiation force function are computed for an air bubble, a hexane, a red blood and mercury fluid spheres in water. The examples were selected to illustrate conditions having progressive, standing and quasi-standing waves with appropriate selection of the waves’ amplitude ratio. An especially noteworthy result is the lack of a specific vibrational mode contribution to the radiation force determined by appropriate selection of the HOBB parameters.

  12. Sensitivity of Hollow Fiber Spacesuit Water Membrane Evaporator Systems to Potable Water Constituents, Contaminants and Air Bubbles

    NASA Technical Reports Server (NTRS)

    Bue, Grant C.; Trevino, Luis A.; Fritts, Sharon; Tsioulos, Gus

    2008-01-01

    The Spacesuit Water Membrane Evaporator (SWME) is the baseline heat rejection technology selected for development for the Constellation lunar suit. The first SWME prototype, designed, built, and tested at Johnson Space Center in 1999 used a Teflon hydrophobic porous membrane sheet shaped into an annulus to provide cooling to the coolant loop through water evaporation to the vacuum of space. This present study describes the test methodology and planning and compares the test performance of three commercially available hollow fiber materials as alternatives to the sheet membrane prototype for SWME, in particular, a porous hydrophobic polypropylene, and two variants that employ ion exchange through non-porous hydrophilic modified Nafion. Contamination tests will be performed to probe for sensitivities of the candidate SWME elements to ordinary constituents that are expected to be found in the potable water provided by the vehicle, the target feedwater source. Some of the impurities in potable water are volatile, such as the organics, while others, such as the metals and inorganic ions are nonvolatile. The non-volatile constituents will concentrate in the SWME as evaporated water from the loop is replaced by the feedwater. At some point in the SWME mission lifecycle as the concentrations of the non-volatiles increase, the solubility limits of one or more of the constituents may be reached. The resulting presence of precipitate in the coolant water may begin to plug pores and tube channels and affect the SWME performance. Sensitivity to macroparticles, lunar dust simulant, and air bubbles will also be investigated.

  13. Characterization of acoustic droplet vaporization for control of bubble generation under flow conditions.

    PubMed

    Kang, Shih-Tsung; Huang, Yi-Luan; Yeh, Chih-Kuang

    2014-03-01

    This study investigated the manipulation of bubbles generated by acoustic droplet vaporization (ADV) under clinically relevant flow conditions. Optical microscopy and high-frequency ultrasound imaging were used to observe bubbles generated by 2-MHz ultrasound pulses at different time points after the onset of ADV. The dependence of the bubble population on droplet concentration, flow velocity, fluid viscosity and acoustic parameters, including acoustic pressure, pulse duration and pulse repetition frequency, was investigated. The results indicated that post-ADV bubble growth spontaneously driven by air permeation markedly affected the bubble population after insonation. The bubbles can grow to a stable equilibrium diameter as great as twice the original diameter in 0.5-1 s, as predicted by the theoretical calculation. The growth trend is independent of flow velocity, but dependent on fluid viscosity and droplet concentration, which directly influence the rate of gas uptake by bubbles and the rate of gas exchange across the wall of the semipermeable tube containing the bubbles and, hence, the gas content of the host medium. Varying the acoustic pressure does not markedly change the formation of bubbles as long as the ADV thresholds of most droplets are reached. Varying pulse duration and pulse repetition frequency markedly reduces the number of bubbles. Lengthening pulse duration favors the production of large bubbles, but reduces the total number of bubbles. Increasing the PRF interestingly provides superior performance in bubble disruption. These results also suggest that an ADV bubble population cannot be assessed simply on the basis of initial droplet size or enhancement of imaging contrast by the bubbles. Determining the optimal acoustic parameters requires careful consideration of their impact on the bubble population produced for different application scenarios.

  14. Air gasification of rice husk in bubbling fluidized bed reactor with bed heating by conventional charcoal.

    PubMed

    Makwana, J P; Joshi, Asim Kumar; Athawale, Gaurav; Singh, Dharminder; Mohanty, Pravakar

    2015-02-01

    An experimental study of air gasification of rice husk was conducted in a bench-scale fluidized bed gasifier (FBG) having 210 mm diameter and 1600 mm height. Heating of sand bed material was performed using conventional charcoal fuel. Different operating conditions like bed temperature, feeding rate and equivalence ratio (ER) varied in the range of 750-850 °C, 25-31.3 kg/h, and 0.3-0.38, respectively. Flow rate of air was kept constant (37 m(3)/h) during FBG experiments. The carbon conversion efficiencies (CCE), cold gas efficiency, and thermal efficiency were evaluated, where maximum CCE was found as 91%. By increasing ER, the carbon conversion efficiency was decreased. Drastic reduction in electric consumption for initial heating of gasifier bed with charcoal compared to ceramic heater was ∼45%. Hence rice husk is found as a potential candidate to use directly (without any processing) in FBG as an alternative renewable energy source from agricultural field. PMID:25446789

  15. Air gasification of rice husk in bubbling fluidized bed reactor with bed heating by conventional charcoal.

    PubMed

    Makwana, J P; Joshi, Asim Kumar; Athawale, Gaurav; Singh, Dharminder; Mohanty, Pravakar

    2015-02-01

    An experimental study of air gasification of rice husk was conducted in a bench-scale fluidized bed gasifier (FBG) having 210 mm diameter and 1600 mm height. Heating of sand bed material was performed using conventional charcoal fuel. Different operating conditions like bed temperature, feeding rate and equivalence ratio (ER) varied in the range of 750-850 °C, 25-31.3 kg/h, and 0.3-0.38, respectively. Flow rate of air was kept constant (37 m(3)/h) during FBG experiments. The carbon conversion efficiencies (CCE), cold gas efficiency, and thermal efficiency were evaluated, where maximum CCE was found as 91%. By increasing ER, the carbon conversion efficiency was decreased. Drastic reduction in electric consumption for initial heating of gasifier bed with charcoal compared to ceramic heater was ∼45%. Hence rice husk is found as a potential candidate to use directly (without any processing) in FBG as an alternative renewable energy source from agricultural field.

  16. Bubble Generation in a Continuous Liquid Flow Under Reduced Gravity Conditions

    NASA Technical Reports Server (NTRS)

    Pais, Salvatore Cezar

    1999-01-01

    The present work reports a study of bubble generation under reduced gravity conditions for both co-flow and cross-flow configurations. Experiments were performed aboard the DC-9 Reduced Gravity Aircraft at NASA Glenn Research Center, using an air-water system. Three different flow tube diameters were used: 1.27, 1.9, and 2.54 cm. Two different ratios of air injection nozzle to tube diameters were considered: 0.1 and 0.2. Gas and liquid volumetric flow rates were varied from 10 to 200 ml/s. It was experimentally observed that with increasing superficial liquid velocity, the bubbles generated decreased in size. The bubble diameter was shown to increase with increasing air injection nozzle diameters. As the tube diameter was increased, the size of the detached bubbles increased. Likewise, as the superficial liquid velocity was increased, the frequency of bubble formation increased and thus the time to detach forming bubbles decreased. Independent of the flow configuration (for either single nozzle or multiple nozzle gas injection), void fraction and hence flow regime transition can be controlled in a somewhat precise manner by solely varying the gas and liquid volumetric flow rates. On the other hand, it is observed that uniformity of bubble size can be controlled more accurately by using single nozzle gas injection than by using multiple port injection, since this latter system gives rise to unpredictable coalescence of adjacent bubbles. A theoretical model, based on an overall force balance, is employed to study single bubble generation in the dynamic and bubbly flow regime. Under conditions of reduced gravity, the gas momentum flux enhances bubble detachment; however, the surface tension forces at the nozzle tip inhibits bubble detachment. Liquid drag and inertia can act either as attaching or detaching force, depending on the relative velocity of the bubble with respect to the surrounding liquid. Predictions of the theoretical model compare well with performed

  17. Airborne & SAR Synergy Reveals the 3D Structure of Air Bubble Entrainment in Internal Waves and Frontal Zones

    NASA Astrophysics Data System (ADS)

    da Silva, J. C. B.; Magalhaes, J. M.; Batista, M.; Gostiaux, L.; Gerkema, T.; New, A. L.

    2013-03-01

    Internal waves are now recognised as an important mixing mechanism in the ocean. Mixing at the base of the mixed layer and in the seasonal thermocline affects the properties of those water masses which define the exchange of heat and freshwater between the atmosphere and ocean. The breaking of Internal Solitary Waves (ISWs) contributes significantly to turbulent mixing in the near-surface layers, through the continual triggering of instabilities as they propagate and shoal towards the coast or shallow topography. Here we report some results of the EU funded project A.NEW (Airborne observations of Nonlinear Evolution of internal Waves generated by internal tidal beams). The airborne capabilities to observe small scale structure of breaking internal waves in the near-shore zone has been demonstrated in recent studies (e.g. Marmorino et al., 2008). In particular, sea surface thermal signatures of shoaling ISWs have revealed the turbulent character of these structures in the form of surface “boil” features. On the other hand, some in situ measurements of internal waves and theoretical work suggest subsurface entrainment of air bubbles in the convergence zones of ISWs (Serebryany and Galybin, 2009; Grimshaw et al., 2010). We conducted airborne remote sensing observations in the coastal zone off the west Iberian Peninsula (off Lisbon, Portugal) using high resolution imaging sensors: LiDAR (Light Detection And Ranging), hyperspectral cameras (Eagle and Hawk) and thermal infrared imaging (TABI-320). These measurements were planned based on previous SAR observations in the region, which included also near-real time SAR overpasses (ESA project AOPT-2423 and TerraSAR-X project OCE-0056). The airborne measurements were conducted from board the NERC (Natural Environmental Research Centre) Do 228 aircraft in the summer of 2010. The TABI-320 thermal airborne broadband imager can distinguish temperature differences as small as one-twentieth of a degree and operates in the

  18. A survey on air bubble detector placement in the CPB circuit: a 2011 cross-sectional analysis of the practice of Certified Clinical Perfusionists.

    PubMed

    Kelting, T; Searles, B; Darling, E

    2012-07-01

    The ideal location of air bubble detector (ABD) placement on the cardiopulmonary bypass (CPB) circuit is debatable. There is, however, very little data characterizing the prevalence of specific ABD placement preferences by perfusionists. Therefore, the purpose of this study was to survey the perfusion community to collect data describing the primary locations of air bubble detector placement on the CPB circuit. In June 2011, an 18-question on-line survey was conducted. Completed surveys were received from 627 participants. Of these, analysis of the responses from the 559 certified clinical perfusionists (CCP) was performed. The routine use of ABD during CPB was reported by 96.8% of CCPs. Of this group, specific placement of the bubble detector is as follows: distal to the venous reservoir outlet (35.6%), between the arterial pump and oxygenator (3.8%), between the oxygenator and arterial line filter (35.1%), distal to the arterial line filter (ALF) (23.6%), and other (1.8%). Those placing the ABD distal to the venous reservoir predominately argued that an emptied venous reservoir was the most likely place to introduce air into the circuit. Those who placed the ABD between the oxygenator and the arterial line filter commonly reasoned that this placement protects against air exiting the membrane. Those placing the ABD distal to the ALF (23.6%) cited that this location protects from all possible entry points of air. A recent false alarm event from an ABD during a case was reported by 36.1% of CCPs. This study demonstrates that the majority of CCPs use an ABD during the conduct of CPB. The placement of the ABD on the circuit, however, is highly variable across the perfusion community. A strong rationale for the various ABD placements suggests that the adoption of multiple ABD may offer the greatest comprehensive protection against air emboli.

  19. Particle counting and sizing with LDV for automotive air- filters

    NASA Astrophysics Data System (ADS)

    Liang, Faqiu

    Scope of study. Flow non-uniformity in the automotive filter has a great impact on the filter performance. Therefore, study of the flow distribution as well as the dust particle concentration in the filter housing is very important for improvement of automotive filter design. This study focuses on particle counting and sizing techniques with Laser Doppler Velocimetry (LDV) and their application to automotive air filter measurement. The Purolator X13192 filter was tested in both the SAE J726 standard test housing and a newly designed diffuser housing with water and polystyrene latex (PSL) particles. Velocity and particle number density were measured at different levels above and below the filter with variable flow rates and particle sizes. Filter local efficiency and overall efficiency were analyzed based on the particle counting data. The effect of dirt accumulation on the performance of the filter was also investigated. Findings and conclusions. The 'swept volume technique' was developed for particle counting, while a method which utilizes the Doppler signal and particle trajectory analysis was created for sizing particles from submicron to about one hundred microns. Both techniques were calibrated with PSL particles and were fairly accurate in measurement (average errors were within 20%). A variety of velocity and particle number density profiles were obtained at different levels (12.7 mm above the filter, and 64 mm below the filter). These profiles may be useful either in the industrial design of new filters or in future research as benchmarks. For particles with diameters of 0.966 μm, the measured overall efficiency, ranging from 5% to 65% depending on the flow rate, was much higher than that widely assumed or theoretically predicted (less than 5%). However, for particles with diameters of 5.3 μm, the measured overall efficiency, varying from 65% to 85%, was much lower than that widely assumed or theoretically predicted (more than 90%). The distribution of

  20. Statistical equilibrium of bubble oscillations in dilute bubbly flows

    PubMed Central

    Colonius, Tim; Hagmeijer, Rob; Ando, Keita; Brennen, Christopher E.

    2008-01-01

    The problem of predicting the moments of the distribution of bubble radius in bubbly flows is considered. The particular case where bubble oscillations occur due to a rapid (impulsive or step change) change in pressure is analyzed, and it is mathematically shown that in this case, inviscid bubble oscillations reach a stationary statistical equilibrium, whereby phase cancellations among bubbles with different sizes lead to time-invariant values of the statistics. It is also shown that at statistical equilibrium, moments of the bubble radius may be computed using the period-averaged bubble radius in place of the instantaneous one. For sufficiently broad distributions of bubble equilibrium (or initial) radius, it is demonstrated that bubble statistics reach equilibrium on a time scale that is fast compared to physical damping of bubble oscillations due to viscosity, heat transfer, and liquid compressibility. The period-averaged bubble radius may then be used to predict the slow changes in the moments caused by the damping. A benefit is that period averaging gives a much smoother integrand, and accurate statistics can be obtained by tracking as few as five bubbles from the broad distribution. The period-averaged formula may therefore prove useful in reducing computational effort in models of dilute bubbly flow wherein bubbles are forced by shock waves or other rapid pressure changes, for which, at present, the strong effects caused by a distribution in bubble size can only be accurately predicted by tracking thousands of bubbles. Some challenges associated with extending the results to more general (nonimpulsive) forcing and strong two-way coupled bubbly flows are briefly discussed. PMID:19547725

  1. Interfacial Bubble Deformations

    NASA Astrophysics Data System (ADS)

    Seymour, Brian; Shabane, Parvis; Cypull, Olivia; Cheng, Shengfeng; Feitosa, Klebert

    Soap bubbles floating at an air-water experience deformations as a result of surface tension and hydrostatic forces. In this experiment, we investigate the nature of such deformations by taking cross-sectional images of bubbles of different volumes. The results show that as their volume increases, bubbles transition from spherical to hemispherical shape. The deformation of the interface also changes with bubble volume with the capillary rise converging to the capillary length as volume increases. The profile of the top and bottom of the bubble and the capillary rise are completely determined by the volume and pressure differences. James Madison University Department of Physics and Astronomy, 4VA Consortium, Research Corporation for Advancement of Science.

  2. The dynamics of histotripsy bubbles

    NASA Astrophysics Data System (ADS)

    Kreider, Wayne; Bailey, Michael R.; Sapozhnikov, Oleg A.; Khokhlova, Vera A.; Crum, Lawrence A.

    2011-09-01

    Histotripsy describes treatments in which high-amplitude acoustic pulses are used to excite bubbles and erode tissue. Though tissue erosion can be directly attributed to bubble activity, the genesis and dynamics of bubbles remain unclear. Histotripsy lesions that show no signs of thermal coagulative damage have been generated with two different acoustic protocols: relatively long acoustic pulses that produce local boiling within milliseconds and relatively short pulses that are higher in amplitude but likely do not produce boiling. While these two approaches are often distinguished as `boiling' versus `cavitation', such labels can obscure similarities. In both cases, a bubble undergoes large changes in radius and vapor is transported into and out of the bubble as it oscillates. Moreover, observations from both approaches suggest that bubbles grow to a size at which they cease to collapse violently. In order to better understand the dynamics of histotripsy bubbles, a single-bubble model has been developed that couples acoustically excited bubble motions to the thermodynamic state of the surrounding liquid. Using this model for bubbles exposed to histotripsy sound fields, simulations suggest that two mechanisms can act separately or in concert to lead to the typically observed bubble growth. First, nonlinear acoustic propagation leads to the evolution of shocks and an asymmetry in the positive and negative pressures that drive bubble motion. This asymmetry can have a rectifying effect on bubble oscillations whereby the bubble grows on average during each acoustic cycle. Second, vapor transport to/from the bubble tends to produce larger bubbles, especially at elevated temperatures. Vapor transport by itself can lead to rectified bubble growth when the ambient temperature exceeds 100 °C (`boiling') or local heating in the vicinity of the bubble leads to a superheated boundary layer.

  3. Bubble production using a Non-Newtonian fluid in microfluidic flow focusing device

    NASA Astrophysics Data System (ADS)

    Wang, Yi-Lin; Ward, Thomas; Grant, Christine

    2012-02-01

    We experimentally study the production of micrometer-sized bubbles using microfluidic technology and a flow-focusing geometry. Bubbles are produced by using a mixture containing aqueous polyacrylamide of concentrations ranging from 0.01-0.10% by weight and several solution also containing a sodium-lauryl-sulfate (SLS) surfactant at concentrations ranging 0.01-0.1% by weight. The fluids are driven by controlling the static pressure above a hydrostatic head of the liquid while the disperse phase fluid static pressure is held constant (air). In the absence of surfactant the bubble production is discontinuous. The addition of surfactant stabilizes the bubble production. In each type of experiment, the bubble length l, velocity U and production frequency φ are measured and compared as a function of the inlet pressure ratio. The bubbles exhibit a contraction in their downstream length as a function of the polymer concentration which is investigated.

  4. Influence of HX size and augmentation on performance potential of mixtures in air-to-air heat pumps

    SciTech Connect

    Rice, C.K.

    1993-05-01

    A modified Carnot analysis with finite heat exchanger (HX) sizes, counterflow HX configurations, and ideal glide matching was conducted for an air-to-air heat pump application. The purpose of the analysis was to determine the envelope of potential HX size and refrigerant-side augmentation benefits for ideal mixtures relative to pure refrigerant alternatives. The mixture COP benefits examined are those due to exact external fluid glide-matching of idealized mixtures in more effective heat exchangers. Maximum possible mixture COP gains are evaluated for four steady-state air-to-air heat pump conditions. Performance improvement opportunities are found to be primarily in the cooling mode. The effects of deviation from counterflow by use of crossflow and countercrossflow HX configurations are addressed. Refrigerant-side augmentation with pure and mixed refrigerants is examined for air-side dominant and air-to-refrigerant balanced HXs.

  5. Clustering in bubbly liquids

    NASA Astrophysics Data System (ADS)

    Figueroa, Bernardo; Zenit, Roberto

    2004-11-01

    We are conducting experiments to determine the amount of clustering that occurs when small gas bubbles ascend in clean water. In particular, we are interested in flows for which the liquid motion around the bubbles can be described, with a certain degree of accuracy, using potential flow theory. This model is applicable for the case of bubbly liquids in which the Reynolds number is large and the Weber number is small. To clearly observe the formation of bubble clusters we propose the use of a Hele-Shaw-type channel. In this thin channel the bubbles cannot overlap in the depth direction, therefore the identification of bubble clusters cannot be misinterpreted. Direct video image analysis is performed to calculate the velocity and size of the bubbles, as well as the formation of clusters. Although the walls do affect the motion of the bubbles, the clustering phenomena does occur and has the same qualitative behavior as in fully three-dimensional flows. A series of preliminary measurements are presented. A brief discussion of our plans to perform PIV measurements to obtain the liquid velocity fields is also presented.

  6. A critical analysis of air shower structure functions and size spectrum measurements with the NBU air shower array

    NASA Technical Reports Server (NTRS)

    Chaudhuri, N.; Basak, D. K.

    1985-01-01

    A total of 11,000 showers in the size range 10 to the 4 to 10 to the 6 particles so far detected by the NBU air shower array has been analyzed using five different structure functions. A comparison of structure functions in terms: (1) of shower size; and (2) electron density at various core distances has been discussed to indicate the present status of structure functions in air shower analysis.

  7. Particle image velocimetry studies of bubble growth and detachment by high-speed photography

    NASA Astrophysics Data System (ADS)

    Stickland, Mathew; Dempster, William; Lothian, Lee; Oldroyd, Andrew

    1997-05-01

    An understanding of bubble flows is important in the design of process equipment, particularly in the chemical and power industries. In vapor-liquid processes the mass and heat transfer between the phases is dominated by the liquid-vapor interface and is determined by the number, size, and shape of the bubbles. For bubble flows these characteristics are often controlled by the generation mechanisms and, since bubble flows are often generated at an orifice, it is important to determine the controlling parameters which dictate how bubbles grow and detach. For bubbles growing at orifices the liquid displacement is an important feature and affects the pressure distribution acting on the bubble and the heat and mass transfer that may occur at the bubble interface. Therefore, in this study, the characteristics of the liquid velocity field are studied experimentally using Particle image Velocimetry (PIV) during growth, detachment and translation of a bubble being generated at an orifice supplied with a constant mass flow rate of air. The process is transient and occurs over a period of approximately 50 msecs. In order to map the transient flow field a combination of high speed cine and cross correlation PIV image processing has been used to determine the liquid velocity vector field during the bubble growth process. The paper contains details of the PIV technique and presents several of the velocity vector maps calculated.

  8. Recalcitrant bubbles

    PubMed Central

    Shanahan, Martin E. R.; Sefiane, Khellil

    2014-01-01

    We demonstrate that thermocapillary forces may drive bubbles against liquid flow in ‘anomalous' mixtures. Unlike ‘ordinary' liquids, in which bubbles migrate towards higher temperatures, we have observed vapour bubbles migrating towards lower temperatures, therefore against the flow. This unusual behaviour may be explained by the temperature dependence of surface tension of these binary mixtures. Bubbles migrating towards their equilibrium position follow an exponential trend. They finally settle in a stationary position just ‘downstream' of the minimum in surface tension. The exponential trend for bubbles in ‘anomalous' mixtures and the linear trend in pure liquids can be explained by a simple model. For larger bubbles, oscillations were observed. These oscillations can be reasonably explained by including an inertial term in the equation of motion (neglected for smaller bubbles). PMID:24740256

  9. Recalcitrant bubbles.

    PubMed

    Shanahan, Martin E R; Sefiane, Khellil

    2014-04-17

    We demonstrate that thermocapillary forces may drive bubbles against liquid flow in 'anomalous' mixtures. Unlike 'ordinary' liquids, in which bubbles migrate towards higher temperatures, we have observed vapour bubbles migrating towards lower temperatures, therefore against the flow. This unusual behaviour may be explained by the temperature dependence of surface tension of these binary mixtures. Bubbles migrating towards their equilibrium position follow an exponential trend. They finally settle in a stationary position just 'downstream' of the minimum in surface tension. The exponential trend for bubbles in 'anomalous' mixtures and the linear trend in pure liquids can be explained by a simple model. For larger bubbles, oscillations were observed. These oscillations can be reasonably explained by including an inertial term in the equation of motion (neglected for smaller bubbles).

  10. Fluid Dynamics of Bubbly Liquids

    NASA Technical Reports Server (NTRS)

    Tsang, Y. H.; Koch, D. L.; Zenit, R.; Sangani, A.; Kushch, V. I.; Spelt, P. D. M.; Hoffman, M.; Nahra, H.; Fritz, C.; Dolesh, R.

    2002-01-01

    Experiments have been performed to study the average flow properties of inertially dominated bubbly liquids which may be described by a novel analysis. Bubbles with high Reynolds number and low Weber number may produce a fluid velocity disturbance that can be approximated by a potential flow. We studied the behavior of suspensions of bubbles of about 1.5 mm diameter in vertical and inclined channels. The suspension was produced using a bank of 900 glass capillaries with inner diameter of about 100 microns in a quasi-steady fashion. In addition, salt was added to the suspension to prevent bubble-bubble coalescence. As a result, a nearly monodisperse suspension of bubble was produced. By increasing the inclination angle, we were able to explore an increasing amount of shear to buoyancy motion. A pipe flow experiment with the liquid being recirculated is under construction. This will provide an even larger range of shear to buoyancy motion. We are planning a microgravity experiment in which a bubble suspension is subjected to shearing in a couette cell in the absence of a buoyancy-driven relative motion of the two phases. By employing a single-wire, hot film anemometer, we were able to obtain the liquid velocity fluctuations. The shear stress at the wall was measured using a hot film probe flush mounted on the wall. The gas volume fraction, bubble velocity, and bubble velocity fluctuations were measured using a homemade, dual impedance probe. In addition, we also employed a high-speed camera to obtain the bubble size distribution and bubble shape in a dilute suspension. A rapid decrease in bubble velocity for a dilute bubble suspension is attributed to the effects of bubble-wall collisions. The more gradual decrease of bubble velocity as gas volume fraction increases, due to subsequent hindering of bubble motion, is in qualitative agreement with the predictions of Spelt and Sangani for the effects of potential-flow bubble-bubble interactions on the mean velocity. The

  11. Thermocapillary Flow and Aggregation of Bubbles on a Solid Wall

    NASA Technical Reports Server (NTRS)

    Kasumi, Hiroki; Solomentsev, Yuri E.; Guelcher, Scott A.; Anderson, John L.; Sides, Paul J.

    2000-01-01

    were equated by using a wall hindrance parameter q: U = qu [1] which shows the velocity of bubble is proportional to the entraining velocity. The hindrance parameter q can experimentally be measured independently. q can also be calculated by solving the equations of motion for a bubble translating parallel to a solid wall. The experimental cell is cylindrical with an ID of 10 cm and consists of a 1 cm deep main cell filled with silicone oil and flanked by two thermal reservoirs. The upper thermal reservoir was heated and the lower thermal reservoir was cooled so that the bubbles aggregate. Two types of silicone oil (eta = 0.02 and 0.50 Pa s) were used. Two equal sized air bubbles were injected into the cell with a syringe. The center-to-center distance of bubbles was observed through a microscope. Bubble radius ranged from 0.40 mm to 0.65 mm and the temperature gradients along with the cell ranged from 1400 to 5000 K/m. The bubbles aggregated when heat flows from the wall to the fluid. The velocities of bubbles were in the range of 1 - 10 microns/s. The separation r decreased more quickly when the temperature gradient was higher, bubble size was larger, and the oil viscosity was lower. r decreased more rapidly as the bubbles approached each other. Dimensionless time was arbitrarily set to be zero when the dimensionless center-to-center distance between the bubbles was 4. All the bubble trajectories fall onto one line, especially in the range of dimensionless distance from 4 to 3. This means the relative movement of the bubble pair is proportional to the temperature gradient and bubble size and it is inversely proportional to the viscosity of the oil. This result strongly suggests that the thermocapillary flow-based aggregation mechanism is correct. A value of q can be estimated by fitting the scaled data to Eq. [1]. A best fit value of q was obtained as q = 0.26 with a standard deviation of 0.03. Independent experimental results for q for a 0.5 mm radius bubble, give

  12. AIRBORNE PARTICLE SIZES AND SOURCES FOUND IN INDOOR AIR

    EPA Science Inventory

    As concern about indoor air quality (IAQ) has grown in recent years, understanding indoor aerosols has become increasingly important so that control techniques may be implemented to reduce damaging health effects and soiling problems. This paper begins with a brief look at the me...

  13. Colorful Demos with a Long-Lasting Soap Bubble.

    ERIC Educational Resources Information Center

    Behroozi, F.; Olson, D. W.

    1994-01-01

    Describes several demonstrations that feature interaction of light with soap bubbles. Includes directions about how to produce a long-lasting stationary soap bubble with an easily changeable size and describes the interaction of white light with the bubble. (DDR)

  14. Bubble Size Control to Improve Oxygen-Based Bleaching: Characterization of Flow Regimes in Pulp-Water-Gas Three-Phase Flows

    SciTech Connect

    S.M. Ghiaasiaan and Seppo Karrila

    2006-03-20

    Flow characteristics of fibrous paper pulp-water-air slurries were investigated in a vertical circular column 1.8 m long, with 5.08 cm diameter. Flow structures, gas holdup (void fraction), and the geometric and population characteristics of gas bubbles were experimentally investigated, using visual observation, Gamma-ray densitometry, and flash X-ray photography. Five distinct flow regimes could be visually identified: dispersed bubbly, layered bubbly, plug, churn-turbulent, and slug. Flow regime maps were constructed, and the regime transition lines were found to be sensitive to consistency. The feasibility of using artificial neural networks (ANNs) for the identification of the flow regimes, using the statistical characteristics of pressure fluctuations measured by a single pressure sensor, was demonstrated. Local pressure fluctuations at a station were recorded with a minimally-intrusive transducer. Three-layer, feed-forward ANNs were designed that could identify the four major flow patterns (bubbly, plug, churn, and slug) well. The feasibility of a transportable artificial neural network (ANN) - based technique for the classification of flow regimes was also examined. Local pressures were recorded at three different locations using three independent but similar transducers. An ANN was designed, trained and successfully tested for the classification of the flow regimes using one of the normalized pressure signals (from Sensor 1). The ANN trained and tested for Sensor 1 predicted the flow regimes reasonably well when applied directly to the other two sensors, indicating a good deal of transportability. An ANN-based method was also developed, whereby the power spectrum density characteristics of other sensors were adjusted before they were used as input to the ANN that was based on Sensor 1 alone. The method improved the predictions. The gas-liquid interfacial surface area concentration was also measured in the study. The gas absorption technique was applied

  15. Laser Doppler spectrometer method of particle sizing. [for air pollution

    NASA Technical Reports Server (NTRS)

    Weber, F. N.

    1976-01-01

    A spectrometer for the detection of airborne particulate pollution in the submicron size range is described. In this device, airborne particles are accelerated through a supersonic nozzle, with different sizes achieving different velocities in the gas flow. Information about the velocities of the accelerated particles is obtained with a laser-heterodyne optical system through the Doppler shift of light scattered from the particles. Detection is accomplished by means of a photomultiplier. Nozzle design and signal processing techniques are also discussed.

  16. Investigation of Bubble-Slag Layer Behaviors with Hybrid Eulerian-Lagrangian Modeling and Large Eddy Simulation

    NASA Astrophysics Data System (ADS)

    Li, Linmin; Li, Baokuan

    2016-08-01

    In ladle metallurgy, bubble-liquid interaction leads to complex phase structures. Gas bubble behavior, as well as the induced slag layer behavior, plays a significant role in the refining process and the steel quality. In the present work, a mathematical model using the large eddy simulation (LES) is developed to investigate the bubble transport and slag layer behavior in a water model of an argon-stirred ladle. The Eulerian volume of fluid model is adopted to track the liquid steel-slag-air free surfaces while the Lagrangian discrete phase model is used for tracking and handling the dynamics of discrete bubbles. The bubble coalescence is considered using O'Rourke's algorithm to solve the bubble diameter redistribution and bubbles are removed after leaving the air-liquid interface. The turbulent liquid flow that is induced by bubble-liquid interaction is solved by LES. The slag layer fluactuation, slag droplet entrainment and spout eye open-close phenomenon are well revealed. The bubble diameter distribution and the spout eye size are compared with the experiment. The results show that the hybrid Eulerian-Lagrangian-LES model provides a valid modeling framework to predict the unsteady gas bubble-slag layer coupled behaviors.

  17. The living times of bubbles at the interface

    NASA Astrophysics Data System (ADS)

    Cameron, Benjamin; Bourouiba, Lydia; Vandenberghe, Nicolas; Villermaux, Emmanuel

    2014-11-01

    The lifetime of a water bubble at the surface of a pool prior to its burst remains an open question. It is known that the death of a bubble is initiated by the nucleation of a hole in its shell. However, the mechanisms governing the occurrence of such nucleation sites and prescribing the lifetime of bubbles remain unclear. Combining original visualizations, quantitative measurements of bubbles lifetimes and simple theoretical ideas, we report direct observations of the onset of the bursting process and rationalize the link between the rich interfacial events leading to the hole nucleation on the shell and the resulting robust bubble lifetimes distributions. These play a critical role in shaping the final size distribution of the droplets emitted. We will underline the consequences of the process in the sensible world, like air-sea water vapor exchanges. Bubbles bursting at the surface of water sources also allow for high levels of contamination and long-term exposure to a range of respiratory human pathogens and irritants indoors. Indeed, the droplets created by such bursts can contribute to the transfer of pathogens to the air, followed by their dispersal, thus bridging this subtle problem with unexpected new areas in health. Thanks to the financial support of the MISTI-FRANCE MIT program.

  18. Size distributions of air showers accompanied with high energy gamma ray bundles observed at Mt. Chacaltaya

    NASA Technical Reports Server (NTRS)

    Matano, T.; Machida, M.; Tsuchima, I.; Kawasumi, N.; Honda, K.; Hashimoto, K.; Martinic, N.; Zapata, J.; Navia, C. E.; Aquirre, C.

    1985-01-01

    Size distributions of air showers accompanied with bundle of high energy gamma rays and/or large size bursts under emulsion chambers, to study the composition of primary cosmic rays and also characteristics of high energy nuclear interaction. Air showers initiated by particles with a large cross section of interaction may develop from narrow region of the atmosphere near the top. Starting levels of air showers by particles with smaller cross section fluctuate in wider region of the atmosphere. Air showers of extremely small size accompanied with bundle of gamma rays may be ones initiated by protons at lower level after penetrating deep atmosphere without interaction. It is determined that the relative size distribution according to the total energy of bundle of gamma rays and the total burst size observed under 15 cm lead absorber.

  19. Phase speed and attenuation in bubbly liquids inferred from impedance measurements near the individual bubble resonance frequency.

    PubMed

    Wilson, Preston S; Roy, Ronald A; Carey, William M

    2005-04-01

    In the ocean, natural and artificial processes generate clouds of bubbles that scatter and attenuate sound. Measurements have shown that at the individual bubble resonance frequency, sound propagation in this medium is highly attenuated and dispersive. The existing theory to explain this behavior is deemed adequate away from resonance. However, due to excessive attenuation near resonance, little experimental data exists for a comparison with model predictions. An impedance tube was developed specifically for exploring this regime. The effective medium phase speed and attenuation were inferred from measurements of the surface impedance of a layer of bubbly liquid composed of air bubbles and distilled water, for void fractions from 6.2 x 10(-5) to 5.4 x 10(-4) and bubble sizes centered around 0.62 mm in radius. Improved measurement speed, accuracy, and precision is possible with the new instrument, and both instantaneous and time-averaged measurements were obtained. The phase speed and attenuation at resonance was observed to be sensitive to the bubble population statistics and agreed with an existing model [J. Acoust. Soc. Am. 85, 732-746 (1989)], within the uncertainty of the bubble population parameters. Agreement between the model and the data reported here is better than for the data that was available when the model was originally published.

