Science.gov

Sample records for air bubbles entrained

  1. Air entrainment and bubble statistics in three-dimensional breaking waves

    NASA Astrophysics Data System (ADS)

    Deike, Luc; Melville, W. K.; Popinet, Stephane

    2015-11-01

    Wave breaking in the ocean is of fundamental importance in order to quantify wave dissipation and air-sea interaction, including gas and momentum exchange, and to improve parametrizationsfor weather and climate models. Here, we investigate air entrainment and bubble statistics in three-dimensional breaking waves through direct numerical simulations of the two-phase air-water flow using the Open Source solver Gerris. As in previous 2D simulations, the dissipation due to breaking is found to be in good agreement with previous experimental observations and inertial-scaling arguments. For radii larger than the Hinze scale, the bubble size distribution, is found to follow a power law of the radius, r-3and to scale linearly with the time dependent turbulent dissipation rate during the active breaking stages. The time-averaged bubble size distribution is found to follow the same power law of the radius and to scale linearly with the wave dissipation rate per unit length of breaking crest. We propose a phenomenological turbulent bubble break-up model that describes the numerical results and existing experimental results.

  2. Effect of an entrained air bubble on the acoustics of an ink channel.

    PubMed

    Jeurissen, Roger; de Jong, Jos; Reinten, Hans; van den Berg, Marc; Wijshoff, Herman; Versluis, Michel; Lohse, Detlef

    2008-05-01

    Piezo-driven inkjet systems are very sensitive to air entrapment. The entrapped air bubbles grow by rectified diffusion in the ink channel and finally result in nozzle failure. Experimental results on the dynamics of fully grown air bubbles are presented. It is found that the bubble counteracts the pressure buildup necessary for the droplet formation. The channel acoustics and the air bubble dynamics are modeled. For good agreement with the experimental data it is crucial to include the confined geometry into the model: The air bubble acts back on the acoustic field in the channel and thus on its own dynamics. This two-way coupling limits further bubble growth and thus determines the saturation size of the bubble.

  3. Size distribution of oceanic air bubbles entrained in sea-water by wave-breaking

    NASA Technical Reports Server (NTRS)

    Resch, F.; Avellan, F.

    1982-01-01

    The size of oceanic air bubbles produced by whitecaps and wave-breaking is determined. The production of liquid aerosols at the sea surface is predicted. These liquid aerosols are at the origin of most of the particulate materials exchanged between the ocean and the atmosphere. A prototype was designed and built using an optical technique based on the principle of light scattering at an angle of ninety degrees from the incident light beam. The output voltage is a direct function of the bubble diameter. Calibration of the probe was carried out within a range of 300 microns to 1.2 mm. Bubbles produced by wave-breaking in a large air-sea interaction simulating facility. Experimental results are given in the form of size spectrum.

  4. Air Entraining Flows

    NASA Astrophysics Data System (ADS)

    Prosperetti, Andrea

    2001-11-01

    Air entraining flows are frequently encountered in Nature (e.g. breaking waves, waterfalls, rain over water bodies) and in technological applications (gas-liquid chemical reactors, water treatment, aquaculture, and others). Superficially, one may distinguish between transient events, such as a breaking wave, and steady situations, e.g. a falling jet. However, when viscosity is not important, the process of air entrainment turns out to be the consequence of local transient events even in steady flows. For example, surface disturbances convected by a nominally steady jet impact the receiving liquid, create a deep depression, which collapses entraining an air pocket. (In practice this basic mechanism is complicated by the presence of waves, vortical flows, and other factors.) This talk will describe several examples of air-entraining flows illustrating the fluid mechanic principles involved with high-speed movies and numerical computations.

  5. Airborne & SAR Synergy Reveals the 3D Structure of Air Bubble Entrainment in Internal Waves and Frontal Zones

    NASA Astrophysics Data System (ADS)

    da Silva, J. C. B.; Magalhaes, J. M.; Batista, M.; Gostiaux, L.; Gerkema, T.; New, A. L.

    2013-03-01

    Internal waves are now recognised as an important mixing mechanism in the ocean. Mixing at the base of the mixed layer and in the seasonal thermocline affects the properties of those water masses which define the exchange of heat and freshwater between the atmosphere and ocean. The breaking of Internal Solitary Waves (ISWs) contributes significantly to turbulent mixing in the near-surface layers, through the continual triggering of instabilities as they propagate and shoal towards the coast or shallow topography. Here we report some results of the EU funded project A.NEW (Airborne observations of Nonlinear Evolution of internal Waves generated by internal tidal beams). The airborne capabilities to observe small scale structure of breaking internal waves in the near-shore zone has been demonstrated in recent studies (e.g. Marmorino et al., 2008). In particular, sea surface thermal signatures of shoaling ISWs have revealed the turbulent character of these structures in the form of surface “boil” features. On the other hand, some in situ measurements of internal waves and theoretical work suggest subsurface entrainment of air bubbles in the convergence zones of ISWs (Serebryany and Galybin, 2009; Grimshaw et al., 2010). We conducted airborne remote sensing observations in the coastal zone off the west Iberian Peninsula (off Lisbon, Portugal) using high resolution imaging sensors: LiDAR (Light Detection And Ranging), hyperspectral cameras (Eagle and Hawk) and thermal infrared imaging (TABI-320). These measurements were planned based on previous SAR observations in the region, which included also near-real time SAR overpasses (ESA project AOPT-2423 and TerraSAR-X project OCE-0056). The airborne measurements were conducted from board the NERC (Natural Environmental Research Centre) Do 228 aircraft in the summer of 2010. The TABI-320 thermal airborne broadband imager can distinguish temperature differences as small as one-twentieth of a degree and operates in the

  6. Air entrainment in hairy surfaces

    NASA Astrophysics Data System (ADS)

    Nasto, Alice; Regli, Marianne; Brun, P.-T.; Alvarado, José; Clanet, Christophe; Hosoi, A. E.

    2016-07-01

    Motivated by diving semiaquatic mammals, we investigate the mechanism of dynamic air entrainment in hairy surfaces submerged in liquid. Hairy surfaces are cast out of polydimethylsiloxane elastomer and plunged into a fluid bath at different velocities. Experimentally, we find that the amount of air entrained is greater than what is expected for smooth surfaces. Theoretically, we show that the hairy surface can be considered as a porous medium and we describe the air entrainment via a competition between the hydrostatic forcing and the viscous resistance in the pores. A phase diagram that includes data from our experiments and biological data from diving semiaquatic mammals is included to place the model system in a biological context and predict the regime for which the animal is protected by a plastron of air.

  7. Droplet impact on a liquid pool and bubble entrainment for low Bond numbers

    NASA Astrophysics Data System (ADS)

    Sleutel, Pascal; Tsai, Pei Hsun; Bouwhuis, Wilco; Thoraval, Marie-Jean; Visser, Claas-Willem; Wang, An-Bang; Versluis, Michel; Lohse, Detlef

    2015-11-01

    Droplets impacting on a pool of liquid and the subsequent bubble entrainment has been well studied for high Bond numbers where the droplets size is large and velocities are low. Here we study for the first time the droplet impact and bubble entrainment in an entirely new parameter regime (Bo ~ 10-2 -10-3 , U ~ 6-20 m/s, D ~ 0.08-0.4 mm). We follow up on the pioneering work of Oguz & Prosperetti, now in the surface tension dominated regime. We predict the bubble entrainment zone by balancing movement of the cavity bottom and droplet inertia with capillary waves enclosing the bubble. Both high-speed imaging experiments and numerical simulations in Gerris validate the model and show the importance of air for smaller droplet sizes.

  8. Vortex-ring-induced large bubble entrainment during drop impact.

    PubMed

    Thoraval, Marie-Jean; Li, Yangfan; Thoroddsen, Sigurdur T

    2016-03-01

    For a limited set of impact conditions, a drop impacting onto a pool can entrap an air bubble as large as its own size. The subsequent rise and rupture of this large bubble plays an important role in aerosol formation and gas transport at the air-sea interface. The large bubble is formed when the impact crater closes up near the pool surface and is known to occur only for drops that are prolate at impact. Herein we use experiments and numerical simulations to show that a concentrated vortex ring, produced in the neck between the drop and the pool, controls the crater deformations and pinchoff. However, it is not the strongest vortex rings that are responsible for the large bubbles, as they interact too strongly with the pool surface and self-destruct. Rather, it is somewhat weaker vortices that can deform the deeper craters, which manage to pinch off the large bubbles. These observations also explain why the strongest and most penetrating vortex rings emerging from drop impacts are not produced by oblate drops but by more prolate drop shapes, as had been observed in previous experiments. PMID:27078468

  9. Vortex-ring-induced large bubble entrainment during drop impact.

    PubMed

    Thoraval, Marie-Jean; Li, Yangfan; Thoroddsen, Sigurdur T

    2016-03-01

    For a limited set of impact conditions, a drop impacting onto a pool can entrap an air bubble as large as its own size. The subsequent rise and rupture of this large bubble plays an important role in aerosol formation and gas transport at the air-sea interface. The large bubble is formed when the impact crater closes up near the pool surface and is known to occur only for drops that are prolate at impact. Herein we use experiments and numerical simulations to show that a concentrated vortex ring, produced in the neck between the drop and the pool, controls the crater deformations and pinchoff. However, it is not the strongest vortex rings that are responsible for the large bubbles, as they interact too strongly with the pool surface and self-destruct. Rather, it is somewhat weaker vortices that can deform the deeper craters, which manage to pinch off the large bubbles. These observations also explain why the strongest and most penetrating vortex rings emerging from drop impacts are not produced by oblate drops but by more prolate drop shapes, as had been observed in previous experiments.

  10. Vortex-ring-induced large bubble entrainment during drop impact

    NASA Astrophysics Data System (ADS)

    Thoraval, Marie-Jean; Li, Yangfan; Thoroddsen, Sigurdur T.

    2016-03-01

    For a limited set of impact conditions, a drop impacting onto a pool can entrap an air bubble as large as its own size. The subsequent rise and rupture of this large bubble plays an important role in aerosol formation and gas transport at the air-sea interface. The large bubble is formed when the impact crater closes up near the pool surface and is known to occur only for drops that are prolate at impact. Herein we use experiments and numerical simulations to show that a concentrated vortex ring, produced in the neck between the drop and the pool, controls the crater deformations and pinchoff. However, it is not the strongest vortex rings that are responsible for the large bubbles, as they interact too strongly with the pool surface and self-destruct. Rather, it is somewhat weaker vortices that can deform the deeper craters, which manage to pinch off the large bubbles. These observations also explain why the strongest and most penetrating vortex rings emerging from drop impacts are not produced by oblate drops but by more prolate drop shapes, as had been observed in previous experiments.

  11. Measurement of air entrainment in plasma jets

    NASA Astrophysics Data System (ADS)

    Fincke, J. R.; Rodriquez, R.; Pentecost, C. G.

    The concentration and temperature of air entrained into argon and helium plasma jets has been measured using coherent anti-Stokes Raman spectroscopy (CARS). The argon plasma flow field is characterized by a short region of well behaved laminar flow near the nozzle exit followed by an abrupt transition to turbulence. Once the transition of turbulence occurs, air is rapidly mixed into the jet core. The location of the transition region is determined by the rapid cooling of the jet and the resulting increase in Reynolds number. In contrast, the helium plasma flow field never exceeds a Reynolds number of 200 and remains laminar. The entrainment process in this case is controlled by molecular diffusion rather than turbulent mixing.

  12. Measurement of air entrainment in plasma jets

    SciTech Connect

    Fincke, J.R.; Rodriquez, R.; Pentecost, C.G.

    1990-01-01

    The concentration and temperature of air entrained into argon and helium plasma jets has been measured using coherent anti-Stokes Raman spectroscopy (CARS). The argon plasma flow field is characterized by a short region of well behaved laminar flow near the nozzle exit followed by an abrupt transition to turbulence. Once the transition of turbulence occurs, air is rapidly mixed into the jet core. The location of the transition region is determined by the rapid cooling of the jet and the resulting increase in Reynolds number. In contrast, the helium plasma flow field never exceeds a Reynolds number of 200 and remains laminar. The entrainment process in this case is controlled by molecular diffusion rather than turbulent mixing. 9 refs., 5 figs., 1 tab.

  13. Entrainment Rate in Shallow Cumuli: Dependence on Entrained Dry Air Sources and Probability Density Functions

    NASA Astrophysics Data System (ADS)

    Lu, C.; Liu, Y.; Niu, S.; Vogelmann, A. M.

    2012-12-01

    In situ aircraft cumulus observations from the RACORO field campaign are used to estimate entrainment rate for individual clouds using a recently developed mixing fraction approach. The entrainment rate is computed based on the observed state of the cloud core and the state of the air that is laterally mixed into the cloud at its edge. The computed entrainment rate decreases when the air is entrained from increasing distance from the cloud core edge; this is because the air farther away from cloud edge is drier than the neighboring air that is within the humid shells around cumulus clouds. Probability density functions of entrainment rate are well fitted by lognormal distributions at different heights above cloud base for different dry air sources (i.e., different source distances from the cloud core edge). Such lognormal distribution functions are appropriate for inclusion into future entrainment rate parameterization in large scale models. To the authors' knowledge, this is the first time that probability density functions of entrainment rate have been obtained in shallow cumulus clouds based on in situ observations. The reason for the wide spread of entrainment rate is that the observed clouds are affected by entrainment mixing processes to different extents, which is verified by the relationships between the entrainment rate and cloud microphysics/dynamics. The entrainment rate is negatively correlated with liquid water content and cloud droplet number concentration due to the dilution and evaporation in entrainment mixing processes. The entrainment rate is positively correlated with relative dispersion (i.e., ratio of standard deviation to mean value) of liquid water content and droplet size distributions, consistent with the theoretical expectation that entrainment mixing processes are responsible for microphysics fluctuations and spectral broadening. The entrainment rate is negatively correlated with vertical velocity and dissipation rate because entrainment

  14. Modeling and simulation of multiple bubble entrainment and interactions with two dimensional vortical flows

    NASA Astrophysics Data System (ADS)

    Finn, Justin; Shams, Ehsan; Apte, Sourabh V.

    2011-02-01

    Simulations of bubble entrainment and interactions with two dimensional vortical flows are preformed using a discrete element model. In this Eulerian-Lagrangian approach, solution to the carrier phase is obtained using direct numerical simulation whereas motion of subgrid bubbles is modeled using Lagrangian tracking. The volumetric displacement of the fluid by the finite size of the bubbles is modeled along with interphase momentum-exchange for a realistic coupling of the bubbles to the carrier phase. In order to assess the importance of this volumetric coupling effect, even at low overall volume loading, simulations of a small number of microbubbles entrained in a traveling vortex tube are studied in detail. The test case resembles the experiments conducted by Sridhar and Katz [JFM, 1999] on bubble entrainment in vortex rings. It is shown that under some conditions, the entrainment of eight small bubbles, 1100 μm or less in diameter, result in significant levels of vortex distortion when modeled using the volumetric coupling effect. Neglecting these effects, however, does not result in any vortex distortion due to entrained bubbles. The nondimensionalized vortex strength versus bubble settling locations are compared with experimental data to show collapse of the data along the trends observed in experiments only when the volumetric effects are modeled. Qualitative and quantitative assessments of this distortion observed with volumetric coupling are made using three methods; bubble induced vortex asymmetry, relative change in the decay of angular momentum, and relative change in the peak vorticity. It is found that in all cases the volumetric effects result in a relative increase of the vortex decay rate. The concept of a relative reaction force, defined as the ratio of net bubble to fluid reaction to the local driving force of the vortex, is introduced to analyze this effect. It is shown that the global increases in vortex decay rate are directly proportional to

  15. Dry Air Entrainment into Hurricane Earl

    NASA Technical Reports Server (NTRS)

    Guillory, Anthony R.; Jedlovec, Gary J.; Atkinson, Robert J.; Hood, Robbie E.; LaFontaine, Frank J.

    2000-01-01

    Hurricane Earl formed in the Gulf of Mexico in September 1998. It quickly was upgraded from a tropical disturbance to tropical storm status and then to a hurricane. Earl possessed hybrid (tropical and extratropical) characteristics throughout its lifetime. The system maintained and erratic track, which led to wide variability in the operational track forecasts. It eventually made landfall on the Florida panhandle on 2 September and raced northeastward. During August and September 1998, NASA conducted the third Convection and Moisture Experiment (CAMEX-3). The experiment was focused on studying hurricanes with an emphasis toward developing a better understanding of their intensification and motion. Earl provides a unique opportunity to utilize high spatial and temporal resolution data collected from the DC-8 and high altitude ER-2 NASA platforms, which flew over Earl as it made landfall. These data can also be put into broader view provided by other instruments from the Geosychronous Operational Environmental Satellites (GOES) and the Tropical Rainfall Measuring Mission (TRMM) satellites. Hurricane Earl was affected by entrainment of dry air from the northwest. Hurricane Isis was intensifying and approaching the Mexican Pacific coast with its associated outflow potentially affecting the inflow into Earl as the storm neared Florida. In addition, a longwave synoptic trough circulation was present over the eastern U.S. Either or both of these could be responsible for the dry air into the system. This paper will focus on identifying the source of the dry by using upper-level wind and moisture fields derived from the GOES 6.7 um water vapor imagery. We will attempt to relate the large-scale observations to those from the NASA aircraft. An infrared instrument onboard the ER-2 also has a similar wavelength and may be able to confirm some of the GOES findings. In addition, a microwave radiometer with 4 channels focused on measuring precipitation and its associated ice

  16. Using Ultrasound to Characterize Pulp Slurries with Entrained Air

    SciTech Connect

    Bamberger, Judith A.

    2006-08-06

    The development of fast and practical methods for inspecting fiber suspensions is of great interest in the paper making industry. For process control and paper quality prediction, several elements of the refining process during paper making must be accurately monitored, including specific fiber properties, weight percent fiber (composition), degree of refining, amount of solids, and entrained air content. The results of previous ultrasonic studies applied to wood pulp provide guidance that ultrasound attenuation is information rich, and it does potentially provide a tool for consistency measurement. Ultrasound has the ability to penetrate dense suspensions such as wood pulp slurries. It is has been shown, in some studies, that ultrasound is sensitive to degree of refining. The effects of entrained air, additives, the origin and treatment of the fibers do however all influence the measured data. A series of measurements were made with hardwood and softwood slurries to evaluate the ability of measuring pulp consistency, solids, and entrained air. The attenuation through the slurry was measured as the ultrasound travels from one transducer through the slurry to the other. The measurements identified the presence of entrained air in the pulp samples. To better understand the effects of air, measurements were made at increasing pressures to show how increased pressure reduced the amount of air observed in the spectrum.

  17. Air bubble bursting effect of lotus leaf.

    PubMed

    Wang, Jingming; Zheng, Yongmei; Nie, Fu-Qiang; Zhai, Jin; Jiang, Lei

    2009-12-15

    In this paper, a phenomenon of air bubbles quickly bursting within several milliseconds on a "self-cleaning" lotus leaf was described. This observation prompted the synthesis of artificial surfaces similar to that of the lotus leaf. The artificial leaf surfaces, prepared by photolithography and wet etching, showed a similar air bubble bursting effect. Smooth and rough silicon surfaces with an ordered nanostructure or patterned microstructure were utilized to study the contribution of the micro/nano hierarchical structures to this phenomenon of air bubble bursting. Air bubbles were found to burst on some superhydrophobic surfaces with microstructure (within 220 ms). However, air bubbles burst much more rapidly (within 13 ms) on similar surfaces with micro/nanostructure. The height, width, and spacing of hierarchical structures could also affect air bubble bursting, and the effect of the height was more obvious. When the height of hierarchical structures was around the height found in natural lotus papillae, the width and spacing were significant for air bubble bursting. An original model was proposed to further evaluate the reason why the micro/nano hierarchical rough structures had an excellent air bubble bursting effect, and the validity of the model was theoretically demonstrated.

  18. Dispersal and air entrainment in unconfined dilute pyroclastic density currents

    NASA Astrophysics Data System (ADS)

    Andrews, Benjamin J.

    2014-09-01

    Unconfined scaled laboratory experiments show that 3D structures control the behavior of dilute pyroclastic density currents (PDCs) during and after liftoff. Experiments comprise heated and ambient temperature 20 μm talc powder turbulently suspended in air to form density currents within an unobstructed 8.5 × 6 × 2.6-m chamber. Comparisons of Richardson, thermal Richardson, Froude, Stokes, and settling numbers and buoyant thermal to kinetic energy densities show good agreement between experimental currents and dilute PDCs. The experimental Reynolds numbers are lower than those of PDCs, but the experiments are fully turbulent; thus, the large-scale dynamics are similar between the two systems. High-frequency, simultaneous observation in three orthogonal planes shows that the currents behave very differently than previous 2D (i.e., confined) currents. Specifically, whereas ambient temperature currents show radial dispersal patterns, buoyancy reversal, and liftoff of heated currents focuses dispersal along narrow axes beneath the rising plumes. The aspect ratios, defined as the current length divided by a characteristic width, are typically 2.5-3.5 in heated currents and 1.5-2.5 in ambient temperature currents, reflecting differences in dispersal between the two types of currents. Mechanisms of air entrainment differ greatly between the two currents: entrainment occurs primarily behind the heads and through the upper margins of ambient temperature currents, but heated currents entrain air through their lateral margins. That lateral entrainment is much more efficient than the vertical entrainment, >0.5 compared to ˜0.1, where entrainment is defined as the ratio of cross-stream to streamwise velocity. These experiments suggest that generation of coignimbrite plumes should focus PDCs along narrow transport axes, resulting in elongate rather than radial deposits.

  19. Entrainment.

    ERIC Educational Resources Information Center

    Carrier, Romance F.

    1978-01-01

    Presents a literature review including: (1) theoretical studies concerned with the development of methdology to determine the significance of entrainment effects to whale populations and ecosystems; and (2) site and laboratory studies. A list of 107 references drawn from the 1976 and 1977 literature is also presented. (HM)

  20. Using strobe lights, air bubble curtains for cost-effective fish diversion

    SciTech Connect

    McCauley, D.J.; Navarro, J.E.; Mountouri, L.

    1996-04-01

    Faced with a high, and potentially costly, rate of fish turbine passage, a northern Michigan hydro project owner began investigating the use of behavioral barriers to divert fish away from turbines. Strobe lights, with and without air bubbles, proved to be highly effective, yielding dramatic reductions in the number of fish entrained.

  1. Understanding air-gun bubble behavior

    SciTech Connect

    Johnson, D.T. )

    1994-11-01

    An air-gun bubble behaves approximately as a spherical bubble of an ideal gas in an infinite volume of practically incompressible water. With this simplification, the equation of bubble motion and its far-field signature is more understandable than with the more exact theory commonly cited in the literature. The terms of the equation of bubble motion are explained using elementary physics and mathematics, computation of numerical results is outlined, and an example signature is shown. An air-gun bubble is analogous to a simple harmonic oscillator consisting of a mass on a spring, with an equivalent mass equal three times that of the water displaced by the bubble, and air pressure following an ideal gas law corresponding to a spring. With this understanding, one is prepared to deal with the effects of interactions among air guns and with the high-order terms and other features that must be included to model the air-gun signature of actual seismic source arrays.

  2. Numerical Simulation of Air Bubble Characteristics in Stationary Water

    NASA Astrophysics Data System (ADS)

    Zhang, C. X.; Wang, Y. X.

    The motion of air bubble in water plays a key role in such diverse aspects as air bubble curtain breakwater, air curtain drag reduction, air cushion isolation, weakening the shock wave in water by air bubble screen, etc. At present, the research on air bubble behaviors can be subdivided into several processes: air bubble formation from submerged orifices; interaction and coalescence during the ascending. The work presented in this paper focuses on numerical simulation of air bubble characteristics in stationary water, for example, air bubble formation, the ascending speed, the departing period, and so on. A series of models to simulate the characteristics of air bubble are developed by the VOF method in the two phase flow module of FLUENT. The numerical simulation results are consistent with the theoretical characteristics of air bubble in many aspects. So it is concluded that numerical simulation of air bubble characteristics in stationary water based on FLUENT is feasible. Due to the fact that the characteristics of air bubble are complicated questions, it is important that study on the air bubble behaviors in stationary water should be conducted on deeply.

  3. Dew and bubble point properties of air

    NASA Astrophysics Data System (ADS)

    Penoncello, S. G.; Jacobsen, R. T.; Lemmon, E. W.

    Four new ancillary functions for the calculation of pressures and densities of states at the bubble and dew points of air are presented. These functions were developed using experimental data and calculated values. The experimental data for the bubble and dew point pressures and densities of air are summarized and evaluated. In the absence of experimental data at high-pressure phase equilibrium states, a Leung-Griffiths model modified for ternary mixtures was used to calculate pseudo-data. This ternary mixture model was also used to calculate new values for the critical point, maxcondenbar and maxcondentherm for air. The calculated properties at the maxcondentherm were used as reducing parameters in the ancillary functions. Graphical comparisons of the ancillary equations to the experimental data and pseudo-data are presented to justify the estimated accuracies of the new ancillary functions. The equations presented here have been used to calculate dew and bubble point pressures and densities for the determination of the phase boundary for a wide-range equation of state for air treated as a pseudo-pure fluid.

  4. Entrainment of Upper Level Dry Air Into Hurricane Earl

    NASA Technical Reports Server (NTRS)

    Guillory, Anthony R.; Jedlovec, Gary J.; Hood, Robbie E.; Atkinson, Robert J.; LaFontaine, Frank J.

    1999-01-01

    Hurricane Earl formed in the Gulf of Mexico in September 1998. It quickly was upgraded from a tropical disturbance to tropical storm status and then to a hurricane. Earl possessed hybrid (tropical and extratropical) characteristics throughout its lifetime. The system maintained and erratic track, which led to wide variability in the operational track forecasts. It eventually made landfall on the Florida panhandle on 2 September and raced northeastward. During August and September 1998, NASA conducted the third Convection and Moisture Experiment (CAMEX-3). The experiment was focused on studying hurricanes with an emphasis toward developing a better understanding of their intensification and motion. Earl provides a unique opportunity to utilize high spatial and temporal resolution data collected from the DC-8 and high altitude ER-2 NASA platforms, which flew over Earl as it made landfall. These data can also be put into broader view provided by other instruments from the Geosynchronous Operational Environmental Satellites (GOES) and the Tropical Rainfall Measuring Mission (TRMM) satellites. Hurricane Earl was affected by entrainment of dry air from the northwest. Hurricane Isis was intensifying and approaching the Mexican Pacific coast with its associated outflow potentially affecting the inflow into Earl as the storm neared Florida. In addition, a longwave synoptic trough circulation was present over the eastern U.S. Either or both of these could be responsible for the dry air into the system. This paper will focus on identifying the source of the dry by using upper-level wind and moisture fields derived from the GOES 6.7 um water vapor imagery. We will attempt to relate the large-scale observations to those from the NASA aircraft. An infrared instrument onboard the ER-2 also has a similar wavelength and may be able to confirm some of the GOES findings. In addition, a microwave radiometer with 4 channels focused on measuring precipitation and its associated ice

  5. Air bubble migration rates as a proxy for bubble pressure distribution in ice cores

    NASA Astrophysics Data System (ADS)

    Dadic, Ruzica; Schneebeli, Martin; Bertler, Nancy

    2015-04-01

    Air bubble migration can be used as a proxy to measure the pressure of individual bubbles and can help constrain the gradual close-off of gas bubbles and the resulting age distribution of gases in ice cores. The close-off depth of single bubbles can vary by tens of meters, which leads to a distribution of pressures for bubbles at a given depth. The age distribution of gases (along with gas-age-ice-age differences) decreases the resolution of the gas level reconstructions from ice cores and limits our ability to determine the phase relationship between gas and ice, and thus, the impact of rapid changes of greenhouse gases on surface temperatures. For times of rapid climate change, including the last 150 years, and abrupt climate changes further back in the past, knowledge of the age distribution of the gases trapped in air bubbles will enable us to refine estimates of atmospheric changes. When a temperature gradient is applied to gas bubbles in an ice sample, the bubbles migrate toward warmer ice. This motion is caused by sublimation from the warm wall and subsequent frost deposition on the cold wall. The migration rate depends on ice temperature and bubble pressure and is proportional to the temperature gradient. The spread in migration rates for bubbles in the same samples at given temperatures should therefore reflect the variations in bubble pressures within a sample. Air bubbles with higher pressures would have been closed off higher in the firn column and thus have had time to equilibrate with the surrounding ice pressure, while air bubbles that have been closed off recently would have pressures that are similar to todays atmospheric pressure above the firn column. For ice under pressures up to ~13-16 bar, the pressure distribution of bubbles from a single depth provides a record of the trapping function of air bubbles in the firn column for a certain time in the past. We will present laboratory experiments on air bubble migration, using Antarctic ice core

  6. Insertion and confinement of air bubbles inside a liquid marble.

    PubMed

    Sun, Guanqing; Sheng, Yifeng; Ngai, To

    2016-01-14

    Nanoparticles at the air/liquid interface can serve as solid separating barriers to form stable foams or liquid marbles depending on the wettability of the nanoparticles. This paper presents an effect that enables the insertion and confinement of air bubbles inside a liquid marble, based on encapsulating an air bubble surrounded by surfactant molecules or hydrophilic particles. We have demonstrated that more than one bubble can be inserted and trapped inside one liquid marble so that liquid marbles can be divided into several separate compartments. The findings presented here may stimulate fundamental studies of this novel bubble-marble phenomenon, as well as developments of various practical applications.

  7. Influence of artificially generated air bubbles on a wave breaking

    NASA Astrophysics Data System (ADS)

    Merkoune, D.; Ezersky, A.; Abcha, N.; Amine, F.; Mouazé, D.

    2011-12-01

    We report experimental results on influence of air bubbles curtain on wave breaking. It was found that position of wave breaking point depends on bubble concentration in water. It was revealed that the effect of wave breaking is very sensitive to the concentration of air bubbles which are situated near free surface of water. We showed that small concentration of artificially created bubbles do not lead to additional dissipation of energy in surface waves but change sufficiently the position of breaking point. This phenomenon could synchronize the breaking of irregular surface waves in the ocean and lead to the generation of spatially inhomogeneous turbulence in the upper layer of the ocean.

  8. Cascades of popping bubbles along air/foam interfaces.

    PubMed

    Vandewalle, N; Lentz, J F

    2001-08-01

    We report image analysis of popping bubbles during the collapsing of two-dimensional (2D) and 3D aqueous foams. Although temporal and spatial correlations between successive popping bubbles within avalanches are emphasized, the breaking of a soap film at the air/foam interface seems to be independent of (i) the topology, (ii) the local curvature, and (iii) the size of the popping bubble. Possible mechanisms for cascades of pops are proposed and discussed. PMID:11497589

  9. PTV analysis of the entrained air into the diesel spray at high-pressure injection

    NASA Astrophysics Data System (ADS)

    Toda, Naoki; Yamashita, Hayato; Mashida, Makoto

    2014-08-01

    In order to clarify the effect of high-pressure injection on soot reduction in terms of the air entrainment into spray, the air flow surrounding the spray and set-off length indicating the distance from the nozzle tip to the flame region in diffusion diesel combustion were investigated using 300MPa injection of a multi-hole injector. The measurement of the air entrainment flow was carried out at non-evaporating condition using consecutive PTV (particle tracking velocimetry) method with a high-speed camera and a high-frequency pulse YAG laser. The set-off length was measured at highpressure and high-temperature using the combustion bomb of constant volume and optical system of shadow graph method. And the amount of air entrainment into spray until reaching set-off length in diffusion combustion was studied as a factor of soot formation.

  10. Effect of fast freeze-thaw cycles on mechanical properties of ordinary-air-entrained concrete.

    PubMed

    Shang, Huai-shuai; Cao, Wei-qun; Wang, Bin

    2014-01-01

    Freezing-thawing resistance is a very significant characteristic for concrete in severe environment (such as cold region with the lowest temperature below 0°C). In this study, ordinary-air-entrained (O-A-E) concrete was produced in a laboratory environment; the compressive strength, cubic compressive strength of C50, C40, C30, C25, and C20 ordinary-air-entrained concrete, tensile strength, and cleavage strength of C30 ordinary-air-entrained concrete were measured after fast freeze-thaw cycles. The effects of fast freeze-thaw cycles on the mechanical properties (compressive strength and cleavage strength) of ordinary-air-entrained concrete materials are investigated on the basis of the experimental results. And the concise mathematical formula between mechanical behavior and number of fast freeze-thaw cycles was established. The experiment results can be used as a reference in design, maintenance, and life prediction of ordinary-air-entrained concrete structure (such as dam, offshore platform, etc.) in cold regions.

  11. Effect of Fast Freeze-Thaw Cycles on Mechanical Properties of Ordinary-Air-Entrained Concrete

    PubMed Central

    Shang, Huai-shuai; Cao, Wei-qun; Wang, Bin

    2014-01-01

    Freezing-thawing resistance is a very significant characteristic for concrete in severe environment (such as cold region with the lowest temperature below 0°C). In this study, ordinary-air-entrained (O-A-E) concrete was produced in a laboratory environment; the compressive strength, cubic compressive strength of C50, C40, C30, C25, and C20 ordinary-air-entrained concrete, tensile strength, and cleavage strength of C30 ordinary-air-entrained concrete were measured after fast freeze-thaw cycles. The effects of fast freeze-thaw cycles on the mechanical properties (compressive strength and cleavage strength) of ordinary-air-entrained concrete materials are investigated on the basis of the experimental results. And the concise mathematical formula between mechanical behavior and number of fast freeze-thaw cycles was established. The experiment results can be used as a reference in design, maintenance, and life prediction of ordinary-air-entrained concrete structure (such as dam, offshore platform, etc.) in cold regions. PMID:24895671

  12. Quantification of hood effectiveness and entrained subsurface air in a Seattle Hospital

    SciTech Connect

    Dietz, R.N.; Goodrich, R.W.

    1994-05-01

    An underground 3-story wing of a hospital having problems with sewer air odors was tested with perfluorocarbon tracer (PFI) technology to quantify the performance of the mechanical ventilation system and determine the extent of sewer air entrainment and chemical hood effectiveness.

  13. Rise of Air Bubbles in Aircraft Lubricating Oils

    NASA Technical Reports Server (NTRS)

    Robinson, J. V.

    1950-01-01

    Lubricating and antifoaming additives in aircraft lubricating oils may impede the escape of small bubbles from the oil by forming shells of liquid with a quasi-solid or gel structure around the bubbles. The rates of rise of small air bubbles, up to 2 millimeters in diameter, were measured at room temperature in an undoped oil, in the same oil containing foam inhibitors, and in an oil containing lubricating additives. The apparent diameter of the air bubbles was measured visually through an ocular micrometer on a traveling telescope. The bubbles in the undoped oil obeyed Stokes' Law, the rate of rise being proportional to the square of the apparent diameter and inversely proportional to the viscosity of the oil. The bubbles in the oils containing lubricating additives or foam inhibitors rose more slowly than the rate predicted by Stokes 1 Law from the apparent diameter, and the rate of rise decreased as the length of path the bubbles traveled increased. A method is derived to calculate the thickness of the liquid shell which would have to move with the bubbles in the doped oils to account for the abnoi'I!l8.lly slow velocity. The maximum thickness of this shell, calculated from the velocities observed, was equal to the bubble radius.

  14. Coherent anti-Stokes Raman spectroscopic measurement of air entrainment in argon plasma jets

    SciTech Connect

    Fincke, J.R.; Rodriquez, R.; Pentecost, C.G.

    1990-01-01

    The concentration and temperature of air entrained into an argon plasma jet has been measured using coherent anti-Stokes Raman spectroscopy (CARS). The flow field is characterized by a short region of well behaved laminar flow near the nozzle exit followed by an abrupt transition to turbulence. Once the transition to turbulence occurs, air is rapidly entrained into the jet core. The location of the transition region is thought to be driven by the rapid cooling of the jet and the resulting increase in Reynolds number. 8 refs., 6 figs.

  15. Coherent anti-Stokes Raman spectroscopic measurement of air entrainment in argon plasma jets

    NASA Astrophysics Data System (ADS)

    Fincke, J. R.; Rodriquez, R.; Pentecost, C. G.

    The concentration and temperature of air entrained into an argon plasma jet has been measured using coherent anti-Stokes Raman spectroscopy (CARS). The flow field is characterized by a short region of well behaved laminar flow near the nozzle exit followed by an abrupt transition to turbulence. Once the transition to turbulence occurs, air is rapidly entrained into the jet core. The location of the transition region is thought to be driven by the rapid cooling of the jet and the resulting increase in Reynolds number.

  16. Air Entrainment and Thermal Evolution of Pyroclastic Density Currents at Tungurahua, Ecuador

    NASA Astrophysics Data System (ADS)

    Benage, M. C.; Dufek, J.; Mothes, P. A.

    2015-12-01

    The entrainment of air into pyroclastic density currents (PDCs) impacts the thermal profile and evolution of the current. However, the associated hazards and opaqueness of PDCs make it difficult to discern internal dynamics and entrainment through direct observations. In this work, we use a three-dimensional multiphase Eulerian-Eulerian-Lagrangian (EEL) model, deposit descriptions, and pyroclast field data, such as paleomagnetic and rind thickness, to study the entrainment efficiency and thus the thermal history of PDCs down the Juive Grande quebrada during the August 16-17th 2006 eruption of Tungurahua volcano. We conclude that 1) the efficient entrainment of ambient air cools the nose and upper portion of the PDCs by 30-60% of the original temperature, 2) PDCs with an initial temperature of 727 °C are on average more efficient at entraining ambient air than PDCs with an initial temperature of 327 °C, 3) the channelized PDCs develop a particle concentration gradient with a concentrated bed load region and suspended load region that leads to a large vertical temperature gradient, and 4) observations and pyroclast temperatures and textures suggest that the PDCs had temperatures greater than 327 °C in the bed load region while the upper, exterior portion of the currents cooled down to temperatures less than 100 °C. By combining field data and numerical models, the structure and dynamics of a PDC can be deduced for these relatively common small volume PDCs.

  17. Period adding cascades: experiment and modeling in air bubbling.

    PubMed

    Pereira, Felipe Augusto Cardoso; Colli, Eduardo; Sartorelli, José Carlos

    2012-03-01

    Period adding cascades have been observed experimentally/numerically in the dynamics of neurons and pancreatic cells, lasers, electric circuits, chemical reactions, oceanic internal waves, and also in air bubbling. We show that the period adding cascades appearing in bubbling from a nozzle submerged in a viscous liquid can be reproduced by a simple model, based on some hydrodynamical principles, dealing with the time evolution of two variables, bubble position and pressure of the air chamber, through a system of differential equations with a rule of detachment based on force balance. The model further reduces to an iterating one-dimensional map giving the pressures at the detachments, where time between bubbles come out as an observable of the dynamics. The model has not only good agreement with experimental data, but is also able to predict the influence of the main parameters involved, like the length of the hose connecting the air supplier with the needle, the needle radius and the needle length.

  18. Response of entrained air-void systems in cement paste to pressure

    NASA Astrophysics Data System (ADS)

    Frazier, Robert

    2011-12-01

    Scope and Method of Study: Determine the response of entrained air-void systems in fresh cement paste to applied pressures by utilizing micro-computed tomography. Compare results to those suggested by the ASTM C231 Type B pressure meter calibration equations. Findings and Conclusions: The results of this research suggest that although the Type B pressure meter assumptions are valid for the compression of individual voids, the volume of air-voids which dissolve under pressure is significant enough to register noticeable errors when using a synthetic air-entraining admixture with the Type B pressure meter test. Results currently suggest that air-void systems with a significant percentage of small voids present will have higher deviation from the Boyle's Law model used by the Type B pressure meter due to the dissolution of these air-voids.

  19. Light Scattering by Ice Crystals Containing Air Bubbles

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Panetta, R. L.; Yang, P.; Bi, L.

    2014-12-01

    The radiative effects of ice clouds are often difficult to estimate accurately, but are very important for interpretation of observations and for climate modeling. Our understanding of these effects is primarily based on scattering calculations, but due to the variability in ice habit it is computationally difficult to determine the required scattering and absorption properties, and the difficulties are only compounded by the need to include consideration of air and carbon inclusions of the sort frequently observed in collected samples. Much of the previous work on effects of inclusions in ice particles on scattering properties has been conducted with variants of geometric optics methods. We report on simulations of scattering by ice crystals with enclosed air bubbles using the pseudo-spectral time domain method (PSTD) and improved geometric optics method (IGOM). A Bouncing Ball Model (BBM) is proposed as a parametrization of air bubbles, and the results are compared with Monte Carlo radiative transfer calculations. Consistent with earlier studies, we find that air inclusions lead to a smoothing of variations in the phase function, weakening of halos, and a reduction of backscattering. We extend these studies by examining the effects of the particular arrangement of a fixed number of bubbles, as well as the effects of splitting a given number of bubbles into a greater number of smaller bubbles with the same total volume fraction. The result shows that the phase function will not change much for stochastic distributed air bubbles. It also shows that local maxima of phase functions are smoothed out for backward directions, when we break bubbles into small ones, single big bubble scatter favors more forward scattering than multi small internal scatters.

  20. Amateur scientists - producing light from a bubble of air

    SciTech Connect

    Hiller, R.A.; Barber, B.P.

    1995-02-01

    A glowing bubble of air cannot be bought anywhere at any price. But with an oscilloscope, a moderately precise sound generator, a home stereo amplifier and about $100, readers can turn sound into light through a process called sonoluminescence. The apparatus is relatively simple. A glass spherical flask filled with water serves as the resonator - the cavity in which sound is created to trap and drive the bubble. Small speakers, called piezoelectric transducers, are cemented to the flask and powered by an audo generator and amplifier. Bubbles introduced into the water coalesce at the center of the flask and produce a dim light visible to the unaided eye in a darkened room.

  1. Experimental study of near-field air entrainment by subsonic volcanic jets

    USGS Publications Warehouse

    Solovitz, S.A.; Mastin, L.G.

    2009-01-01

    The flow structure in the developing region of a turbulent jet has been examined using particle image velocimetry methods, considering the flow at steady state conditions. The velocity fields were integrated to determine the ratio of the entrained air speed to the jet speed, which was approximately 0.03 for a range of Mach numbers up to 0.89 and. Reynolds numbers up to 217,000. This range of experimental Mach and Reynolds numbers is higher than previously considered for high-accuracy entrainment measures, particularly in the near-vent region. The entrainment values are below those commonly used for geophysical analyses of volcanic plumes, suggesting that existing 1-D models are likely to understate the tendency for column collapse. Copyright 2009 by the American Geophysical Union.

  2. Interaction between Air Bubbles and Superhydrophobic Surfaces in Aqueous Solutions.

    PubMed

    Shi, Chen; Cui, Xin; Zhang, Xurui; Tchoukov, Plamen; Liu, Qingxia; Encinas, Noemi; Paven, Maxime; Geyer, Florian; Vollmer, Doris; Xu, Zhenghe; Butt, Hans-Jürgen; Zeng, Hongbo

    2015-07-01

    Superhydrophobic surfaces are usually characterized by a high apparent contact angle of water drops in air. Here we analyze the inverse situation: Rather than focusing on water repellency in air, we measure the attractive interaction of air bubbles and superhydrophobic surfaces in water. Forces were measured between microbubbles with radii R of 40-90 μm attached to an atomic force microscope cantilever and submerged superhydrophobic surfaces. In addition, forces between macroscopic bubbles (R = 1.2 mm) at the end of capillaries and superhydrophobic surfaces were measured. As superhydrophobic surfaces we applied soot-templated surfaces, nanofilament surfaces, micropillar arrays with flat top faces, and decorated micropillars. Depending on the specific structure of the superhydrophobic surfaces and the presence and amount of entrapped air, different interactions were observed. Soot-templated surfaces in the Cassie state showed superaerophilic behavior: Once the electrostatic double-layer force and a hydrodynamic repulsion were overcome, bubbles jumped onto the surface and fully merged with the entrapped air. On nanofilaments and micropillar arrays we observed in addition the formation of sessile bubbles with finite contact angles below 90° or the attachment of bubbles, which retained their spherical shape.

  3. The role of bubbles during air-sea gas exchange

    NASA Astrophysics Data System (ADS)

    Emerson, Steven; Bushinsky, Seth

    2016-06-01

    The potential for using the air-sea exchange rate of oxygen as a tracer for net community biological production in the ocean is greatly enhanced by recent accuracy improvements for in situ measurements of oxygen on unmanned platforms. A limiting factor for determining the exchange process is evaluating the air-sea flux contributed by bubble processes produced by breaking waves, particularly during winter months under high winds. Highly accurate measurements of noble gases (Ne, Ar & Kr) and nitrogen, N2, in seawater are tracers of the importance of bubble process in the surface mixed layer. We use measured distributions of these gases in the ventilated thermocline of the North Pacific and an annual time series of N2 in the surface ocean of the NE Subarctic Pacific to evaluate four different air-water exchange models chosen to represent the range of model interpretation of bubble processes. We find that models must have an explicit bubble mechanism to reproduce concentrations of insoluble atmospheric gases, but there are periods when they all depart from observations. The recent model of Liang et al. (2013) stems from a highly resolved model of bubble plumes and categorizes bubble mechanisms into those that are small enough to collapse and larger ones that exchange gases before they resurface, both of which are necessary to explain the data.

  4. Descemet membrane air-bubble separation in donor corneas.

    PubMed

    Venzano, Davide; Pagani, Paola; Randazzo, Nadia; Cabiddu, Francesco; Traverso, Carlo Enrico

    2010-12-01

    We describe a technique to obtain Descemet-endothelium disks from donors. To detach Descemet membrane, an air bubble was introduced in the deep stroma of human donor corneas mounted on an artificial chamber. In Group A (n = 5), the bubble was left inflated. In Group B (n = 4), the bubble was deflated immediately after the membrane was detached. In Group C (n = 7), the Descemet-endothelium disk was trephined and separated from the stroma after the bubble was deflated. All tissues were stored at 4°C. Descemet detachment was achieved in 89% of the tissues. After 48 hours, the mean endothelial loss was 83% ± 10% (SD), 15% ± 11%, and 3% ± 3% in the 3 groups, respectively. With this technique, Descemet-endothelium disks were obtained without significant alterations in the endothelial layer.

  5. Large Field of View PIV Measurements of Air Entrainment by SLS SMAT Water Sound Suppression System

    NASA Astrophysics Data System (ADS)

    Stegmeir, Matthew; Pothos, Stamatios; Bissell, Dan

    2015-11-01

    Water-based sound suppressions systems have been used to reduce the acoustic impact of space vehicle launches. Water flows at a high rate during launch in order to suppress Engine Generated Acoustics and other potentially damaging sources of noise. For the Space Shuttle, peak flow rates exceeded 900,000 gallons per minute. Such large water flow rates have the potential to induce substantial entrainment of the surrounding air, affecting the launch conditions and generating airflow around the launch vehicle. Validation testing is necessary to quantify this impact for future space launch systems. In this study, PIV measurements were performed to map the flow field above the SMAT sub-scale launch vehicle scaled launch stand. Air entrainment effects generated by a water-based sound suppression system were studied. Mean and fluctuating fluid velocities were mapped up to 1m above the test stand deck and compared to simulation results. Measurements performed with NASA MSFC.

  6. Material Properties Governing Co-Current Flame Spread: The Effect of Air Entrainment

    NASA Technical Reports Server (NTRS)

    Coutin, Mickael; Rangwala, Ali S.; Torero, Jose L.; Buckley, Steven G.

    2003-01-01

    A study on the effects of lateral air entrainment on an upward spreading flame has been conducted. The fuel is a flat PMMA plate of constant length and thickness but variable width. Video images and surface temperatures have allowed establishing the progression of the pyrolyis front and on the flame stand-off distance. These measurements have been incorporated into a theoretical formulation to establish characteristic mass transfer numbers ("B" numbers). The mass transfer number is deemed as a material related parameter that could be used to assess the potential of a material to sustain co-current flame spread. The experimental results show that the theoretical formulation fails to describe heat exchange between the flame and the surface. The discrepancies seem to be associated to lateral air entrainment that lifts the flame off the surface and leads to an over estimation of the local mass transfer number. Particle Image Velocimetry (PIV) measurements are in the process of being acquired. These measurements are intended to provide insight on the effect of air entrainment on the flame stand-off distance. A brief description of the methodology to be followed is presented here.

  7. Motion of Air Bubbles in Water Subjected to Microgravity Accelerations

    NASA Technical Reports Server (NTRS)

    DeLombard, Richard; Kelly, Eric M.; Hrovat, Kenneth; Nelson, Emily S.; Pettit, Donald R.

    2006-01-01

    The International Space Station (ISS) serves as a platform for microgravity research for the foreseeable future. A microgravity environment is one in which the effects of gravity are drastically reduced which then allows physical experiments to be conducted without the over powering effects of gravity. During his 6-month stay on the ISS, astronaut Donald R. Pettit performed many informal/impromptu science experiments with available equipment. One such experiment focused on the motion of air bubbles in a rectangular container nearly filled with de-ionized water. Bubbles were introduced by shaking and then the container was secured in place for several hours while motion of the bubbles was recorded using time-lapse photography. This paper shows correlation between bubble motion and quasi-steady acceleration levels during one such experiment operation. The quasi-steady acceleration vectors were measured by the Microgravity Acceleration Measurement System (MAMS). Essentially linear motion was observed in the condition considered here. Dr. Pettit also created other conditions which produced linear and circulating motion, which are the subjects of further study. Initial observations of this bubble motion agree with calculations from many microgravity physical science experiments conducted on shuttle microgravity science missions. Many crystal-growth furnaces involve heavy metals and high temperatures in which undesired acceleration-driven convection during solidification can adversely affect the crystal. Presented in this paper will be results showing correlation between bubble motion and the quasi-steady acceleration vector.

  8. Motion of Air Bubbles in Water Subjected to Microgravity Accelerations

    NASA Technical Reports Server (NTRS)

    DeLombard, Richard; Kelly, Eric M.; Hrovar, Kenneth; Nelson, Emily S.; Pettit, Donald R.

    2004-01-01

    The International Space Station (ISS) serves as a platform for microgravity research for the foreseeable future. A microgravity environment is one in which the effects of gravity are drastically reduced which then allows physical experiments to be conducted without the overpowering effects of gravity. During his six month stay on the ISS, astronaut Donald R Pettit performed many informal/impromptu science experiments with available equipment. One such experiment focused on the motion of air bubbles in a rectangular container nearly filled with de-ionized water. Bubbles were introduced by shaking and the container was secured in place for several hours while motion of the bubbles were recorded using time-lapse photography. This paper shows correlation between bubble motion and quasi-steady acceleration levels during one such experiment operation. The quasi-steady acceleration vectors were measured by the Microgravity Acceleration Measurement System. Essentially linear motion was observed in the condition considered here. Dr. Pettit also created other conditions which produced linear and circulating motion, which are the subjects of further study. Initial observations of this bubble motion agree with calculations from many microgravity physical science experiments conducted on Shuttle microgravity science missions. Many crystal-growth furnaces involve heavy metals and high temperatures in which undesired acceleration-driven convection during solidification can adversely affect the crystal. Presented in this paper will be results showing correlation between bubble motion and the quasi-steady acceleration vector.

  9. Using Neutron Radiography to Quantify Water Transport and the Degree of Saturation in Entrained Air Cement Based Mortar

    NASA Astrophysics Data System (ADS)

    Lucero, Catherine L.; Bentz, Dale P.; Hussey, Daniel S.; Jacobson, David L.; Weiss, W. Jason

    Air entrainment is commonly added to concrete to help in reducing the potential for freeze thaw damage. It is hypothesized that the entrained air voids remain unsaturated or partially saturated long after the smaller pores fill with water. Small gel and capillary pores in the cement matrix fill quickly on exposure to water, but larger pores (entrapped and entrained air voids) require longer times or other methods to achieve saturation. As such, it is important to quantitatively determine the water content and degree of saturation in air entrained cementitious materials. In order to further investigate properties of cement-based mortar, a model based on Beer's Law has been developed to interpret neutron radiographs. This model is a powerful tool for analyzing images acquired from neutron radiography. A mortar with a known volume of aggregate, water to cement ratio and degree of hydration can be imaged and the degree of saturation can be estimated.

  10. Air bubble-shock wave interaction adjacent to gelantine surface

    NASA Astrophysics Data System (ADS)

    Lush, P. A.; Tomita, Y.; Onodera, O.; Takayama, K.; Sanada, N.; Kuwahara, M.; Ioritani, N.; Kitayama, O.

    1990-07-01

    The interaction between a shock wave and an air bubble-adjacent to a gelatine surface is investigated in order to simulate human tissue damage resulting from extracorporeal shock wave lithotripsy. Using high speed cine photography it is found that a shock wave of strength 11 MPa causes 1-3 mm diameter bubbles to produce high velocity microjets with penetration rates of approximately 110 m/s and penetration depths approximately equal to twice the initial bubble diameter. Theoretical considerations for liquid impact on soft solid of similar density indicate that microjet velocities will be twice the penetration rate, i.e. 220 m/s in the present case. Such events are the probable cause of observed renal tissue damage.

  11. Air-bubble entrapment due to a drop

    NASA Astrophysics Data System (ADS)

    Ootsuka, Nao; Etoh, Takeharu G.; Takehara, Kohsei; Oki, Sachio; Takano, Yasuhide; Hatsuki, Yuya; Thoroddsen, Sigurdur T.

    2005-03-01

    In 2001, an ultra-high-speed video camera of 1,000,000 frames per second was developed in Hydraulics Laboratory of Kinki University. The image sensor of the camera was the ISIS-V2, the In-situ Storage Image Sensor-Version 2. The camera has been applied to visualization of high-speed phenomena in various fields of science and engineering. We observed entrapment phenomena of bubbles resulting from thermal spraying of metals. Thermal spraying is used to improve solid surfaces by spraying melted metal or ceramic particles to the surfaces. One of the problems relating to the thermal spraying is entrapment of air bubbles under the metal or ceramic layers covering the solid surfaces. The bubbles decrease bonding strength of the layers made by the thermal spraying. The entrapment processes were successfully visualized by application of the ultra-high-speed video camera.

  12. [Emphysematous cystitis with air bubbles in the vena cava].

    PubMed

    Yokokawa, Ryusei; Tsuka, Harutoshi; Muranaka, Koji

    2014-01-01

    A 76-year-old diabetic woman was referred to our hospital with an episode of high fever and sub-abdominal pain. Computed tomography (CT) of the pelvis revealed gas accumulation within the lumen and wall of the bladder and CT of the abdomen demonstrated bubbles in the inferior vena cava. She recovered by urinary drainage and antibiotic therapy. Urinary culture revealed Escherichia coli. CT after the therapy didn't demonstrate gas accumulation of the bladder and bubbles in the inferior vena cava. Emphysematous urinary tract infections (UTIs) have the high fatality rate, it seems to be a possibility that venous bubbles with emphysematous UTIs contribute to the high fatality rate such as air embolisms. It was suspected that bacterial injury of the bladder wall and high vesical pressure caused by urinary outlet obstruction such as neurogenic bladder lead gas translocation into the venous system. Six previous cases of emphysematous UTIs (three emphysematous cystitis cases and three emphysematous pyelonephritis cases) with venous bubbles have been reported to this day. Our case is seems to be the fourth case report that venous bubbles with emphysematous cystitis was demonstrated.

  13. Pyrrhotite Oxidation as an Indicator of Air Entrainment into Eruption Columns

    NASA Astrophysics Data System (ADS)

    Matsumoto, K.; Nakamura, M.

    2015-12-01

    Fragmented magmas in eruption columns obtain buoyancy by entrainment and heating of cold air. Theoretically, the proportion of the entrained air and temperature change of the magma fragments can be calculated through rigorous fluid dynamics, but these factors have not been evaluated from natural pyroclasts. In this study, we developed a new method for quantifying the degree of air entrainment based on pyrrhotite (Po) oxidation reactions, whose time scale corresponds to the typical duration of (sub-) Plinian eruptions (i.e., tens of seconds to a few hours). We examined pumice clasts and lava flows from the 1914-15 eruption of Sakurajima. During this event, various types of eruption were observed: Plinian eruptions with intermittent generation of clastogenic lava flow, followed by voluminous effusive lava flow. The products of Po oxidation consisted of magnetite (Mt), hematite (Hm), and their composites. The occurrence of Po and the oxides were systematically correlated with the types of eruption. In Plinian pumices, unreacted Po ± porous Mt-Hm composite reaction rims were dominant, whereas in the clastogenic lava, porous Hm occurred predominantly with scarce unreacted Po and porous Mt. In the effusive lava, a variety of Po, Mt, and Hm assemblage was observed, but Po did not coexist with Hm-rims. The porous Mt crystals in the pumice clasts were found to be Ti-free, whereas those in the effusive lava had Ti-enriched rims. These correlations were explained by considering two factors: the achieved fO2, which was controlled by the extent of fragmentation (i.e., surface area exposed to air), and duration of the maintenance of a high-T and high-fO2 condition. This study has demonstrated that the cooling timescale of pumice clasts in eruption columns can be estimated through the rate of Po oxidation reactions Po→Mt and Mt→Hm. Lavas of clastogenic origin may also be recognized from the reaction.

  14. Investigation of air-entraining admixture dosage in fly ash concrete

    SciTech Connect

    Ley, M.T.; Harris, N.J.; Folliard, K.J.; Hover, K.C.

    2008-09-15

    The amount of air-entraining admixture (AEA) needed to achieve a target air content in fresh concrete can vary significantly with differences in the fly ash used in the concrete. The work presented in this paper evaluates the ability to predict the AEA dosage on the basis of tests on the fly ash alone. All results were compared with the dosage of AEA required to produce an air content of 6% in fresh concrete. Fly ash was sampled from six separate sources. For four of these sources, samples were obtained both before and after the introduction of 'low-NOx burners'. Lack of definitive data about the coal itself or the specifics of the burning processes prevents the ability to draw specific conclusions about the impact of low-NOx burners on AEA demand. Nevertheless, the data suggest that modification of the burning process to meet environmental quality standards may affect the fly ash-AEA interaction.

  15. Effect of compressibility on the rise velocity of an air bubble in porous media

    NASA Astrophysics Data System (ADS)

    Cihan, Abdullah; Corapcioglu, M. Yavuz

    2008-04-01

    The objective of this study is to develop a theoretical model to analyze the effect of air compressibility on air bubble migration in porous media. The model is obtained by combining the Newton's second law of motion and the ideal gas law assuming that the air phase in the bubble behaves as an ideal gas. Numerical and analytical solutions are presented for various cases of interest. The model results compare favorably with both experimental data and analytical solutions reported in the literature obtained for an incompressible air bubble migration. The results show that travel velocity of a compressible air bubble in porous media strongly depends on the depth of air phase injection. A bubble released from greater depths travels with a slower velocity than a bubble with an equal volume injected at shallower depths. As an air bubble rises up, it expands with decreasing bubble pressure with depth. The volume of a bubble injected at a 1-m depth increases 10% as the bubble reaches the water table. However, bubble volume increases almost twofold when it reaches to the surface from a depth of 10 m. The vertical rise velocity of a compressible bubble approaches that of an incompressible one regardless of the injection depth and volume as it reaches the water table. The compressible bubble velocity does not exceed 18.8 cm/s regardless of the injection depth and bubble volume. The results demonstrate that the effect of air compressibility on the motion of a bubble cannot be neglected except when the air is injected at very shallow depths.

  16. Memory encoding vibrations in a disconnecting air bubble

    NASA Astrophysics Data System (ADS)

    Zhang, Wendy

    2009-03-01

    The implosion that disconnects a submerged air bubble into several bubbles provides a simple example of energy focusing. The most efficient disconnection is an entirely symmetric one terminating in a finite-time singularity. At the final moment, the potential energy at the start of the disconnection is entirely condensed into the kinetic energy of a vanishingly small amount of liquid rushing inwards to disconnect the bubble. In reality, however, the initial shape always possesses slight imperfections. We show that a memory of the imperfection remains and controls the final fate of the focusing. Linear stability reveals that even an infinitesimal perturbation is remembered. A slight initial asymmetry excites vibrations in the cross-section shape of the bubble neck. The vibrations persist over time. Near the singularity, their amplitudes freeze, locking onto constant values, while their frequencies chirp, increasing more and more rapidly. The net effect is that the singularity remembers exactly half of the information about the initial imperfection, the half encoded by the vibration amplitudes. We check this scenario in an experiment by releasing an air bubble from a nozzle with an oblong cross-section. This excites an elongation-compression vibrational mode. We measure the vibration excited and find quantitative agreement with linear stability. When the initial distortion has a small, but finite, size, the saturation of the vibration amplitude causes the symmetric singularity to be pre-empted by an asymmetric contact between two distant points on the interface. Numerics reveal that the contact is typically smooth, corresponding to two inward-curving portions of the bubble surface colliding at finite speed. Both the contact speed and curvature vary non-monotonically with the initial distortion size, with abrupt jumps at specific values. This is because the vibration causes contact to occur at different values of the phase. A contact produced when the shape distortion

  17. Keeping warm with fur in cold water: entrainment of air in hairy surfaces

    NASA Astrophysics Data System (ADS)

    Nasto, Alice; Regli, Marianne; Brun, Pierre-Thomas; Clanet, Christophe; Hosoi, Anette

    2015-11-01

    Instead of relying on a thick layer of body fat for insulation as many aquatic mammals do, fur seals and otters trap air in their dense fur for insulation in cold water. Using a combination of model experiments and theory, we rationalize this mechanism of air trapping underwater for thermoregulation. For the model experiments, hairy surfaces are fabricated using laser cut molds and casting samples with PDMS. Modeling the hairy texture as a network of capillary tubes, the imbibition speed of water into the hairs is obtained through a balance of hydrostatic pressure and viscous stress. In this scenario, the bending of the hairs and capillary forces are negligible. The maximum diving depth that can be achieved before the hairs are wetted to the roots is predicted from a comparison of the diving speed and imbibition speed. The amount of air that is entrained in hairy surfaces is greater than what is expected for classic Landau-Levich-Derjaguin plate plunging. A phase diagram with the parameters from experiments and biological data allows a comparison of the model system and animals.

  18. Ceramic membrane defouling (cleaning) by air Nano Bubbles.

    PubMed

    Ghadimkhani, Aliasghar; Zhang, Wen; Marhaba, Taha

    2016-03-01

    Ceramic membranes are among the most promising technologies for membrane applications, owing to their excellent resistance to mechanical, chemical, and thermal stresses. However, membrane fouling is still an issue that hampers the applications at large scales. Air Nano Bubbles (NBs), due to high mass transfer efficiency, could potentially prevent fouling of ceramic membrane filtration processes. In this study, bench and pilot scale ceramic membrane filtration was performed with air NBs to resist fouling. To simulate fouling, humic acid, as an organic foulant, was applied to the membrane flat sheet surface. Complete membrane clogging was achieved in less than 6 h. Membrane defouling (cleaning) was performed by directly feeding of air NBs to the membrane cells. The surface of the ceramic membrane was superbly cleaned by air NBs, as revealed by atomic force microscope (AFM) images before and after the treatment. The permeate flux recovered to its initial level (e.g., 26.7 × 10(-9) m(3)/m(2)/s at applied pressure of 275.8 kPa), which indicated that NBs successfully unclogged the pores of the membrane. The integrated ceramic membrane and air NBs system holds potential as an innovative sustainable technology.

  19. Ceramic membrane defouling (cleaning) by air Nano Bubbles.

    PubMed

    Ghadimkhani, Aliasghar; Zhang, Wen; Marhaba, Taha

    2016-03-01

    Ceramic membranes are among the most promising technologies for membrane applications, owing to their excellent resistance to mechanical, chemical, and thermal stresses. However, membrane fouling is still an issue that hampers the applications at large scales. Air Nano Bubbles (NBs), due to high mass transfer efficiency, could potentially prevent fouling of ceramic membrane filtration processes. In this study, bench and pilot scale ceramic membrane filtration was performed with air NBs to resist fouling. To simulate fouling, humic acid, as an organic foulant, was applied to the membrane flat sheet surface. Complete membrane clogging was achieved in less than 6 h. Membrane defouling (cleaning) was performed by directly feeding of air NBs to the membrane cells. The surface of the ceramic membrane was superbly cleaned by air NBs, as revealed by atomic force microscope (AFM) images before and after the treatment. The permeate flux recovered to its initial level (e.g., 26.7 × 10(-9) m(3)/m(2)/s at applied pressure of 275.8 kPa), which indicated that NBs successfully unclogged the pores of the membrane. The integrated ceramic membrane and air NBs system holds potential as an innovative sustainable technology. PMID:26741542

  20. In Vitro Observation of Air Bubbles during Delivery of Various Detachable Aneurysm Embolization Coils

    PubMed Central

    Hwang, Seon Moon; Lim, Ok Kyun; Kim, Jae Kyun

    2012-01-01

    Objective Device- or technique-related air embolism is a drawback of various neuro-endovascular procedures. Detachable aneurysm embolization coils can be sources of such air bubbles. We therefore assessed the formation of air bubbles during in vitro delivery of various detachable coils. Materials and Methods A closed circuit simulating a typical endovascular coiling procedure was primed with saline solution degassed by a sonification device. Thirty commercially available detachable coils (7 Axium, 4 GDCs, 5 MicroPlex, 7 Target, and 7 Trufill coils) were tested by using the standard coil flushing and delivery techniques suggested by each manufacturer. The emergence of any air bubbles was monitored with a digital microscope and the images were captured to measure total volumes of air bubbles during coil insertion and detachment and after coil pusher removal. Results Air bubbles were seen during insertion or removal of 23 of 30 coils (76.7%), with volumes ranging from 0 to 23.42 mm3 (median: 0.16 mm3). Air bubbles were observed most frequently after removal of the coil pusher. Significantly larger amounts of air bubbles were observed in Target coils. Conclusion Variable volumes of air bubbles are observed while delivering detachable embolization coils, particularly after removal of the coil pusher and especially with Target coils. PMID:22778562

  1. Size Distribution of Air Bubbles Entering the Brain during Cardiac Surgery

    PubMed Central

    Janus, Justyna; Marshall, David; Horsfield, Mark A.; Rousseau, Clément; Keelan, Jonathan; Evans, David H.; Hague, James P.

    2015-01-01

    Background Thousands of air bubbles enter the cerebral circulation during cardiac surgery, but whether high numbers of bubbles explain post-operative cognitive decline is currently controversial. This study estimates the size distribution of air bubbles and volume of air entering the cerebral arteries intra-operatively based on analysis of transcranial Doppler ultrasound data. Methods Transcranial Doppler ultrasound recordings from ten patients undergoing heart surgery were analysed for the presence of embolic signals. The backscattered intensity of each embolic signal was modelled based on ultrasound scattering theory to provide an estimate of bubble diameter. The impact of showers of bubbles on cerebral blood-flow was then investigated using patient-specific Monte-Carlo simulations to model the accumulation and clearance of bubbles within a model vasculature. Results Analysis of Doppler ultrasound recordings revealed a minimum of 371 and maximum of 6476 bubbles entering the middle cerebral artery territories during surgery. This was estimated to correspond to a total volume of air ranging between 0.003 and 0.12 mL. Based on analysis of a total of 18667 embolic signals, the median diameter of bubbles entering the cerebral arteries was 33 μm (IQR: 18 to 69 μm). Although bubble diameters ranged from ~5 μm to 3.5 mm, the majority (85%) were less than 100 μm. Numerous small bubbles detected during cardiopulmonary bypass were estimated by Monte-Carlo simulation to be benign. However, during weaning from bypass, showers containing large macro-bubbles were observed, which were estimated to transiently affect up to 2.2% of arterioles. Conclusions Detailed analysis of Doppler ultrasound data can be used to provide an estimate of bubble diameter, total volume of air, and the likely impact of embolic showers on cerebral blood flow. Although bubbles are alarmingly numerous during surgery, our simulations suggest that the majority of bubbles are too small to be harmful

  2. Bubbles

    NASA Astrophysics Data System (ADS)

    Prosperetti, Andrea

    2004-06-01

    Vanitas vanitatum et omnia vanitas: bubbles are emptiness, non-liquid, a tiny cloud shielding a mathematical singularity. Born from chance, a violent and brief life ending in the union with the (nearly) infinite. But a wealth of phenomena spring forth from this nothingness: underwater noise, sonoluminescence, boiling, and many others. Some recent results on a "blinking bubble" micropump and vapor bubbles in sound fields are outlined. The last section describes Leonardo da Vinci's observation of the non-rectlinear ascent of buoyant bubbles and justifies the name Leonardo's paradox recently attributed to this phenomenon.

  3. Simple method for high-performance stretchable composite conductors with entrapped air bubbles.

    PubMed

    Hwang, Hyejin; Kim, Dae-Gon; Jang, Nam-Su; Kong, Jeong-Ho; Kim, Jong-Man

    2016-12-01

    We integrate air bubbles into conductive elastic composite-based stretchable conductors to make them mechanically less stiff and electrically more robust against physical deformations. A surfactant facilitates both the formation and maintenance of air bubbles inside the elastic composites, leading to a simple fabrication of bubble-entrapped stretchable conductors. Based on the unique bubble-entrapped architecture, the elastic properties are greatly enhanced and the resistance change in response to tensile strains can clearly be controlled. The bubble-entrapped conductor achieves ~80 % elongation at ~3.4 times lower stress and ~44.8 % smaller change in the electrical resistance at 80 % tensile strain, compared to bare conductor without air bubbles.

  4. Studies on the tempo of bubble formation in recently cavitated vessels: a model to predict the pressure of air bubbles.

    PubMed

    Wang, Yujie; Pan, Ruihua; Tyree, Melvin T

    2015-06-01

    A cavitation event in a vessel replaces water with a mixture of water vapor and air. A quantitative theory is presented to argue that the tempo of filling of vessels with air has two phases: a fast process that extracts air from stem tissue adjacent to the cavitated vessels (less than 10 s) and a slow phase that extracts air from the atmosphere outside the stem (more than 10 h). A model was designed to estimate how water tension (T) near recently cavitated vessels causes bubbles in embolized vessels to expand or contract as T increases or decreases, respectively. The model also predicts that the hydraulic conductivity of a stem will increase as bubbles collapse. The pressure of air bubbles trapped in vessels of a stem can be predicted from the model based on fitting curves of hydraulic conductivity versus T. The model was validated using data from six stem segments each of Acer mono and the clonal hybrid Populus 84 K (Populus alba × Populus glandulosa). The model was fitted to results with root mean square error less than 3%. The model provided new insight into the study of embolism formation in stem tissue and helped quantify the bubble pressure immediately after the fast process referred to above.

  5. Probing the interaction between air bubble and sphalerite mineral surface using atomic force microscope.

    PubMed

    Xie, Lei; Shi, Chen; Wang, Jingyi; Huang, Jun; Lu, Qiuyi; Liu, Qingxia; Zeng, Hongbo

    2015-03-01

    The interaction between air bubbles and solid surfaces plays important roles in many engineering processes, such as mineral froth flotation. In this work, an atomic force microscope (AFM) bubble probe technique was employed, for the first time, to directly measure the interaction forces between an air bubble and sphalerite mineral surfaces of different hydrophobicity (i.e., sphalerite before/after conditioning treatment) under various hydrodynamic conditions. The direct force measurements demonstrate the critical role of the hydrodynamic force and surface forces in bubble-mineral interaction and attachment, which agree well with the theoretical calculations based on Reynolds lubrication theory and augmented Young-Laplace equation by including the effect of disjoining pressure. The hydrophobic disjoining pressure was found to be stronger for the bubble-water-conditioned sphalerite interaction with a larger hydrophobic decay length, which enables the bubble attachment on conditioned sphalerite at relatively higher bubble approaching velocities than that of unconditioned sphalerite. Increasing the salt concentration (i.e., NaCl, CaCl2) leads to weakened electrical double layer force and thereby facilitates the bubble-mineral attachment, which follows the classical Derjaguin-Landau-Verwey-Overbeek (DLVO) theory by including the effects of hydrophobic interaction. The results provide insights into the basic understanding of the interaction mechanism between bubbles and minerals at nanoscale in froth flotation processes, and the methodology on probing the interaction forces of air bubble and sphalerite surfaces in this work can be extended to many other mineral and particle systems.

