Sample records for air chemistry models

  1. An Overview of Atmospheric Chemistry and Air Quality Modeling

    NASA Technical Reports Server (NTRS)

    Johnson, Matthew S.

    2017-01-01

    This presentation will include my personal research experience and an overview of atmospheric chemistry and air quality modeling to the participants of the NASA Student Airborne Research Program (SARP 2017). The presentation will also provide examples on ways to apply airborne observations for chemical transport (CTM) and air quality (AQ) model evaluation. CTM and AQ models are important tools in understanding tropospheric-stratospheric composition, atmospheric chemistry processes, meteorology, and air quality. This presentation will focus on how NASA scientist currently apply CTM and AQ models to better understand these topics. Finally, the importance of airborne observation in evaluating these topics and how in situ and remote sensing observations can be used to evaluate and improve CTM and AQ model predictions will be highlighted.

  2. Modelling the urban air quality in Hamburg with the new city-scale chemistry transport model CityChem

    NASA Astrophysics Data System (ADS)

    Karl, Matthias; Ramacher, Martin; Aulinger, Armin; Matthias, Volker; Quante, Markus

    2017-04-01

    Air quality modelling plays an important role by providing guidelines for efficient air pollution abatement measures. Currently, most urban dispersion models treat air pollutants as passive tracer substances or use highly simplified chemistry when simulating air pollutant concentrations on the city-scale. The newly developed urban chemistry-transport model CityChem has the capability of modelling the photochemical transformation of multiple pollutants along with atmospheric diffusion to produce pollutant concentration fields for the entire city on a horizontal resolution of 100 m or even finer and a vertical resolution of 24 layers up to 4000 m height. CityChem is based on the Eulerian urban dispersion model EPISODE of the Norwegian Institute for Air Research (NILU). CityChem treats the complex photochemistry in cities using detailed EMEP chemistry on an Eulerian 3-D grid, while using simple photo-stationary equilibrium on a much higher resolution grid (receptor grid), i.e. close to industrial point sources and traffic sources. The CityChem model takes into account that long-range transport contributes to urban pollutant concentrations. This is done by using 3-D boundary concentrations for the city domain derived from chemistry-transport simulations with the regional air quality model CMAQ. For the study of the air quality in Hamburg, CityChem was set-up with a main grid of 30×30 grid cells of 1×1 km2 each and a receptor grid of 300×300 grid cells of 100×100 m2. The CityChem model was driven with meteorological data generated by the prognostic meteorology component of the Australian chemistry-transport model TAPM. Bottom-up inventories of emissions from traffic, industry, households were based on data of the municipality of Hamburg. Shipping emissions for the port of Hamburg were taken from the Clean North Sea Shipping project. Episodes with elevated ozone (O3) were of specific interest for this study, as these are associated with exceedances of the World

  3. Implementation of marine halogen chemistry into the Community Multiscale Air Quality (CMAQ) model

    NASA Astrophysics Data System (ADS)

    Gantt, B.; Sarwar, G.

    2017-12-01

    In two recent studies (Sarwar et al, 2015 and Gantt et al., 2017), the impact of marine halogen (bromine and iodine) chemistry on air quality has been evaluated using the Community Multiscale Air Quality (CMAQ) model. We found that marine halogen chemistry not only has the expected effect of reducing marine boundary layer ozone concentrations, but also reduces ozone in the free troposphere and inland from the coast. In Sarwar et al. (2015), the impact of the halogen chemistry without and with photochemical reactions of higher iodine oxides over the Northern Hemisphere was examined using the coarse horizontal grids of a hemispheric domain. Halogen chemistry without and with the photochemical reactions of higher iodine oxides reduces ozone over seawater by 15% and 48%, respectively. Using the results of the chemistry without the photochemical reactions of higher iodine oxides, we developed a simple first order ozone loss rate and implemented it into the public version of CMAQv52. In Gantt et al. (2017), the impact of the simple first order loss rate as well as the full halogen chemistry without photochemical reactions of higher iodine oxides over the continental United States was examined using finer horizontal grids of the regional domain and boundary conditions from the hemispheric domain with and without marine halogen chemistry. The boundary conditions obtained with the halogen chemistry as well as the simple halogen chemistry reduces ozone along the coast where CMAQ typically overpredicts the concentrations. Development of halogen chemistry in CMAQ has continued with the implementation of several heterogeneous reactions of bromine and iodine species, revised reactions of higher iodine oxides, and a refined marine halogen emissions inventory. Our latest version of halogen chemistry with photochemical reactions of higher iodine oxides reduces ozone by 23% over the seawater. This presentation will discuss the previous and ongoing implementation of revised halogen

