Science.gov

Sample records for air chemistry model

  1. Modeling Feedbacks between Biogenic Emissions and Air Chemistry from Site to Globe

    NASA Astrophysics Data System (ADS)

    Butler, T. M.; Grote, R.

    2014-12-01

    We present the implementation of a new model describing light dependent emission of volatile organic compounds (BVOC) that derives isoprenoid production directly from the electron transport potential and consumption from photosynthesis. Photosynthesis information requirements are designed to be met by many recent land-surface models that apply the Farquhar assimilation scheme, e.g. JULES or CLM. The new approach has the advantages that 1) the commonly observed decrease of (isoprene) emission with increasing CO2 air concentration is considered by the competition on energy between photosynthesis and emission processes, and 2) air pollution impacts may be considered as inducing emissions by activating emission enzymes as well as decreasing substrate supply from photosynthesis, and 3) many environmental drivers of BVOC emissions are implicitly considered in the description of plant photosynthesis and phenology, reducing the demand for species-specific emission parameters. We investigate the parameter sensitivity of the suggested model as well as the sensitivity of emissions to a range of environmental conditions with a particular focus on CO2 responses. We present evaluation at the site level and compare the model with other approaches. Finally, we demonstrate the implementation into a coupled global-air chemistry model and discuss the requirements to appropriately parameterize plant functional types.

  2. Seamless Meteorology-Chemistry Modelling: Status and Relevance for Numerical Weather Prediction, Air Quality and Climate Research

    NASA Astrophysics Data System (ADS)

    Baklanov, Alexander; EuMetChem Team

    2015-04-01

    Online coupled meteorology atmospheric chemistry models have undergone a rapid evolution in recent years. Although mainly developed by the air quality modelling community, these models are also of interest for numerical weather prediction and climate modelling as they can consider not only the effects of meteorology on air quality, but also the potentially important effects of atmospheric composition on weather. Two ways of online coupling can be distinguished: online integrated and online access coupling. Online integrated models simulate meteorology and chemistry over the same grid in one model using one main timestep for integration. Online access models use independent meteorology and chemistry modules that might even have different grids, but exchange meteorology and chemistry data on a regular and frequent basis. This paper is an overall outcome of the European COST Action ES1004: European Framework for Online Integrated Air Quality and Meteorology Modelling (EuMetChem) and conclusions from the recently organized Symposium on Coupled Chemistry-Meteorology/Climate Modelling: Status and Relevance for Numerical Weather Prediction, Air Quality and Climate Research. It offers a review of the current research status of online coupled meteorology and atmospheric chemistry modelling, a survey of processes relevant to the interactions between atmospheric physics, dynamics and composition; and highlights selected scientific issues and emerging challenges that require proper consideration to improve the reliability and usability of these models for the three scientific communities: air quality, numerical meteorology modelling (including weather prediction) and climate modelling. It presents a synthesis of scientific progress and provides recommendations for future research directions and priorities in the development, application and evaluation of online coupled models.

  3. Air traffic simulation in chemistry-climate model EMAC 2.41: AirTraf 1.0

    NASA Astrophysics Data System (ADS)

    Yamashita, Hiroshi; Grewe, Volker; Jöckel, Patrick; Linke, Florian; Schaefer, Martin; Sasaki, Daisuke

    2016-09-01

    Mobility is becoming more and more important to society and hence air transportation is expected to grow further over the next decades. Reducing anthropogenic climate impact from aviation emissions and building a climate-friendly air transportation system are required for a sustainable development of commercial aviation. A climate optimized routing, which avoids climate-sensitive regions by re-routing horizontally and vertically, is an important measure for climate impact reduction. The idea includes a number of different routing strategies (routing options) and shows a great potential for the reduction. To evaluate this, the impact of not only CO2 but also non-CO2 emissions must be considered. CO2 is a long-lived gas, while non-CO2 emissions are short-lived and are inhomogeneously distributed. This study introduces AirTraf (version 1.0) that performs global air traffic simulations, including effects of local weather conditions on the emissions. AirTraf was developed as a new submodel of the ECHAM5/MESSy Atmospheric Chemistry (EMAC) model. Air traffic information comprises Eurocontrol's Base of Aircraft Data (BADA Revision 3.9) and International Civil Aviation Organization (ICAO) engine performance data. Fuel use and emissions are calculated by the total energy model based on the BADA methodology and Deutsches Zentrum für Luft- und Raumfahrt (DLR) fuel flow method. The flight trajectory optimization is performed by a genetic algorithm (GA) with respect to a selected routing option. In the model development phase, benchmark tests were performed for the great circle and flight time routing options. The first test showed that the great circle calculations were accurate to -0.004 %, compared to those calculated by the Movable Type script. The second test showed that the optimal solution found by the algorithm sufficiently converged to the theoretical true-optimal solution. The difference in flight time between the two solutions is less than 0.01 %. The dependence of

  4. Comparing three vegetation monoterpene emission models to measured gas concentrations with a model of meteorology, air chemistry and chemical transport

    NASA Astrophysics Data System (ADS)

    Smolander, S.; He, Q.; Mogensen, D.; Zhou, L.; Bäck, J.; Ruuskanen, T.; Noe, S.; Guenther, A.; Aaltonen, H.; Kulmala, M.; Boy, M.

    2013-11-01

    Biogenic volatile organic compounds (BVOCs) are essential in atmospheric chemistry because of their chemical reactions that produce and destroy tropospheric ozone, their effects on aerosol formation and growth, and their potential influence on global warming. As one of the important BVOC groups, monoterpenes have been a focus of scientific attention in atmospheric research. Detailed regional measurements and model estimates are needed to study emission potential and the monoterpene budget on a global scale. Since the use of empirical measurements for upscaling is limited by many physical and biological factors such as genetic variation, temperature and light, water availability, seasonal changes, and environmental stresses, comprehensive inventories over larger areas are difficult to obtain. We applied the boundary layer-chemistry-transport model SOSA to investigate Scots pine (Pinus sylvestris) monoterpene emissions in a boreal coniferous forest at the SMEAR II site, Southern Finland. SOSA was applied to simulate monoterpene emissions with three different emission modules: the semi-empirical G95, MEGAN 2.04 with improved descriptions of temperature and light responses and including also carbonyl emissions, and a process-based model SIM-BIM. For the first time, the emission models included seasonal and diurnal variations in both quantity and chemical species of emitted monoterpenes, based on parameterizations obtained from field measurements. Results indicate that modelling and observations agreed reasonably well, and that the model can be used for investigating regional air chemistry questions related to monoterpenes. The predominant modelled monoterpene concentrations, α-pinene and Δ3-carene, are consistent with observations.

  5. Atmospheric Chemistry and Air Pollution

    DOE PAGES

    Gaffney, Jeffrey S.; Marley, Nancy A.

    2003-01-01

    Atmospheric chemistry is an important discipline for understanding air pollution and its impacts. This mini-review gives a brief history of air pollution and presents an overview of some of the basic photochemistry involved in the production of ozone and other oxidants in the atmosphere. Urban air quality issues are reviewed with a specific focus on ozone and other oxidants, primary and secondary aerosols, alternative fuels, and the potential for chlorine releases to amplify oxidant chemistry in industrial areas. Regional air pollution issues such as acid rain, long-range transport of aerosols and visibility loss, and the connections of aerosols to ozonemore » and peroxyacetyl nitrate chemistry are examined. Finally, the potential impacts of air pollutants on the global-scale radiative balances of gases and aerosols are discussed briefly.« less

  6. Atmospheric chemistry and air pollution.

    PubMed

    Gaffney, Jeffrey S; Marley, Nancy A

    2003-04-07

    Atmospheric chemistry is an important discipline for understanding air pollution and its impacts. This mini-review gives a brief history of air pollution and presents an overview of some of the basic photochemistry involved in the production of ozone and other oxidants in the atmosphere. Urban air quality issues are reviewed with a specific focus on ozone and other oxidants, primary and secondary aerosols, alternative fuels, and the potential for chlorine releases to amplify oxidant chemistry in industrial areas. Regional air pollution issues such as acid rain, long-range transport of aerosols and visibility loss, and the connections of aerosols to ozone and peroxyacetyl nitrate chemistry are examined. Finally, the potential impacts of air pollutants on the global-scale radiative balances of gases and aerosols are discussed briefly.

  7. Comparing three vegetation monoterpene emission models to measured gas concentrations with a model of meteorology, air chemistry and chemical transport

    NASA Astrophysics Data System (ADS)

    Smolander, S.; He, Q.; Mogensen, D.; Zhou, L.; Bäck, J.; Ruuskanen, T.; Noe, S.; Guenther, A.; Aaltonen, H.; Kulmala, M.; Boy, M.

    2014-10-01

    Biogenic volatile organic compounds (BVOCs) are essential in atmospheric chemistry because of their chemical reactions that produce and destroy tropospheric ozone, their effects on aerosol formation and growth, and their potential influence on global warming. As one of the important BVOC groups, monoterpenes have been a focus of scientific attention in atmospheric research. Detailed regional measurements and model estimates are needed to study emission potential and the monoterpene budget on a global scale. Since the use of empirical measurements for upscaling is limited by many physical and biological factors, such as genetic variation, temperature and light, water availability, seasonal changes, and environmental stresses, comprehensive inventories over larger areas are difficult to obtain. We applied the boundary-layer-chemistry-transport model SOSA (model to Simulate the concentrations of Organic vapours and Sulphuric Acid) to investigate Scots pine (Pinus sylvestris) monoterpene emissions in a boreal coniferous forest at the SMEAR (Station for Measuring forest Ecosystem-Atmosphere Relations) II site, southern Finland. SOSA was applied to simulate monoterpene emissions with three different emission modules: the semiempirical G95, MEGAN (Model of Emissions of Gases and Aerosols from Nature) 2.04 with improved descriptions of temperature and light responses and including also carbonyl emissions, and a process-based model SIM-BIM (Seasonal Isoprenoid synthase Model - Biochemical Isoprenoid biosynthesis Model). For the first time, the emission models included seasonal and diurnal variations in both quantity and chemical species of emitted monoterpenes, based on parameterizations obtained from field measurements. Results indicate that modelling and observations agreed reasonably well and that the model can be used for investigating regional air chemistry questions related to monoterpenes. The predominant modelled monoterpene concentrations, α-pinene and Δ3-carene

  8. Improving the Representation of Near Source and Downwind Smoke Plume Chemistry in Regional and Global Air Quality Models

    NASA Astrophysics Data System (ADS)

    Alvarado, M. J.; Lonsdale, C. R.; Yokelson, R. J.; Travis, K.; Lin, J. C.; McNeill, V. F.; Blake, D. R.; Griffith, D. W. T.; Johnson, T. J.; Kreidenweis, S. M.; Lee, T.; May, A.; McMeeking, G. R.; Meinardi, S.; Simpson, I. J.; Sullivan, A.; Urbanski, S. P.; Weise, D.

    2015-12-01

    The complex photochemistry within a biomass burning smoke plume can cause large changes in the concentration, size distribution, composition, and optical properties of the fine particles (PM2.5) emitted by the fires, as well as significant formation of ozone (O3) and organic nitrate species like peroxyacetyl nitrate (PAN). The Aerosol Simulation Program (ASP) is designed to simulate this chemical evolution of biomass burning plumes under a wide variety of conditions, and can be used to parameterize this chemistry in regional and global air quality models. Here we present ASP simulations of the evolution of biomass burning aerosol from South Carolina prescribed fires in October and November of 2011. This data set contains more detailed measurements of the non-methane organic compounds (NMOCs) in the smoke than the data sets previously used to develop and test ASP, allowing for a more detailed evaluation of the model's gas- and particle-phase chemistry. We also assess the potential impact of secondary organic aerosol (SOA) from glyoxal and isoprene epoxydiols (IEPOX) on the growth of biomass burning aerosols by incorporating the simpleGAMMA (Gas-Aerosol Model for Mechanism Analysis) model into ASP. Finally, we will discuss our efforts to use the ASP model to build a sub-grid scale parameterization of the near-source chemistry of biomass burning plumes for use in regional and global air quality models, using examples from the global chemical transport model GEOS-Chem and the stochastic Lagrangian air quality model STILT-Chem.

  9. High-Fidelity Real Gas Model for RF Excited Plasma Flow Control - A Three Dimensional Analysis With Air Chemistry

    DTIC Science & Technology

    2008-05-31

    code for mitigating inert gas flow separation using rf-driven dielectric barrier discharge. In this effort we: (l) develop multi-dimensional first...such detailed plasma kinetics based effort has not been reported before. During the development of this project we have worked in close collaboration... develop multi-dimensional first principles based N2/GŖair chemistry models for the non-equilibrium real gas discharge, and (2) implement it in a finite

  10. Turbine Chemistry Modeling

    NASA Technical Reports Server (NTRS)

    Liu, Nan-Suey; Wey, Thomas

    2001-01-01

    Many of the engine exhaust species resulting in significant environmental impact exist in trace amounts. Recent research, e.g., conducted at MIT-AM, has pointed to the intra-engine environment as a possible site for important trace chemistry activity. In addition, the key processes affecting the trace species activity occurring downstream in the air passages of the turbine and exhaust nozzle are not well understood. Most recently, an effort has been initiated at NASA Glenn Research Center under the UEET Program to evaluate and further develop CFD-based technology for modeling and simulation of intra-engine trace chemical changes relevant to atmospheric effects of pollutant emissions from aircraft engines. This presentation will describe the current effort conducted at Glenn; some preliminary results relevant to the trace species chemistry in a turbine passage will also be presented to indicate the progress to date.

  11. Complex Coupling of Air Quality and Climate-Relevant Aerosols in a Chemistry-Aerosol Microphysics Model

    NASA Astrophysics Data System (ADS)

    Yoshioka, M.; Carslaw, K. S.; Reddington, C.; Mann, G.

    2013-12-01

    Controlling emissions of aerosols and their precursors to improve air quality will impact the climate through direct and indirect radiative forcing. We have investigated the impacts of changes in a range of aerosol and gas-phase emission fluxes and changes in temperature on air quality and climate change metrics using a global aerosol microphysics and chemistry model, GLOMAP. We investigate how the responses of PM2.5 and cloud condensation nuclei (CCN) are coupled, and how attempts to improve air quality could have inadvertent effects on CCN, clouds and climate. The parameter perturbations considered are a 5°C increase in global temperature, increased or decreased precursor emissions of anthropogenic SO2, NH3, and NOx, and biogenic monoterpenes, and increased or decreased primary emissions of organic and black carbon aerosols from wildfire, fossil fuel, and biofuel. To quantify the interactions, we define a new sensitivity metric in terms of the response of CCN divided by the response of PM in different regions. .Our results show that the coupled chemistry and aerosol processes cause complex responses that will make any co-benefit policy decision problematic. In particular, we show that reducing SO2 emissions effectively reduces surface-level PM2.5 over continental regions in summer when background PM2.5 is high, with a relatively small reduction in marine CCN (and hence indirect radiative cooling over ocean), which is beneficial for near-term climate. Reducing NOx emissions does not improve summertime air quality very effectively but leads to a relatively high reduction of marine CCN. Reducing NH3 emissions has moderate effects on both PM2.5 and CCN. These three species are strongly coupled chemically and microphysically and the effects of changing emissions of one species on mass and size distributions of aerosols are very complex and spatially and temporally variable. For example, reducing SO2 emissions leads to reductions in sulphate and ammonium mass

  12. New framework for extending cloud chemistry in the Community Multiscale Air Quality (CMAQ) modeling

    EPA Science Inventory

    Clouds and fogs significantly impact the amount, composition, and spatial distribution of gas and particulate atmospheric species, not least of which through the chemistry that occurs in cloud droplets. Atmospheric sulfate is an important component of fine aerosol mass and in an...

  13. Calculating Air Quality and Climate Co-Benefits Metrics from Adjoint Elasticities in Chemistry-Climate Models

    NASA Astrophysics Data System (ADS)

    Spak, S.; Henze, D. K.; Carmichael, G. R.

    2013-12-01

    The science and policy communities both need common metrics that clearly, comprehensively, and intuitively communicate the relative sensitivities of air quality and climate to emissions control strategies, include emissions and process uncertainties, and minimize the range of error that is transferred to the metric. This is particularly important because most emissions control policies impact multiple short-lived climate forcing agents, and non-linear climate and health responses in space and time limit the accuracy and policy value of simple emissions-based calculations. Here we describe and apply new second-order elasticity metrics to support the direct comparison of emissions control policies for air quality and health co-benefits analyses using adjoint chemical transport and chemistry-climate models. Borrowing an econometric concept, the simplest elasticities in the atmospheric system are the percentage changes in concentrations due to a percentage change in the emissions. We propose a second-order elasticity metric, the Emissions Reduction Efficiency, which supports comparison across compounds, to long-lived climate forcing agents like CO2, and to other air quality impacts, at any temporal or spatial scale. These adjoint-based metrics (1) possess a single uncertainty range; (2) allow for the inclusion of related health and other impacts effects within the same framework; (3) take advantage of adjoint and forward sensitivity models; and (4) are easily understood. Using global simulations with the adjoint of GEOS-Chem, we apply these metrics to identify spatial and sectoral variability in the climate and health co-benefits of sectoral emissions controls on black carbon, sulfur dioxide, and PM2.5. We find spatial gradients in optimal control strategies on every continent, along with differences among megacities.

  14. Comparing three vegetation monoterpene emission models to measured gas concentrations with a model of meteorology, air chemistry and chemical transport

    SciTech Connect

    Smolander, S.; He, Q.; Mogensen, Ditte; Zhou, L.; Back, J.; Ruuskanen, T.; Noe, S.; Guenther, Alex B.; Aaltonen, H.; Kulmala, M.; Boy, Michael

    2014-10-07

    Biogenic volatile organic compounds (BVOCs) are essential in atmospheric chemistry because of their chemical reactions that produce and destroy tropospheric ozone, their effects on aerosol formation and growth, and their potential influence on global warming. As one of the important BVOC groups, monoterpenes have been a focus of scientific attention in atmospheric research. Detailed regional measurements and model estimates are needed to study emission potential and the monoterpene budget on a global scale. Since the use of empirical measurements for upscaling is limited by many physical and biological factors such as genetic variation, temperature and light, water availability, seasonal changes, and environmental stresses, comprehensive inventories over larger areas are difficult to obtain.

  15. Radially and temporally resolved electric field of positive streamers in air and modelling of the induced plasma chemistry

    NASA Astrophysics Data System (ADS)

    Hoder, T.; Šimek, M.; Bonaventura, Z.; Prukner, V.; Gordillo-Vázquez, F. J.

    2016-08-01

    The initial stages of transient luminous events (TLEs) occurring in the upper atmosphere of the Earth are, in a certain pressure range, controlled by the streamer mechanism. This paper presents the results of the first laboratory experiments to study the TLE streamer phenomena under conditions close to those of the upper atmosphere. Spectrally and highly spatiotemporally resolved emissions originating from radiative states {{\\text{N}}2}≤ft({{\\text{C}}3}{{\\Pi}u}\\right) (second positive system) and \\text{N}2+≤ft({{\\text{B}}2}Σu+\\right) (first negative system) have been recorded from the positive streamer discharge. Periodic ionizing events were generated in a barrier discharge arrangement at a pressure of 4 torr of synthetic air, i.e. simulating the pressure conditions at altitudes of ≃37 km. Employing Abel inversion on the radially scanned streamer emission and a 2D fitting procedure, access was obtained to the local spectral signatures within the over 106  m s-1 fast propagating streamers. The reduced electric field strength distribution within the streamer head was determined from the ratio of the \\text{N}2+/{{\\text{N}}2} band intensities with peak values up to 500 Td and overall duration of about 10 ns. The 2D profiles of the streamer head electric fields were used as an experimentally obtained input for kinetic simulations of the streamer-induced air plasma chemistry. The radial and temporal computed distribution of the ground vibrational levels of the radiative states involved in the radiative transitions analyzed (337.1 nm and 391.5 nm), atomic oxygen, nitrogen, nitric oxide and ozone concentrations are vizualized and discussed in comparison with available models of the streamer phase of Blue Jet discharges in the stratosphere.

  16. Assessment of high-enthalpy air chemistry models for hypervelocity ground-based experiments

    NASA Astrophysics Data System (ADS)

    Kulakhmetov, Marat; Bondar, Yevgeniy A.; Ivanov, Mikhail S.; Alexeenko, Alina A.

    2012-11-01

    Hypersonic vehicles re-entering Earth's atmosphere with orbital velocities generate gas flows with significant thermo-chemical non-equilibrium. Detailed kinetics of chemical reactions at such conditions is still not well understood but it may affect vehicle's thermal loads, aerodynamic moments and thermal radiation. This work assesses the Total Collision Energy (TCE) and the Kuznetsov-based state specific (KSS) chemical reaction models at pressures between 1 and 50 torr and velocities between 4 and 10 km/s in order to identify best test conditions for validating the models. Hypersonic flows at such conditions can be studied at the hypervelocity impact range facilities.

  17. An Introduction to Air Chemistry.

    ERIC Educational Resources Information Center

    Butcher, Samuel S.; Charlson, Robert J.

    Designed for those with no previous experience in the field, this book synthesizes the areas of chemistry and meteorology required to bring into focus some of the complex problems associated with the atmospheric environment. Subject matter moves from a review of the relevant chemical and meteorological principles to a discussion of the general…

  18. On-line Chemistry within WRF: Description and Evaluation of a State-of-the-Art Multiscale Air Quality and Weather Prediction Model

    SciTech Connect

    Grell, Georg; Fast, Jerome D.; Gustafson, William I.; Peckham, Steven E.; McKeen, Stuart A.; Salzmann, Marc; Freitas, Saulo

    2010-01-01

    This is a conference proceeding that is now being put together as a book. This is chapter 2 of the book: "INTEGRATED SYSTEMS OF MESO-METEOROLOGICAL AND CHEMICAL TRANSPORT MODELS" published by Springer. The chapter title is "On-line Chemistry within WRF: Description and Evaluation of a State-of-the-Art Multiscale Air Quality and Weather Prediction Model." The original conference was the COST-728/NetFAM workshop on Integrated systems of meso-meteorological and chemical transport models, Danish Meteorological Institute, Copenhagen, May 21-23, 2007.

  19. Quantification of air plasma chemistry for surface disinfection

    NASA Astrophysics Data System (ADS)

    Pavlovich, Matthew J.; Clark, Douglas S.; Graves, David B.

    2014-12-01

    Atmospheric-pressure air plasmas, created by a variety of discharges, are promising sources of reactive species for the emerging field of plasma biotechnology because of their convenience and ability to operate at ambient conditions. One biological application of ambient-air plasma is microbial disinfection, and the ability of air plasmas to decontaminate both solid surfaces and liquid volumes has been thoroughly established in the literature. However, the mechanism of disinfection and which reactive species most strongly correlate with antimicrobial effects are still not well understood. We describe quantitative gas-phase measurements of plasma chemistry via infrared spectroscopy in confined volumes, focusing on air plasma generated via surface micro-discharge (SMD). Previously, it has been shown that gaseous chemistry is highly sensitive to operating conditions, and the measurements we describe here extend those findings. We quantify the gaseous concentrations of ozone (O3) and nitrogen oxides (NO and NO2, or NOx) throughout the established ‘regimes’ for SMD air plasma chemistry: the low-power, ozone-dominated mode; the high-power, nitrogen oxides-dominated mode; and the intermediate, unstable transition region. The results presented here are in good agreement with previously published experimental studies of aqueous chemistry and parameterized models of gaseous chemistry. The principal finding of the present study is the correlation of bacterial inactivation on dry surfaces with gaseous chemistry across these time and power regimes. Bacterial decontamination is most effective in ‘NOx mode’ and less effective in ‘ozone mode’, with the weakest antibacterial effects in the transition region. Our results underscore the dynamic nature of air plasma chemistry and the importance of careful chemical characterization of plasma devices intended for biological applications.

  20. Model development of dust emission and heterogeneous chemistry within the Community Multiscale Air Quality modeling system and its application over East Asia

    NASA Astrophysics Data System (ADS)

    Dong, Xinyi; Fu, Joshua S.; Huang, Kan; Tong, Daniel; Zhuang, Guoshun

    2016-07-01

    The Community Multiscale Air Quality (CMAQ) model has been further developed in terms of simulating natural wind-blown dust in this study, with a series of modifications aimed at improving the model's capability to predict the emission, transport, and chemical reactions of dust. The default parameterization of initial threshold friction velocity constants are revised to correct the double counting of the impact of soil moisture in CMAQ by the reanalysis of field experiment data; source-dependent speciation profiles for dust emission are derived based on local measurements for the Gobi and Taklamakan deserts in East Asia; and dust heterogeneous chemistry is also implemented. The improved dust module in the CMAQ is applied over East Asia for March and April from 2006 to 2010. The model evaluation result shows that the simulation bias of PM10 and aerosol optical depth (AOD) is reduced, respectively, from -55.42 and -31.97 % by the original CMAQ to -16.05 and -22.1 % by the revised CMAQ. Comparison with observations at the nearby Gobi stations of Duolun and Yulin indicates that applying a source-dependent profile helps reduce simulation bias for trace metals. Implementing heterogeneous chemistry also results in better agreement with observations for sulfur dioxide (SO2), sulfate (SO42-), nitric acid (HNO3), nitrous oxides (NOx), and nitrate (NO3-). The investigation of a severe dust storm episode from 19 to 21 March 2010 suggests that the revised CMAQ is capable of capturing the spatial distribution and temporal variation of dust. The model evaluation also indicates potential uncertainty within the excessive soil moisture used by meteorological simulation. The mass contribution of fine-mode particles in dust emission may be underestimated by 50 %. The revised CMAQ model provides a useful tool for future studies to investigate the emission, transport, and impact of wind-blown dust over East Asia and elsewhere.

  1. Model development of dust emission and heterogeneous chemistry within the Community Multiscale Air Quality modeling system and its application over East Asia

    NASA Astrophysics Data System (ADS)

    Dong, X.; Fu, J. S.; Huang, K.; Tong, D.

    2015-12-01

    The Community Multiscale Air Quality (CMAQ) model has been further developed in terms of simulating natural wind-blown dust in this study, with a series of modifications aimed at improving the model's capability to predict the emission, transport, and chemical reactions of dust aerosols. The default parameterization of threshold friction velocity constants in the CMAQ are revised to avoid double counting of the impact of soil moisture based on the re-analysis of field experiment data; source-dependent speciation profiles for dust emission are derived based on local measurements for the Gobi and Taklamakan deserts in East Asia; and dust heterogeneous chemistry is implemented to simulate the reactions involving dust aerosol. The improved dust module in the CMAQ was applied over East Asia for March and April from 2006 to 2010. Evaluation against observations has demonstrated that simulation bias of PM10 and aerosol optical depth (AOD) is reduced from -55.42 and -31.97 % in the original CMAQ to -16.05 and -22.1 % in the revised CMAQ, respectively. Comparison with observations at the nearby Gobi stations of Duolun and Yulin indicates that applying a source-dependent profile helps reduce simulation bias for trace metals. Implementing heterogeneous chemistry is also found to result in better agreement with observations for sulfur dioxide (SO2), sulfate (SO42-), nitric acid (HNO3), nitrous oxides (NOx), and nitrate (NO3-). Investigation of a severe dust storm episode from 19 to 21 March 2010 suggests that the revised CMAQ is capable of capturing the spatial distribution and temporal variations of dust aerosols. Model evaluation indicates potential uncertainties within the excessive soil moisture fraction used by meteorological simulation. The mass contribution of fine mode aerosol in dust emission may be underestimated by 50 %. The revised revised CMAQ provides a useful tool for future studies to investigate the emission, transport, and impact of wind-blown dust over East

  2. TESTING PHYSICS AND CHEMISTRY SENSITIVITIES IN THE U.S. EPA COMMUNITY MULTISCALE AIR QUALITY MODELING SYSTEM (CMAQ)

    EPA Science Inventory

    Uncertainties in key elements of emissions and meteorology inputs to air quality models (AQMs) can range from 50 to 100% with some areas of emissions uncertainty even higher (Russell and Dennis, 2000). Uncertainties in the chemical mechanisms are thought to be smaller (Russell an...

  3. Advanced Chemistry Basins Model

    SciTech Connect

    William Goddard; Mario Blanco; Lawrence Cathles; Paul Manhardt; Peter Meulbroek; Yongchun Tang

    2002-11-10

    The DOE-funded Advanced Chemistry Basin model project is intended to develop a public domain, user-friendly basin modeling software under PC or low end workstation environment that predicts hydrocarbon generation, expulsion, migration and chemistry. The main features of the software are that it will: (1) afford users the most flexible way to choose or enter kinetic parameters for different maturity indicators; (2) afford users the most flexible way to choose or enter compositional kinetic parameters to predict hydrocarbon composition (e.g., gas/oil ratio (GOR), wax content, API gravity, etc.) at different kerogen maturities; (3) calculate the chemistry, fluxes and physical properties of all hydrocarbon phases (gas, liquid and solid) along the primary and secondary migration pathways of the basin and predict the location and intensity of phase fractionation, mixing, gas washing, etc.; and (4) predict the location and intensity of de-asphaltene processes. The project has be operative for 36 months, and is on schedule for a successful completion at the end of FY 2003.

  4. Use of North American and European Air Quality Networks to Evaluate Global Chemistry-Climate Modeling of Surface Ozone

    NASA Technical Reports Server (NTRS)

    Schnell, J. L.; Prather, M. J.; Josse, B.; Naik, V.; Horowitz, L. W.; Cameron-Smith, P.; Bergmann, D.; Zeng, G.; Plummer, D. A.; Sudo, K.; Nagashima, T.; Shindell, D. T.; Faluvegi, G.; Strode, S. A.

    2015-01-01

    We test the current generation of global chemistry-climate models in their ability to simulate observed, present-day surface ozone. Models are evaluated against hourly surface ozone from 4217 stations in North America and Europe that are averaged over 1 degree by 1 degree grid cells, allowing commensurate model-measurement comparison. Models are generally biased high during all hours of the day and in all regions. Most models simulate the shape of regional summertime diurnal and annual cycles well, correctly matching the timing of hourly (approximately 15:00 local time (LT)) and monthly (mid-June) peak surface ozone abundance. The amplitude of these cycles is less successfully matched. The observed summertime diurnal range (25 ppb) is underestimated in all regions by about 7 parts per billion, and the observed seasonal range (approximately 21 parts per billion) is underestimated by about 5 parts per billion except in the most polluted regions, where it is overestimated by about 5 parts per billion. The models generally match the pattern of the observed summertime ozone enhancement, but they overestimate its magnitude in most regions. Most models capture the observed distribution of extreme episode sizes, correctly showing that about 80 percent of individual extreme events occur in large-scale, multi-day episodes of more than 100 grid cells. The models also match the observed linear relationship between episode size and a measure of episode intensity, which shows increases in ozone abundance by up to 6 parts per billion for larger-sized episodes. We conclude that the skill of the models evaluated here provides confidence in their projections of future surface ozone.

  5. Evaluating the CALIOPE air quality modelling system: dynamics and chemistry over Europe and Iberian Peninsula for 2004 at high horizontal resolution

    NASA Astrophysics Data System (ADS)

    Piot, M.; Pay, M. T.; Jorba, O.; Baldasano, J. M.; Jiménez-Guerrero, P.; López, E.; Pérez, C.; Gassó, S.

    2009-04-01

    Often in Europe, population exposure to air pollution exceeds standards set by the EU and the World Health Organization (WHO). Urban/suburban areas are predominantly impacted upon, although exceedances of particulate matter (PM10 and PM2.5) and Ozone (O3) also take place in rural areas. In the frame of the CALIOPE project (Baldasano et al., 2008a), a high-resolution air quality forecasting system, WRF-ARW/HERMES/CMAQ/DREAM, has been developed and applied to the European domain (12km x 12km, 1hr) as well as to the Iberian Peninsula domain (4km x 4km, 1hr) to provide air quality forecasts for Spain (http://www.bsc.es/caliope/). The simulation of such high-resolution model system has been made possible by its implementation on the MareNostrum supercomputer. To reassure potential users and reduce uncertainties, the model system must be evaluated to assess its performances in terms of air quality levels and dynamics reproducibility. The present contribution describes a thorough quantitative evaluation study performed for a reference year (2004). The CALIOPE modelling system is configured with 38 vertical layers reaching up to 50 hPa for the meteorological core. Atmospheric initial and boundary conditions are obtained from the NCEP final analysis data. The vertical resolution of the CMAQ chemistry-transport model for gas-phase and aerosols has been increased from 8 to 15 layers in order to simulate vertical exchanges more accurately. Gas phase boundary conditions are provided by the LMDz-INCA2 global climate-chemistry model (see Hauglustaine et al., 2004). The DREAM model simulates long-range transport of mineral dust over the domains under study. For the European simulation, emissions are disaggregated from the EMEP expert emission inventory for 2004 to the utilized resolution using the criteria implemented in the HERMES emission model (Baldasano et al., 2008b). The HERMES model system, using a bottom-up approach, was adopted to estimate emissions for the Iberian

  6. Comprehensive evaluation of multi-year real-time air quality forecasting using an online-coupled meteorology-chemistry model over southeastern United States

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Hong, Chaopeng; Yahya, Khairunnisa; Li, Qi; Zhang, Qiang; He, Kebin

    2016-08-01

    An online-coupled meteorology-chemistry model, WRF/Chem-MADRID, has been deployed for real time air quality forecast (RT-AQF) in southeastern U.S. since 2009. A comprehensive evaluation of multi-year RT-AQF shows overall good performance for temperature and relative humidity at 2-m (T2, RH2), downward surface shortwave radiation (SWDOWN) and longwave radiation (LWDOWN), and cloud fraction (CF), ozone (O3) and fine particles (PM2.5) at surface, tropospheric ozone residuals (TOR) in O3 seasons (May-September), and column NO2 in winters (December-February). Moderate-to-large biases exist in wind speed at 10-m (WS10), precipitation (Precip), cloud optical depth (COT), ammonium (NH4+), sulfate (SO42-), and nitrate (NO3-) from the IMPROVE and SEARCH networks, organic carbon (OC) at IMPROVE, and elemental carbon (EC) and OC at SEARCH, aerosol optical depth (AOD) and column carbon monoxide (CO), sulfur dioxide (SO2), and formaldehyde (HCHO) in both O3 and winter seasons, column nitrogen dioxide (NO2) in O3 seasons, and TOR in winters. These biases indicate uncertainties in the boundary layer and cloud process treatments (e.g., surface roughness, microphysics cumulus parameterization), emissions (e.g., O3 and PM precursors, biogenic, mobile, and wildfire emissions), upper boundary conditions for all major gases and PM2.5 species, and chemistry and aerosol treatments (e.g., winter photochemistry, aerosol thermodynamics). The model shows overall good skills in reproducing the observed multi-year trends and inter-seasonal variability in meteorological and radiative variables such as T2, WS10, Precip, SWDOWN, and LWDOWN, and relatively well in reproducing the observed trends in surface O3 and PM2.5, but relatively poor in reproducing the observed column abundances of CO, NO2, SO2, HCHO, TOR, and AOD. The sensitivity simulations using satellite-constrained boundary conditions for O3 and CO show substantial improvement for both spatial distribution and domain-mean performance

  7. Air-quality-model update

    SciTech Connect

    Penner, J.E.; Walton, J.J.

    1982-01-15

    The Livermore Regional Air Quality Model (LIRAQ) has been updated and improved. This report describes the changes that have been made in chemistry, species treatment, and boundary conditions. The results of smog chamber simulations that were used to verify the chemistry as well as simulations of the entire air quality model for two prototype days in the Bay Area are reported. The results for the prototype day simulations are preliminary due to the need for improvement in meteorology fields, but they show the dependence and sensitivity of high hour ozone to changes in selected boundary and initial conditions.

  8. Seasonal cycle and interannual variability of the total CH4 mixing ratios in West Siberia: Results from AIRS/AMSU and chemistry transport models for 2003-2013

    NASA Astrophysics Data System (ADS)

    Lagutin, Anatoly; Mordvin, Egor

    Methane (CH4) is an important greenhouse gas. It has much higher global warming potential comparing to carbon dioxide on per mass emitted basis. Atmospheric methane also plays an important role in atmospheric ozone chemistry and is the main source of water vapor in the stratosphere. The recent increase of CH4 in 2007-2008, after a nearly stable period of about one decade, is attributed to the increased emissions from tropical and Arctic wetlands. However, many uncertainties regarding natural and anthropogenic methane emissions still exist. For example, the total CH4 emissions from wetlands in West Siberia are estimated to be in the range from 1.6 to 20 Tg/year. The main causes leading to such large uncertainties are significant spatial and temporal variation of CH4 emissions and the sparseness of ground observational networks. The purpose of this study is to investigate the seasonal cycle and interannual variability of the total CH4 mixing ratios (CH4-Tot) in West Siberia for 2003-2013 using the AIRS/AMSU-Aqua measurements and the results from chemistry transport models MOZART4 and ACTM-CCSR/NIES/FRCGC. The key feature of the proposed approach is chemistry transport model-based regression equation linking CH4-Tot with mid-upper tropospheric CH4 (in the layer from 50 to 250 hPa below the tropopause), the tropopause height and the surface temperature. The observational information in our approach comes from the AIRS/AMSU measurements. Comparison of the retrieved CH4-Tot with the measurements of CH4 from the Total Carbon Column Observing Network (TCCON) have shown that the model captures observed seasonal cycles and interannual variability at mid-latitude sites. The spatial and temporal distributions of CH4-Tot in West Siberia for 2003-2013 are presented. Analysis of deseasonalized time-series indicates that the total CH4 mixing ratios increases about 4 ppbv/yr from 2007. This work was supported in part by the Russian Foundation for Basic Research (grant No 13

  9. Air pollution in the Benelux/Rhine-Ruhr area: Numerical simulations with a multi-scale regional chemistry-transport model

    NASA Astrophysics Data System (ADS)

    Memmesheimer, M.; Jakobs, H. J.; Wurzler, S.; Friese, E.; Piekorz, G.; Ebel, A.

    2009-04-01

    The Rhine-Ruhr area is a strongly industrialized region with about 10 Million inhabitants. It is one of the regions in Europe, which has the characteristics of a megacity with respect to population density, traffic, industry and environmental issues. The main centre of European steel production and the biggest inland port of the world is located in Duisburg, one of the major cities in the Rhine-Ruhr area. Together with the nearby urban agglomerations in the Benelux area including Brussels, Amsterdam and in particular Rotterdam as one of the most important sea-harbours of the world together with Singapore and Shanghai, it forms one of the regions in Europe heavily loaded with air pollutants as ozone, NO2 and particulate matter. Ammonia emissions outside the urban agglomerations but within the domain are also on a quite high level due to intense agricultural usage in Benelux, North-Rhine-Westphalia and lower Saxony. Therefore this area acts also as an important source region for gaseous precursors contributing to the formation of secondary particles in the atmosphere. The Benelux/Rhine-Ruhr area therefore has been selected within the framework of the recently established FP7 research project CityZen as one hot spot for detailed investigations of the past and current status of air pollution and its future development on different spatial and temporal scales. Some examples from numerical simulations with the regional multi-scale chemistry transport model EURAD for Central Europe and the Rhine-Ruhr area will be presented. The model calculates the transport, chemical transformations and deposition of trace constituents in the troposphere from the surface up to about 16 km using MM5 as meteorological driver, the RACM-MIM gas-phase chemistry and MADE-SORGAM for the treatment of particulate matter. Horizontal grid sizes are in the range of 100 km down to 1 km for heavily polluted urbanized areas within Benelux/Rhine-Ruhr. The planetary boundary layer is resolved by 15

  10. Reacting chemistry at the air-water interface

    NASA Astrophysics Data System (ADS)

    Murakami, Tomoyuki; Morgan, Thomas; Huwel, Lutz; Graham, William

    2016-09-01

    Plasma interaction with gas-liquid interfaces is becoming increasingly important in biological applications, chemical analysis and medicine. It introduces electrons, new ionic species and reactive species and contributes to chemical and electrical self-organization at the interface. To provide insight into the associated physics and chemistry at work in the evolution of the plasma in the air-water interface (AWI), a time-dependent one-dimensional modelling has been developed. The numerical simulation is used to solve the kinetic equations and help identify the important reaction mechanisms and describe the phenomena associated with hundreds of reacting pathways in gas-phase and liquid-phase AWI chemistry. This work was partly supported by JSPS KAKENHI Grant Number 16K04998.

  11. Measurement and modelling of air pollution and atmospheric chemistry in the U.K. West Midlands conurbation: overview of the PUMA Consortium project.

    PubMed

    Harrison, R M; Yin, J; Tilling, R M; Cai, X; Seakins, P W; Hopkins, J R; Lansley, D L; Lewis, A C; Hunter, M C; Heard, D E; Carpenter, L J; Creasey, D J; Lee, J D; Pilling, M J; Carslaw, N; Emmerson, K M; Redington, A; Derwent, R G; Ryall, D; Mills, G; Penkett, S A

    2006-05-01

    The PUMA (Pollution of the Urban Midlands Atmosphere) Consortium project involved intensive measurement campaigns in the Summer of 1999 and Winter of 1999/2000, respectively, in which a wide variety of air pollutants were measured in the UK West Midlands conurbation including detailed speciation of VOCs and major component analysis of aerosol. Measurements of the OH and HO2 free radicals by the FAGE technique demonstrated that winter concentrations of OH were approximately half of those measured during the summer despite a factor of 15 reduction in production through the photolysis of ozone. Detailed box modelling of the fast reaction chemistry revealed the decomposition of Criegee intermediates formed from ozone-alkene reactions to be responsible for the majority of the formation of hydroxyl in both the summer and winter campaigns, in contrast to earlier rural measurements in which ozone photolysis was predominant. The main sinks for hydroxyl are reactions with NO2, alkenes and oxygenates. Concentrations of the more stable hydrocarbons were found to be relatively invariant across the conurbation, but the impacts of photochemistry were evident through analyses of formaldehyde which showed the majority to be photochemical in origin as opposed to emitted from road traffic. Measurements on the upwind and downwind boundaries of the conurbation revealed substantial enhancements in NOx as a result of emissions within the conurbation, especially during westerly winds which carried relatively clean air. Using calcium as a tracer for crustal particles, it proved possible to reconstruct aerosol mass from the major chemical components with a fairly high degree of success. The organic to elemental carbon ratios showed a far greater influence of photochemistry in summer than winter, presumably resulting mainly from the greater availability of biogenic precursors during the summer campaign. Two urban airshed models were developed and applied to the conurbation, one Eulerian, the

  12. Linking Urban Air Pollution to Global Tropospheric Chemistry and Climate

    NASA Technical Reports Server (NTRS)

    Wang, Chien

    2005-01-01

    The two major tasks of this project are to study: (a) the impact of urban nonlinear chemistry on chemical budgets of key pollutants in non-urban areas; and (b) the influence of air pollution control strategies in selected metropolitan areas, particularly of emerging economies in East and South Asia, on tropospheric chemistry and hence on regional and global climate.

  13. Geomagnetic activity related NOx enhancements and polar surface air temperature variability in a chemistry climate model: modulation of the NAM index

    NASA Astrophysics Data System (ADS)

    Baumgaertner, A. J. G.; Seppälä, A.; Jöckel, P.; Clilverd, M. A.

    2011-05-01

    The atmospheric chemistry general circulation model ECHAM5/MESSy is used to simulate polar surface air temperature effects of geomagnetic activity variations. A transient model simulation was performed for the years 1960-2004 and is shown to develop polar surface air temperature patterns that depend on geomagnetic activity strength, similar to previous studies. In order to eliminate influencing factors such as sea surface temperatures (SST) or UV variations, two nine-year long simulations were carried out, with strong and weak geomagnetic activity, respectively, while all other boundary conditions were held to year 2000 levels. Statistically significant temperature effects that were observed in previous reanalysis and model results are also obtained from this set of simulations, suggesting that such patterns are indeed related to geomagnetic activity. In the model, strong geomagnetic activity and the associated NOx (= NO + NO2) enhancements lead to polar stratospheric ozone loss. Compared with the simulation with weak geomagnetic activity, the ozone loss causes a decrease in ozone radiative cooling and thus a temperature increase in the polar winter mesosphere. Similar to previous studies, a cooling is found below the stratopause, which other authors have attributed to a decrease in the mean meridional circulation. In the polar stratosphere this leads to a more stable vortex. A strong (weak) Northern Hemisphere vortex is known to be associated with a positive (negative) Northern Annular Mode (NAM) index; our simulations exhibit a positive NAM index for strong geomagnetic activity, and a negative NAM for weak geomagnetic activity. Such NAM anomalies have been shown to propagate to the surface, and this is also seen in the model simulations. NAM anomalies are known to lead to specific surface temperature anomalies: a positive NAM is associated with warmer than average northern Eurasia and colder than average eastern North Atlantic. This is also the case in our

  14. Handbook of environmental chemistry. Volume 4. Part A, air pollution

    SciTech Connect

    Hutzinger, O.

    1986-01-01

    Five authors have each contributed one chapter to this first part (A) of the series on Air Pollution (Volume 4). Thus the book is neither a handbook compilation of reference data nor a text on the subject of air pollution. The first and shortest chapter (22 pages) by A. Wint of the University of Nottingham, England, is an overview called Air Pollution in Perspective. The second chapter, by P. Fabian of Max-Planck-Institute fuer Aeronomie, FRG, is titled Halogenated Hydrocarbons in the Atmosphere. This chapter, in 29 pages, summarizes current data on twenty of these compounds. Hans Guesten of the Institute fuer Radiochemie, Karlsruhe, FRG, contributed chapter 3 on Formation, Transport, and Control of Photochemical Smog (52 pages). This chapter is a good survey of current understanding of smog although each of the three topics promised in the title could by itself take up a good sized book. Atmospheric Distribution of Pollutants and Modeling of Air Pollution Dispersion by H. van Dop of the Royal Netherlands Meteorological Institute, the Netherlands, makes up Chapter 4 (42 pages). The article is written from a meteorological perspective. The last chapter, by J.M. Hales of Battelle Pacific Northwest Laboratories, USA, is titled The Mathematical Characterization of Precipitation Scavenging and Precipitation Chemistry (74 pages). Removal of pollutants from the atmosphere by precipitation is good news/bad news.

  15. Rat Models of Cardiometabolic Diseases: Baseline Clinical Chemistries, and Rationale for their Use in Examining Air Pollution Health Effects

    EPA Science Inventory

    This is the first of a series of 8 papers examining susceptibility of various rodent cardiometabolic disease models to ozone induced health effects. Individuals with cardiovascular and metabolic diseases (CVD) are shown to be more susceptible to adverse health effects o...

  16. Indoor Air Quality in Chemistry Laboratories.

    ERIC Educational Resources Information Center

    Hays, Steve M.

    This paper presents air quality and ventilation data from an existing chemical laboratory facility and discusses the work practice changes implemented in response to deficiencies in ventilation. General methods for improving air quality in existing laboratories are presented and investigation techniques for characterizing air quality are…

  17. A Model Chemistry Class.

    ERIC Educational Resources Information Center

    Summerlin, Lee; Borgford, Christie

    1989-01-01

    Described is an activity which uses a 96-well reaction plate and soda straws to construct a model of the periodic table of the elements. The model illustrates the ionization energies of the various elements. Construction of the model and related concepts are discussed. (CW)

  18. Environmental Chemistry: Air and Water Pollution.

    ERIC Educational Resources Information Center

    Stoker, H. Stephen; Seager, Spencer L.

    This is a book about air and water pollution whose chapters cover the topics of air pollution--general considerations, carbon monoxide, oxides of nitrogen, hydrocarbons and photochemical oxidants, sulfur oxides, particulates, temperature inversions and the greenhouse effect; and water pollution--general considerations, mercury, lead, detergents,…

  19. Clean Air Markets - Monitoring Surface Water Chemistry

    EPA Pesticide Factsheets

    Learn about how EPA uses Long Term Monitoring (LTM) and Temporily Integrated Monitoring of Ecosystems (TIME) to track the effect of the Clean Air Act Amendments on acidity of surface waters in the eastern U.S.

  20. Moving Towards Air Quality Models with Chemistry Linked to the Master Chemical Mechanism: CRI Performance in U.S. Regional Models

    EPA Science Inventory

    This presentation described implementation of the Common Representative Intermediate (CRI) atmospheric chemistry in CMAQ, a short analysis of its performance in CMAQ relative to other mechanisms and an example of the additional detail it gives us for understanding atmospheric che...

  1. Modelling Hot Air Balloons.

    ERIC Educational Resources Information Center

    Brimicombe, M. W.

    1991-01-01

    A macroscopic way of modeling hot air balloons using a Newtonian approach is presented. Misleading examples using a car tire and the concept of hot air rising are discussed. Pressure gradient changes in the atmosphere are used to explain how hot air balloons work. (KR)

  2. Theoretical Modeling of Interstellar Chemistry

    NASA Technical Reports Server (NTRS)

    Charnley, Steven

    2009-01-01

    The chemistry of complex interstellar organic molecules will be described. Gas phase processes that may build large carbon-chain species in cold molecular clouds will be summarized. Catalytic reactions on grain surfaces can lead to a large variety of organic species, and models of molecule formation by atom additions to multiply-bonded molecules will be presented. The subsequent desorption of these mixed molecular ices can initiate a distinctive organic chemistry in hot molecular cores. The general ion-molecule pathways leading to even larger organics will be outlined. The predictions of this theory will be compared with observations to show how possible organic formation pathways in the interstellar medium may be constrained. In particular, the success of the theory in explaining trends in the known interstellar organics, in predicting recently-detected interstellar molecules, and, just as importantly, non-detections, will be discussed.

  3. Urban Climate Effects on Air Pollution and Atmospheric Chemistry

    NASA Astrophysics Data System (ADS)

    Rasoul, Tara; Bloss, William; Pope, Francis

    2016-04-01

    Tropospheric ozone, adversely affects the environment and human health. The presence of chlorine nitrate (ClNO2) in the troposphere can enhance ozone (O3) formation as it undergoes photolysis, releasing chlorine reactive atoms (Cl) and nitrogen dioxide (NO2), both of which enhance tropospheric ozone formation. The importance of new sources of tropospheric ClNO2 via heterogeneous processes has recently been highlighted. This study employed a box model, using the Master Chemical Mechanism (MCM version 3.2) to assess the effect of ClNO2 on air quality in urban areas within the UK. The model updated to include ClNO2 production, photolysis, a comprehensive parameterisation of dinitrogen pentoxide (N2O5) uptake, and ClNO2 production calculated from bulk aerosol composition. The model simulation revealed the presence of ClNO2 enhances the formation of NO2, organic peroxy radical (CH3O2), O3, and hydroxyl radicals (OH) when compared with simulations excluding ClNO2. In addition, the study examined the effect of temperature variation upon ClNO2 formation. The response of ClNO2 to temperature was analysed to identify the underlying drivers, of particular importance when assessing the response of atmospheric chemistry processes under potential future climates.

  4. FULLY COUPLED "ONLINE" CHEMISTRY WITHIN THE WRF MODEL

    EPA Science Inventory

    A fully coupled "online" Weather Research and Forecasting/Chemistry (WRF/Chem) model has been developed. The air quality component of the model is fully consistent with the meteorological component; both components use the same transport scheme (mass and scalar preserving), the s...

  5. Air plasma treatment of liquid covered tissue: long timescale chemistry

    NASA Astrophysics Data System (ADS)

    Lietz, Amanda M.; Kushner, Mark J.

    2016-10-01

    Atmospheric pressure plasmas have shown great promise for the treatment of wounds and cancerous tumors. In these applications, the sample is usually covered by a thin layer of a biological liquid. The reactive oxygen and nitrogen species (RONS) generated by the plasma activate and are processed by the liquid before the plasma produced activation reaches the tissue. The synergy between the plasma and the liquid, including evaporation and the solvation of ions and neutrals, is critical to understanding the outcome of plasma treatment. The atmospheric pressure plasma sources used in these procedures are typically repetitively pulsed. The processes activated by the plasma sources have multiple timescales—from a few ns during the discharge pulse to many minutes for reactions in the liquid. In this paper we discuss results from a computational investigation of plasma-liquid interactions and liquid phase chemistry using a global model with the goal of addressing this large dynamic range in timescales. In modeling air plasmas produced by a dielectric barrier discharge over liquid covered tissue, 5000 voltage pulses were simulated, followed by 5 min of afterglow. Due to the accumulation of long-lived species such as ozone and N x O y , the gas phase dynamics of the 5000th discharge pulse are different from those of the first pulse, particularly with regards to the negative ions. The consequences of applied voltage, gas flow, pulse repetition frequency, and the presence of organic molecules in the liquid on the gas and liquid reactive species are discussed.

  6. Air and water stable ionic liquids in physical chemistry.

    PubMed

    Endres, Frank; Zein El Abedin, Sherif

    2006-05-14

    Ionic liquids are defined today as liquids which solely consist of cations and anions and which by definition must have a melting point of 100 degrees C or below. Originating from electrochemistry in AlCl(3) based liquids an enormous progress was made during the recent 10 years to synthesize ionic liquids that can be handled under ambient conditions, and today about 300 ionic liquids are already commercially available. Whereas the main interest is still focussed on organic and technical chemistry, various aspects of physical chemistry in ionic liquids are discussed now in literature. In this review article we give a short overview on physicochemical aspects of ionic liquids, such as physical properties of ionic liquids, nanoparticles, nanotubes, batteries, spectroscopy, thermodynamics and catalysis of/in ionic liquids. The focus is set on air and water stable ionic liquids as they will presumably dominate various fields of chemistry in future.

  7. Meteorological Processes Affecting Air Quality – Research and Model Development Needs

    EPA Science Inventory

    Meteorology modeling is an important component of air quality modeling systems that defines the physical and dynamical environment for atmospheric chemistry. The meteorology models used for air quality applications are based on numerical weather prediction models that were devel...

  8. Volcanic Plume Chemistry: Models, Observations and Impacts

    NASA Astrophysics Data System (ADS)

    Roberts, Tjarda; Martin, Robert; Oppenheimer, Clive; Griffiths, Paul; Braban, Christine; Cox, Tony; Jones, Rod; Durant, Adam; Kelly, Peter

    2010-05-01

    Volcanic plumes are highly chemically reactive; both in the hot, near-vent plume, and also at ambient temperatures in the downwind plume, as the volcanic gases and aerosol disperse into the background atmosphere. In particular, DOAS (Differential Optical Absortpion Spectroscopy) observations have identified BrO (Bromine Monoxide) in several volcanic plumes degassing into the troposphere. These observations are explained by rapid in-plume autocatalytic BrO-chemistry that occurs whilst the plume disperses, enabling oxidants such as ozone from background air to mix with the acid gases and aerosol. Computer modelling tools have recently been developed to interpret the observed BrO and predict that substantial ozone depletion occurs downwind. Alongside these modelling developments, advances in in-situ and remote sensing techniques have also improved our observational understanding of volcanic plumes. We present simulations using the model, PlumeChem, that predict the spatial distribution of gases in volcanic plumes, including formation of reactive halogens BrO, ClO and OClO that are enhanced nearer the plume edges, and depletion of ozone within the plume core. The simulations also show that in-plume chemistry rapidly converts NOx into nitric acid, providing a mechanism to explain observed elevated in-plume HNO3. This highlights the importance of coupled BrO-NOx chemistry, both for BrO-formation and as a production mechanism for HNO3 in BrO-influenced regions of the atmosphere. Studies of coupled halogen-H2S-chemistry are consistent with in-situ Alphasense electrochemical sensor observations of H2S at a range of volcanoes, and only predict H2S-depletion if Cl is additionally elevated. Initial studies regarding the transformations of mercury within volcanic plumes suggest that significant in-plume conversion of Hg0 to Hg2+ can occur in the downwind plume. Such Hg2+ may impact downwind ecology through enhanced Hg-deposition, and causing enhanced biological uptake of

  9. AIR Model Preflight Analysis

    NASA Technical Reports Server (NTRS)

    Tai, H.; Wilson, J. W.; Maiden, D. L.

    2003-01-01

    The atmospheric ionizing radiation (AIR) ER-2 preflight analysis, one of the first attempts to obtain a relatively complete measurement set of the high-altitude radiation level environment, is described in this paper. The primary thrust is to characterize the atmospheric radiation and to define dose levels at high-altitude flight. A secondary thrust is to develop and validate dosimetric techniques and monitoring devices for protecting aircrews. With a few chosen routes, we can measure the experimental results and validate the AIR model predictions. Eventually, as more measurements are made, we gain more understanding about the hazardous radiation environment and acquire more confidence in the prediction models.

  10. The Chemistry behind the Air Bag: High Tech in First-Year Chemistry

    NASA Astrophysics Data System (ADS)

    Madlung, Andreas

    1996-04-01

    The chemical process of air bag deployment provides practical applications of gas laws and stoichiometric equations appropriate for use in first-year chemistry. In case of an accident the mixture of NaN3, KNO3, and SiO2 in the gas generator is ignited through an electrical impulse which triggers deflagration and the liberation of a precalculated volume of nitrogen gas. Subsequent reactions transform byproducts into stable, non-toxic compounds. This process lends itself as an illustration of gas laws in modern technology.

  11. Parallel computing in atmospheric chemistry models

    SciTech Connect

    Rotman, D.

    1996-02-01

    Studies of atmospheric chemistry are of high scientific interest, involve computations that are complex and intense, and require enormous amounts of I/O. Current supercomputer computational capabilities are limiting the studies of stratospheric and tropospheric chemistry and will certainly not be able to handle the upcoming coupled chemistry/climate models. To enable such calculations, the authors have developed a computing framework that allows computations on a wide range of computational platforms, including massively parallel machines. Because of the fast paced changes in this field, the modeling framework and scientific modules have been developed to be highly portable and efficient. Here, the authors present the important features of the framework and focus on the atmospheric chemistry module, named IMPACT, and its capabilities. Applications of IMPACT to aircraft studies will be presented.

  12. Homogeneous and heterogeneous chemistry along air parcel trajectories

    NASA Technical Reports Server (NTRS)

    Jones, R. L.; Mckenna, D. L.; Poole, L. R.; Solomon, S.

    1990-01-01

    The study of coupled heterogeneous and homogeneous chemistry due to polar stratospheric clouds (PSC's) using Lagrangian parcel trajectories for interpretation of the Airborne Arctic Stratosphere Experiment (AASE) is discussed. This approach represents an attempt to quantitatively model the physical and chemical perturbation to stratospheric composition due to formation of PSC's using the fullest possible representation of the relevant processes. Further, the meteorological fields from the United Kingdom Meteorological office global model were used to deduce potential vorticity and inferred regions of PSC's as an input to flight planning during AASE.

  13. Predictive Modeling in Actinide Chemistry and Catalysis

    SciTech Connect

    Yang, Ping

    2016-05-16

    These are slides from a presentation on predictive modeling in actinide chemistry and catalysis. The following topics are covered in these slides: Structures, bonding, and reactivity (bonding can be quantified by optical probes and theory, and electronic structures and reaction mechanisms of actinide complexes); Magnetic resonance properties (transition metal catalysts with multi-nuclear centers, and NMR/EPR parameters); Moving to more complex systems (surface chemistry of nanomaterials, and interactions of ligands with nanoparticles); Path forward and conclusions.

  14. Chemistry Teachers' Knowledge and Application of Models

    ERIC Educational Resources Information Center

    Wang, Zuhao; Chi, Shaohui; Hu, Kaiyan; Chen, Wenting

    2014-01-01

    Teachers' knowledge and application of model play an important role in students' development of modeling ability and scientific literacy. In this study, we investigated Chinese chemistry teachers' knowledge and application of models. Data were collected through test questionnaire and analyzed quantitatively and qualitatively. The result indicated…

  15. Modeling the atmospheric chemistry of TICs

    NASA Astrophysics Data System (ADS)

    Henley, Michael V.; Burns, Douglas S.; Chynwat, Veeradej; Moore, William; Plitz, Angela; Rottmann, Shawn; Hearn, John

    2009-05-01

    An atmospheric chemistry model that describes the behavior and disposition of environmentally hazardous compounds discharged into the atmosphere was coupled with the transport and diffusion model, SCIPUFF. The atmospheric chemistry model was developed by reducing a detailed atmospheric chemistry mechanism to a simple empirical effective degradation rate term (keff) that is a function of important meteorological parameters such as solar flux, temperature, and cloud cover. Empirically derived keff functions that describe the degradation of target toxic industrial chemicals (TICs) were derived by statistically analyzing data generated from the detailed chemistry mechanism run over a wide range of (typical) atmospheric conditions. To assess and identify areas to improve the developed atmospheric chemistry model, sensitivity and uncertainty analyses were performed to (1) quantify the sensitivity of the model output (TIC concentrations) with respect to changes in the input parameters and (2) improve, where necessary, the quality of the input data based on sensitivity results. The model predictions were evaluated against experimental data. Chamber data were used to remove the complexities of dispersion in the atmosphere.

  16. Air pollution modeling over Europe using WRFchem

    NASA Astrophysics Data System (ADS)

    Ritter, Mathias; Müller, Mathias

    2010-05-01

    The aim of this study is to model air pollution for entire Switzerland with a very high spatial resolution. For the first time a several year period of air pollution is modeled for entire Switzerland. The high resolution domain of Switzerland is nested into a coarser European domain with a horizontal resolution of 50 km, extending from south of Spain to south of Finland. So far only the framework for the European domain exists and therefore we focus on the method and first results of this particular domain. The state-of-the-art "Weather Research and Forecasting" (WRF) model with a chemistry extension (WRFchem) is used to simulate air pollutants. It is one of the first times that these two "online" coupled models are applied for entire Europe. Gas phase chemistry is modeled with the "Carbon bond mechanism version Z" (CBMZ) with 67 prognostic chemical species and 164 chemical reactions. Aerosols are treated by the "Model for Simulating Aerosol Interactions and Chemistry" (MOSAIC) using 4 sectional aerosol bins. The meteorological initial and boundary conditions are derived from the NCEP Reanalysis 2 and GFS data. The anthropogenic emissions are taken from the European Monitoring and Evaluation Programme (EMEP), which have a horizontal resolution of 50 km and are divided into 11 SNAP-sectors (Selected Nomenclature for reporting of Air Pollutants). According to these different sectors and the countries the data could be disaggregated into hourly emissions according to the GENEMIS project. To use this dataset also a spatial conversion with the inverse next neighbor method and a vertical disaggregation as well as a re-apportioning of different chemical species were applied. Biogenic emissions are computed during runtime using the Guenther Scheme. We noticed that chemical initial conditions are not needed as they are mainly driven by emissions. Hence a spin-up of at least five days is used. For verification purposes correlations with European ground-based measurements (O3

  17. Aqueous reactive species induced by a surface air discharge: Heterogeneous mass transfer and liquid chemistry pathways

    NASA Astrophysics Data System (ADS)

    Liu, D. X.; Liu, Z. C.; Chen, C.; Yang, A. J.; Li, D.; Rong, M. Z.; Chen, H. L.; Kong, M. G.

    2016-04-01

    Plasma-liquid interaction is a critical area of plasma science and a knowledge bottleneck for many promising applications. In this paper, the interaction between a surface air discharge and its downstream sample of deionized water is studied with a system-level computational model, which has previously reached good agreement with experimental results. Our computational results reveal that the plasma-induced aqueous species are mainly H+, nitrate, nitrite, H2O2 and O3. In addition, various short-lived aqueous species are also induced, regardless whether they are generated in the gas phase first. The production/loss pathways for aqueous species are quantified for an air gap width ranging from 0.1 to 2 cm, of which heterogeneous mass transfer and liquid chemistry are found to play a dominant role. The short-lived reactive oxygen species (ROS) and reactive nitrogen species (RNS) are strongly coupled in liquid-phase reactions: NO3 is an important precursor for short-lived ROS, and in turn OH, O2- and HO2 play a crucial role for the production of short-lived RNS. Also, heterogeneous mass transfer depends strongly on the air gap width, resulting in two distinct scenarios separated by a critical air gap of 0.5 cm. The liquid chemistry is significantly different in these two scenarios.

  18. Aqueous reactive species induced by a surface air discharge: Heterogeneous mass transfer and liquid chemistry pathways

    PubMed Central

    Liu, D. X.; Liu, Z. C.; Chen, C.; Yang, A. J.; Li, D.; Rong, M. Z.; Chen, H. L.; Kong, M. G.

    2016-01-01

    Plasma-liquid interaction is a critical area of plasma science and a knowledge bottleneck for many promising applications. In this paper, the interaction between a surface air discharge and its downstream sample of deionized water is studied with a system-level computational model, which has previously reached good agreement with experimental results. Our computational results reveal that the plasma-induced aqueous species are mainly H+, nitrate, nitrite, H2O2 and O3. In addition, various short-lived aqueous species are also induced, regardless whether they are generated in the gas phase first. The production/loss pathways for aqueous species are quantified for an air gap width ranging from 0.1 to 2 cm, of which heterogeneous mass transfer and liquid chemistry are found to play a dominant role. The short-lived reactive oxygen species (ROS) and reactive nitrogen species (RNS) are strongly coupled in liquid-phase reactions: NO3 is an important precursor for short-lived ROS, and in turn OH, O2− and HO2 play a crucial role for the production of short-lived RNS. Also, heterogeneous mass transfer depends strongly on the air gap width, resulting in two distinct scenarios separated by a critical air gap of 0.5 cm. The liquid chemistry is significantly different in these two scenarios. PMID:27033381

  19. Stratospheric General Circulation with Chemistry Model (SGCCM)

    NASA Technical Reports Server (NTRS)

    Rood, Richard B.; Douglass, Anne R.; Geller, Marvin A.; Kaye, Jack A.; Nielsen, J. Eric; Rosenfield, Joan E.; Stolarski, Richard S.

    1990-01-01

    In the past two years constituent transport and chemistry experiments have been performed using both simple single constituent models and more complex reservoir species models. Winds for these experiments have been taken from the data assimilation effort, Stratospheric Data Analysis System (STRATAN).

  20. Diagnostic Analysis of Ozone Concentrations Simulated by Two Regional-Scale Air Quality Models

    EPA Science Inventory

    Since the Community Multiscale Air Quality modeling system (CMAQ) and the Weather Research and Forecasting with Chemistry model (WRF/Chem) use different approaches to simulate the interaction of meteorology and chemistry, this study compares the CMAQ and WRF/Chem air quality simu...