  6. A study of the accuracy of neutrally buoyant bubbles used as flow tracers in air

    NASA Technical Reports Server (NTRS)

    Kerho, Michael F.

    1993-01-01

    Research has been performed to determine the accuracy of neutrally buoyant and near neutrally buoyant bubbles used as flow tracers in air. Theoretical, computational, and experimental results are presented to evaluate the dynamics of bubble trajectories and factors affecting their ability to trace flow-field streamlines. The equation of motion for a single bubble was obtained and evaluated using a computational scheme to determine the factors which affect a bubble's trajectory. A two-dimensional experiment was also conducted to experimentally determine bubble trajectories in the stagnation region of NACA 0012 airfoil at 0 deg angle of attack using a commercially available helium bubble generation system. Physical properties of the experimental bubble trajectories were estimated using the computational scheme. These properties included the density ratio and diameter of the individual bubbles. the helium bubble system was then used to visualize and document the flow field about a 30 deg swept semispan wing with simulated glaze ice. Results were compared to Navier-Stokes calculations and surface oil flow visualization. The theoretical and computational analysis have shown that neutrally buoyant bubbles will trace even the most complex flow patterns. Experimental analysis revealed that the use of bubbles to trace flow patterns should be limited to qualitative measurements unless care is taken to ensure neutral buoyancy. This is due to the difficulty in the production of neutrally buoyant bubbles.

  7. The impact and bounce of air bubbles at a flat fluid interface.

    PubMed

    Manica, Rogerio; Klaseboer, Evert; Chan, Derek Y C

    2016-04-01

    The rise and impact of bubbles at an initially flat but deformable liquid-air interface in ultraclean liquid systems are modelled by taking into account the buoyancy force, hydrodynamic drag, inertial added mass effect and drainage of the thin film between the bubble and the interface. The bubble-surface interaction is analyzed using lubrication theory that allows for both bubble and surface deformation under a balance of normal stresses and surface tension as well as the long-range nature of deformation along the interface. The quantitative result for collision and bounce is sensitive to the impact velocity of the rising bubble. This velocity is controlled by the combined effects of interfacial tension via the Young-Laplace equation and hydrodynamic stress on the surface, which determine the deformation of the bubble. The drag force that arises from the hydrodynamic stress in turn depends on the hydrodynamic boundary conditions on the bubble surface and its shape. These interrelated factors are accounted for in a consistent manner. The model can predict the rise velocity and shape of millimeter-size bubbles in ultra-clean water, in two silicone oils of different densities and viscosities and in ethanol without any adjustable parameters. The collision and bounce of such bubbles with a flat water/air, silicone oil/air and ethanol/air interface can then be predicted with excellent agreement when compared to experimental observations. PMID:26924623

  8. Aerosol and Dry Air Entrainment Impacts on Thermally Driven Orographic Clouds and the Development of Precipitation

    NASA Astrophysics Data System (ADS)

    Nugent, A. D.; Watson, C. D.; Thompson, G.; Smith, R. B.

    2014-12-01

    Precipitation generation in a cumulus cloud depends on the nature of available aerosols and the turbulent entrainment of dry air. These two processes were observed in the orographic clouds during the DOMEX (Dominica Experiment) field campaign. On days with thermally driven convection, little precipitation develops and the orographic clouds are composed on average of clouds with 125 cm-3 droplet number concentration and 15 μm cloud droplet diameter. Aerosol number concentrations as high as 325 cm-3 are found in the detrained air above the tropical island of Dominica. The island surface aerosol source and the relatively dry cloud layer are two independent variables that play a role in the composition and development of the observed orographic clouds. We use idealized 3D WRF simulations with the new aerosol-aware Thompson and Eidhammer microphysics scheme to compare with observations. A 1 km high mountain with a constant surface sensible heat flux drives convection with no background wind. Four simulations are performed to explore the parameter space with and without an aerosol source, and with a dry and moist cloud layer: (1) aerosol source / dry, (2) aerosol source / moist, (3) no source / dry, and (4) no source / moist. The aerosol source is composed of an organic-like aerosol with a mean radius of 0.08 μm and a hygroscopicity of 0.6. The aerosol flux comes only from the island surface at a rate of 5 aerosols cm-3 s-1 or 1.5x108 aerosols m-2 s-1. Precipitation efficiency, drying ratio, and microphysical conversion rates of liquid water are computed and tracked, and cloud and rain water mass and number budgets are completed. Comparing the development of orographic clouds and precipitation in the four simulations leads toward an improved understanding of the observations and the relative controls on convection.

  9. High temperature air-blown woody biomass gasification model for the estimation of an entrained down-flow gasifier.

    PubMed

    Kobayashi, Nobusuke; Tanaka, Miku; Piao, Guilin; Kobayashi, Jun; Hatano, Shigenobu; Itaya, Yoshinori; Mori, Shigekatsu

    2009-01-01

    A high temperature air-blown gasification model for woody biomass is developed based on an air-blown gasification experiment. A high temperature air-blown gasification experiment on woody biomass in an entrained down-flow gasifier is carried out, and then the simple gasification model is developed based on the experimental results. In the experiment, air-blown gasification is conducted to demonstrate the behavior of this process. Pulverized wood is used as the gasification fuel, which is injected directly into the entrained down-flow gasifier by the pulverized wood banner. The pulverized wood is sieved through 60 mesh and supplied at rates of 19 and 27kg/h. The oxygen-carbon molar ratio (O/C) is employed as the operational condition instead of the air ratio. The maximum temperature achievable is over 1400K when the O/C is from 1.26 to 1.84. The results show that the gas composition is followed by the CO-shift reaction equilibrium. Therefore, the air-blown gasification model is developed based on the CO-shift reaction equilibrium. The simple gasification model agrees well with the experimental results. From calculations in large-scale units, the cold gas is able to achieve 80% efficiency in the air-blown gasification, when the woody biomass feedrate is over 1000kg/h and input air temperature is 700K.

  10. Solution-Processed Ultraelastic and Strong Air-Bubbled Graphene Foams.

    PubMed

    Lv, Lingxiao; Zhang, Panpan; Cheng, Huhu; Zhao, Yang; Zhang, Zhipan; Shi, Gaoquan; Qu, Liangti

    2016-06-01

    Solution-processed ultraelastic graphene foams are prepared via a convenient air-bubble-promoted synthesis. These foams can dissipate external compression through the ordered interconnecting graphene network between the bubbles without causing a local fracture and thus reliably show compressive stress of 5.4 MPa at a very high strain of 99%, setting a new benchmark for solution-processed graphene foams.

  11. Gas and liquid measurements in air-water bubbly flows

    SciTech Connect

    Zhou, X.; Doup, B.; Sun, X.

    2012-07-01

    Local measurements of gas- and liquid-phase flow parameters are conducted in an air-water two-phase flow loop. The test section is a vertical pipe with an inner diameter of 50 mm and a height of 3.2 m. The measurements are performed at z/D = 10. The gas-phase measurements are performed using a four-sensor conductivity probe. The data taken from this probe are processed using a signal processing program to yield radial profiles of the void fraction, bubble velocity, and interfacial area concentration. The velocity measurements of the liquid-phase are performed using a state-of-the-art Particle Image Velocimetry (PIV) system. The raw PIV images are acquired using fluorescent particles and an optical filtration device. Image processing is used to remove noise in the raw PIV images. The statistical cross correlation is introduced to determine the axial velocity field and turbulence intensity of the liquid-phase. Measurements are currently being performed at z/D = 32 to provide a more complete data set. These data can be used for computational fluid dynamic model development and validation. (authors)

  12. Role of air bubbles overlooked in the adsorption of perfluorooctanesulfonate on hydrophobic carbonaceous adsorbents.

    PubMed

    Meng, Pingping; Deng, Shubo; Lu, Xinyu; Du, Ziwen; Wang, Bin; Huang, Jun; Wang, Yujue; Yu, Gang; Xing, Baoshan

    2014-12-01

    Hydrophobic interaction has been considered to be responsible for adsorption of perfluorooctanesulfonate (PFOS) on the surface of hydrophobic adsorbents, but the long C-F chain in PFOS is not only hydrophobic but also oleophobic. In this study, for the first time we propose that air bubbles on the surface of hydrophobic carbonaceous adsorbents play an important role in the adsorption of PFOS. The level of adsorption of PFOS on carbon nanotubes (CNTs), graphite (GI), graphene (GE), and powdered activated carbon (PAC) decreases after vacuum degassing. Vacuum degassing time and pressure significantly affect the removal of PFOS by these adsorbents. After vacuum degassing at 0.01 atm for 36 h, the extent of removal of PFOS by the pristine CNTs and GI decreases 79% and 74%, respectively, indicating the main contribution of air bubbles to PFOS adsorption. When the degassed solution is recontacted with air during the adsorption process, the removal of PFOS recovers to the value obtained without vacuum degassing, further verifying the key role of air bubbles in PFOS adsorption. By theoretical calculation, the distribution of PFOS in air bubbles on the adsorbent surfaces is discussed, and a new schematic sorption model of PFOS on carbonaceous adsorbents in the presence of air bubbles is proposed. The accumulation of PFOS at the interface of air bubbles on the adsorbents is primarily responsible for its adsorption, providing a new mechanistic insight into the transport, fate, and removal of PFOS. PMID:25365738

  13. Role of air bubbles overlooked in the adsorption of perfluorooctanesulfonate on hydrophobic carbonaceous adsorbents.

    PubMed

    Meng, Pingping; Deng, Shubo; Lu, Xinyu; Du, Ziwen; Wang, Bin; Huang, Jun; Wang, Yujue; Yu, Gang; Xing, Baoshan

    2014-12-01

    Hydrophobic interaction has been considered to be responsible for adsorption of perfluorooctanesulfonate (PFOS) on the surface of hydrophobic adsorbents, but the long C-F chain in PFOS is not only hydrophobic but also oleophobic. In this study, for the first time we propose that air bubbles on the surface of hydrophobic carbonaceous adsorbents play an important role in the adsorption of PFOS. The level of adsorption of PFOS on carbon nanotubes (CNTs), graphite (GI), graphene (GE), and powdered activated carbon (PAC) decreases after vacuum degassing. Vacuum degassing time and pressure significantly affect the removal of PFOS by these adsorbents. After vacuum degassing at 0.01 atm for 36 h, the extent of removal of PFOS by the pristine CNTs and GI decreases 79% and 74%, respectively, indicating the main contribution of air bubbles to PFOS adsorption. When the degassed solution is recontacted with air during the adsorption process, the removal of PFOS recovers to the value obtained without vacuum degassing, further verifying the key role of air bubbles in PFOS adsorption. By theoretical calculation, the distribution of PFOS in air bubbles on the adsorbent surfaces is discussed, and a new schematic sorption model of PFOS on carbonaceous adsorbents in the presence of air bubbles is proposed. The accumulation of PFOS at the interface of air bubbles on the adsorbents is primarily responsible for its adsorption, providing a new mechanistic insight into the transport, fate, and removal of PFOS.

  14. Magma mixing enhanced by bubble segregation

    NASA Astrophysics Data System (ADS)

    Wiesmaier, S.; Daniele, M.; Renggli, C.; Perugini, D.; De Campos, C.; Hess, K. U.; Ertel-Ingrisch, W.; Lavallée, Y.; Dingwell, D. B.

    2014-12-01

    Rising bubbles may significantly affect magma mixing paths as has been demonstrated by analogue experiments in the past. Here, bubble-advection experiments are performed for the first time employing natural materials at magmatic temperatures. Cylinders of basaltic glass were placed below cylinders of rhyolite glass. Upon melting, interstitial air formed bubbles that rose into the rhyolite melt, thereby entraining tails of basaltic liquid. The formation of plume-like filaments of advected basalt within the rhyolite was characterized by microCT and subsequent high-resolution EMP analyses. Melt entrainment by bubble ascent appears as efficient mechanism to mingle contrasting melt compositions. MicroCT imaging shows bubbles trailing each other and trails of multiple bubbles having converged. Rheological modelling of the filaments yields viscosities of up to 2 orders of magnitude lower than for the surrounding rhyolitic liquid. Such a viscosity contrast implies that subsequent bubbles rising are likely to follow the same pathways that previously ascending bubbles have generated. Filaments formed by multiple bubbles would thus experience episodic replenishment with mafic material. Fundamental implications for the concept of bubble advection in magma mixing are thus a) an acceleration of mixing because of decreased viscous resistance for bubbles inside filaments and b) non-conventional diffusion systematics because of intermittent supply of mafic material (instead of a single pulse) inside a filament. Inside these filaments, the mafic material was variably hybridised to andesitic through rhyolitic composition. Compositional profiles alone are ambiguous, however, to determine whether single or multiple bubbles were involved during formation of a filament. Statistical analysis, employing concentration variance as measure of homogenisation, demonstrates that also filaments appearing as single-bubble filaments are likely to have experienced multiple bubbles passing through

  15. Elastic oscillations of bubbles separated from an air cavity in a magnetic fluid

    NASA Astrophysics Data System (ADS)

    Polunin, V. M.; Shabanova, I. A.; Karpova, G. V.; Kobelev, N. S.; Ryabtsev, K. S.; Platonov, V. B.; Aref'ev, I. M.

    2015-07-01

    The elastic oscillations of air bubbles separated from an air cavity compressed by the ponderomotive forces of a magnetic field in a magnetic fluid are accompanied by the appearance of an alternating magnetic field component. The frequency of the alternating component corresponds to the frequency of radial bubble oscillations, and this fact is used to determine the bubble size. A great body of experimental data has been obtained from six magnetic fluid samples with different viscosities. Based on these data, histograms illustrating the bubble radius distribution are plotted. The appearance of the alternating magnetic field component caused by bubble oscillations in a magnetized magnetic fluid can be used to develop a fundamentally new method for supplying small metered gas shots to a reactor, as well as to study the boiling process in a magnetic fluid.

  16. Bubble performance of a novel dissolved air flotation(DAF) unit.

    PubMed

    Chen, Fu-tai; Peng, Feng-xian; Wu, Xiao-qing; Luan, Zhao-kun

    2004-01-01

    ES-DAF, a novel DAF with low cost, high reliability and easy controllability, was studied. Without a costly air saturator, ES-DAF consists of an ejector and a static mixer between the pressure side and suction side of the recycle rotary pump. The bubble size distribution in this novel unit was studied in detail by using a newly developed CCD imagination through a microscope. Compared with M-DAF under the same saturation pressure, ES-DAF can produce smaller bubble size and higher bubble volume concentration, especially in lower pressure. In addition, the bubble size decreases with the increase of reflux ratio or decrease of superficial air-water ratio. These results suggested that smaller bubbles will be formed when the initial number of nucleation sites increases by enhancing the turbulence intensity in the saturation system.

  17. Entrainment Heat Flux Computed with Lidar and Wavelet Technique in Buenos Aires During Last Chaitén Volcano Eruption

    NASA Astrophysics Data System (ADS)

    Pawelko, Ezequiel Eduardo; Salvador, Jacobo Omar; Ristori, Pablo Roberto; Pallotta, Juan Vicente; Otero, Lidia Ana; Quel, Eduardo Jaime

    2016-06-01

    At Lidar Division of CEILAP (CITEDEF-CONICET) a multiwavelength Raman-Rayleigh lidar optimized to measure the atmospheric boundary layer is being operated. This instrument is used for monitoring important aerosol intrusion events in Buenos Aires, such as the arrival of volcanic ashes from the Chaitén volcano eruption on May 2008. That was the first monitoring of volcanic ash with lidar in Argentina. In this event several volcanic ash plumes with high aerosol optical thickness were detected in the free atmosphere, affecting the visibility, surface radiation and therefore, the ABL evolution. In this work, the impact of ashes in entrainment flux ratio is studied. This parameter is obtained from the atmospheric boundary layer height and entrainment zone thickness using algorithms based on covariance wavelet transform.

  18. Liquid jet pumped by rising gas bubbles

    NASA Technical Reports Server (NTRS)

    Hussain, N. A.; Siegel, R.

    1975-01-01

    A two-phase mathematical model is proposed for calculating the induced turbulent vertical liquid flow. Bubbles provide a large buoyancy force and the associated drag on the liquid moves the liquid upward. The liquid pumped upward consists of the bubble wakes and the liquid brought into the jet region by turbulent entrainment. The expansion of the gas bubbles as they rise through the liquid is taken into account. The continuity and momentum equations are solved numerically for an axisymmetric air jet submerged in water. Water pumping rates are obtained as a function of air flow rate and depth of submergence. Comparisons are made with limited experimental information in the literature.

  19. Two-phase numerical study of the flow field formed in water pump sump: influence of air entrainment

    NASA Astrophysics Data System (ADS)

    Bayeul-Lainé, A. C.; Simonet, S.; Bois, G.; Issa, A.

    2012-11-01

    In a pump sump it is imperative that the amount of non-homogenous flow and entrained air be kept to a minimum. Free air-core vortex occurring at a water-intake pipe is an important problem encountered in hydraulic engineering. These vortices reduce pump performances, may have large effects on the operating conditions and lead to increase plant operating costs.This work is an extended study starting from 2006 in LML and published by ISSA and al. in 2008, 2009 and 2010. Several cases of sump configuration have been numerically investigated using two specific commercial codes and based on the initial geometry proposed by Constantinescu and Patel. Fluent and Star CCM+ codes are used in the previous studies. The results, obtained with a structured mesh, were strongly dependant on main geometrical sump configuration such as the suction pipe position, the submergence of the suction pipe on one hand and the turbulence model on the other hand. Part of the results showed a good agreement with experimental investigations already published. Experiments, conducted in order to select best positions of the suction pipe of a water-intake sump, gave qualitative results concerning flow disturbances in the pump-intake related to sump geometries and position of the pump intake. The purpose of this paper is to reproduce the flow pattern of experiments and to confirm the geometrical parameter that influences the flow structure in such a pump. The numerical model solves the Reynolds averaged Navier-Stokes (RANS) equations and VOF multiphase model. STAR CCM+ with an adapted mesh configuration using hexahedral mesh with prism layer near walls was used. Attempts have been made to calculate two phase unsteady flow for stronger mass flow rates and stronger submergence with low water level in order to be able to capture air entrainment. The results allow the knowledge of some limits of numerical models, of mass flow rates and of submergences for air entrainment. In the validation of this

  20. Scale dependence of bubble creation mechanisms in breaking waves.

    PubMed

    Deane, Grant B; Stokes, M Dale

    2002-08-22

    Breaking ocean waves entrain air bubbles that enhance air-sea gas flux, produce aerosols, generate ambient noise and scavenge biological surfactants. The size distribution of the entrained bubbles is the most important factor in controlling these processes, but little is known about bubble properties and formation mechanisms inside whitecaps. We have measured bubble size distributions inside breaking waves in the laboratory and in the open ocean, and provide a quantitative description of bubble formation mechanisms in the laboratory. We find two distinct mechanisms controlling the size distribution, depending on bubble size. For bubbles larger than about 1 mm, turbulent fragmentation determines bubble size distribution, resulting in a bubble density proportional to the bubble radius to the power of -10/3. Smaller bubbles are created by jet and drop impact on the wave face, with a -3/2 power-law scaling. The length scale separating these processes is the scale where turbulent fragmentation ceases, also known as the Hinze scale. Our results will have important implications for the study of air-sea gas transfer.

  1. Oxygenation of Stratified Reservoir Using Air Bubble Plume

    NASA Astrophysics Data System (ADS)

    Schladow, S. G.

    2006-12-01

    Excess nutrients loading from urban area and watershed into lakes and reservoirs increases the content of organic matter, which, through decomposition, needs increased dissolve oxygen (DO). Many eutrophic reservoirs and lakes cannot meet the DO requirement during stratified season and suffers from the hypolimnetic anoxia. As a result, benthic sediment produces anoxic products such as methane, hydrogen sulphide, ammonia, iron, manganese, and phosphorus. In order to address the hypolimnetic anoxia, oxygen is artificially supplied into reservoir using an aeration system (i.e., bubbler). The most common result of lake/reservoir aeration is to destratify the reservoir so that the water body may completely mix under natural phenomena and remain well oxygenated throughout. Other advantages of destratification are: (1) allows warm- water fish to inhabit the entire reservoir, (2) suppress the nutrient release from sediment, and (3) decreases the algal growth by sending them to the darker zone. A one-dimensional reservoir-bubbler model is developed and applied to examine the effects of an aeration system on mixing and dissolved oxygen dynamics in the Upper Peirce Reservoir, Singapore. After introduction of the aeration system in the reservoir, it was found that the hypolimnetic DO increased significantly, and the concentration of algae, soluble manganese and iron substantially reduced. It is found that the reservoir-bubbler model predicts the mixing (temperature as mixing parameter) and dissolved oxygen concentration in the reservoir with acceptable accuracy. It is shown in terms of bubbler mechanical efficiency (i.e., operating cost) and total DO contribution from the aeration system into the reservoir that the selections of airflow rate per diffuser, air bubble radius, and total number of diffusers are important design criteria of a bubbler system. However, the overall bubbler design also depends on the reservoir size and stratified area of interest, ambient climate, and

  2. Impact of bubble size in a rat model of cerebral air microembolization

    PubMed Central

    2013-01-01

    Background Cerebral air microembolization (CAM) is a frequent side effect of diagnostic or therapeutic interventions. Besides reduction of the amount of bubbles, filter systems in the clinical setting may also lead to a dispersion of large gas bubbles and therefore to an increase of the gas–liquid-endothelium interface. We evaluated the production and application of different strictly defined bubble diameters in a rat model of CAM and assessed functional outcome and infarct volumes in relation to the bubble diameter. Methods Gas emboli of defined number and diameter were injected into the carotid artery of rats. Group I (n = 7) received 1800 air bubbles with a diameter of 45 μm, group II (n = 7) 40 bubbles of 160 μm, controls (n = 6) saline without gas bubbles; group I and II yielded the same total injection volume of air with 86 nl. Functional outcome was assessed at baseline, after 4 h and 24 h following cerebral MR imaging and infarct size calculation. Results Computer-aided evaluation of bubble diameters showed high constancy (group I: 45.83 μm ± 2.79; group II: 159 μm ± 1.26). Animals in group I and II suffered cerebral ischemia and clinical deterioration without significant difference. Infarct sizes did not differ significantly between the two groups (p = 0.931 u-test). Conclusions We present further development of a new method, which allows reliable and controlled CAM with different bubble diameters, producing neurological deficits due to unilateral cerebral damage. Our findings could not display a strong dependency of stroke frequency and severity on bubble diameter. PMID:24139539

  3. Turbulent flow field and air entrainment in laboratory plunging breaking waves

    NASA Astrophysics Data System (ADS)

    Na, Byoungjoon; Chang, Kuang-An; Huang, Zhi-Cheng; Lim, Ho-Joon

    2016-05-01

    This paper presents laboratory measurements of turbulent flow fields and void fraction in deep-water plunging breaking waves using imaging and optical fiber techniques. Bubble-size distributions are also determined based on combined measurements of velocity and bubble residence time. The most excited mode of the local intermittency measure of the turbulent flow and its corresponding length scale are obtained using a wavelet-based method and found to correlate with the swirling strength and vorticity. Concentrated vortical structures with high intermittency are observed near the lower boundaries of the aerated rollers where the velocity shear is high; the length scale of the deduced eddies ranges from 0.05 to 0.15 times the wave height. The number of bubbles with a chord length less than 2 mm demonstrates good correlation with the swirling strength. The power-law scaling and the Hinze scale of the bubbles determined from the bubble chord length distribution compare favorably with existing measurements. The turbulent dissipation rate, accounting for void fraction, is estimated using mixture theory. When void fraction is not considered, the turbulent dissipation rate is underestimated by more than 70% in the initial impinging and the first splash-up roller. A significant discrepancy of approximately 67% between the total energy dissipation rate and the turbulence dissipation rate is found. Of this uncounted dissipation, 23% is caused by bubble-induced dissipation.

  4. Electric Field Effects on an Injected Air Bubble at Detachment in a Low Gravity Environment

    NASA Technical Reports Server (NTRS)

    Iacona, Estelle; Herman, Cila; Chang, Shinan

    2002-01-01

    The objective of the study is to investigate the behavior of individual air bubbles injected through an orifice into an electrically insulating liquid under the influence of a static and uniform electric field. Bubble formation and detachment were visualized and recorded in microgravity using a high-speed video camera. Bubble volume, dimensions and contact angle at detachment were measured. In addition to the experimental studies, a simple model, predicting bubble characteristics at detachment was developed. The model, based on thermodynamic considerations, accounts for the level of gravity as well as the magnitude of the uniform electric field. Measured data and model predictions show good agreement, and indicate that the level of gravity and the electric field magnitude significantly affect bubble shape, volume and dimensions.

  5. Noise reduction by the application of an air-bubble curtain in offshore pile driving

    NASA Astrophysics Data System (ADS)

    Tsouvalas, A.; Metrikine, A. V.

    2016-06-01

    Underwater noise pollution is a by-product of marine industrial operations. In particular, the noise generated when a foundation pile is driven into the soil with an impact hammer is considered to be harmful for the aquatic species. In an attempt to reduce the ecological footprint, several noise mitigation techniques have been investigated. Among the various solutions proposed, the air-bubble curtain is often applied due to its efficacy in noise reduction. In this paper, a model is proposed for the investigation of the sound reduction during marine piling when an air-bubble curtain is placed around the pile. The model consists of the pile, the surrounding water and soil media, and the air-bubble curtain which is positioned at a certain distance from the pile surface. The solution approach is semi-analytical and is based on the dynamic sub-structuring technique and the modal decomposition method. Two main results of the paper can be distinguished. First, a new model is proposed that can be used for predictions of the noise levels in a computationally efficient manner. Second, an analysis is presented of the principal mechanisms that are responsible for the noise reduction due to the application of the air-bubble curtain in marine piling. The understanding of these mechanisms turns to be crucial for the exploitation of the maximum efficiency of the system. It is shown that the principal mechanism of noise reduction depends strongly on the frequency content of the radiated sound and the characteristics of the bubbly medium. For piles of large diameter which radiate most of the acoustic energy at relatively low frequencies, the noise reduction is mainly attributed to the mismatch of the acoustic impedances between the seawater and the bubbly layer. On the contrary, for smaller piles and when the radiated acoustic energy is concentrated at frequencies close to, or higher than, the resonance frequency of the air bubbles, the sound absorption within the bubbly layer

  6. Growth of oxygen bubbles during recharge process in zinc-air battery

    NASA Astrophysics Data System (ADS)

    Wang, Keliang; Pei, Pucheng; Ma, Ze; Chen, Huicui; Xu, Huachi; Chen, Dongfang; Xing, Haoqiang

    2015-11-01

    Rechargeable zinc-air battery used for energy storage has a serious problem of charging capacity limited by oxygen bubble coalescence. Fast removal of oxygen bubbles adhered to the charging electrode surface is of great importance for improving the charging performance of the battery. Here we show that the law of oxygen bubble growth can be achieved by means of phase-field simulation, revealing two phenomena of bubble detachment and bubble coalescence located in the charging electrode on both sides. Hydrodynamic electrolyte and partial insulation structure of the charging electrode are investigated to solve the problem of oxygen bubble coalescence during charging. Two types of rechargeable zinc-air battery are developed on the basis of different tri-electrode configurations, demonstrating that the charging performance of the battery with electrolyte flow (Ⅰ) is better than that of the battery with the partially insulated electrode (Ⅱ), while the battery Ⅱ is superior to the battery Ⅰ in the discharging performance, cost and portability. The proposed solutions and results would be available for promoting commercial application of rechargeable zinc-air batteries or other metal-air batteries.

  7. Laser induced fluorescence measurements of dissolved oxygen concentration fields near air bubble surfaces

    NASA Astrophysics Data System (ADS)

    Roy, Sabita; Duke, Steve R.

    2000-09-01

    This article describes a laser-induced fluorescence (LIF) technique for measuring dissolved oxygen concentration gradients in water near the surface of an air bubble. Air bubbles are created at the tip of a needle in a rectangular bubble column filled with water that contains pyrenebutyric acid (PBA). The fluorescence of the PBA is induced by a planar pulse of nitrogen laser light. Oxygen transferring from the air bubble to the deoxygenated water quenches the fluorescence of the PBA. Images of the instantaneous and two-dimensional fluorescence field are obtained by a UV-intensified charge-coupled device (CCD) camera. Quenching of fluorescence intensity is determined at each pixel in the CCD image to measure dissolved oxygen concentration. Two-dimensional concentration fields are presented for a series of measurements of oxygen transfer from 1.6 mm bubbles suspended on the tip of a needle in a quiescent fluid. The images show the spatially varying concentration profiles, gradients, and boundary layer thicknesses at positions around the bubble surfaces. These direct and local measurements of concentration behavior within the mass transfer boundary layer show the potential of this LIF technique for the development of general and mechanistic models for oxygen transport across the air-water interface.

  8. Acoustic wave propagation in air-bubble curtains in water. Part 2. Field experiment

    SciTech Connect

    Domenico, S.N.

    1982-03-01

    A field experiment consisted of hydrophone recordings in a pond, 25 ft deep, of signals transmitted through air-bubble curtains from a water gun source. The air curtains issued from one to 13 pipes (20 ft long and spaced at 1.67-ft intervals). Air pressures used in the pipes were 15, 25, and 50 psi. Length and complexity of the signals indicate that reverberations occurred to an increasing extent as the number of consecutive air curtains was increased. Analysis of the first pulse in the recorded signals, after approximate removal of hydrophone and recorder response, indicates that the reverberations occur principally in the bubble-free corridors between air curtains. This pulse broadens and its peak amplitude is delayed linearly as the number of successive air curtains is increased. The peak amplitude is decreased substantially by the first air curtain and thereafter remains between 0.1 and 0.2 of the amplitude without air curtains.

  9. Hydrophilic strips for preventing air bubble formation in a microfluidic chamber.

    PubMed

    Choi, Munseok; Na, Yang; Kim, Sung-Jin

    2015-12-01

    In a microfluidic chamber, unwanted formation of air bubbles is a critical problem. Here, we present a hydrophilic strip array that prevents air bubble formation in a microfluidic chamber. The array is located on the top surface of the chamber, which has a large variation in width, and consists of a repeated arrangement of super- and moderately hydrophilic strips. This repeated arrangement allows a flat meniscus (i.e. liquid front) to form when various solutions consisting of a single stream or two parallel streams with different hydrophilicities move through the chamber. The flat meniscus produced by the array completely prevents the formation of bubbles. Without the array in the chamber, the meniscus shape is highly convex, and bubbles frequently form in the chamber. This hydrophilic strip array will facilitate the use of a microfluidic chamber with a large variation in width for various microfluidic applications. PMID:26382942

  10. Interaction between bubble and air-backed plate with circular hole

    NASA Astrophysics Data System (ADS)

    Liu, Y. L.; Wang, S. P.; Zhang, A. M.

    2016-06-01

    This paper investigates the nonlinear interaction between a violent bubble and an air-backed plate with a circular hole. A numerical model is established using the incompressible potential theory coupled with the boundary integral method. A double-node technique is used to solve the overdetermined problem caused by the intersection between the solid wall and the free surface. A spark-generated bubble near the air-backed plate with a circular hole is observed experimentally using a high-speed camera. Our numerical results agree well with the experimental results. Both experimental and numerical results show that a multilevel spike emerges during the bubble's expansion and contraction. Careful numerical simulation reveals that this special type of spike is caused by the discontinuity in the boundary condition. The influences of the hole size and depth on the bubble and spike dynamics are also analyzed.

  11. Hydrophilic strips for preventing air bubble formation in a microfluidic chamber.

    PubMed

    Choi, Munseok; Na, Yang; Kim, Sung-Jin

    2015-12-01

    In a microfluidic chamber, unwanted formation of air bubbles is a critical problem. Here, we present a hydrophilic strip array that prevents air bubble formation in a microfluidic chamber. The array is located on the top surface of the chamber, which has a large variation in width, and consists of a repeated arrangement of super- and moderately hydrophilic strips. This repeated arrangement allows a flat meniscus (i.e. liquid front) to form when various solutions consisting of a single stream or two parallel streams with different hydrophilicities move through the chamber. The flat meniscus produced by the array completely prevents the formation of bubbles. Without the array in the chamber, the meniscus shape is highly convex, and bubbles frequently form in the chamber. This hydrophilic strip array will facilitate the use of a microfluidic chamber with a large variation in width for various microfluidic applications.

  12. [Air Bubble in the Left Ventricle due to Computed Tomography Guided Lung Needle Biopsy].

    PubMed

    Matsuda, Eisuke; Yoshida, Kumiko; Yoshiyama, Koichi; Hayashi, Tatsuro; Tanaka, Toshiki; Tao, Hiroyuki; Okabe, Kazunori

    2015-11-01

    Computed tomography (CT) guided lung biopsy is a useful examination in diagnosing pulmonary diseases, but the complications such as pneumothorax or pulmonary hemorrhage can not be ignored. Among them, air embolization is a severe complication, although it is infrequently encountered. Forty two-year-old man admitted to our department for the examination of left lung tumor. CT guided lung biopsy was performed. After examination, the patient showed disturbance in cardiac function, which recovered in several minutes. Chest CT revealed air bubble in the left ventricle. After 2-hours head down position followed by bed rest, air bubble is confirmed to be dissappeared by CT.

  13. The production of drops by the bursting of a bubble at an air liquid interface

    NASA Technical Reports Server (NTRS)

    Darrozes, J. S.; Ligneul, P.

    1982-01-01

    The fundamental mechanism arising during the bursting of a bubble at an air-liquid interface is described. A single bubble was followed from an arbitrary depth in the liquid, up to the creation and motion of the film and jet drops. Several phenomena were involved and their relative order of magnitude was compared in order to point out the dimensionless parameters which govern each step of the motion. High-speed cinematography is employed. The characteristic bubble radius which separates the creation of jet drops from cap bursting without jet drops is expressed mathematically. The corresponding numerical value for water is 3 mm and agrees with experimental observations.

  14. Effects of system parameters on the physical characteristics of bubbles produced through air sparging.

    PubMed

    Burns, S E; Zhang, M

    2001-01-01

    Air sparging is a relatively new, cost-effective technology for the remediation of soil and groundwater contaminated with volatile organic compounds (VOCs). While the method has met with reasonable success at a large number of field sites, implementation of the technique is restricted to relatively coarse-grained soils with large values of air permeability, which significantly limits its applicability. An understanding of the fundamental parameters that control the formation and distribution of air in the sparging process is useful for optimizing the system implementation and extending its range of applicability. This work presents the results of an experimental investigation into the effect of process control parameters on the size and size distribution of air bubbles produced in aqueous and idealized saturated porous media systems. The experiments used digital image analysis to image and quantify the physical characteristics of the bubbles generated in a bench scale test cell. Results demonstrated that the average bubble size and range of size distribution increased as the injection pressure and size of the injection orifice were increased. Larger diameter bubbles with wider size distributions were produced in the presence of particles when compared to aqueous systems. As the particle size was decreased, the size of bubbles produced increased. Finally, the presence of trace quantities of the surfactant Triton X100 led to uniformly small diameter bubbles under all experimental conditions. The presence of the surfactant coating produced bubbles with physical characteristics that are more suited to in situ stripping of VOCs than the bubbles produced in the absence of a surfactant. PMID:11352012

  15. Effects of system parameters on the physical characteristics of bubbles produced through air sparging.

    PubMed

    Burns, S E; Zhang, M

    2001-01-01

    Air sparging is a relatively new, cost-effective technology for the remediation of soil and groundwater contaminated with volatile organic compounds (VOCs). While the method has met with reasonable success at a large number of field sites, implementation of the technique is restricted to relatively coarse-grained soils with large values of air permeability, which significantly limits its applicability. An understanding of the fundamental parameters that control the formation and distribution of air in the sparging process is useful for optimizing the system implementation and extending its range of applicability. This work presents the results of an experimental investigation into the effect of process control parameters on the size and size distribution of air bubbles produced in aqueous and idealized saturated porous media systems. The experiments used digital image analysis to image and quantify the physical characteristics of the bubbles generated in a bench scale test cell. Results demonstrated that the average bubble size and range of size distribution increased as the injection pressure and size of the injection orifice were increased. Larger diameter bubbles with wider size distributions were produced in the presence of particles when compared to aqueous systems. As the particle size was decreased, the size of bubbles produced increased. Finally, the presence of trace quantities of the surfactant Triton X100 led to uniformly small diameter bubbles under all experimental conditions. The presence of the surfactant coating produced bubbles with physical characteristics that are more suited to in situ stripping of VOCs than the bubbles produced in the absence of a surfactant.

  16. Mesler entrainment in alcohols

    NASA Astrophysics Data System (ADS)

    Saylor, J. R.; Sundberg, R. K.

    2012-11-01

    When a drop impacts a flat surface of the same liquid at an intermediate velocity, the impact can result in the formation of a very large number of very small bubbles. At lower velocities, drops bounce or float, and at larger velocities a single bubble forms, or there is a splash. The formation of large numbers of small bubbles during intermediate velocity impacts is termed Mesler entrainment and its controlling mechanism is poorly understood. Existing research has shown that Mesler entrainment is highly irreproducible when water is the working fluid, and very reproducible when silicone oil is the working fluid. Whether this is because water is problematic, or silicone oil is uniquely well-suited, is unclear. To answer this question, experiments were conducted using three different alcohols. The results of these experiments were very reproducible for all alcohols tested, suggesting that there is something unique about water which accounts for its lack of reproducibility. The data from these experiments were also used to develop a dimensionless group that quantifies the conditions under which Mesler entrainment occurs. This dimensionless group is used to provide insight into the mechanism of this unique method of bubble formation.

  17. Methods for advanced hepatocyte cell culture in microwells utilizing air bubbles.

    PubMed

    Goral, Vasiliy N; Au, Sam H; Faris, Ronald A; Yuen, Po Ki

    2015-02-21

    Flat, two-dimensional (2D) cell culture substrates are simple to use but offer little control over cell morphologies and behavior. In this article, we present a number of novel and unique methods for advanced cell culture in microwells utilizing air bubbles as a way to seed cells in order to provide substantial control over cellular microenvironments and organization to achieve specific cell-based applications. These cell culture methods enable controlled formation of stable air bubbles in the microwells that spontaneously formed when polar solvents such as cell culture media are loaded. The presence of air bubbles (air bubble masking) enables highly controllable cell patterning and organization of seeded cells as well as cell co-culture in microwells. In addition, these cell culture methods are simple to use and implement, yet versatile, and have the potential to provide a wide range of microenvironments to improve in vivo-like behavior for a number of cell types and applications. The air bubble masking technique can also be used to produce a micron thick layer of collagen film suspended on top of the microwells. These collagen film enclosed microwells could provide an easy way for high throughput drug screening and cytotoxicity assays as different drug compounds could be pre-loaded and dried in selected microwells and then released during cell culture.

  18. Effect of air bubble on inflammation after cataract surgery in rabbit eyes

    PubMed Central

    Demirci, Goktug; Karabaş, Levent; Maral, Hale; Ozdek, Şengül; Gülkılık, Gökhan

    2013-01-01

    Purpose: Intense inflammation after cataract surgery can cause cystoid macular edema, posterior synechia and posterior capsule opacification. This experimental study was performed to investigate the effect of air bubble on inflammation when given to anterior chamber of rabbit eyes after cataract surgery. Materials and Methods: 30 eyes of 15 rabbits were enrolled in the study. One of the two eyes was in the study group and the other eye was in the control group. After surgery air bubble was given to the anterior chamber of the study group eye and balanced salt solution (BSS; Alcon) was left in the anterior chamber of control eye. Results: On the first, second, fourth and fifth days, anterior chamber inflammations of the eyes were examined by biomicroscopy. On the sixth day anterior chamber fluid samples were taken for evaluation of nitric oxide levels as an inflammation marker. When the two groups were compared, in the air bubble group there was statistically less inflammation was seen. (1, 2, 4. days P = 0,001, and 5. day P = 0,009). Conclusions: These results have shown that when air bubble is left in anterior chamber of rabbits’ eyes after cataract surgery, it reduced inflammation. We believe that, air bubble in the anterior chamber may be more beneficial in the cataract surgery of especially pediatric age group, uveitis patients and diabetics where we see higher inflammation. However, greater and long termed experimental and clinical studies are necessary for more accurate findings. PMID:23571264

  19. Three-dimensionally ordered array of air bubbles in a polymer film

    NASA Technical Reports Server (NTRS)

    Srinivasarao, M.; Collings, D.; Philips, A.; Patel, S.; Brown, C. S. (Principal Investigator)

    2001-01-01

    We report the formation of a three-dimensionally ordered array of air bubbles of monodisperse pore size in a polymer film through a templating mechanism based on thermocapillary convection. Dilute solutions of a simple, coil-like polymer in a volatile solvent are cast on a glass slide in the presence of moist air flowing across the surface. Evaporative cooling and the generation of an ordered array of breath figures leads to the formation of multilayers of hexagonally packed water droplets that are preserved in the final, solid polymer film as spherical air bubbles. The dimensions of these bubbles can be controlled simply by changing the velocity of the airflow across the surface. When these three-dimensionally ordered macroporous materials have pore dimensions comparable to the wavelength of visible light, they are of interest as photonic band gaps and optical stop-bands.

  20. The air bubble entrapped under a drop impacting on a solid surface

    NASA Astrophysics Data System (ADS)

    Thoroddsen, S. T.; Etoh, T. G.; Takehara, K.; Ootsuka, N.; Hatsuki, Y.

    2005-12-01

    We present experimental observations of the disk of air caught under a drop impacting onto a solid surface. By imaging the impact through an acrylic plate with an ultra-high-speed video camera, we can follow the evolution of the air disk as it contracts into a bubble under the centre of the drop. The initial size and contraction speed of the disk were measured for a range of impact Weber and Reynolds numbers. The size of the initial disk is related to the bottom curvature of the drop at the initial contact, as measured in free-fall. The initial contact often leaves behind a ring of micro-bubbles, marking its location. The air disk contracts at a speed comparable to the corresponding air disks caught under a drop impacting onto a liquid surface. This speed also seems independent of the wettability of the liquid, which only affects the azimuthal shape of the contact line. For some impact conditions, the dynamics of the contraction leaves a small droplet at the centre of the bubble. This arises from a capillary wave propagating from the edges of the contracting disk towards the centre. As the wave converges its amplitude grows until it touches the solid substrate, thereby pinching off the micro-droplet at the plate, in the centre of the bubble. The effect of increasing liquid viscosity is to slow down the contraction speed and to produce a more irregular contact line leaving more micro-bubbles along the initial ring.

  1. Acoustic localization in weakly compressible elastic media containing random air bubbles.

    PubMed

    Liang, Bin; Cheng, Jian-chun

    2007-01-01

    We study theoretically the propagation of longitudinal wave in weakly compressible elastic media containing random air bubbles by using a self-consistent method. By inspecting the scattering cross section of an individual bubble and estimating the mean free paths of the elastic wave propagating in the bubbly weakly compressible media, the mode conversion is numerically proved negligible as the longitudinal wave is scattered by the bubbles. On the basis of the bubble dynamic equation, the wave propagation is solved rigorously with the multiple scattering effects incorporated. In a range of frequency slightly above the bubble resonance frequency, the acoustic localization in such a class of media is theoretically identified with even a very small volume fraction of bubbles. We present a method by analyzing the spatial correlation of wave field to identify the phenomenon of localization, which turns out to be effective. The sensibility of the features of localization to the structure parameters is numerically investigated. The spatial distribution of acoustic energy is also studied and the results show that the waves are trapped within a spatial domain adjacent to the source when localization occurs.

  2. Massively-multicellular alignment with the self-aggregate of air bubbles.

    PubMed

    Tanaka, Nobuyuki; Haraguchi, Yuji; Shimizu, Tatsuya; Yamato, Masayuki; Okano, Teruo; Miyake, Jun

    2015-08-01

    This study proposes a cell manipulation method with aggregated air bubbles on cell culture medium. This method requires no additional regents nor devices, except for normal cell-culture materials such as cell culture dishes and pipettes. Bubbles generated by pipetting were spontaneously aggregated with regularity on the whole surface and used as a mask for avoiding cell adhesion after cell-seeding. The diameter of bubbles was able to be controlled by the size of micro-pipette tips. Seeded cells spread to the whole area along the bubble gap. This technique is a surface-tension-driven self-assembly-based method. Using this technique, millions of living cells were successfully aligned into a hexagonal pattern within 300 μm in pattern width on the whole surface of dish for less than 2 h. PMID:26737056

  3. A simple technique for evacuating air bubbles with scum from the bladder dome during transurethral resection of bladder tumor.

    PubMed

    Takeshita, Hideki; Moriyama, Shingo; Chiba, Koji; Noro, Akira

    2014-12-01

    Air bubbles floating in the bladder dome during transurethral resection of a bladder tumor can interfere with the resection, causing intravesical explosion and increasing the potential risk of tumor cell reimplantation. We describe a simple and effective technique for evacuating air bubbles from the bladder dome using routine resectoscopes. First, the beak of the resectoscope is positioned near the air bubble in the bladder dome. Second, the drainage channel of the resectoscope is closed. Third, the irrigation tube is detached from the irrigation channel, and then the channel is opened. Subsequently, the air bubble with entangled scum will be retrogradely aspirated from the beak of the resectoscope to the irrigation channel. Reversing the direction of the water stream enables evacuation of the air bubble with the scum under direct vision. This simple and effective technique may assist surgeons and ensure the safety of patients during a transurethral procedure. PMID:25562002

  4. Hydrostatic pressure effect on micro air bubbles deposited on surfaces with a retreating tip.

    PubMed

    Huynh, So Hung; Wang, Jingming; Yu, Yang; Ng, Tuck Wah

    2014-06-01

    The effect of hydrostatic pressure on 6 μL air bubbles formed on micropillar structured PDMS and silicone surfaces using a 2 mm diameter stainless steel tip retreated at 1 mm/s was investigated. Dimensional analysis of the tip retraction process showed the experiments to be conducted in the condition where fluid inertial forces are comparable in magnitude with surface tension forces, while viscous forces were lower. Larger bubbles could be left behind on the structured PDMS surface. For hydrostatic pressures in excess of 20 mm H2O (196 Pa), the volume of bubble deposited was found to decrease progressively with pressure increase. The differences in width of the deposited bubbles (in contact with the substrate) were significant at any particular pressure but marginal in height. The attainable height before rupture reduced with pressure increase, thereby accounting for the reducing dispensed volume characteristic. On structured PDMS, the gaseous bridge width (in contact with the substrate) was invariant with tip retraction, while on silicone it was initially reducing before becoming invariant in the lead up to rupture. With silicone, hence, reductions in the contact width and height were both responsible for reduced volumes with pressure increase. Increased hydrostatic pressure was also found to restrict the growth in contact width on silicone during the stage when air was injected in through the tip. The ability to effect bubble size in such a simple manner may already be harnessed in nature and suggests possibilities in technological applications.

  5. Experiments on bubble generation by a hydrofoil moving beneath the water surface for reducing ship drag

    NASA Astrophysics Data System (ADS)

    Kumagai, Ichiro; Murai, Yuichi; Takahashi, Yoshiaki; Sakamaki, Haruki; Tsukahara, Takahiro; Ozaki, Tsubasa; Tasaka, Yuji; Oishi, Yoshihiko

    2014-04-01

    We have invented two types of hydrofoil bubble generator for drag reduction of ship that can reduce the energy for air bubble generation on the ship hull. Their fundamental process of air entrainment and subsequent bubble generation by the hydrofoil facility are described by a simple fluid dynamic model. We experimentally determined the critical velocity of the bubble generation and the relationship between air volume flow rate and the hydrofoil velocity. The magnitude of the negative pressure produced above the hydrofoil, which is a driving force of the air entrainment, depends on the shape of the hydrofoil, gap ratio (normalized depth of the hydrofoil), Reynolds number, Froude number, and angle of attack. Recent applications of the drag-reduction technology with air bubbles to a ship save about 10%-15% of the total energy consumption of the ship. The device works as a self-priming pump when the draft of the ship is shallow (< ˜5 m) as predicted by the theory. For ships of deeper draft, the device needs the assistance of an air compressor. Because the magnitude of the negative pressure above the hydrofoil depends on the flow condition around the hydrofoil, proper operation of compressors is necessary. We also show experimental results on optimization of hydrofoils to enhance the hydrofoil performance of air entrainment and air bubble generation.

  6. Numerical and experimental study of dissociation in an air-water single-bubble sonoluminescence system.

    PubMed

    Puente, Gabriela F; Urteaga, Raúl; Bonetto, Fabián J

    2005-10-01

    We performed a comprehensive numerical and experimental analysis of dissociation effects in an air bubble in water acoustically levitated in a spherical resonator. Our numerical approach is based on suitable models for the different effects considered. We compared model predictions with experimental results obtained in our laboratory in the whole phase parameter space, for acoustic pressures from the bubble dissolution limit up to bubble extinction. The effects were taken into account simultaneously to consider the transition from nonsonoluminescence to sonoluminescence bubbles. The model includes (1) inside the bubble, transient and spatially nonuniform heat transfer using a collocation points method, dissociation of O2 and N2, and mass diffusion of vapor in the noncondensable gases; (2) at the bubble interface, nonequilibrium evaporation and condensation of water and a temperature jump due to the accommodation coefficient; (3) in the liquid, transient and spatially nonuniform heat transfer using a collocation points method, and mass diffusion of the gas in the liquid. The model is completed with a Rayleigh-Plesset equation with liquid compressible terms and vapor mass transfer. We computed the boundary for the shape instability based on the temporal evolution of the computed radius. The model is valid for an arbitrary number of dissociable gases dissolved in the liquid. We also obtained absolute measurements for R(t) using two photodetectors and Mie scattering calculations. The robust technique used allows the estimation of experimental results of absolute R0 and P(a). The technique is based on identifying the bubble dissolution limit coincident with the parametric instability in (P(a),R0) parameter space. We take advantage of the fact that this point can be determined experimentally with high precision and replicability. We computed the equilibrium concentration of the different gaseous species and water vapor during collapse as a function of P(a) and R0. The

  7. Measurement of interfacial structures in horizontal air-water bubbly flows

    SciTech Connect

    Talley, J. D.; Worosz, T.; Dodds, M. R.; Kim, S.

    2012-07-01

    In order to predict multi-dimensional phenomena in nuclear reactor systems, methods relying on computational fluid dynamics (CFD) codes are essential. However, to be applicable in assessing thermal-hydraulic safety, these codes must be able to accurately predict the development of two-phase flows. Therefore, before practical application these codes must be assessed using experimental databases that capture multi-dimensional phenomena. While a large database exists that can be employed to assess predictions in vertical flows, the available database for horizontal flows is significantly lacking. Therefore, the current work seeks to develop an additional database in air-water horizontal bubbly flow through a 38.1 mm ID test section with a total development length of approximately 250 diameters. The experimental conditions are chosen to cover a wide range of the bubbly flow regime based upon flow visualization using a high-speed video camera. A database of local time-averaged void fraction, bubble velocity, interfacial area concentration, and bubble Sauter mean diameter are acquired throughout the pipe cross-section using a four-sensor conductivity probe. To investigate the evolution of the flow, measurements are made at axial locations of 44, 116, and 244 diameters downstream of the inlet. In the current work, only measurements obtained at L/D = 244 are presented. It is found that increasing the liquid superficial velocity tends to reduce both the bubble size and the degree of bubble packing near the upper wall. However, it is observed that the position of the maximum void fraction value remains nearly constant and is located approximately one bubble diameter away from the upper wall. It is also found that the bubble velocity exhibits a power law behavior resembling a single phase liquid turbulent velocity profile. Moreover, the local bubble velocity tends to decrease as the local void fraction increases. Conversely, increasing the gas superficial velocity is found to

  8. Simulation study on the effect of air distribution on the bed height and bubble formation in bubbling fluidization reactor

    NASA Astrophysics Data System (ADS)

    bin Ibrahim, Muhamad Hilmee; Mohd Najib, Nur Khadijah; Karuppanan, Saravanan; Sinnathambi, Chandra Mohan

    2012-09-01

    This paper describes the numerical study on the effect of inlet air distribution in the Bubbling Fluidized Bed (BFB) riser of diameter 0.18 m and 1.44 m of length using a 3-hole orifice plate. A 2D model has been developed and meshed using Gambit software version 2.4.6 and was simulated using CFD code, fluent version 6.3. Laminar model has been used for the modeling and Eulerian-Eulerian multiphase model coupled with kinetic theory of granular flow was employed. For the drag, Gidaspow Drag Model was used to calculate the phase interaction between the gas and solid particles. The simulation results obtained for the validation purpose showed good agreement with the results available in the literature. The model with orifice plate gives a better and clear bubble shape with improved turbulent and better mixing compared to the model without the orifice plate. The model with orifice plate is also more realistic and ideal as compared to the model without the orifice plate.

  9. High-sensitivity strain sensor based on in-fiber rectangular air bubble.

    PubMed

    Liu, Shen; Yang, Kaiming; Wang, Yiping; Qu, Junle; Liao, Changrui; He, Jun; Li, Zhengyong; Yin, Guolu; Sun, Bing; Zhou, Jiangtao; Wang, Guanjun; Tang, Jian; Zhao, Jing

    2015-01-01

    We demonstrated a unique rectangular air bubble by means of splicing two sections of standard single mode fibers together and tapering the splicing joint. Such an air bubble can be used to develop a promising high-sensitivity strain sensor based on Fabry-Perot interference. The sensitivity of the strain sensor with a cavity length of about 61 μm and a wall thickness of about 1 μm was measured to be up to 43.0 pm/με and is the highest strain sensitivity among the in-fiber FPI-based strain sensors with air cavities reported so far. Moreover, our strain sensor has a very low temperature sensitivity of about 2.0 pm/°C. Thus, the temperature-induced strain measurement error is less than 0.046 με/°C. PMID:25557614

  10. Effective medium method for sound propagation in a soft medium containing air bubbles.

    PubMed

    Liang, Bin; Zou, Xinye; Cheng, Jianchun

    2008-09-01

    An effective medium method (EMM) is developed to investigate the nonlinear propagation of acoustic waves for soft media containing air bubbles, which accounts for the effects of weak compressibility, viscosity, surrounding pressure, surface tension, and encapsulating shells. Based on the dynamics model of an individual bubble that has included these effects, the EMM is presented by employing a simple perturbation approach to "homogenize" the bubbly soft media. The equations describing the fundamental and the second harmonic waves are derived that applies to three-dimensional cases, and then solved in a one-dimensional case to obtain the effective acoustical parameters of a longitudinal wave. The EMM is compared with the previous theories in three representative cases regarded as simple models of significant practical applications. The results show that the EMM agrees well with the previous theories and can incorporate the additional effects, which may notably affect the accuracy of the results. The limitations of the EMM are also identified and stated.

  11. Study of interfacial area transport and sensitivity analysis for air-water bubbly flow

    SciTech Connect

    Kim, S.; Sun, X.; Ishii, M.; Beus, S.G.

    2000-09-01

    The interfacial area transport equation applicable to the bubbly flow is presented. The model is evaluated against the data acquired by the state-of-the-art miniaturized double-sensor conductivity probe in an adiabatic air-water co-current vertical test loop under atmospheric pressure condition. In general, a good agreement, within the measurement error of plus/minus 10%, is observed for a wide range in the bubbly flow regime. The sensitivity analysis on the individual particle interaction mechanisms demonstrates the active interactions between the bubbles and highlights the mechanisms playing the dominant role in interfacial area transport. The analysis employing the drift flux model is also performed for the data acquired. Under the given flow conditions, the distribution parameter of 1.076 yields the best fit to the data.

  12. Blood platelet-derived microparticles release and bubble formation after an open-sea air dive.

    PubMed

    Pontier, Jean-Michel; Gempp, Emmanuel; Ignatescu, Mihaela

    2012-10-01

    Bubble-induced platelet aggregation offers an index for evaluating decompression severity in humans and in a rat model of decompression sickness. Endothelial cells, blood platelets, or leukocytes shed microparticles (MP) upon activation and during cell apoptosis. The aim was to study blood platelet MP (PMP) release and bubble formation after a scuba-air dive in field conditions. Healthy, experienced divers were assigned to 1 experimental group (n = 10) with an open-sea air dive to 30 msw for 30 min and 1 control group (n = 5) during head-out water immersion for the same period. Bubble grades were monitored with a pulsed doppler according to Kissman Integrated Severity Score (KISS). Blood samples for platelet count (PC) and PMP (annexin V and CD41) were taken 1 h before and after exposure in both groups. The result showed a decrease in post-dive PC compared with pre-dive values in experimental group with no significant change in the control group. We observed a significant increase in PMP values after the dive while no change was revealed in the control group. There was a significant positive correlation between the PMP values after the dive and the KISS bubble score. The present study highlighted a relationship between the post-dive decrease in PC, platelet MP release, and bubble formation. Release of platelet MPs could reflect bubble-induced platelet aggregation and could play a key role in alteration of the coagulation. Further studies must investigate endothelial and leukocyte MP release in the same field conditions.

  13. Tunneling effects in resonant acoustic scattering of an air bubble in unbounded water.

    PubMed

    Simão, André G; Guimarães, Luiz G

    2016-01-01

    The problem of acoustic scattering of a gaseous spherical bubble immersed within unbounded liquid surrounding is considered in this work. The theory of partial wave expansion related to this problem is revisited. A physical model based on the analogy between acoustic scattering and potential scattering in quantum mechanics is proposed to describe and interpret the acoustical natural oscillation modes of the bubble, namely, the resonances. In this context, a physical model is devised in order to describe the air water interface and the implications of the high density contrast on the various regimes of the scattering resonances. The main results are presented in terms of resonance lifetime periods and quality factors. The explicit numerical calculations are undertaken through an asymptotic analysis considering typical bubble dimensions and underwater sound wavelengths. It is shown that the resonance periods are scaled according to the Minnaert's period, which is the short lived resonance mode, called breathing mode of the bubble. As expected, resonances with longer lifetimes lead to impressive cavity quality Q-factor ranging from 1010 to 105. The present theoretical findings lead to a better understanding of the energy storage mechanism in a bubbly medium. PMID:27331803

  14. Influence of surface active solute on ultrasonic waveform distortion in liquid containing air bubbles.

    PubMed

    Tuziuti, Toru; Yasui, Kyuichi; Lee, Judy; Kozuka, Teruyuki; Towata, Atsuya; Iida, Yasuo

    2009-08-01

    The influence of sodium dodecyl sulfate (SDS) on waveform distortion of 141 kHz ultrasonic standing waves in liquids containing air bubbles was investigated for various transducer powers. Fast Fourier transform (FFT) operations were performed on the pressure waveform to obtain the harmonic components. In addition, the intensity of sonoluminescence (SL) was measured as a function of the power. Waveform distortion was observed for water at high applied power, with the curve exhibiting a steeper gradient for positive pressures and a broadened minimum for negative pressures. This was in reasonable agreement with theoretical studies reported in the literature. Much less distortion was found for a 1 mM SDS solution as the applied power was increased than for water or a 10 mM SDS solution. This may be attributed to a lower population of large coalesced bubbles in the 1 mM solution due to electrostatic repulsion, leading to damping of the sound energy and little cavitation noise because of viscous resistance to bubble radial motion in addition to adsorption and desorption of surfactant molecules at the bubble-liquid interface. For 10 mM SDS, the power threshold for the harmonic components was lower than that for the SL. In this case, it appears that there is a range of applied powers where most bubbles are stable and cannot collapse. The influence of the addition of an electrolyte and a nonionic surfactant was also investigated.

  15. Effect of oxygen breathing and perfluorocarbon emulsion treatment on air bubbles in adipose tissue during decompression sickness.

    PubMed

    Randsoe, T; Hyldegaard, O

    2009-12-01

    Decompression sickness (DCS) after air diving has been treated with success by means of combined normobaric oxygen breathing and intravascular perfluorocarbon (PFC) emulsions causing increased survival rate and faster bubble clearance from the intravascular compartment. The beneficial PFC effect has been explained by the increased transport capacity of oxygen and inert gases in blood. However, previous reports have shown that extravascular bubbles in lipid tissue of rats suffering from DCS will initially grow during oxygen breathing at normobaric conditions. We hypothesize that the combined effect of normobaric oxygen breathing and intravascular PFC infusion could lead to either enhanced extravascular bubble growth on decompression due to the increased oxygen supply, or that PFC infusion could lead to faster bubble elimination due to the increased solubility and transport capacity in blood for nitrogen causing faster nitrogen tissue desaturation. In anesthetized rats decompressed from a 60-min hyperbaric exposure breathing air at 385 kPa, we visually followed the resolution of micro-air bubbles injected into abdominal adipose tissue while the rats breathed either air, oxygen, or oxygen breathing combined with PFC infusion. All bubble observations were done at 101.3 kPa pressure. During oxygen breathing with or without combined PFC infusion, bubbles disappeared faster compared with air breathing. Combined oxygen breathing and PFC infusion caused faster bubble disappearance compared with oxygen breathing. The combined effect of oxygen breathing and PFC infusion neither prevented nor increased transient bubble growth time, rate, or growth ratio compared with oxygen breathing alone. We conclude that oxygen breathing in combination with PFC infusion causes faster bubble disappearance and does not exacerbate transient bubble growth. PFC infusion may be a valuable adjunct therapy during the first-aid treatment of DCS at normobaric conditions.

  16. Effect of isobaric breathing gas shifts from air to heliox mixtures on resolution of air bubbles in lipid and aqueous tissues of recompressed rats.

    PubMed

    Hyldegaard, O; Kerem, D; Melamed, Y

    2011-09-01

    Deep tissue isobaric counterdiffusion that may cause unwanted bubble formation or transient bubble growth has been referred to in theoretical models and demonstrated by intravascular gas formation in animals, when changing inert breathing gas from nitrogen to helium after hyperbaric air breathing. We visually followed the in vivo resolution of extravascular air bubbles injected at 101 kPa into nitrogen supersaturated rat tissues: adipose, spinal white matter, skeletal muscle or tail tendon. Bubbles were observed during isobaric breathing-gas shifts from air to normoxic (80:20) heliox mixture while at 285 kPa or following immediate recompression to either 285 or 405 kPa, breathing 80:20 and 50:50 heliox mixtures. During the isobaric shifts, some bubbles in adipose tissue grew marginally for 10-30 min, subsequently they shrank and disappeared at a rate similar to or faster than during air breathing. No such bubble growth was observed in spinal white matter, skeletal muscle or tendon. In spinal white matter, an immediate breathing gas shift after the hyperbaric air exposure from air to both (80:20) and (50:50) heliox, coincident with recompression to either 285 or 405 kPa, caused consistent shrinkage of all air bubbles, until they disappeared from view. Deep tissue isobaric counterdiffusion may cause some air bubbles to grow transiently in adipose tissue. The effect is marginal and of no clinical consequence. Bubble disappearance rate is faster with heliox breathing mixtures as compared to air. We see no reason for reservations in the use of heliox breathing during treatment of air-diving-induced decompression sickness.

  17. Effect of isobaric breathing gas shifts from air to heliox mixtures on resolution of air bubbles in lipid and aqueous tissues of recompressed rats.

    PubMed

    Hyldegaard, O; Kerem, D; Melamed, Y

    2011-09-01

    Deep tissue isobaric counterdiffusion that may cause unwanted bubble formation or transient bubble growth has been referred to in theoretical models and demonstrated by intravascular gas formation in animals, when changing inert breathing gas from nitrogen to helium after hyperbaric air breathing. We visually followed the in vivo resolution of extravascular air bubbles injected at 101 kPa into nitrogen supersaturated rat tissues: adipose, spinal white matter, skeletal muscle or tail tendon. Bubbles were observed during isobaric breathing-gas shifts from air to normoxic (80:20) heliox mixture while at 285 kPa or following immediate recompression to either 285 or 405 kPa, breathing 80:20 and 50:50 heliox mixtures. During the isobaric shifts, some bubbles in adipose tissue grew marginally for 10-30 min, subsequently they shrank and disappeared at a rate similar to or faster than during air breathing. No such bubble growth was observed in spinal white matter, skeletal muscle or tendon. In spinal white matter, an immediate breathing gas shift after the hyperbaric air exposure from air to both (80:20) and (50:50) heliox, coincident with recompression to either 285 or 405 kPa, caused consistent shrinkage of all air bubbles, until they disappeared from view. Deep tissue isobaric counterdiffusion may cause some air bubbles to grow transiently in adipose tissue. The effect is marginal and of no clinical consequence. Bubble disappearance rate is faster with heliox breathing mixtures as compared to air. We see no reason for reservations in the use of heliox breathing during treatment of air-diving-induced decompression sickness. PMID:21318313

  18. Simple test to confirm cleavage with air between Descemet's membrane and stroma during big-bubble deep anterior lamellar keratoplasty.

    PubMed

    Fontana, Luigi; Parente, Gabriella; Tassinari, Giorgio

    2007-04-01

    We describe a simple test to confirm big-bubble formation in deep anterior lamellar keratoplasty by observing the position and movements of small air bubbles injected into the anterior chamber through a limbal paracentesis. The test also allows evaluation of the extension of Descemet's membrane cleavage from the posterior stroma relative to the margins of the corneal trephination.

  19. Effect of the entrained air and initial droplet velocity on the release height parameter of a Gaussian spray drift model.

    PubMed

    Stainier, C; Destain, M F; Schiffers, B; Lebeau, F

    2006-01-01

    The increased concern about environmental effect of off-target deposits of pesticides use has resulted in the development of numerous spray drift models. Statistical models based on experimental field studies are used to estimate off-target deposits for different sprayers in various environmental conditions. Random-walk and computational fluid dynamics (CFD) models have been used to predict the effect of operational parameters and were extensively validated in wind tunnel. A third group, Gaussian dispersion models have been used for several years for the environmental assessment of the pesticide spray drift, mainly for aerial application. When these models were used for the evaluation of boom sprayer spray drift, their predictions were found unreliable in the short range, were the initial release conditions of the droplets have a significant effect on the spray deposits. For longer ranges, the results were found consistent with the field measurements as the characteristics of the source have a reduced influence on the small droplets drift. Three major parameters must be taken into account in order to define realistic initial conditions of the droplets in a spray drift model: the spray pattern of the nozzle, the boom movements and the effect of entrained air and droplet velocities. To take theses parameters into account in a Gaussian model, the nozzle droplet size distribution measured with a PIV setup to divide the nozzle output into several size classes. The spray deposits of each diameter class was computed for each successive position of the nozzle combining the nozzle spray distribution with drift computed with a Gaussian tilting plume model. The summation of these footprints resulted in the global drift of the nozzle. For increasing droplet size, the release height used in the Gaussian model was decreased from nozzle height to ground level using an experimental law to take into account the effect of entrained air and droplet initial velocity. The experimental

  20. Magma mixing enhanced by bubble segregation

    NASA Astrophysics Data System (ADS)

    Wiesmaier, S.; Morgavi, D.; Renggli, C. J.; Perugini, D.; De Campos, C. P.; Hess, K.-U.; Ertel-Ingrisch, W.; Lavallée, Y.; Dingwell, D. B.

    2015-08-01

    In order to explore the materials' complexity induced by bubbles rising through mixing magmas, bubble-advection experiments have been performed, employing natural silicate melts at magmatic temperatures. A cylinder of basaltic glass was placed below a cylinder of rhyolitic glass. Upon melting, bubbles formed from interstitial air. During the course of the experimental runs, those bubbles rose via buoyancy forces into the rhyolitic melt, thereby entraining tails of basaltic liquid. In the experimental run products, these plume-like filaments of advected basalt within rhyolite were clearly visible and were characterised by microCT and high-resolution EMP analyses. The entrained filaments of mafic material have been hybridised. Their post-experimental compositions range from the originally basaltic composition through andesitic to rhyolitic composition. Rheological modelling of the compositions of these hybridised filaments yield viscosities up to 2 orders of magnitude lower than that of the host rhyolitic liquid. Importantly, such lowered viscosities inside the filaments implies that rising bubbles can ascend more efficiently through pre-existing filaments that have been generated by earlier ascending bubbles. MicroCT imaging of the run products provides textural confirmation of the phenomenon of bubbles trailing one another through filaments. This phenomenon enhances the relevance of bubble advection in magma mixing scenarios, implying as it does so, an acceleration of bubble ascent due to the decreased viscous resistance facing bubbles inside filaments and yielding enhanced mass flux of mafic melt into felsic melt via entrainment. In magma mixing events involving melts of high volatile content, bubbles may be an essential catalyst for magma mixing. Moreover, the reduced viscosity contrast within filaments implies repeated replenishment of filaments with fresh end-member melt. As a result, complex compositional gradients and therefore diffusion systematics can be

  1. Studies on the Tempo of Bubble Formation in Recently Cavitated Vessels: A Model to Predict the Pressure of Air Bubbles1

    PubMed Central

    Wang, Yujie; Pan, Ruihua; Tyree, Melvin T.

    2015-01-01

    A cavitation event in a vessel replaces water with a mixture of water vapor and air. A quantitative theory is presented to argue that the tempo of filling of vessels with air has two phases: a fast process that extracts air from stem tissue adjacent to the cavitated vessels (less than 10 s) and a slow phase that extracts air from the atmosphere outside the stem (more than 10 h). A model was designed to estimate how water tension (T) near recently cavitated vessels causes bubbles in embolized vessels to expand or contract as T increases or decreases, respectively. The model also predicts that the hydraulic conductivity of a stem will increase as bubbles collapse. The pressure of air bubbles trapped in vessels of a stem can be predicted from the model based on fitting curves of hydraulic conductivity versus T. The model was validated using data from six stem segments each of Acer mono and the clonal hybrid Populus 84K (Populus alba × Populus glandulosa). The model was fitted to results with root mean square error less than 3%. The model provided new insight into the study of embolism formation in stem tissue and helped quantify the bubble pressure immediately after the fast process referred to above. PMID:25907963

  2. Importance of flow stratification and bubble aggregation in the separation zone of a dissolved air flotation tank.

    PubMed

    Lakghomi, B; Lawryshyn, Y; Hofmann, R

    2012-09-15

    The importance of horizontal flow patterns and bubble aggregation on the ability of dissolved air flotation (DAF) systems to improve bubble removal during drinking water treatment were explored using computational fluid dynamics (CFD) modeling. Both analytical and CFD analyses demonstrated benefits to horizontal flow. Two dimensional CFD modeling of a DAF system showed that increasing the amount of air in the system improved the bubble removal and generated a beneficial stratified horizontal flow pattern. Loading rates beyond a critical level disrupted the horizontal flow pattern, leading to significantly lower bubble removal. The results also demonstrated that including the effects of bubble aggregation in CFD modeling of DAF systems is an essential component toward achieving realistic modeling results.