  4. Quantification of air plasma chemistry for surface disinfection

    NASA Astrophysics Data System (ADS)

    Pavlovich, Matthew J.; Clark, Douglas S.; Graves, David B.

    2014-12-01

    Atmospheric-pressure air plasmas, created by a variety of discharges, are promising sources of reactive species for the emerging field of plasma biotechnology because of their convenience and ability to operate at ambient conditions. One biological application of ambient-air plasma is microbial disinfection, and the ability of air plasmas to decontaminate both solid surfaces and liquid volumes has been thoroughly established in the literature. However, the mechanism of disinfection and which reactive species most strongly correlate with antimicrobial effects are still not well understood. We describe quantitative gas-phase measurements of plasma chemistry via infrared spectroscopy in confined volumes, focusing on air plasma generated via surface micro-discharge (SMD). Previously, it has been shown that gaseous chemistry is highly sensitive to operating conditions, and the measurements we describe here extend those findings. We quantify the gaseous concentrations of ozone (O3) and nitrogen oxides (NO and NO2, or NOx) throughout the established ‘regimes’ for SMD air plasma chemistry: the low-power, ozone-dominated mode; the high-power, nitrogen oxides-dominated mode; and the intermediate, unstable transition region. The results presented here are in good agreement with previously published experimental studies of aqueous chemistry and parameterized models of gaseous chemistry. The principal finding of the present study is the correlation of bacterial inactivation on dry surfaces with gaseous chemistry across these time and power regimes. Bacterial decontamination is most effective in ‘NOx mode’ and less effective in ‘ozone mode’, with the weakest antibacterial effects in the transition region. Our results underscore the dynamic nature of air plasma chemistry and the importance of careful chemical characterization of plasma devices intended for biological applications.

  5. Atmospheric Chemistry and Air Pollution

    DOE PAGES

    Gaffney, Jeffrey S.; Marley, Nancy A.

    2003-01-01

    Atmospheric chemistry is an important discipline for understanding air pollution and its impacts. This mini-review gives a brief history of air pollution and presents an overview of some of the basic photochemistry involved in the production of ozone and other oxidants in the atmosphere. Urban air quality issues are reviewed with a specific focus on ozone and other oxidants, primary and secondary aerosols, alternative fuels, and the potential for chlorine releases to amplify oxidant chemistry in industrial areas. Regional air pollution issues such as acid rain, long-range transport of aerosols and visibility loss, and the connections of aerosols to ozonemore » and peroxyacetyl nitrate chemistry are examined. Finally, the potential impacts of air pollutants on the global-scale radiative balances of gases and aerosols are discussed briefly.« less

  6. Cloud processing of gases and aerosols in the Community Multiscale Air Quality (CMAQ) model: Impacts of extended chemistry

    EPA Science Inventory

    Clouds and fogs can significantly impact the concentration and distribution of atmospheric gases and aerosols through chemistry, scavenging, and transport. This presentation summarizes the representation of cloud processes in the Community Multiscale Air Quality (CMAQ) modeling ...

  7. A framework for expanding aqueous chemistry in the Community Multiscale Air Quality (CMAQ) model version 5.1

    EPA Science Inventory

    This paper describes the development and implementation of an extendable aqueous-phase chemistry option (AQCHEM − KMT(I)) for the Community Multiscale Air Quality (CMAQ) modeling system, version 5.1. Here, the Kinetic PreProcessor (KPP), version 2.2.3, is used t...