  20. Hydrocarbon-oil encapsulated air bubble flotation of fine coal. Technical progress report for the third quarter, April 1, 1991--June 30, 1991

    SciTech Connect

    Peng, F.F.

    1995-01-01

    This report is concerned with the progress made during the third period of the two year project. A significant portion of this reporting period has been consumed in measurement of induction time of oil-free and oil-coated bubbles, modification of collector gasifier, hydrocarbon oil encapsulated flotation tests and float and sink analyses of various rank of coal samples, building a 1-inch column cell, as well as building the ultrasound collector emulsification apparatus. Induction time has been measured using an Electronic Induction Timer. The results indicate that alteration of chemical properties of air bubble by applying hydrocarbon oil or reagent can drastically improve the rate of flotation process. Various techniques have been employed in hydrocarbon oil encapsulated flotation processes to further enhance the selectivity of the process, which include: (1) gasified collector flotation with addition of gasified collector into the air stream in the initial stage; (2) two-stage (rougher-cleaner) gasified collector flotation; and (3) starvation gasified collector flotation by addition of gasified collector at various flotation times. Among these, three techniques used in hydrocarbon oil encapsulated flotation process, the starvation flotation technique provides the best selectivity.

  1. Aspherical bubble dynamics and oscillation times

    SciTech Connect

    Vogel, A.; Noack, J.; Chapyak, E.J.; Godwin, R.P.

    1999-06-01

    The cavitation bubbles common in laser medicine are rarely perfectly spherical and are often located near tissue boundaries, in vessels, etc., which introduce aspherical dynamics. Here, novel features of aspherical bubble dynamics are explored by time-resolved photography and numerical simulations. The growth-collapse period of cylindrical bubbles of large aspect ratio (length:diameter {approximately}20) differs only slightly from twice the Rayleigh collapse time for a spherical bubble with an equivalent maximum volume. This fact justifies using the temporal interval between the acoustic signals emitted upon bubble creation and collapse to estimate the maximum bubble volume. As a result, hydrophone measurements can provide an estimate of the bubble size and energy even for aspherical bubbles. The change of the oscillation period of bubbles near solid walls and elastic (tissue-like) boundaries relative to that of isolated spherical bubbles is also investigated.

  2. Linear Relation for Wind-blown Bubble Sizes of Main-sequence OB Stars in a Molecular Environment and Implication for Supernova Progenitors

    NASA Astrophysics Data System (ADS)

    Chen, Yang; Zhou, Ping; Chu, You-Hua

    2013-05-01

    We find a linear relationship between the size of a massive star's main-sequence bubble in a molecular environment and the star's initial mass: R b ≈ 1.22 M/M ⊙ - 9.16 pc, assuming a constant interclump pressure. Since stars in the mass range of 8 to 25-30 M ⊙ will end their evolution in the red supergiant phase without launching a Wolf-Rayet wind, the main-sequence wind-blown bubbles are mainly responsible for the extent of molecular gas cavities, while the effect of the photoionization is comparatively small. This linear relation can thus be used to infer the masses of the massive star progenitors of supernova remnants (SNRs) that are discovered to evolve in molecular cavities, while few other means are available for inferring the properties of SNR progenitors. We have used this method to estimate the initial masses of the progenitors of eight SNRs: Kes 69, Kes 75, Kes 78, 3C 396, 3C 397, HC 40, Vela, and RX J1713-3946.

  3. LINEAR RELATION FOR WIND-BLOWN BUBBLE SIZES OF MAIN-SEQUENCE OB STARS IN A MOLECULAR ENVIRONMENT AND IMPLICATION FOR SUPERNOVA PROGENITORS

    SciTech Connect

    Chen Yang; Zhou Ping; Chu Youhua

    2013-05-20

    We find a linear relationship between the size of a massive star's main-sequence bubble in a molecular environment and the star's initial mass: R{sub b} Almost-Equal-To 1.22 M/M{sub Sun} - 9.16 pc, assuming a constant interclump pressure. Since stars in the mass range of 8 to 25-30 M{sub Sun} will end their evolution in the red supergiant phase without launching a Wolf-Rayet wind, the main-sequence wind-blown bubbles are mainly responsible for the extent of molecular gas cavities, while the effect of the photoionization is comparatively small. This linear relation can thus be used to infer the masses of the massive star progenitors of supernova remnants (SNRs) that are discovered to evolve in molecular cavities, while few other means are available for inferring the properties of SNR progenitors. We have used this method to estimate the initial masses of the progenitors of eight SNRs: Kes 69, Kes 75, Kes 78, 3C 396, 3C 397, HC 40, Vela, and RX J1713-3946.

  4. Removal of hydrogen bubbles from nuclear reactors

    NASA Technical Reports Server (NTRS)

    Jenkins, R. V.

    1980-01-01

    Method proposed for removing large hydrogen bubbles from nuclear environment uses, in its simplest form, hollow spheres of palladium or platinum. Methods would result in hydrogen bubble being reduced in size without letting more radioactivity outside reactor.

  5. Bubble Rise and Break-Up in Volcanic Conduits

    NASA Astrophysics Data System (ADS)

    Soldati, A.; Cashman, K. V.; Rust, A.; Rosi, M.

    2013-12-01

    The continual passive degassing occurring at open-vent mafic volcanoes is often punctuated by bursts of active degassing. The latter are generally thought to be the result of slug flow: large, conduit-filling bubbles periodically rising up the feeder conduit and bursting at the magma-air interface. Existing models of volcanic degassing systems make the simplifying assumption that the conduit is cylindrical; however, while this may be true at shallow levels, a flaring probably connects it to a dyke-like geometry at depth. The overall goal of this research is to assess the influence of conduit geometry on the speed and stability of bubbles rising in open-vent systems, and ultimately to devise a model to infer conduit shape from emerging bubbles size. In order to do that an analogue experimental approach was used. All of the experiments were two-phase (melt+volatiles); the analogue materials of choice were golden syrup-water mixtures ranging in viscosity from 10-1 to 104 Pa*s and air. Two experimental apparatuses were used: a bi-dimensional and a tri-dimensional one. The bi-dimensional set-up is a cell made of two flat transparent PVC plates (44x23cm) 10mm or 5mm apart (the front one having a hole at the bottom permitting bubble injection) containing a variety of parallelepipeds apt to outline different plumbing system geometries. The tri-dimensional one consists of a cylindrical tube (r=1,5cm; l=7cm) allowing bubble injection through the bottom rubber tap and terminating into a square tank (l=22cm). Results indicate that conduit geometry directly controls the slug rise velocity and the surrounding liquid descending speed, which in turn control the slug stability. Small enough bubbles simply deform as they go through the flaring, while bigger ones split into two daughter bubbles. A regime diagram has been constructed, illustrating the bubble break-up threshold dependence on the flare geometry and initial slug size, the two main controlling factors. The phenomenon of

  6. Bubbles trapped in a fluidized bed: Trajectories and contact area

    NASA Astrophysics Data System (ADS)

    Poryles, Raphaël; Vidal, Valérie; Varas, Germán

    2016-03-01

    This work investigates the dynamics of bubbles in a confined, immersed granular layer submitted to an ascending gas flow. In the stationary regime, a central fluidized zone of parabolic shape is observed, and the bubbles follow different dynamics: either the bubbles are initially formed outside the fluidized zone and do not exhibit any significant motion over the experimental time or they are located inside the fluidized bed, where they are entrained downwards and are, finally, captured by the central air channel. The dependence of the air volume trapped inside the fluidized zone, the bubble size, and the three-phase contact area on the gas injection flow rate and grain diameter are quantified. We find that the volume fraction of air trapped inside the fluidized region is roughly constant and of the order of 2%-3% when the gas flow rate and the grain size are varied. Contrary to intuition, the gas-liquid-solid contact area, normalized by the air injected into the system, decreases when the flow rate is increased, which may have significant importance in industrial applications.

  7. Effect of Chord Size on Weight and Cooling Characteristics of Air-Cooled Turbine Blades

    NASA Technical Reports Server (NTRS)

    Esgar, Jack B; Schum, Eugene F; Curren, Arthur N

    1958-01-01

    An analysis has been made to determine the effect of chord size on the weight and cooling characteristics of shell-supported, air-cooled gas-turbine blades. In uncooled turbines with solid blades, the general practice has been to design turbines with high aspect ratio (small blade chord) to achieve substantial turbine weight reduction. With air-cooled blades, this study shows that turbine blade weight is affected to a much smaller degree by the size of the blade chord.

  8. Bubble baryogenesis

    NASA Astrophysics Data System (ADS)

    Cheung, Clifford; Dahlen, Alex; Elor, Gilly

    2012-09-01

    We propose an alternative mechanism of baryogenesis in which a scalar baryon undergoes a percolating first-order phase transition in the early Universe. The potential barrier that divides the phases contains explicit B and CP violation and the corresponding instanton that mediates decay is therefore asymmetric. The nucleation and growth of these asymmetric bubbles dynamically generates baryons, which thermalize after percolation; bubble collision dynamics can also add to the asymmetry yield. We present an explicit toy model that undergoes bubble baryogenesis, and numerically study the evolution of the baryon asymmetry through bubble nucleation and growth, bubble collisions, and washout. We discuss more realistic constructions, in which the scalar baryon and its potential arise amongst the color-breaking minima of the MSSM, or in the supersymmetric neutrino seesaw mechanism. Phenomenological consequences, such as gravitational waves, and possible applications to asymmetric dark-matter generation are also discussed.

  9. Film drainage of viscous liquids on top of bare bubble: Influence of the Bond number

    NASA Astrophysics Data System (ADS)

    Rouyer, Florence; Kočárková, Helena; Metallaoui, Salahedine; Pigeonneau, Franck; Lpmdi-Université Paris-Est Marne La Vallée Team; Svi-Saint-Gobain Recherche Team

    2011-11-01

    We present experimental result of film drainage on top of gas bubbles pushed by gravity forces toward the upper surface of a liquid bath for Newtonian liquids with mobile interface (UCON, castor oil and soda-lime-silica melt). The temporal evolution of the thickness of the film between a single bubble and the air/liquid interface is investigated via interference method under various physical conditions, range of viscosities and surface tension of the liquids, and bubble sizes. These experiments evidence the influence of the deformation of the thin film on the thinning rate and confirm the slow down of film drainage with Bond number as previously reported by numerical work. A simple model that considered the liquid flow in the cap squeezed by buoyancy forces of the bubble is in good agreement with experimental and numerical data. Qualitatively, the smaller is the area of the thin film compare to the surface of the bubble, the faster is the drainage.

  10. Detonation cell size measurements and predictions in hydrogen-air-steam mixtures at elevated temperatures

    SciTech Connect

    Ciccarelli, G.; Ginsberg, T.; Boccio, J.; Economos, C.

    1994-01-01

    The present research reports on the effect of initial mixture temperature on the experimentally measured detonation cell size for hydrogen-air-steam mixtures. Experimental and theoretical research related to combustion phenomena in hydrogen-air-steam mixtures has been ongoing for many years. However, detonation cell size data currently exists or hydrogen-air-steam mixtures up to a temperature of only 400K. Sever accident scenarios have been identified for light water reactors (LWRs) where hydrogen-air mixture temperatures in excess of 400K could be generated within containment. The experiments in this report focus on extending the cell size data base for initial mixture temperatures in excess of 400K. The experiments were carried out in a 10-cm inner-diameter, 6.1-m long heated detonation tube with a maximum operating temperature of 700K and spatial temperature uniformity of {plus_minus}14K. Detonation cell size measurements provide clear evidence that the effect of hydrogen-air initial gas mixture temperature, in the range 300K--650K, is to decrease cell size and, hence, to increase the sensitivity of the mixture to undergo detonations. The effect of steam content, at any given temperature, is to increase the cell size and, thereby, to decrease the sensitivity of stoichiometric hydrogen-air mixtures. The hydrogen-air detonability limits for the 10-cm inside-diameter test vessel, based upon the onset of single-head spin, decreased from 15 percent by hydrogen at 300K down to about 9 percent hydrogen at 650K. The one-dimensional ZND model does a very good job at predicting the overall trends in the cell size data over the range of hydrogen-air-steam mixture compositions and temperature studied in the experiments.

  11. Helium bubble bursting in tungsten

    SciTech Connect

    Sefta, Faiza; Juslin, Niklas; Wirth, Brian D.

    2013-12-28

    Molecular dynamics simulations have been used to systematically study the pressure evolution and bursting behavior of sub-surface helium bubbles and the resulting tungsten surface morphology. This study specifically investigates how bubble shape and size, temperature, tungsten surface orientation, and ligament thickness above the bubble influence bubble stability and surface evolution. The tungsten surface is roughened by a combination of adatom “islands,” craters, and pinholes. The present study provides insight into the mechanisms and conditions leading to various tungsten topology changes, which we believe are the initial stages of surface evolution leading to the formation of nanoscale fuzz.

  12. Evolution of soot size distribution in premixed ethylene/air and ethylene/benzene/air flames: Experimental and modeling study

    SciTech Connect

    Echavarria, Carlos A.; Sarofim, Adel F.; Lighty, JoAnn S.; D'Anna, Andrea

    2011-01-15

    The effect of benzene concentration in the initial fuel on the evolution of soot size distribution in ethylene/air and ethylene/benzene/air flat flames was characterized by experimental measurements and model predictions of size and number concentration within the flames. Experimentally, a scanning mobility particle sizer was used to allow spatially resolved and online measurements of particle concentration and sizes in the nanometer-size range. The model couples a detailed kinetic scheme with a discrete-sectional approach to follow the transition from gas-phase to nascent particles and their coagulation to larger soot particles. The evolution of soot size distribution (experimental and modeled) in pure ethylene and ethylene flames doped with benzene showed a typical nucleation-sized (since particles do not actually nucleate in the classical sense particle inception is often used in place of nucleation) mode close to the burner surface, and a bimodal behavior at greater height above burner (HAB). However, major features were distinguished between the data sets. The growth of nucleation and agglomeration-sized particles was faster for ethylene/benzene/air flames, evidenced by the earlier presence of bimodality in these flames. The most significant changes in size distribution were attributed to an increase in benzene concentration in the initial fuel. However, these changes were more evident for high temperature flames. In agreement with the experimental data, the model also predicted the decrease of nucleation-sized particles in the postflame region for ethylene flames doped with benzene. This behavior was associated with the decrease of soot precursors after the main oxidation zone of the flames. (author)

  13. Bubble masks for time-encoded imaging of fast neutrons.

    SciTech Connect

    Brubaker, Erik; Brennan, James S.; Marleau, Peter; Nowack, Aaron B.; Steele, John T.; Sweany, Melinda; Throckmorton, Daniel J.

    2013-09-01

    Time-encoded imaging is an approach to directional radiation detection that is being developed at SNL with a focus on fast neutron directional detection. In this technique, a time modulation of a detected neutron signal is inducedtypically, a moving mask that attenuates neutrons with a time structure that depends on the source position. An important challenge in time-encoded imaging is to develop high-resolution two-dimensional imaging capabilities; building a mechanically moving high-resolution mask presents challenges both theoretical and technical. We have investigated an alternative to mechanical masks that replaces the solid mask with a liquid such as mineral oil. Instead of fixed blocks of solid material that move in pre-defined patterns, the oil is contained in tubing structures, and carefully introduced air gapsbubblespropagate through the tubing, generating moving patterns of oil mask elements and air apertures. Compared to current moving-mask techniques, the bubble mask is simple, since mechanical motion is replaced by gravity-driven bubble propagation; it is flexible, since arbitrary bubble patterns can be generated by a software-controlled valve actuator; and it is potentially high performance, since the tubing and bubble size can be tuned for high-resolution imaging requirements. We have built and tested various single-tube mask elements, and will present results on bubble introduction and propagation as a function of tubing size and cross-sectional shape; real-time bubble position tracking; neutron source imaging tests; and reconstruction techniques demonstrated on simple test data as well as a simulated full detector system.

  14. Characterization of the interaction of two oscillating bubbles near a thin elastic membrane

    NASA Astrophysics Data System (ADS)

    Aghdam, A. Hajizadeh; Farhangmehr, V.; Ohl, S. W.; Khoo, B. C.; Shervani-Tabar, M. T.

    2012-12-01

    Oscillating bubbles appear in the bodily fluid during many medical treatments, for example in Extracorporeal Shockwave Lithotripsy. We report a systematic study on the complex interaction between two such bubbles and an elastic membrane, which could be a biological membrane in the human body. We have grouped our analysis into similarly sized bubbles, and differently sized bubbles. All bubbles are created at the same time. For the similarly sized bubbles, it can be broadly characterized as the splitting up of two bubbles in vertical direction perpendicular to (vertical split) and at an angle to (oblique split) the membrane surface, jetting towards each other and bubble coalescence. For the two differently sized bubbles, there is the jetting towards or away from the large bubble for the small bubble and the `catapult' effect observed. The two bubbles dynamics depend on the relative bubble sizes, the distance from the membrane, and the inter-bubble distance.

  15. Stable Multibubble Sonoluminescence Bubble Patterns

    SciTech Connect

    Posakony, Gerald J.; Greenwood, Lawrence R.; Ahmed, Salahuddin

    2006-06-30

    Multibubble standing wave patterns can be generated from a flat piezoceramic transducer element propagating into water. By adding a second transducer positioned at 90 degrees from the transducer generating the standing wave, a 3-dimensional volume of stable single bubbles can be established. Further, the addition of the second transducer stabilizes the bubble pattern so that individual bubbles may be studied. The size of the bubbles and the separation of the standing waves depend on the frequency of operation. Two transducers, operating at frequencies above 500 kHz, provided the most graphic results for the configuration used in this study. At these frequencies stable bubbles exhibit a bright sonoluminescence pattern. Whereas stable SBSL is well-known, stable MBSL has not been previously reported. This paper includes discussions of the acoustic responses, standing wave patterns, and pictorial results of the separation of individual bubble of sonoluminescence in a multibubble sonoluminescence environment.

  16. Bubble, Bubble, Toil and Trouble.

    ERIC Educational Resources Information Center

    Journal of Chemical Education, 2001

    2001-01-01

    Bubbles are a fun way to introduce the concepts of surface tension, intermolecular forces, and the use of surfactants. Presents two activities in which students add chemicals to liquid dishwashing detergent with water in order to create longer lasting bubbles. (ASK)

  17. Size Matters: The Effect of Institutional Size on Graduation Rates. AIR 1997 Annual Forum Paper.

    ERIC Educational Resources Information Center

    Huffman, John P., Jr.; Schneiderman, Stuart

    This study examined the effect of institutional size on the six year institutional graduation rate for undergraduates, controlling for five variables known to affect graduation rate: (1) student academic preparation; (2) enrollment to dormitory capacity ratio; (3) percentage of part-time students; (4) expenditure per student; and (5) student to…

  18. Simulation of bubble growth and coalescence in reacting polymer foams

    NASA Astrophysics Data System (ADS)

    Marchisio, Daniele; Karimi, Mohsen

    2015-11-01

    This work concerns with the simulation of reacting polymer foams with computational fluid dynamics (CFD). In these systems upon mixing of different ingredients polymerization starts and some gaseous compounds are produced, resulting in the formation of bubbles that growth and coalesce. As the foam expands, the polymerization proceeds resulting in an increase of the apparent viscosity. The evolution of the collective behavior of the bubbles within the polymer foam is tracked by solving a master kinetic equation, formulated in terms of the bubble size distribution. The rate with which individual bubbles grow is instead calculated by resolving the momentum and concentration boundary layers around the bubbles. Moreover, since it is useful to track the evolution of the interface between the foam and the surrounding air, a volume-of-fluid (VOF) model is adopted. The final computational model is implemented in the open-source CFD code openFOAM by making use of the compressibleInterFoam solver. The master kinetic equation is solved with a quadrature-based moment method (QBMM) directly implemented in openFOAM, whereas the bubble growth model is solved independently and ''called'' from the CFD code by using an unstructured database. Model predictions are validated against experimental data. This work was funded by the European Commission under the grant agreement number 604271 (Project acronym: MoDeNa; call identifier: FP7-NMP-2013-SMALL-7).

  19. Effect of the Inhomogeneity of Ice Crystals on Retrieving Ice Cloud Optical Thickness and Effective Particle Size

    NASA Technical Reports Server (NTRS)

    Xie, Yu; Minnis, Patrick; Hu, Yong X.; Kattawar, George W.; Yang, Ping

    2008-01-01

    Spherical or spheroidal air bubbles are generally trapped in the formation of rapidly growing ice crystals. In this study the single-scattering properties of inhomogeneous ice crystals containing air bubbles are investigated. Specifically, a computational model based on an improved geometric-optics method (IGOM) has been developed to simulate the scattering of light by randomly oriented hexagonal ice crystals containing spherical or spheroidal air bubbles. A combination of the ray-tracing technique and the Monte Carlo method is used. The effect of the air bubbles within ice crystals is to smooth the phase functions, diminish the 22deg and 46deg halo peaks, and substantially reduce the backscatter relative to bubble-free particles. These features vary with the number, sizes, locations and shapes of the air bubbles within ice crystals. Moreover, the asymmetry factors of inhomogeneous ice crystals decrease as the volume of air bubbles increases. Cloud reflectance lookup tables were generated at wavelengths 0.65 m and 2.13 m with different air-bubble conditions to examine the impact of the bubbles on retrieving ice cloud optical thickness and effective particle size. The reflectances simulated for inhomogeneous ice crystals are slightly larger than those computed for homogenous ice crystals at a wavelength of 0.65 microns. Thus, the retrieved cloud optical thicknesses are reduced by employing inhomogeneous ice cloud models. At a wavelength of 2.13 microns, including air bubbles in ice cloud models may also increase the reflectance. This effect implies that the retrieved effective particle sizes for inhomogeneous ice crystals are larger than those retrieved for homogeneous ice crystals, particularly, in the case of large air bubbles.

  20. Ring Bubbles of Dolphins

    NASA Technical Reports Server (NTRS)

    Shariff, Karim; Marten, Ken; Psarakos, Suchi; White, Don J.; Merriam, Marshal (Technical Monitor)

    1996-01-01

    The article discusses how dolphins create and play with three types of air-filled vortices. The underlying physics is discussed. Photographs and sketches illustrating the dolphin's actions and physics are presented. The dolphins engage in this behavior on their own initiative without food reward. These behaviors are done repeatedly and with singleminded effort. The first type is the ejection of bubbles which, after some practice on the part of the dolphin, turn into toroidal vortex ring bubbles by the mechanism of baroclinic torque. These bubbles grow in radius and become thinner as they rise vertically to the surface. One dolphin would blow two in succession and guide them to fuse into one. Physicists call this a vortex reconnection. In the second type, the dolphins first create an invisible vortex ring in the water by swimming on their side and waving their tail fin (also called flukes) vigorously. This vortex ring travels horizontally in the water. The dolphin then turns around, finds the vortex and injects a stream of air into it from its blowhole. The air "fills-out" the core of the vortex ring. Often, the dolphin would knock-off a smaller ring bubble from the larger ring (this also involves vortex reconnection) and steer the smaller ring around the tank. One other dolphin employed a few other techniques for planting air into the fluke vortex. One technique included standing vertically in the water with tail-up, head-down and tail piercing the free surface. As the fluke is waved to create the vortex ring, air is entrained from above the surface. Another technique was gulping air in the mouth, diving down, releasing air bubbles from the mouth and curling them into a ring when they rose to the level of the fluke. In the third type, demonstrated by only one dolphin, the longitudinal vortex created by the dorsal fin on the back is used to produce 10-15 foot long helical bubbles. In one technique she swims in a curved path. This creates a dorsal fin vortex since

  1. Vortex-ring-induced large bubble entrainment during drop impact.

    PubMed

    Thoraval, Marie-Jean; Li, Yangfan; Thoroddsen, Sigurdur T

    2016-03-01

    For a limited set of impact conditions, a drop impacting onto a pool can entrap an air bubble as large as its own size. The subsequent rise and rupture of this large bubble plays an important role in aerosol formation and gas transport at the air-sea interface. The large bubble is formed when the impact crater closes up near the pool surface and is known to occur only for drops that are prolate at impact. Herein we use experiments and numerical simulations to show that a concentrated vortex ring, produced in the neck between the drop and the pool, controls the crater deformations and pinchoff. However, it is not the strongest vortex rings that are responsible for the large bubbles, as they interact too strongly with the pool surface and self-destruct. Rather, it is somewhat weaker vortices that can deform the deeper craters, which manage to pinch off the large bubbles. These observations also explain why the strongest and most penetrating vortex rings emerging from drop impacts are not produced by oblate drops but by more prolate drop shapes, as had been observed in previous experiments. PMID:27078468

  2. Vortex-ring-induced large bubble entrainment during drop impact.

    PubMed

    Thoraval, Marie-Jean; Li, Yangfan; Thoroddsen, Sigurdur T

    2016-03-01

    For a limited set of impact conditions, a drop impacting onto a pool can entrap an air bubble as large as its own size. The subsequent rise and rupture of this large bubble plays an important role in aerosol formation and gas transport at the air-sea interface. The large bubble is formed when the impact crater closes up near the pool surface and is known to occur only for drops that are prolate at impact. Herein we use experiments and numerical simulations to show that a concentrated vortex ring, produced in the neck between the drop and the pool, controls the crater deformations and pinchoff. However, it is not the strongest vortex rings that are responsible for the large bubbles, as they interact too strongly with the pool surface and self-destruct. Rather, it is somewhat weaker vortices that can deform the deeper craters, which manage to pinch off the large bubbles. These observations also explain why the strongest and most penetrating vortex rings emerging from drop impacts are not produced by oblate drops but by more prolate drop shapes, as had been observed in previous experiments.

  3. Bubble dynamics in a variable gap Hele-Shaw cell

    NASA Astrophysics Data System (ADS)

    Piedra, Saul; Domiguez, Roberto; Ramos, Eduardo

    2015-11-01

    We present observations of the dynamics of individual air bubbles ascending in a Hele-Shaw cell filled with water. Cells with gaps of 1 mm, 1.5 and 2.5 mm are used and the volume of the bubbles is such that we observe bubbles with apparent diameter from 2 mm to 7.3 mm. Given that we work with air and water in all experiments, the Morton number is constant and equal to 2 . 5 ×10-11 . The results are given in terms of the Eotvos, Archimedes and Reynolds numbers, and the trajectories and wakes of the bubbles are described as functions of the gap. In all cases we observe a linear relationship between the Reynolds and Archimedes numbers, but the proportionality constant varies with the gap. Also, although the wake is composed of alternating vortices similar to the von Karman vortex street, the size and location of the vortices vary with the gap. The analysis of some features of the observations and the description of the shape of the bubbles and dominant forces are made with a two dimensional numerical solution of the conservation equations using a front tracking strategy.

  4. Vortex-ring-induced large bubble entrainment during drop impact

    NASA Astrophysics Data System (ADS)

    Thoraval, Marie-Jean; Li, Yangfan; Thoroddsen, Sigurdur T.

    2016-03-01

    For a limited set of impact conditions, a drop impacting onto a pool can entrap an air bubble as large as its own size. The subsequent rise and rupture of this large bubble plays an important role in aerosol formation and gas transport at the air-sea interface. The large bubble is formed when the impact crater closes up near the pool surface and is known to occur only for drops that are prolate at impact. Herein we use experiments and numerical simulations to show that a concentrated vortex ring, produced in the neck between the drop and the pool, controls the crater deformations and pinchoff. However, it is not the strongest vortex rings that are responsible for the large bubbles, as they interact too strongly with the pool surface and self-destruct. Rather, it is somewhat weaker vortices that can deform the deeper craters, which manage to pinch off the large bubbles. These observations also explain why the strongest and most penetrating vortex rings emerging from drop impacts are not produced by oblate drops but by more prolate drop shapes, as had been observed in previous experiments.

  5. Adsorption of egg phosphatidylcholine to an air/water and triolein/water bubble interface: use of the 2-dimensional phase rule to estimate the surface composition of a phospholipid/triolein/water surface as a function of surface pressure.

    PubMed

    Mitsche, Matthew A; Wang, Libo; Small, Donald M

    2010-03-11

    Phospholipid monolayers play a critical role in the structure and stabilization of biological interfaces, including all membranes, the alveoli of the lungs, fat droplets in adipose tissue, and lipoproteins. The behavior of phospholipids in bilayers and at an air-water interface is well understood. However, the study of phospholipids at oil-water interfaces is limited due to technical challenges. In this study, egg phosphatidylcholine (EPC) was deposited from small unilamellar vesicles onto a bubble of either air or triolein (TO) formed in a low-salt buffer. The surface tension (gamma) was measured using a drop tensiometer. We observed that EPC binds irreversibly to both interfaces and at equilibrium exerts approximately 12 and 15 mN/m of pressure (Pi) at an air and TO interface, respectively. After EPC was bound to the interface, the unbound EPC was washed out of the cuvette, and the surface was compressed to study the Pi/area relationship. To determine the surface concentration (Gamma), which cannot be measured directly, compression isotherms from a Langmuir trough and drop tensiometer were compared. The air-water interfaces had identical characteristics using both techniques; thus, Gamma on the bubble can be determined by overlaying the two isotherms. Both TO and EPC are surface-active, so in a mixed TO/EPC monolayer, both molecules will be exposed to water. Since TO is less surface-active than EPC, as Pi increases, the TO is progressively ejected. To understand the Pi/area isotherm of EPC on a TO bubble, a variety of TO-EPC mixtures were spread at the air-water interface. The isotherms show an abrupt break in the curve caused by the ejection of TO from the monolayer into a new bulk phase. By overlaying the compression isotherm above the ejection point with a TO bubble compression isotherm, Gamma can be estimated. This allows determination of Gamma of EPC on a TO bubble as a function of Pi.

  6. The influence of polymeric membrane gas spargers on hydrodynamics and mass transfer in bubble column bioreactors.

    PubMed

    Tirunehe, Gossaye; Norddahl, B

    2016-04-01

    Gas sparging performances of a flat sheet and tubular polymeric membranes were investigated in 3.1 m bubble column bioreactor operated in a semi batch mode. Air-water and air-CMC (Carboxymethyl cellulose) solutions of 0.5, 0.75 and 1.0 % w/w were used as interacting gas-liquid mediums. CMC solutions were employed in the study to simulate rheological properties of bioreactor broth. Gas holdup, bubble size distribution, interfacial area and gas-liquid mass transfer were studied in the homogeneous bubbly flow hydrodynamic regime with superficial gas velocity (U(G)) range of 0.0004-0.0025 m/s. The study indicated that the tubular membrane sparger produced the highest gas holdup and densely populated fine bubbles with narrow size distribution. An increase in liquid viscosity promoted a shift in bubble size distribution to large stable bubbles and smaller specific interfacial area. The tubular membrane sparger achieved greater interfacial area and an enhanced overall mass transfer coefficient (K(L)a) by a factor of 1.2-1.9 compared to the flat sheet membrane.

  7. Droplets, Bubbles and Ultrasound Interactions.

    PubMed

    Shpak, Oleksandr; Verweij, Martin; de Jong, Nico; Versluis, Michel

    2016-01-01

    The interaction of droplets and bubbles with ultrasound has been studied extensively in the last 25 years. Microbubbles are broadly used in diagnostic and therapeutic medical applications, for instance, as ultrasound contrast agents. They have a similar size as red blood cells, and thus are able to circulate within blood vessels. Perfluorocarbon liquid droplets can be a potential new generation of microbubble agents as ultrasound can trigger their conversion into gas bubbles. Prior to activation, they are at least five times smaller in diameter than the resulting bubbles. Together with the violent nature of the phase-transition, the droplets can be used for local drug delivery, embolotherapy, HIFU enhancement and tumor imaging. Here we explain the basics of bubble dynamics, described by the Rayleigh-Plesset equation, bubble resonance frequency, damping and quality factor. We show the elegant calculation of the above characteristics for the case of small amplitude oscillations by linearizing the equations. The effect and importance of a bubble coating and effective surface tension are also discussed. We give the main characteristics of the power spectrum of bubble oscillations. Preceding bubble dynamics, ultrasound propagation is introduced. We explain the speed of sound, nonlinearity and attenuation terms. We examine bubble ultrasound scattering and how it depends on the wave-shape of the incident wave. Finally, we introduce droplet interaction with ultrasound. We elucidate the ultrasound-focusing concept within a droplets sphere, droplet shaking due to media compressibility and droplet phase-conversion dynamics.

  8. Bubble Measuring Instrument and Method

    NASA Technical Reports Server (NTRS)

    Kline-Schoder, Robert (Inventor); Magari, Patrick J. (Inventor)

    2002-01-01

    Method and apparatus are provided for a non-invasive bubble measuring instrument operable for detecting, distinguishing, and counting gaseous embolisms such as bubbles over a selectable range of bubble sizes of interest. A selected measurement volume in which bubbles may be detected is insonified by two distinct frequencies from a pump transducer and an image transducer. respectively. The image transducer frequency is much higher than the pump transducer frequency. The relatively low-frequency pump signal is used to excite bubbles to resonate at a frequency related to their diameter. The image transducer is operated in a pulse-echo mode at a controllable repetition rate that transmits bursts of high-frequency ultrasonic signal to the measurement volume in which bubbles may be detected and then receives the echo. From the echo or received signal, a beat signal related to the repetition rate may be extracted and used to indicate the presence or absence of a resonant bubble. In a preferred embodiment, software control maintains the beat signal at a preselected frequency while varying the pump transducer frequency to excite bubbles of different diameters to resonate depending on the range of bubble diameters selected for investigation.

  9. Bubble measuring instrument and method

    NASA Technical Reports Server (NTRS)

    Kline-Schoder, Robert (Inventor); Magari, Patrick J. (Inventor)

    2003-01-01

    Method and apparatus are provided for a non-invasive bubble measuring instrument operable for detecting, distinguishing, and counting gaseous embolisms such as bubbles over a selectable range of bubble sizes of interest. A selected measurement volume in which bubbles may be detected is insonified by two distinct frequencies from a pump transducer and an image transducer, respectively. The image transducer frequency is much higher than the pump transducer frequency. The relatively low-frequency pump signal is used to excite bubbles to resonate at a frequency related to their diameter. The image transducer is operated in a pulse-echo mode at a controllable repetition rate that transmits bursts of high-frequency ultrasonic signal to the measurement volume in which bubbles may be detected and then receives the echo. From the echo or received signal, a beat signal related to the repetition rate may be extracted and used to indicate the presence or absence of a resonant bubble. In a preferred embodiment, software control maintains the beat signal at a preselected frequency while varying the pump transducer frequency to excite bubbles of different diameters to resonate depending on the range of bubble diameters selected for investigation.