  3. Direct AFM force measurements between air bubbles in aqueous monodisperse sodium poly(styrene sulfonate) solutions.

    PubMed

    Browne, Christine; Tabor, Rico F; Grieser, Franz; Dagastine, Raymond R

    2015-08-01

    Structural forces play an important role in the rheology, processing and stability of colloidal systems and complex fluids, with polyelectrolytes representing a key class of structuring colloids. Here, we explore the interactions between soft colloids, in the form of air bubbles, in solutions of monodisperse sodium poly(styrene sulfonate) as a model polyelectrolyte. It is found that by self-consistently modelling the force oscillations due to structuring of the polymer chains along with deformation of the bubbles, it is possible to precisely predict the interaction potential between approaching bubbles. In line with polyelectrolyte scaling theory, two distinct regimes of behaviour are seen, corresponding to dilute and semi-dilute polymer solutions. It is also seen that by blending monodisperse systems to give a bidisperse sample, the interaction forces between soft colloids can be controlled with a high degree of precision. At increasing bubble collision velocity, it is revealed that hydrodynamic flow overwhelms oscillatory structural interactions, showing the important disparity between equilibrium behaviour and dynamic interactions.

  4. Visual observation of the effect of magnetic field on moving air and vapor bubbles in a magnetic fluid

    NASA Astrophysics Data System (ADS)

    Nakatsuka, K.; Jeyadevan, B.; Akagami, Y.; Torigoe, T.; Asari, S.

    1999-07-01

    Theoretical prediction suggests that magnetic fluid (MF) as working liquid in heat pipe could enhance and control the heat transfer under the application of magnetic field. However, heat pipe experiments using ionic MF showed only marginal gain and demands investigation. As an initial step, visualization of air and vapor bubbles behavior under zero and applied magnetic field has been carried out using X-ray. The observations can be summarized as follows; applied magnetic field (a) reduces the size and deforms the shape of the bubble that secede from the heating surface or air supply tube, and (b) accelerates the movement of the bubble in the liquid.

  5. Hydrodynamic effects of air sparging on hollow fiber membranes in a bubble column reactor.

    PubMed

    Xia, Lijun; Law, Adrian Wing-Keung; Fane, Anthony G

    2013-07-01

    Air sparging is now a standard approach to reduce concentration polarization and fouling of membrane modules in membrane bioreactors (MBRs). The hydrodynamic shear stresses, bubble-induced turbulence and cross flows scour the membrane surfaces and help reduce the deposit of foulants onto the membrane surface. However, the detailed quantitative knowledge on the effect of air sparging remains lacking in the literature due to the complex hydrodynamics generated by the gas-liquid flows. To date, there is no valid model that describes the relationship between the membrane fouling performance and the flow hydrodynamics. The present study aims to examine the impact of hydrodynamics induced by air sparging on the membrane fouling mitigation in a quantitative manner. A modelled hollow fiber module was placed in a cylindrical bubble column reactor at different axial heights with the trans-membrane pressure (TMP) monitored under constant flux conditions. The configuration of bubble column without the membrane module immersed was identical to that studied by Gan et al. (2011) using Phase Doppler Anemometry (PDA), to ensure a good quantitative understanding of turbulent flow conditions along the column height. The experimental results showed that the meandering flow regime which exhibits high flow instability at the 0.3 m is more beneficial to fouling alleviation compared with the steady flow circulation regime at the 0.6 m. The filtration tests also confirmed the existence of an optimal superficial air velocity beyond which a further increase is of no significant benefit on the membrane fouling reduction. In addition, the alternate aeration provided by two air stones mounted at the opposite end of the diameter of the bubble column was also studied to investigate the associated flow dynamics and its influence on the membrane filtration performance. It was found that with a proper switching interval and membrane module orientation, the membrane fouling can be effectively

  6. Hydrodynamic effects of air sparging on hollow fiber membranes in a bubble column reactor.

    PubMed

    Xia, Lijun; Law, Adrian Wing-Keung; Fane, Anthony G

    2013-07-01

    Air sparging is now a standard approach to reduce concentration polarization and fouling of membrane modules in membrane bioreactors (MBRs). The hydrodynamic shear stresses, bubble-induced turbulence and cross flows scour the membrane surfaces and help reduce the deposit of foulants onto the membrane surface. However, the detailed quantitative knowledge on the effect of air sparging remains lacking in the literature due to the complex hydrodynamics generated by the gas-liquid flows. To date, there is no valid model that describes the relationship between the membrane fouling performance and the flow hydrodynamics. The present study aims to examine the impact of hydrodynamics induced by air sparging on the membrane fouling mitigation in a quantitative manner. A modelled hollow fiber module was placed in a cylindrical bubble column reactor at different axial heights with the trans-membrane pressure (TMP) monitored under constant flux conditions. The configuration of bubble column without the membrane module immersed was identical to that studied by Gan et al. (2011) using Phase Doppler Anemometry (PDA), to ensure a good quantitative understanding of turbulent flow conditions along the column height. The experimental results showed that the meandering flow regime which exhibits high flow instability at the 0.3 m is more beneficial to fouling alleviation compared with the steady flow circulation regime at the 0.6 m. The filtration tests also confirmed the existence of an optimal superficial air velocity beyond which a further increase is of no significant benefit on the membrane fouling reduction. In addition, the alternate aeration provided by two air stones mounted at the opposite end of the diameter of the bubble column was also studied to investigate the associated flow dynamics and its influence on the membrane filtration performance. It was found that with a proper switching interval and membrane module orientation, the membrane fouling can be effectively

  7. An experimental study on resonance of oscillating air/vapor bubbles in water using a two-frequency acoustic apparatus

    NASA Astrophysics Data System (ADS)

    Ohsaka, K.

    2003-05-01

    A two-frequency acoustic apparatus is employed to study the growth behavior of vapor-saturated bubbles driven in a volumetric mode. A unique feature of the apparatus is its capability of trapping a bubble by an ultrasonic standing wave while independently driving it into oscillations by a second lower-frequency acoustic wave. It is observed that the growing vapor bubbles exhibit a periodic shape transition between the volumetric and shape modes due to resonant coupling. In order to explain this observation, we performed an experimental investigation on resonant coupling of air bubbles and obtained the following results: First, the induced shape oscillations are actually a mixed mode that contains the volume component, thus, vapor bubbles can grow while they exhibit shape oscillations. Second, the acoustically levitated bubbles are deformed and therefore, degeneracy in resonant frequency is partially removed. As a result, the vapor bubbles exhibit the shape oscillations in both the axisymmetric mode and asymmetric (three-dimensional) modes. Nonlinear effects in addition to the frequency shift and split due to deformation creates overlapping of the coupling ranges for different modes, which leads to the continuous shape oscillations above a certain bubble radius as the bubble grows.

  8. Interfacial structures of confined air-water two-phase bubbly flow

    SciTech Connect

    Kim, S.; Ishii, M.; Wu, Q.; McCreary, D.; Beus, S.G.

    2000-08-01

    The interfacial structure of the two-phase flows is of great importance in view of theoretical modeling and practical applications. In the present study, the focus is made on obtaining detailed local two-phase parameters in the air-water bubbly flow in a rectangular vertical duct using the double-sensor conductivity probe. The characteristic wall-peak is observed in the profiles of the interracial area concentration and the void fraction. The development of the interfacial area concentration along the axial direction of the flow is studied in view of the interfacial area transport and bubble interactions. The experimental data is compared with the drift flux model with C{sub 0} = 1.35.

  9. Trapping of Sodium Dodecyl Sulfate at the Air-Water Interface of Oscillating Bubbles.

    PubMed

    Corti, Mario; Pannuzzo, Martina; Raudino, Antonio

    2015-06-16

    We report that at very low initial bulk concentrations, a couple of hundred times below the critical micellar concentration (CMC), anionic surfactant sodium dodecyl sulfate (SDS) adsorbed at the air-water interface of a gas bubble cannot be removed, on the time scale of the experiment (hours), when the surrounding solution is gently replaced by pure water. Extremely sensitive interferometric measurements of the resonance frequency of the bubble-forced oscillations give precise access to the concentration of the surfactant monolayer. The bulk-interface dynamic exchange of SDS molecules is shown to be inhibited below a concentration which we believe refers to a kind of gas-liquid phase transition of the surface monolayer. Above this threshold we recover the expected concentration-dependent desorption. The experimental observations are interpreted within simple energetic considerations supported by molecular dynamics (MD) calculations. PMID:26039913

  10. Magma mixing enhanced by bubble segregation

    NASA Astrophysics Data System (ADS)

    Wiesmaier, S.; Morgavi, D.; Renggli, C.; Perugini, D.; De Campos, C. P.; Hess, K.-U.; Ertel-Ingrisch, W.; Lavallée, Y.; Dingwell, D. B.

    2015-04-01

    That rising bubbles may significantly affect magma mixing paths has already been demon strated by analogue experiments. Here, for the first time, bubble-advection experiments are performed employing volcanic melts at magmatic temperatures. Cylinders of basaltic glass were placed below cylinders of rhyolite glass. Upon melting, interstitial air formed bubbles that rose into the rhyolite melt, thereby entraining tails of basaltic liquid. The formation of plume-like filaments of advected basalt within the rhyolite was characterized by microCT and subsequent high-resolution EMP analyses. Melt entrainment by bubble ascent appears to be an efficient mechanism for mingling volcanic melts of highly contrasting compositions and properties. MicroCT imaging reveals bubbles trailing each other and multiple filaments coalescing into bigger ones. Rheological modelling of the filaments yields viscosities of up to 2 orders of magnitude lower than for the surrounding rhyolitic liquid. Such a viscosity contrast implies that bubbles rising successively are likely to follow this pathway of low resistance that previously ascending bubbles have generated. Filaments formed by multiple bubbles would thus experience episodic replenishment with mafic material. Inevitable implications for the concept of bubble advection in magma mixing include thereby both an acceleration of mixing because of decreased viscous resistance for bubbles inside filaments and non-conventional diffusion systematics because of intermittent supply of mafic material (instead of a single pulse) inside a material. Inside the filaments, the mafic material was variably hybridised to andesitic through rhyolitic composition. Compositional profiles alone are ambiguous, however, to determine whether single or multiple bubbles were involved during formation of a filament. Statistical analysis, employing concentration variance as measure of homogenisation, demonstrates that also filaments appearing as single-bubble filaments

  11. Column flooding and entrainment. [Estimation of maximum allowable vapor velocity and entrainment in a distillation column

    SciTech Connect

    Lygeros, A.I.; Magoulas, K.G.

    1986-12-01

    Here is a way to estimate maximum allowable vapor velocity and entrainment in a distillation column. The method can easily be computerized. It is based on equations derived from the widely accepted correlations. The equation for flooding velocity is applicable to bubble-cup, sieve and valve trays, while the entrainment equation applies only to sieve trays.

  12. Protective effects of Healon and Occucoat against air bubble endothelial damage during ultrasonic agitation of the anterior chamber.

    PubMed

    Monson, M C; Tamura, M; Mamalis, N; Olson, R J; Olson, R J

    1991-09-01

    An important aspect of any new viscoelastic substance is the corneal endothelial protection. We compared the protective effects of sodium hyaluronate (Healon) and hydroxypropylmethylcellulose (Occucoat) by introducing a controlled volume of air bubbles into the anterior chamber of human eye bank eyes during ultrasonic agitation of the anterior chamber. Eight eyes received Healon and 11 eyes received Occucoat. Damage to endothelial cells in the central cornea was quantified by vital staining. Endothelial damage averaged 4.5% in eyes in which no viscoelastic was used (positive control); damage was 0.4% in eyes in which a viscoelastic was injected but no air bubbles were introduced (negative control). We found that endothelial damage averaged 4.25% in specimens that received air plus Healon and 1.4% in specimens that received air plus Occucoat. Occucoat appeared to have somewhat better protective effects than Healon against air bubble damage to the corneal endothelium during ultrasonic agitation of the anterior chamber.

  13. Experiments of air bubbles impacting a rigid wall in tap water

    NASA Astrophysics Data System (ADS)

    Pelletier, Etienne; Béguin, Cédric; Étienne, Stéphane

    2015-12-01

    Trajectory and impact dynamics of bubbles in tap water were studied. Results confirm that bubbles with identical radii can be classified in two categories: fast bubbles and slow bubbles. Each category of bubble can describe zig-zag or helical motion. The aspect ratio and terminal velocity of a bubble depend on its radius and category. Restitution relations are also presented for the two categories of bubble after impact with an horizontal wall. With these relations, the state of a bubble after rebound can be predicted from its state before rebound. The aspect ratio before rebound of the bubble is found to play a key role in the dynamics of the impacts.

  14. Breaking waves and near-surface sea spray aerosol dependence on changing winds: Wave breaking efficiency and bubble-related air-sea interaction processes

    NASA Astrophysics Data System (ADS)

    Hwang, P. A.; Savelyev, I. B.; Anguelova, M. D.

    2016-05-01

    Simultaneous measurements of sea spray aerosol (SSA), wind, wave, and microwave brightness temperature are obtained in the open ocean on-board Floating Instrument Platform (FLIP). These data are analysed to clarify the ocean surface processes important to SSA production. Parameters are formulated to represent surface processes with characteristic length scales spanning a broad range. The investigation reveals distinct differences of the SSA properties in rising winds and falling winds, with higher SSA volume in falling winds. Also, in closely related measurements of whitecap coverage, higher whitecap fraction as a function of wind speed is found in falling winds than in rising winds or in older seas than in younger seas. Similar trend is found in the short scale roughness reflected in the microwave brightness temperature data. In the research of length and velocity scales of breaking waves, it has been observed that the length scale of wave breaking is shorter in mixed seas than in wind seas. For example, source function analysis of short surface waves shows that the characteristic length scale of the dissipation function shifts toward higher wavenumber (shorter wavelength) in mixed seas than in wind seas. Similarly, results from feature tracking or Doppler analysis of microwave radar sea spikes, which are closely associated with breaking waves, show that the magnitude of the average breaking wave velocity is smaller in mixed seas than in wind seas. Furthermore, breaking waves are observed to possess geometric similarity. Applying the results of breaking wave analyses to the SSA and whitecap observations described above, it is suggestive that larger air cavities resulting from the longer breakers are entrained in rising high winds. The larger air cavities escape rapidly due to buoyancy before they can be fully broken down into small bubbles for the subsequent SSA production or whitecap manifestation. In contrast, in falling winds (with mixed seas more likely), the

  15. Observations of internal flow inside an evaporating nanofluid sessile droplet in the presence of an entrapped air bubble

    NASA Astrophysics Data System (ADS)

    Shin, Dong Hwan; Allen, Jeffrey S.; Lee, Seong Hyuk; Choi, Chang Kyoung

    2016-09-01

    Using a unique, near-field microscopy technique, fringe patterns and nanoparticle motions are visualized immediately following a nanofluid droplet deposition on a glass substrate in which an air bubble is entrapped. The nanofluid consists of DI-water, 0.10% Aluminum Oxide nanoparticles with an average diameter of 50 nm, and 0.0005% yellow-green polystyrene fluorescent particles of 1 μm diameter. High-speed, fluorescent-mode confocal imaging enables investigation of depth-wise sectioned particle movements in the nanofluid droplet inside which a bubble is entrapped. The static contact angle is increased when a bubble is applied. In the presence of the bubble in the droplet, the observed flow toward the center of the droplet is opposite to the flow observed in a droplet without the bubble. When the bubble is present, the evaporation process is retarded. Also, random motion is observed in the contact line region instead of the typical evaporation-driven flow toward the droplet edge. Once the bubble bursts, however, the total evaporation time decreases due to the change in the contact line characteristics. Moreover, the area of fringe patterns beneath the bubble increases with time. Discussed herein is a unique internal flow that has not been observed in nanofluid droplet evaporation.

  16. Observations of internal flow inside an evaporating nanofluid sessile droplet in the presence of an entrapped air bubble.

    PubMed

    Shin, Dong Hwan; Allen, Jeffrey S; Lee, Seong Hyuk; Choi, Chang Kyoung

    2016-01-01

    Using a unique, near-field microscopy technique, fringe patterns and nanoparticle motions are visualized immediately following a nanofluid droplet deposition on a glass substrate in which an air bubble is entrapped. The nanofluid consists of DI-water, 0.10% Aluminum Oxide nanoparticles with an average diameter of 50 nm, and 0.0005% yellow-green polystyrene fluorescent particles of 1 μm diameter. High-speed, fluorescent-mode confocal imaging enables investigation of depth-wise sectioned particle movements in the nanofluid droplet inside which a bubble is entrapped. The static contact angle is increased when a bubble is applied. In the presence of the bubble in the droplet, the observed flow toward the center of the droplet is opposite to the flow observed in a droplet without the bubble. When the bubble is present, the evaporation process is retarded. Also, random motion is observed in the contact line region instead of the typical evaporation-driven flow toward the droplet edge. Once the bubble bursts, however, the total evaporation time decreases due to the change in the contact line characteristics. Moreover, the area of fringe patterns beneath the bubble increases with time. Discussed herein is a unique internal flow that has not been observed in nanofluid droplet evaporation. PMID:27615999

  17. Observations of internal flow inside an evaporating nanofluid sessile droplet in the presence of an entrapped air bubble

    PubMed Central

    Shin, Dong Hwan; Allen, Jeffrey S.; Lee, Seong Hyuk; Choi, Chang Kyoung

    2016-01-01

    Using a unique, near-field microscopy technique, fringe patterns and nanoparticle motions are visualized immediately following a nanofluid droplet deposition on a glass substrate in which an air bubble is entrapped. The nanofluid consists of DI-water, 0.10% Aluminum Oxide nanoparticles with an average diameter of 50 nm, and 0.0005% yellow-green polystyrene fluorescent particles of 1 μm diameter. High-speed, fluorescent-mode confocal imaging enables investigation of depth-wise sectioned particle movements in the nanofluid droplet inside which a bubble is entrapped. The static contact angle is increased when a bubble is applied. In the presence of the bubble in the droplet, the observed flow toward the center of the droplet is opposite to the flow observed in a droplet without the bubble. When the bubble is present, the evaporation process is retarded. Also, random motion is observed in the contact line region instead of the typical evaporation-driven flow toward the droplet edge. Once the bubble bursts, however, the total evaporation time decreases due to the change in the contact line characteristics. Moreover, the area of fringe patterns beneath the bubble increases with time. Discussed herein is a unique internal flow that has not been observed in nanofluid droplet evaporation. PMID:27615999

  18. Influence of water depth on the sound generated by air-bubble vibration in the water musical instrument

    NASA Astrophysics Data System (ADS)

    Ohuchi, Yoshito; Nakazono, Yoichi

    2014-06-01

    We have developed a water musical instrument that generates sound by the falling of water drops within resonance tubes. The instrument can give people who hear it the healing effect inherent in the sound of water. The sound produced by falling water drops arises from air- bubble vibrations. To investigate the impact of water depth on the air-bubble vibrations, we conducted experiments at varying values of water pressure and nozzle shape. We found that air-bubble vibration frequency does not change at a water depth of 50 mm or greater. Between 35 and 40 mm, however, the frequency decreases. At water depths of 30 mm or below, the air-bubble vibration frequency increases. In our tests, we varied the nozzle diameter from 2 to 4 mm. In addition, we discovered that the time taken for air-bubble vibration to start after the water drops start falling is constant at water depths of 40 mm or greater, but slower at depths below 40 mm.

  19. Measuring forces and spatiotemporal evolution of thin water films between an air bubble and solid surfaces of different hydrophobicity.

    PubMed

    Shi, Chen; Cui, Xin; Xie, Lei; Liu, Qingxia; Chan, Derek Y C; Israelachvili, Jacob N; Zeng, Hongbo

    2015-01-27

    A combination of atomic force microscopy (AFM) and reflection interference contrast microscopy (RICM) was used to measure simultaneously the interaction force and the spatiotemporal evolution of the thin water film between a bubble in water and mica surfaces with varying degrees of hydrophobicity. Stable films, supported by the repulsive van der Waals-Casimir-Lifshitz force were always observed between air bubble and hydrophilic mica surfaces (water contact angle, θ(w) < 5°) whereas bubble attachment occurred on hydrophobized mica surfaces. A theoretical model, based on the Reynolds lubrication theory and the augmented Young-Laplace equation including the effects of disjoining pressure, provided excellent agreement with experiment results, indicating the essential physics involved in the interaction between air bubble and solid surfaces can be elucidated. A hydrophobic interaction free energy per unit area of the form: WH(h) = -γ(1 - cos θ(w))exp(-h/D(H)) can be used to quantify the attraction between bubble and hydrophobized solid substrate at separation, h, with γ being the surface tension of water. For surfaces with water contact angle in the range 45° < θ(w) < 90°, the decay length DH varied between 0.8 and 1.0 nm. This study quantified the hydrophobic interaction in asymmetric system between air bubble and hydrophobic surfaces, and provided a feasible method for synchronous measurements of the interaction forces with sub-nN resolution and the drainage dynamics of thin films down to nm thickness.

  20. Measuring forces and spatiotemporal evolution of thin water films between an air bubble and solid surfaces of different hydrophobicity.

    PubMed

    Shi, Chen; Cui, Xin; Xie, Lei; Liu, Qingxia; Chan, Derek Y C; Israelachvili, Jacob N; Zeng, Hongbo

    2015-01-27

    A combination of atomic force microscopy (AFM) and reflection interference contrast microscopy (RICM) was used to measure simultaneously the interaction force and the spatiotemporal evolution of the thin water film between a bubble in water and mica surfaces with varying degrees of hydrophobicity. Stable films, supported by the repulsive van der Waals-Casimir-Lifshitz force were always observed between air bubble and hydrophilic mica surfaces (water contact angle, θ(w) < 5°) whereas bubble attachment occurred on hydrophobized mica surfaces. A theoretical model, based on the Reynolds lubrication theory and the augmented Young-Laplace equation including the effects of disjoining pressure, provided excellent agreement with experiment results, indicating the essential physics involved in the interaction between air bubble and solid surfaces can be elucidated. A hydrophobic interaction free energy per unit area of the form: WH(h) = -γ(1 - cos θ(w))exp(-h/D(H)) can be used to quantify the attraction between bubble and hydrophobized solid substrate at separation, h, with γ being the surface tension of water. For surfaces with water contact angle in the range 45° < θ(w) < 90°, the decay length DH varied between 0.8 and 1.0 nm. This study quantified the hydrophobic interaction in asymmetric system between air bubble and hydrophobic surfaces, and provided a feasible method for synchronous measurements of the interaction forces with sub-nN resolution and the drainage dynamics of thin films down to nm thickness. PMID:25514470

  1. Ring Bubbles of Dolphins

    NASA Technical Reports Server (NTRS)

    Shariff, Karim; Marten, Ken; Psarakos, Suchi; White, Don J.; Merriam, Marshal (Technical Monitor)

    1996-01-01

    The article discusses how dolphins create and play with three types of air-filled vortices. The underlying physics is discussed. Photographs and sketches illustrating the dolphin's actions and physics are presented. The dolphins engage in this behavior on their own initiative without food reward. These behaviors are done repeatedly and with singleminded effort. The first type is the ejection of bubbles which, after some practice on the part of the dolphin, turn into toroidal vortex ring bubbles by the mechanism of baroclinic torque. These bubbles grow in radius and become thinner as they rise vertically to the surface. One dolphin would blow two in succession and guide them to fuse into one. Physicists call this a vortex reconnection. In the second type, the dolphins first create an invisible vortex ring in the water by swimming on their side and waving their tail fin (also called flukes) vigorously. This vortex ring travels horizontally in the water. The dolphin then turns around, finds the vortex and injects a stream of air into it from its blowhole. The air "fills-out" the core of the vortex ring. Often, the dolphin would knock-off a smaller ring bubble from the larger ring (this also involves vortex reconnection) and steer the smaller ring around the tank. One other dolphin employed a few other techniques for planting air into the fluke vortex. One technique included standing vertically in the water with tail-up, head-down and tail piercing the free surface. As the fluke is waved to create the vortex ring, air is entrained from above the surface. Another technique was gulping air in the mouth, diving down, releasing air bubbles from the mouth and curling them into a ring when they rose to the level of the fluke. In the third type, demonstrated by only one dolphin, the longitudinal vortex created by the dorsal fin on the back is used to produce 10-15 foot long helical bubbles. In one technique she swims in a curved path. This creates a dorsal fin vortex since

  2. Pachymetry-guided intrastromal air injection ("pachy-bubble") for deep anterior lamellar keratoplasty.

    PubMed

    Ghanem, Ramon C; Ghanem, Marcielle A

    2012-09-01

    To evaluate an innovative technique for intrastromal air injection to achieve deep anterior lamellar keratoplasty (DALK) with bare Descemet membrane (DM). Thirty-four eyes with anterior corneal pathology, including 27 with keratoconus, underwent DALK. After 400 μm trephination with a suction trephine, ultrasound pachymetry was performed 0.8 mm internally from the trephination groove in the 11 to 1 o'clock position. In this area, a 2-mm incision was created, parallel to the groove, with a micrometer diamond knife calibrated to 90% depth of the thinnest measurement. A cannula was inserted through the incision and 0.5 mL of air was injected to dissect the DM from the stroma. After peripheral paracentesis, anterior keratectomy was carried out to bare the DM. A 0.25-mm oversized graft was sutured in place. Overall, 94.1% of eyes achieved DALK. Bare DM was achieved in 30 eyes, and a pre-DM dissection was performed in 2 eyes. Air injection was successful in detaching the DM (achieving the big bubble) in 88.2% of the eyes. In keratoconus eyes, the rate was 88.9%. All cases but one required a single air injection to achieve DM detachment. Microperforations occurred in 5 cases: 3 during manual layer-by-layer dissection after air injection failed to detach the DM, 1 during removal of the residual stroma after big-bubble formation, and 1 during the diamond knife incision. Two cases (5.9%) were converted to penetrating keratoplasty because of macroperforations. The technique was reproducible, safe, and highly effective in promoting DALK with bare DM. PMID:22367050

  3. Discrete Bubble Modeling for Cavitation Bubbles

    NASA Astrophysics Data System (ADS)

    Choi, Jin-Keun; Chahine, Georges; Hsiao, Chao-Tsung

    2007-03-01

    Dynaflow, Inc. has conducted extensive studies on non-spherical bubble dynamics and interactions with solid and free boundaries, vortical flow structures, and other bubbles. From these studies, emerged a simplified Surface Averaged Pressure (SAP) spherical bubble dynamics model and a Lagrangian bubble tracking scheme. In this SAP scheme, the pressure and velocity of the surrounding flow field are averaged on the bubble surface, and then used for the bubble motion and volume dynamics calculations. This model is implemented using the Fluent User Defined Function (UDF) as Discrete Bubble Model (DBM). The Bubble dynamics portion can be solved using an incompressible liquid modified Rayleigh-Plesset equation or a compressible liquid modified Gilmore equation. The Discrete Bubble Model is a very suitable tool for the studies on cavitation inception of foils and turbo machinery, bubble nuclei effects, noise from the bubbles, and can be used in many practical problems in industrial and naval applications associated with flows in pipes, jets, pumps, propellers, ships, and the ocean. Applications to propeller cavitation, wake signatures of waterjet propelled ships, bubble-wake interactions, modeling of cavitating jets, and bubble entrainments around a ship will be presented.

  4. Enriched Air Nitrox Breathing Reduces Venous Gas Bubbles after Simulated SCUBA Diving: A Double-Blind Cross-Over Randomized Trial

    PubMed Central

    Souday, Vincent; Koning, Nick J.; Perez, Bruno; Grelon, Fabien; Mercat, Alain; Boer, Christa; Seegers, Valérie; Radermacher, Peter; Asfar, Pierre

    2016-01-01

    Objective To test the hypothesis whether enriched air nitrox (EAN) breathing during simulated diving reduces decompression stress when compared to compressed air breathing as assessed by intravascular bubble formation after decompression. Methods Human volunteers underwent a first simulated dive breathing compressed air to include subjects prone to post-decompression venous gas bubbling. Twelve subjects prone to bubbling underwent a double-blind, randomized, cross-over trial including one simulated dive breathing compressed air, and one dive breathing EAN (36% O2) in a hyperbaric chamber, with identical diving profiles (28 msw for 55 minutes). Intravascular bubble formation was assessed after decompression using pulmonary artery pulsed Doppler. Results Twelve subjects showing high bubble production were included for the cross-over trial, and all completed the experimental protocol. In the randomized protocol, EAN significantly reduced the bubble score at all time points (cumulative bubble scores: 1 [0–3.5] vs. 8 [4.5–10]; P < 0.001). Three decompression incidents, all presenting as cutaneous itching, occurred in the air versus zero in the EAN group (P = 0.217). Weak correlations were observed between bubble scores and age or body mass index, respectively. Conclusion EAN breathing markedly reduces venous gas bubble emboli after decompression in volunteers selected for susceptibility for intravascular bubble formation. When using similar diving profiles and avoiding oxygen toxicity limits, EAN increases safety of diving as compared to compressed air breathing. Trial Registration ISRCTN 31681480 PMID:27163253

  5. Variation of Local Surface Properties of an Air Bubble in Water Caused by Its Interaction with Another Surface.

    PubMed

    Del Castillo, Lorena A; Ohnishi, Satomi; Carnie, Steven L; Horn, Roger G

    2016-08-01

    Surface and hydrodynamic forces acting between an air bubble and a flat mica surface in surfactant-free water and in 1 mM KCl solution have been investigated by observing film drainage using a modified surface force apparatus (SFA). The bubble shapes observed with the SFA are compared to theoretical profiles computed from a model that considers hydrodynamic interactions, surface curvature, and disjoining pressure arising from electrical double layer and van der Waals interactions. It is shown that the bubble experiences double-layer forces, and a final equilibrium wetting film between the bubble and mica surfaces is formed by van der Waals repulsion. However, comparison with the theoretical model reveals that the double-layer forces are not simply a function of surface separation. Rather, they appear to be changed by one of more of the following: the bubble's dynamic deformation, its proximity to another surface, and/or hydrodynamic flow in the aqueous film that separate them. The same comments apply to the hydrodynamic mobility or immobility of the air-water interface. Together the results show that the bubble's surface is "soft" in two senses: in addition to its well-known deformability, its local properties are affected by weak external forces, in this case the electrical double-layer interactions with a nearby surface and hydrodynamic flow in the neighboring aqueous phase. PMID:27391417

  6. A model of particle removal in a dissolved air flotation tank: importance of stratified flow and bubble size.

    PubMed

    Lakghomi, B; Lawryshyn, Y; Hofmann, R

    2015-01-01

    An analytical model and a computational fluid dynamic model of particle removal in dissolved air flotation were developed that included the effects of stratified flow and bubble-particle clustering. The models were applied to study the effect of operating conditions and formation of stratified flow on particle removal. Both modeling approaches demonstrated that the presence of stratified flow enhanced particle removal in the tank. A higher air fraction was shown to be needed at higher loading rates to achieve the same removal efficiency. The model predictions showed that an optimum bubble size was present that increased with an increase in particle size.

  7. Bubble size measurements in a bubbly wake

    NASA Astrophysics Data System (ADS)

    Karn, Ashish; Hong, Jiarong; Ellis, Christopher; Arndt, Roger

    2014-11-01

    Measurements of bubble size distribution are ubiquitous in many industrial applications. Conventional methods using image analysis to measure bubble size are limited in their robustness and applicability in highly turbulent bubbly flows. These flows usually impose significant challenges for image processing such as a wide range of bubble size distribution, spatial and temporal inhomogeneity of image background including in-focus and out-of-focus bubbles, as well as the excessive presence of bubble clusters. This talk introduces a multi-level image analysis approach to detect a wide size range of bubbles and resolve bubble clusters from images obtained in a turbulent bubbly wake of a ventilated hydrofoil. The proposed approach was implemented to derive bubble size and air ventilation rate from the synthetic images and the experiments, respectively. The results show a great promise in its applicability for online monitoring of bubbly flows in a number of industrial applications. Sponsored by Office of Naval Research and the Department of Energy.

  8. Is mudflow in Sidoarjo, East Java due to the pumping mechanism of hot air bubbles? : Laboratory simulations and field observations

    NASA Astrophysics Data System (ADS)

    Nurhandoko, Bagus Endar B.

    2015-09-01

    Extraordinary mudflow has happened in Sidoarjo, East Java, Indonesia since 2006. This mud comes from the giant crater that is located close to the BJP - 01. Thousands of homes have been submerged due to mudflow. Till today this giant mud crater is still has great strength despite the mud flowing over 8 years. This is a very rare phenomenon in the world. This mud flow mechanism raises big questions, because it has been going on for years, naturally the mudflow will stop by itself because the pressure should be reduced. This research evaluates all aspects of integrated observations, laboratory tests and field observations since the beginning of this ongoing mudflow. Laboratory tests were done by providing hot air bubbles into the fluid inside the inverted funnel showed that the fluid can flow with a high altitude. It is due to the mechanism of buoyant force from air bubbles to the water where the contrast density of the water and the air is quite large. Quantity of air bubbles provides direct effect to the debit of fluid flow. Direct observation in the field, in 2006 and 2007, with TIMNAS and LPPM ITB showed the large number of air bubbles on the surface of the mud craters. Temperature observation on the surface of mud crater is around 98 degree C whereas at greater depth shows the temperature is increasingly rising. This strengthens the hypothesis or proves that the mud pumping mechanism comes from buoyant force of hot air bubbles. Inversion gravity images show that the deep subsurface of main crater is close to volcanic layers or root of Arjuna mountain. Based on the simulation laboratory and field observation data, it can be concluded that the geothermal factor plays a key role in the mudflow mechanism.

  9. Hydrophobically-associating cationic polymers as micro-bubble surface modifiers in dissolved air flotation for cyanobacteria cell separation.

    PubMed

    Yap, R K L; Whittaker, M; Diao, M; Stuetz, R M; Jefferson, B; Bulmus, V; Peirson, W L; Nguyen, A V; Henderson, R K

    2014-09-15

    Dissolved air flotation (DAF), an effective treatment method for clarifying algae/cyanobacteria-laden water, is highly dependent on coagulation-flocculation. Treatment of algae can be problematic due to unpredictable coagulant demand during blooms. To eliminate the need for coagulation-flocculation, the use of commercial polymers or surfactants to alter bubble charge in DAF has shown potential, termed the PosiDAF process. When using surfactants, poor removal was obtained but good bubble adherence was observed. Conversely, when using polymers, effective cell removal was obtained, attributed to polymer bridging, but polymers did not adhere well to the bubble surface, resulting in a cationic clarified effluent that was indicative of high polymer concentrations. In order to combine the attributes of both polymers (bridging ability) and surfactants (hydrophobicity), in this study, a commercially-available cationic polymer, poly(dimethylaminoethyl methacrylate) (polyDMAEMA), was functionalised with hydrophobic pendant groups of various carbon chain lengths to improve adherence of polymer to a bubble surface. Its performance in PosiDAF was contrasted against commercially-available poly(diallyl dimethyl ammonium chloride) (polyDADMAC). All synthesised polymers used for bubble surface modification were found to produce positively charged bubbles. When applying these cationic micro-bubbles in PosiDAF, in the absence of coagulation-flocculation, cell removals in excess of 90% were obtained, reaching a maximum of 99% cell removal and thus demonstrating process viability. Of the synthesised polymers, the polymer containing the largest hydrophobic functionality resulted in highly anionic treated effluent, suggesting stronger adherence of polymers to bubble surfaces and reduced residual polymer concentrations.

  10. Surfactant effects on cumulative drop size distributions produced by air bubbles bursting on a non-quiescent free surface

    NASA Astrophysics Data System (ADS)

    Parmar, K.; Liu, X.; Duncan, J. H.

    2013-11-01

    The generation of droplets when air bubbles travel upwards from within a liquid and burst at a free surface is studied experimentally. The bubbles are generated in a glass water tank that is 0.91 m long and 0.46 m wide with a water depth of 0.5 m. The tank is equipped with an acrylic box at its bottom that creates the bubble field using filtered air injected through an array of 180 hypodermic needles (0.33 mm ID). Two different surface conditions are created by using clean water and a 0.4% aqueous solution of Triton X-100 surfactant. Measurements of the bubble diameters as they approach the free surface are obtained with diffuse light shadowgraph images. The range of bubble diameters studied is 2.885 mm to 3.301 mm for clean water and 2.369 mm to 3.014 mm for the surfactant solution. A laser-light high-speed cinematic shadowgraph system is employed to record and measure the diameters and motions of the droplets at the free surface. This system can measure droplets with diameters <= 50 μm. The results show a clear distinction between the droplet distributions obtained in clean water and the surfactant solution. A bimodal droplet distribution is observed for clean water with at least two dominating peaks. For the surfactant solution, a single distribution peak is seen. This work is supported by the National Science Foundation, Division of Ocean Sciences.

  11. Bubble-Free Containers For Liquids In Microgravity

    NASA Technical Reports Server (NTRS)

    Kornfeld, Dale M.; Antar, Basil L.

    1995-01-01

    Reports discuss entrainment of gas bubbles during handling of liquids in microgravity, and one report proposes containers filled with liquids in microgravity without entraining bubbles. Bubbles are troublesome in low-gravity experiments - particularly in biological experiments. Wire-mesh cage retains liquid contents without solid wall, because in microgravity, surface tension of liquid exerts sufficient confining force.

  12. Bubble Drag Reduction Requires Large Bubbles

    NASA Astrophysics Data System (ADS)

    Verschoof, Ruben A.; van der Veen, Roeland C. A.; Sun, Chao; Lohse, Detlef

    2016-09-01

    In the maritime industry, the injection of air bubbles into the turbulent boundary layer under the ship hull is seen as one of the most promising techniques to reduce the overall fuel consumption. However, the exact mechanism behind bubble drag reduction is unknown. Here we show that bubble drag reduction in turbulent flow dramatically depends on the bubble size. By adding minute concentrations (6 ppm) of the surfactant Triton X-100 into otherwise completely unchanged strongly turbulent Taylor-Couette flow containing bubbles, we dramatically reduce the drag reduction from more than 40% to about 4%, corresponding to the trivial effect of the bubbles on the density and viscosity of the liquid. The reason for this striking behavior is that the addition of surfactants prevents bubble coalescence, leading to much smaller bubbles. Our result demonstrates that bubble deformability is crucial for bubble drag reduction in turbulent flow and opens the door for an optimization of the process.

  13. Bubble Drag Reduction Requires Large Bubbles.

    PubMed

    Verschoof, Ruben A; van der Veen, Roeland C A; Sun, Chao; Lohse, Detlef

    2016-09-01

    In the maritime industry, the injection of air bubbles into the turbulent boundary layer under the ship hull is seen as one of the most promising techniques to reduce the overall fuel consumption. However, the exact mechanism behind bubble drag reduction is unknown. Here we show that bubble drag reduction in turbulent flow dramatically depends on the bubble size. By adding minute concentrations (6 ppm) of the surfactant Triton X-100 into otherwise completely unchanged strongly turbulent Taylor-Couette flow containing bubbles, we dramatically reduce the drag reduction from more than 40% to about 4%, corresponding to the trivial effect of the bubbles on the density and viscosity of the liquid. The reason for this striking behavior is that the addition of surfactants prevents bubble coalescence, leading to much smaller bubbles. Our result demonstrates that bubble deformability is crucial for bubble drag reduction in turbulent flow and opens the door for an optimization of the process.

  14. Bubble Drag Reduction Requires Large Bubbles.

    PubMed

    Verschoof, Ruben A; van der Veen, Roeland C A; Sun, Chao; Lohse, Detlef

    2016-09-01

    In the maritime industry, the injection of air bubbles into the turbulent boundary layer under the ship hull is seen as one of the most promising techniques to reduce the overall fuel consumption. However, the exact mechanism behind bubble drag reduction is unknown. Here we show that bubble drag reduction in turbulent flow dramatically depends on the bubble size. By adding minute concentrations (6 ppm) of the surfactant Triton X-100 into otherwise completely unchanged strongly turbulent Taylor-Couette flow containing bubbles, we dramatically reduce the drag reduction from more than 40% to about 4%, corresponding to the trivial effect of the bubbles on the density and viscosity of the liquid. The reason for this striking behavior is that the addition of surfactants prevents bubble coalescence, leading to much smaller bubbles. Our result demonstrates that bubble deformability is crucial for bubble drag reduction in turbulent flow and opens the door for an optimization of the process. PMID:27636479

  15. Gas bubble dimensions in Archean lava flows indicate low air pressure at 2.7 Ga

    NASA Astrophysics Data System (ADS)

    Som, S. M.; Buick, R.; Hagadorn, J.; Blake, T.; Perreault, J.; Harnmeijer, J.; Catling, D. C.

    2014-12-01

    Air pressure constrains atmospheric composition, which, in turn, is linked to the Earth system through biogeochemical cycles and fluxes of volatiles from and to the Earth's interior. Previous studies have only placed maximum levels on surface air pressure for the early Earth [1]. Here, we calculate an absolute value for Archean barometric pressure using gas bubble size (vesicle) distributions in uninflated basaltic lava flows that solidified at sea level 2.7 billion years ago in the Pilbara Craton, Western Australia. These vesicles have been filled in by secondary minerals deposited during metasomatism and so are now amydules, but thin sections show that infilling did not change vesicle dimensions. Amygdule dimensions are measured using high-resolution X-ray tomography from core samples obtained from the top and bottom of the lava flows. The modal size expressed at the top and at the bottom of an uninflated flow can be linked to atmospheric pressure using the ideal gas law. Such a technique has been verified as a paleoaltimeter using Hawaiian Quaternary lava flows [2]. We use statistical methods to estimate the mean and standard deviation of the volumetric size of the amygdules by applying 'bootstrap'resampling and the Central Limit Theorem. Our data indicate a surprisingly low atmospheric pressure. Greater nitrogen burial under anaerobic conditions likely explains lower pressure. Refs: [1] Som et al. (2012) Nature 484, 359-262. D. L. Sahagian et al. (2002) J. Geol., 110, 671-685.

  16. Field-scale tests for determining mixing patterns associated with coarse-bubble air diffuser configurations, Egan Quarry, Illinois

    USGS Publications Warehouse

    Hornewer, N.J.; Johnson, G.P.; Robertson, D.M.; Hondzo, Miki

    1997-01-01

    The U.S. Geological Survey in cooperation with the U.S. Army Corps of Engineers, Chicago District did field-scale tests in August-September 1996 to determine mixing patterns associated with different configurations of coarse-bubble air diffusers. The tests were done in an approximately 13-meter deep quarry near Chicago, Ill. Three-dimensional velocity, water-temperature, dissolved oxygen concentration, and specific-conductivity profiles were collected from locations between approximately 2 to 30 meters from the diffusers for two sets of five test configurations; one set for stratified and one set for destratified conditions in the quarry. The data-collection methods and instrumentation used to characterize mixing patterns and interactions of coarse-bubble diffusers were successful. An extensive data set was collected and is available to calibrate and verify aeration and stratification models, and to characterize basic features of bubble-plume interaction.

  17. Quantitative measurement of size and three-dimensional position of fast-moving bubbles in air-water mixture flows using digital holography.

    PubMed

    Tian, Lei; Loomis, Nick; Domínguez-Caballero, José A; Barbastathis, George

    2010-03-20

    We present a digital in-line holographic imaging system for measuring the size and three-dimensional position of fast-moving bubbles in air-water mixture flows. The captured holograms are numerically processed by performing a two-dimensional projection followed by local depth estimation to quickly and efficiently obtain the size and position information of multiple bubbles simultaneously. Statistical analysis on measured bubble size distributions shows that they follow lognormal or gamma distributions.

  18. Preliminary investigation of air bubbling and dietary sulfur reduction to mitigate hydrogen sulfide and odor from swine waste.

    PubMed

    Clark, O Grant; Morin, Brent; Zhang, Yongcheng; Sauer, Willem C; Feddes, John J R

    2005-01-01

    When livestock manure slurry is agitated, the sudden release of hydrogen sulfide (H(2)S) can raise concentrations to dangerous levels. Low-level air bubbling and dietary S reduction were evaluated as methods for reducing peak H(2)S emissions from swine (Sus scrofa) manure slurry samples. In a first experiment, 15-L slurry samples were stored in bench-scale digesters and continuously bubbled with air at 0 (control), 5, or 10 mL min(-1) for 28 d. The 5-L headspace of each digester was also continuously ventilated at 40 mL min(-1) and the mean H(2)S concentration in the outlet air was <10 microL L(-1). On Day 28, the slurry was agitated suddenly. The peak H(2)S concentration exceeded instrument range (>120 microL L(-1)) from the control treatment, and was 47 and 3.4 microL L(-1) for the 5 and 10 mL min(-1) treatments, respectively. In a second experiment, individually penned barrows were fed rations with dietary S concentrations of 0.34, 0.24, and 0.15% (w/w). Slurry derived from each diet was bubbled with air in bench-scale digesters, as before, at 10 mL min(-1) for 12 d and the mean H(2)S concentration in the digester outlet air was 11 microL L(-1). On Day 12, the slurry was agitated but the H(2)S emissions did not change significantly. Both low-level bubbling of air through slurry and dietary S reduction appear to be viable methods for reducing peak H(2)S emissions from swine manure slurry at a bench scale, but these approaches must be validated at larger scales. PMID:16221821

  19. Cold Heat Release Characteristics of Solidified Oil Droplet-Water Solution Latent Heat Emulsion by Air Bubbles

    NASA Astrophysics Data System (ADS)

    Inaba, Hideo; Morita, Shin-Ichi

    The present work investigates the cold heat-release characteristics of the solidified oil droplets (tetradecane, C14H30, freezing point 278.9 K)/water solution emulsion as a latent heat-storage material having a low melting point. An air bubbles-emulsion direct-contact heat exchange method is selected for the cold heat-results from the solidified oil droplet-emulsion layer. This type of direct-contact method results in the high thermal efficiency. The diameter of air bubbles in the emulsion increases as compared with that in the pure water. The air bubbles blown from a nozzle show a strong mixing behavior during rising in the emulsion. The temperature effectiveness, the sensible heat release time and the latent heat release time have been measured as experimental parameters. The useful nondimensional emulsion level equations for these parameters have been derived in terms of the nondimensional emalsion level expressed the emulsion layer dimensions, Reynolds number for air flow, Stefan number and heat capacity ratio.

  20. Contributions to the acoustic excitation of bubbles released from a nozzle.

    PubMed

    Czerski, Helen; Deane, Grant B

    2010-11-01

    It has recently been demonstrated that air bubbles released from a nozzle are excited into volume mode oscillations by the collapse of the neck of air formed at the moment of bubble detachment. A pulse of sound is caused by these breathing mode oscillations, and the sound of air-entraining flows is made up of many such pulses emitted as bubbles are created. This paper is an elaboration on a JASA-EL paper, which examined the acoustical excitation of bubbles released from a nozzle. Here, further details of the collapse of a neck of air formed at the moment of bubble formation and its implications for the emission of sound by newly formed bubbles are presented. The role of fluid surface tension was studied using high-speed photography and found to be consistent with a simple model for neck collapse. A re-entrant fluid jet forms inside the bubble just after detachment, and its role in acoustic excitation is assessed. It is found that for slowly-grown bubbles the jet does make a noticeable difference to the total volume decrease during neck collapse, but that it is not a dominant effect in the overall acoustic excitation. PMID:21110560

  1. Gas bubbles in fossil amber as possible indicators of the major gas composition of ancient air

    USGS Publications Warehouse

    Berner, R.A.; Landis, G.P.

    1988-01-01

    Gases trapped in Miocene to Upper Cretaceous amber were released by gently crushing the amber under vacuum and were analyzed by quadrupole mass spectrometry. After discounting the possibility that the major gases N2, O2, and CO2 underwent appreciable diffusion and diagenetic exchange with their surroundings or reaction with the amber, it has been concluded that in primary bubbles (gas released during initial breakage) these gases represent mainly original ancient air modified by the aerobic respiration of microorganisms. Values of N2/(CO2+O2) for each time period give consistent results despite varying O2/CO2 ratios that presumably were due to varying degrees of respiration. This allows calculation of original oxygen concentrations, which, on the basis of these preliminary results, appear to have changed from greater than 30 percent O2 during one part ofthe Late Cretaceous (between 75 and 95 million years ago) to 21 percent during the Eocene-Oligocene and for present-day samples, with possibly lower values during the Oligocene-Early Miocene. Variable O2 levels over time in general confirm theoretical isotope-mass balance calculations and suggest that the atmosphere has evolved over Phanerozoic time.

  2. Polymer Brush Surfaces Showing Superhydrophobicity and Air-Bubble Repellency in a Variety of Organic Liquids.

    PubMed

    Dunderdale, Gary J; England, Matt W; Urata, Chihiro; Hozumi, Atsushi

    2015-06-10

    Silicon (Si) substrates were modified with polyalkyl methacrylate brushes having different alkyl chain lengths (C(n), where n = 1, 4, 8, and 18) using ARGET-ATRP at ambient temperature without purging the reaction solution of oxygen. The dynamic hydrophobicity of these polymer brush-covered Si surfaces when submerged in a variety of organic solvents (1-butanol, dichloromethane, toluene, n-hexane) depended markedly on the alkyl chain length and to a lesser extent polymer solubility. Long-chain poly(stearyl methacrylate) brushes (C(n) = 18) submerged in toluene showed excellent water-repellant properties, having large advancing/receding contact angles (CAs) of 169°/168° with negligible CA hysteresis (1°). Whereas polymer brushes with short alkyl-chain (C(n) ≤ 4) had significantly worse water drop mobility because of small CAs (as low as 125°/55°) and large CA hysteresis (up to 70°). However, such poor dynamic dewetting behavior of these surfaces was found to significantly improve when water drops impacted onto the surfaces at moderate velocities. Under these conditions, all brush surfaces were able to expel water drops from their surface. In addition, our brush surfaces were also highly repellant toward air bubbles under all conditions, irrespective of C(n) or polymer solubility. These excellent surface properties were found to be vastly superior to the performance of conventional perfluoroalkylsilane-derived surfaces. PMID:25988214

  3. Gasification of torrefied Miscanthus × giganteus in an air-blown bubbling fluidized bed gasifier.

    PubMed

    Xue, G; Kwapinska, M; Horvat, A; Kwapinski, W; Rabou, L P L M; Dooley, S; Czajka, K M; Leahy, J J

    2014-05-01

    Torrefaction is suggested to be an effective method to improve the fuel properties of biomass and gasification of torrefied biomass should provide a higher quality product gas than that from unprocessed biomass. In this study, both raw and torrefied Miscanthus × giganteus (M×G) were gasified in an air-blown bubbling fluidized bed (BFB) gasifier using olivine as the bed material. The effects of equivalence ratio (ER) (0.18-0.32) and bed temperature (660-850°C) on the gasification performance were investigated. The results obtained suggest the optimum gasification conditions for the torrefied M × G are ER 0.21 and 800°C. The product gas from these process conditions had a higher heating value (HHV) of 6.70 MJ/m(3), gas yield 2m(3)/kg biomass (H2 8.6%, CO 16.4% and CH4 4.4%) and cold gas efficiency 62.7%. The comparison between raw and torrefied M × G indicates that the torrefied M × G is more suitable BFB gasification.

  4. The use of an air bubble curtain to reduce the received sound levels for harbor porpoises (Phocoena phocoena).

    PubMed

    Lucke, Klaus; Lepper, Paul A; Blanchet, Marie-Anne; Siebert, Ursula

    2011-11-01

    In December 2005 construction work was started to replace a harbor wall in Kerteminde harbor, Denmark. A total of 175 wooden piles were piled into the ground at the waters edge over a period of 3 months. During the same period three harbor porpoises were housed in a marine mammal facility on the opposite side of the harbor. All animals showed strong avoidance reactions after the start of the piling activities. As a measure to reduce the sound exposure for the animals an air bubble curtain was constructed and operated in a direct path between the piling site and the opening of the animals' semi-natural pool. The sound attenuation effect achieved with this system was determined by quantitative comparison of pile driving impulses simultaneously measured in front of and behind the active air bubble curtain. Mean levels of sound attenuation over a sequence of 95 consecutive pile strikes were 14 dB (standard deviation (s.d.) 3.4 dB) for peak to peak values and 13 dB (s.d. 2.5 dB) for SEL values. As soon as the air bubble curtain was installed and operated, no further avoidance reactions of the animals to the piling activities were apparent.

  5. ENTRAINMENT BY LIGAMENT-CONTROLLED EFFERVESCENT ATOMIZER-PRODUCED SPRAYS

    EPA Science Inventory

    Entrainment of ambient air into sprays produced by a new type of effervescent atomizer is reported. Entrainment data were obtained using a device similar to that described by Ricou & Spalding (1961). Entrainment data were analyzed using the model of Bush & Sojka (1994), in concer...

  6. Investigation of Bubble-Slag Layer Behaviors with Hybrid Eulerian-Lagrangian Modeling and Large Eddy Simulation

    NASA Astrophysics Data System (ADS)

    Li, Linmin; Li, Baokuan

    2016-08-01

    In ladle metallurgy, bubble-liquid interaction leads to complex phase structures. Gas bubble behavior, as well as the induced slag layer behavior, plays a significant role in the refining process and the steel quality. In the present work, a mathematical model using the large eddy simulation (LES) is developed to investigate the bubble transport and slag layer behavior in a water model of an argon-stirred ladle. The Eulerian volume of fluid model is adopted to track the liquid steel-slag-air free surfaces while the Lagrangian discrete phase model is used for tracking and handling the dynamics of discrete bubbles. The bubble coalescence is considered using O'Rourke's algorithm to solve the bubble diameter redistribution and bubbles are removed after leaving the air-liquid interface. The turbulent liquid flow that is induced by bubble-liquid interaction is solved by LES. The slag layer fluactuation, slag droplet entrainment and spout eye open-close phenomenon are well revealed. The bubble diameter distribution and the spout eye size are compared with the experiment. The results show that the hybrid Eulerian-Lagrangian-LES model provides a valid modeling framework to predict the unsteady gas bubble-slag layer coupled behaviors.

  7. Development of an air bubble curtain to reduce underwater noise of percussive piling.

    PubMed

    Würsig, B; Greene, C R; Jefferson, T A

    2000-02-01

    Underwater bubbles can inhibit sound transmission through water due to density mismatch and concomitant reflection and absorption of sound waves. For the present study, a perforated rubber hose was used to produce a bubble curtain, or screen, around pile-driving activity in 6-8-m depth waters of western Hong Kong. The percussive hammer blow sounds of the pile driver were measured on 2 days at distances of 250, 500, and 1000 m; broadband pulse levels were reduced by 3-5 dB by the bubble curtain. Sound intensities were measured from 100 Hz to 25.6 kHz, and greatest sound reduction by the bubble curtain was evident from 400 to 6400 Hz. Indo-Pacific hump-backed dolphins (Sousa chinensis) occurred in the immediate area of the industrial activity before and during pile driving, but with a lower abundance immediately after it. While hump-backed dolphins generally showed no overt behavioral changes with and without pile driving, their speeds of travel increased during pile driving, indicating that bubble screening did not eliminate all behavioral responses to the loud noise. Because the bubble curtain effectively lowered sound levels within 1 km of the activity, the experiment and its application during construction represented a success, and this measure should be considered for other appropriate areas with high industrial noises and resident or migrating sound-sensitive animals.

  8. A technique for automatic tubing occlusion in response to air bubble detection when using a centrifugal pump.

    PubMed

    Paulsen, A W; Hargadine, W L; Lambert, G S; Long, A C

    1990-01-01

    A double acting pneumatically powered cylinder, energized by an electrically activated solenoid valve, is used to occlude the outflow line from a Bio-Medicus (a) constrained vortex pump. The cylinder is mounted on a tubing guide that is fastened to a pole clamp. A Sarns (b) air bubble detector, placed on the pump inflow line is used to provide the signal to activate the solenoid valve. The outflow occluder is capable of 100% occlusion of 3/8 x 3/32 inch Tygon tubing up to pressures of 2586 mmHg. The occluder system is able to work with many types of bubble detectors and is applicable to any form of non-occlusive pump.

  9. Thermocapillary Flow and Aggregation of Bubbles on a Solid Wall

    NASA Technical Reports Server (NTRS)

    Kasumi, Hiroki; Solomentsev, Yuri E.; Guelcher, Scott A.; Anderson, John L.; Sides, Paul J.

    2000-01-01

    were equated by using a wall hindrance parameter q: U = qu [1] which shows the velocity of bubble is proportional to the entraining velocity. The hindrance parameter q can experimentally be measured independently. q can also be calculated by solving the equations of motion for a bubble translating parallel to a solid wall. The experimental cell is cylindrical with an ID of 10 cm and consists of a 1 cm deep main cell filled with silicone oil and flanked by two thermal reservoirs. The upper thermal reservoir was heated and the lower thermal reservoir was cooled so that the bubbles aggregate. Two types of silicone oil (eta = 0.02 and 0.50 Pa s) were used. Two equal sized air bubbles were injected into the cell with a syringe. The center-to-center distance of bubbles was observed through a microscope. Bubble radius ranged from 0.40 mm to 0.65 mm and the temperature gradients along with the cell ranged from 1400 to 5000 K/m. The bubbles aggregated when heat flows from the wall to the fluid. The velocities of bubbles were in the range of 1 - 10 microns/s. The separation r decreased more quickly when the temperature gradient was higher, bubble size was larger, and the oil viscosity was lower. r decreased more rapidly as the bubbles approached each other. Dimensionless time was arbitrarily set to be zero when the dimensionless center-to-center distance between the bubbles was 4. All the bubble trajectories fall onto one line, especially in the range of dimensionless distance from 4 to 3. This means the relative movement of the bubble pair is proportional to the temperature gradient and bubble size and it is inversely proportional to the viscosity of the oil. This result strongly suggests that the thermocapillary flow-based aggregation mechanism is correct. A value of q can be estimated by fitting the scaled data to Eq. [1]. A best fit value of q was obtained as q = 0.26 with a standard deviation of 0.03. Independent experimental results for q for a 0.5 mm radius bubble, give

  10. Heat Storage Characteristics of Latent-Heat Microcapsule Slurry Using Hot Air Bubbles by Direct-Contact Heat Exchange

    NASA Astrophysics Data System (ADS)

    Inaba, Hideo; Horibe, Akihiko; Kim, Myoung-Jun; Tsukamoto, Hirofumi

    This study deals with the heat storage characteristics of latent-heat microcapsule slurry consisting of a mixture of fine microcapsules packed with latent-heat storage material and water. The heat storage operation for the latent-heat microcapsules was carried out by the direct-contact heat exchange method using hot air bubbles. The latent-heat microcapsule consisted of n-paraffin as a core latent-heat storage material and melamine resin as a coating substance. The relationship between the completion time of latent-heat storage and some parameters was examined experimentally. The nondimensional correlation equations for temperature efficiency, the completion time period of the latent-heat storage process and variation in the enthalpy of air through the microcapsule slurry layer were derived in terms of the ratio of microcapsule slurry layer height to microcapsule diameter, Reynolds number for airflow, Stefan number and modified Stefan number for absolute humidity of flowing air.

  11. What is the Shape of an Air Bubble on a Liquid Surface?

    PubMed

    Teixeira, Miguel A C; Arscott, Steve; Cox, Simon J; Teixeira, Paulo I C

    2015-12-29

    We have calculated the equilibrium shape of the axially symmetric meniscus along which a spherical bubble contacts a flat liquid surface by analytically integrating the Young-Laplace equation in the presence of gravity, in the limit of large Bond numbers. This method has the advantage that it provides semianalytical expressions for key geometrical properties of the bubble in terms of the Bond number. Results are in good overall agreement with experimental data and are consistent with fully numerical (Surface Evolver) calculations. In particular, we are able to describe how the bubble shape changes from hemispherical, with a flat, shallow bottom, to lenticular, with a deeper, curved bottom, as the Bond number is decreased.

  12. Near Surface Vapor Bubble Layers in Buoyant Low Stretch Burning of Polymethylmethacrylate

    NASA Technical Reports Server (NTRS)

    Olson, Sandra L.; Tien, J. S.

    1999-01-01

    Large-scale buoyant low stretch stagnation point diffusion flames over solid fuel (polymethylmethacrylate) were studied for a range of aerodynamic stretch rates of 2-12/ sec which are of the same order as spacecraft ventilation-induced stretch in a microgravity environment. An extensive layer of polymer material above the glass transition temperature is observed. Unique phenomena associated with this extensive glass layer included substantial swelling of the burning surface, in-depth bubble formation, and migration and/or elongation of the bubbles normal to the hot surface. The bubble layer acted to insulate the polymer surface by reducing the effective conductivity of the solid. The reduced in-depth conduction stabilized the flame for longer than expected from theory neglecting the bubble layer. While buoyancy acts to move the bubbles deeper into the molten polymer, thermocapillary forces and surface regression both act to bring the bubbles to the burning surface. Bubble layers may thus be very important in low gravity (low stretch) burning of materials. As bubbles reached the burning surface, monomer fuel vapors jetted from the surface, enhancing burning by entraining ambient air flow. Popping of these bubbles at the surface can expel burning droplets of the molten material, which may increase the fire propagation hazards at low stretch rates.

  13. Buoyancy effects in steeply inclined air-water bubbly shear flow in a rectangular channel

    NASA Astrophysics Data System (ADS)

    Sanaullah, K.; Arshad, M.; Khan, A.; Chughtai, I. R.

    2015-07-01

    We report measurements of two-dimensional ( B/ D = 5) fully turbulent and developed duct flows (overall length/depth, L/ D = 60; D-based Reynolds number Re > 104) for inclinations to 30° from vertical at low voidages (< 5 % sectional average) representative of disperse regime using tap water bubbles (4-6 mm) and smaller bubbles (2 mm) stabilised in ionic solution. Pitot and static probe instrumentation, primitive but validated, provided adequate (10 % local value) discrimination of main aspects of the mean velocity and voidage profiles at representative streamwise station i.e L/ D = 40. Our results can be divided into three categories of behaviour. For vertical flow (0°) the evidence is inconclusive as to whether bubbles are preferentially trapped within the wall-layer as found in some, may be most earlier experimental works. Thus, the 4-mm bubbles showed indication of voidage retention but the 2-mm bubbles did not. For nearly vertical flow (5°) there was pronounced profiling of voidage especially with 4-mm bubbles but the transverse transport was not suppressed sufficiently to induce any obvious layering. In this context, we also refer to similarities with previous work on one-phase vertical and nearly vertical mixed convection flows displaying buoyancy inhibited mean shear turbulence. However, with inclined flow (10+ degrees) a distinctively layered pattern was invariably manifested in which voidage confinement increased with increasing inclination. In this paper we address flow behavior at near vertical conditions. Eulerian, mixed and VOF models were used to compute voidage and mean velocity profiles.

  14. Air bubble in anterior chamber as indicator of full-thickness incisions in femtosecond-assisted astigmatic keratotomy.

    PubMed

    Vaddavalli, Pravin K; Hurmeric, Volkan; Yoo, Sonia H

    2011-09-01

    Femtosecond-assisted astigmatic keratotomy is predictable and precise but may occasionally lead to a full-thickness incision on the cornea and the attendant complications. The presence of an air bubble in the anterior chamber soon after creation of the keratotomy by the femtosecond laser may indicate a full-thickness incision. We present a case in which recognition of this clinical finding early in the procedure might have prevented undesirable complications, such as leakage of aqueous and the potential for intraocular infection.

  15. The Making of an Air-Supported Campus. Antioch's Bubble. Final Report.

    ERIC Educational Resources Information Center

    Brann, James

    The inflation of the vinyl bubble by Antioch students and faculty climaxed more than a year of study, planning, dealing with contractors, county officials, manufacturers of equipment and materials--and maturing the technology of pneumatic buildings. These activities were combined into what Antioch calls a "process-oriented curriculum." This…

  16. Air bubbles in water: a strongly multiple scattering medium for acoustic waves.

    PubMed

    Kafesaki, M; Penciu, R S; Economou, E N

    2000-06-26

    Using a newly developed multiple scattering scheme, we calculate band structure and transmission properties for acoustic waves propagating in bubbly water. We prove that the multiple scattering effects are responsible for the creation of wide gaps in the transmission even in the presence of strong positional and size disorder.

  17. Bubbles trapped in a fluidized bed: Trajectories and contact area

    NASA Astrophysics Data System (ADS)

    Poryles, Raphaël; Vidal, Valérie; Varas, Germán

    2016-03-01

    This work investigates the dynamics of bubbles in a confined, immersed granular layer submitted to an ascending gas flow. In the stationary regime, a central fluidized zone of parabolic shape is observed, and the bubbles follow different dynamics: either the bubbles are initially formed outside the fluidized zone and do not exhibit any significant motion over the experimental time or they are located inside the fluidized bed, where they are entrained downwards and are, finally, captured by the central air channel. The dependence of the air volume trapped inside the fluidized zone, the bubble size, and the three-phase contact area on the gas injection flow rate and grain diameter are quantified. We find that the volume fraction of air trapped inside the fluidized region is roughly constant and of the order of 2%-3% when the gas flow rate and the grain size are varied. Contrary to intuition, the gas-liquid-solid contact area, normalized by the air injected into the system, decreases when the flow rate is increased, which may have significant importance in industrial applications.

  18. The injection of air/oxygen bubble into the anterior chamber of rabbits as a treatment for hyphema in patients with sickle cell disease.

    PubMed

    Ayintap, Emre; Keskin, Uğurcan; Sadigov, Fariz; Coskun, Mesut; Ilhan, Nilufer; Motor, Sedat; Semiz, Hilal; Parlakfikirer, Nihan

    2014-01-01

    Purpose. To investigate the changes of partial oxygen pressure (PaO2) in aqueous humour after injecting air or oxygen bubble into the anterior chamber in sickle cell hyphema. Methods. Blood samples were taken from the same patient with sickle cell disease. Thirty-two rabbits were divided into 4 groups. In group 1 (n = 8), there was no injection. Only blood injection constituted group 2 (n = 8), both blood and air bubble injection constituted group 3 (n = 8), and both blood and oxygen bubble injection constituted group 4 (n = 8). Results. The PaO2 in the aqueous humour after 10 hours from the injections was 78.45 ± 9.9 mmHg (Mean ± SD) for group 1, 73.97 ± 8.86 mmHg for group 2, 123.35 ± 13.6 mmHg for group 3, and 306.47 ± 16.5 mmHg for group 4. There was statistically significant difference between group 1 and group 2, when compared with group 3 and group 4. Conclusions. PaO2 in aqueous humour was increased after injecting air or oxygen bubble into the anterior chamber. We offer to leave an air bubble in the anterior chamber of patients with sickle cell hemoglobinopathies and hyphema undergoing an anterior chamber washout. PMID:24808955

  19. The injection of air/oxygen bubble into the anterior chamber of rabbits as a treatment for hyphema in patients with sickle cell disease.

    PubMed

    Ayintap, Emre; Keskin, Uğurcan; Sadigov, Fariz; Coskun, Mesut; Ilhan, Nilufer; Motor, Sedat; Semiz, Hilal; Parlakfikirer, Nihan

    2014-01-01

    Purpose. To investigate the changes of partial oxygen pressure (PaO2) in aqueous humour after injecting air or oxygen bubble into the anterior chamber in sickle cell hyphema. Methods. Blood samples were taken from the same patient with sickle cell disease. Thirty-two rabbits were divided into 4 groups. In group 1 (n = 8), there was no injection. Only blood injection constituted group 2 (n = 8), both blood and air bubble injection constituted group 3 (n = 8), and both blood and oxygen bubble injection constituted group 4 (n = 8). Results. The PaO2 in the aqueous humour after 10 hours from the injections was 78.45 ± 9.9 mmHg (Mean ± SD) for group 1, 73.97 ± 8.86 mmHg for group 2, 123.35 ± 13.6 mmHg for group 3, and 306.47 ± 16.5 mmHg for group 4. There was statistically significant difference between group 1 and group 2, when compared with group 3 and group 4. Conclusions. PaO2 in aqueous humour was increased after injecting air or oxygen bubble into the anterior chamber. We offer to leave an air bubble in the anterior chamber of patients with sickle cell hemoglobinopathies and hyphema undergoing an anterior chamber washout.

  20. Direct AFM force measurements between air bubbles in aqueous polydisperse sodium poly(styrene sulfonate) solutions: effect of collision speed, polyelectrolyte concentration and molar mass.

    PubMed

    Browne, Christine; Tabor, Rico F; Grieser, Franz; Dagastine, Raymond R

    2015-07-01

    Interactions between colliding air bubbles in aqueous solutions of polydisperse sodium poly(styrene sulfonate) (NaPSS) using direct force measurements were studied. The forces measured with deformable interfaces were shown to be more sensitive to the presence of the polyelectrolytes when compared to similar measurements using rigid interfaces. The experimental factors that were examined were NaPSS concentration, bubble collision velocity and polyelectrolyte molar mass. These measurements were then compared with an analytical model based on polyelectrolyte scaling theory in order to explain the effects of concentration and bubble deformation on the interaction between bubbles. Typically structural forces from the presence of monodisperse polyelectrolyte between interacting surfaces may be expected, however, it was found that the polydispersity in molar mass resulted in the structural forces to be smoothed and only a depletion interaction was able to be measured between interacting bubbles. It was found that an increase in number density of NaPSS molecules resulted in an increase in the magnitude of the depletion interaction. Conversely this interaction was overwhelmed by an increase in the fluid flow in the system at higher bubble collision velocities. Polymer molar mass dispersity plays a significant role in the interactions present between the bubbles and has implications that also affect the polyelectrolyte overlap concentration of the solution. Further understanding of these implications can be expected to play a role in the improvement in operations in such fields as water treatment and mineral processing where polyelectrolytes are used extensively.

  1. Large Eddy Simulation of Bubbly Flow and Slag Layer Behavior in Ladle with Discrete Phase Model (DPM)-Volume of Fluid (VOF) Coupled Model

    NASA Astrophysics Data System (ADS)

    Li, Linmin; Liu, Zhongqiu; Cao, Maoxue; Li, Baokuan

    2015-07-01

    In the ladle metallurgy process, the bubble movement and slag layer behavior is very important to the refining process and steel quality. For the bubble-liquid flow, bubble movement plays a significant role in the phase structure and causes the unsteady complex turbulent flow pattern. This is one of the most crucial shortcomings of the current two-fluid models. In the current work, a one-third scale water model is established to investigate the bubble movement and the slag open-eye formation. A new mathematical model using the large eddy simulation (LES) is developed for the bubble-liquid-slag-air four-phase flow in the ladle. The Eulerian volume of fluid (VOF) model is used for tracking the liquid-slag-air free surfaces and the Lagrangian discrete phase model (DPM) is used for describing the bubble movement. The turbulent liquid flow is induced by bubble-liquid interactions and is solved by LES. The procedure of bubble coming out of the liquid and getting into the air is modeled using a user-defined function. The results show that the present LES-DPM-VOF coupled model is good at predicting the unsteady bubble movement, slag eye formation, interface fluctuation, and slag entrainment.

  2. Vapor-Gas Bubble Evolution and Growth in Extremely Viscous Fluids Under Vacuum

    NASA Technical Reports Server (NTRS)

    Kizito, John; Balasubramaniam, R.; Nahra, Henry; Agui, Juan; Truong, Duc

    2008-01-01

    Formation of vapor and gas bubbles and voids is normal and expected in flow processes involving extremely viscous fluids in normal gravity. Practical examples of extremely viscous fluids are epoxy-like filler materials before the epoxy fluids cure to their permanent form to create a mechanical bond between two substrates. When these fluids flow with a free liquid interface exposed to vacuum, rapid bubble expansion process may ensue. Bubble expansion might compromise the mechanical bond strength. The potential sources for the origin of the gases might be incomplete out-gassing process prior to filler application; regasification due to seal leakage in the filler applicator; and/or volatiles evolved from cure reaction products formed in the hardening process. We embarked on a study that involved conducting laboratory experiments with imaging diagnostics in order to deduce the seriousness of bubbling caused by entrained air and volatile fluids under space vacuum and low gravity environment. We used clear fluids with the similar physical properties as the epoxy-like filler material to mimic the dynamics of bubbles. Another aspect of the present study was to determine the likelihood of bubbling resulting from dissolved gases nucleating from solution. These experimental studies of the bubble expansion are compared with predictions using a modified Rayleigh- Plesset equation, which models the bubble expansion.