  8. A framework for expanding aqueous chemistry in the Community Multiscale Air Quality (CMAQ) model version 5.1

    EPA Science Inventory

    This paper describes the development and implementation of an extendable aqueous-phase chemistry option (AQCHEM − KMT(I)) for the Community Multiscale Air Quality (CMAQ) modeling system, version 5.1. Here, the Kinetic PreProcessor (KPP), version 2.2.3, is used to generate a Rosen...

  9. Air traffic simulation in chemistry-climate model EMAC 2.41: AirTraf 1.0

    NASA Astrophysics Data System (ADS)

    Yamashita, Hiroshi; Grewe, Volker; Jöckel, Patrick; Linke, Florian; Schaefer, Martin; Sasaki, Daisuke

    2016-09-01

    Mobility is becoming more and more important to society and hence air transportation is expected to grow further over the next decades. Reducing anthropogenic climate impact from aviation emissions and building a climate-friendly air transportation system are required for a sustainable development of commercial aviation. A climate optimized routing, which avoids climate-sensitive regions by re-routing horizontally and vertically, is an important measure for climate impact reduction. The idea includes a number of different routing strategies (routing options) and shows a great potential for the reduction. To evaluate this, the impact of not only CO2 but also non-CO2 emissions must be considered. CO2 is a long-lived gas, while non-CO2 emissions are short-lived and are inhomogeneously distributed. This study introduces AirTraf (version 1.0) that performs global air traffic simulations, including effects of local weather conditions on the emissions. AirTraf was developed as a new submodel of the ECHAM5/MESSy Atmospheric Chemistry (EMAC) model. Air traffic information comprises Eurocontrol's Base of Aircraft Data (BADA Revision 3.9) and International Civil Aviation Organization (ICAO) engine performance data. Fuel use and emissions are calculated by the total energy model based on the BADA methodology and Deutsches Zentrum für Luft- und Raumfahrt (DLR) fuel flow method. The flight trajectory optimization is performed by a genetic algorithm (GA) with respect to a selected routing option. In the model development phase, benchmark tests were performed for the great circle and flight time routing options. The first test showed that the great circle calculations were accurate to -0.004 %, compared to those calculated by the Movable Type script. The second test showed that the optimal solution found by the algorithm sufficiently converged to the theoretical true-optimal solution. The difference in flight time between the two solutions is less than 0.01 %. The dependence of

  10. Impact of surface ozone interactions on indoor air chemistry: A modeling study.

    PubMed

    Kruza, M; Lewis, A C; Morrison, G C; Carslaw, N

    2017-09-01

    An INdoor air Detailed Chemical Model was developed to investigate the impact of ozone reactions with indoor surfaces (including occupants), on indoor air chemistry in simulated apartments subject to ambient air pollution. The results are consistent with experimental studies showing that approximately 80% of ozone indoors is lost through deposition to surfaces. The human body removes ozone most effectively from indoor air per square meter of surface, but the most significant surfaces for C 6 -C 10 aldehyde formation are soft furniture and painted walls owing to their large internal surfaces. Mixing ratios of between 8 and 11 ppb of C 6 -C 10 aldehydes are predicted to form in apartments in various locations in summer, the highest values are when ozone concentrations are enhanced outdoors. The most important aldehyde formed indoors is predicted to be nonanal (5-7 ppb), driven by oxidation-derived emissions from painted walls. In addition, ozone-derived emissions from human skin were estimated for a small bedroom at nighttime with concentrations of nonanal, decanal, and 4-oxopentanal predicted to be 0.5, 0.7, and 0.7 ppb, respectively. A detailed chemical analysis shows that ozone-derived surface aldehyde emissions from materials and people change chemical processing indoors, through enhanced formation of nitrated organic compounds and decreased levels of oxidants. © 2017 The Authors. Indoor Air Published by John Wiley & Sons Ltd.