  10. Bubble Measuring Instrument and Method

    NASA Technical Reports Server (NTRS)

    Kline-Schoder, Robert (Inventor); Magari, Patrick J. (Inventor)

    2002-01-01

    Method and apparatus are provided for a non-invasive bubble measuring instrument operable for detecting, distinguishing, and counting gaseous embolisms such as bubbles over a selectable range of bubble sizes of interest. A selected measurement volume in which bubbles may be detected is insonified by two distinct frequencies from a pump transducer and an image transducer, respectively. The image transducer frequency is much higher than the pump transducer frequency. The relatively low-frequency pump signal is used to excite bubbles to resonate at a frequency related to their diameter. The image transducer is operated in a pulse-echo mode at a controllable repetition rate that transmits bursts of high-frequency ultrasonic signal to the measurement volume in which bubbles may be detected and then receives the echo. From the echo or received signal, a beat signal related to the repetition rate may be extracted and used to indicate the presence or absence of a resonant bubble. In a preferred embodiment, software control maintains the beat signal at a preselected frequency while varying the pump transducer frequency to excite bubbles of different diameters to resonate depending on the range of bubble diameters selected for investigation.

  11. Bubble Measuring Instrument and Method

    NASA Technical Reports Server (NTRS)

    Kline-Schoder, Robert (Inventor); Magari, Patrick J. (Inventor)

    2002-01-01

    Method and apparatus are provided for a non-invasive bubble measuring instrument operable for detecting. distinguishing, and counting gaseous embolisms such as bubbles over a selectable range of bubble sizes of interest. A selected measurement volume in which bubbles may be detected is insonified by two distinct frequencies from a pump transducer and an image transducer, respectively. The image transducer frequency is much higher than the pump transducer frequency. The relatively low-frequency pump signal is used to excite bubbles to resonate at a frequency related to their diameter. The image transducer is operated in a pulse-echo mode at a controllable repetition rate that transmits bursts of high-frequency ultrasonic signal to the measurement volume in which bubbles may be detected and then receive, the echo. From the echo or received signal, a beat signal related to the repetition rate may be extracted and used to indicate the presence or absence of a resonant bubble. In a preferred embodiment, software control maintains the beat signal at a preselected frequency while varying the pump transducer frequency to excite bubbles of different diameters to resonate depending on the range of bubble diameters selected for investigation.

  12. The formation of soap bubbles created by blowing on soap films

    NASA Astrophysics Data System (ADS)

    Salkin, Louis; Schmit, Alexandre; Panizza, Pascal; Courbin, Laurent

    2015-11-01

    Using either circular bubble wands or long-lasting vertically falling soap films having an adjustable steady state thickness, we study the formation of soap bubbles created when air is blown through a nozzle onto a soap film. We vary nozzle radius, film size, space between the film and nozzle, and gas density, and we measure the gas velocity threshold above which bubbles are generated. The response is sensitive to confinement, that is, the ratio between film and jet sizes, and dissipation in the turbulent gas jet which is a function of the distance from the nozzle to the film. We observe four different regimes that we rationalize by comparing the dynamic pressure of a jet on the film and the Laplace pressure needed to create the curved surface of a bubble.

  13. Droplet impact on a liquid pool and bubble entrainment for low Bond numbers

    NASA Astrophysics Data System (ADS)

    Sleutel, Pascal; Tsai, Pei Hsun; Bouwhuis, Wilco; Thoraval, Marie-Jean; Visser, Claas-Willem; Wang, An-Bang; Versluis, Michel; Lohse, Detlef

    2015-11-01

    Droplets impacting on a pool of liquid and the subsequent bubble entrainment has been well studied for high Bond numbers where the droplets size is large and velocities are low. Here we study for the first time the droplet impact and bubble entrainment in an entirely new parameter regime (Bo ~ 10-2 -10-3 , U ~ 6-20 m/s, D ~ 0.08-0.4 mm). We follow up on the pioneering work of Oguz & Prosperetti, now in the surface tension dominated regime. We predict the bubble entrainment zone by balancing movement of the cavity bottom and droplet inertia with capillary waves enclosing the bubble. Both high-speed imaging experiments and numerical simulations in Gerris validate the model and show the importance of air for smaller droplet sizes.

  14. Oscillations of soap bubbles

    NASA Astrophysics Data System (ADS)

    Kornek, U.; Müller, F.; Harth, K.; Hahn, A.; Ganesan, S.; Tobiska, L.; Stannarius, R.

    2010-07-01

    Oscillations of droplets or bubbles of a confined fluid in a fluid environment are found in various situations in everyday life, in technological processing and in natural phenomena on different length scales. Air bubbles in liquids or liquid droplets in air are well-known examples. Soap bubbles represent a particularly simple, beautiful and attractive system to study the dynamics of a closed gas volume embedded in the same or a different gas. Their dynamics is governed by the densities and viscosities of the gases and by the film tension. Dynamic equations describing their oscillations under simplifying assumptions have been well known since the beginning of the 20th century. Both analytical description and numerical modeling have made considerable progress since then, but quantitative experiments have been lacking so far. On the other hand, a soap bubble represents an easily manageable paradigm for the study of oscillations of fluid spheres. We use a technique to create axisymmetric initial non-equilibrium states, and we observe damped oscillations into equilibrium by means of a fast video camera. Symmetries of the oscillations, frequencies and damping rates of the eigenmodes as well as the coupling of modes are analyzed. They are compared to analytical models from the literature and to numerical calculations from the literature and this work.

  15. Validation of a Size-resolved Parameterization of Primary Organic Carbon in Fresh Marine Aerosols for Use in Air-Sea Exchange Simulations

    NASA Astrophysics Data System (ADS)

    Long, M. S.; Keene, W. C.; Kieber, D. J.; Frossard, A. A.; Russell, L. M.

    2011-12-01

    Marine aerosol production by bursting bubbles at the ocean surface is the largest source of aerosol mass in the atmosphere. The size-resolved organic and inorganic composition of marine aerosols has significant impacts on atmospheric chemistry, aerosol and cloud microphysics and radiative transfer. Recent estimates suggest that the global production flux of particulate organic matter (POM) associated with nascent marine aerosol may exceed the total production flux of particulate POM from secondary pathways involving gas-phase precursors. Observed size-resolved fluxes of marine-derived POM taken in the N. Atlantic Ocean, while limited, suggest that Langmuir-type sorption processes may be the limiting factor controlling the association of marine organic material with bubble plume surface area, and consequently, the size-resolved POM mass and number fluxes. A similar set of observations - including seawater temperature, salinity, and chlorophyll a (chl-a) concentrations - were made during a spring 2010 cruise of the R/V Atlantis in the eastern North Pacific Ocean. Chlorophyll a concentrations - as a proxy for marine OM - ranged from ~3 to 30 μg L-1 which exceeds that of the N. Atlantic studies by up to an order of magnitude. Significant relationships between chl-a, particle number production and particulate OM enrichments were observed. These data provide an excellent opportunity to validate and refine a previously formulated size-resolved inorganic/organic marine aerosol source function using in situ seawater composition and state constraints. This formulation will serve as the basis for atmospheric chemistry and climate simulations, and further our understanding of aerosol production and air-sea exchange processes.

  16. Generating Soap Bubbles by Blowing on Soap Films

    NASA Astrophysics Data System (ADS)

    Salkin, Louis; Schmit, Alexandre; Panizza, Pascal; Courbin, Laurent

    2016-02-01

    Making soap bubbles by blowing air on a soap film is an enjoyable activity, yet a poorly understood phenomenon. Working either with circular bubble wands or long-lived vertical soap films having an adjustable steady state thickness, we investigate the formation of such bubbles when a gas is blown through a nozzle onto a film. We vary film size, nozzle radius, space between the film and nozzle, and gas density, and we measure the gas velocity threshold above which bubbles are formed. The response is sensitive to containment, i.e., the ratio between film and jet sizes, and dissipation in the turbulent gas jet, which is a function of the distance from the film to the nozzle. We rationalize the observed four different regimes by comparing the dynamic pressure exerted by the jet on the film and the Laplace pressure needed to create the curved surface of a bubble. This simple model allows us to account for the interplay between hydrodynamic, physicochemical, and geometrical factors.

  17. Generating Soap Bubbles by Blowing on Soap Films.

    PubMed

    Salkin, Louis; Schmit, Alexandre; Panizza, Pascal; Courbin, Laurent

    2016-02-19

    Making soap bubbles by blowing air on a soap film is an enjoyable activity, yet a poorly understood phenomenon. Working either with circular bubble wands or long-lived vertical soap films having an adjustable steady state thickness, we investigate the formation of such bubbles when a gas is blown through a nozzle onto a film. We vary film size, nozzle radius, space between the film and nozzle, and gas density, and we measure the gas velocity threshold above which bubbles are formed. The response is sensitive to containment, i.e., the ratio between film and jet sizes, and dissipation in the turbulent gas jet, which is a function of the distance from the film to the nozzle. We rationalize the observed four different regimes by comparing the dynamic pressure exerted by the jet on the film and the Laplace pressure needed to create the curved surface of a bubble. This simple model allows us to account for the interplay between hydrodynamic, physicochemical, and geometrical factors.

  18. Generating Soap Bubbles by Blowing on Soap Films.

    PubMed

    Salkin, Louis; Schmit, Alexandre; Panizza, Pascal; Courbin, Laurent

    2016-02-19

    Making soap bubbles by blowing air on a soap film is an enjoyable activity, yet a poorly understood phenomenon. Working either with circular bubble wands or long-lived vertical soap films having an adjustable steady state thickness, we investigate the formation of such bubbles when a gas is blown through a nozzle onto a film. We vary film size, nozzle radius, space between the film and nozzle, and gas density, and we measure the gas velocity threshold above which bubbles are formed. The response is sensitive to containment, i.e., the ratio between film and jet sizes, and dissipation in the turbulent gas jet, which is a function of the distance from the film to the nozzle. We rationalize the observed four different regimes by comparing the dynamic pressure exerted by the jet on the film and the Laplace pressure needed to create the curved surface of a bubble. This simple model allows us to account for the interplay between hydrodynamic, physicochemical, and geometrical factors. PMID:26943558

  19. Tuning bubbly structures in microchannels.

    PubMed

    Vuong, Sharon M; Anna, Shelley L

    2012-06-01

    Foams have many useful applications that arise from the structure and size distribution of the bubbles within them. Microfluidics allows for the rapid formation of uniform bubbles, where bubble size and volume fraction are functions of the input gas pressure, liquid flow rate, and device geometry. After formation, the microchannel confines the bubbles and determines the resulting foam structure. Bubbly structures can vary from a single row ("dripping"), to multiple rows ("alternating"), to densely packed bubbles ("bamboo" and dry foams). We show that each configuration arises in a distinct region of the operating space defined by bubble volume and volume fraction. We describe the boundaries between these regions using geometric arguments and show that the boundaries are functions of the channel aspect ratio. We compare these geometric arguments with foam structures observed in experiments using flow-focusing, T-junction, and co-flow designs to generate stable nitrogen bubbles in aqueous surfactant solution and stable droplets in oil containing dissolved surfactant. The outcome of this work is a set of design parameters that can be used to achieve desired foam structures as a function of device geometry and experimental control parameters.

  20. Removal of particles from holes in submerged plates with oscillating bubbles

    NASA Astrophysics Data System (ADS)

    Pavard, Delphine; Klaseboer, Evert; Ohl, Siew-Wan; Khoo, Boo Cheong

    2009-08-01

    This study is motivated by a common problem in submerged tubes and structures, which is the blockage of the tubes by pollutant particles or debris from the surrounding fluid. To clear the obstruction from the tube, an expanding bubble is used to propel the obstruction away from the tube (the tube is represented as a submerged transparent plate with a hole in our experiments). In some cases the obstruction removal effect is reinforced by the impacting jet of such a collapsing bubble. The bubble is generated via a simple low voltage electric spark discharge circuit. The pressure generated by the oscillating bubble effectively pushes the particle away from the tube, thereby successfully clearing the obstruction. High-speed photography is used to record and analyze the phenomenon. The speed of the particle is found to be around 1 m/s shortly after the collapse of the bubble. Interestingly, there is a clear difference between air-backed plates and water-backed plates in terms of bubble and particle dynamics. The bubbles in the current study are typically of millimeter size. Since the physics are similar for smaller bubbles, the process can possibly be downsized for other microapplications such as the removal of blood clots in vessels [S. R. Visuri et al., U.S. Patent No. 6428531 (August 6, 2002)].

  1. Breaking waves and near-surface sea spray aerosol dependence on changing winds: Wave breaking efficiency and bubble-related air-sea interaction processes

    NASA Astrophysics Data System (ADS)

    Hwang, P. A.; Savelyev, I. B.; Anguelova, M. D.

    2016-05-01

    Simultaneous measurements of sea spray aerosol (SSA), wind, wave, and microwave brightness temperature are obtained in the open ocean on-board Floating Instrument Platform (FLIP). These data are analysed to clarify the ocean surface processes important to SSA production. Parameters are formulated to represent surface processes with characteristic length scales spanning a broad range. The investigation reveals distinct differences of the SSA properties in rising winds and falling winds, with higher SSA volume in falling winds. Also, in closely related measurements of whitecap coverage, higher whitecap fraction as a function of wind speed is found in falling winds than in rising winds or in older seas than in younger seas. Similar trend is found in the short scale roughness reflected in the microwave brightness temperature data. In the research of length and velocity scales of breaking waves, it has been observed that the length scale of wave breaking is shorter in mixed seas than in wind seas. For example, source function analysis of short surface waves shows that the characteristic length scale of the dissipation function shifts toward higher wavenumber (shorter wavelength) in mixed seas than in wind seas. Similarly, results from feature tracking or Doppler analysis of microwave radar sea spikes, which are closely associated with breaking waves, show that the magnitude of the average breaking wave velocity is smaller in mixed seas than in wind seas. Furthermore, breaking waves are observed to possess geometric similarity. Applying the results of breaking wave analyses to the SSA and whitecap observations described above, it is suggestive that larger air cavities resulting from the longer breakers are entrained in rising high winds. The larger air cavities escape rapidly due to buoyancy before they can be fully broken down into small bubbles for the subsequent SSA production or whitecap manifestation. In contrast, in falling winds (with mixed seas more likely), the

  2. Air sampling filtration media: Collection efficiency for respirable size-selective sampling

    PubMed Central

    Soo, Jhy-Charm; Monaghan, Keenan; Lee, Taekhee; Kashon, Mike; Harper, Martin

    2016-01-01

    The collection efficiencies of commonly used membrane air sampling filters in the ultrafine particle size range were investigated. Mixed cellulose ester (MCE; 0.45, 0.8, 1.2, and 5 μm pore sizes), polycarbonate (0.4, 0.8, 2, and 5 μm pore sizes), polytetrafluoroethylene (PTFE; 0.45, 1, 2, and 5 μm pore sizes), polyvinyl chloride (PVC; 0.8 and 5 μm pore sizes), and silver membrane (0.45, 0.8, 1.2, and 5 μm pore sizes) filters were exposed to polydisperse sodium chloride (NaCl) particles in the size range of 10–400 nm. Test aerosols were nebulized and introduced into a calm air chamber through a diffusion dryer and aerosol neutralizer. The testing filters (37 mm diameter) were mounted in a conductive polypropylene filter-holder (cassette) within a metal testing tube. The experiments were conducted at flow rates between 1.7 and 11.2 l min−1. The particle size distributions of NaCl challenge aerosol were measured upstream and downstream of the test filters by a scanning mobility particle sizer (SMPS). Three different filters of each type with at least three repetitions for each pore size were tested. In general, the collection efficiency varied with airflow, pore size, and sampling duration. In addition, both collection efficiency and pressure drop increased with decreased pore size and increased sampling flow rate, but they differed among filter types and manufacturer. The present study confirmed that the MCE, PTFE, and PVC filters have a relatively high collection efficiency for challenge particles much smaller than their nominal pore size and are considerably more efficient than polycarbonate and silver membrane filters, especially at larger nominal pore sizes. PMID:26834310

  3. Size-dependent mechanical properties of PVA nanofibers reduced via air plasma treatment

    NASA Astrophysics Data System (ADS)

    Fu, Qiang; Jin, Yu; Song, Xuefeng; Gao, Jingyun; Han, Xiaobing; Jiang, Xingyu; Zhao, Qing; Yu, Dapeng

    2010-03-01

    Organic nanowires/fibers have great potential in applications such as organic electronics and soft electronic techniques. Therefore investigation of their mechanical performance is of importance. The Young's modulus of poly(vinyl alcohol) (PVA) nanofibers was analyzed by scanning probe microscopy (SPM) methods. Air plasma treatment was used to reduce the nanofibers to different sizes. Size-dependent mechanical properties of PVA nanofibers were studied and revealed that the Young's modulus increased dramatically when the scales became very small (<80 nm).

  4. Behavior of Rapidly Sheared Bubble Suspensions

    NASA Technical Reports Server (NTRS)

    Sangani, A. S.; Kushch, V. I.; Hoffmann, M.; Nahra, H.; Koch, D. L.; Tsang, Y.

    2002-01-01

    An experiment to be carried out aboard the International Space Station is described. A suspension consisting of millimeter-sized bubbles in water containing some dissolved salt, which prevents bubbles from coalescing, will be sheared in a Couette cylindrical cell. Rotation of the outer cylinder will produce centrifugal force which will tend to accumulate the bubbles near the inner wall. The shearing will enhance collisions among bubbles creating thereby bubble phase pressure that will resist the tendency of the bubbles to accumulate near the inner wall. The bubble volume fraction and velocity profiles will be measured and compared with the theoretical predictions. Ground-based research on measurement of bubble phase properties and flow in vertical channel are described.

  5. Gravity driven flows of bubble suspensions.

    NASA Astrophysics Data System (ADS)

    Zenit, Roberto; Koch, Donald L.; Sangani, Ashok K.

    1999-11-01

    Experiments on vertical and inclined channels were performed to study the behavior of a mono-dispersed bubble suspension for which the dual limit of large Reynolds number and small Weber number is satisfied. A uniform stream of 1.5 mm diameter bubbles is produced by a bank of identical capillaries and coalescence is inhibited by addition of salt to the water. Measurements of the liquid velocity and bubble-probe collision rate are obtained with a hot wire anemometer. The gas volume fraction, bubble velocity, velocity variance and chord length are measured using a dual impedance probe. Image analysis is used to quantify the distributions of bubble size and aspect ratio. For vertical channels the bubble velocity is observed to decrease as the bubble concentration increases in accord with the predictions of Spelt and Sangani (1998). The bubble velocity variance arises largely due to bubble-wall and bubble-bubble collisions. For inclined channels, the strength of the shear flow is controlled by the extent of bubble segregation and the effective viscosity of the bubble phase. The measurements are compared with solutions of the averaged equations of motion for a range of gas volume fractions and channel inclination angles.

  6. Modeling methane bubble growth in fine-grained muddy aquatic sediments: correlation with sediment properties

    NASA Astrophysics Data System (ADS)

    Katsman, Regina

    2015-04-01

    Gassy sediments contribute to destabilization of aquatic infrastructure, air pollution, and global warming. In the current study a precise shape and size of the buoyant mature methane bubble in fine-grained muddy aquatic sediment is defined by numerical and analytical modeling, their results are in a good agreement. A closed-form analytical solution defining the bubble parameters is developed. It is found that the buoyant mature bubble is elliptical in its front view and resembles an inverted tear drop in its cross-section. The size and shape of the mature bubble strongly correlate with sediment fracture toughness. Bubbles formed in the weaker sediments are smaller and characterized by a larger surface-to volume ratio that induces their faster growth and may lead to their faster dissolution below the sediment-water interface. This may prevent their release to the water column and to the atmosphere. Shapes of the bubbles in the weaker sediments deviate further from the spherical configuration, than those in the stronger sediments. Modeled bubble characteristics, important for the acoustic applications, are in a good agreement with field observations and lab experiments.

  7. Improved particle impactor assembly for size selective high volume air sampler

    DOEpatents

    Langer, G.

    1987-03-23

    Air containing entrained particulate matter is directed through a plurality of parallel, narrow, vertically oriented apertures of an inlet element toward an adjacently located, relatively large, dust impaction surface preferably covered with an adhesive material. The air flow turns over the impaction surface, leaving behind, the relatively larger particles and passes through two elongate apertures defining the outer bounds of the impaction collection surface to pass through divergent passages which slow down and distribute the air flow, with entrained smaller particles, over a fine filter element that separates the fine particles from the air. By appropriate selection of dimensions and the number of inlet apertures air flow through the inlet element is provided a nonuniform velocity distribution with the lower velocities being obtained near the center of the inlet apertures, to separate out particles larger than a certain predetermined size on the impaction collection surface. The impaction collection surface, even in a moderately sized apparatus, is thus relatively large and permits the prolonged sampling of air for periods extending to four weeks. 6 figs.

  8. Effects of gas bubble production on heat transfer from a volumetrically heated liquid pool

    NASA Astrophysics Data System (ADS)

    Bull, Geoffrey R.

    Aqueous solutions of uranium salts may provide a new supply chain to fill potential shortfalls in the availability of the most common radiopharmaceuticals currently in use worldwide, including Tc99m which is a decay product of Mo99. The fissioning of the uranium in these solutions creates Mo99 but also generates large amounts of hydrogen and oxygen from the radiolysis of the water. When the dissolved gases reach a critical concentration, bubbles will form in the solution. Bubbles in the solution affect both the fission power and the heat transfer out of the solution. As a result, for safety and production calculations, the effects of the bubbles on heat transfer must be understood. A high aspect ratio tank was constructed to simulate a section of an annulus with heat exchangers on the inner and outer steel walls to provide cooling. Temperature measurements via thermocouples inside the tank and along the outside of the steel walls allowed the calculation of overall and local heat transfer coefficients. Different air injection manifolds allowed the exploration of various bubble characteristics and patterns on heat transfer from the pool. The manifold type did not appear to have significant impact on the bubble size distributions in water. However, air injected into solutions of magnesium sulfate resulted in smaller bubble sizes and larger void fractions than those in water at the same injection rates. One dimensional calculations provide heat transfer coefficient values as functions of the superficial gas velocity in the pool.

  9. Magma mixing enhanced by bubble segregation

    NASA Astrophysics Data System (ADS)

    Wiesmaier, S.; Daniele, M.; Renggli, C.; Perugini, D.; De Campos, C.; Hess, K. U.; Ertel-Ingrisch, W.; Lavallée, Y.; Dingwell, D. B.

    2014-12-01

    Rising bubbles may significantly affect magma mixing paths as has been demonstrated by analogue experiments in the past. Here, bubble-advection experiments are performed for the first time employing natural materials at magmatic temperatures. Cylinders of basaltic glass were placed below cylinders of rhyolite glass. Upon melting, interstitial air formed bubbles that rose into the rhyolite melt, thereby entraining tails of basaltic liquid. The formation of plume-like filaments of advected basalt within the rhyolite was characterized by microCT and subsequent high-resolution EMP analyses. Melt entrainment by bubble ascent appears as efficient mechanism to mingle contrasting melt compositions. MicroCT imaging shows bubbles trailing each other and trails of multiple bubbles having converged. Rheological modelling of the filaments yields viscosities of up to 2 orders of magnitude lower than for the surrounding rhyolitic liquid. Such a viscosity contrast implies that subsequent bubbles rising are likely to follow the same pathways that previously ascending bubbles have generated. Filaments formed by multiple bubbles would thus experience episodic replenishment with mafic material. Fundamental implications for the concept of bubble advection in magma mixing are thus a) an acceleration of mixing because of decreased viscous resistance for bubbles inside filaments and b) non-conventional diffusion systematics because of intermittent supply of mafic material (instead of a single pulse) inside a filament. Inside these filaments, the mafic material was variably hybridised to andesitic through rhyolitic composition. Compositional profiles alone are ambiguous, however, to determine whether single or multiple bubbles were involved during formation of a filament. Statistical analysis, employing concentration variance as measure of homogenisation, demonstrates that also filaments appearing as single-bubble filaments are likely to have experienced multiple bubbles passing through

  10. Bubble rise velocities and drag coefficients in non-Newtonian polysaccharide solutions.

    PubMed

    Margaritis, A; te Bokkel, D W; Karamanev, D G

    1999-08-01

    Microbially produced polysaccharides have properties which are extremely useful in different applications. Polysaccharide producing fermentations start with liquid broths having Newtonian rheology and end as highly viscous non-Newtonian solutions. Since aerobic microorganisms are used to produce these polysaccharides, it is of great importance to know the mass transfer rate of oxygen from a rising air bubble to the liquid phase, where the microorganisms need the oxygen to grow. One of the most important parameters determining the oxygen transfer rate is the terminal rise velocity of air bubble. The dynamics of the rise of air bubbles in the aqueous solutions of different, mostly microbially produced polysaccharides was studied in this work. Solutions with a wide variety of polysaccharide concentrations and rheological properties were studied. The bubble sizes varied between 0.01 mm3 and 10 cm3. The terminal rise velocities as a function of air bubble volume were studied for 21 different polysaccharide solutions with different rheological properties. It was found that the terminal velocities reached a plateau at higher bubble volumes, and the value of the plateau was nearly constant, between 23 and 27 cm/s, for all solutions studied. The data were analyzed to produce the functional relationship between the drag coefficient and Reynolds number (drag curves). It was found out that all the experimental data obtained from 21 polysaccharide solutions (431 experimental points), can be represented by a new single drag curve. At low values of Reynolds numbers, below 1.0, this curve could be described by the modofoed Hadamard-Rybczynski model, while at Re > 60 the drag coefficient was a constant, equal to 0.95. The latter finding is similar to that observed for bubble rise in Newtonian liquids which was explained on the basis of the "solid bubble" approach. PMID:10397862

  11. A note on the dynamics of two aligned bubbles perpendicular to and above a thin membrane

    NASA Astrophysics Data System (ADS)

    Hajizadeh Aghdam, A.; Khoo, B. C.

    2015-06-01

    The interaction of two perpendicular bubbles of a similar size (upper bubble and lower bubble) and the thin elastic membrane beneath them is studied experimentally. The dynamical behavior of the lower bubble (Bubble1), which is placed between the membrane and upper bubble (Bubble2), is rather complex. Observed phenomena such as the splitting of Bubble1 into the ‘mushroom shape’ and ‘masher shape’, the bubble-collapse induced jetting toward Bubble2 and even the coalescence effect are found and systematically categorized by the stated dimensionless parameters.

  12. Tiny Bubbles.

    ERIC Educational Resources Information Center

    Kim, Hy

    1985-01-01

    A simple oxygen-collecting device (easily constructed from glass jars and a lid) can show bubbles released by water plants during photosynthesis. Suggestions are given for: (1) testing the collected gas; (2) using various carbon dioxide sources; and (3) measuring respiration. (DH)

  13. Stable tridimensional bubble clusters in multi-bubble sonoluminescence (MBSL).

    PubMed

    Rosselló, J M; Dellavale, D; Bonetto, F J

    2015-01-01

    In the present work, stable clusters made of multiple sonoluminescent bubbles are experimentally and theoretically studied. Argon bubbles were acoustically generated and trapped using bi-frequency driving within a cylindrical chamber filled with a sulfuric acid aqueous solution (SA85w/w). The intensity of the acoustic pressure field was strong enough to sustain, during several minutes, a large number of positionally and spatially fixed (without pseudo-orbits) sonoluminescent bubbles over an ellipsoidally-shaped tridimensional array. The dimensions of the ellipsoids were studied as a function of the amplitude of the applied low-frequency acoustic pressure (PAc(LF)) and the static pressure in the fluid (P0). In order to explain the size and shape of the bubble clusters, we performed a series of numerical simulations of the hydrodynamic forces acting over the bubbles. In both cases the observed experimental behavior was in excellent agreement with the numerical results. The simulations revealed that the positionally stable region, mainly determined by the null primary Bjerknes force (F→Bj), is defined as the outer perimeter of an axisymmetric ellipsoidal cluster centered in the acoustic field antinode. The role of the high-frequency component of the pressure field and the influence of the secondary Bjerknes force are discussed. We also investigate the effect of a change in the concentration of dissolved gas on the positional and spatial instabilities through the cluster dimensions. The experimental and numerical results presented in this paper are potentially useful for further understanding and modeling numerous current research topics regarding multi-bubble phenomena, e.g. forces acting on the bubbles in multi-frequency acoustic fields, transient acoustic cavitation, bubble interactions, structure formation processes, atomic and molecular emissions of equal bubbles and nonlinear or unsteady acoustic pressure fields in bubbly media. PMID:24974006

  14. Stable tridimensional bubble clusters in multi-bubble sonoluminescence (MBSL).

    PubMed

    Rosselló, J M; Dellavale, D; Bonetto, F J

    2015-01-01

    In the present work, stable clusters made of multiple sonoluminescent bubbles are experimentally and theoretically studied. Argon bubbles were acoustically generated and trapped using bi-frequency driving within a cylindrical chamber filled with a sulfuric acid aqueous solution (SA85w/w). The intensity of the acoustic pressure field was strong enough to sustain, during several minutes, a large number of positionally and spatially fixed (without pseudo-orbits) sonoluminescent bubbles over an ellipsoidally-shaped tridimensional array. The dimensions of the ellipsoids were studied as a function of the amplitude of the applied low-frequency acoustic pressure (PAc(LF)) and the static pressure in the fluid (P0). In order to explain the size and shape of the bubble clusters, we performed a series of numerical simulations of the hydrodynamic forces acting over the bubbles. In both cases the observed experimental behavior was in excellent agreement with the numerical results. The simulations revealed that the positionally stable region, mainly determined by the null primary Bjerknes force (F→Bj), is defined as the outer perimeter of an axisymmetric ellipsoidal cluster centered in the acoustic field antinode. The role of the high-frequency component of the pressure field and the influence of the secondary Bjerknes force are discussed. We also investigate the effect of a change in the concentration of dissolved gas on the positional and spatial instabilities through the cluster dimensions. The experimental and numerical results presented in this paper are potentially useful for further understanding and modeling numerous current research topics regarding multi-bubble phenomena, e.g. forces acting on the bubbles in multi-frequency acoustic fields, transient acoustic cavitation, bubble interactions, structure formation processes, atomic and molecular emissions of equal bubbles and nonlinear or unsteady acoustic pressure fields in bubbly media.

  15. Partial coalescence of soap bubbles

    NASA Astrophysics Data System (ADS)

    Harris, Daniel M.; Pucci, Giuseppe; Bush, John W. M.

    2015-11-01

    We present the results of an experimental investigation of the merger of a soap bubble with a planar soap film. When gently deposited onto a horizontal film, a bubble may interact with the underlying film in such a way as to decrease in size, leaving behind a smaller daughter bubble with approximately half the radius of its progenitor. The process repeats up to three times, with each partial coalescence event occurring over a time scale comparable to the inertial-capillary time. Our results are compared to the recent numerical simulations of Martin and Blanchette and to the coalescence cascade of droplets on a fluid bath.

  16. Frictional drag reduction by bubble injection

    NASA Astrophysics Data System (ADS)

    Murai, Yuichi

    2014-07-01

    The injection of gas bubbles into a turbulent boundary layer of a liquid phase has multiple different impacts on the original flow structure. Frictional drag reduction is a phenomenon resulting from their combined effects. This explains why a number of different void-drag reduction relationships have been reported to date, while early works pursued a simple universal mechanism. In the last 15 years, a series of precisely designed experimentations has led to the conclusion that the frictional drag reduction by bubble injection has multiple manifestations dependent on bubble size and flow speed. The phenomena are classified into several regimes of two-phase interaction mechanisms. Each regime has inherent physics of bubbly liquid, highlighted by keywords such as bubbly mixture rheology, the spectral response of bubbles in turbulence, buoyancy-dominated bubble behavior, and gas cavity breakup. Among the regimes, bubbles in some selected situations lose the drag reduction effect owing to extra momentum transfer promoted by their active motions. This separates engineers into two communities: those studying small bubbles for high-speed flow applications and those studying large bubbles for low-speed flow applications. This article reviews the roles of bubbles in drag reduction, which have been revealed from fundamental studies of simplified flow geometries and from development of measurement techniques that resolve the inner layer structure of bubble-mixed turbulent boundary layers.

  17. Microstreaming from Sessile Semicylindrical Bubbles

    NASA Astrophysics Data System (ADS)

    Hilgenfeldt, Sascha; Rallabandi, Bhargav; Guo, Lin; Wang, Cheng

    2014-03-01

    Powerful steady streaming flows result from the ultrasonic driving of microbubbles, in particular when these bubbles have semicylindrical cross section and are positioned in contact with a microfluidic channel wall. We have used this streaming in experiment to develop novel methods for trapping and sorting of microparticles by size, as well as for micromixing. Theoretically, we arrive at an analytical description of the streaming flow field through an asymptotic computation that, for the first time, reconciles the boundary layers around the bubble and along the substrate wall, and also takes into account the oscillation modes of the bubble. This approach gives insight into changes in the streaming pattern with bubble size and driving frequency, including a reversal of the flow direction at high frequencies with potentially useful applications. Present address: Mechanical and Aerospace Engineering, Missouri S &T.

  18. Doughnut-shaped soap bubbles

    NASA Astrophysics Data System (ADS)

    Préve, Deison; Saa, Alberto

    2015-10-01

    Soap bubbles are thin liquid films enclosing a fixed volume of air. Since the surface tension is typically assumed to be the only factor responsible for conforming the soap bubble shape, the realized bubble surfaces are always minimal area ones. Here, we consider the problem of finding the axisymmetric minimal area surface enclosing a fixed volume V and with a fixed equatorial perimeter L . It is well known that the sphere is the solution for V =L3/6 π2 , and this is indeed the case of a free soap bubble, for instance. Surprisingly, we show that for V <α L3/6 π2 , with α ≈0.21 , such a surface cannot be the usual lens-shaped surface formed by the juxtaposition of two spherical caps, but is rather a toroidal surface. Practically, a doughnut-shaped bubble is known to be ultimately unstable and, hence, it will eventually lose its axisymmetry by breaking apart in smaller bubbles. Indisputably, however, the topological transition from spherical to toroidal surfaces is mandatory here for obtaining the global solution for this axisymmetric isoperimetric problem. Our result suggests that deformed bubbles with V <α L3/6 π2 cannot be stable and should not exist in foams, for instance.

  19. Doughnut-shaped soap bubbles.

    PubMed

    Préve, Deison; Saa, Alberto

    2015-10-01

    Soap bubbles are thin liquid films enclosing a fixed volume of air. Since the surface tension is typically assumed to be the only factor responsible for conforming the soap bubble shape, the realized bubble surfaces are always minimal area ones. Here, we consider the problem of finding the axisymmetric minimal area surface enclosing a fixed volume V and with a fixed equatorial perimeter L. It is well known that the sphere is the solution for V=L(3)/6π(2), and this is indeed the case of a free soap bubble, for instance. Surprisingly, we show that for V<αL(3)/6π(2), with α≈0.21, such a surface cannot be the usual lens-shaped surface formed by the juxtaposition of two spherical caps, but is rather a toroidal surface. Practically, a doughnut-shaped bubble is known to be ultimately unstable and, hence, it will eventually lose its axisymmetry by breaking apart in smaller bubbles. Indisputably, however, the topological transition from spherical to toroidal surfaces is mandatory here for obtaining the global solution for this axisymmetric isoperimetric problem. Our result suggests that deformed bubbles with V<αL(3)/6π(2) cannot be stable and should not exist in foams, for instance. PMID:26565252

  20. Bubbles in an isotropic homogeneous turbulent flow

    NASA Astrophysics Data System (ADS)

    Mancilla, F. E.; Martinez, M.; Soto, E.; Ascanio, G.; Zenit, R.