  1. Interaction of Thermodiffusive Instabilities and Turbulence in Lean Hydrogen/Air Mixtures using Tabulated Chemistry

    NASA Astrophysics Data System (ADS)

    Schlup, Jason; Blanquart, Guillaume

    2015-11-01

    The combustion of lean hydrogen mixtures is prone to thermodiffusive instabilities due to the strongly non-unity fuel Lewis number. Simulations of the combustion process can aid in designing new burners to reduce operating risks associated with thermodiffusive instabilities; however, direct numerical simulations of large scale burners with detailed chemistry mechanisms are prohibitively expensive. The significant simulation time requires that computational costs decrease by using reduced order chemistry and turbulence modeling. In this work, a chemistry table, created with one-dimensional flames, is used to reduce the simulation cost. Direct numerical simulations of turbulent combustion with lean hydrogen/air mixtures are performed. Both statistically planar and spherically expanding flames are considered, and the turbulence level varies from laminar to fully turbulent flow conditions. The chosen equivalence ratio displays thermodiffusive instabilities in the wrinkled flame front. The influence of turbulence intensity on the flame instabilities are explored, and the results are compared to previous studies to determine the adequacy of the tabulated chemistry method for this set of simulation parameters.

  2. Air modeling: Air dispersion models; regulatory applications and technological advances

    SciTech Connect

    Miller, M.; Liles, R.

    1995-09-01

    Air dispersion models are a useful and practical tool for both industry and regulatory agencies. They serve as tools for engineering, permitting, and regulations development. Their cost effectiveness and ease of implementation compared to ambient monitoring is perhaps their most-appealing trait. Based on the current momentum within the U.S. EPA to develop better models and contain regulatory burdens on industry, it is likely that air dispersion modeling will be a major player in future air regulatory initiatives.

  3. GEOS-5 Chemistry Transport Model User's Guide

    NASA Technical Reports Server (NTRS)

    Kouatchou, J.; Molod, A.; Nielsen, J. E.; Auer, B.; Putman, W.; Clune, T.

    2015-01-01

    The Goddard Earth Observing System version 5 (GEOS-5) General Circulation Model (GCM) makes use of the Earth System Modeling Framework (ESMF) to enable model configurations with many functions. One of the options of the GEOS-5 GCM is the GEOS-5 Chemistry Transport Model (GEOS-5 CTM), which is an offline simulation of chemistry and constituent transport driven by a specified meteorology and other model output fields. This document describes the basic components of the GEOS-5 CTM, and is a user's guide on to how to obtain and run simulations on the NCCS Discover platform. In addition, we provide information on how to change the model configuration input files to meet users' needs.

  4. A model of CO-CH4 global transport/chemistry. I - Chemistry model

    NASA Technical Reports Server (NTRS)

    Peters, L. K.; Kitada, T.

    1980-01-01

    A simplified chemistry model was developed to incorporate the CO-CH4 chemistry into the global transport model of these compounds. CO is important because of its effects on atmospheric chemistry and is partly responsible for controlling the hydroxyl radical (OH) concentration in the troposphere. The model includes the photodissociation rate coefficients expressed as functions of solar zenith angle and altitude, and it was applied to determine the sensitivity of the OH concentration to trace gaseous species, such as NOx, O3, and H2O. Also, the concentrations and diurnal variations of OH and HO2, and the contribution of individual reactions to OH generation and consumption were calculated.

  5. A model of hollow cathode plasma chemistry

    NASA Technical Reports Server (NTRS)

    Katz, I.; Anderson, J. R.; Polk, J. E.; Brophy, J. R.

    2002-01-01

    We have developed a new model of hollow cathode plasma chemistry based on the observation that xenon ion mobility is diffusion limited due to resonant charge exchange reactions. The model shows that vapor phase barium atoms are ionized almost immediately and electric fields accelerate the ions upstream from the emission zone. We have also applied the model to the orifice region, where the resultant ion generation profile correlates with previously reported orifice erosion.

  6. Chemistry on the mesoscale: Modeling and measurement issues

    NASA Technical Reports Server (NTRS)

    Thompson, Anne; Pleim, John; Walcek, Christopher; Ching, Jason; Binkowski, Frank; Tao, Wei-Kuo; Dickerson, Russell; Pickering, Kenneth

    1993-01-01

    The topics covered include the following: Regional Acid Deposition Model (RADM) -- a coupled chemistry/mesoscale model; convection in RADM; unresolved issues for mesoscale modeling with chemistry -- nonprecipitating clouds; unresolved issues for mesoscale modeling with chemistry -- aerosols; tracer studies with Goddard Cumulus Ensemble Model (GCEM); field observations of trace gas transport in convection; and photochemical consequences of convection.

  7. Model-Based Inquiries in Chemistry

    ERIC Educational Resources Information Center

    Khan, Samia

    2007-01-01

    In this paper, instructional strategies for sustaining model-based inquiry in an undergraduate chemistry class were analyzed through data collected from classroom observations, a student survey, and in-depth problem-solving sessions with the instructor and students. Analysis of teacher-student interactions revealed a cyclical pattern in which…

  8. Dilution physics modeling: Dissolution/precipitation chemistry

    SciTech Connect

    Onishi, Y.; Reid, H.C.; Trent, D.S.

    1995-09-01

    This report documents progress made to date on integrating dilution/precipitation chemistry and new physical models into the TEMPEST thermal-hydraulics computer code. Implementation of dissolution/precipitation chemistry models is necessary for predicting nonhomogeneous, time-dependent, physical/chemical behavior of tank wastes with and without a variety of possible engineered remediation and mitigation activities. Such behavior includes chemical reactions, gas retention, solids resuspension, solids dissolution and generation, solids settling/rising, and convective motion of physical and chemical species. Thus this model development is important from the standpoint of predicting the consequences of various engineered activities, such as mitigation by dilution, retrieval, or pretreatment, that can affect safe operations. The integration of a dissolution/precipitation chemistry module allows the various phase species concentrations to enter into the physical calculations that affect the TEMPEST hydrodynamic flow calculations. The yield strength model of non-Newtonian sludge correlates yield to a power function of solids concentration. Likewise, shear stress is concentration-dependent, and the dissolution/precipitation chemistry calculations develop the species concentration evolution that produces fluid flow resistance changes. Dilution of waste with pure water, molar concentrations of sodium hydroxide, and other chemical streams can be analyzed for the reactive species changes and hydrodynamic flow characteristics.

  9. Gridded global surface ozone metrics for atmospheric chemistry model evaluation

    NASA Astrophysics Data System (ADS)

    Sofen, E. D.; Bowdalo, D.; Evans, M. J.; Apadula, F.; Bonasoni, P.; Cupeiro, M.; Ellul, R.; Galbally, I. E.; Girgzdiene, R.; Luppo, S.; Mimouni, M.; Nahas, A. C.; Saliba, M.; Tørseth, K.

    2016-02-01

    The concentration of ozone at the Earth's surface is measured at many locations across the globe for the purposes of air quality monitoring and atmospheric chemistry research. We have brought together all publicly available surface ozone observations from online databases from the modern era to build a consistent data set for the evaluation of chemical transport and chemistry-climate (Earth System) models for projects such as the Chemistry-Climate Model Initiative and Aer-Chem-MIP. From a total data set of approximately 6600 sites and 500 million hourly observations from 1971-2015, approximately 2200 sites and 200 million hourly observations pass screening as high-quality sites in regionally representative locations that are appropriate for use in global model evaluation. There is generally good data volume since the start of air quality monitoring networks in 1990 through 2013. Ozone observations are biased heavily toward North America and Europe with sparse coverage over the rest of the globe. This data set is made available for the purposes of model evaluation as a set of gridded metrics intended to describe the distribution of ozone concentrations on monthly and annual timescales. Metrics include the moments of the distribution, percentiles, maximum daily 8-hour average (MDA8), sum of means over 35 ppb (daily maximum 8-h; SOMO35), accumulated ozone exposure above a threshold of 40 ppbv (AOT40), and metrics related to air quality regulatory thresholds. Gridded data sets are stored as netCDF-4 files and are available to download from the British Atmospheric Data Centre (doi: 10.5285/08fbe63d-fa6d-4a7a-b952-5932e3ab0452). We provide recommendations to the ozone measurement community regarding improving metadata reporting to simplify ongoing and future efforts in working with ozone data from disparate networks in a consistent manner.

  10. Gridded global surface ozone metrics for atmospheric chemistry model evaluation

    NASA Astrophysics Data System (ADS)

    Sofen, E. D.; Bowdalo, D.; Evans, M. J.; Apadula, F.; Bonasoni, P.; Cupeiro, M.; Ellul, R.; Galbally, I. E.; Girgzdiene, R.; Luppo, S.; Mimouni, M.; Nahas, A. C.; Saliba, M.; Tørseth, K.; Wmo Gaw, Epa Aqs, Epa Castnet, Capmon, Naps, Airbase, Emep, Eanet Ozone Datasets, All Other Contributors To

    2015-07-01

    The concentration of ozone at the Earth's surface is measured at many locations across the globe for the purposes of air quality monitoring and atmospheric chemistry research. We have brought together all publicly available surface ozone observations from online databases from the modern era to build a consistent dataset for the evaluation of chemical transport and chemistry-climate (Earth System) models for projects such as the Chemistry-Climate Model Initiative and Aer-Chem-MIP. From a total dataset of approximately 6600 sites and 500 million hourly observations from 1971-2015, approximately 2200 sites and 200 million hourly observations pass screening as high-quality sites in regional background locations that are appropriate for use in global model evaluation. There is generally good data volume since the start of air quality monitoring networks in 1990 through 2013. Ozone observations are biased heavily toward North America and Europe with sparse coverage over the rest of the globe. This dataset is made available for the purposes of model evaluation as a set of gridded metrics intended to describe the distribution of ozone concentrations on monthly and annual timescales. Metrics include the moments of the distribution, percentiles, maximum daily eight-hour average (MDA8), SOMO35, AOT40, and metrics related to air quality regulatory thresholds. Gridded datasets are stored as netCDF-4 files and are available to download from the British Atmospheric Data Centre (doi:10.5285/08fbe63d-fa6d-4a7a-b952-5932e3ab0452). We provide recommendations to the ozone measurement community regarding improving metadata reporting to simplify ongoing and future efforts in working with ozone data from disparate networks in a consistent manner.

  11. Complete Basis Set Model Chemistries

    NASA Astrophysics Data System (ADS)

    Ochterski, Joseph Wallace

    1994-01-01

    The major source of error in most ab initio calculations of molecular energies is the truncation of the one-electron basis set. Extrapolation to the complete basis set second -order (CBS2) limit using the N^{-1 } asymptotic convergence of N-configuration pair natural orbital (PNO) expansions can be combined with the use of relatively small basis sets for the higher-order correlation energy to develop cost effective computational models. Following this strategy, four new computational models denoted CBS-4, CBS-q, CBS-Q, and CBS-QCI/APNO are introduced. The mean absolute deviations (MAD) from experiment for the 125 energies of the G2 test set are 2.0, 1.7, 1.0 and 0.5 kcal/mol, respectively. The error distributions for all six models are indistinguishable from Gaussian distribution functions. Calculations on the cyclopropenyl radical and cyclopropenylidene provide new dissociation energies which are in accord with an interpretation of the thermochemistry emphasizing aromaticity. Several levels of theory are examined as candidates for the routine calculation of molecular geometries. The very simple UHF/3-21G* model gives bond lengths to an accuracy of +/-0.027 A compared with experiment for a test set of 69 small molecules. The commonly used MP2/6-31G* model (RMS error 0.025 A) offers virtually no improvement and use of the considerably more expensive QCISD calculations with the same basis set provides only a modest reduction to 0.020 A. However, spin projected MP3 calculations with a modified basis set including f -functions on Si, P, S, and Cl, reduce the RMS error to 0.010 A. This PMP3/6-31Gdf* model is recommended as a general scheme of geometry optimization for small molecules. The equilibrium structure and binding energy of the water dimer have been determined for several levels of ab initio theory. The basis set convergence of the SCF energy, the intramolecular and intermolecular MP2 energy, and higher-order effects, are examined separately and realistic error

  12. Lagrangian Transport in a coupled Chemistry Climate Model

    NASA Astrophysics Data System (ADS)

    Hoppe, C.; Müller, R.; Günther, G.; Hoffmann, L.

    2012-04-01

    We describe the implementation of a Lagrangian transport core in a chemistry climate model (CCM). This is motivated by the problem that in many cases trace gas distributions in the stratosphere can not be represented properly in a classical Eulerian framework with a fixed model grid, especially in regions where strong trace gas gradients occur. Here, we focus on stratospheric water vapor, which is an important driver of surface climate change on decadal scales. In this case, the transport representation is particularly important in the tropical tropopause layer (TTL), where tropospheric air enters into the stratosphere, i.e. , where the entry level of stratospheric water vapor is determined. For this purpose, the Chemical Lagrangian Model of the Stratosphere (CLaMS) is coupled with the ECHAM/MESSy Atmospheric Chemistry Model (EMAC). The latter includes the ECHAM5 climate model, and a coupling interface, which allows for flexible coupling and switching between different submodels. The chemistry transport model CLaMS provides a full Lagrangian transport representation to calculate constituent transport on a set of air parcels that move along trajectories. In the Lagrangian frame of reference, different vertical velocity representations can be used to drive the trajectories: - kinematic transport in isobaric coordinates with omega as vertical velocity, - diabatic transport in isentropic coordinates, where thetadot calculated from diabatic heatingrates is used as vertical velocity. Since vertical winds in the statosphere derived with the kinematic method from the continuity equation often suffer from excessive numerical noise and errors, we expect that constituent transport using the diabatic method will improve the simulations of stratospheric water vapor. We will present preliminary results illustrating how the different transport representations influence simulated tracer distributions.

  13. Modeling the chemistry of complex petroleum mixtures.

    PubMed

    Quann, R J

    1998-12-01

    Determining the complete molecular composition of petroleum and its refined products is not feasible with current analytical techniques because of the astronomical number of molecular components. Modeling the composition and behavior of such complex mixtures in refinery processes has accordingly evolved along a simplifying concept called lumping. Lumping reduces the complexity of the problem to a manageable form by grouping the entire set of molecular components into a handful of lumps. This traditional approach does not have a molecular basis and therefore excludes important aspects of process chemistry and molecular property fundamentals from the model's formulation. A new approach called structure-oriented lumping has been developed to model the composition and chemistry of complex mixtures at a molecular level. The central concept is to represent an individual molecular or a set of closely related isomers as a mathematical construct of certain specific and repeating structural groups. A complex mixture such as petroleum can then be represented as thousands of distinct molecular components, each having a mathematical identity. This enables the automated construction of large complex reaction networks with tens of thousands of specific reactions for simulating the chemistry of complex mixtures. Further, the method provides a convenient framework for incorporating molecular physical property correlations, existing group contribution methods, molecular thermodynamic properties, and the structure--activity relationships of chemical kinetics in the development of models.

  14. Modeling the chemistry of complex petroleum mixtures.

    PubMed Central

    Quann, R J

    1998-01-01

    Determining the complete molecular composition of petroleum and its refined products is not feasible with current analytical techniques because of the astronomical number of molecular components. Modeling the composition and behavior of such complex mixtures in refinery processes has accordingly evolved along a simplifying concept called lumping. Lumping reduces the complexity of the problem to a manageable form by grouping the entire set of molecular components into a handful of lumps. This traditional approach does not have a molecular basis and therefore excludes important aspects of process chemistry and molecular property fundamentals from the model's formulation. A new approach called structure-oriented lumping has been developed to model the composition and chemistry of complex mixtures at a molecular level. The central concept is to represent an individual molecular or a set of closely related isomers as a mathematical construct of certain specific and repeating structural groups. A complex mixture such as petroleum can then be represented as thousands of distinct molecular components, each having a mathematical identity. This enables the automated construction of large complex reaction networks with tens of thousands of specific reactions for simulating the chemistry of complex mixtures. Further, the method provides a convenient framework for incorporating molecular physical property correlations, existing group contribution methods, molecular thermodynamic properties, and the structure--activity relationships of chemical kinetics in the development of models. PMID:9860903

  15. Chemistry Teacher Education Coalition: Extending the PhysTEC Model to Chemistry

    NASA Astrophysics Data System (ADS)

    Kirchhoff, Mary

    2012-02-01

    The American Association of Employment in Education reports that chemistry, like physics, faces ``some shortage'' of educators. Inspired by the success of the Physics Teacher Education Coalition (PhysTEC), the American Chemical Society (ACS) is developing the Chemistry Teacher Education Coalition (CTEC) to actively engage chemistry departments in the preparation of future chemistry teachers. Engaging chemistry departments in teacher preparation would increase the number and diversity of well-prepared high school chemistry teachers while catalyzing cultural change within chemistry departments. Many features of PhysTEC, such as a grant competition to create model teacher preparation programs and regular conferences, are directly applicable to chemistry. This presentation will provide an overview of ACS efforts to launch a successful CTEC initiative.

  16. OH and HO2 chemistry in clean marine air during SOAPEX-2

    NASA Astrophysics Data System (ADS)

    Sommariva, R.; Haggerstone, A.-L.; Carpenter, L. J.; Carslaw, N.; Creasey, D. J.; Heard, D. E.; Lee, J. D.; Lewis, A. C.; Pilling, M. J.; Zádor, J.

    2004-01-01

    Model-measurement comparisons of HOx in extremely clean air ([NO]<3 ppt) are reported. Measurements were made during the second Southern Ocean Photochemistry Experiment (SOAPEX-2), held in austral summer 1999 at the Cape Grim Baseline Air Pollution Station in north-western Tasmania, Australia. The free-radical chemistry was studied using a zero-dimensional box-model based upon the Master Chemical Mechanism (MCM). Two versions of the model were used, with different levels of chemical complexity, to explore the role of hydrocarbons upon free-radical budgets under very clean conditions. The "detailed" model was constrained to measurements of CO, CH4 and 15 NMHCs, while the "simple" model contained only the CO and CH4 oxidation mechanisms, together with inorganic chemistry. The OH and HO2 (HOx) concentrations predicted by the two models agreed to within 5-10%. The model results were compared with the HOx concentrations measured by the FAGE (Fluorescence Assay by Gas Expansion) technique during four days of clean Southern Ocean marine boundary layer (MBL) air. The models overestimated OH concentrations by about 10% on two days and about 20% on the other two days. HO2 concentrations were measured during two of these days and the models overestimated the measured concentrations by about 40%. Better agreement with measured HO2 was observed by using data from several MBL aerosol measurements to estimate the aerosol surface area and by increasing the HO2 uptake coefficient to unity. This reduced the modelled HO2 overestimate by ~40%, with little effect on OH, because of the poor HO2 to OH conversion at the low ambient NOx concentrations. Local sensitivity analysis and Morris One-At-A-Time analysis were performed on the "simple" model, and showed the importance of reliable measurements of j(O1D) and [HCHO] and of the kinetic parameters that determine the efficiency of O(1D) to OH and HCHO to HO2 conversion. A 2σ standard deviation of 30-40% for OH and 25-30% for HO2 was

  17. Validation of chemistry models employed in a particle simulation method

    NASA Technical Reports Server (NTRS)

    Haas, Brian L.; Mcdonald, Jeffrey D.

    1991-01-01

    The chemistry models employed in a statistical particle simulation method, as implemented in the Intel iPSC/860 multiprocessor computer, are validated and applied. Chemical relaxation of five-species air in these reservoirs involves 34 simultaneous dissociation, recombination, and atomic-exchange reactions. The reaction rates employed in the analytic solutions are obtained from Arrhenius experimental correlations as functions of temperature for adiabatic gas reservoirs in thermal equilibrium. Favorable agreement with the analytic solutions validates the simulation when applied to relaxation of O2 toward equilibrium in reservoirs dominated by dissociation and recombination, respectively, and when applied to relaxation of air in the temperature range 5000 to 30,000 K. A flow of O2 over a circular cylinder at high Mach number is simulated to demonstrate application of the method to multidimensional reactive flows.

  18. INEEL AIR MODELING PROTOCOL ext

    SciTech Connect

    C. S. Staley; M. L. Abbott; P. D. Ritter

    2004-12-01

    Various laws stemming from the Clean Air Act of 1970 and the Clean Air Act amendments of 1990 require air emissions modeling. Modeling is used to ensure that air emissions from new projects and from modifications to existing facilities do not exceed certain standards. For radionuclides, any new airborne release must be modeled to show that downwind receptors do not receive exposures exceeding the dose limits and to determine the requirements for emissions monitoring. For criteria and toxic pollutants, emissions usually must first exceed threshold values before modeling of downwind concentrations is required. This document was prepared to provide guidance for performing environmental compliance-driven air modeling of emissions from Idaho National Engineering and Environmental Laboratory facilities. This document assumes that the user has experience in air modeling and dose and risk assessment. It is not intended to be a "cookbook," nor should all recommendations herein be construed as requirements. However, there are certain procedures that are required by law, and these are pointed out. It is also important to understand that air emissions modeling is a constantly evolving process. This document should, therefore, be reviewed periodically and revised as needed. The document is divided into two parts. Part A is the protocol for radiological assessments, and Part B is for nonradiological assessments. This document is an update of and supersedes document INEEL/INT-98-00236, Rev. 0, INEEL Air Modeling Protocol. This updated document incorporates changes in some of the rules, procedures, and air modeling codes that have occurred since the protocol was first published in 1998.

  19. The coupled atmosphere-chemistry-ocean model SOCOL-MPIOM

    NASA Astrophysics Data System (ADS)

    Muthers, S.; Anet, J. G.; Stenke, A.; Raible, C. C.; Rozanov, E.; Brönnimann, S.; Peter, T.; Arfeuille, F. X.; Shapiro, A. I.; Beer, J.; Steinhilber, F.; Brugnara, Y.; Schmutz, W.

    2014-09-01

    The newly developed atmosphere-ocean-chemistry-climate model SOCOL-MPIOM is presented by demonstrating the influence of chemistry-climate interactions on the climate state and the variability. Therefore, we compare pre-industrial control simulations with (CHEM) and without (NOCHEM) interactive chemistry. In general, the influence of the chemistry on the mean state and the variability is small and mainly restricted to the stratosphere and mesosphere. The atmospheric dynamics mainly differ in polar regions, with slightly stronger polar vortices in the austral and boreal winter, respectively. The strengthening of the vortex is related to larger stratospheric temperature gradients, which are attributed to a parameterisation of the absorption of ozone and oxygen in different wavelength intervals, which is considered in the version with interactive chemistry only. A second reason for the temperature differences between CHEM and NOCHEM is related to diurnal variations in the ozone concentrations in the higher atmosphere, which are missing in NOCHEM. Furthermore, stratospheric water vapour concentrations substantially differ between the two experiments, but their effect on temperature is small. In both setups, the simulated intensity and variability of the northern polar vortex is inside the range of present-day observations. Additionally, the performance of SOCOL-MPIOM under changing external forcings is assessed for the period 1600-2000 using an ensemble of simulations. In the industrial period from 1850 onward SOCOL-MPIOM overestimates the global mean surface air temperature increase in comparison to observational data sets. Sensitivity simulations show that this overestimation can be attributed to a combination of factors: the solar forcing reconstruction, the simulated ozone changes, and incomplete aerosol effects and land use changes.

  20. Modeling in Chemistry as Cultural Practice: A Theoretical Framework with Implications for Chemistry Education. Draft.

    ERIC Educational Resources Information Center

    Erduran, Sibel

    This paper reports on an interdisciplinary theoretical framework for the characterization of models and modeling that can be useful in application to chemistry education. The underlying argument marks a departure from an emphasis on concepts that are the outcomes of chemical inquiry about how knowledge growth occurs through modeling in chemistry.…

  1. Air Pollution Modeling Using A 3-d Hemispheric Nested Model

    NASA Astrophysics Data System (ADS)

    Frohn, L. M.; Christensen, J. H.; Brandt, J.; Hertel, O.

    A 3-D Eulerian transport-chemistry model based on modules and parameterisations from models developed over the last decade at the National Environmental Research Institute (DREAM, DEHM, ACDEP and DEOM) has been developed. The model is hemispheric with currently two nests implemented. The horizontal resolution in the mother domain is 150 km x 150 km. First nest covers the European area wit,h a 50 km x 50 km resolution, second covers the Scandinavian area with a resolution of 16.67 km x 16.67 km. The model employs a chemical scheme (originally 53 species) which has been modified to include a detailed description of the nitrogen chemistry. The concentration of air pollutants, such as sulfur and nitrogen in various forms, has been calculated with the model, applying no nesting as well as one and two nests. The calculated values have been validated by comparison to measurements from more than 200 EMEP monitoring stations. Furthermore deposition of nitrogen to marine waters has been estimated with the model. The goal is to obtain an improved description of spatial and temporal variations in the nutrient deposition to the marine environment. In the presentation the physics and chemistry of the model will be shortly described. Validations of the model calculations by comparison to EMEP measurements will be shown and discussed together with the results of the deposition calculations.

  2. Teaching Chemistry with Electron Density Models

    NASA Astrophysics Data System (ADS)

    Shusterman, Gwendolyn P.; Shusterman, Alan J.

    1997-07-01

    Linus Pauling once said that a topic must satisfy two criteria before it can be taught to students. First, students must be able to assimilate the topic within a reasonable amount of time. Second, the topic must be relevant to the educational needs and interests of the students. Unfortunately, the standard general chemistry textbook presentation of "electronic structure theory", set as it is in the language of molecular orbitals, has a difficult time satisfying either criterion. Many of the quantum mechanical aspects of molecular orbitals are too difficult for most beginning students to appreciate, much less master, and the few applications that are presented in the typical textbook are too limited in scope to excite much student interest. This article describes a powerful new method for teaching students about electronic structure and its relevance to chemical phenomena. This method, which we have developed and used for several years in general chemistry (G.P.S.) and organic chemistry (A.J.S.) courses, relies on computer-generated three-dimensional models of electron density distributions, and largely satisfies Pauling's two criteria. Students find electron density models easy to understand and use, and because these models are easily applied to a broad range of topics, they successfully convey to students the importance of electronic structure. In addition, when students finally learn about orbital concepts they are better prepared because they already have a well-developed three-dimensional picture of electronic structure to fall back on. We note in this regard that the types of models we use have found widespread, rigorous application in chemical research (1, 2), so students who understand and use electron density models do not need to "unlearn" anything before progressing to more advanced theories.

  3. Air Modeling - Observational Meteorological Data

    EPA Pesticide Factsheets

    Observed meteorological data for use in air quality modeling consist of physical parameters that are measured directly by instrumentation, and include temperature, dew point, wind direction, wind speed, cloud cover, cloud layer(s), ceiling height,

  4. Advances in atmospheric chemistry modeling: the LLNL impact tropospheric/stratospheric chemistry model

    SciTech Connect

    Rotman, D A; Atherton, C

    1999-10-07

    We present a unique modeling capability to understand the global distribution of trace gases and aerosols throughout both the troposphere and stratosphere. It includes the ability to simulate tropospheric chemistry that occurs both in the gas phase as well as on the surfaces of solid particles. We have used this capability to analyze observations from particular flight campaigns as well as averaged observed data. Results show the model to accurately simulate the complex chemistry occurring near the tropopause and throughout the troposphere and stratosphere.

  5. Community Multiscale Air Quality Modeling System (CMAQ)

    EPA Pesticide Factsheets

    CMAQ is a computational tool used for air quality management. It models air pollutants including ozone, particulate matter and other air toxics to help determine optimum air quality management scenarios.

  6. A paleoceanographic circulation and chemistry model

    SciTech Connect

    Southam, J.R. )

    1990-01-09

    We have developed a 3-D circulation and tracer field model for paleoceanographic applications. The development of the model was motivated by the desire to explore Cretaceous Oceanic Anoxic Events and ocean chemistry during glacial and interglacial modes of circulation. The bulk of paleoceanographic data is the consequences of biological processes operating in ancient oceans. This type of data represents the response to environmental conditions and can be used to reconstruct water mass properties. To infer both wind driven and thermohaline components of circulation in ancient oceans requires a model which relates circulation and water mass properties. With this motivation in mind we have formulated a model which satisfies the following criteria: (1) geostrophically balanced interior, (2) multiple sites for deep water production, (3) deep water production described by entraining plumes, (4) high vertical resolution in both velocity and property fields, (5) meridional varibility in wind stress and evaporation-precipitation rate, (6) applicable to basin scale where exchange with adjacent oceans described by flux conditions, and (7) the chemistry is coupled through the flux of particulate carbon sinking through the interior.

  7. Feedbacks between air pollution and weather, part 2: Effects on chemistry

    NASA Astrophysics Data System (ADS)

    Makar, P. A.; Gong, W.; Hogrefe, C.; Zhang, Y.; Curci, G.; Žabkar, R.; Milbrandt, J.; Im, U.; Balzarini, A.; Baró, R.; Bianconi, R.; Cheung, P.; Forkel, R.; Gravel, S.; Hirtl, M.; Honzak, L.; Hou, A.; Jiménez-Guerrero, P.; Langer, M.; Moran, M. D.; Pabla, B.; Pérez, J. L.; Pirovano, G.; San José, R.; Tuccella, P.; Werhahn, J.; Zhang, J.; Galmarini, S.

    2015-08-01

    Fully-coupled air-quality models running in "feedback" and "no-feedback" configurations were compared against each other and observation network data as part of Phase 2 of the Air Quality Model Evaluation International Initiative. In the "no-feedback" mode, interactions between meteorology and chemistry through the aerosol direct and indirect effects were disabled, with the models reverting to climatologies of aerosol properties, or a no-aerosol weather simulation, while in the "feedback" mode, the model-generated aerosols were allowed to modify the models' radiative transfer and/or cloud formation processes. Annual simulations with and without feedbacks were conducted for domains in North America for the years 2006 and 2010, and for Europe for the year 2010. Comparisons against observations via annual statistics show model-to-model variation in performance is greater than the within-model variation associated with feedbacks. However, during the summer and during intense emission events such as the Russian forest fires of 2010, feedbacks have a significant impact on the chemical predictions of the models. The aerosol indirect effect was usually found to dominate feedbacks compared to the direct effect. The impacts of direct and indirect effects were often shown to be in competition, for predictions of ozone, particulate matter and other species. Feedbacks were shown to result in local and regional shifts of ozone-forming chemical regime, between NOx- and VOC-limited environments. Feedbacks were shown to have a substantial influence on biogenic hydrocarbon emissions and concentrations: North American simulations incorporating both feedbacks resulted in summer average isoprene concentration decreases of up to 10%, while European direct effect simulations during the Russian forest fire period resulted in grid average isoprene changes of -5 to +12.5%. The atmospheric transport and chemistry of large emitting sources such as plumes from forest fires and large cities

  8. Use of model compounds in coal chemistry

    SciTech Connect

    Collins, C J

    1980-01-01

    The use of model compounds in coal chemistry has been summarized. Several examples from the literature, and also from work at Oak Ridge National Laboratory have been used to illustrate the main principles involved. The current controversy on the subject of model compounds is believed to stem from a semantic misunderstanding owing to different definitions of what a model compound is. The definition of a model compound from the organic chemist's point of view is that it is a substance which may possess at least one property or structural feature suspected of being present in the sample investigated. The sample may be coal itself, a maceral, a coal-derived material or a hydrogen-donor solvent. It is stressed that a recognition of the structure-reactivity relationship in organic compounds is necessary to avoid false conclusions.

  9. Effects of stratospheric ozone recovery on tropospheric chemistry and air quality

    NASA Astrophysics Data System (ADS)

    Zhang, H.; Wu, S.; Wang, Y.

    2013-08-01

    The stratospheric ozone has decreased greatly since 1980 due to ozone depleting substances (ODSs). As a result of the implementation of the Montreal Protocol and its amendments and adjustments, stratospheric ozone is expected to recover towards its pre-1980 level in the coming decades. We examine the implications of stratospheric ozone recovery for the tropospheric chemistry and ozone air quality with a global chemical transport model (GEOS-Chem). Significant decreases in surface ozone photolysis rates due to stratospheric ozone recovery are simulated. Increases in ozone lifetime by up to 7% are calculated in the troposphere. The global average OH decreases by 1.74% and the global burden of tropospheric ozone increases by 0.78%. The perturbations to tropospheirc ozone and surface ozone show large seasonal and spatial variations. General increases in surface ozone are calculated for each season, with increases by up to 5% for some regions.

  10. Algebraic Turbulence-Chemistry Interaction Model

    NASA Technical Reports Server (NTRS)

    Norris, Andrew T.

    2012-01-01

    The results of a series of Perfectly Stirred Reactor (PSR) and Partially Stirred Reactor (PaSR) simulations are compared to each other over a wide range of operating conditions. It is found that the PaSR results can be simulated by a PSR solution with just an adjusted chemical reaction rate. A simple expression has been developed that gives the required change in reaction rate for a PSR solution to simulate the PaSR results. This expression is the basis of a simple turbulence-chemistry interaction model. The interaction model that has been developed is intended for use with simple one-step global reaction mechanisms and for steady-state flow simulations. Due to the simplicity of the model there is very little additional computational cost in adding it to existing CFD codes.

  11. Online coupled regional meteorology chemistry models in Europe: current status and prospects

    NASA Astrophysics Data System (ADS)

    Baklanov, A.; Schlünzen, K.; Suppan, P.; Baldasano, J.; Brunner, D.; Aksoyoglu, S.; Carmichael, G.; Douros, J.; Flemming, J.; Forkel, R.; Galmarini, S.; Gauss, M.; Grell, G.; Hirtl, M.; Joffre, S.; Jorba, O.; Kaas, E.; Kaasik, M.; Kallos, G.; Kong, X.; Korsholm, U.; Kurganskiy, A.; Kushta, J.; Lohmann, U.; Mahura, A.; Manders-Groot, A.; Maurizi, A.; Moussiopoulos, N.; Rao, S. T.; Savage, N.; Seigneur, C.; Sokhi, R. S.; Solazzo, E.; Solomos, S.; Sørensen, B.; Tsegas, G.; Vignati, E.; Vogel, B.; Zhang, Y.

    2014-01-01

    Online coupled mesoscale meteorology atmospheric chemistry models have undergone a rapid evolution in recent years. Although mainly developed by the air quality modelling community, these models are also of interest for numerical weather prediction and regional climate modelling as they can consider not only the effects of meteorology on air quality, but also the potentially important effects of atmospheric composition on weather. Two ways of online coupling can be distinguished: online integrated and online access coupling. Online integrated models simulate meteorology and chemistry over the same grid in one model using one main time step for integration. Online access models use independent meteorology and chemistry modules that might even have different grids, but exchange meteorology and chemistry data on a regular and frequent basis. This article offers a comprehensive review of the current research status of online coupled meteorology and atmospheric chemistry modelling within Europe. Eighteen regional online coupled models developed or being used in Europe are described and compared. Topics discussed include a survey of processes relevant to the interactions between atmospheric physics, dynamics and composition; a brief overview of existing online mesoscale models and European model developments; an analysis on how feedback processes are treated in these models; numerical issues associated with coupled models; and several case studies and model performance evaluation methods. Finally, this article highlights selected scientific issues and emerging challenges that require proper consideration to improve the reliability and usability of these models for the three scientific communities: air quality, numerical meteorology modelling (including weather prediction) and climate modelling. This review will be of particular interest to model developers and users in all three fields as it presents a synthesis of scientific progress and provides recommendations for

  12. Halogen Chemistry in the CMAQ Model

    EPA Science Inventory

    Halogens (iodine and bromine) emitted from oceans alter atmospheric chemistry and influence atmospheric ozone mixing ratio. We previously incorporated a representation of detailed halogen chemistry and emissions of organic and inorganic halogen species into the hemispheric Commun...

  13. Fully coupled "online" chemistry within the WRF model

    NASA Astrophysics Data System (ADS)

    Grell, Georg A.; Peckham, Steven E.; Schmitz, Rainer; McKeen, Stuart A.; Frost, Gregory; Skamarock, William C.; Eder, Brian

    A fully coupled "online" Weather Research and Forecasting/Chemistry (WRF/Chem) model has been developed. The air quality component of the model is fully consistent with the meteorological component; both components use the same transport scheme (mass and scalar preserving), the same grid (horizontal and vertical components), and the same physics schemes for subgrid-scale transport. The components also use the same timestep, hence no temporal interpolation is needed. The chemistry package consists of dry deposition ("flux-resistance" method), biogenic emission as in [Simpson et al., 1995. Journal of Geophysical Research 100D, 22875-22890; Guenther et al., 1994. Atmospheric Environment 28, 1197-1210], the chemical mechanism from RADM2, a complex photolysis scheme (Madronich scheme coupled with hydrometeors), and a state of the art aerosol module (MADE/SORGAM aerosol parameterization). The WRF/Chem model is statistically evaluated and compared to MM5/Chem and to detailed photochemical data collected during the summer 2002 NEAQS field study. It is shown that the WRF/Chem model is statistically better skilled in forecasting O 3 than MM5/Chem, with no appreciable differences between models in terms of bias with the observations. Furthermore, the WRF/Chem model consistently exhibits better skill at forecasting the O 3 precursors CO and NO y at all of the surface sites. However, the WRF/Chem model biases of these precursors and of other gas-phase species are persistently higher than for MM5/Chem, and are most often biased high compared to observations. Finally, we show that the impact of other basic model assumptions on these same statistics can be much larger than the differences caused by model differences. An example showing the sensitivity of various statistical measures with respect to the treatment of biogenic volatile organic compounds emissions illustrates this impact.

  14. A priori analysis of a LES subfilter model for soot-turbulence-chemistry interactions

    NASA Astrophysics Data System (ADS)

    Lew, Jeffry K.; Mueller, Michael E.

    2016-11-01

    In a turbulent flame, soot interacts with turbulence and combustion chemistry at the smallest scales. An existing LES subfilter model proposes that soot-turbulence interactions are independent of chemistry due to the time scale separation between slow soot formation and rapid heat-releasing reactions. However, interactions between soot, turbulence, and chemistry occur even after the nucleation of soot from polycyclic aromatic hydrocarbon (PAH) dimers. In fact, the interplay of soot and gas-phase chemistry may be intensified during oxidation and surface growth. To capture these effects, a dependence on the local mixture fraction has been introduced into the subfilter model. This modified model is evaluated a priori using a direct numerical simulation (DNS) database of soot evolution in a turbulent non-premixed n-heptane/air jet flame.

  15. Chemistry and Climate in Asia - An Earth System Modeling Project

    NASA Astrophysics Data System (ADS)

    Barth, M. C.; Emmons, L. K.; Massie, S. T.; Pfister, G.; Romero Lankao, P.; Lamarque, J.; Carmichael, G. R.

    2011-12-01

    Asia is one of the most highly populated and economically dynamic regions in the world, with much of the population located in growing mega-cities. It is a region with significant emissions of greenhouse gases, aerosols and other pollutants, which pose high health risks to urban populations. Emissions of these aerosols and gases increased drastically over the last decade due to economic growth and urbanization and are expected to rise further in the near future. As such, the continent plays a role in influencing climate change via its effluent of aerosols and gaseous pollutants. Asia is also susceptible to adverse climate change through interactions between aerosols and clouds, which potentially can have serious implications for freshwater resources. We are developing an integrated inter-disciplinary program to focus on Asia, its climate, air quality, and impact on humans that will include connections with hydrology, ecosystems, extreme weather events, and human health. The primary goal of this project is to create a team to identify key scientific questions and establish networks of specialists to create a plan for future studies to address these questions. A second goal is to establish research facilities and a framework for investigating chemistry and climate over Asia. These facilities include producing high resolution Earth System Model simulations that have been evaluated with meteorological and chemical measurements, producing high-resolution emission inventories, analyzing satellite data, and analyzing the vulnerability of humans to air quality and extreme natural events. In this presentation we will describe in more detail these activities and discuss a future workshop on the impact of chemistry in climate on air quality and human health.

  16. Afterglow chemistry of atmospheric-pressure helium-oxygen plasmas with humid air impurity

    NASA Astrophysics Data System (ADS)

    Murakami, Tomoyuki; Niemi, Kari; Gans, Timo; O'Connell, Deborah; Graham, William G.

    2014-04-01

    The formation of reactive species in the afterglow of a radio-frequency-driven atmospheric-pressure plasma in a fixed helium-oxygen feed gas mixture (He+0.5%O2) with humid air impurity (a few hundred ppm) is investigated by means of an extensive global plasma chemical kinetics model. As an original objective, we explore the effects of humid air impurity on the biologically relevant reactive species in an oxygen-dependent system. After a few milliseconds in the afterglow environment, the densities of atomic oxygen (O) decreases from 1015 to 1013 cm-3 and singlet delta molecular oxygen (O2(1D)) of the order of 1015 cm-3 decreases by a factor of two, while the ozone (O3) density increases from 1014 to 1015 cm-3. Electrons and oxygen ionic species, initially of the order of 1011 cm-3, recombine much faster on the time scale of some microseconds. The formation of atomic hydrogen (H), hydroxyl radical (OH), hydroperoxyl (HO2), hydrogen peroxide (H2O2), nitric oxide (NO) and nitric acid (HNO3) resulting from the humid air impurity as well as the influence on the afterglow chemistry is clarified with particular emphasis on the formation of dominant reactive oxygen species (ROS). The model suggests that the reactive species predominantly formed in the afterglow are major ROS O2(1D) and O3 (of the order of 1015 cm-3) and rather minor hydrogen- and nitrogen-based reactive species OH, H2O2, HNO3 and NO2/NO3, of which densities are comparable to the O-atom density (of the order of 1013 cm-3). Furthermore, the model quantitatively reproduces the experimental results of independent O and O3 density measurements.

  17. Session on coupled atmospheric/chemistry coupled models

    NASA Technical Reports Server (NTRS)

    Thompson, Anne

    1993-01-01

    The session on coupled atmospheric/chemistry coupled models is reviewed. Current model limitations, current issues and critical unknowns, and modeling activity are addressed. Specific recommendations and experimental strategies on the following are given: multiscale surface layer - planetary boundary layer - chemical flux measurements; Eulerian budget study; and Langrangian experiment. Nonprecipitating cloud studies, organized convective systems, and aerosols - heterogenous chemistry are also discussed.

  18. College Students Solving Chemistry Problems: A Theoretical Model of Expertise

    ERIC Educational Resources Information Center

    Taasoobshirazi, Gita; Glynn, Shawn M.

    2009-01-01

    A model of expertise in chemistry problem solving was tested on undergraduate science majors enrolled in a chemistry course. The model was based on Anderson's "Adaptive Control of Thought-Rational" (ACT-R) theory. The model shows how conceptualization, self-efficacy, and strategy interact and contribute to the successful solution of quantitative,…

  19. Genetic Algorithm Approaches to Prebiobiotic Chemistry Modeling

    NASA Technical Reports Server (NTRS)

    Lohn, Jason; Colombano, Silvano

    1997-01-01

    We model an artificial chemistry comprised of interacting polymers by specifying two initial conditions: a distribution of polymers and a fixed set of reversible catalytic reactions. A genetic algorithm is used to find a set of reactions that exhibit a desired dynamical behavior. Such a technique is useful because it allows an investigator to determine whether a specific pattern of dynamics can be produced, and if it can, the reaction network found can be then analyzed. We present our results in the context of studying simplified chemical dynamics in theorized protocells - hypothesized precursors of the first living organisms. Our results show that given a small sample of plausible protocell reaction dynamics, catalytic reaction sets can be found. We present cases where this is not possible and also analyze the evolved reaction sets.

  20. Stratospheric Heterogeneous Chemistry and Microphysics: Model Development, Validation and Applications

    NASA Technical Reports Server (NTRS)

    Turco, Richard P.

    1996-01-01

    The objectives of this project are to: define the chemical and physical processes leading to stratospheric ozone change that involve polar stratospheric clouds (PSCS) and the reactions occurring on the surfaces of PSC particles; study the formation processes, and the physical and chemical properties of PSCS, that are relevant to atmospheric chemistry and to the interpretation of field measurements taken during polar stratosphere missions; develop quantitative models describing PSC microphysics and heterogeneous chemical processes; assimilate laboratory and field data into these models; and calculate the extent of chemical processing on PSCs and the impact of specific microphysical processes on polar composition and ozone depletion. During the course of the project, a new coupled microphysics/physical-chemistry/ photochemistry model for stratospheric sulfate aerosols and nitric acid and ice PSCs was developed and applied to analyze data collected during NASA's Arctic Airborne Stratospheric Expedition-II (AASE-II) and other missions. In this model, detailed treatments of multicomponent sulfate aerosol physical chemistry, sulfate aerosol microphysics, polar stratospheric cloud microphysics, PSC ice surface chemistry, as well as homogeneous gas-phase chemistry were included for the first time. In recent studies focusing on AASE measurements, the PSC model was used to analyze specific measurements from an aircraft deployment of an aerosol impactor, FSSP, and NO(y) detector. The calculated results are in excellent agreement with observations for particle volumes as well as NO(y) concentrations, thus confirming the importance of supercooled sulfate/nitrate droplets in PSC formation. The same model has been applied to perform a statistical study of PSC properties in the Northern Hemisphere using several hundred high-latitude air parcel trajectories obtained from Goddard. The rates of ozone depletion along trajectories with different meteorological histories are presently

  1. Modeling SOAaq Formation: Explicit Organic Chemistry in Cloud Droplets with CMAQ

    NASA Astrophysics Data System (ADS)

    Carlton, A. G.; Sareen, N.; Fahey, K.; Hutzell, W. T.

    2013-12-01

    Aqueous multiphase chemistry in the atmosphere has a substantial impact on climate and can lead to air quality changes that adversely impact human health and the environment. The chemistry is complex because of the variety of compounds present in the atmosphere and the phase transitions associated with multiphase reactions. These reactions can lead to the formation of secondary organic aerosols (SOAAQ) in the atmosphere. When included, current photochemical models typically use a simple parameterization to describe SOAAQ formation. Here, we discuss the implementation of explicit aqueous SOA chemistry in a box model of the CMAQ 5.0.1 aqueous phase chemistry mechanism using the Kinetic PreProcessor (KPP). The expanded chemistry model includes reactions of glyoxal, methylglyoxal, and glycolaldehyde as precursors to form SOAAQ and is based on the mechanism from Lim et. al. 2010. The current aqueous phase chemistry module in CMAQ uses a forward Euler method to solve the system of oxidation equations, estimating the pH with a bisection method assuming electroneutrality, and multiphase processes are solved sequentially. This is not robust for systems with large dynamic range (e.g., multiphase systems), and inhibits expansion of the aqueous phase chemical mechanism to adequately incorporate the growing body of literature that describes multiphase organic chemistry. The KPP solver allows for all processes to be solved simultaneously and facilitates expansion of the current mechanism. Addition of explicit organic reactions and H2O2 photolysis in the KPP box model results in increased mass of organic aerosol and more realistic predictions. For particulate matter focused air quality management strategies to be effective, it is important that models move away from the yield-based approach currently used and expand to include more explicit organic chemistry.

  2. Hybrid regional air pollution models

    SciTech Connect

    Drake, R.L.

    1980-03-01

    This discussion deals with a family of air quality models for predicting and analyzing the fine particulate loading in the atmosphere, for assessing the extent and degree of visibility impairment, and for determining the potential of pollutants for increasing the acidity of soils and water. The major horizontal scales of interest are from 400km to 2000km; and the time scales may vary from several hours, to days, weeks, and a few months or years, depending on the EPA regulations being addressed. First the role air quality models play in the general family of atmospheric simulation models is described. Then, the characteristics of a well-designed, comprehensive air quality model are discussed. Following this, the specific objectives of this workshop are outlined, and their modeling implications are summarized. There are significant modeling differences produced by the choice of the coordinate system, whether it be the fixed Eulerian system, the moving Lagrangian system, or some hybrid of the two. These three systems are briefly discussed, and a list of hybrid models that are currently in use are given. Finally, the PNL regional transport model is outlined and a number of research needs are listed.

  3. Air chemistry over the tropical forest of Guyana

    NASA Astrophysics Data System (ADS)

    Gregory, G. L.; Harriss, R. C.; Talbot, R. W.; Browell, E. V.; Beck, S. M.; Sebacher, D. I.; Rasmussen, R. A.; Garstang, M.; Andreae, M. O.; Hinton, R. R.

    1986-07-01

    A comparison is made of the atmospheric chemistry within and above the atmospheric boundary layer over the tropical forest of Guyana. The data were gathered by NASA during the Global Tropospheric Experiment program in 1984, with an instrumented aircraft being used to collect data at altitudes of 3.5 km and between 150-450 m. The synoptic data covered concentrations of O3, CO, dimethylsulfide (DMS), halocarbons and isoprene and three different aerosol particulate measurements (DIAL system). The forest boundary layer proved to be a significant sink for O3, and a source for substantial emissions of DMS. Isoprene emitted by the forest was photochemically oxidized and became a source of CO.

  4. CFD Modeling For Urban Air Quality Studies

    SciTech Connect

    Lee, R L; Lucas, L J; Humphreys, T D; Chan, S T

    2003-10-27

    The computational fluid dynamics (CFD) approach has been increasingly applied to many atmospheric applications, including flow over buildings and complex terrain, and dispersion of hazardous releases. However there has been much less activity on the coupling of CFD with atmospheric chemistry. Most of the atmospheric chemistry applications have been focused on the modeling of chemistry on larger spatial scales, such as global or urban airshed scale. However, the increased attentions to terrorism threats have stimulated the need of much more detailed simulations involving chemical releases within urban areas. This motivated us to develop a new CFD/coupled-chemistry capability as part of our modeling effort.

  5. Troposphere-Stratosphere Coupled Chemistry-Climate Interactions: From Global Warming Projections to Air Quality

    NASA Astrophysics Data System (ADS)

    Nowack, P. J.; Abraham, N. L.; Maycock, A. C.; Braesicke, P.; Pyle, J. A.

    2015-12-01

    Changes in stratospheric composition can affect tropospheric composition and vice versa. Of particular interest are trace gas concentrations at the interface between these two atmospheric layers in the tropical upper troposphere and lower stratosphere (UTLS). This is due to the crucial importance of composition changes in the UTLS for the global energy budget. In a recent study (Nowack et al., 2015), we provided further evidence that composition changes in the tropical UTLS can significantly affect global warming projections. Using a state-of-the-art atmosphere-ocean chemistry-climate model, we found a ~20% smaller global warming in response to an abrupt 4xCO2 forcing if composition feedbacks were included in the calculations as compared to simulations in which composition feedbacks were not considered. We attributed this large difference in surface warming mainly to circulation-driven decreases in tropical UTLS ozone and related changes in stratospheric water vapor, partly counteracted by simultaneous changes in ice clouds. Here, we explain why this result is expected to differ between models and how, inter alia, tropospheric chemical mechanisms can contribute to this uncertainty. We highlight that improving our understanding of processes in the tropical UTLS and their representation in Earth system models remains a key challenge in climate research.Finally, taking geoengineering as a new example, we show that changes in the stratosphere can have an impact on air quality in the troposphere. In particular, we explain for a simple solar radiation management scenario how changes in surface ozone can be linked to changes in meteorology and composition in the troposphere and stratosphere. In conclusion, we highlight the importance of considering air quality impacts when evaluating a variety of geoengineering scenarios. Reference: Nowack, P.J., Abraham, N.L., Maycock, A.C., Braesicke, P., Gregory, J.M., Joshi, M.M., Osprey, A., and Pyle, J.A. Nature Climate Change 5, 41

  6. Nonequilibrium radiation and chemistry models for aerocapture vehicle flowfields

    NASA Technical Reports Server (NTRS)

    Carlson, Leland A.

    1990-01-01

    The continued development and improvement of the viscous shock layer (VSL) nonequilibrium chemistry blunt body engineering code, the incorporation in a coupled manner of radiation models into the VSL code, and the initial development of appropriate precursor models are presented.

  7. Tropospheric ozone simulation with a chemistry-general circulation model: Influence of higher hydrocarbon chemistry

    NASA Astrophysics Data System (ADS)

    Roelofs, Geert-Jan; Lelieveld, Jos

    2000-09-01

    We present an improved version of the global chemistry-general circulation model of Roelofs and Lelieveld [1997]. The major model improvement is the representation of higher hydrocarbon chemistry, implemented by means of the Carbon Bond Mechanism 4 (CBM-4). Simulated tropospheric ozone concentrations at remote locations, which agreed well with observations in the previous model version, are not affected much by the chemistry of higher hydrocarbons. However, ozone formation in the polluted boundary layer is significantly enhanced, resulting in a more realistic simulation of surface ozone in regions such as North America, Europe, and Southeast Asia. Our model simulates a net global tropospheric ozone production of 73 Tg yr-1 when higher hydrocarbon chemistry is considered, and -36 Tg yr-1 without higher hydrocarbon chemistry. The simulated seasonality of surface CO agrees well with observations. However, the southern hemispheric maximum for O3 and CO associated with biomass burning emissions is delayed by 1 month compared to the observations, which demonstrates the need for a better representation of biomass burning emissions. Simulated peroxyacetyl nitrate (PAN) concentrations agree well with observed values, although the variability is underestimated. OH decreases strongly in the continental boundary layer due to its reaction with higher hydrocarbons. However, this is almost compensated by an increase of OH over oceans in the lower half of the troposphere. Consideration of higher hydrocarbon chemistry decreases the global annual tropospheric OH concentration by about 8% compared to a background tropospheric chemistry scheme. Further, the radiative forcing by anthropogenically increased tropospheric ozone on the northern hemisphere increases, especially in July. The forcing also increases on the southern hemisphere where biomass burning emissions produce tropospheric ozone, except between December and June, that is, outside the biomass burning season, when ozone

  8. Modeling the chemistry of plasma polymerization using mass spectrometry.

    PubMed

    Ihrig, D F; Stockhaus, J; Scheide, F; Winkelhake, Oliver; Streuber, Oliver

    2003-04-01

    The goal of the project is a solvent free painting shop. The environmental technologies laboratory is developing processes of plasma etching and polymerization. Polymerized thin films are first-order corrosion protection and primer for painting. Using pure acetylene we get very nice thin films which were not bonded very well. By using air as bulk gas it is possible to polymerize, in an acetylene plasma, well bonded thin films which are stable first-order corrosion protections and good primers. UV/Vis spectroscopy shows nitrogen oxide radicals in the emission spectra of pure nitrogen and air. But nitrogen oxide is fully suppressed in the presence of acetylene. IR spectroscopy shows only C=O, CH(2) and CH(3) groups but no nitrogen species. With the aid of UV/Vis spectra and the chemistry of ozone formation it is possible to define reactive traps and steps, molecule depletion and processes of proton scavenging and proton loss. Using a numerical model it is possible to evaluate these processes and to calculate theoretical mass spectra. Adjustment of theoretical mass spectra to real measurements leads to specific channels of polymerization which are driven by radicals especially the acetyl radical. The estimated theoretical mass spectra show the specific channels of these chemical processes. It is possible to quantify these channels. This quantification represents the mass flow through this chemical system. With respect to these chemical processes it is possible to have an idea of pollutant production processes.

  9. Molecular Modeling and Computational Chemistry at Humboldt State University.

    ERIC Educational Resources Information Center

    Paselk, Richard A.; Zoellner, Robert W.

    2002-01-01

    Describes a molecular modeling and computational chemistry (MM&CC) facility for undergraduate instruction and research at Humboldt State University. This facility complex allows the introduction of MM&CC throughout the chemistry curriculum with tailored experiments in general, organic, and inorganic courses as well as a new molecular modeling…

  10. Representational Translation with Concrete Models in Organic Chemistry

    ERIC Educational Resources Information Center

    Stull, Andrew T.; Hegarty, Mary; Dixon, Bonnie; Stieff, Mike

    2012-01-01

    In representation-rich domains such as organic chemistry, students must be facile and accurate when translating between different 2D representations, such as diagrams. We hypothesized that translating between organic chemistry diagrams would be more accurate when concrete models were used because difficult mental processes could be augmented by…

  11. Chemistry Modeling for Aerothermodynamics and TPS

    NASA Technical Reports Server (NTRS)

    Wang, Dun-You; Stallcop, James R.; Dateo, Christopher E.; Schwenke, David W.; Haliciogiu, Timur; Huo, Winifred

    2004-01-01

    Recent advances in supercomputers and highly scalable quantum chemistry software render computational chemistry methods a viable means of providing chemistry data for aerothermal analysis at a specific level of confidence. Four examples of first principles quantum chemistry calculations will be presented. The study of the highly nonequilibrium rotational distribution of nitrogen molecule from the exchange reaction N + N2 illustrates how chemical reactions can influence the rotational distribution. The reaction C2H + H2 is one example of a radical reaction that occurs during hypersonic entry into a methane containing atmosphere. A study of the etching of Si surface illustrates our approach to surface reactions. A recently developed web accessible database and software tool (DDD) that provides the radiation profile of diatomic molecules is also described.

  12. Chemistry Modeling for Aerothermodynamics and TPS

    NASA Technical Reports Server (NTRS)

    Wang, Dunyou; Stallcop, James R.; Dateo, Christopher e.; Schwenke, David W.; Halicioglu, Timur; Huo, winifred M.

    2005-01-01

    Recent advances in supercomputers and highly scalable quantum chemistry software render computational chemistry methods a viable means of providing chemistry data for aerothermal analysis at a specific level of confidence. Four examples of first principles quantum chemistry calculations will be presented. Study of the highly nonequilibrium rotational distribution of a nitrogen molecule from the exchange reaction N + N2 illustrates how chemical reactions can influence rotational distribution. The reaction C2H + H2 is one example of a radical reaction that occurs during hypersonic entry into an atmosphere containing methane. A study of the etching of a Si surface illustrates our approach to surface reactions. A recently developed web accessible database and software tool (DDD) that provides the radiation profile of diatomic molecules is also described.

  13. Dimethylsulfide chemistry: annual, seasonal, and spatial impacts on SO_4^(2-)

    EPA Science Inventory

    We incorporated oceanic emissions and atmospheric chemistry of dimethylsulfide (DMS) into the hemispheric Community Multiscale Air Quality model and performed annual model simulations without and with DMS chemistry. The model without DMS chemistry predicts higher concentrations o...

  14. Can a coupled meteorology–chemistry model reproduce the ...

    EPA Pesticide Factsheets

    The ability of a coupled meteorology–chemistry model, i.e., Weather Research and Forecast and Community Multiscale Air Quality (WRF-CMAQ), to reproduce the historical trend in aerosol optical depth (AOD) and clear-sky shortwave radiation (SWR) over the Northern Hemisphere has been evaluated through a comparison of 21-year simulated results with observation-derived records from 1990 to 2010. Six satellite-retrieved AOD products including AVHRR, TOMS, SeaWiFS, MISR, MODIS-Terra and MODIS-Aqua as well as long-term historical records from 11 AERONET sites were used for the comparison of AOD trends. Clear-sky SWR products derived by CERES at both the top of atmosphere (TOA) and surface as well as surface SWR data derived from seven SURFRAD sites were used for the comparison of trends in SWR. The model successfully captured increasing AOD trends along with the corresponding increased TOA SWR (upwelling) and decreased surface SWR (downwelling) in both eastern China and the northern Pacific. The model also captured declining AOD trends along with the corresponding decreased TOA SWR (upwelling) and increased surface SWR (downwelling) in the eastern US, Europe and the northern Atlantic for the period of 2000–2010. However, the model underestimated the AOD over regions with substantial natural dust aerosol contributions, such as the Sahara Desert, Arabian Desert, central Atlantic and northern Indian Ocean. Estimates of the aerosol direct radiative effect (DRE) at TOA a

  15. Meteorological and air pollution modeling for an urban airport

    NASA Technical Reports Server (NTRS)

    Swan, P. R.; Lee, I. Y.

    1980-01-01

    Results are presented of numerical experiments modeling meteorology, multiple pollutant sources, and nonlinear photochemical reactions for the case of an airport in a large urban area with complex terrain. A planetary boundary-layer model which predicts the mixing depth and generates wind, moisture, and temperature fields was used; it utilizes only surface and synoptic boundary conditions as input data. A version of the Hecht-Seinfeld-Dodge chemical kinetics model is integrated with a new, rapid numerical technique; both the San Francisco Bay Area Air Quality Management District source inventory and the San Jose Airport aircraft inventory are utilized. The air quality model results are presented in contour plots; the combined results illustrate that the highly nonlinear interactions which are present require that the chemistry and meteorology be considered simultaneously to make a valid assessment of the effects of individual sources on regional air quality.

  16. Integrated Meteorology and Chemistry Modeling: Evaluation and Research Needs

    EPA Science Inventory

    Over the past decade several online integrated atmospheric chemical-transport and meteorology modeling systems with varying levels of interactions among different atmospheric processes have been developed. A variety of approaches to meteorology-chemistry integration with differe...

  17. Modeling the Explicit Chemistry of Anthropogenic and Biogenic Organic Aerosols

    SciTech Connect

    Madronich, Sasha

    2015-12-09

    The atmospheric burden of Secondary Organic Aerosols (SOA) remains one of the most important yet uncertain aspects of the radiative forcing of climate. This grant focused on improving our quantitative understanding of SOA formation and evolution, by developing, applying, and improving a highly detailed model of atmospheric organic chemistry, the Generation of Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A) model. Eleven (11) publications have resulted from this grant.

  18. Urban Air Quality Modelling with AURORA: Prague and Bratislava

    NASA Astrophysics Data System (ADS)

    Veldeman, N.; Viaene, P.; De Ridder, K.; Peelaerts, W.; Lauwaet, D.; Muhammad, N.; Blyth, L.

    2012-04-01

    The European Commission, in its strategy to protect the health of the European citizens, states that in order to assess the impact of air pollution on public health, information on long-term exposure to air pollution should be available. Currently, indicators of air quality are often being generated using measured pollutant concentrations. While air quality monitoring stations data provide accurate time series information at specific locations, air quality models have the advantage of being able to assess the spatial variability of air quality (for different resolutions) and predict air quality in the future based on different scenarios. When running such air quality models at a high spatial and temporal resolution, one can simulate the actual situation as closely as possible, allowing for a detailed assessment of the risk of exposure to citizens from different pollutants. AURORA (Air quality modelling in Urban Regions using an Optimal Resolution Approach), a prognostic 3-dimensional Eulerian chemistry-transport model, is designed to simulate urban- to regional-scale atmospheric pollutant concentration and exposure fields. The AURORA model also allows to calculate the impact of changes in land use (e.g. planting of trees) or of emission reduction scenario's on air quality. AURORA is currently being applied within the ESA atmospheric GMES service, PASODOBLE (http://www.myair-eu.org), that delivers information on air quality, greenhouse gases, stratospheric ozone, … At present there are two operational AURORA services within PASODOBLE. Within the "Air quality forecast service" VITO delivers daily air quality forecasts for Belgium at a resolution of 5 km and for the major Belgian cities: Brussels, Ghent, Antwerp, Liege and Charleroi. Furthermore forecast services are provided for Prague, Czech Republic and Bratislava, Slovakia, both at a resolution of 1 km. The "Urban/regional air quality assessment service" provides urban- and regional-scale maps (hourly resolution

  19. Distribution and budget of O3 in the troposphere calculated with a chemistry general circulation model

    NASA Astrophysics Data System (ADS)

    Roelofs, Geert-Jan; Lelieveld, Jos

    1995-10-01

    We present results of global tropospheric chemistry simulations with the coupled chemistry/atmospheric general circulation model ECHAM. Ultimately, the model will be used to study climate changes induced by anthropogenic influences on the chemistry of the atmosphere; meteorological parameters that are important for the chemistry, such as temperature, humidity, air motions, cloud and rain characteristics, and mixing processes are calculated on-line. The chemical part of the model describes background tropospheric CH4-CO-NOx-HOx photochemistry. Emissions of NO and CO, surface concentrations of CH4, and stratospheric concentrations of O3 and NOy are prescribed as boundary conditions. Calculations of the tropospheric O3 budget indicate that seasonal variabilities of the photochemical production and of injection from the stratosphere are represented realistically, although some aspects of the model still need improvement. Comparisons of calculated O3 surface concentrations and O3 profiles with available measurements show that the model reproduces O3 distributions in remote tropical and midlatitudinal sites. Also, the model matches typical profiles connected with deep convection in the Intertropical Convergence Zone (ITCZ). However, the model tends to underestimate O3 concentrations at the poles and in relatively polluted regions. These underestimates are caused by the poor representation of tropopause foldings in midlatitudes, which form a significant source of tropospheric O3 from the stratosphere, too weak transport to the poles, and the neglect of higher hydrocarbon chemistry. Also, mixing of polluted continental boundary layer air into the free troposphere may be underestimated. We discuss how these model deficiencies will be improved in the future.

  20. Modeling local chemistry in PWR steam generator crevices

    SciTech Connect

    Millett, P.J.

    1997-02-01

    Over the past two decades steam generator corrosion damage has been a major cost impact to PWR owners. Crevices and occluded regions create thermal-hydraulic conditions where aggressive impurities can become highly concentrated, promoting localized corrosion of the tubing and support structure materials. The type of corrosion varies depending on the local conditions, with stress corrosion cracking being the phenomenon of most current concern. A major goal of the EPRI research in this area has been to develop models of the concentration process and resulting crevice chemistry conditions. These models may then be used to predict crevice chemistry based on knowledge of bulk chemistry, thereby allowing the operator to control corrosion damage. Rigorous deterministic models have not yet been developed; however, empirical approaches have shown promise and are reflected in current versions of the industry-developed secondary water chemistry guidelines.

  1. Air pollution modeling and its application III

    SciTech Connect

    De Wispelaere, C.

    1984-01-01

    This book focuses on the Lagrangian modeling of air pollution. Modeling cooling tower and power plant plumes, modeling the dispersion of heavy gases, remote sensing as a tool for air pollution modeling, dispersion modeling including photochemistry, and the evaluation of model performances in practical applications are discussed. Specific topics considered include dispersion in the convective boundary layer, the application of personal computers to Lagrangian modeling, the dynamic interaction of cooling tower and stack plumes, the diffusion of heavy gases, correlation spectrometry as a tool for mesoscale air pollution modeling, Doppler acoustic sounding, tetroon flights, photochemical air quality simulation modeling, acid deposition of photochemical oxidation products, atmospheric diffusion modeling, applications of an integral plume rise model, and the estimation of diffuse hydrocarbon leakages from petrochemical factories. This volume constitutes the proceedings of the Thirteenth International Technical Meeting on Air Pollution Modeling and Its Application held in France in 1982.