  11. Frontiers in Atmospheric Chemistry Modelling

    NASA Astrophysics Data System (ADS)

    Colette, Augustin; Bessagnet, Bertrand; Meleux, Frederik; Rouïl, Laurence

    2013-04-01

    The first pan-European kilometre-scale atmospheric chemistry simulation is introduced. The continental-scale air pollution episode of January 2009 is modelled with the CHIMERE offline chemistry-transport model with a massive grid of 2 million horizontal points, performed on 2000 CPU of a high performance computing system hosted by the Research and Technology Computing Center at the French Alternative Energies and Atomic Energy Commission (CCRT/CEA). Besides the technical challenge, which demonstrated the robustness of the selected air quality model, we discuss the added value in terms of air pollution modelling and decision support. The comparison with in-situ observations shows that model biases are significantly improved despite some spurious added spatial variability attributed to shortcomings in the emission downscaling process and coarse resolution of the meteorological fields. The increased spatial resolution is clearly beneficial for the detection of exceedances and exposure modelling. We reveal small scale air pollution patterns that highlight the contribution of city plumes to background air pollution levels. Up to a factor 5 underestimation of the fraction of population exposed to detrimental levels of pollution can be obtained with a coarse simulation if subgrid scale correction such as urban increments are ignored. This experiment opens new perspectives for environmental decision making. After two decades of efforts to reduce air pollutant emissions across Europe, the challenge is now to find the optimal trade-off between national and local air quality management strategies. While the first approach is based on sectoral strategies and energy policies, the later builds upon new alternatives such as urban development. The strategies, the decision pathways and the involvement of individual citizen differ, and a compromise based on cost and efficiency must be found. We illustrated how high performance computing in atmospheric science can contribute to this

  12. Reactive indoor air chemistry and health-A workshop summary.

    PubMed

    Wells, J R; Schoemaecker, C; Carslaw, N; Waring, M S; Ham, J E; Nelissen, I; Wolkoff, P

    2017-11-01

    The chemical composition of indoor air changes due to the reactive nature of the indoor environment. Historically, only the stable parent compounds were investigated due to their ease of measurement by conventional methods. Today, however, scientists can better characterize oxidation products (gas and particulate-phase) formed by indoor chemistry. An understanding of occupant exposure can be developed through the investigation of indoor oxidants, the use of derivatization techniques, atmospheric pressure detection, the development of real-time technologies, and improved complex modeling techniques. Moreover, the connection between exposure and health effects is now receiving more attention from the research community. Nevertheless, a need still exists for improved understanding of the possible link between indoor air chemistry and observed acute or chronic health effects and long-term effects such as work-related asthma. Published by Elsevier GmbH.

  13. Towards the Next Generation Air Quality Modeling System ...

    EPA Pesticide Factsheets

    The community multiscale air quality (CMAQ) model of the U.S. Environmental Protection Agency is one of the most widely used air quality model worldwide; it is employed for both research and regulatory applications at major universities and government agencies for improving understanding of the formation and transport of air pollutants. It is noted, however, that air quality issues and climate change assessments need to be addressed globally recognizing the linkages and interactions between meteorology and atmospheric chemistry across a wide range of scales. Therefore, an effort is currently underway to develop the next generation air quality modeling system (NGAQM) that will be based on a global integrated meteorology and chemistry system. The model for prediction across scales-atmosphere (MPAS-A), a global fully compressible non-hydrostatic model with seamlessly refined centroidal Voronoi grids, has been chosen as the meteorological driver of this modeling system. The initial step of adapting MPAS-A for the NGAQM was to implement and test the physics parameterizations and options that are preferred for retrospective air quality simulations (see the work presented by R. Gilliam, R. Bullock, and J. Herwehe at this workshop). The next step, presented herein, would be to link the chemistry from CMAQ to MPAS-A to build a prototype for the NGAQM. Furthermore, the techniques to harmonize transport processes between CMAQ and MPAS-A, methodologies to connect the chemis