    2011-11-01

    Bubbly turbulent flow plays an important role in many engineering applications and natural phenomena. In this kind of flows the bubbles are dispersed in a turbulent flow and they interact with the turbulent structures. The present study focuses on the motion and hydrodynamic interaction of a single bubble in a turbulent environment. In most previous studies, the effect of bubbles on the carrier fluid was analyzed, under the assumption that the bubble size was significantly smaller that the smallest turbulence length scale. An experimental study of the effect of an isotropic and homogeneous turbulent flow on the bubble shape and motion was conducted. Experiments were performed in an isotropic turbulent chamber with nearly zero mean flow, in which a single bubble was injected. The fluid velocity was measured using the Particle Image Velocimetry (PIV) technique. The bubble deformation was determined by video processing of high-speed movies. The fluid disturbances on the bubble shape were studied for bubbles with different sizes. We will present experimental data obtained and discuss the differences among these results to try to understand the bubble - turbulence interaction mechanisms.

  1. Application of the ultrasonic technique and high-speed filming for the study of the structure of air-water bubbly flows

    SciTech Connect

    Carvalho, R.D.M.; Venturini, O.J.; Tanahashi, E.I.; Neves, F. Jr.; Franca, F.A.

    2009-10-15

    Multiphase flows are very common in industry, oftentimes involving very harsh environments and fluids. Accordingly, there is a need to determine the dispersed phase holdup using noninvasive fast responding techniques; besides, knowledge of the flow structure is essential for the assessment of the transport processes involved. The ultrasonic technique fulfills these requirements and could have the capability to provide the information required. In this paper, the potential of the ultrasonic technique for application to two-phase flows was investigated by checking acoustic attenuation data against experimental data on the void fraction and flow topology of vertical, upward, air-water bubbly flows in the zero to 15% void fraction range. The ultrasonic apparatus consisted of one emitter/receiver transducer and three other receivers at different positions along the pipe circumference; simultaneous high-speed motion pictures of the flow patterns were made at 250 and 1000 fps. The attenuation data for all sensors exhibited a systematic interrelated behavior with void fraction, thereby testifying to the capability of the ultrasonic technique to measure the dispersed phase holdup. From the motion pictures, basic gas phase structures and different flows patterns were identified that corroborated several features of the acoustic attenuation data. Finally, the acoustic wave transit time was also investigated as a function of void fraction. (author)

  2. Generation of pulsed discharge plasma in water with fine bubbles

    NASA Astrophysics Data System (ADS)

    Hayashi, Yui; Takada, Noriharu; Kanda, Hideki; Goto, Motonobu; Goto laboratory Team

    2015-09-01

    Recently, some researchers have proposed electric discharge methods with bubbles in water because the discharge plasma inside bubble was easy to be generated compared to that in water. Almost all of these methods introduced bubbles in the order of millimeter size from a nozzle placed in water. In these methods, bubbles rose one after another owing to high rising speed of millibubble, leading to inefficient gas consumption. We proposed fine bubbles introduction at the discharge area in water. A fine bubble is determined a bubble with less than 100 μm in a diameter. Fine bubbles exhibit extremely slow rising speed. Fine bubbles decrease in size during bubble rising and subsequently collapse in water with OH radical generation. Therefore, combining the discharge plasma with fine bubbles is expected to generate more active species with small amount of gas consumption. In this work, fine bubbles were introduced in water and pulsed discharge plasma was generated between two cylindrical electrodes which placed in water. We examined effects of fine bubbles on electric discharge in water when argon or oxygen gas was utilized as feed gas. Fine bubbles enhanced optical emission of hydrogen and oxygen atoms from H2O molecules, but that of feed gas was not observed. The formation mechanism of H2O2 by electric discharge was supposed to be different from that with no bubbling. Dissolved oxygen in water played a role in H2O2 formation by the discharge with fine bubbles.

  3. Wetting of soap bubbles on hydrophilic, hydrophobic, and superhydrophobic surfaces

    NASA Astrophysics Data System (ADS)

    Arscott, Steve

    2013-06-01

    Wetting of sessile bubbles on various wetting surfaces (solid and liquid) has been studied. A model is presented for the apparent contact angle of a sessile bubble based on a modified Young's equation--the experimental results agree with the model. Wetting a hydrophilic surface results in a bubble contact angle of 90° whereas using a superhydrophobic surface one observes 134°. For hydrophilic surfaces, the bubble angle diminishes with bubble radius whereas on a superhydrophobic surface, the bubble angle increases. The size of the plateau borders governs the bubble contact angle, depending on the wetting of the surface.

  4. The effects of a soluble surfactant on the interfacial dynamics of stationary bubbles in inclined tubes

    NASA Astrophysics Data System (ADS)

    Cavanagh, Daniel P.; Eckmann, David M.

    2002-10-01

    We have experimentally examined the effects of a common soluble surfactant on gas bubbles in liquid flows in inclined tubes. Air bubbles of known size ([lambda] = 0.8, 1.0, 1.5) are held stationary under minimum flow conditions in tubes inclined at fixed angles ([omega] = 25°, 45°, 65°, 90°). Sodium dodecyl sulphate (SDS) is infused into the bulk flow at two bulk concentrations (C = 10% or 100% critical micelle concentration (CMC)). In addition to recording pressure and flow waveforms, we capture video images of bubbles before and during exposure to the surfactant. Modification of the interfacial properties by the surfactant results in extremely dynamic bubble behaviour including interfacial deformation, deformation plus axial translation, and bubble detachment from the wall plus translation. We measure the corresponding time-dependent pressure gradient within the tube. The surfactant mediated responses observed are dependent upon the interrelated effects of C, [lambda] and [omega]. A high bulk concentration of surfactant may produce more rapid modification of bubble shape and influence wetting, thus increasing the potential for bubble detachment. The likelihood that detachment will occur increases further as bubble volume in increased. In both vertical tubes in which contact forces are absent and in non-vertical tubes, the infusion of surfactant may result in axial translation either in the direction of, or opposite to, the direction of the bulk flow. Critical to the translation and/or detachment of the bubble is the surfactant-mediated modification of contact line mechanics. Contact line velocities corresponding to rates of shrinkage of dewetted surface area are extracted from experimental data. We also explore the potential effects of surfactants on interfacial remobilization. This investigation demonstrates the potential use of surfactants to be used for dislodging dewetted gas bubbles by the intentional manipulation of interfacial properties.

  5. The impacts of replacing air bubbles with microspheres for the clarification of algae from low cell-density culture.

    PubMed

    Ometto, Francesco; Pozza, Carlo; Whitton, Rachel; Smyth, Beatrice; Gonzalez Torres, Andrea; Henderson, Rita K; Jarvis, Peter; Jefferson, Bruce; Villa, Raffaella

    2014-04-15

    Dissolved Air Flotation (DAF) is a well-known coagulation-flotation system applied at large scale for microalgae harvesting. Compared to conventional harvesting technologies DAF allows high cell recovery at lower energy demand. By replacing microbubbles with microspheres, the innovative Ballasted Dissolved Air Flotation (BDAF) technique has been reported to achieve the same algae cell removal efficiency, while saving up to 80% of the energy required for the conventional DAF unit. Using three different algae cultures (Scenedesmus obliquus, Chlorella vulgaris and Arthrospira maxima), the present work investigated the practical, economic and environmental advantages of the BDAF system compared to the DAF system. 99% cells separation was achieved with both systems, nevertheless, the BDAF technology allowed up to 95% coagulant reduction depending on the algae species and the pH conditions adopted. In terms of floc structure and strength, the inclusion of microspheres in the algae floc generated a looser aggregate, showing a more compact structure within single cell alga, than large and filamentous cells. Overall, BDAF appeared to be a more reliable and sustainable harvesting system than DAF, as it allowed equal cells recovery reducing energy inputs, coagulant demand and carbon emissions.

  6. Bubble Growth in Lunar Basalts

    NASA Astrophysics Data System (ADS)

    Zhang, Y.

    2009-05-01

    Although Moon is usually said to be volatile-"free", lunar basalts are often vesicular with mm-size bubbles. The vesicular nature of the lunar basalts suggests that they contained some initial gas concentration. A recent publication estimated volatile concentrations in lunar basalts (Saal et al. 2008). This report investigates bubble growth on Moon and compares with that on Earth. Under conditions relevant to lunar basalts, bubble growth in a finite melt shell (i.e., growth of multiple regularly-spaced bubbles) is calculated following Proussevitch and Sahagian (1998) and Liu and Zhang (2000). Initial H2O content of 700 ppm (Saal et al. 2008) or lower is used and the effect of other volatiles (such as carbon dioxide, halogens, and sulfur) is ignored. H2O solubility at low pressures (Liu et al. 2005), concentration-dependent diffusivity in basalt (Zhang and Stolper 1991), and lunar basalt viscosity (Murase and McBirney 1970) are used. Because lunar atmospheric pressure is essentially zero, the confining pressure on bubbles is completely supplied by the overlying magma. Due to low H2O content in lunar basaltic melt (700 ppm H2O corresponds to a saturation pressure of 75 kPa), H2O bubbles only grow in the upper 16 m of a basalt flow or lake. A depth of 20 mm corresponds to a confining pressure of 100 Pa. Hence, vesicular lunar rocks come from very shallow depth. Some findings from the modeling are as follows. (a) Due to low confining pressure as well as low viscosity, even though volatile concentration is very low, bubble growth rate is extremely high, much higher than typical bubble growth rates in terrestrial melts. Hence, mm-size bubbles in lunar basalts are not strange. (b) Because the pertinent pressures are so low, bubble pressure due to surface tension plays a main role in lunar bubble growth, contrary to terrestrial cases. (c) Time scale to reach equilibrium bubble size increases as the confining pressure increases. References: (1) Liu Y, Zhang YX (2000) Earth

  7. Freeze/Thaw-induced embolism: probability of critical bubble formation depends on speed of ice formation.

    PubMed

    Sevanto, Sanna; Holbrook, N Michele; Ball, Marilyn C

    2012-01-01

    Bubble formation in the conduits of woody plants sets a challenge for uninterrupted water transportation from the soil up to the canopy. Freezing and thawing of stems has been shown to increase the number of air-filled (embolized) conduits, especially in trees with large conduit diameters. Despite numerous experimental studies, the mechanisms leading to bubble formation during freezing have not been addressed theoretically. We used classical nucleation theory and fluid mechanics to show which mechanisms are most likely to be responsible for bubble formation during freezing and what parameters determine the likelihood of the process. Our results confirm the common assumption that bubble formation during freezing is most likely due to gas segregation by ice. If xylem conduit walls are not permeable to the salts expelled by ice during the freezing process, osmotic pressures high enough for air seeding could be created. The build-up rate of segregated solutes in front of the ice-water interface depends equally on conduit diameter and freezing velocity. Therefore, bubble formation probability depends on these variables. The dependence of bubble formation probability on freezing velocity means that the experimental results obtained for cavitation threshold conduit diameters during freeze/thaw cycles depend on the experimental setup; namely sample size and cooling rate. The velocity dependence also suggests that to avoid bubble formation during freezing trees should have narrow conduits where freezing is likely to be fast (e.g., branches or outermost layer of the xylem). Avoidance of bubble formation during freezing could thus be one piece of the explanation why xylem conduit size of temperate and boreal zone trees varies quite systematically.

  8. Two-Phase Flow in Packed Columns and Generation of Bubbly Suspensions for Chemical Processing in Space

    NASA Technical Reports Server (NTRS)

    Motil, Brian J.; Green, R. D.; Nahra, H. K.; Sridhar, K. R.

    2000-01-01

    For long-duration space missions, the life support and In-Situ Resource Utilization (ISRU) systems necessary to lower the mass and volume of consumables carried from Earth will require more sophisticated chemical processing technologies involving gas-liquid two-phase flows. This paper discusses some preliminary two-phase flow work in packed columns and generation of bubbly suspensions, two types of flow systems that can exist in a number of chemical processing devices. The experimental hardware for a co-current flow, packed column operated in two ground-based low gravity facilities (two-second drop tower and KC- 135 low-gravity aircraft) is described. The preliminary results of this experimental work are discussed. The flow regimes observed and the conditions under which these flow regimes occur are compared with the available co-current packed column experimental work performed in normal gravity. For bubbly suspensions, the experimental hardware for generation of uniformly sized bubbles in Couette flow in microgravity conditions is described. Experimental work was performed on a number of bubbler designs, and the capillary bubble tube was found to produce the most consistent size bubbles. Low air flow rates and low Couette flow produce consistent 2-3 mm bubbles, the size of interest for the "Behavior of Rapidly Sheared Bubbly Suspension" flight experiment. Finally the mass transfer implications of these two-phase flows is qualitatively discussed.

  9. Investigation of Gas Holdup in a Vibrating Bubble Column

    NASA Astrophysics Data System (ADS)

    Mohagheghian, Shahrouz; Elbing, Brian

    2015-11-01

    Synthetic fuels are part of the solution to the world's energy crisis and climate change. Liquefaction of coal during the Fischer-Tropsch process in a bubble column reactor (BCR) is a key step in production of synthetic fuel. It is known from the 1960's that vibration improves mass transfer in bubble column. The current study experimentally investigates the effect that vibration frequency and amplitude has on gas holdup and bubble size distribution within a bubble column. Air (disperse phase) was injected into water (continuous phase) through a needle shape injector near the bottom of the column, which was open to atmospheric pressure. The air volumetric flow rate was measured with a variable area flow meter. Vibrations were generated with a custom-made shaker table, which oscillated the entire column with independently specified amplitude and frequency (0-30 Hz). Geometric dependencies can be investigated with four cast acrylic columns with aspect ratios ranging from 4.36 to 24, and injector needle internal diameters between 0.32 and 1.59 mm. The gas holdup within the column was measured with a flow visualization system, and a PIV system was used to measure phase velocities. Preliminary results for the non-vibrating and vibrating cases will be presented.

  10. Interaction of bubbles in an inviscid and low-viscosity shear flow.

    PubMed

    Prakash, Jai; Lavrenteva, Olga M; Nir, Avinoam

    2013-08-01

    The pressure loads on two identical spherical bubbles impulsively introduced in an inviscid simple shear flow are calculated. The interaction force due to these pressure loads is employed to model the dynamics of air bubbles injected to a low-viscosity fluid sheared in a Couette device at the first shear flow instability where the bubbles are trapped inside the stable Taylor vortex. It was shown that the interaction between the bubbles in the primary shear flow drives them away from each other. The performed simulations revealed that in an inviscid flow the separation distances between equal size bubbles undergo complex periodic motion. The presence of low-viscosity results in a qualitative change of the interaction pattern: The bubbles either eventually assume an ordered string with equal separation distances between all neighbors or some of them collide. The first regime is qualitatively similar to the behavior of bubbles at low Reynolds number [Prakash et al., Phys. Rev. E 87, 043002 (2013)]. Furthermore, if the Reynolds number exceeds some critical value the temporal behavior of the separations becomes nonmonotonic and exhibits over- and undershooting of the equilibrium separations. The latter effects were observed in the experiments, but are not predicted by the low Reynolds number model of the process [Prakash et al., Phys. Rev. E 87, 043002 (2013)].

  11. The Minnaert Bubble: An Acoustic Approach

    ERIC Educational Resources Information Center

    Devaud, Martin; Hocquet, Thierry; Bacri, Jean-Claude; Leroy, Valentin

    2008-01-01

    We propose an "ab initio" introduction to the well-known Minnaert pulsating bubble at graduate level. After a brief recall of the standard stuff, we begin with a detailed discussion of the radial movements of an air bubble in water. This discussion is managed from an acoustic point of view, and using the Lagrangian rather than the Eulerian…

  12. Electrohydrodynamic bubbling: an alternative route to fabricate porous structures of silk fibroin based materials.

    PubMed

    Ekemen, Zeynep; Ahmad, Zeeshan; Stride, Eleanor; Kaplan, David; Edirisinghe, Mohan

    2013-05-13

    Conventional fabrication techniques and structures employed in the design of silk fibroin (SF) based porous materials provide only limited control over pore size and require several processing stages. In this study, it is shown that, by utilizing electrohydrodynamic bubbling, not only can new hollow spherical structures of SF be formed in a single step by means of bubbles, but the resulting bubbles can serve as pore generators when dehydrated. The bubble characteristics can be controlled through simple adjustments to the processing parameters. Bubbles with diameters in the range of 240-1000 μm were fabricated in controlled fashion. FT-IR characterization confirmed that the rate of air infused during processing enhanced β-sheet packing in SF at higher flow rates. Dynamic mechanical analysis also demonstrated a correlation between air flow rate and film tensile strength. Results indicate that electrohydrodynamically generated SF and their composite bubbles can be employed as new tools to generate porous structures in a controlled manner with a range of potential applications in biocoatings and tissue engineering scaffolds.

  13. Modeling and simulation of bubbles and particles

    NASA Astrophysics Data System (ADS)

    Dorgan, Andrew James

    The interaction of particles, drops, and bubbles with a fluid (gas or liquid) is important in a number of engineering problems. The present works seeks to extend the understanding of these interactions through numerical simulation. To model many of these relevant flows, it is often important to consider finite Reynolds number effects on drag, lift, torque and history force. Thus, the present work develops an equation of motion for spherical particles with a no-slip surface based on theoretical analysis, experimental data and surface-resolved simulations which is appropriate for dispersed multiphase flows. The equation of motion is then extended to account for finite particle size. This extension is critical for particles which will have a size significantly larger than the grid cell size, particularly important for bubbles and low-density particles. The extension to finite particle size is accomplished through spatial-averaging (both volume-based and surface-based) of the continuous flow properties. This averaging is consistent with the Faxen limit for solid spheres at small Reynolds numbers and added mass and fluid stress forces at inviscid limits. Further work is needed for more quantitative assessment of the truncation terms in complex flows. The new equation of motion is then used to assess the relative importance of each force in the context of two low-density particles (an air bubble and a sand particle) in a boundary layer of water. This relative importance is measured by considering effects on particle concentration, visualization of particle-fluid interactions, diffusion rates, and Lagrangian statistics collected along the particle trajectory. Strong added mass and stress gradient effects are observed for the bubble but these were found to have little effect on a sand particle of equal diameter. Lift was shown to be important for both conditions provided the terminal velocity was aligned with the flow direction. The influence of lift was found to be

  14. The effect of grain size on aluminum anodes for Al-air batteries in alkaline electrolytes

    NASA Astrophysics Data System (ADS)

    Fan, Liang; Lu, Huimin

    2015-06-01

    Aluminum is an ideal material for metallic fuel cells. In this research, different grain sizes of aluminum anodes are prepared by equal channel angular pressing (ECAP) at room temperature. Microstructure of the anodes is examined by electron backscatter diffraction (EBSD) in scanning electron microscope (SEM). Hydrogen corrosion rates of the Al anodes in 4 mol L-1 NaOH are determined by hydrogen collection method. The electrochemical properties of the aluminum anodes are investigated in the same electrolyte using electrochemical impedance spectroscopy (EIS) and polarization curves. Battery performance is also tested by constant current discharge at different current densities. Results confirm that the electrochemical properties of the aluminum anodes are related to grain size. Finer grain size anode restrains hydrogen evolution, improves electrochemical activity and increases anodic utilization rate. The proposed method is shown to effectively improve the performance of Al-air batteries.

  15. Effect of added mass on the interaction of bubbles in a low-Reynolds-number shear flow.

    PubMed

    Lavrenteva, Olga; Prakash, Jai; Nir, Avinoam

    2016-02-01

    Equal size air bubbles that are entrapped by a Taylor vortex of the secondary flow in a Couette device, thereby defying buoyancy, slowly form a stable ordered ring with equal separation distances between all neighbors. We present two models of the process dynamics based on force balance on a bubble in the presence of other bubbles positioned on the same streamline in a simple shear flow. The forces taken into account are the viscous resistance, the added mass force, and the inertia-induced repulsing force between two bubbles in a low-Reynolds-number shear flow obtained in Prakash et al. [J. Prakash et al., Phys. Rev. E 87, 043002 (2013)]. The first model of the process assumes that each bubble interacts solely with its nearest neighbors. The second model takes into account pairwise interactions among all the bubbles in the ring. The performed dynamic simulations were compared to the experimental results reported in Prakash et al. [J. Prakash et al., Phys. Rev. E 87, 043002 (2013)] and to the results of quasistationary models (ignoring the added mass effect) suggested in that paper. It is demonstrated that taking into account the effect of added mass, the models describe the major effect of the bubbles' ordering, provide good estimation of the relaxation time, and also predict nonmonotonic behavior of the separation distance between the bubbles, which exhibit over- and undershooting of equilibrium separations. The latter effects were observed in experiments, but are not predicted by the quasistationary models.

  16. Effect of added mass on the interaction of bubbles in a low-Reynolds-number shear flow.

    PubMed

    Lavrenteva, Olga; Prakash, Jai; Nir, Avinoam

    2016-02-01

    Equal size air bubbles that are entrapped by a Taylor vortex of the secondary flow in a Couette device, thereby defying buoyancy, slowly form a stable ordered ring with equal separation distances between all neighbors. We present two models of the process dynamics based on force balance on a bubble in the presence of other bubbles positioned on the same streamline in a simple shear flow. The forces taken into account are the viscous resistance, the added mass force, and the inertia-induced repulsing force between two bubbles in a low-Reynolds-number shear flow obtained in Prakash et al. [J. Prakash et al., Phys. Rev. E 87, 043002 (2013)]. The first model of the process assumes that each bubble interacts solely with its nearest neighbors. The second model takes into account pairwise interactions among all the bubbles in the ring. The performed dynamic simulations were compared to the experimental results reported in Prakash et al. [J. Prakash et al., Phys. Rev. E 87, 043002 (2013)] and to the results of quasistationary models (ignoring the added mass effect) suggested in that paper. It is demonstrated that taking into account the effect of added mass, the models describe the major effect of the bubbles' ordering, provide good estimation of the relaxation time, and also predict nonmonotonic behavior of the separation distance between the bubbles, which exhibit over- and undershooting of equilibrium separations. The latter effects were observed in experiments, but are not predicted by the quasistationary models. PMID:26986411

  17. Partial coalescence of soap bubbles

    NASA Astrophysics Data System (ADS)

    Pucci, G.; Harris, D. M.; Bush, J. W. M.

    2015-06-01

    We present the results of an experimental investigation of the merger of a soap bubble with a planar soap film. When gently deposited onto a horizontal film, a bubble may interact with the underlying film in such a way as to decrease in size, leaving behind a smaller daughter bubble with approximately half the radius of its progenitor. The process repeats up to three times, with each partial coalescence event occurring over a time scale comparable to the inertial-capillary time. Our results are compared to the recent numerical simulations of Martin and Blanchette ["Simulations of surfactant effects on the dynamics of coalescing drops and bubbles," Phys. Fluids 27, 012103 (2015)] and to the coalescence cascade of droplets on a fluid bath.

  18. Bernoulli Suction Effect on Soap Bubble Blowing?

    NASA Astrophysics Data System (ADS)

    Davidson, John; Ryu, Sangjin

    2015-11-01

    As a model system for thin-film bubble with two gas-liquid interfaces, we experimentally investigated the pinch-off of soap bubble blowing. Using the lab-built bubble blower and high-speed videography, we have found that the scaling law exponent of soap bubble pinch-off is 2/3, which is similar to that of soap film bridge. Because air flowed through the decreasing neck of soap film tube, we studied possible Bernoulli suction effect on soap bubble pinch-off by evaluating the Reynolds number of airflow. Image processing was utilized to calculate approximate volume of growing soap film tube and the volume flow rate of the airflow, and the Reynolds number was estimated to be 800-3200. This result suggests that soap bubbling may involve the Bernoulli suction effect.

  19. Circulating venous bubbles in children after diving.

    PubMed

    Lemaitre, Frederic; Carturan, Daniel; Tourney-Chollet, Claire; Gardette, Bernard

    2009-02-01

    Doppler ultrasonic detection of circulating venous bubbles after a scuba dive is a useful index of decompression safety in adults, since a relationship between bubbles and the risk of decompression sickness has been documented. No study, however, has investigated circulating venous bubbles in young recreational divers after their usual dives. The aim of this study was to determine whether these bubbles would be detected in children who performed a single dive without any modification in their diving habits. Ten young recreational divers (13.1 +/- 2.3 years) performed their usual air dive. They were Doppler-monitored 20 min before the dive (12 +/- 3 m for 26 +/- 7 min) and for 60 min after surfacing, at 20-min intervals. No circulating venous bubbles were detected after the children surfaced. The results showed that during a usual shallow diving session, venous bubbles were not detected in children.

  20. Arrested Bubble Rise in a Narrow Tube

    NASA Astrophysics Data System (ADS)

    Lamstaes, Catherine; Eggers, Jens

    2016-06-01

    If a long air bubble is placed inside a vertical tube closed at the top it can rise by displacing the fluid above it. However, Bretherton found that if the tube radius, R, is smaller than a critical value Rc=0.918 ℓ_c , where ℓ_c=√{γ /ρ g} is the capillary length, there is no solution corresponding to steady rise. Experimentally, the bubble rise appears to have stopped altogether. Here we explain this observation by studying the unsteady bubble motion for Rbubble and the tube goes to zero in limit of large t like t^{-4/5} , leading to a rapid slow-down of the bubble's mean speed U ∝ t^{-2} . As a result, the total bubble rise in infinite time remains very small, giving the appearance of arrested motion.

  1. Bubble bath soap poisoning

    MedlinePlus

    ... medlineplus.gov/ency/article/002762.htm Bubble bath soap poisoning To use the sharing features on this page, please enable JavaScript. Bubble bath soap poisoning occurs when someone swallows bubble bath soap. ...

  2. Discrete Bubble Modeling for Cavitation Bubbles

    NASA Astrophysics Data System (ADS)

    Choi, Jin-Keun; Chahine, Georges; Hsiao, Chao-Tsung

    2007-03-01

    Dynaflow, Inc. has conducted extensive studies on non-spherical bubble dynamics and interactions with solid and free boundaries, vortical flow structures, and other bubbles. From these studies, emerged a simplified Surface Averaged Pressure (SAP) spherical bubble dynamics model and a Lagrangian bubble tracking scheme. In this SAP scheme, the pressure and velocity of the surrounding flow field are averaged on the bubble surface, and then used for the bubble motion and volume dynamics calculations. This model is implemented using the Fluent User Defined Function (UDF) as Discrete Bubble Model (DBM). The Bubble dynamics portion can be solved using an incompressible liquid modified Rayleigh-Plesset equation or a compressible liquid modified Gilmore equation. The Discrete Bubble Model is a very suitable tool for the studies on cavitation inception of foils and turbo machinery, bubble nuclei effects, noise from the bubbles, and can be used in many practical problems in industrial and naval applications associated with flows in pipes, jets, pumps, propellers, ships, and the ocean. Applications to propeller cavitation, wake signatures of waterjet propelled ships, bubble-wake interactions, modeling of cavitating jets, and bubble entrainments around a ship will be presented.

  3. Granular size separation investigated by MRI: The role of air-granule interactions

    NASA Astrophysics Data System (ADS)

    Möbius, Matthias E.; Karczmar, Gregory S.; Nagel, Sidney R.; Jaeger, Heinrich M.

    2003-03-01

    Recent experiments have shown the importance of air in the process of size separation in granular materials. We study the air-granular dynamics in the context of an effective permeability of the granular medium. This gives rise to intruder density dependent rise times which can be categorized into three different regimes: For highly permeable media the rise time is density independent, intermediate permeabilities show a non-monotonic rise time vs. density curve. The rise time vs. density is monotonic for poorly permeable media. These media can also exhibit the so called reverse brazil nut effect for low density intruders. We investigate the dynamics of these systems with MRI and high-speed video.

  4. Particle-bubble interaction inside a Hele-Shaw cell

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Mines, John M.; Lee, Sungyon; Jung, Sunghwan

    2016-08-01

    Hydrodynamic interactions between air bubbles and particles have wide applications in multiphase separation and reaction processes. In the present work, we explore the fundamental mechanism of such complex processes by studying the collision of a single bubble with a fixed solid particle inside a Hele-Shaw cell. Physical experiments show that an air bubble either splits or slides around the particle depending on the initial transverse distance between the bubble and particle centroids. An air bubble splits into two daughter bubbles at small transverse distances, and slides around the particle at large distances. In order to predict the critical transverse distance that separates these two behaviors, we also develop a theoretical model by estimating the rate of the bubble volume transfer from one side of the particle to the other based on Darcy's law, which is in good agreement with experiments.

  5. Particle-bubble interaction inside a Hele-Shaw cell.

    PubMed

    Zhang, Peng; Mines, John M; Lee, Sungyon; Jung, Sunghwan

    2016-08-01

    Hydrodynamic interactions between air bubbles and particles have wide applications in multiphase separation and reaction processes. In the present work, we explore the fundamental mechanism of such complex processes by studying the collision of a single bubble with a fixed solid particle inside a Hele-Shaw cell. Physical experiments show that an air bubble either splits or slides around the particle depending on the initial transverse distance between the bubble and particle centroids. An air bubble splits into two daughter bubbles at small transverse distances, and slides around the particle at large distances. In order to predict the critical transverse distance that separates these two behaviors, we also develop a theoretical model by estimating the rate of the bubble volume transfer from one side of the particle to the other based on Darcy's law, which is in good agreement with experiments. PMID:27627397

  6. Particle size distributions of currently used pesticides in ambient air of an agricultural Mediterranean area

    NASA Astrophysics Data System (ADS)

    Coscollà, Clara; Muñoz, Amalia; Borrás, Esther; Vera, Teresa; Ródenas, Milagros; Yusà, Vicent

    2014-10-01

    This work presents first data on the particle size distribution of 16 pesticides currently used in Mediterranean agriculture in the atmosphere. Particulate matter air samples were collected using a cascade impactor distributed into four size fractions in a rural site of Valencia Region, during July to September in 2012 and from May to July in 2013. A total of 16 pesticides were detected, including six fungicides, seven insecticides and three herbicides. The total concentrations in the particulate phase (TSP: Total Suspended Particulate) ranged from 3.5 to 383.1 pg m-3. Most of the pesticides (such as carbendazim, tebuconazole, chlorpyrifos-ethyl and chlorpyrifos-methyl) were accumulated in the ultrafine-fine (<1 μm) and coarse (2.5-10 μm) particle size fractions. Others like omethoate, dimethoate and malathion were presented only in the ultrafine-fine size fraction (<1 μm). Finally, diuron, diphenylamine and terbuthylazine-desethyl-2-OH also show a bimodal distribution but mainly in the coarse size fractions.

  7. Nonlinear ultrasonic waves in bubbly liquids with nonhomogeneous bubble distribution: Numerical experiments.

    PubMed

    Vanhille, Christian; Campos-Pozuelo, Cleofé

    2009-06-01

    This paper deals with the nonlinear propagation of ultrasonic waves in mixtures of air bubbles in water, but for which the bubble distribution is nonhomogeneous. The problem is modelled by means of a set of differential equations which describes the coupling of the acoustic field and bubbles vibration, and solved in the time domain via the use and adaptation of the SNOW-BL code. The attenuation and nonlinear effects are assumed to be due to the bubbles exclusively. The nonhomogeneity of the bubble distribution is introduced by the presence of bubble layers (or clouds) which can act as acoustic screens, and alters the behaviour of the ultrasonic waves. The effect of the spatial distribution of bubbles on the nonlinearity of the acoustic field is analyzed. Depending on the bubble density, dimension, shape, and position of the layers, its effects on the acoustic field change. Effects such as shielding and resonance of the bubbly layers are especially studied. The numerical experiments are carried out in two configurations: linear and nonlinear, i.e. for low and high excitation pressure amplitude, respectively, and the features of the phenomenon are compared. The parameters of the medium are chosen such as to reproduce air bubbly water involved in the stable cavitation process.

  8. Light scattering by bubbles in a bubble chamber.

    PubMed

    Withrington, R J

    1968-01-01

    A discussion of the angular scattering expected from small bubbles in liquids of refractive indices 1.1 and 1.025 is given ogether with the inverse, i.e., of small spheres of the liquids in air. The similarities between the two scattering functions are compared with a view to the simulation of bubble chamber tracks using readily available materials. Fraunhofer scattering is significant on axis while larger angle scattering is geometrical. Some experimental verification of the scattering functions is also reported.

  9. Liquid jet pumped by rising gas bubbles

    NASA Technical Reports Server (NTRS)

    Hussain, N. A.; Siegel, R.

    1975-01-01

    A two-phase mathematical model is proposed for calculating the induced turbulent vertical liquid flow. Bubbles provide a large buoyancy force and the associated drag on the liquid moves the liquid upward. The liquid pumped upward consists of the bubble wakes and the liquid brought into the jet region by turbulent entrainment. The expansion of the gas bubbles as they rise through the liquid is taken into account. The continuity and momentum equations are solved numerically for an axisymmetric air jet submerged in water. Water pumping rates are obtained as a function of air flow rate and depth of submergence. Comparisons are made with limited experimental information in the literature.

  10. Modeling of the lithium-air battery cathodes with broad pore size distribution

    NASA Astrophysics Data System (ADS)

    Sergeev, Artem V.; Chertovich, Alexander V.; Itkis, Daniil M.

    2016-09-01

    Achieving theoretical promises of 1000 W h/kg specific energy for lithium-air batteries is quite challenging due to limited transport in the cathode along with electrode passivation. Transport can be enhanced in the electrodes with complex hierarchical pore architecture. Here, using computer simulations we analyze the effects of cathode pore size distribution (PSD) on capacity and discharge curve shape. Calculations considering a broad PSD revealed that even small discharge product resistivity prevents larger pores from accumulating the discharge product and thus turning them into non-clogging oxygen supply channels. Thus optimization of cathode architecture by adding of large-scale cavities enables cell capacity enhancement.

  11. Electromagnetically actuated micromanipulator using an acoustically oscillating bubble

    NASA Astrophysics Data System (ADS)

    Kwon, J. O.; Yang, J. S.; Lee, S. J.; Rhee, K.; Chung, S. K.