  2. New Mechanistic Pathways for Criegee-Water Chemistry at the Air/Water Interface.

    PubMed

    Zhu, Chongqin; Kumar, Manoj; Zhong, Jie; Li, Lei; Francisco, Joseph S; Zeng, Xiao Cheng

    2016-09-07

    Understanding Criegee chemistry has become one of central topics in atmospheric research recently. The reaction of Criegee intermediates with gas-phase water clusters has been widely viewed as a key Criegee reaction in the troposphere. However, the effect of aerosols or clouds on Criegee chemistry has received little attention. In this work, we have investigated the reaction between the smallest Criegee intermediate, CH2OO, and water clusters in the gas phase, as well as at the air/water surface using ab initio quantum chemical calculations and adaptive buffered force quantum mechanics/molecular mechanics (QM/MM) dynamics simulations. Our simulation results show that the typical time scale for the reaction of CH2OO with water at the air/water interface is on the order of a few picoseconds, 2-3 orders of magnitude shorter than that in the gas phase. Importantly, the adbf-QM/MM dynamics simulations suggest several reaction pathways for the CH2OO + water reaction at the air/water interface, including the loop-structure-mediated mechanism and the stepwise mechanism. Contrary to the conventional gas-phase CH2OO reaction, the loop-structure is not a prerequisite for the stepwise mechanism. For the latter, a water molecule and the CH2OO at the air/water interface, upon their interaction, can result in the formation of (H3O)(+) and (OH)CH2(OO)(-). Thereafter, a hydrogen bond can be formed between (H3O)(+) and the terminal oxygen atom of (OH)CH2(OO)(-), leading to direct proton transfer and the formation of α-hydroxy methylperoxide, HOCH2OOH. The mechanistic insights obtained from this simulation study should motivate future experimental studies of the effect of water clouds on Criegee chemistry.

  3. Feedbacks between Air Pollution and Weather, Part 2: Effects on Chemistry.

    EPA Science Inventory

    Fully-coupled air-quality models running in “feedback” and “no-feedback” configurations were compared against each other and observation network data as part of Phase 2 of the Air Quality Model Evaluation International Initiative. In the “no-feedback” mode, interactions between m...

  4. DEVELOPMENT AND APPLICATION OF A NEW AIR POLLUTION MODELING SYSTEM--II. AEROSOL MODULE STRUCTURE AND DESIGN (R823186)

    EPA Science Inventory

    The methods used for simulating aerosol physical and chemical processes in a new air pollution modeling system are discussed and analyzed. Such processes include emissions, nucleation, coagulation, reversible chemistry, condensation, dissolution, evaporation, irreversible chem...

  5. Selection of Authentic Modelling Practices as Contexts for Chemistry Education

    ERIC Educational Resources Information Center

    Prins, Gjalt T.; Bulte, Astrid M. W.; van Driel, Jan H.; Pilot, Albert

    2008-01-01

    In science education, students should come to understand the nature and significance of models. In the case of chemistry education it is argued that the present use of models is often not meaningful from the students' perspective. A strategy to overcome this problem is to use an authentic chemical modelling practice as a context for a curriculum…

  6. Uses (and Abuses) of Models in Teaching Chemistry.

    ERIC Educational Resources Information Center

    Bent, Henry A.

    1984-01-01

    Discusses the nature and role of models in various aspects of the chemistry curriculum, examining the purposes and importance of tangible, linguistic, arithmetical, thermodynamic, and quantum-physical models. Strategies in using models in laboratory work and in lecture demonstrations are also considered. (JN)

  7. Chemistry-Climate Interactions in the GISS GCM. Part 1; Tropospheric Chemistry Model Description and Evaluation

    NASA Technical Reports Server (NTRS)

    Shindell, Drew T.; Grenfell, J. Lee; Rind, David; Price, Colin; Grewe, Volker; Hansen, James E. (Technical Monitor)

    2001-01-01

    A tropospheric chemistry module has been developed for use within the Goddard Institute for Space Studies (GISS) general circulation model (GCM) to study interactions between chemistry and climate change. The model uses a simplified chemistry scheme based on CO-NOx-CH4 chemistry, and also includes a parameterization for emissions of isoprene, the most important non-methane hydrocarbon. The model reproduces present day annual cycles and mean distributions of key trace gases fairly well, based on extensive comparisons with available observations. Examining the simulated change between present day and pre-industrial conditions, we find that the model has a similar response to that seen in other simulations. It shows a 45% increase in the global tropospheric ozone burden, within the 25% - 57% range seen in other studies. Annual average zonal mean ozone increases by more than 125% at Northern Hemisphere middle latitudes near the surface. Comparison of model runs that allow the calculated ozone to interact with the GCM's radiation and meteorology with those that do not shows only minor differences for ozone. The common usage of ozone fields that are not calculated interactively seems to be adequate to simulate both the present day and the pre-industrial ozone distributions. However, use of coupled chemistry does alter the change in tropospheric oxidation capacity, enlarging the overall decrease in OH concentrations from the pre-industrial to the present by about 10% (-5.3% global annual average in uncoupled mode, -5.9% in coupled mode). This indicates that there may be systematic biases in the simulation of the pre-industrial to present day decrease in the oxidation capacity of the troposphere (though a 10% difference is well within the total uncertainty). Global annual average radiative forcing from pre-industrial to present day ozone change is 0.32 W/sq m. The forcing seems to be increased by about 10% when the chemistry is coupled to the GCM. Forcing values greater

  8. Tetraglyme Trap for the Determination of Volatile Organic Compounds in Urban Air: Projects for Undergraduate Analytical Chemistry

    ERIC Educational Resources Information Center

    Hope, Wilbert W.; Johnson, Clyde; Johnson, Leon P.

    2004-01-01

    The differences in the levels of volatile organic compounds (VOCs), in the ambient air from the two urban locations, were studied by the undergraduate analytical chemistry students. Tetraglyme is very widely used due to its simplicity and its potential for use to investigate VOCs in ambient and indoor air employing a purge-and-trap concentrator…

  9. Assessment of the MACC reanalysis and its influence as chemical boundary conditions for regional air quality modeling in AQMEII-2

    EPA Science Inventory

    The Air Quality Model Evaluation International Initiative (AQMEII) has now reached its second phase which is dedicated to the evaluation of online coupled chemistry-meteorology models. Sixteen modeling groups from Europe and five from North America have run regional air quality m...

  10. Assessing High School Chemistry Students' Modeling Sub-Skills in a Computerized Molecular Modeling Learning Environment

    ERIC Educational Resources Information Center

    Dori, Yehudit Judy; Kaberman, Zvia

    2012-01-01

    Much knowledge in chemistry exists at a molecular level, inaccessible to direct perception. Chemistry instruction should therefore include multiple visual representations, such as molecular models and symbols. This study describes the implementation and assessment of a learning unit designed for 12th grade chemistry honors students. The organic…

  11. Disciplines, models, and computers: the path to computational quantum chemistry.

    PubMed

    Lenhard, Johannes

    2014-12-01

    Many disciplines and scientific fields have undergone a computational turn in the past several decades. This paper analyzes this sort of turn by investigating the case of computational quantum chemistry. The main claim is that the transformation from quantum to computational quantum chemistry involved changes in three dimensions. First, on the side of instrumentation, small computers and a networked infrastructure took over the lead from centralized mainframe architecture. Second, a new conception of computational modeling became feasible and assumed a crucial role. And third, the field of computa- tional quantum chemistry became organized in a market-like fashion and this market is much bigger than the number of quantum theory experts. These claims will be substantiated by an investigation of the so-called density functional theory (DFT), the arguably pivotal theory in the turn to computational quantum chemistry around 1990.

  12. Acceleration of the chemistry solver for modeling DI engine combustion using dynamic adaptive chemistry (DAC) schemes

    NASA Astrophysics Data System (ADS)

    Shi, Yu; Liang, Long; Ge, Hai-Wen; Reitz, Rolf D.

    2010-03-01

    Acceleration of the chemistry solver for engine combustion is of much interest due to the fact that in practical engine simulations extensive computational time is spent solving the fuel oxidation and emission formation chemistry. A dynamic adaptive chemistry (DAC) scheme based on a directed relation graph error propagation (DRGEP) method has been applied to study homogeneous charge compression ignition (HCCI) engine combustion with detailed chemistry (over 500 species) previously using an R-value-based breadth-first search (RBFS) algorithm, which significantly reduced computational times (by as much as 30-fold). The present paper extends the use of this on-the-fly kinetic mechanism reduction scheme to model combustion in direct-injection (DI) engines. It was found that the DAC scheme becomes less efficient when applied to DI engine simulations using a kinetic mechanism of relatively small size and the accuracy of the original DAC scheme decreases for conventional non-premixed combustion engine. The present study also focuses on determination of search-initiating species, involvement of the NOx chemistry, selection of a proper error tolerance, as well as treatment of the interaction of chemical heat release and the fuel spray. Both the DAC schemes were integrated into the ERC KIVA-3v2 code, and simulations were conducted to compare the two schemes. In general, the present DAC scheme has better efficiency and similar accuracy compared to the previous DAC scheme. The efficiency depends on the size of the chemical kinetics mechanism used and the engine operating conditions. For cases using a small n-heptane kinetic mechanism of 34 species, 30% of the computational time is saved, and 50% for a larger n-heptane kinetic mechanism of 61 species. The paper also demonstrates that by combining the present DAC scheme with an adaptive multi-grid chemistry (AMC) solver, it is feasible to simulate a direct-injection engine using a detailed n-heptane mechanism with 543 species

  13. Lagrangian transport of water vapor and CFCs in a coupled Chemistry Climate Model

    NASA Astrophysics Data System (ADS)

    Hoppe, Charlotte; Müller, Rolf; Hoffmann, Lars; Konopka, Paul; Plöger, Felix; Grooß, Jens-Uwe

    2013-04-01

    We describe the implementation of a Lagrangian transport core in a chemistry climate model (CCM). Thereby we address the common problem of properly representing trace gas distributions in a classical Eulerian framework with a fixed model grid, particularly in regions with strong trace gas gradients. A prominent example is stratospheric water vapor, which is an important driver of surface climate change on decadal scales. In this case, the transport representation is particularly important in the tropical tropopause layer (TTL), where tropospheric air enters into the stratosphere. We have coupled the Chemical Lagrangian Model of the Stratosphere (CLaMS) with the ECHAM-MESSy Atmospheric Chemistry Model (EMAC). The latter includes the ECHAM5 climate model, and the MESSy interface, which allows for flexible coupling and switching between different submodels. The chemistry transport model CLaMS provides a fully Lagrangian transport representation to calculate constituent transport for an ensemble of air parcels that move along trajectories. To facilitate the calculation of long time-series a simplified chemistry scheme was implemented. Various studies show that the CLaMS model is particularly suited to properly represent dynamics and chemistry in the UT/LS region. The analysis of mean age of stratospheric air gives insight into the different transport characteristics of the Eulerian and the Lagrangian transport schemes. Mean age of air, calculated in both frameworks, is compared regarding the representation of important processes, i.e. descent in the polar vortex, upwelling in the tropical pipe, and isentropic in-mixing in subtropical regions. We also compared the zonal mean distributions and photochemical lifetimes of CFC-11 and CFC-12 with climatologies from different satellite experiments (ACE-FTS, HIRDLS, and MIPAS). CLaMS stratospheric water vapor distributions show remarkable differences compared to the stratospheric water vapor simulated by ECHAM, especially in

  14. Theory and modeling in combustion chemistry

    SciTech Connect

    Miller, J.A.

    1996-10-01

    This paper discusses four important problems in combustion chemistry. In each case, resolution of the problem focuses on a single elementary reaction. Theoretical analysis of this reaction is discussed in some depth, with emphasis on its unusual features. The four combustion problems and their elementary reactions are: (1) Burning velocities, extinction limits, and flammability limits: H+O{sub 2}{leftrightarrow}OH+O, (2) Prompt NO: CH+N{sub 2}{leftrightarrow}HCN+N, (3) the Thermal De-NO{sub x} Process: NH{sub 2}+NO{leftrightarrow}products, and (4) ``Ring`` formation in flames of aliphatic fuels and the importance of resonantly stabilized free radicals: C{sub 3}H{sub 3}{leftrightarrow}products.

  15. High fidelity chemistry and radiation modeling for oxy -- combustion scenarios

    NASA Astrophysics Data System (ADS)

    Abdul Sater, Hassan A.

    To account for the thermal and chemical effects associated with the high CO2 concentrations in an oxy-combustion atmosphere, several refined gas-phase chemistry and radiative property models have been formulated for laminar to highly turbulent systems. This thesis examines the accuracies of several chemistry and radiative property models employed in computational fluid dynamic (CFD) simulations of laminar to transitional oxy-methane diffusion flames by comparing their predictions against experimental data. Literature review about chemistry and radiation modeling in oxy-combustion atmospheres considered turbulent systems where the predictions are impacted by the interplay and accuracies of the turbulence, radiation and chemistry models. Thus, by considering a laminar system we minimize the impact of turbulence and the uncertainties associated with turbulence models. In the first section of this thesis, an assessment and validation of gray and non-gray formulations of a recently proposed weighted-sum-of-gray gas model in oxy-combustion scenarios was undertaken. Predictions of gas, wall temperatures and flame lengths were in good agreement with experimental measurements. The temperature and flame length predictions were not sensitive to the radiative property model employed. However, there were significant variations between the gray and non-gray model radiant fraction predictions with the variations in general increasing with decrease in Reynolds numbers possibly attributed to shorter flames and steeper temperature gradients. The results of this section confirm that non-gray model predictions of radiative heat fluxes are more accurate than gray model predictions especially at steeper temperature gradients. In the second section, the accuracies of three gas-phase chemistry models were assessed by comparing their predictions against experimental measurements of temperature, species concentrations and flame lengths. The chemistry was modeled employing the Eddy

  16. Can a coupled meteorology–chemistry model reproduce the historical trend in aerosol direct radiative effects over the Northern Hemisphere?

    EPA Science Inventory

    The ability of a coupled meteorology–chemistry model, i.e., Weather Research and Forecast and Community Multiscale Air Quality (WRF-CMAQ), to reproduce the historical trend in aerosol optical depth (AOD) and clear-sky shortwave radiation (SWR) over the Northern Hemisphere h...

  17. Modelling trace gas chemistry in the Martian atmosphere

    NASA Astrophysics Data System (ADS)

    Duffy, M. K. D.; Lewis, S. R.; Mason, N. J.

    2012-09-01

    Dust-bourne heterogeneous reactions have been modelled using the UK Mars Global Circulation Model (MGCM) coupled with physics and chemistry schemes used in the Laboratoire de Météorologie Dynamique (LMD) MGCM. The seasonal ozone column abundance has been calculated using a number of different dust scenarios. Reactions involving volcanically interesting species such as water vapour, SO2 and HCl have been included and tracer release experiments have been conducted to mimic short and long-term volcanic outgassing. The effect of these new reactions on the bulk chemistry of the Martian atmosphere has been quantified.

  18. Computational quantum chemistry and adaptive ligand modeling in mechanistic QSAR.

    PubMed

    De Benedetti, Pier G; Fanelli, Francesca

    2010-10-01

    Drugs are adaptive molecules. They realize this peculiarity by generating different ensembles of prototropic forms and conformers that depend on the environment. Among the impressive amount of available computational drug discovery technologies, quantitative structure-activity relationship approaches that rely on computational quantum chemistry descriptors are the most appropriate to model adaptive drugs. Indeed, computational quantum chemistry descriptors are able to account for the variation of the intramolecular interactions of the training compounds, which reflect their adaptive intermolecular interaction propensities. This enables the development of causative, interpretive and reasonably predictive quantitative structure-activity relationship models, and, hence, sound chemical information finalized to drug design and discovery.

  19. Precipitation chemistry and corresponding transport patterns of influencing air masses at Huangshan Mountain in East China

    NASA Astrophysics Data System (ADS)

    Shi, ChunE; Deng, Xueliang; Yang, Yuanjian; Huang, Xiangrong; Wu, Biwen

    2014-09-01

    One hundred and ten samples of rainwater were collected for chemical analysis at the summit of Huangshan Mountain, a high-altitude site in East China, from July 2010 to June 2011. The volume-weighted-mean (VWM) pH for the whole sampling period was 5.03. SO{4/2-} and Ca2+ were the most abundant anion and cation, respectively. The ionic concentrations varied monthly with the highest concentrations in winter/spring and the lowest in summer. Evident inter-correlations were found among most ions, indicating the common sources for some species and fully mixing characteristics of the alpine precipitation chemistry. The VWM ratio of [SO{4/2-}]/[NO{3/-}] was 2.54, suggesting the acidity of rainwater comes from both nitric and sulfuric acids. Compared with contemporary observations at other alpine continental sites in China, the precipitation at Huangshan Mountain was the least polluted, with the lowest ionic concentrations. Trajectories to Huangshan Mountain on rainy days could be classified into six groups. The rainwater with influencing air masses originating in Mongolia was the most polluted with limited effect. The emissions of Jiangxi, Anhui, Zhejiang and Jiangsu provinces had a strong influence on the overall rain chemistry at Huangshan Mountain. The rainwater with influencing air masses from Inner Mongolia was heavily polluted by anthropogenic pollutants.

  20. Fogwater Chemistry and Air Quality in the Texas-Louisiana Gulf Coast Corridor

    NASA Astrophysics Data System (ADS)

    Kommalapati, R. R.; Raja, S.; Ravikrishna, R.; Murugesan, K.; Collett, J. L.; Valsaraj, K.

    2007-05-01

    The presence of fog water in polluted atmosphere can influence atmospheric chemistry and air quality. The study of interactions between fog water and atmospheric gases and aerosols are very important in understanding the atmospheric fate of the pollutants. In this Study several air samples and fogwater samples were collected in the heavily industrialized area of Gulf Coast corridor( Houston, TX and Baton Rouge, LA). A total of 32 fogwater samples were collected, comprising of nine fog events in Baton Rouge (Nov 2004 to Feb 2005) and two fog events in Houston (Feb, 2006), during the fog sampling campaigns. These samples were analyzed for pH, total and dissolved carbon, major inorganic ions, organic acids, and aromatics, aldehydes, VOCs, and linear alkanes organic compounds. Fogwater samples collected in Houston show clear influence of marine and anthropogenic environment, while Baton Rouge samples reveal a relatively less polluted environment. Also, a time series observation of air samples indicated that fog event at the monitoring site impacted the air concentrations of the pollutants. This is attributed to presence of surface active organic matter in fog water.

  1. Impact of a future H2-based road transportation sector on the composition and chemistry of the atmosphere - Part 1: Tropospheric composition and air quality

    NASA Astrophysics Data System (ADS)

    Wang, D.; Jia, W.; Olsen, S. C.; Wuebbles, D. J.; Dubey, M. K.; Rockett, A. A.

    2013-07-01

    Vehicles burning fossil fuel emit a number of substances that change the composition and chemistry of the atmosphere, and contribute to global air and water pollution and climate change. For example, nitrogen oxides and volatile organic compounds (VOCs) emitted as byproducts of fossil fuel combustion are key precursors to ground-level ozone and aerosol formation. In addition, on-road vehicles are major CO2 emitters. In order to tackle these problems, molecular hydrogen (H2) has been proposed as an energy carrier to substitute for fossil fuels in the future. However, before implementing any such strategy it is crucial to evaluate its potential impacts on air quality and climate. Here, we evaluate the impact of a future (2050) H2-based road transportation sector on tropospheric chemistry and air quality for several possible growth and technology adoption scenarios. The growth scenarios are based on the high and low emissions Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios, A1FI and B1, respectively. The technological adoption scenarios include H2 fuel cell and H2 internal combustion engine options. The impacts are evaluated with the Community Atmospheric Model Chemistry global chemistry transport model (CAM-Chem). Higher resolution simulations focusing on the contiguous United States are also carried out with the Community Multiscale Air Quality Modeling System (CMAQ) regional chemistry transport model. For all scenarios future air quality improves with the adoption of a H2-based road transportation sector; however, the magnitude and type of improvement depend on the scenario. Model results show that the adoption of H2 fuel cells would decrease tropospheric burdens of ozone (7%), CO (14%), NOx (16%), soot (17%), sulfate aerosol (4%), and ammonium nitrate aerosol (12%) in the A1FI scenario, and would decrease those of ozone (5%), CO (4%), NOx (11%), soot (7%), sulfate aerosol (4%), and ammonium nitrate aerosol (9%) in the B1 scenario

  2. The impact of a future H2-based road transportation sector on the composition and chemistry of the atmosphere - Part 1: Tropospheric composition and air quality

    NASA Astrophysics Data System (ADS)

    Wang, D.; Jia, W.; Olsen, S. C.; Wuebbles, D. J.; Dubey, M. K.; Rockett, A. A.

    2012-08-01

    Vehicles burning fossil fuel emit a number of substances that change the composition and chemistry of the atmosphere, and contribute to global air and water pollution and climate change. For example, nitrogen oxides and volatile organic compounds (VOCs) emitted as byproducts of fossil fuel combustion are key precursors to ground-level ozone and aerosol formation. In addition, on-road vehicles are major CO2 emitters. In order to tackle these problems, molecular hydrogen (H2) has been proposed as an energy carrier to substitute for fossil fuel in the future. However, before implementing any such strategy it is crucial to evaluate its potential impacts on air quality and climate. Here we evaluate the impact of a future (2050) H2-based road transportation sector on tropospheric chemistry and air quality for several possible growth and technology adoption scenarios. The growth scenarios are based on the high and low emissions Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios, A1FI and B1, respectively. The technological adoption scenarios include H2 fuel cell and H2 internal combustion engine options. The impacts are evaluated with the Community Atmospheric Model Chemistry global chemistry transport model (CAM-Chem). Higher resolution simulations focusing on the contiguous United States are also carried out with the Community Multiscale Air Quality Modeling System (CMAQ) regional chemistry transport model. For all scenarios future air quality improves with the adoption of a H2-based road transportation sector, however, the magnitude and type of improvement depend on the scenario. Model results show that with the adoption of H2 fuel cells decreases tropospheric burdens of ozone (7%), CO (14%), NOx (16%), soot (17%), sulfate aerosol (4%), and ammonium nitrate aerosol (12%) in the A1FI scenario, and decreases those of ozone (5%), CO (4%), NOx (11%), soot (7%), sulfate aerosol (4%), and ammonium nitrate aerosol (9 %) in the B1 scenario. The

  3. Kinematic and diabatic vertical velocity climatologies from a chemistry climate model

    NASA Astrophysics Data System (ADS)

    Marinke Hoppe, Charlotte; Ploeger, Felix; Konopka, Paul; Müller, Rolf

    2016-05-01

    The representation of vertical velocity in chemistry climate models is a key element for the representation of the large-scale Brewer-Dobson circulation in the stratosphere. Here, we diagnose and compare the kinematic and diabatic vertical velocities in the ECHAM/Modular Earth Submodel System (MESSy) Atmospheric Chemistry (EMAC) model. The calculation of kinematic vertical velocity is based on the continuity equation, whereas diabatic vertical velocity is computed using diabatic heating rates. Annual and monthly zonal mean climatologies of vertical velocity from a 10-year simulation are provided for both kinematic and diabatic vertical velocity representations. In general, both vertical velocity patterns show the main features of the stratospheric circulation, namely, upwelling at low latitudes and downwelling at high latitudes. The main difference in the vertical velocity pattern is a more uniform structure for diabatic and a noisier structure for kinematic vertical velocity. Diabatic vertical velocities show higher absolute values both in the upwelling branch in the inner tropics and in the downwelling regions in the polar vortices. Further, there is a latitudinal shift of the tropical upwelling branch in boreal summer between the two vertical velocity representations with the tropical upwelling region in the diabatic representation shifted southward compared to the kinematic case. Furthermore, we present mean age of air climatologies from two transport schemes in EMAC using these different vertical velocities and analyze the impact of residual circulation and mixing processes on the age of air. The age of air distributions show a hemispheric difference pattern in the stratosphere with younger air in the Southern Hemisphere and older air in the Northern Hemisphere using the transport scheme with diabatic vertical velocities. Further, the age of air climatology from the transport scheme using diabatic vertical velocities shows a younger mean age of air in the

  4. Simulation model air-to-air plate heat exchanger

    SciTech Connect

    Wetter, Michael

    1999-01-01

    A simple simulation model of an air-to-air plate heat exchanger is presented. The model belongs to a collection of simulation models that allows the eflcient computer simulation of heating, ventilation, and air-conditioning (HVAC) systems. The main emphasis of the models is to shorten computation time and to use only input data that are known in the design process of an HVAC system. The target of the models is to describe the behavior of HVAC components in the part-load operation mode, which is becoming increasingly important in energy eficient HVAC systems. The models are intended to be used for yearly energy calculations or load calculations with time steps of about 10 minutes or larger. Short- time dynamic effects, which are of interest for different aspects of control theory, are neglected. The part-load behavior is expressed in terms of the nominal condition and the dimensionless variation of the heat transfer with change of mass flow and temperature. The effectiveness- NTU relations are used to parametrize the convective heat transfer at nominal conditions and to compute the part-load condition. If the heat transfer coefficients on the two exchanger sides are not equal (i. e. due to partial bypassing of air), their ratio can be easily calculated and set as a parameter. The model is static and uses explicit equations only. The explicit model formulation ensures short computation time and numerical stability, which allows using the model with sophisticated engineering methods like automatic system optimization. This paper fully outlines the algorithm description and its simplifications. It is not tailored for any particular simulation program to ensure easy implementation in any simulation program.

  5. A Process Model for the Comprehension of Organic Chemistry Notation

    ERIC Educational Resources Information Center

    Havanki, Katherine L.

    2012-01-01

    This dissertation examines the cognitive processes individuals use when reading organic chemistry equations and factors that affect these processes, namely, visual complexity of chemical equations and participant characteristics (expertise, spatial ability, and working memory capacity). A six stage process model for the comprehension of organic…

  6. Promoting Representational Competence with Molecular Models in Organic Chemistry

    ERIC Educational Resources Information Center

    Stull, Andrew T.; Gainer, Morgan; Padalkar, Shamin; Hegarty, Mary

    2016-01-01

    Mastering the many different diagrammatic representations of molecules used in organic chemistry is challenging for students. This article summarizes recent research showing that manipulating 3-D molecular models can facilitate the understanding and use of these representations. Results indicate that students are more successful in translating…

  7. A Novel Multipurpose Model Set for Teaching General Chemistry.

    ERIC Educational Resources Information Center

    Gupta, H. O.; Parkash, Brahm

    1999-01-01

    Reports on a low-cost and unique molecular model set capable of generating a large number of structures for teaching and learning general chemistry. An important component of the kit is an 11-hole ball that gives tetrahedral, octahedral, trigonal, trigonal bipyramidal, and square planar symmetries. (WRM)

  8. College Chemistry Students' Mental Models of Acids and Acid Strength

    ERIC Educational Resources Information Center

    McClary, LaKeisha; Talanquer, Vicente

    2011-01-01

    The central goal of this study was to characterize the mental models of acids and acid strength expressed by advanced college chemistry students when engaged in prediction, explanation, and justification tasks that asked them to rank chemical compounds based on their relative acid strength. For that purpose we completed a qualitative research…

  9. Community Multi-scale Air Quality (CMAQ) Modeling System for Air Quality Management

    EPA Pesticide Factsheets

    CMAQ simultaneously models multiple air pollutants including ozone, particulate matter and a variety of air toxics to help air quality managers determine the best air quality management scenarios for their communities, regions and states.

  10. The GEOS Chemistry Climate Model: Comparisons to Satellite Data

    NASA Technical Reports Server (NTRS)

    Stolarski, Richard S.; Douglass, Anne R.

    2008-01-01

    The Goddard Earth Observing System Chemistry Climate Model (GEOS CCM) has been developed by combining the atmospheric chemistry and transport modules developed over the years at Goddard and the GEOS general circulation model, also developed at Goddard. We will compare model simulations of ozone, and the minor constituents that affect ozone, for the period around 1980 with newly released revised data from the Limb Infrared Monitor of the Stratosphere (LIMS) instrument on Nimbus 4. We will also compare model simulations for the period of the early 2000s with the data from the Microwave Limb Sounder (MLS) and the High Resolution Dynamic Limb Sounder (HRDLS) on the Aura satellite. We will use these comparisons to examine the performance of the model for the present atmosphere and for the change that has occurred during the last 2 decades of ozone loss due to chlorine and bromine compounds released from chlorofluorocarbons and halons.

  11. The GEOS Chemistry Climate Model: Comparisons to Satellite Data

    NASA Astrophysics Data System (ADS)

    Stolarski, R. S.; Douglass, A. R.

    2008-05-01

    The Goddard Earth Observing System Chemistry Climate Model (GEOS CCM) has been developed by combining the atmospheric chemistry and transport modules developed over the years at Goddard and the GEOS general circulation model, also developed at Goddard. We will compare model simulations of ozone, and the minor constituents that affect ozone, for the period around 1980 with newly released revised data from the Limb Infrared Monitor of the Stratosphere (LIMS) instrument on Nimbus 4. We will also compare model simulations for the period of the early 2000s with the data from the Microwave Limb Sounder (MLS) and the High Resolution Dynamic Limb Sounder (HRDLS) on the Aura satellite. We will use these comparisons to examine the performance of the model for the present atmosphere and for the change that has occurred during the last 2 decades of ozone loss due to chlorine and bromine compounds released from chlorofluorocarbons and halons.

  12. Implementation and initial application of new chemistry-aerosol options in WRF/Chem for simulating secondary organic aerosols and aerosol indirect effects for regional air quality

    NASA Astrophysics Data System (ADS)

    Wang, Kai; Zhang, Yang; Yahya, Khairunnisa; Wu, Shiang-Yuh; Grell, Georg

    2015-08-01

    Atmospheric aerosols play important roles in affecting regional meteorology and air quality through aerosol direct and indirect effects. Two new chemistry-aerosol options have been developed in WRF/Chem v3.4.1 by incorporating the 2005 Carbon Bond (CB05) mechanism and coupling it with the existing aerosol module MADE with SORGAM and VBS modules for simulating secondary organic aerosol (SOA), aqueous-phase chemistry in both large scale and convective clouds, and aerosol feedback processes (hereafter CB05-MADE/SORGAM and CB05-MADE/VBS). As part of the Air Quality Model Evaluation International Initiative (AQMEII) Phase II model intercomparison that focuses on online-coupled meteorology and chemistry models, WRF/Chem with the two new options is applied to an area over North America for July 2006 episode. The simulations with both options can reproduce reasonably well most of the observed meteorological variables, chemical concentrations, and aerosol/cloud properties. Compared to CB05-MADE/SORGAM, CB05-MADE/VBS greatly improves the model performance for organic carbon (OC) and PM2.5, reducing NMBs from -81.2% to -13.1% and from -26.1% to -15.6%, respectively. Sensitivity simulations show that the aerosol indirect effects (including aqueous-phase chemistry) can reduce the net surface solar radiation by up to 53 W m-2 with a domainwide mean of 12 W m-2 through affecting cloud formation and radiation scattering and reflection by increasing cloud cover, which in turn reduce the surface temperature, NO2 photolytic rate, and planetary boundary layer height by up to 0.3 °C, 3.7 min-1, and 64 m, respectively. The changes of those meteorological variables further impact the air quality through the complex chemistry-aerosol-cloud-radiation interactions by reducing O3 mixing ratios by up to 5.0 ppb. The results of this work demonstrate the importance of aerosol indirect effects on the regional climate and air quality. For comparison, the impacts of aerosol direct effects on both

  13. Commonsense Chemistry: A Model for Understanding Students' Alternative Conceptions

    NASA Astrophysics Data System (ADS)

    Talanquer, Vicente

    2006-05-01

    Students' alternative conceptions play a central role in how they learn science. However, the large number and diversity of these alternative conceptions makes it difficult for teachers to identify any patterns in their students' thinking. A thorough analysis of alternative conceptions in chemistry, as described in the research literature in science and chemistry education, has led to the development of an explanatory framework that encompasses many of the ideas held by chemistry students about chemical substances and phenomena. Research results provided here indicate that many students' conceptual difficulties result from commonsense reasoning. This commonsense approach is based upon a set of assumptions about the natural world and the application of reasoning heuristics that students instinctively follow and apply without hesitating or considering other alternatives. The identification of this explanatory framework may provide a useful model that teachers can use to better understand and even predict many of their students' learning difficulties.

  14. Teaching Chemistry with Electron Density Models.

    ERIC Educational Resources Information Center

    Shusterman, Gwendolyn P.; Shusterman, Alan J.

    1997-01-01

    Describes a method for teaching electronic structure and its relevance to chemical phenomena that relies on computer-generated three-dimensional models of electron density distributions. Discusses the quantum mechanical background needed and presents ways of using models of electronic ground states to teach electronic structure, bonding concepts,…

  15. Chemistry-Climate Models of the Stratosphere

    NASA Technical Reports Server (NTRS)

    Austin, J.; Shindell, D.; Bruehl, C.; Dameris, M.; Manzini, E.; Nagashima, T.; Newman, P.; Pawson, S.; Pitari, G.; Rozanov, E.; Bhartia, P. K. (Technical Monitor)

    2001-01-01

    Over the last decade, improved computer power has allowed three-dimensional models of the stratosphere to be developed that can be used to simulate polar ozone levels over long periods. This paper compares the meteorology between these models, and discusses the future of polar ozone levels over the next 50 years.

  16. Modeling of aqueous chemistry in cloud droplets

    SciTech Connect

    Kreidenweis, S.M.

    1992-02-01

    The code AQCHEM.FOR, a listing of which is attached, has been prepared as a tool for the investigation of chemical reactions occurring in cloud drops. The present application is to the formation of sulfate (S(VI)) via reaction of S(IV) species with ozone and hydrogen peroxide. However, the model is constructed in a general format that allows introduction of other species and reactions easily. The model also stimulates mass transfer between the liquid and gas phases, so that the assumption of equilibrium between these phases need not be invoked. Representative model simulations are presented and show good agreement with results published from similar codes. The model will be used to develop parameterizations of aqueous sulfate production rates for inclusion in a global model of the sulfur cycle.

  17. Kinematic and diabatic vertical velocity climatologies from a chemistry climate model

    NASA Astrophysics Data System (ADS)

    Hoppe, C. M.; Ploeger, F.; Konopka, P.; Müller, R.

    2015-11-01

    The representation of vertical velocity in chemistry climate models is a key element for the representation of the large scale Brewer-Dobson-Circulation in the stratosphere. Here, we diagnose and compare the kinematic and diabatic vertical velocities in the ECHAM/Messy Atmospheric Chemistry (EMAC) model. The calculation of kinematic vertical velocity is based on the continuity equation, whereas diabatic vertical velocity is computed using diabatic heating rates. Annual and monthly zonal mean climatologies of vertical velocity from a 10 year simulation are provided for both, kinematic and diabatic vertical velocity representations. In general, both vertical velocity patterns show the main features of the stratospheric circulation, namely upwelling at low latitudes and downwelling at high latitudes. The main difference in the vertical velocity pattern is a more uniform structure for diabatic and a noisier structure for kinematic vertical velocity. Diabatic vertical velocities show higher absolute values both in the upwelling branch in the inner tropics and in the downwelling regions in the polar vortices. Further, there is a latitudinal shift of the tropical upwelling branch in boreal summer between the two vertical velocity representations with the tropical upwelling region in the diabatic representation shifted southward compared to the kinematic case. Furthermore, we present mean age of air climatologies from two transport schemes in EMAC using these different vertical velocities. The age of air distributions show a hemispheric difference pattern in the stratosphere with younger air in the Southern Hemisphere and older air in the Northern Hemisphere using the transport scheme with diabatic vertical velocities. Further, the age of air climatology from the transport scheme using diabatic vertical velocities shows younger mean age of air in the inner tropical upwelling branch and older mean age in the extratopical tropopause region.

  18. COMMUNITY SCALE AIR TOXICS MODELING WITH CMAQ

    EPA Science Inventory

    Consideration and movement for an urban air toxics control strategy is toward a community, exposure and risk-based modeling approach, with emphasis on assessments of areas that experience high air toxic concentration levels, the so-called "hot spots". This strategy will requir...

  19. NASA/Air Force Cost Model: NAFCOM

    NASA Technical Reports Server (NTRS)

    Winn, Sharon D.; Hamcher, John W. (Technical Monitor)

    2002-01-01

    The NASA/Air Force Cost Model (NAFCOM) is a parametric estimating tool for space hardware. It is based on historical NASA and Air Force space projects and is primarily used in the very early phases of a development project. NAFCOM can be used at the subsystem or component levels.

  20. Review of the global models used within phase 1 of the Chemistry-Climate Model Initiative (CCMI)

    NASA Astrophysics Data System (ADS)

    Morgenstern, Olaf; Hegglin, Michaela I.; Rozanov, Eugene; O'Connor, Fiona M.; Abraham, N. Luke; Akiyoshi, Hideharu; Archibald, Alexander T.; Bekki, Slimane; Butchart, Neal; Chipperfield, Martyn P.; Deushi, Makoto; Dhomse, Sandip S.; Garcia, Rolando R.; Hardiman, Steven C.; Horowitz, Larry W.; Jöckel, Patrick; Josse, Beatrice; Kinnison, Douglas; Lin, Meiyun; Mancini, Eva; Manyin, Michael E.; Marchand, Marion; Marécal, Virginie; Michou, Martine; Oman, Luke D.; Pitari, Giovanni; Plummer, David A.; Revell, Laura E.; Saint-Martin, David; Schofield, Robyn; Stenke, Andrea; Stone, Kane; Sudo, Kengo; Tanaka, Taichu Y.; Tilmes, Simone; Yamashita, Yousuke; Yoshida, Kohei; Zeng, Guang

    2017-02-01

    We present an overview of state-of-the-art chemistry-climate and chemistry transport models that are used within phase 1 of the Chemistry-Climate Model Initiative (CCMI-1). The CCMI aims to conduct a detailed evaluation of participating models using process-oriented diagnostics derived from observations in order to gain confidence in the models' projections of the stratospheric ozone layer, tropospheric composition, air quality, where applicable global climate change, and the interactions between them. Interpretation of these diagnostics requires detailed knowledge of the radiative, chemical, dynamical, and physical processes incorporated in the models. Also an understanding of the degree to which CCMI-1 recommendations for simulations have been followed is necessary to understand model responses to anthropogenic and natural forcing and also to explain inter-model differences. This becomes even more important given the ongoing development and the ever-growing complexity of these models. This paper also provides an overview of the available CCMI-1 simulations with the aim of informing CCMI data users.

  1. Analyzing Students' Understanding of Models and Modeling Referring to the Disciplines Biology, Chemistry, and Physics

    ERIC Educational Resources Information Center

    Krell, Moritz; Reinisch, Bianca; Krüger, Dirk

    2015-01-01

    In this study, secondary school students' (N?=?617; grades 7 to 10) understanding of models and modeling was assessed using tasks which explicitly refer to the scientific disciplines of biology, chemistry, and physics and, as a control, to no scientific discipline. The students' responses are interpreted as their biology-, chemistry-, and…

  2. Simulation of tropospheric chemistry and aerosols with the climate model EC-Earth

    NASA Astrophysics Data System (ADS)

    van Noije, T. P. C.; Le Sager, P.; Segers, A. J.; van Velthoven, P. F. J.; Krol, M. C.; Hazeleger, W.; Williams, A. G.; Chambers, S. D.

    2014-10-01

    We have integrated the atmospheric chemistry and transport model TM5 into the global climate model EC-Earth version 2.4. We present an overview of the TM5 model and the two-way data exchange between TM5 and the IFS model from the European Centre for Medium-Range Weather Forecasts (ECMWF), the atmospheric general circulation model of EC-Earth. In this paper we evaluate the simulation of tropospheric chemistry and aerosols in a one-way coupled configuration. We have carried out a decadal simulation for present-day conditions and calculated chemical budgets and climatologies of tracer concentrations and aerosol optical depth. For comparison we have also performed offline simulations driven by meteorological fields from ECMWF's ERA-Interim reanalysis and output from the EC-Earth model itself. Compared to the offline simulations, the online-coupled system produces more efficient vertical mixing in the troposphere, which reflects an improvement of the treatment of cumulus convection. The chemistry in the EC-Earth simulations is affected by the fact that the current version of EC-Earth produces a cold bias with too dry air in large parts of the troposphere. Compared to the ERA-Interim driven simulation, the oxidizing capacity in EC-Earth is lower in the tropics and higher in the extratropics. The atmospheric lifetime of methane in EC-Earth is 9.4 years, which is 7% longer than the lifetime obtained with ERA-Interim but remains well within the range reported in the literature. We further evaluate the model by comparing the simulated climatologies of surface radon-222 and carbon monoxide, tropospheric and surface ozone, and aerosol optical depth against observational data. The work presented in this study is the first step in the development of EC-Earth into an Earth system model with fully interactive atmospheric chemistry and aerosols.

  3. Simulation of tropospheric chemistry and aerosols with the climate model EC-Earth

    NASA Astrophysics Data System (ADS)

    van Noije, T. P. C.; Le Sager, P.; Segers, A. J.; van Velthoven, P. F. J.; Krol, M. C.; Hazeleger, W.

    2014-03-01

    We have integrated the atmospheric chemistry and transport model TM5 into the global climate model EC-Earth version 2.4. We present an overview of the TM5 model and the two-way data exchange between TM5 and the integrated forecasting system (IFS) model from the European Centre for Medium-Range Weather Forecasts (ECMWF), the atmospheric general circulation model of EC-Earth. In this paper we evaluate the simulation of tropospheric chemistry and aerosols in a one-way coupled configuration. We have carried out a decadal simulation for present-day conditions and calculated chemical budgets and climatologies of tracer concentrations and aerosol optical depth. For comparison we have also performed offline simulations driven by meteorological fields from ECMWF's ERA-Interim reanalysis and output from the EC-Earth model itself. Compared to the offline simulations, the online-coupled system produces more efficient vertical mixing in the troposphere, which likely reflects an improvement of the treatment of cumulus convection. The chemistry in the EC-Earth simulations is affected by the fact that the current version of EC-Earth produces a cold bias with too dry air in large parts of the troposphere. Compared to the ERA-Interim driven simulation, the oxidizing capacity in EC-Earth is lower in the tropics and higher in the extratropics. The methane lifetime is 7% higher in EC-Earth, but remains well within the range reported in the literature. We evaluate the model by comparing the simulated climatologies of surface carbon monoxide, tropospheric and surface ozone, and aerosol optical depth against observational data. The work presented in this study is the first step in the development of EC-Earth into an Earth system model with fully interactive atmospheric chemistry and aerosols.

  4. Understanding atmospheric peroxyformic acid chemistry: observation, modeling and implication

    NASA Astrophysics Data System (ADS)

    Liang, H.; Chen, Z. M.; Huang, D.; Wu, Q. Q.; Huang, L. B.

    2015-01-01

    The existence and importance of peroxyformic acid (PFA) in the atmosphere has been under controversy. We present here, for the first time, the observation data for PFA from four field measurements carried out in China. These data provided powerful evidence that PFA can stay in the atmosphere, typically in dozens of pptv level. The relationship between PFA and other detected peroxides was examined. The results showed that PFA had a strong positive correlation with its homolog, peroxyacetic acid, due to their similar sources and sinks. Through an evaluation of PFA production and removal rates, we proposed that the reactions between peroxyformyl radical (HC(O)O2) and formaldehyde or the hydroperoxyl radical (HO2) were likely to be the major source and degradation into formic acid (FA) was likely to be the major sink for PFA. Based on a box model evaluation, we proposed that the HC(O)O2 and PFA chemistry was a major source for FA under low NOx conditions. Furthermore, it is found that the impact of the HC(O)O2 and PFA chemistry on radical cycling was dependent on the yield of HC(O)O2 radical from HC(O) + O2 reaction. When this yield exceeded 50%, the HC(O)O2 and PFA chemistry should not be neglected for calculating the radical budget. To make clear the exact importance of HC(O)O2 and PFA chemistry in the atmosphere, further kinetic, field and modeling studies are required.

  5. Seasonal dynamics of water and air chemistry in an indoor chlorinated swimming pool.

    PubMed

    Zare Afifi, Mehrnaz; Blatchley, Ernest R

    2015-01-01

    Although swimming is known to be beneficial in terms of cardiovascular health, as well as for some forms of rehabilitation, swimming is also known to present risks to human health, largely in the form of exposure to microbial pathogens and disinfection byproducts (DBPs). Relatively little information is available in the literature to characterize the seasonal dynamics of air and water chemistry in indoor chlorinated swimming pools. To address this issue, water samples were collected five days per week from an indoor chlorinated swimming pool facility at a high school during the academic year and once per week during summer over a fourteen-month period. The samples were analyzed for free and combined chlorine, urea, volatile DBPs, pH, temperature and total alkalinity. Membrane Introduction Mass Spectrometry (MIMS) was used to identify and measure the concentrations of eleven aqueous-phase volatile DBPs. Variability in the concentrations of these DBPs was observed. Factors that influenced variability included bather loading and mixing by swimmers. These compounds have the ability to adversely affect water and air quality and human health. A large fraction of the existing literature regarding swimming pool air quality has focused on trichloramine (NCl₃). For this work, gas-phase NCl₃ was analyzed by an air sparging-DPD/KI method. The results showed that gas-phase NCl₃ concentration is influenced by bather loading and liquid-phase NCl₃ concentration. Urea is the dominant organic-N compound in human urine and sweat, and is known to be an important precursor for producing NCl₃ in swimming pools. Results of daily measurements of urea indicated a link between bather load and urea concentration in the pool.

  6. A community diagnostic tool for chemistry climate model validation

    NASA Astrophysics Data System (ADS)

    Gettelman, A.; Eyring, V.; Fischer, C.; Shiona, H.; Cionni, I.; Neish, M.; Morgenstern, O.; Wood, S. W.; Li, Z.

    2012-09-01

    This technical note presents an overview of the Chemistry-Climate Model Validation Diagnostic (CCMVal-Diag) tool for model evaluation. The CCMVal-Diag tool is a flexible and extensible open source package that facilitates the complex evaluation of global models. Models can be compared to other models, ensemble members (simulations with the same model), and/or many types of observations. The initial construction and application is to coupled chemistry-climate models (CCMs) participating in CCMVal, but the evaluation of climate models that submitted output to the Coupled Model Intercomparison Project (CMIP) is also possible. The package has been used to assist with analysis of simulations for the 2010 WMO/UNEP Scientific Ozone Assessment and the SPARC Report on the Evaluation of CCMs. The CCMVal-Diag tool is described and examples of how it functions are presented, along with links to detailed descriptions, instructions and source code. The CCMVal-Diag tool supports model development as well as quantifies model changes, both for different versions of individual models and for different generations of community-wide collections of models used in international assessments. The code allows further extensions by different users for different applications and types, e.g. to other components of the Earth system. User modifications are encouraged and easy to perform with minimum coding.

  7. A community diagnostic tool for Chemistry Climate Model Validation

    NASA Astrophysics Data System (ADS)

    Gettelman, A.; Eyring, V.; Fischer, C.; Shiona, H.; Cionni, I.; Neish, M.; Morgenstern, O.; Wood, S. W.; Li, Z.

    2012-05-01

    This technical note presents an overview of the Chemistry-Climate Model Validation Diagnostic (CCMVal-Diag) tool for model evaluation. The CCMVal-Diag tool is a flexible and extensible open source package that facilitates the complex evaluation of global models. Models can be compared to other models, ensemble members (simulations with the same model), and/or many types of observations. The tool can also compute quantitative performance metrics. The initial construction and application is to coupled Chemistry-Climate Models (CCMs) participating in CCMVal, but the evaluation of climate models that submitted output to the Coupled Model Intercomparison Project (CMIP) is also possible. The package has been used to assist with analysis of simulations for the 2010 WMO/UNEP Scientific Ozone Assessment and the SPARC Report on the Evaluation of CCMs. The CCMVal-Diag tool is described and examples of how it functions are presented, along with links to detailed descriptions, instructions and source code. The CCMVal-Diag tool is supporting model development as well as quantifying model improvements, both for different versions of individual models and for different generations of community-wide collections of models used in international assessments. The code allows further extensions by different users for different applications and types, e.g. to other components of the Earth System. User modifications are encouraged and easy to perform with a minimum of coding.

  8. Air Tightness of US Homes: Model Development

    SciTech Connect

    Sherman, Max H.

    2006-05-01

    Air tightness is an important property of building envelopes. It is a key factor in determining infiltration and related wall-performance properties such as indoor air quality, maintainability and moisture balance. Air leakage in U.S. houses consumes roughly 1/3 of the HVAC energy but provides most of the ventilation used to control IAQ. The Lawrence Berkeley National Laboratory has been gathering residential air leakage data from many sources and now has a database of more than 100,000 raw measurements. This paper uses that database to develop a model for estimating air leakage as a function of climate, building age, floor area, building height, floor type, energy-efficiency and low-income designations. The model developed can be used to estimate the leakage distribution of populations of houses.

  9. Using Transport Diagnostics to Understand Chemistry Climate Model Ozone Simulations

    NASA Technical Reports Server (NTRS)

    Strahan, S. E.; Douglass, A. R.; Stolarski, R. S.; Akiyoshi, H.; Bekki, S.; Braesicke, P.; Butchart, N.; Chipperfield, M. P.; Cugnet, D.; Dhomse, S.; Frith, S. M.; Gettleman, A.; Hardiman, S. C.; Kinnison, D. E.; Lamarque, J.-F.; Mancini, E.; Marchand, M.; Michou, M.; Morgenstern, O.; Nakamura, T.; Olivie, D.; Pawson, S.; Pitari, G.; Plummer, D. A.; Pyle, J. A.

    2010-01-01

    We demonstrate how observations of N2O and mean age in the tropical and midlatitude lower stratosphere (LS) can be used to identify realistic transport in models. The results are applied to 15 Chemistry Climate Models (CCMs) participating in the 2010 WMO assessment. Comparison of the observed and simulated N2O/mean age relationship identifies models with fast or slow circulations and reveals details of model ascent and tropical isolation. The use of this process-oriented N2O/mean age diagnostic identifies models with compensating transport deficiencies that produce fortuitous agreement with mean age. We compare the diagnosed model transport behavior with a model's ability to produce realistic LS O3 profiles in the tropics and midlatitudes. Models with the greatest tropical transport problems show the poorest agreement with observations. Models with the most realistic LS transport agree more closely with LS observations and each other. We incorporate the results of the chemistry evaluations in the SPARC CCMVal Report (2010) to explain the range of CCM predictions for the return-to-1980 dates for global (60 S-60 N) and Antarctic column ozone. Later (earlier) Antarctic return dates are generally correlated to higher (lower) vortex Cl(sub y) levels in the LS, and vortex Cl(sub y) is generally correlated with the model's circulation although model Cl(sub y) chemistry or Cl(sub y) conservation can have a significant effect. In both regions, models that have good LS transport produce a smaller range of predictions for the return-to-1980 ozone values. This study suggests that the current range of predicted return dates is unnecessarily large due to identifiable model transport deficiencies.

  10. A Global PLASIMO Model for H2O Chemistry

    NASA Astrophysics Data System (ADS)

    Tadayon Mousavi, Samaneh; Koelman, Peter; Graef, Wouter; Mihailova, Diana; van Dijk, Jan; EPG/ Applied Physics/ Eindhoven University of Technology Team; Plasma Matters B. V. Team

    2016-09-01

    Global warming is one of the critical contemporary problems for mankind. Transformation of CO2 into fuels, like CH4, that are transportable with the current infrastructure seems a promising idea to solve this threatening issue. The final aim of this research is to produce CH4 by using microwave plasma in CO2 -H2 O mixture and follow-up catalytic processes. In this contribution we present a global model for H2 O chemistry that is based on the PLASIMO plasma modeling toolkit. The time variation of the electron energy and the species' densities are calculated based on the source and loss terms in plasma due to chemical reactions. The short simulation times of such models allow an efficient assessment and chemical reduction of the H2O chemistry, which is required for full spatially resolved simulations.

  11. Interactions between dynamics and chemistry by COMMA modeling

    NASA Astrophysics Data System (ADS)

    Berger, U.; Koerner, U.; Sonnemann, G.

    Much of our current knowledge of the chemistry and circulation of the middle atmosphere derives from the spacecraft instruments since the the late 1970s (LIMS, SAGE II, ATMOS) and in particular the 1990s (HALOE, MLS, MAS, ILAS POAM III). In parallel , knowledge of the global circulation has continued to advance thanks to rapid developments in theoretical studies performed using numerical general circulation models (GCMs). This paper will focus on the upper atmosphere at polar latitudes because this region is of special importance for climate studies where trace gases like carbon dioxide, water vapor, ozone, etc. are key ingredients in determing the thermal structure of the summer high latitude mesopause region. Both processes, chemistry as well as dynamical induced transports, and their numerical description define the quality criterions of Middle Atmosphere GCMs. Due to comparisons of modeled and observed trace gas distributions (time scale season down to hours) we will discuss recent advance in numerical modeling of the MLT region.

  12. Better Galactic mass models through chemistry

    NASA Astrophysics Data System (ADS)

    Sanderson, Robyn Ellyn; Wetzel, Andrew; Hopkins, Philip F.; Sharma, Sanjib

    2017-01-01

    With the upcoming release of the Gaia catalog and the many multiplexed spectroscopic surveys on the horizon, we are rapidly moving into a new data-driven era in the study of the Milky Way's stellar halo. When combined, these data sets will give us a many-dimensional view of stars in accreted structures in the halo that includes both dynamical information about their orbits and chemical information about their formation histories. Using simulated data from the state-of-the-art Latte simulations of Milky-Way-like galaxies, which include hydrodynamics, feedback, and chemical evolution in a cosmological setting using the FIRE physics model, we demonstrate that while dynamical information alone can be used to constrain models of the Galactic mass distribution in the halo, including the extra dimensions provided by chemical abundances can improve these constraints as well as assist in untangling different accreted components.

  13. Improving UK Air Quality Modelling Through Exploitation of Satellite Observations

    NASA Astrophysics Data System (ADS)

    Pope, Richard; Chipperfield, Martyn; Savage, Nick

    2014-05-01

    In this work the applicability of satellite observations to evaluate the operational UK Met Office Air Quality in the Unified Model (AQUM) have been investigated. The main focus involved the AQUM validation against satellite observations, investigation of satellite retrieval error types and of synoptic meteorological-atmospheric chemistry relationships simulated/seen by the AQUM/satellite. The AQUM is a short range forecast model of atmospheric chemistry and aerosols up to 5 days. It has been designed to predict potentially hazardous air pollution events, e.g. high concentrations of surface ozone. The AQUM has only been validated against UK atmospheric chemistry recording surface stations. Therefore, satellite observations of atmospheric chemistry have been used to further validate the model, taking advantage of better satellite spatial coverage. Observations of summer and winter 2006 tropospheric column NO2 from both OMI and SCIAMACHY show that the AQUM generally compares well with the observations. However, in northern England positive biases (AQUM - satellite) suggest that the AQUM overestimates column NO2; we present results of sensitivity experiments on UK emissions datasets suspected to be the cause. In winter, the AQUM over predicts background column NO2 when compared to both satellite instruments. We hypothesise that the cause is the AQUM winter night-time chemistry, where the NO2 sinks are not substantially defined. Satellite data are prone to errors/uncertainty such as random, systematic and smoothing errors. We have investigated these error types and developed an algorithm to calculate and reduce the random error component of DOAS NO2 retrievals, giving more robust seasonal satellite composites. The Lamb Weather Types (LWT), an objective method of classifying the daily synoptic weather over the UK, were used to create composite satellite maps of column NO2 under different synoptic conditions. Under cyclonic conditions, satellite observed UK column NO2 is

  14. Spatial Allocator for air quality modeling

    EPA Pesticide Factsheets

    The Spatial Allocator is a set of tools that helps users manipulate and generate data files related to emissions and air quality modeling without requiring the use of a commercial Geographic Information System.

  15. EVALUATING AND USING AIR QUALITY MODELS

    EPA Science Inventory

    Grid-based models are being used to assess the magnitude of the pollution problem and to design emission control strategies to achieve compliance with the relevant air quality standards in the United States.

  16. Models of inflammation: carrageenan air pouch.

    PubMed

    Duarte, Djane B; Vasko, Michael R; Fehrenbacher, Jill C

    2012-03-01

    The subcutaneous air pouch is an in vivo model that can be used to study acute and chronic inflammation, the resolution of the inflammatory response, and the oxidative stress response. Injection of irritants into an air pouch in rats or mice induces an inflammatory response that can be quantified by the volume of exudate produced, the infiltration of cells, and the release of inflammatory mediators. The model presented in this unit has been extensively used to identify potential anti-inflammatory drugs.

  17. Representativeness errors in comparing chemistry transport and chemistry climate models with satellite UV/Vis tropospheric column retrievals

    NASA Astrophysics Data System (ADS)

    Boersma, K. F.; Vinken, G. C. M.; Eskes, H. J.

    2015-09-01

    UV/Vis satellite retrievals of trace gas columns of nitrogen dioxide (NO2), sulphur dioxide (SO2), and formaldehyde (HCHO) are useful to test and improve models of atmospheric composition, for data assimilation, air quality hindcasting and forecasting, and to provide top-down constraints on emissions. However, because models and satellite measurements do not represent the exact same geophysical quantities, the process of confronting model fields with satellite measurements is complicated by representativeness errors, which degrade the quality of the comparison beyond contributions from modelling and measurement errors alone. Here we discuss three types of representativeness errors that arise from the act of carrying out a model-satellite comparison: (1) horizontal representativeness errors due to imperfect collocation of the model grid cell and an ensemble of satellite pixels called superobservation, (2) temporal representativeness errors originating mostly from differences in cloud cover between the modelled and observed state, and (3) vertical representativeness errors because of reduced satellite sensitivity towards the surface accompanied with necessary retrieval assumptions on the state of the atmosphere. To minimize the impact of these representativeness errors, we recommend that models and satellite measurements be sampled as consistently as possible, and our paper provides a number of recipes to do so. A practical confrontation of tropospheric NO2 columns simulated by the TM5 chemistry transport model (CTM) with Ozone Monitoring Instrument (OMI) tropospheric NO2 retrievals suggests that horizontal representativeness errors, while unavoidable, are limited to within 5-10 % in most cases and of random nature. These errors should be included along with the individual retrieval errors in the overall superobservation error. Temporal sampling errors from mismatches in cloud cover, and, consequently, in photolysis rates, are on the order of 10 % for NO2 and HCHO

  18. Representativeness errors in comparing chemistry transport and chemistry climate models with satellite UV-Vis tropospheric column retrievals

    NASA Astrophysics Data System (ADS)

    Boersma, K. F.; Vinken, G. C. M.; Eskes, H. J.

    2016-03-01

    Ultraviolet-visible (UV-Vis) satellite retrievals of trace gas columns of nitrogen dioxide (NO2), sulfur dioxide (SO2), and formaldehyde (HCHO) are useful to test and improve models of atmospheric composition, for data assimilation, air quality hindcasting and forecasting, and to provide top-down constraints on emissions. However, because models and satellite measurements do not represent the exact same geophysical quantities, the process of confronting model fields with satellite measurements is complicated by representativeness errors, which degrade the quality of the comparison beyond contributions from modelling and measurement errors alone. Here we discuss three types of representativeness errors that arise from the act of carrying out a model-satellite comparison: (1) horizontal representativeness errors due to imperfect collocation of the model grid cell and an ensemble of satellite pixels called superobservation, (2) temporal representativeness errors originating mostly from differences in cloud cover between the modelled and observed state, and (3) vertical representativeness errors because of reduced satellite sensitivity towards the surface accompanied with necessary retrieval assumptions on the state of the atmosphere. To minimize the impact of these representativeness errors, we recommend that models and satellite measurements be sampled as consistently as possible, and our paper provides a number of recipes to do so. A practical confrontation of tropospheric NO2 columns simulated by the TM5 chemistry transport model (CTM) with Ozone Monitoring Instrument (OMI) tropospheric NO2 retrievals suggests that horizontal representativeness errors, while unavoidable, are limited to within 5-10 % in most cases and of random nature. These errors should be included along with the individual retrieval errors in the overall superobservation error. Temporal sampling errors from mismatches in cloud cover, and, consequently, in photolysis rates, are of the order of 10

  19. The effects of atmospheric chemistry on radiation budget in the Community Earth Systems Model

    NASA Astrophysics Data System (ADS)

    Choi, Y.; Czader, B.; Diao, L.; Rodriguez, J.; Jeong, G.

    2013-12-01

    The Community Earth Systems Model (CESM)-Whole Atmosphere Community Climate Model (WACCM) simulations were performed to study the impact of atmospheric chemistry on the radiation budget over the surface within a weather prediction time scale. The secondary goal is to get a simplified and optimized chemistry module for the short time period. Three different chemistry modules were utilized to represent tropospheric and stratospheric chemistry, which differ in how their reactions and species are represented: (1) simplified tropospheric and stratospheric chemistry (approximately 30 species), (2) simplified tropospheric chemistry and comprehensive stratospheric chemistry from the Model of Ozone and Related Chemical Tracers, version 3 (MOZART-3, approximately 60 species), and (3) comprehensive tropospheric and stratospheric chemistry (MOZART-4, approximately 120 species). Our results indicate the different details in chemistry treatment from these model components affect the surface temperature and impact the radiation budget.

  20. Nonequilibrium radiation and chemistry models for aerocapture vehicle flowfields

    NASA Technical Reports Server (NTRS)

    Carlson, Leland A.

    1990-01-01

    The primary tasks during January 1990 to June 1990 have been the development and evaluation of various electron and electron-electronic energy equation models, the continued development of improved nonequilibrium radiation models for molecules and atoms, and the continued development and investigation of precursor models and their effects. In addition, work was initiated to develop a vibrational model for the viscous shock layer (VSL) nonequilibrium chemistry blunt body engineering code. Also, an effort was started associated with the effects of including carbon species, say from an ablator, in the flowfield.

  1. Simulation of Aerosols and Chemistry with a Unified Global Model

    NASA Technical Reports Server (NTRS)

    Chin, Mian

    2004-01-01

    This project is to continue the development of the global simulation capabilities of tropospheric and stratospheric chemistry and aerosols in a unified global model. This is a part of our overall investigation of aerosol-chemistry-climate interaction. In the past year, we have enabled the tropospheric chemistry simulations based on the GEOS-CHEM model, and added stratospheric chemical reactions into the GEOS-CHEM such that a globally unified troposphere-stratosphere chemistry and transport can be simulated consistently without any simplifications. The tropospheric chemical mechanism in the GEOS-CHEM includes 80 species and 150 reactions. 24 tracers are transported, including O3, NOx, total nitrogen (NOy), H2O2, CO, and several types of hydrocarbon. The chemical solver used in the GEOS-CHEM model is a highly accurate sparse-matrix vectorized Gear solver (SMVGEAR). The stratospheric chemical mechanism includes an additional approximately 100 reactions and photolysis processes. Because of the large number of total chemical reactions and photolysis processes and very different photochemical regimes involved in the unified simulation, the model demands significant computer resources that are currently not practical. Therefore, several improvements will be taken, such as massive parallelization, code optimization, or selecting a faster solver. We have also continued aerosol simulation (including sulfate, dust, black carbon, organic carbon, and sea-salt) in the global model to cover most of year 2002. These results have been made available to many groups worldwide and accessible from the website http://code916.gsfc.nasa.gov/People/Chin/aot.html.

  2. Application of Stochastic and Deterministic Approaches to Modeling Interstellar Chemistry

    NASA Astrophysics Data System (ADS)

    Pei, Yezhe

    This work is about simulations of interstellar chemistry using the deterministic rate equation (RE) method and the stochastic moment equation (ME) method. Primordial metal-poor interstellar medium (ISM) is of our interest and the socalled “Population-II” stars could have been formed in this environment during the “Epoch of Reionization” in the baby universe. We build a gas phase model using the RE scheme to describe the ionization-powered interstellar chemistry. We demonstrate that OH replaces CO as the most abundant metal-bearing molecule in such interstellar clouds of the early universe. Grain surface reactions play an important role in the studies of astrochemistry. But the lack of an accurate yet effective simulation method still presents a challenge, especially for large, practical gas-grain system. We develop a hybrid scheme of moment equations and rate equations (HMR) for large gas-grain network to model astrochemical reactions in the interstellar clouds. Specifically, we have used a large chemical gas-grain model, with stochastic moment equations to treat the surface chemistry and deterministic rate equations to treat the gas phase chemistry, to simulate astrochemical systems as of the ISM in the Milky Way, the Large Magellanic Cloud (LMC) and Small Magellanic Cloud (SMC). We compare the results to those of pure rate equations and modified rate equations and present a discussion about how moment equations improve our theoretical modeling and how the abundances of the assorted species are changed by varied metallicity. We also model the observed composition of H2O, CO and CO2 ices toward Young Stellar Objects in the LMC and show that the HMR method gives a better match to the observation than the pure RE method.

  3. Modeling skills of pre-service chemistry teachers in predicting the structure and properties of inorganic chemistry compounds

    NASA Astrophysics Data System (ADS)

    Nursa'adah, Euis; Liliasari, Mudzakir, Ahmad

    2016-02-01

    The focus of chemistry is learning about the composition, properties, and transformations of matters. Modeling skills are required to comprehend structure and chemical composition in submicroscopic size. Modeling skills are abilities to produce chemical structure and to explain it into the macroscopic phenomenon and submicroscopic representations. Inorganic chemistry is a study of whole elements in the periodic table and their compounds, except carbon compounds and their derivatives. Knowledge about the structure and properties of chemical substances is a basic model for students in studying inorganic chemistry. Furthermore, students can design and produce to utilize materials needed in their life. This research aimed to describes modeling skills of pre-service chemistry teachers. In order, they are able to determine and synthesize useful materials. The results show that students' modeling skills were in a low level and unable connecting skill categories, even the models of inorganic compounds common. These phenomena indicated that students only describe each element when they learn inorganic chemistry. So that it will make modeling skills of students low. Later, another researches are necessary to develop learning design of inorganic chemistry based on good modeling skills of students.