  14. Reacting Chemistry Based Burn Model for Explosive Hydrocodes

    NASA Astrophysics Data System (ADS)

    Schwaab, Matthew; Greendyke, Robert; Steward, Bryan

    2017-06-01

    Currently, in hydrocodes designed to simulate explosive material undergoing shock-induced ignition, the state of the art is to use one of numerous reaction burn rate models. These burn models are designed to estimate the bulk chemical reaction rate. Unfortunately, these models are largely based on empirical data and must be recalibrated for every new material being simulated. We propose that the use of an equilibrium Arrhenius rate reacting chemistry model in place of these empirically derived burn models will improve the accuracy for these computational codes. Such models have been successfully used in codes simulating the flow physics around hypersonic vehicles. A reacting chemistry model of this form was developed for the cyclic nitramine RDX by the Naval Research Laboratory (NRL). Initial implementation of this chemistry based burn model has been conducted on the Air Force Research Laboratory's MPEXS multi-phase continuum hydrocode. In its present form, the burn rate is based on the destruction rate of RDX from NRL's chemistry model. Early results using the chemistry based burn model show promise in capturing deflagration to detonation features more accurately in continuum hydrocodes than previously achieved using empirically derived burn models.

  15. A framework for expanding aqueous chemistry in the Community Multiscale Air Quality (CMAQ) model version 5.1

    NASA Astrophysics Data System (ADS)

    Fahey, Kathleen M.; Carlton, Annmarie G.; Pye, Havala O. T.; Baek, Jaemeen; Hutzell, William T.; Stanier, Charles O.; Baker, Kirk R.; Wyat Appel, K.; Jaoui, Mohammed; Offenberg, John H.

    2017-04-01

    This paper describes the development and implementation of an extendable aqueous-phase chemistry option (AQCHEM - KMT(I)) for the Community Multiscale Air Quality (CMAQ) modeling system, version 5.1. Here, the Kinetic PreProcessor (KPP), version 2.2.3, is used to generate a Rosenbrock solver (Rodas3) to integrate the stiff system of ordinary differential equations (ODEs) that describe the mass transfer, chemical kinetics, and scavenging processes of CMAQ clouds. CMAQ's standard cloud chemistry module (AQCHEM) is structurally limited to the treatment of a simple chemical mechanism. This work advances our ability to test and implement more sophisticated aqueous chemical mechanisms in CMAQ and further investigate the impacts of microphysical parameters on cloud chemistry. Box model cloud chemistry simulations were performed to choose efficient solver and tolerance settings, evaluate the implementation of the KPP solver, and assess the direct impacts of alternative solver and kinetic mass transfer on predicted concentrations for a range of scenarios. Month-long CMAQ simulations for winter and summer periods over the US reveal the changes in model predictions due to these cloud module updates within the full chemical transport model. While monthly average CMAQ predictions are not drastically altered between AQCHEM and AQCHEM - KMT, hourly concentration differences can be significant. With added in-cloud secondary organic aerosol (SOA) formation from biogenic epoxides (AQCHEM - KMTI), normalized mean error and bias statistics are slightly improved for 2-methyltetrols and 2-methylglyceric acid at the Research Triangle Park measurement site in North Carolina during the Southern Oxidant and Aerosol Study (SOAS) period. The added in-cloud chemistry leads to a monthly average increase of 11-18 % in cloud SOA at the surface in the eastern United States for June 2013.

  16. Turbine Chemistry Modeling

    NASA Technical Reports Server (NTRS)

    Liu, Nan-Suey; Wey, Thomas

    2001-01-01

    Many of the engine exhaust species resulting in significant environmental impact exist in trace amounts. Recent research, e.g., conducted at MIT-AM, has pointed to the intra-engine environment as a possible site for important trace chemistry activity. In addition, the key processes affecting the trace species activity occurring downstream in the air passages of the turbine and exhaust nozzle are not well understood. Most recently, an effort has been initiated at NASA Glenn Research Center under the UEET Program to evaluate and further develop CFD-based technology for modeling and simulation of intra-engine trace chemical changes relevant to atmospheric effects of pollutant emissions from aircraft engines. This presentation will describe the current effort conducted at Glenn; some preliminary results relevant to the trace species chemistry in a turbine passage will also be presented to indicate the progress to date.