  3. In Search of the Big Bubble

    ERIC Educational Resources Information Center

    Simoson, Andrew; Wentzky, Bethany

    2011-01-01

    Freely rising air bubbles in water sometimes assume the shape of a spherical cap, a shape also known as the "big bubble". Is it possible to find some objective function involving a combination of a bubble's attributes for which the big bubble is the optimal shape? Following the basic idea of the definite integral, we define a bubble's surface as…

  4. Body fat does not affect venous bubble formation after air dives of moderate severity: theory and experiment.

    PubMed

    Schellart, Nico A M; van Rees Vellinga, Tjeerd P; van Hulst, Rob A

    2013-03-01

    For over a century, studies on body fat (BF) in decompression sickness and venous gas embolism of divers have been inconsistent. A major problem is that age, BF, and maximal oxygen consumption (Vo2max) show high multicollinearity. Using the Bühlmann model with eight parallel compartments, preceded by a blood compartment in series, nitrogen tensions and loads were calculated with a 40 min/3.1 bar (absolute) profile. Compared with Haldanian models, the new model showed a substantial delay in N2 uptake and (especially) release. One hour after surfacing, an increase of 14-28% in BF resulted in a whole body increase of the N2 load of 51%, but in only 15% in the blood compartment. This would result in an increase in the bubble grade of only 0.01 Kisman-Masurel (KM) units at the scale near KM = I-. This outcome was tested indirectly by a dry dive simulation (air breathing) with 53 male divers with a small range in age and Vo2max to suppress multicollinearity. BF was determined with the four-skinfold method. Precordial Doppler bubble grades determined at 40, 80, 120, and 160 min after surfacing were used to calculate the Kisman Integrated Severity Score and were also transformed to the logarithm of the number of bubbles/cm(2) (logB). The highest of the four scores yielded logB = -1.78, equivalent to KM = I-. All statistical outcomes of partial correlations with BF were nonsignificant. These results support the model outcomes. Although this and our previous study suggest that BF does not influence venous gas embolism (Schellart NAM, van Rees Vellinga TP, van Dijk FH, Sterk W. Aviat Space Environ Med 83: 951-957, 2012), more studies with different profiles under various conditions are needed to establish whether BF remains (together with age and Vo2max) a basic physical characteristic or will become less important for the medical examination and for risk assessment.

  5. Mechanotransductional basis of endothelial cell response to intravascular bubbles.

    PubMed

    Klinger, Alexandra L; Pichette, Benjamin; Sobolewski, Peter; Eckmann, David M

    2011-10-01

    Vascular air embolism resulting from too rapid decompression is a well-known risk in deep-sea diving, aviation and space travel. It is also a common complication during surgery or other medical procedures when air or other endogenously administered gas is entrained in the circulation. Preventive and post-event treatment options are extremely limited for this dangerous condition, and none of them address the poorly understood pathophysiology of endothelial response to intravascular bubble presence. Using a novel apparatus allowing precise manipulation of microbubbles in real time fluorescence microscopy studies, we directly measure human umbilical vein endothelial cell responses to bubble contact. Strong intracellular calcium transients requiring extracellular calcium are observed upon cell-bubble interaction. The transient is eliminated both by the presence of the stretch activated channel inhibitor, gadolinium, and the transient receptor potential vanilliod family inhibitor, ruthenium red. No bubble induced calcium upsurge occurs if the cells are pretreated with an inhibitor of actin polymerization, cytochalasin-D. This study explores the biomechanical mechanisms at play in bubble interfacial interactions with endothelial surface layer (ESL) macromolecules, reassessing cell response after selective digestion of glycocalyx glycosoaminoglycans, hyaluran (HA) and heparin sulfate (HS). HA digestion causes reduction of cell-bubble adherence and a more rapid induction of calcium influx after contact. HS depletion significantly decreases calcium transient amplitudes, as does pharmacologically induced sydencan ectodomain shedding. The surfactant perfluorocarbon Oxycyte abolishes any bubble induced calcium transient, presumably through direct competition with ESL macromolecules for interfacial occupancy, thus attenuating the interactions that trigger potentially deleterious biochemical pathways.

  6. Importance of air bubbles in the core of coated pellets: Synchrotron X-ray microtomography allows for new insights.

    PubMed

    Fahier, J; Muschert, S; Fayard, B; Velghe, C; Byrne, G; Doucet, J; Siepmann, F; Siepmann, J

    2016-09-10

    High-resolution X-ray microtomography was used to get deeper insight into the underlying mass transport mechanisms controlling drug release from coated pellets. Sugar starter cores were layered with propranolol HCl and subsequently coated with Kollicoat SR, plasticized with 10% TEC. Importantly, synchrotron X-ray computed microtomography (SR-μCT) allowed direct, non-invasive monitoring of crack formation in the film coatings upon exposure to the release medium. Propranolol HCl, as well as very small sugar particles from the pellets' core, were expulsed through these cracks into the surrounding bulk fluid. Interestingly, SR-μCT also revealed the existence of numerous tiny, air-filled pores (varying in size and shape) in the pellet cores before exposure to the release medium. Upon water penetration into the system, the contents of the pellet cores became semi-solid/liquid. Consequently, the air-pockets became mobile and fused together. They steadily increased in size (and decreased in number). Importantly, "big" air bubbles were often located in close vicinity of a crack within the film coating. Thus, they play a potentially crucial role for the control of drug release from coated pellets. PMID:27374626

  7. Structure of Air-Water Bubbly Flow in a Vertical Annulus

    SciTech Connect

    Rong Situ; Takashi Hibiki; Ye Mi; Mamoru Ishii; Michitsugu Mori

    2002-07-01

    Local measurements of flow parameters were performed for vertical upward bubbly flows in an annulus. The annulus channel consisted of an inner rod with a diameter of 19.1 mm and an outer round tube with an inner diameter of 38.1 mm, and the hydraulic equivalent diameter was 19.1 mm. Double-sensor conductivity probe was used for measuring void fraction, interfacial area concentration, and interfacial velocity, and Laser Doppler anemometer was utilized for measuring liquid velocity and turbulence intensity. The mechanisms to form the radial profiles of local flow parameters were discussed in detail. The constitutive equations for distribution parameter and drift velocity in the drift-flux model, and the semi-theoretical correlation for Sauter mean diameter namely interfacial area concentration, which were proposed previously, were validated by local flow parameters obtained in the experiment using the annulus. (authors)

  8. An observational study of entrainment rate in deep convection

    SciTech Connect

    Guo, Xiaohao; Lu, Chunsong; Zhao, Tianliang; Zhang, Guang Jun; Liu, Yangang

    2015-09-22

    This study estimates entrainment rate and investigates its relationships with cloud properties in 156 deep convective clouds based on in-situ aircraft observations during the TOGA-COARE (Tropical Ocean Global Atmosphere Coupled Ocean Atmosphere Response Experiment) field campaign over the western Pacific. To the authors’ knowledge, this is the first study on the probability density function of entrainment rate, the relationships between entrainment rate and cloud microphysics, and the effects of dry air sources on the calculated entrainment rate in deep convection from an observational perspective. Results show that the probability density function of entrainment rate can be well fitted by lognormal, gamma or Weibull distribution, with coefficients of determination being 0.82, 0.85 and 0.80, respectively. Entrainment tends to reduce temperature, water vapor content and moist static energy in cloud due to evaporative cooling and dilution. Inspection of the relationships between entrainment rate and microphysical properties reveals a negative correlation between volume-mean radius and entrainment rate, suggesting the potential dominance of homogeneous mechanism in the clouds examined. The entrainment rate and environmental water vapor content show similar tendencies of variation with the distance of the assumed environmental air to the cloud edges. Their variation tendencies are non-monotonic due to the relatively short distance between adjacent clouds.

  9. An observational study of entrainment rate in deep convection

    DOE PAGES

    Guo, Xiaohao; Lu, Chunsong; Zhao, Tianliang; Zhang, Guang Jun; Liu, Yangang

    2015-09-22

    This study estimates entrainment rate and investigates its relationships with cloud properties in 156 deep convective clouds based on in-situ aircraft observations during the TOGA-COARE (Tropical Ocean Global Atmosphere Coupled Ocean Atmosphere Response Experiment) field campaign over the western Pacific. To the authors’ knowledge, this is the first study on the probability density function of entrainment rate, the relationships between entrainment rate and cloud microphysics, and the effects of dry air sources on the calculated entrainment rate in deep convection from an observational perspective. Results show that the probability density function of entrainment rate can be well fitted by lognormal,more » gamma or Weibull distribution, with coefficients of determination being 0.82, 0.85 and 0.80, respectively. Entrainment tends to reduce temperature, water vapor content and moist static energy in cloud due to evaporative cooling and dilution. Inspection of the relationships between entrainment rate and microphysical properties reveals a negative correlation between volume-mean radius and entrainment rate, suggesting the potential dominance of homogeneous mechanism in the clouds examined. The entrainment rate and environmental water vapor content show similar tendencies of variation with the distance of the assumed environmental air to the cloud edges. Their variation tendencies are non-monotonic due to the relatively short distance between adjacent clouds.« less

  10. On-line ultrasonic gas entrainment monitor

    DOEpatents

    Day, Clifford K.; Pedersen, Herbert N.

    1978-01-01

    Apparatus employing ultrasonic energy for detecting and measuring the quantity of gas bubbles present in liquids being transported through pipes. An ultrasonic transducer is positioned along the longitudinal axis of a fluid duct, oriented to transmit acoustic energy radially of the duct around the circumference of the enclosure walls. The back-reflected energy is received centrally of the duct and interpreted as a measure of gas entrainment. One specific embodiment employs a conical reflector to direct the transmitted acoustic energy radially of the duct and redirect the reflected energy back to the transducer for reception. A modified embodiment employs a cylindrical ultrasonic transducer for this purpose.

  11. Technique for air bubble management during endothelial keratoplasty in eyes after penetrating glaucoma surgery.

    PubMed

    Banitt, Michael; Arrieta-Quintero, Esdras; Parel, Jean-Marie; Fantes, Francisco

    2011-02-01

    Our purpose was to develop a technique for maintaining air within the anterior chamber during endothelial keratoplasty in eyes that have previously undergone trabeculectomy or a glaucoma drainage implant. Whole human globes and rabbits underwent penetrating glaucoma surgery to develop the technique. Without the aid of any additional device or manipulation, continuing to inject air into the anterior chamber as it escapes through the sclerostomy or tube eventually fills the subconjunctival space and allows for back pressure. This allows for a full anterior chamber air fill and brief elevation of intraocular pressure. We employed this overfilling technique on 3 patients with previous incisional glaucoma surgery to perform successful Descemet stripping endothelial keratoplasty without complication. We recommend using the overfilling technique when performing Descemet stripping endothelial keratoplasty surgery in eyes with previous penetrating glaucoma surgery because it is a simple technique without the need for pre- or postoperative manipulation.

  12. Bubble stimulation efficiency of dinoflagellate bioluminescence.

    PubMed

    Deane, Grant B; Stokes, M Dale; Latz, Michael I

    2016-02-01

    Dinoflagellate bioluminescence, a common source of bioluminescence in coastal waters, is stimulated by flow agitation. Although bubbles are anecdotally known to be stimulatory, the process has never been experimentally investigated. This study quantified the flash response of the bioluminescent dinoflagellate Lingulodinium polyedrum to stimulation by bubbles rising through still seawater. Cells were stimulated by isolated bubbles of 0.3-3 mm radii rising at their terminal velocity, and also by bubble clouds containing bubbles of 0.06-10 mm radii for different air flow rates. Stimulation efficiency, the proportion of cells producing a flash within the volume of water swept out by a rising bubble, decreased with decreasing bubble radius for radii less than approximately 1 mm. Bubbles smaller than a critical radius in the range 0.275-0.325 mm did not stimulate a flash response. The fraction of cells stimulated by bubble clouds was proportional to the volume of air in the bubble cloud, with lower stimulation levels observed for clouds with smaller bubbles. An empirical model for bubble cloud stimulation based on the isolated bubble observations successfully reproduced the observed stimulation by bubble clouds for low air flow rates. High air flow rates stimulated more light emission than expected, presumably because of additional fluid shear stress associated with collective buoyancy effects generated by the high air fraction bubble cloud. These results are relevant to bioluminescence stimulation by bubbles in two-phase flows, such as in ship wakes, breaking waves, and sparged bioreactors.

  13. Measurement and modeling on hydrodynamic forces and deformation of an air bubble approaching a solid sphere in liquids.

    PubMed

    Shahalami, Mansoureh; Wang, Louxiang; Wu, Chu; Masliyah, Jacob H; Xu, Zhenghe; Chan, Derek Y C

    2015-03-01

    The interaction between bubbles and solid surfaces is central to a broad range of industrial and biological processes. Various experimental techniques have been developed to measure the interactions of bubbles approaching solids in a liquid. A main challenge is to accurately and reliably control the relative motion over a wide range of hydrodynamic conditions and at the same time to determine the interaction forces, bubble-solid separation and bubble deformation. Existing experimental methods are able to focus only on one of the aspects of this problem, mostly for bubbles and particles with characteristic dimensions either below 100 μm or above 1 cm. As a result, either the interfacial deformations are measured directly with the forces being inferred from a model, or the forces are measured directly with the deformations to be deduced from the theory. The recently developed integrated thin film drainage apparatus (ITFDA) filled the gap of intermediate bubble/particle size ranges that are commonly encountered in mineral and oil recovery applications. Equipped with side-view digital cameras along with a bimorph cantilever as force sensor and speaker diaphragm as the driver for bubble to approach a solid sphere, the ITFDA has the capacity to measure simultaneously and independently the forces and interfacial deformations as a bubble approaches a solid sphere in a liquid. Coupled with the thin liquid film drainage modeling, the ITFDA measurement allows the critical role of surface tension, fluid viscosity and bubble approach speed in determining bubble deformation (profile) and hydrodynamic forces to be elucidated. Here we compare the available methods of studying bubble-solid interactions and demonstrate unique features and advantages of the ITFDA for measuring both forces and bubble deformations in systems of Reynolds numbers as high as 10. The consistency and accuracy of such measurement are tested against the well established Stokes-Reynolds-Young-Laplace model

  14. Measurement and modeling on hydrodynamic forces and deformation of an air bubble approaching a solid sphere in liquids.

    PubMed

    Shahalami, Mansoureh; Wang, Louxiang; Wu, Chu; Masliyah, Jacob H; Xu, Zhenghe; Chan, Derek Y C

    2015-03-01

    The interaction between bubbles and solid surfaces is central to a broad range of industrial and biological processes. Various experimental techniques have been developed to measure the interactions of bubbles approaching solids in a liquid. A main challenge is to accurately and reliably control the relative motion over a wide range of hydrodynamic conditions and at the same time to determine the interaction forces, bubble-solid separation and bubble deformation. Existing experimental methods are able to focus only on one of the aspects of this problem, mostly for bubbles and particles with characteristic dimensions either below 100 μm or above 1 cm. As a result, either the interfacial deformations are measured directly with the forces being inferred from a model, or the forces are measured directly with the deformations to be deduced from the theory. The recently developed integrated thin film drainage apparatus (ITFDA) filled the gap of intermediate bubble/particle size ranges that are commonly encountered in mineral and oil recovery applications. Equipped with side-view digital cameras along with a bimorph cantilever as force sensor and speaker diaphragm as the driver for bubble to approach a solid sphere, the ITFDA has the capacity to measure simultaneously and independently the forces and interfacial deformations as a bubble approaches a solid sphere in a liquid. Coupled with the thin liquid film drainage modeling, the ITFDA measurement allows the critical role of surface tension, fluid viscosity and bubble approach speed in determining bubble deformation (profile) and hydrodynamic forces to be elucidated. Here we compare the available methods of studying bubble-solid interactions and demonstrate unique features and advantages of the ITFDA for measuring both forces and bubble deformations in systems of Reynolds numbers as high as 10. The consistency and accuracy of such measurement are tested against the well established Stokes-Reynolds-Young-Laplace model

  15. Studying gas-sheared liquid film in horizontal rectangular duct with LIF technique: droplets deposition and bubbles entrapment

    NASA Astrophysics Data System (ADS)

    Cherdantsev, Andrey; Hann, David; Azzopardi, Barry

    2014-11-01

    High-speed laser-induced fluorescence technique is applied to study gas-sheared liquid film in horizontal rectangular duct (width 161 mm). Instantaneous distributions of film thickness over an area of 50*20 mm are obtained with frequency 10 kHz and spatial resolution 40 μm. The technique is also able to detect droplets entrained from film surface and gas bubbles entrapped by the liquid film. We focus on deposition of droplets onto film surface and dynamics of bubbles. Three scenarios of droplet impact are observed: 1) formation of a cavern, which is similar to well-known process of normal droplet impact onto still liquid surface; 2) ``ploughing,'' when droplet is sinking over long distance; 3) ``bouncing,'' when droplet survives the impact. The first scenario is often accompanied by entrainment of secondary droplets; the second by entrapment of air bubbles. Numerous impact events are quantitatively analyzed. Parameters of the impacting droplet, the film surface before the impact, the evolution of surface perturbation due to impact and the outcome of the impact (droplets or bubbles) are measured. Space-time trajectories of individual bubbles have also been obtained, including velocity, size and concentration inside the disturbance waves and in the base film region. EPSRC Programme Grant, MEMPHIS, EP/K0039761/1.

  16. Acoustic radiation force on an air bubble and soft fluid spheres in ideal liquids: Example of a high-order Bessel beam of quasi-standing waves

    NASA Astrophysics Data System (ADS)

    Mitri, F. G.

    2009-04-01

    The partial wave series for the scattering of a high-order Bessel beam (HOBB) of acoustic quasi-standing waves by an air bubble and fluid spheres immersed in water and centered on the axis of the beam is applied to the calculation of the acoustic radiation force. A HOBB refers to a type of beam having an axial amplitude null and an azimuthal phase gradient. Radiation force examples obtained through numerical evaluation of the radiation force function are computed for an air bubble, a hexane, a red blood and mercury fluid spheres in water. The examples were selected to illustrate conditions having progressive, standing and quasi-standing waves with appropriate selection of the waves’ amplitude ratio. An especially noteworthy result is the lack of a specific vibrational mode contribution to the radiation force determined by appropriate selection of the HOBB parameters.

  17. Sensitivity of Hollow Fiber Spacesuit Water Membrane Evaporator Systems to Potable Water Constituents, Contaminants and Air Bubbles

    NASA Technical Reports Server (NTRS)

    Bue, Grant C.; Trevino, Luis A.; Fritts, Sharon; Tsioulos, Gus

    2008-01-01

    The Spacesuit Water Membrane Evaporator (SWME) is the baseline heat rejection technology selected for development for the Constellation lunar suit. The first SWME prototype, designed, built, and tested at Johnson Space Center in 1999 used a Teflon hydrophobic porous membrane sheet shaped into an annulus to provide cooling to the coolant loop through water evaporation to the vacuum of space. This present study describes the test methodology and planning and compares the test performance of three commercially available hollow fiber materials as alternatives to the sheet membrane prototype for SWME, in particular, a porous hydrophobic polypropylene, and two variants that employ ion exchange through non-porous hydrophilic modified Nafion. Contamination tests will be performed to probe for sensitivities of the candidate SWME elements to ordinary constituents that are expected to be found in the potable water provided by the vehicle, the target feedwater source. Some of the impurities in potable water are volatile, such as the organics, while others, such as the metals and inorganic ions are nonvolatile. The non-volatile constituents will concentrate in the SWME as evaporated water from the loop is replaced by the feedwater. At some point in the SWME mission lifecycle as the concentrations of the non-volatiles increase, the solubility limits of one or more of the constituents may be reached. The resulting presence of precipitate in the coolant water may begin to plug pores and tube channels and affect the SWME performance. Sensitivity to macroparticles, lunar dust simulant, and air bubbles will also be investigated.

  18. Physiology of circadian entrainment.

    PubMed

    Golombek, Diego A; Rosenstein, Ruth E

    2010-07-01

    Mammalian circadian rhythms are controlled by endogenous biological oscillators, including a master clock located in the hypothalamic suprachiasmatic nuclei (SCN). Since the period of this oscillation is of approximately 24 h, to keep synchrony with the environment, circadian rhythms need to be entrained daily by means of Zeitgeber ("time giver") signals, such as the light-dark cycle. Recent advances in the neurophysiology and molecular biology of circadian rhythmicity allow a better understanding of synchronization. In this review we cover several aspects of the mechanisms for photic entrainment of mammalian circadian rhythms, including retinal sensitivity to light by means of novel photopigments as well as circadian variations in the retina that contribute to the regulation of retinal physiology. Downstream from the retina, we examine retinohypothalamic communication through neurotransmitter (glutamate, aspartate, pituitary adenylate cyclase-activating polypeptide) interaction with SCN receptors and the resulting signal transduction pathways in suprachiasmatic neurons, as well as putative neuron-glia interactions. Finally, we describe and analyze clock gene expression and its importance in entrainment mechanisms, as well as circadian disorders or retinal diseases related to entrainment deficits, including experimental and clinical treatments. PMID:20664079

  19. Air gasification of rice husk in bubbling fluidized bed reactor with bed heating by conventional charcoal.

    PubMed

    Makwana, J P; Joshi, Asim Kumar; Athawale, Gaurav; Singh, Dharminder; Mohanty, Pravakar

    2015-02-01

    An experimental study of air gasification of rice husk was conducted in a bench-scale fluidized bed gasifier (FBG) having 210 mm diameter and 1600 mm height. Heating of sand bed material was performed using conventional charcoal fuel. Different operating conditions like bed temperature, feeding rate and equivalence ratio (ER) varied in the range of 750-850 °C, 25-31.3 kg/h, and 0.3-0.38, respectively. Flow rate of air was kept constant (37 m(3)/h) during FBG experiments. The carbon conversion efficiencies (CCE), cold gas efficiency, and thermal efficiency were evaluated, where maximum CCE was found as 91%. By increasing ER, the carbon conversion efficiency was decreased. Drastic reduction in electric consumption for initial heating of gasifier bed with charcoal compared to ceramic heater was ∼45%. Hence rice husk is found as a potential candidate to use directly (without any processing) in FBG as an alternative renewable energy source from agricultural field. PMID:25446789

  20. Air gasification of rice husk in bubbling fluidized bed reactor with bed heating by conventional charcoal.

    PubMed

    Makwana, J P; Joshi, Asim Kumar; Athawale, Gaurav; Singh, Dharminder; Mohanty, Pravakar

    2015-02-01

    An experimental study of air gasification of rice husk was conducted in a bench-scale fluidized bed gasifier (FBG) having 210 mm diameter and 1600 mm height. Heating of sand bed material was performed using conventional charcoal fuel. Different operating conditions like bed temperature, feeding rate and equivalence ratio (ER) varied in the range of 750-850 °C, 25-31.3 kg/h, and 0.3-0.38, respectively. Flow rate of air was kept constant (37 m(3)/h) during FBG experiments. The carbon conversion efficiencies (CCE), cold gas efficiency, and thermal efficiency were evaluated, where maximum CCE was found as 91%. By increasing ER, the carbon conversion efficiency was decreased. Drastic reduction in electric consumption for initial heating of gasifier bed with charcoal compared to ceramic heater was ∼45%. Hence rice husk is found as a potential candidate to use directly (without any processing) in FBG as an alternative renewable energy source from agricultural field.

  1. Influence of bubble size, diffuser width, and flow rate on the integral behavior of bubble plumes

    NASA Astrophysics Data System (ADS)

    Fraga, Bruño.; Stoesser, Thorsten

    2016-06-01

    A large-eddy simulation based Eulerian-Lagrangian model is employed to quantify the impact of bubble size, diffuser diameter, and gas flow rate on integral properties of bubble plumes, such as the plume's width, centerline velocity, and mass flux. Calculated quantities are compared with experimental data and integral model predictions. Furthermore, the LES data were used to assess the behavior of the entrainment coefficient, the momentum amplification factor, and the bubble-to-momentum spread ratio. It is found that bubble plumes with constant bubble size and smaller diameter behave in accordance with integral plume models. Plumes comprising larger and non-uniform bubble sizes appear to deviate from past observations and model predictions. In multi-diameter bubble plumes, a bubble self-organisation takes place, i.e., small bubbles cluster in the center of the plume whilst large bubbles are found at the periphery of the plume. Multi-diameter bubble plumes also feature a greater entrainment rate than single-size bubble plumes, as well as a higher spread ratio and lower turbulent momentum rate. Once the plume is fully established, the size of the diffuser does not appear to affect integral properties of bubble plumes. However, plume development is affected by the diffuser width, as larger release areas lead to a delayed asymptotic behavior of the plume and consequently to a lower entrainment and higher spread ratio. Finally, the effect of the gas flow rate on the integral plume is studied and is deemed very relevant with regards to most integral plume properties and coefficients. This effect is already fairly well described by integral plume models.

  2. A survey on air bubble detector placement in the CPB circuit: a 2011 cross-sectional analysis of the practice of Certified Clinical Perfusionists.

    PubMed

    Kelting, T; Searles, B; Darling, E

    2012-07-01

    The ideal location of air bubble detector (ABD) placement on the cardiopulmonary bypass (CPB) circuit is debatable. There is, however, very little data characterizing the prevalence of specific ABD placement preferences by perfusionists. Therefore, the purpose of this study was to survey the perfusion community to collect data describing the primary locations of air bubble detector placement on the CPB circuit. In June 2011, an 18-question on-line survey was conducted. Completed surveys were received from 627 participants. Of these, analysis of the responses from the 559 certified clinical perfusionists (CCP) was performed. The routine use of ABD during CPB was reported by 96.8% of CCPs. Of this group, specific placement of the bubble detector is as follows: distal to the venous reservoir outlet (35.6%), between the arterial pump and oxygenator (3.8%), between the oxygenator and arterial line filter (35.1%), distal to the arterial line filter (ALF) (23.6%), and other (1.8%). Those placing the ABD distal to the venous reservoir predominately argued that an emptied venous reservoir was the most likely place to introduce air into the circuit. Those who placed the ABD between the oxygenator and the arterial line filter commonly reasoned that this placement protects against air exiting the membrane. Those placing the ABD distal to the ALF (23.6%) cited that this location protects from all possible entry points of air. A recent false alarm event from an ABD during a case was reported by 36.1% of CCPs. This study demonstrates that the majority of CCPs use an ABD during the conduct of CPB. The placement of the ABD on the circuit, however, is highly variable across the perfusion community. A strong rationale for the various ABD placements suggests that the adoption of multiple ABD may offer the greatest comprehensive protection against air emboli.

  3. Interfacial Bubble Deformations

    NASA Astrophysics Data System (ADS)

    Seymour, Brian; Shabane, Parvis; Cypull, Olivia; Cheng, Shengfeng; Feitosa, Klebert

    Soap bubbles floating at an air-water experience deformations as a result of surface tension and hydrostatic forces. In this experiment, we investigate the nature of such deformations by taking cross-sectional images of bubbles of different volumes. The results show that as their volume increases, bubbles transition from spherical to hemispherical shape. The deformation of the interface also changes with bubble volume with the capillary rise converging to the capillary length as volume increases. The profile of the top and bottom of the bubble and the capillary rise are completely determined by the volume and pressure differences. James Madison University Department of Physics and Astronomy, 4VA Consortium, Research Corporation for Advancement of Science.

  4. Entrainment and mixing mechanism in monsoon clouds

    NASA Astrophysics Data System (ADS)

    Bera, Sudarsan; Prabhakaran, Thara; Pandithurai, Govindan; Brenguier, Jean-Louis

    2015-04-01

    Entrainment and consequent mixing impacts the cloud microphysical parameters and droplet size distribution (DSD) significantly which are very important for cloud radiative properties and the mechanism for first rain drop formation. The entrainment and mixing mechanisms are investigated in this study using in situ observations in warm cumulus clouds over monsoon region. Entrainment is discussed in the framework of the homogeneous and inhomogeneous mixing concepts and their effects on cloud droplet size distribution, number concentration, liquid water content and mean radius are described. The degree of homogeneity increases with droplet number concentration and adiabatic fraction, indicating homogeneous type mixing in the cloud core where dilution is less. Inhomogeneous mixing is found to be a dominating process at cloud edges where dilution is significant. Cloud droplet size distribution (DSD) is found to shift towards lower sizes during a homogeneous mixing event in the cloud core whereas spectral width of DSD decreases due to inhomogeneous mixing at cloud edges. Droplet size spectra suggests that largest droplets are mainly formed in the less diluted cloud core while diluted cloud edges have relatively smaller droplets, so that raindrop formation occurs mainly in the core of the cloud. The origin of the entrained parcels in deep cumulus clouds is investigated using conservative thermodynamical parameters. The entrained parcels originate from a level close to the observation level or slightly below through lateral edges. Cloud edges are significantly diluted due to entrainment of sub-saturated environmental air which can penetrate several hundred meters inside the cloud before it gets mixed completely with the cloud mass. Less diluted parcels inside the cloud core originates from a level much below the cloud base height. Penetrating downdraft from cloud top is seldom observed at the observation level and strong downdrafts may be attributed to in-cloud oscillation

  5. Using MRI to detect and differentiate calcium oxalate and calcium hydroxyapatite crystals in air-bubble-free phantom.

    PubMed

    Mustafi, Devkumar; Fan, Xiaobing; Peng, Bo; Foxley, Sean; Palgen, Jeremy; Newstead, Gillian M

    2015-12-01

    Calcium oxalate (CaOX) crystals and calcium hydroxyapatite (CaHA) crystals were commonly associated with breast benign and malignant lesions, respectively. In this research, CaOX (n = 6) and CaHA (n = 6) crystals in air-bubble-free agarose phantom were studied and characterized by using MRI at 9.4 T scanner. Calcium micro-crystals, with sizes that ranged from 200 to 500 µm, were made with either 99% pure CaOX or CaHA powder and embedded in agar to mimic the dimensions and calcium content of breast microcalcifications in vivo. MRI data were acquired with high spatial resolution T2-weighted (T2W) images and gradient echo images with five different echo times (TEs). The crystal areas were determined by setting the threshold relative to agarose signal. The ratio of crystal areas was calculated by the measurements from gradient echo images divided by T2W images. Then the ratios as a function of TE were fitted with the radical function. The results showed that the blooming artifacts due to magnetic susceptibility between agar and CaHA crystals were more than twice as large as the susceptibility in CaOX crystals (p < 0.05). In addition, larger bright rings were observed on gradient echo images around CaHA crystals compared to CaOX crystals. Our results suggest that MRI may provide useful information regarding breast microcalcifications by evaluating the apparent area of crystal ratios obtained between gradient echo and T2W images.

  6. Defining the Entrainment Zone in Stratocumulus-topped Boundary Layers

    NASA Astrophysics Data System (ADS)

    Wang, Q.; Zhou, M.; Kalogiros, J. A.; Lenschow, D. H.; Dai, C.; Wang, S.

    2010-12-01

    The presence of an entrainment zone near the top of the stratocumulus-topped boundary layers has been identified by many early studies. However, the definition of the entrainment zone was rather vague. We have examined the fine vertical variations of cloud liquid water content, wind, temperature and humidity near the stratocumulus top and developed a new method to identify the entrainment zone objectively. Aircraft measurements from various field projects in stratocumulus-topped boundary layers are used, taking advantage of the fast sampling capability of many of the aircraft sensors. Because of the inhomogeneous mixing of two air masses with distinctively different thermodynamic properties, the magnitude of temperature perturbations within the entrainment zone is significantly larger than those above or below. This characteristics is used to define the upper and lower boundaries of the entrainment zone using a wavelet spectra analyses. The definition of the entrainment zone is further evaluated by the presence of a linear mixing line through mixing line analyses. Various other interfaces at the cloud top are also examined, including the cloud interface, temperature interface (inversion), and moisture interface. The heights of these interfaces are examined relative to the height of the entrainment zone. This study also systematically revealed the presence of turbulence above the local cloud top and/or above the entrainment zone. Wind shear near the cloud top is one possible source that generated local turbulence. Other potential sources of turbulence will also be discussed.

  7. Multiple Size Group Modeling of Polydispersed Bubbly Flow in the Mold: An Analysis of Turbulence and Interfacial Force Models

    NASA Astrophysics Data System (ADS)

    Liu, Zhongqiu; Qi, Fengsheng; Li, Baokuan; Jiang, Maofa

    2015-04-01

    An inhomogeneous Multiple Size Group (MUSIG) model based on the Eulerian-Eulerian approach has been developed to describe the polydispersed bubbly flow inside the continuous-casting mold. A laboratory scale mold has been simulated using four different turbulence closure models (modified k - ɛ, RNG k - ɛ, k - ω, and SST) with the purpose of critically comparing their predictions of bubble Sauter mean diameter distribution with previous experimental data. Furthermore, the influences of all the interfacial momentum transfer terms including drag force, lift force, virtual mass force, wall lubrication force, and turbulent dispersion force are investigated. The breakup and coalescence effects of the bubbles are modeled according to the bubble breakup by the impact of turbulent eddies while for bubble coalescence by the random collisions driven by turbulence and wake entrainment. It has been found that the modified k - ɛ model shows better agreement than other models in predicting the bubble Sauter mean diameter profiles. Further, simulations have also been performed to understand the sensitivity of different interfacial forces. The appropriate drag force coefficient, lift force coefficient, virtual mass force coefficient, and turbulent dispersion force coefficient are chosen in accordance with measurements of water model experiments. However, the wall lubrication force does not have much effect on the current polydispersed bubbly flow system. Finally, the MUSIG model is then used to estimate the argon bubble diameter in the molten steel of the mold. The argon bubble Sauter mean diameter generated in molten steel is predicted to be larger than air bubbles in water for the similar conditions.

  8. The role of entrainment by falling raindrops in microbursts

    NASA Technical Reports Server (NTRS)

    Krueger, Steven K.

    1988-01-01

    The numerical model of Krueger et al. (1986) for dry microburst simulations is used to study the role of entrainment by falling raindrops. Two series of numerical simulations were conducted: a control series, and a series with the raindrop fall speed set to zero so that the rain moved with the air instead of falling through it. The results show that entrainment due to falling raindrops helps microbursts with large raindrop mixing ratios to form in stable stratifications. It is found that entrainment appears to contribute to the small spatial and temporal scales that characterize microburst outflows.

  9. High-Resolution Entrainment in Stratocumulus During the POST Campaign

    NASA Astrophysics Data System (ADS)

    Gerber, H. E.

    2012-12-01

    In July and August of 2008 an NSF-supported field campaign called POST (Physics of Stratocumulus Top) was conducted off the California coast using the fully-instrumented Twin Otter aircraft from the Naval Post Graduate School. POST provided the first opportunity to closely co-locate on an aircraft high-rate and time synchronized microphysics (PVM; LWC and effective radius) and thermodynamics (UFT; Ultra-Fast Temperature) probes and a gust probe to produce measurements of entrainment fluxes and features over entrainment scales thought to be important in warm stratocumulus (Sc). This combination of probes permitted investigating the properties of individual entrained parcels Seventeen flights were conducted during POST in a quasi-Lagrangian fashion in largely unbroken stratocumulus. The horizontal fight path was adjusted to follow the mean air velocity in the Sc. The vertical flight path concentrated on flying between 100-m above and below the cloud-top interface; and some additional profiles were flown to various higher and lower levels where flux runs were made. This presentation describes the analysis of this unique and excellent data set including the following: The data permitted testing Lilly's classical theory for the entrainment velocity where its application requires strong jumps of temperature and moisture across the inversion located above cloud top, a linear flux of the entrained scalar below cloud top, and entrained parcels that descend. All flights showed Sc with wind shear and mixing at cloud top with some strong enough to dissipate the Sc. The relationship between shear and entrainment velocity is described. The pdf of the horizontal size of entrainment parcels vs entrainment flux is established for all flights to help in choosing grid-sizes for modeling. High -resolution in-cloud temperature and LWC measurements in entrained parcels reveal the relative importance of radiative cooling vs cooling by liquid water evaporation in causing buoyancy reversal

  10. Recalcitrant bubbles

    PubMed Central

    Shanahan, Martin E. R.; Sefiane, Khellil

    2014-01-01

    We demonstrate that thermocapillary forces may drive bubbles against liquid flow in ‘anomalous' mixtures. Unlike ‘ordinary' liquids, in which bubbles migrate towards higher temperatures, we have observed vapour bubbles migrating towards lower temperatures, therefore against the flow. This unusual behaviour may be explained by the temperature dependence of surface tension of these binary mixtures. Bubbles migrating towards their equilibrium position follow an exponential trend. They finally settle in a stationary position just ‘downstream' of the minimum in surface tension. The exponential trend for bubbles in ‘anomalous' mixtures and the linear trend in pure liquids can be explained by a simple model. For larger bubbles, oscillations were observed. These oscillations can be reasonably explained by including an inertial term in the equation of motion (neglected for smaller bubbles). PMID:24740256

  11. Recalcitrant bubbles.

    PubMed

    Shanahan, Martin E R; Sefiane, Khellil

    2014-04-17

    We demonstrate that thermocapillary forces may drive bubbles against liquid flow in 'anomalous' mixtures. Unlike 'ordinary' liquids, in which bubbles migrate towards higher temperatures, we have observed vapour bubbles migrating towards lower temperatures, therefore against the flow. This unusual behaviour may be explained by the temperature dependence of surface tension of these binary mixtures. Bubbles migrating towards their equilibrium position follow an exponential trend. They finally settle in a stationary position just 'downstream' of the minimum in surface tension. The exponential trend for bubbles in 'anomalous' mixtures and the linear trend in pure liquids can be explained by a simple model. For larger bubbles, oscillations were observed. These oscillations can be reasonably explained by including an inertial term in the equation of motion (neglected for smaller bubbles).

  12. Entraining synthetic genetic oscillators

    NASA Astrophysics Data System (ADS)

    Wagemakers, Alexandre; Buldú, Javier M.; Sanjuán, Miguel A. F.; de Luis, Oscar; Izquierdo, Adriana; Coloma, Antonio

    2009-09-01

    We propose a new approach for synchronizing a population of synthetic genetic oscillators, which consists in the entrainment of a colony of repressilators by external modulation. We present a model where the repressilator dynamics is affected by periodic changes in temperature. We introduce an additional plasmid in the bacteria in order to correlate the temperature variations with the enhancement of the transcription rate of a certain gene. This can be done by introducing a promoter that is related to the heat shock response. This way, the expression of that gene results in a protein that enhances the overall oscillations. Numerical results show coherent oscillations of the population for a certain range of the external frequency, which is in turn related to the natural oscillation frequency of the modified repressilator. Finally we study the transient times related with the loss of synchronization and we discuss possible applications in biotechnology of large-scale production coupled to synchronization events induced by heat shock.

  13. Hydrocarbon-oil encapsulated air bubble flotation of fine coal. Technical progress report for the third quarter, April 1, 1991--June 30, 1991

    SciTech Connect

    Peng, F.F.

    1995-01-01

    This report is concerned with the progress made during the third period of the two year project. A significant portion of this reporting period has been consumed in measurement of induction time of oil-free and oil-coated bubbles, modification of collector gasifier, hydrocarbon oil encapsulated flotation tests and float and sink analyses of various rank of coal samples, building a 1-inch column cell, as well as building the ultrasound collector emulsification apparatus. Induction time has been measured using an Electronic Induction Timer. The results indicate that alteration of chemical properties of air bubble by applying hydrocarbon oil or reagent can drastically improve the rate of flotation process. Various techniques have been employed in hydrocarbon oil encapsulated flotation processes to further enhance the selectivity of the process, which include: (1) gasified collector flotation with addition of gasified collector into the air stream in the initial stage; (2) two-stage (rougher-cleaner) gasified collector flotation; and (3) starvation gasified collector flotation by addition of gasified collector at various flotation times. Among these, three techniques used in hydrocarbon oil encapsulated flotation process, the starvation flotation technique provides the best selectivity.

  14. Power plant intake entrainment analysis

    SciTech Connect

    Edinger, J.E.; Kolluru, V.S.

    2000-04-01

    Power plant condenser cooling water intake entrainment of fish eggs and larvae is becoming an issue in evaluating environmental impacts around the plants. Methods are required to evaluate intake entrainment on different types of water bodies. Presented in this paper is a derivation of the basic relationships for evaluating entrainment from the standing crop of fish eggs and larvae for different regions of a water body, and evaluating the rate of entrainment from the standing crop. These relationships are coupled with a 3D hydrodynamic and transport model that provides the currents and flows required to complete the entrainment evaluation. Case examples are presented for a simple river system, and for the more complex Delaware River Estuary with multiple intakes. Example evaluations are made for individual intakes, and for the cumulative impacts of multiple intakes.

  15. Bubble Combustion

    NASA Technical Reports Server (NTRS)

    Corrigan, Jackie

    2004-01-01

    A method of energy production that is capable of low pollutant emissions is fundamental to one of the four pillars of NASA s Aeronautics Blueprint: Revolutionary Vehicles. Bubble combustion, a new engine technology currently being developed at Glenn Research Center promises to provide low emissions combustion in support of NASA s vision under the Emissions Element because it generates power, while minimizing the production of carbon dioxide (CO2) and nitrous oxides (NOx), both known to be Greenhouse gases. and allows the use of alternative fuels such as corn oil, low-grade fuels, and even used motor oil. Bubble combustion is analogous to the inverse of spray combustion: the difference between bubble and spray combustion is that spray combustion is spraying a liquid in to a gas to form droplets, whereas bubble combustion involves injecting a gas into a liquid to form gaseous bubbles. In bubble combustion, the process for the ignition of the bubbles takes place on a time scale of less than a nanosecond and begins with acoustic waves perturbing each bubble. This perturbation causes the local pressure to drop below the vapor pressure of the liquid thus producing cavitation in which the bubble diameter grows, and upon reversal of the oscillating pressure field, the bubble then collapses rapidly with the aid of the high surface tension forces acting on the wall of the bubble. The rapid and violent collapse causes the temperatures inside the bubbles to soar as a result of adiabatic heating. As the temperatures rise, the gaseous contents of the bubble ignite with the bubble itself serving as its own combustion chamber. After ignition, this is the time in the bubble s life cycle where power is generated, and CO2, and NOx among other species, are produced. However, the pollutants CO2 and NOx are absorbed into the surrounding liquid. The importance of bubble combustion is that it generates power using a simple and compact device. We conducted a parametric study using CAVCHEM

  16. Lidar measurements of the atmospheric entrainment zone and the potential temperature jump across the top of the mixed layer

    NASA Technical Reports Server (NTRS)

    Boers, R.; Eloranta, E. W.

    1986-01-01

    Lidar data of the atmospheric entrainment zone from six days of clear air convection obtained in central Illinois during July 1979 are presented. A new method to measure the potential temperature jump across the entrainment zone based on only one temperature sounding and continuous lidar measurements of the mixed layer height is developed. An almost linear dependence is found between the normalized entrainment rate and the normalized thickness of the entrainment zone.

  17. The Macroscopic Entrainment Processes of Simulated Cumulus Ensemble. Part II: Testing the Entraining-Plume Model.

    NASA Astrophysics Data System (ADS)

    Lin, Chichung; Arakawa, Akio

    1997-04-01

    According to Part I of this paper, it seems that ignoring the contribution from descendent cloud air in a cloud model for cumulus parameterization (CMCP), such as the spectral cumulus ensemble model in the Arakawa-Schubert parameterization, is an acceptable simplification for tropical deep convection. Since each subensemble in the spectral cumulus ensemble model is formally analogous to an entraining plume, the latter is examined using the simulated data from a cloud-resolving model (CRM). The authors first follow the analysis procedure of Warner. With the data from a nonprecipitating experiment, the authors show that the entraining-plume model cannot simultaneously predict the mean liquid water profile and cloud top height of the clouds simulated by the CRM. However, the mean properties of active elements of clouds, which are characterized by strong updrafts, can be described by an entraining plume of similar top height.With the data from a precipitating experiment, the authors examine the spectral cumulus ensemble model using the Paluch diagram. It is found that the spectral cumulus ensemble model appears adequate if different types of clouds in the spectrum are interpreted as subcloud elements with different entrainment characteristics. The resolved internal structure of clouds can thus be viewed as a manifestation of a cloud spectrum. To further investigate whether the fractional rate of entrainment is an appropriate parameter for characterizing cloud types in the spectral cumulus ensemble model, the authors stratify the simulated saturated updrafts (subcloud elements) into different types according to their eventual heights and calculate the cloud mass flux and mean moist static energy for each type. Entrainment characteristics are then inferred through the cloud mass flux and in-cloud moist static energy. It is found that different types of subcloud elements have distinguishable thermodynamic properties and entrainment characteristics. However, for each cloud

  18. Bubble baryogenesis

    NASA Astrophysics Data System (ADS)

    Cheung, Clifford; Dahlen, Alex; Elor, Gilly

    2012-09-01

    We propose an alternative mechanism of baryogenesis in which a scalar baryon undergoes a percolating first-order phase transition in the early Universe. The potential barrier that divides the phases contains explicit B and CP violation and the corresponding instanton that mediates decay is therefore asymmetric. The nucleation and growth of these asymmetric bubbles dynamically generates baryons, which thermalize after percolation; bubble collision dynamics can also add to the asymmetry yield. We present an explicit toy model that undergoes bubble baryogenesis, and numerically study the evolution of the baryon asymmetry through bubble nucleation and growth, bubble collisions, and washout. We discuss more realistic constructions, in which the scalar baryon and its potential arise amongst the color-breaking minima of the MSSM, or in the supersymmetric neutrino seesaw mechanism. Phenomenological consequences, such as gravitational waves, and possible applications to asymmetric dark-matter generation are also discussed.

  19. Interfacial Area Transport of Bubbly Flow in a Small Diameter Pipe Under Microgravity Environment

    SciTech Connect

    Tatsuya Hazuku; Tomoji Takamasa; Takashi Hibiki; Mamoru Ishii

    2002-07-01

    Axial developments of one-dimensional void fraction, bubble number density, interfacial area concentration, and Sauter mean diameter of adiabatic nitrogen-water bubbly flows in a 9-mm-diameter pipe were measured under a microgravity environment using an image-processing method. The interfacial area transport mechanism was determined based on visual observation. Marked bubble coalescence occurred when fast-moving bubbles near the channel center overtook and swept up slower-moving bubbles in the vicinity of the channel wall (velocity profile entrainment). Negligible bubble breakup was observed because of weak turbulence under tested flow conditions. Axial changes of measured interfacial area concentrations were compared with the interfacial area transport equation considering the bubble expansion and wake entrainment as observed under a normal gravity environment. The velocity profile entrainment effect under microgravity was likely to be comparable to the wake entrainment effect under normal gravity in the tested flow conditions. This apparently led to insignificant differences between measured interfacial area concentrations and those predicted by the interfacial area transport equation with the wake entrainment model under normal gravity. Possible bubble coalescence mechanisms would differ, however, between normal gravity and microgravity conditions. (authors)

  20. Bubble, Bubble, Toil and Trouble.

    ERIC Educational Resources Information Center

    Journal of Chemical Education, 2001

    2001-01-01

    Bubbles are a fun way to introduce the concepts of surface tension, intermolecular forces, and the use of surfactants. Presents two activities in which students add chemicals to liquid dishwashing detergent with water in order to create longer lasting bubbles. (ASK)

  1. Experimental study of the structure of isotropic turbulence with intermediate range of Reynolds number. [sea-air interaction

    NASA Technical Reports Server (NTRS)

    Ling, S. C.; Saad, A.

    1977-01-01

    The energetic isotropic turbulence generated by a waterfall of low head was found to be developed in part through the unstable two-phase flow of entrained air bubbles. The resulting turbulent field had a turbulent Reynolds number in excess of 20,000 and maintained a self-similar structure throughout the decay period studied. The present study may provide some insight into the structure of turbulence produced by breaking waves over the ocean.

  2. Investigating the Sensitivity of Model Intraseasonal Variability to Minimum Entrainment

    NASA Astrophysics Data System (ADS)

    Hannah, W. M.; Maloney, E. D.

    2008-12-01

    Previous studies have shown that using a Relaxed Arakawa-Schubert (RAS) convective parameterization with appropriate convective triggers and assumptions about rain re-evaporation produces realistic intraseasonal variability. RAS represents convection with an ensemble of clouds detraining at different heights, each with different entrainment rate, the highest clouds having the lowest entrainment rates. If tropospheric temperature gradients are weak and boundary layer moist static energy is relatively constant, then by limiting the minimum entrainment rate deep convection is suppressed in the presence of dry tropospheric air. This allows moist static energy to accumulate and be discharged during strong intraseasonal convective events, which is consistent with the discharge/recharge paradigm. This study will examine the sensitivity of intra-seasonal variability to changes in minimum entrainment rate in the NCAR-CAM3 with the RAS scheme. Simulations using several minimum entrainment rate thresholds will be investigated. A frequency-wavenumber analysis will show the improvement of the MJO signal as minimum entrainment rate is increased. The spatial and vertical structure of MJO-like disturbances will be examined, including an analysis of the time evolution of vertical humidity distribution for each simulation. Simulated results will be compared to observed MJO events in NCEP-1 reanalysis and CMAP precipitation.

  3. The Dueling Bubble Experiment

    NASA Astrophysics Data System (ADS)

    Roy, Anshuman; Borrell, Marcos; Felts, John; Leal, Gary; Hirsa, Amir

    2007-11-01

    When two drops or bubbles are brought into close proximity to each other, the thin film of the fluid between them drains as they are squeezed together. If the film becomes thin enough that intermolecular forces of attraction overwhelm capillary forces, the drops/bubbles coalesce and the time it takes for this to happen, starting from the point of apparent contact is referred to as the drainage time. One practical version of this scenario occurs during the formation of foams, when the thin film forms between gas bubbles that are growing in volume with time. We performed an experimental study that is intended to mimic this process in which the two drops (or bubbles) in the size range of 50-100 microns diameter are created by oozing a liquid/gas out of two capillaries of diameter less than 100 microns directly facing each other and immersed in a second fluid. We present measurements of drainage times for the cases of very low viscosity ratios PDMS drops in Castor oil (less than 0.05) and bubbles of air in PDMS, and highlight the differences that arise in part due to the different boundary conditions for thin film drainage for liquid-liquid versus gas-liquid systems, and in part due to the different Hamaker constants for the two systems.

  4. Micro bubbles at interfaces

    NASA Astrophysics Data System (ADS)

    Keshavarzi, Gholamreza; Wang, Anna; Barber, Tracie; Manoharan, Vinothan

    2014-03-01

    The behaviour of a small micron sized bubbles close to an interface is vital to various interface interaction applications in several industries. Previous studies have focused on understanding the behaviour of large millimetric bubbles reaching an interface. Some of these millimetric bubbles are shown to bounce back, while others penetrate and burst on the interface resulting in possible small micron sized bubbles. However, small micron sized bubble may act different. It has been observed that small microbubbles can act as if they are stabilized at the interface without merging to the fluid over the interface. The dynamics of the microbubble adsorption close to an interface has yet to be well understood.In this study we used digital holography microscopy to explore detailed information on the behaviour of the air microbubble at the interface. This study investigates the position and shape of a microbubble with respect to the interface. The dynamic behavior close to the interface along with where the small microbubble is positioned near an interface will help us in understanding the probability of penetration and merging back to the fluid on top.

  5. Entrainment Rates in POST Stratocumulus

    NASA Astrophysics Data System (ADS)

    Gerber, H. E.; Frick, G.

    2010-12-01

    A recent field study (POST; Physics of Stratocumulus top; July-Aug., 2008) off the California Coast used the CIRPAS Twin Otter aircraft to observe mostly unbroken stratocumulus clouds (Sc). Seventeen flights were made in a quasi-Lagrangian horizontal pattern and in a vertical profiling pattern +/- 100 m about Sc top that was repeated numerous times. The aircraft carried a full complement of probes, including the high rate (1000-hz) UFT (ultra-fast temperature) and PVM (LWC and effective radius) probes both of which provided data within cloud and were located near the aircraft’s gust probe. The latter two probes were used to estimate the entrainment velocity (we) into the Sc using the “conditional sampling” approach. The range of we values fall within previous estimates of we, and examples of the measurements are presented. This we data set provides new insight on the entrainment process with findings including the following: About on half the POST flights the Sc showed entrainment behavior unlike that expected from previous applications of the “conditional sampling” method. Higher wind speeds and shear near Sc top generated significant turbulence both above and below the cloud-top interface causing the linear entrainment flux approximation near Sc top to be invalid. This behavior would also affect the “flux-jump” method used previously for estimating we., leading to questions about the validity of previous we measurements. In addition the required sharp jump at the interface of the entrainment scalar was not present in some cases. The “conditional sampling” method yields pdfs of the entrainment parcel length which are variable depending on the flight. The lengths are sufficiently large in some cases and are compatible with practical LES grid spacing suggesting a LES modeling and measurement comparison, where the more robust measurement is the entrainment flux into the POST Sc rather than the estimate of we.

  6. Coalescence of soap bubbles: petals and fractals

    NASA Astrophysics Data System (ADS)

    Tan, Beng Hau; Gonzalez Avila, Silvestre Roberto; Ohl, Claus-Dieter

    2013-11-01

    The coalescence of thin film bubbles, i.e. soap bubbles, is determined by successive ruptures of the two films approaching each other. Ruptures in isolated thin films have been studied experimentally in detail and their dynamics is well understood theoretically; less so for the coalescence of soap bubbles. In this case, the film rupture occurs in very close proximity to a second film. The interaction between one quickly retracting film with a stationary film leads to complex dynamics. High-speed photography of the events occurring on a microscopic scale is conducted. We find that within the first 100 microseconds radially symmetric fingering and fractal structures are created at the rupture site. The first film retraction may induce the rupture of the second film. Later the retracting soap film causes the entrainment of a ring of secondary bubbles and possibly droplets along its circumference. Some first modelling will be presented, too.

  7. Adsorption of egg phosphatidylcholine to an air/water and triolein/water bubble interface: use of the 2-dimensional phase rule to estimate the surface composition of a phospholipid/triolein/water surface as a function of surface pressure.

    PubMed

    Mitsche, Matthew A; Wang, Libo; Small, Donald M

    2010-03-11

    Phospholipid monolayers play a critical role in the structure and stabilization of biological interfaces, including all membranes, the alveoli of the lungs, fat droplets in adipose tissue, and lipoproteins. The behavior of phospholipids in bilayers and at an air-water interface is well understood. However, the study of phospholipids at oil-water interfaces is limited due to technical challenges. In this study, egg phosphatidylcholine (EPC) was deposited from small unilamellar vesicles onto a bubble of either air or triolein (TO) formed in a low-salt buffer. The surface tension (gamma) was measured using a drop tensiometer. We observed that EPC binds irreversibly to both interfaces and at equilibrium exerts approximately 12 and 15 mN/m of pressure (Pi) at an air and TO interface, respectively. After EPC was bound to the interface, the unbound EPC was washed out of the cuvette, and the surface was compressed to study the Pi/area relationship. To determine the surface concentration (Gamma), which cannot be measured directly, compression isotherms from a Langmuir trough and drop tensiometer were compared. The air-water interfaces had identical characteristics using both techniques; thus, Gamma on the bubble can be determined by overlaying the two isotherms. Both TO and EPC are surface-active, so in a mixed TO/EPC monolayer, both molecules will be exposed to water. Since TO is less surface-active than EPC, as Pi increases, the TO is progressively ejected. To understand the Pi/area isotherm of EPC on a TO bubble, a variety of TO-EPC mixtures were spread at the air-water interface. The isotherms show an abrupt break in the curve caused by the ejection of TO from the monolayer into a new bulk phase. By overlaying the compression isotherm above the ejection point with a TO bubble compression isotherm, Gamma can be estimated. This allows determination of Gamma of EPC on a TO bubble as a function of Pi.

  8. Bubble diagnostics

    DOEpatents

    Visuri, Steven R.; Mammini, Beth M.; Da Silva, Luiz B.; Celliers, Peter M.

    2003-01-01

    The present invention is intended as a means of diagnosing the presence of a gas bubble and incorporating the information into a feedback system for opto-acoustic thrombolysis. In opto-acoustic thrombolysis, pulsed laser radiation at ultrasonic frequencies is delivered intraluminally down an optical fiber and directed toward a thrombus or otherwise occluded vessel. Dissolution of the occlusion is therefore mediated through ultrasonic action of propagating pressure or shock waves. A vapor bubble in the fluid surrounding the occlusion may form as a result of laser irradiation. This vapor bubble may be used to directly disrupt the occlusion or as a means of producing a pressure wave. It is desirable to detect the formation and follow the lifetime of the vapor bubble. Knowledge of the bubble formation and lifetime yields critical information as to the maximum size of the bubble, density of the absorbed radiation, and properties of the absorbing material. This information can then be used in a feedback system to alter the irradiation conditions.

  9. Coalescence of bubbles translating through a tube.

    PubMed

    Almatroushi, Eisa; Borhan, Ali

    2006-09-01

    The results of an experimental study of the interaction and coalescence of two air bubbles translating in a cylindrical tube are presented. Both pressure- and buoyancy-driven motion of the two bubbles in a Newtonian suspending fluid within the tube are considered. The close approach of the two bubbles is examined using image analysis, and measurements of the coalescence time are reported for various bubble size ratios and capillary numbers. For pressure-driven motion of bubbles, coalescence is found to occur in an axisymmetric configuration for all bubble size ratios considered in the experiments. For buoyancy-driven motion, on the other hand, the disturbance flow behind the leading bubble causes the trailing bubble to move radially out toward the tube wall when the trailing bubble size becomes very small compared to the size of the leading bubble. In that case, coalescence occurs in a nonaxisymmetric configuration, with a time scale for coalescence that is substantially larger than that for coalescence in the axisymmetric configuration. When the imposed flow is in the direction of the buoyancy force, coalescence time is independent of bubble size ratio, and decreases as the capillary number increases. Experimental measurements of the radius of the thin liquid film separating the two bubbles are used in conjunction with a simple film drainage model to predict the dependence of the coalescence time on the bubble size ratio. PMID:17124143

  10. Oscillations of soap bubbles

    NASA Astrophysics Data System (ADS)

    Kornek, U.; Müller, F.; Harth, K.; Hahn, A.; Ganesan, S.; Tobiska, L.; Stannarius, R.

    2010-07-01

    Oscillations of droplets or bubbles of a confined fluid in a fluid environment are found in various situations in everyday life, in technological processing and in natural phenomena on different length scales. Air bubbles in liquids or liquid droplets in air are well-known examples. Soap bubbles represent a particularly simple, beautiful and attractive system to study the dynamics of a closed gas volume embedded in the same or a different gas. Their dynamics is governed by the densities and viscosities of the gases and by the film tension. Dynamic equations describing their oscillations under simplifying assumptions have been well known since the beginning of the 20th century. Both analytical description and numerical modeling have made considerable progress since then, but quantitative experiments have been lacking so far. On the other hand, a soap bubble represents an easily manageable paradigm for the study of oscillations of fluid spheres. We use a technique to create axisymmetric initial non-equilibrium states, and we observe damped oscillations into equilibrium by means of a fast video camera. Symmetries of the oscillations, frequencies and damping rates of the eigenmodes as well as the coupling of modes are analyzed. They are compared to analytical models from the literature and to numerical calculations from the literature and this work.

  11. Entrainment in interacting vortex rings

    NASA Astrophysics Data System (ADS)

    Shami, Rammah; Ganapathisubramani, Bharathram

    2014-11-01

    The efficiency of entrainment in single vortex rings has been examined by various studies in the literature. These studies have shown that this efficiency is greatly increased for smaller stroke-time to nozzle-diameter ratios, L/D. However, no clear consensus exists regarding the effect on the entrainment process for the sectioned delivery of the vortex forming impulse. In the present work the entrainment mechanism associated with the interaction between two co-axially separated vortex rings is explored. Planar, time-resolved particle image velocimetry (PIV) measurements are taken of a interacting vortex flow field. Lagrangian coherent structures (LCS) extracted from the finite-time Lyapunov exponent (FTLE) fields are employed to determine the vortex boundaries of the interacting rings and is then used to measure entrainment. Preliminary results indicate that whilst the most efficient entrainment of ambient fluid by the ring pairs occurs at larger separations, the rate and overall mass transport increase can be controlled by altering the spatial/temporal separation between successive rings and is higher at smaller ring spacing. Variation in mass transport behaviour for different ring strengths (L/D) and Reynolds numbers will also be discussed.

  12. Mechanism of bubble detachment from vibrating walls

    SciTech Connect

    Kim, Dongjun; Park, Jun Kwon Kang, Kwan Hyoung; Kang, In Seok

    2013-11-15

    We discovered a previously unobserved mechanism by which air bubbles detach from vibrating walls in glasses containing water. Chaotic oscillation and subsequent water jets appeared when a wall vibrated at greater than a critical level. Wave forms were developed at water-air interface of the bubble by the wall vibration, and water jets were formed when sufficiently grown wave-curvatures were collapsing. Droplets were pinched off from the tip of jets and fell to the surface of the glass. When the solid-air interface at the bubble-wall attachment point was completely covered with water, the bubble detached from the wall. The water jets were mainly generated by subharmonic waves and were generated most vigorously when the wall vibrated at the volume resonant frequency of the bubble. Bubbles of specific size can be removed by adjusting the frequency of the wall's vibration.

  13. Estimation of convective entrainment properties from a cloud-resolving model simulation during TWP-ICE

    NASA Astrophysics Data System (ADS)

    Zhang, Guang J.; Wu, Xiaoqing; Zeng, Xiping; Mitovski, Toni

    2015-12-01

    The fractional entrainment rate in convective clouds is an important parameter in current convective parameterization schemes of climate models. In this paper, it is estimated using a 1-km-resolution cloud-resolving model (CRM) simulation of convective clouds from TWP-ICE (the Tropical Warm Pool-International Cloud Experiment). The clouds are divided into different types, characterized by cloud-top heights. The entrainment rates and moist static energy that is entrained or detrained are determined by analyzing the budget of moist static energy for each cloud type. Results show that the entrained air is a mixture of approximately equal amount of cloud air and environmental air, and the detrained air is a mixture of ~80 % of cloud air and 20 % of the air with saturation moist static energy at the environmental temperature. After taking into account the difference in moist static energy between the entrained air and the mean environment, the estimated fractional entrainment rate is much larger than those used in current convective parameterization schemes. High-resolution (100 m) large-eddy simulation of TWP-ICE convection was also analyzed to support the CRM results. It is shown that the characteristics of entrainment rates estimated using both the high-resolution data and CRM-resolution coarse-grained data are similar. For each cloud category, the entrainment rate is high near cloud base and top, but low in the middle of clouds. The entrainment rates are best fitted to the inverse of in-cloud vertical velocity by a second order polynomial.

  14. Estimation of convective entrainment properties from a cloud-resolving model simulation during TWP-ICE

    NASA Astrophysics Data System (ADS)

    Zhang, Guang J.; Wu, Xiaoqing; Zeng, Xiping; Mitovski, Toni

    2016-10-01

    The fractional entrainment rate in convective clouds is an important parameter in current convective parameterization schemes of climate models. In this paper, it is estimated using a 1-km-resolution cloud-resolving model (CRM) simulation of convective clouds from TWP-ICE (the Tropical Warm Pool-International Cloud Experiment). The clouds are divided into different types, characterized by cloud-top heights. The entrainment rates and moist static energy that is entrained or detrained are determined by analyzing the budget of moist static energy for each cloud type. Results show that the entrained air is a mixture of approximately equal amount of cloud air and environmental air, and the detrained air is a mixture of ~80 % of cloud air and 20 % of the air with saturation moist static energy at the environmental temperature. After taking into account the difference in moist static energy between the entrained air and the mean environment, the estimated fractional entrainment rate is much larger than those used in current convective parameterization schemes. High-resolution (100 m) large-eddy simulation of TWP-ICE convection was also analyzed to support the CRM results. It is shown that the characteristics of entrainment rates estimated using both the high-resolution data and CRM-resolution coarse-grained data are similar. For each cloud category, the entrainment rate is high near cloud base and top, but low in the middle of clouds. The entrainment rates are best fitted to the inverse of in-cloud vertical velocity by a second order polynomial.

  15. Wind profiler mixing depth and entrainment measurements with chemical applications

    SciTech Connect

    Angevine, W.M.; Trainer, M.; Parrish, D.D.; Buhr, M.P.; Fehsenfeld, F.C.; Kok, G.L.

    1994-12-31

    Wind profiling radars operating at 915 MHz have been present at a number of regional air quality studies. The profilers can provide a continuous, accurate record of the depth of the convective mixed layer with good time resolution. Profilers also provide information about entrainment at the boundary layer top. Mixing depth data from several days of the Rural Oxidants in the Southern Environment II (ROSE II) study in Alabama in June, 1992 are presented. For several cases, chemical measurements from aircraft and ground-based instruments are shown to correspond to mixing depth and entrainment zone behavior observed by the profiler.

  16. Timescales of massive human entrainment.

    PubMed

    Fusaroli, Riccardo; Perlman, Marcus; Mislove, Alan; Paxton, Alexandra; Matlock, Teenie; Dale, Rick

    2015-01-01

    The past two decades have seen an upsurge of interest in the collective behaviors of complex systems composed of many agents entrained to each other and to external events. In this paper, we extend the concept of entrainment to the dynamics of human collective attention. We conducted a detailed investigation of the unfolding of human entrainment--as expressed by the content and patterns of hundreds of thousands of messages on Twitter--during the 2012 US presidential debates. By time-locking these data sources, we quantify the impact of the unfolding debate on human attention at three time scales. We show that collective social behavior covaries second-by-second to the interactional dynamics of the debates: A candidate speaking induces rapid increases in mentions of his name on social media and decreases in mentions of the other candidate. Moreover, interruptions by an interlocutor increase the attention received. We also highlight a distinct time scale for the impact of salient content during the debates: Across well-known remarks in each debate, mentions in social media start within 5-10 seconds after it occurs; peak at approximately one minute; and slowly decay in a consistent fashion across well-known events during the debates. Finally, we show that public attention after an initial burst slowly decays through the course of the debates. Thus we demonstrate that large-scale human entrainment may hold across a number of distinct scales, in an exquisitely time-locked fashion. The methods and results pave the way for careful study of the dynamics and mechanisms of large-scale human entrainment. PMID:25880357

  17. Timescales of massive human entrainment.

    PubMed

    Fusaroli, Riccardo; Perlman, Marcus; Mislove, Alan; Paxton, Alexandra; Matlock, Teenie; Dale, Rick

    2015-01-01

    The past two decades have seen an upsurge of interest in the collective behaviors of complex systems composed of many agents entrained to each other and to external events. In this paper, we extend the concept of entrainment to the dynamics of human collective attention. We conducted a detailed investigation of the unfolding of human entrainment--as expressed by the content and patterns of hundreds of thousands of messages on Twitter--during the 2012 US presidential debates. By time-locking these data sources, we quantify the impact of the unfolding debate on human attention at three time scales. We show that collective social behavior covaries second-by-second to the interactional dynamics of the debates: A candidate speaking induces rapid increases in mentions of his name on social media and decreases in mentions of the other candidate. Moreover, interruptions by an interlocutor increase the attention received. We also highlight a distinct time scale for the impact of salient content during the debates: Across well-known remarks in each debate, mentions in social media start within 5-10 seconds after it occurs; peak at approximately one minute; and slowly decay in a consistent fashion across well-known events during the debates. Finally, we show that public attention after an initial burst slowly decays through the course of the debates. Thus we demonstrate that large-scale human entrainment may hold across a number of distinct scales, in an exquisitely time-locked fashion. The methods and results pave the way for careful study of the dynamics and mechanisms of large-scale human entrainment.

  18. Tiny Bubbles.

    ERIC Educational Resources Information Center

    Kim, Hy

    1985-01-01

    A simple oxygen-collecting device (easily constructed from glass jars and a lid) can show bubbles released by water plants during photosynthesis. Suggestions are given for: (1) testing the collected gas; (2) using various carbon dioxide sources; and (3) measuring respiration. (DH)

  19. Leverage bubble

    NASA Astrophysics Data System (ADS)

    Yan, Wanfeng; Woodard, Ryan; Sornette, Didier

    2012-01-01

    Leverage is strongly related to liquidity in a market and lack of liquidity is considered a cause and/or consequence of the recent financial crisis. A repurchase agreement is a financial instrument where a security is sold simultaneously with an agreement to buy it back at a later date. Repurchase agreement (repo) market size is a very important element in calculating the overall leverage in a financial market. Therefore, studying the behavior of repo market size can help to understand a process that can contribute to the birth of a financial crisis. We hypothesize that herding behavior among large investors led to massive over-leveraging through the use of repos, resulting in a bubble (built up over the previous years) and subsequent crash in this market in early 2008. We use the Johansen-Ledoit-Sornette (JLS) model of rational expectation bubbles and behavioral finance to study the dynamics of the repo market that led to the crash. The JLS model qualifies a bubble by the presence of characteristic patterns in the price dynamics, called log-periodic power law (LPPL) behavior. We show that there was significant LPPL behavior in the market before that crash and that the predicted range of times predicted by the model for the end of the bubble is consistent with the observations.

  20. Generation of Bubbly Suspensions in Low Gravity

    NASA Technical Reports Server (NTRS)

    Nahra, Henry K.; Hoffmann, Monica I.; Hussey, Sam; Bell, Kimberly R.

    2000-01-01

    Generation of a uniform monodisperse bubbly suspension in low gravity is a rather difficult task because bubbles do not detach as easily as on Earth. Under microgravity, the buoyancy force is not present to detach the bubbles as they are formed from the nozzles. One way to detach the bubbles is to establish a detaching force that helps their detachment from the orifice. The drag force, established by flowing a liquid in a cross or co-flow configuration with respect to the nozzle direction, provides this additional force and helps detach the bubbles as they are being formed. This paper is concerned with studying the generation of a bubbly suspension in low gravity in support of a flight definition experiment titled "Behavior of Rapidly Sheared Bubbly Suspension." Generation of a bubbly suspension, composed of 2 and 3 mm diameter bubbles with a standard deviation <10% of the bubble diameter, was identified as one of the most important engineering/science issues associated with the flight definition experiment. This paper summarizes the low gravity experiments that were conducted to explore various ways of making the suspension. Two approaches were investigated. The first was to generate the suspension via a chemical reaction between the continuous and dispersed phases using effervescent material, whereas the second considered the direct injection of air into the continuous phase. The results showed that the reaction method did not produce the desired bubble size distribution compared to the direct injection of bubbles. However, direct injection of air into the continuous phase (aqueous salt solution) resulted in uniform bubble-diameter distribution with acceptable bubble-diameter standard deviation.