  4. Regional Air Quality Model Application of the Aqueous-Phase ...

    EPA Pesticide Factsheets

    In most ecosystems, atmospheric deposition is the primary input of mercury. The total wet deposition of mercury in atmospheric chemistry models is sensitive to parameterization of the aqueous-phase reduction of divalent oxidized mercury (Hg2+). However, most atmospheric chemistry models use a parameterization of the aqueous-phase reduction of Hg2+ that has been shown to be unlikely under normal ambient conditions or use a non mechanistic value derived to optimize wet deposition results. Recent laboratory experiments have shown that Hg2+ can be photochemically reduced to elemental mercury (Hg) in the aqueous-phase by dissolved organic matter and a mechanism and the rate for Hg2+ photochemical reduction by dicarboxylic acids (DCA) has been proposed. For the first time in a regional scale model, the DCA mechanism has been applied. The HO2-Hg2+ reduction mechanism, the proposed DCA reduction mechanism, and no aqueous-phase reduction (NAR) of Hg2+ are evaluated against weekly wet deposition totals, concentrations and precipitation observations from the Mercury Deposition Network (MDN) using the Community Multiscale Air Quality (CMAQ) model version 4.7.1. Regional scale simulations of mercury wet deposition using a DCA reduction mechanism evaluated well against observations, and reduced the bias in model evaluation by at least 13% over the other schemes evaluated, although summertime deposition estimates were still biased by −31.4% against observations. The use of t

  5. Advanced modelling of the multiphase DMS chemistry with the CAPRAM DMS module 1.0

    NASA Astrophysics Data System (ADS)

    Hoffmann, Erik Hans; Tilgner, Andreas; Schrödner, Roland; Wolke, Ralf; Herrmann, Hartmut

    2016-04-01

    Oceans are the general emitter of dimethyl sulphide (DMS), the major natural sulphur source (Andreae, 1990), and cover approximately 70 % of earth's surface. The main DMS oxidation products are SO2, H2SO4 and methyl sulfonic acid (MSA). Hence, DMS is very important for formation of non-sea salt sulphate (nss SO42-) aerosols and secondary particulate matter and thus global climate. Despite many previous model studies, there are still important knowledge gaps, especially in aqueous phase DMS chemistry, of its atmospheric fate (Barnes et al., 2006). Therefore, a comprehensive multiphase DMS chemistry mechanism, the CAPRAM DMS module 1.0 (DM1.0), has been developed. The DM1.0 includes 103 gas phase reactions, 5 phase transfers and 54 aqueous phase reactions. It was coupled with the multiphase chemistry mechanism MCMv3.2/CAPRAM4.0α (Rickard et al., 2015; Bräuer et al., 2016) and the extended CAPRAM halogen module 2.1 (HM2.1, Bräuer et al., 2013) for investigation of multiphase DMS oxidation in the marine boundary layer. Then, a pristine ocean scenario was simulated using the air parcel model SPACCIM (Wolke et al., 2005) including 8 non-permanent cloud passages - 4 at noon and 4 at midnight. This allows the investigation of the influence of deliquesced particles and clouds on multiphase DMS chemistry during both daytime and nighttime conditions as well as under cloud formation and evaporation. To test the influence of various subsystems on multiphase DMS chemistry different sensitivity runs were performed. Investigations of multiphase chemistry of DMS and its important oxidation products were done using concentration-time profiles and detailed time-resolved reaction flux analyses. The model studies revealed the importance of aqueous phase chemistry for DMS and its oxidation products. Overall about 7.0% of DMS is effectively oxidised by O3 in the aqueous phase of clouds. The simulations revealed the importance of halogen and aqueous phase chemistry for DMS and its

  6. MIANN models in medicinal, physical and organic chemistry.

    PubMed

    González-Díaz, Humberto; Arrasate, Sonia; Sotomayor, Nuria; Lete, Esther; Munteanu, Cristian R; Pazos, Alejandro; Besada-Porto, Lina; Ruso, Juan M

    2013-01-01

    Reducing costs in terms of time, animal sacrifice, and material resources with computational methods has become a promising goal in Medicinal, Biological, Physical and Organic Chemistry. There are many computational techniques that can be used in this sense. In any case, almost all these methods focus on few fundamental aspects including: type (1) methods to quantify the molecular structure, type (2) methods to link the structure with the biological activity, and others. In particular, MARCH-INSIDE (MI), acronym for Markov Chain Invariants for Networks Simulation and Design, is a well-known method for QSAR analysis useful in step (1). In addition, the bio-inspired Artificial-Intelligence (AI) algorithms called Artificial Neural Networks (ANNs) are among the most powerful type (2) methods. We can combine MI with ANNs in order to seek QSAR models, a strategy which is called herein MIANN (MI & ANN models). One of the first applications of the MIANN strategy was in the development of new QSAR models for drug discovery. MIANN strategy has been expanded to the QSAR study of proteins, protein-drug interactions, and protein-protein interaction networks. In this paper, we review for the first time many interesting aspects of the MIANN strategy including theoretical basis, implementation in web servers, and examples of applications in Medicinal and Biological chemistry. We also report new applications of the MIANN strategy in Medicinal chemistry and the first examples in Physical and Organic Chemistry, as well. In so doing, we developed new MIANN models for several self-assembly physicochemical properties of surfactants and large reaction networks in organic synthesis. In some of the new examples we also present experimental results which were not published up to date.

  7. An Aerosol Physical Chemistry Model for the Upper Troposphere

    NASA Technical Reports Server (NTRS)

    Lin, Jin-Sheng

    2001-01-01

    This report is the final report for the Cooperative Agreement NCC2-1000. The tasks outlined in the various proposals are: (1) Development of an aerosol chemistry model; (2) Utilization of satellite measurements of trace gases along with analysis of temperatures and dynamic conditions to understand ice cloud formation, dehydration and sedimentation in the winter polar regions; (3) Comparison of the HALOE and SAGE II time dependencies of the Pinatubo aerosol decay. The publications are attached.

  8. Air-chemistry "turbulence": power-law scaling and statistical regularity

    NASA Astrophysics Data System (ADS)

    Hsu, H.-M.; Lin, C.-Y.; Guenther, A.; Tribbia, J. J.; Liu, S. C.

    2011-03-01

    With the intent to gain further knowledge on the spectral structures and statistical regularities of surface atmospheric chemistry, the chemical gases (NO, NO2, NOx, CO, SO2, and O3) and aerosol (PM10) measured at 74 air quality monitoring stations over the island of Taiwan are analyzed for the year of 2004 at hourly resolution. They represent a range of surface air quality with a mixed combination of geographic settings, and include urban/rural, coastal/inland, and plain/hill locations. In addition to the well-known semi-diurnal and diurnal oscillations, weekly, intermediate (20 ~ 30 days) and intraseasonal (30 ~ 100 days) peaks are also identified with the continuous wavelet transform (CWT). The spectra indicate power-law scaling regions for the frequencies higher than the diurnal and those lower than the diurnal with the average exponents of -5/3 and -1, respectively. These dual-exponents are corroborated with those with the detrended fluctuation analysis in the corresponding time-lag regions. After spectral coefficients from the CWT decomposition are grouped according to the spectral bands, and inverted separately, the PDFs of the reconstructed time series for the high-frequency band demonstrate the interesting statistical regularity, -3 power-law scaling for the heavy tails, consistently. Such spectral peaks, dual-exponent structures, and power-law scaling in heavy tails are intriguingly interesting, but their relations to turbulence and mesoscale variability require further investigations. This could lead to a better understanding of the processes controlling air quality.

  9. Air-chemistry "turbulence": power-law scaling and statistical regularity

    NASA Astrophysics Data System (ADS)

    Hsu, H.-M.; Lin, C.-Y.; Guenther, A.; Tribbia, J. J.; Liu, S. C.

    2011-08-01

    With the intent to gain further knowledge on the spectral structures and statistical regularities of surface atmospheric chemistry, the chemical gases (NO, NO2, NOx, CO, SO2, and O3) and aerosol (PM10) measured at 74 air quality monitoring stations over the island of Taiwan are analyzed for the year of 2004 at hourly resolution. They represent a range of surface air quality with a mixed combination of geographic settings, and include urban/rural, coastal/inland, plain/hill, and industrial/agricultural locations. In addition to the well-known semi-diurnal and diurnal oscillations, weekly, and intermediate (20 ~ 30 days) peaks are also identified with the continuous wavelet transform (CWT). The spectra indicate power-law scaling regions for the frequencies higher than the diurnal and those lower than the diurnal with the average exponents of -5/3 and -1, respectively. These dual-exponents are corroborated with those with the detrended fluctuation analysis in the corresponding time-lag regions. These exponents are mostly independent of the averages and standard deviations of time series measured at various geographic settings, i.e., the spatial inhomogeneities. In other words, they possess dominant universal structures. After spectral coefficients from the CWT decomposition are grouped according to the spectral bands, and inverted separately, the PDFs of the reconstructed time series for the high-frequency band demonstrate the interesting statistical regularity, -3 power-law scaling for the heavy tails, consistently. Such spectral peaks, dual-exponent structures, and power-law scaling in heavy tails are important structural information, but their relations to turbulence and mesoscale variability require further investigations. This could lead to a better understanding of the processes controlling air quality.

  10. Evidence for widespread tropospheric Cl chemistry in free tropospheric air masses from the South China Sea

    NASA Astrophysics Data System (ADS)

    Baker, Angela K.; Sauvage, Carina; Thorenz, Ute R.; Brenninkmeijer, Carl A. M.; Oram, David E.; van Velthoven, Peter; Zahn, Andreas; Williams, Jonathan

    2015-04-01

    While the primary global atmospheric oxidant is the hydroxyl radical (OH), under certain circumstances chlorine radicals (Cl) can compete with OH and perturb the oxidative cycles of the troposphere. During flights between Bangkok, Thailand and Kuala Lumpur, Malaysia conducted over two fall/winter seasons (November 2012 - March 2013 and November 2013 - January 2014) the IAGOS-CARIBIC (www.caribic-atmospheric.com) observatory consistently encountered free tropospheric air masses (9-11 km) originating over the South China Sea which had non-methane hydrocarbon (NMHC) signatures characteristic of processing by Cl. These signatures were observed in November and December of both years, but were not seen in other months, suggesting that oxidation by Cl is a persistent seasonal feature in this region. These Cl signatures were observed over a range of ~1500 km indicating a large-scale phenomenon. In this region, where transport patterns facilitate global redistribution of pollutants and persistent deep convection creates a fast-track for cross-tropopause transport, there exists the potential for regional chemistry to have impacts further afield. Here we use observed relationships between NMHCs to estimate the significance and magnitude of Cl oxidation in this region. From the relative depletions of NMHCs in these air masses we infer OH to Cl ratios of 83±28 to 139±40 [OH]/[Cl], which we believe represents an upper limit, based on the technique employed. At a predicted average [OH] of 1.5×106 OH cm-3 this corresponds to an average (minimum) [Cl] exposure of 1-2×104 Cl cm-3 during air mass transport. Lastly, in addition to estimating Cl abundances we have used IAGOS-CARIBIC observations to elucidate whether the origin of this Cl is predominantly natural or anthropogenic.

  11. The global change research center atmospheric chemistry model

    SciTech Connect

    Moraes, Jr., Francis Perry

    1995-01-01

    This work outlines the development of a new model of the chemistry of the natural atmosphere. The model is 2.5-dimensional, having spatial coordinates height, latitude, and, the half-dimension, land and ocean. The model spans both the troposphere and stratosphere, although the troposphere is emphasized and the stratosphere is simple and incomplete. The chemistry in the model includes the Ox, HOx, NOx, and methane cycles in a highly modular fashion which allows model users great flexibility in selecting simulation parameters. A detailed modeled sensitivity analysis is also presented. A key aspect of the model is its inclusion of clouds. The model uses current understanding of the distribution and optical thickness of clouds to determine the true radiation distribution in the atmosphere. As a result, detailed studies of the radiative effects of clouds on the distribution of both oxidant concentrations and trace gas removal are possible. This work presents a beginning of this study with model results and discussion of cloud effects on the hydroxyl radical.

  12. Modeling of global surface air temperature

    NASA Astrophysics Data System (ADS)

    Gusakova, M. A.; Karlin, L. N.

    2012-04-01

    A model to assess a number of factors, such as total solar irradiance, albedo, greenhouse gases and water vapor, affecting climate change has been developed on the basis of Earth's radiation balance principle. To develop the model solar energy transformation in the atmosphere was investigated. It's a common knowledge, that part of the incoming radiation is reflected into space from the atmosphere, land and water surfaces, and another part is absorbed by the Earth's surface. Some part of outdoing terrestrial radiation is retained in the atmosphere by greenhouse gases (carbon dioxide, methane, nitrous oxide) and water vapor. Making use of the regression analysis a correlation between concentration of greenhouse gases, water vapor and global surface air temperature was obtained which, it is turn, made it possible to develop the proposed model. The model showed that even smallest fluctuations of total solar irradiance intensify both positive and negative feedback which give rise to considerable changes in global surface air temperature. The model was used both to reconstruct the global surface air temperature for the 1981-2005 period and to predict global surface air temperature until 2030. The reconstructions of global surface air temperature for 1981-2005 showed the models validity. The model makes it possible to assess contribution of the factors listed above in climate change.

  13. Airborne measurements of air pollution chemistry and transport. 1: Initial survey of major air basins in California

    NASA Technical Reports Server (NTRS)

    Gloria, H. R.; Pitts, J. N., Jr.; Behar, J. V.; Bradburn, G. A.; Reinisch, R. F.; Zafonte, L.

    1972-01-01

    An instrumented aircraft has been used to study photochemical air pollution in the State of California. Simultaneous measurements of the most important chemical constituents (ozone, total oxidant, hydrocarbons, and nitrogen oxides, as well as several meteorological variables) were made. State-of-the-art measurement techniques and sampling procedures are discussed. Data from flights over the South Coast Air Basin, the San Francisco Bay Area, the San Joaquin Valley, the Santa Clara and Salinas Valleys, and the Pacific Ocean within 200 miles of the California coast are presented. Pollutants were found to be concentrated in distant layers up to at least 18,000 feet. In many of these layers, the pollutant concentrations were much higher than at ground level. These findings bring into serious question the validity of the present practice of depending solely on data from ground-based monitoring stations for predictive models.

  14. Samaa : A Software For Air Pollution Modelling and Analysis Activities

    NASA Astrophysics Data System (ADS)

    Gueguen, C.; Mangin, A.; Sanchez, O.

    In order to better understand the qualitative and quantitative evolution of air pollu- tion in cities and their surroundings, ACRI-st has designed and developed, jointly with two French air surveillance networks, an integrated application for air pollution modelling. This simulator, called Samaa, enables testing the impact on pollution of different emission scenarios under a number of meteorological conditions. Samaa is a platform with a user-friendly interface for scenario management, including an emission module, and a GIS-based results viewing module, that may in turn be interfaced with a meteorological and a chemistry/dispersion module (or a dispersion module). The meteorological module is processed first, before any other air pollution module of the simulator. It supplies the meteorological files that will then be used by the emis- sion module and subsequently by the dispersion and chemical modules. This module calculates wind and temperature fields, as well as different meteorological parameters. The AIREMIS emission module was designed to calculate the hourly emissions of seven primary pollutants for each emission sector (transport, industry, heating and natural environment). The GIS, integrated in the emission module, executes two main tasks : - preparation of the emission data sets that the modelling system will process - results viewing for all the different calculation modules (emission, wind and concen- tration maps). The chemistry/dispersion and the dispersion modules enable reactive and non reac- tive pollutants simulation in urban and sub-urban areas. They are interfaced with the other system element to allow simulation of pollutants concentration derived from non chemical or photochemical reactions. Samaa has been validated on two 3-day simulations : the first one was dedicated to evaluate the "chemical processing" of the simulator, and the second one to the "dis- persion processing". The results have proven the strength and the robustness of the

  15. Analyzing Students' Understanding of Models and Modeling Referring to the Disciplines Biology, Chemistry, and Physics

    NASA Astrophysics Data System (ADS)

    Krell, Moritz; Reinisch, Bianca; Krüger, Dirk

    2015-06-01

    In this study, secondary school students' ( N = 617; grades 7 to 10) understanding of models and modeling was assessed using tasks which explicitly refer to the scientific disciplines of biology, chemistry, and physics and, as a control, to no scientific discipline. The students' responses are interpreted as their biology-, chemistry-, and physics-related or general understanding of models and modeling. A subpopulation ( N = 115; one class per grade) was subsequently asked which models they had in mind when answering the tasks referring to biology, chemistry, and physics (open-ended questions). The findings show significant differences between students' biology-, chemistry-, and physics-related understandings of models and modeling. Based on a theoretical framework, the biology-related understanding can be seen as less elaborated than the physics- and chemistry-related understandings. The students' general understanding of models and modeling is located between the biology- and the physics-related understandings. Answers to the open-ended questions indicate that students primarily think about scale and functional models in the context of biology tasks. In contrast, more abstract models (e.g., analogical models, diagrams) were mentioned in relation to chemistry and physics tasks. In sum, the findings suggest that models may be used in a rather descriptive way in biology classes but in a predictive way in chemistry and physics classes. This may explain discipline-specific understandings of models and modeling. Only small differences were found in students' understanding of models and modeling between the different grade levels 7/8 and 9/10.

  16. Nighttime Chemistry at a High Elevation Site above Hong Kong: Implications for Regional Air Quality

    NASA Astrophysics Data System (ADS)

    Dube, W. P.; Brown, S. S.; Parrish, D. D.; Tham, Y. J.; Wang, T.; Zha, Q.; Xu, Z.; Xue, L.; Poon, S.; Wang, Z.; Wang, X.; Tsui, W.

    2014-12-01

    Nighttime chemical processes of nitrogen oxides, including reactions of the nitrate radical (NO3) and dinitrogen pentoxide (N2O5), are important to numerous tropospheric chemical cycles, including the removal of NO­x, the oxidation of biogenic hydrocarbons, and the heterogeneous activation of halogen species. These cycles influence regional ozone and aerosol pollution but remain uncertain. Although nitrogen oxide levels are highest in urban areas, nighttime chemistry is notoriously difficult to study in these regions due to surface level buildup of NO and consequent titration of O3, which suppress nighttime chemical reactions. Tai Mo Shan (TMS) is a high elevation site (950 m) situated between the cities of Hong Kong and Shenzhen, each of which has a population of approximately 7 million. Both lie within the Pearl River Delta, a regional megacity of population 45 million. TMS is ideally suited for the study of nighttime chemistry within a megacity because it is situated within the residual boundary layer at night and is influenced by regional pollution in the absence of strong local effects. During the fall season, the Pearl River Delta region and Hong Kong experience peak ozone due to meteorological pattern that brings polluted continental outflow over the coastal region of southern China. During November and December 2013, a small-scale field study was conducted at the TMS summit to investigate nighttime chemistry. Chemical instrumentation included cavity ring-down and mass spectrometric instruments for NO3, N2O5 and ClNO2, as well as instrumentation for measurement of NOx, NOy, O3, VOCs, aerosols, other trace gases and meteorological data. Regular late afternoon and evening outflow events from mainland China were observed at this site, including one event with extreme (12 ppbv) levels of N2O5. This presentation will give an overview of the campaign, the atmospheric chemical data and its relationship to meteorological regimes. It will also examine budgets for

  17. Computational Tools To Model Halogen Bonds in Medicinal Chemistry.

    PubMed

    Ford, Melissa Coates; Ho, P Shing

    2016-03-10

    The use of halogens in therapeutics dates back to the earliest days of medicine when seaweed was used as a source of iodine to treat goiters. The incorporation of halogens to improve the potency of drugs is now fairly standard in medicinal chemistry. In the past decade, halogens have been recognized as direct participants in defining the affinity of inhibitors through a noncovalent interaction called the halogen bond or X-bond. Incorporating X-bonding into structure-based drug design requires computational models for the anisotropic distribution of charge and the nonspherical shape of halogens, which lead to their highly directional geometries and stabilizing energies. We review here current successes and challenges in developing computational methods to introduce X-bonding into lead compound discovery and optimization during drug development. This fast-growing field will push further development of more accurate and efficient computational tools to accelerate the exploitation of halogens in medicinal chemistry.

  18. Linkage between an advanced air quality model and a mechanistic watershed model

    NASA Astrophysics Data System (ADS)

    Vijayaraghavan, K.; Herr, J.; Chen, S.-Y.; Knipping, E.

    2010-09-01

    An offline linkage between two advanced multi-pollutant air quality and watershed models is presented. The models linked are (1) the Advanced Modeling System for Transport, Emissions, Reactions and Deposition of Atmospheric Matter (AMSTERDAM) (a three-dimensional Eulerian plume-in-grid model derived from the Community Multiscale Air Quality (CMAQ) model) and (2) the Watershed Analysis Risk Management Framework (WARMF). The pollutants linked include gaseous and particulate nitrogen, sulfur and mercury compounds. The linkage may also be used to obtain meteorological fields such as precipitation and air temperature required by WARMF from the outputs of the meteorology chemistry interface processor (MCIP) that processes meteorology simulated by the fifth generation Mesoscale Model (MM5) or the Weather Research and Forecast (WRF) model for input to AMSTERDAM. The linkage is tested in the Catawba River basin of North and South Carolina for ammonium, nitrate and sulfate. Modeled air quality and meteorological fields transferred by the linkage can supplement the conventional measurements used to drive WARMF and may be used to help predict the impact of changes in atmospheric emissions on water quality.

  19. Modeling monthly mean air temperature for Brazil

    NASA Astrophysics Data System (ADS)

    Alvares, Clayton Alcarde; Stape, José Luiz; Sentelhas, Paulo Cesar; de Moraes Gonçalves, José Leonardo

    2013-08-01

    Air temperature is one of the main weather variables influencing agriculture around the world. Its availability, however, is a concern, mainly in Brazil where the weather stations are more concentrated on the coastal regions of the country. Therefore, the present study had as an objective to develop models for estimating monthly and annual mean air temperature for the Brazilian territory using multiple regression and geographic information system techniques. Temperature data from 2,400 stations distributed across the Brazilian territory were used, 1,800 to develop the equations and 600 for validating them, as well as their geographical coordinates and altitude as independent variables for the models. A total of 39 models were developed, relating the dependent variables maximum, mean, and minimum air temperatures (monthly and annual) to the independent variables latitude, longitude, altitude, and their combinations. All regression models were statistically significant ( α ≤ 0.01). The monthly and annual temperature models presented determination coefficients between 0.54 and 0.96. We obtained an overall spatial correlation higher than 0.9 between the models proposed and the 16 major models already published for some Brazilian regions, considering a total of 3.67 × 108 pixels evaluated. Our national temperature models are recommended to predict air temperature in all Brazilian territories.

  20. Performance of European chemistry transport models as function of horizontal resolution

    NASA Astrophysics Data System (ADS)

    Schaap, M.; Cuvelier, C.; Hendriks, C.; Bessagnet, B.; Baldasano, J. M.; Colette, A.; Thunis, P.; Karam, D.; Fagerli, H.; Graff, A.; Kranenburg, R.; Nyiri, A.; Pay, M. T.; Rouïl, L.; Schulz, M.; Simpson, D.; Stern, R.; Terrenoire, E.; Wind, P.

    2015-07-01

    Air pollution causes adverse effects on human health as well as ecosystems and crop yield and also has an impact on climate change trough short-lived climate forcers. To design mitigation strategies for air pollution, 3D Chemistry Transport Models (CTMs) have been developed to support the decision process. Increases in model resolution may provide more accurate and detailed information, but will cubically increase computational costs and pose additional challenges concerning high resolution input data. The motivation for the present study was therefore to explore the impact of using finer horizontal grid resolution for policy support applications of the European Monitoring and Evaluation Programme (EMEP) model within the Long Range Transboundary Air Pollution (LRTAP) convention. The goal was to determine the "optimum resolution" at which additional computational efforts do not provide increased model performance using presently available input data. Five regional CTMs performed four runs for 2009 over Europe at different horizontal resolutions. The models' responses to an increase in resolution are broadly consistent for all models. The largest response was found for NO2 followed by PM10 and O3. Model resolution does not impact model performance for rural background conditions. However, increasing model resolution improves the model performance at stations in and near large conglomerations. The statistical evaluation showed that the increased resolution better reproduces the spatial gradients in pollution regimes, but does not help to improve significantly the model performance for reproducing observed temporal variability. This study clearly shows that increasing model resolution is advantageous, and that leaving a resolution of 50 km in favour of a resolution between 10 and 20 km is practical and worthwhile. As about 70% of the model response to grid resolution is determined by the difference in the spatial emission distribution, improved emission allocation

  1. Active-Inductive-Cooperative Learning: An Instructional Model for Chemistry?

    NASA Astrophysics Data System (ADS)

    Felder, Richard M.

    1996-09-01

    Five chemical engineering courses were taught to a cohort of students in consecutive semesters using an instructional model based on active, inductive, and cooperative learning and other methods designed to address a broad spectrum of learning styles. The results suggest that the approach enhances understanding and promotes the development of a variety of interpersonal and thinking skills, and that while it may initially provoke resistance from some students, the resistance can be overcome if the methods are implemented with care. With suitable modifications for content differences, the model may be equally effective for chemistry instruction.

  2. A fast stratospheric chemistry solver: the E4CHEM submodel for the atmospheric chemistry global circulation model EMAC

    NASA Astrophysics Data System (ADS)

    Baumgaertner, A. J. G.; Jöckel, P.; Steil, B.; Tost, H.; Sander, R.

    2010-06-01

    The atmospheric chemistry general circulation model ECHAM5/MESSy (EMAC) and the atmospheric chemistry box model CAABA are extended by a computationally very efficient submodel for atmospheric chemistry, E4CHEM. It focuses on stratospheric chemistry but also includes background tropospheric chemistry. It is based on the chemistry of MAECHAM4-CHEM and is intended to serve as a simple and fast alternative to the flexible but also computationally more demanding submodel MECCA. In a model setup with E4CHEM, EMAC is now also suitable for simulations of longer time scales. The reaction mechanism contains basic O3, CH4, CO, HOx, NOx, and ClOx gas phase chemistry. In addition, E4CHEM includes optional fast routines for heterogeneous reactions on sulphate aerosols and polar stratospheric clouds (substituting the existing submodels PSC and HETCHEM), and scavenging (substituting the existing submodel SCAV). We describe the implementation of E4CHEM into the MESSy structure of CAABA and EMAC. For some species the steady state in the box model differs by up to 100% when compared to results from CAABA/MECCA due to different reaction rates. After an update of the reaction rates in E4CHEM the mixing ratios in both boxmodel and 3-D model simulations are in satisfactory agreement with the results from a simulation where MECCA with a similar chemistry scheme was employed. Finally, a comparison against a simulation with a more complex and already evaluated chemical mechanism is presented in order to discuss shortcomings associated with the simplification of the chemical mechanism.

  3. A fast stratospheric chemistry solver: the E4CHEM submodel for the atmospheric chemistry global circulation model EMAC

    NASA Astrophysics Data System (ADS)

    Baumgaertner, A. J. G.; Jöckel, P.; Steil, B.; Tost, H.; Sander, R.

    2010-02-01

    The atmospheric chemistry general circulation model ECHAM5/MESSy (EMAC) and the atmospheric chemistry box model CAABA are extended by a computationally very efficient submodel for atmospheric chemistry, E4CHEM. It focuses on stratospheric chemistry but also includes background tropospheric chemistry. It is based on the chemistry of MAECHAM4-CHEM and is intended to serve as a simple and fast alternative to the flexible but also computationally more demanding submodel MECCA. In a model setup with E4CHEM, EMAC is now also suitable for simulations of longer time scales. The reaction mechanism contains basic O3, CH4, CO, HOx, NOx and ClOx gas phase chemistry. In addition, E4CHEM includes optional fast routines for heterogeneous reactions on sulphate aerosols and polar stratospheric clouds (substituting the existing submodels PSC and HETCHEM), and scavenging (substituting the existing submodel SCAV). We describe the implementation of E4CHEM into the MESSy structure of CAABA and EMAC. For some species the steady state in the box model differs by up to 100% when compared to results from CAABA/MECCA due to different reaction rates. After an update of the reaction rates in E4CHEM the mixing ratios in both boxmodel and 3-D model simulations are in satisfactory agreement with the results from a simulation where MECCA with a similar chemistry scheme was employed. Finally, a comparison against a simulation with a more complex and already evaluated chemical mechanism is presented in order to discuss shortcomings associated with the simplification of the chemical mechanism.

  4. Toward a lithium-"air" battery: the effect of CO2 on the chemistry of a lithium-oxygen cell.

    PubMed

    Lim, Hyung-Kyu; Lim, Hee-Dae; Park, Kyu-Young; Seo, Dong-Hwa; Gwon, Hyeokjo; Hong, Jihyun; Goddard, William A; Kim, Hyungjun; Kang, Kisuk

    2013-07-03

    Lithium-oxygen chemistry offers the highest energy density for a rechargeable system as a "lithium-air battery". Most studies of lithium-air batteries have focused on demonstrating battery operations in pure oxygen conditions; such a battery should technically be described as a "lithium-dioxygen battery". Consequently, the next step for the lithium-"air" battery is to understand how the reaction chemistry is affected by the constituents of ambient air. Among the components of air, CO2 is of particular interest because of its high solubility in organic solvents and it can react actively with O2(-•), which is the key intermediate species in Li-O2 battery reactions. In this work, we investigated the reaction mechanisms in the Li-O2/CO2 cell under various electrolyte conditions using quantum mechanical simulations combined with experimental verification. Our most important finding is that the subtle balance among various reaction pathways influencing the potential energy surfaces can be modified by the electrolyte solvation effect. Thus, a low dielectric electrolyte tends to primarily form Li2O2, while a high dielectric electrolyte is effective in electrochemically activating CO2, yielding only Li2CO3. Most surprisingly, we further discovered that a high dielectric medium such as DMSO can result in the reversible reaction of Li2CO3 over multiple cycles. We believe that the current mechanistic understanding of the chemistry of CO2 in a Li-air cell and the interplay of CO2 with electrolyte solvation will provide an important guideline for developing Li-air batteries. Furthermore, the possibility for a rechargeable Li-O2/CO2 battery based on Li2CO3 may have merits in enhancing cyclability by minimizing side reactions.

  5. Air target models for fuzing simulations

    NASA Astrophysics Data System (ADS)

    Dammann, J. F., Jr.

    1982-09-01

    Radar backscatter models for air targets suitable for computer simulation of radar fuze-air target encounters are described. These models determine the characteristics of the energy reflected to the fuze when the target is illuminated by a fuze radar. When the target models are coupled with fuze models, the time when the fuze detects the presence of the target can be determined for any arbitrary terminal encounter geometry. Fuze detection times for representative trajectories can be compared with fuze specifications to measure fuze performance or can be used as a part of a simulation of an entire system to determine system performance. Following one basic methodology, target models have been written for the Fishbed, Foxbat, and Flogger fighter aircraft; the Hind-D helicopter; and the Backfire, Blinder, and B-1 bombers. All of the models are specular point models where the major return is assumed to come from a small number of glitter points or specular points on the target.

  6. Evaluation of a regional chemistry transport model using a newly developed regional OMI NO2 retrieval

    NASA Astrophysics Data System (ADS)

    Kuhlmann, G.; Lam, Y. F.; Cheung, H. M.; Hartl, A.; Fung, J. C. H.; Chan, P. W.; Wenig, M. O.

    2014-12-01

    In this paper, we evaluate a high-resolution chemistry transport model (CTM) (3 km x 3 km spatial resolution) with the new Hong Kong (HK) NO2 retrieval developed for the Ozone Monitoring Instrument (OMI) on-board the Aura satellite. The three-dimensional atmospheric chemistry was modelled in the Pearl River Delta (PRD) region in southern China by the Models-3 Community Multiscale Air Quality (CMAQ) modelling system from October 2006 to January 2007. In the HK NO2 retrieval, tropospheric air mass factors (AMF) were recalculated using high-resolution ancillary parameters of surface reflectance, NO2 profile shapes and aerosol profiles of which the latter two were taken from the CMAQ simulation. We also tested four different aerosol parametrizations. Ground level measurements by the PRD Regional Air Quality Monitoring (RAQM) network were used as additional independent measurements. The HK NO2 retrieval increases the NO2 vertical column densities (VCD) by (+31 ± 38) %, when compared to NASA's standard product (SP2), and reduces the mean bias (MB) between satellite and ground measurements by 26 percentage points from -41 to -15 %. The correlation coefficient r is low for both satellite datasets (r = 0.35) due to the high spatial variability of NO2 concentrations. The correlation between CMAQ and the RAQM network is low (r ≈ 0.3) and the model underestimates the NO2 concentrations in the north-western model domain (Foshan and Guangzhou). We compared the CMAQ NO2 time series of the two main plumes with our regional OMI NO2 product. The model overestimates the NO2 VCDs by about 15 % in Hong Kong and Shenzhen, while the correlation coefficient is satisfactory (r = 0.56). In Foshan and Guangzhou, the correlation is low (r = 0.37) and the model underestimates the VCDs strongly (MB = -40 %). In addition, we estimated that the OMI VCDs are also underestimated by about 10 to 20 % in Foshan and Guangzhou because of the influence of the model parameters on the AMF. In this study

  7. Benchmarking spin-state chemistry in starless core models

    NASA Astrophysics Data System (ADS)

    Sipilä, O.; Caselli, P.; Harju, J.

    2015-06-01

    Aims: We aim to present simulated chemical abundance profiles for a variety of important species, giving special attention to spin-state chemistry, in order to provide reference results to which present and future models can be compared. Methods: We employ gas-phase and gas-grain models to investigate chemical abundances in physical conditions that correspond to starless cores. To this end, we have developed new chemical reaction sets for both gas-phase and grain-surface chemistry, including the deuterated forms of species with up to six atoms and the spin-state chemistry of light ions and of the species involved in the ammonia and water formation networks. The physical model is kept simple to facilitate straightforward benchmarking of other models against the results of this paper. Results: We find that the ortho/para ratios of ammonia and water are similar in both gas-phase and gas-grain models, particularly at late times, implying that the ratios are determined by gas-phase processes. Furthermore, the ratios do not exhibit any strong dependence on core density. We derive late-time ortho/para ratios of ~0.5 for ammonia and ~1.6 for water. We find that including or excluding deuterium in the calculations has little effect on the abundances of non-deuterated species and on the ortho/para ratios of ammonia and water, especially in gas-phase models where deuteration is naturally hindered by the presence of abundant heavy elements. Although we study a rather narrow temperature range (10-20 K), we find strong temperature dependence in, e.g., deuteration and nitrogen chemistry. For example, the depletion timescale of ammonia is significantly reduced when the temperature is increased from 10 to 20 K; this is because the increase in temperature translates into increased accretion rates, while the very high binding energy of ammonia prevents it from being desorbed at 20 K. Appendices are available in electronic form at http://www.aanda.org

  8. Improving UK Air Quality Modelling Through Exploitation of Satellite Observations

    NASA Astrophysics Data System (ADS)

    Pope, R.; Chipperfield, M.; Savage, N.

    2012-12-01

    The Met Office's operational regional Air Quality Unified Model (AQUM) contains a description of atmospheric chemistry/aerosols which allows for the short-term forecast of chemical weather (e.g. high concentrations of ozone or nitrogen dioxide, which can trigger warnings of poor air quality). AQUM's performance has so far only been tested against a network of surface monitoring stations. Therefore, with recent improvements in the quality and quantity of satellite measurements, data products (e.g. tropospheric columns, vertical profiles) from several satellite instruments will be used to test the performance of the model. First comparisons between an AQUM simulation for the UK heatwave event of July 2006 and data from OMI, TES (both on AURA) and MODIS (on AQUA) have identified multiple model-satellite biases. The chemical/aerosol species investigated for this simulation include nitrogen dioxide (NO2), ozone (O3), formaldehyde (HCHO), carbon monoxide (CO) and aerosol optical depth (AOD) at 0.55 microns wavelength. NO2 spatial positive mean biases (AQUM-OMI July 2006 monthly mean tropospheric columns) over north- east England suggest model overestimation in the area's urban regions. Currently, sensitivity tests of the NOx emission datasets are investigating these biases and the model's represent of urban pollution. In the UK O3 monthly mean vertical profile comparisons (AQUM-TES), strong positive mean biases are detected in the upper troposphere/lower stratosphere. Since the AQUM does not use a stratospheric chemistry scheme, the satellite climatological vertical boundary conditions will be investigated (e.g. test the model with new boundary conditions using multiple satellite instruments or perturb existing climatologies). Comparisons of HCHO (AQUM-OMI monthly mean tropospheric columns) biases highlight strong negative biases over continental Europe and sporadic positive biases in the south-east lateral boundary conditions. Therefore, evaluation and development of

  9. Mechanistic Insights on the Photosensitized Chemistry of a Fatty Acid at the Air/Water Interface

    PubMed Central

    2016-01-01

    Interfaces are ubiquitous in the environment and many atmospheric key processes, such as gas deposition, aerosol, and cloud formation are, at one stage or another, strongly impacted by physical and chemical processes occurring at interfaces. Here, the photoinduced chemistry of an air/water interface coated with nonanoic acid—a fatty acid surfactant we use as a proxy for chemically complex natural aqueous surface microlayers—was investigated as a source of volatile and semivolatile reactive organic species. The carboxylic acid coating significantly increased the propensity of photosensitizers, chosen to mimic those observed in real environmental waters, to partition to the interface and enhance reactivity there. Photochemical formation of functionalized and unsaturated compounds was systematically observed upon irradiation of these coated surfaces. The role of a coated interface appears to be critical in providing a concentrated medium allowing radical–radical reactions to occur in parallel with molecular oxygen additions. Mechanistic insights are provided from extensive analysis of products observed in both gas and aqueous phases by online switchable reagent ion-time of flight-mass spectrometry and by off-line ultraperformance liquid chromatography coupled to a Q Exactive high resolution mass spectrometer through heated electrospray ionization, respectively. PMID:27611489

  10. Models of Inflammation: Carrageenan Air Pouch.

    PubMed

    Duarte, Djane B; Vasko, Michael R; Fehrenbacher, Jill C

    2016-03-18

    The subcutaneous air pouch is an in vivo model that can be used to study the components of acute and chronic inflammation, the resolution of the inflammatory response, the oxidative stress response, and potential therapeutic targets for treating inflammation. Injection of irritants into an air pouch in rats or mice induces an inflammatory response that can be quantified by the volume of exudate produced, the infiltration of cells, and the release of inflammatory mediators. The model presented in this unit has been extensively used to identify potential anti-inflammatory drugs.

  11. Integrated modeling and characterization of local crack chemistry

    SciTech Connect

    Savchik, J.A.; Burke, M.S.

    1995-12-31

    The MULTEQ computer program has become an industry wide tool which can be used to calculate the chemical composition in a flow occluded region as the solution within concentrates due to a local boiling process. These results can be used to assess corrosion concerns in plant equipment such as steam generators. Corrosion modeling attempts to quantify corrosion assessments by accounting for the mass transport processes involved in the corrosion mechanism. MULTEQ has played an ever increasing role in defining the local chemistry for such corrosion models. This paper will outline how the integration of corrosion modeling with the analysis of corrosion films and deposits can lead to the development of a useful modeling tool, wherein MULTEQ is interactively linked to a diffusion and migration transport process. This would provide a capability to make detailed inferences of the local crack chemistry based on the analyses of the local corrosion films and deposits inside a crack and thus provide guidance for chemical fixes to avoid cracking. This methodology is demonstrated for a simple example of a cracked tube. This application points out the utility of coupling MULTEQ with a mass transport process and the feasibility of an option in a future version of MULTEQ that would permit relating film and deposit analyses to the local chemical environment. This would increase the amount of information obtained from removed tube analyses and laboratory testing that can contribute to an overall program for mitigating tubing and crevice corrosion.

  12. Kinetic modelling for an atmospheric pressure argon plasma jet in humid air

    NASA Astrophysics Data System (ADS)

    Van Gaens, W.; Bogaerts, A.

    2013-07-01

    A zero-dimensional, semi-empirical model is used to describe the plasma chemistry in an argon plasma jet flowing into humid air, mimicking the experimental conditions of a setup from the Eindhoven University of Technology. The model provides species density profiles as a function of the position in the plasma jet device and effluent. A reaction chemistry set for an argon/humid air mixture is developed, which considers 84 different species and 1880 reactions. Additionally, we present a reduced chemistry set, useful for higher level computational models. Calculated species density profiles along the plasma jet are shown and the chemical pathways are explained in detail. It is demonstrated that chemically reactive H, N, O and OH radicals are formed in large quantities after the nozzle exit and H2, O2(1Δg), O3, H2O2, NO2, N2O, HNO2 and HNO3 are predominantly formed as ‘long living’ species. The simulations show that water clustering of positive ions is very important under these conditions. The influence of vibrational excitation on the calculated electron temperature is studied. Finally, the effect of varying gas temperature, flow speed, power density and air humidity on the chemistry is investigated.

  13. Chemistry Teachers' Journey through Modeling Instruction: From Workshop to Classroom

    NASA Astrophysics Data System (ADS)

    Frick, Tasha

    This presentation will feature case study research that describes the difficulties that four high school chemistry teachers faced while implementing Modeling Instruction into their classrooms. Modeling Instruction is characterized by the development of understanding through cooperative inquiry and collective discourse on a path from concrete to abstract. The complications in transforming a classroom from traditional teacher centered methods to one which focuses on the use of student-centered Modeling Instruction will be thoroughly investigated through the stories of each of the participants. The study begins with observations of the teachers prior to the introduction of Modeling Instruction and follows them into the professional development in the summer, the initial use in the fall term, a follow-up workshop, and finally back into the classrooms. The enlightening findings highlight the difficulties teachers had in aligning the standards, and developing a scope and sequence, as well as reconciling their beliefs about student ability.

  14. Chemistry Resolved Kinetic Flow Modeling of TATB Based Explosives

    SciTech Connect

    Vitello, P A; Fried, L E; Howard, W M; Levesque, G; Souers, P C

    2011-07-21

    Detonation waves in insensitive, TATB based explosives are believed to have multi-time scale regimes. The initial burn rate of such explosives has a sub-microsecond time scale. However, significant late-time slow release in energy is believed to occur due to diffusion limited growth of carbon. In the intermediate time scale concentrations of product species likely change from being in equilibrium to being kinetic rate controlled. They use the thermo-chemical code CHEETAH linked to an ALE hydrodynamics code to model detonations. They term their model chemistry resolved kinetic flow as CHEETAH tracks the time dependent concentrations of individual species in the detonation wave and calculates EOS values based on the concentrations. A HE-validation suite of model simulations compared to experiments at ambient, hot, and cold temperatures has been developed. They present here a new rate model and comparison with experimental data.

  15. Acoustic Gravity Wave Chemistry Model for the RAYTRACE Code.

    DTIC Science & Technology

    2014-09-26

    AU)-AI56 850 ACOlUSTIC GRAVITY WAVE CHEMISTRY MODEL FOR THE IAYTRACE I/~ CODE(U) MISSION RESEARCH CORP SANTA BARBIARA CA T E OLD Of MAN 84 MC-N-SlS...DNA-TN-S4-127 ONAOOI-BO-C-0022 UNLSSIFIlED F/O 20/14 NL 1-0 2-8 1111 po 312.2 1--I 11111* i •. AD-A 156 850 DNA-TR-84-127 ACOUSTIC GRAVITY WAVE...Hicih Frequency Radio Propaoation Acoustic Gravity Waves 20. ABSTRACT (Continue en reveree mide if tteceeemr and Identify by block number) This

  16. An Aerosol Physical Chemistry Model for the Upper Troposphere

    NASA Technical Reports Server (NTRS)

    Lin, Jin-Sheng

    2001-01-01

    This report is the final report for the Cooperative Agreement NCC2-1000. The tasks outlined in the various proposals are listed with a brief comment as to the research performed. The publications titles are: The effects of particle size and nitric acid uptake on the homogenous freezing of sulfate aerosols; Parameterization of an aerosol physical chemistry model (APCM) for the NH3/H2SO4/HNO3/H2O system at cold temperatures; and The onset, extent and duration of dehydration in the Southern Hemisphere polar vortex.

  17. Modeling aluminum etch chemistry in high density plasmas

    SciTech Connect

    Meeks, E.; Ho, P.; Buss, R.

    1997-08-01

    The authors have assembled a chemical reaction mechanism that describes the BCl{sub 3}/Cl{sub 2}/Ar plasma etch of Al metallization layers. The reaction set for gas-phase and surface processes was derived either from literature data or estimated from data on related systems. A well-mixed reactor model was used to develop the mechanism and test it against experimental measurements of plasma species and etch-rates in processing reactors. Finally, use of reduced chemistry mechanisms are demonstrated in 2-D simulations for a complex reactor geometry.

  18. Modeling the Relationship between High School Students' Chemistry Self-Efficacy and Metacognitive Awareness

    ERIC Educational Resources Information Center

    Kirbulut, Zubeyde Demet

    2014-01-01

    In this study, the relationship between students' chemistry self-efficacy beliefs and metacognitive awareness was investigated utilizing a path model. There were 268 chemistry high school students (59% 10th grade and 41% 11th grade) participated in the study. The students took two-hour chemistry course in the 9th and 10th grade and three-hour…

  19. Whose Science Is It Anyway? Models of Science According to Chemistry Students, Faculty, and Teachers

    ERIC Educational Resources Information Center

    Kennedy, Laura M.; Yezierski, Ellen J.; Herrington, Deborah G.

    2008-01-01

    This study describes data collected from undergraduate chemistry majors, high school chemistry teachers, and chemistry faculty in an effort to better understand how models and conceptions of scientific inquiry might change through time and experience as the teachers' views move toward those more universally held by practicing scientists. (Contains…

  20. The 1-way on-line coupled atmospheric chemistry model system MECO(n) - Part 1: The limited-area atmospheric chemistry model COSMO/MESSy

    NASA Astrophysics Data System (ADS)

    Kerkweg, A.; Jöckel, P.

    2011-06-01

    The numerical weather prediction model of the Consortium for Small Scale Modelling (COSMO), maintained by the German weather service (DWD), is connected with the Modular Earth Submodel System (MESSy). This effort is undertaken in preparation of a~new, limited-area atmospheric chemistry model. This model is as consistent as possible, with respect to atmospheric chemistry and related processes, with a previously developed global atmospheric chemistry general circulation model: the ECHAM/MESSy Atmospheric Chemistry (EMAC) model. The combined system constitutes a new research tool, bridging the global to the meso-γ scale for atmospheric chemistry research. MESSy provides the infrastructure and includes, among others, the process and diagnostic submodels for atmospheric chemistry simulations. Furthermore, MESSy is highly flexible allowing model setups with tailor made complexity, depending on the scientific question. Here, the connection of the MESSy infrastructure to the COSMO model is documented. Previously published prototype submodels for simplified tracer studies are generalised to be plugged-in and used in the global and the limited-area model. They are used to evaluate the tracer transport characteristics of the new COSMO/MESSy model system, an important prerequisite for future atmospheric chemistry applications. A supplementary document with further details on the technical implementation of the MESSy interface into COSMO with a complete list of modifications to the COSMO code is provided.

  1. Using advanced surface complexation models for modelling soil chemistry under forests: Solling forest, Germany.

    PubMed

    Bonten, Luc T C; Groenenberg, Jan E; Meesenburg, Henning; de Vries, Wim

    2011-10-01

    Various dynamic soil chemistry models have been developed to gain insight into impacts of atmospheric deposition of sulphur, nitrogen and other elements on soil and soil solution chemistry. Sorption parameters for anions and cations are generally calibrated for each site, which hampers extrapolation in space and time. On the other hand, recently developed surface complexation models (SCMs) have been successful in predicting ion sorption for static systems using generic parameter sets. This study reports the inclusion of an assemblage of these SCMs in the dynamic soil chemistry model SMARTml and applies this model to a spruce forest site in Solling Germany. Parameters for SCMs were taken from generic datasets and not calibrated. Nevertheless, modelling results for major elements matched observations well. Further, trace metals were included in the model, also using the existing framework of SCMs. The model predicted sorption for most trace elements well.

  2. The coupled atmosphere-chemistry-ocean model SOCOL-MPIOM

    NASA Astrophysics Data System (ADS)

    Muthers, S.; Anet, J. G.; Stenke, A.; Raible, C. C.; Rozanov, E.; Brönnimann, S.; Peter, T.; Arfeuille, F. X.; Shapiro, A. I.; Beer, J.; Steinhilber, F.; Brugnara, Y.; Schmutz, W.

    2014-05-01

    The newly developed atmosphere-ocean-chemistry-climate model SOCOL-MPIOM is presented by demonstrating the influence of the interactive chemistry module on the climate state and the variability. Therefore, we compare pre-industrial control simulations with (CHEM) and without (NOCHEM) interactive chemistry. In general, the influence of the chemistry on the mean state and the variability is small and mainly restricted to the stratosphere and mesosphere. The largest differences are found for the atmospheric dynamics in the polar regions, with slightly stronger northern and southern winter polar vortices in CHEM. The strengthening of the vortex is related to larger stratospheric temperature gradients, which are attributed to a parametrization of the absorption of ozone and oxygen in the Lyman-alpha, Schumann-Runge, Hartley, and Higgins bands. This effect is parametrized in the version with interactive chemistry only. A second reason for the temperature differences between CHEM and NOCHEM is related to diurnal variations in the ozone concentrations in the higher atmosphere, which are missing in NOCHEM. Furthermore, stratospheric water vapour concentrations differ substantially between the two experiments, but their effect on the temperatures is small. In both setups, the simulated intensity and variability of the northern polar vortex is inside the range of present day observations. Sudden stratospheric warming events are well reproduced in terms of their frequency, but the distribution amongst the winter months is too uniform. Additionally, the performance of SOCOL-MPIOM under changing external forcings is assessed for the period 1600-2000 using an ensemble of simulations driven by a spectral solar forcing reconstruction. The amplitude of the reconstruction is large in comparison to other state-of-the-art reconstructions, providing an upper limit for the importance of the solar signal. In the pre-industrial period (1600-1850) the simulated surface temperature trends

  3. [Global Atmospheric Chemistry/Transport Modeling and Data-Analysis

    NASA Technical Reports Server (NTRS)

    Prinn, Ronald G.

    1999-01-01

    This grant supported a global atmospheric chemistry/transport modeling and data- analysis project devoted to: (a) development, testing, and refining of inverse methods for determining regional and global transient source and sink strengths for trace gases; (b) utilization of these inverse methods which use either the Model for Atmospheric Chemistry and Transport (MATCH) which is based on analyzed observed winds or back- trajectories calculated from these same winds for determining regional and global source and sink strengths for long-lived trace gases important in ozone depletion and the greenhouse effect; (c) determination of global (and perhaps regional) average hydroxyl radical concentrations using inverse methods with multiple "titrating" gases; and (d) computation of the lifetimes and spatially resolved destruction rates of trace gases using 3D models. Important ultimate goals included determination of regional source strengths of important biogenic/anthropogenic trace gases and also of halocarbons restricted by the Montreal Protocol and its follow-on agreements, and hydrohalocarbons now used as alternatives to the above restricted halocarbons.

  4. Chemistry and Transport In a Multi-Dimensional Model

    NASA Technical Reports Server (NTRS)

    Yung, Yuk L.; Allen, M.; Zurek, R. W.; Salawitch, R. J.

    2002-01-01

    The focus of the work funded under this proposal is the exchange between the stratosphere and the troposphere, and between the troposphere and the blaspheme. These two interfaces represent the frontiers of atmospheric chemistry. It is the combination of exchange processes at both interfaces that ultimately controls how the blaspheme (including human activities) affects the ozone layer. The modeling work was motivated by and attempts to integrate information obtained by aircraft, spacecraft, shuttle and oceanic measurements. The model development and research activities accomplished in the past three years provide a technical and intellectual basis for the research in this group. The innovative part of our research program is related to the IAV of ozone and the hydrological cycle. Other related but independently supported work include the study of isotopic fractionation of atmospheric species, e.g., N2O and CO2. Our theory suggests that we now have the ability to probe the middle atmosphere at a level of sensitivity where subtle details such as the isotopic composition of simple molecules can yield measurable systematic effects. This creates the possibility for probing the chemistry and dynamics of the middle atmosphere using all of the N2O and CO2 isotopologues. In the following we will briefly describe the model development and review the highlights of recent accomplishments.

  5. Raman measurement of mixing and finite-rate chemistry in a supersonic hydrogen-air diffusion flame

    SciTech Connect

    Cheng, T.S.; Wehrmeyer, J.A.; Pitz, R.W. . Dept. of Mechanical Engineering); Jarrett, O. Jr.; Northam, G.B. . Langley Research Center)

    1994-10-01

    Ultraviolet (UV) spontaneous vibrational Raman scattering and laser-induced predissociative fluorescence (LIPF) from a KrF excimer laser are combined to simultaneously measure temperature, major species concentrations (H[sub 2], O[sub 2], N[sub 2], H[sub 2]O), and OH radical concentration in a supersonic lifted co-flowing hydrogen-air diffusion flame. The axisymmetric flame is formed when a sonic jet of hydrogen mixes with a Mach 2 annular jet of vitiated air. Mean and rms profiles of temperature, species concentrations, and mixture fraction are obtained throughout the supersonic flame. Simultaneous measurements of the chemical species and temperature are compared with frozen chemistry and equilibrium chemistry limits to assess the local state of the mixing and chemistry. Upstream of the lifted flame base, a very small amount of reaction occurs form mixing with hot vitiated air. Downstream of the lifted flame base, strong turbulent mixing leads to sub equilibrium values of temperature and OH concentration. Due to the interaction of velocity and temperature in supersonic compressible flames, the fluctuations of temperature and species concentrations are found to be higher than subsonic flames. Farther downstream, slow three-body recombination reactions result in super equilibrium OH concentrations that depress temperatures below their equilibrium values.

  6. Air Quality Dispersion Modeling - Alternative Models

    EPA Pesticide Factsheets

    Models, not listed in Appendix W, that can be used in regulatory applications with case-by-case justification to the Reviewing Authority as noted in Section 3.2, Use of Alternative Models, in Appendix W.

  7. The cold air drainage model KLAM_21

    NASA Astrophysics Data System (ADS)

    Kossmann, M.

    2010-09-01

    A brief description of the physics and numerical techniques of the cold air drainage model KLAM_21 is presented. The model has been developed by the Deutscher Wetterdienst (Sievers, 2005) for simulations of nocturnal airflow in hilly and mountainous terrain under dry fair weather conditions. The model has been widely used as an environmental consultancy tool. Typical model applications include frost protection (cold air ponding) and air quality (nocturnal ventilation). The single-layer model calculates the depth and the mean wind of a surface based stable layer that evolves from a neutrally stratified atmosphere during nighttime. The prediction of the velocity and direction of the cold air drainage is based on vertically averaged momentum tendency equations. Temporal changes in the total heat deficit in the cold air layer are calculated from a prescribed local heat loss rate (describing turbulent and radiative cooling) and advection (donor-cell algorithm). The depth of the cold air layer (depth of the surface based temperature inversion) is calculated diagnostically from the total heat loss deficit. The model is initialised with neutral stratification at sunset (onset time of nocturnal cooling). Optionally, effects of an ambient (regional) wind and/or the dispersion of a passive tracer can be simulated. Integration over time is carried out on a regular Arakawa C grid using dynamically calculated time steps. Spatial gradients are discretised using centred differential quotients. The standard size of the computational domains can reach up to 1500 x 1500 grid cells. Grid resolutions usually range between 10 m and 500 m. High resolution simulation can be limited to a nested inner grid domain, while the courser outer domain is covering the entire airshed of interest. A friendly user interface allows easy setup, control, and evaluation of model simulations. Some selected examples of KLAM_21 applications are shown to illustrate the features and capabilities of the model

  8. AIR QUALITY MODELING OF AMMONIA: A REGIONAL MODELING PERSPECTIVE

    EPA Science Inventory

    The talk will address the status of modeling of ammonia from a regional modeling perspective, yet the observations and comments should have general applicability. The air quality modeling system components that are central to modeling ammonia will be noted and a perspective on ...

  9. Modeling aerosol growth by aqueous chemistry in nonprecipitating stratiform cloud

    SciTech Connect

    Ovchinnikov, Mikhail; Easter, Richard C.

    2010-07-29

    A new microphysics module based on a two-dimensional (2D) joint size distribution function representing both interstitial and cloud particles is developed and applied to studying aerosol processing in non-precipitating stratocumulus clouds. The module is implemented in a three-dimensional dynamical framework of a large-eddy simulation (LES) model and in a trajectory ensemble model (TEM). Both models are used to study the modification of sulfate aerosol by the activation - aqueous chemistry - resuspension cycle in shallow marine stratocumulus clouds. The effect of particle mixing and different size-distribution representations on modeled aerosol processing are studied in a comparison of the LES and TEM simulations with the identical microphysics treatment exposes and a comparison of TEM simulations with a 2D fixed and moving bin microphysics. Particle mixing which is represented in LES and neglected in the TEM leads to the mean relative per particle dry mass change in the TEM simulations being about 30% lower than in analogous subsample of LES domain. Particles in the final LES spectrum are mixed in from different “parcels”, some of which have experienced longer in-cloud residence times than the TEM parcels, all of which originated in the subcloud layer, have. The mean relative per particle dry mass change differs by 14% between TEM simulations with fixed and moving bin microphysics. Finally, the TEM model with the moving bin microphysics is used to evaluate assumptions about liquid water mass partitioning among activated cloud condensation nuclei (CCN) of different dry sizes. These assumptions are used in large-scale models to map the bulk aqueous chemistry sulfate production, which is largely proportional to the liquid water mass, to the changes in aerosol size distribution. It is shown that the commonly used assumptions that the droplet mass is independent of CCN size or that the droplet mass is proportional to the CCN size to the third power do not perform

  10. Chemistry resolved kinetic flow modeling of TATB based explosives

    NASA Astrophysics Data System (ADS)

    Vitello, Peter; Fried, Laurence E.; William, Howard; Levesque, George; Souers, P. Clark

    2012-03-01

    Detonation waves in insensitive, TATB-based explosives are believed to have multiple time scale regimes. The initial burn rate of such explosives has a sub-microsecond time scale. However, significant late-time slow release in energy is believed to occur due to diffusion limited growth of carbon. In the intermediate time scale concentrations of product species likely change from being in equilibrium to being kinetic rate controlled. We use the thermo-chemical code CHEETAH linked to an ALE hydrodynamics code to model detonations. We term our model chemistry resolved kinetic flow, since CHEETAH tracks the time dependent concentrations of individual species in the detonation wave and calculates EOS values based on the concentrations. We present here two variants of our new rate model and comparison with hot, ambient, and cold experimental data for PBX 9502.

  11. Air freight demand models: An overview

    NASA Technical Reports Server (NTRS)

    Dajani, J. S.; Bernstein, G. W.

    1978-01-01

    A survey is presented of some of the approaches which have been considered in freight demand estimation. The few existing continuous time computer simulations of aviation systems are reviewed, with a view toward the assessment of this approach as a tool for structuring air freight studies and for relating the different components of the air freight system. The variety of available data types and sources, without which the calibration, validation and the testing of both modal split and simulation models would be impossible are also reviewed.

  12. DESCRIPTION OF ATMOSPHERIC TRANSPORT PROCESSES IN EULERIAN AIR QUALITY MODELS

    EPA Science Inventory

    Key differences among many types of air quality models are the way atmospheric advection and turbulent diffusion processes are treated. Gaussian models use analytical solutions of the advection-diffusion equations. Lagrangian models use a hypothetical air parcel concept effecti...

  13. POLUTE. Forest Air Pollutant Uptake Model

    SciTech Connect

    Murphy, C.E. Jr.; Sinclair, T.R.

    1992-02-13

    POLUTE is a computer model designed to estimate the uptake of air pollutants by forests. The model utilizes submodels to describe atmospheric diffusion immediately above and within the canopy, and into the sink areas within or on the trees. The program implementing the model is general and can be used, with only minor changes, for any gaseous pollutant. The model provides an estimate describing the response of the vegetarian-atmosphere system to the environment as related to three types of processes: atmospheric diffusion, diffusion near and inside the absorbing plant, and the physical and chemical processes at the sink on or within the plant.

  14. Impact of aviation emissions on UTLS and air quality in current and future climate - GEM-AC model simulations

    NASA Astrophysics Data System (ADS)

    Kaminski, J. W.

    2015-12-01

    The objective of this study is to investigate the potential impacts of aviation emissions on the upper troposphere and lower stratosphere (UTLS) and surface air quality. The tool that was used in our study is the GEM-AC (Global Environmental Multiscale with Atmospheric Chemistry) chemical weather model where air quality, free tropospheric and stratospheric chemistry processes are on-line and interactive in a weather forecast model of Environment Canada. In vertical, the model domain is defined on 70 hybrid levels from the surface to ~60km. The gas-phase chemistry includes a comprehensive set of reactions for Ox, NOx, HOx, CO, CH4, NMVOCs, halocarbons, ClOx and BrO. Also, the model can address aerosol microphysics and gas-aerosol partitioning. Aircraft emissions are provided by the AEDT 2006 database developed by the Federal Aviation Administration. Results from model simulations on a global variable grid with 1 degree uniform resolution in the northern hemisphere will be presented.

  15. Changes in Foliar Chemistry Along a Midwestern Air Pollution Gradient: 1988- 2005

    NASA Astrophysics Data System (ADS)

    Talhelm, A. F.; Burton, A. J.; Pregitzer, K. S.

    2008-12-01

    Sugar maple (Acer saccharum) leaf litter has been collected annually for the past two decades from four sites in Michigan along a regional gradient in air pollution. During this time, wet acid deposition at monitoring stations near these sites declined 20-30 % while wet deposition of nitrogen remained virtually unchanged. Given these dynamics, we examined the foliar chemistry of this leaf litter to determine (a) if concentrations of the biologically important elements Ca and Al had responded to the reduction in acid deposition and (b) if foliar N concentrations and δ15N values reflected a trend toward increased N availability resulting from the persistence of high rates of N deposition. During the study period of 1988-2005, the foliar [Ca] declined significantly at three of the four sites and the foliar [Al] declined significantly at all four sites. Together, these changes suggest that amount of these elements removed from exchange sites and put into soil solution has decreased with the decline in acid deposition. Furthermore, the ratio of Ca:Al significantly increased at each site. Changes in the Ca:Al are of particular importance because low Ca to Al ratios in foliar tissue have been strongly implicated in declines in plant growth resulting from acid deposition. The increase in the foliar Ca:Al suggests that rather than causing a lasting depletion of base cations, previous highs in acid deposition had a transient effect from which hardwood forests in this region have largely recovered. In contrast, there were no significant trends in the [N] at any of the four sites and only one site in the middle of the pollution gradient showed a significant trend in δ15N that implies increased N availability. These results suggest that current levels of N deposition are not causing widespread increases in the amount of N available to plants in these ecosystems and do not appear to be quickly pushing the systems toward N saturation.

  16. Transboundary air pollution in Asia: Model development and policy implications

    NASA Astrophysics Data System (ADS)

    Holloway, Tracey

    2001-12-01

    This work investigates transboundary air pollution in Asia through atmospheric modeling and public policy analysis. As an example of models actively shaping environmental policy, the Convention on Long-Range Transboundary Air Pollution in Europe (LRTAP) is selected as a case study. The LRTAP Convention is the only mulit- lateral air pollution agreement to date, and results from the RAINS integrated assessment model were heavily used to calculate nationally differentiated emission ceilings. Atmospheric chemistry and transport are included in RAINS through the use of transfer coefficients (or ``source-receptor relationships'') relating pollutant transfer among European nations. Following past work with ATMOS to simulate sulfur species in Asia, here ATMOS is developed to include odd-nitrogen. Fitting with the linear structure of ATMOS and the emphasis on computational efficiency, a simplified chemical scheme developed for use in the NOAA Geophysical Fluid Dynamics Laboratory Global Chemical Transport Model (GFDL GCTM) is adopted. The method solves for the interconversions between NOx, HNO3, and PAN based on five reaction rates stored in look-up tables. ATMOS is used to calculate source-receptor relationships for Asia. Significant exchange of NOy occurs among China, North and South Korea, and Japan. On an annual average basis, China contributes 18% to Japan's total nitrate deposition, 46% to North Korea, and 26% to South Korea. Nitrate deposition is an important component of acidification (along with sulfate deposition), contributing 30-50% to the acid burden over most of Japan, and more than 50% to acid deposition in southeast Asia, where biomass burning emits high levels of NOx. In evaluating the policy-relevance of results from the ATMOS model, four factors are taken into account: the uncertainty and limitations of ATMOS, the environmental concerns facing Asia, the current status of the scientific community in relation to regional air pollution in the region, and

  17. Improving ammonia emissions in air quality modelling for France

    NASA Astrophysics Data System (ADS)

    Hamaoui-Laguel, Lynda; Meleux, Frédérik; Beekmann, Matthias; Bessagnet, Bertrand; Génermont, Sophie; Cellier, Pierre; Létinois, Laurent

    2014-08-01

    We have implemented a new module to improve the representation of ammonia emissions from agricultural activities in France with the objective to evaluate the impact of such emissions on the formation of particulate matter modelled with the air quality model CHIMERE. A novel method has been set up for the part of ammonia emissions originating from mineral fertilizer spreading. They are calculated using the one dimensional 1D mechanistic model “VOLT'AIR” which has been coupled with data on agricultural practices, meteorology and soil properties obtained at high spatial resolution (cantonal level). These emissions display high spatiotemporal variations depending on soil pH, rates and dates of fertilization and meteorological variables, especially soil temperature. The emissions from other agricultural sources (animal housing, manure storage and organic manure spreading) are calculated using the national spatialised inventory (INS) recently developed in France. The comparison of the total ammonia emissions estimated with the new approach VOLT'AIR_INS with the standard emissions provided by EMEP (European Monitoring and Evaluation Programme) used currently in the CHIMERE model shows significant differences in the spatiotemporal distributions. The implementation of new ammonia emissions in the CHIMERE model has a limited impact on ammonium nitrate aerosol concentrations which only increase at most by 10% on the average for the considered spring period but this impact can be more significant for specific pollution episodes. The comparison of modelled PM10 (particulate matter with aerodynamic diameter smaller than 10 μm) and ammonium nitrate aerosol with observations shows that the use of the new ammonia emission method slightly improves the spatiotemporal correlation in certain regions and reduces the negative bias on average by 1 μg m-3. The formation of ammonium nitrate aerosol depends not only on ammonia concentrations but also on nitric acid availability, which

  18. The 1-way on-line coupled atmospheric chemistry model system MECO(n) - Part 1: Description of the limited-area atmospheric chemistry model COSMO/MESSy

    NASA Astrophysics Data System (ADS)

    Kerkweg, A.; Jöckel, P.

    2012-01-01

    The numerical weather prediction model of the Consortium for Small Scale Modelling (COSMO), maintained by the German weather service (DWD), is connected with the Modular Earth Submodel System (MESSy). This effort is undertaken in preparation of a new, limited-area atmospheric chemistry model. Limited-area models require lateral boundary conditions for all prognostic variables. Therefore the quality of a regional chemistry model is expected to improve, if boundary conditions for the chemical constituents are provided by the driving model in consistence with the meteorological boundary conditions. The new developed model is as consistent as possible, with respect to atmospheric chemistry and related processes, with a previously developed global atmospheric chemistry general circulation model: the ECHAM/MESSy Atmospheric Chemistry (EMAC) model. The combined system constitutes a new research tool, bridging the global to the meso-γ scale for atmospheric chemistry research. MESSy provides the infrastructure and includes, among others, the process and diagnostic submodels for atmospheric chemistry simulations. Furthermore, MESSy is highly flexible allowing model setups with tailor made complexity, depending on the scientific question. Here, the connection of the MESSy infrastructure to the COSMO model is documented and also the code changes required for the generalisation of regular MESSy submodels. Moreover, previously published prototype submodels for simplified tracer studies are generalised to be plugged-in and used in the global and the limited-area model. They are used to evaluate the TRACER interface implementation in the new COSMO/MESSy model system and the tracer transport characteristics, an important prerequisite for future atmospheric chemistry applications. A supplementary document with further details on the technical implementation of the MESSy interface into COSMO with a complete list of modifications to the COSMO code is provided.