    2011-11-01

    A novel non-invasive micromanipulation technique has been developed where a microrobot swimming in an aqueous medium manipulates micro-objects, through electromagnetic actuation using an acoustically oscillating bubble attached to the microrobot as a grasping tool. This micromanipulation concept was experimentally verified; an investigation of electromagnetic actuation and acoustic excitation was also performed. Two-dimensional propulsion of a magnetic piece was demonstrated through electromagnetic actuation, using three pairs of electric coils surrounding the water chamber, and confirming that the propulsion speed of the magnetic piece was linearly proportional to the applied current intensity. Micro-object manipulation was separately demonstrated using an air bubble with glass beads (80 µm diameter) and a steel ball (800 µm diameter) in an aqueous medium. Upon acoustic excitation of the bubble by a piezo-actuator around its resonant frequency, the generated radiation force attracted and captured the neighboring glass beads and steel ball. The grasping force was indirectly measured by exposing the glass beads captured by the oscillating bubble to a stream generated by an auto-syringe pump in a mini-channel. By measuring the maximum speed of the streaming flow when the glass beads detached from the oscillating bubble and flowed downstream, the grasping force was calculated as 50 nN, based on Stokes' drag approximation. Finally, a fish egg was successfully manipulated with the integration of electromagnetic actuation and acoustic excitation, using a mini-robot consisting of a millimeter-sized magnetic piece with a bubble attached to its bottom. This novel micromanipulation may be an efficient tool for both micro device assembly and single-cell manipulation.

  12. Determining hydrodynamic forces in bursting bubbles using DNA nanotube mechanics

    PubMed Central

    Hariadi, Rizal F.; Winfree, Erik; Yurke, Bernard

    2015-01-01

    Quantifying the mechanical forces produced by fluid flows within the ocean is critical to understanding the ocean’s environmental phenomena. Such forces may have been instrumental in the origin of life by driving a primitive form of self-replication through fragmentation. Among the intense sources of hydrodynamic shear encountered in the ocean are breaking waves and the bursting bubbles produced by such waves. On a microscopic scale, one expects the surface-tension–driven flows produced during bubble rupture to exhibit particularly high velocity gradients due to the small size scales and masses involved. However, little work has examined the strength of shear flow rates in commonly encountered ocean conditions. By using DNA nanotubes as a novel fluid flow sensor, we investigate the elongational rates generated in bursting films within aqueous bubble foams using both laboratory buffer and ocean water. To characterize the elongational rate distribution associated with a bursting bubble, we introduce the concept of a fragmentation volume and measure its form as a function of elongational flow rate. We find that substantial volumes experience surprisingly large flow rates: during the bursting of a bubble having an air volume of 10 mm3, elongational rates at least as large as ϵ˙=1.0×108 s−1 are generated in a fragmentation volume of ∼2×10−6 μL. The determination of the elongational strain rate distribution is essential for assessing how effectively fluid motion within bursting bubbles at the ocean surface can shear microscopic particles and microorganisms, and could have driven the self-replication of a protobiont. PMID:26504222

  13. Determining hydrodynamic forces in bursting bubbles using DNA nanotube mechanics.

    PubMed

    Hariadi, Rizal F; Winfree, Erik; Yurke, Bernard

    2015-11-10

    Quantifying the mechanical forces produced by fluid flows within the ocean is critical to understanding the ocean's environmental phenomena. Such forces may have been instrumental in the origin of life by driving a primitive form of self-replication through fragmentation. Among the intense sources of hydrodynamic shear encountered in the ocean are breaking waves and the bursting bubbles produced by such waves. On a microscopic scale, one expects the surface-tension-driven flows produced during bubble rupture to exhibit particularly high velocity gradients due to the small size scales and masses involved. However, little work has examined the strength of shear flow rates in commonly encountered ocean conditions. By using DNA nanotubes as a novel fluid flow sensor, we investigate the elongational rates generated in bursting films within aqueous bubble foams using both laboratory buffer and ocean water. To characterize the elongational rate distribution associated with a bursting bubble, we introduce the concept of a fragmentation volume and measure its form as a function of elongational flow rate. We find that substantial volumes experience surprisingly large flow rates: during the bursting of a bubble having an air volume of 10 mm(3), elongational rates at least as large as [Formula: see text] s(-1) are generated in a fragmentation volume of [Formula: see text] [Formula: see text]. The determination of the elongational strain rate distribution is essential for assessing how effectively fluid motion within bursting bubbles at the ocean surface can shear microscopic particles and microorganisms, and could have driven the self-replication of a protobiont. PMID:26504222

  14. Determining hydrodynamic forces in bursting bubbles using DNA nanotube mechanics.

    PubMed

    Hariadi, Rizal F; Winfree, Erik; Yurke, Bernard

    2015-11-10

    Quantifying the mechanical forces produced by fluid flows within the ocean is critical to understanding the ocean's environmental phenomena. Such forces may have been instrumental in the origin of life by driving a primitive form of self-replication through fragmentation. Among the intense sources of hydrodynamic shear encountered in the ocean are breaking waves and the bursting bubbles produced by such waves. On a microscopic scale, one expects the surface-tension-driven flows produced during bubble rupture to exhibit particularly high velocity gradients due to the small size scales and masses involved. However, little work has examined the strength of shear flow rates in commonly encountered ocean conditions. By using DNA nanotubes as a novel fluid flow sensor, we investigate the elongational rates generated in bursting films within aqueous bubble foams using both laboratory buffer and ocean water. To characterize the elongational rate distribution associated with a bursting bubble, we introduce the concept of a fragmentation volume and measure its form as a function of elongational flow rate. We find that substantial volumes experience surprisingly large flow rates: during the bursting of a bubble having an air volume of 10 mm(3), elongational rates at least as large as [Formula: see text] s(-1) are generated in a fragmentation volume of [Formula: see text] [Formula: see text]. The determination of the elongational strain rate distribution is essential for assessing how effectively fluid motion within bursting bubbles at the ocean surface can shear microscopic particles and microorganisms, and could have driven the self-replication of a protobiont.

  15. Cavitation bubble behavior and bubble-shock wave interaction near a gelatin surface as a study of in vivo bubble dynamics

    NASA Astrophysics Data System (ADS)

    Kodama, T.; Tomita, Y.

    The collapse of a single cavitation bubble near a gelatin surface, and the interaction of an air bubble attached to a gelatin surface with a shock wave, were investigated. These events permitted the study of the behavior of in vivo cavitation bubbles and the subsequent tissue damage mechanism during intraocular surgery, intracorporeal and extracorporeal shock wave lithotripsy. Results were obtained with high-speed framing photography. The cavitation bubbles near the gelatin surface did not produce significant liquid jets directed at the surface, and tended to migrate away from it. The period of the motion of a cavitation bubble near the gelatin surface was longer than that of twice the Rayleigh's collapse time for a wide range of relative distance, L/Rmax, excepting for very small L/Rmax values (L was the stand-off distance between the gelatin surface and the laser focus position, and Rmax was the maximum bubble radius). The interaction of an air bubble with a shock wave yielded a liquid jet inside the bubble, penetrating into the gelatin surface. The liquid jet had the potential to damage the gelatin. The results predicted that cavitation-bubble-induced tissue damage was closely related to the oscillatory bubble motion, the subsequent mechanical tissue displacement, and the liquid jet penetration generated by the interaction of the remaining gas bubbles with subsequent shock waves. The characteristic bubble motion and liquid jet formation depended on the tissue's mechanical properties, resulting in different damage mechanisms from those observed on hard materials.

  16. Measurement of the Shear Lift Force on a Bubble in a Channel Flow

    NASA Technical Reports Server (NTRS)

    Nahra, Henry K.; Motil, Brian; Skor, Mark

    2005-01-01

    Two-phase flow systems play vital roles in the design of some current and anticipated space applications of two-phase systems which include: thermal management systems, transfer line flow in cryogenic storage, space nuclear power facilities, design and operation of thermal bus, life support systems, propulsion systems, In Situ Resource Utilization (ISRU), and space processes for pharmaceutical applications. The design of two-phase flow systems for space applications requires a clear knowledge of the behaviors of the dispersed phase (bubble), its interaction with the continuous phase (liquid) and its effect on heat and mass transfer processes, The need to understand the bubble generation process arises from the fact that for all space applications, the size and distribution of bubbles are extremely crucial for heat and mass transfer control. One important force in two-phase flow systems is the lift force on a bubble or particle in a liquid shear flow. The shear lift is usually overwhelmed by buoyancy in normal gravity, but it becomes an important force in reduced gravity. Since the liquid flow is usually sheared because of the confining wall, the trajectories of bubbles and particles injected into the liquid flow are affected by the shear lift in reduced gravity. A series of experiments are performed to investigate the lift force on a bubble in a liquid shear flow and its effect on the detachment of a bubble from a wall under low gravity conditions. Experiments are executed in a Poiseuille flow in a channel. An air-water system is used in these experiments that are performed in the 2.2 second drop tower. A bubble is injected into the shear flow from a small injector and the shear lift is measured while the bubble is held stationary relative to the fluid. The trajectory of the bubble prior, during and after its detachment from the injector is investigated. The measured shear lift force is calculated from the trajectory of the bubble at the detachment point. These

  17. Size selective isocyanate aerosols personal air sampling using porous plastic foams

    NASA Astrophysics Data System (ADS)

    Khanh Huynh, Cong; Duc, Trinh Vu

    2009-02-01

    As part of a European project (SMT4-CT96-2137), various European institutions specialized in occupational hygiene (BGIA, HSL, IOM, INRS, IST, Ambiente e Lavoro) have established a program of scientific collaboration to develop one or more prototypes of European personal samplers for the collection of simultaneous three dust fractions: inhalable, thoracic and respirable. These samplers based on existing sampling heads (IOM, GSP and cassettes) use Polyurethane Plastic Foam (PUF) according to their porosity to support sampling and separator size of the particles. In this study, the authors present an original application of size selective personal air sampling using chemical impregnated PUF to perform isocyanate aerosols capturing and derivatizing in industrial spray-painting shops.

  18. Single Bubble Sonoluminescence

    NASA Astrophysics Data System (ADS)

    Farley, Jennifer; Hough, Shane

    2003-05-01

    Single Bubble Sonoluminescence is the emission of light from a single bubble suspended in a liquid caused by a continuum of repeated implosions due to pressure waves generated from a maintained ultrasonic sinusoidal wave source. H. Frenzel and H. Schultz first studied it in 1934 at the University of Cologne. It was not until 1988 with D.F. Gaitan that actual research began with single bubble sonoluminescence. Currently many theories exist attempting to explain the observed bubble phenomenon. Many of these theories require spherical behavior of the bubble. Observation of the bubble has shown that the bubble does not behave spherically in most cases. One explanation for this is known as jet theory. A spectrum of the bubble will give us the mean physical properties of the bubble such as temperature and pressure inside the bubble. Eventually, with the aide of fluorocene dye a full spectrum of the bubble will be obtained.

  19. Simulations of sizing and comfort improvements for residential forced-air heating and cooling systems

    SciTech Connect

    Walker, I.S.; Degenetais, G.; Siegel, J.A.

    2002-05-01

    In many parts of North America residential HVAC systems are installed outside conditioned space. This leads to significant energy losses and poor occupant comfort due to conduction and air leakage losses from the air distribution ducts. In addition, cooling equipment performance is sensitive to air flow and refrigerant charge that have been found to be far from manufacturers specifications in most systems. The simulation techniques discussed in this report were developed in an effort to provide guidance on the savings potentials and comfort gains that can be achieved by improving ducts (sealing air leaks) and equipment (correct air-flow and refrigerant charge). The simulations include the complex air flow and thermal interactions between duct systems, their surroundings and the conditioned space. They also include cooling equipment response to air flow and refrigerant charge effects. Another key aspect of the simulations is that they are dynamic to account for cyclic losses from the HVAC system and the effect of cycle length on energy and comfort performance. To field test the effect of changes to residential HVAC systems requires extensive measurements to be made for several months for each condition tested. This level of testing is often impractical due to cost and time limitations. Therefore the Energy Performance of Buildings Group at LBNL developed a computer simulation tool that models residential HVAC system performance. This simulation tool has been used to answer questions about equipment downsizing, duct improvements, control strategies and climate variation so that recommendations can be made for changes in residential construction and HVAC installation techniques that would save energy, reduce peak demand and result in more comfortable homes. Although this study focuses on California climates, the simulation tool could easily be applied to other climates. This report summarizes the simulation tool and discusses the significant developments that allow

  20. Direct observation of pH-induced coalescence of latex-stabilized bubbles using high-speed video imaging.

    PubMed

    Ata, Seher; Davis, Elizabeth S; Dupin, Damien; Armes, Steven P; Wanless, Erica J

    2010-06-01

    The coalescence of pairs of 2 mm air bubbles grown in a dilute electrolyte solution containing a lightly cross-linked 380 nm diameter PEGMA-stabilized poly(2-vinylpyridine) (P2VP) latex was monitored using a high-speed video camera. The air bubbles were highly stable at pH 10 when coated with this latex, although coalescence could be induced by increasing the bubble volume when in contact. Conversely, coalescence was rapid when the bubbles were equilibrated at pH 2, since the latex undergoes a latex-to-microgel transition and the swollen microgel particles are no longer adsorbed at the air-water interface. Rapid coalescence was also observed for latex-coated bubbles equilibrated at pH 10 and then abruptly adjusted to pH 2. Time-dependent postrupture oscillations in the projected surface area of coalescing P2VP-coated bubble pairs were studied using a high-speed video camera in order to reinvestigate the rapid acid-induced catastrophic foam collapse previously reported [Dupin, D.; et al. J. Mater. Chem. 2008, 18, 545]. At pH 10, the P2VP latex particles adsorbed at the surface of coalescing bubbles reduce the oscillation frequency significantly. This is attributed to a close-packed latex monolayer, which increases the bubble stiffness and hence restricts surface deformation. The swollen P2VP microgel particles that are formed in acid also affected the coalescence dynamics. It was concluded that there was a high concentration of swollen microgel at the air-water interface, which created a localized, viscous surface gel layer that inhibited at least the first period of the surface area oscillation. Close comparison between latex-coated bubbles at pH 10 and those coated with 66 microm spherical glass beads indicated that the former system exhibits more elastic behavior. This was attributed to the compressibility of the latex monolayer on the bubble surface during coalescence. A comparable elastic response was observed for similar sized titania particles, suggesting

  1. Ostwald ripening in multiple-bubble nuclei.

    PubMed

    Watanabe, Hiroshi; Suzuki, Masaru; Inaoka, Hajime; Ito, Nobuyasu

    2014-12-21

    The Ostwald ripening of bubbles is studied by molecular dynamics simulations involving up to 679 × 10(6) Lennard-Jones particles. Many bubbles appear after depressurizing a system that is initially maintained in the pure-liquid phase, and the coarsening of bubbles follows. The self-similarity of the bubble-size distribution function predicted by Lifshitz-Slyozov-Wagner theory is directly confirmed. The total number of bubbles decreases asymptotically as t(-x) with scaling exponent x. As the initial temperature increases, the exponent changes from x = 3/2 to 1, which implies that the growth of bubbles changes from interface-limited (the t(1/2) law) to diffusion-limited (the t(1/3) law) growth.

  2. Self-structured, current aperture approach for bubble memory

    NASA Technical Reports Server (NTRS)

    Nelson, G. L.; Krahn, D. R.; Dean, R. H.; Paul, M. C.; Tolman, C. H.

    1985-01-01

    An approach to magnetic bubble memory which incorporates dual conductor current access drive with a self-structured (strongly interacting) bubble lattice is described. This is expected to provide higher operating speeds, defect tolerance, and higher bit density for a given bubble size as compared to present field access bubble devices. Bubble spacings of 2.5 bubble diameters are projected for a prototype device. Experimental work on device components including detectors, major/minor loops, and gates is described. Defect tolerance has also been demonstrated.

  3. Evaluation of dispersive mixing, extension rate and bubble size distribution using numerical simulation of a non-Newtonian fluid in a twin-screw mixer

    NASA Astrophysics Data System (ADS)

    Rathod, Maureen L.

    Initially 3D FEM simulation of a simplified mixer was used to examine the effect of mixer configuration and operating conditions on dispersive mixing of a non-Newtonian fluid. Horizontal and vertical velocity magnitudes increased with increasing mixer speed, while maximum axial velocity and shear rate were greater with staggered paddles. In contrast, parallel paddles produced an area of efficient dispersive mixing between the center of the paddle and the barrel wall. This study was expanded to encompass the complete nine-paddle mixing section using power-law and Bird-Carreau fluid models. In the center of the mixer, simple shear flow was seen, corresponding with high [special character omitted]. Efficient dispersive mixing appeared near the barrel wall at all flow rates and near the barrel center with parallel paddles. Areas of backflow, improving fluid retention time, occurred with staggered paddles. The Bird-Carreau fluid showed greater influence of paddle motion under the same operating conditions due to the inelastic nature of the fluid. Shear-thinning behavior also resulted in greater maximum shear rate as shearing became easier with decreasing fluid viscosity. Shear rate distributions are frequently calculated, but extension rate calculations have not been made in a complex geometry since Debbaut and Crochet (1988) defined extension rate as the ratio of the third to the second invariant of the strain rate tensor. Extension rate was assumed to be negligible in most studies, but here extension rate is shown to be significant. It is possible to calculate maximum stable bubble diameter from capillary number if shear and extension rates in a flow field are known. Extension rate distributions were calculated for Newtonian and non-Newtonian fluids. High extension and shear rates were found in the intermeshing region. Extension is the major influence on critical capillary number and maximum stable bubble diameter, but when extension rate values are low shear rate has

  4. Forced Aspiration of bubbles into a capillary tube

    NASA Astrophysics Data System (ADS)

    Durth, Melanie; Clanet, Christophe; Fernandez, Juan

    2009-11-01

    One way to remove lodged bubbles in small vena is to force the bubble to be completely aspirated into a fine needle. We study the aspiration of a bubble into a vertical capillary tube, for different bubble size relative to the capillary diameter (i.e. bubble confinement) and low Bond numbers (pipette diameter << capillary length). In this case, there is a critical condition of flow rate depending on the bubble confinement and the capillary number Ca beyond which the bubble is aspirated completely into the capillary. Below this value, the bubble breaks-up forming a liquid slug at the entrance of the tube. A simple model which takes into account the draining time of the annular liquid thin film and the characteristic time of the capillary instability, explains the observed experimental results and establish the characteristic time to aspirate completely the bubble.

  5. Conformational transitions of cytochrome c in sub-micron-sized capsules at air/buffer interface.

    PubMed

    Jaganathan, Maheshkumar; Dhathathreyan, Aruna

    2014-09-30

    This work presents the design of sub-micron-sized capsules of Cytochrome c (cyt c) in the range 300-350 nm and the conformational transitions of the protein that occur when the films of these capsules spread at the air/buffer interface are subjected to repeated compression-expansion cycles. Steady state fluorescence, time-resolved fluorescence, and circular dichroic (CD) spectra have been used to study the highly compact native conformation (70% helicity) of the protein in the capsules and its stability has been analyzed using cyclic voltammetry. The capsules have been characterized using zeta sizer and high resolution transmission electron microscopy (HRTEM). Surface concentration-surface pressure (Γ-π) isotherms of the films of the capsules spread at air/buffer interface following compression-expansion show destabilizing effect on cyt c. FTIR and CD spectra of these films skimmed from the surface show that the protein transitions gradually from its native helical to an anomalous beta sheet aggregated state. This results from a competition between stabilizing hydrated polar segments of the protein in the capsule and destabilizing nonspecific hydrophobic interactions arising at the air/buffer interface. This 2D model could further our understanding of the spatial and temporal roles of proteins in confined spaces and also in the design of new drug delivery vehicles using proteins.

  6. Bubble formation in additive manufacturing of glass

    NASA Astrophysics Data System (ADS)

    Luo, Junjie; Gilbert, Luke J.; Peters, Daniel C.; Bristow, Douglas A.; Landers, Robert G.; Goldstein, Jonathan T.; Urbas, Augustine M.; Kinzel, Edward C.

    2016-05-01

    Bubble formation is a common problem in glass manufacturing. The spatial density of bubbles in a piece of glass is a key limiting factor to the optical quality of the glass. Bubble formation is also a common problem in additive manufacturing, leading to anisotropic material properties. In glass Additive Manufacturing (AM) two separate types of bubbles have been observed: a foam layer caused by the reboil of the glass melt and a periodic pattern of bubbles which appears to be unique to glass additive manufacturing. This paper presents a series of studies to relate the periodicity of bubble formation to part scan speed, laser power, and filament feed rate. These experiments suggest that bubbles are formed by the reboil phenomena why periodic bubbles result from air being trapped between the glass filament and the substrate. Reboil can be detected using spectroscopy and avoided by minimizing the laser power while periodic bubbles can be avoided by a two-step laser melting process to first establish good contact between the filament and substrate before reflowing the track with higher laser power.

  7. BUBBLE DYNAMICS AT GAS-EVOLVING ELECTRODES

    SciTech Connect

    Sides, Paul J.

    1980-12-01

    Nucleation of bubbles, their growth by diffusion of dissolved gas to the bubble surface and by coalescence, and their detachment from the electrode are all very fast phenomena; furthermore, electrolytically generated bubbles range in size from ten to a few hundred microns; therefore, magnification and high speed cinematography are required to observe bubbles and the phenomena of their growth on the electrode surface. Viewing the action from the front side (the surface on which the bubbles form) is complicated because the most important events occur close to the surface and are obscured by other bubbles passing between the camera and the electrode; therefore, oxygen was evolved on a transparent tin oxide "window" electrode and the events were viewed from the backside. The movies showed that coalescence of bubbles is very important for determining the size of bubbles and in the chain of transport processes; growth by diffusion and by coalescence proceeds in series and parallel; coalescing bubbles cause significant fluid motion close to the electrode; bubbles can leave and reattach; and bubbles evolve in a cycle of growth by diffusion and different modes of coalescence. An analytical solution for the primary potential and current distribution around a spherical bubble in contact with a plane electrode is presented. Zero at the contact point, the current density reaches only one percent of its undisturbed value at 30 percent of the radius from that point and goes through a shallow maximum two radii away. The solution obtained for spherical bubbles is shown to apply for the small bubbles of electrolytic processes. The incremental resistance in ohms caused by sparse arrays of bubbles is given by {Delta}R = 1.352 af/kS where f is the void fraction of gas in the bubble layer, a is the bubble layer thickness, k is the conductivity of gas free electrolyte, and S is the electrode area. A densely populated gas bubble layer on an electrode was modeled as a hexagonal array of

  8. Experimental study on wake structure of single rising clean bubble

    NASA Astrophysics Data System (ADS)

    Sato, Ayaka; Takedomi, Yuta; Shirota, Minori; Sanada, Toshiyuki; Watanabe, Masao

    2007-11-01

    Wake structure of clean bubble rising in quiescent silicone oil solution of photochromic dye is experimentally studied. A single bubble is generated, immediately after UV sheet light illuminates the part of the liquid just above the bubble generation nozzle in order to activate photochromic dye. Once the bubble passes across the colored part of the liquid, the bubble is accompanied by some portion of activated dye tracers; hence the flow structure in the rear of the single rising bubble is visualized. We capture stereo images of both wake structure and bubble motion. We study how wake structure changes with the increase in bubble size. We observe the stable axisymmetric wake structure, which is called `standing eddy' when bubble size is relatively small, and then wake structure becomes unstable and starts to oscillate with the increase in bubble size. With further increase in bubble size, a pair of streamwise vortices, which is called `double thread', is observed. We discuss in detail this transition from the steady wake to unsteady wake structure, especially double thread wake development and hairpin vortices shedding, in relation to the transition from rectilinear to spiral or zigzag bubble motions.

  9. Characteristics of micro-nano bubbles and potential application in groundwater bioremediation.

    PubMed

    Li, Hengzhen; Hu, Liming; Song, Dejun; Lin, Fei

    2014-09-01

    Content of oxygen in water is a critical factor in increasing bioremediation efficiency for contaminated groundwater. Micro-nano bubbles (MNBs) injection seems to be an effective technique for increasing oxygen in water compared with traditional air sparging technology with macrobubbles. Micro-nano bubbles have larger interfacial area, higher inner pressure and density, and lower rising velocity in water, superior to that of macrobubbles. In this paper, MNBs with diameters ranging from 500 nm to 100 microm are investigated, with a specific focus on the oxygen mass transfer coefficient from inner bubbles to surrounding water. The influence of surfactant on the bubbles formation and dissolution is studied as well. The stability of MNBs is further investigated by means of zeta potential measurements and rising velocity analysis. The results show that MNBs can greatly increase oxygen content in water. Higher surfactant concentration in water will decrease the bubbles size, reduce the dissolution rate, and increase the zeta potential. Moreover, MNBs with greater zeta potential value tend to be more stable. Besides, the low rising velocity of MNBs contributes to the long stagnation in water. It is suggested that micro-nano bubble aeration, a potential in groundwater remediation technology, can largely enhance the bioremediation effect.

  10. Estimating neutral nanoparticle steady state size distribution and growth according to measurements of intermediate air ions

    NASA Astrophysics Data System (ADS)

    Tammet, H.; Komsaare, K.; Hõrrak, U.

    2013-05-01

    The concentration of nanometer aerosol particles in atmospheric air during quiet periods of new particle formation is low and direct measuring is difficult. We study what information about neutral particles can be drawn from measurements of intermediate ions, which are the electrically charged particles between 1.5-7.5 nm in diameter. If the coagulation sink of nanoparticles and the growth rate of charged particles are known, then the steady state equations allow us to calculate the size distribution of neutral nanoparticles. Variations in the trial value of the growth rate have a minor effect on the estimates of the concentrations and size distributions. There exists a value of the constant growth rate of charged nanoparticles that leads to a minimum deviation of the estimated growth rate of neutral nanoparticles from the growth rate of charged nanoparticles. Rough estimates of the growth rate and size distribution of neutral nanoparticles are derived despite the fact that the sample data of intermediate ion measurements is not accompanied by simultaneous measurements of the background aerosol and ionization rate. In the case of a near-median intermediate ion concentration of 21 ± 2 cm-3 in the urban air of a small town, the growth rate of nanoparticles is estimated to be about 2 nm h-1, while the growth flux or apparent nucleation rate is about 0.5 cm-3 s-1 at 3 nm and about 0.08 cm-3 s-1 at 7 nm. The results suggest that the process of new particle formation is not interrupted during the quiet periods between events of intensive nucleation of atmospheric aerosols.

  11. Dynamics of Vapour Bubbles in Nucleate Boiling. 2; Evolution of Thermally Controlled Bubbles

    NASA Technical Reports Server (NTRS)

    Buyevich, Yu A.; Webbon, Bruce W.; Callaway, Robert (Technical Monitor)

    1995-01-01

    The previously developed dynamic theory of growth and detachment of vapour bubbles under conditions of nucleate pool boiling is applied to study motion and deformation of a bubble evolving at a single nucleation site. The bubble growth is presumed to be thermally controlled, and two components of heat transfer to the bubble are accounted of: the one from the bulk of surrounding liquid and the one due to heat conduction across a liquid microlayer formed underneath the bubble. Bubble evolution is governed by the buoyancy and an effective surface tension force, both the forces making the bubble centre of mass move away from the wall and, thus, assisting its detachment. Buoyancy-controlled and surface-tension-controlled regimes are considered separately in a meticulous way. The duration of the whole process of bubble evolution till detachment, the rate of growth, and the bubble departure size are found as functions of time and physical and operating parameters. Some repeatedly observed phenomena, such as an influence of gravity on the growth rate, are explained. Inferences of the model agree qualitatively with available experimental evidence, and conclusions pertaining to the dependence on gravity of the bubble radius at detachment and the whole time of the bubble development when being attached to the wall are confirmed quantitatively.

  12. Acoustic bubble removal method

    NASA Technical Reports Server (NTRS)

    Trinh, E. H.; Elleman, D. D.; Wang, T. G. (Inventor)

    1983-01-01

    A method is described for removing bubbles from a liquid bath such as a bath of molten glass to be used for optical elements. Larger bubbles are first removed by applying acoustic energy resonant to a bath dimension to drive the larger bubbles toward a pressure well where the bubbles can coalesce and then be more easily removed. Thereafter, submillimeter bubbles are removed by applying acoustic energy of frequencies resonant to the small bubbles to oscillate them and thereby stir liquid immediately about the bubbles to facilitate their breakup and absorption into the liquid.

  13. A Mathematical Modeling Study of Bubble Formations in a Molten Steel Bath

    NASA Astrophysics Data System (ADS)

    Xu, Yonggui; Ersson, Mikael; Jönsson, Pär Göran

    2015-12-01

    The bubble formation during gas injection into liquids was studied using a water model and a three-dimensional numerical model. In the experiment, a high-speed camera was used to record the bubble formation processes. Nozzle diameters of 0.5, 1, and 2 mm were investigated under both wetting and non-wetting conditions. The bubble sizes and formation frequencies as well as the bubbling regimes were identified for each nozzle size and for different wettabilities. The results show that the upper limits of the bubbling regime are 7.35, 12.05, and 15.22 L/h under wetting conditions for the 0.5, 1, and 2 mm nozzle diameters, respectively. Meanwhile, the limits are 12.66, 13.64, and 15.33 L/h for the non-wetting conditions. In the numerical model, the volume-of-fluid method was used to track the interface between the gas and liquid. The simulation results were compared with the experimental observations in the air-water system. The comparisons show a satisfactory good agreement between the two methods. The mathematical model was then applied to simulate the argon-steel system. Simulation results show that the effect of nozzle size is insignificant for the current studied metallurgical conditions. The upper limits of the bubbling regime are approximately 60 and 80 L/h for a 2-mm nozzle for the wetting and non-wetting conditions, respectively. In addition, a poor wettability leads to a bigger bubble and a lower frequency compared with a good wettability, for the same gas flow rate.

  14. Bubble mobility in mud and magmatic volcanoes

    NASA Astrophysics Data System (ADS)

    Tran, Aaron; Rudolph, Maxwell L.; Manga, Michael

    2015-03-01

    The rheology of particle-laden fluids with a yield stress, such as mud or crystal-rich magmas, controls the mobility of bubbles, both the size needed to overcome the yield stress and their rise speed. We experimentally measured the velocities of bubbles and rigid spheres in mud sampled from the Davis-Schrimpf mud volcanoes adjacent to the Salton Sea, Southern California. Combined with previous measurements in the polymer gel Carbopol, we obtained an empirical model for the drag coefficient and bounded the conditions under which bubbles overcome the yield stress. Yield stresses typical of mud and basaltic magmas with sub-mm particles can immobilize millimeter to centimeter sized bubbles. At Stromboli volcano, Italy, a vertical yield stress gradient in the shallow conduit may immobilize bubbles with diameter ≲ 1 cm and hinder slug coalescence.

  15. Frequency and Size of Strombolian Eruptions from the Phonolitic Lava Lake at Erebus Volcano, Antarctica: Insights from Infrasound and Seismic Observations on Bubble Formation and Ascent

    NASA Astrophysics Data System (ADS)

    Rotman, H. M. M.; Kyle, P. R.; Fee, D.; Curtis, A.

    2015-12-01

    Erebus, an active intraplate volcano on Ross Island, commonly produces bubble burst Strombolian explosions from a long-lived, convecting phonolitic lava lake. Persistent lava lakes are rare, and provide direct insights into their underlying magmatic system. Erebus phonolite is H2O-poor and contains ~30% anorthoclase megacrysts. At shallow depths lab measurements suggest the magma has viscosities of ~107 Pa s. This has implications for magma and bubble ascent rates through the conduit and into the lava lake. The bulk composition and matrix glass of Erebus ejecta has remained uniform for many thousands of years, but eruptive activity varies on decadal and shorter time scales. Over the last 15 years, increased activity took place in 2005-2007, and more recently in the 2013 austral summer. In the 2014 austral summer, new infrasound sensors were installed ~700 m from the summit crater hosting the lava lake. These sensors, supplemented by the Erebus network seismic stations, recorded >1000 eruptions between 1 January and 7 April 2015, with an average infrasound daily uptime of 9.6 hours. Over the same time period, the CTBT infrasound station IS55, ~25 km from Erebus, detected ~115 of the >1000 locally observed eruptions with amplitude decreases of >100x. An additional ~200 eruptions were recorded during local infrasound downtime. This represents an unusually high level of activity from the Erebus lava lake, and while instrument noise influences the minimum observable amplitude each day, the eruption infrasound amplitudes may vary by ~3 orders of magnitude over the scale of minutes to hours. We use this heightened period of variable activity and associated seismic and acoustic waveforms to examine mechanisms for bubble formation and ascent, such as rise speed dependence and collapsing foam; repose times for the larger eruptions; and possible eruption connections to lava lake cyclicity.

  16. Period-adding bifurcations and chaos in a bubble column.

    PubMed

    Piassi, Viviane S M; Tufaile, Alberto; Sartorelli, Jose Carlos

    2004-06-01

    We obtained period-adding bifurcations in a bubble formation experiment. Using the air flow rate as the control parameter in this experiment, the bubble emission from the nozzle in a viscous fluid undergoes from single bubbling to a sequence of periodic bifurcations of k to k+1 periods, occasionally interspersed with some chaotic regions. Our main assumption is that this period-adding bifurcation in bubble formation depends on flow rate variations in the chamber under the nozzle. This assumption was experimentally tested by placing a tube between the air reservoir and the chamber under the nozzle in the bubble column experiment. By increasing the tube length, more period-adding bifurcations were observed. We associated two main types of bubble growth to the flow rate fluctuations inside the chamber for different bubbling regimes. We also studied the properties of piecewise nonlinear maps obtained from the experimental reconstructed attractors, and we concluded that this experiment is a spatially extended system.

  17. Aerosol Light Absorption and Scattering Assessments and the Impact of City Size on Air Pollution

    NASA Astrophysics Data System (ADS)

    Paredes-Miranda, Guadalupe

    mass concentration, is also expected to scale the same way. Experimental data for five cities: Mexico City, Mexico; Las Vegas and Reno, NV, USA; Beijing, China; and Delhi, India (the data for the last two cities were obtained from the literature); are in reasonable accord with the model. The scaling relation provided by the model may be considered a useful metric depending on the assumption that specific city conditions (such as latitude, altitude, local meteorological conditions, degree of industrialization, population density, number of cars per capita, city shape, etc.) vary randomly, independent of city size. While more detailed studies (including data from more cities) are needed, we believe that this relatively weak dependence of the pollution concentration on the city population might help to explain why the worsening of urban air quality does not directly lead to a decrease in the rate of growth in city population.