  17. FULLY COUPLED "ONLINE" CHEMISTRY WITHIN THE WRF MODEL

    EPA Science Inventory

    A fully coupled "online" Weather Research and Forecasting/Chemistry (WRF/Chem) model has been developed. The air quality component of the model is fully consistent with the meteorological component; both components use the same transport scheme (mass and scalar preserving), the s...

  18. Defining Tropospheric Chemistry As A Heterogeneous Ensemble Of Reactive Air Parcels

    NASA Astrophysics Data System (ADS)

    Prather, M. J.; Zhu, X.; Flynn, C.; Mao, J.; Strode, S. A.; Steenrod, S. D.; Strahan, S. E.; Lamarque, J. F.; Fiore, A. M.; Horowitz, L. W.; Shindell, D. T.; Murray, L. T.

    2016-12-01

    Two major challenges in model-measurement comparisons have been: Which measurements are the most important to match? At what level do models need to simulate the variegated fine structures observed in trace gases and aerosols? This talk presents a novel approach for evaluating high-resolution global chemistry models (1/2 to 1 deg) that is integral to NASA's Atmospheric Tomography (ATom) mission. The approach seeks to develop a chemical climatology for tropospheric regions rather than just event-based testing of specific observations. It enables chemistry-climate models to be readily compared and more severely tested with observations. It uses the reactivity of air parcels (e.g., loss of methane, production and loss of ozone) to weight each parcel in terms of its importance in controlling the two most important chemically reactive greenhouse gases. It looks at the entire statistical distribution of air parcels in terms of a chemical phase space for those species that control the reactivity (e.g., O3, H2O, CH4, CO, NOx, HNO3, HNO4, PAN, CH3NO3, HCHO, HOOH, CH3OOH, C2H6, C3H6O, and other VOCs when present in sufficiently large abundances). It builds statistics of chemically extreme air parcels such as pollution layers to determine if a model failure to match such cases affects the overall reactivity of the region. This approach was designed for the ATom in situ measurements using the DC-8 to slice through the middle of the Pacific and Atlantic Ocean basins each season. The ATom payload will measure the above key trace gases and many other gases and aerosols in every designated air parcel (i.e., 10-sec averages). The first ATom measurements will not be available until mid-2017 and this presentation shows how this climatology looks when sampled with different models. Six global chemistry models have simulated one day in August (no particular year), and we sample all six showing how the 2D probability density plots highlight different regions when weighted by chemical

  19. Machine learning of atmospheric chemistry. Applications to a global chemistry transport model.

    NASA Astrophysics Data System (ADS)

    Evans, M. J.; Keller, C. A.

    2017-12-01

    Atmospheric chemistry is central to many environmental issues such as air pollution, climate change, and stratospheric ozone loss. Chemistry Transport Models (CTM) are a central tool for understanding these issues, whether for research or for forecasting. These models split the atmosphere in a large number of grid-boxes and consider the emission of compounds into these boxes and their subsequent transport, deposition, and chemical processing. The chemistry is represented through a series of simultaneous ordinary differential equations, one for each compound. Given the difference in life-times between the chemical compounds (mili-seconds for O(1D) to years for CH4) these equations are numerically stiff and solving them consists of a significant fraction of the computational burden of a CTM.We have investigated a machine learning approach to solving the differential equations instead of solving them numerically. From an annual simulation of the GEOS-Chem model we have produced a training dataset consisting of the concentration of compounds before and after the differential equations are solved, together with some key physical parameters for every grid-box and time-step. From this dataset we have trained a machine learning algorithm (random regression forest) to be able to predict the concentration of the compounds after the integration step based on the concentrations and physical state at the beginning of the time step. We have then included this algorithm back into the GEOS-Chem model, bypassing the need to integrate the chemistry.This machine learning approach shows many of the characteristics of the full simulation and has the potential to be substantially faster. There are a wide range of application for such an approach - generating boundary conditions, for use in air quality forecasts, chemical data assimilation systems, centennial scale climate simulations etc. We discuss our approches' speed and accuracy, and highlight some potential future directions for