  19. MCCM-WEPS: Coupling of Meteorological, Air Quality and Erosion Models for Mexico City

    NASA Astrophysics Data System (ADS)

    Díaz, E. N.; Tatarko, J.; Jazcilevich, A. D.; García, A. R.; Caetano, E.

    2007-05-01

    Since natural dust emissions are an important factor in the air quality of Mexico City, a modeling effort to quantify their sources and evaluate their impact on the population is presented. The meteorological and air quality model Multiscale Climate and Chemistry Model (MCCM) provides the meteorological inputs to the erosion model Wind Erosion Prediction System (WEPS) that then provides the natural PM10 emissions to be transported. The system was developed to study the particles dispersion from natural sources (unprotected soils) as agricultural lands and Lake of Texcoco. These sources are located around the Valley of Mexico City. As a result of this research we developed a system with the capability of modeling the phenomenon of air pollution by natural particles emitted by wind erosion and to generate case study scenarios useful to propose control policies. Some of them are presented here. Also an effort to predict with anticipation this phenomenon is under way.

  20. High-resolution modelling of health impacts from air pollution using the integrated model system EVA

    NASA Astrophysics Data System (ADS)

    Brandt, Jørgen; Andersen, Mikael S.; Bønløkke, Jakob; Christensen, Jesper H.; Geels, Camilla; Hansen, Kaj M.; Jensen, Steen S.; Ketzel, Matthias; Plejdrup, Marlene S.; Sigsgaard, Torben; Silver, Jeremy D.

    2014-05-01

    A high-resolution assessment of health impacts from air pollution and related external cost has been conducted for Denmark using the integrated EVA model system. The EVA system has been further developed by implementing an air quality model with a 1 km x 1 km resolution covering the whole of Denmark. New developments of the integrated model system will be presented as well as results for health impacts and related external costs over several decades. Furthermore, the sensitivity of health impacts to model resolution will be studied. We have developed an integrated model system EVA (Economic Valuation of Air pollution), based on the impact-pathway chain, to assess the health impacts and health-related economic externalities of air pollution resulting from specific emission sources or sectors. The system is used to support policymaking with respect to emission control. In Brandt et al. (2013a; 2013b), the EVA system was used to assess the impacts in Europe and Denmark from the past, present and future total air pollution levels as well as the contribution from the major anthropogenic emission sectors. The EVA system was applied using the hemispheric chemistry-transport model, the Danish Eulerian Hemispheric Model (DEHM), with nesting capability for higher resolution over Europe (50 km x 50 km) and Northern Europe (16.7 km x 16.7 km). In this study an Urban Background Model (UBM) has been further developed to cover the whole of Denmark with a 1 km x 1 km resolution and the model has been implemented as a part of the integrated model system, EVA. The EVA system is based on the impact-pathway methodology. The site-specific emissions will result (via atmospheric transport and chemistry) in a concentration distribution, which together with detailed population data, are used to estimate the population-level exposure. Using exposure-response functions and economic valuations, the exposure is transformed into impacts on human health and related external costs. In this study

  1. Evaluation of Transport in the Lower Tropical Stratosphere in a Global Chemistry and Transport Model

    NASA Technical Reports Server (NTRS)

    Douglass, Anne R.; Schoeberl, Mark R.; Rood, Richard B.; Pawson, Steven

    2002-01-01

    A general circulation model (GCM) relies on various physical parameterizations and provides a solution to the atmospheric equations of motion. A data assimilation system (DAS) combines information from observations with a GCM forecast and produces analyzed meteorological fields that represent the observed atmospheric state. An off-line chemistry and transport model (CTM) can use winds and temperatures from a either a GCM or a DAS. The latter application is in common usage for interpretation of observations from various platforms under the assumption that the DAS transport represents the actual atmospheric transport. Here we compare the transport produced by a DAS with that produced by the particular GCM that is combined with observations to produce the analyzed fields. We focus on transport in the tropics and middle latitudes by comparing the age-of-air inferred from observations of SF6 and CO2 with the age-of-air calculated using GCM fields and DAS fields. We also compare observations of ozone, total reactive nitrogen, and methane with results from the two simulations. These comparisons show that DAS fields produce rapid upward tropical transport and excessive mixing between the tropics and middle latitudes. The unrealistic transport produced by the DAS fields may be due to implicit forcing that is required by the assimilation process when there is bias between the GCM forecast and observations that are combined to produce the analyzed fields. For example, the GCM does not produce a quasi-biennial oscillation (QBO). The QBO is present in the analyzed fields because it is present in the observations, and systematic implicit forcing is required by the DAS. Any systematic bias between observations and the GCM forecast used to produce the DAS analysis is likely to corrupt the transport produced by the analyzed fields. Evaluation of transport in the lower tropical stratosphere in a global chemistry and transport model.

  2. Characterizing the Amount and Chemistry of Biogenic SOA Formation from Pine Forest Air Using a Flow Reactor

    NASA Astrophysics Data System (ADS)

    Palm, B. B.; Ortega, A. M.; Campuzano Jost, P.; Day, D. A.; Fry, J.; Zarzana, K. J.; Draper, D. C.; Brown, S. S.; Kaser, L.; Karl, T.; Jud, W.; Hansel, A.; Hodzic, A.; Dube, W. P.; Wagner, N. L.; Brune, W. H.; Jimenez, J. L.

    2013-12-01

    The amount and chemistry of biogenic secondary organic aerosol (SOA) formation was characterized as a function of oxidant exposure using a Potential Aerosol Mass (PAM) oxidative flow reactor, sampling air in a terpene- and MBO-dominated pine forest during the 2011 BEACHON-RoMBAS field campaign at the U.S. Forest Service Manitou Forest Experimental Observatory in the Colorado Rocky Mountains. In the reactor, a chosen oxidant (OH, O3, or NO3) was generated and stepped over a range of values up to 10,000 times ambient levels, accelerating the gas-phase and heterogeneous oxidative aging of volatile organic compounds (VOCs), inorganic gases, and preexisting aerosol. The resulting SOA formation was measured using an Aerodyne HR-ToF-AMS, a TSI SMPS and a PTR-TOF-MS. Oxidative processing in the flow reactor was equivalent to a few hours up to ~20 days of atmospheric aging during the ~4-min reactor residence time. During BEACHON-RoMBAS, OH oxidation led to a net production of up to several μg/m3 of SOA at intermediate exposures (1-10 equivalent days) but resulted in net loss of OA mass (up to ~30%) at higher OH exposures (10-20 equivalent days), demonstrating the competing effects of functionalization/condensation vs. fragmentation/evaporation reactions as OH exposure increased. O3 and NO3 oxidation led to smaller (up to 0.5 μg/m3) SOA production, and loss of SOA mass due to fragmentation reactions was not observed. OH oxidation resulted in f44 vs. f43 and Van Krevelen diagram (H:C vs. O:C) slopes similar to ambient oxidation, suggesting the flow reactor oxidation pathways are similar to those in ambient air. Organic nitrate SOA production was observed from NO3 radical oxidation only. New particle formation was observed from OH oxidation, but not O3 or NO3 oxidation under our experimental conditions. An enhancement of SOA production under the influence of anthropogenic pollution (Denver) was also observed. High-resolution AMS measurements showed that the O:C and H

  3. Development of an aerosol-chemistry transport model coupled to non-hydrostatic icosahedral atmospheric model (NICAM) through applying a stretched grid system to regional simulations around Japan

    NASA Astrophysics Data System (ADS)

    Goto, D.; Nakajima, T.; Masaki, S.

    2014-12-01

    Air pollution has a great impact on both climate change and human health. One effective way to tackle with these issues is a use of atmospheric aerosol-chemistry models with high-resolution in a global scale. For this purpose, we have developed an aerosol-chemistry model based on a global cloud-resolving model (GCRM), Nonhydrostatic Icosahedral Atmospheric Model (NICAM; Tomita and Satoh, Fluid. Dyn. Res. 2004; Satoh et al., J. Comput. Phys. 2008, PEPS, 2014) under MEXT/RECCA/SALSA project. In the present study, we have simulated aerosols and tropospheric ozone over Japan by our aerosol-chemistry model "NICAM-Chem" with a stretched-grid system of approximately 10 km resolution, for saving the computer resources. The aerosol and chemistry modules are based on Spectral Radiation-Transport Model for Aerosol Species (SPRINTARS; Takemura et al., J. Geophys. Res., 2005) and Chemical AGCM for Study of Atmospheric Environment and Radiative Forcing (CHASER; Sudo et al., J. Geophys. Res., 2002). We found that our model can generally reproduce both aerosols and ozone, in terms of temporal variations (daily variations of aerosols and diurnal variations of ozone). Under MEXT/RECCA/SALSA project, we also have used these results obtained by NICAM-Chem for the assessment of their impact on human health.

  4. Modeling hot spring chemistries with applications to martian silica formation

    USGS Publications Warehouse

    Marion, G.M.; Catling, D.C.; Crowley, J.K.; Kargel, J.S.

    2011-01-01

    Many recent studies have implicated hydrothermal systems as the origin of martian minerals across a wide range of martian sites. Particular support for hydrothermal systems include silica (SiO2) deposits, in some cases >90% silica, in the Gusev Crater region, especially in the Columbia Hills and at Home Plate. We have developed a model called CHEMCHAU that can be used up to 100??C to simulate hot springs associated with hydrothermal systems. The model was partially derived from FREZCHEM, which is a colder temperature model parameterized for broad ranges of temperature (<-70 to 25??C), pressure (1-1000 bars), and chemical composition. We demonstrate the validity of Pitzer parameters, volumetric parameters, and equilibrium constants in the CHEMCHAU model for the Na-K-Mg-Ca-H-Cl-ClO4-SO4-OH-HCO3-CO3-CO2-O2-CH4-Si-H2O system up to 100??C and apply the model to hot springs and silica deposits.A theoretical simulation of silica and calcite equilibrium shows how calcite is least soluble with high pH and high temperatures, while silica behaves oppositely. Such influences imply that differences in temperature and pH on Mars could lead to very distinct mineral assemblages. Using measured solution chemistries of Yellowstone hot springs and Icelandic hot springs, we simulate salts formed during the evaporation of two low pH cases (high and low temperatures) and a high temperature, alkaline (high pH) sodic water. Simulation of an acid-sulfate case leads to precipitation of Fe and Al minerals along with silica. Consistency with martian mineral assemblages suggests that hot, acidic sulfate solutions are plausibility progenitors of minerals in the past on Mars. In the alkaline pH (8.45) simulation, formation of silica at high temperatures (355K) led to precipitation of anhydrous minerals (CaSO4, Na2SO4) that was also the case for the high temperature (353K) low pH case where anhydrous minerals (NaCl, CaSO4) also precipitated. Thus we predict that secondary minerals associated with

  5. Modeling hot spring chemistries with applications to martian silica formation

    NASA Astrophysics Data System (ADS)

    Marion, G. M.; Catling, D. C.; Crowley, J. K.; Kargel, J. S.

    2011-04-01

    Many recent studies have implicated hydrothermal systems as the origin of martian minerals across a wide range of martian sites. Particular support for hydrothermal systems include silica (SiO 2) deposits, in some cases >90% silica, in the Gusev Crater region, especially in the Columbia Hills and at Home Plate. We have developed a model called CHEMCHAU that can be used up to 100 °C to simulate hot springs associated with hydrothermal systems. The model was partially derived from FREZCHEM, which is a colder temperature model parameterized for broad ranges of temperature (<-70 to 25 °C), pressure (1-1000 bars), and chemical composition. We demonstrate the validity of Pitzer parameters, volumetric parameters, and equilibrium constants in the CHEMCHAU model for the Na-K-Mg-Ca-H-Cl-ClO 4-SO 4-OH-HCO 3-CO 3-CO 2-O 2-CH 4-Si-H 2O system up to 100 °C and apply the model to hot springs and silica deposits. A theoretical simulation of silica and calcite equilibrium shows how calcite is least soluble with high pH and high temperatures, while silica behaves oppositely. Such influences imply that differences in temperature and pH on Mars could lead to very distinct mineral assemblages. Using measured solution chemistries of Yellowstone hot springs and Icelandic hot springs, we simulate salts formed during the evaporation of two low pH cases (high and low temperatures) and a high temperature, alkaline (high pH) sodic water. Simulation of an acid-sulfate case leads to precipitation of Fe and Al minerals along with silica. Consistency with martian mineral assemblages suggests that hot, acidic sulfate solutions are plausibility progenitors of minerals in the past on Mars. In the alkaline pH (8.45) simulation, formation of silica at high temperatures (355 K) led to precipitation of anhydrous minerals (CaSO 4, Na 2SO 4) that was also the case for the high temperature (353 K) low pH case where anhydrous minerals (NaCl, CaSO 4) also precipitated. Thus we predict that secondary

  6. Probing flame chemistry with MBMS, theory, and modeling

    SciTech Connect

    Westmoreland, P.R.

    1993-12-01

    The objective is to establish kinetics of combustion and molecular-weight growth in C{sub 3} hydrocarbon flames as part of an ongoing study of flame chemistry. Specific reactions being studied are (1) the growth reactions of C{sub 3}H{sub 5} and C{sub 3}H{sub 3} with themselves and with unsaturated hydrocarbons and (2) the oxidation reactions of O and OH with C{sub 3}`s. This approach combines molecular-beam mass spectrometry (MBMS) experiments on low-pressure flat flames; theoretical predictions of rate constants by thermochemical kinetics, Bimolecular Quantum-RRK, RRKM, and master-equation theory; and whole-flame modeling using full mechanisms of elementary reactions.

  7. Thermodynamic models of the chemistry of lunar volcanic gases

    NASA Technical Reports Server (NTRS)

    Fegley, Bruce, Jr.

    1991-01-01

    Thermodynamic models and mass-balance arguments are used to constrain the chemistry of lunar volcanic gases. The results predict that lunar gases were dominated by reduced C and S gases such as CO, COS, CS2, S2. The more oxidized gases CO2 and SO2 were also important, but only in limited temperature ranges. Gases such as Cl2, CCl4, and CF4 were more abundant than HF and HCl, which were the two major H compounds in the lunar gases. Chlorides and fluorides were important species for transporting many volatile and ore-forming metals, and the implications for fractionating and concentrating metals into lunar ore-deposits merit further study.

  8. Hybrid method for numerical modelling of LWR coolant chemistry

    NASA Astrophysics Data System (ADS)

    Swiatla-Wojcik, Dorota

    2016-10-01

    A comprehensive approach is proposed to model radiation chemistry of the cooling water under exposure to neutron and gamma radiation at 300 °C. It covers diffusion-kinetic processes in radiation tracks and secondary reactions in the bulk coolant. Steady-state concentrations of the radiolytic products have been assessed based on the simulated time dependent concentration profiles. The principal reactions contributing to the formation of H2, O2 and H2O2 were indicated. Simulation was carried out depending on the amount of extra hydrogen dissolved in the coolant to reduce concentration of corrosive agents. High sensitivity to the rate of reaction H+H2O=OH+H2 is shown and discussed.

  9. Recent Enhancements to the Community Multiscale Air Quality Model (CMAQ)

    EPA Science Inventory

    This presentation overviews recent updates to the CMAQ modeling system. The presentation will be given as part of the information exchange session on Regional Air Pollution Modeling at the UK-US Collaboration Meeting on Air Pollution Exposure Science.

  10. Evaluation of Convective Transport in the GEOS-5 Chemistry and Climate Model

    NASA Technical Reports Server (NTRS)

    Pickering, Kenneth E.; Ott, Lesley E.; Shi, Jainn J.; Tao. Wei-Kuo; Mari, Celine; Schlager, Hans

    2011-01-01

    The NASA Goddard Earth Observing System (GEOS-5) Chemistry and Climate Model (CCM) consists of a global atmospheric general circulation model and the combined stratospheric and tropospheric chemistry package from the NASA Global Modeling Initiative (GMI) chemical transport model. The subgrid process of convective tracer transport is represented through the Relaxed Arakawa-Schubert parameterization in the GEOS-5 CCM. However, substantial uncertainty for tracer transport is associated with this parameterization, as is the case with all global and regional models. We have designed a project to comprehensively evaluate this parameterization from the point of view of tracer transport, and determine the most appropriate improvements that can be made to the GEOS-5 convection algorithm, allowing improvement in our understanding of the role of convective processes in determining atmospheric composition. We first simulate tracer transport in individual observed convective events with a cloud-resolving model (WRF). Initial condition tracer profiles (CO, CO2, O3) are constructed from aircraft data collected in undisturbed air, and the simulations are evaluated using aircraft data taken in the convective anvils. A single-column (SCM) version of the GEOS-5 GCM with online tracers is then run for the same convective events. SCM output is evaluated based on averaged tracer fields from the cloud-resolving model. Sensitivity simulations with adjusted parameters will be run in the SCM to determine improvements in the representation of convective transport. The focus of the work to date is on tropical continental convective events from the African Monsoon Multidisciplinary Analyses (AMMA) field mission in August 2006 that were extensively sampled by multiple research aircraft.

  11. Representing ozone extremes in European megacities: the importance of resolution in a global chemistry climate model

    NASA Astrophysics Data System (ADS)

    Stock, Z. S.; Russo, M. R.; Pyle, J. A.

    2014-04-01

    The continuing growth of the world's urban population has led to an increasing number of cities with more than 10 million inhabitants. The higher emissions of pollutants, coupled to higher population density, makes predictions of air quality in these megacities of particular importance from both a science and a policy perspective. Global climate models are typically run at coarse resolution to enable both the efficient running of long time integrations, and the ability to run multiple future climate scenarios. However, when considering surface ozone concentrations at the local scale, coarse resolution can lead to inaccuracies arising from the highly nonlinear ozone chemistry and the sensitivity of ozone to the distribution of its precursors on smaller scales. In this study, we use UM-UKCA, a global atmospheric chemistry model, coupled to the UK Met Office Unified Model, to investigate the impact of model resolution on tropospheric ozone, ranging from global to local scales. We focus on the model's ability to represent the probability of high ozone concentrations in the summer and low ozone concentrations, associated with polluted megacity environments, in the winter, and how this varies with horizontal resolution. We perform time-slice integrations with two model configurations at typical climate resolution (CR, ~150 km) and at a higher resolution (HR, ~40 km). The CR configuration leads to overestimation of ozone concentrations on both regional and local scales, while it gives broadly similar results to the HR configuration on the global scale. The HR configuration is found to produce a more realistic diurnal cycle of ozone concentrations and to give a better representation of the probability density function of ozone values in urban areas such as the megacities of London and Paris. We find the observed differences in model behaviour between CR and HR configurations to be largely caused by chemical differences during the winter and meteorological differences

  12. Representing ozone extremes in European megacities: the importance of resolution in a global chemistry climate model

    NASA Astrophysics Data System (ADS)

    Stock, Z. S.; Russo, M. R.; Pyle, J. A.

    2013-10-01

    The continuing growth of the world's urban population has led to an increasing number of cities with more than 10 million inhabitants. The higher emissions of pollutants, coupled to higher population density, makes predictions of air quality in these megacities of particular importance from both a science and a policy perspective. Global climate models are typically run at coarse resolution to enable both the efficient running of long time integrations, and the ability to run multiple future climate scenarios. However, when considering surface ozone concentrations at the local scale, coarse resolution can lead to inaccuracies arising from the highly non-linear ozone chemistry and the sensitivity of ozone to the distribution of its precursors on smaller scales. In this study, we use UM-UKCA, a global atmospheric chemistry model, coupled to the UK Met Office Unified Model, to investigate the impact of model resolution on tropospheric ozone, ranging from global to local scales. We focus on the model's ability to represent the probability of high ozone concentrations in the summer and low ozone concentrations, associated with polluted megacity environments, in the winter, and how this varies with horizontal resolution. We perform time-slice integrations with two model configurations at typical climate resolution (CR, ~150 km) and at a higher resolution (HR, ~40 km). The CR configuration leads to overestimation of ozone concentrations on both regional and local scales, while it gives broadly similar results to the HR configuration on the global scale. The HR configuration is found to produce a more realistic diurnal cycle of ozone concentrations and to give a better representation of the probability density function of ozone values in urban areas such as the megacities of London and Paris. We discuss the possible causes for the observed difference in model behaviour between CR and HR configurations and estimate the relative contribution of chemical and meteorological

  13. Nonequilibrium radiation and chemistry models for aerocapture vehicle flowfields

    NASA Technical Reports Server (NTRS)

    Carlson, Leland A.

    1994-01-01

    The primary accomplishments of the project were as follows: (1) From an overall standpoint, the primary accomplishment of this research was the development of a complete gasdynamic-radiatively coupled nonequilibrium viscous shock layer solution method for axisymmetric blunt bodies. This method can be used for rapid engineering modeling of nonequilibrium re-entry flowfields over a wide range of conditions. (2) Another significant accomplishment was the development of an air radiation model that included local thermodynamic nonequilibrium (LTNE) phenomena. (3) As part of this research, three electron-electronic energy models were developed. The first was a quasi-equilibrium electron (QEE) model which determined an effective free electron temperature and assumed that the electronic states were in equilibrium with the free electrons. The second was a quasi-equilibrium electron-electronic (QEEE) model which computed an effective electron-electronic temperature. The third model was a full electron-electronic (FEE) differential equation model which included convective, collisional, viscous, conductive, vibrational coupling, and chemical effects on electron-electronic energy. (4) Since vibration-dissociation coupling phenomena as well as vibrational thermal nonequilibrium phenomena are important in the nonequilibrium zone behind a shock front, a vibrational energy and vibration-dissociation coupling model was developed and included in the flowfield model. This model was a modified coupled vibrational dissociation vibrational (MCVDV) model and also included electron-vibrational coupling. (5) Another accomplishment of the project was the usage of the developed models to investigate radiative heating. (6) A multi-component diffusion model which properly models the multi-component nature of diffusion in complex gas mixtures such as air, was developed and incorporated into the blunt body model. (7) A model was developed to predict the magnitude and characteristics of the shock

  14. Final Report for LDRD Project 05-ERD-050: "Developing a Reactive Chemistry Capability for the NARAC Operational Model (LODI)"

    SciTech Connect

    Cameron-Smith, P; Grant, K; Connell, P

    2008-02-11

    In support of the National Security efforts of LLNL, this project addressed the existing imbalance between dispersion and chemical capabilities of LODI (Lagrangian Operational Dispersion Integrator--the NARAC operational dispersion model). We have demonstrated potentially large effects of atmospheric chemistry on the impact of chemical releases (e.g., industrial chemicals and nerve agents). Prior to our work, LODI could only handle chains of first-order losses (exponential decays) that were independent of time and space, limiting NARAC's capability to respond when reactive chemistry is important. We significantly upgraded the chemistry and aerosol capability of LODI to handle (1) arbitrary networks of chemical reactions, (2) mixing and reactions with ambient species, (3) evaporation and condensation of aerosols, and (4) heat liberated from chemical reactions and aerosol condensation (which can cause a cold and dense plume hugging the ground to rise into the atmosphere, then descend to the ground again as droplets). When this is made operational, it will significantly improve NARAC's ability to respond to terrorist attacks and industrial accidents that involve reactive chemistry, including many chemical agents and toxic industrial chemicals (TICS). As a dual-use, the resulting model also has the potential to be a state-of-the-art air-quality model. Chemical releases are the most common type of airborne hazardous release and many operational applications involve such scenarios. The new capability we developed is therefore relevant to the needs of the Department of Energy (DOE), Department of Homeland Security (DHS) and Department of Defense (DoD).

  15. Chemistry of the global troposphere - Fluorocarbons as tracers of air motion

    NASA Technical Reports Server (NTRS)

    Prather, Michael; Russell, Gary; Rind, David; Mcelroy, Michael; Wofsy, Steven

    1987-01-01

    Winds and convective mixing from a general circulation model of the atmosphere have been applied in a chemical tracer model (CTM) to simulate the global distribution and temporal variability of chlorofluorocarbons (CFCs). The seasonal cycle in moist convection, with maximum activity over continents in summer, leads to an annual cycle in the surface concentration of CFCs. Emissions are retained in the lowest levels of the atmosphere during winter, and surface concentrations peak near sources. In this season, CFCs from European sources are carried by low-level winds into the Arctic. During summer, vertical exchange is more efficient, and pollutants are transported more rapidly to the middle atmosphere. Consequently, concentrations of CFCs during summer are relatively low near the surface and elevated in the middle troposphere. Time series analysis of data from Adrigole, Ireland, indicates that the model accurately simulates long-range transport of air pollution. The model reproduces global distributions and trends for CFC-11 and CFC-12 observed by the ALE experiment; however, subgrid diffusion must be introduced into the model in order to reproduce the observed interhemispheric gradient. Interhemispheric exchange occurs mainly in the upper tropical troposphere, producing a profile which increases with altitude in the Southern Hemisphere, in agreement with observations. The distribution of CFCs is such that it is necessary to apply important corrections to observations at surface stations in order to derive global distributions.

  16. Development and application of the High resolution VOC Atmospheric Chemistry in Canopies (Hi-VACC) model

    NASA Astrophysics Data System (ADS)

    Kenny, W.; Bohrer, G.; Chatziefstratiou, E.

    2013-12-01

    We have been working to develop a new post-processing model - High resolution VOC Atmospheric Chemistry in Canopies (Hi-VACC) - which will be able to resolve the dispersion and chemistry of reacting chemical species given their emission rates from the vegetation and soil, driven by high resolution meteorological forcing and wind fields from various high resolution atmospheric regional and large-eddy simulations. Hi-VACC reads in fields of pressure, temperature, humidity, air density, short-wave radiation, wind (3-D u, v and w components) and sub-grid-scale turbulence that were simulated by a high resolution atmospheric model. This meteorological forcing data is provided as snapshots of 3-D fields. Presently, the advection-diffusion portion of the model is fully developed, and we have tested it using a number of RAMS-based Forest Large Eddy Simulation (RAFLES) runs. Here, we present results from utilizing Hi-VACC in a few different contexts where it performs smoke and particle dispersion well. These include simulations of smoke dispersion from a theoretical forest fire in a domain in The Pine Barrens in New Jersey, as well as simulations to test the effects of heat flux on a scalar plume dispersing over a vegetative windbreak in an agricultural setting. Additional, we show initial results from testing the coupled chemistry component of Hi-VACC. One of the primary benefits of Hi-VACC is that users of other models can utilize this tool with only minimal work on their part -- processing their output fields into the appropriate HI-VACC input format. We have developed our model such that for whatever atmospheric model is being used with it, a MATLAB function must be written to extract the necessary information from the output files of that model and shape it into the proper format. This is the only model-specific work required. As such, this sort of smoke dispersion modeling performed by Hi-VACC - as well as its other capabilities - can be easily performed in other

  17. VALMET-A valley air pollution model

    SciTech Connect

    Whiteman, C.D.; Allwine, K.J.

    1983-09-01

    Following a thorough analysis of meteorological data obtained from deep valleys of western Colorado, a modular air-pollution model has been developed to simulate the transport and diffusion of pollutants released from an elevated point source in a well-defined mountain valley during the nighttime and morning transition periods. This initial version of the model, named VALMET, operates on a valley cross section at an arbitrary distance down-valley from a continuous point source. The model has been constructed to include parameterizations of the major physical processes that act to disperse pollution during these time periods. The model has not been fully evaluated. Further testing, evaluations, and development of the model are needed. Priorities for further development and testing are provided.

  18. Phenomenological model of nuclear primary air showers

    NASA Technical Reports Server (NTRS)

    Tompkins, D. R., Jr.; Saterlie, S. F.

    1976-01-01

    The development of proton primary air showers is described in terms of a model based on a hadron core plus an electromagnetic cascade. The muon component is neglected. The model uses three parameters: a rate at which hadron core energy is converted into electromagnetic cascade energy and a two-parameter sea-level shower-age function. By assuming an interaction length for the primary nucleus, the model is extended to nuclear primaries. Both models are applied over the energy range from 10 to the 13th power to 10 to the 21st power eV. Both models describe the size and age structure (neglecting muons) from a depth of 342 to 2052 g/sq cm.

  19. The Air Quality Model Evaluation International Initiative ...

    EPA Pesticide Factsheets

    This presentation provides an overview of the Air Quality Model Evaluation International Initiative (AQMEII). It contains a synopsis of the three phases of AQMEII, including objectives, logistics, and timelines. It also provides a number of examples of analyses conducted through AQMEII with a particular focus on past and future analyses of deposition. The National Exposure Research Laboratory (NERL) Computational Exposure Division (CED) develops and evaluates data, decision-support tools, and models to be applied to media-specific or receptor-specific problem areas. CED uses modeling-based approaches to characterize exposures, evaluate fate and transport, and support environmental diagnostics/forensics with input from multiple data sources. It also develops media- and receptor-specific models, process models, and decision support tools for use both within and outside of EPA.

  20. Structure and chemistry of model catalysts in ultrahigh vacuum

    NASA Astrophysics Data System (ADS)

    Walker, Joshua D.

    The study of catalysis is a key area of focus not only in the industrial sector but also in the nature and biological systems. The market for catalysis is a multi-billion dollar industry. Many of the materials and products we use on a daily basis are formed through a catalytic process. The quest to understanding and improving catalytic mechanisms is ongoing. Many model catalysts use transition metals as a support for chemical reactions to take place due to their selectivity and activity. Palladium, gold, and copper metals are studied in this work and show the ability to be catalytically reactive. It is important to understand the characteristics and properties of these surfaces. A well-known example of catalysis is the conversion of carbon monoxide (CO), a very harmful gas to carbon dioxide (CO2) which is less harmful. This reaction is mainly seen in the automotive industry. This reaction is investigated in this work on a Au(111) single crystal, which is normally inert but becomes reactivity with the adsorption of oxygen on the surface. Temperature Programmed Desorption (TPD) is used to understand some of the chemistry and effects with and without the addition of H2O. The oxidation of CO is shown to be enhanced by the addition of water, but warrants further analysis too fully understand the different mechanisms and reaction pathways existing. The field of nano-electronics is rapidly growing as technology continues to challenge scientists to create innovative ideas. The trend to produce smaller electronic products is increasing as consumer demands persist. It has been shown previously that 1,4-phenlyene diisocyanobenzene (1,4-PDI) on Au(111) react to form one-dimensional oligomer chains comprising alternating gold and 1,4-PDI units on the Au(111) surface. A similar compound 1,3-phenlyene diisocyanobenzene (1,3-PDI) was studied in order to investigate whether the oligomerization found for 1,4-PDI is a general phenomenon and to ultimately explore the effect of

  1. Assessment of chemistry models for compressible reacting flows

    NASA Astrophysics Data System (ADS)

    Lapointe, Simon; Blanquart, Guillaume

    2014-11-01

    Recent technological advances in propulsion and power devices and renewed interest in the development of next generation supersonic and hypersonic vehicles have increased the need for detailed understanding of turbulence-combustion interactions in compressible reacting flows. In numerical simulations of such flows, accurate modeling of the fuel chemistry is a critical component of capturing the relevant physics. Various chemical models are currently being used in reacting flow simulations. However, the differences between these models and their impacts on the fluid dynamics in the context of compressible flows are not well understood. In the present work, a numerical code is developed to solve the fully coupled compressible conservation equations for reacting flows. The finite volume code is based on the theoretical and numerical framework developed by Oefelein (Prog. Aero. Sci. 42 (2006) 2-37) and employs an all-Mach-number formulation with dual time-stepping and preconditioning. The numerical approach is tested on turbulent premixed flames at high Karlovitz numbers. Different chemical models of varying complexity and computational cost are used and their effects are compared.

  2. A new model for plasma transport and chemistry at Saturn

    NASA Technical Reports Server (NTRS)

    Richardson, John D.

    1992-01-01

    A model of plasma transport and chemistry is described which calculates the evolution of a plasma population in latitude and radial distance. This model is applied to the magnetosphere of Saturn, where it is used to fit the density profile of the heavy ions assuming both satellite and ring sources of plasma. Use of an extended source region is found to significantly alter the resulting plasma profile. Water ions cannot fit the observed density profile inside L = 6 even with a large ring source. Oxygen ions can fit the density profile throughout the region inside L = 12 given a suitable profile of neutral hydrogen; a suitable profile contains up to 5 H/cu cm outside L = 4 with the number increasing inside this. Preferred values of K are 1-3 x 10 exp -10 R(S)2/s, but any value K less than 10 exp -9 R(S)2/s can be accommodated. The temperature profile is shown to favor models invoking in situ plasma formation and loss as opposed to models where transport is important.

  3. Diagnostic tools for mixing models of stream water chemistry

    USGS Publications Warehouse

    Hooper, R.P.

    2003-01-01

    Mixing models provide a useful null hypothesis against which to evaluate processes controlling stream water chemical data. Because conservative mixing of end-members with constant concentration is a linear process, a number of simple mathematical and multivariate statistical methods can be applied to this problem. Although mixing models have been most typically used in the context of mixing soil and groundwater end-members, an extension of the mathematics of mixing models is presented that assesses the "fit" of a multivariate data set to a lower dimensional mixing subspace without the need for explicitly identified end-members. Diagnostic tools are developed to determine the approximate rank of the data set and to assess lack of fit of the data. This permits identification of processes that violate the assumptions of the mixing model and can suggest the dominant processes controlling stream water chemical variation. These same diagnostic tools can be used to assess the fit of the chemistry of one site into the mixing subspace of a different site, thereby permitting an assessment of the consistency of controlling end-members across sites. This technique is applied to a number of sites at the Panola Mountain Research Watershed located near Atlanta, Georgia.

  4. United States Air Force Academy, Department of Chemistry Research: AY 1983-1984.

    DTIC Science & Technology

    1985-07-01

    CODES 18- SUBJECT TERMS (Continue on reverse if necesarv and identify by block number) FIELD GROUP SUB. GR Chemical Research, Energetic Materials ...Department of Chemistry research during AY 1983-84 has progressed well in the areas of energetic materials , theoretical chemistry, and catalysis...Abstract Department of Che .try research durinq AY 1983-84 has pro- gressed well in the areas of energetic materials , theoretical chem

  5. Downward transport of ozone rich air and implications for atmospheric chemistry in the Amazon rainforest

    NASA Astrophysics Data System (ADS)

    Gerken, Tobias; Wei, Dandan; Chase, Randy J.; Fuentes, Jose D.; Schumacher, Courtney; Machado, Luiz A. T.; Andreoli, Rita V.; Chamecki, Marcelo; Ferreira de Souza, Rodrigo A.; Freire, Livia S.; Jardine, Angela B.; Manzi, Antonio O.; Nascimento dos Santos, Rosa M.; von Randow, Celso; dos Santos Costa, Patrícia; Stoy, Paul C.; Tóta, Julio; Trowbridge, Amy M.

    2016-01-01

    From April 2014 to January 2015, ozone (O3) dynamics were investigated as part of GoAmazon 2014/5 project in the central Amazon rainforest of Brazil. Just above the forest canopy, maximum hourly O3 mixing ratios averaged 20 ppbv (parts per billion on a volume basis) during the June-September dry months and 15 ppbv during the wet months. Ozone levels occasionally exceeded 75 ppbv in response to influences from biomass burning and regional air pollution. Individual convective storms transported O3-rich air parcels from the mid-troposphere to the surface and abruptly enhanced the regional atmospheric boundary layer by as much as 25 ppbv. In contrast to the individual storms, days with multiple convective systems produced successive, cumulative ground-level O3 increases. The magnitude of O3 enhancements depended on the vertical distribution of O3 within storm downdrafts and origin of downdrafts in the troposphere. Ozone mixing ratios remained enhanced for > 2 h following the passage of storms, which enhanced chemical processing of rainforest-emitted isoprene and monoterpenes. Reactions of isoprene and monoterpenes with O3 are modeled to generate maximum hydroxyl radical formation rates of 6 × 106 radicals cm-3s-1. Therefore, one key conclusion of the present study is that downdrafts of convective storms are estimated to transport enough O3 to the surface to initiate a series of reactions that reduce the lifetimes of rainforest-emitted hydrocarbons.

  6. Downscaling modelling system for multi-scale air quality forecasting

    NASA Astrophysics Data System (ADS)

    Nuterman, R.; Baklanov, A.; Mahura, A.; Amstrup, B.; Weismann, J.

    2010-09-01

    Urban modelling for real meteorological situations, in general, considers only a small part of the urban area in a micro-meteorological model, and urban heterogeneities outside a modelling domain affect micro-scale processes. Therefore, it is important to build a chain of models of different scales with nesting of higher resolution models into larger scale lower resolution models. Usually, the up-scaled city- or meso-scale models consider parameterisations of urban effects or statistical descriptions of the urban morphology, whereas the micro-scale (street canyon) models are obstacle-resolved and they consider a detailed geometry of the buildings and the urban canopy. The developed system consists of the meso-, urban- and street-scale models. First, it is the Numerical Weather Prediction (HIgh Resolution Limited Area Model) model combined with Atmospheric Chemistry Transport (the Comprehensive Air quality Model with extensions) model. Several levels of urban parameterisation are considered. They are chosen depending on selected scales and resolutions. For regional scale, the urban parameterisation is based on the roughness and flux corrections approach; for urban scale - building effects parameterisation. Modern methods of computational fluid dynamics allow solving environmental problems connected with atmospheric transport of pollutants within urban canopy in a presence of penetrable (vegetation) and impenetrable (buildings) obstacles. For local- and micro-scales nesting the Micro-scale Model for Urban Environment is applied. This is a comprehensive obstacle-resolved urban wind-flow and dispersion model based on the Reynolds averaged Navier-Stokes approach and several turbulent closures, i.e. k -ɛ linear eddy-viscosity model, k - ɛ non-linear eddy-viscosity model and Reynolds stress model. Boundary and initial conditions for the micro-scale model are used from the up-scaled models with corresponding interpolation conserving the mass. For the boundaries a

  7. The Australian methane budget: Interpreting surface and train-borne measurements using a chemistry transport model

    NASA Astrophysics Data System (ADS)

    Fraser, Annemarie; Chan Miller, Christopher; Palmer, Paul I.; Deutscher, Nicholas M.; Jones, Nicholas B.; Griffith, David W. T.

    2011-10-01

    We investigate the Australian methane budget from 2005-2008 using the GEOS-Chem 3D chemistry transport model, focusing on the relative contribution of emissions from different sectors and the influence of long-range transport. To evaluate the model, we use in situ surface measurements of methane, methane dry air column average (XCH4) from ground-based Fourier transform spectrometers (FTSs), and train-borne surface concentration measurements from an in situ FTS along the north-south continental transect. We use gravity anomaly data from Gravity Recovery and Climate Experiment to describe the spatial and temporal distribution of wetland emissions and scale it to a prior emission estimate, which better describes observed atmospheric methane variability at tropical latitudes. The clean air sites of Cape Ferguson and Cape Grim are the least affected by local emissions, while Wollongong, located in the populated southeast with regional coal mining, samples the most locally polluted air masses (2.5% of the total air mass versus <1% at other sites). Averaged annually, the largest single source above background of methane at Darwin is long-range transport, mainly from Southeast Asia, accounting for ˜25% of the change in surface concentration above background. At Cape Ferguson and Cape Grim, emissions from ruminant animals are the largest source of methane above background, at approximately 20% and 30%, respectively, of the surface concentration. At Wollongong, emissions from coal mining are the largest source above background representing 60% of the surface concentration. The train data provide an effective way of observing transitions between urban, desert, and tropical landscapes.

  8. 77 FR 4808 - Conference on Air Quality Modeling

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-31

    ... AGENCY Conference on Air Quality Modeling AGENCY: U.S. Environmental Protection Agency (EPA). ACTION: Notice of conference. SUMMARY: The EPA will be hosting the Tenth Conference on Air Quality Modeling on... preferred air quality models and to provide a forum for public review and comment on how the...

  9. Air Pollution Data for Model Evaluation and Application

    EPA Science Inventory

    One objective of designing an air pollution monitoring network is to obtain data for evaluating air quality models that are used in the air quality management process and scientific discovery.1.2 A common use is to relate emissions to air quality, including assessing ...

  10. QUANTIFYING SUBGRID POLLUTANT VARIABILITY IN EULERIAN AIR QUALITY MODELS

    EPA Science Inventory

    In order to properly assess human risk due to exposure to hazardous air pollutants or air toxics, detailed information is needed on the location and magnitude of ambient air toxic concentrations. Regional scale Eulerian air quality models are typically limited to relatively coar...

  11. Impact of two chemistry mechanisms fully coupled with mesoscale model on the atmospheric pollutants distribution

    NASA Astrophysics Data System (ADS)

    Arteta, J.; Cautenet, S.; Taghavi, M.; Audiffren, N.

    Air quality models (AQM) consist of many modules (meteorology, emission, chemistry, deposition), and in some conditions such as: vicinity of clouds or aerosols plumes, complex local circulations (mountains, sea breezes), fully coupled models (online method) are necessary. In order to study the impact of lumped chemical mechanisms in AQM simulations, we examine the ability of both different chemical mechanisms: (i) simplified: Condensed Version of the MOdèle de Chimie Atmosphérique 2.2 (CV-MOCA2.2), and (ii) reference: Regional Atmospheric Chemistry Model (RACM), which are coupled online with the Regional Atmospheric Modeling Systems (RAMS) model, on the distribution of pollutants. During the ESCOMPTE experiment (Expérience sur Site pour COntraindre les Modèles de Pollution et de Transport d'Emissions) conducted over Southern France (including urban and industrial zones), Intensive observation periods (IOP) characterized by various meteorological and mixed chemical conditions are simulated. For both configurations of modeling, numerical results are compared with surface measurements (75 stations) for primary (NO x) and secondary (O 3) species. We point out the impact of the two different chemical mechanisms on the production of species involved in the oxidizing capacity such as ozone and radicals within urban and industrial areas. We highlight that both chemical mechanisms produce very similar results for the main pollutants (NO x and O 3) in three-dimensional (3D) distribution, despite large discrepancies in 0D modeling. For ozone concentration, we found sometimes small differences (5-10 ppb) between the mechanisms under study according to the cases (polluted or not). The relative difference between the two mechanisms over the whole domain is only -7% for ozone from CV-MOCA 2.2 versus RACM. When the order of magnitude is needed rather than an accurate estimate, a reduced mechanism is satisfactory. It has the advantage of running faster (four times less than CPU

  12. Chemistry Resolved Kinetic Flow Modeling of TATB Based Explosives

    NASA Astrophysics Data System (ADS)

    Vitello, Peter; Fried, Lawrence; Howard, Mike; Levesque, George; Souers, Clark

    2011-06-01

    Detonation waves in insensitive, TATB based explosives are believed to have multi-time scale regimes. The initial burn rate of such explosives has a sub-microsecond time scale. However, significant late-time slow release in energy is believed to occur due to diffusion limited growth of carbon. In the intermediate time scale concentrations of product species likely change from being in equilibrium to being kinetic rate controlled. We use the thermo-chemical code CHEETAH linked to ALE hydrodynamics codes to model detonations. We term our model chemistry resolved kinetic flow as CHEETAH tracks the time dependent concentrations of individual species in the detonation wave and calculate EOS values based on the concentrations. A validation suite of model simulations compared to recent high fidelity metal push experiments at ambient and cold temperatures has been developed. We present here a study of multi-time scale kinetic rate effects for these experiments. Prepared by LLNL under Contract DE-AC52-07NA27344.

  13. Estimating North American background ozone in U.S. surface air with two independent global models: Variability, uncertainties, and recommendations

    EPA Science Inventory

    Accurate estimates for North American background (NAB) ozone (O3) in surface air over the United States are needed for setting and implementing an attainable national O3 standard. These estimates rely on simulations with atmospheric chemistry-transport models that set North Amer...

  14. Increasing the Use of Earth Science Data and Models in Air Quality Management.

    PubMed

    Milford, Jana B; Knight, Daniel

    2017-04-01

    In 2010, the U.S. National Aeronautics and Space Administration (NASA) initiated the Air Quality Applied Science Team (AQAST) as a 5-year, $17.5-million award with 19 principal investigators. AQAST aims to increase the use of Earth science products in air quality-related research and to help meet air quality managers' information needs. We conducted a Web-based survey and a limited number of follow-up interviews to investigate federal, state, tribal, and local air quality managers' perspectives on usefulness of Earth science data and models, and on the impact AQAST has had. The air quality managers we surveyed identified meeting the National Ambient Air Quality Standards for ozone and particulate matter, emissions from mobile sources, and interstate air pollution transport as top challenges in need of improved information. Most survey respondents viewed inadequate coverage or frequency of satellite observations, data uncertainty, and lack of staff time or resources as barriers to increased use of satellite data by their organizations. Managers who have been involved with AQAST indicated that the program has helped build awareness of NASA Earth science products, and assisted their organizations with retrieval and interpretation of satellite data and with application of global chemistry and climate models. AQAST has also helped build a network between researchers and air quality managers with potential for further collaborations.

  15. Modeling local chemistry in the presence of collective phenomena.

    SciTech Connect

    Chandross, Michael Evan; Modine, Normand Arthur

    2005-01-01

    Confinement within the nanoscale pores of a zeolite strongly modifies the behavior of small molecules. Typical of many such interesting and important problems, realistic modeling of this phenomena requires simultaneously capturing the detailed behavior of chemical bonds and the possibility of collective dynamics occurring in a complex unit cell (672 atoms in the case of Zeolite-4A). Classical simulations alone cannot reliably model the breaking and formation of chemical bonds, while quantum methods alone are incapable of treating the extended length and time scales characteristic of complex dynamics. We have developed a robust and efficient model in which a small region treated with the Kohn-Sham density functional theory is embedded within a larger system represented with classical potentials. This model has been applied in concert with first-principles electronic structure calculations and classical molecular dynamics and Monte Carlo simulations to study the behavior of water, ammonia, the hydroxide ion, and the ammonium ion in Zeolite-4a. Understanding this behavior is important to the predictive modeling of the aging of Zeolite-based desiccants. In particular, we have studied the absorption of these molecules, interactions between water and the ammonium ion, and reactions between the hydroxide ion and the zeolite cage. We have shown that interactions with the extended Zeolite cage strongly modifies these local chemical phenomena, and thereby we have proven out hypothesis that capturing both local chemistry and collective phenomena is essential to realistic modeling of this system. Based on our results, we have been able to identify two possible mechanisms for the aging of Zeolite-based desiccants.

  16. Air quality trends in Europe over the past decade: a first multi-model assessment

    NASA Astrophysics Data System (ADS)

    Colette, A.; Granier, C.; Hodnebrog, Ø.; Jakobs, H.; Maurizi, A.; Nyiri, A.; Bessagnet, B.; D'Angiola, A.; D'Isidoro, M.; Gauss, M.; Meleux, F.; Memmesheimer, M.; Mieville, A.; Rouïl, L.; Russo, F.; Solberg, S.; Stordal, F.; Tampieri, F.

    2011-11-01

    We discuss the capability of current state-of-the-art chemistry and transport models to reproduce air quality trends and interannual variability. Documenting these strengths and weaknesses on the basis of historical simulations is essential before the models are used to investigate future air quality projections. To achieve this, a coordinated modelling exercise was performed in the framework of the CityZEN European Project. It involved six regional and global chemistry-transport models (BOLCHEM, CHIMERE, EMEP, EURAD, OSLOCTM2 and MOZART) simulating air quality over the past decade in the Western European anthropogenic emissions hotspots. Comparisons between models and observations allow assessing the skills of the models to capture the trends in basic atmospheric constituents (NO2, O3, and PM10). We find that the trends of primary constituents are well reproduced (except in some countries - owing to their sensitivity to the emission inventory) although capturing the more moderate trends of secondary species such as O3 is more challenging. Apart from the long term trend, the modelled monthly variability is consistent with the observations but the year-to-year variability is generally underestimated. A comparison of simulations where anthropogenic emissions are kept constant is also investigated. We find that the magnitude of the emission-driven trend exceeds the natural variability for primary compounds. We can thus conclude that emission management strategies have had a significant impact over the past 10 yr, hence supporting further emission reductions.

  17. Air quality trends in Europe over the past decade: a first multi-model assessment

    NASA Astrophysics Data System (ADS)

    Colette, A.; Granier, C.; Hodnebrog, Ø.; Jakobs, H.; Maurizi, A.; Nyiri, A.; Bessagnet, B.; D'Angiola, A.; D'Isidoro, M.; Gauss, M.; Meleux, F.; Memmesheimer, M.; Mieville, A.; Rouïl, L.; Russo, F.; Solberg, S.; Stordal, F.; Tampieri, F.

    2011-07-01

    We discuss the capability of current state-of-the-art chemistry and transport models to reproduce air quality trends and inter annual variability. Documenting these strengths and weaknesses on the basis of historical simulations is essential before the models are used to investigate future air quality projections. To achieve this, a coordinated modelling exercise was performed in the framework of the CityZEN European Project. It involved six regional and global chemistry-transport models (Bolchem, Chimere, Emep, Eurad, OsloCTM2 and Mozart) simulating air quality over the past decade in the Western European anthropogenic emissions hotspots. Comparisons between models and observations allow assessing the skills of the models to capture the trends in basic atmospheric constituents (NO2, O3, and PM10). We find that the trends of primary constituents are well reproduced (except in some countries - owing to their sensitivity to the emission inventory) although capturing the more moderate trends of secondary species such as O3 is more challenging. Apart from the long term trend, the modelled monthly variability is consistent with the observations but the year-to-year variability is generally underestimated. A comparison of simulations where anthropogenic emissions are kept constant is also investigated. We find that the magnitude of the emission-driven trend exceeds the natural variability for primary compounds. We can thus conclude that emission management strategies have had a significant impact over the past 10 yr, hence supporting further emission reductions strategies.

  18. A critical evaluation of present-day and future surface ozone as simulated by global chemistry-climate models in the Atmospheric Chemistry & Climate Model Intercomparison Project (ACCMIP)

    NASA Astrophysics Data System (ADS)

    Schnell, J.; Prather, M. J.

    2014-12-01

    In evaluating a future scenario for air quality, one can identify four major causal factors: (1) global emissions that alter atmospheric composition and thence baseline levels of surface ozone (O3); (2) global changes in climate that also alter these baselines (e.g., temperature, water vapor); (3) climate-driven changes in the meteorological regimes of polluted regions that lead to air quality extreme (AQX) episodes; and (4) changes in the efficacy of local emissions to produce pollution within a governance region. While these factors are all part of a coupled system, a model that combines all would be difficult to verify. Thus an assessment approach would be to evaluate each factor separately using observations and an ensemble of models. In this study, we focus on factor (3), evaluating the ability of the models in the Atmospheric Chemistry & Climate Model Intercomparison Project (ACCMIP) to reproduce the observed present-day climatology (e.g. diurnal/seasonal cycles, AQX episode size) of surface O3 in North America (NA) and Europe (EU). We then characterize future changes within these domains as well as south Asia (SA) for two experiments of RCP8.5 climate, one with O3 precursor emissions representative of the 2100s (RCP8.5) and one representative of the 2000s (Cl2100Em2000). We find that most models simulate the observed climatology well, albeit biased high over the range of each domain's probability distribution (Fig. 1). For RCP8.5, the ensemble mean shows an increase of ~10% in the mean annual maximum daily 8-h average (MDA8) over all domains, with the largest changes in winter months. For Cl2100Em2000, NA shows a small increase (+1%) in annual mean MDA8 while EU and SA show small decreases (-2% and -3%, respectively). Also for RCP8.5, most models show decreases in the mean size (S) and mean duration (D) of AQX episodes in EU (S = -28%, D = -17%) and increases in SA (+54%, +15%). The ensemble mean shows decreases in D (-7%) and increases in S (+21%) in NA

  19. Spray Combustion Modeling with VOF and Finite-Rate Chemistry

    NASA Technical Reports Server (NTRS)

    Chen, Yen-Sen; Shang, Huan-Min; Liaw, Paul; Wang, Ten-See

    1996-01-01

    A spray atomization and combustion model is developed based on the volume-of-fluid (VOF) transport equation with finite-rate chemistry model. The gas-liquid interface mass, momentum and energy conservation laws are modeled by continuum surface force mechanisms. A new solution method is developed such that the present VOF model can be applied for all-speed range flows. The objectives of the present study are: (1) to develop and verify the fractional volume-of-fluid (VOF) cell partitioning approach into a predictor-corrector algorithm to deal with multiphase (gas-liquid) free surface flow problems; (2) to implement the developed unified algorithm in a general purpose computational fluid dynamics (CFD) code, Finite Difference Navier-Stokes (FDNS), with droplet dynamics and finite-rate chemistry models; and (3) to demonstrate the effectiveness of the present approach by simulating benchmark problems of jet breakup/spray atomization and combustion. Modeling multiphase fluid flows poses a significant challenge because a required boundary must be applied to a transient, irregular surface that is discontinuous, and the flow regimes considered can range from incompressible to highspeed compressible flows. The flow-process modeling is further complicated by surface tension, interfacial heat and mass transfer, spray formation and turbulence, and their interactions. The major contribution of the present method is to combine the novel feature of the Volume of Fluid (VOF) method and the Eulerian/Lagrangian method into a unified algorithm for efficient noniterative, time-accurate calculations of multiphase free surface flows valid at all speeds. The proposed method reformulated the VOF equation to strongly couple two distinct phases (liquid and gas), and tracks droplets on a Lagrangian frame when spray model is required, using a unified predictor-corrector technique to account for the non-linear linkages through the convective contributions of VOF. The discontinuities within the

  20. CMAQ Involvement in Air Quality Model Evaluation International Initiative

    EPA Pesticide Factsheets

    Description of Air Quality Model Evaluation International Initiative (AQMEII). Different chemical transport models are applied by different groups over North America and Europe and evaluated against observations.

  1. SREF - a Simple Removable Epoxy Foam decomposition chemistry model.

    SciTech Connect

    Hobbs, Michael L.

    2003-12-01

    A Simple Removable Epoxy Foam (SREF) decomposition chemistry model has been developed to predict the decomposition behavior of an epoxy foam encapsulant exposed to high temperatures. The foam is composed of an epoxy polymer, blowing agent, and surfactant. The model is based on a simple four-step mass loss model using distributed Arrhenius reaction rates. A single reaction was used to describe desorption of the blowing agent and surfactant (BAS). Three of the reactions were used to describe degradation of the polymer. The coordination number of the polymeric lattice was determined from the chemical structure of the polymer; and a lattice statistics model was used to describe the evolution of polymer fragments. The model lattice was composed of sites connected by octamethylcylotetrasiloxane (OS) bridges, mixed product (MP) bridges, and bisphenol-A (BPA) bridges. The mixed products were treated as a single species, but are likely composed of phenols, cresols, and furan-type products. Eleven species are considered in the SREF model - (1) BAS, (2) OS, (3) MP, (4) BPA, (5) 2-mers, (6) 3-mers, (7) 4-mers, (8) nonvolatile carbon residue, (9) nonvolatile OS residue, (10) L-mers, and (11) XL-mers. The first seven of these species (VLE species) can either be in the condensed-phase or gas-phase as determined by a vapor-liquid equilibrium model based on the Rachford-Rice equation. The last four species always remain in the condensed-phase. The 2-mers, 3-mers, and 4-mers are polymer fragments that contain two, three, or four sites, respectively. The residue can contain C, H, N, O, and/or Si. The L-mer fraction consists of polymer fragments that contain at least five sites (5-mer) up to a user defined maximum mer size. The XL-mer fraction consists of polymer fragments greater than the user specified maximum mer size and can contain the infinite lattice if the bridge population is less than the critical bridge population. Model predictions are compared to 133-thermogravimetric

  2. Air quality modelling using the Met Office Unified Model (AQUM OS24-26): model description and initial evaluation

    NASA Astrophysics Data System (ADS)

    Savage, N. H.; Agnew, P.; Davis, L. S.; Ordóñez, C.; Thorpe, R.; Johnson, C. E.; O'Connor, F. M.; Dalvi, M.

    2013-03-01

    The on-line air quality model AQUM (Air Quality in the Unified Model) is a limited-area forecast configuration of the Met Office Unified Model which uses the UKCA (UK Chemistry and Aerosols) sub-model. AQUM has been developed with two aims: as an operational system to deliver regional air quality forecasts and as a modelling system to conduct air quality studies to inform policy decisions on emissions controls. This paper presents a description of the model and the methods used to evaluate the performance of the forecast system against the automated UK surface network of air quality monitors. Results are presented of evaluation studies conducted for a year-long period of operational forecast trials and several past cases of poor air quality episodes. The results demonstrate that AQUM tends to over-predict ozone (~8 μg m-3 mean bias for the year-long forecast), but has a good level of responsiveness to elevated ozone episode conditions - a characteristic which is essential for forecasting poor air quality episodes. AQUM is shown to have a negative bias for PM10, while for PM2.5 the negative bias is much smaller in magnitude. An analysis of speciated PM2.5 data during an episode of elevated particulate matter (PM) suggests that the PM bias occurs mainly in the coarse component. The sensitivity of model predictions to lateral boundary conditions (LBCs) has been assessed by using LBCs from two different global reanalyses and by comparing the standard, single-nested configuration with a configuration having an intermediate European nest. We conclude that, even with a much larger regional domain, the LBCs remain an important source of model error for relatively long-lived pollutants such as ozone. To place the model performance in context we compare AQUM ozone forecasts with those of another forecasting system, the MACC (Monitoring Atmospheric Composition and Climate) ensemble, for a 5-month period. An analysis of the variation of model skill with forecast lead time is

  3. Gas-Grain Models for Interstellar Anion Chemistry

    NASA Technical Reports Server (NTRS)

    Cordiner, M. A.; Charnely, S. B.

    2012-01-01

    Long-chain hydrocarbon anions C(sub n) H(-) (n = 4, 6, 8) have recently been found to be abundant in a variety of interstellar clouds. In order to explain their large abundances in the denser (prestellar/protostellar) environments, new chemical models are constructed that include gas-grain interactions. Models including accretion of gas-phase species onto dust grains and cosmic-ray-induced desorption of atoms are able to reproduce the observed anion-to-neutral ratios, as well as the absolute abundances of anionic and neutral carbon chains, with a reasonable degree of accuracy. Due to their destructive effects, the depletion of oxygen atoms onto dust results in substantially greater polyyne and anion abundances in high-density gas (with n(sub H2) approx > / cubic cm). The large abundances of carbon-chain-bearing species observed in the envelopes of protostars such as L1527 can thus be explained without the need for warm carbon-chain chemistry. The C6H(-) anion-to-neutral ratio is found to be most sensitive to the atomic O and H abundances and the electron density. Therefore, as a core evolves, falling atomic abundances and rising electron densities are found to result in increasing anion-to-neutral ratios. Inclusion of cosmic-ray desorption of atoms in high-density models delays freeze-out, which results in a more temporally stable anion-to-neutral ratio, in better agreement with observations. Our models include reactions between oxygen atoms and carbon-chain anions to produce carbon-chain-oxide species C6O, C7O, HC6O, and HC7O, the abundances of which depend on the assumed branching ratios for associative electron detachment

  4. GAS-GRAIN MODELS FOR INTERSTELLAR ANION CHEMISTRY

    SciTech Connect

    Cordiner, M. A.; Charnley, S. B.

    2012-04-20

    Long-chain hydrocarbon anions C{sub n}H{sup -} (n = 4, 6, 8) have recently been found to be abundant in a variety of interstellar clouds. In order to explain their large abundances in the denser (prestellar/protostellar) environments, new chemical models are constructed that include gas-grain interactions. Models including accretion of gas-phase species onto dust grains and cosmic-ray-induced desorption of atoms are able to reproduce the observed anion-to-neutral ratios, as well as the absolute abundances of anionic and neutral carbon chains, with a reasonable degree of accuracy. Due to their destructive effects, the depletion of oxygen atoms onto dust results in substantially greater polyyne and anion abundances in high-density gas (with n{sub H{sub 2}}{approx}>10{sup 5} cm{sup -3}). The large abundances of carbon-chain-bearing species observed in the envelopes of protostars such as L1527 can thus be explained without the need for warm carbon-chain chemistry. The C{sub 6}H{sup -} anion-to-neutral ratio is found to be most sensitive to the atomic O and H abundances and the electron density. Therefore, as a core evolves, falling atomic abundances and rising electron densities are found to result in increasing anion-to-neutral ratios. Inclusion of cosmic-ray desorption of atoms in high-density models delays freeze-out, which results in a more temporally stable anion-to-neutral ratio, in better agreement with observations. Our models include reactions between oxygen atoms and carbon-chain anions to produce carbon-chain-oxide species C{sub 6}O, C{sub 7}O, HC{sub 6}O, and HC{sub 7}O, the abundances of which depend on the assumed branching ratios for associative electron detachment.

  5. Using the QCPE Holdings in Chemical Education: Molecular Models in the Organic Chemistry Laboratory.

    ERIC Educational Resources Information Center

    Lipkowitz, Kenny

    1984-01-01

    Discusses a successfully implemented laboratory experiment that compares the strengths and weaknesses of mechanical and computer models. The computer models used are available from the Quantum Chemistry Program Exchange (QCPE) at a modest price. (JN)

  6. CONCENTRATIONS OF TOXIC AIR POLLUTANTS IN THE U.S. SIMULATED BY AN AIR QUALITY MODEL

    EPA Science Inventory

    As part of the US National Air Toxics Assessment, we have applied the Community Multiscale Air Quality Model, CMAQ, to study the concentrations of twenty gas-phase, toxic, hazardous air pollutants (HAPs) in the atmosphere over the continental United States. We modified the Carbo...

  7. A stochastic simulation model to predict future air quality in protected areas

    NASA Astrophysics Data System (ADS)

    Stavros, E.; McKenzie, D.; Larkin, N.; Strand, T.; Lamb, B. K.

    2010-12-01

    It is widely accepted in both scientific and political communities such as the Intergovernmental Panel on Climate Change (IPCC) and the Environmental Protection Agency (EPA), that climate is changing. Previous studies have shown that expected changes in climate will increase the severity of wild fire. It is necessary to assess the impact of global climate change on wildfire and consequent effects on air quality in order to meet existing air quality regulations such as the Regional Haze Rule, which regulates visibility in Class 1 or “pristine areas”, and the National Ambient Air Quality Standards (NAAQS). The challenge in such an assessment lies in not only integrating disciplines (climatology, fire ecology, air chemistry), but also in bridging knowledge across temporal (hourly to decadal) and spatial scales (local to global). In response to this challenge, we are integrating a stochastic model to simulate fire events, the Fire Scenario Builder (FSB), and the BlueSky Modeling Framework, which has a strong record of successfully linking wildfire emissions to air quality. FSB integrates fuel information and meteorological data to estimate regional fire season summary statistics such as total area burned and number of fire starts. The Blue Sky Modeling Framework then simulates total fuel consumption and smoke emissions both in local air sheds and downwind. Emissions are then fed into the Community Multiscale Air Quality (CMAQ) model through Sparse Matrix Operator Kernel Emissions Modeling System (SMOKE). The goal of this research is threefold: 1) to compare emission results from the FSB-Blue Sky integration for current vs. future decades; 2) to assess model uncertainty, by comparing model output to observations, analyzing parameter sensitivity, and verifying the theoretical basis of FSB model structure; and, 3) prepare data files for analysis on air quality.

  8. Prediction Models are Basis for Rational Air Quality Control

    ERIC Educational Resources Information Center

    Daniels, Anders; Bach, Wilfrid

    1973-01-01

    An air quality control scheme employing meteorological diffusion, time averaging and frequency, and cost-benefit models is discussed. The methods outlined provide a constant feedback system for air quality control. Flow charts and maps are included. (BL)

  9. Indoor Air Quality Building Education and Assessment Model

    EPA Pesticide Factsheets

    The Indoor Air Quality Building Education and Assessment Model (I-BEAM), released in 2002, is a guidance tool designed for use by building professionals and others interested in indoor air quality in commercial buildings.

  10. Indoor Air Quality Building Education and Assessment Model Forms

    EPA Pesticide Factsheets

    The Indoor Air Quality Building Education and Assessment Model (I-BEAM) is a guidance tool designed for use by building professionals and others interested in indoor air quality in commercial buildings.

  11. Exposure Modeling of Residential Air Exchange Rates for NEXUS Participants.

    EPA Science Inventory

    Due to cost and participant burden of personal measurements, air pollution health studies often estimate exposures using local ambient air monitors. Since outdoor levels do not necessarily reflect personal exposures, we developed the Exposure Model for Individuals (EMI) to improv...

  12. Exposure Modeling of Residential Air Exchange Rates for NEXUS Participants

    EPA Science Inventory

    Due to cost and participant burden of personal measurements, air pollution health studies often estimate exposures using local ambient air monitors. Since outdoor levels do not necessarily reflect personal exposures, we developed the Exposure Model for Individuals (EMI) to improv...

  13. Investigating the Multiple Food Sources and N Chemistry of Invasive Earthworms at the Rhinelander, WI, Free Air CO2 Enrichment (FACE) Experiment

    NASA Astrophysics Data System (ADS)

    Top, S. M.; Filley, T. R.

    2013-12-01

    Rising levels of atmospheric CO2 can directly and indirectly alter biogeochemical cycling in forest ecosystems through changes to plant productivity, tissue chemistry, and associated feedbacks to microbial and faunal communities. At the Rhinelander free air CO2 enrichment site (FACE), Rhinelander WI, we examined the consumption and movement of plant tissue and soil by invasive earthworm species using a multi-proxy stable isotope and amino acid chemistry analysis of plant and soil, as well as fecal matter extracted from invasive earthworms present at the site. Using an isotopic mixing model that exploits the 13C-depleted CO2 source and a previous 15N labeling in the FACE experiment, we determined potential sources to the earthworm fecal matter and the movement of amino compounds. For epigeic, surface dwelling earthworms, the stable isotope modeling showed the largest contribution to the C and N in fecal matter was from leaf litter (up to 80%) which was depleted in amino acid C under elevated CO2 conditions. Fecal matter from the endogeic, mineral soil dwelling earthworms was primarily derived from 0-5 cm soil (up to 56%) and fine root tissue (up to 70%). Additionally, amino acid C in this group of earthworms had a proportionately greater relative concentration compared to the epigeic species and the 0-5cm soil. Here we demonstrate that earthworms are incorporating multiple sources (leaf litter, root, and soil) into their fecal matter, which then get deposited throughout the soil profile, where nutrients could become available for plant use.

  14. Reactive bromine chemistry in Mount Etna's volcanic plume: the influence of total Br, high-temperature processing, aerosol loading and plume-air mixing

    NASA Astrophysics Data System (ADS)

    Roberts, T. J.; Martin, R. S.; Jourdain, L.