  1. Doughnut-shaped soap bubbles

    NASA Astrophysics Data System (ADS)

    Préve, Deison; Saa, Alberto

    2015-10-01

    Soap bubbles are thin liquid films enclosing a fixed volume of air. Since the surface tension is typically assumed to be the only factor responsible for conforming the soap bubble shape, the realized bubble surfaces are always minimal area ones. Here, we consider the problem of finding the axisymmetric minimal area surface enclosing a fixed volume V and with a fixed equatorial perimeter L . It is well known that the sphere is the solution for V =L3/6 π2 , and this is indeed the case of a free soap bubble, for instance. Surprisingly, we show that for V <α L3/6 π2 , with α ≈0.21 , such a surface cannot be the usual lens-shaped surface formed by the juxtaposition of two spherical caps, but is rather a toroidal surface. Practically, a doughnut-shaped bubble is known to be ultimately unstable and, hence, it will eventually lose its axisymmetry by breaking apart in smaller bubbles. Indisputably, however, the topological transition from spherical to toroidal surfaces is mandatory here for obtaining the global solution for this axisymmetric isoperimetric problem. Our result suggests that deformed bubbles with V <α L3/6 π2 cannot be stable and should not exist in foams, for instance.

  2. Doughnut-shaped soap bubbles.

    PubMed

    Préve, Deison; Saa, Alberto

    2015-10-01

    Soap bubbles are thin liquid films enclosing a fixed volume of air. Since the surface tension is typically assumed to be the only factor responsible for conforming the soap bubble shape, the realized bubble surfaces are always minimal area ones. Here, we consider the problem of finding the axisymmetric minimal area surface enclosing a fixed volume V and with a fixed equatorial perimeter L. It is well known that the sphere is the solution for V=L(3)/6π(2), and this is indeed the case of a free soap bubble, for instance. Surprisingly, we show that for V<αL(3)/6π(2), with α≈0.21, such a surface cannot be the usual lens-shaped surface formed by the juxtaposition of two spherical caps, but is rather a toroidal surface. Practically, a doughnut-shaped bubble is known to be ultimately unstable and, hence, it will eventually lose its axisymmetry by breaking apart in smaller bubbles. Indisputably, however, the topological transition from spherical to toroidal surfaces is mandatory here for obtaining the global solution for this axisymmetric isoperimetric problem. Our result suggests that deformed bubbles with V<αL(3)/6π(2) cannot be stable and should not exist in foams, for instance. PMID:26565252

  3. Application of the ultrasonic technique and high-speed filming for the study of the structure of air-water bubbly flows

    SciTech Connect

    Carvalho, R.D.M.; Venturini, O.J.; Tanahashi, E.I.; Neves, F. Jr.; Franca, F.A.

    2009-10-15

    Multiphase flows are very common in industry, oftentimes involving very harsh environments and fluids. Accordingly, there is a need to determine the dispersed phase holdup using noninvasive fast responding techniques; besides, knowledge of the flow structure is essential for the assessment of the transport processes involved. The ultrasonic technique fulfills these requirements and could have the capability to provide the information required. In this paper, the potential of the ultrasonic technique for application to two-phase flows was investigated by checking acoustic attenuation data against experimental data on the void fraction and flow topology of vertical, upward, air-water bubbly flows in the zero to 15% void fraction range. The ultrasonic apparatus consisted of one emitter/receiver transducer and three other receivers at different positions along the pipe circumference; simultaneous high-speed motion pictures of the flow patterns were made at 250 and 1000 fps. The attenuation data for all sensors exhibited a systematic interrelated behavior with void fraction, thereby testifying to the capability of the ultrasonic technique to measure the dispersed phase holdup. From the motion pictures, basic gas phase structures and different flows patterns were identified that corroborated several features of the acoustic attenuation data. Finally, the acoustic wave transit time was also investigated as a function of void fraction. (author)

  4. The impacts of replacing air bubbles with microspheres for the clarification of algae from low cell-density culture.

    PubMed

    Ometto, Francesco; Pozza, Carlo; Whitton, Rachel; Smyth, Beatrice; Gonzalez Torres, Andrea; Henderson, Rita K; Jarvis, Peter; Jefferson, Bruce; Villa, Raffaella

    2014-04-15

    Dissolved Air Flotation (DAF) is a well-known coagulation-flotation system applied at large scale for microalgae harvesting. Compared to conventional harvesting technologies DAF allows high cell recovery at lower energy demand. By replacing microbubbles with microspheres, the innovative Ballasted Dissolved Air Flotation (BDAF) technique has been reported to achieve the same algae cell removal efficiency, while saving up to 80% of the energy required for the conventional DAF unit. Using three different algae cultures (Scenedesmus obliquus, Chlorella vulgaris and Arthrospira maxima), the present work investigated the practical, economic and environmental advantages of the BDAF system compared to the DAF system. 99% cells separation was achieved with both systems, nevertheless, the BDAF technology allowed up to 95% coagulant reduction depending on the algae species and the pH conditions adopted. In terms of floc structure and strength, the inclusion of microspheres in the algae floc generated a looser aggregate, showing a more compact structure within single cell alga, than large and filamentous cells. Overall, BDAF appeared to be a more reliable and sustainable harvesting system than DAF, as it allowed equal cells recovery reducing energy inputs, coagulant demand and carbon emissions.

  5. Fuel system bubble dissipation device

    SciTech Connect

    Iseman, W.J.

    1987-11-03

    This patent describes a bubble dissipation device for a fuel system wherein fuel is delivered through a fuel line from a fuel tank to a fuel control with the pressure of the fuel being progressively increased by components including at least one pump stage and an ejector in advance of the pump state. The ejector an ejector casing with a wall defining an elongate tubular flow passage which forms a portion of the fuel line to have all of the fuel flow through the tubular flow passage in flowing from the fuel tank to the fuel control, a nozzle positioned entirely within the tubular flow passage and spaced from the wall to permit fuel flow. The nozzle has an inlet and an outlet with the inlet connected to the pump stage to receive fuel under pressure continuously from the pump stage, a bubble accumulation chamber adjoining and at a level above the ejector casing and operatively connected to the fuel line in advance of the ejector casing. The bubble accumulation chamber is of a size to function as a fuel reservoir and hold an air bubble containing vapor above the level of fuel therein and having an outlet adjacent the bottom thereof operatively connected to the tubular flow passage in the ejector casing at an inlet end, a bubble accumulation chamber inlet above the level of the bubble accumulation chamber outlet whereby fuel can flow through the bubble accumulation chamber from the inlet to the outlet thereof with a bubble in the fuel rising above the fuel level in the bubble accumulation chamber.

  6. Timescales of Massive Human Entrainment

    PubMed Central

    Fusaroli, Riccardo; Perlman, Marcus; Mislove, Alan; Paxton, Alexandra; Matlock, Teenie; Dale, Rick

    2015-01-01

    The past two decades have seen an upsurge of interest in the collective behaviors of complex systems composed of many agents entrained to each other and to external events. In this paper, we extend the concept of entrainment to the dynamics of human collective attention. We conducted a detailed investigation of the unfolding of human entrainment—as expressed by the content and patterns of hundreds of thousands of messages on Twitter—during the 2012 US presidential debates. By time-locking these data sources, we quantify the impact of the unfolding debate on human attention at three time scales. We show that collective social behavior covaries second-by-second to the interactional dynamics of the debates: A candidate speaking induces rapid increases in mentions of his name on social media and decreases in mentions of the other candidate. Moreover, interruptions by an interlocutor increase the attention received. We also highlight a distinct time scale for the impact of salient content during the debates: Across well-known remarks in each debate, mentions in social media start within 5–10 seconds after it occurs; peak at approximately one minute; and slowly decay in a consistent fashion across well-known events during the debates. Finally, we show that public attention after an initial burst slowly decays through the course of the debates. Thus we demonstrate that large-scale human entrainment may hold across a number of distinct scales, in an exquisitely time-locked fashion. The methods and results pave the way for careful study of the dynamics and mechanisms of large-scale human entrainment. PMID:25880357

  7. The Minnaert Bubble: An Acoustic Approach

    ERIC Educational Resources Information Center

    Devaud, Martin; Hocquet, Thierry; Bacri, Jean-Claude; Leroy, Valentin

    2008-01-01

    We propose an "ab initio" introduction to the well-known Minnaert pulsating bubble at graduate level. After a brief recall of the standard stuff, we begin with a detailed discussion of the radial movements of an air bubble in water. This discussion is managed from an acoustic point of view, and using the Lagrangian rather than the Eulerian…

  8. Experimental study of the effect of a small bubble at the nose of a larger bubble in a Hele-Shaw cell

    NASA Astrophysics Data System (ADS)

    Ikeda, E.; Maxworthy, T.

    1990-04-01

    The effect of a small air bubble attached to the nose of a much larger air bubble in a viscous liquid in a Hele-Shaw cell has been studied. The Hele-Shaw cell was tilted to an angle alpha, measured from the horizontal, so that the buoyancy force allowed the bubbles to rise. The larger bubble became elongated to a nearly elliptical shape and its velocity increased above the value for a circular bubble of the same area. For a given size of main bubble, as the size of the nose bubble decreased, the aspect ratio and velocity of the larger bubble increased. The velocity for a given size bubble could be approximated by the theory presented by Maxworthy (1986) for small values of the bubble ellipticity and large values of alpha. At small values of alpha, modification of the bubble drag by gravitational distortion could partially explain the deviation from the simpler theory.

  9. Magma mixing enhanced by bubble ascent

    NASA Astrophysics Data System (ADS)

    Wiesmaier, S.; Morgavi, D.; Perugini, D.; De Campos, C. P.; Hess, K.; Lavallee, Y.; Dingwell, D. B.

    2012-12-01

    Understanding the processes that affect the rate of liquid state homogenization provides fundamental clues on the otherwise inaccessible subsurface dynamics of magmatic plumbing systems. Compositional heterogeneities detected in the matrix of magmatic rocks represent the arrested state of a chemical equilibration. Magmatic homogenization has been divided into a) the mechanical interaction of magma batches (mingling) and b) the diffusive equilibration of compositional gradients, where diffusive equilibration is exponentially enhanced by progressive mechanical interaction [1]. The mechanical interaction between two distinct batches of magma has commonly been attributed to shear and folding movements between two liquids of distinct viscosities. A mode of mechanical interaction scarcely invoked is the advection of mafic material into a felsic one through bubble motion. Yet, experiments with analogue materials demonstrated that bubble ascent has the potential to enhance the fluid mechanical component of magma mixing [2]. Here, we present preliminary results from bubble-advection experiments. For the first time, experiments of this kind were performed using natural materials at magmatic temperatures. Cylinders of Snake River Plain (SRP) basalt were drilled with a cavity of defined volume and placed underneath cylinders of SRP rhyolite. Upon melting, the gas pocket, or bubble trapped within the cavity, rose into the rhyolite, so entraining a layer of basalt. Successive iterations of the same experiment at progressive intervals ensured a time series of magmatic interaction caused by bubble segregation. Variations in initial bubble size allowed the tracking of bubble volume to advected material ratio at defined viscosity contrast. The resulting plume-like structures that the advected basalt formed within the rhyolite were characterized by microCT and subsequent high-resolution EMP analyses. The mass of advected material per bubble correlated positively with bubble size. The

  10. Optimum air-demand ratio for maximum aeration efficiency in high-head gated circular conduits.

    PubMed

    Ozkan, Fahri; Tuna, M Cihat; Baylar, Ahmet; Ozturk, Mualla

    2014-01-01

    Oxygen is an important component of water quality and its ability to sustain life. Water aeration is the process of introducing air into a body of water to increase its oxygen saturation. Water aeration can be accomplished in a variety of ways, for instance, closed-conduit aeration. High-speed flow in a closed conduit involves air-water mixture flow. The air flow results from the subatmospheric pressure downstream of the gate. The air entrained by the high-speed flow is supplied by the air vent. The air entrained into the flow in the form of a large number of bubbles accelerates oxygen transfer and hence also increases aeration efficiency. In the present work, the optimum air-demand ratio for maximum aeration efficiency in high-head gated circular conduits was studied experimentally. Results showed that aeration efficiency increased with the air-demand ratio to a certain point and then aeration efficiency did not change with a further increase of the air-demand ratio. Thus, there was an optimum value for the air-demand ratio, depending on the Froude number, which provides maximum aeration efficiency. Furthermore, a design formula for aeration efficiency was presented relating aeration efficiency to the air-demand ratio and Froude number. PMID:25225935

  11. Optimum air-demand ratio for maximum aeration efficiency in high-head gated circular conduits.

    PubMed

    Ozkan, Fahri; Tuna, M Cihat; Baylar, Ahmet; Ozturk, Mualla

    2014-01-01

    Oxygen is an important component of water quality and its ability to sustain life. Water aeration is the process of introducing air into a body of water to increase its oxygen saturation. Water aeration can be accomplished in a variety of ways, for instance, closed-conduit aeration. High-speed flow in a closed conduit involves air-water mixture flow. The air flow results from the subatmospheric pressure downstream of the gate. The air entrained by the high-speed flow is supplied by the air vent. The air entrained into the flow in the form of a large number of bubbles accelerates oxygen transfer and hence also increases aeration efficiency. In the present work, the optimum air-demand ratio for maximum aeration efficiency in high-head gated circular conduits was studied experimentally. Results showed that aeration efficiency increased with the air-demand ratio to a certain point and then aeration efficiency did not change with a further increase of the air-demand ratio. Thus, there was an optimum value for the air-demand ratio, depending on the Froude number, which provides maximum aeration efficiency. Furthermore, a design formula for aeration efficiency was presented relating aeration efficiency to the air-demand ratio and Froude number.

  12. Bernoulli Suction Effect on Soap Bubble Blowing?

    NASA Astrophysics Data System (ADS)

    Davidson, John; Ryu, Sangjin

    2015-11-01

    As a model system for thin-film bubble with two gas-liquid interfaces, we experimentally investigated the pinch-off of soap bubble blowing. Using the lab-built bubble blower and high-speed videography, we have found that the scaling law exponent of soap bubble pinch-off is 2/3, which is similar to that of soap film bridge. Because air flowed through the decreasing neck of soap film tube, we studied possible Bernoulli suction effect on soap bubble pinch-off by evaluating the Reynolds number of airflow. Image processing was utilized to calculate approximate volume of growing soap film tube and the volume flow rate of the airflow, and the Reynolds number was estimated to be 800-3200. This result suggests that soap bubbling may involve the Bernoulli suction effect.

  13. Circulating venous bubbles in children after diving.

    PubMed

    Lemaitre, Frederic; Carturan, Daniel; Tourney-Chollet, Claire; Gardette, Bernard

    2009-02-01

    Doppler ultrasonic detection of circulating venous bubbles after a scuba dive is a useful index of decompression safety in adults, since a relationship between bubbles and the risk of decompression sickness has been documented. No study, however, has investigated circulating venous bubbles in young recreational divers after their usual dives. The aim of this study was to determine whether these bubbles would be detected in children who performed a single dive without any modification in their diving habits. Ten young recreational divers (13.1 +/- 2.3 years) performed their usual air dive. They were Doppler-monitored 20 min before the dive (12 +/- 3 m for 26 +/- 7 min) and for 60 min after surfacing, at 20-min intervals. No circulating venous bubbles were detected after the children surfaced. The results showed that during a usual shallow diving session, venous bubbles were not detected in children.

  14. Arrested Bubble Rise in a Narrow Tube

    NASA Astrophysics Data System (ADS)

    Lamstaes, Catherine; Eggers, Jens

    2016-06-01

    If a long air bubble is placed inside a vertical tube closed at the top it can rise by displacing the fluid above it. However, Bretherton found that if the tube radius, R, is smaller than a critical value Rc=0.918 ℓ_c , where ℓ_c=√{γ /ρ g} is the capillary length, there is no solution corresponding to steady rise. Experimentally, the bubble rise appears to have stopped altogether. Here we explain this observation by studying the unsteady bubble motion for Rbubble and the tube goes to zero in limit of large t like t^{-4/5} , leading to a rapid slow-down of the bubble's mean speed U ∝ t^{-2} . As a result, the total bubble rise in infinite time remains very small, giving the appearance of arrested motion.

  15. Scale dependence of entrainment-mixing mechanisms in cumulus clouds

    DOE PAGES

    Lu, Chunsong; Liu, Yangang; Niu, Shengjie; Endo, Satoshi

    2014-12-17

    This work empirically examines the dependence of entrainment-mixing mechanisms on the averaging scale in cumulus clouds using in situ aircraft observations during the Routine Atmospheric Radiation Measurement Aerial Facility Clouds with Low Optical Water Depths Optical Radiative Observations (RACORO) field campaign. A new measure of homogeneous mixing degree is defined that can encompass all types of mixing mechanisms. Analysis of the dependence of the homogenous mixing degree on the averaging scale shows that, on average, the homogenous mixing degree decreases with increasing averaging scales, suggesting that apparent mixing mechanisms gradually approach from homogeneous mixing to extreme inhomogeneous mixing with increasingmore » scales. The scale dependence can be well quantified by an exponential function, providing first attempt at developing a scale-dependent parameterization for the entrainment-mixing mechanism. The influences of three factors on the scale dependence are further examined: droplet-free filament properties (size and fraction), microphysical properties (mean volume radius and liquid water content of cloud droplet size distributions adjacent to droplet-free filaments), and relative humidity of entrained dry air. It is found that the decreasing rate of homogeneous mixing degree with increasing averaging scales becomes larger with larger droplet-free filament size and fraction, larger mean volume radius and liquid water content, or higher relative humidity. The results underscore the necessity and possibility of considering averaging scale in representation of entrainment-mixing processes in atmospheric models.« less

  16. Scale dependence of entrainment-mixing mechanisms in cumulus clouds

    SciTech Connect

    Lu, Chunsong; Liu, Yangang; Niu, Shengjie; Endo, Satoshi

    2014-12-17

    This work empirically examines the dependence of entrainment-mixing mechanisms on the averaging scale in cumulus clouds using in situ aircraft observations during the Routine Atmospheric Radiation Measurement Aerial Facility Clouds with Low Optical Water Depths Optical Radiative Observations (RACORO) field campaign. A new measure of homogeneous mixing degree is defined that can encompass all types of mixing mechanisms. Analysis of the dependence of the homogenous mixing degree on the averaging scale shows that, on average, the homogenous mixing degree decreases with increasing averaging scales, suggesting that apparent mixing mechanisms gradually approach from homogeneous mixing to extreme inhomogeneous mixing with increasing scales. The scale dependence can be well quantified by an exponential function, providing first attempt at developing a scale-dependent parameterization for the entrainment-mixing mechanism. The influences of three factors on the scale dependence are further examined: droplet-free filament properties (size and fraction), microphysical properties (mean volume radius and liquid water content of cloud droplet size distributions adjacent to droplet-free filaments), and relative humidity of entrained dry air. It is found that the decreasing rate of homogeneous mixing degree with increasing averaging scales becomes larger with larger droplet-free filament size and fraction, larger mean volume radius and liquid water content, or higher relative humidity. The results underscore the necessity and possibility of considering averaging scale in representation of entrainment-mixing processes in atmospheric models.

  17. Void fraction and bubble size in a simulated hydraulic jump

    NASA Astrophysics Data System (ADS)

    Witt, Adam; Gulliver, John; Shen, Lian

    2013-11-01

    Two- and three-dimensional numerical simulations of a hydraulic jump are carried out with the open source software package OpenFOAM using a Volume of Fluid numerical method and a realizable k- ɛ turbulence model. Time-averaged air-water properties are obtained over a 15 second sampling time. Void fraction profiles show good agreement with experimental values in the turbulent shear layer. Sauter mean diameter approaches experimental results in the turbulent shear layer, while showing grid dependence down to a uniform computational cell size of 0.625 mm. Three-dimensional results show a minor improvement in the prediction of entrained air compared to two-dimensional results at a multiple of 341 in increased computational time for the chosen grid. Relative error in bubble diameter is similar between two- and three-dimensional simulations. The results indicate a Volume of Fluid, realizable k- ɛ numerical model accurately predicts the void fraction profile when the Sauter mean diameter to grid size ratio surpasses 8. This research was supported by funding from the U.S. Department of Energy, the Hydro Research Foundation, the University of Minnesota and the University of Minnesota Supercomputing Institute.

  18. Bubble bath soap poisoning

    MedlinePlus

    ... medlineplus.gov/ency/article/002762.htm Bubble bath soap poisoning To use the sharing features on this page, please enable JavaScript. Bubble bath soap poisoning occurs when someone swallows bubble bath soap. ...

  19. The Entrainment Interface Layer of Stratocumulus-topped Boundary Layers

    NASA Astrophysics Data System (ADS)

    Krueger, S.; Hill, S.

    2010-09-01

    The entrainment interface layer (EIL) is the layer between cloud top and the free atmosphere. It contains mixtures of air from the cloud layer and the free atmosphere. In addition to turbulent mixing, phase changes and radiative heating or ccoling also affect the thermodynamic properties of air in the EIL. Eventually, air from the EIL is entrained into the cloud layer. How do processes in the EIL affect the entrainment rate? What is the structure of the EIL? Is cloud-top an interface (a region of high gradients), or simply an iso-surface? We are using airborne measuurements taken in the EIL during POST (Physics of Stratocumulus Top), which took place during July and August 2008 near Monterey, California, USA, to address these questions. High-rate measurements of temperature and liquid water content made just 0.5 m apart allow us to perform a high-resolution analysis of a conserved variable (liquid water potential temperature). When combined with lower-rate measurements of water vapor, they also allow us to perform a mixture fraction analysis following vanZanten and Duynkerke (2002).

  20. Crustal entrainment and pulsar glitches.

    PubMed

    Chamel, N

    2013-01-01

    Large pulsar frequency glitches are generally interpreted as sudden transfers of angular momentum between the neutron superfluid permeating the inner crust and the rest of the star. Despite the absence of viscous drag, the neutron superfluid is strongly coupled to the crust due to nondissipative entrainment effects. These effects are shown to severely limit the maximum amount of angular momentum that can possibly be transferred during glitches. In particular, it is found that the glitches observed in the Vela pulsar require an additional reservoir of angular momentum.

  1. Crustal entrainment and pulsar glitches.

    PubMed

    Chamel, N

    2013-01-01

    Large pulsar frequency glitches are generally interpreted as sudden transfers of angular momentum between the neutron superfluid permeating the inner crust and the rest of the star. Despite the absence of viscous drag, the neutron superfluid is strongly coupled to the crust due to nondissipative entrainment effects. These effects are shown to severely limit the maximum amount of angular momentum that can possibly be transferred during glitches. In particular, it is found that the glitches observed in the Vela pulsar require an additional reservoir of angular momentum. PMID:23383772

  2. Particle-bubble interaction inside a Hele-Shaw cell

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Mines, John M.; Lee, Sungyon; Jung, Sunghwan

    2016-08-01

    Hydrodynamic interactions between air bubbles and particles have wide applications in multiphase separation and reaction processes. In the present work, we explore the fundamental mechanism of such complex processes by studying the collision of a single bubble with a fixed solid particle inside a Hele-Shaw cell. Physical experiments show that an air bubble either splits or slides around the particle depending on the initial transverse distance between the bubble and particle centroids. An air bubble splits into two daughter bubbles at small transverse distances, and slides around the particle at large distances. In order to predict the critical transverse distance that separates these two behaviors, we also develop a theoretical model by estimating the rate of the bubble volume transfer from one side of the particle to the other based on Darcy's law, which is in good agreement with experiments.

  3. Particle-bubble interaction inside a Hele-Shaw cell.

    PubMed

    Zhang, Peng; Mines, John M; Lee, Sungyon; Jung, Sunghwan

    2016-08-01

    Hydrodynamic interactions between air bubbles and particles have wide applications in multiphase separation and reaction processes. In the present work, we explore the fundamental mechanism of such complex processes by studying the collision of a single bubble with a fixed solid particle inside a Hele-Shaw cell. Physical experiments show that an air bubble either splits or slides around the particle depending on the initial transverse distance between the bubble and particle centroids. An air bubble splits into two daughter bubbles at small transverse distances, and slides around the particle at large distances. In order to predict the critical transverse distance that separates these two behaviors, we also develop a theoretical model by estimating the rate of the bubble volume transfer from one side of the particle to the other based on Darcy's law, which is in good agreement with experiments. PMID:27627397

  4. Phase sensitivity analysis of circadian rhythm entrainment.

    PubMed

    Gunawan, Rudiyanto; Doyle, Francis J

    2007-04-01

    As a biological clock, circadian rhythms evolve to accomplish a stable (robust) entrainment to environmental cycles, of which light is the most obvious. The mechanism of photic entrainment is not known, but two models of entrainment have been proposed based on whether light has a continuous (parametric) or discrete (nonparametric) effect on the circadian pacemaker. A novel sensitivity analysis is developed to study the circadian entrainment in silico based on a limit cycle approach and applied to a model of Drosophila circadian rhythm. The comparative analyses of complete and skeleton photoperiods suggest a trade-off between the contribution of period modulation (parametric effect) and phase shift (nonparametric effect) in Drosophila circadian entrainment. The results also give suggestions for an experimental study to (in)validate the two models of entrainment.

  5. Nonlinear ultrasonic waves in bubbly liquids with nonhomogeneous bubble distribution: Numerical experiments.

    PubMed

    Vanhille, Christian; Campos-Pozuelo, Cleofé

    2009-06-01

    This paper deals with the nonlinear propagation of ultrasonic waves in mixtures of air bubbles in water, but for which the bubble distribution is nonhomogeneous. The problem is modelled by means of a set of differential equations which describes the coupling of the acoustic field and bubbles vibration, and solved in the time domain via the use and adaptation of the SNOW-BL code. The attenuation and nonlinear effects are assumed to be due to the bubbles exclusively. The nonhomogeneity of the bubble distribution is introduced by the presence of bubble layers (or clouds) which can act as acoustic screens, and alters the behaviour of the ultrasonic waves. The effect of the spatial distribution of bubbles on the nonlinearity of the acoustic field is analyzed. Depending on the bubble density, dimension, shape, and position of the layers, its effects on the acoustic field change. Effects such as shielding and resonance of the bubbly layers are especially studied. The numerical experiments are carried out in two configurations: linear and nonlinear, i.e. for low and high excitation pressure amplitude, respectively, and the features of the phenomenon are compared. The parameters of the medium are chosen such as to reproduce air bubbly water involved in the stable cavitation process.

  6. Visualization studies of a freon-113 bubble condensing in water

    SciTech Connect

    Kalman, H.; Ullmann, A.; Letan, R. )

    1987-05-01

    Several visualization methods have been applied in studies of organic bubbles condensing in water. The results, although qualitative in nature, have furnished an insight into the physical phenomena governing the process. Shadow graphing of the collapsing bubbles has outlined the thermal surroundings of the bubble. Shadowgraphs of a freon-113 bubble recorded in sequence have illustrated the formation of a thermal layer around the injected bubble. The shadowgraphing has reflected the density gradients, i.e., the temperature field, but it has also led to an understanding of the flow phenomena around the bubble. It was almost obvious that the thermal boundary layer and the wake, related also to a viscous boundary layer and a viscous wake, respectively. The thermal shedding of the wake, and further the envelopment of the bubble by the thermal cloud, were understood to correspond to the flow of the water surrounding the bubble. However, all that still remained to be experimentally proved by methods directly related to flow visualization. That goal was achieved by photographing the entrainment of colored water in the wake of a rising freon-113 bubble. These photographs complemented the shadowgraphs previously recorded and qualitatively proved that the thermal phenomena corresponded to the viscous flow.

  7. Light scattering by bubbles in a bubble chamber.

    PubMed

    Withrington, R J

    1968-01-01

    A discussion of the angular scattering expected from small bubbles in liquids of refractive indices 1.1 and 1.025 is given ogether with the inverse, i.e., of small spheres of the liquids in air. The similarities between the two scattering functions are compared with a view to the simulation of bubble chamber tracks using readily available materials. Fraunhofer scattering is significant on axis while larger angle scattering is geometrical. Some experimental verification of the scattering functions is also reported.

  8. Fluid dynamics of pressurized, entrained coal gasifiers. Technical progress report, April 1, 1995--June 30, 1995

    SciTech Connect

    Louge, M.Y.

    1995-10-01

    A study of the fluid dynamics of Pressurized Entrained Coal Gasifiers (PECGs) is being conducted. The idea is to simulate the flows in generic industrial PECGs using dimensional simulitude. A unique entrained gas-solid flow facility with the flexibility to recycle rather than discard gases other than air has been utilized. By matching five dimensionaless parameters, suspensions in mixtures of helium, carbon dioxide and sulfur hexafluoride simulate the effects of pressure and scale-up on the fluid dynamics of PECGs.

  9. Cavitation bubble behavior and bubble-shock wave interaction near a gelatin surface as a study of in vivo bubble dynamics

    NASA Astrophysics Data System (ADS)

    Kodama, T.; Tomita, Y.

    The collapse of a single cavitation bubble near a gelatin surface, and the interaction of an air bubble attached to a gelatin surface with a shock wave, were investigated. These events permitted the study of the behavior of in vivo cavitation bubbles and the subsequent tissue damage mechanism during intraocular surgery, intracorporeal and extracorporeal shock wave lithotripsy. Results were obtained with high-speed framing photography. The cavitation bubbles near the gelatin surface did not produce significant liquid jets directed at the surface, and tended to migrate away from it. The period of the motion of a cavitation bubble near the gelatin surface was longer than that of twice the Rayleigh's collapse time for a wide range of relative distance, L/Rmax, excepting for very small L/Rmax values (L was the stand-off distance between the gelatin surface and the laser focus position, and Rmax was the maximum bubble radius). The interaction of an air bubble with a shock wave yielded a liquid jet inside the bubble, penetrating into the gelatin surface. The liquid jet had the potential to damage the gelatin. The results predicted that cavitation-bubble-induced tissue damage was closely related to the oscillatory bubble motion, the subsequent mechanical tissue displacement, and the liquid jet penetration generated by the interaction of the remaining gas bubbles with subsequent shock waves. The characteristic bubble motion and liquid jet formation depended on the tissue's mechanical properties, resulting in different damage mechanisms from those observed on hard materials.

  10. Partial entrainment of gravel bars during floods

    USGS Publications Warehouse

    Konrad, C.P.; Booth, D.B.; Burges, S.J.; Montgomery, D.R.

    2002-01-01

    Spatial patterns of bed material entrainment by floods were documented at seven gravel bars using arrays of metal washers (bed tags) placed in the streambed. The observed patterns were used to test a general stochastic model that bed material entrainment is a spatially independent, random process where the probability of entrainment is uniform over a gravel bar and a function of the peak dimensionless shear stress ??*0 of the flood. The fraction of tags missing from a gravel bar during a flood, or partial entrainment, had an approximately normal distribution with respect to ??*0 with a mean value (50% of the tags entrained) of 0.085 and standard deviation of 0.022 (root-mean-square error of 0.09). Variation in partial entrainment for a given ??*0 demonstrated the effects of flow conditioning on bed strength, with lower values of partial entrainment after intermediate magnitude floods (0.065 < ??*0 < 0.08) than after higher magnitude floods. Although the probability of bed material entrainment was approximately uniform over a gravel bar during individual floods and independent from flood to flood, regions of preferential stability and instability emerged at some bars over the course of a wet season. Deviations from spatially uniform and independent bed material entrainment were most pronounced for reaches with varied flow and in consecutive floods with small to intermediate magnitudes.

  11. Optimal entrainment of heterogeneous noisy neurons

    PubMed Central

    Wilson, Dan; Holt, Abbey B.; Netoff, Theoden I.; Moehlis, Jeff

    2015-01-01

    We develop a methodology to design a stimulus optimized to entrain nonlinear, noisy limit cycle oscillators with uncertain properties. Conditions are derived which guarantee that the stimulus will entrain the oscillators despite these uncertainties. Using these conditions, we develop an energy optimal control strategy to design an efficient entraining stimulus and apply it to numerical models of noisy phase oscillators and to in vitro hippocampal neurons. In both instances, the optimal stimuli outperform other similar but suboptimal entraining stimuli. Because this control strategy explicitly accounts for both noise and inherent uncertainty of model parameters, it could have experimental relevance to neural circuits where robust spike timing plays an important role. PMID:26074762

  12. Single Bubble Sonoluminescence

    NASA Astrophysics Data System (ADS)

    Farley, Jennifer; Hough, Shane

    2003-05-01

    Single Bubble Sonoluminescence is the emission of light from a single bubble suspended in a liquid caused by a continuum of repeated implosions due to pressure waves generated from a maintained ultrasonic sinusoidal wave source. H. Frenzel and H. Schultz first studied it in 1934 at the University of Cologne. It was not until 1988 with D.F. Gaitan that actual research began with single bubble sonoluminescence. Currently many theories exist attempting to explain the observed bubble phenomenon. Many of these theories require spherical behavior of the bubble. Observation of the bubble has shown that the bubble does not behave spherically in most cases. One explanation for this is known as jet theory. A spectrum of the bubble will give us the mean physical properties of the bubble such as temperature and pressure inside the bubble. Eventually, with the aide of fluorocene dye a full spectrum of the bubble will be obtained.

  13. Entrainment instability and vertical motion as causes of stratocumulus breakup

    NASA Technical Reports Server (NTRS)

    Weaver, C. J.; Pearson, R., Jr.

    1990-01-01

    Entrainment instability is thought to be a cause of stratocumulus breakup. At the interface between the cloud and the overlying air, mixtures may form which are negatively buoyant because of cloud droplet evaporation. Quantities devised to predict breakup are obtained from aircraft observations and are tested against cloud observations from satellite. Often, the parameters indicate that breakup should occur but the clouds remain, sometimes for several days. One possible explanation for breakup is vertical motion from passing synoptic cyclones. Several cases suggest that breakup is associated with the downward vertical motion from the cold air advected behind an eastward moving cyclone.

  14. Influence of characteristics of micro-bubble clouds on backscatter lidar signal.

    PubMed

    Li, Wei; Yang, Kecheng; Xia, Min; Rao, Jionghui; Zhang, Wei

    2009-09-28

    Marine micro-bubbles are one of those important constituents that influence scattering characteristics of water column. Monte Carlo Based simulations show that a water entrained bubble cloud generate a characteristic backscatter of incident laser light [M. Xia, J. Opt. A: Pure Appl. Opt. 8, 350 (2006)]. This characteristic can be used to detect and localize bubble clouds, leading to wide ranging applications, especially in optical remote sensing. This paper describes tests of an underwater lidar system applied to detecting cloud of micro-bubbles. Laboratory experiments demonstrate that the system is capable of detecting bubbles ranging from diameter 10 microm approximately 200 microm, over a distance of 7-12 m from the detector. The dependence of the lidar return signal on size distribution of bubbles, concentration, thickness and location of bubble clouds is studied and compared with simulation results.

  15. Influence of characteristics of micro-bubble clouds on backscatter lidar signal.

    PubMed

    Li, Wei; Yang, Kecheng; Xia, Min; Rao, Jionghui; Zhang, Wei

    2009-09-28

    Marine micro-bubbles are one of those important constituents that influence scattering characteristics of water column. Monte Carlo Based simulations show that a water entrained bubble cloud generate a characteristic backscatter of incident laser light [M. Xia, J. Opt. A: Pure Appl. Opt. 8, 350 (2006)]. This characteristic can be used to detect and localize bubble clouds, leading to wide ranging applications, especially in optical remote sensing. This paper describes tests of an underwater lidar system applied to detecting cloud of micro-bubbles. Laboratory experiments demonstrate that the system is capable of detecting bubbles ranging from diameter 10 microm approximately 200 microm, over a distance of 7-12 m from the detector. The dependence of the lidar return signal on size distribution of bubbles, concentration, thickness and location of bubble clouds is studied and compared with simulation results. PMID:19907564

  16. Quantifying entrainment in pyroclastic density currents from the Tungurahua eruption, Ecuador: Integrating field proxies with numerical simulations

    NASA Astrophysics Data System (ADS)

    Benage, M. C.; Dufek, J.; Mothes, P. A.

    2016-07-01

    The entrainment of air into pyroclastic density currents (PDCs) impacts the dynamics and thermal history of these highly mobile currents. However, direct measurement of entrainment in PDCs is hampered due to hazardous conditions and opaqueness of these flows. We combine three-dimensional multiphase Eulerian-Eulerian-Lagrangian calculations with proxies of thermal conditions preserved in deposits to quantify air entrainment in PDCs at Tungurahua volcano, Ecuador. We conclude that small-volume PDCs develop a particle concentration gradient that results in disparate thermal characteristics for the concentrated bed load (>600 to ~800 K) and the overlying dilute suspended load (~300-600 K). The dilute suspended load has effective entrainment coefficients 2-3 times larger than the bed load. This investigation reveals a dichotomy in entrainment and thermal history between two regions in the current and provides a mechanism to interpret the depositional thermal characteristics of small-volume but frequently occurring PDCs.

  17. Bubble formation in additive manufacturing of glass

    NASA Astrophysics Data System (ADS)

    Luo, Junjie; Gilbert, Luke J.; Peters, Daniel C.; Bristow, Douglas A.; Landers, Robert G.; Goldstein, Jonathan T.; Urbas, Augustine M.; Kinzel, Edward C.

    2016-05-01

    Bubble formation is a common problem in glass manufacturing. The spatial density of bubbles in a piece of glass is a key limiting factor to the optical quality of the glass. Bubble formation is also a common problem in additive manufacturing, leading to anisotropic material properties. In glass Additive Manufacturing (AM) two separate types of bubbles have been observed: a foam layer caused by the reboil of the glass melt and a periodic pattern of bubbles which appears to be unique to glass additive manufacturing. This paper presents a series of studies to relate the periodicity of bubble formation to part scan speed, laser power, and filament feed rate. These experiments suggest that bubbles are formed by the reboil phenomena why periodic bubbles result from air being trapped between the glass filament and the substrate. Reboil can be detected using spectroscopy and avoided by minimizing the laser power while periodic bubbles can be avoided by a two-step laser melting process to first establish good contact between the filament and substrate before reflowing the track with higher laser power.

  18. Observational constraints on entrainment in stratocumulus

    NASA Astrophysics Data System (ADS)

    Chuang, P. Y.; Carman, J. K.; Rossiter, D. L.; Khelif, D.; Jonsson, H.; Faloona, I. C.

    2012-12-01

    Aircraft sampling of the stratocumulus-topped boundary layer (STBL) during the Physics of Stratocumulus Top (POST) experiment was primarily achieved using sawtooth flight patterns, during which the atmospheric layer 100 m above and below cloud top was sampled at a frequency of once every 2 min. The large data set that resulted from each of the 16 flights document the complex vertical structure and variability of this interfacial region. In this study, we utilize the POST data to shed light on and constrain processes relevant to entrainment. We define "entrainment efficiency" as the ratio of the turbulent kinetic energy consumed by entrainment to that generated within the STBL (primarily by cloud-top cooling). We find values for the entrainment efficiency that vary by 1.5 orders of magnitude, which is even greater than the one order-of-magnitude that previous modeling results have suggested. Our analysis also demonstrates that the entrainment efficiency depends on the strength of the stratification across the entrainment interface layer, but not on the strength of turbulence in the cloud top region. The relationships between entrainment efficiency and other STBL parameters serve as novel observational contraints for simulations of entrainment in such systems.

  19. Acoustic bubble removal method

    NASA Technical Reports Server (NTRS)

    Trinh, E. H.; Elleman, D. D.; Wang, T. G. (Inventor)

    1983-01-01

    A method is described for removing bubbles from a liquid bath such as a bath of molten glass to be used for optical elements. Larger bubbles are first removed by applying acoustic energy resonant to a bath dimension to drive the larger bubbles toward a pressure well where the bubbles can coalesce and then be more easily removed. Thereafter, submillimeter bubbles are removed by applying acoustic energy of frequencies resonant to the small bubbles to oscillate them and thereby stir liquid immediately about the bubbles to facilitate their breakup and absorption into the liquid.

  20. Period-adding bifurcations and chaos in a bubble column.

    PubMed

    Piassi, Viviane S M; Tufaile, Alberto; Sartorelli, Jose Carlos

    2004-06-01

    We obtained period-adding bifurcations in a bubble formation experiment. Using the air flow rate as the control parameter in this experiment, the bubble emission from the nozzle in a viscous fluid undergoes from single bubbling to a sequence of periodic bifurcations of k to k+1 periods, occasionally interspersed with some chaotic regions. Our main assumption is that this period-adding bifurcation in bubble formation depends on flow rate variations in the chamber under the nozzle. This assumption was experimentally tested by placing a tube between the air reservoir and the chamber under the nozzle in the bubble column experiment. By increasing the tube length, more period-adding bifurcations were observed. We associated two main types of bubble growth to the flow rate fluctuations inside the chamber for different bubbling regimes. We also studied the properties of piecewise nonlinear maps obtained from the experimental reconstructed attractors, and we concluded that this experiment is a spatially extended system.

  1. Size limits the formation of liquid jets during bubble bursting

    PubMed Central

    Lee, Ji San; Weon, Byung Mook; Park, Su Ji; Je, Jung Ho; Fezzaa, Kamel; Lee, Wah-Keat

    2011-01-01

    A bubble reaching an air–liquid interface usually bursts and forms a liquid jet. Jetting is relevant to climate and health as it is a source of aerosol droplets from breaking waves. Jetting has been observed for large bubbles with radii of R≫100 μm. However, few studies have been devoted to small bubbles (R<100 μm) despite the entrainment of a large number of such bubbles in sea water. Here we show that jet formation is inhibited by bubble size; a jet is not formed during bursting for bubbles smaller than a critical size. Using ultrafast X-ray and optical imaging methods, we build a phase diagram for jetting and the absence of jetting. Our results demonstrate that jetting in bubble bursting is analogous to pinching-off in liquid coalescence. The coalescence mechanism for bubble bursting may be useful in preventing jet formation in industry and improving climate models concerning aerosol production. PMID:21694715

  2. Calibration of a bubble evolution model to observed bubble incidence in divers.

    PubMed

    Gault, K A; Tikuisis, P; Nishi, R Y

    1995-09-01

    The method of maximum likelihood was used to calibrate a probabilistic bubble evolution model against data of bubbles detected in divers. These data were obtained from a diverse set of 2,064 chamber man-dives involving air and heliox with and without oxygen decompression. Bubbles were measured with Doppler ultrasound and graded according to the Kisman-Masurel code from which a single maximum bubble grade (BG) per diver was compared to the maximum bubble radius (Rmax) predicted by the model. This comparison was accomplished using multinomial statistics by relating BG to Rmax through a series of probability functions. The model predicted the formation of the bubble according to the critical radius concept and its evolution was predicted by assuming a linear rate of inert gas exchange across the bubble boundary. Gas exchange between the model compartment and blood was assumed to be perfusion-limited. The most successful calibration of the model was found using a trinomial grouping of BG according to no bubbles, low, and high bubble activity, and by assuming a single tissue compartment. Parameter estimations converge to a tissue volume of 0.00036 cm3, a surface tension of 5.0 dyne.cm-1, respective time constants of 27.9 and 9.3 min for nitrogen and helium, and respective Ostwald tissue solubilities of 0.0438 and 0.0096. Although not part of the calibration algorithm, the predicted evolution of bubble size compares reasonably well with the temporal recordings of BGs.

  3. The entrainment rate for a row of turbulent jets. M.S. Thesis Final Report

    NASA Technical Reports Server (NTRS)

    Gordon, Eliott B.; Greber, Isaac

    1990-01-01

    Entrainment rates for a row of isothermal circular air jets issuing into a quiescent environment are found by integrating velocity distributions measured by a linearized hot-wire anemometer. Jet spacing to jet diameter ratios of 2.5, 5, 10, and 20 are studied at jet Reynold's numbers ranging from 5110 to 12070. Velocity distributions are determined at regular downstream intervals at axial distances equal to 16.4 to 164 jet diameters from the jet source. The entrainment rates for the four spacing configurations vary monotonically with increasing spacing/diameter between the limiting case of the slot jet entrainment rate (where the jet spacing to diameter ratio is zero) and the circular jet entrainment rate (in which the spacing to diameter ratio is infinity).

  4. Leaping shampoo glides on a lubricating air layer

    NASA Astrophysics Data System (ADS)

    Lee, S.; Li, E. Q.; Marston, J. O.; Bonito, A.; Thoroddsen, S. T.

    2013-06-01

    When a stream of shampoo is fed onto a pool in one's hand, a jet can leap sideways or rebound from the liquid surface in an intriguing phenomenon known as the Kaye effect. Earlier studies have debated whether non-Newtonian effects are the underlying cause of this phenomenon, making the jet glide on top of a shear-thinning liquid layer, or whether an entrained air layer is responsible. Herein we show unambiguously that the jet slides on a lubricating air layer. We identify this layer by looking through the pool liquid and observing its rupture into fine bubbles. The resulting microbubble sizes suggest this air layer is of submicron thickness. This thickness estimate is also supported by the tangential deceleration of the jet during the rebounding.

  5. Leaping shampoo glides on a lubricating air layer.

    PubMed

    Lee, S; Li, E Q; Marston, J O; Bonito, A; Thoroddsen, S T

    2013-06-01

    When a stream of shampoo is fed onto a pool in one's hand, a jet can leap sideways or rebound from the liquid surface in an intriguing phenomenon known as the Kaye effect. Earlier studies have debated whether non-Newtonian effects are the underlying cause of this phenomenon, making the jet glide on top of a shear-thinning liquid layer, or whether an entrained air layer is responsible. Herein we show unambiguously that the jet slides on a lubricating air layer. We identify this layer by looking through the pool liquid and observing its rupture into fine bubbles. The resulting microbubble sizes suggest this air layer is of submicron thickness. This thickness estimate is also supported by the tangential deceleration of the jet during the rebounding.

  6. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  7. The interaction of positive streamers with bubbles floating on a liquid surface

    NASA Astrophysics Data System (ADS)

    Akishev, Yu; Arefi-Khonsari, F.; Demir, A.; Grushin, M.; Karalnik, V.; Petryakov, A.; Trushkin, N.

    2015-12-01

    This paper reports the results of a preliminary investigation on the interaction of a streamer discharge in air with bubbles filled with air and floating on a liquid surface. The bubbles are formed of tap water and transformer oil. It was shown that the strike of the streamer in a bubble is followed by the full bubble destroying. However, scenarios of the streamer discharge interaction with a conductive water bubble and dielectric oil bubble are different in their concrete details. A positive streamer smoothly and slowly slides on an external surface of a water bubble, but the streamer striking in an oil bubble quickly perforates it and penetrates into the bubble. The mechanisms for water and oil bubble destroying are discussed. The applicability of the results obtained to plasma-liquid systems based on the use of foam is discussed as well.

  8. Critical angle refractometry and sizing of bubble clouds.

    PubMed

    Onofri, Fabrice; Krysiek, Mariusz; Mroczka, Janusz

    2007-07-15

    The principle of the critical angle refractometry and sizing technique is extended to characterize the size distribution and the mean refractive index of clouds of bubbles. For a log-normal bubble-size distribution, simulations show that the mean size, the relative width of the size distribution, and the mean refractive index of the bubbles have a particular and easily identified influence on the critical scattering patterns. Preliminary experimental results on air bubble/water flows clearly demonstrate the potential and robustness of this new technique for bubbly flow characterization.

  9. Temperature compensation and entrainment in circadian rhythms

    NASA Astrophysics Data System (ADS)

    Bodenstein, C.; Heiland, I.; Schuster, S.

    2012-06-01

    To anticipate daily variations in the environment and coordinate biological activities into a daily cycle many organisms possess a circadian clock. In the absence of external time cues the circadian rhythm persists with a period of approximately 24 h. The clock phase can be shifted by single pulses of light, darkness, chemicals, or temperature and this allows entrainment of the clock to exactly 24 h by cycles of these zeitgebers. On the other hand, the period of the circadian rhythm is kept relatively constant within a physiological range of constant temperatures, which means that the oscillator is temperature compensated. The mechanisms behind temperature compensation and temperature entrainment are not fully understood, neither biochemically nor mathematically. Here, we theoretically investigate the interplay of temperature compensation and entrainment in general oscillatory systems. We first give an analytical treatment for small temperature shifts and derive that every temperature-compensated oscillator is entrainable to external small-amplitude temperature cycles. Temperature compensation ensures that this entrainment region is always centered at the endogenous period regardless of possible seasonal temperature differences. Moreover, for small temperature cycles the entrainment region of the oscillator is potentially larger for rectangular pulses. For large temperature shifts we numerically analyze different circadian clock models proposed in the literature with respect to these properties. We observe that for such large temperature shifts sinusoidal or gradual temperature cycles allow a larger entrainment region than rectangular cycles.

  10. Process of entrainment in particulate gravity currents

    NASA Astrophysics Data System (ADS)

    Shringarpure, Mrugesh; Salinas, Jorge; Cantero, Mariano; Balachandar, S.

    2014-11-01

    Various geophysical flows like turbidity currents, river flows, dust storms etc transport huge quantities of dispersed phase over large distances. Typically in such flows a dispersed phase rich layer is swept along with the flow. The amount of dispersed phase carried depends on the dynamics of this layer which are governed by a strong coupling between turbulence and suspended particles. This layer evolves, i.e., grows/shrinks in size, due to entrainment/detrainment of surrounding clear fluid at its interface (where a sharp change from particle rich fluid to surrounding clear fluid occurs). Also in many applications there is entrainment and detainment of particles at the bottom boundary due to settling and resuspension. The entrainment processes that occur here have important consequences. Consistent entrainment means the flow is energetic enough to mix/distribute the dispersed phase layer in the bulk flow. To study these processes, we introduce a layer of suspended particles into a fully turbulent channel flow and capture the entrainment processes in detail. Three parameters - Reynolds number, particle size and Richardson number dictate the entrainment process. Various simulations have been performed that explores this parametric space and identifies various entrainment regimes. We acknowledge support from US NSF through Grant OISE 0968313 and OCE 1131016.

  11. Entrainment rates and microphysics in POST stratocumulus

    NASA Astrophysics Data System (ADS)

    Gerber, H.; Frick, G.; Malinowski, Szymon P.; Jonsson, H.; Khelif, D.; Krueger, Steven K.

    2013-11-01

    An aircraft field study (POST; Physics of Stratocumulus Top) was conducted off the central California coast in July and August 2008 to deal with the known difficulty of measuring entrainment rates in the radiatively important stratocumulus (Sc) prevalent in that area. The Center for Interdisciplinary Remotely-Piloted Aircraft Studies Twin Otter research aircraft flew 15 quasi-Lagrangian flights in unbroken Sc and carried a full complement of probes including three high-data-rate probes: ultrafast temperature probe, particulate volume monitor probe, and gust probe. The probes' colocation near the nose of the Twin Otter permitted estimation of entrainment fluxes and rates with an in-cloud resolution of 1 m. Results include the following: Application of the conditional sampling variation of classical mixed layer theory for calculating the entrainment rate into cloud top for POST flights is shown to be inadequate for most of the Sc. Estimated rates resemble previous results after theory is modified to take into account both entrainment and evaporation at cloud top given the strong wind shear and mixing at cloud top. Entrainment rates show a tendency to decrease for large shear values, and the largest rates are for the smallest temperature jumps across the inversion. Measurements indirectly suggest that entrained parcels are primarily cooled by infrared flux divergence rather than cooling from droplet evaporation, while detrainment at cloud top causes droplet evaporation and cooling in the entrainment interface layer above cloud top.

  12. Steady State Vapor Bubble in Pool Boiling.

    PubMed

    Zou, An; Chanana, Ashish; Agrawal, Amit; Wayner, Peter C; Maroo, Shalabh C

    2016-02-03

    Boiling, a dynamic and multiscale process, has been studied for several decades; however, a comprehensive understanding of the process is still lacking. The bubble ebullition cycle, which occurs over millisecond time-span, makes it extremely challenging to study near-surface interfacial characteristics of a single bubble. Here, we create a steady-state vapor bubble that can remain stable for hours in a pool of sub-cooled water using a femtosecond laser source. The stability of the bubble allows us to measure the contact-angle and perform in-situ imaging of the contact-line region and the microlayer, on hydrophilic and hydrophobic surfaces and in both degassed and regular (with dissolved air) water. The early growth stage of vapor bubble in degassed water shows a completely wetted bubble base with the microlayer, and the bubble does not depart from the surface due to reduced liquid pressure in the microlayer. Using experimental data and numerical simulations, we obtain permissible range of maximum heat transfer coefficient possible in nucleate boiling and the width of the evaporating layer in the contact-line region. This technique of creating and measuring fundamental characteristics of a stable vapor bubble will facilitate rational design of nanostructures for boiling enhancement and advance thermal management in electronics.

  13. Steady State Vapor Bubble in Pool Boiling

    NASA Astrophysics Data System (ADS)

    Zou, An; Chanana, Ashish; Agrawal, Amit; Wayner, Peter C.; Maroo, Shalabh C.

    2016-02-01

    Boiling, a dynamic and multiscale process, has been studied for several decades; however, a comprehensive understanding of the process is still lacking. The bubble ebullition cycle, which occurs over millisecond time-span, makes it extremely challenging to study near-surface interfacial characteristics of a single bubble. Here, we create a steady-state vapor bubble that can remain stable for hours in a pool of sub-cooled water using a femtosecond laser source. The stability of the bubble allows us to measure the contact-angle and perform in-situ imaging of the contact-line region and the microlayer, on hydrophilic and hydrophobic surfaces and in both degassed and regular (with dissolved air) water. The early growth stage of vapor bubble in degassed water shows a completely wetted bubble base with the microlayer, and the bubble does not depart from the surface due to reduced liquid pressure in the microlayer. Using experimental data and numerical simulations, we obtain permissible range of maximum heat transfer coefficient possible in nucleate boiling and the width of the evaporating layer in the contact-line region. This technique of creating and measuring fundamental characteristics of a stable vapor bubble will facilitate rational design of nanostructures for boiling enhancement and advance thermal management in electronics.

  14. Steady State Vapor Bubble in Pool Boiling

    PubMed Central

    Zou, An; Chanana, Ashish; Agrawal, Amit; Wayner, Peter C.; Maroo, Shalabh C.

    2016-01-01

    Boiling, a dynamic and multiscale process, has been studied for several decades; however, a comprehensive understanding of the process is still lacking. The bubble ebullition cycle, which occurs over millisecond time-span, makes it extremely challenging to study near-surface interfacial characteristics of a single bubble. Here, we create a steady-state vapor bubble that can remain stable for hours in a pool of sub-cooled water using a femtosecond laser source. The stability of the bubble allows us to measure the contact-angle and perform in-situ imaging of the contact-line region and the microlayer, on hydrophilic and hydrophobic surfaces and in both degassed and regular (with dissolved air) water. The early growth stage of vapor bubble in degassed water shows a completely wetted bubble base with the microlayer, and the bubble does not depart from the surface due to reduced liquid pressure in the microlayer. Using experimental data and numerical simulations, we obtain permissible range of maximum heat transfer coefficient possible in nucleate boiling and the width of the evaporating layer in the contact-line region. This technique of creating and measuring fundamental characteristics of a stable vapor bubble will facilitate rational design of nanostructures for boiling enhancement and advance thermal management in electronics. PMID:26837464

  15. Forces on ellipsoidal bubbles in a turbulent shear layer

    NASA Astrophysics Data System (ADS)

    Ford, Barry; Loth, Eric

    1998-01-01

    The objective of this research was to gain fundamental knowledge of the drag and lift forces on ellipsoidal air bubbles in water in a turbulent flow. This was accomplished by employing a cinematic two-phase particle image velocimetry (PIV) system to evaluate bubbly flow in a two-stream, turbulent, planar free shear layer of filtered tap water. Ellipsoidal air bubbles with nominal diameters from 1.5 to 4.5 mm were injected directly into the shear layer through a single slender tube. The cinematic PIV allowed for high resolution of the unsteady liquid velocity vector field. Triple-pulsed bubble images were obtained in a temporal sequence, such that the bubble size and bubble trajectory could be accurately determined. The bubble's oscillation characteristics, velocity, acceleration, and buoyancy force were obtained from the trajectory data. A bubble dynamic equation was then applied to allow determination of the time-evolving lift and drag forces acting upon bubbles within the shear layer. The results indicate that for a fixed bubble diameter (and fixed Bond and Morton numbers), the drag coefficient decreases for an increasing Reynolds number. This is fundamentally different than the increasing drag coefficient trend seen for ellipsoidal bubbles rising in quiescent baths for increasing diameter (and increasing Bond number), but is qualitatively consistent with the trend for spherical bubbles. A new empirical expression for the dependence of the drag coefficient on Reynolds number for air bubbles in tap water for both quiescent and turbulent flows is constructed herein. Finally, the instantaneous side forces measured in this study were dominated by the inherent deformation-induced vortex shedding of the bubble wake rather than the inviscid lift force based on the background fluid vorticity.

  16. Daughter bubble cascades produced by folding of ruptured thin films.

    PubMed

    Bird, James C; de Ruiter, Riëlle; Courbin, Laurent; Stone, Howard A

    2010-06-10

    Thin liquid films, such as soap bubbles, have been studied extensively for over a century because they are easily formed and mediate a wide range of transport processes in physics, chemistry and engineering. When a bubble on a liquid-gas or solid-gas interface (referred to herein as an interfacial bubble) ruptures, the general expectation is that the bubble vanishes. More precisely, the ruptured thin film is expected to retract rapidly until it becomes part of the interface, an event that typically occurs within milliseconds. The assumption that ruptured bubbles vanish is central to theories on foam evolution and relevant to health and climate because bubble rupture is a source for aerosol droplets. Here we show that for a large range of fluid parameters, interfacial bubbles can create numerous small bubbles when they rupture, rather than vanishing. We demonstrate, both experimentally and numerically, that the curved film of the ruptured bubble can fold and entrap air as it retracts. The resulting toroidal geometry of the trapped air is unstable, leading to the creation of a ring of smaller bubbles. The higher pressure associated with the higher curvature of the smaller bubbles increases the absorption of gas into the liquid, and increases the efficiency of rupture-induced aerosol dispersal.

  17. Daughter bubble cascades produced by folding of ruptured thin films.

    PubMed

    Bird, James C; de Ruiter, Riëlle; Courbin, Laurent; Stone, Howard A

    2010-06-10

    Thin liquid films, such as soap bubbles, have been studied extensively for over a century because they are easily formed and mediate a wide range of transport processes in physics, chemistry and engineering. When a bubble on a liquid-gas or solid-gas interface (referred to herein as an interfacial bubble) ruptures, the general expectation is that the bubble vanishes. More precisely, the ruptured thin film is expected to retract rapidly until it becomes part of the interface, an event that typically occurs within milliseconds. The assumption that ruptured bubbles vanish is central to theories on foam evolution and relevant to health and climate because bubble rupture is a source for aerosol droplets. Here we show that for a large range of fluid parameters, interfacial bubbles can create numerous small bubbles when they rupture, rather than vanishing. We demonstrate, both experimentally and numerically, that the curved film of the ruptured bubble can fold and entrap air as it retracts. The resulting toroidal geometry of the trapped air is unstable, leading to the creation of a ring of smaller bubbles. The higher pressure associated with the higher curvature of the smaller bubbles increases the absorption of gas into the liquid, and increases the efficiency of rupture-induced aerosol dispersal. PMID:20535206

  18. A Quantitative Investigation of Entrainment and Detrainment in Numerically Simulated Convective Clouds. Pt. 1; Model Development

    NASA Technical Reports Server (NTRS)

    Cohen, Charles

    1998-01-01

    A method is developed which uses numerical tracers to make accurate diagnoses of entraimnent and detrainment rates and of the properties of the entrained and detrained air in numerically simulated clouds. The numerical advection scheme is modified to make it nondispersive, as required by the use of the tracers. Tests of the new method are made, and an appropriate definition of clouds is selected. Distributions of mixing fractions in the model consistently show maximums at the end points, for nearly undilute environmental air or nearly undilute cloud air, with a uniform distribution between. The cumulonimbus clouds simulated here entrain air that had been substantially changed by the clouds, and detrained air that is not necessarily representative of the cloud air at the same level.

  19. How are soap bubbles blown? Fluid dynamics of soap bubble blowing

    NASA Astrophysics Data System (ADS)

    Davidson, John; Lambert, Lori; Sherman, Erica; Wei, Timothy; Ryu, Sangjin

    2013-11-01

    Soap bubbles are a common interfacial fluid dynamics phenomenon having a long history of delighting not only children and artists but also scientists. In contrast to the dynamics of liquid droplets in gas and gas bubbles in liquid, the dynamics of soap bubbles has not been well documented. This is possibly because studying soap bubbles is more challenging due to there existing two gas-liquid interfaces. Having the thin-film interface seems to alter the characteristics of the bubble/drop creation process since the interface has limiting factors such as thickness. Thus, the main objective of this study is to determine how the thin-film interface differentiates soap bubbles from gas bubbles and liquid drops. To investigate the creation process of soap bubbles, we constructed an experimental model consisting of air jet flow and a soap film, which consistently replicates the conditions that a human produces when blowing soap bubbles, and examined the interaction between the jet and the soap film using the high-speed videography and the particle image velocimetry.

  20. Washing of the AN-107 entrained solids

    SciTech Connect

    GJ Lumetta; FV Hoopes

    2000-03-31

    This report describes the results of a test conducted by Battelle to assess the effects of inhibited water washing on the composition of the entrained solids in the diluted AN-107 low-activity waste (LAW) sample. The objective of this work was to gather data on the solubility of the AN-107 entrained solids in 0.01 M NaOH, so that BNFL can evaluate whether these solids require caustic leaching.

  1. Influence of mass transfer on bubble plume hydrodynamics.

    PubMed

    Lima Neto, Iran E; Parente, Priscila A B

    2016-03-01

    This paper presents an integral model to evaluate the impact of gas transfer on the hydrodynamics of bubble plumes. The model is based on the Gaussian type self-similarity and functional relationships for the entrainment coefficient and factor of momentum amplification due to turbulence. The impact of mass transfer on bubble plume hydrodynamics is investigated considering different bubble sizes, gas flow rates and water depths. The results revealed a relevant impact when fine bubbles are considered, even for moderate water depths. Additionally, model simulations indicate that for weak bubble plumes (i.e., with relatively low flow rates and large depths and slip velocities), both dissolution and turbulence can affect plume hydrodynamics, which demonstrates the importance of taking the momentum amplification factor relationship into account. For deeper water conditions, simulations of bubble dissolution/decompression using the present model and classical models available in the literature resulted in a very good agreement for both aeration and oxygenation processes. Sensitivity analysis showed that the water depth, followed by the bubble size and the flow rate are the most important parameters that affect plume hydrodynamics. Lastly, dimensionless correlations are proposed to assess the impact of mass transfer on plume hydrodynamics, including both the aeration and oxygenation modes. PMID:26840001

  2. Soap Bubbles and Logic.

    ERIC Educational Resources Information Center

    Levine, Shellie-helane; And Others

    1986-01-01

    Introduces questions and activities involving soap bubbles which provide students with experiences in prediction and logic. Examines commonly held false conceptions related to the shapes that bubbles take and provides correct explanations for the phenomenon. (ML)

  3. Spherical bubble motion in a turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Felton, Keith; Loth, Eric

    2001-09-01

    Monodisperse dilute suspensions of spherical air bubbles in a tap-water turbulent vertical boundary layer were experimentally studied to note their motion and distribution. Bubbles with diameters of 0.37-1.2 mm were injected at various transverse wall-positions for free-stream velocities between 0.4 and 0.9 m/s. The bubbles were released from a single injector at very low frequencies such that two-way coupling and bubble-bubble interaction were negligible. The experimental diagnostics included ensemble-averaged planar laser intensity profiles for bubble concentration distribution, as well as Cinematic Particle Image Velocimetry with bubble tracking for bubble hydrodynamic forces. A variety of void distributions within the boundary layer were found. For example, there was a tendency for bubbles to collect along the wall for higher Stokes number conditions, while the lower Stokes number conditions produced Gaussian-type profiles throughout the boundary layer. In addition, three types of bubble trajectories were observed—sliding bubbles, bouncing bubbles, and free-dispersion bubbles. Instantaneous liquid forces acting on individual bubbles in the turbulent flow were also obtained to provide the drag and lift coefficients (with notable experimental uncertainty). These results indicate that drag coefficient decreases with increasing Reynolds number as is conventionally expected but variations were observed. In general, the instantaneous drag coefficient (for constant bubble Reynolds number) tended to be reduced as the turbulence intensity increased. The averaged lift coefficient is higher than that given by inviscid theory (and sometimes even that of creeping flow theory) and tends to decrease with increasing bubble Reynolds number.

  4. Coupling governs entrainment range of circadian clocks

    PubMed Central

    Abraham, Ute; Granada, Adrián E; Westermark, Pål O; Heine, Markus; Kramer, Achim; Herzel, Hanspeter

    2010-01-01

    Circadian clocks are endogenous oscillators driving daily rhythms in physiology and behavior. Synchronization of these timers to environmental light–dark cycles (‘entrainment') is crucial for an organism's fitness. Little is known about which oscillator qualities determine entrainment, i.e., entrainment range, phase and amplitude. In a systematic theoretical and experimental study, we uncovered these qualities for circadian oscillators in the suprachiasmatic nucleus (SCN—the master clock in mammals) and the lung (a peripheral clock): (i) the ratio between stimulus (zeitgeber) strength and oscillator amplitude and (ii) the rigidity of the oscillatory system (relaxation rate upon perturbation) determine entrainment properties. Coupling among oscillators affects both qualities resulting in increased amplitude and rigidity. These principles explain our experimental findings that lung clocks entrain to extreme zeitgeber cycles, whereas SCN clocks do not. We confirmed our theoretical predictions by showing that pharmacological inhibition of coupling in the SCN leads to larger ranges of entrainment. These differences between master and the peripheral clocks suggest that coupling-induced rigidity in the SCN filters environmental noise to create a robust circadian system. PMID:21119632

  5. Tuning the phase of circadian entrainment

    PubMed Central

    Bordyugov, Grigory; Abraham, Ute; Granada, Adrian; Rose, Pia; Imkeller, Katharina; Kramer, Achim; Herzel, Hanspeter

    2015-01-01

    The circadian clock coordinates daily physiological, metabolic and behavioural rhythms. These endogenous oscillations are synchronized with external cues (‘zeitgebers’), such as daily light and temperature cycles. When the circadian clock is entrained by a zeitgeber, the phase difference ψ between the phase of a clock-controlled rhythm and the phase of the zeitgeber is of fundamental importance for the fitness of the organism. The phase of entrainment ψ depends on the mismatch between the intrinsic period τ and the zeitgeber period T and on the ratio of the zeitgeber strength to oscillator amplitude. Motivated by the intriguing complexity of empirical data and by our own experiments on temperature entrainment of mouse suprachiasmatic nucleus (SCN) slices, we present a theory on how clock and zeitgeber properties determine the phase of entrainment. The wide applicability of the theory is demonstrated using mathematical models of different complexity as well as by experimental data. Predictions of the theory are confirmed by published data on Neurospora crassa strains for different period mismatches τ − T and varying photoperiods. We apply a novel regression technique to analyse entrainment of SCN slices by temperature cycles. We find that mathematical models can explain not only the stable asymptotic phase of entrainment, but also transient phase dynamics. Our theory provides the potential to explore seasonal variations of circadian rhythms, jet lag and shift work in forthcoming studies. PMID:26136227

  6. Informational Constraints on Spontaneous Visuomotor Entrainment

    PubMed Central

    Varlet, Manuel; Bucci, Colleen; Richardson, Michael J.; Schmidt, R. C.

    2015-01-01

    Past research has revealed that an individual's rhythmic limb movements become spontaneously entrained to an environmental rhythm if visual information about the rhythm is available and its frequency is near that of the individual's movements. Research has also demonstrated that if the eyes track an environmental stimulus, the spontaneous entrainment to the rhythm is strengthened. One hypothesis explaining this enhancement of spontaneous entrainment is that the limb movements and eye movements are linked through a neuromuscular coupling or synergy. Another is that eye-tracking facilitates the pick up of important coordinating information. Experiment 1 investigated the first hypothesis by evaluating whether any rhythmic movement of the eyes would facilitate spontaneous entrainment. Experiment 2 and 3 (respectively) explored whether eye-tracking strengthens spontaneous entrainment by allowing the pickup of trajectory direction change information or allowing an increase in the amount of information to be picked-up. Results suggest that the eye-tracking enhancement of spontaneous entrainment is a consequence of increasing the amount of information available to be picked-up. PMID:25866944

  7. Preheating in bubble collisions

    SciTech Connect

    Zhang Jun; Piao Yunsong

    2010-08-15

    In a landscape with metastable minima, the bubbles will inevitably nucleate. We show that when the bubbles collide, due to the dramatic oscillation of the field at the collision region, the energy deposited in the bubble walls can be efficiently released by the explosive production of the particles. In this sense, the collision of bubbles is actually highly inelastic. The cosmological implications of this result are discussed.

  8. Initiation of breakdown in strings of bubbles immersed in transformer oil and water: string orientation and proximity of bubbles

    NASA Astrophysics Data System (ADS)

    Babaeva, Natalia Yu; Tereshonok, Dmitry V.; Naidis, George V.; Smirnov, Boris M.

    2016-01-01

    We computationally investigated the properties of positive streamers propagating inside strings of bubbles filled with humid air at atmospheric pressure, immersed in liquids and aligned along the electric field or transversal to it. We show that orientation of the string and proximity of bubbles are crucial for the streamer formation and re-initiation in the neighboring bubbles. For the vertical string (aligned along the electric field) there is a small field depletion inside the bubbles due to mutual polarization compared to the field in an isolated bubble. As a result, in a vertical string the ‘streamer hopping’ is more sensitive to the bubble separation. The streamer hopping is observed only when the separation is smaller than 300 μm. Polarization of the horizontal string of bubbles results in higher electric field inside the bubbles as compared to that in an isolated bubble. In this case, ‘streamer hopping’ is observed for the bubble separation 500 μm or larger. We also investigated the arrays of five and nine bubbles and showed that the enhancement of the electric field and streamer development depend on how many field depleting poles or field enhancing equators are in close proximity to the particular bubble.

  9. Interaction of equal-size bubbles in shear flow.

    PubMed

    Prakash, Jai; Lavrenteva, Olga M; Byk, Leonid; Nir, Avinoam

    2013-04-01

    The inertia-induced forces on two identical spherical bubbles in a simple shear flow at small but finite Reynolds number, for the case when the bubbles are within each other's inner viscous region, are calculated making use of the reciprocal theorem. This interaction force is further employed to model the dynamics of air bubbles injected to a viscous fluid sheared in a Couette device at the first shear flow instability where the bubbles are trapped inside the stable Taylor vortex. It was shown that, during a long time scale, the inertial interaction between the bubbles in the primary shear flow drives them away from each other and, as a result, equal-size bubbles eventually assume an ordered string with equal separation distances between all neighbors. We report on experiments showing the dynamic evolution of various numbers of bubbles. The results of the theory are in good agreement with the experimental observations.

  10. Soap Films and Bubbles.

    ERIC Educational Resources Information Center

    Rice, Karen

    1986-01-01

    Develops and explains a format for a workshop which focuses on soap films and bubbles. The plan consists of: a discussion to uncover what children know about bubbles; explanations of the demonstration equipment; the presentation itself; the assembly of the workshop kit; and time to play with the bubbles. (ML)

  11. Brut: Automatic bubble classifier

    NASA Astrophysics Data System (ADS)

    Beaumont, Christopher; Goodman, Alyssa; Williams, Jonathan; Kendrew, Sarah; Simpson, Robert

    2014-07-01

    Brut, written in Python, identifies bubbles in infrared images of the Galactic midplane; it uses a database of known bubbles from the Milky Way Project and Spitzer images to build an automatic bubble classifier. The classifier is based on the Random Forest algorithm, and uses the WiseRF implementation of this algorithm.