  18. Bubbles navigating through networks of microchannels.

    PubMed

    Choi, Wonjae; Hashimoto, Michinao; Ellerbee, Audrey K; Chen, Xin; Bishop, Kyle J M; Garstecki, Piotr; Stone, Howard A; Whitesides, George M

    2011-12-01

    This paper describes the behavior of bubbles suspended in a carrier liquid and moving within microfluidic networks of different connectivities. A single-phase continuum fluid, when flowing in a network of channels, partitions itself among all possible paths connecting the inlet and outlet. The flow rates along different paths are determined by the interaction between the fluid and the global structure of the network. That is, the distribution of flows depends on the fluidic resistances of all channels of the network. The movement of bubbles of gas, or droplets of liquid, suspended in a liquid can be quite different from the movement of a single-phase liquid, especially when they have sizes slightly larger than the channels, so that the bubbles (or droplets) contribute to the fluidic resistance of a channel when they are transiting it. This paper examines bubbles in this size range; in the size range examined, the bubbles are discrete and do not divide at junctions. As a consequence, a single bubble traverses only one of the possible paths through the network, and makes a sequence of binary choices ("left" or "right") at each branching intersection it encounters. We designed networks so that, at each junction, a bubble enters the channel into which the volumetric flow rate of the carrier liquid is highest. When there is only a single bubble inside a network at a time, the path taken by the bubble is, counter-intuitively, not necessarily the shortest or the fastest connecting the inlet and outlet. When a small number of bubbles move simultaneously through a network, they interact with one another by modifying fluidic resistances and flows in a time dependent manner; such groups of bubbles show very complex behaviors. When a large number of bubbles (sufficiently large that the volume of the bubbles occupies a significant fraction of the volume of the network) flow simultaneously through a network, however, the collective behavior of bubbles-the fluxes of bubbles

  19. Multiple Spark-Generated Bubble Interactions

    NASA Astrophysics Data System (ADS)

    Khoo, Boo Cheong; Adikhari, Deepak; Fong, Siew Wan; Klaseboer, Evert

    The complex interactions of two and three spark-generated bubbles are studied using high speed photography. The corresponding simulations are performed using a 3D Boundary Element Method (BEM) code. The bubbles generated are between 3 to 5 mm in radius, and they are either in-phase or out-of-phase with one another. The possible interaction phenomena between two identically sized bubbles are summarized. Depending on their relative distances and phase differences, they can coalesce, jet towards or away from one another, split into smaller bubbles, or 'catapult' away from one another. The 'catapult' effect can be utilized to generated high speed jet in the absence of a solid boundary or shockwave. Also three bubble interactions are highlighted. Complicated phenomena such as bubble forming an elliptical shape and bubble splitting are observed. The BEM simulations provide insight into the physics of the phenomena by providing details such as detailed bubble shape changes (experimental observations are limited by the temporal and spatial resolution), and jet velocity. It is noted that the well-tested BEM code [1,2] utilized here is computationally very efficient as compared to other full-domain methods since only the bubble surface is meshed.

  20. Compressed air energy storage system reservoir size for a wind energy baseload power plant

    SciTech Connect

    Cavallo, A.J.

    1996-12-31

    Wind generated electricity can be transformed from an intermittent to a baseload resource using an oversized wind farm in conjunction with a compressed air energy storage (CAES) system. The size of the storage reservoir for the CAES system (solution mined salt cavern or porous media) as a function of the wind speed autocorrelation time (C) has been examined using a Monte Carlo simulation for a wind class 4 (wind power density 450 W m{sup -2} at 50 m hub height) wind regime with a Weibull k factor of 2.5. For values of C typically found for winds over the US Great Plains, the storage reservoir must have a 60 to 80 hour capacity. Since underground reservoirs account for only a small fraction of total system cost, this larger storage reservoir has a negligible effect on the cost of energy from the wind energy baseload system. 7 refs., 2 figs., 1 tab.

  1. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  2. Air Gaps, Size Effect, and Corner-Turning in Ambient LX-17

    SciTech Connect

    Souers, P C; Hernandez, A; Cabacungan, C; Fried, L; Garza, R; Glaesemann, K; Lauderbach, L; Liao, S; Vitello, P

    2008-02-05

    Various ambient measurements are presented for LX-17. The size (diameter) effect has been measured with copper and Lucite confinement, where the failure radii are 4.0 and 6.5 mm, respectively. The air well corner-turn has been measured with an LX-07 booster, and the dead-zone results are comparable to the previous TATB-boosted work. Four double cylinders have been fired, and dead zones appear in all cases. The steel-backed samples are faster than the Lucite-backed samples by 0.6 {micro}s. Bare LX-07 and LX-17 of 12.7 mm-radius were fired with air gaps. Long acceptor regions were used to truly determine if detonation occurred or not. The LX-07 crossed at 10 mm with a slight time delay. Steady state LX-17 crossed at 3.5 mm gap but failed to cross at 4.0 mm. LX-17 with a 12.7 mm run after the booster crossed a 1.5 mm gap but failed to cross 2.5 mm. Timing delays were measured where the detonation crossed the gaps. The Tarantula model is introduced as embedded in 0 reactive flow JWL++ and Linked Cheetah V4, mostly at 4 zones/mm. Tarantula has four pressure regions: off, initiation, failure and detonation. The physical basis of the input parameters is considered.

  3. Small-size mass spectrometer for determining gases and volatile compounds in air during breathing

    NASA Astrophysics Data System (ADS)

    Kogan, V. T.; Kozlenok, A. V.; Chichagov, Yu. V.; Antonov, A. S.; Lebedev, D. S.; Bogdanov, A. A.; Moroshkin, V. S.; Berezina, A. V.; Viktorova-Leclerc, O. S.; Vlasov, S. A.; Tubol'tsev, Yu. V.

    2015-10-01

    We describe an automated mass spectrometer for diagnostics of deceases from the composition of exhaled air. It includes a capillary system, which performs a rapid direct feeding of the sample to the instrument without changing substantially its composition and serves for studying the dynamics of variation of the ratio between various components of exhaled air. The membrane system for introducing the sample is intended for determining low concentrations of volatile organic compounds which are biomarkers of pathologies. It is characterized by selective transmittance and ensures the detection limits of target compounds at the parts per million-parts per billion (ppm-ppb) level. A static mass analyzer operating on permanent magnets possesses advantages important for mobile devices as compared to its dynamic analogs: it is more reliable in operation, has a larger dynamic range, and can be used for determining the concentration of components in the mixture one-by-one or simultaneously. The curvilinear output boundary of the magnetic lens of the mass analyzer makes it possible to reduce its weight and size by 2.5 times without deteriorating the mass resolution. We report on the results of testing of the instrument and consider the possibility of its application for early detection of deceases of respiratory and blood circulation system, gastrointestinal tract, and endocrine system.

  4. The interaction of positive streamers with bubbles floating on a liquid surface

    NASA Astrophysics Data System (ADS)

    Akishev, Yu; Arefi-Khonsari, F.; Demir, A.; Grushin, M.; Karalnik, V.; Petryakov, A.; Trushkin, N.

    2015-12-01

    This paper reports the results of a preliminary investigation on the interaction of a streamer discharge in air with bubbles filled with air and floating on a liquid surface. The bubbles are formed of tap water and transformer oil. It was shown that the strike of the streamer in a bubble is followed by the full bubble destroying. However, scenarios of the streamer discharge interaction with a conductive water bubble and dielectric oil bubble are different in their concrete details. A positive streamer smoothly and slowly slides on an external surface of a water bubble, but the streamer striking in an oil bubble quickly perforates it and penetrates into the bubble. The mechanisms for water and oil bubble destroying are discussed. The applicability of the results obtained to plasma-liquid systems based on the use of foam is discussed as well.

  5. Lifetime of bubble rafts: cooperativity and avalanches.

    PubMed

    Ritacco, Hernán; Kiefer, Flavien; Langevin, Dominique

    2007-06-15

    We have studied the collapse of pseudo-bi-dimensional foams. These foams are made of uniformly sized soap bubbles packed in an hexagonal lattice sitting at the top of a liquid surface. The collapse process follows the sequence: (1) rupture of a first bubble, driven by thermal fluctuations and (2) a cascade of bursting bubbles. We present a simple numerical model which captures the main characteristics of the dynamics of foam collapse. We show that in a certain range of viscosities of the foaming solutions, the size distribution of the avalanches follows power laws as in self-organized criticality processes. PMID:17677967

  6. The multiphase flow system used in exploiting depleted reservoirs: water-based Micro-bubble drilling fluid

    NASA Astrophysics Data System (ADS)

    Li-hui, Zheng; Xiao-qing, He; Li-xia, Fu; Xiang-chun, Wang

    2009-02-01

    Water-based micro-bubble drilling fluid, which is used to exploit depleted reservoirs, is a complicated multiphase flow system that is composed of gas, water, oil, polymer, surfactants and solids. The gas phase is separate from bulk water by two layers and three membranes. They are "surface tension reducing membrane", "high viscosity layer", "high viscosity fixing membrane", "compatibility enhancing membrane" and "concentration transition layer of liner high polymer (LHP) & surfactants" from every gas phase centre to the bulk water. "Surface tension reducing membrane", "high viscosity layer" and "high viscosity fixing membrane" bond closely to pack air forming "air-bag", "compatibility enhancing membrane" and "concentration transition layer of LHP & surfactants" absorb outside "air-bag" to form "incompact zone". From another point of view, "air-bag" and "incompact zone" compose micro-bubble. Dynamic changes of "incompact zone" enable micro-bubble to exist lonely or aggregate together, and lead the whole fluid, which can wet both hydrophilic and hydrophobic surface, to possess very high viscosity at an extremely low shear rate but to possess good fluidity at a higher shear rate. When the water-based micro-bubble drilling fluid encounters leakage zones, it will automatically regulate the sizes and shapes of the bubbles according to the slot width of fracture, the height of cavern as well as the aperture of openings, or seal them by making use of high viscosity of the system at a very low shear rate. Measurements of the rheological parameters indicate that water-based micro-bubble drilling fluid has very high plastic viscosity, yield point, initial gel, final gel and high ratio of yield point and plastic viscosity. All of these properties make the multiphase flow system meet the requirements of petroleum drilling industry. Research on interface between gas and bulk water of this multiphase flow system can provide us with information of synthesizing effective agents to

  7. Oil and air dispersion in a simulated fermentation broth as a function of mycelial morphology.

    PubMed

    Lucatero, Savidra; Larralde-Corona, Claudia Patricia; Corkidi, Gabriel; Galindo, Enrique

    2003-01-01

    The culture conditions of a multiphase fermentation involving morphologically complex mycelia were simulated in order to investigate the influence of mycelial morphology (Trichoderma harzianum) on castor oil and air dispersion. Measurements of oil drops and air bubbles were obtained using an image analysis system coupled to a mixing tank. Complex interactions of the phases involved could be clearly observed. The Sauter diameter and the size distributions of drops and bubbles were affected by the morphological type of biomass (pellets or dispersed mycelia) added to the system. Larger oil drop sizes were obtained with dispersed mycelia than with pellets, as a result of the high apparent viscosity of the broth, which caused a drop in the power drawn, reducing oil drop break-up. Unexpectedly, bubble sizes observed with dispersed mycelia were smaller than with pellets, a phenomenon which can be explained by the segregation occurring at high biomass concentrations with the dispersed mycelia. Very complex oil drops were produced, containing air bubbles and a high number of structures likely consisting of small water droplets. Bubble location was influenced by biomass morphology. The percentage (in volume) of oil-trapped bubbles increased (from 32 to 80%) as dispersed mycelia concentration increased. A practically constant (32%) percentage of oil-trapped bubbles was observed with pelleted morphology at all biomass concentrations. The results evidenced the high complexity of phases interactions and the importance of mycelial morphology in such processes. PMID:12675561

  8. Steady State Vapor Bubble in Pool Boiling.

    PubMed

    Zou, An; Chanana, Ashish; Agrawal, Amit; Wayner, Peter C; Maroo, Shalabh C

    2016-02-03

    Boiling, a dynamic and multiscale process, has been studied for several decades; however, a comprehensive understanding of the process is still lacking. The bubble ebullition cycle, which occurs over millisecond time-span, makes it extremely challenging to study near-surface interfacial characteristics of a single bubble. Here, we create a steady-state vapor bubble that can remain stable for hours in a pool of sub-cooled water using a femtosecond laser source. The stability of the bubble allows us to measure the contact-angle and perform in-situ imaging of the contact-line region and the microlayer, on hydrophilic and hydrophobic surfaces and in both degassed and regular (with dissolved air) water. The early growth stage of vapor bubble in degassed water shows a completely wetted bubble base with the microlayer, and the bubble does not depart from the surface due to reduced liquid pressure in the microlayer. Using experimental data and numerical simulations, we obtain permissible range of maximum heat transfer coefficient possible in nucleate boiling and the width of the evaporating layer in the contact-line region. This technique of creating and measuring fundamental characteristics of a stable vapor bubble will facilitate rational design of nanostructures for boiling enhancement and advance thermal management in electronics.

  9. Steady State Vapor Bubble in Pool Boiling

    NASA Astrophysics Data System (ADS)

    Zou, An; Chanana, Ashish; Agrawal, Amit; Wayner, Peter C.; Maroo, Shalabh C.

    2016-02-01

    Boiling, a dynamic and multiscale process, has been studied for several decades; however, a comprehensive understanding of the process is still lacking. The bubble ebullition cycle, which occurs over millisecond time-span, makes it extremely challenging to study near-surface interfacial characteristics of a single bubble. Here, we create a steady-state vapor bubble that can remain stable for hours in a pool of sub-cooled water using a femtosecond laser source. The stability of the bubble allows us to measure the contact-angle and perform in-situ imaging of the contact-line region and the microlayer, on hydrophilic and hydrophobic surfaces and in both degassed and regular (with dissolved air) water. The early growth stage of vapor bubble in degassed water shows a completely wetted bubble base with the microlayer, and the bubble does not depart from the surface due to reduced liquid pressure in the microlayer. Using experimental data and numerical simulations, we obtain permissible range of maximum heat transfer coefficient possible in nucleate boiling and the width of the evaporating layer in the contact-line region. This technique of creating and measuring fundamental characteristics of a stable vapor bubble will facilitate rational design of nanostructures for boiling enhancement and advance thermal management in electronics.

  10. Steady State Vapor Bubble in Pool Boiling

    PubMed Central

    Zou, An; Chanana, Ashish; Agrawal, Amit; Wayner, Peter C.; Maroo, Shalabh C.

    2016-01-01

    Boiling, a dynamic and multiscale process, has been studied for several decades; however, a comprehensive understanding of the process is still lacking. The bubble ebullition cycle, which occurs over millisecond time-span, makes it extremely challenging to study near-surface interfacial characteristics of a single bubble. Here, we create a steady-state vapor bubble that can remain stable for hours in a pool of sub-cooled water using a femtosecond laser source. The stability of the bubble allows us to measure the contact-angle and perform in-situ imaging of the contact-line region and the microlayer, on hydrophilic and hydrophobic surfaces and in both degassed and regular (with dissolved air) water. The early growth stage of vapor bubble in degassed water shows a completely wetted bubble base with the microlayer, and the bubble does not depart from the surface due to reduced liquid pressure in the microlayer. Using experimental data and numerical simulations, we obtain permissible range of maximum heat transfer coefficient possible in nucleate boiling and the width of the evaporating layer in the contact-line region. This technique of creating and measuring fundamental characteristics of a stable vapor bubble will facilitate rational design of nanostructures for boiling enhancement and advance thermal management in electronics. PMID:26837464

  11. Mechanisms of single bubble cleaning.

    PubMed

    Reuter, Fabian; Mettin, Robert

    2016-03-01

    The dynamics of collapsing bubbles close to a flat solid is investigated with respect to its potential for removal of surface attached particles. Individual bubbles are created by nanosecond Nd:YAG laser pulses focused into water close to glass plates contaminated with melamine resin micro-particles. The bubble dynamics is analysed by means of synchronous high-speed recordings. Due to the close solid boundary, the bubble collapses with the well-known liquid jet phenomenon. Subsequent microscopic inspection of the substrates reveals circular areas clean of particles after a single bubble generation and collapse event. The detailed bubble dynamics, as well as the cleaned area size, is characterised by the non-dimensional bubble stand-off γ=d/Rmax, with d: laser focus distance to the solid boundary, and Rmax: maximum bubble radius before collapse. We observe a maximum of clean area at γ≈0.7, a roughly linear decay of the cleaned circle radius for increasing γ, and no cleaning for γ>3.5. As the main mechanism for particle removal, rapid flows at the boundary are identified. Three different cleaning regimes are discussed in relation to γ: (I) For large stand-off, 1.8<γ<3.5, bubble collapse induced vortex flows touch down onto the substrate and remove particles without significant contact of the gas phase. (II) For small distances, γ<1.1, the bubble is in direct contact with the solid. Fast liquid flows at the substrate are driven by the jet impact with its subsequent radial spreading, and by the liquid following the motion of the collapsing and rebounding bubble wall. Both flows remove particles. Their relative timing, which depends sensitively on the exact γ, appears to determine the extension of the area with forces large enough to cause particle detachment. (III) At intermediate stand-off, 1.1<γ<1.8, only the second bubble collapse touches the substrate, but acts with cleaning mechanisms similar to an effective small γ collapse: particles are removed by

  12. Mechanisms of single bubble cleaning.

    PubMed

    Reuter, Fabian; Mettin, Robert

    2016-03-01

    The dynamics of collapsing bubbles close to a flat solid is investigated with respect to its potential for removal of surface attached particles. Individual bubbles are created by nanosecond Nd:YAG laser pulses focused into water close to glass plates contaminated with melamine resin micro-particles. The bubble dynamics is analysed by means of synchronous high-speed recordings. Due to the close solid boundary, the bubble collapses with the well-known liquid jet phenomenon. Subsequent microscopic inspection of the substrates reveals circular areas clean of particles after a single bubble generation and collapse event. The detailed bubble dynamics, as well as the cleaned area size, is characterised by the non-dimensional bubble stand-off γ=d/Rmax, with d: laser focus distance to the solid boundary, and Rmax: maximum bubble radius before collapse. We observe a maximum of clean area at γ≈0.7, a roughly linear decay of the cleaned circle radius for increasing γ, and no cleaning for γ>3.5. As the main mechanism for particle removal, rapid flows at the boundary are identified. Three different cleaning regimes are discussed in relation to γ: (I) For large stand-off, 1.8<γ<3.5, bubble collapse induced vortex flows touch down onto the substrate and remove particles without significant contact of the gas phase. (II) For small distances, γ<1.1, the bubble is in direct contact with the solid. Fast liquid flows at the substrate are driven by the jet impact with its subsequent radial spreading, and by the liquid following the motion of the collapsing and rebounding bubble wall. Both flows remove particles. Their relative timing, which depends sensitively on the exact γ, appears to determine the extension of the area with forces large enough to cause particle detachment. (III) At intermediate stand-off, 1.1<γ<1.8, only the second bubble collapse touches the substrate, but acts with cleaning mechanisms similar to an effective small γ collapse: particles are removed by

  13. Magma mixing enhanced by bubble segregation

    NASA Astrophysics Data System (ADS)

    Wiesmaier, S.; Morgavi, D.; Renggli, C.; Perugini, D.; De Campos, C. P.; Hess, K.-U.; Ertel-Ingrisch, W.; Lavallée, Y.; Dingwell, D. B.

    2015-04-01

    That rising bubbles may significantly affect magma mixing paths has already been demon strated by analogue experiments. Here, for the first time, bubble-advection experiments are performed employing volcanic melts at magmatic temperatures. Cylinders of basaltic glass were placed below cylinders of rhyolite glass. Upon melting, interstitial air formed bubbles that rose into the rhyolite melt, thereby entraining tails of basaltic liquid. The formation of plume-like filaments of advected basalt within the rhyolite was characterized by microCT and subsequent high-resolution EMP analyses. Melt entrainment by bubble ascent appears to be an efficient mechanism for mingling volcanic melts of highly contrasting compositions and properties. MicroCT imaging reveals bubbles trailing each other and multiple filaments coalescing into bigger ones. Rheological modelling of the filaments yields viscosities of up to 2 orders of magnitude lower than for the surrounding rhyolitic liquid. Such a viscosity contrast implies that bubbles rising successively are likely to follow this pathway of low resistance that previously ascending bubbles have generated. Filaments formed by multiple bubbles would thus experience episodic replenishment with mafic material. Inevitable implications for the concept of bubble advection in magma mixing include thereby both an acceleration of mixing because of decreased viscous resistance for bubbles inside filaments and non-conventional diffusion systematics because of intermittent supply of mafic material (instead of a single pulse) inside a material. Inside the filaments, the mafic material was variably hybridised to andesitic through rhyolitic composition. Compositional profiles alone are ambiguous, however, to determine whether single or multiple bubbles were involved during formation of a filament. Statistical analysis, employing concentration variance as measure of homogenisation, demonstrates that also filaments appearing as single-bubble filaments

  14. Daughter bubble cascades produced by folding of ruptured thin films.

    PubMed

    Bird, James C; de Ruiter, Riëlle; Courbin, Laurent; Stone, Howard A

    2010-06-10

    Thin liquid films, such as soap bubbles, have been studied extensively for over a century because they are easily formed and mediate a wide range of transport processes in physics, chemistry and engineering. When a bubble on a liquid-gas or solid-gas interface (referred to herein as an interfacial bubble) ruptures, the general expectation is that the bubble vanishes. More precisely, the ruptured thin film is expected to retract rapidly until it becomes part of the interface, an event that typically occurs within milliseconds. The assumption that ruptured bubbles vanish is central to theories on foam evolution and relevant to health and climate because bubble rupture is a source for aerosol droplets. Here we show that for a large range of fluid parameters, interfacial bubbles can create numerous small bubbles when they rupture, rather than vanishing. We demonstrate, both experimentally and numerically, that the curved film of the ruptured bubble can fold and entrap air as it retracts. The resulting toroidal geometry of the trapped air is unstable, leading to the creation of a ring of smaller bubbles. The higher pressure associated with the higher curvature of the smaller bubbles increases the absorption of gas into the liquid, and increases the efficiency of rupture-induced aerosol dispersal.

  15. Daughter bubble cascades produced by folding of ruptured thin films.

    PubMed

    Bird, James C; de Ruiter, Riëlle; Courbin, Laurent; Stone, Howard A

    2010-06-10

    Thin liquid films, such as soap bubbles, have been studied extensively for over a century because they are easily formed and mediate a wide range of transport processes in physics, chemistry and engineering. When a bubble on a liquid-gas or solid-gas interface (referred to herein as an interfacial bubble) ruptures, the general expectation is that the bubble vanishes. More precisely, the ruptured thin film is expected to retract rapidly until it becomes part of the interface, an event that typically occurs within milliseconds. The assumption that ruptured bubbles vanish is central to theories on foam evolution and relevant to health and climate because bubble rupture is a source for aerosol droplets. Here we show that for a large range of fluid parameters, interfacial bubbles can create numerous small bubbles when they rupture, rather than vanishing. We demonstrate, both experimentally and numerically, that the curved film of the ruptured bubble can fold and entrap air as it retracts. The resulting toroidal geometry of the trapped air is unstable, leading to the creation of a ring of smaller bubbles. The higher pressure associated with the higher curvature of the smaller bubbles increases the absorption of gas into the liquid, and increases the efficiency of rupture-induced aerosol dispersal. PMID:20535206

  16. The Effect of Small Bubbles on Resistance Reduction of Water Flow in Co-axial Cylinders with an Inner Rotating Cylinder

    NASA Astrophysics Data System (ADS)

    Maryami, R.; Farahat, S.; Poor, M. J.

    2015-04-01

    Drawing on effective experiments and measurement technology, the present study seeks to discuss the interaction between liquid turbulent boundary layer and a crowded group of small bubbles. Experiments are carried out using a circulating water Couette-Taylor system especially designed for small bubble experiments. Couette-Taylor system has a detailed test section, which allows measuring the effect of persistent head resistance reduction caused by small bubbles in the streamwise direction. Pressure difference is measured using sensors which are mounted at the bottom and top of the system to calculate head resistance. Pressure difference and bubble behavior are measured as a function of rotational Reynolds number up to 67.8 × 103. Small bubbles are injected constantly into annulus gap using two injectors installed at the bottom of the system and they are lifted through an array of vertical cells. Water is used to avoid uncertain interfacial property of bubbles and to produce relatively mono-sized bubble distributions. The bubble sizes range approximately from 0.9 to 1.4 mm, which are identified by the image processing method. The results suggest that head resistance is decreased after the injection of small bubble in all rotational Reynolds number under study, changing from 7,000 to 67.8 × 103. Moreover, void fraction is increased from 0 to 10.33 %. A head resistance reduction greater than 75 % was achieved in this study after the maximum measured volume of air fraction was injected into fluid flow while bubbles were distinct without making any gas layer.

  17. Air Gaps, Size Effect, and Corner-Turning in Ambient LX-17

    SciTech Connect

    Souers, P C; Hernandez, A; Cabacungen, C; Fried, L; Garza, R; Glaesemann, K; Lauderbach, L; Liao, S; Vitello, P

    2007-05-30

    Various ambient measurements are presented for LX-17. The size (diameter) effect has been measured with copper and Lucite confinement, where the failure radii are 4.0 and 6.5 mm, respectively. The air well corner-turn has been measured with an LX-07 booster, and the dead-zone results are comparable to the previous TATB-boosted work. Four double cylinders have been fired, and dead zones appear in all cases. The steel-backed samples are faster than the Lucite-backed samples by 0.6 {micro}s. Bare LX-07 and LX-17 of 12.7 mm-radius were fired with air gaps. Long acceptor regions were used to truly determine if detonation occurred or not. The LX-07 crossed at 10 mm with a slight time delay. Steady state LX-17 crossed at 3.5 mm gap but failed to cross at 4.0 mm. LX-17 with a 12.7 mm run after the booster crossed a 1.5 mm gap but failed to cross 2.5 mm. Timing delays were measured where the detonation crossed the gaps. The Tarantula model is introduced as embedded in the Linked Cheetah V4.0 reactive flow code at 4 zones/mm. Tarantula has four pressure regions: off, initiation, failure and detonation. A report card of 25 tests run with the same settings on LX-17 is shown, possibly the most extensive simultaneous calibration yet tried with an explosive. The physical basis of some of the input parameters is considered.

  18. How are soap bubbles blown? Fluid dynamics of soap bubble blowing

    NASA Astrophysics Data System (ADS)

    Davidson, John; Lambert, Lori; Sherman, Erica; Wei, Timothy; Ryu, Sangjin

    2013-11-01

    Soap bubbles are a common interfacial fluid dynamics phenomenon having a long history of delighting not only children and artists but also scientists. In contrast to the dynamics of liquid droplets in gas and gas bubbles in liquid, the dynamics of soap bubbles has not been well documented. This is possibly because studying soap bubbles is more challenging due to there existing two gas-liquid interfaces. Having the thin-film interface seems to alter the characteristics of the bubble/drop creation process since the interface has limiting factors such as thickness. Thus, the main objective of this study is to determine how the thin-film interface differentiates soap bubbles from gas bubbles and liquid drops. To investigate the creation process of soap bubbles, we constructed an experimental model consisting of air jet flow and a soap film, which consistently replicates the conditions that a human produces when blowing soap bubbles, and examined the interaction between the jet and the soap film using the high-speed videography and the particle image velocimetry.

  19. Soap Bubbles and Logic.

    ERIC Educational Resources Information Center

    Levine, Shellie-helane; And Others

    1986-01-01

    Introduces questions and activities involving soap bubbles which provide students with experiences in prediction and logic. Examines commonly held false conceptions related to the shapes that bubbles take and provides correct explanations for the phenomenon. (ML)

  20. Spherical bubble motion in a turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Felton, Keith; Loth, Eric

    2001-09-01

    Monodisperse dilute suspensions of spherical air bubbles in a tap-water turbulent vertical boundary layer were experimentally studied to note their motion and distribution. Bubbles with diameters of 0.37-1.2 mm were injected at various transverse wall-positions for free-stream velocities between 0.4 and 0.9 m/s. The bubbles were released from a single injector at very low frequencies such that two-way coupling and bubble-bubble interaction were negligible. The experimental diagnostics included ensemble-averaged planar laser intensity profiles for bubble concentration distribution, as well as Cinematic Particle Image Velocimetry with bubble tracking for bubble hydrodynamic forces. A variety of void distributions within the boundary layer were found. For example, there was a tendency for bubbles to collect along the wall for higher Stokes number conditions, while the lower Stokes number conditions produced Gaussian-type profiles throughout the boundary layer. In addition, three types of bubble trajectories were observed—sliding bubbles, bouncing bubbles, and free-dispersion bubbles. Instantaneous liquid forces acting on individual bubbles in the turbulent flow were also obtained to provide the drag and lift coefficients (with notable experimental uncertainty). These results indicate that drag coefficient decreases with increasing Reynolds number as is conventionally expected but variations were observed. In general, the instantaneous drag coefficient (for constant bubble Reynolds number) tended to be reduced as the turbulence intensity increased. The averaged lift coefficient is higher than that given by inviscid theory (and sometimes even that of creeping flow theory) and tends to decrease with increasing bubble Reynolds number.

  1. Advances in the Rising Bubble Technique for discharge measurement

    NASA Astrophysics Data System (ADS)

    Hilgersom, Koen; Luxemburg, Willem; Willemsen, Geert; Bussmann, Luuk

    2014-05-01

    Already in the 19th century, d'Auria described a discharge measurement technique that applies floats to find the depth-integrated velocity (d'Auria, 1882). The basis of this technique was that the horizontal distance that the float travels on its way to the surface is the image of the integrated velocity profile over depth. Viol and Semenov (1964) improved this method by using air bubbles as floats, but still distances were measured manually until Sargent (1981) introduced a technique that could derive the distances from two photographs simultaneously taken from each side of the river bank. Recently, modern image processing techniques proved to further improve the applicability of the method (Hilgersom and Luxemburg, 2012). In the 2012 article, controlling and determining the rising velocity of an air bubble still appeared a major challenge for the application of this method. Ever since, laboratory experiments with different nozzle and tube sizes lead to advances in our self-made equipment enabling us to produce individual air bubbles with a more constant rising velocity. Also, we introduced an underwater camera to on-site determine the rising velocity, which is dependent on the water temperature and contamination, and therefore is site-specific. Camera measurements of the rising velocity proved successful in a laboratory and field setting, although some improvements to the setup are necessary to capture the air bubbles also at depths where little daylight penetrates. References D'Auria, L.: Velocity of streams; A new method to determine correctly the mean velocity of any perpendicular in rivers and canals, (The) American Engineers, 3, 1882. Hilgersom, K.P. and Luxemburg, W.M.J.: Technical Note: How image processing facilitates the rising bubble technique for discharge measurement, Hydrology and Earth System Sciences, 16(2), 345-356, 2012. Sargent, D.: Development of a viable method of stream flow measurement using the integrating float technique, Proceedings of

  2. Preheating in bubble collisions

    SciTech Connect

    Zhang Jun; Piao Yunsong

    2010-08-15

    In a landscape with metastable minima, the bubbles will inevitably nucleate. We show that when the bubbles collide, due to the dramatic oscillation of the field at the collision region, the energy deposited in the bubble walls can be efficiently released by the explosive production of the particles. In this sense, the collision of bubbles is actually highly inelastic. The cosmological implications of this result are discussed.

  3. Initiation of breakdown in strings of bubbles immersed in transformer oil and water: string orientation and proximity of bubbles

    NASA Astrophysics Data System (ADS)

    Babaeva, Natalia Yu; Tereshonok, Dmitry V.; Naidis, George V.; Smirnov, Boris M.

    2016-01-01

    We computationally investigated the properties of positive streamers propagating inside strings of bubbles filled with humid air at atmospheric pressure, immersed in liquids and aligned along the electric field or transversal to it. We show that orientation of the string and proximity of bubbles are crucial for the streamer formation and re-initiation in the neighboring bubbles. For the vertical string (aligned along the electric field) there is a small field depletion inside the bubbles due to mutual polarization compared to the field in an isolated bubble. As a result, in a vertical string the ‘streamer hopping’ is more sensitive to the bubble separation. The streamer hopping is observed only when the separation is smaller than 300 μm. Polarization of the horizontal string of bubbles results in higher electric field inside the bubbles as compared to that in an isolated bubble. In this case, ‘streamer hopping’ is observed for the bubble separation 500 μm or larger. We also investigated the arrays of five and nine bubbles and showed that the enhancement of the electric field and streamer development depend on how many field depleting poles or field enhancing equators are in close proximity to the particular bubble.

  4. Structure of nanoscale gas bubbles in metals

    SciTech Connect

    Caro, A. Schwen, D.; Martinez, E.

    2013-11-18

    A usual way to estimate the amount of gas in a bubble inside a metal is to assume thermodynamic equilibrium, i.e., the gas pressure P equals the capillarity force 2γ/R, with γ the surface energy of the host material and R the bubble radius; under this condition there is no driving force for vacancies to be emitted or absorbed by the bubble. In contrast to the common assumption that pressure inside a gas or fluid bubble is constant, we show that at the nanoscale this picture is no longer valid. P and density can no longer be defined as global quantities determined by an equation of state (EOS), but they become functions of position because the bubble develops a core-shell structure. We focus on He in Fe and solve the problem using both continuum mechanics and empirical potentials to find a quantitative measure of this effect. We point to the need of redefining an EOS for nanoscale gas bubbles in metals, which can be obtained via an average pressure inside the bubble. The resulting EOS, which is now size dependent, gives pressures that differ by a factor of two or more from the original EOS for bubble diameters of 1 nm and below.

  5. Soap Films and Bubbles.

    ERIC Educational Resources Information Center

    Rice, Karen

    1986-01-01

    Develops and explains a format for a workshop which focuses on soap films and bubbles. The plan consists of: a discussion to uncover what children know about bubbles; explanations of the demonstration equipment; the presentation itself; the assembly of the workshop kit; and time to play with the bubbles. (ML)

  6. Brut: Automatic bubble classifier

    NASA Astrophysics Data System (ADS)

    Beaumont, Christopher; Goodman, Alyssa; Williams, Jonathan; Kendrew, Sarah; Simpson, Robert

    2014-07-01

    Brut, written in Python, identifies bubbles in infrared images of the Galactic midplane; it uses a database of known bubbles from the Milky Way Project and Spitzer images to build an automatic bubble classifier. The classifier is based on the Random Forest algorithm, and uses the WiseRF implementation of this algorithm.

  7. Bursting the Taylor cone bubble

    NASA Astrophysics Data System (ADS)

    Pan, Zhao; Truscott, Tadd

    2014-11-01

    A soap bubble fixed on a surface and placed in an electric field will take on the shape of a cone rather than constant curvature (dome) when the electrical field is not present. The phenomenon was introduced by J. Zeleny (1917) and studied extensively by C.T. Wilson & G.I. Taylor (1925). We revisit the Taylor cone problem by studying the deformation and bursting of soap bubbles in a point charge electric field. A single bubble takes on the shape of a cone in the electric field and a high-speed camera equipped with a micro-lens is used to observe the unsteady dynamics at the tip. Rupture occurs as a very small piece of the tip is torn away from the bubble toward the point charge. Based on experiments, a theoretical model is developed that predicts when rupture should occur. This study may help in the design of foam-removal techniques in engineering and provide a better understanding of an electrified air-liquid interface.

  8. Shape measurement of bubble in a liquid metal

    NASA Astrophysics Data System (ADS)

    Saito, Y.; Shen, X.; Mishima, K.; Matsubayashi, M.

    2009-06-01

    Dynamic behavior of a two-phase bubble, i.e. a steam bubble containing a droplet evaporating in the bubble, in the molten alloy was clearly visualized using high-frame-rate neutron radiography. In relation to some direct contact heat exchanger design with molten lead-bismuth (Pb-Bi), experiments have been done at JRR-3M of JAEA (Japan Atomic Energy Agency) with water droplets evaporating in a stable thermally stratified Newton's alloy pool. The instantaneous shape and size of the bubble has been iteratively estimated from the void fraction distributions and total void volume by assuming a symmetrical bubble shape.