  20. Diagnostic Analysis of Ozone Concentrations Simulated by Two Regional-Scale Air Quality Models

    EPA Science Inventory

    Since the Community Multiscale Air Quality modeling system (CMAQ) and the Weather Research and Forecasting with Chemistry model (WRF/Chem) use different approaches to simulate the interaction of meteorology and chemistry, this study compares the CMAQ and WRF/Chem air quality simu...

  1. Evaluating Regional-Scale Air Quality Models

    EPA Science Inventory

    Numerical air quality models are being used to understand the complex interplay among emission loading meteorology, and atmospheric chemistry leading to the formation and accumulation of pollutants in the atmosphere. A model evaluation framework is presented here that considers ...

  2. Meteorological Processes Affecting Air Quality – Research and Model Development Needs

    EPA Science Inventory

    Meteorology modeling is an important component of air quality modeling systems that defines the physical and dynamical environment for atmospheric chemistry. The meteorology models used for air quality applications are based on numerical weather prediction models that were devel...

  3. Variational data assimilation for tropospheric chemistry modeling

    NASA Astrophysics Data System (ADS)

    Elbern, Hendrik; Schmidt, Hauke; Ebel, Adolf

    1997-07-01

    The method of variational adjoint data assimilation has been applied to assimilate chemistry observations into a comprehensive tropospheric gas phase model. The rationale of this method is to find the correct initial values for a subsequent atmospheric chemistry model run when observations scattered in time are available. The variational adjoint technique is esteemed to be a promising tool for future advanced meteorological forecasting. The stimulating experience gained with the application of four-dimensional variational data assimilation in this research area has motivated the attempt to apply the technique to air quality modeling and analysis of the chemical state of the atmosphere. The present study describes the development and application of the adjoint of the second-generation regional acid deposition model gas phase mechanism, which is used in the European air pollution dispersion model system. Performance results of the assimilation scheme using both model-generated data and real observations are presented for tropospheric conditions. In the former case it is demonstrated that time series of only few or even one measured key species convey sufficient information to improve considerably the analysis of unobserved species which are directly coupled with the observed species. In the latter case a Lagrangian approach is adopted where trajectory calculations between two comprehensively furnished measurement sites are carried out. The method allows us to analyze initial data for air pollution modeling even when only sparse observations are available. Besides remarkable improvements of the model performance by properly analyzed initial concentrations, it is shown that the adjoint algorithm offers the feasibility to estimate the sensitivity of ozone concentrations relative to its precursors.

  4. Assessing chemistry schemes and constraints in air quality models used to predict ozone in London against the detailed Master Chemical Mechanism.

    PubMed

    Malkin, Tamsin L; Heard, Dwayne E; Hood, Christina; Stocker, Jenny; Carruthers, David; MacKenzie, Ian A; Doherty, Ruth M; Vieno, Massimo; Lee, James; Kleffmann, Jörg; Laufs, Sebastian; Whalley, Lisa K