  12. Bursting the Taylor cone bubble

    NASA Astrophysics Data System (ADS)

    Pan, Zhao; Truscott, Tadd

    2014-11-01

    A soap bubble fixed on a surface and placed in an electric field will take on the shape of a cone rather than constant curvature (dome) when the electrical field is not present. The phenomenon was introduced by J. Zeleny (1917) and studied extensively by C.T. Wilson & G.I. Taylor (1925). We revisit the Taylor cone problem by studying the deformation and bursting of soap bubbles in a point charge electric field. A single bubble takes on the shape of a cone in the electric field and a high-speed camera equipped with a micro-lens is used to observe the unsteady dynamics at the tip. Rupture occurs as a very small piece of the tip is torn away from the bubble toward the point charge. Based on experiments, a theoretical model is developed that predicts when rupture should occur. This study may help in the design of foam-removal techniques in engineering and provide a better understanding of an electrified air-liquid interface.

  13. Assisted venous drainage, venous air, and gaseous microemboli transmission into the arterial line: an in-vitro study.

    PubMed

    Rider, S P; Simon, L V; Rice, B J; Poulton, C C

    1998-12-01

    The objective of this study was to examine the interaction of cardiopulmonary bypass venous air with assisted venous drainage, focusing on its production of gaseous microemboli in the arterial line. An in-vitro recirculating cardiopulmonary bypass circuit containing fresh whole bovine blood was monitored with a pulsed-doppler microbubble detector. Air of specific amounts was injected into the venous line and gaseous microemboli counts were obtained distal to the arterial filter. Data was recorded for unassisted drainage, vacuum-assisted drainage, and centrifugal pump-assisted drainage. Centrifugal pump-assisted drainage produced over 300 microbubbles in one minute distal to the arterial filter when venous air was introduced into the circuit. Of these, 220 were greater than 80 microns in size. Vacuum-assisted drainage produced no microbubbles when the same amount of venous air was introduced into the circuit. However, vacuum-assisted drainage did produce some microbubbles in the arterial line when a stopcock was left open on the venous line for 30 seconds. Unassisted drainage produced no microbubbles at all levels of venous air entrainment. Air becomes entrained in the venous line from a variety of sources. In a typical gravity-drained situation, the air remains whole and is dissipated in the venous reservoir by buoyancy and filtration. In an assisted-drainage situation, the air is subjected to additional forces. The air is subjected to a greater degree of negative pressure and, with centrifugal pump assisted drainage, is subjected to kinetic energy imparted by the cones or vanes of the pump. The kinetic energy from the centrifugal pump appears to break the air into small bubbles which become suspended in the blood, passing through the reservoir, oxygenator, and arterial filter. In a clinical setting, these bubbles would be passed into a patient's arterial system.

  14. Numerical study of particle-induced Rayleigh-Taylor instability: Effects of particle settling and entrainment

    NASA Astrophysics Data System (ADS)

    Chou, Yi-Ju; Shao, Yun-Chuan

    2016-04-01

    In this study, we investigate Rayleigh-Taylor instability in which the density stratification is caused by the suspension of particles in liquid flows using the conventional single-phase model and Euler-Lagrange (EL) two-phase model. The single-phase model is valid only when the particles are small and number densities are large, such that the continuum approximation applies. The present single-phase results show that the constant settling of the particle concentration restricts the lateral development of the vortex ring, which results in a decrease of the rising speed of the Rayleigh-Taylor bubbles. The EL model enables the investigation of particle-flow interaction and the influence of particle entrainment, resulting from local non-uniformity in the particle distribution. We compare bubble dynamics in the single-phase and EL cases, and our results show that the deviation between the two cases becomes more pronounced when the particle size increases. The main mechanism responsible for the deviation is particle entrainment, which can only be resolved in the EL model. We provide a theoretical argument for the small-scale local entrainment resulting from the local velocity shear and non-uniformity of the particle concentration. The theoretical argument is supported by numerical evidence. Energy budget analysis is also performed and shows that potential energy is released due to the interphase drag and buoyant effect. The buoyant effect, which results in the transformation of potential energy into kinetic energy and shear dissipation, plays a key role in settling enhancement. We also find that particle entrainment increases the shear dissipation, which in turn enhances the release of potential energy.

  15. Heat transfer and bubble dynamics in slurry bubble columns for Fischer-Tropsch clean alternative energy

    NASA Astrophysics Data System (ADS)

    Wu, Chengtian

    With the increasing demand for alternative energy resources, the Fischer-Tropsch (FT) process that converts synthesis gas into clean liquid fuels has attracted more interest from the industry. Slurry bubble columns are the most promising reactors for FT synthesis due to their advantages over other reactors. Successful operation, design, and scale-up of such reactors require detailed knowledge of hydrodynamics, bubble dynamics, and transport characteristics. However, most previous studies have been conducted at ambient pressure or covered only low superficial gas velocities. The objectives of this study were to experimentally investigate the heat transfer coefficient and bubble dynamics in slurry bubble columns at conditions that can mimic FT conditions. The air-C9C 11-FT catalysts/glass beads systems were selected to mimic the physical properties of the gas, liquid, and solid phases at commercial FT operating conditions. A heat transfer coefficient measurement technique was developed, and for the first time, this technique was applied in a pilot scale (6-inch diameter) high pressure slurry bubble column. The effects of superficial gas velocity, pressure, solids loading, and liquid properties on the heat transfer coefficients were investigated. Since the heat transfer coefficient can be affected by the bubble properties (Kumar et al., 1992), in this work bubble dynamics (local gas holdup, bubble chord length, apparent bubble frequency, specific interfacial area, and bubble velocity) were studied using the improved four-point optical probe technique (Xue et al., 2003; Xue, 2004). Because the four-point optical technique had only been successfully applied in a churn turbulent flow bubble column (Xue, 2004), this technique was first assessed in a small scale slurry bubble column in this study. Then the bubble dynamics were studied at the same conditions as the heat transfer coefficient investigation in the same pilot scale column. The results from four-point probe

  16. Interacting bubble clouds and their sonochemical production.

    PubMed

    Stricker, Laura; Dollet, Benjamin; Fernández Rivas, David; Lohse, Detlef

    2013-09-01

    An acoustically driven air pocket trapped in a pit etched on a surface can emit a bubble cluster. When several pits are present, the resulting bubble clusters interact in a nontrivial way. Fernández Rivas et al. [Angew. Chem. Int. Ed. 49, 9699-9701 (2010)] observed three different behaviors at increasing driving power: clusters close to their "mother" pits, clusters attracting each other but still well separated, and merging clusters. The last is highly undesirable for technological purposes as it is associated with a reduction of the radical production and an enhancement of the erosion of the reactor walls. In this paper, the conditions for merging to occur are quantified in the case of two clusters, as a function of the following control parameters: driving pressure, distance between the two pits, cluster radius, and number of bubbles within each cluster. The underlying mechanism, governed by the secondary Bjerknes forces, is strongly influenced by the nonlinearity of the bubble oscillations and not directly by the number of nucleated bubbles. The Bjerknes forces are found to dampen the bubble oscillations, thus reducing the radical production. Therefore, the increased number of bubbles at high power could be the key to understanding the experimental observation that, above a certain power threshold, any further increase of the driving does not improve the sonochemical efficiency.

  17. The Influence of Bubbles on the Perception Carbonation Bite

    PubMed Central

    Wise, Paul M.; Wolf, Madeline; Thom, Stephen R.; Bryant, Bruce

    2013-01-01

    Although many people naively assume that the bite of carbonation is due to tactile stimulation of the oral cavity by bubbles, it has become increasingly clear that carbonation bite comes mainly from formation of carbonic acid in the oral mucosa. In Experiment 1, we asked whether bubbles were in fact required to perceive carbonation bite. Subjects rated oral pungency from several concentrations of carbonated water both at normal atmospheric pressure (at which bubbles could form) and at 2.0 atmospheres pressure (at which bubbles did not form). Ratings of carbonation bite under the two pressure conditions were essentially identical, indicating that bubbles are not required for pungency. In Experiment 2, we created controlled streams of air bubbles around the tongue in mildly pungent CO2 solutions to determine how tactile stimulation from bubbles affects carbonation bite. Since innocuous sensations like light touch and cooling often suppress pain, we predicted that bubbles might reduce rated bite. Contrary to prediction, air bubbles flowing around the tongue significantly enhanced rated bite, without inducing perceived bite in blank (un-carbonated) solutions. Accordingly, though bubbles are clearly not required for carbonation bite, they may well modulate perceived bite. More generally, the results show that innocuous tactile stimulation can enhance chemogenic pain. Possible physiological mechanisms are discussed. PMID:23990956

  18. The influence of bubbles on the perception carbonation bite.

    PubMed

    Wise, Paul M; Wolf, Madeline; Thom, Stephen R; Bryant, Bruce

    2013-01-01

    Although many people naively assume that the bite of carbonation is due to tactile stimulation of the oral cavity by bubbles, it has become increasingly clear that carbonation bite comes mainly from formation of carbonic acid in the oral mucosa. In Experiment 1, we asked whether bubbles were in fact required to perceive carbonation bite. Subjects rated oral pungency from several concentrations of carbonated water both at normal atmospheric pressure (at which bubbles could form) and at 2.0 atmospheres pressure (at which bubbles did not form). Ratings of carbonation bite under the two pressure conditions were essentially identical, indicating that bubbles are not required for pungency. In Experiment 2, we created controlled streams of air bubbles around the tongue in mildly pungent CO2 solutions to determine how tactile stimulation from bubbles affects carbonation bite. Since innocuous sensations like light touch and cooling often suppress pain, we predicted that bubbles might reduce rated bite. Contrary to prediction, air bubbles flowing around the tongue significantly enhanced rated bite, without inducing perceived bite in blank (un-carbonated) solutions. Accordingly, though bubbles are clearly not required for carbonation bite, they may well modulate perceived bite. More generally, the results show that innocuous tactile stimulation can enhance chemogenic pain. Possible physiological mechanisms are discussed.

  19. Tribonucleation of bubbles.

    PubMed

    Wildeman, Sander; Lhuissier, Henri; Sun, Chao; Lohse, Detlef; Prosperetti, Andrea

    2014-07-15

    We report on the nucleation of bubbles on solids that are gently rubbed against each other in a liquid. The phenomenon is found to depend strongly on the material and roughness of the solid surfaces. For a given surface, temperature, and gas content, a trail of growing bubbles is observed if the rubbing force and velocity exceed a certain threshold. Direct observation through a transparent solid shows that each bubble in the trail results from the early coalescence of several microscopic bubbles, themselves detaching from microscopic gas pockets forming between the solids. From a detailed study of the wear tracks, with atomic force and scanning electron microscopy imaging, we conclude that these microscopic gas pockets originate from a local fracturing of the surface asperities, possibly enhanced by chemical reactions at the freshly created surfaces. Our findings will be useful either for preventing undesired bubble formation or, on the contrary, for "writing with bubbles," i.e., creating controlled patterns of microscopic bubbles.

  20. Nanoemulsions obtained via bubble-bursting at a compound interface

    NASA Astrophysics Data System (ADS)

    Feng, Jie; Roché, Matthieu; Vigolo, Daniele; Arnaudov, Luben N.; Stoyanov, Simeon D.; Gurkov, Theodor D.; Tsutsumanova, Gichka G.; Stone, Howard A.

    2014-08-01

    Bursting of bubbles at an air/liquid interface is a familiar occurrence relevant to foam stability, cell cultures in bioreactors and ocean-atmosphere mass transfer. In the latter case, bubble-bursting leads to the dispersal of sea-water aerosols in the surrounding air. Here we show that bubbles bursting at a compound air/oil/water-with-surfactant interface can disperse submicrometre oil droplets in water. Dispersal results from the detachment of an oil spray from the bottom of the bubble towards water during bubble collapse. We provide evidence that droplet size is selected by physicochemical interactions between oil molecules and the surfactants rather than by hydrodynamics. We demonstrate the unrecognized role that this dispersal mechanism may play in the fate of the sea surface microlayer and of pollutant spills by dispersing petroleum in the water column. Finally, our system provides an energy-efficient route, with potential upscalability, for applications in drug delivery, food production and materials science.

  1. Nonphotic entrainment of the human circadian pacemaker

    NASA Technical Reports Server (NTRS)

    Klerman, E. B.; Rimmer, D. W.; Dijk, D. J.; Kronauer, R. E.; Rizzo, J. F. 3rd; Czeisler, C. A.

    1998-01-01

    In organisms as diverse as single-celled algae and humans, light is the primary stimulus mediating entrainment of the circadian biological clock. Reports that some totally blind individuals appear entrained to the 24-h day have suggested that nonphotic stimuli may also be effective circadian synchronizers in humans, although the nonphotic stimuli are probably comparatively weak synchronizers, because the circadian rhythms of many totally blind individuals "free run" even when they maintain a 24-h activity-rest schedule. To investigate entrainment by nonphotic synchronizers, we studied the endogenous circadian melatonin and core body temperature rhythms of 15 totally blind subjects who lacked conscious light perception and exhibited no suppression of plasma melatonin in response to ocular bright-light exposure. Nine of these fifteen blind individuals were able to maintain synchronization to the 24-h day, albeit often at an atypical phase angle of entrainment. Nonphotic stimuli also synchronized the endogenous circadian rhythms of a totally blind individual to a non-24-h schedule while living in constant near darkness. We conclude that nonphotic stimuli can entrain the human circadian pacemaker in some individuals lacking ocular circadian photoreception.

  2. On dust entrainment in photoevaporative winds

    NASA Astrophysics Data System (ADS)

    Hutchison, Mark A.; Price, Daniel J.; Laibe, Guillaume; Maddison, Sarah T.

    2016-09-01

    We investigate dust entrainment by photoevaporative winds in protoplanetary discs using dusty smoothed particle hydrodynamics. We use unequal-mass particles to resolve more than five orders of magnitude in disc/outflow density and a one-fluid formulation to efficiently simulate an equivalent magnitude range in drag stopping time. We find that only micron-sized dust grains and smaller can be entrained in extreme-UV radiation-driven winds. The maximum grain size is set by dust settling in the disc rather than aerodynamic drag in the wind. More generally, there is a linear relationship between the base flow density and the maximum entrainable grain size in the wind. A pileup of micron-sized dust grains can occur in the upper atmosphere at critical radii in the disc as grains decouple from the low-density wind. Entrainment is a strong function of location in the disc, resulting in a size sorting of grains in the outflow - the largest grain being carried out between 10 and 20 au. The peak dust density for each grain size occurs at the inner edge of its own entrainment region.

  3. Bubble bursting as an aerosol generation mechanism during an oil spill in the deep-sea environment: molecular dynamics simulations of oil alkanes and dispersants in atmospheric air/salt water interfaces.

    PubMed

    Liyana-Arachchi, Thilanga P; Zhang, Zenghui; Ehrenhauser, Franz S; Avij, Paria; Valsaraj, Kalliat T; Hung, Francisco R

    2014-01-01

    Potential of mean force (PMF) calculations and molecular dynamics (MD) simulations were performed to investigate the properties of oil n-alkanes [i.e., n-pentadecane (C15), n-icosane (C20) and n-triacontane (C30)], as well as several surfactant species [i.e., the standard anionic surfactant sodium dodecyl sulfate (SDS), and three model dispersants similar to the Tween and Span species present in Corexit 9500A] at air/salt water interfaces. This study was motivated by the 2010 Deepwater Horizon (DWH) oil spill, and our simulation results show that, from the thermodynamic point of view, the n-alkanes and the model dispersants have a strong preference to remain at the air/salt water interface, as indicated by the presence of deep free energy minima at these interfaces. The free energy minimum of these n-alkanes becomes deeper as their chain length increases, and as the concentration of surfactant species at the interface increases. The n-alkanes tend to adopt a flat orientation and form aggregates at the bare air/salt water interface. When this interface is coated with surfactants, the n-alkanes tend to adopt more tilted orientations with respect to the vector normal to the interface. These simulation results are consistent with the experimental findings reported in the accompanying paper [Ehrenhauser et al., Environ. Sci.: Processes Impacts 2013, in press, (DOI: 10.1039/c3em00390f)]. The fact that these long-chain n-alkanes show a strong thermodynamic preference to remain at the air/salt water interfaces, especially if these interfaces are coated with surfactants, makes these species very likely to adsorb at the surface of bubbles or droplets and be ejected to the atmosphere by sea surface processes such as whitecaps (breaking waves) and bubble bursting. Finally, the experimental finding that more oil hydrocarbons are ejected when Corexit 9500A is present in the system is consistent with the deeper free energy minima observed for the n-alkanes at the air/salt water

  4. Cryoconite and Ice-bubble Microbial Ecosystems in Antarctica

    NASA Technical Reports Server (NTRS)

    Hoover, Richard B.; Rose, M. Franklin (Technical Monitor)

    2000-01-01

    During the Antarctica 2000 Expedition samples of rocks and ice bubbles entrained in ice were collected from the blue ice fields near the Moulton Escarpment of the Thiel Mountains (85S, 94W) and the Morris Moraine of the Patriot Hills (80S, 8 1 W) Ellsworth Mountains of Antarctica. Investigation of the microbiota of these cryoconite and ice bubble ecosystems are now being conducted to help refine chemical and morphological biomarkers of potential significance to Astrobiology. The Antarctica 2000 Expedition will be discussed and the preliminary results of the studies of the ice bubble and cryoconite microbial ecosystems discussed. Recent ESEM images of the Antarctic microbiota will be presented a the relevance of ice ecosystems to Astrobiology will be discussed.

  5. Dynamics of two-dimensional bubbles.

    PubMed

    Piedra, Saúl; Ramos, Eduardo; Herrera, J Ramón

    2015-06-01

    The dynamics of two-dimensional bubbles ascending under the influence of buoyant forces is numerically studied with a one-fluid model coupled with the front-tracking technique. The bubble dynamics are described by recording the position, shape, and orientation of the bubbles as functions of time. The qualitative properties of the bubbles and their terminal velocities are described in terms of the Eötvos (ratio of buoyancy to surface tension) and Archimedes numbers (ratio of buoyancy to viscous forces). The terminal Reynolds number result from the balance of buoyancy and drag forces and, consequently, is not an externally fixed parameter. In the cases that yield small Reynolds numbers, the bubbles follow straight paths and the wake is steady. A more interesting behavior is found at high Reynolds numbers where the bubbles follow an approximately periodic zigzag trajectory and an unstable wake with properties similar to the Von Karman vortex street is formed. The dynamical features of the motion of single bubbles are compared to experimental observations of air bubbles ascending in a water-filled Hele-Shaw cell. Although the comparison is not strictly valid in the sense that the effect of the lateral walls is not incorporated in the model, most of the dynamical properties observed are in good qualitative agreement with the numerical calculations. Hele-Shaw cells with different gaps have been used to determine the degree of approximation of the numerical calculation. It is found that for the relation between the terminal Reynolds number and the Archimedes number, the numerical calculations are closer to the observations of bubble dynamics in Hele-Shaw cells of larger gaps. PMID:26172798

  6. Nonlinear Bubble Interactions in Acoustic Pressure Fields

    NASA Technical Reports Server (NTRS)

    Barbat, Tiberiu; Ashgriz, Nasser; Liu, Ching-Shi

    1996-01-01

    The systems consisting of a two-phase mixture, as clouds of bubbles or drops, have shown many common features in their responses to different external force fields. One of particular interest is the effect of an unsteady pressure field applied to these systems, case in which the coupling of the vibrations induced in two neighboring components (two drops or two bubbles) may result in an interaction force between them. This behavior was explained by Bjerknes by postulating that every body that is moving in an accelerating fluid is subjected to a 'kinetic buoyancy' equal with the product of the acceleration of the fluid multiplied by the mass of the fluid displaced by the body. The external sound wave applied to a system of drops/bubbles triggers secondary sound waves from each component of the system. These secondary pressure fields integrated over the surface of the neighboring drop/bubble may result in a force additional to the effect of the primary sound wave on each component of the system. In certain conditions, the magnitude of these secondary forces may result in significant changes in the dynamics of each component, thus in the behavior of the entire system. In a system containing bubbles, the sound wave radiated by one bubble at the location of a neighboring one is dominated by the volume oscillation mode and its effects can be important for a large range of frequencies. The interaction forces in a system consisting of drops are much smaller than those consisting of bubbles. Therefore, as a first step towards the understanding of the drop-drop interaction subject to external pressure fluctuations, it is more convenient to study the bubble interactions. This paper presents experimental results and theoretical predictions concerning the interaction and the motion of two levitated air bubbles in water in the presence of an acoustic field at high frequencies (22-23 KHz).

  7. Dynamics of two-dimensional bubbles

    NASA Astrophysics Data System (ADS)

    Piedra, Saúl; Ramos, Eduardo; Herrera, J. Ramón

    2015-06-01

    The dynamics of two-dimensional bubbles ascending under the influence of buoyant forces is numerically studied with a one-fluid model coupled with the front-tracking technique. The bubble dynamics are described by recording the position, shape, and orientation of the bubbles as functions of time. The qualitative properties of the bubbles and their terminal velocities are described in terms of the Eötvos (ratio of buoyancy to surface tension) and Archimedes numbers (ratio of buoyancy to viscous forces). The terminal Reynolds number result from the balance of buoyancy and drag forces and, consequently, is not an externally fixed parameter. In the cases that yield small Reynolds numbers, the bubbles follow straight paths and the wake is steady. A more interesting behavior is found at high Reynolds numbers where the bubbles follow an approximately periodic zigzag trajectory and an unstable wake with properties similar to the Von Karman vortex street is formed. The dynamical features of the motion of single bubbles are compared to experimental observations of air bubbles ascending in a water-filled Hele-Shaw cell. Although the comparison is not strictly valid in the sense that the effect of the lateral walls is not incorporated in the model, most of the dynamical properties observed are in good qualitative agreement with the numerical calculations. Hele-Shaw cells with different gaps have been used to determine the degree of approximation of the numerical calculation. It is found that for the relation between the terminal Reynolds number and the Archimedes number, the numerical calculations are closer to the observations of bubble dynamics in Hele-Shaw cells of larger gaps.

  8. Dynamics of two-dimensional bubbles.

    PubMed

    Piedra, Saúl; Ramos, Eduardo; Herrera, J Ramón

    2015-06-01

    The dynamics of two-dimensional bubbles ascending under the influence of buoyant forces is numerically studied with a one-fluid model coupled with the front-tracking technique. The bubble dynamics are described by recording the position, shape, and orientation of the bubbles as functions of time. The qualitative properties of the bubbles and their terminal velocities are described in terms of the Eötvos (ratio of buoyancy to surface tension) and Archimedes numbers (ratio of buoyancy to viscous forces). The terminal Reynolds number result from the balance of buoyancy and drag forces and, consequently, is not an externally fixed parameter. In the cases that yield small Reynolds numbers, the bubbles follow straight paths and the wake is steady. A more interesting behavior is found at high Reynolds numbers where the bubbles follow an approximately periodic zigzag trajectory and an unstable wake with properties similar to the Von Karman vortex street is formed. The dynamical features of the motion of single bubbles are compared to experimental observations of air bubbles ascending in a water-filled Hele-Shaw cell. Although the comparison is not strictly valid in the sense that the effect of the lateral walls is not incorporated in the model, most of the dynamical properties observed are in good qualitative agreement with the numerical calculations. Hele-Shaw cells with different gaps have been used to determine the degree of approximation of the numerical calculation. It is found that for the relation between the terminal Reynolds number and the Archimedes number, the numerical calculations are closer to the observations of bubble dynamics in Hele-Shaw cells of larger gaps.

  9. Observational estimates of detrainment and entrainment in non-precipitating shallow cumulus

    NASA Astrophysics Data System (ADS)

    Norgren, M. S.; Small, J. D.; Jonsson, H. H.; Chuang, P. Y.

    2014-08-01

    Vertical transport associated with cumulus clouds is important to the redistribution of gases, particles and energy, with subsequent consequences for many aspects of the climate system. Previous studies have suggested that detrainment from clouds can be comparable to the updraft mass flux, and thus represents an important contribution to vertical transport. In this study, we describe a new method to deduce the amounts of gross detrainment and entrainment experienced by non-precipitating cumulus clouds using aircraft observations. The method utilizes equations for three conserved variables: cloud mass, total water and moist static energy. Optimizing these three equations leads to estimates of the mass fractions of adiabatic mixed-layer air, entrained air and detrained air that the sampled cloud has experienced. The method is applied to six flights of the CIRPAS Twin Otter during the Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS) which took place in the Houston, Texas region during the summer of 2006 during which 176 small, non-precipitating cumulus were sampled. Our analysis suggests that, on average, these clouds were comprised of 30 to 70% mixed-layer air, with entrained air comprising most of the remainder. The mass fraction of detrained air was less than 2% for a majority of the clouds, although 15% of them did exhibit detrained air fractions larger than 10%. Entrained and detrained air mass fractions both increased with altitude, and the largest detrainment events were almost all associated with air that was at their level of neutral buoyancy, findings that are consistent with previous studies.

  10. Measurements of Gas Bubble Size Distributions in Flowing Liquid Mercury

    SciTech Connect

    Wendel, Mark W; Riemer, Bernie; Abdou, Ashraf A

    2012-01-01

    ABSTRACT Pressure waves created in liquid mercury pulsed spallation targets have been shown to induce cavitation damage on the target container. One way to mitigate such damage would be to absorb the pressure pulse energy into a dispersed population of small bubbles, however, measuring such a population in mercury is difficult since it is opaque and the mercury is involved in a turbulent flow. Ultrasonic measurements have been attempted on these types of flows, but the flow noise can interfere with the measurement, and the results are unverifiable and often unrealistic. Recently, a flow loop was built and operated at Oak Ridge National Labarotory to assess the capability of various bubbler designs to deliver an adequate population of bubbles to mitigate cavitation damage. The invented diagnostic technique involves flowing the mercury with entrained gas bubbles in a steady state through a horizontal piping section with a glass-window observation port located on the top. The mercury flow is then suddenly stopped and the bubbles are allowed to settle on the glass due to buoyancy. Using a bright-field illumination and a high-speed camera, the arriving bubbles are detected and counted, and then the images can be processed to determine the bubble populations. After using this technique to collect data on each bubbler, bubble size distributions were built for the purpose of quantifying bubbler performance, allowing the selection of the best bubbler options. This paper presents the novel procedure, photographic technique, sample visual results and some example bubble size distributions. The best bubbler options were subsequently used in proton beam irradiation tests performed at the Los Alamos National Laboratory. The cavitation damage results from the irradiated test plates in contact with the mercury are available for correlation with the bubble populations. The most effective mitigating population can now be designed into prototypical geometries for implementation into

  11. Flowmeter for gas-entrained solids flow

    DOEpatents

    Porges, Karl G.

    1990-01-01

    An apparatus and method for the measurement of solids feedrate in a gas-entrained solids flow conveyance system. The apparatus and method of the present invention include a vertical duct connecting a source of solids to the gas-entrained flow conveyance system, a control valve positioned in the vertical duct, and a capacitive densitometer positioned along the duct at a location a known distance below the control valved so that the solid feedrate, Q, of the gas entrained flow can be determined by Q=S.rho..phi.V.sub.S where S is the cross sectional area of the duct, .rho. is the density of the solid, .phi. is the solid volume fraction determined by the capacitive densitometer, and v.sub.S is the local solid velocity which can be inferred from the konown distance of the capacitive densitometer below the control valve.

  12. The Dynamics of Bubbles and Bubble Clouds.

    NASA Astrophysics Data System (ADS)

    Smereka, Peter Stenberg

    In an effort to understand acoustic cavitation noise the dynamics of periodically driven single bubbles and bubble clouds are examined. The single bubble equations are written as a perturbation of a Hamiltonian system and the conditions for resonances to occur are found, these can interact with the nonresonant orbit to produce jump and period-doubling bifurcations. To study the chaotic behavior a map which approximates the Poincare map in the resonant band is derived. The Poincare map is computed numerically which shows the formation of strange attractors which suddenly disappear leaving behind Smale horseshoe maps. The bubble cloud is studied using an averaged two-fluid model for bubbly flow with periodic driving at the boundary. The equations are examined both analytically and numerically. Local and global existence of solutions is proved and the existence of an absorbing set is established. An analysis of the linearized equations combined with estimates on the nonlinearity is used to prove the existence of nonlinear periodic orbit. This periodic orbit is a fixed point of the Poincare map and its stability is determined by finding the spectrum of the linearized Poincare map. This calculation combined with the absorbing set proves that the long term dynamics of the bubble cloud is finite dimensional. Numerical computations show the important attractors are a periodic -two orbit and a quasi-periodic orbit.

  13. Entrainment and mixing in stratified shear flows

    NASA Astrophysics Data System (ADS)

    Strang, Eric James

    1997-12-01

    The results of a laboratory experiment designed to study turbulent entrainment at sheared density interfaces are described. In the parameter ranges investigated the entrainment problem is mainly determined by two parameters, the bulk Richardson number RiB = /Delta bD//Delta U2 and the frequency ratio fN = ND//Delta U. When RiB > 1.5, the buoyancy effects play a governing role, whence interfacial instabilities locally mix heavy and light fluids. The nature of interfacial instabilities is governed by RiB or a related quantity, the mean local gradient Richardson number /overline [Ri]g=/overline [N(z)]2/(/overline[/partial u//partial z)]2, where N(z) is the Brunt-Vaisala frequency local to the interface. When RiB < 5 (or /overline [Rig] < 1), the interfacial mixing is dominated by Kelvin- Helmholtz (K-H) instabilities. Interfacial swelling as a result of the collective breakdown of K-H billows into turbulence persists for a time dictated by the rates of local generation and removal of mixed fluid, and the two processes appear to be coadjutant (with a maximum flux Richardson number or mixing efficiency of Rif ~ 0.15-0.4) when RiB≃ 3-5. At RiB~ 5, the K-H regime transitions to a new regime wherein the interface is dominated by interfacial/Holmboe wave instabilities. Here, the entrainment rates are much smaller and there is no evidence of interfacial swelling. In the K-H regime, the swelling of the interface introduces its own forcing time scale, which excites and radiates internal waves in the lower layer if it is continuously stratified. Consequently, the amount of energy available for entrainment decreases and, depending on fN, the entrainment velocities in the linearly stratified case can be substantially smaller than the two-layer case (up to 50%). In the interfacial/Holmboe wave breaking regime, internal wave radiation to the bottom layer is much smaller, so as the difference in entrainment rates of the two-layer and linearly stratified cases. Furthermore, when Ri

  14. Entrainment measurements in annular flow

    SciTech Connect

    Assad, A.; Jan, C.; Bertodano, M. de; Beus, S.G.

    1997-07-01

    Air/water and vapor/freon were utilized to scale and simulate annular two-phase flow for high pressure steam/water conditions. A unique vapor/liquid Freon loop was built to obtain the high pressure data. The results were compared with two correlations available in the open literature. The Ishii and Mishima dimensionless group was able to scale the data remarkably well even for vapor/liquid Freon. However, the correlation needs to be adjusted for high Weber numbers of the gas phase.

  15. Observational estimates of detrainment and entrainment in non-precipitating shallow cumulus

    NASA Astrophysics Data System (ADS)

    Norgren, M. S.; Small, J. D.; Jonsson, H. H.; Chuang, P. Y.

    2016-01-01

    Vertical transport associated with cumulus clouds is important to the redistribution of gases, particles, and energy, with subsequent consequences for many aspects of the climate system. Previous studies have suggested that detrainment from clouds can be comparable to the updraft mass flux, and thus represents an important contribution to vertical transport. In this study, we describe a new method to deduce the amounts of gross detrainment and entrainment experienced by non-precipitating cumulus clouds using aircraft observations. The method utilizes equations for three conserved variables: cloud mass, total water, and moist static energy. Optimizing these three equations leads to estimates of the mass fractions of adiabatic mixed-layer air, entrained air and detrained air that the sampled cloud has experienced. The method is applied to six flights of the CIRPAS Twin Otter during the Gulf of Mexico Atmospheric Composition and Climate Study (GoMACCS) which took place in the Houston, Texas region during the summer of 2006 during which 176 small, non-precipitating cumuli were sampled. Using our novel method, we find that, on average, these clouds were comprised of 30 to 70 % mixed-layer air, with entrained air comprising most of the remainder. The mass fraction of detrained air was usually very small, less than 2 %, although values larger than 10 % were found in 15 % of clouds. Entrained and detrained air mass fractions both increased with altitude, consistent with some previous observational studies. The largest detrainment events were almost all associated with air that was at their level of neutral buoyancy, which has been hypothesized in previous modeling studies. This new method could be readily used with data from other previous aircraft campaigns to expand our understanding of detrainment for a variety of cloud systems.

  16. Computational modelling of the interaction of shock waves with multiple gas-filled bubbles in a liquid

    NASA Astrophysics Data System (ADS)

    Betney, M. R.; Tully, B.; Hawker, N. A.; Ventikos, Y.

    2015-03-01

    This study presents a computational investigation of the interactions of a single shock wave with multiple gas-filled bubbles in a liquid medium. This work illustrates how multiple bubbles may be used in shock-bubble interactions to intensify the process on a local level. A high resolution front-tracking approach is used, which enables explicit tracking of the gas-liquid interface. The collapse of two identical bubbles, one placed behind the other is investigated in detail, demonstrating that peak pressures in a two bubble arrangement can exceed those seen in single bubble collapse. Additionally, a parametric investigation into the effect of bubble separation is presented. It is found that the separation distance has a significant effect on both the shape and velocity of the main transverse jet of the second bubble. Extending this analysis to effects of relative bubble size, we show that if the first bubble is sufficiently small relative to the second, it may become entirely entrained in the second bubble main transverse jet. In contrast, if the first bubble is substantially larger than the second, it may offer it significant protection from the incident shock. This protection is utilised in the study of a triangular array of three bubbles, with the central bubble being significantly smaller than the outer bubbles. It is demonstrated that, through shielding of bubbles until later in the collapse process, pressures over five times higher than the maximum pressure observed in the single bubble case may be achieved. This corresponds to a peak pressure that is approximately 40 times more intense than the incident shock wave. This work has applications in a number of different fields, including cavitation erosion, explosives, targeted drug delivery/intensification, and shock wave lithotripsy.

  17. Gas bubble detector

    NASA Technical Reports Server (NTRS)

    Mount, Bruce E. (Inventor); Burchfield, David E. (Inventor); Hagey, John M. (Inventor)

    1995-01-01

    A gas bubble detector having a modulated IR source focused through a bandpass filter onto a venturi, formed in a sample tube, to illuminate the venturi with modulated filtered IR to detect the presence of gas bubbles as small as 0.01 cm or about 0.004 in diameter in liquid flowing through the venturi. Means are provided to determine the size of any detected bubble and to provide an alarm in the absence of liquid in the sample tube.

  18. Entrainment rate of droplets in the ripple-annular regime for small vertical tubes

    SciTech Connect

    Lopez de Bertodano, M.A.; Assad, A.; Beus, S.G.

    1998-06-01

    Two-fluid model predictions of film dryout in annular flow are limited by the uncertainties in the constitutive relations for the entrainment rate of droplets from the liquid film. The main cause of these uncertainties is the lack of separate effects experimental data in the range of the operating conditions in nuclear power reactors. Air/water and Freon-113 entrainment rate data have been obtained in 10 mm tubes using the film extraction technique. These experiments have been scaled to approach high pressure steam-water flow conditions. The effects of surface tension and density ratio, missing from most previous data sets, have been systematically tested. The entrainment rate mechanism is assumed to be a Kelvin-Helmholtz instability. Based on this analysis and two previous correlations, a new correlation is proposed that is valid for low viscosity fluids in small ducts in the ripple annular regime.

  19. Lidar observations of mixed layer dynamics - Tests of parameterized entrainment models of mixed layer growth rate

    NASA Technical Reports Server (NTRS)

    Boers, R.; Eloranta, E. W.; Coulter, R. L.

    1984-01-01

    Ground based lidar measurements of the atmospheric mixed layer depth, the entrainment zone depth and the wind speed and wind direction were used to test various parameterized entrainment models of mixed layer growth rate. Six case studies under clear air convective conditions over flat terrain in central Illinois are presented. It is shown that surface heating alone accounts for a major portion of the rise of the mixed layer on all days. A new set of entrainment model constants was determined which optimized height predictions for the dataset. Under convective conditions, the shape of the mixed layer height prediction curves closely resembled the observed shapes. Under conditions when significant wind shear was present, the shape of the height prediction curve departed from the data suggesting deficiencies in the parameterization of shear production. Development of small cumulus clouds on top of the layer is shown to affect mixed layer depths in the afternoon growth phase.

  20. Electrical breakdown of a bubble in a water-filled capillary

    SciTech Connect

    Bruggeman, P.J.; Leys, C.A.; Vierendeels, J. A.

    2006-06-01

    In this Communication, the electrical breakdown of a static bubble in a water-filled capillary generated in a dc electrical field is studied. We present experimental results which indicate that the liquid layer between capillary and bubble wall can have an important influence on the breakdown mechanism of the bubble. The breakdown electrical field (atmospheric pressure) without a liquid layer in a (vapor) bubble is 18 kV/cm. When a liquid layer is present, the electrical breakdown of an air bubble is observed at electrical fields typically two times smaller. Local plasma formation is observed in this case possibly due to bubble deformation.

  1. Effect of nitrous oxide on gas bubble volume in the anterior chamber.

    PubMed

    Wolf, G L; Capuano, C; Hartung, J

    1985-03-01

    Nitrous oxide is often used as anesthesia during ophthalmic surgery that requires intraocular injection of sulfur hexafluoride gas or air. Ventilation with N2O is known to increase intraocular pressure in the presence of intraocular bubbles, but little is known about the effect of N2O on intraocular bubble volume. Accordingly, we have compared the effect of N2O:O2 ventilation (66% N2O, balance O2) with that of air ventilation and oxygen ventilation on intraocular bubbles of SF6 or air. Aspiration of anterior chamber gas after 180 minutes of N2O:O2 ventilation in cats showed an increase in bubble volume of more than threefold when the original intraocular bubble was SF6 and an increase of more than twofold when the original intraocular bubble was air. In contrast, during air ventilation, intraocular SF6 bubble volume increased by 50%, and intraocular air bubble volume increased by only 7.5%. During O2 ventilation, intraocular SF6 bubble volume increased by 35%, and intraocular air bubble volume decreased by 13%. Our results indicate that N2O is contraindicated when gas is injected into the closed eye.

  2. Relationships of Entrainment Rate with Dynamical and Thermodynamic Properties in Shallow Convection

    NASA Astrophysics Data System (ADS)

    Lu, C.; Liu, Y.; Zhang, G. J.; Wu, X.; Endo, S.; Cao, L.; Li, Y.; Guo, X.

    2015-12-01

    This work examines the relationships of entrainment rate to vertical velocity, buoyancy, turbulent dissipation rate by applying stepwise principal component regression to observational data from shallow cumulus clouds collected during the Routine AAF [Atmospheric Radiation Measurement (ARM) Aerial Facility] Clouds with Low Optical Water Depths (CLOWD) Optical Radiative Observations (RACORO) field campaign over the ARM Southern Great Plains (SGP) site near Lamont, Oklahoma. The cumulus clouds during the RACORO campaign simulated using a large eddy simulation (LES) model are also examined with the same approach. The analysis shows that combination of multiple variables can better represent entrainment rate in both the observations and LES than the single-variable fitting equations and the three commonly used parameterizations. A new parameterization is thus presented that relates entrainment rate to vertical velocity, buoyancy and dissipation rate; the effects of treating clouds as ensembles and humid shells surrounding cumulus clouds on the new parameterization are discussed. Physical mechanisms underlying the relationships of entrainment rate to vertical velocity, buoyancy and dissipation rate are also explored. Furthermore, the effects of relative humidity in the entrained dry air on the above relationships are discussed; a possible physical mechanism for the effects is explored.

  3. Impact of reduced near-field entrainment of overpressured volcanic jets on plume development

    USGS Publications Warehouse

    Saffaraval, Farhad; Solovitz, Stephen A.; Ogden, Darcy E.; Mastin, Larry G.

    2012-01-01

    Volcanic plumes are often studied using one-dimensional analytical models, which use an empirical entrainment ratio to close the equations. Although this ratio is typically treated as constant, its value near the vent is significantly reduced due to flow development and overpressured conditions. To improve the accuracy of these models, a series of experiments was performed using particle image velocimetry, a high-accuracy, full-field velocity measurement technique. Experiments considered a high-speed jet with Reynolds numbers up to 467,000 and exit pressures up to 2.93 times atmospheric. Exit gas densities were also varied from 0.18 to 1.4 times that of air. The measured velocity was integrated to determine entrainment directly. For jets with exit pressures near atmospheric, entrainment was approximately 30% less than the fully developed level at 20 diameters from the exit. At pressures nearly three times that of the atmosphere, entrainment was 60% less. These results were introduced into Plumeria, a one-dimensional plume model, to examine the impact of reduced entrainment. The maximum column height was only slightly modified, but the critical radius for collapse was significantly reduced, decreasing by nearly a factor of two at moderate eruptive pressures.

  4. Inclined gravity currents filling basins: The influence of Reynolds number on entrainment into gravity currents

    NASA Astrophysics Data System (ADS)

    Hogg, Charlie A. R.; Dalziel, Stuart B.; Huppert, Herbert E.; Imberger, Jörg

    2015-09-01

    In many important natural and industrial systems, gravity currents of dense fluid feed basins. Examples include lakes fed by dense rivers and auditoria supplied with cooled air by ventilation systems. As we will show, the entrainment into such buoyancy driven currents can be influenced by viscous forces. Little work, however, has examined this viscous influence and how entrainment varies with the Reynolds number, Re. Using the idea of an entrainment coefficient, E, we derive a mathematical expression for the rise of the front at the top of the dense fluid ponding in a basin, where the horizontal cross-sectional area of the basin varies linearly with depth. We compare this expression to experiments on gravity currents with source Reynolds numbers, Res, covering the broad range 100 < Res < 1500. The form of the observed frontal rises was well approximated by our theory. By fitting the observed frontal rises to the theoretical form with E as the free parameter, we find a linear trend for E(Res) over the range 350 < Res < 1100, which is in the transition to turbulent flow. In the experiments, the entrainment coefficient, E, varied from 4 × 10-5 to 7 × 10-2. These observations show that viscous damping can be a dominant influence on gravity current entrainment in the laboratory and in geophysical flows in this transitional regime.

  5. Electric Field Effect on Bubble Detachment in Variable Gravity Environment

    NASA Technical Reports Server (NTRS)

    Iacona, Estelle; Herman, Cila; Chang, Shinan

    2003-01-01

    The subject of the present study, the process of bubble detachment from an orifice in a plane surface, shows some resemblance to bubble departure in boiling. Because of the high heat transfer coefficients associated with phase change processes, boiling is utilized in many industrial operations and is an attractive solution to cooling problems in aerospace engineering. In terrestrial conditions, buoyancy is responsible for bubble removal from the surface. In space, the gravity level being orders of magnitude smaller than on earth, bubbles formed during boiling remain attached at the surface. As a result, the amount of heat removed from the heated surface can decrease considerably. The use of electric fields is proposed to control bubble behavior and help bubble removal from the surface on which they form. The objective of the study is to investigate the behavior of individual air bubbles injected through an orifice into an electrically insulating liquid under the influence of a static electric field. Bubble cycle life were visualized in terrestrial conditions and for several reduced gravity levels. Bubble volume, dimensions and contact angle at detachment were measured and analyzed for different parameters as gravity level and electric field magnitude. Situations were considered with uniform or non-uni form electric field. Results show that these parameters significantly affect bubble behavior, shape, volume and dimensions.

  6. Laminar Entrained Flow Reactor (Fact Sheet)

    SciTech Connect

    Not Available

    2014-02-01

    The Laminar Entrained Flow Reactor (LEFR) is a modular, lab scale, single-user reactor for the study of catalytic fast pyrolysis (CFP). This system can be employed to study a variety of reactor conditions for both in situ and ex situ CFP.

  7. Washing of the AW-101 entrained solids

    SciTech Connect

    GJ Lumetta

    2000-03-31

    BNFL Inc. (BNFL) is under contract with the US Department of Energy, River Protection Project (DOE-RPP) to design, construct, and operate facilities for treating wastes stored in the single-shell and double-shell tanks at the Hanford Site, Richland, Washington. The DOE-BNFL RPP contract identifies two feeds to the waste treatment plant: (1) primarily liquid low-activity waste (LAW) consisting of less than 2 wt% entrained solids and (2) high-level waste (HLW) consisting of 10 to 200 g/L solids slurry. This report describes the results of a test conducted by Battelle to assess the effects of inhibited water washing on the composition of the entrained solids in the diluted AW-101 low-activity waste (LAW) sample. The objective of this work was to gather data on the solubility of the AW-101 entrained solids in 0.01 M NaOH, so that BNFL can evaluate whether these solids require caustic leaching. The work was conducted according to test plan BNFL-TP-29953-9, Rev. 0, LAW Entrained Solids Water Wash and Caustic Leach Testing. The test went according to plan, with no deviations from the test plan. Based on the results of the 0.01 M NaOH washing, a decision was made by BNFL to not proceed with the caustic leaching test. The composition of the washed solids was such that caustic leaching would not result in significant reduction in the immobilized HLW volume.

  8. Liquid Droplet Detachment and Entrainment in Microscale Flows

    NASA Astrophysics Data System (ADS)

    Hidrovo, Carlos

    2005-11-01

    In this talk we will present a first order study of liquid water detachment and entrainment into air flows in hydrophobic microchannels. Silicon based microstructures consisting of 23 mm long U-shaped channels of different geometry were used for this purpose. The structures are treated with a Molecular Vapor Deposition (MVD) process that renders them hydrophobic. Liquid water is injected through a side slot located 2/3 of the way downstream from the air channel inlet. The water entering the air channel beads up into slugs or droplets that grow in size at this injection location until they fill and flood the channel or are carried away by the air flow. The slugs/droplets dimensions at detachment are correlated against superficial gas velocity and proper dimensionless parameters are postulated and examined to compare hydrodynamic forces against surface tension. It is found that slug/droplet detachment is dominated by two main forces: pressure gradient drag, arising from confinement of a viscous flow in the channel, and inertial drag, arising from the stagnation of the air due to obstruction by the slugs/droplets. A detachment regime map is postulated based on the relative importance of these forces under different flow conditions.

  9. Bubble pinch-off and scaling during liquid drop impact on liquid pool

    NASA Astrophysics Data System (ADS)

    Ray, Bahni; Biswas, Gautam; Sharma, Ashutosh

    2012-08-01

    Simulations are performed to show entrapment of air bubble accompanied by high speed upward and downward water jets when a water drop impacts a pool of water surface. A new bubble entrapment zone characterised by small bubble pinch-off and long thick jet is found. Depending on the bubble and jet behaviour, the bubble entrapment zone is subdivided into three sub-regimes. The entrapped bubble size and jet height depends on the crater shape and its maximum depth. During the bubble formation, bubble neck develops an almost singular shape as it pinches off. The final pinch-off shape and the power law governing the pinching, rneck ∝ A(t0 - t)αvaries with the Weber number. Weber dependence of the function describing the radius of the bubble during the pinch-off only affects the coefficient A and not the power exponent α.

  10. Study on development of ejector of Bubble Jet Engine (BJE) - measurement of thrust -

    NASA Astrophysics Data System (ADS)

    Ono, B.; Nakashima, K.; Shigematsu, T.; Morishita, K.

    2009-02-01

    The AUV (Autonomous Under-water Vehicle), which is used for the present seabed investigations, has obtained the thrust with the screw driven by the battery. However, it has a disadvantage because of its size and cost. Therefore, this research is carried out to propose the Bubble Jet Engine (BJE) as an alternative propulsion device. It can directly transform combustion energy into kinetic energy, so it is expected that BJE can also rise the level of propulsion efficiency. This research aims at measuring exhaled mass flow rate and thrust to design ejectors, which become the core of BJE, and exploring practical possibility of BJE. Vertical type gas-water ejector experimental apparatus for measuring water entrainment was employed in order to understand the characteristics of operation conditions, such as inlet distance, air pressure of nozzle, diameter of nozzle, and so on. In addition, experiments for measuring the thrust in the condition of ejector were executed with horizontal type apparatus in water. However, the influence of the ejector to improve thrust can't have been recognized with high-pressure air at room temperature yet.

  11. [Relationship between the state of intravascular bubbles and microcirculation system].

    PubMed

    Yuan, J; Pan, L; Wang, Q; Ji, Z; Gao, J

    1996-08-01

    To confirm the hypothesis that air bubbles were unable to block the blood vessels and that the state of the intravascular bubbles was determined by the function of the circulatory system, 35 guinea pigs were pressurized then were decompressed to normal pressure. Microscopic observation was made of the bulbar conjunctival, dorsum auricular and subcutaneous vessels in 33 surviving animals. Air bubbles of different amounts, sizes and shapes were found in the dorsum auricular and subcutaneous vein of all the amimals and in the bulbar conjunctival oriridal artery of 16 animals, and in some cases the vessels were even filled with bubbles. The bubbles ran in the same direction and at the same speed as the blood flow. They could run in a backward, to-and-fro or sluggish flow. The bubbles looked shapeless and tended to break and divided into branch flows where the vessel branches. The bubbles were motionless at the proximal end of the artery occluded due to spasm or when the blood was stagnated. Under the action of the blood pressure the bubbles could expand the vessel and push forward. The bubbles showed a tendency of flowing with ease with the function of the vessel recovered. The results suggest that bubbles of any size in the vessel could easily change their shape under the action of the blood flow and pressure, and pass through vessels of any diameter and circulate with the blood. Only when a vessel was occluded due to spasm or the blood in a vessel was stagnated could the bubbles be motionless, but it was not that the bubbles blocked the vessel.

  12. Prospects for bubble fusion

    SciTech Connect

    Nigmatulin, R.I.; Lahey, R.T. Jr.

    1995-09-01

    In this paper a new method for the realization of fusion energy is presented. This method is based on the superhigh compression of a gas bubble (deuterium or deuterium/thritium) in heavy water or another liquid. The superhigh compression of a gas bubble in a liquid is achieved through forced non-linear, non-periodic resonance oscillations using moderate amplitudes of forcing pressure. The key feature of this new method is a coordination of the forced liquid pressure change with the change of bubble volume. The corresponding regime of the bubble oscillation has been called {open_quotes}basketball dribbling (BD) regime{close_quotes}. The analytical solution describing this process for spherically symmetric bubble oscillations, neglecting dissipation and compressibility of the liquid, has been obtained. This solution shown no limitation on the supercompression of the bubble and the corresponding maximum temperature. The various dissipation mechanisms, including viscous, conductive and radiation heat losses have been considered. It is shown that in spite of these losses it is possible to achieve very high gas bubble temperatures. This because the time duration of the gas bubble supercompression becomes very short when increasing the intensity of compression, thus limiting the energy losses. Significantly, the calculated maximum gas temperatures have shown that nuclear fusion may be possible. First estimations of the affect of liquid compressibility have been made to determine possible limitations on gas bubble compression. The next step will be to investigate the role of interfacial instability and breaking down of the bubble, shock wave phenomena around and in the bubble and mutual diffusion of the gas and the liquid.

  13. Speech Entrainment Compensates for Broca's Area Damage

    PubMed Central

    Fridriksson, Julius; Basilakos, Alexandra; Hickok, Gregory; Bonilha, Leonardo; Rorden, Chris

    2015-01-01

    Speech entrainment (SE), the online mimicking of an audiovisual speech model, has been shown to increase speech fluency in patients with Broca's aphasia. However, not all individuals with aphasia benefit from SE. The purpose of this study was to identify patterns of cortical damage that predict a positive response SE's fluency-inducing effects. Forty-four chronic patients with left hemisphere stroke (15 female) were included in this study. Participants completed two tasks: 1) spontaneous speech production, and 2) audiovisual SE. Number of different words per minute was calculated as a speech output measure for each task, with the difference between SE and spontaneous speech conditions yielding a measure of fluency improvement. Voxel-wise lesion-symptom mapping (VLSM) was used to relate the number of different words per minute for spontaneous speech, SE, and SE-related improvement to patterns of brain damage in order to predict lesion locations associated with the fluency-inducing response to speech entrainment. Individuals with Broca's aphasia demonstrated a significant increase in different words per minute during speech entrainment versus spontaneous speech. A similar pattern of improvement was not seen in patients with other types of aphasia. VLSM analysis revealed damage to the inferior frontal gyrus predicted this response. Results suggest that SE exerts its fluency-inducing effects by providing a surrogate target for speech production via internal monitoring processes. Clinically, these results add further support for the use of speech entrainment to improve speech production and may help select patients for speech entrainment treatment. PMID:25989443

  14. Cloud top entrainment instability and cloud top distributions

    NASA Technical Reports Server (NTRS)

    Boers, Reinout; Spinhirne, James D.

    1990-01-01

    Classical cloud-top entrainment instability condition formulation is discussed. A saturation point diagram is used to investigate the details of mixing in cases where the cloud-top entrainment instability criterion is satisfied.

  15. Annular flow entrainment rate experiment in a vertical pipe

    SciTech Connect

    Lopez de Bertodano, M.A.; Jan, C.-S.; Beus, S.G.

    1996-06-01

    An air-water experiment has been performed to measure the entrainment rate in a small pipe. The current data extend the available database in the literature to higher gas and liquid flows and also to higher pressures. The ranges covered are 8.1 {times} 10{sup 2} kg/m{sup 2}s {lt} (gas flux rate) {lt} 4.5 {times} 10{sup 4} kg/m{sup 2}s, 5.5 kg/m{sup 2}s {lt} (liquid flux rate) {lt} 2.9 {times} 10{sup 2}s and 140 CPU {lt} PP {lt} 660 CPU. The test section has an internal diameter of 9.5 mm and an L/D ratio of 440. The measurements were made by extracting the liquid film at two locations establishing fully developed annular flow. The data were validated by visual observation and comparisons with the data of Cousins and Hewitt. A mechanism for the entrainment rate in terms of Taylor`s ripple instability is proposed. The theory is modified to include the effect of the inertia of the droplets in the gas stream. The model results in a dimensionless group that includes the Weber number based on the droplet concentration and the liquid film Reynolds number. Kataoka and Ishii`s correlation (1982) is modified in light of this model and the new correlation scales the present data and Cousins and Hewitt`s data very well. 19 refs., 8 figs., 3 tabs.

  16. Parameterizing Convective Organization to Escape the Entrainment Dilemma

    NASA Astrophysics Data System (ADS)

    Mapes, Brian; Neale, Richard

    2011-02-01

    Lateral mixing parameters in buoyancy-driven deep convection schemes are among the most sensitive and important unknowns in atmosphere models. Unfortunately, there is not a true optimum value for plume mixing rate, but rather a dilemma or tradeoff: Excessive dilution of updrafts leads to unstable stratification bias in the mean state, while inadequate dilution allows deep convection to occur too easily, causing poor space and time distributions and variability. In this too-small parameter space, compromises are made based on competing metrics of model performance. We attempt to escape this "entrainment dilemma" by making bulk plume parameters (chiefly entrainment rate) depend on a new prognostic variable ("organization," org) meant to reflect the rectified effects of subgrid-scale structure in meteorological fields. We test an org scheme in the Community Atmosphere Model (CAM5) with a new unified shallow-deep convection scheme (UW-ens, a 2-plume version of the University of Washington scheme). Since buoyant ascent involves natural selection, subgrid structure makes convection systematically deeper and stronger than the pure unorganized case: plumes of average (or randomly sampled) air rising in the average environment. To reflect this, org is nonnegative, but we leave it dimensionless. A time scale characterizes its behavior (here ˜3 h for a 2o model). Currently its source is rain evaporation, but other sources can be added easily. We also let org be horizontally transported by advection, as a mass-weighted mean over the convecting layer. Linear coefficients link org to a plume ensemble, which it assists via: 1) plume base warmth above the mean temperature 2) plume radius enhancement (reduced mixing), and 3) increased probability of overlap in a multi-plume scheme, where interactions benefit later generations (this part has only been implemented in an offline toy column model). Since rain evaporation is a source for org, it functions as a time-lagged but positive

  17. Parameterizing Convective Organization to Escape the Entrainment Dilemma

    NASA Astrophysics Data System (ADS)

    Mapes, Brian; Neale, Richard

    2011-06-01

    Lateral mixing parameters in buoyancy-driven deep convection schemes are among the most sensitive and important unknowns in atmosphere models. Unfortunately, there is not a true optimum value for plume mixing rate, but rather a dilemma or tradeoff: Excessive dilution of updrafts leads to unstable stratification bias in the mean state, while inadequate dilution allows deep convection to occur too easily, causing poor space and time distributions and variability. In this too-small parameter space, compromises are made based on competing metrics of model performance. We attempt to escape this “entrainment dilemma” by making bulk plume parameters (chiefly entrainment rate) depend on a new prognostic variable (“organization,” org) meant to reflect the rectified effects of subgrid-scale structure in meteorological fields. We test an org scheme in the Community Atmosphere Model (CAM5) with a new unified shallow-deep convection scheme (UW-ens, a 2-plume version of the University of Washington scheme). Since buoyant ascent involves natural selection, subgrid structure makes convection systematically deeper and stronger than the pure unorganized case: plumes of average (or randomly sampled) air rising in the average environment. To reflect this, org is nonnegative, but we leave it dimensionless. A time scale characterizes its behavior (here ˜3 h for a 2o model). Currently its source is rain evaporation, but other sources can be added easily. We also let org be horizontally transported by advection, as a mass-weighted mean over the convecting layer. Linear coefficients link org to a plume ensemble, which it assists via: 1) plume base warmth above the mean temperature 2) plume radius enhancement (reduced mixing), and 3) increased probability of overlap in a multi-plume scheme, where interactions benefit later generations (this part has only been implemented in an offline toy column model). Since rain evaporation is a source for org, it functions as a time-lagged but

  18. Sonoluminescence: Why fiery bubbles have eternal life

    NASA Astrophysics Data System (ADS)

    Lohse, Detlef; Brenner, Michael; Hilgenfeldt, Sascha

    1996-11-01

    Sound driven gas bubbles in water can emit light pulses. This phenomenon is called sonoluminescence (SL). Two different phases of single bubble SL have been proposed: diffusively stable and diffusively unstable SL. Phase diagrams are presented in the gas concentration vs forcing pressure state space and also in the ambient radius vs forcing pressure state space. These phase diagrams are based on the thresholds for energy focusing in the bubble and on those for (i) shape instabilities and (ii) diffusive instabilities. Stable SL only occurs in a tiny parameter window of large forcing pressure amplitude Pa ~ 1.2 - 1.5atm and low gas concentration of less than 0.4% of saturation. The results quantitatively agree with experimental results of Putterman's UCLA group on argon, but not on air. However, air bubbles and other gas mixtures can also successfully be treated in this approach if in addition (iii) chemical instabilities are considered. The essential feature is the removal of almost all nitrogen and oxygen from the bubble through reaction to soluble compounds (i.e. NOx or NH_3).

  19. Bias structure to efficiently package a magnetic bubble domain device

    NASA Technical Reports Server (NTRS)

    Chen, Thomas T. (Inventor)

    1978-01-01

    A single, compact bias structure to efficiently package a plurality of magnetic bubble domain device chips having different bias requirements. The vertical magnetic field distribution within the bias structure air gap is selectively controlled by a magnetically soft field adjusting assembly suitably attached within the bias structure. The size and configuration of the field adjusting assembly tailors local field variations within the air gap to correspond with the bias requirements of the bubble domain chips disposed therein.

  20. Observational constraints on entrainment and the entrainment interface layer in stratocumulus

    NASA Astrophysics Data System (ADS)

    Carman, J. K.; Rossiter, D. L.; Khelif, D.; Jonsson, H. H.; Faloona, I. C.; Chuang, P. Y.

    2012-01-01

    Aircraft sampling of the stratocumulus-topped boundary layer (STBL) during the Physics of Stratocumulus Top (POST) experiment was primarily achieved using sawtooth flight patterns, during which the atmospheric layer 100 m above and below cloud top was sampled at a frequency of once every 2 min. The large data set that resulted from each of the 16 flights document the complex structure and variability of this interfacial region in a variety of conditions. In this study, we first describe some properties of the entrainment interface layer (EIL), where strong gradients in turbulent kinetic energy (TKE), potential temperature and moisture can be found. We find that defining the EIL by the first two properties tend to yield similar results, but that moisture can be a misleading tracer of the EIL. These results are consistent with studies using large-eddy simulations. We next utilize the POST data to shed light on and constrain processes relevant to entrainment, a key process in the evolution of the STBL that to-date is not well-represented even by high resolution models. We define "entrainment efficiency" as the ratio of the TKE consumed by entrainment to that generated within the STBL (primarily by cloud-top cooling). We find values for the entrainment efficiency that vary by 1.5 orders of magnitude, which is even greater than the one order magnitude that previous modeling results have suggested. Our analysis also demonstrate that the entrainment efficiency depends on the strength of the stratification of the EIL, but not on the TKE in the cloud top region. The relationships between entrainment efficiency and other STBL parameters serve as novel observational contraints for simulations of entrainment in such systems.

  1. Observational constraints on entrainment and the entrainment interface layer in stratocumulus

    NASA Astrophysics Data System (ADS)

    Carman, J. K.; Rossiter, D. L.; Khelif, D.; Jonsson, H. H.; Faloona, I. C.; Chuang, P. Y.

    2012-11-01

    Aircraft sampling of the stratocumulus-topped boundary layer (STBL) during the Physics of Stratocumulus Top (POST) experiment was primarily achieved using sawtooth flight patterns, during which the atmospheric layer 100 m above and below cloud top was sampled at a frequency of once every 2 min. The large data set that resulted from each of the 16 flights document the complex structure and variability of this interfacial region in a variety of conditions. In this study, we first describe some properties of the entrainment interface layer (EIL), where strong gradients in turbulent kinetic energy (TKE), potential temperature and moisture can be found. We find that defining the EIL by the first two properties tends to yield similar results, but that moisture can be a misleading tracer of the EIL. These results are consistent with studies using large-eddy simulations. We next utilize the POST data to shed light on and constrain processes relevant to entrainment, a key process in the evolution of the STBL that to-date is not well-represented even by high resolution models. We define "entrainment efficiency" as the ratio of the TKE consumed by entrainment to that generated within the STBL (primarily by cloud-top cooling). We find values for the entrainment efficiency that vary by 1.5 orders of magnitude, which is even greater than the one order magnitude that previous modeling results have suggested. Our analysis also demonstrates that the entrainment efficiency depends on the strength of the stratification of the EIL, but not on the TKE in the cloud top region. The relationships between entrainment efficiency and other STBL parameters serve as novel observational contraints for simulations of entrainment in such systems.

  2. EXPERIMENTAL BUBBLE FORMATION IN A LARGE SCALE SYSTEM FOR NEWTONIAN AND NONNEWTONIAN FLUIDS

    SciTech Connect

    Leishear, R; Michael Restivo, M

    2008-06-26

    The complexities of bubble formation in liquids increase as the system size increases, and a photographic study is presented here to provide some insight into the dynamics of bubble formation for large systems. Air was injected at the bottom of a 28 feet tall by 30 inch diameter column. Different fluids were subjected to different air flow rates at different fluid depths. The fluids were water and non-Newtonian, Bingham plastic fluids, which have yield stresses requiring an applied force to initiate movement, or shearing, of the fluid. Tests showed that bubble formation was significantly different in the two types of fluids. In water, a field of bubbles was formed, which consisted of numerous, distributed, 1/4 to 3/8 inch diameter bubbles. In the Bingham fluid, large bubbles of 6 to 12 inches in diameter were formed, which depended on the air flow rate. This paper provides comprehensive photographic results related to bubble formation in these fluids.

  3. Gases in Tektite Bubbles.

    PubMed

    O'keefe, J A; Lowman, P D; Dunning, K L

    1962-07-20

    Spectroscopic analysis of light produced by electrodeless discharge in a tektite bubble showed the main gases in the bubble to be neon, helium, and oxygen. The neon and helium have probably diffused in from the atmosphere, while the oxygen may be atmospheric gas incorporated in the tektite during its formation.

  4. Always Blowing Bubbles.

    ERIC Educational Resources Information Center

    Grambo, Gregory

    1995-01-01

    Ways to explore blowing bubbles through observation, experimentation, and discovery are suggested to stimulate gifted children, with attention to such areas as the function of film in the liquid and the reason for the common spherical shape of bubbles. Experiments that children can try and tips for the teacher are presented. (SW)

  5. Clustering in bubbly liquids

    NASA Astrophysics Data System (ADS)

    Figueroa, Bernardo; Zenit, Roberto

    2004-11-01

    We are conducting experiments to determine the amount of clustering that occurs when small gas bubbles ascend in clean water. In particular, we are interested in flows for which the liquid motion around the bubbles can be described, with a certain degree of accuracy, using potential flow theory. This model is applicable for the case of bubbly liquids in which the Reynolds number is large and the Weber number is small. To clearly observe the formation of bubble clusters we propose the use of a Hele-Shaw-type channel. In this thin channel the bubbles cannot overlap in the depth direction, therefore the identification of bubble clusters cannot be misinterpreted. Direct video image analysis is performed to calculate the velocity and size of the bubbles, as well as the formation of clusters. Although the walls do affect the motion of the bubbles, the clustering phenomena does occur and has the same qualitative behavior as in fully three-dimensional flows. A series of preliminary measurements are presented. A brief discussion of our plans to perform PIV measurements to obtain the liquid velocity fields is also presented.

  6. Cost versus Enrollment Bubbles

    ERIC Educational Resources Information Center

    Vedder, Richard K.; Gillen, Andrew

    2011-01-01

    The defining characteristic of a bubble is unsustainable growth that eventually reverses. Bubbles typically arise when uncertainty leads to unsustainable trends, and the authors argue that there are two areas in which higher education has experienced what appear to be unsustainable trends, namely, college costs (the costs to students, parents, and…

  7. Let Them Blow Bubbles.

    ERIC Educational Resources Information Center

    Korenic, Eileen

    1988-01-01

    Describes a series of activities and demonstrations involving the science of soap bubbles. Starts with a recipe for bubble solution and gives instructions for several activities on topics such as density, interference colors, optics, static electricity, and galaxy formation. Contains some background information to help explain some of the effects.…

  8. Gases in Tektite Bubbles.

    PubMed

    O'keefe, J A; Lowman, P D; Dunning, K L

    1962-07-20

    Spectroscopic analysis of light produced by electrodeless discharge in a tektite bubble showed the main gases in the bubble to be neon, helium, and oxygen. The neon and helium have probably diffused in from the atmosphere, while the oxygen may be atmospheric gas incorporated in the tektite during its formation. PMID:17801113

  9. Evaporation, Boiling and Bubbles

    ERIC Educational Resources Information Center

    Goodwin, Alan

    2012-01-01

    Evaporation and boiling are both terms applied to the change of a liquid to the vapour/gaseous state. This article argues that it is the formation of bubbles of vapour within the liquid that most clearly differentiates boiling from evaporation although only a minority of chemistry textbooks seems to mention bubble formation in this context. The…

  10. Bubble collision with gravitation

    SciTech Connect

    Hwang, Dong-il; Lee, Bum-Hoon; Lee, Wonwoo; Yeom, Dong-han E-mail: bhl@sogang.ac.kr E-mail: innocent.yeom@gmail.com

    2012-07-01

    In this paper, we study vacuum bubble collisions with various potentials including gravitation, assuming spherical, planar, and hyperbolic symmetry. We use numerical calculations from double-null formalism. Spherical symmetry can mimic the formation of a black hole via multiple bubble collisions. Planar and especially hyperbolic symmetry describes two bubble collisions. We study both cases, when two true vacuum regions have the same field value or different field values, by varying tensions. For the latter case, we also test symmetric and asymmetric bubble collisions, and see details of causal structures. If the colliding energy is sufficient, then the vacuum can be destabilized, and it is also demonstrated. This double-null formalism can be a complementary approach in the context of bubble collisions.

  11. Two-stage-type electrostatic precipitator re-entrainment phenomena under diesel flue gases

    SciTech Connect

    Zukeran, Akinori; Ehara, Yoshiyasu; Ito, Tairo; Matsuyama, M.; Ikeda, Yasushi; Kawakami, Hitomi; Takahashi, Takeo; Takamatsu, Takeshi

    1999-03-01

    One of the applications of the electrostatic precipitator (ESP) is the cleaning of air to increase the visibility index in highway tunnels. Particles floating in air in highway tunnels are mainly carbon. Collection efficiency of a large particle diameter in an ESP often decreases when the ESP collects carbon particles which have low electric resistance. Collection efficiency often becomes negative in an experimental ESP. The negative collection efficiency means that the particle concentration flowing downstream is greater than that upstream in the ESP. The negative collection efficiency means that the particle concentration flowing downstream is greater than that upstream in the ESP. This phenomenon is explained as the re-entrainment of particles. In this paper, experiments were carried out to investigate the cause of the decrease in efficiency of particle collection of the ESP. The time characteristic of the collection efficiency and the distribution of particle size on the collection electrodes were studied. Experimental results showed that the decrease in the collection efficiency and the distribution of particle size on the collection electrodes were studied. Experimental results showed that the decrease in the collection efficiency was caused by re-entrainment of particles during the ESP operation. The effect of gas-flow velocity on the collection efficiency of the ESP was also investigated to study the cause of re-entrainment phenomena. The result showed that the re-entrainment phenomena depended on the gas-flow velocity.

  12. Collective oscillations of fresh and salt water bubble plumes

    PubMed

    Orris; Nicholas

    2000-02-01

    Bubble plumes of various void fractions and sizes were produced by varying the flow velocity of a water jet impinging normally on a water surface. The bubbles entrained at the surface were carried downwards by the fluid flow to depths ranging from 33 to 65 cm, and formed roughly cylindrical plumes with diameters ranging from 12 to 27 cm. The acoustic emissions from the plumes were recorded onto digital audio tape using a hydrophone placed outside the cloud at distances ranging from 50 cm to 16.0 m. Closeup video images of the individual bubbles within the plume were also taken in order to gain knowledge of the bubble size distributions. The experiments were performed in both fresh-water and salt-water environments. The fresh-water clouds emitted sounds with a modal structure that was significantly different from that produced by the salt-water clouds. Furthermore, the smaller bubbles present in the salt-water clouds have a fundamental effect on the amplification of turbulence noise, generating sound at significant levels for frequencies up to several hundred Hertz.

  13. Probing nuclear bubble structure via neutron star asteroseismology

    NASA Astrophysics Data System (ADS)

    Sotani, Hajime; Iida, Kei; Oyamatsu, Kazuhiro

    2016-10-01

    We consider torsional oscillations that are trapped in a layer of spherical-hole (bubble) nuclear structure, which is expected to occur in the deepest region of the inner crust of a neutron star. Because this layer intervenes between the phase of slab nuclei and the outer core of uniform nuclear matter, torsional oscillations in the bubble phase can be excited separately from usual crustal torsional oscillations. We find from eigenmode analyses for various models of the equation of state of uniform nuclear matter that the fundamental frequencies of such oscillations are almost independent of the incompressibility of symmetric nuclear matter, but strongly depend on the slope parameter of the nuclear symmetry energy L. Although the frequencies are also sensitive to the entrainment effect, i.e., what portion of nucleons outside bubbles contribute to the oscillations, by having such a portion fixed, we can successfully fit the calculated fundamental frequencies of torsional oscillations in the bubble phase inside a star of specific mass and radius as a function of L. By comparing the resultant fitting formula to the frequencies of quasi-periodic oscillations (QPOs) observed from the soft-gamma repeaters, we find that each of the observed low-frequency QPOs can be identified either as a torsional oscillation in the bubble phase or as a usual crustal oscillation, given generally accepted values of L for all the stellar models considered here.