    2014-10-01

    Volcanic emissions present a source of reactive halogens to the troposphere, through rapid plume chemistry that converts the emitted HBr to more reactive forms such as BrO. The nature of this process is poorly quantified, yet is of interest in order to understand volcanic impacts on the troposphere, and infer volcanic activity from volcanic gas measurements (i.e. BrO / SO2 ratios). Recent observations from Etna report an initial increase and subsequent plateau or decline in BrO / SO2 ratios with distance downwind. We present daytime PlumeChem model simulations that reproduce and explain the reported trend in BrO / SO2 at Etna including the initial rise and subsequent plateau. Suites of model simulations also investigate the influences of volcanic aerosol loading, bromine emission, and plume-air mixing rate on the downwind plume chemistry. Emitted volcanic HBr is converted into reactive bromine by autocatalytic bromine chemistry cycles whose onset is accelerated by the model high-temperature initialisation. These rapid chemistry cycles also impact the reactive bromine speciation through inter-conversion of Br, Br2, BrO, BrONO2, BrCl, HOBr. We predict a new evolution of Br speciation in the plume. BrO, Br2, Br and HBr are the main plume species near downwind whilst BrO and HOBr are present further downwind (where BrONO2 and BrCl also make up a minor fraction). BrNO2 is predicted to be only a relatively minor plume component. The initial rise in BrO / SO2 occurs as ozone is entrained into the plume whose reaction with Br promotes net formation of BrO. Aerosol has a modest impact on BrO / SO2 near-downwind (< ~6 km, ~10 min) at the relatively high loadings considered. The subsequent decline in BrO / SO2 occurs as entrainment of oxidants HO2 and NO2 promotes net formation of HOBr and BrONO2, whilst the plume dispersion dilutes volcanic aerosol so slows the heterogeneous loss rates of these species. A higher volcanic aerosol loading enhances BrO / SO2 in the (> 6 km

  15. Long-term simulations of European air quality using the Danish Eulerian Hemispheric Model

    NASA Astrophysics Data System (ADS)

    Mantzius Hansen, Kaj

    2010-05-01

    Effects of air quality on nature and human health have been on the agenda for several decades. Air quality monitoring sites have been established throughout Europe and several of the sites have been operating for more than two decades. Long term evaluation of air quality from specific monitoring sites or smaller regions has been performed in several studies. For studies of larger regions, models with comprehensive chemistry schemes have been developed and applied to study atmospheric transport, transformation and deposition of various air pollutants. With faster and faster computers, the development over the years has been towards more complex chemistry schemes and higher spatial and temporal resolution of model output. This often limits the studied period to single or a few years. We will present a study of European air quality covering 18 years, simulated with a state-of-the-art atmospheric chemistry transport model. The Danish Eulerian Hemispheric Model (DEHM) covers the majority of the Northern Hemisphere with a horizontal grid resolution of 150 km X 150 km. DEHM has 29 vertical layers in terrain-following sigma-coordinates extending up to a height of 100 hPa. Two-way nesting options with a nesting factor of three can be applied with higher resolution over a limited area of the model. At present the model can be run without nests or with one, two or three nests, each with grid resolutions of 50 km X 50 km, 16.7 km X 16.7 km, and 5.6 km X 5.6 km, respectively. The model includes a comprehensive chemistry scheme with more than 100 reactions and 67 atmospheric constituents, of which 4 relate to primary particulates (PM2.5, PM10, TSP and sea salt); other species are SOx, NOx, NHx, VOCs, and secondary inorganic particulates. DEHM is driven by meteorological data from the numerical weather prediction model MM5v3. One long-term simulation was performed with DEHM covering the period from 1989 to 2006. The predicted concentrations were evaluated against measurements

  16. Evolution of Bromoform in a Global Chemistry and Transport Model

    NASA Technical Reports Server (NTRS)

    Douglass, Anne R.; Pierson, J. M.; Douglass, Anne R.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    It is well known that many chlorine and bromine compounds that are inert in the troposphere are destroyed in the stratosphere and contribute to the stratospheric burden of reactive chlorine and bromine species. But the contribution from those chlorine and bromine compounds which are reactive in the troposphere is less certain because it is not known whether convection can transport these gases to the upper troposphere rapidly enough to overcome their short tropospheric lifetimes. We examine this issue using a three-dimensional chemistry and transport model to simulate the evolution of three gases which have surface sources, bromoform (CHBr3), methyl chloroform (CH3CCl3), and carbon dioxide (CO2). Our objective is to determine if CHBr3 might enhance the lower stratospheric burden of reactive bromine. The other two gases provide tests of the quality of the simulation. Both CHBr3 and CH3CCl3 are destroyed in the troposphere by reaction with hydroxyl (OH), whose latitudinal and monthly variation is provided by a two-dimensional model and upon which a diurnal variation is imposed. Comparison of the lifetime of CH3CCl3 computed from observations (5 years) with the lifetime computed from the simulation provides an integrated test of the model's transport and photochemistry. Observations also show that CO2 exhibits a strong seasonal cycle in the northern hemisphere troposphere that is not propagated directly across the tropopause into the lower stratosphere. Thus, maintenance of the observed troposphere-stratosphere distinctness of CO2 in the presence of convection is a critical benchmark for meeting our objective.

  17. Modeling the plasma chemistry of stratospheric Blue Jet streamers

    NASA Astrophysics Data System (ADS)

    Winkler, Holger; Notholt, Justus

    2014-05-01

    Stratospheric Blue Jets (SBJs) are upward propagating discharges in the altitude range 15-40 km above thunderstorms. The currently most accepted theory associates SBJs to the development of the streamer zone of a leader. The streamers emitted from the leader can travel for a few tens of kilometers predominantly in the vertical direction (Raizer et al., 2007). The strong electric fields at the streamer tips cause ionisation, dissociation, and excitation, and give rise to chemical perturbations. While in recent years the effects of electric discharges occurring in the mesosphere (sprites) have been investigated in a number of model studies, there are only a few studies on the impact of SBJs. However, chemical perturbations due to SBJs are of interest as they might influence the stratospheric ozone layer. We present results of detailed plasma chemistry simulations of SBJ streamers for both day-time and night-time conditions. Any effects of the subsequent leader are not considered. The model accounts for more than 500 reactions and calculates the evolution of the 88 species under the influence of the breakdown electric fields at the streamer tip. As the SBJ dynamics is outside the scope of this study, the streamer parameters are prescribed. For this purpose, electric field parameters based on Raizer et al. (2007) are used. The model is applied to the typical SBJ altitude range 15-40 km. The simulations indicate that SBJ streamers cause significant chemical perturbations. In particular, the liberation of atomic oxygen during the discharge leads to a formation of ozone. At the same time, reactive nitrogen and hydrogen radicals are produced which will cause catalytic ozone destruction. Reference: Raizer et al. (2007), J. Atmos. Solar-Terr. Phys., 69 (8), 925-938.

  18. Controlling Multivalent Binding through Surface Chemistry: Model Study on Streptavidin.

    PubMed

    Dubacheva, Galina V; Araya-Callis, Carolina; Geert Volbeda, Anne; Fairhead, Michael; Codée, Jeroen; Howarth, Mark; Richter, Ralf P

    2017-03-09

    Although multivalent binding to surfaces is an important tool in nanotechnology, quantitative information about the residual valency and orientation of surface-bound molecules is missing. To address these questions, we study streptavidin (SAv) binding to commonly used biotinylated surfaces such as supported lipid bilayers (SLBs) and self-assembled monolayers (SAMs). Stability and kinetics of SAv binding are characterized by quartz crystal microbalance with dissipation monitoring, while the residual valency of immobilized SAv is quantified using spectroscopic ellipsometry by monitoring binding of biotinylated probes. Purpose-designed SAv constructs having controlled valencies (mono-, di-, trivalent in terms of biotin-binding sites) are studied to rationalize the results obtained on regular (tetravalent) SAv. We find that divalent interaction of SAv with biotinylated surfaces is a strict requirement for stable immobilization, while monovalent attachment is reversible and, in the case of SLBs, leads to the extraction of biotinylated lipids from the bilayer. The surface density and lateral mobility of biotin, and the SAv surface coverage are all found to influence the average orientation and residual valency of SAv on a biotinylated surface. We demonstrate how the residual valency can be adjusted to one or two biotin binding sites per immobilized SAv by choosing appropriate surface chemistry. The obtained results provide means for the rational design of surface-confined supramolecular architectures involving specific biointeractions at tunable valency. This knowledge can be used for the development of well-defined bioactive coatings, biosensors and biomimetic model systems.

  19. Muonium chemistry and spin dynamics in sulphur, modelling interstitial hydrogen.

    PubMed

    Cox, S F J; Lord, J S; McKenzie, I; Adjizian, J-J; Heggie, M I; Jayasooriya, U A; Grinter, R; Reid, I D

    2011-08-10

    The nature of the elusive muonium centre in sulphur is re-examined in the light of new data on its level-crossing resonance and spin-lattice relaxation. The aim is to provide a model for the solid-state chemistry of interstitial hydrogen in this element, which is as yet unknown, as well as to solve one of the longest standing puzzles in μSR spectroscopy, namely the surprisingly strong depolarization of muons mimicking ion-implanted protons in this innocuous non-magnetic material. The paramagnetic muonium (and by inference hydrogen) centre is confirmed to have the character of a molecular radical, but with huge anisotropy at cryogenic temperatures and a striking shift of the resonance at ordinary temperatures, the hyperfine parameters appearing to collapse and vanish towards the melting point. New density-functional supercell calculations identify a number of possible structures for the defect centre, including a novel form of bond-centred muonium in a closed-ring S(8)Mu complex. Simulations of the spin dynamics and fits to the spectra suggest a dynamical equilibrium or chemical exchange between several configurations, with occupancy of the bond-centre site falling from unity at low cryogenic temperatures to zero near the melting point.

  20. Controlling Multivalent Binding through Surface Chemistry: Model Study on Streptavidin

    PubMed Central

    2017-01-01

    Although multivalent binding to surfaces is an important tool in nanotechnology, quantitative information about the residual valency and orientation of surface-bound molecules is missing. To address these questions, we study streptavidin (SAv) binding to commonly used biotinylated surfaces such as supported lipid bilayers (SLBs) and self-assembled monolayers (SAMs). Stability and kinetics of SAv binding are characterized by quartz crystal microbalance with dissipation monitoring, while the residual valency of immobilized SAv is quantified using spectroscopic ellipsometry by monitoring binding of biotinylated probes. Purpose-designed SAv constructs having controlled valencies (mono-, di-, trivalent in terms of biotin-binding sites) are studied to rationalize the results obtained on regular (tetravalent) SAv. We find that divalent interaction of SAv with biotinylated surfaces is a strict requirement for stable immobilization, while monovalent attachment is reversible and, in the case of SLBs, leads to the extraction of biotinylated lipids from the bilayer. The surface density and lateral mobility of biotin, and the SAv surface coverage are all found to influence the average orientation and residual valency of SAv on a biotinylated surface. We demonstrate how the residual valency can be adjusted to one or two biotin binding sites per immobilized SAv by choosing appropriate surface chemistry. The obtained results provide means for the rational design of surface-confined supramolecular architectures involving specific biointeractions at tunable valency. This knowledge can be used for the development of well-defined bioactive coatings, biosensors and biomimetic model systems. PMID:28234007

  1. AIR QUALITY MODELING OF PM AND AIR TOXICS AT NEIGHBORHOOD SCALES

    EPA Science Inventory

    The current interest in fine particles and toxics pollutants provide an impetus for extending air quality modeling capability towards improving exposure modeling and assessments. Human exposure models require information on concentration derived from interpolation of observati...

  2. Graduate Student Outreach: Model of a One-Day "Chemistry Camp" for Elementary School Students

    ERIC Educational Resources Information Center

    Houck, Joseph D.; Machamer, Natalie K.; Erickson, Karla A.

    2014-01-01

    One-day chemistry camps, managed by graduate students from the Departments of Chemistry at the Universities of Virginia (UVA) and Vermont (UVM), have proven successful as an outreach initiative. The camp model engages kindergarten through fifth grade elementary school students in hands-on, inquiry-based science experiments to educate and excite…

  3. Guided-Inquiry Experiments for Physical Chemistry: The POGIL-PCL Model

    ERIC Educational Resources Information Center

    Hunnicutt, Sally S.; Grushow, Alexander; Whitnell, Robert

    2015-01-01

    The POGIL-PCL project implements the principles of process-oriented, guided-inquiry learning (POGIL) in order to improve student learning in the physical chemistry laboratory (PCL) course. The inquiry-based physical chemistry experiments being developed emphasize modeling of chemical phenomena. In each experiment, students work through at least…

  4. Glyoxal as a tracer of VOC oxidation chemistry: Comparison of measurements with model results for Blodgett Forest, California

    NASA Astrophysics Data System (ADS)

    Huisman, Andrew; Carlton, Annmarie; Keutsch, Frank

    2010-05-01

    We present a study investigating Volatile Organic Compound (VOC) oxidation chemistry in the context of regional ozone (O3) production during the BEARPEX 2007 and 2009 campaigns at Blodgett Forest Research Station (BFRS) in the Sierra Nevada mountains, CA. Measurements are compared with results from a regional model (US EPA CMAQ) and a zero dimensional (0-D) box model based on the Master Chemical Mechanism (MCM). We use glyoxal (CHOCHO) and formaldehyde (HCHO) as tracers for generalized oxidation processes and employ ratios of compounds (e.g. CHOCHO / HCHO, CHOCHO / MPAN) to study plume evolution as doing so attenuates the influence of meteorology. One of the goals of this study is to investigate the utility of glyoxal as a tracer of VOC oxidation chemistry for measurement/model comparisons, for which formaldehyde has served in the past. In this context, we investigate the discrepancies between models and measurements, and the degree to which these can be attributed to the representation of glyoxal chemistry (e.g. yields) or whether these discrepancies reflect VOC-HOx-NOx oxidation more generally, which has implications for ozone and secondary organic aerosol formation. Model results from CMAQ and the 0-D box model substantially overestimate the absolute measured concentration of CHOCHO at BFRS, and the CMAQ model also shows poor agreement with the diurnal profile. The 0-D box model also overestimates CHOCHO in data taken at the Caltech Indoor Air Chambers, suggesting that 2nd- and/or higher-generation yields of CHOCHO from isoprene are substantially overestimated in the MCM. 0-D model results that use attenuated 2nd- and higher-generation production of CHOCHO from isoprene show enhanced agreement with chamber results. We will present model results of the 0-D Box Model from BFRS employing these reduced yields that show improved agreement with measurements and also compare these results with the other models. We also present results obtained with two modifications of

  5. Net Influence of an Internally Generated Guasi-biennial Oscillation on Modelled Stratospheric Climate and Chemistry

    NASA Technical Reports Server (NTRS)

    Hurwitz, Margaret M.; Oman, Luke David; Newman, Paul A.; Song, InSun

    2013-01-01

    A Goddard Earth Observing System Chemistry- Climate Model (GEOSCCM) simulation with strong tropical non-orographic gravity wave drag (GWD) is compared to an otherwise identical simulation with near-zero tropical non-orographic GWD. The GEOSCCM generates a quasibiennial oscillation (QBO) zonal wind signal in response to a tropical peak in GWD that resembles the zonal and climatological mean precipitation field. The modelled QBO has a frequency and amplitude that closely resembles observations. As expected, the modelled QBO improves the simulation of tropical zonal winds and enhances tropical and subtropical stratospheric variability. Also, inclusion of the QBO slows the meridional overturning circulation, resulting in a generally older stratospheric mean age of air. Slowing of the overturning circulation, changes in stratospheric temperature and enhanced subtropical mixing all affect the annual mean distributions of ozone, methane and nitrous oxide. Furthermore, the modelled QBO enhances polar stratospheric variability in winter. Because tropical zonal winds are easterly in the simulation without a QBO, there is a relative increase in tropical zonal winds in the simulation with a QBO. Extratropical differences between the simulations with and without a QBO thus reflect the westerly shift in tropical zonal winds: a relative strengthening of the polar stratospheric jet, polar stratospheric cooling and a weak reduction in Arctic lower stratospheric ozone.

  6. Evaluation of the modal aerosol model GMXe in the chemistry-climate model GEM-AC

    NASA Astrophysics Data System (ADS)

    Semeniuk, K.; Lupu, A.; Kaminski, J. W.; McConnell, J. C.; O'Neill, N. T.; Tost, H.

    2012-12-01

    We evaluate a modal aerosol model, GMXe, implemented in the atmospheric chemistry-climate model GEM-AC, against global ground-based observations of optical depths and speciated aerosol concentrations. The Global Environmental Multiscale Atmospheric Chemistry model (GEM-AC) is a global, tropospheric-stratospheric chemistry, general circulation model based on the GEM model developed by the Meteorological Service of Canada for operational weather forecasting. Gas-phase chemistry consists in detailed reactions of Ox, NOx, HOx, CO, CH4, NMVOCs, ClOx and BrOx. Tracers are advected using the semi-Lagrangian scheme native to GEM. The vertical transport includes parameterized subgrid scale turbulence and deep convection. Dry deposition is implemented as a flux boundary condition in the vertical diffusion equation. Wet removal comprises both in-cloud and below-cloud scavenging. The Global Modal-aerosol eXtension (GMXe) handles aerosol microphysics and gas-aerosol partitioning. The aerosol size distribution is described by the superposition of 4 hydrophilic and 3 hydrophobic interacting lognormal modes (nucleation, Aitken, accumulation and coarse). Aerosol dynamics includes nucleation, coagulation, and condensation/evaporation. Gas-aerosol partitioning is calculated by the thermodynamic equilibrium model ISORROPIA. The model was run for one year on a 1.5°×1.5° global grid with 73 hybrid levels from the surface to 0.15 hPa. We used aerosol emissions for year 2000 from AeroCom I. The output is compared with aerosol optical depth observations from AERONET, and with measured surface concentrations of sulfate, nitrate and ammonium from CASTNET, EMEP and EANET.

  7. DFT modeling of chemistry on the Z machine

    NASA Astrophysics Data System (ADS)

    Mattsson, Thomas

    2013-06-01

    Density Functional Theory (DFT) has proven remarkably accurate in predicting properties of matter under shock compression for a wide-range of elements and compounds: from hydrogen to xenon via water. Materials where chemistry plays a role are of particular interest for many applications. For example the deep interiors of Neptune, Uranus, and hundreds of similar exoplanets are composed of molecular ices of carbon, hydrogen, oxygen, and nitrogen at pressures of several hundred GPa and temperatures of many thousand Kelvin. High-quality thermophysical experimental data and high-fidelity simulations including chemical reaction are necessary to constrain planetary models over a large range of conditions. As examples of where chemical reactions are important, and demonstration of the high fidelity possible for these both structurally and chemically complex systems, we will discuss shock- and re-shock of liquid carbon dioxide (CO2) in the range 100 to 800 GPa, shock compression of the hydrocarbon polymers polyethylene (PE) and poly(4-methyl-1-pentene) (PMP), and finally simulations of shock compression of glow discharge polymer (GDP) including the effects of doping with germanium. Experimental results from Sandia's Z machine have time and again validated the DFT simulations at extreme conditions and the combination of experiment and DFT provide reliable data for evaluating existing and constructing future wide-range equations of state models for molecular compounds like CO2 and polymers like PE, PMP, and GDP. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Company, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

  8. Modeling molecular computing systems by an artificial chemistry - its expressive power and application.

    PubMed

    Tominaga, Kazuto; Watanabe, Tooru; Kobayashi, Keiji; Nakamura, Masaki; Kishi, Koji; Kazuno, Mitsuyoshi

    2007-01-01

    Artificial chemistries are mainly used to construct virtual systems that are expected to show behavior similar to living systems. In this study, we explore possibilities of applying an artificial chemistry to modeling natural biochemical systems-or, to be specific, molecular computing systems-and show that it may be a useful modeling tool for molecular computation. We previously proposed an artificial chemistry based on string pattern matching and recombination. This article first demonstrates that this artificial chemistry is computationally universal if it has only rules that have one reactant or two reactants. We think this is a good property of an artificial chemistry that models molecular computing, because natural elementary chemical reactions, on which molecular computing is based, are mostly unimolecular or bimolecular. Then we give two illustrative example models for DNA computing in our artificial chemistry: one is for the type of computation called the Adleman-Lipton paradigm, and the other is for a DNA implementation of a finite automaton. Through the construction of these models we observe preferred properties of the artificial chemistry for modeling molecular computing, such as having no spatial structure and being flexible in choosing levels of abstraction.

  9. Influence of lithium salts on the discharge chemistry of Li-air cells

    SciTech Connect

    Veith, Gabriel M; Nanda, Jagjit; Delmau, Laetitia Helene; Dudney, Nancy J

    2012-01-01

    In this work we show that the use of a high boiling point ether solvent (tetraglyme) promotes the formation of Li2O2 in a lithium-air cell. In addition, another major constituent in the discharge product of a Li-air cell contains halides, from the lithium salt, and the tetraglyme used as the solvent. This information is critical to the development of Li-air electrolytes which are stable and promote the formation of the desired Li2O2 products.

  10. On Regional Modeling to Support Air Quality Policies

    EPA Science Inventory

    We examine the use of the Community Multiscale Air Quality (CMAQ) model in simulating the changes in the extreme values of air quality that are of interest to the regulatory agencies. Year-to-year changes in ozone air quality are attributable to variations in the prevailing mete...

  11. High-Latitude Stratospheric Sensitivity to QBO Width in a Chemistry-Climate Model with Parameterized Ozone Chemistry

    NASA Technical Reports Server (NTRS)

    Hurwitz, M. M.; Braesicke, P.; Pyle, J. A.

    2010-01-01

    In a pair of idealized simulations with a simplified chemistry-climate model, the sensitivity of the wintertime Arctic stratosphere to variability in the width of the quasi-biennial oscillation (QBO) is assessed. The width of the QBO appears to have equal influence on the Arctic stratosphere as does the phase (i.e. the Holton-Tan mechanism). In the model, a wider QBO acts like a preferential shift toward the easterly phase of the QBO, where zonal winds at 60 N tend to be relatively weaker, while 50 hPa geopotential heights and polar ozone values tend to be higher.

  12. Subalpine Pyrenees received higher nitrogen deposition than predicted by EMEP and CHIMERE chemistry-transport models

    PubMed Central

    Boutin, Marion; Lamaze, Thierry; Couvidat, Florian; Pornon, André

    2015-01-01

    Deposition of reactive nitrogen (N) from the atmosphere is expected to be the third greatest driver of biodiversity loss by the year 2100. Chemistry-transport models are essential tools to estimate spatially explicit N deposition but the reliability of their predictions remained to be validated in mountains. We measured N deposition and air concentration over the subalpine Pyrenees. N deposition was found to range from 797 to 1,463 mg N m−2 year−1. These values were higher than expected from model predictions, especially for nitrate, which exceeded the estimations of EMEP by a factor of 2.6 and CHIMERE by 3.6. Our observations also displayed a reversed reduced-to-oxidized ratio in N deposition compared with model predictions. The results highlight that the subalpine Pyrenees are exposed to higher levels of N deposition than expected according to standard predictions and that these levels exceed currently recognized critical loads for most high-elevation habitats. Our study reveals a need to improve the evaluation of N deposition in mountains which are home to a substantial and original part of the world’s biodiversity. PMID:26255956

  13. Understanding differences in chemistry climate model projections of stratospheric ozone

    NASA Astrophysics Data System (ADS)

    Douglass, A. R.; Strahan, S. E.; Oman, L. D.; Stolarski, R. S.

    2014-04-01

    Chemistry climate models (CCMs) are used to project future evolution of stratospheric ozone as concentrations of ozone-depleting substances (ODSs) decrease and greenhouse gases increase, cooling the stratosphere. CCM projections exhibit not only many common features but also a broad range of values for quantities such as year of ozone return to 1980 and global ozone level at the end of the 21st century. Multiple linear regression is applied to each of 14 CCMs to separate ozone response to ODS concentration change from that due to climate change. We show that the sensitivity of lower stratospheric ozone to chlorine change ΔO3/ΔCly is a near-linear function of partitioning of total inorganic chlorine (Cly) into its reservoirs; both Cly and its partitioning are largely controlled by lower stratospheric transport. CCMs with best performance on transport diagnostics agree with observations for chlorine reservoirs and produce similar ozone responses to chlorine change. After 2035, differences in ΔO3/ΔCly contribute little to the spread in CCM projections as the anthropogenic contribution to Cly becomes unimportant. Differences among upper stratospheric ozone increases due to temperature decreases are explained by differences in ozone sensitivity to temperature change ΔO3/ΔT due to different contributions from various ozone loss processes, each with its own temperature dependence. Ozone decrease in the tropical lower stratosphere caused by a projected speedup in the Brewer-Dobson circulation may or may not be balanced by ozone increases in the middle- and high-latitude lower stratosphere and upper troposphere. This balance, or lack thereof, contributes most to the spread in late 21st century projections.

  14. Multiscale Modeling of Chemistry in Water: Are We There Yet?

    PubMed

    Bulo, Rosa E; Michel, Carine; Fleurat-Lessard, Paul; Sautet, Philippe

    2013-12-10

    This paper critically evaluates the state of the art in combined quantum mechanical/molecular mechanical (QM/MM) approaches to the computational description of chemistry in water and supplies guidelines for the setup of customized multiscale simulations of aqueous processes. We differentiate between structural and dynamic performance, since some tasks, e.g., the reproduction of NMR or UV-vis spectra, require only structural accuracy, while others, i.e., reaction mechanisms, require accurate dynamic data as well. As a model system for aqueous solutions in general, the approaches were tested on a QM water cluster in an environment of MM water molecules. The key difficulty is the description of the possible diffusion of QM molecules into the MM region and vice versa. The flexible inner region ensemble separator (FIRES) approach constrains QM solvent molecules within an active (QM) region. Sorted adaptive partitioning (SAP), difference-based adaptive solvation (DAS), and buffered-force (BF) are all adaptive approaches that use a buffer zone in which solvent molecules gradually adapt from QM to MM (or vice versa). The costs of SAP and DAS are relatively high, while BF is fast but sacrifices conservation of both energy and momentum. Simulations in the limit of an infinitely small buffer zone, where DAS and SAP become equivalent, are discussed as well and referred to as ABRUPT. The best structural accuracy is obtained with DAS, BF, and ABRUPT, all three of similar quality. FIRES performs very well for dynamic properties localized deep within the QM region. By means of elimination DAS emerges as the best overall compromise between structural and dynamic performance. Eliminating the buffer zone (ABRUPT) improves efficiency and still leads to surprisingly good results. While none of the many new flavors are perfect, all together this new field already allows accurate description of a wide range of structural and dynamic properties of aqueous solutions.

  15. Understanding Differences in Chemistry Climate Model Projections of Stratospheric Ozone

    NASA Technical Reports Server (NTRS)

    Douglass, A. R.; Strahan, S. E.; Oman, L. D.; Stolarski, R. S.

    2014-01-01

    Chemistry climate models (CCMs) are used to project future evolution of stratospheric ozone as concentrations of ozone-depleting substances (ODSs) decrease and greenhouse gases increase, cooling the stratosphere. CCM projections exhibit not only many common features but also a broad range of values for quantities such as year of ozone return to 1980 and global ozone level at the end of the 21st century. Multiple linear regression is applied to each of 14 CCMs to separate ozone response to ODS concentration change from that due to climate change. We show that the sensitivity of lower stratospheric ozone to chlorine change Delta Ozone/Delta inorganic chlorine is a near-linear function of partitioning of total inorganic chlorine into its reservoirs; both inorganic chlorine and its partitioning are largely controlled by lower stratospheric transport. CCMs with best performance on transport diagnostics agree with observations for chlorine reservoirs and produce similar ozone responses to chlorine change. After 2035, differences in Delta Ozone/Delta inorganic chlorine contribute little to the spread in CCM projections as the anthropogenic contribution to inorganic chlorine becomes unimportant. Differences among upper stratospheric ozone increases due to temperature decreases are explained by differences in ozone sensitivity to temperature change Delta Ozone/Delta T due to different contributions from various ozone loss processes, each with its own temperature dependence. Ozone decrease in the tropical lower stratosphere caused by a projected speedup in the Brewer-Dobson circulation may or may not be balanced by ozone increases in the middle- and high-latitude lower stratosphere and upper troposphere. This balance, or lack thereof, contributes most to the spread in late 21st century projections.

  16. Reducing Uncertainty in Chemistry Climate Model Predictions of Stratospheric Ozone

    NASA Technical Reports Server (NTRS)

    Douglass, A. R.; Strahan, S. E.; Oman, L. D.; Stolarski, R. S.

    2014-01-01

    Chemistry climate models (CCMs) are used to predict the future evolution of stratospheric ozone as ozone-depleting substances decrease and greenhouse gases increase, cooling the stratosphere. CCM predictions exhibit many common features, but also a broad range of values for quantities such as year of ozone-return-to-1980 and global ozone level at the end of the 21st century. Multiple linear regression is applied to each of 14 CCMs to separate ozone response to chlorine change from that due to climate change. We show that the sensitivity of lower atmosphere ozone to chlorine change deltaO3/deltaCly is a near linear function of partitioning of total inorganic chlorine (Cly) into its reservoirs; both Cly and its partitioning are controlled by lower atmospheric transport. CCMs with realistic transport agree with observations for chlorine reservoirs and produce similar ozone responses to chlorine change. After 2035 differences in response to chlorine contribute little to the spread in CCM results as the anthropogenic contribution to Cly becomes unimportant. Differences among upper stratospheric ozone increases due to temperature decreases are explained by differences in ozone sensitivity to temperature change deltaO3/deltaT due to different contributions from various ozone loss processes, each with their own temperature dependence. In the lower atmosphere, tropical ozone decreases caused by a predicted speed-up in the Brewer-Dobson circulation may or may not be balanced by middle and high latitude increases, contributing most to the spread in late 21st century predictions.

  17. Impact of inherent meteorology uncertainty on air quality model predictions

    EPA Science Inventory

    It is well established that there are a number of different classifications and sources of uncertainties in environmental modeling systems. Air quality models rely on two key inputs, namely, meteorology and emissions. When using air quality models for decision making, it is impor...

  18. Organic chemistry in the atmosphere. [laboratory modeling of Titan atmosphere

    NASA Technical Reports Server (NTRS)

    Sagan, C.

    1974-01-01

    The existence of an at least moderately complex organic chemistry on Titan is stipulated based on clear evidence of methane, and at least presumptive evidence of hydrogen in its atmosphere. The ratio of methane to hydrogen is the highest of any atmosphere in the solar system. Irradiation of hydrogen/methane mixtures produces aromatic and aliphatic hydrocarbons. A very reasonable hypothesis assumes that the red cloud cover of Titan is made of organic chemicals. Two-carbon hydrocarbons experimentally produced from irradiated mixtures of methane, ammonia, water, and hydrogen bear out the possible organic chemistry of the Titanian environment.

  19. Reactive bromine chemistry in Mt. Etna's volcanic plume: the influence of total Br, high temperature processing, aerosol loading and plume-air mixing

    NASA Astrophysics Data System (ADS)

    Roberts, T. J.; Martin, R. S.; Jourdain, L.

    2014-03-01

    Volcanic emissions present a source of reactive halogens to the troposphere, through rapid plume chemistry that converts the emitted HBr to more reactive forms such as BrO. The nature of this process is poorly quantified, yet is of interest to understand volcanic impacts on the troposphere, and infer volcanic activity from volcanic gas measurements (i.e. BrO / SO2 ratios). Recent observations from Etna report an initial increase and subsequent plateau or decline in BrO / SO2 ratios with distance downwind. We present daytime PlumeChem model simulations that reproduce and explain the reported trend in BrO / SO2 at Etna including the initial rise and subsequent plateau. Through suites of model simulations we also investigate the influences of volcanic aerosol loading, bromine emission, and plume-air mixing rate on the downwind plume chemistry. Emitted volcanic HBr is converted into reactive bromine by autocatalytic bromine chemistry cycles whose onset is accelerated by the model high-temperature initialisation. These rapid chemistry cycles also impact the reactive bromine speciation through inter-conversion of Br, Br2, BrO, BrONO2, BrCl, HOBr. Formation of BrNO2 is also discussed. We predict a new evolution of Br-speciation in the plume, with BrO, Br2, Br and HBr as the main plume species in the near downwind plume whilst BrO, and HOBr are present in significant quantities further downwind (where BrONO2 and BrCl also make up a minor fraction). The initial rise in BrO / SO2 occurs as ozone is entrained into the plume whose reaction with Br promotes net formation of BrO. Aerosol has a modest impact on BrO / SO2 near-downwind (< 6 km) at the relatively high loadings considered. The subsequent decline in BrO / SO2 occurs as entrainment of oxidants HO2 and NO2 promotes net formation of HOBr and BrONO2, whilst the plume dispersion dilutes volcanic aerosol so slows the heterogeneous loss rates of these species. A higher volcanic aerosol loading enhances BrO / SO2 in the (> 6

  20. Atmospheric chemistry: Scientific basis for sound health-protective and cost-effective air pollution control strategies

    SciTech Connect

    Pitts, J.N. Jr.

    1995-12-01

    The validity of risk assessments for airborne toxics, and the effectiveness of associated risk management decisions, clearly depend on the accuracy of the data bases employed to estimate human and/or ecosystem exposures. Three current examples are used to illustrate the necessity of including in today`s risk assessments not only total emissions and ambient levels of specific primary pollutants, but also their reaction products: (1) indoor NO{sub 2} and gaseous HONO; (2) conversion of {open_quotes}non-toxic{close_quotes} polycyclic aromatic hydrocarbons to powerful bacterial mutagens; and (3) the conversion in polluted air of a {open_quotes}safe{close_quotes} pesticide, used to eradicate a major agricultural threat, to a more toxic compound to which hundreds of thousands of Southern Californians have been exposed. The pressing need for fundamental research on the atmospheric chemistry of such diverse classes of pollutants and the health effects of their reaction products is discussed.

  1. Modeling the Complex Photochemistry of Biomass Burning Plumes in Plume-Scale, Regional, and Global Air Quality Models

    NASA Astrophysics Data System (ADS)

    Alvarado, M. J.; Lonsdale, C. R.; Yokelson, R. J.; Travis, K.; Fischer, E. V.; Lin, J. C.

    2014-12-01

    Forecasting the impacts of biomass burning (BB) plumes on air quality is difficult due to the complex photochemistry that takes place in the concentrated young BB plumes. The spatial grid of global and regional scale Eulerian models is generally too large to resolve BB photochemistry, which can lead to errors in predicting the formation of secondary organic aerosol (SOA) and O3, as well as the partitioning of NOyspecies. AER's Aerosol Simulation Program (ASP v2.1) can be used within plume-scale Lagrangian models to simulate this complex photochemistry. We will present results of validation studies of the ASP model against aircraft observations of young BB smoke plumes. We will also present initial results from the coupling of ASP v2.1 into the Lagrangian particle dispersion model STILT-Chem in order to better examine the interactions between BB plume chemistry and dispersion. In addition, we have used ASP to develop a sub-grid scale parameterization of the near-source chemistry of BB plumes for use in regional and global air quality models. The parameterization takes inputs from the host model, such as solar zenith angle, temperature, and fire fuel type, and calculates enhancement ratios of O3, NOx, PAN, aerosol nitrate, and other NOy species, as well as organic aerosol (OA). We will present results from the ASP-based BB parameterization as well as its implementation into the global atmospheric composition model GEOS-Chem for the SEAC4RS campaign.

  2. The chemistry influencing ODEs in the Polar Boundary Layer in spring: a model study

    NASA Astrophysics Data System (ADS)

    Piot, M.; von Glasow, R.

    2008-04-01

    Near-total depletions of ozone have been observed in the Arctic spring since the mid 1980s. The autocatalytic cycles involving reactive halogens are now recognized to be of main importance for Ozone Depletion Events (ODEs) in the Polar Boundary Layer (PBL). We present sensitivity studies using the model MISTRA in the box-model mode on the influence of chemical species on these ozone depletion processes. In order to test the sensitivity of the chemistry under polar conditions, we compared base runs undergoing fluxes of either Br2, BrCl, or Cl2 to induce ozone depletions, with similar runs including a modification of the chemical conditions. The role of HCHO, H2O2, DMS, Cl2, C2H4, C2H6, HONO, NO2, and RONO2 was investigated. Cases with elevated mixing ratios of HCHO, H2O2, DMS, Cl2, and HONO induced a shift in bromine speciation from Br/BrO to HOBr/HBr, while high mixing ratios of C2H6 induced a shift from HOBr/HBr to Br/BrO. Cases with elevated mixing ratios of HONO, NO2, and RONO2 induced a shift to BrNO2/BrONO2. The shifts from Br/BrO to HOBr/HBr accelerated the aerosol debromination, but also increased the total amount of deposited bromine at the surface (mainly via increased deposition of HOBr). These shifts to HOBr/HBr also hindered the BrO self-reaction. In these cases, the ozone depletion was slowed down, where increases in H2O2 and HONO had the greatest effect. The tests with increased mixing ratios of C2H4 highlighted the decrease in HOx which reduced the production of HOBr from bromine radicals. In addition, the direct reaction of C2H4 with bromine atoms led to less available reactive bromine. The aerosol debromination was therefore strongly reduced. Ozone levels were highly affected by the chemistry of C2H4. Cl2-induced ozone depletions were found unrealistic compared to field measurements due to the rapid production of CH3O2, HOx, and ROOH which rapidly convert reactive chlorine to HCl in a "chlorine counter-cycle". This counter-cycle efficiently reduces

  3. Modeling and analysis of aerosol processes in an interactive chemistry general circulation model

    NASA Astrophysics Data System (ADS)

    Verma, Sunita; Boucher, O.; Reddy, M. S.; Upadhyaya, H. C.; Le van, P.; Binkowski, F. S.; Sharma, O. P.

    2007-02-01

    An "online" aerosol dynamics and chemistry module is included in the Laboratoire de Météorologie Dynamique general circulation model (LMDZ), so that the chemical species are advected at each dynamical time step and evolve through chemical and physical processes that have been parameterized consistently with the meteorology. These processes include anthropogenic and biogenic emissions, over 50 gas/aqueous phase chemical reactions, transport due to advection, vertical diffusion and convection, dry deposition and wet scavenging. We have introduced a size-resolved representation of aerosols which undergo various processes such as coagulation, nucleation and dry and wet scavenging. The model considers 16 prognostic tracers: water vapor, liquid water, dimethyl sulfide (DMS), hydrogen sulfide (H2S), dimethyl sulphoxide (DMSO), methanesulphonic acid (MSA), sulfur dioxide (SO2), nitrogen oxides (NOX), carbon monoxide (CO), nitric acid (HNO3), ozone (O3), hydrogen peroxide (H2O2), sulfate mass and number for Aitken and accumulation modes. The scheme accounts for two-way interactions between tropospheric chemistry and aerosols. The oxidants and chemical species fields that represent the sulfate aerosol formation are evolved interactively with the model dynamics. A detailed description on the coupled climate-chemistry interactive module is presented with the evaluation of chemical species in winter and summer seasons. Aqueous phase reactions in cloud accounted for 71% of sulfate production rate, while only 45% of the sulfate burden in the troposphere is derived from in-cloud oxidation.

  4. Application of ion chemistry and the SIFT technique to the quantitative analysis of trace gases in air and on breath

    NASA Astrophysics Data System (ADS)

    Smith, David; Španěl, Patrik

    . These results and those for banana and onion vapours and butane/air flame forcibly demonstrate the value and the scope of our Sift ion chemistry approach to the analysis of very complex gas mixtures, and that this method is accurately quantitative if the appropriate ion chemistry is properly understood.

  5. Modeling activities in air traffic control systems: antecedents and consequences of a mid-air collision.

    PubMed

    de Carvalho, Paulo Victor R; Ferreira, Bemildo

    2012-01-01

    In this article we present a model of some functions and activities of the Brazilian Air traffic Control System (ATS) in the period in which occurred a mid-air collision between flight GLO1907, a commercial aircraft Boeing 737-800, and flight N600XL, an executive jet EMBRAER E-145, to investigate key resilience characteristics of the ATM. Modeling in some detail activities during the collision and related them to overall behavior and antecedents that stress the organization uncover some drift into failure mechanisms that erode safety defenses provided by the Air Navigation Service Provider (ANSP), enabling a mid-air collision to be happen.

  6. Experiments in Chemistry: A Model Science Software Tool.

    ERIC Educational Resources Information Center

    Malone, Diana; Tinker, Robert

    1984-01-01

    Describes "Experiments in Chemistry," in which experiments are performed using software and hardware interfaced to the Apple microcomputer's game paddle port. Experiments include temperature, pH electrode, and EMF (cell potential determinations, oxidation-reduction titrations, and precipitation titrations) investigations. (JN)

  7. Teaching Modern Chemistry through "Recurrent Historical Teaching Models"

    ERIC Educational Resources Information Center

    Chamizo, Jose Antonio

    2007-01-01

    Today there are little more of 3 million chemist all over the world producing about 800,000 papers a year. They produce new substances--from some hundreds in 1800 to about 20 million now--the vast majority artificial. This rate is growing quite fast. Once the majority of chemistry teachers all over the world used textbooks as the main (sometimes…

  8. An Instructional Model for an Individualized Approach to Chemistry.

    ERIC Educational Resources Information Center

    Speroni, Gloria B.

    1983-01-01

    Describes a method used to define major areas in individualizing a high school chemistry course and modules that emphasize competency in investigative process skills, basic concepts, and reading comprehension for each module. Includes flow chart of modules, flow chart of student learning path, and a sample module on electron clouds. (JN)

  9. High-Resolution Modelling of Health Impacts from Air Pollution for Denmark using the Integrated Model System EVA

    NASA Astrophysics Data System (ADS)

    Brandt, Jørgen; Andersen, Mikael S.; Bønløkke, Jakob; Christensen, Jesper H.; Hansen, Kaj M.; Hertel, Ole; Im, Ulas; Jensen, Steen S.; Ketzel, Matthias; Nielsen, Ole-Kenneth; Plejdrup, Marlene S.; Sigsgaard, Torben; Geels, Camilla

    2015-04-01

    We have developed an integrated health impact assessment system EVA (Economic Valuation of Air pollution; Brandt et al., 2013a; 2013b), based on the impact-pathway chain, to assess the health impacts and health-related economic externalities of air pollution resulting from specific emission sources or sectors. The system is used to support policymaking with respect to emission control. The EVA system has previously been used to assess the health impacts based on results from a regional model DEHM (the Danish Eulerian Hemispheric Model; Brandt et al., 2012). In this study we have used a coupling of two chemistry transport models to calculate the air pollution concentration at different scales; the DEHM model to calculate the air pollution levels with a resolution down to 5.6 km x 5.6 km and the UBM model (Urban Background Model ; Berkowicz, 2000; Brandt et al., 2001) to further calculate the air pollution at 1 km x 1 km resolution for Denmark using results from DEHM as boundary conditions. Both the emission data based on the SPREAD model (Plejdrup and Gyldenkærne, 2011) as well as the population density has been represented in the model system with the same high resolution. The new developments of the integrated model system will be presented as well as results for health impacts and related external costs over the years 2006-2014 for Denmark. Furthermore, a sensitivity study of the health impact using coarse and fine resolutions in the model system has been carried out to evaluate the effect of improved description of the geographical population distribution with respect to location of local emissions. References Berkowicz, R., 2000. A Simple Model for Urban Background Pollution. Environmental Monitoring and Assessment, 65, 1/2, 259-267. Brandt, J., J. H. Christensen, L. M. Frohn, F. Palmgren, R. Berkowicz and Z. Zlatev, 2001: "Operational air pollution forecasts from European to local scale". Atmospheric Environment, Vol. 35, Sup. No. 1, pp. S91-S98, 2001 Brandt

  10. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  11. Air-chemistry studies over the Gulf of Mexico: a bilateral scientific cooperative project between the United States of America and the United States of Mexico. Technical memo

    SciTech Connect

    Parungo, F.; Miller, J.

    1988-02-01

    This report documents the scientific research of a bilateral cooperative project between the United States of America and The United States of America. In 1986 scientists from both nations joined a research cruise in the Gulf of Mexico to investigate the air chemistry over the water that the two nations share. Emphases were placed on natural air quality, anthropogenic air pollution, acid rain, air-sea-land exchanges of gases and aerosols. The investigation included in-situ measurements and post-cruise laboratory analyses. Chemical, physical, meteorological, and oceanographic analyses were conducted to survey temporal and spatial variations of diverse parameters throughout the Gulf. The data sets were analyzed, interpreted, and intercorrelated. The results show that during the cruise (20 July-22 August), the large-scale air trajectories were easterly from the Caribbean Sea at all levels; however, the Gulf air measured was highly polluted in general.

  12. VALMET: a valley air pollution model. Final report. Revision 1

    SciTech Connect

    Whiteman, C.D.; Allwine, K.J.

    1985-04-01

    An air quality model is described for predicting air pollution concentrations in deep mountain valleys arising from nocturnal down-valley transport and diffusion of an elevated pollutant plume, and the fumigation of the plume on the valley floor and sidewalls after sunrise. Included is a technical description of the model, a discussion of the model's applications, the required model inputs, sample calculations and model outputs, and a full listing of the FORTRAN computer program. 55 refs., 27 figs., 6 tabs.

  13. Multi-scale modeling of urban air pollution: development of a Street-in-Grid model

    NASA Astrophysics Data System (ADS)

    Kim, Youngseob; Wu, You; Seigneur, Christian; Roustan, Yelva

    2016-04-01

    A new multi-scale model of urban air pollution is presented. This model combines a chemical-transport model (CTM) that includes a comprehensive treatment of atmospheric chemistry and transport at spatial scales greater than 1 km and a street-network model that describes the atmospheric concentrations of pollutants in an urban street network. The street-network model is based on the general formulation of the SIRANE model and consists of two main components: a street-canyon component and a street-intersection component. The street-canyon component calculates the mass transfer velocity at the top of the street canyon (roof top) and the mean wind velocity within the street canyon. The estimation of the mass transfer velocity depends on the intensity of the standard deviation of the vertical velocity at roof top. The effect of various formulations of this mass transfer velocity on the pollutant transport at roof-top level is examined. The street-intersection component calculates the mass transfer from a given street to other streets across the intersection. These mass transfer rates among the streets are calculated using the mean wind velocity calculated for each street and are balanced so that the total incoming flow rate is equal to the total outgoing flow rate from the intersection including the flow between the intersection and the overlying atmosphere at roof top. In the default option, the Leighton photostationary cycle among ozone (O3) and nitrogen oxides (NO and NO2) is used to represent the chemical reactions within the street network. However, the influence of volatile organic compounds (VOC) on the pollutant concentrations increases when the nitrogen oxides (NOx) concentrations are low. To account for the possible VOC influence on street-canyon chemistry, the CB05 chemical kinetic mechanism, which includes 35 VOC model species, is implemented in this street-network model. A sensitivity study is conducted to assess the uncertainties associated with the use of

  14. Radiation chemistry of salicylic and methyl substituted salicylic acids: Models for the radiation chemistry of pharmaceutical compounds

    NASA Astrophysics Data System (ADS)

    Ayatollahi, Shakiba; Kalnina, Daina; Song, Weihua; Turks, Maris; Cooper, William J.

    2013-11-01

    Salicylic acid and its derivatives are components of many medications and moieties found in numerous pharmaceutical compounds. They have been used as models for various pharmaceutical compounds in pharmacological studies, for the treatment of pharmaceuticals and personal care products (PPCPs), and, reactions with natural organic matter (NOM). In this study, the radiation chemistry of benzoic acid, salicylic acid and four methyl substituted salicylic acids (MSA) is reported. The absolute bimolecular reaction rate constants for hydroxyl radical reaction with benzoic and salicylic acids as well as 3-methyl-, 4-methyl-, 5-methyl-, and 6-methyl-salicylic acid were determined (5.86±0.54)×109, (1.07±0.07)×1010, (7.48±0.17)×109, (7.31±0.29)×109, (5.47±0.25)×109, (6.94±0.10)×109 (M-1 s-1), respectively. The hydrated electron reaction rate constants were measured (3.02±0.10)×109, (8.98±0.27)×109, (5.39±0.21)×109, (4.33±0.17)×109, (4.72±0.15)×109, (1.42±0.02)×109 (M-1 s-1), respectively. The transient absorption spectra for the six model compounds were examined and their role as model compounds for the radiation chemistry of pharmaceuticals investigated.

  15. Air Quality Modeling Technical Support Document for the 2008 Ozone NAAQS Cross-State Air Pollution Rule Proposal

    EPA Pesticide Factsheets

    In this technical support document (TSD) we describe the air quality modeling performed to support the proposed Cross-State Air Pollution Rule for the 2008 ozone National Ambient Air Quality Standards (NAAQS)

  16. AIR TOXICS MODELING RESEARCH PROGRAM: AN OVERVIEW

    EPA Science Inventory

    This product is a Microsoft Powerpoint slide presentation which was given at the joint EPA Region 3 - Mid-Atlantic Regional Air Management Association (MARAMA) Air Toxic Summit in Philadelphia, Pennsylvania held from October 18, 2005 through October 20, 2005. The slide presentat...

  17. A new Geoengineering Model Intercomparison Project (GeoMIP) experiment designed for climate and chemistry models

    SciTech Connect

    Tilmes, S.; Mills, Mike; Niemeier, Ulrike; Schmidt, Hauke; Robock, Alan; Kravitz, Benjamin S.; Lamarque, J. F.; Pitari, G.; English, J. M.

    2015-01-15

    A new Geoengineering Model Intercomparison Project (GeoMIP) experiment "G4 specified stratospheric aerosols" (short name: G4SSA) is proposed to investigate the impact of stratospheric aerosol geoengineering on atmosphere, chemistry, dynamics, climate, and the environment. In contrast to the earlier G4 GeoMIP experiment, which requires an emission of sulfur dioxide (SO₂) into the model, a prescribed aerosol forcing file is provided to the community, to be consistently applied to future model experiments between 2020 and 2100. This stratospheric aerosol distribution, with a total burden of about 2 Tg S has been derived using the ECHAM5-HAM microphysical model, based on a continuous annual tropical emission of 8 Tg SO₂ yr⁻¹. A ramp-up of geoengineering in 2020 and a ramp-down in 2070 over a period of 2 years are included in the distribution, while a background aerosol burden should be used for the last 3 decades of the experiment. The performance of this experiment using climate and chemistry models in a multi-model comparison framework will allow us to better understand the impact of geoengineering and its abrupt termination after 50 years in a changing environment. The zonal and monthly mean stratospheric aerosol input data set is available at https://www2.acd.ucar.edu/gcm/geomip-g4-specified-stratospheric-aerosol-data-set.

  18. A new Geoengineering Model Intercomparison Project (GeoMIP) experiment designed for climate and chemistry models

    DOE PAGES

    Tilmes, S.; Mills, Mike; Niemeier, Ulrike; ...

    2015-01-15

    A new Geoengineering Model Intercomparison Project (GeoMIP) experiment "G4 specified stratospheric aerosols" (short name: G4SSA) is proposed to investigate the impact of stratospheric aerosol geoengineering on atmosphere, chemistry, dynamics, climate, and the environment. In contrast to the earlier G4 GeoMIP experiment, which requires an emission of sulfur dioxide (SO₂) into the model, a prescribed aerosol forcing file is provided to the community, to be consistently applied to future model experiments between 2020 and 2100. This stratospheric aerosol distribution, with a total burden of about 2 Tg S has been derived using the ECHAM5-HAM microphysical model, based on a continuous annualmore » tropical emission of 8 Tg SO₂ yr⁻¹. A ramp-up of geoengineering in 2020 and a ramp-down in 2070 over a period of 2 years are included in the distribution, while a background aerosol burden should be used for the last 3 decades of the experiment. The performance of this experiment using climate and chemistry models in a multi-model comparison framework will allow us to better understand the impact of geoengineering and its abrupt termination after 50 years in a changing environment. The zonal and monthly mean stratospheric aerosol input data set is available at https://www2.acd.ucar.edu/gcm/geomip-g4-specified-stratospheric-aerosol-data-set.« less

  19. pH at the Air-Ice Interface: Connections to Halogen Activation Chemistry

    NASA Astrophysics Data System (ADS)

    Wren, S. N.; Abbatt, J.; Donaldson, D. J.

    2014-12-01

    Halogen activation - the conversion of relatively inert sea-salt derived halides, into reactive halogen species - has significant implications for perturbing the oxidative capacity of the boundary layer, as well as for mercury oxidation. Developing a good, mechanistic understanding of halogen activation chemistry - and particularly its pH dependence - requires knowledge of surface pH. Here we described the development and use of a surface-sensitive spectroscopic approach to investigate pH at frozen surfaces. The approach, which involves glancing-angle laser-induced fluorescence in conjunction with pH-sensitive fluorescent dyes (acridine and harmine), was used to study pH at frozen surfaces following the deposition of gas phase acids or bases. We demonstrate that frozen 'pure water' and frozen 'salt water' surfaces exhibit different responses. The responses are consistent with the presence of a chemically unique, disordered region at the frozen 'pure water' surface and the presence of liquid brine at the frozen 'salt water' surface. Significantly, we show that a frozen sea water surface is resistant to changes in pH, suggesting that some buffering capacity is maintained upon freezing. Finally the pH dependence of bromine and chlorine activation from artificial saline snow is presented. Bromine release is found to depend less strongly on pre-freezing snow pH, but the release of both species is favoured for low pre-freezing pH values. In the context of these pH and halogen activation studies, the potential importance of various frozen sea ice substrates for promoting halogen activation chemistry will be discussed.

  20. An advanced scheme for wet scavenging and liquid-phase chemistry in a regional online-coupled chemistry transport model

    NASA Astrophysics Data System (ADS)

    Knote, C.; Brunner, D.

    2012-10-01

    Clouds are reaction chambers for atmospheric trace gases and aerosols, and the associated precipitation is a major sink for atmospheric constituents. The regional chemistry-climate model COSMO-ART has been lacking a description of wet scavenging of gases and aqueous-phase chemistry. In this work we present a coupling of COSMO-ART with a wet scavenging and aqueous-phase chemistry scheme. The coupling is made consistent with the cloud microphysics scheme of the underlying meteorological model COSMO. While the choice of the aqueous-chemistry mechanism is flexible, the effects of a simple sulfur oxidation scheme are shown in the application of the coupled system in this work. We give details explaining the coupling and extensions made, then present results from idealized flow-over-hill experiments in a 2-D model setup and finally results from a full 3-D simulation. Comparison against measurement data shows that the scheme efficiently reduces SO2 trace gas concentrations by 0.3 ppbv (-30%) on average, while leaving O3 and NOx unchanged. PM10 aerosol mass, which has been overestimated previously, is now in much better agreement with measured values due to a stronger scavenging of coarse particles. While total PM2.5 changes only little, chemical composition is improved notably. Overestimations of nitrate aerosols are reduced by typically 0.5-1 μg m-3 (up to -2 μg m-3 in the Po Valley) while sulfate mass is increased by 1-1.5 μg m-3 on average (up to 2.5 μg m-3 in Eastern Europe). The effect of cloud processing of aerosols on its size distribution, i. e. a shift towards larger diameters, is observed. Compared against wet deposition measurements the system underestimates the total wet deposited mass for the simulated case study. We find that while evaporation of cloud droplets dominates in higher altitudes, evaporation of precipitation can contribute up to 50% of total evaporated mass near the surface.

  1. Evaluating the Contribution of Natural Variability and Climate Model Response to Uncertainty in Projections of Climate Change Impacts on U.S. Air Quality

    EPA Science Inventory

    We examine the effects of internal variability and model response in projections of climate impacts on U.S. ground-level ozone across the 21st century using integrated global system modeling and global atmospheric chemistry simulations. The impact of climate change on air polluti...

  2. THE ATMOSPHERIC MODEL EVALUATION TOOL (AMET); AIR QUALITY MODULE

    EPA Science Inventory

    This presentation reviews the development of the Atmospheric Model Evaluation Tool (AMET) air quality module. The AMET tool is being developed to aid in the model evaluation. This presentation focuses on the air quality evaluation portion of AMET. Presented are examples of the...

  3. Atmospheric Chemistry Measurements in Schools and Outreach Activities with Low-cost Air Quality Sensors

    NASA Astrophysics Data System (ADS)

    Fleming, Z.; Monks, P. S.; McKenzie, K.

    2014-12-01

    The increasing range of low cost air quality sensors entering the market-place or being developed in-house in the last couple of years has led to many possibilities for using these instruments for public outreach activities or citizen science projects. A range of instruments sent out into local schools for the children to interpret and analyse the data and put the air quality in their area into context. A teaching package with tutorials has been developed to bring the data to life and link in with curriculum.The instruments have also been positioned around the city of Leicester in the UK to help understand the spatial variations in air quality and to assess the impact of retro-fitting buses on a busy bus route. The data is easily accessible online on a near real time basis and the various instruments can be compared with others around the country or the world from classrooms around the world.We will give an overview of the instrumentation with a comparison with commercial and cutting edge research instrumentation, the type of activities that were carried out and the public outreach forums where the data can be used.

  4. Structural and functional models in molybdenum and tungsten bioinorganic chemistry: description of selected model complexes, present scenario and possible future scopes.

    PubMed

    Majumdar, Amit

    2014-06-28

    A brief description about some selected model complexes in molybdenum and tungsten bioinorganic chemistry is provided. The synthetic strategies involved and their limitations are discussed. Current status of molybdenum and tungsten bioinorganic modeling chemistry is presented briefly and synthetic problems associated therein are analyzed. Possible future directions which may expand the scope of modeling chemistry are suggested.

  5. DEVELOPMENT AND ANALYSIS OF AIR QUALITY MODELING SIMULATIONS FOR HAZARDOUS AIR POLLUTANTS

    EPA Science Inventory

    The concentrations of five hazardous air pollutants were simulated using the Community Multi Scale Air Quality (CMAQ) modeling system. Annual simulations were performed over the continental United States for the entire year of 2001 to support human exposure estimates. Results a...

  6. A review of air exchange rate models for air pollution exposure assessments.

    PubMed

    Breen, Michael S; Schultz, Bradley D; Sohn, Michael D; Long, Thomas; Langstaff, John; Williams, Ronald; Isaacs, Kristin; Meng, Qing Yu; Stallings, Casson; Smith, Luther

    2014-11-01

    A critical aspect of air pollution exposure assessments is estimation of the air exchange rate (AER) for various buildings where people spend their time. The AER, which is the rate of exchange of indoor air with outdoor air, is an important determinant for entry of outdoor air pollutants and for removal of indoor-emitted air pollutants. This paper presents an overview and critical analysis of the scientific literature on empirical and physically based AER models for residential and commercial buildings; the models highlighted here are feasible for exposure assessments as extensive inputs are not required. Models are included for the three types of airflows that can occur across building envelopes: leakage, natural ventilation, and mechanical ventilation. Guidance is provided to select the preferable AER model based on available data, desired temporal resolution, types of airflows, and types of buildings included in the exposure assessment. For exposure assessments with some limited building leakage or AER measurements, strategies are described to reduce AER model uncertainty. This review will facilitate the selection of AER models in support of air pollution exposure assessments.

  7. Experience with turbulence interaction and turbulence-chemistry models at Fluent Inc.

    NASA Technical Reports Server (NTRS)

    Choudhury, D.; Kim, S. E.; Tselepidakis, D. P.; Missaghi, M.

    1995-01-01

    This viewgraph presentation discusses (1) turbulence modeling: challenges in turbulence modeling, desirable attributes of turbulence models, turbulence models in FLUENT, and examples using FLUENT; and (2) combustion modeling: turbulence-chemistry interaction and FLUENT equilibrium model. As of now, three turbulence models are provided: the conventional k-epsilon model, the renormalization group model, and the Reynolds-stress model. The renormalization group k-epsilon model has broadened the range of applicability of two-equation turbulence models. The Reynolds-stress model has proved useful for strongly anisotropic flows such as those encountered in cyclones, swirlers, and combustors. Issues remain, such as near-wall closure, with all classes of models.

  8. Analysis of Aircraft Evasion Strategies in Air-to-Air Missille Effectiveness Models

    DTIC Science & Technology

    1975-08-01

    AD-A015 238 ANALYSIS OF AIRCRAFT EVASION STRATEGIES IN AIR-TO-AIR MISSILE EFFECTIVENESS MObri ’ G. Carpenter, et al Grumman Aerospace Corporation ...overall tep t Es CIS*atiet d) Oft ’IsNA 1tTNG AC ?v I TV ? corpor te author) 2S. REPORT SECUNITY CLASSIrICA TION Unclassified ;rummn Aerospace... Corporation b RoU N/A I NEPOA’ I ?LE nalysis of Aircraft Evasion Strategies in Air-to-Air Missile Effectiveness Models 4 DESCRIP T IVE *40TS ’Type of repct

  9. INTERCOMPARISON OF ALTERNATIVE VEGETATION DATABASES FOR REGIONAL AIR QUALITY MODELING

    EPA Science Inventory

    Vegetation cover data are used to characterize several regional air quality modeling processes, including the calculation of heat, moisture, and momentum fluxes with the Mesoscale Meteorological Model (MM5) and the estimate of biogenic volatile organic compound and nitric oxide...

  10. Bayesian Analysis of a Reduced-Form Air Quality Model

    EPA Science Inventory

    Numerical air quality models are being used for assessing emission control strategies for improving ambient pollution levels across the globe. This paper applies probabilistic modeling to evaluate the effectiveness of emission reduction scenarios aimed at lowering ground-level oz...

  11. Implementation and evaluation of pH-dependent cloud chemistry and wet deposition in the chemical transport model REM-Calgrid

    NASA Astrophysics Data System (ADS)

    Banzhaf, S.; Schaap, M.; Kerschbaumer, A.; Reimer, E.; Stern, R.; van der Swaluw, E.; Builtjes, P.

    2012-03-01

    The Chemistry Transport Model REM-Calgrid (RCG) has been improved by implementing an enhanced description of aqueous-phase chemistry and wet deposition processes including droplet pH. A sensitivity study on cloud and rain droplet pH has been performed to investigate its impact on model sulphate production and gas wet scavenging. Air concentrations and wet deposition fluxes of the model sensitivity runs have been analysed and compared to observations. It was found that droplet pH variation within atmospheric ranges affects modelled air concentrations and wet deposition fluxes significantly. Applying a droplet pH of 5.5 for July 2005, mean sulphate air concentrations increased by up to 10% compared to using a droplet pH of 5 while SO2 domain wet deposition sum increased by 110%. Moreover, model results using modelled droplet pH for January and July 2005 have been compared to model results applying a constant pH of 5 and to observations. The comparison to observations has shown that using a variable droplet pH improves the model performance concerning air concentrations and wet deposition fluxes of the investigated sulphur and nitrogen compounds. For SOx wet deposition fluxes the Root Mean Square Error (RMSE) decreased by 16% for July 2005 when using a variable droplet pH instead of a constant pH of 5. Concerning sulphate and SO2 air concentrations the RMSE was reduced by 8% and 16% for July 2005, respectively. The results have revealed that applying a variable droplet pH is preferable to using a constant pH leading to better consistency concerning air concentrations and wet deposition fluxes.

  12. Effects of '"Environmental Chemistry" Elective Course via Technology-Embedded Scientific Inquiry Model on Some Variables

    ERIC Educational Resources Information Center

    Çalik, Muammer; Özsevgeç, Tuncay; Ebenezer, Jazlin; Artun, Hüseyin; Küçük, Zeynel

    2014-01-01

    The purpose of this study is to examine the effects of "environmental chemistry" elective course via Technology-Embedded Scientific Inquiry (TESI) model on senior science student teachers' (SSSTs) conceptions of environmental chemistry concepts/issues, attitudes toward chemistry, and technological pedagogical content knowledge…

  13. The Learner Characteristics, Features of Desktop 3D Virtual Reality Environments, and College Chemistry Instruction: A Structural Equation Modeling Analysis

    ERIC Educational Resources Information Center

    Merchant, Zahira; Goetz, Ernest T.; Keeney-Kennicutt, Wendy; Kwok, Oi-man; Cifuentes, Lauren; Davis, Trina J.

    2012-01-01

    We examined a model of the impact of a 3D desktop virtual reality environment on the learner characteristics (i.e. perceptual and psychological variables) that can enhance chemistry-related learning achievements in an introductory college chemistry class. The relationships between the 3D virtual reality features and the chemistry learning test as…

  14. Updating Sea Spray Aerosol Emissions in the Community Multiscale Air Quality Model

    NASA Astrophysics Data System (ADS)

    Gantt, B.; Bash, J. O.; Kelly, J.

    2014-12-01

    Sea spray aerosols (SSA) impact the particle mass concentration and gas-particle partitioning in coastal environments, with implications for human and ecosystem health. In this study, the Community Multiscale Air Quality (CMAQ) model is updated to enhance fine mode SSA emissions, include sea surface temperature (SST) dependency, and revise surf zone emissions. Based on evaluation with several regional and national observational datasets in the continental U.S., the updated emissions generally improve surface concentrations predictions of primary aerosols composed of sea-salt and secondary aerosols affected by sea-salt chemistry in coastal and near-coastal sites. Specifically, the updated emissions lead to better predictions of the magnitude and coastal-to-inland gradient of sodium, chloride, and nitrate concentrations at Bay Regional Atmospheric Chemistry Experiment (BRACE) sites near Tampa, FL. Including SST-dependency to the SSA emission parameterization leads to increased sodium concentrations in the southeast U.S. and decreased concentrations along the Pacific coast and northeastern U.S., bringing predictions into closer agreement with observations at most Interagency Monitoring of Protected Visual Environments (IMPROVE) and Chemical Speciation Network (CSN) sites. Model comparison with California Research at the Nexus of Air Quality and Climate Change (CalNex) observations will also be discussed, with particular focus on the South Coast Air Basin where clean marine air mixes with anthropogenic pollution in a complex environment. These SSA emission updates enable more realistic simulation of chemical processes in coastal environments, both in clean marine air masses and mixtures of clean marine and polluted conditions.

  15. Lessons from a low-order coupled chemistry meteorology model and applications to a high-dimensional chemical transport model

    NASA Astrophysics Data System (ADS)

    Haussaire, Jean-Matthieu; Bocquet, Marc

    2016-04-01

    Atmospheric chemistry models are becoming increasingly complex, with multiphasic chemistry, size-resolved particulate matter, and possibly coupled to numerical weather prediction models. In the meantime, data assimilation methods have also become more sophisticated. Hence, it will become increasingly difficult to disentangle the merits of data assimilation schemes, of models, and of their numerical implementation in a successful high-dimensional data assimilation study. That is why we believe that the increasing variety of problems encountered in the field of atmospheric chemistry data assimilation puts forward the need for simple low-order models, albeit complex enough to capture the relevant dynamics, physics and chemistry that could impact the performance of data assimilation schemes. Following this analysis, we developped a low-order coupled chemistry meteorology model named L95-GRS [1]. The advective wind is simulated by the Lorenz-95 model, while the chemistry is made of 6 reactive species and simulates ozone concentrations. With this model, we carried out data assimilation experiments to estimate the state of the system as well as the forcing parameter of the wind and the emissions of chemical compounds. This model proved to be a powerful playground giving insights on the hardships of online and offline estimation of atmospheric pollution. Building on the results on this low-order model, we test advanced data assimilation methods on a state-of-the-art chemical transport model to check if the conclusions obtained with our low-order model still stand. References [1] Haussaire, J.-M. and Bocquet, M.: A low-order coupled chemistry meteorology model for testing online and offline data assimilation schemes, Geosci. Model Dev. Discuss., 8, 7347-7394, doi:10.5194/gmdd-8-7347-2015, 2015.