  9. Soap bubbles: two years old and sixty centimeters in diameter.

    PubMed

    Grosse, A V

    1969-04-18

    Soap bubbles of long life (over 2 years) and large size (over 60 centimeters in diameter, 100 liters volume) have been produced from bubble solutions improved by the addition of water-soluble synthetic organic polymers such as polyvinyl alcohol or polyoxyethylene. The natural life can be defined as the time it takes for the bubble, if left undisturbed, to contract from the original size to a flat film. PMID:17812083

  10. Source apportionment of size resolved particulate matter at a European air pollution hot spot.

    PubMed

    Pokorná, P; Hovorka, J; Klán, M; Hopke, P K

    2015-01-01

    Positive Matrix Factorization-PMF was applied to hourly resolved elemental composition of fine (PM0.15-1.15) and coarse (PM1.15-10) aerosol particles to apportion their sources in the airshed of residential district, Ostrava-Radvanice and Bartovice in winter 2012. Multiple-site measurement by PM2.5 monitors complements the source apportionment. As there were no statistical significant differences amongst the monitors, the source apportionment derived for the central site data is expected to apply to whole residential district. The apportioned sources of the fine aerosol particles were coal combustion (58.6%), sinter production-hot phase (22.9%), traffic (15%), raw iron production (3.5%), and desulfurization slag processing (<0.5%) whilst road dust (47.3%), sinter production-cold phase (27.7%), coal combustion (16.8%), and raw iron production (8.2%) were resolved being sources of the coarse aerosol particles. The shape and elemental composition of size-segregated aerosol airborne-sampled by an airship aloft presumed air pollution sources helped to interpret the PMF solution. PMID:25260163

  11. Magma mixing enhanced by bubble segregation

    NASA Astrophysics Data System (ADS)

    Wiesmaier, S.; Morgavi, D.; Renggli, C. J.; Perugini, D.; De Campos, C. P.; Hess, K.-U.; Ertel-Ingrisch, W.; Lavallée, Y.; Dingwell, D. B.

    2015-08-01

    In order to explore the materials' complexity induced by bubbles rising through mixing magmas, bubble-advection experiments have been performed, employing natural silicate melts at magmatic temperatures. A cylinder of basaltic glass was placed below a cylinder of rhyolitic glass. Upon melting, bubbles formed from interstitial air. During the course of the experimental runs, those bubbles rose via buoyancy forces into the rhyolitic melt, thereby entraining tails of basaltic liquid. In the experimental run products, these plume-like filaments of advected basalt within rhyolite were clearly visible and were characterised by microCT and high-resolution EMP analyses. The entrained filaments of mafic material have been hybridised. Their post-experimental compositions range from the originally basaltic composition through andesitic to rhyolitic composition. Rheological modelling of the compositions of these hybridised filaments yield viscosities up to 2 orders of magnitude lower than that of the host rhyolitic liquid. Importantly, such lowered viscosities inside the filaments implies that rising bubbles can ascend more efficiently through pre-existing filaments that have been generated by earlier ascending bubbles. MicroCT imaging of the run products provides textural confirmation of the phenomenon of bubbles trailing one another through filaments. This phenomenon enhances the relevance of bubble advection in magma mixing scenarios, implying as it does so, an acceleration of bubble ascent due to the decreased viscous resistance facing bubbles inside filaments and yielding enhanced mass flux of mafic melt into felsic melt via entrainment. In magma mixing events involving melts of high volatile content, bubbles may be an essential catalyst for magma mixing. Moreover, the reduced viscosity contrast within filaments implies repeated replenishment of filaments with fresh end-member melt. As a result, complex compositional gradients and therefore diffusion systematics can be

  12. Gas transfer in a bubbly wake flow

    NASA Astrophysics Data System (ADS)

    Karn, A.; Gulliver, J. S.; Monson, G. M.; Ellis, C.; Arndt, R. E. A.; Hong, J.

    2016-05-01

    The present work reports simultaneous bubble size and gas transfer measurements in a bubbly wake flow of a hydrofoil, designed to be similar to a hydroturbine blade. Bubble size was measured by a shadow imaging technique and found to have a Sauter mean diameter of 0.9 mm for a reference case. A lower gas flow rate, greater liquid velocities, and a larger angle of attack all resulted in an increased number of small size bubbles and a reduced weighted mean bubble size. Bubble-water gas transfer is measured by the disturbed equilibrium technique. The gas transfer model of Azbel (1981) is utilized to characterize the liquid film coefficient for gas transfer, with one scaling coefficient to reflect the fact that characteristic turbulent velocity is replaced by cross-sectional mean velocity. The coefficient was found to stay constant at a particular hydrofoil configuration while it varied within a narrow range of 0.52-0.60 for different gas/water flow conditions.

  13. An audible demonstration of the speed of sound in bubbly liquids

    NASA Astrophysics Data System (ADS)

    Wilson, Preston S.; Roy, Ronald A.

    2008-10-01

    The speed of sound in a bubbly liquid is strongly dependent upon the volume fraction of the gas phase, the bubble size distribution, and the frequency of the acoustic excitation. At sufficiently low frequencies, the speed of sound depends primarily on the gas volume fraction. This effect can be audibly demonstrated using a one-dimensional acoustic waveguide, in which the flow rate of air bubbles injected into a water-filled tube is varied by the user. The normal modes of the waveguide are excited by the sound of the bubbles being injected into the tube. As the flow rate is varied, the speed of sound varies as well, and hence, the resonance frequencies shift. This can be clearly heard through the use of an amplified hydrophone and the user can create aesthetically pleasing and even musical sounds. In addition, the apparatus can be used to verify a simple mathematical model known as Wood's equation that relates the speed of sound of a bubbly liquid to its void fraction.

  14. Bubble Detachment in Variable Gravity Under the Influence of a Non-Uniform Electric Field

    NASA Technical Reports Server (NTRS)

    Chang, Shinan; Herman, Cila; Iacona, Estelle

    2002-01-01

    The objective of the study reported in this paper is to investigate the effects of variable, reduced gravity on the formation and detachment behavior of individual air bubbles under the influence of a non-uniform electric field. For this purpose, variable gravity experiments were carried out in parabolic nights. The non-uniform electric field was generated by a spherical electrode and a plate electrode. The effect of the magnitude of the non-uniform electric field and gravity level on bubble formation, development and detachment at an orifice was investigated. An image processing code was developed that allows the measurement of bubble volume, dimensions and contact angle at detachment. The results of this research can be used to explore the possibility of enhancing boiling heat transfer in the variable and low gravity environments by substituting the buoyancy force with a force induced by the electric field. The results of experiments and measurements indicate that the level of gravity significantly affects bubble shape, size and frequency. The electric field magnitude also influences bubble detachment, however, its impact is not as profound as that of variable gravity for the range of electric field magnitudes investigated in the present study.

  15. Cap Bubble Drift Velocity in a Confined Test Section

    SciTech Connect

    Xiaodong Sun; Seungjin Kim; Mamoru Ishii; Frank W. Lincoln; Stephen G. Beus

    2002-10-09

    In the two-group interfacial area transport equation, bubbles are categorized into two groups, i.e., spherical/distorted bubbles as group 1 and cap/slug/churn-turbulent bubbles as group 2. The bubble rise velocities for both groups of bubbles may be estimated by the drift flux model by applying different distribution parameters and drift velocities for both groups. However, the drift velocity for group 2 bubbles is not always applicable (when the wall effect becomes important) as in the current test loop of interest where the flow channel is confined by two parallel flat walls, with a dimension of 200-mm in width and 10-mm in gap. The previous experiments indicated that no stable slug flow existed in this test section, which was designed to permit visualization of the flow patterns and bubble characteristics without the distortion associated with curved surfaces. In fact, distorted cap bubbly and churn-turbulent flow was observed. Therefore, it is essential to developed a correlation for cap bubble drift velocity in this confined flow channel. Since the rise velocity of a cap bubble depends on its size, a high-speed movie camera is used to capture images of cap bubbles to obtain the bubble size information. Meanwhile, the rise velocity of cap and elongated bubbles (called cap bubbles hereafter) is investigated by examining the captured images frame by frame. As a result, the conventional correlation of drift velocity for slug bubbles is modified and acceptable agreements between the measurements and correlation estimation are achieved.

  16. Dynamics of Single Hydrogen Bubbles at a Platinum Microelectrode.

    PubMed

    Yang, Xuegeng; Karnbach, Franziska; Uhlemann, Margitta; Odenbach, Stefan; Eckert, Kerstin

    2015-07-28

    Bubble dynamics, including the formation, growth, and detachment, of single H2 bubbles was studied at a platinum microelectrode during the electrolysis of 1 M H2SO4 electrolyte. The bubbles were visualized through a microscope by a high-speed camera. Electrochemical measurements were conducted in parallel to measure the transient current. The periodic current oscillations, resulting from the periodic formation and detachment of single bubbles, allow the bubble lifetime and size to be predicted from the transient current. A comparison of the bubble volume calculated from the current and from the recorded bubble image shows a gas evolution efficiency increasing continuously with the growth of the bubble until it reaches 100%. Two different substrates, glass and epoxy, were used to embed the Pt wire. While nearly no difference was found with respect to the growth law for the bubble radius, the contact angle differs strongly for the two types of cell. Data provided for the contact point evolution further complete the image of single hydrogen bubble growth. Finally, the velocity field driven by the detached bubble was measured by means of PIV, and the effects of the convection on the subsequent bubble were evaluated.

  17. Dynamics of Single Hydrogen Bubbles at a Platinum Microelectrode.

    PubMed

    Yang, Xuegeng; Karnbach, Franziska; Uhlemann, Margitta; Odenbach, Stefan; Eckert, Kerstin

    2015-07-28

    Bubble dynamics, including the formation, growth, and detachment, of single H2 bubbles was studied at a platinum microelectrode during the electrolysis of 1 M H2SO4 electrolyte. The bubbles were visualized through a microscope by a high-speed camera. Electrochemical measurements were conducted in parallel to measure the transient current. The periodic current oscillations, resulting from the periodic formation and detachment of single bubbles, allow the bubble lifetime and size to be predicted from the transient current. A comparison of the bubble volume calculated from the current and from the recorded bubble image shows a gas evolution efficiency increasing continuously with the growth of the bubble until it reaches 100%. Two different substrates, glass and epoxy, were used to embed the Pt wire. While nearly no difference was found with respect to the growth law for the bubble radius, the contact angle differs strongly for the two types of cell. Data provided for the contact point evolution further complete the image of single hydrogen bubble growth. Finally, the velocity field driven by the detached bubble was measured by means of PIV, and the effects of the convection on the subsequent bubble were evaluated. PMID:26133052

  18. Heat transfer and bubble dynamics in slurry bubble columns for Fischer-Tropsch clean alternative energy

    NASA Astrophysics Data System (ADS)

    Wu, Chengtian

    With the increasing demand for alternative energy resources, the Fischer-Tropsch (FT) process that converts synthesis gas into clean liquid fuels has attracted more interest from the industry. Slurry bubble columns are the most promising reactors for FT synthesis due to their advantages over other reactors. Successful operation, design, and scale-up of such reactors require detailed knowledge of hydrodynamics, bubble dynamics, and transport characteristics. However, most previous studies have been conducted at ambient pressure or covered only low superficial gas velocities. The objectives of this study were to experimentally investigate the heat transfer coefficient and bubble dynamics in slurry bubble columns at conditions that can mimic FT conditions. The air-C9C 11-FT catalysts/glass beads systems were selected to mimic the physical properties of the gas, liquid, and solid phases at commercial FT operating conditions. A heat transfer coefficient measurement technique was developed, and for the first time, this technique was applied in a pilot scale (6-inch diameter) high pressure slurry bubble column. The effects of superficial gas velocity, pressure, solids loading, and liquid properties on the heat transfer coefficients were investigated. Since the heat transfer coefficient can be affected by the bubble properties (Kumar et al., 1992), in this work bubble dynamics (local gas holdup, bubble chord length, apparent bubble frequency, specific interfacial area, and bubble velocity) were studied using the improved four-point optical probe technique (Xue et al., 2003; Xue, 2004). Because the four-point optical technique had only been successfully applied in a churn turbulent flow bubble column (Xue, 2004), this technique was first assessed in a small scale slurry bubble column in this study. Then the bubble dynamics were studied at the same conditions as the heat transfer coefficient investigation in the same pilot scale column. The results from four-point probe

  19. Bubble Generation in a Flowing Liquid Medium and Resulting Two-Phase Flow in Microgravity

    NASA Technical Reports Server (NTRS)

    Pais, S. C.; Kamotani, Y.; Bhunia, A.; Ostrach, S.

    1999-01-01

    The present investigation reports a study of bubble generation under reduced gravity conditions, using both a co-flow and a cross-flow configuration. This study may be used in the conceptual design of a space-based thermal management system. Ensuing two-phase flow void fraction can be accurately monitored using a single nozzle gas injection system within a continuous liquid flow conduit, as utilized in the present investigation. Accurate monitoring of void fraction leads to precise control of heat and mass transfer coefficients related to a thermal management system; hence providing an efficient and highly effective means of removing heat aboard spacecraft or space stations. Our experiments are performed in parabolic flight aboard the modified DC-9 Reduced Gravity Research Aircraft at NASA Lewis Research Center, using an air-water system. For the purpose of bubble dispersion in a flowing liquid, we use both a co-flow and a cross-flow configuration. In the co-flow geometry, air is introduced through a nozzle in the same direction with the liquid flow. On the other hand, in the cross-flow configuration, air is injected perpendicular to the direction of water flow, via a nozzle protruding inside the two-phase flow conduit. Three different flow conduit (pipe) diameters are used, namely, 1.27 cm, 1.9 cm and 2.54 cm. Two different ratios of nozzle to pipe diameter (D(sub N))sup * are considered, namely (D(sub N))sup * = 0.1 and 0.2, while superficial liquid velocities are varied from 8 to 70 cm/s depending on flow conduit diameter. It is experimentally observed that by holding all other flow conditions and geometry constant, generated bubbles decrease in size with increase in superficial liquid velocity. Detached bubble diameter is shown to increase with air injection nozzle diameter. Likewise, generated bubbles grow in size with increasing pipe diameter. Along the same lines, it is shown that bubble frequency of formation increases and hence the time to detachment of a

  20. Bernoulli excitation and detection of gas bubbles.

    PubMed

    Telling, R H; Walton, A J

    2001-10-01

    A simple method is proposed for detecting and sizing bubbles in pipeline fluid flow. This is based on changing the pressure of the fluid, which in turn excites volume oscillations in the bubble. If the change in pressure is of sufficient brevity and magnitude, the transient distortion results in excitation of the bubble into radiative oscillation at its natural frequency. In a moving fluid, the Bernoulli equation predicts that such a pressure change can be achieved through a suitable gradient in the flow velocity. In the experiments described here, this is achieved by altering the cross-sectional area of the pipe in which the fluid is flowing. We demonstrate the efficacy of this excitation method and, by detecting the radiated sound using a nearby hydrophone, determine the size of individual bubbles from their characteristic oscillation frequency.

  1. Interacting bubble clouds and their sonochemical production.

    PubMed

    Stricker, Laura; Dollet, Benjamin; Fernández Rivas, David; Lohse, Detlef

    2013-09-01

    An acoustically driven air pocket trapped in a pit etched on a surface can emit a bubble cluster. When several pits are present, the resulting bubble clusters interact in a nontrivial way. Fernández Rivas et al. [Angew. Chem. Int. Ed. 49, 9699-9701 (2010)] observed three different behaviors at increasing driving power: clusters close to their "mother" pits, clusters attracting each other but still well separated, and merging clusters. The last is highly undesirable for technological purposes as it is associated with a reduction of the radical production and an enhancement of the erosion of the reactor walls. In this paper, the conditions for merging to occur are quantified in the case of two clusters, as a function of the following control parameters: driving pressure, distance between the two pits, cluster radius, and number of bubbles within each cluster. The underlying mechanism, governed by the secondary Bjerknes forces, is strongly influenced by the nonlinearity of the bubble oscillations and not directly by the number of nucleated bubbles. The Bjerknes forces are found to dampen the bubble oscillations, thus reducing the radical production. Therefore, the increased number of bubbles at high power could be the key to understanding the experimental observation that, above a certain power threshold, any further increase of the driving does not improve the sonochemical efficiency.

  2. Day and night variation in chemical composition and toxicological responses of size segregated urban air PM samples in a high air pollution situation

    NASA Astrophysics Data System (ADS)

    Jalava, P. I.; Wang, Q.; Kuuspalo, K.; Ruusunen, J.; Hao, L.; Fang, D.; Väisänen, O.; Ruuskanen, A.; Sippula, O.; Happo, M. S.; Uski, O.; Kasurinen, S.; Torvela, T.; Koponen, H.; Lehtinen, K. E. J.; Komppula, M.; Gu, C.; Jokiniemi, J.; Hirvonen, M.-R.

    2015-11-01

    Urban air particulate pollution is a known cause for adverse human health effects worldwide. China has encountered air quality problems in recent years due to rapid industrialization. Toxicological effects induced by particulate air pollution vary with particle sizes and season. However, it is not known how distinctively different photochemical activity and different emission sources during the day and the night affect the chemical composition of the PM size ranges and subsequently how it is reflected to the toxicological properties of the PM exposures. The particulate matter (PM) samples were collected in four different size ranges (PM10-2.5; PM2.5-1; PM1-0.2 and PM0.2) with a high volume cascade impactor. The PM samples were extracted with methanol, dried and thereafter used in the chemical and toxicological analyses. RAW264.7 macrophages were exposed to the particulate samples in four different doses for 24 h. Cytotoxicity, inflammatory parameters, cell cycle and genotoxicity were measured after exposure of the cells to particulate samples. Particles were characterized for their chemical composition, including ions, element and PAH compounds, and transmission electron microscopy (TEM) was used to take images of the PM samples. Chemical composition and the induced toxicological responses of the size segregated PM samples showed considerable size dependent differences as well as day to night variation. The PM10-2.5 and the PM0.2 samples had the highest inflammatory potency among the size ranges. Instead, almost all the PM samples were equally cytotoxic and only minor differences were seen in genotoxicity and cell cycle effects. Overall, the PM0.2 samples had the highest toxic potential among the different size ranges in many parameters. PAH compounds in the samples and were generally more abundant during the night than the day, indicating possible photo-oxidation of the PAH compounds due to solar radiation. This was reflected to different toxicity in the PM

  3. The Influence of Bubbles on the Perception Carbonation Bite

    PubMed Central

    Wise, Paul M.; Wolf, Madeline; Thom, Stephen R.; Bryant, Bruce

    2013-01-01

    Although many people naively assume that the bite of carbonation is due to tactile stimulation of the oral cavity by bubbles, it has become increasingly clear that carbonation bite comes mainly from formation of carbonic acid in the oral mucosa. In Experiment 1, we asked whether bubbles were in fact required to perceive carbonation bite. Subjects rated oral pungency from several concentrations of carbonated water both at normal atmospheric pressure (at which bubbles could form) and at 2.0 atmospheres pressure (at which bubbles did not form). Ratings of carbonation bite under the two pressure conditions were essentially identical, indicating that bubbles are not required for pungency. In Experiment 2, we created controlled streams of air bubbles around the tongue in mildly pungent CO2 solutions to determine how tactile stimulation from bubbles affects carbonation bite. Since innocuous sensations like light touch and cooling often suppress pain, we predicted that bubbles might reduce rated bite. Contrary to prediction, air bubbles flowing around the tongue significantly enhanced rated bite, without inducing perceived bite in blank (un-carbonated) solutions. Accordingly, though bubbles are clearly not required for carbonation bite, they may well modulate perceived bite. More generally, the results show that innocuous tactile stimulation can enhance chemogenic pain. Possible physiological mechanisms are discussed. PMID:23990956

  4. The influence of bubbles on the perception carbonation bite.

    PubMed

    Wise, Paul M; Wolf, Madeline; Thom, Stephen R; Bryant, Bruce

    2013-01-01

    Although many people naively assume that the bite of carbonation is due to tactile stimulation of the oral cavity by bubbles, it has become increasingly clear that carbonation bite comes mainly from formation of carbonic acid in the oral mucosa. In Experiment 1, we asked whether bubbles were in fact required to perceive carbonation bite. Subjects rated oral pungency from several concentrations of carbonated water both at normal atmospheric pressure (at which bubbles could form) and at 2.0 atmospheres pressure (at which bubbles did not form). Ratings of carbonation bite under the two pressure conditions were essentially identical, indicating that bubbles are not required for pungency. In Experiment 2, we created controlled streams of air bubbles around the tongue in mildly pungent CO2 solutions to determine how tactile stimulation from bubbles affects carbonation bite. Since innocuous sensations like light touch and cooling often suppress pain, we predicted that bubbles might reduce rated bite. Contrary to prediction, air bubbles flowing around the tongue significantly enhanced rated bite, without inducing perceived bite in blank (un-carbonated) solutions. Accordingly, though bubbles are clearly not required for carbonation bite, they may well modulate perceived bite. More generally, the results show that innocuous tactile stimulation can enhance chemogenic pain. Possible physiological mechanisms are discussed.

  5. Shock response of He bubbles in single crystal Cu

    SciTech Connect

    Li, B.; Wang, L.; E, J. C.; Luo, S. N.; Ma, H. H.

    2014-12-07

    With large-scale molecular dynamics simulations, we investigate shock response of He nanobubbles in single crystal Cu. For sufficient bubble size or internal pressure, a prismatic dislocation loop may form around a bubble in unshocked Cu. The internal He pressure helps to stabilize the bubble against plastic deformation. However, the prismatic dislocation loops may partially heal but facilitate nucleation of new shear and prismatic dislocation loops. For strong shocks, the internal pressure also impedes internal jetting, while a bubble assists local melting; a high speed jet breaks a He bubble into pieces dispersed among Cu. Near-surface He bubbles may burst and form high velocity ejecta containing atoms and small fragments, while the ejecta velocities do not follow the three-dimensional Maxwell-Boltzmann distributions expected for thermal equilibrium. The biggest fragment size deceases with increasing shock strength. With a decrease in ligament thickness or an increase in He bubble size, the critical shock strength required for bubble bursting decreases, while the velocity range, space extension and average velocity component along the shock direction, increase. Small bubbles are more efficient in mass ejecting. Compared to voids and perfect single crystal Cu, He bubbles have pronounced effects on shock response including bubble/void collapse, Hugoniot elastic limit (HEL), deformation mechanisms, and surface jetting. HEL is the highest for perfect single crystal Cu with the same orientations, followed by He bubbles without pre-existing prismatic dislocation loops, and then voids. Complete void collapse and shear dislocations occur for embedded voids, as opposed to partial collapse, and shear and possibly prismatic dislocations for He bubbles. He bubbles lower the threshhold shock strength for ejecta formation, and increase ejecta velocity and ejected mass.

  6. Tribonucleation of bubbles.

    PubMed

    Wildeman, Sander; Lhuissier, Henri; Sun, Chao; Lohse, Detlef; Prosperetti, Andrea

    2014-07-15

    We report on the nucleation of bubbles on solids that are gently rubbed against each other in a liquid. The phenomenon is found to depend strongly on the material and roughness of the solid surfaces. For a given surface, temperature, and gas content, a trail of growing bubbles is observed if the rubbing force and velocity exceed a certain threshold. Direct observation through a transparent solid shows that each bubble in the trail results from the early coalescence of several microscopic bubbles, themselves detaching from microscopic gas pockets forming between the solids. From a detailed study of the wear tracks, with atomic force and scanning electron microscopy imaging, we conclude that these microscopic gas pockets originate from a local fracturing of the surface asperities, possibly enhanced by chemical reactions at the freshly created surfaces. Our findings will be useful either for preventing undesired bubble formation or, on the contrary, for "writing with bubbles," i.e., creating controlled patterns of microscopic bubbles.

  7. Magma mixing enhanced by bubble ascent

    NASA Astrophysics Data System (ADS)

    Wiesmaier, S.; Morgavi, D.; Perugini, D.; De Campos, C. P.; Hess, K.; Lavallee, Y.; Dingwell, D. B.

    2012-12-01

    Understanding the processes that affect the rate of liquid state homogenization provides fundamental clues on the otherwise inaccessible subsurface dynamics of magmatic plumbing systems. Compositional heterogeneities detected in the matrix of magmatic rocks represent the arrested state of a chemical equilibration. Magmatic homogenization has been divided into a) the mechanical interaction of magma batches (mingling) and b) the diffusive equilibration of compositional gradients, where diffusive equilibration is exponentially enhanced by progressive mechanical interaction [1]. The mechanical interaction between two distinct batches of magma has commonly been attributed to shear and folding movements between two liquids of distinct viscosities. A mode of mechanical interaction scarcely invoked is the advection of mafic material into a felsic one through bubble motion. Yet, experiments with analogue materials demonstrated that bubble ascent has the potential to enhance the fluid mechanical component of magma mixing [2]. Here, we present preliminary results from bubble-advection experiments. For the first time, experiments of this kind were performed using natural materials at magmatic temperatures. Cylinders of Snake River Plain (SRP) basalt were drilled with a cavity of defined volume and placed underneath cylinders of SRP rhyolite. Upon melting, the gas pocket, or bubble trapped within the cavity, rose into the rhyolite, so entraining a layer of basalt. Successive iterations of the same experiment at progressive intervals ensured a time series of magmatic interaction caused by bubble segregation. Variations in initial bubble size allowed the tracking of bubble volume to advected material ratio at defined viscosity contrast. The resulting plume-like structures that the advected basalt formed within the rhyolite were characterized by microCT and subsequent high-resolution EMP analyses. The mass of advected material per bubble correlated positively with bubble size. The

  8. The hydrodynamics of bubble rise and impact with solid surfaces.

    PubMed

    Manica, Rogerio; Klaseboer, Evert; Chan, Derek Y C

    2016-09-01

    A bubble smaller than 1mm in radius rises along a straight path in water and attains a constant speed due to the balance between buoyancy and drag force. Depending on the purity of the system, within the two extreme limits of tangentially immobile or mobile boundary conditions at the air-water interface considerably different terminal speeds are possible. When such a bubble impacts on a horizontal solid surface and bounces, interesting physics can be observed. We study this physical phenomenon in terms of forces, which can be of colloidal, inertial, elastic, surface tension and viscous origins. Recent advances in high-speed photography allow for the observation of phenomena on the millisecond scale. Simultaneous use of such cameras to visualize both rise/deformation and the dynamics of the thin film drainage through interferometry are now possible. These experiments confirm that the drainage process obeys lubrication theory for the spectrum of micrometre to millimetre-sized bubbles that are covered in this review. We aim to bridge the colloidal perspective at low Reynolds numbers where surface forces are important to high Reynolds number fluid dynamics where the effect of the surrounding flow becomes important. A model that combines a force balance with lubrication theory allows for the quantitative comparison with experimental data under different conditions without any fitting parameter. PMID:27378067

  9. A numerical study on the effect of the bubble diameter on the mass transfer in bubbly plumes

    NASA Astrophysics Data System (ADS)

    Gong, Xiaobo; Huang, Huaxiong; Matsumoto, Yoichiro

    2005-11-01

    A numerical simulation has been conducted for studying the effect of bubble diameter on the mass transfer efficiency and the concentration distribution of the dissolved gas in a bubbly plume. The numerical method for describing the bubbly plume with mass transfer was developed in an Euler-Lagrange way. The Navier-Stokes equation was adopted for the movement of the liquid phase. The motion of bubbles was tracked individually. The interaction between the liquid and bubbles were considered with a two-way coupling method. The model for the correlation of the dissolution and diffusion of the gas and the translational motions of bubbles with mass loss was introduced. The oxygen bubble plume in a quasi two dimensional rectangular water tank was simulated and studied. The numerical results show that the mass transfer efficiency non-linearly deceases with the increase of bubble diameter. Optimal bubble diameter exists for the mass transfer with a given tank size. The bubble diameter distribution of a certain range does not clearly affect the mean mass transfer efficiency. However, the mixing of different sizes of bubbles improves the uniformity of the concentration distribution in the flow field.

  10. Langmuir nanoarchitectonics: one-touch fabrication of regularly sized nanodisks at the air-water interface.

    PubMed

    Mori, Taizo; Sakakibara, Keita; Endo, Hiroshi; Akada, Misaho; Okamoto, Ken; Shundo, Atsuomi; Lee, Michael V; Ji, Qingmin; Fujisawa, Takuya; Oka, Kenichiro; Matsumoto, Mutsuyoshi; Sakai, Hideki; Abe, Masahiko; Hill, Jonathan P; Ariga, Katsuhiko

    2013-06-18

    In this article, we propose a novel methodology for the formation of monodisperse regularly sized disks of several nanometer thickness and with diameters of less than 100 nm using Langmuir monolayers as fabrication media. An amphiphilic triimide, tri-n-dodecylmellitic triimide (1), was spread as a monolayer at the air-water interface with a water-soluble macrocyclic oligoamine, 1,4,7,10-tetraazacyclododecane (cyclen), in the subphase. The imide moieties of 1 act as hydrogen bond acceptors and can interact weakly with the secondary amine moieties of cyclen as hydrogen bond donors. The monolayer behavior of 1 was investigated through π-A isotherm measurements and Brewster angle microscopy (BAM). The presence of cyclen in the subphase significantly shifted isotherms and induced the formation of starfish-like microstructures. Transferred monolayers on solid supports were analyzed by reflection absorption FT-IR (FT-IR-RAS) spectroscopy and atomic force microscopy (AFM). The Langmuir monolayer transferred onto freshly cleaved mica by a surface touching (i.e., Langmuir-Schaefer) method contained disk-shaped objects with a defined height of ca. 3 nm and tunable diameter in the tens of nanometers range. Several structural parameters such as the disk height, molecular aggregation numbers in disk units, and 2D disk density per unit surface area are further discussed on the basis of AFM observations together with aggregate structure estimation and thermodynamic calculations. It should be emphasized that these well-defined structures are produced through simple routine procedures such as solution spreading, mechanical compression, and touching a substrate at the surface. The controlled formation of defined nanostructures through easy macroscopic processes should lead to unique approaches for economical, energy-efficient nanofabrication.

  11. Bubble bursting as an aerosol generation mechanism during an oil spill in the deep-sea environment: molecular dynamics simulations of oil alkanes and dispersants in atmospheric air/salt water interfaces.

    PubMed

    Liyana-Arachchi, Thilanga P; Zhang, Zenghui; Ehrenhauser, Franz S; Avij, Paria; Valsaraj, Kalliat T; Hung, Francisco R

    2014-01-01

    Potential of mean force (PMF) calculations and molecular dynamics (MD) simulations were performed to investigate the properties of oil n-alkanes [i.e., n-pentadecane (C15), n-icosane (C20) and n-triacontane (C30)], as well as several surfactant species [i.e., the standard anionic surfactant sodium dodecyl sulfate (SDS), and three model dispersants similar to the Tween and Span species present in Corexit 9500A] at air/salt water interfaces. This study was motivated by the 2010 Deepwater Horizon (DWH) oil spill, and our simulation results show that, from the thermodynamic point of view, the n-alkanes and the model dispersants have a strong preference to remain at the air/salt water interface, as indicated by the presence of deep free energy minima at these interfaces. The free energy minimum of these n-alkanes becomes deeper as their chain length increases, and as the concentration of surfactant species at the interface increases. The n-alkanes tend to adopt a flat orientation and form aggregates at the bare air/salt water interface. When this interface is coated with surfactants, the n-alkanes tend to adopt more tilted orientations with respect to the vector normal to the interface. These simulation results are consistent with the experimental findings reported in the accompanying paper [Ehrenhauser et al., Environ. Sci.: Processes Impacts 2013, in press, (DOI: 10.1039/c3em00390f)]. The fact that these long-chain n-alkanes show a strong thermodynamic preference to remain at the air/salt water interfaces, especially if these interfaces are coated with surfactants, makes these species very likely to adsorb at the surface of bubbles or droplets and be ejected to the atmosphere by sea surface processes such as whitecaps (breaking waves) and bubble bursting. Finally, the experimental finding that more oil hydrocarbons are ejected when Corexit 9500A is present in the system is consistent with the deeper free energy minima observed for the n-alkanes at the air/salt water

  12. Ultrasound-induced dissolution of lipid-coated and uncoated gas bubbles.

    PubMed

    Cox, Debra J; Thomas, James L

    2010-09-21

    The 1.1 MHz ultrasound response of micrometer-scale perfluorobutane gas bubbles, coated with a mixture of 90 mol % saturated phospholipid (disteroylphosphatidylcholine, DSPC) or unsaturated phospholipid (dioleoylphosphatidylcholine, DOPC) and 10 mol % PEG-lipid, was studied by optical microscopy. Uncoated bubbles were also studied. Bubbles, resting buoyantly against the wall of a polystyrene cuvette, were exposed to brief pulses of ultrasound (∼200 kPa amplitude) at a repetition rate of 25 Hz; images of the bubbles were taken after every other pulse. The coating had little effect on the initial response: large (>10 μm diameter) bubbles showed no size change, while smaller bubbles rapidly shrank (or fragmented) to reach a stable or metastable diameter-ca. 2 μm for coated bubbles and 4 μm for uncoated bubbles. The coating had a significant effect on further bubble evolution: after reaching a metastable size, uncoated bubbles and DOPC-coated bubbles continued to shrink slowly and ultimately vanished entirely, while DSPC-coated bubbles did not change perceptibly during the duration of the exposure. Numerical modeling using the modified Herring equation showed that the size range in which DSPC bubbles responded does correspond well with the bubble resonance; the long-term stability of these bubbles may be related to the ability of the DSPC to form a two-dimensional solid at ambient temperature or to phase separate from the PEG-lipid.

  13. A bubble detection system for propellant filling pipeline.

    PubMed

    Wen, Wen; Zong, Guanghua; Bi, Shusheng

    2014-06-01

    This paper proposes a bubble detection system based on the ultrasound transmission method, mainly for probing high-speed bubbles in the satellite propellant filling pipeline. First, three common ultrasonic detection methods are compared and the ultrasound transmission method is used in this paper. Then, the ultrasound beam in a vertical pipe is investigated, suggesting that the width of the beam used for detection is usually smaller than the internal diameter of the pipe, which means that when bubbles move close to the pipe wall, they may escape from being detected. A special device is designed to solve this problem. It can generate the spiral flow to force all the bubbles to ascend along the central line of the pipe. In the end, experiments are implemented to evaluate the performance of this system. Bubbles of five different sizes are generated and detected. Experiment results show that the sizes and quantity of bubbles can be estimated by this system. Also, the bubbles of different radii can be distinguished from each other. The numerical relationship between the ultrasound attenuation and the bubble radius is acquired and it can be utilized for estimating the unknown bubble size and measuring the total bubble volume.