  14. Leaping shampoo glides on a 500-nm-thick lubricating air layer

    NASA Astrophysics Data System (ADS)

    Li, Erqiang; Lee, Sanghyun; Marston, Jeremy; Bonito, Andrea; Thoroddsen, Sigurdur

    2013-11-01

    When a stream of shampoo is fed onto a pool in one's hand, a jet can leap sideways or rebound from the liquid surface in an intriguing phenomenon known as the Kaye effect. Earlier studies have debated whether non-Newtonian effects are the underlying cause of this phenomenon, making the jet glide on top of a shear-thinning liquid layer, or whether an entrained air layer is responsible. Herein we show unambiguously that the jet slides on a lubricating air layer [Lee et al., Phys. Rev. E 87, 061001 (2013)]. We identify this layer by looking through the pool liquid and observing its rupture into fine micro-bubbles. The resulting micro-bubble sizes suggest that the thickness of this air layer is around 500 nm. This thickness estimate is also supported by the tangential deceleration of the jet during the rebounding, with the shear stress within the thin air layer sufficient for the observed deceleration. Particle tracking within the jet shows uniform velocity, with no pronounced shear, which would be required for shear-thinning effects. The role of the surfactant may primarily be to stabilize the air film.

  15. Bubble Eliminator Based on Centrifugal Flow

    NASA Technical Reports Server (NTRS)

    Gonda, Steve R.; Tsao, Yow-Min D.; Lee, Wenshan

    2004-01-01

    The fluid bubble eliminator (FBE) is a device that removes gas bubbles from a flowing liquid. The FBE contains no moving parts and does not require any power input beyond that needed to pump the liquid. In the FBE, the buoyant force for separating the gas from the liquid is provided by a radial pressure gradient associated with a centrifugal flow of the liquid and any entrained bubbles. A device based on a similar principle is described in Centrifugal Adsorption Cartridge System (MSC- 22863), which appears on page 48 of this issue. The FBE was originally intended for use in filtering bubbles out of a liquid flowing relatively slowly in a bioreactor system in microgravity. Versions that operate in normal Earth gravitation at greater flow speeds may also be feasible. The FBE (see figure) is constructed as a cartridge that includes two concentric cylinders with flanges at the ends. The outer cylinder is an impermeable housing; the inner cylinder comprises a gas-permeable, liquid-impermeable membrane covering a perforated inner tube. Multiple spiral disks that collectively constitute a spiral ramp are mounted in the space between the inner and outer cylinders. The liquid enters the FBE through an end flange, flows in the annular space between the cylinders, and leaves through the opposite end flange. The spiral disks channel the liquid into a spiral flow, the circumferential component of which gives rise to the desired centrifugal effect. The resulting radial pressure gradient forces the bubbles radially inward; that is, toward the inner cylinder. At the inner cylinder, the gas-permeable, liquid-impermeable membrane allows the bubbles to enter the perforated inner tube while keeping the liquid in the space between the inner and outer cylinders. The gas thus collected can be vented via an endflange connection to the inner tube. The centripetal acceleration (and thus the radial pressure gradient) is approximately proportional to the square of the flow speed and

  16. Bubbles, Bubbles: Integrated Investigations with Floating Spheres

    ERIC Educational Resources Information Center

    Reeder, Stacy

    2007-01-01

    In this article, the author describes integrated science and mathematics activities developed for fourth-grade students to explore and investigate three-dimensional geometric shapes, Bernoulli's principle, estimation, and art with and through bubbles. Students were engaged in thinking and reflection on the questions their teachers asked and were…

  17. AW-101 entrained solids - Solubility versus temperature

    SciTech Connect

    GJ Lumetta; RC Lettau; GF Piepel

    2000-03-31

    This report describes the results of a test conducted by Battelle to assess the solubility of the solids entrained in the diluted AW-101 low-activity waste (LAW) sample. BNFL requested Battelle to dilute the AW-1-1 sample using de-ionized water to mimic expected plant operating conditions. BNFL further requested Battelle to assess the solubility of the solids present in the diluted AW-101 sample versus temperature conditions of 30, 40, and 50 C. BNFL requested these tests to assess the composition of the LAW supernatant and solids versus expected plant-operating conditions. The work was conducted according to test plan BNFL-TP-29953-7, Rev. 0, Determination of the Solubility of LAW Entrained Solids. The test went according to plan, with no deviations from the test plan.

  18. Spectra of single-bubble sonoluminescence in water and glycerin-water mixtures

    NASA Astrophysics Data System (ADS)

    Gaitan, D. Felipe; Atchley, Anthony A.; Lewia, S. D.; Carlson, J. T.; Maruyama, X. K.; Moran, Michael; Sweider, Darren

    1996-07-01

    A single gas bubble, acoustically levitated in a standing-wave field and oscillating under the action of that field, can emit pulses of blue-white light with duration less than 50 ps. Measurements of the spectrum of this picosecond sonoluminescence with a scanning monochrometer are reported for air bubbles levitated in water and in glycerin-water mixtures. While the spectrum has been reported previously by others for air bubbles in water, the spectrum for air bubbles in water-glycerin mixtures has not. Expected emission lines from glycerin were conspicuously absent, suggesting a different mechanism for light production in single-bubble sonoluminescence. Other conclusions are the spectrum for air bubbles in water is consistent with that previously reported, the radiated energy decreases as the glycerin concentration increases, and the peak of the spectrum appears to shift to longer wavelengths for the water-glycerin mixtures.

  19. Bubble dynamics in a standing sound field: the bubble habitat.

    PubMed

    Koch, P; Kurz, T; Parlitz, U; Lauterborn, W

    2011-11-01

    Bubble dynamics is investigated numerically with special emphasis on the static pressure and the positional stability of the bubble in a standing sound field. The bubble habitat, made up of not dissolving, positionally and spherically stable bubbles, is calculated in the parameter space of the bubble radius at rest and sound pressure amplitude for different sound field frequencies, static pressures, and gas concentrations of the liquid. The bubble habitat grows with static pressure and shrinks with sound field frequency. The range of diffusionally stable bubble oscillations, found at positive slopes of the habitat-diffusion border, can be increased substantially with static pressure. PMID:22088010

  20. Large-eddy simulation of bubble-driven plume in stably stratified flow.

    NASA Astrophysics Data System (ADS)

    Yang, Di; Chen, Bicheng; Socolofsky, Scott; Chamecki, Marcelo; Meneveau, Charles

    2015-11-01

    The interaction between a bubble-driven plume and stratified water column plays a vital role in many environmental and engineering applications. As the bubbles are released from a localized source, they induce a positive buoyancy flux that generates an upward plume. As the plume rises, it entrains ambient water, and when the plume rises to a higher elevation where the stratification-induced negative buoyancy is sufficient, a considerable fraction of the entrained fluid detrains, or peels, to form a downward outer plume and a lateral intrusion layer. In the case of multiphase plumes, the intrusion layer may also trap weakly buoyant particles (e.g., oil droplets in the case of a subsea accidental blowout). In this study, the complex plume dynamics is studied using large-eddy simulation (LES), with the flow field simulated by hybrid pseudospectral/finite-difference scheme, and the bubble and dye concentration fields simulated by finite-volume scheme. The spatial and temporal characteristics of the buoyant plume are studied, with a focus on the effects of different bubble buoyancy levels. The LES data provide useful mean plume statistics for evaluating the accuracy of 1-D engineering models for entrainment and peeling fluxes. Based on the insights learned from the LES, a new continuous peeling model is developed and tested. Study supported by the Gulf of Mexico Research Initiative (GoMRI).

  1. Tribonucleation of bubbles

    PubMed Central

    Wildeman, Sander; Lhuissier, Henri; Sun, Chao; Lohse, Detlef; Prosperetti, Andrea

    2014-01-01

    We report on the nucleation of bubbles on solids that are gently rubbed against each other in a liquid. The phenomenon is found to depend strongly on the material and roughness of the solid surfaces. For a given surface, temperature, and gas content, a trail of growing bubbles is observed if the rubbing force and velocity exceed a certain threshold. Direct observation through a transparent solid shows that each bubble in the trail results from the early coalescence of several microscopic bubbles, themselves detaching from microscopic gas pockets forming between the solids. From a detailed study of the wear tracks, with atomic force and scanning electron microscopy imaging, we conclude that these microscopic gas pockets originate from a local fracturing of the surface asperities, possibly enhanced by chemical reactions at the freshly created surfaces. Our findings will be useful either for preventing undesired bubble formation or, on the contrary, for “writing with bubbles,” i.e., creating controlled patterns of microscopic bubbles. PMID:24982169

  2. Rod Driven Frequency Entrainment and Resonance Phenomena

    PubMed Central

    Salchow, Christina; Strohmeier, Daniel; Klee, Sascha; Jannek, Dunja; Schiecke, Karin; Witte, Herbert; Nehorai, Arye; Haueisen, Jens

    2016-01-01

    A controversy exists on photic driving in the human visual cortex evoked by intermittent photic stimulation. Frequency entrainment and resonance phenomena are reported for frequencies higher than 12 Hz in some studies while missing in others. We hypothesized that this might be due to different experimental conditions, since both high and low intensity light stimulation were used. However, most studies do not report radiometric measurements, which makes it impossible to categorize the stimulation according to photopic, mesopic, and scotopic vision. Low intensity light stimulation might lead to scotopic vision, where rod perception dominates. In this study, we investigated photic driving for rod-dominated visual input under scotopic conditions. Twelve healthy volunteers were stimulated with low intensity light flashes at 20 stimulation frequencies, leading to rod activation only. The frequencies were multiples of the individual alpha frequency (α) of each volunteer in the range from 0.40 to 2.30∗α. Three hundred and six-channel whole head magnetoencephalography recordings were analyzed in time, frequency, and spatiotemporal domains with the Topographic Matching Pursuit algorithm. We found resonance phenomena and frequency entrainment for stimulations at or close to the individual alpha frequency (0.90–1.10∗α) and half of the alpha frequency (0.40–0.55∗α). No signs of resonance and frequency entrainment phenomena were revealed around 2.00∗α. Instead, on-responses at the beginning and off-responses at the end of each stimulation train were observed for the first time in a photic driving experiment at frequencies of 1.30–2.30∗α, indicating that the flicker fusion threshold was reached. All results, the resonance and entrainment as well as the fusion effects, provide evidence for rod-dominated photic driving in the visual cortex. PMID:27588002

  3. Rod Driven Frequency Entrainment and Resonance Phenomena.

    PubMed

    Salchow, Christina; Strohmeier, Daniel; Klee, Sascha; Jannek, Dunja; Schiecke, Karin; Witte, Herbert; Nehorai, Arye; Haueisen, Jens

    2016-01-01

    A controversy exists on photic driving in the human visual cortex evoked by intermittent photic stimulation. Frequency entrainment and resonance phenomena are reported for frequencies higher than 12 Hz in some studies while missing in others. We hypothesized that this might be due to different experimental conditions, since both high and low intensity light stimulation were used. However, most studies do not report radiometric measurements, which makes it impossible to categorize the stimulation according to photopic, mesopic, and scotopic vision. Low intensity light stimulation might lead to scotopic vision, where rod perception dominates. In this study, we investigated photic driving for rod-dominated visual input under scotopic conditions. Twelve healthy volunteers were stimulated with low intensity light flashes at 20 stimulation frequencies, leading to rod activation only. The frequencies were multiples of the individual alpha frequency (α) of each volunteer in the range from 0.40 to 2.30(∗)α. Three hundred and six-channel whole head magnetoencephalography recordings were analyzed in time, frequency, and spatiotemporal domains with the Topographic Matching Pursuit algorithm. We found resonance phenomena and frequency entrainment for stimulations at or close to the individual alpha frequency (0.90-1.10(∗)α) and half of the alpha frequency (0.40-0.55(∗)α). No signs of resonance and frequency entrainment phenomena were revealed around 2.00(∗)α. Instead, on-responses at the beginning and off-responses at the end of each stimulation train were observed for the first time in a photic driving experiment at frequencies of 1.30-2.30(∗)α, indicating that the flicker fusion threshold was reached. All results, the resonance and entrainment as well as the fusion effects, provide evidence for rod-dominated photic driving in the visual cortex. PMID:27588002

  4. Symmetric mode resonance of bubbles attached to a rigid boundary

    NASA Astrophysics Data System (ADS)

    Payne, Edward M. B.; Illesinghe, Suhith J.; Ooi, Andrew; Manasseh, Richard

    2005-11-01

    Experimental results are compared with a theoretical analysis concerning wall effects on the symmetric mode resonance frequency of millimeter-sized air bubbles in water. An analytical model based on a linear coupled-oscillator approximation is used to describe the oscillations of the bubbles, while the method of images is used to model the effect of the wall. Three situations are considered: a single bubble, a group of two bubbles, and a group of three bubbles. The results show that bubbles attached to a rigid boundary have lower resonance frequencies compared to when they are in an infinite uniform liquid domain (referred to as free space). Both the experimental data and theoretical analysis show that the symmetric mode resonance frequency decreases with the number of bubbles but increases as the bubbles are moved apart. Discrepancies between theory and experiment can be explained by the fact that distortion effects due to buoyancy forces and surface tension were ignored. The data presented here are intended to guide future investigations into the resonances of larger arrays of bubbles on rigid surfaces, which may assist in surface sonochemistry, sonic cleaning, and micro-mixing applications.

  5. Impacts of winds on volcanic plumes - Do crossflows challenge the Morton, Turner and Taylor entrainment assumptions?

    NASA Astrophysics Data System (ADS)

    Aubry, T. J.; Jellinek, M.; Carazzo, G.

    2014-12-01

    Volcanic plumes rising into Earth's atmosphere are influenced strongly by tropospheric and stratospheric winds. In the absence of wind effects, Morton, Taylor and Turner (MTT, 1956) used a similarity theory to show that the maximum height for these flows is governed mostly by the atmospheric stratification and the buoyancy flux at the vent. Crucially, in developing this theory MTT introduced the "entrainment hypothesis" in which the rate of entrainment of atmospheric air by the large eddies forming at the edge of the plume is proportional to some bulk velocity. In the presence of wind a key question is whether the additional stirring deforms eddies sufficiently to alter their mixing properties. In particular, under what conditions will wind effects enhance or reduce entrainment? Can these effects be captured in a modified form of the MTT similarity theory or is a new theory required? We use an extensive set of experiments on wind-forced turbulent plumes in order to overcome the restricted dynamical conditions explored in previous experimental studies. We introduce a new regime parameter allowing to quantitatively separate three distinct plume regimes. Remarkably, we show that for reasonable conditions on Earth, the major effects of wind can still be captured by a modified scaling law derived from the self-similar theory of MTT, with an entrainment rate including the contributions of wind. However, analysis of the turbulence motions in our experiments shows that even weak winds introduce large asymmetries in the structure of entraining eddies. Our successful application of a mean entrainment rate at the plume edge and a modified MTT similarity theory is, thus, surprising. Does this apparent contradiction simply reveal the way turbulent instabilities driven by wind manifest themselves?

  6. Alignment strategies for the entrainment of music and movement rhythms.

    PubMed

    Moens, Bart; Leman, Marc

    2015-03-01

    Theories of entrainment assume that spontaneous entrainment emerges from dynamic laws that operate via mediators on interactions, whereby entrainment is facilitated if certain conditions are fulfilled. In this study, we show that mediators can be built that affect the entrainment of human locomotion to music. More specifically, we built D-Jogger, a music player that functions as a mediator between music and locomotion rhythms. The D-Jogger makes it possible to manipulate the timing differences between salient moments of the rhythms (beats and footfalls) through the manipulation of the musical period and phase, which affect the condition in which entrainment functions. We conducted several experiments to explore different strategies for manipulating the entrainment of locomotion and music. The results of these experiments showed that spontaneous entrainment can be manipulated, thereby suggesting different strategies on how to embark. The findings furthermore suggest a distinction among different modalities of entrainment: finding the beat (the most difficult part of entrainment), keeping the beat (easier, as a temporal scheme has been established), and being in phase (no entrainment is needed because the music is always adapted to the human rhythm). This study points to a new avenue of research on entrainment and opens new perspectives for the neuroscience of music.

  7. Exploring Entrainment Patterns of Human Emotion in Social Media

    PubMed Central

    Luo, Chuan; Zhang, Zhu

    2016-01-01

    Emotion entrainment, which is generally defined as the synchronous convergence of human emotions, performs many important social functions. However, what the specific mechanisms of emotion entrainment are beyond in-person interactions, and how human emotions evolve under different entrainment patterns in large-scale social communities, are still unknown. In this paper, we aim to examine the massive emotion entrainment patterns and understand the underlying mechanisms in the context of social media. As modeling emotion dynamics on a large scale is often challenging, we elaborate a pragmatic framework to characterize and quantify the entrainment phenomenon. By applying this framework on the datasets from two large-scale social media platforms, we find that the emotions of online users entrain through social networks. We further uncover that online users often form their relations via dual entrainment, while maintain it through single entrainment. Remarkably, the emotions of online users are more convergent in nonreciprocal entrainment. Building on these findings, we develop an entrainment augmented model for emotion prediction. Experimental results suggest that entrainment patterns inform emotion proximity in dyads, and encoding their associations promotes emotion prediction. This work can further help us to understand the underlying dynamic process of large-scale online interactions and make more reasonable decisions regarding emergency situations, epidemic diseases, and political campaigns in cyberspace. PMID:26953692

  8. Exploring Entrainment Patterns of Human Emotion in Social Media.

    PubMed

    He, Saike; Zheng, Xiaolong; Zeng, Daniel; Luo, Chuan; Zhang, Zhu

    2016-01-01

    Emotion entrainment, which is generally defined as the synchronous convergence of human emotions, performs many important social functions. However, what the specific mechanisms of emotion entrainment are beyond in-person interactions, and how human emotions evolve under different entrainment patterns in large-scale social communities, are still unknown. In this paper, we aim to examine the massive emotion entrainment patterns and understand the underlying mechanisms in the context of social media. As modeling emotion dynamics on a large scale is often challenging, we elaborate a pragmatic framework to characterize and quantify the entrainment phenomenon. By applying this framework on the datasets from two large-scale social media platforms, we find that the emotions of online users entrain through social networks. We further uncover that online users often form their relations via dual entrainment, while maintain it through single entrainment. Remarkably, the emotions of online users are more convergent in nonreciprocal entrainment. Building on these findings, we develop an entrainment augmented model for emotion prediction. Experimental results suggest that entrainment patterns inform emotion proximity in dyads, and encoding their associations promotes emotion prediction. This work can further help us to understand the underlying dynamic process of large-scale online interactions and make more reasonable decisions regarding emergency situations, epidemic diseases, and political campaigns in cyberspace.

  9. Exploring Entrainment Patterns of Human Emotion in Social Media.

    PubMed

    He, Saike; Zheng, Xiaolong; Zeng, Daniel; Luo, Chuan; Zhang, Zhu

    2016-01-01

    Emotion entrainment, which is generally defined as the synchronous convergence of human emotions, performs many important social functions. However, what the specific mechanisms of emotion entrainment are beyond in-person interactions, and how human emotions evolve under different entrainment patterns in large-scale social communities, are still unknown. In this paper, we aim to examine the massive emotion entrainment patterns and understand the underlying mechanisms in the context of social media. As modeling emotion dynamics on a large scale is often challenging, we elaborate a pragmatic framework to characterize and quantify the entrainment phenomenon. By applying this framework on the datasets from two large-scale social media platforms, we find that the emotions of online users entrain through social networks. We further uncover that online users often form their relations via dual entrainment, while maintain it through single entrainment. Remarkably, the emotions of online users are more convergent in nonreciprocal entrainment. Building on these findings, we develop an entrainment augmented model for emotion prediction. Experimental results suggest that entrainment patterns inform emotion proximity in dyads, and encoding their associations promotes emotion prediction. This work can further help us to understand the underlying dynamic process of large-scale online interactions and make more reasonable decisions regarding emergency situations, epidemic diseases, and political campaigns in cyberspace. PMID:26953692

  10. Asymmetric motion of bubble in nematic liquid crystal induced by symmetry-broken evaporation

    NASA Astrophysics Data System (ADS)

    Kim, Sung-Jo; Lev, Bohdan; Kim, Jong-Hyun

    2016-07-01

    The size of air bubbles in nematic liquid crystals can be continuously decreased through the absorption of air molecules into the host liquid crystal. A bubble and its accompanying hyperbolic hedgehog point defect undergo a continuous asymmetric motion, while the bubble decreases in size. In this study, a mechanism is proposed to theoretically explain both the motion of the air bubble and the point defect observed experimentally. Anisotropic evaporation of air molecules may occur because of the symmetry breaking of the director configuration near the point defect. The motion of the center of the air bubble to the hyperbolic hedgehog point defect is induced by the anisotropic force due to evaporation of air molecules and Stokes drag force.

  11. Cosmic bubble collisions

    NASA Astrophysics Data System (ADS)

    Kleban, Matthew

    2011-10-01

    I briefly review the physics of cosmic bubble collisions in false-vacuum eternal inflation. My purpose is to provide an introduction to the subject for readers unfamiliar with it, focussing on recent work related to the prospects for observing the effects of bubble collisions in cosmology. I will attempt to explain the essential physical points as simply and concisely as possible, leaving most technical details to the references. I make no attempt to be comprehensive or complete. I also present a new solution to Einstein's equations that represents a bubble universe after a collision, containing vacuum energy and ingoing null radiation with an arbitrary density profile.

  12. Rotating bubble membrane radiator

    DOEpatents

    Webb, Brent J.; Coomes, Edmund P.

    1988-12-06

    A heat radiator useful for expelling waste heat from a power generating system aboard a space vehicle is disclosed. Liquid to be cooled is passed to the interior of a rotating bubble membrane radiator, where it is sprayed into the interior of the bubble. Liquid impacting upon the interior surface of the bubble is cooled and the heat radiated from the outer surface of the membrane. Cooled liquid is collected by the action of centrifical force about the equator of the rotating membrane and returned to the power system. Details regarding a complete space power system employing the radiator are given.

  13. Bubble Induced Disruption of a Planar Solid-Liquid Interface During Controlled Directional Solidification in a Microgravity Environment

    NASA Technical Reports Server (NTRS)

    Grugel, Richard N.; Brush, Lucien N.; Anilkumar, Amrutur V.

    2013-01-01

    Pore Formation and Mobility Investigation (PFMI) experiments were conducted in the microgravity environment aboard the International Space Station with the intent of better understanding the role entrained porosity/bubbles play during controlled directional solidification. The planar interface in a slowing growing succinonitrile - 0.24 wt% water alloy was being observed when a nitrogen bubble traversed the mushy zone and remained at the solid-liquid interface. Breakdown of the interface to shallow cells subsequently occurred, and was later evaluated using down-linked data from a nearby thermocouple. These results and other detrimental effects due to the presence of bubbles during solidification processing in a microgravity environment are presented and discussed.

  14. The influence of large-scale structures on entrainment in a decelerating transient turbulent jet revealed by large eddy simulation

    NASA Astrophysics Data System (ADS)

    Hu, Bing; Musculus, Mark P. B.; Oefelein, Joseph C.

    2012-04-01

    To provide a better understanding of the fluid mechanical mechanisms governing entrainment in decelerating jets, we performed a large eddy simulation (LES) of a transient air jet. The ensemble-averaged LES calculations agree well with the available measurements of centerline velocity, and they reveal a region of increased entrainment that grows as it propagates downstream during deceleration. Within the temporal and spatial domains of the simulation, entrainment during deceleration temporarily increases by roughly a factor of two over that of the quasi-steady jet, and thereafter decays to a level lower than the quasi-steady jet. The LES results also provide large-structure flow details that lend insight into the effects of deceleration on entrainment. The simulations show greater growth and separation of large vortical structures during deceleration. Ambient fluid is engulfed into the gaps between the large-scale structures, causing large-scale indentations in the scalar jet boundary. The changes in the growth and separation of large structures during deceleration are attributed to changes in the production and convection of vorticity. Both the absolute and normalized scalar dissipation rates decrease during deceleration, implying that changes in small-scale mixing during deceleration do not play an important role in the increased entrainment. Hence, the simulations predict that entrainment in combustion devices may be controlled by manipulating the fuel-jet boundary conditions, which affect structures at large scales much more than at small scales.

  15. Time-resolved imaging of electrical discharge development in underwater bubbles

    NASA Astrophysics Data System (ADS)

    Tu, Yalong; Xia, Hualei; Yang, Yong; Lu, Xinpei

    2016-01-01

    The formation and development of plasma in single air bubbles submerged in water were investigated. The difference in the discharge dynamics and the after-effects on the bubble were investigated using a 900 000 frame per second high-speed charge-coupled device camera. It was observed that depending on the position of the electrodes, the breakdown could be categorized into two modes: (1) direct discharge mode, where the high voltage and ground electrodes were in contact with the bubble, and the streamer would follow the shortest path and propagate along the axis of the bubble and (2) dielectric barrier mode, where the ground electrode was not in touch with the bubble surface, and the streamer would form along the inner surface of the bubble. The oscillation of the bubble and the development of instabilities on the bubble surface were also discussed.

  16. Numerical simulation of cavitation bubble dynamics induced by ultrasound waves in a high frequency reactor.

    PubMed

    Servant, G; Caltagirone, J P; Gérard, A; Laborde, J L; Hita, A

    2000-10-01

    The use of high frequency ultrasound in chemical systems is of major interest to optimize chemical procedures. Characterization of an open air 477 kHz ultrasound reactor shows that, because of the collapse of transient cavitation bubbles and pulsation of stable cavitation bubbles, chemical reactions are enhanced. Numerical modelling is undertaken to determine the spatio-temporal evolution of cavitation bubbles. The calculus of the emergence of cavitation bubbles due to the acoustic driving (by taking into account interactions between the sound field and bubbles' distribution) gives a cartography of bubbles' emergence within the reactor. Computation of their motion induced by the pressure gradients occurring in the reactor show that they migrate to the pressure nodes. Computed bubbles levitation sites gives a cartography of the chemical activity of ultrasound. Modelling of stable cavitation bubbles' motion induced by the motion of the liquid gives some insight on degassing phenomena. PMID:11062879

  17. Forward glory scattering from bubbles.

    PubMed

    Langley, D S; Marston, P L

    1991-08-20

    The scattering enhancement known as the glory was observed in forward scattering from bubbles in liquids. A physical-optics model of the forward glory is detailed, based on transmitted waves reflected within the bubble. Some aspects of the model are compared with the Mie theory and with features in the cross-polarized light from single bubbles. Clouds of small bubbles rising in water show an angular structure in the forward glory light that is useful for estimating the bubble size.

  18. What's in a Bubble?

    ERIC Educational Resources Information Center

    Saunderson, Megan

    2000-01-01

    Describes a unit on detergents and bubbles that establishes an interest in the properties of materials and focuses on active learning involving both hands- and minds-on learning rather than passive learning. (ASK)

  19. Blowing magnetic skyrmion bubbles

    NASA Astrophysics Data System (ADS)

    Jiang, Wanjun; Upadhyaya, Pramey; Zhang, Wei; Yu, Guoqiang; Jungfleisch, M. Benjamin; Fradin, Frank Y.; Pearson, John E.; Tserkovnyak, Yaroslav; Wang, Kang L.; Heinonen, Olle; te Velthuis, Suzanne G. E.; Hoffmann, Axel

    2015-07-01

    The formation of soap bubbles from thin films is accompanied by topological transitions. Here we show how a magnetic topological structure, a skyrmion bubble, can be generated in a solid-state system in a similar manner. Using an inhomogeneous in-plane current in a system with broken inversion symmetry, we experimentally “blow” magnetic skyrmion bubbles from a geometrical constriction. The presence of a spatially divergent spin-orbit torque gives rise to instabilities of the magnetic domain structures that are reminiscent of Rayleigh-Plateau instabilities in fluid flows. We determine a phase diagram for skyrmion formation and reveal the efficient manipulation of these dynamically created skyrmions, including depinning and motion. The demonstrated current-driven transformation from stripe domains to magnetic skyrmion bubbles could lead to progress in skyrmion-based spintronics.

  20. Chemistry in Soap Bubbles.

    ERIC Educational Resources Information Center

    Lee, Albert W. M.; Wong, A.; Lee, H. W.; Lee, H. Y.; Zhou, Ning-Huai

    2002-01-01

    Describes a laboratory experiment in which common chemical gases are trapped inside soap bubbles. Examines the physical and chemical properties of the gases such as relative density and combustion. (Author/MM)

  1. Blowing DNA bubbles.

    PubMed

    Severin, N; Zhuang, W; Ecker, C; Kalachev, A A; Sokolov, I M; Rabe, J P

    2006-11-01

    We report here experimental observations which indicate that topologically or covalently formed polymer loops embedded in an ultrathin liquid film on a solid substrate can be "blown" into circular "bubbles" during scanning force microscopy (SFM) imaging. In particular, supercoiled vector DNA has been unraveled, moved, stretched, and overstretched to two times its B-form length and then torn apart. We attribute the blowing of the DNA bubbles to the interaction of the tapping SFM tip with the ultrathin liquid film.

  2. Bubble coalescence in magmas

    NASA Technical Reports Server (NTRS)

    Herd, Richard A.; Pinkerton, Harry

    1993-01-01

    The most important factors governing the nature of volcanic eruptions are the primary volatile contents, the ways in which volatiles exsolve, and how the resulting bubbles grow and interact. In this contribution we assess the importance of bubble coalescence. The degree of coalescence in alkali basalts has been measured using Image Analysis techniques and it is suggested to be a process of considerable importance. Binary coalescence events occur every few minutes in basaltic melts with vesicularities greater than around 35 percent.

  3. Sponge Cake or Champagne? Bubbles, Magmatic Degassing and Volcanic Eruptions

    NASA Astrophysics Data System (ADS)

    Cashman, K.; Pioli, L.; Belien, I.; Wright, H.; Rust, A.

    2007-12-01

    Vesiculation is an unavoidable consequence of magma decompression; the extent to which bubbles travel with ascending magma or leave the system by separated or permeable flow will determine the nature of the ensuing eruption. Bubbles travel with the melt from which they exsolve if the rise time of bubbles through the melt (the 'drift velocity') is much less than the rise rate of the magma (sponge cake). This condition is most likely to be met in viscous melts (where bubble rise velocities are low) and in melts that experience rapid decompression (high ascent velocities). Under these conditions, bubble expansion within the melt continues until sufficient bubble expansion causes coalescence and the development of a permeable network. Typical pumice vesicularities of 70-80% and permeabilities of 10-12 m2 constrain this limit under conditions appropriate for subplinian to plinian eruptions (mass fluxes > 106 kg/s). Slower rise rates (and lower mass fluxes) that characterize effusive eruptions produce silicic lavas with a wider range of vesicularities. In general, permeability decreases with decreasing sample vesicularity as bubbles deform (as evidenced by anisotropy in permeability and electrical conductivity) and pore apertures diminish. Degassing efficiency (and resulting densification of magma within the conduit) under these conditions is determined by permeability and the time allowed for gas escape. Bubbles rise through the melt if the drift velocity exceeds the velocity of magma ascent (champagne). This condition is most easily met in volatile-rich, low viscosity (mafic) melts at low to moderate fluxes. At very low magma flux, magma eruption rate is determined by the extent to which magma is entrained and ejected by rising gases (strombolian eruptions); when bubbles are too small, or are rising too slowly, they may not break the surface at all, but instead may be concentrated in a near-surface layer (surface foam). As the magma flux increases, segregation of

  4. STABILITY OF AQUEOUS FILMS BETWEEN BUBBLES

    PubMed Central

    Ohnishi, Satomi; Vogler, Erwin A.; Horn, Roger G.

    2010-01-01

    Film thinning experiments have been conducted with aqueous films between two air phases in a thin film pressure balance. The films are free of added surfactant but simple NaCl electrolyte is added in some experiments. Initially the experiments begin with a comparatively large volume of water in a cylindrical capillary tube a few mm in diameter, and by withdrawing water from the center of the tube the two bounding menisci are drawn together at a prescribed rate. This models two air bubbles approaching at a controlled speed. In pure water the results show three regimes of behavior depending on the approach speed: at slow speed (<1 µm/s) it is possible to form a flat film of pure water, ~100 nm thick, that is stabilised indefinitely by disjoining pressure due to repulsive double-layer interactions between naturally-charged air/water interfaces. The data are consistent with a surface potential of −57 mV on the bubble surfaces. At intermediate approach speed (~1 – 150 µm/s) the films are transiently stable due to hydrodynamic drainage effects, and bubble coalescence is delayed by ~10 – 100 s. At approach speeds greater than ~150 µm/s the hydrodynamic resistance appears to become negligible, and the bubbles coalesce without any measurable delay. Explanations for these observations are presented that take into account DLVO and Marangoni effects entering through disjoining pressure, surface mobility and hydrodynamic flow regimes in thin film drainage. In particular, it is argued that the dramatic reduction in hydrodynamic resistance is a transition from viscosity-controlled drainage to inertia-controlled drainage associated with a change from immobile to mobile air/water interfaces on increasing the speed of approach of two bubbles. A simple model is developed that accounts for the boundaries between different film stability or coalescence regimes. Predictions of the model are consistent with the data, and the effects of adding electrolyte can be explained. In

  5. Clustering in Bubble Suspensions

    NASA Astrophysics Data System (ADS)

    Zenit, Roberto

    2000-11-01

    A monidisperse bubble suspension is studied experimentally for the limit in which the Weber number is small and the Reynolds number is large. For this regime the suspension can be modeled using potential flow theory to describe the dynamics of the interstitial fluid. Complete theoretical descriptions have been composed (Spelt and Sangani, 1998) to model the behavior of these suspensions. Bubble clustering is a natural instability that arises from the potential flow considerations, in which bubbles tend to align in horizontal rafts as they move upwards. The appearance of bubble clusters was recently corroborated experimentally by Zenit et al. (2000), who found that although clusters did appear, their strength was not as strong as the predictions. Experiments involving gravity driven shear flows are used to explain the nature of the clustering observed in these type of flows. Balances of the bubble phase pressure (in terms of a calculated diffusion coefficient) and the Maxwell pressure (from the potential flow description) are presented to predict the stability of the bubble suspension. The predictions are compared with experimental results.

  6. Optimization of bubble column performance for nanoparticle collection.

    PubMed

    Cadavid-Rodriguez, M C; Charvet, A; Bemer, D; Thomas, D

    2014-04-30

    Fibrous media embody the most effective and widely used method of separating ultrafine particles from a carrier fluid. The main problem associated with them is filter clogging, which induces an increasingly marked pressure drop with time and thus imposes regular media cleaning or replacement. This context has prompted the idea of investigating bubble columns, which operate at constant pressure drop, as alternatives to fibrous filters. This study examines the influence of different operating conditions, such as liquid height, air flow rate, bubble size and presence of granular beds on ultrafine particle collection. Experimental results show that bubble columns are characterised by high collection efficiency, when they feature a large liquid height and small diameter bubbling orifices, while their efficiencies remain lower than those of fibrous filters. Gas velocity does not greatly influence collection efficiency, but the inclusion of a granular bed, composed of beads, increases the bubble residence time in the column, thereby increasing the column collection efficiency.

  7. Capillary tube wetting induced by particles: towards armoured bubbles tailoring.

    PubMed

    Zoueshtiagh, Farzam; Baudoin, Michael; Guerrin, David

    2014-12-21

    In this paper, we report on the strongly modified dynamics of a liquid finger pushed inside a capillary tube, when partially wettable particles are lying on the walls. Particles promote the appearance of new regimes and enable the tailored synthesis of bubbles encapsulated in a monolayer of particles (so-called "armoured bubbles"). This remarkable behavior arises due to the collection of particles at the air-liquid interface, which modify the global energy balance and stabilize the interface. Armoured-bubbles are of primary interest in industrial processes since they display increased stability, interfacial rigidity and can even sustain non-spherical shapes. This work opens perspective for a low cost bubbles-on-demand technology enabling the synthesis of armoured bubbles with specific sizes, shapes and composition.

  8. Analysis of gas composition of intravascular bubbles produced by decompression.

    PubMed

    Ishiyama, A

    1983-06-01

    The gas composition of intravascular bubbles produced by decompression was investigated in rabbits using gas chromatography. The animals were exposed to 8 ATA for 30 min. All samples of bubbles were taken from the animals under 0.2 ATA pressure gradient so that no air could enter the sampling system from the outside. The percentage of carbon dioxide in the bubbles tended to decrease at first and then increased with post-decompression time. On the other hand, the percentage of oxygen tended to change in the opposite manner. Actual analysis of bubbles in the living decompressed animals indicates that carbon dioxide may be an outstanding factor in the initiation and early growth of bubbles. In view of this, Haldane's classical maximum supersaturation limit for avoiding decompression sickness should be examined and possibly modified for gases other than nitrogen.

  9. Generation of Submicron Bubbles using Venturi Tube Method

    NASA Astrophysics Data System (ADS)

    Wiraputra, I. G. P. A. E.; Edikresnha, D.; Munir, M. M.; Khairurrijal

    2016-08-01

    In this experiment, submicron bubbles that have diameters less than 1 millimeter were generated by mixing water and gas by hydrodynamic cavitation method. The water was forced to pass through a venturi tube in which the speed of the water will increase in the narrow section, the throat, of the venturi. When the speed of water increased, the pressure would drop at the throat of the venturi causing the outside air to be absorbed via the gas inlet. The gas was then trapped inside the water producing bubbles. The effects of several physical parameters on the characteristics of the bubbles will be discussed thoroughly in this paper. It was found that larger amount of gas pressure during compression will increase the production rate of bubbles and increase the density of bubble within water.

  10. Optimization of bubble column performance for nanoparticle collection.

    PubMed

    Cadavid-Rodriguez, M C; Charvet, A; Bemer, D; Thomas, D

    2014-04-30

    Fibrous media embody the most effective and widely used method of separating ultrafine particles from a carrier fluid. The main problem associated with them is filter clogging, which induces an increasingly marked pressure drop with time and thus imposes regular media cleaning or replacement. This context has prompted the idea of investigating bubble columns, which operate at constant pressure drop, as alternatives to fibrous filters. This study examines the influence of different operating conditions, such as liquid height, air flow rate, bubble size and presence of granular beds on ultrafine particle collection. Experimental results show that bubble columns are characterised by high collection efficiency, when they feature a large liquid height and small diameter bubbling orifices, while their efficiencies remain lower than those of fibrous filters. Gas velocity does not greatly influence collection efficiency, but the inclusion of a granular bed, composed of beads, increases the bubble residence time in the column, thereby increasing the column collection efficiency. PMID:24584069

  11. Bubble-induced acoustic mixing in a microfluidic device

    NASA Astrophysics Data System (ADS)

    Chen, Huaying; Petkovic-Duran, Karolina; Best, Michael; Zhu, Yonggang

    2015-12-01

    Homogeneous and fast mixing of samples at microscale is a critical requirement for successful applications of microfluidics in biochemical analysis, chemical synthesis, drug delivery and nanomaterial synthesis. This paper reports the optimisation of bubble-induced mixing in a microfluidic device in terms of voltage, driving frequency, piezo transducer position and PDMS thickness. The microfluidic device consists of a microwell (with the diameter of 1mm and volume of ~95 nL) with two rectangular bubble traps (400×400μm) on both sides of the well. After the injection of liquid, air bubbles were spontaneously trapped in two rectangular traps. When the frequency of a piezo was equal to the resonance frequency of air bubbles, strong liquid recirculation formed (so called acoustic microstreaming) in the vicinity of the interface of air bubbles and water. The acoustic induced flow of microbeads and mixing of water and fluorescence dye were imaged to study the mixing efficiency. For a given voltage and PDMS thickness, when the piezo was placed on top of the well, the mixing was most vigorous. For a given frequency, the mixing efficiency was directly proportional to the voltage (4-20V) and inversely proportional to the PDMS thickness (0.3-2mm). When the frequency driving the piezo was approaching the resonance frequency of air bubbles, the mixing efficiency was maximal, while when it was far away from the resonance frequency of air bubbles, the mixing efficiency was much lower. This work provides guidance to the design and the application of bubble-induced acoustic mixing in microfluidics.

  12. Bubble and Drop Nonlinear Dynamics (BDND)

    NASA Technical Reports Server (NTRS)

    Trinh, E. H.; Leal, L. Gary; Thomas, D. A.; Crouch, R. K.

    1998-01-01

    Free drops and bubbles are weakly nonlinear mechanical systems that are relatively simple to characterize experimentally in 1-G as well as in microgravity. The understanding of the details of their motion contributes to the fundamental study of nonlinear phenomena and to the measurement of the thermophysical properties of freely levitated melts. The goal of this Glovebox-based experimental investigation is the low-gravity assessment of the capabilities of a modular apparatus based on ultrasonic resonators and on the pseudo- extinction optical method. The required experimental task is the accurate measurements of the large-amplitude dynamics of free drops and bubbles in the absence of large biasing influences such as gravity and levitation fields. A single-axis levitator used for the positioning of drops in air, and an ultrasonic water-filled resonator for the trapping of air bubbles have been evaluated in low-gravity and in 1-G. The basic feasibility of drop positioning and shape oscillations measurements has been verified by using a laptop-interfaced automated data acquisition and the optical extinction technique. The major purpose of the investigation was to identify the salient technical issues associated with the development of a full-scale Microgravity experiment on single drop and bubble dynamics.

  13. Viscous-inviscid calculations of jet entrainment effects on the subsonic flow over nozzle afterbodies

    NASA Technical Reports Server (NTRS)

    Wilmoth, R. G.

    1980-01-01

    A viscous-inviscid interaction model was developed to account for jet entrainment effects in the prediction of the subsonic flow over nozzle afterbodies. The model is based on the concept of a weakly interacting shear layer in which the local streamline deflections due to entrainment are accounted for by a displacement-thickness type of correction to the inviscid plume boundary. The entire flow field is solved in an iterative manner to account for the effects on the inviscid external flow of the turbulent boundary layer, turbulent mixing and chemical reactions in the shear layer, and the inviscid jet exhaust flow. The components of the computational model are described, and numerical results are presented to illustrate the interactive effects of entrainment on the overall flow structure. The validity of the model is assessed by comparisons with data obtained form flow-field measurements on cold-air jet exhausts. Numerical results and experimental data are also given to show the entrainment effects on nozzle boattail drag under various jet exhaust and free-stream flow conditions.

  14. Entrainment and detrainment required to explain updraft properties and work dissipation

    NASA Astrophysics Data System (ADS)

    Michaud, L. M.

    1998-05-01

    A one-dimensional thermodynamic entrainment-detrainment model is used to determine updraft virtual temperature excess, updraft velocity, other updraft properties from sounding data. The model correctly predicts most updraft properties explains how work of buoyancy is dissipated. The unique feature of the model is that fractional entrainment detrainment are both functions of the virtual temperature excess of the updraft independent of updraft mass or diameter. The updraft temperature composition are rigorously determined before updraft velocity is considered. The entrainment detrainment functions allow the flows in out of the updraft to vary in a physically realistic way are used from the base of the sounding to cloud top. The model limits the growth of cumulus under conditions of dry air aloft. The model shows that entrainment inhibits deep convection. The model predicts higher intensity for continental than for oceanic updrafts. High humidity at the bottom of the atmosphere decreases the intensity of the updrafts because it lowers the condensation level, the level at which evaporative cooling comes into play. High humidity aloft increases the intensity of the updrafts because it reduced evaporative cooling.

  15. Bubble reconstruction method for wire-mesh sensors measurements

    NASA Astrophysics Data System (ADS)

    Mukin, Roman V.

    2016-08-01

    A new algorithm is presented for post-processing of void fraction measurements with wire-mesh sensors, particularly for identifying and reconstructing bubble surfaces in a two-phase flow. This method is a combination of the bubble recognition algorithm presented in Prasser (Nuclear Eng Des 237(15):1608, 2007) and Poisson surface reconstruction algorithm developed in Kazhdan et al. (Poisson surface reconstruction. In: Proceedings of the fourth eurographics symposium on geometry processing 7, 2006). To verify the proposed technique, a comparison was done of the reconstructed individual bubble shapes with those obtained numerically in Sato and Ničeno (Int J Numer Methods Fluids 70(4):441, 2012). Using the difference between reconstructed and referenced bubble shapes, the accuracy of the proposed algorithm was estimated. At the next step, the algorithm was applied to void fraction measurements performed in Ylönen (High-resolution flow structure measurements in a rod bundle (Diss., Eidgenössische Technische Hochschule ETH Zürich, Nr. 20961, 2013) by means of wire-mesh sensors in a rod bundle geometry. The reconstructed bubble shape yields bubble surface area and volume, hence its Sauter diameter d_{32} as well. Sauter diameter is proved to be more suitable for bubbles size characterization compared to volumetric diameter d_{30}, proved capable to capture the bi-disperse bubble size distribution in the flow. The effect of a spacer grid was studied as well: For the given spacer grid and considered flow rates, bubble size frequency distribution is obtained almost at the same position for all cases, approximately at d_{32} = 3.5 mm. This finding can be related to the specific geometry of the spacer grid or the air injection device applied in the experiments, or even to more fundamental properties of the bubble breakup and coagulation processes. In addition, an application of the new algorithm for reconstruction of a large air-water interface in a tube bundle is

  16. Between inertia and viscous effects: Sliding bubbles beneath an inclined plane

    NASA Astrophysics Data System (ADS)

    Dubois, C.; Duchesne, A.; Caps, H.

    2016-08-01

    The ascent motion of an air bubble beneath an inclined plane is experimentally studied. The effects of the surrounding liquid viscosity and surface tension, the bubble radius and the tilt angle are investigated. A dynamical model is proposed. It opposes the buoyant driving force to the hydrodynamical pressure arising from the bubble motion and the capillary meniscus generated in front of the bubble in order to create a lubrication film between the bubble and the plate. This model is compared to experimental data and discussed.

  17. The role of induced entrainment in past stratiform cloud seeding experiments

    NASA Astrophysics Data System (ADS)

    Walcek, C. J.

    2010-12-01

    In the late 1940s, probably the most effective and visually-obvious cloud seeding demonstrations showed that supercooled stratiform clouds could be cleared by seeding with dry ice, dropped from aircraft flying above a cloud deck. Numerous well-documents photos show areas 1-2 miles wide cleared along a flight track. The accepted mechanism of cloud clearing assumed that dry ice induced ice formation in the supercooled liquid cloud, followed by growth of ice at the expense of water, with the larger ice particles ultimately falling as snow. The mechanism was amplified by dynamic feedbacks induced by latent heat release (warming) as liquid water froze, thus propagating the dynamic and freezing/precipitation cycle laterally away from the flight track. Here we show that probably a more important effect is the entrainment and EVAPORATION of cloud water induced by turbulent mixing in the aircraft wake. Under many conditions, evaporation induced by turbulence can generate mixtures of air that are COLDER than the cloudy air or the air above the cloud, thus initiating unstable DOWNWARD (negatively-buoyant) motions, which will self-propagate laterally away from a turbulent flight track. We present here the range of environmental conditions where entrainment/evaporation would be most likely to occur in terms of the temperature difference between cloudy air and air just above cloud top, and the relative humidity of air above cloud top at different temperatures and altitudes in the atmosphere. It is suggested here that past cloud seeding experiments had little to do with glaciation, and more likely resulted from induced entrainment followed by evaporation and downward motions of negatively buoyant air resulting from cloud-top entrainment instability. Buoyancy and condensed water content of mixtures of cloudy air and cloud-free air immediately above cloud top vs. the mixing proportions. A supercooled cloud containing 0.1 g/kg liquid water at 600 mb, -20 degrees C is mixed with air

  18. Fast bubble dynamics and sizing

    NASA Astrophysics Data System (ADS)

    Czarnecki, Krzysztof; Fouan, Damien; Achaoui, Younes; Mensah, Serge

    2015-11-01

    Single bubble sizing is usually performed by measuring the resonant bubble response using the Dual Frequency Ultrasound Method. However, in practice, the use of millisecond-duration chirp-like waves yields nonlinear distortions of the bubble oscillations. In comparison with the resonant curve obtained under harmonic excitation, it was observed that the bubble dynamic response shifted by up to 20 percent of the resonant frequency with bubble radii of less than 100 μm. In the case of low pressure waves (P < 5 kPa), an approximate formula for the apparent frequency shift is derived. Simulated and experimental bubble responses are analyzed in the time-frequency domain using an enhanced concentrated (reassigned) spectrogram. The difference in the resonant frequency resulted from the persistence of the resonant mode in the bubble response. Numerical simulations in which these findings are extended to pairs of coupled bubbles and to bubble clouds are also presented.

  19. Herds of methane chambers grazing bubbles

    NASA Astrophysics Data System (ADS)

    Grinham, Alistair; Dunbabin, Matthew

    2014-05-01

    Water to air methane emissions from freshwater reservoirs can be dominated by sediment bubbling (ebullitive) events. Previous work to quantify methane bubbling from a number of Australian sub-tropical reservoirs has shown that this can contribute as much as 95% of total emissions. These bubbling events are controlled by a variety of different factors including water depth, surface and internal waves, wind seiching, atmospheric pressure changes and water levels changes. Key to quantifying the magnitude of this emission pathway is estimating both the bubbling rate as well as the areal extent of bubbling. Both bubbling rate and areal extent are seldom constant and require persistent monitoring over extended time periods before true estimates can be generated. In this paper we present a novel system for persistent monitoring of both bubbling rate and areal extent using multiple robotic surface chambers and adaptive sampling (grazing) algorithms to automate the quantification process. Individual chambers are self-propelled and guided and communicate between each other without the need for supervised control. They can maintain station at a sampling site for a desired incubation period and continuously monitor, record and report fluxes during the incubation. To exploit the methane sensor detection capabilities, the chamber can be automatically lowered to decrease the head-space and increase concentration. The grazing algorithms assign a hierarchical order to chambers within a preselected zone. Chambers then converge on the individual recording the highest 15 minute bubbling rate. Individuals maintain a specified distance apart from each other during each sampling period before all individuals are then required to move to different locations based on a sampling algorithm (systematic or adaptive) exploiting prior measurements. This system has been field tested on a large-scale subtropical reservoir, Little Nerang Dam, and over monthly timescales. Using this technique

  20. The ecology of entrainment: Foundations of coordinated rhythmic movement

    PubMed Central

    Phillips-Silver, Jessica; Aktipis, C. Athena; Bryant, Gregory A.

    2011-01-01

    Entrainment has been studied in a variety of contexts including music perception, dance, verbal communication and motor coordination more generally. Here we seek to provide a unifying framework that incorporates the key aspects of entrainment as it has been studied in these varying domains. We propose that there are a number of types of entrainment that build upon pre-existing adaptations that allow organisms to perceive stimuli as rhythmic, to produce periodic stimuli, and to integrate the two using sensory feedback. We suggest that social entrainment is a special case of spatiotemporal coordination where the rhythmic signal originates from another individual. We use this framework to understand the function and evolutionary basis for coordinated rhythmic movement and to explore questions about the nature of entrainment in music and dance. The framework of entrainment presented here has a number of implications for the vocal learning hypothesis and other proposals for the evolution of coordinated rhythmic behavior across an array of species. PMID:21776183

  1. The dynamics of histotripsy bubbles

    NASA Astrophysics Data System (ADS)

    Kreider, Wayne; Bailey, Michael R.; Sapozhnikov, Oleg A.; Khokhlova, Vera A.; Crum, Lawrence A.

    2011-09-01

    Histotripsy describes treatments in which high-amplitude acoustic pulses are used to excite bubbles and erode tissue. Though tissue erosion can be directly attributed to bubble activity, the genesis and dynamics of bubbles remain unclear. Histotripsy lesions that show no signs of thermal coagulative damage have been generated with two different acoustic protocols: relatively long acoustic pulses that produce local boiling within milliseconds and relatively short pulses that are higher in amplitude but likely do not produce boiling. While these two approaches are often distinguished as `boiling' versus `cavitation', such labels can obscure similarities. In both cases, a bubble undergoes large changes in radius and vapor is transported into and out of the bubble as it oscillates. Moreover, observations from both approaches suggest that bubbles grow to a size at which they cease to collapse violently. In order to better understand the dynamics of histotripsy bubbles, a single-bubble model has been developed that couples acoustically excited bubble motions to the thermodynamic state of the surrounding liquid. Using this model for bubbles exposed to histotripsy sound fields, simulations suggest that two mechanisms can act separately or in concert to lead to the typically observed bubble growth. First, nonlinear acoustic propagation leads to the evolution of shocks and an asymmetry in the positive and negative pressures that drive bubble motion. This asymmetry can have a rectifying effect on bubble oscillations whereby the bubble grows on average during each acoustic cycle. Second, vapor transport to/from the bubble tends to produce larger bubbles, especially at elevated temperatures. Vapor transport by itself can lead to rectified bubble growth when the ambient temperature exceeds 100 °C (`boiling') or local heating in the vicinity of the bubble leads to a superheated boundary layer.

  2. Statistical equilibrium of bubble oscillations in dilute bubbly flows

    PubMed Central

    Colonius, Tim; Hagmeijer, Rob; Ando, Keita; Brennen, Christopher E.

    2008-01-01

    The problem of predicting the moments of the distribution of bubble radius in bubbly flows is considered. The particular case where bubble oscillations occur due to a rapid (impulsive or step change) change in pressure is analyzed, and it is mathematically shown that in this case, inviscid bubble oscillations reach a stationary statistical equilibrium, whereby phase cancellations among bubbles with different sizes lead to time-invariant values of the statistics. It is also shown that at statistical equilibrium, moments of the bubble radius may be computed using the period-averaged bubble radius in place of the instantaneous one. For sufficiently broad distributions of bubble equilibrium (or initial) radius, it is demonstrated that bubble statistics reach equilibrium on a time scale that is fast compared to physical damping of bubble oscillations due to viscosity, heat transfer, and liquid compressibility. The period-averaged bubble radius may then be used to predict the slow changes in the moments caused by the damping. A benefit is that period averaging gives a much smoother integrand, and accurate statistics can be obtained by tracking as few as five bubbles from the broad distribution. The period-averaged formula may therefore prove useful in reducing computational effort in models of dilute bubbly flow wherein bubbles are forced by shock waves or other rapid pressure changes, for which, at present, the strong effects caused by a distribution in bubble size can only be accurately predicted by tracking thousands of bubbles. Some challenges associated with extending the results to more general (nonimpulsive) forcing and strong two-way coupled bubbly flows are briefly discussed. PMID:19547725

  3. Sliding bubble dynamics and the effects on surface heat transfer

    NASA Astrophysics Data System (ADS)

    Donnelly, B.; Robinson, A. J.; Delauré, Y. M. C.; Murray, D. B.

    2012-11-01

    An investigation into the effects of a single sliding air bubble on heat transfer from a submerged, inclined surface has been undertaken. Existing literature has shown that both vapour and gas bubbles can increase heat transfer rates from adjacent heated surfaces. However, the mechanisms involved are complex and dynamic and in some cases poorly understood. The present study utilises high speed, high resolution, infrared thermography and video photography to measure two dimensional surface heat transfer and three dimensional bubble position and shape. This provides a unique insight into the complex interactions at the heated surface. Bubbles of volume 0.05, 0.1, 0.2 and 0.4 ml were released onto a surface inclined at 30 degrees to horizontal. Results confirmed that sliding bubbles can enhance heat transfer rates up to a factor of 9 and further insight was gained about the mechanisms behind this phenomenon. The enhancement effects were observed over large areas and persisted for a long duration with the bubble exhibiting complex shape and path oscillations. It is believed that the periodic wake structure present behind the sliding bubble affects the bubble motion and is responsible for the heat transfer effects observed. The nature of this wake is proposed to be that of a chain of horseshoe vortices.

  4. Venous gas embolism - Time course of residual pulmonary intravascular bubbles

    NASA Technical Reports Server (NTRS)

    Butler, B. D.; Luehr, S.; Katz, J.

    1989-01-01

    A study was carried out to determine the time course of residual pulmonary intravascular bubbles after embolization with known amounts of venous air, using an N2O challenge technique. Attention was also given to the length of time that the venous gas emboli remained as discrete bubbles in the lungs with 100 percent oxygen ventilation. The data indicate that venous gas emboli can remain in the pulmonary vasculature as discrete bubbles for periods lasting up to 43 + or - 10.8 min in dogs ventilated with oxygen and nitrogen. With 100 percent oxygen ventilation, these values are reduced significantly to 19 + or - 2.5 min.

  5. Colliding with a crunching bubble

    SciTech Connect

    Freivogel, Ben; Freivogel, Ben; Horowitz, Gary T.; Shenker, Stephen

    2007-03-26

    In the context of eternal inflation we discuss the fate of Lambda = 0 bubbles when they collide with Lambda< 0 crunching bubbles. When the Lambda = 0 bubble is supersymmetric, it is not completely destroyed by collisions. If the domain wall separating the bubbles has higher tension than the BPS bound, it is expelled from the Lambda = 0 bubble and does not alter its long time behavior. If the domain wall saturates the BPS bound, then it stays inside the Lambda = 0 bubble and removes a finite fraction of future infinity. In this case, the crunch singularity is hidden behind the horizon of a stable hyperbolic black hole.

  6. Singular Jets and Bubbles in Drop Impact

    NASA Astrophysics Data System (ADS)

    Bartolo, Denis; Josserand, Christophe; Bonn, Daniel

    2006-03-01

    We show that when water droplets gently impact on a hydrophobic surface, the droplet shoots out a violent jet, the velocity of which can be up to 40 times the drop impact speed. As a function of the impact velocity, two different hydrodynamic singularities are found that correspond to the collapse of the air cavity formed by the deformation of the drop at impact. It is the collapse that subsequently leads to the jet formation. We show that the divergence of the jet velocity can be understood using simple scaling arguments. In addition, we find that very large air bubbles can remain trapped in the drops. The surprising occurrence of the bubbles for low-speed impact is connected with the nature of the singularities, and can have important consequences for drop deposition, e.g., in ink-jet printing.

  7. Investigation of bubble-bubble interaction effect during the collapse of multi-bubble system

    NASA Astrophysics Data System (ADS)

    Shao, Xueming; Zhang, Lingxin; Wang, Wenfeng

    2014-11-01

    Bubble collapse is not only an important subject among bubble dynamics, but also a key consequence of cavitation. It has been demonstrated that the structural damage is associated with the rapid change in flow fields during bubble collapse. How to model and simulate the behavior of the bubble collapse is now of great interest. In the present study, both theoretical analysis and a direct numerical simulation on the basis of VOF are performed to investigate the collapses of single bubble and bubble cluster. The effect of bubble-bubble interaction on the collapse of multi-bubble system is presented. The work was supported by the National Natural Science Foundation of China (11272284, 11332009).

  8. BLOWING COSMIC BUBBLES

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This NASA Hubble Space Telescope image reveals an expanding shell of glowing gas surrounding a hot, massive star in our Milky Way Galaxy. This shell is being shaped by strong stellar winds of material and radiation produced by the bright star at the left, which is 10 to 20 times more massive than our Sun. These fierce winds are sculpting the surrounding material - composed of gas and dust - into the curve-shaped bubble. Astronomers have dubbed it the Bubble Nebula (NGC 7635). The nebula is 10 light-years across, more than twice the distance from Earth to the nearest star. Only part of the bubble is visible in this image. The glowing gas in the lower right-hand corner is a dense region of material that is getting blasted by radiation from the Bubble Nebula's massive star. The radiation is eating into the gas, creating finger-like features. This interaction also heats up the gas, causing it to glow. Scientists study the Bubble Nebula to understand how hot stars interact with the surrounding material. Credit: Hubble Heritage Team (AURA/STScI/NASA)

  9. A Bubble Bursts

    NASA Technical Reports Server (NTRS)

    2005-01-01

    RCW 79 is seen in the southern Milky Way, 17,200 light-years from Earth in the constellation Centaurus. The bubble is 70-light years in diameter, and probably took about one million years to form from the radiation and winds of hot young stars.

    The balloon of gas and dust is an example of stimulated star formation. Such stars are born when the hot bubble expands into the interstellar gas and dust around it. RCW 79 has spawned at least two groups of new stars along the edge of the large bubble. Some are visible inside the small bubble in the lower left corner. Another group of baby stars appears near the opening at the top.

    NASA's Spitzer Space Telescope easily detects infrared light from the dust particles in RCW 79. The young stars within RCW 79 radiate ultraviolet light that excites molecules of dust within the bubble. This causes the dust grains to emit infrared light that is detected by Spitzer and seen here as the extended red features.

  10. Entrainment, Drizzle, and the Indirect Effect in Stratiform Clouds

    NASA Technical Reports Server (NTRS)

    Ackerman, Andrew

    2005-01-01

    Activation of some fraction of increased concentrations of sub-micron soluble aerosol particles lead to enhanced cloud droplet concentrations and hence smaller droplets, increasing their total cross sectional area and thus reflecting solar radiation more efficiently (the Twomey, or first indirect, effect). However, because of competition during condensational growth, droplet distributions tend to broaden as numbers increase, reducing the sensitivity of cloud albedo to droplet concentration on the order of 10%. Also, smaller droplets less effectively produce drizzle through collisions and coalescence, and it is widely expected (and found in large-scale models) that decreased precipitation leads to clouds with more cloud water on average (the so-called cloud lifetime, or second indirect, effect). Much of the uncertainty regarding the overall indirect aerosol effect stems from inadequate understanding of such changes in cloud water. Detailed simulations based on FIRE-I, ASTEX, and DYCOMS-II conditions show that suppression of precipitation from increased droplet concentrations leads to increased cloud water only when sufficient precipitation reaches the surface, a condition favored when the overlying air is-humid or droplet concentrations are very low. Otherwise, aerosol induced suppression of precipitation enhances entrainment of overlying dry air, thereby reducing cloud water and diminishing the indirect climate forcing.

  11. Conditions for super-adiabatic droplet growth after entrainment mixing

    NASA Astrophysics Data System (ADS)

    Yang, Fan; Shaw, Raymond; Xue, Huiwen

    2016-07-01

    Cloud droplet response to entrainment and mixing between a cloud and its environment is considered, accounting for subsequent droplet growth during adiabatic ascent following a mixing event. The vertical profile for liquid water mixing ratio after a mixing event is derived analytically, allowing the reduction to be predicted from the mixing fraction and from the temperature and humidity for both the cloud and environment. It is derived for the limit of homogeneous mixing. The expression leads to a critical height above the mixing level: at the critical height the cloud droplet radius is the same for both mixed and unmixed parcels, and the critical height is independent of the updraft velocity and mixing fraction. Cloud droplets in a mixed parcel are larger than in an unmixed parcel above the critical height, which we refer to as the "super-adiabatic" growth region. Analytical results are confirmed with a bin microphysics cloud model. Using the model, we explore the effects of updraft velocity, aerosol source in the environmental air, and polydisperse cloud droplets. Results show that the mixed parcel is more likely to reach the super-adiabatic growth region when the environmental air is humid and clean. It is also confirmed that the analytical predictions are matched by the volume-mean cloud droplet radius for polydisperse size distributions. The findings have implications for the origin of large cloud droplets that may contribute to onset of collision-coalescence in warm clouds.

  12. Conditions for super-adiabatic droplet growth after entrainment mixing

    DOE PAGES

    Yang, Fan; Shaw, Raymond; Xue, Huiwen

    2016-07-29

    Cloud droplet response to entrainment and mixing between a cloud and its environment is considered, accounting for subsequent droplet growth during adiabatic ascent following a mixing event. The vertical profile for liquid water mixing ratio after a mixing event is derived analytically, allowing the reduction to be predicted from the mixing fraction and from the temperature and humidity for both the cloud and environment. It is derived for the limit of homogeneous mixing. The expression leads to a critical height above the mixing level: at the critical height the cloud droplet radius is the same for both mixed and unmixedmore » parcels, and the critical height is independent of the updraft velocity and mixing fraction. Cloud droplets in a mixed parcel are larger than in an unmixed parcel above the critical height, which we refer to as the “super-adiabatic” growth region. Analytical results are confirmed with a bin microphysics cloud model. Using the model, we explore the effects of updraft velocity, aerosol source in the environmental air, and polydisperse cloud droplets. Results show that the mixed parcel is more likely to reach the super-adiabatic growth region when the environmental air is humid and clean. It is also confirmed that the analytical predictions are matched by the volume-mean cloud droplet radius for polydisperse size distributions. The findings have implications for the origin of large cloud droplets that may contribute to onset of collision–coalescence in warm clouds.« less

  13. The effect of entrainment on starting vortices

    NASA Astrophysics Data System (ADS)

    Rosi, Giuseppe; Rival, David

    2015-11-01

    Recent work shows that vortex detachment behind accelerating plates coincides with when streamlines enclosing the starting vortex (SV) form a full saddle. In the case of a linearly accelerating plate, it can be shown that vorticity-containing mass, and thus the SV's development scale with only dimensionless towed distance, while the SV's circulation scales with the acceleration rate. This results in shear-layer instabilities whose structure is Reynold-number independent, but whose strength scale with Reynolds number. It is hypothesized that the increased strength of the instabilities promotes entrainment, which causes the formation of the full saddle and thereby detachment to occur at an earlier dimensionless towed distance. To test this hypothesis, a circular plate is linearly accelerated from rest to pinch-off with chord-based Reynolds numbers of 103, 104, and 105 at the midpoint of the motion. Planar PIV data is acquired, from which FTLE and enstrophy fields are calculated. Vortex detachment is identified from the dynamics of the FTLE saddles, while the enstrophy fields are used to calculate both the vorticity-containing mass entering from the shear layer and the mass entrained from the quiescent surroundings.

  14. Stochastic entrainment of a stochastic oscillator.

    PubMed

    Wang, Guanyu; Peskin, Charles S

    2015-01-01

    In this work, we consider a stochastic oscillator described by a discrete-state continuous-time Markov chain, in which the states are arranged in a circle, and there is a constant probability per unit time of jumping from one state to the next in a specified direction around the circle. At each of a sequence of equally spaced times, the oscillator has a specified probability of being reset to a particular state. The focus of this work is the entrainment of the oscillator by this periodic but stochastic stimulus. We consider a distinguished limit, in which (i) the number of states of the oscillator approaches infinity, as does the probability per unit time of jumping from one state to the next, so that the natural mean period of the oscillator remains constant, (ii) the resetting probability approaches zero, and (iii) the period of the resetting signal approaches a multiple, by a ratio of small integers, of the natural mean period of the oscillator. In this distinguished limit, we use analytic and numerical methods to study the extent to which entrainment occurs.

  15. Observing of entrainment using small UAS

    NASA Astrophysics Data System (ADS)

    Martin, S.; Bange, J.; Beyrich, F.

    2012-04-01

    Entrainment processes between the atmospheric boundary layer and the free atmosphere are important concerning vertical exchange of momentum, energy, water vapor, trace gases and aerosol. The transition zone between the convectively mixed boundary layer and the stably stratified free atmosphere is called the entrainment zone (EZ). The EZ restrains the domain of turbulence by a temperature inversion and acts as a lid to pollutants. Measurement flights of the mini meteorological aerial vehicle (M2AV) of the Technische Universität Braunschweig were performed in spring 2011 to determine the capability of the unmanned aerial system (UAS) to measure the structure of the EZ. The campaign took place at the Meteorological Observatory Lindenberg / Richard-Aßmann-Observatory of the German Meteorological Service, which is located close to Berlin. Besides the M2AV flights, standard observations were performed by a 12 m and 99 m tower, a sodar, ceilometer and radiosondes. A tethered balloon with measurement units at six different levels was operated especially for this campaign. The measurements of these systems were used to determine the inversion layer and to capture its diurnal cycle. The talk will be focused on vertical profiles of the M2AV up to the free atmosphere, detailed analysis of spatial series of w'θ' at different altitudes and on vertical profiles of normalized variances of the vertical wind component and the potential temperature.

  16. Extreme conditions in a dissolving air nanobubble.

    PubMed

    Yasui, Kyuichi; Tuziuti, Toru; Kanematsu, Wataru

    2016-07-01

    Numerical simulations of the dissolution of an air nanobubble in water have been performed taking into account the effect of bubble dynamics (inertia of the surrounding liquid). The presence of stable bulk nanobubbles is not assumed in the present study because the bubble radius inevitably passes the nanoscale in the complete dissolution of a bubble. The bubble surface is assumed to be clean because attachment of hydrophobic materials on the bubble surface could considerably change the gas diffusion rate. The speed of the bubble collapse (the bubble wall speed) increases to about 90 m/s or less. The shape of a bubble is kept nearly spherical because the amplitude of the nonspherical component of the bubble shape is negligible compared to the instantaneous bubble radius. In other words, a bubble never disintegrates into daughter bubbles during the dissolution. At the final moment of the dissolution, the temperature inside a bubble increases to about 3000 K due to the quasiadiabatic compression. The bubble temperature is higher than 1000 K only for the final 19 ps. However, the Knudsen number is more than 0.2 for this moment, and the error associated with the continuum model should be considerable. In the final 2.3 ns, only nitrogen molecules are present inside a bubble as the solubility of nitrogen is the lowest among the gas species. The radical formation inside a bubble is negligible because the probability of nitrogen dissociation is only on the order of 10^{-15}. The pressure inside a bubble, as well as the liquid pressure at the bubble wall, increases to about 5 GPa at the final moment of dissolution. The pressure is higher than 1 GPa for the final 0.7 ns inside a bubble and for the final 0.6 ns in the liquid at the bubble wall. The liquid temperature at the bubble wall increases to about 360 K from 293 K at the final stage of the complete dissolution. PMID:27575216

  17. Extreme conditions in a dissolving air nanobubble

    NASA Astrophysics Data System (ADS)

    Yasui, Kyuichi; Tuziuti, Toru; Kanematsu, Wataru

    2016-07-01

    Numerical simulations of the dissolution of an air nanobubble in water have been performed taking into account the effect of bubble dynamics (inertia of the surrounding liquid). The presence of stable bulk nanobubbles is not assumed in the present study because the bubble radius inevitably passes the nanoscale in the complete dissolution of a bubble. The bubble surface is assumed to be clean because attachment of hydrophobic materials on the bubble surface could considerably change the gas diffusion rate. The speed of the bubble collapse (the bubble wall speed) increases to about 90 m/s or less. The shape of a bubble is kept nearly spherical because the amplitude of the nonspherical component of the bubble shape is negligible compared to the instantaneous bubble radius. In other words, a bubble never disintegrates into daughter bubbles during the dissolution. At the final moment of the dissolution, the temperature inside a bubble increases to about 3000 K due to the quasiadiabatic compression. The bubble temperature is higher than 1000 K only for the final 19 ps. However, the Knudsen number is more than 0.2 for this moment, and the error associated with the continuum model should be considerable. In the final 2.3 ns, only nitrogen molecules are present inside a bubble as the solubility of nitrogen is the lowest among the gas species. The radical formation inside a bubble is negligible because the probability of nitrogen dissociation is only on the order of 10-15. The pressure inside a bubble, as well as the liquid pressure at the bubble wall, increases to about 5 GPa at the final moment of dissolution. The pressure is higher than 1 GPa for the final 0.7 ns inside a bubble and for the final 0.6 ns in the liquid at the bubble wall. The liquid temperature at the bubble wall increases to about 360 K from 293 K at the final stage of the complete dissolution.