  16. Evaluating CMIP5 models using AIRS tropospheric air temperature and specific humidity climatology

    NASA Astrophysics Data System (ADS)

    Tian, Baijun; Fetzer, Eric J.; Kahn, Brian H.; Teixeira, Joao; Manning, Evan; Hearty, Thomas

    2013-01-01

    This paper documents the climatological mean features of the Atmospheric Infrared Sounder (AIRS) monthly mean tropospheric air temperature (ta, K) and specific humidity (hus, kg/kg) products as part of the Obs4MIPs project and compares them to those from NASA's Modern Era Retrospective analysis for Research and Applications (MERRA) for validation and 16 models from the fifth phase of the Coupled Model Intercomparison Project (CMIP5) for CMIP5 model evaluation. MERRA is warmer than AIRS in the free troposphere but colder in the boundary layer with differences typically less than 1 K. MERRA is also drier (~10%) than AIRS in the tropical boundary layer but wetter (~30%) in the tropical free troposphere and the extratropical troposphere. In particular, the large MERRA-AIRS specific humidity differences are mainly located in the deep convective cloudy regions indicating that the low sampling of AIRS in the cloudy regions may be the main reason for these differences. In comparison to AIRS and MERRA, the sixteen CMIP5 models can generally reproduce the climatological features of tropospheric air temperature and specific humidity well, but several noticeable biases exist. The models have a tropospheric cold bias (around 2 K), especially in the extratropical upper troposphere, and a double-ITCZ problem in the troposphere from 1000 hPa to 300 hPa, especially in the tropical Pacific. The upper-tropospheric cold bias exists in the most (13 of 16) models, and the double-ITCZ bias is found in all 16 CMIP5 models. Both biases are independent of the reference dataset used (AIRS or MERRA).

  17. Modelling and Assessing Air-Surface Integration

    DTIC Science & Technology

    2011-06-01

    2011), Qu?c City , Qu?c, Canada, June 21-23, 2011. U.S. Government or Federal Rights License. 14. ABSTRACT Air-Surface Integration (ASI) is an...structure capability and identifies socio-technical issues in the ASI system for capability designers . 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF...for capability designers . 1. Introduction Air Surface Integration (ASI) has been conducted by forces in a variety of operations dating back to

  18. What Can the Bohr-Sommerfeld Model Show Students of Chemistry in the 21st Century?

    ERIC Educational Resources Information Center

    Niaz, Mansoor; Cardellini, Liberato

    2011-01-01

    Bohr's model of the atom is considered to be important by general chemistry textbooks. A shortcoming of this model was that it could not explain the spectra of atoms containing more than one electron. To increase the explanatory power of the model, Sommerfeld hypothesized the existence of elliptical orbits. This study aims to elaborate a framework…

  19. Secondary Students' Mental Models of Atoms and Molecules: Implications for Teaching Chemistry.

    ERIC Educational Resources Information Center

    Harrison, Allan G.; Treagust, David F.

    1996-01-01

    Examines the reasoning behind views of atoms and molecules held by students (n=48) and investigates how mental models may assist or hamper further instruction in chemistry. Reports that students prefer models of atoms and molecules that depict them as discrete, concrete structures. Recommends that teachers develop student modeling skills and…

  20. Evaluation and error apportionment of an ensemble of atmospheric chemistry transport modeling systems: multivariable temporal and spatial breakdown

    NASA Astrophysics Data System (ADS)

    Solazzo, Efisio; Bianconi, Roberto; Hogrefe, Christian; Curci, Gabriele; Tuccella, Paolo; Alyuz, Ummugulsum; Balzarini, Alessandra; Baró, Rocío; Bellasio, Roberto; Bieser, Johannes; Brandt, Jørgen; Christensen, Jesper H.; Colette, Augistin; Francis, Xavier; Fraser, Andrea; Garcia Vivanco, Marta; Jiménez-Guerrero, Pedro; Im, Ulas; Manders, Astrid; Nopmongcol, Uarporn; Kitwiroon, Nutthida; Pirovano, Guido; Pozzoli, Luca; Prank, Marje; Sokhi, Ranjeet S.; Unal, Alper; Yarwood, Greg; Galmarini, Stefano

    2017-02-01

    Through the comparison of several regional-scale chemistry transport modeling systems that simulate meteorology and air quality over the European and North American continents, this study aims at (i) apportioning error to the responsible processes using timescale analysis, (ii) helping to detect causes of model error, and (iii) identifying the processes and temporal scales most urgently requiring dedicated investigations. The analysis is conducted within the framework of the third phase of the Air Quality Model Evaluation International Initiative (AQMEII) and tackles model performance gauging through measurement-to-model comparison, error decomposition, and time series analysis of the models biases for several fields (ozone, CO, SO2, NO, NO2, PM10, PM2. 5, wind speed, and temperature). The operational metrics (magnitude of the error, sign of the bias, associativity) provide an overall sense of model strengths and deficiencies, while apportioning the error to its constituent parts (bias, variance, and covariance) can help assess the nature and quality of the error. Each of the error components is analyzed independently and apportioned to specific processes based on the corresponding timescale (long scale, synoptic, diurnal, and intraday) using the error apportionment technique devised in the former phases of AQMEII. The application of the error apportionment method to the AQMEII Phase 3 simulations provides several key insights. In addition to reaffirming the strong impact of model inputs (emission and boundary conditions) and poor representation of the stable boundary layer on model bias, results also highlighted the high interdependencies among meteorological and chemical variables, as well as among their errors. This indicates that the evaluation of air quality model performance for individual pollutants needs to be supported by complementary analysis of meteorological fields and chemical precursors to provide results that are more insightful from a model

  1. Climate effects of anthropogenic sulfate: Simulations from a coupled chemistry/climate model

    SciTech Connect

    Chuang, C.C.; Penner, J.E.; Taylor, K.E.; Walton, J.J.

    1993-09-01

    In this paper, we use a more comprehensive approach by coupling a climate model with a 3-D global chemistry model to investigate the forcing by anthropogenic aerosol sulfate. The chemistry model treats the global-scale transport, transformation, and removal of SO{sub 2}, DMS and H{sub 2}SO{sub 4} species in the atmosphere. The mass concentration of anthropogenic sulfate from fossil fuel combustion and biomass burning is calculated in the chemistry model and provided to the climate model where it affects the shortwave radiation. We also investigate the effect, with cloud nucleation parameterized in terms of local aerosol number, sulfate mass concentration and updraft velocity. Our simulations indicate that anthropogenic sulfate may result in important increases in reflected solar radiation, which would mask locally the radiative forcing from increased greenhouse gases. Uncertainties in these results will be discussed.

  2. Global Modeling of Tropospheric Chemistry with Assimilated Meteorology: Model Description and Evaluation

    NASA Technical Reports Server (NTRS)

    Bey, Isabelle; Jacob, Daniel J.; Yantosca, Robert M.; Logan, Jennifer A.; Field, Brendan D.; Fiore, Arlene M.; Li, Qin-Bin; Liu, Hong-Yu; Mickley, Loretta J.; Schultz, Martin G.

    2001-01-01

    We present a first description and evaluation of GEOS-CHEM, a global three-dimensional (3-D) model of tropospheric chemistry driven by assimilated meteorological observations from the Goddard Earth Observing System (GEOS) of the NASA Data Assimilation Office (DAO). The model is applied to a 1-year simulation of tropospheric ozone-NOx-hydrocarbon chemistry for 1994, and is evaluated with observations both for 1994 and for other years. It reproduces usually to within 10 ppb the concentrations of ozone observed from the worldwide ozonesonde data network. It simulates correctly the seasonal phases and amplitudes of ozone concentrations for different regions and altitudes, but tends to underestimate the seasonal amplitude at northern midlatitudes. Observed concentrations of NO and peroxyacetylnitrate (PAN) observed in aircraft campaigns are generally reproduced to within a factor of 2 and often much better. Concentrations of HNO3 in the remote troposphere are overestimated typically by a factor of 2-3, a common problem in global models that may reflect a combination of insufficient precipitation scavenging and gas-aerosol partitioning not resolved by the model. The model yields an atmospheric lifetime of methylchloroform (proxy for global OH) of 5.1 years, as compared to a best estimate from observations of 5.5 plus or minus 0.8 years, and simulates H2O2 concentrations observed from aircraft with significant regional disagreements but no global bias. The OH concentrations are approximately 20% higher than in our previous global 3-D model which included an UV-absorbing aerosol. Concentrations of CO tend to be underestimated by the model, often by 10-30 ppb, which could reflect a combination of excessive OH (a 20% decrease in model OH could be accommodated by the methylchloroform constraint) and an underestimate of CO sources (particularly biogenic). The model underestimates observed acetone concentrations over the South Pacific in fall by a factor of 3; a missing source

  3. Modeling, Monitoring and Fault Diagnosis of Spacecraft Air Contaminants

    NASA Technical Reports Server (NTRS)

    Ramirez, W. Fred; Skliar, Mikhail; Narayan, Anand; Morgenthaler, George W.; Smith, Gerald J.

    1996-01-01

    Progress and results in the development of an integrated air quality modeling, monitoring, fault detection, and isolation system are presented. The focus was on development of distributed models of the air contaminants transport, the study of air quality monitoring techniques based on the model of transport process and on-line contaminant concentration measurements, and sensor placement. Different approaches to the modeling of spacecraft air contamination are discussed, and a three-dimensional distributed parameter air contaminant dispersion model applicable to both laminar and turbulent transport is proposed. A two-dimensional approximation of a full scale transport model is also proposed based on the spatial averaging of the three dimensional model over the least important space coordinate. A computer implementation of the transport model is considered and a detailed development of two- and three-dimensional models illustrated by contaminant transport simulation results is presented. The use of a well established Kalman filtering approach is suggested as a method for generating on-line contaminant concentration estimates based on both real time measurements and the model of contaminant transport process. It is shown that high computational requirements of the traditional Kalman filter can render difficult its real-time implementation for high-dimensional transport model and a novel implicit Kalman filtering algorithm is proposed which is shown to lead to an order of magnitude faster computer implementation in the case of air quality monitoring.

  4. Non-OH chemistry in oxidation flow reactors for the study of atmospheric chemistry systematically examined by modeling

    NASA Astrophysics Data System (ADS)

    Peng, Z.; Day, D. A.; Ortega, A. M.; Palm, B. B.; Hu, W. W.; Stark, H.; Li, R.; Tsigaridis, K.; Brune, W. H.; Jimenez, J. L.

    2015-09-01

    Oxidation flow reactors (OFRs) using low-pressure Hg lamp emission at 185 and 254 nm produce OH radicals efficiently and are widely used in atmospheric chemistry and other fields. However, knowledge of detailed OFR chemistry is limited, allowing speculation in the literature about whether some non-OH reactants, including several not relevant for tropospheric chemistry, may play an important role in these OFRs. These non-OH reactants are UV radiation, O(1D), O(3P), and O3. In this study, we investigate the relative importance of other reactants to OH for the fate of reactant species in OFR under a wide range of conditions via box modeling. The relative importance of non-OH species is less sensitive to UV light intensity than to relative humidity (RH) and external OH reactivity (OHRext), as both non-OH reactants and OH scale roughly proportional to UV intensity. We show that for field studies in forested regions and also the urban area of Los Angeles, reactants of atmospheric interest are predominantly consumed by OH. We find that O(1D), O(3P), and O3 have relative contributions to VOC consumption that are similar or lower than in the troposphere. The impact of O atoms can be neglected under most conditions in both OFR and troposphere. Under "pathological OFR conditions" of low RH and/or high OHRext, the importance of non-OH reactants is enhanced because OH is suppressed. Some biogenics can have substantial destructions by O3, and photolysis at non-tropospheric wavelengths (185 and 254 nm) may also play a significant role in the degradation of some aromatics under pathological conditions. Working under low O2 with the OFR185 mode allows OH to completely dominate over O3 reactions even for the biogenic species most reactive with O3. Non-tropospheric VOC photolysis may have been a problem in some laboratory and source studies, but can be avoided or lessened in future studies by diluting source emissions and working at lower precursor concentrations in lab studies, and

  5. Eight Year Climatologies from Observational (AIRS) and Model (MERRA) Data

    NASA Technical Reports Server (NTRS)

    Hearty, Thomas; Savtchenko, Andrey; Won, Young-In; Theobalk, Mike; Vollmer, Bruce; Manning, Evan; Smith, Peter; Ostrenga, Dana; Leptoukh, Greg

    2010-01-01

    We examine climatologies derived from eight years of temperature, water vapor, cloud, and trace gas observations made by the Atmospheric Infrared Sounder (AIRS) instrument flying on the Aqua satellite and compare them to similar climatologies constructed with data from a global assimilation model, the Modern Era Retrospective-Analysis for Research and Applications (MERRA). We use the AIRS climatologies to examine anomalies and trends in the AIRS data record. Since sampling can be an issue for infrared satellites in low earth orbit, we also use the MERRA data to examine the AIRS sampling biases. By sampling the MERRA data at the AIRS space-time locations both with and without the AIRS quality control we estimate the sampling bias of the AIRS climatology and the atmospheric conditions where AIRS has a lower sampling rate. While the AIRS temperature and water vapor sampling biases are small at low latitudes, they can be more than a few degrees in temperature or 10 percent in water vapor at higher latitudes. The largest sampling biases are over desert. The AIRS and MERRA data are available from the Goddard Earth Sciences Data and Information Services Center (GES DISC). The AIRS climatologies we used are available for analysis with the GIOVANNI data exploration tool. (see, http://disc.gsfc.nasa.gov).

  6. Centrifuge modeling of air sparging - a study of air flow through saturated porous media.

    PubMed

    Marulanda, C; Culligan, P J; Germaine, J T

    2000-02-25

    The success of air sparging as a remedial technology for treatment of contaminated aquifers is well documented. However, there is no consensus, to date, on the mechanisms that control the flow of injected air through the saturated ground. Currently, only qualitative results from laboratory experiments are available to predict the zone of influence of a sparging well. Given that the patterns of air flow through the soil will ultimately determine the efficiency of an air sparging treatment, it is important to quantify how sparged air travels through a saturated porous medium. The main objective of this research is to develop a model that describes air transport through saturated porous media. This paper presents results from an ongoing study that employs centrifuge modeling to reproduce in situ air sparging conditions. Centrifuge testing is an experimental technique that allows reduced-scale duplication, in the laboratory, of the stresses and pressure distributions encountered in the field. In situ conditions are critical in the development of actual air flow patterns. Experiments are being conducted in a transparent porous medium consisting of crushed borosilicate glass submerged in fluids of matching indices of refraction. Air is observed as it flows through the porous medium at varying gravitational accelerations. Recorded images of experiments allow the determination of flow patterns, breakthrough velocities, and plume shapes as a function of g-level and injection pressure. Results show that air flow patterns vary from fingering, at low g-levels, to pulsing at higher accelerations. Grain and pore size distribution of the porous medium do not exclusively control air flow characteristics. Injector geometry has a definite effect on breakthrough velocities and air plume shapes. Experiments have been conducted to compare the velocity of air flow through the saturated porous medium to that of air in pure liquids. Results show that the velocity of air through the medium

  7. Teaching Chemistry for All Its Worth: The Interaction Between Facts, Ideas, and Language in Lavoisier's and Priestley's Chemistry Practice: The Case of the Study of the Composition of Air

    NASA Astrophysics Data System (ADS)

    de Berg, Kevin

    2014-10-01

    Both Lavoisier and Priestley were committed to the role of experiment and observation in their chemistry practice. According to Lavoisier the physical sciences embody three important ingredients; facts, ideas, and language, and Priestley would not have disagreed with this. Ideas had to be consistent with the facts generated from experiment and observation and language needed to be precise and reflect the known chemistry of substances. While Priestley was comfortable with a moderate amount of hypothesis making, Lavoisier had no time for what he termed theoretical speculation about the fundamental nature of matter and avoided the use of the atomic hypothesis and Aristotle's elements in his Elements of Chemistry. In the preface to this famous work he claims he has good educational reasons for this position. While Priestley and Lavoisier used similar kinds of apparatus in their chemistry practice, they came to their task with completely different worldviews as regards the nature of chemical reactivity. This paper examines these worldviews as practiced in the famous experiment on the composition of air and the implications of this for chemistry education are considered.

  8. Exploring Atmospheric Aqueous Chemistry (and Secondary Organic Aerosol Formation) through OH Radical Oxidation Experiments, Droplet Evaporation and Chemical Modeling

    NASA Astrophysics Data System (ADS)

    Turpin, B. J.; Kirkland, J. R.; Lim, Y. B.; Ortiz-Montalvo, D. L.; Sullivan, A.; Häkkinen, S.; Schwier, A. N.; Tan, Y.; McNeill, V. F.; Collett, J. L.; Skog, K.; Keutsch, F. N.; Sareen, N.; Carlton, A. G.; Decesari, S.; Facchini, C.

    2013-12-01

    Gas phase photochemistry fragments and oxidizes organic emissions, making water-soluble organics ubiquitous in the atmosphere. My group and others have found that several water-soluble compounds react further in the aqueous phase forming low volatility products under atmospherically-relevant conditions (i.e., in clouds, fogs and wet aerosols). Thus, secondary organic aerosol can form as a result of gas followed by aqueous chemistry (aqSOA). We have used aqueous OH radical oxidation experiments coupled with product analysis and chemical modeling to validate and refine the aqueous chemistry of glyoxal, methylglyoxal, glycolaldehyde, and acetic acid. The resulting chemical model has provided insights into the differences between oxidation chemistry in clouds and in wet aerosols. Further, we conducted droplet evaporation experiments to characterize the volatility of the products. Most recently, we have conducted aqueous OH radical oxidation experiments with ambient mixtures of water-soluble gases to identify additional atmospherically-important precursors and products. Specifically, we scrubbed water-soluble gases from the ambient air in the Po Valley, Italy using four mist chambers in parallel, operating at 25-30 L min-1. Aqueous OH radical oxidation experiments and control experiments were conducted with these mixtures (total organic carbon ≈ 100 μM-C). OH radicals (3.5E-2 μM [OH] s-1) were generated by photolyzing H2O2. Precursors and products were characterized using electrospray ionization mass spectrometry (ESI-MS), ion chromatography (IC), IC-ESI-MS, and ultra high resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). Chemical modeling suggests that organic acids (e.g., oxalate, pyruvate, glycolate) are major products of OH radical oxidation at cloud-relevant concentrations, whereas organic radical - radical reactions result in the formation of oligomers in wet aerosols. Products of cloud chemistry and droplet evaporation have

  9. SWIFT: Semi-empirical and numerically efficient stratospheric ozone chemistry for global climate models

    NASA Astrophysics Data System (ADS)

    Kreyling, Daniel; Wohltmann, Ingo; Lehmann, Ralph; Rex, Markus

    2015-04-01

    The SWIFT model is a fast yet accurate chemistry scheme for calculating the chemistry of stratospheric ozone. It is mainly intended for use in Global Climate Models (GCMs), Chemistry Climate Models (CCMs) and Earth System Models (ESMs). For computing time reasons these models often do not employ full stratospheric chemistry modules, but use prescribed ozone instead. This can lead to insufficient representation between stratosphere and troposphere. The SWIFT stratospheric ozone chemistry model, focuses on the major reaction mechanisms of ozone production and loss in order to reduce the computational costs. SWIFT consists of two sub-models. 1) Inside the polar vortex, the model calculates polar vortex averaged ozone loss by solving a set of coupled differential equations for the key species in polar ozone chemistry. 2) The extra-polar regime, which this poster is going to focus on. Outside the polar vortex, the complex system of differential equations of a full stratospheric chemistry model is replaced by an explicit algebraic polynomial, which can be solved in a fraction of the time needed by the full scale model. The approach, which is used to construct the polynomial, is also referred to as repro-modeling and has been successfully applied to chemical models (Turanyi (1993), Lowe & Tomlin (2000)). The procedure uses data from the Lagrangian stratospheric chemistry and transport model ATLAS and yields one high-order polynomial for global ozone loss and production rates over 24h per month. The stratospheric ozone change rates can be sufficiently described by 9 variables. Latitude, altitude, temperature, the overhead ozone abundance, 4 mixing ratios of ozone depleting chemical families (chlorine, bromine, nitrogen-oxides and hydrogen-oxides) and the ozone concentrations itself. The ozone change rates in the lower stratosphere as a function of these 9 variables yield a sufficiently compact 9-D hyper-surface, which we can approximate with a polynomial. In the upper

  10. Ion chemistry for the detection of isoprene and other volatile organic compounds in ambient air

    NASA Astrophysics Data System (ADS)

    Leibrock, Edeltraud; Huey, L. Gregory

    2000-06-01

    A chemical ionization mass spectrometer (CIMS) and a flowing afterglow apparatus were used to study reactions of benzene cations (C6H6+ and (C6H6)2+) with a series of volatile organic compounds (VOCs). Both cations react at the collision rate with compounds of lower ionization potential than benzene, such as isoprene (C5H8), other conjugated dienes, and aromatics. These ions are generally unreactive with substances of higher ionization potential such as alkanes, simple alcohols, simple carbonyls, etc. The results demonstrate that C6H6+ and (C6H6)2+ are excellent reagent ions for the sensitive detection of isoprene in air with a CIMS. However, 2-methyl-3-buten-2-ol (MBO) and C5H8 conjugated dienes were identified as potential interferences to this technique. This indicates that the selectivity of the CIMS isoprene measurement must be tested by intercomparison with well-established methods, e.g. gas chromatography techniques.

  11. Ambient air particles: effects on cellular oxidant radical generation in relation to particulate elemental chemistry.

    PubMed

    Prahalad, A K; Soukup, J M; Inmon, J; Willis, R; Ghio, A J; Becker, S; Gallagher, J E

    1999-07-15

    Epidemiologic studies have reported causal relationships between exposures to high concentrations of ambient air particles (AAP) and increased morbidity in individuals with underlying respiratory problems. Polymorphonuclear leukocytes (PMN) are frequently present in the airways of individuals exposed to particles. Upon particulate stimulation the PMN may release reactive oxygen species (ROS), which can result in tissue damage and injury. In this study a wide range of AAP samples from divergent sources (1, natural dust; 2, oil fly ash; 2, coal fly ash; 5, ambient air; and 1, carbon black) were analyzed for elemental content and solubility in relation to their ability to generate ROS. Elemental analyses were carried out in AAP and dH(2)O-washed AAP using energy dispersive x-ray fluorescence (XRF). Percent of sample mass accounted for by XRF-detectable elements was 1.2% (carbon black); 22-29% (natural dust and ambient air particles); 13-22% (oil fly ash particles); 28-49% (coal fly ash particles). The major proportion of elements in most of these particles were aluminosilicates and insoluble iron, except oil-derived fly ash particles in which soluble vanadium and nickel were in highest concentrations, consistent with particle acidity as measured in the supernatants. Human blood-derived monocytes and PMN were exposed to AAP and dH(2)O-washed particles, and generation of ROS was determined using luminol-enhanced chemiluminescence (LCL) assay. All the particles induced chemiluminescence response in the cells, except carbon black. The oxidant response of monocytes induced by AAP (with the exception of oil fly ash particles) was less than the response elicited by PMN. The LCL response of PMN in general increased with all washed particles, with oil fly ash (OFA) and one urban air particle showing statistically significant (p < 0. 05) differences between dH(2)O-washed and unwashed particles. The LCL activity in PMN induced by both particles and dH(2)O-washed particles was

  12. Significant light induced ozone loss on biomass burning aerosol: Evidence from chemistry-transport modeling based on new laboratory studies

    NASA Astrophysics Data System (ADS)

    Konovalov, I. B.; Beekmann, M.; D'Anna, B.; George, C.

    2012-09-01

    Recent laboratory studies indicated that a photo-induced heterogeneous reaction of ozone on the surface of aerosol containing humic like substances (HULIS) has the potential to affect the ozone budget in biomass burning plumes. To evaluate atmospheric significance of such heterogeneous light induced ozone loss, this process has been taken into account in the simulation of the extreme air pollution episode in the Moscow region during the 2010 mega fire event in western Russia. Results of the numerical experiments performed with the CHIMERE chemistry transport model indicate that photo induced removal of ozone could lead to significant (reaching several tens of percent) episodic decrease of the ozone concentration. The simulations also show that while wildfires provide reactive surface for the considered reaction, they strongly inhibit the photo-induced heterogeneous ozone loss by attenuating actinic fluxes through the “shielding” aerosol effect. The present results are calling for additional experimental and modelling studies.

  13. Gaseous Chemistry and Aerosol Mechanism Developments for Version 3.5.1 of the Online Regional Model, WRF-Chem

    SciTech Connect

    Archer-Nicholls, Scott; Lowe, Douglas; Utembe, Steve; Allan, James D.; Zaveri, Rahul A.; Fast, Jerome D.; Hodnebrog, Oivind; H. Denier van der Gon; McFiggans, Gordon

    2014-11-08

    We have made a number of developments in the regional coupled model WRF-Chem, with the aim of making the model more suitable for prediction of atmospheric composition and of interactions between air quality and weather. We have worked on the European domain, with a particular focus on making the model suitable for the study of night time chemistry and oxidation by the nitrate radical in the UK atmosphere. A reduced form of the Common Reactive Intermediates gas-phase chemical mechanism (CRIv2-R5) has been implemented to enable more explicit simulation of VOC degradation. N2O5 heterogeneous chemistry has been added to the existing sectional MOSAIC aerosol module, and coupled to both the CRIv2-R5 and existing CBM-Z gas phase scheme. Modifications have also been made to the sea-spray aerosol emission representation, allowing the inclusion of primary organic material in sea-spray aerosol. Driven by appropriate emissions, wind fields and chemical boundary conditions, implementation of the different developments is illustrated in order to demonstrate the impact that these changes have in the North-West European domain. These developments are now part of the freely available WRF-Chem distribution.

  14. ROLE OF MODELS IN AIR QUALITY MANAGEMENT DECISIONS

    EPA Science Inventory

    Within the frame of the US-India bilateral agreement on environmental cooperation, a team of US scientists have been helping India in designing emission control policies to address urban air quality problems. This presentation discusses how air quality models need to be used for ...

  15. Recent Advances in WRF Modeling for Air Quality Applications

    EPA Science Inventory

    The USEPA uses WRF in conjunction with the Community Multiscale Air Quality (CMAQ) for air quality regulation and research. Over the years we have added physics options and geophysical datasets to the WRF system to enhance model capabilities especially for extended retrospective...

  16. How Good and Useful Are Air Pollution Models?

    ERIC Educational Resources Information Center

    Environmental Science and Technology, 1973

    1973-01-01

    The Regional Air Pollution Study (RAPS) to be conducted in St. Louis, is the largest air monitoring program of the Environmental Protection Agency. A key segment will be the collection of a data base on which this system of mathematical models can be tested and upon which submodels can be validated. (BL)

  17. Impact of aircraft NOx emissions on tropospheric ozone calculated with a chemistry-general circulation model: Sensitivity to higher hydrocarbon chemistry

    NASA Astrophysics Data System (ADS)

    Kentarchos, A. S.; Roelofs, G. J.

    2002-07-01

    A three-dimensional chemistry-general circulation model has been employed to estimate the impact of current aircraft NOx emissions on tropospheric ozone. The model contains a representation of higher hydrocarbon chemistry, implemented by means of the Carbon Bond Mechanism 4 (CBM4), in order to investigate the potential effect of higher hydrocarbons on aircraft-induced ozone changes. Aircraft NOx emissions increase background NOX (= NO + NO2 + NO3 + 2N2O5 + HNO4) concentrations by 50-70 pptv in the upper troposphere over the Northern Hemisphere, and contribute up to 3 ppbv to upper tropospheric background ozone levels. When higher hydrocarbon chemistry is considered in the simulation, the aircraft-induced ozone perturbations are higher by ~12% during summer and the aircraft-induced ozone production efficiency per NOx molecule increases by ~20%, when compared to a simulation without higher hydrocarbon chemistry.

  18. Wintertime nitric acid chemistry - Implications from three-dimensional model calculations

    NASA Technical Reports Server (NTRS)

    Rood, Richard B.; Kaye, Jack A.; Douglass, Anne R.; Allen, Dale J.; Steenford, Stephen

    1990-01-01

    A three-dimensional simulation of the evolution of HNO3 has been run for the winter of 1979. Winds and temperatures are taken from a stratospheric data assimilation analysis, and the chemistry is based on Limb Infrared Monitor of the Stratosphere (LIMS) observations. The model is compared to LIMS observations to investigate the problem of 'missing' nitric acid chemistry in the winter hemisphere. Both the model and observations support the contention that a nitric acid source is needed outside of the polar vortex and north of the subtropics. Observations suggest that HNO3 is not dynamically controlled in middle latitudes. The model shows that given the time scales of conventional chemistry, dynamical control is expected. Therefore, an error exists in the conventional chemistry or additional processes are needed to bring the model and data into agreement. Since the polar vortex is dynamically isolated from the middle latitudes, and since the highest HNO3 values are observed in October and November, a source associated solely with polar stratospheric clouds cannot explain the deficiencies in the chemistry. The role of heterogeneous processes on background aerosols is reviewed in light of these results.

  19. EMSL Science Theme Advisory Panel Workshop - Atmospheric Aerosol Chemistry, Climate Change, and Air Quality

    SciTech Connect

    Baer, Donald R.; Finlayson-Pitts, Barbara J.; Allen, Heather C.; Bertram, Allan K.; Grassian, Vicki H.; Martin, Scot T.; Penner, Joyce E.; Prather, Kimberly; Rasch, Philip J.; Signorell, Ruth; Smith, James N.; Wyslouzil, Barbara; Ziemann, Paul; Dabdub, Donald; Furche, Filipp; Nizkorodov, Sergey; Tobias, Douglas J.; Laskin, Julia; Laskin, Alexander

    2013-07-01

    This report contains the workshop scope and recommendations from the workshop attendees in identifying scientific gaps in new particle formation, growth and properties of particles and reactions in and on particles as well as the laboratory-focused capabilities, field-deployable capabilities and modeling/theory tools along with linking of models to fundamental data.

  20. Positive and negative gas-phase ion chemistry of chlorofluorocarbons in air at atmospheric pressure.

    PubMed

    Bosa, Elisabetta; Paradisi, Cristina; Scorrano, Gianfranco

    2003-01-01

    This paper presents a report on the ionization/dissociation of some representative chlorofluorocarbons (CFCs) induced by corona discharges in air at atmospheric pressure. Both positive and negative ions formed from Freons 1,1,1-trichlorotrifluoroethane (CFC 113a), 1,1,2-trichlorotrifluoroethane (CFC 113), and 1,1,1,2-tetrachlorodifluoroethane (CFC 112a) were analyzed using an atmospheric pressure chemical ionization mass spectrometry (APCI-MS) instrument. Energy-resolved mass spectra were obtained by modulating the kinetic energy of the ions via adjustment of the sampling cone potential (V(cone)). Positive ion spectra of the CFCs (M) at low V(cone) show no signals due to either M(+)* or MH(+) but only those due to species [M - Cl](+) and CX(3)(+) (X = Cl, F), likely formed via C-Cl and C-C bond cleavages following ionization via charge exchange. Charge localization in the products of C-C bond cleavage in M(+)* is driven by the stability of the neutral fragment. At low V(cone) the hydrates [M - Cl](+)(H(2)O) are also observed. In the case of 1,1,2,-trichlorotrifluoroethane, [M - F](+) species also form as a result of ion-molecule reactions. As V(cone) is increased collision-induced dissociation of [M - Cl](+) and [M - F](+), i.e., the perhalogenated cations C(2)X(5)(+) (X = Cl, F), takes place via carbene elimination. In some cases such elimination is preceded or accompanied by rearrangements involving transfer of halogen from one carbon to the other. Evidence is also presented for the occurrence of a condensation reaction of C(2)Cl(3)F(2)(+) with water to form a C(2)Cl(2)F(2)HO(+) species via elimination of HCl. Negative ion spectra are dominated by Cl(-) and its ion-neutral complexes with M and with water. Additional components of the plasma include ion-neutral complexes O(3)(-)(M), the molecular anion M(-) (observed only with 1,1,2-trichlorotrifluoroethane), and an interesting species corresponding to [M - Cl + O](-). The origin and structure of these [M - Cl + O

  1. Prediction of hydrodynamics and chemistry of confined turbulent methane-air flames with attention to formation of oxides of nitrogen

    NASA Technical Reports Server (NTRS)

    Elghobashi, S.; Spalding, D. B.; Srivatsa, S. K.

    1977-01-01

    A formulation of the governing partial differential equations for fluid flow and reacting chemical species in a tubular combustor is presented. A numerical procedure for the solution of the governing differential equations is described, and models for chemical equilibrium and chemical kinetics calculations are presented. The chemical equilibrium model is used to characterize the hydrocarbon reactions. The chemical kinetics model is used to predict the concentrations of the oxides of nitrogen. The combustor consists of a cylindrical duct of varying cross sections with concentric streams of gaseous fuel and air entering the duct at one end. Four sample cases with specified inlet and boundary conditions are considered, and the results are discussed

  2. Modeling Macro- and Micro-Scale Turbulent Mixing and Chemistry in Engine Exhaust Plumes

    NASA Technical Reports Server (NTRS)

    Menon, Suresh

    1998-01-01

    Simulation of turbulent mixing and chemical processes in the near-field plume and plume-vortex regimes has been successfully carried out recently using a reduced gas phase kinetics mechanism which substantially decreased the computational cost. A detailed mechanism including gas phase HOx, NOx, and SOx chemistry between the aircraft exhaust and the ambient air in near-field aircraft plumes is compiled. A reduced mechanism capturing the major chemical pathways is developed. Predictions by the reduced mechanism are found to be in good agreement with those by the detailed mechanism. With the reduced chemistry, the computer CPU time is saved by a factor of more than 3.5 for the near-field plume modeling. Distributions of major chemical species are obtained and analyzed. The computed sensitivities of major species with respect to reaction step are deduced for identification of the dominant gas phase kinetic reaction pathways in the jet plume. Both the near field plume and the plume-vortex regimes were investigated using advanced mixing models. In the near field, a stand-alone mixing model was used to investigate the impact of turbulent mixing on the micro- and macro-scale mixing processes using a reduced reaction kinetics model. The plume-vortex regime was simulated using a large-eddy simulation model. Vortex plume behind Boeing 737 and 747 aircraft was simulated along with relevant kinetics. Many features of the computed flow field show reasonable agreement with data. The entrainment of the engine plumes into the wing tip vortices and also the partial detrainment of the plume were numerically captured. The impact of fluid mechanics on the chemical processes was also studied. Results show that there are significant differences between spatial and temporal simulations especially in the predicted SO3 concentrations. This has important implications for the prediction of sulfuric acid aerosols in the wake and may partly explain the discrepancy between past numerical studies

  3. An Integrated Visualization and Basic Molecular Modeling Laboratory for First-Year Undergraduate Medicinal Chemistry

    ERIC Educational Resources Information Center

    Hayes, Joseph M.

    2014-01-01

    A 3D model visualization and basic molecular modeling laboratory suitable for first-year undergraduates studying introductory medicinal chemistry is presented. The 2 h practical is embedded within a series of lectures on drug design, target-drug interactions, enzymes, receptors, nucleic acids, and basic pharmacokinetics. Serving as a teaching aid…

  4. Characteristics and Levels of Sophistication: An Analysis of Chemistry Students' Ability to Think with Mental Models

    ERIC Educational Resources Information Center

    Wang, Chia-Yu; Barrow, Lloyd H.

    2011-01-01

    This study employed a case-study approach to reveal how an ability to think with mental models contributes to differences in students' understanding of molecular geometry and polarity. We were interested in characterizing features and levels of sophistication regarding first-year university chemistry learners' mental modeling behaviors while the…

  5. Construction of an Instructional Design Model for Undergraduate Chemistry Laboratory Design: A Delphi Approach

    ERIC Educational Resources Information Center

    Bunag, Tara

    2012-01-01

    The purpose of this study was to construct an instructional systems design model for chemistry teaching laboratories at the undergraduate level to accurately depict the current practices of design experts. This required identifying the variables considered during design, prioritizing and ordering these variables, and constructing a model. Experts…

  6. Evaluation of tropospheric chemistry simulations for the Global Modeling Initiative (GMI)

    NASA Astrophysics Data System (ADS)

    Logan, J. A.; Bergman, D.; Rodriguez, J.; Chatfield, R.; Considine, D.; Wang, Y.; Jacob, D.; Prather, M.; Rotman, D.; Cameron-Smith, P.

    2003-04-01

    The NASA Global Modeling Initiative is a global 3-D modeling tool focused on addressing assessments of anthropogenic impacts in an optimal manner, consistent with the state of the science. It consists of a flexible modular platform in which components developed by different research groups for atmospheric transport, emissions, radiation, chemistry, and related processes can be evaluated and inter-compared. The key advantage of GMI is that it will facilitate exploration of how differences in the choice of model components affect the simulation of the atmospheric chemistry system, and ultimately, the uncertainty of assessments. The GMI model for tropospheric chemistry has been run for three sets of meteorological input: NASA Data Assimilation Office results for 1997 (GEOS-STRAT), and general circulation model results from NCAR's MACCM3 and from the 23-layer Model II' of NASA/GISS. The chemistry scheme and magnitude of stratospheric input was identical for all simulations, and the emissions were identical insofar as possible. We will present an evaluation of these simulations using surface, ozonesonde, and aircraft data, as well as a preliminary assessment of the causes of model-model differences resulting from the adoption of different meteorological fields.

  7. A Performance Enhanced Interactive Learning Workshop Model as a Supplement for Organic Chemistry Instruction

    ERIC Educational Resources Information Center

    Phillips, Karen E. S.; Grose-Fifer, Jilliam

    2011-01-01

    In this study, the authors describe a Performance Enhanced Interactive Learning (PEIL) workshop model as a supplement for organic chemistry instruction. This workshop model differs from many others in that it includes public presentations by students and other whole-class-discussion components that have not been thoroughly investigated in the…

  8. Redox Models in Chemistry Textbooks for the Upper Secondary School: Friend or Foe?

    ERIC Educational Resources Information Center

    Osterlund, Lise-Lotte; Berg, Anders; Ekborg, Margareta

    2010-01-01

    We have investigated how chemistry textbooks use models of redox reactions in different subject areas, how they change models between and within the topics, and how they deal with specific learning difficulties identified in the literature. The textbooks examined were published for use in the natural science programme in Swedish upper secondary…

  9. The role of the snowpack on the fate of alpha-HCH in an atmospheric chemistry-transport model.

    PubMed

    Hansen, Kaj M; Halsall, Crispin J; Christensen, Jesper H; Brandt, Jørgen; Frohn, Lise M; Geels, Camilla; Skjøth, Carsten Ambelas

    2008-04-15

    A dynamic snowpack module was implemented in the Danish Eulerian Hemispheric Model Persistant Organic Pollutants (DEHM-POP), an atmospheric chemistry-transport model designed to study the environmental fate of persistent organic pollutants in the Northern Hemisphere. The role of the snowpack on the fate of alpha-hexachlorocyclohexane (alpha-HCH) was investigated by making simulations both with and without the formation of a snowpack and comparing model results with data from 21 air monitoring sites. The inclusion of a dynamic snowpack module in the DEHM-POP model generally improves the fit between modeled and observed alpha-HCH air concentrations for the winter and spring seasons and the overall correlation coefficient between predicted and observed concentrations are improved at 8 of the sites. The predicted snowpack concentrations are in good agreement with the few available snow measurements from the Arctic. The presence of a snowpack increases surface boundary layer air concentrations of alpha-HCH at midlatitudes, while the effect is more pronounced in the Arctic due to the longer periods of snow cover. The results indicate that the snowpack module in DEHM-POP acts as a fast-exchanging temporary storage medium for alpha-HCH, as significant fractions were rapidly revolatilized back into the atmosphere following deposition with snowfall, although the current parametrization for vapor-exchange probably over emphasizes this process. Nonetheless, increased air concentrations observed between March and May ("spring maximum events"; SME) at several high latitude monitoring stations are also predicted by the model. The model results indicate that the SMEs are associated with the revolatilization of previously deposited chemical from the snowpack, following a reduction in the capacity of the snowpack to retain alpha-HCH with increasing temperatures toward the end of the winter period, rather than the actual melting of the snowpack. The SMEs are not predicted at all the

  10. Multiscale modeling of air pollutants dynamics in the northwestern Mediterranean basin during a typical summertime episode

    NASA Astrophysics Data System (ADS)

    JiméNez, Pedro; Lelieveld, Jos; Baldasano, José M.

    2006-09-01

    The complex behavior of photochemical pollutants in the northwestern Mediterranean basin (NWMB) is conditioned by the superposition of circulations of different scale and the pattern of emissions. Therefore a new approach to the modeling of air quality in the NWMB has been adopted by combining the global climate-chemistry model ECHAM5/MESSy and the regional modeling system MM5-EMICAT2000-CMAQ to analyze the high levels of photochemical air pollution during a typical summertime episode. We show that this combination of models is well suited to address the range of scales involved. The complexity of the area requires the application of high spatial and temporal resolution (2 km and 1 hour) modeling to cover local to regional interactions. We address the local and large-scale processes controlling tropospheric ozone in the NWMB, notably emissions and photochemistry, convective and advective transport, deposition processes, and stratosphere-troposphere exchange. The simulation results indicate that the ozone buildup largely results from local photochemical production, which strongly exceeds the removal rates through transport and deposition. The contribution by advective transport is limited, associated with the stagnant meteorological conditions. In the lower troposphere, local recirculation systems are of key importance. The strength of the land-sea breeze circulation and thermally or mechanically driven convection over the complex orography of the eastern Iberian coast can induce vertical transport and the layering of air pollution.

  11. A Physically Based Model for Air-Lift Pumping

    NASA Astrophysics Data System (ADS)

    FrançOis, Odile; Gilmore, Tyler; Pinto, Michael J.; Gorelick, Steven M.

    1996-08-01

    A predictive, physically based model for pumping water from a well using air injection (air-lift pumping) was developed for the range of flow rates that we explored in a series of laboratory experiments. The goal was to determine the air flow rate required to pump a specific flow rate of water in a given well, designed for in-well air stripping of volatile organic compounds from an aquifer. The model was validated against original laboratory data as well as data from the literature. A laboratory air-lift system was constructed that consisted of a 70-foot-long (21-m-long) pipe, 5.5 inches (14 cm) inside diameter, in which an air line of 1.3 inches (3.3 cm) outside diameter was placed with its bottom at different elevations above the base of the long pipe. Experiments were conducted for different levels of submergence, with water-pumping rates ranging from 5 to 70 gallons/min (0.32-4.4 L/s), and air flow ranging from 7 to 38 standard cubic feet/min (0.2-1.1 m3 STP/min). The theoretical approach adopted in the model was based on an analysis of the system as a one-dimensional two-phase flow problem. The expression for the pressure gradient includes inertial energy terms, friction, and gas expansion versus elevation. Data analysis revealed that application of the usual drift-flux model to estimate the air void fraction is not adequate for the observed flow patterns: either slug or churn flow. We propose a modified drift-flux model that accurately predicts air-lift pumping requirements for a range of conditions representative of in-well air-stripping operations.

  12. An in situ and downstream study of non-thermal plasma chemistry in an air fed dielectric barrier discharge (DBD)

    NASA Astrophysics Data System (ADS)

    Al-Abduly, Abdullah; Christensen, Paul

    2015-12-01

    This paper reports a spectroscopic study of non-thermal plasma chemistry in an air-fed dielectric barrier discharge (DBD) plasma jet. In situ analysis (i.e. the analysis of the plasma glow) and downstream analysis were carried out to identify and monitor species produced in the plasma as they propagate from the plasma glow to downstream regions. The analyses were carried out using Fourier Transform InfraRed (FTIR) and UV-Vis spectroscopies. The species: O3, N2O5, N2O, HNO3, CO2, CO and, for the first time, a vibrationally excited form of CO2 (i.e. \\text{CO}2* (v)) were identified in the plasma glow, while O3, N2O5, HNO3 and N2O were detected in the downstream exhaust. The behaviour of these species was monitored as a function of a range of experimental conditions including: input power, gas flow rate, relative humidity, gas temperature and feed gas composition. In addition, the uncertainty associated with UV-vis detection of ozone in the presence of N2O5 and/or HNO3 as interfering species was determined.

  13. Linking Meteorology, Air Quality Models and Observations to ...

    EPA Pesticide Factsheets

    Epidemiologic studies are critical in establishing the association between exposure to air pollutants and adverse health effects. Results of epidemiologic studies are used by U.S. EPA in developing air quality standards to protect the public from the health effects of air pollutants. A major challenge in environmental epidemiology is adequate exposure characterization. Numerous health studies have used measurements from a few central-site ambient monitors to characterize air pollution exposures. Relying solely on central-site ambient monitors does not account for the spatial-heterogeneity of ambient air pollution patterns, the temporal variability in ambient concentrations, nor the influence of infiltration and indoor sources. Central-site monitoring becomes even more problematic for certain air pollutants that exhibit significant spatial heterogeneity. Statistical interpolation techniques and passive monitoring methods can provide additional spatial resolution in ambient concentration estimates. In addition, spatio-temporal models, which integrate GIS data and other factors, such as meteorology, have also been developed to produce more resolved estimates of ambient concentrations. Models, such as the Community Multi-Scale Air Quality (CMAQ) model, estimate ambient concentrations by combining information on meteorology, source emissions, and chemical-fate and transport. Hybrid modeling approaches, which integrate regional scale models with local scale dispersion

  14. Modeling air quality over China: Results from the Panda project

    NASA Astrophysics Data System (ADS)

    Katinka Petersen, Anna; Bouarar, Idir; Brasseur, Guy; Granier, Claire; Xie, Ying; Wang, Lili; Wang, Xuemei

    2015-04-01

    China faces strong air pollution problems related to rapid economic development in the past decade and increasing demand for energy. Air quality monitoring stations often report high levels of particle matter and ozone all over the country. Knowing its long-term health impacts, air pollution became then a pressing problem not only in China but also in other Asian countries. The PANDA project is a result of cooperation between scientists from Europe and China who joined their efforts for a better understanding of the processes controlling air pollution in China, improve methods for monitoring air quality and elaborate indicators in support of European and Chinese policies. A modeling system of air pollution is being setup within the PANDA project and include advanced global (MACC, EMEP) and regional (WRF-Chem, EMEP) meteorological and chemical models to analyze and monitor air quality in China. The poster describes the accomplishments obtained within the first year of the project. Model simulations for January and July 2010 are evaluated with satellite measurements (SCIAMACHY NO2 and MOPITT CO) and in-situ data (O3, CO, NOx, PM10 and PM2.5) observed at several surface stations in China. Using the WRF-Chem model, we investigate the sensitivity of the model performance to emissions (MACCity, HTAPv2), horizontal resolution (60km, 20km) and choice of initial and boundary conditions.

  15. WRF-Chem model predictions of the regional impacts of N2O5 heterogeneous processes on night-time chemistry over north-western Europe

    DOE PAGES

    Lowe, Douglas; Archer-Nicholls, Scott; Morgan, Will; ...

    2015-02-09

    Chemical modelling studies have been conducted over north-western Europe in summer conditions, showing that night-time dinitrogen pentoxide (N2O5) heterogeneous reactive uptake is important regionally in modulating particulate nitrate and has a~modest influence on oxidative chemistry. Results from Weather Research and Forecasting model with Chemistry (WRF-Chem) model simulations, run with a detailed volatile organic compound (VOC) gas-phase chemistry scheme and the Model for Simulating Aerosol Interactions and Chemistry (MOSAIC) sectional aerosol scheme, were compared with a series of airborne gas and particulate measurements made over the UK in July 2010. Modelled mixing ratios of key gas-phase species were reasonably accurate (correlationsmore » with measurements of 0.7–0.9 for NO2 and O3). However modelled loadings of particulate species were less accurate (correlation with measurements for particulate sulfate and ammonium were between 0.0 and 0.6). Sulfate mass loadings were particularly low (modelled means of 0.5–0.7 μg kg−1air, compared with measurements of 1.0–1.5 μg kg−1air). Two flights from the campaign were used as test cases – one with low relative humidity (RH) (60–70%), the other with high RH (80–90%). N2O5 heterogeneous chemistry was found to not be important in the low-RH test case; but in the high-RH test case it had a strong effect and significantly improved the agreement between modelled and measured NO3 and N2O5. When the model failed to capture atmospheric RH correctly, the modelled NO3 and N2O5 mixing ratios for these flights differed significantly from the measurements. This demonstrates that, for regional modelling which involves heterogeneous processes, it is essential to capture the ambient temperature and water vapour profiles. The night-time NO3 oxidation of VOCs across the whole region was found to be 100–300 times slower than the daytime OH oxidation of these compounds. The difference in contribution was less for

  16. Hybrid Air Quality Modeling Approach For Use in the Near ...

    EPA Pesticide Factsheets

    The Near-road EXposures to Urban air pollutant Study (NEXUS) investigated whether children with asthma living in close proximity to major roadways in Detroit, MI, (particularly near roadways with high diesel traffic) have greater health impacts associated with exposure to air pollutants than those living farther away. A major challenge in such health and exposure studies is the lack of information regarding pollutant exposure characterization. Air quality modeling can provide spatially and temporally varying exposure estimates for examining relationships between traffic-related air pollutants and adverse health outcomes. This paper presents a hybrid air quality modeling approach and its application in NEXUS in order to provide spatial and temporally varying exposure estimates and identification of the mobile source contribution to the total pollutant exposure. Model-based exposure metrics, associated with local variations of emissions and meteorology, were estimated using a combination of the AERMOD and R-LINE dispersion models, local emission source information from the National Emissions Inventory, detailed road network locations and traffic activity, and meteorological data from the Detroit City Airport. The regional background contribution was estimated using a combination of the Community Multiscale Air Quality (CMAQ) model and the Space/Time Ordinary Kriging (STOK) model. To capture the near-road pollutant gradients, refined “mini-grids” of model recep

  17. A high-resolution air chemistry record from an Alpine ice core: Fiescherhorn glacier, Swiss Alps

    NASA Astrophysics Data System (ADS)

    Schwikowski, M.; Brütsch, S.; GäGgeler, H. W.; Schotterer, U.

    1999-06-01

    Glaciochemical studies at midlatitudes promise to contribute significantly to the understanding of the atmospheric cycling of species with short atmospheric lifetimes. Here we present results of chemical analyses of environmentally relevant species performed on an ice core from Fiescherhorn glacier, Swiss Alps (3890 m above sea level). This glacier site is unique since it is located near the high-alpine research station Jungfraujoch. There long-term meteorological and air quality measurements exist, which were used to calibrate the paleodata. The 77-m-long ice core was dated by annual layer counting using the seasonally varying signals of tritium and δ18O. It covers the time period 1946-1988 and shows a high net accumulation of water of 1.4 m yr-1 allowing for the reconstruction of high-resolution environmental records. Chemical composition was dominated by secondary aerosol constituents as well as mineral dust components, characterizing the Fiescherhorn site as a relatively unpolluted continental site. Concentrations of species like ammonium, nitrate, and sulfate showed an increasing trend from 1946 until about 1975, reflecting anthropogenic emission trends in western Europe. For mineral dust tracers, no trends were obvious, whereas chloride and sodium showed slightly higher levels from 1965 until 1988, indicating a change in the strength of sea-salt transport. Good agreement between the sulfate paleorecord with direct atmospheric measurements was found (correlation coefficient r2 = 0.41). Thus a "calibration" of the paleorecord over a significant period of time could be conducted, revealing an average scavenging ratio of 180 for sulfate.

  18. A FEDERATED PARTNERSHIP FOR URBAN METEOROLOGICAL AND AIR QUALITY MODELING

    EPA Science Inventory

    Recently, applications of urban meteorological and air quality models have been performed at resolutions on the order of km grid sizes. This necessitated development and incorporation of high resolution landcover data and additional boundary layer parameters that serve to descri...

  19. The Air Quality Model Evaluation International Initiative (AQMEII)

    EPA Science Inventory

    This presentation provides an overview of the Air Quality Model Evaluation International Initiative (AQMEII). It contains a synopsis of the three phases of AQMEII, including objectives, logistics, and timelines. It also provides a number of examples of analyses conducted through ...

  20. Incorporating principal component analysis into air quality model evaluation

    EPA Science Inventory

    The efficacy of standard air quality model evaluation techniques is becoming compromised as the simulation periods continue to lengthen in response to ever increasing computing capacity. Accordingly, the purpose of this paper is to demonstrate a statistical approach called Princi...

  1. Modeling Human Serum Albumin Tertiary Structure to Teach Upper-Division Chemistry Students Bioinformatics and Homology Modeling Basics

    ERIC Educational Resources Information Center

    Petrovic, Dus?an; Zlatovic´, Mario

    2015-01-01

    A homology modeling laboratory experiment has been developed for an introductory molecular modeling course for upper-division undergraduate chemistry students. With this experiment, students gain practical experience in homology model preparation and assessment as well as in protein visualization using the educational version of PyMOL…

  2. Nonequilibrium radiation and chemistry models for aerocapture vehicle flowfields

    NASA Technical Reports Server (NTRS)

    Carlson, Leland A.

    1991-01-01

    The primary tasks performed are: (1) the development of a second order local thermodynamic nonequilibrium (LTNE) model for atoms; (2) the continued development of vibrational nonequilibrium models; and (3) the development of a new multicomponent diffusion model. In addition, studies comparing these new models with previous models and results were conducted and reported.

  3. Development of AN Integrated Air Pollution Modeling System and Simulations of Ozone Distributions Over the LOS Angeles Basin

    NASA Astrophysics Data System (ADS)

    Lu, Rong

    It is well known that air pollution affects human health and the environment. The effectiveness of pollution control relies on the understanding of relationships between emissions and airborne pollutant concentrations, which are governed by atmospheric processes. Numerical models that mathematically describe the atmospheric dynamics and chemistry in details are powerful tools to investigate concentrations and distributions of pollutants in the atmosphere. An air pollution modeling system (APMS) is developed for urban and regional air quality studies. The system, which couples a mesoscale meteorological model (MMTD) with an air quality model (GATOR), has four major components: a meteorological dynamic model, a tracer transport code, detailed treatments of chemical and aerosol microphysical processes, and a radiative transfer code. The meteorological model solves fluid dynamic and thermodynamic equations over complex terrain, and incorporates physical processes such as turbulent diffusion, water vapor condensation and precipitation, solar and infrared radiative transfer, and ground surface processes. The tracer transport code computes the dispersion of gases and aerosols in the atmosphere, including emissions, and dry and wet depositions. The chemistry/aerosol module treats coupled gas-phase photochemistry and aerosol microphysics and chemistry. Aerosol processes include nucleation, coagulation, condensational growth, evaporation, sedimentation, chemical equilibrium and aqueous chemistry. The intensive measurement data collected during the Southern California Air Quality Study are used to assess the performances of the air pollution modeling system. The agreement between predictions and observations indicates that the model is able to reproduce the main features of mesoscale meteorology, tracer transport and dispersion, and pollutant transformations in urban and regional scales. Three-dimensional distributions and transport characteristics of pollutants over Southern

  4. Implementation of a PETN failure model using ARIA's general chemistry framework

    SciTech Connect

    Hobbs, Michael L.

    2017-01-01

    We previously developed a PETN thermal decomposition model that accurately predicts thermal ignition and detonator failure [1]. This model was originally developed for CALORE [2] and required several complex user subroutines. Recently, a simplified version of the PETN decomposition model was implemented into ARIA [3] using a general chemistry framework without need for user subroutines. Detonator failure was also predicted with this new model using ENCORE. The model was simplified by 1) basing the model on moles rather than mass, 2) simplifying the thermal conductivity model, and 3) implementing ARIA’s new phase change model. This memo briefly describes the model, implementation, and validation.

  5. Development and application of air quality models at the US ...

    EPA Pesticide Factsheets

    Overview of the development and application of air quality models at the U.S. EPA, particularly focused on the development and application of the Community Multiscale Air Quality (CMAQ) model developed within the Computation Exposure Division (CED) of the National Exposure Research Laboratory (NERL). This presentation will provide a simple overview of air quality model development and application geared toward a non-technical student audience. The National Exposure Research Laboratory (NERL) Computational Exposure Division (CED) develops and evaluates data, decision-support tools, and models to be applied to media-specific or receptor-specific problem areas. CED uses modeling-based approaches to characterize exposures, evaluate fate and transport, and support environmental diagnostics/forensics with input from multiple data sources. It also develops media- and receptor-specific models, process models, and decision support tools for use both within and outside of EPA.

  6. The Ames two-dimensional stratosphere-mesospheric model. [chemistry and transport of SST pollution

    NASA Technical Reports Server (NTRS)

    Whitten, R. C.; Borucki, W. J.; Watson, V. R.; Capone, L. A.; Maples, A. L.; Riegel, C. A.

    1974-01-01

    A two-dimensional model of the stratosphere and mesosphere has recently been developed at Ames Research Center. The model contains chemistry based on 18 species that are solved for at each step and a seasonally-varying transport model based on both winds and eddy transport. The model is described and a preliminary assessment of the impact of supersonic aircraft flights on the ozone layer is given.

  7. Assessment of Turbulence-Chemistry Interaction Models in the National Combustion Code (NCC) - Part I

    NASA Technical Reports Server (NTRS)

    Wey, Thomas Changju; Liu, Nan-suey

    2011-01-01

    This paper describes the implementations of the linear-eddy model (LEM) and an Eulerian FDF/PDF model in the National Combustion Code (NCC) for the simulation of turbulent combustion. The impacts of these two models, along with the so called laminar chemistry model, are then illustrated via the preliminary results from two combustion systems: a nine-element gas fueled combustor and a single-element liquid fueled combustor.

  8. Modeling the chemistry of the dense interstellar clouds. I - Observational constraints for the chemistry

    NASA Technical Reports Server (NTRS)

    Federman, S. R.; Huntress, W. T., Jr.; Prasad, S. S.

    1990-01-01

    A search for correlations arising from molecular line data is made in order to place constraints on the chemical models of interstellar clouds. At 10 to the 21st H2/sq cm, N(CO) for dark clouds is a factor of six greater than the value for diffuse clouds. This implies that the strength of the UV radiation field where CO shields itself from dissociation is about one-half the strength of the average Galactic field. The dark cloud data indicate that the abundance of CO continues to increase with A(V) for directions with A(V) of 4 mag or less, although less steeply with N(H2) than for diffuse clouds. For H2CO, a quadratic relationship is obtained in plots versus H2 column density. The data suggest a possible turnover at the highest values for A(V). NH3 shows no correlation with H2, C(O-18), HC3N, or HC5N; a strong correlation is found between HC5N and HC3N, indicating a chemical link between the cyanopolyynes.

  9. Modelling the chemistry of star-forming filaments - I. H2 and CO chemistry

    NASA Astrophysics Data System (ADS)

    Seifried, D.; Walch, S.

    2016-06-01

    We present simulations of star-forming filaments incorporating on of the largest chemical network used to date on-the-fly in a 3D-magnetohydrodynamic (MHD) simulation. The network contains 37 chemical species and about 300 selected reaction rates. For this, we use the newly developed package KROME (Grassi et al.). We combine the KROME package with an algorithm which allows us to calculate the column density and attenuation of the interstellar radiation field necessary to properly model heating and ionization rates. Our results demonstrate the feasibility of using such a complex chemical network in 3D-MHD simulations on modern supercomputers. We perform simulations with different strengths of the interstellar radiation field and the cosmic ray ionization rate. We find that, towards the centre of the filaments, there is gradual conversion of hydrogen from H to H2 as well as of C+ over C to CO. Moreover, we find a decrease of the dust temperature towards the centre of the filaments in agreement with recent HERSCHEL observations.

  10. A Low-order Coupled Chemistry Meteorology Model for Testing Online and Offline Advanced Data Assimilation Schemes

    NASA Astrophysics Data System (ADS)

    Bocquet, M.; Haussaire, J. M.

    2015-12-01

    Bocquet and Sakov have recently introduced a low-order model based on the coupling of thechaotic Lorenz-95 model which simulates winds along a mid-latitude circle, with thetransport of a tracer species advected by this wind field. It has been used to testadvanced data assimilation methods with an online model that couples meteorology andtracer transport. In the present study, the tracer subsystem of the model is replacedwith a reduced photochemistry module meant to emulate reactive air pollution. Thiscoupled chemistry meteorology model, the L95-GRS model, mimics continental andtranscontinental transport and photochemistry of ozone, volatile organic compounds andnitrogen dioxides.The L95-GRS is specially useful in testing advanced data assimilation schemes, such as theiterative ensemble Kalman smoother (IEnKS) that combines the best of ensemble andvariational methods. The model provides useful insights prior to any implementation ofthe data assimilation method on larger models. For instance, online and offline dataassimilation strategies based on the ensemble Kalman filter or the IEnKS can easily beevaluated with it. It allows to document the impact of species concentration observationson the wind estimation. The model also illustrates a long standing issue in atmosphericchemistry forecasting: the impact of the wind chaotic dynamics and of the chemical speciesnon-chaotic but highly nonlinear dynamics on the selected data assimilation approach.

  11. Air quality model studies with application for southeastern Virginia

    NASA Technical Reports Server (NTRS)

    Brewer, D. A.; Remsberg, E. E.

    1980-01-01

    A single-cell photochemical air quality model incorporating (1) a published chemical mechanism, (2) advection, and (3) entrainment and emissions processes was constructed and compared with data from the EPA Regional Air Pollution Study. While agreement with measured CO and NO2 was established, O3 production was found to occur too rapidly and in excess. Calculated O3 levels improved when a 20% reduction in photolytic rate constants and a doubling of wind speed were applied. The results of the model sensitivity studies are being incorporated into the design and conduct of field measurement programs for the characterization of the vertical and horizontal homogeneity of an air quality region.

  12. Techniques for modeling hazardous air pollutant emissions from landfills

    SciTech Connect

    Lang, R.J.; Vigil, S.A.; Melcer, H.

    1998-12-31

    The Environmental Protection Agency`s Landfill Air Estimation Model (LAEEM), combined with either the AP-42 or CAA landfill emission factors, provide a basis to predict air emissions, including hazardous air pollutants (HAPs), from municipal solid waste landfills. This paper presents alternative approaches for estimating HAP emissions from landfills. These approaches include analytical solutions and estimation techniques that account for convection, diffusion, and biodegradation of HAPs. Results from the modeling of a prototypical landfill are used as the basis for discussion with respect to LAEEM results

  13. Finite-Difference Solution for Laminar or Turbulent Boundary Layer Flow over Axisymmetric Bodies with Ideal Gas, CF4, or Equilibrium Air Chemistry

    NASA Technical Reports Server (NTRS)

    Hamilton, H. Harris, II; Millman, Daniel R.; Greendyke, Robert B.

    1992-01-01

    A computer code was developed that uses an implicit finite-difference technique to solve nonsimilar, axisymmetric boundary layer equations for both laminar and turbulent flow. The code can treat ideal gases, air in chemical equilibrium, and carbon tetrafluoride (CF4), which is a useful gas for hypersonic blunt-body simulations. This is the only known boundary layer code that can treat CF4. Comparisons with experimental data have demonstrated that accurate solutions are obtained. The method should prove useful as an analysis tool for comparing calculations with wind tunnel experiments and for making calculations about flight vehicles where equilibrium air chemistry assumptions are valid.

  14. Control of asthma triggers in indoor air with air cleaners: a modeling analysis

    PubMed Central

    Myatt, Theodore A; Minegishi, Taeko; Allen, Joseph G; MacIntosh, David L

    2008-01-01

    Background Reducing exposure to environmental agents indoors shown to increase asthma symptoms or lead to asthma exacerbations is an important component of a strategy to manage asthma for individuals. Numerous investigations have demonstrated that portable air cleaning devices can reduce concentrations of asthma triggers in indoor air; however, their benefits for breathing problems have not always been reproducible. The potential exposure benefits of whole house high efficiency in-duct air cleaners for sensitive subpopulations have yet to be evaluated. Methods We used an indoor air quality modeling system (CONTAM) developed by NIST to examine peak and time-integrated concentrations of common asthma triggers present in indoor air over a year as a function of natural ventilation, portable air cleaners, and forced air ventilation equipped with conventional and high efficiency filtration systems. Emission rates for asthma triggers were based on experimental studies published in the scientific literature. Results Forced air systems with high efficiency filtration were found to provide the best control of asthma triggers: 30–55% lower cat allergen levels, 90–99% lower risk of respiratory infection through the inhalation route of exposure, 90–98% lower environmental tobacco smoke (ETS) levels, and 50–75% lower fungal spore levels than the other ventilation/filtration systems considered. These results indicate that the use of high efficiency in-duct air cleaners provide an effective means of controlling allergen levels not only in a single room, like a portable air cleaner, but the whole house. Conclusion These findings are useful for evaluating potential benefits of high efficiency in-duct filtration systems for controlling exposure to asthma triggers indoors and for the design of trials of environmental interventions intended to evaluate their utility in practice. PMID:18684328

  15. Study and modeling of finite rate chemistry effects in turbulent non-premixed flames

    NASA Technical Reports Server (NTRS)

    Vervisch, Luc

    1993-01-01

    The development of numerical models that reflect some of the most important features of turbulent reacting flows requires information about the behavior of key quantities in well defined combustion regimes. In turbulent flames, the coupling between turbulent and chemical processes is so strong that it is extremely difficult to isolate the role played by one individual physical phenomenon. Direct numerical simulation (hereafter DNS) allows us to study in detail the turbulence-chemistry interaction in some restricted but completely defined situations. Globally, non-premixed flames are controlled by two limiting regimes: the fast chemistry case, where the turbulent flame can be pictured as a random distribution of local chemical equilibrium problems; and the slow chemistry case, where the chemistry integrates in time the turbulent fluctuations. The Damkoehler number, ratio of a mechanical time scale to chemical time scale, is used to distinguish between these regimes. Today most of the industrial computer codes are able to perform predictions in the hypothesis of local equilibrium chemistry using a presumed shape for the probability density function (pdt) of the conserved scalar. However, the finite rate chemistry situation is of great interest because industrial burners usually generate regimes in which, at some points, the flame is undergoing local extinction or at least non-equilibrium situations. Moreover, this variety of situations strongly influences the production of pollutants. To quantify finite rate chemistry effect, the interaction between a non-premixed flame and a free decaying turbulence is studied using DNS. The attention is focused on the dynamic of extinction, and an attempt is made to quantify the effect of the reaction on the small scale mixing process. The unequal diffusivity effect is also addressed. Finally, a simple turbulent combustion model based on the DNS observations and tractable in real flow configurations is proposed.