  14. A bubble detection system for propellant filling pipeline

    SciTech Connect

    Wen, Wen; Zong, Guanghua; Bi, Shusheng

    2014-06-15

    This paper proposes a bubble detection system based on the ultrasound transmission method, mainly for probing high-speed bubbles in the satellite propellant filling pipeline. First, three common ultrasonic detection methods are compared and the ultrasound transmission method is used in this paper. Then, the ultrasound beam in a vertical pipe is investigated, suggesting that the width of the beam used for detection is usually smaller than the internal diameter of the pipe, which means that when bubbles move close to the pipe wall, they may escape from being detected. A special device is designed to solve this problem. It can generate the spiral flow to force all the bubbles to ascend along the central line of the pipe. In the end, experiments are implemented to evaluate the performance of this system. Bubbles of five different sizes are generated and detected. Experiment results show that the sizes and quantity of bubbles can be estimated by this system. Also, the bubbles of different radii can be distinguished from each other. The numerical relationship between the ultrasound attenuation and the bubble radius is acquired and it can be utilized for estimating the unknown bubble size and measuring the total bubble volume.

  15. Non-intrusive characterization of a dispersed, bubbly, axisymmetric jet

    NASA Astrophysics Data System (ADS)

    Stanley, Kevin Nathaniel

    2000-12-01

    This study investigated the effects of bubble size and phase distribution on the liquid and bubble flow fields in a dispersed, bubbly axisymmetric jet. Of primary interest was the interaction of the bubbles with large-scale structures in the developing region of the jet. Measurements were made non-intrusively via Laser Doppler Velocimetry (LDV), Phase-Doppler Analysis (PDA) and video imaging techniques. Liquid Reynolds' numbers were varied from approximately 6,000 to 18,000 while gas volume fraction ranged from 0 to 3%. Bubble sizes varied from approximately 600 mum to 1500 mum. Axial mean velocities and RMS fluctuations have been reported for the liquid phase. Axial and radial mean velocities and RMS fluctuations have been reported for the bubbles. Measurements have been made along the centerline and radially at downstream locations of x/Djet = 0.08, 4, 8, and 16. The effects of bubble size and phase distribution on the development of the axisymmetric shear layer as well as liquid phase and bubble velocity properties in general have been examined. These data have been put into perspective with respect to traditional two-phase flow parameters as well as previous experimental, analytical and computational works. Bubble/turbulence interaction was examined in the context of the turbulent kinetic energy spectrum and a critical wave number corresponding to bubble diameter was found above which turbulence was enhanced, and below which it was attenuated.

  16. A bubble detection system for propellant filling pipeline

    NASA Astrophysics Data System (ADS)

    Wen, Wen; Zong, Guanghua; Bi, Shusheng

    2014-06-01

    This paper proposes a bubble detection system based on the ultrasound transmission method, mainly for probing high-speed bubbles in the satellite propellant filling pipeline. First, three common ultrasonic detection methods are compared and the ultrasound transmission method is used in this paper. Then, the ultrasound beam in a vertical pipe is investigated, suggesting that the width of the beam used for detection is usually smaller than the internal diameter of the pipe, which means that when bubbles move close to the pipe wall, they may escape from being detected. A special device is designed to solve this problem. It can generate the spiral flow to force all the bubbles to ascend along the central line of the pipe. In the end, experiments are implemented to evaluate the performance of this system. Bubbles of five different sizes are generated and detected. Experiment results show that the sizes and quantity of bubbles can be estimated by this system. Also, the bubbles of different radii can be distinguished from each other. The numerical relationship between the ultrasound attenuation and the bubble radius is acquired and it can be utilized for estimating the unknown bubble size and measuring the total bubble volume.

  17. Particle-bubble aggregate stability on static bubble generated by single nozzle on flotation process

    NASA Astrophysics Data System (ADS)

    Warjito, Harinaldi, Setyantono, Manus; Siregar, Sahala D.

    2016-06-01

    There are three sub-processes on flotation. These processes are intervening liquid film into critical thickness, rupture of liquid film forming three phase contact line, and expansion three phase contact line forming aggregate stability. Aggregate stability factor contribute to determine flotation efficiency. Aggregate stability has some important factors such as reagent and particle geometry. This research focussed on to understand effect of particle geometry to aggregate stability. Experimental setup consists of 9 x 9 x26 cm flotation column made of glass, bubble generator, particle feeding system, and high speed video camera. Bubble generator made from single nozzle with 0.3 mm diameter attached to programmable syringe pump. Particle feeding system made of pipette. Particle used in this research is taken from open pit Grasberg in Timika, Papua. Particle has sub-angular geometry and its size varies from 38 to 300 µm. Bubble-particle interaction are recorded using high speed video camera. Recordings from high speed video camera analyzed using image processing software. Experiment result shows that aggregate particle-bubble and induction time depends on particle size. Small particle (38-106 µm) has long induction time and able to rupture liquid film and also forming three phase contact line. Big particle (150-300 µm) has short induction time, so it unable to attach with bubble easily. This phenomenon is caused by apparent gravity work on particle-bubble interaction. Apparent gravity worked during particle sliding on bubble surface experience increase and reached its maximum magnitude at bubble equator. After particle passed bubble equator, apparent gravity force experience decrease. In conclusion particle size from 38-300 µm can form stable aggregate if particle attached with bubble in certain condition.

  18. Dynamics of two-dimensional bubbles.

    PubMed

    Piedra, Saúl; Ramos, Eduardo; Herrera, J Ramón

    2015-06-01

    The dynamics of two-dimensional bubbles ascending under the influence of buoyant forces is numerically studied with a one-fluid model coupled with the front-tracking technique. The bubble dynamics are described by recording the position, shape, and orientation of the bubbles as functions of time. The qualitative properties of the bubbles and their terminal velocities are described in terms of the Eötvos (ratio of buoyancy to surface tension) and Archimedes numbers (ratio of buoyancy to viscous forces). The terminal Reynolds number result from the balance of buoyancy and drag forces and, consequently, is not an externally fixed parameter. In the cases that yield small Reynolds numbers, the bubbles follow straight paths and the wake is steady. A more interesting behavior is found at high Reynolds numbers where the bubbles follow an approximately periodic zigzag trajectory and an unstable wake with properties similar to the Von Karman vortex street is formed. The dynamical features of the motion of single bubbles are compared to experimental observations of air bubbles ascending in a water-filled Hele-Shaw cell. Although the comparison is not strictly valid in the sense that the effect of the lateral walls is not incorporated in the model, most of the dynamical properties observed are in good qualitative agreement with the numerical calculations. Hele-Shaw cells with different gaps have been used to determine the degree of approximation of the numerical calculation. It is found that for the relation between the terminal Reynolds number and the Archimedes number, the numerical calculations are closer to the observations of bubble dynamics in Hele-Shaw cells of larger gaps. PMID:26172798

  19. Nonlinear Bubble Interactions in Acoustic Pressure Fields

    NASA Technical Reports Server (NTRS)

    Barbat, Tiberiu; Ashgriz, Nasser; Liu, Ching-Shi

    1996-01-01

    The systems consisting of a two-phase mixture, as clouds of bubbles or drops, have shown many common features in their responses to different external force fields. One of particular interest is the effect of an unsteady pressure field applied to these systems, case in which the coupling of the vibrations induced in two neighboring components (two drops or two bubbles) may result in an interaction force between them. This behavior was explained by Bjerknes by postulating that every body that is moving in an accelerating fluid is subjected to a 'kinetic buoyancy' equal with the product of the acceleration of the fluid multiplied by the mass of the fluid displaced by the body. The external sound wave applied to a system of drops/bubbles triggers secondary sound waves from each component of the system. These secondary pressure fields integrated over the surface of the neighboring drop/bubble may result in a force additional to the effect of the primary sound wave on each component of the system. In certain conditions, the magnitude of these secondary forces may result in significant changes in the dynamics of each component, thus in the behavior of the entire system. In a system containing bubbles, the sound wave radiated by one bubble at the location of a neighboring one is dominated by the volume oscillation mode and its effects can be important for a large range of frequencies. The interaction forces in a system consisting of drops are much smaller than those consisting of bubbles. Therefore, as a first step towards the understanding of the drop-drop interaction subject to external pressure fluctuations, it is more convenient to study the bubble interactions. This paper presents experimental results and theoretical predictions concerning the interaction and the motion of two levitated air bubbles in water in the presence of an acoustic field at high frequencies (22-23 KHz).

  20. Dynamics of two-dimensional bubbles

    NASA Astrophysics Data System (ADS)

    Piedra, Saúl; Ramos, Eduardo; Herrera, J. Ramón

    2015-06-01

    The dynamics of two-dimensional bubbles ascending under the influence of buoyant forces is numerically studied with a one-fluid model coupled with the front-tracking technique. The bubble dynamics are described by recording the position, shape, and orientation of the bubbles as functions of time. The qualitative properties of the bubbles and their terminal velocities are described in terms of the Eötvos (ratio of buoyancy to surface tension) and Archimedes numbers (ratio of buoyancy to viscous forces). The terminal Reynolds number result from the balance of buoyancy and drag forces and, consequently, is not an externally fixed parameter. In the cases that yield small Reynolds numbers, the bubbles follow straight paths and the wake is steady. A more interesting behavior is found at high Reynolds numbers where the bubbles follow an approximately periodic zigzag trajectory and an unstable wake with properties similar to the Von Karman vortex street is formed. The dynamical features of the motion of single bubbles are compared to experimental observations of air bubbles ascending in a water-filled Hele-Shaw cell. Although the comparison is not strictly valid in the sense that the effect of the lateral walls is not incorporated in the model, most of the dynamical properties observed are in good qualitative agreement with the numerical calculations. Hele-Shaw cells with different gaps have been used to determine the degree of approximation of the numerical calculation. It is found that for the relation between the terminal Reynolds number and the Archimedes number, the numerical calculations are closer to the observations of bubble dynamics in Hele-Shaw cells of larger gaps.

  1. Dynamics of two-dimensional bubbles.

    PubMed

    Piedra, Saúl; Ramos, Eduardo; Herrera, J Ramón

    2015-06-01

    The dynamics of two-dimensional bubbles ascending under the influence of buoyant forces is numerically studied with a one-fluid model coupled with the front-tracking technique. The bubble dynamics are described by recording the position, shape, and orientation of the bubbles as functions of time. The qualitative properties of the bubbles and their terminal velocities are described in terms of the Eötvos (ratio of buoyancy to surface tension) and Archimedes numbers (ratio of buoyancy to viscous forces). The terminal Reynolds number result from the balance of buoyancy and drag forces and, consequently, is not an externally fixed parameter. In the cases that yield small Reynolds numbers, the bubbles follow straight paths and the wake is steady. A more interesting behavior is found at high Reynolds numbers where the bubbles follow an approximately periodic zigzag trajectory and an unstable wake with properties similar to the Von Karman vortex street is formed. The dynamical features of the motion of single bubbles are compared to experimental observations of air bubbles ascending in a water-filled Hele-Shaw cell. Although the comparison is not strictly valid in the sense that the effect of the lateral walls is not incorporated in the model, most of the dynamical properties observed are in good qualitative agreement with the numerical calculations. Hele-Shaw cells with different gaps have been used to determine the degree of approximation of the numerical calculation. It is found that for the relation between the terminal Reynolds number and the Archimedes number, the numerical calculations are closer to the observations of bubble dynamics in Hele-Shaw cells of larger gaps.

  2. The Dynamics of Bubbles and Bubble Clouds.

    NASA Astrophysics Data System (ADS)

    Smereka, Peter Stenberg

    In an effort to understand acoustic cavitation noise the dynamics of periodically driven single bubbles and bubble clouds are examined. The single bubble equations are written as a perturbation of a Hamiltonian system and the conditions for resonances to occur are found, these can interact with the nonresonant orbit to produce jump and period-doubling bifurcations. To study the chaotic behavior a map which approximates the Poincare map in the resonant band is derived. The Poincare map is computed numerically which shows the formation of strange attractors which suddenly disappear leaving behind Smale horseshoe maps. The bubble cloud is studied using an averaged two-fluid model for bubbly flow with periodic driving at the boundary. The equations are examined both analytically and numerically. Local and global existence of solutions is proved and the existence of an absorbing set is established. An analysis of the linearized equations combined with estimates on the nonlinearity is used to prove the existence of nonlinear periodic orbit. This periodic orbit is a fixed point of the Poincare map and its stability is determined by finding the spectrum of the linearized Poincare map. This calculation combined with the absorbing set proves that the long term dynamics of the bubble cloud is finite dimensional. Numerical computations show the important attractors are a periodic -two orbit and a quasi-periodic orbit.

  3. Lithotripter shock wave interaction with a bubble near various biomaterials

    NASA Astrophysics Data System (ADS)

    Ohl, S. W.; Klaseboer, E.; Szeri, A. J.; Khoo, B. C.

    2016-10-01

    Following previous work on the dynamics of an oscillating bubble near a bio-material (Ohl et al 2009 Phys. Med. Biol. 54 6313-36) and the interaction of a bubble with a shockwave (Klaseboer et al 2007 J. Fluid Mech. 593 33-56), the present work concerns the interaction of a gas bubble with a traveling shock wave (such as from a lithotripter) in the vicinity of bio-materials such as fat, skin, muscle, cornea, cartilage, and bone. The bubble is situated in water (to represent a water-like biofluid). The bubble collapses are not spherically symmetric, but tend to feature a high speed jet. A few simulations are performed and compared with available experimental observations from Sankin and Zhong (2006 Phys. Rev. E 74 046304). The collapses of cavitation bubbles (created by laser in the experiment) near an elastic membrane when hit by a lithotripter shock wave are correctly captured by the simulation. This is followed by a more systematic study of the effects involved concerning shockwave bubble biomaterial interactions. If a subsequent rarefaction wave hits the collapsed bubble, it will re-expand to a very large size straining the bio-materials nearby before collapsing once again. It is noted that, for hard bio-material like bone, reflection of the shock wave at the bone—water interface can affect the bubble dynamics. Also the initial size of the bubble has a significant effect. Large bubbles (˜1 mm) will split into smaller bubbles, while small bubbles collapse with a high speed jet in the travel direction of the shock wave. The numerical model offers a computationally efficient way of understanding the complex phenomena involving the interplay of a bubble, a shock wave, and a nearby bio-material.

  4. Modeling of surface cleaning by cavitation bubble dynamics and collapse.

    PubMed

    Chahine, Georges L; Kapahi, Anil; Choi, Jin-Keun; Hsiao, Chao-Tsung

    2016-03-01

    Surface cleaning using cavitation bubble dynamics is investigated numerically through modeling of bubble dynamics, dirt particle motion, and fluid material interaction. Three fluid dynamics models; a potential flow model, a viscous model, and a compressible model, are used to describe the flow field generated by the bubble all showing the strong effects bubble explosive growth and collapse have on a dirt particle and on a layer of material to remove. Bubble deformation and reentrant jet formation are seen to be responsible for generating concentrated pressures, shear, and lift forces on the dirt particle and high impulsive loads on a layer of material to remove. Bubble explosive growth is also an important mechanism for removal of dirt particles, since strong suction forces in addition to shear are generated around the explosively growing bubble and can exert strong forces lifting the particles from the surface to clean and sucking them toward the bubble. To model material failure and removal, a finite element structure code is used and enables simulation of full fluid-structure interaction and investigation of the effects of various parameters. High impulsive pressures are generated during bubble collapse due to the impact of the bubble reentrant jet on the material surface and the subsequent collapse of the resulting toroidal bubble. Pits and material removal develop on the material surface when the impulsive pressure is large enough to result in high equivalent stresses exceeding the material yield stress or its ultimate strain. Cleaning depends on parameters such as the relative size between the bubble at its maximum volume and the particle size, the bubble standoff distance from the particle and from the material wall, and the excitation pressure field driving the bubble dynamics. These effects are discussed in this contribution.

  5. MOBI: Microgravity Observations of Bubble Interactions

    NASA Technical Reports Server (NTRS)

    Koch, Donald L.; Sangani, Ashok

    2004-01-01

    One of the greatest uncertainties affecting the design of multiphase flow technologies for space exploration is the spatial distribution of phases that will arise in microgravity or reduced gravity. On Earth, buoyancy-driven motion predominates whereas the shearing of the bubble suspension controls its behavior in microgravity. We are conducting a series of ground-based experiments and a flight experiment spanning the full range of ratios of buoyancy to shear. These include: (1) bubbles rising in a quiescent liquid in a vertical channel; (2) weak shear flow induced by slightly inclining the channel; (3) moderate shear flow in a terrestrial vertical pipe flow; and (4) shearing of a bubble suspension in a cylindrical Couette cell in microgravity. We consider nearly monodisperse suspensions of 1 to 1.8 mm diameter bubbles in aqueous electrolyte solutions. The liquid velocity disturbance produced by bubbles in this size range can often be described using an inviscid analysis. Electrolytic solutions lead to hydrophilic repulsion forces that stabilize the bubble suspension without causing Marangoni stresses. We will discuss the mechanisms that control the flow behavior and phase distribution in the ground-based experiments and speculate on the factors that may influence the suspension flow and bubble volume fraction distribution in the flight experiment.

  6. Aerodynamic size distribution of suspended particulate matter in the ambient air in the city of Cleveland, Ohio

    NASA Technical Reports Server (NTRS)

    Leibecki, H. F.; King, R. B.; Fordyce, J. S.

    1974-01-01

    The City of Cleveland Division of Air Pollution Control and NASA jointly investigated the chemical and physical characteristics of the suspended particulate matter in Cleveland, and as part of the program, measurements of the particle size distribution of ambient air samples at five urban locations during August and September 1972 were made using high-volume cascade impactions. The distributions were evaluated for lognormality, and the mass median diameters were compared between locations and as a function of resultant wind direction. Junge-type distributions were consistent with dirty continental aerosols. About two-thirds of the suspended particulate matter observed in Cleveland is less than 7 microns in diameter.

  7. The size of the mastoid air cell system among black and white children with middle ear effusion.

    PubMed

    Lindeman, P; Holmquist, J; Shea, J

    1981-09-01

    The incidence of middle ear disease among black American children is lower than among white children. Many factors may contribute to this difference. The possibility of an anatomical variation regarding the cellularity of the mastoid process was investigated. The size of the mastoid air cell system was measured in black and white children with and without middle ear effusion. A significantly smaller mastoid air cell system was found in the groups with middle ear disease compared to those without disease. No difference between white and black children in diseased as well as non-diseased ears could be demonstrated. PMID:7319703

  8. Dosimetric effects of air pocket sizes in MammoSite treatment as accelerated partial breast irradiation for early breast cancer.

    PubMed

    Huang, Y Jessica; Blough, Melissa

    2009-12-23

    MammoSite Brachytherapy System had been used as one of the Accelerated Partial Breast Irradiation (APBI) techniques since 2002. The clinical results from several clinical institutions had shown comparable treatment efficacy, cosmesis, and toxicity, to other APBI techniques. During MammoSite treatment, air cavities had been one of the primary issues causing treatment cancellation or delay. With the tolerance of the air volume less than 10% of the total Planning Target Volume (PTV) been set, there is still no data available to show the actual dose delivered to the breast tissue with the existence of the air pocket. In this paper, Monte Carlo N-Particle version 5 (MCNP5) was used to model a hypothesis MammoSite phantom with different sizes of air pockets, and compared to the calculation results from the treatment planning system (TPS) without heterogeneous corrections. It was found that without heterogeneous corrections, the difference between the TPS and MCNP5 calculations in the air cavity surface doses and PTV point doses can be up to 2.02% and 3.61%, respectively, with the balloon and air pocket size combinations calculated in this paper. Based on the distance from the point of interest to the balloon surface, an approximate dose can be calculated using the linear relationship found in this study. These equations provide a quick and simple way to predict the actual dose delivered to the breast soft tissue located within the PTV. With the equation applied to the dose from the TPS, the dose error caused by the air pocket during MammoSite treatment can be reduced to the minimum.

  9. Effect of added mass on the interaction of bubbles in a low-Reynolds-number shear flow

    NASA Astrophysics Data System (ADS)

    Lavrenteva, Olga; Prakash, Jai; Nir, Avinoam

    2016-02-01

    Equal size air bubbles that are entrapped by a Taylor vortex of the secondary flow in a Couette device, thereby defying buoyancy, slowly form a stable ordered ring with equal separation distances between all neighbors. We present two models of the process dynamics based on force balance on a bubble in the presence of other bubbles positioned on the same streamline in a simple shear flow. The forces taken into account are the viscous resistance, the added mass force, and the inertia-induced repulsing force between two bubbles in a low-Reynolds-number shear flow obtained in Prakash et al. [J. Prakash et al., Phys. Rev. E 87, 043002 (2013), 10.1103/PhysRevE.87.043002]. The first model of the process assumes that each bubble interacts solely with its nearest neighbors. The second model takes into account pairwise interactions among all the bubbles in the ring. The performed dynamic simulations were compared to the experimental results reported in Prakash et al. [J. Prakash et al., Phys. Rev. E 87, 043002 (2013), 10.1103/PhysRevE.87.043002] and to the results of quasistationary models (ignoring the added mass effect) suggested in that paper. It is demonstrated that taking into account the effect of added mass, the models describe the major effect of the bubbles' ordering, provide good estimation of the relaxation time, and also predict nonmonotonic behavior of the separation distance between the bubbles, which exhibit over- and undershooting of equilibrium separations. The latter effects were observed in experiments, but are not predicted by the quasistationary models.

  10. MULTISLICE SIMULATION OF TRANSMISSION ELECTRON MICROSCOPY IMAGING OF HELIUM BUBBLES IN IRON

    SciTech Connect

    Yao, Bo; Edwards, Danny J.; Kurtz, Richard J.; Odette, George R.; Yamamoto, Takuya

    2011-04-17

    The objective of this task is to establish the size correlation between transmission electron microscopy (TEM) imaged helium (He) bubbles and the actual bubbles in an iron (Fe) matrix. SUMMARY The results of this simulation study show that the size of TEM imaged He bubbles, represented by the inner diameter of the first dark Fresnel ring under defocused condition (Din), deviated from the actual bubble size (Do). Din was found to be larger than Do when imaged with a highly incoherent electron beam, but smaller than Do if the beam is coherent. The deviation of Din from Do increases with increasing defocus. On the other hand, the electron beam accelerating voltage, bubble size, bubble position, and TEM sample thickness do not significantly affect the value of D0/Do. This study also suggests that He bubbles can be differentiated from argon (Ar) bubbles by differences in Fresnel contrast.

  11. Shock-induced bubble collapse in a vessel: Implications for vascular injury in shockwave lithotripsy

    NASA Astrophysics Data System (ADS)

    Coralic, Vedran; Colonius, Tim

    2014-11-01

    In shockwave lithotripsy, shocks are repeatedly focused on kidney stones so to break them. The process leads to cavitation in tissue, which leads to hemorrhage. We hypothesize that shock-induced collapse (SIC) of preexisting bubbles is a potential mechanism for vascular injury. We study it numerically with an idealized problem consisting of the three-dimensional SIC of an air bubble immersed in a cylindrical water column embedded in gelatin. The gelatin is a tissue simulant and can be treated as a fluid due to fast time scales and small spatial scales of collapse. We thus model the problem as a compressible multicomponent flow and simulate it with a shock- and interface-capturing numerical method. The method is high-order, conservative and non-oscillatory. Fifth-order WENO is used for spatial reconstruction and an HLLC Riemann solver upwinds the fluxes. A third-order TVD-RK scheme evolves the solution. We evaluate the potential for injury in SIC for a range of pressures, bubble and vessel sizes, and tissue properties. We assess the potential for injury by comparing the finite strains in tissue, obtained by particle tracking, to ultimate strains from experiments. We conclude that SIC may contribute to vascular rupture and discuss the smallest bubble sizes needed for injury. This research was supported by NIH Grant No. 2PO1DK043881 and utilized XSEDE, which is supported by NSF Grant No. OCI-1053575.

  12. The thermocapillary migrations of two bubbles in microgravity environment.

    PubMed

    Sun, Ren; Hu, Wen-Rui

    2002-11-15

    The thermocapillary motion of two bubbles along their line of centers in a uniform temperature gradient is investigated theoretically. The bubbles are moving in the direction of the temperature gradient. And the interaction between the leading bubble and the trailing one becomes significant as the separation distance between them is decreased greatly so that the bubble interaction is considered in this case. The appropriate equations of momentum and energy are solved using the method of reflections. In order to proceed analytically, sets of transformations between two coordinates are obtained. By using these transformations and the reflection process, accurate migration velocities of these two bubbles in the microgravity environment are derived for the limit of small Marangoni and Reynolds numbers. These results are employed to describe the thermocapillary motion of two bubbles and to estimate the effects of bubble size and the thermal gradient on the interaction between two bubbles. All of our results for the migration of the two bubbles demonstrate that the approach of the second bubble to the first one intensifies the mutual interaction between these two bubbles and yields some interesting thermocapillary motions.

  13. Scaling model for laser-produced bubbles in soft tissue

    SciTech Connect

    London, R. A., LLNL

    1998-03-12

    The generation of vapor-driven bubbles is common in many emerging laser-medical therapies involving soft tissues. To successfully apply such bubbles to processes such as tissue break-up and removal, it is critical to understand their physical characteristics. To complement previous experimental and computational studies, an analytic mathematical model for bubble creation and evolution is presented. In this model, the bubble is assumed to be spherically symmetric, and the laser pulse length is taken to be either very short or very long compared to the bubble expansion timescale. The model is based on the Rayleigh cavitation bubble model. In this description, the exterior medium is assumed to be an infinite incompressible fluid, while the bubble interior consists of a mixed liquid-gas medium which is initially heated by the laser. The heated interior provides the driving pressure which expands the bubble. The interior region is assumed to be adiabatic and is described by the standard water equation-of-state, available in either tabular, or analytic forms. Specifically, we use adiabats from the equation-of-state to describe the evolution of the interior pressure with bubble volume. Analytic scaling laws are presented for the maximum size, the duration, and the energy of bubbles as functions of the laser energy and initially heated volume. Of particular interest, is the efficiency of converting laser energy into bubble motion.

  14. Transient bubble oscillations near an elastic membrane in water

    NASA Astrophysics Data System (ADS)

    Turangan, C. K.; Khoo, B. C.

    2015-12-01

    We present a study of transient oscillating bubble-elastic membrane interaction by means of an experiment and a numerical simulation to study the dynamics of bubble's inertial collapse near an elastic interface. The bubble is generated very close to a thin elastic membrane using an electric spark, and their interaction is observed using high speed photography. The high pressure and temperature plasma from the dielectric breakdown precedes the bubble formation. The bubble then expands and creates a dimple on the membrane. After reaching its maximum size, the bubble begins to collapse. The membrane retracts back, transmitting a perturbation on the bubble surface. The coupling between bubble contraction and this perturbation strengthens the collapse and leads to the formation of a mushroom-shaped bubble, bubble pinching and splitting. Towards the end of the collapse, the water inertia surrounding the bubble pulls the membrane upwards forming a relatively sharp conical hump. The dynamics of this interaction is well predicted by the boundary element method (BEM) simulation.

  15. Modelling for three dimensional coalescence of two bubbles

    NASA Astrophysics Data System (ADS)

    Han, R.; Li, S.; Zhang, A. M.; Wang, Q. X.

    2016-06-01

    This paper is concerned with the three dimensional (3D) interaction and coalescence of two bubbles subject to buoyancy and the dynamics of the subsequent joined bubble using the boundary integral method (BIM). An improved density potential method is implemented to control the mesh quality. It helps to avoid the numerical instabilities, which occur after coalescence. Numerical convergence tests are conducted in terms of mesh sizes and time steps. The 3D numerical model agrees well with an axisymmetric BIM model for axisymmetric cases as well as experimental results captured by high-speed camera. The bubble jetting, interaction, and coalescence of the two bubbles depend on the maximum bubble radii, the centre distance between two bubbles at inception, and the angle β between the centre line and the direction of buoyancy. We investigate coalescence of two bubbles for β = 0, π/4, and π/2, respectively, and at various centre distances at inception. Numerical results presented include the bubble and jet shapes, the velocity, and pressure fields surrounding the bubbles, as well as the time histories of bubble volumes, jet velocities, and positions of centroid of the bubble system.

  16. Dislocation Interactions with Voids and Helium Bubbles in FCC Metals

    SciTech Connect

    Robertson, I; Robach, J; Wirth, B; Young, J

    2003-11-18

    The formation of a high number density of helium bubbles in FCC metals irradiated within the fusion energy environment is well established. Yet, the role of helium bubbles in radiation hardening and mechanical property degradation of these steels remains an outstanding issue. In this paper, we present the results of a combined molecular dynamics simulation and in-situ straining transmission electron microscopy study, which investigates the interaction mechanisms between glissile dislocations and nanometer-sized helium bubbles. The molecular dynamics simulations, which directly account for dislocation core effects through semi-empirical interatomic potentials, provide fundamental insight into the effect of helium bubble size and internal gas pressure on the dislocation/bubble interaction and bypass mechanisms. The combination of simulation and in-situ straining experiments provides a powerful approach to determine the atomic to microscopic mechanisms of dislocation-helium bubble interactions, which govern the mechanical response of metals irradiated within the fusion environment.

  17. Effect of particle adsorption rates on the disproportionation process in pickering stabilised bubbles.

    PubMed

    Ettelaie, Rammile; Murray, Brent

    2014-05-28

    The degree of shrinkage of particle stabilised bubbles of various sizes, in a polydisperse bubble dispersion, has been investigated in the light of the finite adsorption times for the particles and the disproportionation kinetics of the bubbles. For the case where the system contains an abundance of particles we find a threshold radius, above which bubbles are stabilised without any significant reduction in their size. Bubbles with an initial radius below this threshold on the other hand undergo a large degree of shrinkage prior to stabilisation. As the ratio of the available particles to the bubbles is reduced, it is shown that the final bubble size, for the larger bubbles in the distribution, becomes increasingly governed by the number of particles, rather than their adsorption time per se. For systems with "adsorption controlled" shrinkage ratio, the final bubble distribution is found to be wider than the initial one, while for a "particle number controlled" case it is actually narrower. Starting from a unimodal bubble size distribution, we predict that at intermediate times, prior to the full stabilisation of all bubbles, the distribution breaks up into a bimodal one. However, the effect is transient and a unimodal final bubble size distribution is recovered, when all the bubbles are stabilised by the particles.

  18. Electrical breakdown of a bubble in a water-filled capillary

    SciTech Connect

    Bruggeman, P.J.; Leys, C.A.; Vierendeels, J. A.

    2006-06-01

    In this Communication, the electrical breakdown of a static bubble in a water-filled capillary generated in a dc electrical field is studied. We present experimental results which indicate that the liquid layer between capillary and bubble wall can have an important influence on the breakdown mechanism of the bubble. The breakdown electrical field (atmospheric pressure) without a liquid layer in a (vapor) bubble is 18 kV/cm. When a liquid layer is present, the electrical breakdown of an air bubble is observed at electrical fields typically two times smaller. Local plasma formation is observed in this case possibly due to bubble deformation.

  19. Effect of nitrous oxide on gas bubble volume in the anterior chamber.

    PubMed

    Wolf, G L; Capuano, C; Hartung, J

    1985-03-01

    Nitrous oxide is often used as anesthesia during ophthalmic surgery that requires intraocular injection of sulfur hexafluoride gas or air. Ventilation with N2O is known to increase intraocular pressure in the presence of intraocular bubbles, but little is known about the effect of N2O on intraocular bubble volume. Accordingly, we have compared the effect of N2O:O2 ventilation (66% N2O, balance O2) with that of air ventilation and oxygen ventilation on intraocular bubbles of SF6 or air. Aspiration of anterior chamber gas after 180 minutes of N2O:O2 ventilation in cats showed an increase in bubble volume of more than threefold when the original intraocular bubble was SF6 and an increase of more than twofold when the original intraocular bubble was air. In contrast, during air ventilation, intraocular SF6 bubble volume increased by 50%, and intraocular air bubble volume increased by only 7.5%. During O2 ventilation, intraocular SF6 bubble volume increased by 35%, and intraocular air bubble volume decreased by 13%. Our results indicate that N2O is contraindicated when gas is injected into the closed eye.

  20. Air emission regulations for small to moderate sized wood-fired boilers: Final report: Northeast Regional Biomass Program

    SciTech Connect

    Bradley, M.J.; Tennis, M.W.

    1985-01-01

    Potential commercial wood burners in the Northeast hold the general perception that air pollution regulations pose special difficulties for them. This notion is based on incomplete information regarding the regulations in place and their applicability to small to moderate sized commercial faciliaties (ie. <100 mmBtu/hr). This study was commission by the Coalition of Northeastern Governors (CONEG) Policy Research Center, Inc., under the Northeast Regional Biomass Program, to provide a review of the air quality regulations effecting commercial wood burning installations, specifically identifying those regulations applying to the small to medium size units. This report provides an organized regulatory comparison to relate the different state emission rates with various levels of control techniques. 3 refs., 11 figs., 3 tabs.

  1. Elevated air humidity affects hydraulic traits and tree size but not biomass allocation in young silver birches (Betula pendula).

    PubMed

    Sellin, Arne; Rosenvald, Katrin; Õunapuu-Pikas, Eele; Tullus, Arvo; Ostonen, Ivika; Lõhmus, Krista

    2015-01-01

    As changes in air temperature, precipitation, and air humidity are expected in the coming decades, studies on the impact of these environmental shifts on plant growth and functioning are of major importance. Greatly understudied aspects of climate change include consequences of increasing air humidity on forest ecosystems, predicted for high latitudes. The main objective of this study was to find a link between hydraulic acclimation and shifts in trees' resource allocation in silver birch (Betula pendula Roth) in response to elevated air relative humidity (RH). A second question was whether the changes in hydraulic architecture depend on tree size. Two years of application of increased RH decreased the biomass accumulation in birch saplings, but the biomass partitioning among aboveground parts (leaves, branches, and stems) remained unaffected. Increased stem Huber values (xylem cross-sectional area to leaf area ratio) observed in trees under elevated RH did not entail changes in the ratio of non-photosynthetic to photosynthetic tissues. The reduction of stem-wood density is attributable to diminished mechanical load imposed on the stem, since humidified trees had relatively shorter crowns. Growing under higher RH caused hydraulic conductance of the root system (K R) to increase, while K R (expressed per unit leaf area) decreased and leaf hydraulic conductance increased with tree size. Saplings of silver birch acclimate to increasing air humidity by adjusting plant morphology (live crown length, slenderness, specific leaf area, and fine-root traits) and wood density rather than biomass distribution among aboveground organs. The treatment had a significant effect on several hydraulic properties of the trees, while the shifts were largely associated with changes in tree size but not in biomass allocation.

  2. Elevated air humidity affects hydraulic traits and tree size but not biomass allocation in young silver birches (Betula pendula)

    PubMed Central

    Sellin, Arne; Rosenvald, Katrin; Õunapuu-Pikas, Eele; Tullus, Arvo; Ostonen, Ivika; Lõhmus, Krista

    2015-01-01

    As changes in air temperature, precipitation, and air humidity are expected in the coming decades, studies on the impact of these environmental shifts on plant growth and functioning are of major importance. Greatly understudied aspects of climate change include consequences of increasing air humidity on forest ecosystems, predicted for high latitudes. The main objective of thi