  18. Extreme conditions in a dissolving air nanobubble.

    PubMed

    Yasui, Kyuichi; Tuziuti, Toru; Kanematsu, Wataru

    2016-07-01

    Numerical simulations of the dissolution of an air nanobubble in water have been performed taking into account the effect of bubble dynamics (inertia of the surrounding liquid). The presence of stable bulk nanobubbles is not assumed in the present study because the bubble radius inevitably passes the nanoscale in the complete dissolution of a bubble. The bubble surface is assumed to be clean because attachment of hydrophobic materials on the bubble surface could considerably change the gas diffusion rate. The speed of the bubble collapse (the bubble wall speed) increases to about 90 m/s or less. The shape of a bubble is kept nearly spherical because the amplitude of the nonspherical component of the bubble shape is negligible compared to the instantaneous bubble radius. In other words, a bubble never disintegrates into daughter bubbles during the dissolution. At the final moment of the dissolution, the temperature inside a bubble increases to about 3000 K due to the quasiadiabatic compression. The bubble temperature is higher than 1000 K only for the final 19 ps. However, the Knudsen number is more than 0.2 for this moment, and the error associated with the continuum model should be considerable. In the final 2.3 ns, only nitrogen molecules are present inside a bubble as the solubility of nitrogen is the lowest among the gas species. The radical formation inside a bubble is negligible because the probability of nitrogen dissociation is only on the order of 10^{-15}. The pressure inside a bubble, as well as the liquid pressure at the bubble wall, increases to about 5 GPa at the final moment of dissolution. The pressure is higher than 1 GPa for the final 0.7 ns inside a bubble and for the final 0.6 ns in the liquid at the bubble wall. The liquid temperature at the bubble wall increases to about 360 K from 293 K at the final stage of the complete dissolution.

  19. Mechanics of collapsing cavitation bubbles.

    PubMed

    van Wijngaarden, Leen

    2016-03-01

    A brief survey is given of the dynamical phenomena accompanying the collapse of cavitation bubbles. The discussion includes shock waves, microjets and the various ways in which collapsing bubbles produce damage.

  20. Multivariate bubbles and antibubbles

    NASA Astrophysics Data System (ADS)

    Fry, John

    2014-08-01

    In this paper we develop models for multivariate financial bubbles and antibubbles based on statistical physics. In particular, we extend a rich set of univariate models to higher dimensions. Changes in market regime can be explicitly shown to represent a phase transition from random to deterministic behaviour in prices. Moreover, our multivariate models are able to capture some of the contagious effects that occur during such episodes. We are able to show that declining lending quality helped fuel a bubble in the US stock market prior to 2008. Further, our approach offers interesting insights into the spatial development of UK house prices.

  1. Heated Gas Bubbles

    NASA Technical Reports Server (NTRS)

    2004-01-01

    Fluid Physics is study of the motion of fluids and the effects of such motion. When a liquid is heated from the bottom to the boiling point in Earth's microgravity, small bubbles of heated gas form near the bottom of the container and are carried to the top of the liquid by gravity-driven convective flows. In the same setup in microgravity, the lack of convection and buoyancy allows the heated gas bubbles to grow larger and remain attached to the container's bottom for a significantly longer period.

  2. Characterization of acoustic droplet vaporization for control of bubble generation under flow conditions.

    PubMed

    Kang, Shih-Tsung; Huang, Yi-Luan; Yeh, Chih-Kuang

    2014-03-01

    This study investigated the manipulation of bubbles generated by acoustic droplet vaporization (ADV) under clinically relevant flow conditions. Optical microscopy and high-frequency ultrasound imaging were used to observe bubbles generated by 2-MHz ultrasound pulses at different time points after the onset of ADV. The dependence of the bubble population on droplet concentration, flow velocity, fluid viscosity and acoustic parameters, including acoustic pressure, pulse duration and pulse repetition frequency, was investigated. The results indicated that post-ADV bubble growth spontaneously driven by air permeation markedly affected the bubble population after insonation. The bubbles can grow to a stable equilibrium diameter as great as twice the original diameter in 0.5-1 s, as predicted by the theoretical calculation. The growth trend is independent of flow velocity, but dependent on fluid viscosity and droplet concentration, which directly influence the rate of gas uptake by bubbles and the rate of gas exchange across the wall of the semipermeable tube containing the bubbles and, hence, the gas content of the host medium. Varying the acoustic pressure does not markedly change the formation of bubbles as long as the ADV thresholds of most droplets are reached. Varying pulse duration and pulse repetition frequency markedly reduces the number of bubbles. Lengthening pulse duration favors the production of large bubbles, but reduces the total number of bubbles. Increasing the PRF interestingly provides superior performance in bubble disruption. These results also suggest that an ADV bubble population cannot be assessed simply on the basis of initial droplet size or enhancement of imaging contrast by the bubbles. Determining the optimal acoustic parameters requires careful consideration of their impact on the bubble population produced for different application scenarios.

  3. The Speed of Axial Propagation of a Cylindrical Bubble Through a Cylindrical Vortex

    NASA Technical Reports Server (NTRS)

    Shariff, Karim; Mansour, Nagi N. (Technical Monitor)

    2002-01-01

    Inspired by the rapid elongation of air columns injected into vortices by dolphins, we present an exact inviscid solution for the axial speed (assumed steady) of propagation of the tip of a semi-infinite cylindrical bubble along the axis of a cylindrical vortex. The bubble is assumed to be held at constant pressure by being connected to a reservoir, the lungs of the dolphin, say. For a given bubble pressure, there is a modest critical rotation rate above which steadily propagating bubbles exist. For a bubble at ambient pressure, the propagation speed of the bubble (relative to axial velocity within the vortex) varies between 0.5 and 0.6 of the maximum rotational speed of the vortex. Surprisingly, the bubble tip can propagate (almost as rapidly) even when the pressure minimum in the vortex core is greater than the bubble pressure; in this case, solutions exhibit a dimple on the nose of the bubble. A situation important for incipient vortex cavitation, and one which dolphins also demonstrate, is elongation of a free bubble, i.e., one whose internal pressure may vary. Under the assumption that the acceleration term is small (checked a posteriori), the steady solution is applied at each instant during the elongation. Three types of behavior are then possible depending on physical parameters and initial conditions: (A) Unabated elongation with slowly increasing bubble pressure, and nearly constant volume. Volume begins to decrease in the late stages. (B1) Elongation with decreasing bubble pressure. A limit point of the steady solution is encountered at a finite bubble length. (B2) Unabated elongation with decreasing bubble pressure and indefinite creation of volume. This is made possible by the existence of propagating solutions at bubble pressures below the minimum vortex pressure. As the bubble stretches, its radius initially decreases but then becomes constant; this is also observed in experiments on incipient vortex cavitation.

  4. Fluid Dynamics of Bubbly Liquids

    NASA Technical Reports Server (NTRS)

    Tsang, Y. H.; Koch, D. L.; Zenit, R.; Sangani, A.; Kushch, V. I.; Spelt, P. D. M.; Hoffman, M.; Nahra, H.; Fritz, C.; Dolesh, R.

    2002-01-01

    Experiments have been performed to study the average flow properties of inertially dominated bubbly liquids which may be described by a novel analysis. Bubbles with high Reynolds number and low Weber number may produce a fluid velocity disturbance that can be approximated by a potential flow. We studied the behavior of suspensions of bubbles of about 1.5 mm diameter in vertical and inclined channels. The suspension was produced using a bank of 900 glass capillaries with inner diameter of about 100 microns in a quasi-steady fashion. In addition, salt was added to the suspension to prevent bubble-bubble coalescence. As a result, a nearly monodisperse suspension of bubble was produced. By increasing the inclination angle, we were able to explore an increasing amount of shear to buoyancy motion. A pipe flow experiment with the liquid being recirculated is under construction. This will provide an even larger range of shear to buoyancy motion. We are planning a microgravity experiment in which a bubble suspension is subjected to shearing in a couette cell in the absence of a buoyancy-driven relative motion of the two phases. By employing a single-wire, hot film anemometer, we were able to obtain the liquid velocity fluctuations. The shear stress at the wall was measured using a hot film probe flush mounted on the wall. The gas volume fraction, bubble velocity, and bubble velocity fluctuations were measured using a homemade, dual impedance probe. In addition, we also employed a high-speed camera to obtain the bubble size distribution and bubble shape in a dilute suspension. A rapid decrease in bubble velocity for a dilute bubble suspension is attributed to the effects of bubble-wall collisions. The more gradual decrease of bubble velocity as gas volume fraction increases, due to subsequent hindering of bubble motion, is in qualitative agreement with the predictions of Spelt and Sangani for the effects of potential-flow bubble-bubble interactions on the mean velocity. The

  5. A coupled bubble plume-reservoir model for hypolimnetic oxygenation

    NASA Astrophysics Data System (ADS)

    Singleton, V. L.; Rueda, F. J.; Little, J. C.

    2010-12-01

    A model for a linear bubble plume used for hypolimnetic oxygenation was coupled with a three-dimensional hydrodynamic model to simulate the complex interaction between bubble plumes and the large-scale processes of transport and mixing. The coupled model accurately simulated the evolution of dissolved oxygen (DO) and temperature fields that occurred during two full-scale diffuser tests in a water supply reservoir. The prediction of asymmetric circulation cells laterally and longitudinally on both sides of the linear diffuser was due to the uneven reservoir bathymetry. Simulation of diffuser operation resulted in baroclinic pressure gradients, which caused vertical oscillations above the hypolimnion and contributed to distribution of plume detrainment upstream and downstream of the diffuser. On the basis of a first-order variance analysis, the largest source of uncertainty for both predicted DO and temperature was the model bathymetry, which accounted for about 90% of the overall uncertainty. Because the oxygen addition rate was 4 times the sediment oxygen uptake (SOU) rate, DO predictions were not sensitive to SOU. In addition to bathymetry, the momentum assigned to plume entrainment and detrainment is a significant source of uncertainty in the coupled model structure and appreciably affects the predicted intensity of mixing and lake circulation. For baseline runs, the entrainment and detrainment velocities were assumed to be half of the velocities through the flux face of the grid cells. Additional research on appropriate values of the plume detrainment momentum for the coupled model is required.

  6. Effects of coolant volatility on simulated HCDA bubble expansions. Technical report No. 10

    SciTech Connect

    Tobin, R.J.

    1980-09-01

    The effects of coolant volatility on the expansion dynamics and cover loading of hypothetical core disruptive accidents (HCDA) were studied by performing experiments with a transparent 1/30-scale model of a typical demonstration size loop-type liquid metal fast breeder reactor (LMFBR). Freon 113 and Freon 11 were used as coolant simulants of increasing volatility. High-pressure nitrogen gas (1450 psia) or flashing water (1160 psia) were used to simulate the qualitative features of sodium vapor or molten fuel expansions. To validate the use of constant mass and constant geometry experiments as a means of evaluating the effects of coolant volatility, a set of baseline experiments was performed in these configurations with the room temperature nitrogen bubble source. In all the experiments, the expanding HCDA bubbles, the motion of the coolant simulant, and the vessel loads were monitored by pressure transducers, a thermocouple in the bubble, and high-speed photography. Results of the constant mass experiments with the flashing water source show that higher volatility results in higher pressure driving the coolant slug and therefore higher impact loads. The Freon experiments had about 50% higher pressure in the upper core and bubble, a 30% larger slug impact impulse, and 25% greater expansion work done on the coolant slug. The higher pressure in the Freon experiments is believed due to vaporization of some of the Freon that mixes with the hot flashing water in the upper core very early in the expansion. Entrainment of coolant within the bubble and the bubble shape were comparable in the Freon and water experiments. Entrainment at slug impact varied between 20 and 40% of the bubble volume. The presence of internal vessel structures attenuated the slug impact impulse by about 50%, whether the coolant was Freon 113 or water. 79 figures, 23 tables.

  7. Cohesion of Bubbles in Foam

    ERIC Educational Resources Information Center

    Ross, Sydney

    1978-01-01

    The free-energy change, or binding energy, of an idealized bubble cluster is calculated on the basis of one mole of gas, and on the basis of a single bubble going from sphere to polyhedron. Some new relations of bubble geometry are developed in the course of the calculation. (BB)

  8. The Early Years: Blowing Bubbles

    ERIC Educational Resources Information Center

    Ashbrook, Peggy

    2016-01-01

    Blowing bubbles is not only a favorite summer activity for young children. Studying bubbles that are grouped together, or "foam," is fun for children and fascinating to many real-world scientists. Foam is widely used--from the bedroom (mattresses) to outer space (insulating panels on spacecraft). Bubble foam can provide children a…

  9. Bubble-Turbulence Interaction in Binary Fluids

    NASA Astrophysics Data System (ADS)

    F, Battista; M, Froio; F, Picano; P, Gualtieri; M, Casciola C.

    2011-12-01

    Multiphase flows represent a central issue in many natural, biological and industrial fields. For instance, liquid jets vaporization, petroleum refining and boiling, emulsions in pharmaceutical applications, are all characterized by a disperse phase, such as solid particles or liquid bubbles, which evolve in a Newtonian carrier fluid. Features such as the global evaporation rates of liquid fuels in air or the homogeneity of the emulsions are controlled by the finest interaction details occurring between the two phases. In this paper we study the rising motion of a bubble induced by buoyancy in a viscous fluid. Usually this issue is tackled by tracking the bubble interface by means of sharp interface methods. However this approach requires "ad hoc" techniques to describe changes in the topological features of the deforming interface and to enforce the mass preservation. Here the problem is addressed by using a different philosophy based on a diffuse interface method, that allows a straightforward analysis of complex phenomena such as bubbles coalescence and break up without any numerical expedient. The model we adopt, funded on a solid thermodynamical and physical base, relies on the Cahn-Hilliard equation for the disperse phase, see Cahn & Hilliard (1958) and Elliott & Songmu (1986).

  10. Toroidal bubble entrapment under an impacting drop

    NASA Astrophysics Data System (ADS)

    Thoraval, Marie-Jean; Thoroddsen, Sigurdur T.; Takehara, Kohsei; Etoh, Takeharu Goji

    2012-11-01

    We use ultra-high-speed imaging and numerical simulations (GERRIS, http://gfs.sf.net) to observe and analyze the formation of up to 14 air tori when a water drop impacts on a thin liquid film of water or other miscible liquids. They form during the early contact between the drop and the pool by the vertical oscillations of the ejecta sheet. They then break in micro-bubble rings by the Rayleigh instability. Their formation is associated with the shedding of an axisymmetric vortex street into the liquid from the free surface. These vorticity structures and their dynamics are made apparent by the dynamics of the micro-bubbles, added seed particles and the difference of refractive index for different liquids in the drop and the pool. More robust entrapments are observed for a thin film of ethanol or methanol. We show that while the non-spherical drop shape is not responsible for the toroidal bubble entrapments, the number of rings is increasing for more oblate drops. Individual bubble entrapments are also observed from azimuthal destabilizations of the neck between the drop and the pool.

  11. Decompression-induced bubble formation in salmonids: comparison to gas bubble disease.

    PubMed

    Beyer, D L; D'Aoust, B G; Smith, L S

    1976-12-01

    The relationship of gas bubble disease (GBD) in fish to decompression-induced bubble formation was investigated with salmonids. Acute bioassays were used to determine equilibration times for critical effects in fish decompressed from depths to 200 fsw. It was found that equilibration of critical tissues was complete in 60-90 min. Salmonids and air-breathers are sensitive to decompressions at similar levels of supersaturation if elimination of excess gas following decompression is unrestricted. However, if elimination is restricted, bubble formation and growth increase accordingly. Tests with mixtures of He-O2, Ar-O2, N2-O2 (80% inert gas: 20% O2) and pure oxygen demonstrated that gas solubility as well as supersaturation (delta P), pressure ratio (initial pressure: final pressure), and absolute pressure must be considered in setting tolerance limits for any decompression. Gases with higher solubility are more likely to produce bubbles upon decompression. Oxygen, however, does not follow this relationship until higher pressures are reached, probably owing to its function in metabolism and in binding with hemoglobin. Tissue responses observed in both GBD and decompressed fish involved similar pathological effects at acute exposures. The circulatory system was consistently affected by bubbles that occluded vessels and blocked flow through the heart.

  12. Micro bubble formation and bubble dissolution in domestic wet central heating systems

    NASA Astrophysics Data System (ADS)

    Fsadni, Andrew M.; Ge, Yunting

    2012-04-01

    16 % of the carbon dioxide emissions in the UK are known to originate from wet domestic central heating systems. Contemporary systems make use of very efficient boilers known as condensing boilers that could result in efficiencies in the 90-100% range. However, research and development into the phenomenon of micro bubbles in such systems has been practically non-existent. In fact, such systems normally incorporate a passive deaerator that is installed as a `default' feature with no real knowledge as to the micro bubble characteristics and their effect on such systems. High saturation ratios are known to occur due to the widespread use of untreated tap water in such systems and due to the inevitable leakage of air into the closed loop circulation system during the daily thermal cycling. The high temperatures at the boiler wall result in super saturation conditions which consequently lead to micro bubble nucleation and detachment, leading to bubbly two phase flow. Experiments have been done on a test rig incorporating a typical 19 kW domestic gas fired boiler to determine the expected saturation ratios and bubble production and dissolution rates in such systems.

  13. Skin formation and bubble growth during drying process of polymer solution.

    PubMed

    Arai, S; Doi, M

    2012-07-01

    When a polymer solution with volatile solvent is dried, skins are often formed at the surface of the solution. It has been observed that after the skin is formed, bubbles often appear in the solution. We conducted experiments to clarify the relation between the skin formation and the bubble formation. We measured the time dependence of the thickness of the skin layer, the size of the bubbles, and the pressure in the solution. From our experiments, we concluded that i) the gas in the bubble is a mixture of solvent vapor and air dissolved in the solution, ii) the bubble nucleation is assisted by the pressure decrease in the solution covered by the skin layer, and iii) the growth of the bubbles is diffusion limited, mainly limited by the diffusion of air molecules dissolved in the solution.

  14. Entrainment rates at the tops of laboratory analogs of cumulus and stratocumulus clouds

    NASA Astrophysics Data System (ADS)

    Górska, Anna; Malinowski, Szymon P.; Fugal, Jacob

    2015-04-01

    We investigate entrainment at tops of laboratory analogs of convective clouds: cumulus and stratocumulus. Cloudy saturated moist air (T ~22 °C) containing droplets of diameters of ~3-10 μm, is introduced into a laboratory cloud chamber of dimensions of 1.0×1.0×1.8 through an opening in the bottom wall. Initialy cloudy air fills ~60 cm thick layer at the bottom. Mixing between the cloud and unsaturated air above (T ~22 °C, RH ~35 %) results in evaporative cooling triggering convection which, in turn, leads to formation of a well mixed layer capperd with a temperature inversion. The temperature jump is about 2 °C within ~30 cm deep layer. Then updrafts are forced through a 30cm high tube extending from the bottom of the chamber. "Strong' updrafts which penetrate the whole inversion layer mimic overshooting cumulus clouds while "weak' updrafts diverging under the inversion simulate stratocumulus clouds. We use a laser sheet technique to image two-dimensional cross sections through the clouds. A specially developed mutiscale Particle Image Velicimetry (PIV) algorithm allows to retrieve 2D velocity fields. Suitable image processing allows to determine cloud-clear air interface in the images. Extracting velocities of cloudy (ui) and environmental (ua) air on both sides of the interface allows us calculate entrainment / detrainment rates: E = -ρa(ua - ui) - entrainment rate D = ρa(ua - ui) - detrainment rate. On the poster we will present fine structures of entraimnet/dertaiment process and discuss similarities and differences in both investigated types of clouds.

  15. Rhythm as a Coordinating Device: Entrainment with Disordered Speech

    ERIC Educational Resources Information Center

    Borrie, Stephanie A.; Liss, Julie M.

    2014-01-01

    Purpose: The rhythmic entrainment (coordination) of behavior during human interaction is a powerful phenomenon, considered essential for successful communication, supporting social and emotional connection, and facilitating sense-making and information exchange. Disruption in entrainment likely occurs in conversations involving those with speech…

  16. Bubble fusion: Preliminary estimates

    SciTech Connect

    Krakowski, R.A.

    1995-02-01

    The collapse of a gas-filled bubble in disequilibrium (i.e., internal pressure {much_lt} external pressure) can occur with a significant focusing of energy onto the entrapped gas in the form of pressure-volume work and/or acoustical shocks; the resulting heating can be sufficient to cause ionization and the emission of atomic radiations. The suggestion that extreme conditions necessary for thermonuclear fusion to occur may be possible has been examined parametrically in terms of the ratio of initial bubble pressure relative to that required for equilibrium. In this sense, the disequilibrium bubble is viewed as a three-dimensional ``sling shot`` that is ``loaded`` to an extent allowed by the maximum level of disequilibrium that can stably be achieved. Values of this disequilibrium ratio in the range 10{sup {minus}5}--10{sup {minus}6} are predicted by an idealized bubble-dynamics model as necessary to achieve conditions where nuclear fusion of deuterium-tritium might be observed. Harmonic and aharmonic pressurizations/decompressions are examined as means to achieve the required levels of disequilibrium required to create fusion conditions. A number of phenomena not included in the analysis reported herein could enhance or reduce the small levels of nuclear fusions predicted.

  17. The Liberal Arts Bubble

    ERIC Educational Resources Information Center

    Agresto, John

    2011-01-01

    The author expresses his doubt that the general higher education bubble will burst anytime soon. Although tuition, student housing, and book costs have all increased substantially, he believes it is still likely that the federal government will continue to pour billions into higher education, largely because Americans have been persuaded that it…

  18. Double Bubble? No Trouble!

    ERIC Educational Resources Information Center

    Shaw, Mike I.; Smith, Greg F.

    1995-01-01

    Describes a soap-solution activity involving formation of bubbles encasing the students that requires only readily available materials and can be adapted easily for use with various grade levels. Discusses student learning outcomes including qualitative and quantitative observations and the concept of surface tension. (JRH)

  19. Entrainment of neural oscillations as a modifiable substrate of attention.

    PubMed

    Calderone, Daniel J; Lakatos, Peter; Butler, Pamela D; Castellanos, F Xavier

    2014-06-01

    Brain operation is profoundly rhythmic. Oscillations of neural excitability shape sensory, motor, and cognitive processes. Intrinsic oscillations also entrain to external rhythms, allowing the brain to optimize the processing of predictable events such as speech. Moreover, selective attention to a particular rhythm in a complex environment entails entrainment of neural oscillations to its temporal structure. Entrainment appears to form one of the core mechanisms of selective attention, which is likely to be relevant to certain psychiatric disorders. Deficient entrainment has been found in schizophrenia and dyslexia and mounting evidence also suggests that it may be abnormal in attention-deficit/hyperactivity disorder (ADHD). Accordingly, we suggest that studying entrainment in selective-attention paradigms is likely to reveal mechanisms underlying deficits across multiple disorders.

  20. Bubbly Little Star

    NASA Technical Reports Server (NTRS)

    2007-01-01

    In this processed Spitzer Space Telescope image, baby star HH 46/47 can be seen blowing two massive 'bubbles.' The star is 1,140 light-years away from Earth.

    The infant star can be seen as a white spot toward the center of the Spitzer image. The two bubbles are shown as hollow elliptical shells of bluish-green material extending from the star. Wisps of green in the image reveal warm molecular hydrogen gas, while the bluish tints are formed by starlight scattered by surrounding dust.

    These bubbles formed when powerful jets of gas, traveling at 200 to 300 kilometers per second, or about 120 to 190 miles per second, smashed into the cosmic cloud of gas and dust that surrounds HH 46/47. The red specks at the end of each bubble show the presence of hot sulfur and iron gas where the star's narrow jets are currently crashing head-on into the cosmic cloud's gas and dust material.

    Whenever astronomers observe a star, or snap a stellar portrait, through the lens of any telescope, they know that what they are seeing is slightly blurred. To clear up the blurring in Spitzer images, astronomers at the Jet Propulsion Laboratory developed an image processing technique for Spitzer called Hi-Res deconvolution.

    This process reduces blurring and makes the image sharper and cleaner, enabling astronomers to see the emissions around forming stars in greater detail. When scientists applied this image processing technique to the Spitzer image of HH 46/47, they were able to see winds from the star and jets of gas that are carving the celestial bubbles.

    This infrared image is a three-color composite, with data at 3.6 microns represented in blue, 4.5 and 5.8 microns shown in green, and 24 microns represented as red.

  1. Ground-Based Remote Retrievals of Cumulus Entrainment Rates

    SciTech Connect

    Wagner, Timothy J.; Turner, David D.; Berg, Larry K.; Krueger, Steven K.

    2013-07-26

    While fractional entrainment rates for cumulus clouds have typically been derived from airborne observations, this limits the size and scope of available data sets. To increase the number of continental cumulus entrainment rate observations available for study, an algorithm for retrieving them from ground-based remote sensing observations has been developed. This algorithm, called the Entrainment Rate In Cumulus Algorithm (ERICA), uses the suite of instruments at the Southern Great Plains (SGP) site of the United States Department of Energy's Atmospheric Radiation Measurement (ARM) Climate Research Facility as inputs into a Gauss-Newton optimal estimation scheme, in which an assumed guess of the entrainment rate is iteratively adjusted through intercomparison of modeled liquid water path and cloud droplet effective radius to their observed counterparts. The forward model in this algorithm is the Explicit Mixing Parcel Model (EMPM), a cloud parcel model that treats entrainment as a series of discrete entrainment events. A quantified value for measurement uncertainty is also returned as part of the retrieval. Sensitivity testing and information content analysis demonstrate the robust nature of this method for retrieving accurate observations of the entrainment rate without the drawbacks of airborne sampling. Results from a test of ERICA on three months of shallow cumulus cloud events show significant variability of the entrainment rate of clouds in a single day and from one day to the next. The mean value of 1.06 km-¹ for the entrainment rate in this dataset corresponds well with prior observations and simulations of the entrainment rate in cumulus clouds.

  2. Introductory Applicaton of Defocusing DPIV to the Study of Bubbly Shear Flows

    NASA Astrophysics Data System (ADS)

    Pereira, Francisco; Gharib, Morteza; Dabiri, Dana; Modarress, Darius

    1999-11-01

    A study of a three-dimensional bubbly flow is presented to demonstrate the applicability of the newly developed defocusing digital particle image velocimetry technique. The DDPIV instrument provides bubble size and location information within a one cubic foot volume. A three-dimensional two-phase flow measurement is performed to obtain a full-field quantitative description of the global dynamics of air bubbles in a vortical shear flow generated by a model boat propeller. Clouds of sub-millimeter air bubbles are injected upstream the propeller. The velocity field is calculated from volumetric cross-correlation of consecutive three-dimensional sets of bubble locations, whereas the bubble size information is estimated from the blurred image of bubbles. Flow analysis is presented in terms of vorticity and bubble trajectory. The bubble size distribution upstream and downstream the propeller is discussed. Growth and collapse of bubbles are detected and related to the respective velocity field in the suction and high-pressure regions of the propeller.

  3. The living times of bubbles at the interface

    NASA Astrophysics Data System (ADS)

    Cameron, Benjamin; Bourouiba, Lydia; Vandenberghe, Nicolas; Villermaux, Emmanuel

    2014-11-01

    The lifetime of a water bubble at the surface of a pool prior to its burst remains an open question. It is known that the death of a bubble is initiated by the nucleation of a hole in its shell. However, the mechanisms governing the occurrence of such nucleation sites and prescribing the lifetime of bubbles remain unclear. Combining original visualizations, quantitative measurements of bubbles lifetimes and simple theoretical ideas, we report direct observations of the onset of the bursting process and rationalize the link between the rich interfacial events leading to the hole nucleation on the shell and the resulting robust bubble lifetimes distributions. These play a critical role in shaping the final size distribution of the droplets emitted. We will underline the consequences of the process in the sensible world, like air-sea water vapor exchanges. Bubbles bursting at the surface of water sources also allow for high levels of contamination and long-term exposure to a range of respiratory human pathogens and irritants indoors. Indeed, the droplets created by such bursts can contribute to the transfer of pathogens to the air, followed by their dispersal, thus bridging this subtle problem with unexpected new areas in health. Thanks to the financial support of the MISTI-FRANCE MIT program.

  4. Characteristics of rice husk gasification in an entrained flow reactor.

    PubMed

    Zhao, Yijun; Sun, Shaozeng; Tian, Hongming; Qian, Juan; Su, Fengming; Ling, Feng

    2009-12-01

    Experiments were performed in an entrained flow reactor to better understand the characteristics of biomass gasification. Rice husk was used in this study. Effects of the gasification temperature (700, 800, 900 and 1000 degrees C) and the equivalence ratio in the range of 0.22-0.34 on the biomass gasification and the axial gas distribution in the reactor were studied. The results showed that reactions of CnHm were less important in the gasification process except cracking reactions which occurred at higher temperature. In the oxidization zone, reactions between char and oxygen had a more prevailing role. The optimal gasification temperature of the rice husk could be above 900 degrees C, and the optimal value of ER was 0.25. The gasification process was finished in 1.42 s when the gasification temperature was above 800 degrees C. A first order kinetic model was developed for describing rice husk air gasification characteristics and the relevant kinetic parameters were determined.

  5. Field Evaluation in Four NEEMO Divers of a Prototype In-suit Doppler Ultrasound Bubble Detector

    NASA Technical Reports Server (NTRS)

    Acock, K. E.; Gernhardt, M. L.; Conkin, J.; Powell, M. R.

    2004-01-01

    It is desirable to know if astronauts produce venous gas emboli (VGE) as a result of their exposure to 4.3 psia during space walks. The current prototype in-suit Doppler (ISD) ultrasound bubble detector provides an objective assessment of decompression stress by monitoring for VGE. The NOAA Aquarius habitat and NASA Extreme Environment Mission Operations (NEEMO) series of dives provided an opportunity to assess the ability of the prototype ISDs to record venous blood flow and possibly detect VGE in the pulmonary artery. From July 16 to 29,2003, four aquanauts (two males and two females) donned the ISD for a 4 hr automated recording session, following excursion dives (up to 6hrs and 29 MSW below storage depth) from air saturation at 17 MSW. Doppler recordings for 32 excursion dives were collected. The recordings consisted of approximately 150 digital wave files. Each wave file contained 24 sec of recording for each min. A 1 - 4 Doppler Quality Score (DQS) was assigned to each wave file in 17 of the 32 records evaluated to date. A DQS of 1 indicates a poor flow signal and a score of 4 indicates an optimum signal. Only 23% of all wave files had DQSs considered adequate to detect low grade VGE (Spencer I-II). The distribution of DQS in 2,356 wave files is as follows: DQS 1-56%, DQS 2-21%, DQS 3-18% and DQS 4-5%. Six of the 17 records had false positive VGE (Spencer I-IV) detected in one or more wave files per dive record. The false positive VGE recordings are attributable to air entrainment associated with drinking (verified by control tests), and this observation is important as astronauts drink water during space walks. The current ISD design provides quality recordings only over a narrow range of chest anatomy.

  6. Effects of Gravity on Sheared Turbulence Laden with Bubbles or Droplets

    NASA Technical Reports Server (NTRS)

    Elghobashi, Said; Lasheras, Juan

    1999-01-01

    The objective of this numerical/experimental study is to improve the understanding of the effects of gravity on the two-way interaction between dispersed particles (bubbles or liquid droplets) and the carrier turbulent flow. The first phase of the project considers isotropic turbulence. Turbulent homogeneous shear flows laden with droplets/bubbles will be studied in the next phase. The experiments reported here are concerned with the dispersion of liquid droplets by homogeneous turbulence under various gravitational conditions and the effect of these droplets on the evolution of the turbulence of the carrier fluid (air). Direct numerical simulations (DNS) of bubble - laden isotropic decaying turbulence are performed using the two-fluid approach (TF) instead of the Eulerian-Lagrangian approach (EL). The motivation for using the TF formulation is that EL requires considerable computational resources especially for the case of two-way coupling where the instantaneous trajectories of a large number of individual bubbles need to be computed. The TF formulation is developed by spatially averaging the instantaneous equations of the carrier flow and bubble phase over a scale of the order of the Kolmogorov length scale which, in our case, is much larger than the bubble diameter. On that scale, the bubbles are treated as a continuum (without molecular diffusivity) characterized by the bubble phase velocity field and concentration (volume fraction). The bubble concentration, C, is assumed small enough to neglect the bubble-bubble interactions.

  7. Effect of electrolytes on bubble coalescence in columns observed with visualization techniques.

    PubMed

    Aguilera, María Eugenia; Ojeda, Antonieta; Rondón, Carolina; López De Ramos, Aura

    2002-10-01

    Bubble coalescence and the effect of electrolytes on this phenomenon have been previously studied. This interfacial phenomenon has attracted attention for reactor design/operation and enhanced oil recovery. Predicting bubble coalescence may help prevent low yields in reactors and predict crude oil recovery. Because of the importance of bubble coalescence, the objectives of this work were to improve the accuracy of measuring the percentage of coalescing bubbles and to observe the interfacial gas-liquid behavior. An experimental setup was designed and constructed. Bubble interactions were monitored with a visualization setup. The percentage of air bubble coalescence was 100% in distilled water, about 50% in 0.1 M sodium chloride (NaCl) aqueous solution, and 0% in 0.145 M NaCl aqueous solution. A reduction of the contact gas-liquid area was observed in distillate water. The volume of the resulting bubble was the sum of the original bubble volumes. Repulsion of bubbles was observed in NaCl solutions exceeding 0.07 M. The percentage of bubble coalescence diminishes as the concentration of NaCl chloride increases. High-speed video recording is an accurate technique to measure the percentage of bubble coalescence, and represents an important advance in gas-liquid interfacial studies. PMID:12496024

  8. Effect of electrolytes on bubble coalescence in columns observed with visualization techniques.

    PubMed

    Aguilera, María Eugenia; Ojeda, Antonieta; Rondón, Carolina; López De Ramos, Aura

    2002-10-01

    Bubble coalescence and the effect of electrolytes on this phenomenon have been previously studied. This interfacial phenomenon has attracted attention for reactor design/operation and enhanced oil recovery. Predicting bubble coalescence may help prevent low yields in reactors and predict crude oil recovery. Because of the importance of bubble coalescence, the objectives of this work were to improve the accuracy of measuring the percentage of coalescing bubbles and to observe the interfacial gas-liquid behavior. An experimental setup was designed and constructed. Bubble interactions were monitored with a visualization setup. The percentage of air bubble coalescence was 100% in distilled water, about 50% in 0.1 M sodium chloride (NaCl) aqueous solution, and 0% in 0.145 M NaCl aqueous solution. A reduction of the contact gas-liquid area was observed in distillate water. The volume of the resulting bubble was the sum of the original bubble volumes. Repulsion of bubbles was observed in NaCl solutions exceeding 0.07 M. The percentage of bubble coalescence diminishes as the concentration of NaCl chloride increases. High-speed video recording is an accurate technique to measure the percentage of bubble coalescence, and represents an important advance in gas-liquid interfacial studies.

  9. Phase speed and attenuation in bubbly liquids inferred from impedance measurements near the individual bubble resonance frequency.

    PubMed

    Wilson, Preston S; Roy, Ronald A; Carey, William M

    2005-04-01

    In the ocean, natural and artificial processes generate clouds of bubbles that scatter and attenuate sound. Measurements have shown that at the individual bubble resonance frequency, sound propagation in this medium is highly attenuated and dispersive. The existing theory to explain this behavior is deemed adequate away from resonance. However, due to excessive attenuation near resonance, little experimental data exists for a comparison with model predictions. An impedance tube was developed specifically for exploring this regime. The effective medium phase speed and attenuation were inferred from measurements of the surface impedance of a layer of bubbly liquid composed of air bubbles and distilled water, for void fractions from 6.2 x 10(-5) to 5.4 x 10(-4) and bubble sizes centered around 0.62 mm in radius. Improved measurement speed, accuracy, and precision is possible with the new instrument, and both instantaneous and time-averaged measurements were obtained. The phase speed and attenuation at resonance was observed to be sensitive to the bubble population statistics and agreed with an existing model [J. Acoust. Soc. Am. 85, 732-746 (1989)], within the uncertainty of the bubble population parameters. Agreement between the model and the data reported here is better than for the data that was available when the model was originally published.

  10. Stabilizing effect of plasma discharge on bubbling fluidized granular bed

    NASA Astrophysics Data System (ADS)

    Hu, Mao-Bin; Dang, Sai-Chao; Ma, Qiang; Xia, Wei-Dong

    2015-07-01

    Fluidized beds have been widely used for processing granular materials. In this paper, we study the effect of plasma on the fluidization behavior of a bubbling fluidized bed with an atmospheric pressure plasma discharger. Experiment results show that the bubbling fluidized bed is stabilized with the discharge of plasma. When the discharge current reaches a minimum stabilization current Cms, air bubbles in the bed will disappear and the surface fluctuation is completely suppressed. A simplified model is proposed to consider the effect of electric Coulomb force generated by the plasma. It is found that the Coulomb force will propel the particles to move towards the void area, so that the bubbling fluidized bed is stabilized with a high enough plasma discharge. Project supported by the National Natural Science Foundation of China (Grant Nos. 11035005 and 11034010).

  11. Spreading of Bubbles after Contacting the Lower Side of an Aerophilic Slide Immersed in Water

    NASA Astrophysics Data System (ADS)

    de Maleprade, Hélène; Clanet, Christophe; Quéré, David

    2016-08-01

    While the dynamics of complete wetting has been widely studied for liquids, the way a gas spreads on a solid is by far less known. We report here the events following the rise of a millimeter-size air bubble towards a textured material immersed in water and covered by a thin plastron of air. Bubbles contact the material either directly at the end of the rise, or after a few rebounds, which affects the initial shape of the bubble and the resulting dynamics of contact. Then, air spreads on the material, owing to surface tension and later buoyance, which tends to flatten further the bubble. The corresponding dynamics are shown to result from the inertial resistance of water, which explains how spreading bubbles reach centimeter sizes in typically 10 ms.

  12. Spreading of Bubbles after Contacting the Lower Side of an Aerophilic Slide Immersed in Water.

    PubMed

    de Maleprade, Hélène; Clanet, Christophe; Quéré, David

    2016-08-26

    While the dynamics of complete wetting has been widely studied for liquids, the way a gas spreads on a solid is by far less known. We report here the events following the rise of a millimeter-size air bubble towards a textured material immersed in water and covered by a thin plastron of air. Bubbles contact the material either directly at the end of the rise, or after a few rebounds, which affects the initial shape of the bubble and the resulting dynamics of contact. Then, air spreads on the material, owing to surface tension and later buoyance, which tends to flatten further the bubble. The corresponding dynamics are shown to result from the inertial resistance of water, which explains how spreading bubbles reach centimeter sizes in typically 10 ms. PMID:27610858

  13. Spreading of Bubbles after Contacting the Lower Side of an Aerophilic Slide Immersed in Water.

    PubMed

    de Maleprade, Hélène; Clanet, Christophe; Quéré, David

    2016-08-26

    While the dynamics of complete wetting has been widely studied for liquids, the way a gas spreads on a solid is by far less known. We report here the events following the rise of a millimeter-size air bubble towards a textured material immersed in water and covered by a thin plastron of air. Bubbles contact the material either directly at the end of the rise, or after a few rebounds, which affects the initial shape of the bubble and the resulting dynamics of contact. Then, air spreads on the material, owing to surface tension and later buoyance, which tends to flatten further the bubble. The corresponding dynamics are shown to result from the inertial resistance of water, which explains how spreading bubbles reach centimeter sizes in typically 10 ms.

  14. Cortical entrainment to music and its modulation by expertise.

    PubMed

    Doelling, Keith B; Poeppel, David

    2015-11-10

    Recent studies establish that cortical oscillations track naturalistic speech in a remarkably faithful way. Here, we test whether such neural activity, particularly low-frequency (<8 Hz; delta-theta) oscillations, similarly entrain to music and whether experience modifies such a cortical phenomenon. Music of varying tempi was used to test entrainment at different rates. In three magnetoencephalography experiments, we recorded from nonmusicians, as well as musicians with varying years of experience. Recordings from nonmusicians demonstrate cortical entrainment that tracks musical stimuli over a typical range of tempi, but not at tempi below 1 note per second. Importantly, the observed entrainment correlates with performance on a concurrent pitch-related behavioral task. In contrast, the data from musicians show that entrainment is enhanced by years of musical training, at all presented tempi. This suggests a bidirectional relationship between behavior and cortical entrainment, a phenomenon that has not previously been reported. Additional analyses focus on responses in the beta range (∼15-30 Hz)-often linked to delta activity in the context of temporal predictions. Our findings provide evidence that the role of beta in temporal predictions scales to the complex hierarchical rhythms in natural music and enhances processing of musical content. This study builds on important findings on brainstem plasticity and represents a compelling demonstration that cortical neural entrainment is tightly coupled to both musical training and task performance, further supporting a role for cortical oscillatory activity in music perception and cognition.

  15. Laboratory Experiments on Convective Entrainment Using a Saline Water Tank

    NASA Astrophysics Data System (ADS)

    Jonker, Harmen J. J.; Jiménez, Maria A.

    2014-06-01

    Entrainment fluxes in a shear-free convective boundary layer have been measured with a saline water tank set-up. The experiments were targeted towards measuring the entrainment behaviour for medium to high Richardson numbers and use a two-layer design, i.e. two stacked non-stratified (neutral) layers with different densities. With laser induced fluorescence (LIF), the entrainment flux of a fluorescent dye is measured for bulk Richardson numbers in the range 30-260. It is proposed that a carefully chosen combination of top-down and bottom-up processes improves the accuracy of LIF-based entrainment observations. The observed entrainment fluxes are about an order of magnitude lower than reported for thermal water tanks: the derived buoyancy entrainment ratio, , is found to be , which is to be compared with for a thermal convection tank (Deardorff et al., J Fluid Mech 100:41-64, 1980). An extensive discussion is devoted to the influence of the Reynolds and Prandtl numbers in laboratory experiments on entrainment.

  16. Cortical entrainment to music and its modulation by expertise.

    PubMed

    Doelling, Keith B; Poeppel, David

    2015-11-10

    Recent studies establish that cortical oscillations track naturalistic speech in a remarkably faithful way. Here, we test whether such neural activity, particularly low-frequency (<8 Hz; delta-theta) oscillations, similarly entrain to music and whether experience modifies such a cortical phenomenon. Music of varying tempi was used to test entrainment at different rates. In three magnetoencephalography experiments, we recorded from nonmusicians, as well as musicians with varying years of experience. Recordings from nonmusicians demonstrate cortical entrainment that tracks musical stimuli over a typical range of tempi, but not at tempi below 1 note per second. Importantly, the observed entrainment correlates with performance on a concurrent pitch-related behavioral task. In contrast, the data from musicians show that entrainment is enhanced by years of musical training, at all presented tempi. This suggests a bidirectional relationship between behavior and cortical entrainment, a phenomenon that has not previously been reported. Additional analyses focus on responses in the beta range (∼15-30 Hz)-often linked to delta activity in the context of temporal predictions. Our findings provide evidence that the role of beta in temporal predictions scales to the complex hierarchical rhythms in natural music and enhances processing of musical content. This study builds on important findings on brainstem plasticity and represents a compelling demonstration that cortical neural entrainment is tightly coupled to both musical training and task performance, further supporting a role for cortical oscillatory activity in music perception and cognition. PMID:26504238

  17. Cortical entrainment to music and its modulation by expertise

    PubMed Central

    Doelling, Keith B.; Poeppel, David

    2015-01-01

    Recent studies establish that cortical oscillations track naturalistic speech in a remarkably faithful way. Here, we test whether such neural activity, particularly low-frequency (<8 Hz; delta–theta) oscillations, similarly entrain to music and whether experience modifies such a cortical phenomenon. Music of varying tempi was used to test entrainment at different rates. In three magnetoencephalography experiments, we recorded from nonmusicians, as well as musicians with varying years of experience. Recordings from nonmusicians demonstrate cortical entrainment that tracks musical stimuli over a typical range of tempi, but not at tempi below 1 note per second. Importantly, the observed entrainment correlates with performance on a concurrent pitch-related behavioral task. In contrast, the data from musicians show that entrainment is enhanced by years of musical training, at all presented tempi. This suggests a bidirectional relationship between behavior and cortical entrainment, a phenomenon that has not previously been reported. Additional analyses focus on responses in the beta range (∼15–30 Hz)—often linked to delta activity in the context of temporal predictions. Our findings provide evidence that the role of beta in temporal predictions scales to the complex hierarchical rhythms in natural music and enhances processing of musical content. This study builds on important findings on brainstem plasticity and represents a compelling demonstration that cortical neural entrainment is tightly coupled to both musical training and task performance, further supporting a role for cortical oscillatory activity in music perception and cognition. PMID:26504238

  18. Interfacial characteristic measurements in horizontal bubbly two-phase flow

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Huang, W. D.; Srinivasmurthy, S.; Kocamustafaogullari, G.

    1990-10-01

    Advances in the study of two-phase flow increasingly require detailed internal structure information upon which theoretical models can be formulated. The void fraction and interfacial area are two fundamental parameters characterizing the internal structure of two-phase flow. However, little information is currently available on these parameters, and it is mostly limited to vertical flow configurations. In view of the above, the internal phase distribution of concurrent, air-water bubbly flow in a 50.3 mm diameter transparent pipeline has been experimentally investigated by using a double-sensor resistivity probe. Liquid and gas volumetric superficial velocities ranged from 3.74 to 5.60 m/s and 0.25 to 1.59 m/s, respectively, and average void fractions ranged from 2.12 to 22.5 percent. The local values of void fractions, interfacial area concentration, mean bubble diameter, bubble interface velocity, bubble chord-length and bubble frequency distributions were measured. The experimental results indicate that the void fraction interfacial area concentration and bubble frequency have local maxima near the upper pipe wall, and the profiles tend to flatten with increasing void fraction. The observed peak void fraction can reach 0.65, the peak interfacial area can go up to 900 approximately 1000 sq m/cu m, and the bubble frequency can reach a value of 2200 per s. These ranges of values have never been reported for vertical bubbly flow. It is found that either decreasing the liquid flow rate or increasing the gas flow would increase the local void fraction, the interfacial area concentration and the bubble frequency.

  19. CONTINUOUSLY SENSITIVE BUBBLE CHAMBER

    DOEpatents

    Good, R.H.

    1959-08-18

    A radiation detector of the bubble chamber class is described which is continuously sensitive and which does not require the complex pressure cycling equipment characteristic of prior forms of the chamber. The radiation sensitive element is a gas-saturated liquid and means are provided for establishing a thermal gradient across a region of the liquid. The gradient has a temperature range including both the saturation temperature of the liquid and more elevated temperatures. Thus a supersaturated zone is created in which ionizing radiations may give rise to visible gas bubbles indicative of the passage of the radiation through the liquid. Additional means are provided for replenishing the supply of gas-saturated liquid to maintaincontinuous sensitivity.

  20. A Balanced Diet Is Necessary for Proper Entrainment Signals of the Mouse Liver Clock

    PubMed Central

    Hirao, Akiko; Tahara, Yu; Kimura, Ichiro; Shibata, Shigenobu

    2009-01-01

    Background The peripheral circadian clock in mice is entrained not only by light-dark cycles but also by daily restricted feeding schedules. Behavioral and cell culture experiments suggest an increase in glucose level as a factor in such feeding-induced entrainment. For application of feeding-induced entrainment in humans, nutrient content and dietary variations should be considered. Principal Finding To elucidate the food composition necessary for dietary entrainment, we examined whether complete or partial substitution of dietary nutrients affected phase shifts in liver clocks of mice. Compared with fasting mice or ad libitum fed mice, the liver bioluminescence rhythm advanced by 3–4 h on the middle day in Per2::luciferase knock-in mice that were administered a standard mouse diet, i.e. AIN-93M formula [0.6–0.85 g/10 g mouse BW] (composition: 14% casein, 47% cornstarch, 15% gelatinized cornstarch, 10% sugar, 4% soybean oil, and 10% other [fiber, vitamins, minerals, etc.]), for 2 days. When each nutrient was tested alone (100% nutrient), an insignificant weak phase advance was found to be induced by cornstarch and soybean oil, but almost no phase advance was induced by gelatinized cornstarch, high-amylose cornstarch, glucose, sucrose, or casein. A combination of glucose and casein without oil, vitamin, or fiber caused a significant phase advance. When cornstarch in AIN-93M was substituted with glucose, sucrose, fructose, polydextrose, high-amylose cornstarch, or gelatinized cornstarch, the amplitude of phase advance paralleled the increase in blood glucose concentration. Conclusions Our results strongly suggest the following: (1) balanced diets containing carbohydrates/sugars and proteins are good for restricted feeding-induced entrainment of the peripheral circadian clock and (2) a balanced diet that increases blood glucose, but not by sugar alone, is suitable for entrainment. These findings may assist in the development of dietary recommendations for on

  1. Bubble dynamics in drinks

    NASA Astrophysics Data System (ADS)

    Broučková, Zuzana; Trávníček, Zdeněk; Šafařík, Pavel

    2014-03-01

    This study introduces two physical effects known from beverages: the effect of sinking bubbles and the hot chocolate sound effect. The paper presents two simple "kitchen" experiments. The first and second effects are indicated by means of a flow visualization and microphone measurement, respectively. To quantify the second (acoustic) effect, sound records are analyzed using time-frequency signal processing, and the obtained power spectra and spectrograms are discussed.

  2. Mechanisms of gas bubble retention

    SciTech Connect

    Gauglitz, P.A.; Mahoney, L.A.; Mendoza, D.P.; Miller, M.C.

    1994-09-01

    Retention and episodic release of flammable gases are critical safety concerns regarding double-shell tanks (DSTs) containing waste slurries. Previous investigations have concluded that gas bubbles are retained by the slurry that has settled at the bottom of the DST. However, the mechanisms responsible for the retention of these bubbles are not well understood. In addition, the presence of retained gas bubbles is expected to affect the physical properties of the sludge, but essentially no literature data are available to assess the effect of these bubbles. The rheological behavior of the waste, particularly of the settled sludge, is critical to characterizing the tendency of the waste to retain gas bubbles. The objectives of this study are to elucidate the mechanisms contributing to gas bubble retention and release from sludge such as is in Tank 241-SY-101, understand how the bubbles affect the physical properties of the sludge, develop correlations of these physical properties to include in computer models, and collect experimental data on the physical properties of simulated sludges with bubbles. This report presents a theory and experimental observations of bubble retention in simulated sludge and gives correlations and new data on the effect of gas bubbles on sludge yield strength.

  3. Sonoluminescence, sonochemistry and bubble dynamics of single bubble cavitation

    NASA Astrophysics Data System (ADS)

    Hatanaka, Shin-ichi

    2012-09-01

    The amount of hydroxyl radicals produced from a single cavitation bubble was quantified by terephthalate dosimetry at various frequencies and pressure amplitudes, while the dynamics of the single bubble was observed by stroboscopic and light-scattering methods. Also, sonoluminescence (SL), sonochemiluminescence (SCL) of luminol, and sodium atom emission (Na*) in the cavitation field were observed. The amount of hydroxyl radicals per cycle as well as the intensity of SL was proportional to pressure amplitude at every frequency performed, and it decreased with increasing frequency. When the single bubble was dancing with a decrease in pressure amplitude, however, the amount of hydroxyl radicals was greater than that for the stable bubble at the higher pressure amplitude and did not significantly decrease with frequency. Furthermore, SCL and Na* were detected only under unstable bubble conditions. These results imply that the instability of bubbles significantly enhances sonochemical efficiency for non-volatile substances in liquid phase.

  4. On the maximum grain size entrained by photoevaporative winds

    NASA Astrophysics Data System (ADS)

    Hutchison, Mark A.; Laibe, Guillaume; Maddison, Sarah T.

    2016-09-01

    We model the behaviour of dust grains entrained by photoevaporation-driven winds from protoplanetary discs assuming a non-rotating, plane-parallel disc. We obtain an analytic expression for the maximum entrainable grain size in extreme-UV radiation-driven winds, which we demonstrate to be proportional to the mass loss rate of the disc. When compared with our hydrodynamic simulations, the model reproduces almost all of the wind properties for the gas and dust. In typical turbulent discs, the entrained grain sizes in the wind are smaller than the theoretical maximum everywhere but the inner disc due to dust settling.

  5. Flicker Regularity Is Crucial for Entrainment of Alpha Oscillations

    PubMed Central

    Notbohm, Annika; Herrmann, Christoph S.

    2016-01-01

    Previous studies have shown that alpha oscillations (8–13 Hz) in human electroencephalogram (EEG) modulate perception via phase-dependent inhibition. If entrained to an external driving force, inhibition maxima and minima of the oscillation appear more distinct in time and make potential phase-dependent perception predictable. There is an ongoing debate about whether visual stimulation is suitable to entrain alpha oscillations. On the one hand, it has been argued that a series of light flashes results in transient event-related responses (ERPs) superimposed on the ongoing EEG. On the other hand, it has been demonstrated that alpha oscillations become entrained to a series of light flashes if they are presented at a certain temporal regularity. This raises the question under which circumstances a sequence of light flashes causes entrainment, i.e., whether an arrhythmic stream of light flashes would also result in entrainment. Here, we measured detection rates in response to visual targets at two opposing stimulation phases during rhythmic and arrhythmic light stimulation. We introduce a new measure called “behavioral modulation depth” to determine differences in perception. This measure is capable of correcting for inevitable artifacts that occur in visual detection tasks during visual stimulation. The physical concept of entrainment predicts that increased stimulation intensity should produce stronger entrainment. Thus, two experiments with medium (Experiment 1) and high (Experiment 2) stimulation intensity were performed. Data from the first experiment show that the behavioral modulation depth (alpha phase-dependent differences in detection threshold) increases with increasing entrainment of alpha oscillations. Furthermore, individual alpha phase delays of entrained alpha oscillations determine the behavioral modulation depth: the largest behavioral modulation depth can be found if targets presented during the minimum of the entrained oscillation are

  6. Acoustically coupled gas bubbles in fluids: time-domain phenomena.

    PubMed

    Feuillade, C

    2001-06-01

    In previous work [C. Feuillade, J. Acoust. Soc. Am. 98, 1178-1190 (1995)] a coupled oscillator formalism was introduced for describing collective resonances, scattering, and superresonances, of multiple gas bubbles in a fluid. Subsequently, time-domain investigations of the impulse response of coupled systems have disclosed the exact conditions which determine whether the ensemble scattering behavior should be described using: either (a), a multiple scattering; or (b), a self-consistent methodology. The determining factor is the Q of the individual scatterers, and their typical spatial separations in the medium. For highly damped or sparse systems, e.g., scattering from loose schools of swimbladder fish, or from a gassy seabed containing entrained bubbles, the multiple scatter counting approach should be applicable. For more strongly coupled systems, e.g., a dense cloud of resonating bubbles in the water column, energy exchange may be due primarily to radiative cycling rather than scattering, in which case a self-consistent approach is indicated. The result has implications for both volume and bottom scattering applications.

  7. Music and emotions: from enchantment to entrainment.

    PubMed

    Vuilleumier, Patrik; Trost, Wiebke

    2015-03-01

    Producing and perceiving music engage a wide range of sensorimotor, cognitive, and emotional processes. Emotions are a central feature of the enjoyment of music, with a large variety of affective states consistently reported by people while listening to music. However, besides joy or sadness, music often elicits feelings of wonder, nostalgia, or tenderness, which do not correspond to emotion categories typically studied in neuroscience and whose neural substrates remain largely unknown. Here we review the similarities and differences in the neural substrates underlying these "complex" music-evoked emotions relative to other more "basic" emotional experiences. We suggest that these emotions emerge through a combination of activation in emotional and motivational brain systems (e.g., including reward pathways) that confer its valence to music, with activation in several other areas outside emotional systems, including motor, attention, or memory-related regions. We then discuss the neural substrates underlying the entrainment of cognitive and motor processes by music and their relation to affective experience. These effects have important implications for the potential therapeutic use of music in neurological or psychiatric diseases, particularly those associated with motor, attention, or affective disturbances. PMID:25773637

  8. Speech entrainment compensates for Broca's area damage.

    PubMed

    Fridriksson, Julius; Basilakos, Alexandra; Hickok, Gregory; Bonilha, Leonardo; Rorden, Chris

    2015-08-01

    Speech entrainment (SE), the online mimicking of an audiovisual speech model, has been shown to increase speech fluency in patients with Broca's aphasia. However, not all individuals with aphasia benefit from SE. The purpose of this study was to identify patterns of cortical damage that predict a positive response SE's fluency-inducing effects. Forty-four chronic patients with left hemisphere stroke (15 female) were included in this study. Participants completed two tasks: 1) spontaneous speech production, and 2) audiovisual SE. Number of different words per minute was calculated as a speech output measure for each task, with the difference between SE and spontaneous speech conditions yielding a measure of fluency improvement. Voxel-wise lesion-symptom mapping (VLSM) was used to relate the number of different words per minute for spontaneous speech, SE, and SE-related improvement to patterns of brain damage in order to predict lesion locations associated with the fluency-inducing response to SE. Individuals with Broca's aphasia demonstrated a significant increase in different words per minute during SE versus spontaneous speech. A similar pattern of improvement was not seen in patients with other types of aphasia. VLSM analysis revealed damage to the inferior frontal gyrus predicted this response. Results suggest that SE exerts its fluency-inducing effects by providing a surrogate target for speech production via internal monitoring processes. Clinically, these results add further support for the use of SE to improve speech production and may help select patients for SE treatment. PMID:25989443

  9. Organic Entrainment and Preservation in Volcanic Glasses

    NASA Technical Reports Server (NTRS)

    Wilhelm, Mary Beth; Ojha, Lujendra; Brunner, Anna E.; Dufek, Josef D.; Wray, James Joseph

    2014-01-01

    Unaltered pyroclastic deposits have previously been deemed to have "low" potential for the formation, concentration and preservation of organic material on the Martian surface. Yet volcanic glasses that have solidified very quickly after an eruption may be good candidates for containment and preservation of refractory organic material that existed in a biologic system pre-eruption due to their impermeability and ability to attenuate UV radiation. Analysis using NanoSIMS of volcanic glass could then be performed to both deduce carbon isotope ratios that indicate biologic origin and confirm entrainment during eruption. Terrestrial contamination is one of the biggest barriers to definitive Martian organic identification in soil and rock samples. While there is a greater potential to concentrate organics in sedimentary strata, volcanic glasses may better encapsulate and preserve organics over long time scales, and are widespread on Mars. If volcanic glass from many sites on Earth could be shown to contain biologically derived organics from the original environment, there could be significant implications for the search for biomarkers in ancient Martian environments.

  10. Music and emotions: from enchantment to entrainment.

    PubMed

    Vuilleumier, Patrik; Trost, Wiebke

    2015-03-01

    Producing and perceiving music engage a wide range of sensorimotor, cognitive, and emotional processes. Emotions are a central feature of the enjoyment of music, with a large variety of affective states consistently reported by people while listening to music. However, besides joy or sadness, music often elicits feelings of wonder, nostalgia, or tenderness, which do not correspond to emotion categories typically studied in neuroscience and whose neural substrates remain largely unknown. Here we review the similarities and differences in the neural substrates underlying these "complex" music-evoked emotions relative to other more "basic" emotional experiences. We suggest that these emotions emerge through a combination of activation in emotional and motivational brain systems (e.g., including reward pathways) that confer its valence to music, with activation in several other areas outside emotional systems, including motor, attention, or memory-related regions. We then discuss the neural substrates underlying the entrainment of cognitive and motor processes by music and their relation to affective experience. These effects have important implications for the potential therapeutic use of music in neurological or psychiatric diseases, particularly those associated with motor, attention, or affective disturbances.

  11. Granular motions near the threshold of entrainment

    NASA Astrophysics Data System (ADS)

    Valyrakis, Manousos; Alexakis, athanasios-Theodosios

    2016-04-01

    Our society is continuously impacted by significant weather events many times resulting in catastrophes that interrupt our normal way of life. In the context of climate change and increasing urbanisation these "extreme" hydrologic events are intensified both in magnitude and frequency, inducing costs of the order of billions of pounds. The vast majority of such costs and impacts (even more to developed societies) are due to water related catastrophes such as the geomorphic action of flowing water (including scouring of critical infrastructure, bed and bank destabilisation) and flooding. New tools and radically novel concepts are in need, to enable our society becoming more resilient. This presentation, emphasises the utility of inertial sensors in gaining new insights on the interaction of flow hydrodynamics with the granular surface at the particle scale and for near threshold flow conditions. In particular, new designs of the "smart-sphere" device are discussed with focus on the purpose specific sets of flume experiments, designed to identify the exact response of the particle resting at the bed surface for various below, near and above threshold flow conditions. New sets of measurements are presented for particle entrainment from a Lagrangian viewpoint. Further to finding direct application in addressing real world challenges in the water sector, it is shown that such novel sensor systems can also help the research community (both experimentalists and computational modellers) gain a better insight on the underlying processes governing granular dynamics.

  12. Speech entrainment compensates for Broca's area damage.

    PubMed

    Fridriksson, Julius; Basilakos, Alexandra; Hickok, Gregory; Bonilha, Leonardo; Rorden, Chris

    2015-08-01

    Speech entrainment (SE), the online mimicking of an audiovisual speech model, has been shown to increase speech fluency in patients with Broca's aphasia. However, not all individuals with aphasia benefit from SE. The purpose of this study was to identify patterns of cortical damage that predict a positive response SE's fluency-inducing effects. Forty-four chronic patients with left hemisphere stroke (15 female) were included in this study. Participants completed two tasks: 1) spontaneous speech production, and 2) audiovisual SE. Number of different words per minute was calculated as a speech output measure for each task, with the difference between SE and spontaneous speech conditions yielding a measure of fluency improvement. Voxel-wise lesion-symptom mapping (VLSM) was used to relate the number of different words per minute for spontaneous speech, SE, and SE-related improvement to patterns of brain damage in order to predict lesion locations associated with the fluency-inducing response to SE. Individuals with Broca's aphasia demonstrated a significant increase in different words per minute during SE versus spontaneous speech. A similar pattern of improvement was not seen in patients with other types of aphasia. VLSM analysis revealed damage to the inferior frontal gyrus predicted this response. Results suggest that SE exerts its fluency-inducing effects by providing a surrogate target for speech production via internal monitoring processes. Clinically, these results add further support for the use of SE to improve speech production and may help select patients for SE treatment.

  13. A comparative efficacy study of photic driving brainwave entrainment technology with a novel form of more direct entrainment

    NASA Astrophysics Data System (ADS)

    Knowles, Richard Thomas

    This exploratory study compared the efficacy of a novel brainwave electromagnetic (EM) entrainment technology against a more conventional technology utilizing the photic-driving technique. Both experimental conditions were also compared with a 7-minute control session that took place immediately before each stimulation session. The Schumann Resonance (SR) frequency was selected as the delivery signal and was chosen because of previous findings suggesting that entrainment to this frequency can often produce transpersonal if not paranormal, experiences in the entrainee, which sometimes resemble remote viewing or out-of-body experiences. A pilot study determined which of two novel entrainment modalities (a copper coil or a 16-solenoid headset) worked most effectively for use with the rest of the study. In the main study, an artificial SR signal at 7.8Hz was delivered during the photic-driving sessions, but a recording of the real-time SR was used to deliver the entrainment signal during sessions devoted to the electromagnetic entrainment modality. Sixteen participants were recruited from the local area, and EEG recordings were acquired via a 32-channel Deymed electroencephalography system. Comparative analyses were performed between the control and experimental portions of each session to assess for efficacy of the novel entrainment modality used, and, in the main study, between the electromagnetic and photic-driving sessions, to assess for differential entrainment efficacy between these groups. A follow-up study was additionally performed primarily to determine whether responders could replicate their entrainment effect from the main study. Results showed that EM entrainment appeared to be possible but is not nearly as robust or reliable as photic driving. Additionally, no profound transpersonal or paranormal experiences were elicited during the course of the study, and, when asked, participants were not able to determine with any degree of success, when the

  14. Analysis of the three-dimensional structure of a bubble wake using PIV and Galilean decomposition

    SciTech Connect

    Hassan, Y.A.; Schmidl, W.D.; Ortiz-Villafuerte, J.; Scharf, J.R.

    1999-07-01

    Bubbly flow plays a key role in a variety of natural and industrial processes. An accurate and complete description of the phase interactions in two-phase bubbly flow is not available at this time. These phase interactions are, in general, always three-dimensional and unsteady. Therefore, measurement techniques utilized to obtain qualitative and quantitative data from two-phase flow should be able to acquire transient and three-dimensional data, in order to provide information to test theoretical models and numerical simulations. Even for dilute bubble flows, in which bubble interaction is at a minimum, the turbulent motion of the liquid generated by the bubble is yet to be completely understood. For many years, the design of systems with bubbly flows was based primarily on empiricism. Dilute bubbly flows are an extension of single bubble dynamics, and therefore improvements in the description and modeling of single bubble motion, the flow field around the bubble, and the dynamical interactions between the bubble and the flow will consequently improve bubbly flow modeling. The improved understanding of the physical phenomena will have far-reaching benefits in upgrading the operation and efficiency of current processes and in supporting the development of new and innovative approaches. A stereoscopic particle image velocimetry measurement of the flow generated by the passage of a single air-bubble rising in stagnant water, in a circular pipe is presented. Three-dimensional velocity fields within the measurement zone were obtained. Ensemble-averaged instantaneous velocities for a specific bubble path were calculated and interpolated to obtain mean three-dimensional velocity fields. A Galilean velocity decomposition is used to study the vorticity generated in the flow.

  15. Bubble Generation in a Continuous Liquid Flow Under Reduced Gravity Conditions

    NASA Technical Reports Server (NTRS)

    Pais, Salvatore Cezar

    1999-01-01

    The present work reports a study of bubble generation under reduced gravity conditions for both co-flow and cross-flow configurations. Experiments were performed aboard the DC-9 Reduced Gravity Aircraft at NASA Glenn Research Center, using an air-water system. Three different flow tube diameters were used: 1.27, 1.9, and 2.54 cm. Two different ratios of air injection nozzle to tube diameters were considered: 0.1 and 0.2. Gas and liquid volumetric flow rates were varied from 10 to 200 ml/s. It was experimentally observed that with increasing superficial liquid velocity, the bubbles generated decreased in size. The bubble diameter was shown to increase with increasing air injection nozzle diameters. As the tube diameter was increased, the size of the detached bubbles increased. Likewise, as the superficial liquid velocity was increased, the frequency of bubble formation increased and thus the time to detach forming bubbles decreased. Independent of the flow configuration (for either single nozzle or multiple nozzle gas injection), void fraction and hence flow regime transition can be controlled in a somewhat precise manner by solely varying the gas and liquid volumetric flow rates. On the other hand, it is observed that uniformity of bubble size can be controlled more accurately by using single nozzle gas injection than by using multiple port injection, since this latter system gives rise to unpredictable coalescence of adjacent bubbles. A theoretical model, based on an overall force balance, is employed to study single bubble generation in the dynamic and bubbly flow regime. Under conditions of reduced gravity, the gas momentum flux enhances bubble detachment; however, the surface tension forces at the nozzle tip inhibits bubble detachment. Liquid drag and inertia can act either as attaching or detaching force, depending on the relative velocity of the bubble with respect to the surrounding liquid. Predictions of the theoretical model compare well with performed

  16. Optically actuated thermocapillary movement of gas bubbles on an absorbing substrate.

    PubMed

    Ohta, Aaron T; Jamshidi, Arash; Valley, Justin K; Hsu, Hsan-Yin; Wu, Ming C

    2007-08-14

    The authors demonstrate an optical manipulation mechanism of gas bubbles for microfluidic applications. Air bubbles in a silicone oil medium are manipulated via thermocapillary forces generated by the absorption of a laser in an amorphous silicon thin film. In contrast to previous demonstrations of optically controlled thermally driven bubble movement, transparent liquids can be used, as the thermal gradient is formed from laser absorption in the amorphous silicon substrate, and not in the liquid. A variety of bubbles with volumes ranging from 19 pl to 23 nl was transported at measured velocities of up to 1.5 mm/s.

  17. Bubble in a corner flow

    NASA Technical Reports Server (NTRS)

    Vanden-Broeck, J. M.

    1982-01-01

    The distortion of a two-dimensional bubble (or drop) in a corner of angle delta, due to the flow of an inviscid incompressible fluid around it, is examined theoretically. The flow and the bubble shape are determined as functions of the angle delta, the contact angle beta and the cavitation number gamma. The problem is formulated as an integrodifferential equation for the bubble surface. This equation generalized the integrodifferential equations derived by Vanden-Broeck and Keller. The shape of the bubble is found approximately by using the slender body theory for bubbles. When gamma reaches a critical value gamma sub 0 (beta, delta), opposite sides of the bubble touch each other. Two different families of solution for gamma gamma sub 0 are obtained. In the first family opposite sides touch at one point. In the second family contact is allowed along a segment.

  18. Stable Multibubble Sonoluminescence Bubble Patterns

    SciTech Connect

    Posakony, Gerald J.; Greenwood, Lawrence R.; Ahmed, Salahuddin

    2006-06-30

    Multibubble standing wave patterns can be generated from a flat piezoceramic transducer element propagating into water. By adding a second transducer positioned at 90 degrees from the transducer generating the standing wave, a 3-dimensional volume of stable single bubbles can be established. Further, the addition of the second transducer stabilizes the bubble pattern so that individual bubbles may be studied. The size of the bubbles and the separation of the standing waves depend on the frequency of operation. Two transducers, operating at frequencies above 500 kHz, provided the most graphic results for the configuration used in this study. At these frequencies stable bubbles exhibit a bright sonoluminescence pattern. Whereas stable SBSL is well-known, stable MBSL has not been previously reported. This paper includes discussions of the acoustic responses, standing wave patterns, and pictorial results of the separation of individual bubble of sonoluminescence in a multibubble sonoluminescence environment.

  19. How coupling determines the entrainment of circadian clocks

    NASA Astrophysics Data System (ADS)

    Bordyugov, G.; Granada, A. E.; Herzel, H.

    2011-08-01

    Autonomous circadian clocks drive daily rhythms in physiology and behaviour. A network of coupled neurons, the suprachiasmatic nucleus (SCN), serves as a robust self-sustained circadian pacemaker. Synchronization of this timer to the environmental light-dark cycle is crucial for an organism's fitness. In a recent theoretical and experimental study it was shown that coupling governs the entrainment range of circadian clocks. We apply the theory of coupled oscillators to analyse how diffusive and mean-field coupling affects the entrainment range of interacting cells. Mean-field coupling leads to amplitude expansion of weak oscillators and, as a result, reduces the entrainment range. We also show that coupling determines the rigidity of the synchronized SCN network, i.e. the relaxation rates upon perturbation. Our simulations and analytical calculations using generic oscillator models help to elucidate how coupling determines the entrainment of the SCN. Our theoretical framework helps to interpret experimental data.

  20. Estimating rates of debris flow entrainment from ground vibrations

    NASA Astrophysics Data System (ADS)

    Kean, J. W.; Coe, J. A.; Coviello, V.; Smith, J. B.; McCoy, S. W.; Arattano, M.

    2015-08-01

    Debris flows generate seismic waves as they travel downslope and can become more dangerous as they entrain sediment along their path. We present field observations that show a systematic relation between the magnitude of seismic waves and the amount of erodible sediment beneath the flow. Specifically, we observe that a debris flow traveling along a channel filled initially with sediment 0.34 m thick generates about 2 orders of magnitude less spectral power than a similar-sized flow over the same channel without sediment fill. We adapt a model from fluvial seismology to explain this observation and then invert it to estimate the level of bed sediment (and rate of entrainment) beneath a passing series of surges. Our estimates compare favorably with previous direct measurements of entrainment rates at the site, suggesting the approach may be a new indirect way to obtain rare field constraints needed to test models of debris flow entrainment.