  16. Statistical Downscaling of WRF-Chem Model: An Air Quality Analysis over Bogota, Colombia

    NASA Astrophysics Data System (ADS)

    Kumar, Anikender; Rojas, Nestor

    2015-04-01

    Statistical downscaling is a technique that is used to extract high-resolution information from regional scale variables produced by coarse resolution models such as Chemical Transport Models (CTMs). The fully coupled WRF-Chem (Weather Research and Forecasting with Chemistry) model is used to simulate air quality over Bogota. Bogota is a tropical Andean megacity located over a high-altitude plateau in the middle of very complex terrain. The WRF-Chem model was adopted for simulating the hourly ozone concentrations. The computational domains were chosen of 120x120x32, 121x121x32 and 121x121x32 grid points with horizontal resolutions of 27, 9 and 3 km respectively. The model was initialized with real boundary conditions using NCAR-NCEP's Final Analysis (FNL) and a 1ox1o (~111 km x 111 km) resolution. Boundary conditions were updated every 6 hours using reanalysis data. The emission rates were obtained from global inventories, namely the REanalysis of the TROpospheric (RETRO) chemical composition and the Emission Database for Global Atmospheric Research (EDGAR). Multiple linear regression and artificial neural network techniques are used to downscale the model output at each monitoring stations. The results confirm that the statistically downscaled outputs reduce simulated errors by up to 25%. This study provides a general overview of statistical downscaling of chemical transport models and can constitute a reference for future air quality modeling exercises over Bogota and other Colombian cities.

  17. Merging curriculum design with chemical epistemology: A case of teaching and learning chemistry through modeling

    NASA Astrophysics Data System (ADS)

    Erduran, Sibel

    The central problem underlying this dissertation is the design of learning environments that enable the teaching and learning of chemistry through modeling. Significant role of models in chemistry knowledge is highlighted with a shift in emphasis from conceptual to epistemological accounts of models. Research context is the design and implementation of student centered Acids & Bases Curriculum, developed as part of Project SEPIA. Qualitative study focused on 3 curriculum activities conducted in one 7th grade class of 19 students in an urban, public middle school in eastern United States. Questions guiding the study were: (a) How can learning environments be designed to promote growth of chemistry knowledge through modeling? (b) What epistemological criteria facilitate learning of growth of chemistry knowledge through modeling? Curriculum materials, and verbal data from whole class conversations and student group interviews were analyzed. Group interviews consisted of same 4 students, selected randomly before curriculum implementation, and were conducted following each activity to investigate students' developing understandings of models. Theoretical categories concerning definition, properties and kinds of models as well as educational and chemical models informed curriculum design, and were redefined as codes in the analysis of verbal data. Results indicate more diversity of codes in student than teacher talk across all activities. Teacher concentrated on educational and chemical models. A significant finding is that model properties such as 'compositionality' and 'projectability' were not present in teacher talk as expected by curriculum design. Students did make reference to model properties. Another finding is that students demonstrate an understanding of models characterized by the seventeenth century Lemery model of acids and bases. Two students' developing understandings of models across curriculum implementation suggest that curriculum bears some change in

  18. The GEOS-Chemistry-Climate Model (CCM), Versions 1,2 and 3

    NASA Technical Reports Server (NTRS)

    Pawson, Steven; Nielsen, Eric; Duncan, Bryan; Stolarski, Richard

    2009-01-01

    This paper examines evolution of key ozone and climate aspects in our range of Goddard Earth Observing System Models, Versions 1-3. Version 1 (Pawson et al., 2008; )GR) used GSFC stratospheric ozone chemistry in GEOS-4 GCM. A chronic high bias in polar ozone at low chlorine loading persisted into Version 2, which used the GEQS-5 GCM and the same chemistry. This is much improved in Version 3, which uses the GMI-COMBO stratosphere-troposphere chemistry. A dynamical problem with Version 1, the overactive nature of the Antarctic polar vortex, is corrected in Versions 2 and 3, when GEQS-5 replaces GEO5-4. Other changes between the various model versions will be documented.

  19. Validation of a novel air toxic risk model with air monitoring.

    PubMed

    Pratt, Gregory C; Dymond, Mary; Ellickson, Kristie; Thé, Jesse

    2012-01-01

    Three modeling systems were used to estimate human health risks from air pollution: two versions of MNRiskS (for Minnesota Risk Screening), and the USEPA National Air Toxics Assessment (NATA). MNRiskS is a unique cumulative risk modeling system used to assess risks from multiple air toxics, sources, and pathways on a local to a state-wide scale. In addition, ambient outdoor air monitoring data were available for estimation of risks and comparison with the modeled estimates of air concentrations. Highest air concentrations and estimated risks were generally found in the Minneapolis-St. Paul metropolitan area and lowest risks in undeveloped rural areas. Emissions from mobile and area (nonpoint) sources created greater estimated risks than emissions from point sources. Highest cancer risks were via ingestion pathway exposures to dioxins and related compounds. Diesel particles, acrolein, and formaldehyde created the highest estimated inhalation health impacts. Model-estimated air concentrations were generally highest for NATA and lowest for the AERMOD version of MNRiskS. This validation study showed reasonable agreement between available measurements and model predictions, although results varied among pollutants, and predictions were often lower than measurements. The results increased confidence in identifying pollutants, pathways, geographic areas, sources, and receptors of potential concern, and thus provide a basis for informing pollution reduction strategies and focusing efforts on specific pollutants (diesel particles, acrolein, and formaldehyde), geographic areas (urban centers), and source categories (nonpoint sources). The results heighten concerns about risks from food chain exposures to dioxins and PAHs. Risk estimates were sensitive to variations in methodologies for treating emissions, dispersion, deposition, exposure, and toxicity.

  20. ECHMERIT: A new on-line global mercury-chemistry model

    NASA Astrophysics Data System (ADS)

    Jung, G.; Hedgecock, I. M.; Pirrone, N.

    2009-04-01

    Mercury is a volatile metal, that is of concern because when deposited and transformed to methylmercury accumulates within the food-web. Due to the long lifetime of elemental mercury, which is the dominant fraction of mercury species in the atmosphere, mercury is prone to long-range transport and therefore distributed over the globe, transported and hence deposited even in regions far from anthropogenic emission sources. Mercury is released to the atmosphere from a variety of natural and anthropogenic sources, in elementary and oxidised forms, and as particulate mercury. It is then transported, but also transformed chemically in the gaseous phase, as well as in aqueous phase within cloud and rain droplets. Mercury (particularly its oxidised forms) is removed from the atmosphere though wet and dry deposition processes, a large fraction of deposited mercury is, after chemical or biological reduction, re-emitted to the atmosphere as elementary mercury. To investigate mercury chemistry and transport processes on the global scale, the new, global model ECHMERIT has been developed. ECHMERIT simulates meteorology, transport, deposition, photolysis and chemistry on-line. The general circulation model on which ECHMERIT is based is ECHAM5. Sophisticated chemical modules have been implemented, including gas phase chemistry based on the CBM-Z chemistry mechanism, as well as aqueous phase chemistry, both of which have been adapted to include Hg chemistry and Hg species gas-droplet mass transfer. ECHMERIT uses the fast-J photolysis routine. State-of-the-art procedures simulating wet and dry deposition and emissions were adapted and included in the model as well. An overview of the model structure, development, validation and sensitivity studies is presented.

  1. The Double Counting Problem in Neighborhood Scale Air Quality Modeling

    NASA Astrophysics Data System (ADS)

    Du, S.; Hughes, V.; Woodhouse, L.; Servin, A.

    2004-12-01

    Air quality varies considerably within megacities. In certain neighborhoods concentrations of toxic air contaminants (TACs) can be appreciably higher than that in other neighborhoods of the same city. These pockets of high concentrations are associated with both transport of TACs from other areas and local emissions. In order to assess the health risks imposed by TACs at neighborhood scale and to develop strategies of abatement, neighborhood scale air quality modeling is needed. In 1999, the California Air Resources Board (ARB) established the Neighborhood Assessment Program (NAP) - a program designed to develop assessment tools for evaluating and understanding air quality in California communities. As part of the Neighborhood Assessment Program, ARB is conducting research on neighborhood-scale modeling methodologies. Two criteria are suggested to select a neighborhood scale air quality modeling system that can be used to assess concentrations of TACs: scientific soundness and balancing computational requirements. The latter criterion ensures that as many interested parties as possible can participate the process of air quality modeling so that they have a better understanding of air quality issues and make best use of air quality modeling results in their neighborhoods. Based on these two selection criteria a hybrid approach is recommended. This hybrid approach is a combination of using both a regional scale air quality model to assess the contributions from sources that are not located within the neighborhood of interest and a microscale model to assess the impact from the local sources that are within the neighborhood. However, one of the modeling system selection criteria, balancing computational requirements, dictates that all sources (both within and outside the neighborhood of interest) must be included in the regional scale modeling. A potential problem, referred to as double counting, arises because some local sources are included in both regional and

  2. EnergyPlus Air Source Integrated Heat Pump Model

    SciTech Connect

    Shen, Bo; Adams, Mark B.; New, Joshua Ryan

    2016-03-30

    This report summarizes the development of the EnergyPlus air-source integrated heat pump model. It introduces its physics, sub-models, working modes, and control logic. In addition, inputs and outputs of the new model are described, and input data file (IDF) examples are given.

  3. An annual assessment of air quality with the CALIOPE modeling system over Spain.

    PubMed

    Baldasano, J M; Pay, M T; Jorba, O; Gassó, S; Jiménez-Guerrero, P

    2011-05-01

    The CALIOPE project, funded by the Spanish Ministry of the Environment, aims at establishing an air quality forecasting system for Spain. With this goal, CALIOPE modeling system was developed and applied with high resolution (4km×4km, 1h) using the HERMES emission model (including emissions of resuspended particles from paved roads) specifically built up for Spain. The present study provides an evaluation and the assessment of the modeling system, coupling WRF-ARW/HERMES/CMAQ/BSC-DREAM8b for a full-year simulation in 2004 over Spain. The evaluation focuses on the capability of the model to reproduce the temporal and spatial distribution of gas phase species (NO(2), O(3), and SO(2)) and particulate matter (PM10) against ground-based measurements from the Spanish air quality monitoring network. The evaluation of the modeling results on an hourly basis shows a strong dependency of the performance of the model on the type of environment (urban, suburban and rural) and the dominant emission sources (traffic, industrial, and background). The O(3) chemistry is best represented in summer, when mean hourly variability and high peaks are generally well reproduced. The mean normalized error and bias meet the recommendations proposed by the United States Environmental Protection Agency (US-EPA) and the European regulations. Modeled O(3) shows higher performance for urban than for rural stations, especially at traffic stations in large cities, since stations influenced by traffic emissions (i.e., high-NO(x) environments) are better characterized with a more pronounced daily variability. NO(x)/O(3) chemistry is better represented under non-limited-NO(2) regimes. SO(2) is mainly produced from isolated point sources (power generation and transformation industries) which generate large plumes of high SO(2) concentration affecting the air quality on a local to national scale where the meteorological pattern is crucial. The contribution of mineral dust from the Sahara desert through

  4. The Role of Water Chemistry in Marine Aquarium Design: A Model System for a General Chemistry Class

    ERIC Educational Resources Information Center

    Keaffaber, Jeffrey J.; Palma, Ramiro; Williams, Kathryn R.

    2008-01-01

    Water chemistry is central to aquarium design, and it provides many potential applications for discussion in undergraduate chemistry and engineering courses. Marine aquaria and their life support systems feature many chemical processes. A life support system consists of the entire recirculation system, as well as the habitat tank and all ancillary…

  5. Chemistry, Life, the Universe, and Everything: A New Approach to General Chemistry, and a Model for Curriculum Reform

    ERIC Educational Resources Information Center

    Cooper, Melanie; Klymkowsky, Michael

    2013-01-01

    The history of general chemistry is one of almost constant calls for reform, yet over the past 60 years little of substance has changed. Those reforms that have been implemented are almost entirely concerned with how the course is taught, rather than what is to be learned. Here we briefly discuss the history of the general chemistry curriculum and…

  6. Modelling heat and mass transfer in a membrane-based air-to-air enthalpy exchanger

    NASA Astrophysics Data System (ADS)

    Dugaria, S.; Moro, L.; Del, D., Col

    2015-11-01

    The diffusion of total energy recovery systems could lead to a significant reduction in the energy demand for building air-conditioning. With these devices, sensible heat and humidity can be recovered in winter from the exhaust airstream, while, in summer, the incoming air stream can be cooled and dehumidified by transferring the excess heat and moisture to the exhaust air stream. Membrane based enthalpy exchangers are composed by different channels separated by semi-permeable membranes. The membrane allows moisture transfer under vapour pressure difference, or water concentration difference, between the two sides and, at the same time, it is ideally impermeable to air and other contaminants present in exhaust air. Heat transfer between the airstreams occurs through the membrane due to the temperature gradient. The aim of this work is to develop a detailed model of the coupled heat and mass transfer mechanisms through the membrane between the two airstreams. After a review of the most relevant models published in the scientific literature, the governing equations are presented and some simplifying assumptions are analysed and discussed. As a result, a steady-state, two-dimensional finite difference numerical model is setup. The developed model is able to predict temperature and humidity evolution inside the channels. Sensible and latent heat transfer rate, as well as moisture transfer rate, are determined. A sensitive analysis is conducted in order to determine the more influential parameters on the thermal and vapour transfer.

  7. Air Leakage of U.S. Homes: Model Prediction

    SciTech Connect

    Sherman, Max H.; McWilliams, Jennifer A.

    2007-01-01

    Air tightness is an important property of building envelopes. It is a key factor in determining infiltration and related wall-performance properties such as indoor air quality, maintainability and moisture balance. Air leakage in U.S. houses consumes roughly 1/3 of the HVAC energy but provides most of the ventilation used to control IAQ. The Lawrence Berkeley National Laboratory has been gathering residential air leakage data from many sources and now has a database of more than 100,000 raw measurements. This paper uses a model developed from that database in conjunction with US Census Bureau data for estimating air leakage as a function of location throughout the US.

  8. A diagnostic model for studying daytime urban air quality trends

    NASA Technical Reports Server (NTRS)

    Brewer, D. A.; Remsberg, E. E.; Woodbury, G. E.

    1981-01-01

    A single cell Eulerian photochemical air quality simulation model was developed and validated for selected days of the 1976 St. Louis Regional Air Pollution Study (RAPS) data sets; parameterizations of variables in the model and validation studies using the model are discussed. Good agreement was obtained between measured and modeled concentrations of NO, CO, and NO2 for all days simulated. The maximum concentration of O3 was also predicted well. Predicted species concentrations were relatively insensitive to small variations in CO and NOx emissions and to the concentrations of species which are entrained as the mixed layer rises.

  9. Community Multiscale Air Quality (CMAQ) Modeling for ...

    EPA Pesticide Factsheets

    The CMAQ model is a Eulerian model that produces gridded values of atmospheric concentration and deposition. Recent updates to the model are highlighted that impact estimates of dry and wet deposition of nitrogen, sulfur and base cations. Output from the CMAQ model is used in the measurement-model fusion method used to create the National Atmospheric Program's (NADP) Total Deposition (TDEP) map product. The National Exposure Research Laboratory (NERL) Computational Exposure Division (CED) develops and evaluates data, decision-support tools, and models to be applied to media-specific or receptor-specific problem areas. CED uses modeling-based approaches to characterize exposures, evaluate fate and transport, and support environmental diagnostics/forensics with input from multiple data sources. It also develops media- and receptor-specific models, process models, and decision support tools for use both within and outside of EPA.

  10. Nonequilibrium radiation and chemistry models for aerocapture vehicle flowfields

    NASA Technical Reports Server (NTRS)

    Carlson, Leland A.

    1993-01-01

    The period from Jan. 1993 thru Aug. 1993 is covered. The primary tasks during this period were the development of a single and multi-vibrational temperature preferential vibration-dissociation coupling model, the development of a normal shock nonequilibrium radiation-gasdynamic coupling model based upon the blunt body model, and the comparison of results obtained with these models with experimental data. In addition, an extensive series of computations were conducted using the blunt body model to develop a set of reference results covering a wide range of vehicle sizes, altitudes, and entry velocities.

  11. The ASAC Air Carrier Investment Model (Third Generation)

    NASA Technical Reports Server (NTRS)

    Wingrove, Earl R., III; Gaier, Eric M.; Santmire, Tara E.

    1998-01-01

    To meet its objective of assisting the U.S. aviation industry with the technological challenges of the future, NASA must identify research areas that have the greatest potential for improving the operation of the air transportation system. To accomplish this, NASA is building an Aviation System Analysis Capability (ASAC). The ASAC differs from previous NASA modeling efforts in that the economic behavior of buyers and sellers in the air transportation and aviation industries is central to its conception. To link the economics of flight with the technology of flight, ASAC requires a parametrically based model with extensions that link airline operations and investments in aircraft with aircraft characteristics. This model also must provide a mechanism for incorporating air travel demand and profitability factors into the airlines' investment decisions. Finally, the model must be flexible and capable of being incorporated into a wide-ranging suite of economic and technical models flat are envisioned for ASAC.

  12. Implementation of Argument-Driven Inquiry as an Instructional Model in a General Chemistry Laboratory Course

    ERIC Educational Resources Information Center

    Kadayifci, Hakki; Yalcin-Celik, Ayse

    2016-01-01

    This study examined the effectiveness of Argument-Driven Inquiry (ADI) as an instructional model in a general chemistry laboratory course. The study was conducted over the course of ten experimental sessions with 125 pre-service science teachers. The participants' level of reflective thinking about the ADI activities, changes in their science…

  13. The Effects of a Flipped Classroom Model of Instruction on Students' Performance and Attitudes towards Chemistry

    ERIC Educational Resources Information Center

    Olakanmi, Eunice Eyitayo

    2017-01-01

    This study establishes the effects of a flipped classroom model of instruction on academic performance and attitudes of 66 first-year secondary school students towards chemistry. A pre-test and post-test experimental design was employed to assign students randomly into either the experimental or control group. In order to assess the suitability of…

  14. Preservice Teachers' Pedagogical Content Knowledge of Using Particle Models in Teaching Chemistry

    ERIC Educational Resources Information Center

    De Jong, Onno; Van Driel, Jan H.; Verloop, Nico

    2005-01-01

    In this article, we describe the results of a study of the pedagogical content knowledge (PCK) of preservice chemistry teachers in the context of a postgraduate teacher education program. A group of preservice teachers (n = 12) took part in an experimental introductory course module about the use of particle models to help secondary school…

  15. Modeling Chemistry for Effective Chemical Education: An Interview with Ronald J. Gillespie

    ERIC Educational Resources Information Center

    Cardellini, Liberato

    2010-01-01

    Ronald J. Gillespie, the inventor of the Valence Shell Electron Pair Repulsion (VSEPR) model, relates how his career as researcher in Christopher Ingold's laboratories started. Gillespie developed a passion for chemistry and chemical education, searching for more appropriate and interesting ways to transmit the essential knowledge and enthusiasm…

  16. Looking beyond Lewis Structures: A General Chemistry Molecular Modeling Experiment Focusing on Physical Properties and Geometry

    ERIC Educational Resources Information Center

    Linenberger, Kimberly J.; Cole, Renee S.; Sarkar, Somnath

    2011-01-01

    We present a guided-inquiry experiment using Spartan Student Version, ready to be adapted and implemented into a general chemistry laboratory course. The experiment provides students an experience with Spartan Molecular Modeling software while discovering the relationships between the structure and properties of molecules. Topics discussed within…

  17. Mathematics Models in Chemistry--An Innovation for Non-Mathematics and Non-Science Majors

    ERIC Educational Resources Information Center

    Rash, Agnes M.; Zurbach, E. Peter

    2004-01-01

    The intention of this article is to present a year-long interdisciplinary course, Mathematical Models in Chemistry. The course is comprised of eleven units, each of which has both a mathematical and a chemical component. A syllabus of the course is given and the format of the class is explained. The interaction of the professors and the content is…

  18. Examination of Bond Properties through Infrared Spectroscopy and Molecular Modeling in the General Chemistry Laboratory

    ERIC Educational Resources Information Center

    Csizmar, Clifford M.; Force, Dee Ann; Warner, Don L.

    2012-01-01

    A concerted effort has been made to increase the opportunities for undergraduate students to address scientific problems employing the processes used by practicing chemists. As part of this effort, an infrared (IR) spectroscopy and molecular modeling experiment was developed for the first-year general chemistry laboratory course. In the…

  19. Principles of Environmental Chemistry

    NASA Astrophysics Data System (ADS)

    Hathaway, Ruth A.

    2007-07-01

    Roy M. Harrison, Editor RSC Publishing; ISBN 0854043713; × + 363 pp.; 2006; $69.95 Environmental chemistry is an interdisciplinary science that includes chemistry of the air, water, and soil. Although it may be confused with green chemistry, which deals with potential pollution reduction, environmental chemistry is the scientific study of the chemical and biochemical principles that occur in nature. Therefore, it is the study of the sources, reactions, transport, effects, and fates of chemical species in the air, water, and soil environments, and the effect of human activity on them. Environmental chemistry not only explores each of these environments, but also closely examines the interfaces and boundaries where the environments intersect.

  20. Development of a model for radon concentration in indoor air.

    PubMed

    Jelle, Bjørn Petter

    2012-02-01

    A model is developed for calculation of the radon concentration in indoor air. The model takes into account various important parameters, e.g. radon concentration in ground, radon diffusion resistance of radon barrier, air permeance of ground, air pressure difference between outdoor ground and indoor at ground level, ventilation of the building ground and number of air changes per hour due to ventilation. Characteristic case studies are depicted in selected 2D and 3D graphical plots for easy visualization and interpretation. The radon transport into buildings might be dominated by diffusion, pressure driven flow or a mixture of both depending on the actual values of the various parameters. The results of our work indicate that with realistic or typical values of the parameters, most of the transport of radon from the building ground to the indoor air is due to air leakage driven by pressure differences through the construction. By incorporation of various and realistic values in the radon model, valuable information about the miscellaneous parameters influencing the indoor radon level is gained. Hence, the presented radon model may be utilized as a simple yet versatile and powerful tool for examining which preventive or remedial measures should be carried out to achieve an indoor radon level below the reference level as set by the authorities.

  1. Analysis of mid-tropospheric carbon monoxide data using a three- dimensional Global atmospheric Chemistry numerical Model

    SciTech Connect

    Easter, R.C.; Saylor, R.D.; Chapman, E.G.

    1993-12-01

    The GChM atmospheric chemistry and transport model has been used to analyze the mid-tropospheric CO dataset obtained from NASA`s Measurement of Air Pollution by Satellites (MAPS) program. Fourteen simulations with a 3.75 horizontal resolution have been performed, including a base case and 13 sensitivity runs. The model reproduces many, but not all, of the major features of the MAPS dataset. Locations of peak CO mixing ratios associated with biomass burning as observed in the MAPS experiment are slightly farther south than the model result, indicating either greater horizontal transport than present in the model representation or a spatial difference between the location of modeled biomass fires and actual fires. The current version of GChM was shown to be relatively insensitive to the magnitude of the prescribed NO{sub x} and O{sub 3} global distributions and very insensitive to the depth of the mixed layer as parameterized in the model. Cloud convective transport was shown to play an important role in venting boundary layer CO to the free troposphere. This result agrees with prior meteorological analyses of the MAPS dataset that have-indirectly inferred the presence of convective activity through satellite-based information. Work is continuing to analyze the results of these simulations further and to perform more detailed comparisons between model results and MAPS data.

  2. An advanced modeling study on the impacts and atmospheric implications of multiphase dimethyl sulfide chemistry.

    PubMed

    Hoffmann, Erik Hans; Tilgner, Andreas; Schrödner, Roland; Bräuer, Peter; Wolke, Ralf; Herrmann, Hartmut

    2016-10-18

    Oceans dominate emissions of dimethyl sulfide (DMS), the major natural sulfur source. DMS is important for the formation of non-sea salt sulfate (nss-SO4(2-)) aerosols and secondary particulate matter over oceans and thus, significantly influence global climate. The mechanism of DMS oxidation has accordingly been investigated in several different model studies in the past. However, these studies had restricted oxidation mechanisms that mostly underrepresented important aqueous-phase chemical processes. These neglected but highly effective processes strongly impact direct product yields of DMS oxidation, thereby affecting the climatic influence of aerosols. To address these shortfalls, an extensive multiphase DMS chemistry mechanism, the Chemical Aqueous Phase Radical Mechanism DMS Module 1.0, was developed and used in detailed model investigations of multiphase DMS chemistry in the marine boundary layer. The performed model studies confirmed the importance of aqueous-phase chemistry for the fate of DMS and its oxidation products. Aqueous-phase processes significantly reduce the yield of sulfur dioxide and increase that of methyl sulfonic acid (MSA), which is needed to close the gap between modeled and measured MSA concentrations. Finally, the simulations imply that multiphase DMS oxidation produces equal amounts of MSA and sulfate, a result that has significant implications for nss-SO4(2-) aerosol formation, cloud condensation nuclei concentration, and cloud albedo over oceans. Our findings show the deficiencies of parameterizations currently used in higher-scale models, which only treat gas-phase chemistry. Overall, this study shows that treatment of DMS chemistry in both gas and aqueous phases is essential to improve the accuracy of model predictions.

  3. An advanced modeling study on the impacts and atmospheric implications of multiphase dimethyl sulfide chemistry

    NASA Astrophysics Data System (ADS)

    Hoffmann, Erik Hans; Tilgner, Andreas; Schrödner, Roland; Bräuer, Peter; Wolke, Ralf; Herrmann, Hartmut

    2016-10-01

    Oceans dominate emissions of dimethyl sulfide (DMS), the major natural sulfur source. DMS is important for the formation of non-sea salt sulfate (nss-SO42-) aerosols and secondary particulate matter over oceans and thus, significantly influence global climate. The mechanism of DMS oxidation has accordingly been investigated in several different model studies in the past. However, these studies had restricted oxidation mechanisms that mostly underrepresented important aqueous-phase chemical processes. These neglected but highly effective processes strongly impact direct product yields of DMS oxidation, thereby affecting the climatic influence of aerosols. To address these shortfalls, an extensive multiphase DMS chemistry mechanism, the Chemical Aqueous Phase Radical Mechanism DMS Module 1.0, was developed and used in detailed model investigations of multiphase DMS chemistry in the marine boundary layer. The performed model studies confirmed the importance of aqueous-phase chemistry for the fate of DMS and its oxidation products. Aqueous-phase processes significantly reduce the yield of sulfur dioxide and increase that of methyl sulfonic acid (MSA), which is needed to close the gap between modeled and measured MSA concentrations. Finally, the simulations imply that multiphase DMS oxidation produces equal amounts of MSA and sulfate, a result that has significant implications for nss-SO42- aerosol formation, cloud condensation nuclei concentration, and cloud albedo over oceans. Our findings show the deficiencies of parameterizations currently used in higher-scale models, which only treat gas-phase chemistry. Overall, this study shows that treatment of DMS chemistry in both gas and aqueous phases is essential to improve the accuracy of model predictions.

  4. Why has the bohr-sommerfeld model of the atom been ignoredby general chemistry textbooks?

    PubMed

    Niaz, Mansoor; Cardellini, Liberato

    2011-12-01

    Bohr's model of the atom is considered to be important by general chemistry textbooks. A major shortcoming of this model was that it could not explain the spectra of atoms containing more than one electron. In order to increase the explanatory power of the model, Sommerfeld hypothesized the existence of elliptical orbits. This study has the following objectives: 1) Formulation of criteria based on a history and philosophy of science framework; and 2) Evaluation of university-level general chemistry textbooks based on the criteria, published in Italy and U.S.A. Presentation of a textbook was considered to be "satisfactory" if it included a description of the Bohr-Sommerfeld model along with diagrams of the elliptical orbits. Of the 28 textbooks published in Italy that were analyzed, only five were classified as "satisfactory". Of the 46 textbooks published in U.S.A., only three were classified as "satisfactory". This study has the following educational implications: a) Sommerfeld's innovation (auxiliary hypothesis) by introducing elliptical orbits, helped to restore the viability of Bohr's model; b) Bohr-Sommerfeld's model went no further than the alkali metals, which led scientists to look for other models; c) This clearly shows that scientific models are tentative in nature; d) Textbook authors and chemistry teachers do not consider the tentative nature of scientific knowledge to be important; e) Inclusion of the Bohr-Sommerfeld model in textbooks can help our students to understand how science progresses.

  5. Scale Issues in Air Quality Modeling

    EPA Science Inventory

    This presentation reviews past model evaluation studies investigating the impact of horizontal grid spacing on model performance. It also presents several examples of using a spectral decomposition technique to separate the forcings from processes operating on different time scal...

  6. Evaluation of regional climate simulations for air quality modelling purposes

    NASA Astrophysics Data System (ADS)

    Menut, Laurent; Tripathi, Om P.; Colette, Augustin; Vautard, Robert; Flaounas, Emmanouil; Bessagnet, Bertrand

    2013-05-01

    In order to evaluate the future potential benefits of emission regulation on regional air quality, while taking into account the effects of climate change, off-line air quality projection simulations are driven using weather forcing taken from regional climate models. These regional models are themselves driven by simulations carried out using global climate models (GCM) and economical scenarios. Uncertainties and biases in climate models introduce an additional "climate modeling" source of uncertainty that is to be added to all other types of uncertainties in air quality modeling for policy evaluation. In this article we evaluate the changes in air quality-related weather variables induced by replacing reanalyses-forced by GCM-forced regional climate simulations. As an example we use GCM simulations carried out in the framework of the ERA-interim programme and of the CMIP5 project using the Institut Pierre-Simon Laplace climate model (IPSLcm), driving regional simulations performed in the framework of the EURO-CORDEX programme. In summer, we found compensating deficiencies acting on photochemistry: an overestimation by GCM-driven weather due to a positive bias in short-wave radiation, a negative bias in wind speed, too many stagnant episodes, and a negative temperature bias. In winter, air quality is mostly driven by dispersion, and we could not identify significant differences in either wind or planetary boundary layer height statistics between GCM-driven and reanalyses-driven regional simulations. However, precipitation appears largely overestimated in GCM-driven simulations, which could significantly affect the simulation of aerosol concentrations. The identification of these biases will help interpreting results of future air quality simulations using these data. Despite these, we conclude that the identified differences should not lead to major difficulties in using GCM-driven regional climate simulations for air quality projections.

  7. Modeling of lead air pollution. [Baton Rouge, Louisiana

    SciTech Connect

    Monteith, C.S.; Henry, J.M.

    1982-05-01

    A study was performed to determine whether vehicular emissions should be included with industrial emissions when demonstrating attainment of the ambient air quality standard for lead. The impact on ambient lead concentrations of the phaseout of leaded gasoline and improved automobile fuel economy was examined by modeling vehicular emissions for 1972 and 1978. Results show that while automobiles in the Baton Rouge area were a significant source of lead in 1972, the phaseout of leaded gasoline and the increase in fuel economy have resulted in a lower contribution (0.20 ..mu..g/m/sup 3/) by automobiles to the ambient lead concentration in 1978. The areas having the greatest potential for exceeding the ambient air quality standard can be identified using CDM (EPA's Climatological Dispersion Model). This information can be used to determine the optimal location for an ambient air monitor to demonstrate compliance with the ambient air quality standard. 9 references, 4 figures, 5 tables. (JMT)

  8. Developing of a New Atmospheric Ionizing Radiation (AIR) Model

    NASA Technical Reports Server (NTRS)

    Clem, John M.; deAngelis, Giovanni; Goldhagen, Paul; Wilson, John W.

    2003-01-01

    As a result of the research leading to the 1998 AIR workshop and the subsequent analysis, the neutron issues posed by Foelsche et al. and further analyzed by Hajnal have been adequately resolved. We are now engaged in developing a new atmospheric ionizing radiation (AIR) model for use in epidemiological studies and air transportation safety assessment. A team was formed to examine a promising code using the basic FLUKA software but with modifications to allow multiple charged ion breakup effects. A limited dataset of the ER-2 measurements and other cosmic ray data will be used to evaluate the use of this code.

  9. The ASAC Air Carrier Investment Model (Second Generation)

    NASA Technical Reports Server (NTRS)

    Wingrove, Earl R., III; Johnson, Jesse P.; Sickles, Robin C.; Good, David H.

    1997-01-01

    To meet its objective of assisting the U.S. aviation industry with the technological challenges of the future, NASA must identify research areas that have the greatest potential for improving the operation of the air transportation system. To accomplish this, NASA is building an Aviation System Analysis Capability (ASAC). The ASAC differs from previous NASA modeling efforts in that the economic behavior of buyers and sellers in the air transportation and aviation industries is central to its conception. To link the economics of flight with the technology of flight, ASAC requires a parametrically based mode with extensions that link airline operations and investments in aircraft with aircraft characteristics. This model also must provide a mechanism for incorporating air travel demand and profitability factors into the airlines' investment decisions. Finally, the model must be flexible and capable of being incorporated into a wide-ranging suite of economic and technical models that are envisioned for ASAC. We describe a second-generation Air Carrier Investment Model that meets these requirements. The enhanced model incorporates econometric results from the supply and demand curves faced by U.S.-scheduled passenger air carriers. It uses detailed information about their fleets in 1995 to make predictions about future aircraft purchases. It enables analysts with the ability to project revenue passenger-miles flown, airline industry employment, airline operating profit margins, numbers and types of aircraft in the fleet, and changes in aircraft manufacturing employment under various user-defined scenarios.

  10. Modeling air temperature changes in Northern Asia

    NASA Astrophysics Data System (ADS)

    Onuchin, A.; Korets, M.; Shvidenko, A.; Burenina, T.; Musokhranova, A.

    2014-11-01

    Based on time series (1950-2005) of monthly temperatures from 73 weather stations in Northern Asia (limited by 70-180° EL and 48-75° NL), it is shown that there are statistically significant spatial differences in character and intensity of the monthly and yearly temperature trends. These differences are defined by geomorphological and geographical parameters of the area including exposure of the territory to Arctic and Pacific air mass, geographic coordinates, elevation, and distances to Arctic and Pacific oceans. Study area has been divided into six domains with unique groupings of the temperature trends based on cluster analysis. An original methodology for mapping of temperature trends has been developed and applied to the region. The assessment of spatial patterns of temperature trends at the regional level requires consideration of specific regional features in the complex of factors operating in the atmosphere-hydrosphere-lithosphere-biosphere system.

  11. Air Quality Modeling in Support of the Near-Road Exposures and Effects of Urban Air Pollutants Study (NEXUS)

    EPA Science Inventory

    A major challenge in traffic-related air pollution exposure studies is the lack of information regarding pollutant exposure characterization. Air quality modeling can provide spatially and temporally varying exposure estimates for examining relationships between traffic-related a...

  12. Natural Air-Sea Flux of CO2 in Simulations of the NASA-GISS Climate Model: Sensitivity to the Physical Ocean Model Formulation

    NASA Technical Reports Server (NTRS)

    Romanou, A.; Gregg, Watson W.; Romanski, J.; Kelley, M.; Bleck, R.; Healy, R.; Nazarenko, L.; Russell, G.; Schmidt, G. A.; Sun, S.; Tausnev, N.

    2013-01-01

    Results from twin control simulations of the preindustrial CO2 gas exchange (natural flux of CO2) between the ocean and the atmosphere are presented here using the NASA-GISS climate model, in which the same atmospheric component (modelE2) is coupled to two different ocean models, the Russell ocean model and HYCOM. Both incarnations of the GISS climate model are also coupled to the same ocean biogeochemistry module (NOBM) which estimates prognostic distributions for biotic and abiotic fields that influence the air-sea flux of CO2. Model intercomparison is carried out at equilibrium conditions and model differences are contrasted with biases from present day climatologies. Although the models agree on the spatial patterns of the air-sea flux of CO2, they disagree on the strength of the North Atlantic and Southern Ocean sinks mainly because of kinematic (winds) and chemistry (pCO2) differences rather than thermodynamic (SST) ones. Biology/chemistry dissimilarities in the models stem from the different parameterizations of advective and diffusive processes, such as overturning, mixing and horizontal tracer advection and to a lesser degree from parameterizations of biogeochemical processes such as gravitational settling and sinking. The global meridional overturning circulation illustrates much of the different behavior of the biological pump in the two models, together with differences in mixed layer depth which are responsible for different SST, DIC and nutrient distributions in the two models and consequently different atmospheric feedbacks (in the wind, net heat and freshwater fluxes into the ocean).

  13. Crystal Model Kits for Use in the General Chemistry Laboratory.

    ERIC Educational Resources Information Center

    Kildahl, Nicholas J.; And Others

    1986-01-01

    Dynamic crystal model kits are described. Laboratory experiments in which students use these kits to build models have been extremely successful in providing them with an understanding of the three-dimensional structures of the common cubic unit cells as well as hexagonal and cubic closest-packing of spheres. (JN)

  14. A comparison of atmospheric composition using the Carbon Bond and Regional Atmospheric Chemistry MechanismsChemistry Mechanisms

    EPA Science Inventory

    We incorporate the recently developed Regional Atmospheric Chemistry Mechanism (version 2, RACM2) into the Community Multiscale Air Quality modeling system for comparison with the existing 2005 Carbon Bond mechanism with updated toluene chemistry (CB05TU). Compared to CB05TU, RAC...

  15. Prediction of hydrodynamics and chemistry of confined turbulent methane-air frames in a two concentric tube combustor

    NASA Technical Reports Server (NTRS)

    Markatos, N. C.; Spalding, D. B.; Srivatsa, S. K.

    1978-01-01

    A formulation of the governing partial differential equations for fluid flow and reacting chemical species in a two-concentric-tube combustor is presented. A numerical procedure for the solution of the governing differential equations is described and models for chemical-equilibrium and chemical-kinetics calculations are presented. The chemical-equilibrium model is used to characterize the hydrocarbon reactions. The chemical-kinetics model is used to predict the concentrations of the oxides of nitrogen. The combustor considered consists of two coaxial ducts. Concentric streams of gaseous fuel and air enter the inlet duct at one end; the flow then reverses and flows out through the outer duct. Two sample cases with specified inlet and boundary conditions are considered and the results are discussed.

  16. Modeling green infrastructure land use changes on future air ...

    EPA Pesticide Factsheets

    Green infrastructure can be a cost-effective approach for reducing stormwater runoff and improving water quality as a result, but it could also bring co-benefits for air quality: less impervious surfaces and more vegetation can decrease the urban heat island effect, and also result in more removal of air pollutants via dry deposition with increased vegetative surfaces. Cooler surface temperatures can also decrease ozone formation through the increases of NOx titration; however, cooler surface temperatures also lower the height of the boundary layer resulting in more concentrated pollutants within the same volume of air, especially for primary emitted pollutants (e.g. NOx, CO, primary particulate matter). To better understand how green infrastructure impacts air quality, the interactions between all of these processes must be considered collectively. In this study, we use a comprehensive coupled meteorology-air quality model (WRF-CMAQ) to simulate the influence of planned land use changes that include green infrastructure in Kansas City (KC) on regional meteorology and air quality. Current and future land use data was provided by the Mid-America Regional Council for 2012 and 2040 (projected land use due to population growth, city planning and green infrastructure implementation). These land use datasets were incorporated into the WRF-CMAQ modeling system allowing the modeling system to propagate the changes in vegetation and impervious surface coverage on meteoro

  17. New Development of the Online Integrated Climate-Chemistry model framwork (RegCM-CHEM4)

    NASA Astrophysics Data System (ADS)

    Zakey, A. S.; Shalaby, A. K.; Solmon, F.; Giorgi, F.; Tawfik, A. B.; Steiner, A. L.; Baklanov, A.

    2012-04-01

    The RegCM-CHEM4 is a new online integrated climate-chemistry model based on the regional climate model (RegCM4). The RegCM4 developed at the Abdus Salam International Centre for Theoretical Physics (ICTP), is a hydrostatic, sigma coordinate model. Tropospheric gas-phase chemistry is integrated into the climate model using the condensed version of the Carbon Bond Mechanism CBM-Z with lumped species that represent broad categories of organics based on carbon bond structure. The computationally rapid radical balance method RBM is coupled as a chemical solver to the gas-phase mechanism. Photolysis rates are determined as a function of meteorological and chemical inputs and interpolated from an array of pre-determined values based on the Tropospheric Ultraviolet-Visible Model (TUV) with cloud cover corrections. Cloud optical depths and cloud altitudes from RegCM-CHEM4 are used in the photolysis calculations, thereby directly coupling the photolysis rates and chemical reactions to meteorological conditions at each model time step. In this study, we evaluate the model over Europe for two different time scales: (1) an event-based analysis of the ozone episode associated with the heat wave of August 2003 and (2) a climatological analysis of a six-year simulation (2000-2005). For the episode analysis, model simulations show a good agreement with the European Monitoring and Evaluation Program (EMEP) observations of hourly ozone over different regions in Europe and capture ozone concentrations during and after the summer 2003 heat wave event. Analysis of the full six years of simulation indicates that the coupled chemistry-climate model can reproduce the seasonal cycle of ozone, with an overestimation of ozone in the non-event years of 5-15 ppb depending on the geographic region. Overall, the ozone and ozone precursor evaluation shows the feasibility of using RegCM-CHEM4 for decadal-length simulations of chemistry-climate interactions.

  18. Four-dimensional evaluation of regional air quality models

    EPA Science Inventory

    We present highlights of the results obtained in the third phase of the Air Quality Model Evaluation International Initiative (AQMEII3). Activities in AQMEII3 were focused on evaluating the performance of global, hemispheric and regional modeling systems over Europe and North Ame...

  19. Modeling Trends in Air Pollutant Concentrations over the ...

    EPA Pesticide Factsheets

    Regional model calculations over annual cycles have pointed to the need for accurately representing impacts of long-range transport. Linking regional and global scale models have met with mixed success as biases in the global model can propagate and influence regional calculations and often confound interpretation of model results. Since transport is efficient in the free-troposphere and since simulations over Continental scales and annual cycles provide sufficient opportunity for “atmospheric turn-over”, i.e., exchange between the free-troposphere and the boundary-layer, a conceptual framework is needed wherein interactions between processes occurring at various spatial and temporal scales can be consistently examined. The coupled WRF-CMAQ model is expanded to hemispheric scales and model simulations over period spanning 1990-current are analyzed to examine changes in hemispheric air pollution resulting from changes in emissions over this period. The National Exposure Research Laboratory (NERL) Atmospheric Modeling and Analysis Division (AMAD) conducts research in support of EPA mission to protect human health and the environment. AMAD research program is engaged in developing and evaluating predictive atmospheric models on all spatial and temporal scales for forecasting the air quality and for assessing changes in air quality and air pollutant exposures, as affected by changes in ecosystem management and regulatory decisions. AMAD is responsible for pr

  20. Fundamentals of chemistry modeling applicable to a vectorized particle simulation

    NASA Technical Reports Server (NTRS)

    Haas, Brian L.

    1990-01-01

    This paper describes the fundamentals of extending the vectorized particle simulation method derived by Baganoff and McDonald (1990), McDonald and Baganoff (1988), and McDonald (1989) for modeling chemically reacting flows. Details of reaction mechanics per reaction are presented, with particular attention given to the quantum nature of the vibrational mode. The models of reactive flows developed here were verified through a simulation of a superheated diatomic gas relaxing thermochemically to equilibrium in a reservoir.

  1. Transient Catalytic Combustor Model With Detailed Gas and Surface Chemistry

    NASA Technical Reports Server (NTRS)

    Struk, Peter M.; Dietrich, Daniel L.; Mellish, Benjamin P.; Miller, Fletcher J.; Tien, James S.

    2005-01-01

    In this work, we numerically investigate the transient combustion of a premixed gas mixture in a narrow, perfectly-insulated, catalytic channel which can represent an interior channel of a catalytic monolith. The model assumes a quasi-steady gas-phase and a transient, thermally thin solid phase. The gas phase is one-dimensional, but it does account for heat and mass transfer in a direction perpendicular to the flow via appropriate heat and mass transfer coefficients. The model neglects axial conduction in both the gas and in the solid. The model includes both detailed gas-phase reactions and catalytic surface reactions. The reactants modeled so far include lean mixtures of dry CO and CO/H2 mixtures, with pure oxygen as the oxidizer. The results include transient computations of light-off and system response to inlet condition variations. In some cases, the model predicts two different steady-state solutions depending on whether the channel is initially hot or cold. Additionally, the model suggests that the catalytic ignition of CO/O2 mixtures is extremely sensitive to small variations of inlet equivalence ratios and parts per million levels of H2.

  2. School Chemistry vs. Chemistry in Research: An Exploratory Experiment.

    ERIC Educational Resources Information Center

    Habraken, Clarisse L.; Buijs, Wim; Borkent, Hens; Ligeon, Willy; Wender, Harry; Meijer, Marijn

    2001-01-01

    Reports on a study exploring why students are not studying chemistry. Three groups of graduating high school students and their chemistry teachers stayed at a research institute working on molecular modeling and wrote essays on school chemistry versus chemistry in research. Concludes that school chemistry does not convey today's chemistry in…

  3. Development of a custom OMI NO2 data product for evaluating biases in a regional chemistry transport model

    NASA Astrophysics Data System (ADS)

    Kuhlmann, G.; Lam, Y. F.; Cheung, H. M.; Hartl, A.; Fung, J. C. H.; Chan, P. W.; Wenig, M. O.

    2015-05-01

    In this paper, we present the custom Hong Kong NO2 retrieval (HKOMI) for the Ozone Monitoring Instrument (OMI) on board the Aura satellite which was used to evaluate a high-resolution chemistry transport model (CTM) (3 km x 3 km spatial resolution). The atmospheric chemistry transport was modelled in the Pearl River Delta (PRD) region in southern China by the Models-3 Community Multiscale Air Quality (CMAQ) modelling system from October 2006 to January 2007. In the HKOMI NO2 retrieval, tropospheric air mass factors (AMFs) were recalculated using high-resolution ancillary parameters of surface reflectance, a priori NO2 and aerosol profiles, of which the latter two were taken from the CMAQ simulation. We tested the influence of the ancillary parameters on the data product using four different aerosol parametrizations. Ground-level measurements by the PRD Regional Air Quality Monitoring (RAQM) network were used as additional independent measurements. The HKOMI retrieval increases estimated tropospheric NO2 vertical column densities (VCD) by (+31 ± 38)%, when compared to NASA's standard product (OMNO2-SP), and improves the normalized mean bias (NMB) between satellite and ground observations by 26 percentage points from -41 to -15%. The individual influences of the parameters are (+11.4 ± 13.4)% for NO2 profiles, (+11.0 ± 20.9)% for surface reflectance and (+6.0 ± 8.4)% for the best aerosol parametrization. The correlation coefficient r is low between ground and satellite observations (r = 0.35). The low r and the remaining NMB can be explained by the low model performance and the expected differences when comparing point measurements with area-averaged satellite observations. The correlation between CMAQ and the RAQM network is low (r ~ 0.3) and the model underestimates the NO2 concentrations in the northwestern model domain (Foshan and Guangzhou). We compared the CMAQ NO2 time series of the two main plumes with our best OMI NO2 data set (HKOMI-4). The model

  4. An Evaluation of the Air-to-Air Engagement Models in the Naval Warfare Gaming System.

    DTIC Science & Technology

    1984-03-01

    RECCMMENDATIOVS AND CONCLUSIONS . . . . . . . . 120 A. ~MODEL EVALUATION CONCLUSIONS ........ 120 1. Approach to Air-tc- Ai : Engagement Modeling...T: ai i.%9 GrouDs located in Dar, Nack, Vig91-ia an! Sa=n Dago, c=lfri ==Z schsdulal to havs a st-and al,== ::;’r cn- hilifty hy FY87. !he Naval...ars: usre Or 13 faml.:E of models, use of data based modeling and a~: ai contrcl of forcqs. A family of models Is a Eat of modals ir !4,:: imc madal IS

  5. Non-OH chemistry in oxidation flow reactors for the study of atmospheric chemistry systematically examined by modeling

    NASA Astrophysics Data System (ADS)

    Peng, Zhe; Day, Douglas A.; Ortega, Amber M.; Palm, Brett B.; Hu, Weiwei; Stark, Harald; Li, Rui; Tsigaridis, Kostas; Brune, William H.; Jimenez, Jose L.

    2016-04-01

    Oxidation flow reactors (OFRs) using low-pressure Hg lamp emission at 185 and 254 nm produce OH radicals efficiently and are widely used in atmospheric chemistry and other fields. However, knowledge of detailed OFR chemistry is limited, allowing speculation in the literature about whether some non-OH reactants, including several not relevant for tropospheric chemistry, may play an important role in these OFRs. These non-OH reactants are UV radiation, O(1D), O(3P), and O3. In this study, we investigate the relative importance of other reactants to OH for the fate of reactant species in OFR under a wide range of conditions via box modeling. The relative importance of non-OH species is less sensitive to UV light intensity than to water vapor mixing ratio (H2O) and external OH reactivity (OHRext), as both non-OH reactants and OH scale roughly proportionally to UV intensity. We show that for field studies in forested regions and also the urban area of Los Angeles, reactants of atmospheric interest are predominantly consumed by OH. We find that O(1D), O(3P), and O3 have relative contributions to volatile organic compound (VOC) consumption that are similar or lower than in the troposphere. The impact of O atoms can be neglected under most conditions in both OFR and troposphere. We define "riskier OFR conditions" as those with either low H2O (< 0.1 %) or high OHRext ( ≥ 100 s-1 in OFR185 and > 200 s-1 in OFR254). We strongly suggest avoiding such conditions as the importance of non-OH reactants can be substantial for the most sensitive species, although OH may still dominate under some riskier conditions, depending on the species present. Photolysis at non-tropospheric wavelengths (185 and 254 nm) may play a significant (> 20 %) role in the degradation of some aromatics, as well as some oxidation intermediates, under riskier reactor conditions, if the quantum yields are high. Under riskier conditions, some biogenics can have substantial destructions by O3, similarly to

  6. Non-OH chemistry in oxidation flow reactors for the study of atmospheric chemistry systematically examined by modeling

    DOE PAGES

    Peng, Zhe; Day, Douglas A.; Ortega, Amber M.; ...

    2016-04-06

    Oxidation flow reactors (OFRs) using low-pressure Hg lamp emission at 185 and 254 nm produce OH radicals efficiently and are widely used in atmospheric chemistry and other fields. However, knowledge of detailed OFR chemistry is limited, allowing speculation in the literature about whether some non-OH reactants, including several not relevant for tropospheric chemistry, may play an important role in these OFRs. These non-OH reactants are UV radiation, O(1D), O(3P), and O3. In this study, we investigate the relative importance of other reactants to OH for the fate of reactant species in OFR under a wide range of conditions via box modeling.more » The relative importance of non-OH species is less sensitive to UV light intensity than to water vapor mixing ratio (H2O) and external OH reactivity (OHRext), as both non-OH reactants and OH scale roughly proportionally to UV intensity. We show that for field studies in forested regions and also the urban area of Los Angeles, reactants of atmospheric interest are predominantly consumed by OH. We find that O(1D), O(3P), and O3 have relative contributions to volatile organic compound (VOC) consumption that are similar or lower than in the troposphere. The impact of O atoms can be neglected under most conditions in both OFR and troposphere. We define “riskier OFR conditions” as those with either low H2O (< 0.1 %) or high OHRext ( ≥  100 s−1 in OFR185 and > 200 s−1 in OFR254). We strongly suggest avoiding such conditions as the importance of non-OH reactants can be substantial for the most sensitive species, although OH may still dominate under some riskier conditions, depending on the species present. Photolysis at non-tropospheric wavelengths (185 and 254 nm) may play a significant (> 20 %) role in the degradation of some aromatics, as well as some oxidation intermediates, under riskier reactor conditions, if the quantum yields are high. Under riskier conditions, some biogenics can have

  7. Air Quality Modeling of Traffic-related Air Pollutants for the NEXUS Study

    EPA Science Inventory

    The paper presents the results of the model applications to estimate exposure metrics in support of an epidemiologic study in Detroit, Michigan. A major challenge in traffic-related air pollution exposure studies is the lack of information regarding pollutant exposure characteriz...

  8. Steady-state computer design model for air-to-air heat pumps

    NASA Astrophysics Data System (ADS)

    Fischer, S. K.; Rice, C. K.

    1981-12-01

    A FORTRAN-4 computer program to predict the steady-state performance of conventional, vapor compression, electrically-driven, air-to-air heat pumps in both heating and cooling modes is described. This model is intended to serve as an analytical design tool for use by heat pump manufacturers, consulting engineers, research institutions, and universities in studies directed toward the improvement of heat pump performance. The heat pump design model allows the user to specify: system operating conditions, compressor characteristics, refrigerant flow control devices, fin-and-tube heat exchanger parameters, fan and indoor duct characteristics, and any of ten refrigerants. The model will compute: system capacity and COP (or EER), compressor and fan motor power consumptions, coil outlet air dry- and wet-bulb temperatures, air- and refrigerant-side pressure drops, a summary of the refrigerant-side states throughout the cycle, and overall compressor efficiencies and heat exchanger effectiveness. Documentation of how to use and/or modify the model is provided.

  9. Description and evaluation of the Multiscale Online Nonhydrostatic AtmospheRe CHemistry model (NMMB-MONARCH) version 1.0: gas-phase chemistry at global scale

    NASA Astrophysics Data System (ADS)

    Badia, Alba; Jorba, Oriol; Voulgarakis, Apostolos; Dabdub, Donald; Pérez García-Pando, Carlos; Hilboll, Andreas; Gonçalves, María; Janjic, Zavisa

    2017-02-01

    This paper presents a comprehensive description and benchmark evaluation of the tropospheric gas-phase chemistry component of the Multiscale Online Nonhydrostatic AtmospheRe CHemistry model (NMMB-MONARCH), formerly known as NMMB/BSC-CTM, that can be run on both regional and global domains. Here, we provide an extensive evaluation of a global annual cycle simulation using a variety of background surface stations (EMEP, WDCGG and CASTNET), ozonesondes (WOUDC, CMD and SHADOZ), aircraft data (MOZAIC and several campaigns), and satellite observations (SCIAMACHY and MOPITT). We also include an extensive discussion of our results in comparison to other state-of-the-art models. We note that in this study, we omitted aerosol processes and some natural emissions (lightning and volcano emissions). The model shows a realistic oxidative capacity across the globe. The seasonal cycle for CO is fairly well represented at different locations (correlations around 0.3-0.7 in surface concentrations), although concentrations are underestimated in spring and winter in the Northern Hemisphere, and are overestimated throughout the year at 800 and 500 hPa in the Southern Hemisphere. Nitrogen species are well represented in almost all locations, particularly NO2 in Europe (root mean square error - RMSE - below 5 ppb). The modeled vertical distributions of NOx and HNO3 are in excellent agreement with the observed values and the spatial and seasonal trends of tropospheric NO2 columns correspond well to observations from SCIAMACHY, capturing the highly polluted areas and the biomass burning cycle throughout the year. Over Asia, the model underestimates NOx from March to August, probably due to an underestimation of NOx emissions in the region. Overall, the comparison of the modeled CO and NO2 with MOPITT and SCIAMACHY observations emphasizes the need for more accurate emission rates from anthropogenic and biomass burning sources (i.e., specification of temporal variability). The resulting

  10. Tropospheric ozone changes, radiative forcing and attribution to emissions in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP)

    NASA Astrophysics Data System (ADS)

    Stevenson, D. S.; Young, P. J.; Naik, V.; Lamarque, J.-F.; Shindell, D. T.; Voulgarakis, A.; Skeie, R. B.; Dalsoren, S. B.; Myhre, G.; Berntsen, T. K.; Folberth, G. A.; Rumbold, S. T.; Collins, W. J.; MacKenzie, I. A.; Doherty, R. M.; Zeng, G.; van Noije, T. P. C.; Strunk, A.; Bergmann, D.; Cameron-Smith, P.; Plummer, D. A.; Strode, S. A.; Horowitz, L.; Lee, Y. H.; Szopa, S.; Sudo, K.; Nagashima, T.; Josse, B.; Cionni, I.; Righi, M.; Eyring, V.; Conley, A.; Bowman, K. W.; Wild, O.; Archibald, A.

    2013-03-01

    Ozone (O3) from 17 atmospheric chemistry models taking part in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) has been used to calculate tropospheric ozone radiative forcings (RFs). All models applied a common set of anthropogenic emissions, which are better constrained for the present-day than the past. Future anthropogenic emissions follow the four Representative Concentration Pathway (RCP) scenarios, which define a relatively narrow range of possible air pollution emissions. We calculate a value for the pre-industrial (1750) to present-day (2010) tropospheric ozone RF of 410 mW m-2. The model range of pre-industrial to present-day changes in O3 produces a spread (±1 standard deviation) in RFs of ±17%. Three different radiation schemes were used - we find differences in RFs between schemes (for the same ozone fields) of ±10%. Applying two different tropopause definitions gives differences in RFs of ±3%. Given additional (unquantified) uncertainties associated with emissions, climate-chemistry interactions and land-use change, we estimate an overall uncertainty of ±30% for the tropospheric ozone RF. Experiments carried out by a subset of six models attribute tropospheric ozone RF to increased emissions of methane (44±12%), nitrogen oxides (31 ± 9%), carbon monoxide (15 ± 3%) and non-methane volatile organic compounds (9 ± 2%); earlier studies attributed more of the tropospheric ozone RF to methane and less to nitrogen oxides. Normalising RFs to changes in tropospheric column ozone, we find a global mean normalised RF of 42 mW m-2 DU-1, a value similar to previous work. Using normalised RFs and future tropospheric column ozone projections we calculate future tropospheric ozone RFs (mW m-2; relative to 1750) for the four future scenarios (RCP2.6, RCP4.5, RCP6.0 and RCP8.5) of 350, 420, 370 and 460 (in 2030), and 200, 300, 280 and 600 (in 2100). Models show some coherent responses of ozone to climate change: decreases in the

  11. Tropospheric Ozone Changes, Radiative Forcing and Attribution to Emissions in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP)

    NASA Technical Reports Server (NTRS)

    Stevenson, D.S.; Young, P.J.; Naik, V.; Lamarque, J.-F.; Shindell, D. T.; Voulgarakis, A.; Skeie, R. B.; Dalsoren, S. B.; Myhre, G.; Berntsen, T. K.; Folberth, G. A.; Rumbold, S. T.; Collins, W. J.; MacKenzie, I. A.; Doherty, R. M.; Zeng, G.; vanNoije, T. P. C.; Strunk, A.; Bergmann, D.; Cameron-Smith, P.; Plummer, D. A.; Strode, S. A.; Horowitz, L.; Lee, Y. H.; Szopa, S.; Sudo, K.; Nagashima, T.; Josse, B.; Cionni, I.; Righi, M.; Eyring, V.; Conley, A.; Bowman, K. W.; Wild, O.; Archibald, A.

    2013-01-01

    Ozone (O3) from 17 atmospheric chemistry models taking part in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) has been used to calculate tropospheric ozone radiative forcings (RFs). All models applied a common set of anthropogenic emissions, which are better constrained for the present-day than the past. Future anthropogenic emissions follow the four Representative Concentration Pathway (RCP) scenarios, which define a relatively narrow range of possible air pollution emissions. We calculate a value for the pre-industrial (1750) to present-day (2010) tropospheric ozone RF of 410 mW m-2. The model range of pre-industrial to present-day changes in O3 produces a spread (+/-1 standard deviation) in RFs of +/-17%. Three different radiation schemes were used - we find differences in RFs between schemes (for the same ozone fields) of +/-10 percent. Applying two different tropopause definitions gives differences in RFs of +/-3 percent. Given additional (unquantified) uncertainties associated with emissions, climate-chemistry interactions and land-use change, we estimate an overall uncertainty of +/-30 percent for the tropospheric ozone RF. Experiments carried out by a subset of six models attribute tropospheric ozone RF to increased emissions of methane (44+/-12 percent), nitrogen oxides (31 +/- 9 percent), carbon monoxide (15 +/- 3 percent) and non-methane volatile organic compounds (9 +/- 2 percent); earlier studies attributed more of the tropospheric ozone RF to methane and less to nitrogen oxides. Normalising RFs to changes in tropospheric column ozone, we find a global mean normalised RF of 42 mW m(-2) DU(-1), a value similar to previous work. Using normalised RFs and future tropospheric column ozone projections we calculate future tropospheric ozone RFs (mW m(-2); relative to 1750) for the four future scenarios (RCP2.6, RCP4.5, RCP6.0 and RCP8.5) of 350, 420, 370 and 460 (in 2030), and 200, 300, 280 and 600 (in 2100). Models show some

  12. Chemistry Notes.

    ERIC Educational Resources Information Center

    School Science Review, 1981

    1981-01-01

    Describes 13 activities, experiments and demonstrations, including the preparation of iron (III) chloride, simple alpha-helix model, investigating camping gas, redox reactions of some organic compounds, a liquid crystal thermometer, and the oxidation number concept in organic chemistry. (JN)

  13. Circumstellar chemistry

    NASA Technical Reports Server (NTRS)

    Glassgold, Alfred E.; Huggins, Patrick J.

    1987-01-01

    The study of the outer envelopes of cool evolved stars has become an active area of research. The physical properties of CS envelopes are presented. Observations of many wavelengths bands are relevant. A summary of observations and a discussion of theoretical considerations concerning the chemistry are summarized. Recent theoretical considerations show that the thermal equilibrium model is of limited use for understanding the chemistry of the outer CS envelopes. The theoretical modeling of the chemistry of CS envelopes provides a quantitive test of chemical concepts which have a broader interest than the envelopes themselves.

  14. Future air quality in Europe: a multi-model assessment of projected exposure to ozone

    NASA Astrophysics Data System (ADS)

    Colette, A.; Granier, C.; Hodnebrog, Ø.; Jakobs, H.; Maurizi, A.; Nyiri, A.; Rao, S.; Amann, M.; Bessagnet, B.; D'Angiola, A.; Gauss, M.; Heyes, C.; Klimont, Z.; Meleux, F.; Memmesheimer, M.; Mieville, A.; Rouïl, L.; Russo, F.; Schucht, S.; Simpson, D.; Stordal, F.; Tampieri, F.; Vrac, M.

    2012-11-01

    In order to explore future air quality in Europe at the 2030 horizon, two emission scenarios developed in the framework of the Global Energy Assessment including varying assumptions on climate and energy access policies are investigated with an ensemble of six regional and global atmospheric chemistry transport models. A specific focus is given in the paper to the assessment of uncertainties and robustness of the projected changes in air quality. The present work relies on an ensemble of chemistry transport models giving insight into the model spread. Both regional and global scale models were involved, so that the ensemble benefits from medium-resolution approaches as well as global models that capture long-range transport. For each scenario a whole decade is modelled in order to gain statistical confidence in the results. A statistical downscaling approach is used to correct the distribution of the modelled projection. Last, the modelling experiment is related to a hind-cast study published earlier, where the performances of all participating models were extensively documented. The analysis is presented in an exposure-based framework in order to discuss policy relevant changes. According to the emission projections, ozone precursors such as NOx will drop down to 30% to 50% of their current levels, depending on the scenario. As a result, annual mean O3 will slightly increase in NOx saturated areas but the overall O3 burden will decrease substantially. Exposure to detrimental O3 levels for health (SOMO35) will be reduced down to 45% to 70% of their current levels. And the fraction of stations where present-day exceedences of daily maximum O3 is higher than 120 μg m-3 more than 25 days per year will drop from 43% down to 2 to 8%. We conclude that air pollution mitigation measures (present in both scenarios) are the main factors leading to the improvement, but an additional cobenefit of at least 40% (depending on the indicator) is brought about by the climate policy.

  15. Future air quality in Europe: a multi-model assessment of projected exposure to ozone

    NASA Astrophysics Data System (ADS)

    Colette, A.; Granier, C.; Hodnebrog, Ø.; Jakobs, H.; Maurizi, A.; Nyiri, A.; Rao, S.; Amann, M.; Bessagnet, B.; D'Angiola, A.; Gauss, M.; Heyes, C.; Klimont, Z.; Meleux, F.; Memmesheimer, M.; Mieville, A.; Rouïl, L.; Russo, F.; Schucht, S.; Simpson, D.; Stordal, F.; Tampieri, F.; Vrac, M.

    2012-06-01

    In order to explore future air quality in Europe at the 2030 horizon, two emission scenarios developed in the framework of the Global Energy Assessment including varying assumptions on climate and energy access policies are investigated with an ensemble of six regional and global atmospheric chemistry transport models. A specific focus is given in the paper to the assessment of uncertainties and robustness of the projected changes in air quality. The present work relies on an ensemble of chemistry transport models giving insight into the model spread. Both regional and global scale models were involved, so that the ensemble benefits from medium-resolution approaches as well as global models that capture long-range transport. For each scenario a whole decade is modelled in order to gain statistical confidence in the results. A statistical downscaling approach is used to correct the distribution of the model projection. Last, the modelling experiment is linked to a hind-cast study published earlier, where the performances of all participating models were extensively documented. The analysis is presented in an exposure-based framework in order to discuss policy relevant changes. According to the emission projections, ozone precursors such as NOx will drop to 30% to 50% of their current levels, depending on the scenario. As a result, annual mean O3 will slightly increase in NOx saturated areas but the overall O3 burden will decrease substantially. Exposure to detrimental O3 levels for health (SOMO35) will be reduced down to 45% to 70% of their current levels. And the fraction of stations where present-day exceedences of daily maximumO3 is higher than 120 μg m-3 more than 25 days per year will drop from 43% down to 2 to 8%. We conclude that air pollution mitigation measures (present in both scenarios) are the main factors leading to the improvement, but an additional cobenefit of at least 40% (depending on the indicator) is brought about by the climate policy.

  16. Measured and modeled CO and NOy in DISCOVER-AQ: An evaluation of emissions and chemistry over the eastern US

    NASA Astrophysics Data System (ADS)

    Anderson, Daniel C.; Loughner, Christopher P.; Diskin, Glenn; Weinheimer, Andrew; Canty, Timothy P.; Salawitch, Ross J.; Worden, Helen M.; Fried, Alan; Mikoviny, Tomas; Wisthaler, Armin; Dickerson, Russell R.

    2014-10-01

    Data collected during the 2011 DISCOVER-AQ field campaign in the Baltimore Washington region were used to evaluate CO and NOx emissions in the National Emissions Inventory (NEI). The average emissions ratio for the region was seen to be 11.2 ± 1.2 mol CO/mol NOx, 21% higher than that predicted by the NEI. Comparisons between in situ and remote observations and CMAQ model out