    2016-07-18

    Air pollution is the environmental factor with the greatest impact on human health in Europe. Understanding the key processes driving air quality across the relevant spatial scales, especially during pollution exceedances and episodes, is essential to provide effective predictions for both policymakers and the public. It is particularly important for policy regulators to understand the drivers of local air quality that can be regulated by national policies versus the contribution from regional pollution transported from mainland Europe or elsewhere. One of the main objectives of the Coupled Urban and Regional processes: Effects on AIR quality (CUREAIR) project is to determine local and regional contributions to ozone events. A detailed zero-dimensional (0-D) box model run with the Master Chemical Mechanism (MCMv3.2) is used as the benchmark model against which the less explicit chemistry mechanisms of the Generic Reaction Set (GRS) and the Common Representative Intermediates (CRIv2-R5) schemes are evaluated. GRS and CRI are used by the Atmospheric Dispersion Modelling System (ADMS-Urban) and the regional chemistry transport model EMEP4UK, respectively. The MCM model uses a near-explicit chemical scheme for the oxidation of volatile organic compounds (VOCs) and is constrained to observations of VOCs, NOx, CO, HONO (nitrous acid), photolysis frequencies and meteorological parameters measured during the ClearfLo (Clean Air for London) campaign. The sensitivity of the less explicit chemistry schemes to different model inputs has been investigated: Constraining GRS to the total VOC observed during ClearfLo as opposed to VOC derived from ADMS-Urban dispersion calculations, including emissions and background concentrations, led to a significant increase (674% during winter) in modelled ozone. The inclusion of HONO chemistry in this mechanism, particularly during wintertime when other radical sources are limited, led to substantial increases in the ozone levels predicted

  5. Hypervelocity Air Flows With Finite Rate Chemistry

    DTIC Science & Technology

    1994-07-01

    run over a range of freestream con- ditions in both air and nitrogen to obtain conditions to examine flows from frozen to fully equilibrium gas flow ... chemistry . Currently, electron-beam equipment and instrumentation are being prepared at USC, Imperial College, and CUBRC for these studies. Also, instru

  6. Implementation of an Online Chemistry Model to a Large Eddy Simulation Model (PALM-4U0

    NASA Astrophysics Data System (ADS)

    Mauder, M.; Khan, B.; Forkel, R.; Banzhaf, S.; Russo, E. E.; Sühring, M.; Kanani-Sühring, F.; Raasch, S.; Ketelsen, K.

    2017-12-01

    Large Eddy Simulation (LES) models permit to resolve relevant scales of turbulent motion, so that these models can capture the inherent unsteadiness of atmospheric turbulence. However, LES models are so far hardly applied for urban air quality studies, in particular chemical transformation of pollutants. In this context, BMBF (Bundesministerium für Bildung und Forschung) funded a joint project, MOSAIK (Modellbasierte Stadtplanung und Anwendung im Klimawandel / Model-based city planning and application in climate change) with the main goal to develop a new highly efficient urban climate model (UCM) that also includes atmospheric chemical processes. The state-of-the-art LES model PALM; Maronga et al, 2015, Geosci. Model Dev., 8, doi:10.5194/gmd-8-2515-2015), has been used as a core model for the new UCM named as PALM-4U. For the gas phase chemistry, a fully coupled 'online' chemistry model has been implemented into PALM. The latest version of the Kinetic PreProcessor (KPP) Version 2.3, has been utilized for the numerical integration of chemical species. Due to the high computational demands of the LES model, compromises in the description of chemical processes are required. Therefore, a reduced chemistry mechanism, which includes only major pollutants namely O3, NO, NO2, CO, a highly simplified VOC chemistry and a small number of products have been implemented. This work shows preliminary results of the advection, and chemical transformation of atmospheric pollutants. Non-cyclic boundaries have been used for inflow and outflow in east-west directions while periodic boundary conditions have been implemented to the south-north lateral boundaries. For practical applications, our approach is to go beyond the simulation of single street canyons to chemical transformation, advection and deposition of air pollutants in the larger urban canopy. Tests of chemistry schemes and initial studies of chemistry-turbulence, transport and transformations are presented.

  7. Complex Coupling of Air Quality and Climate-Relevant Aerosols in a Chemistry-Aerosol Microphysics Model

    NASA Astrophysics Data System (ADS)

    Yoshioka, M.; Carslaw, K. S.; Reddington, C.; Mann, G.

    2013-12-01

    Controlling emissions of aerosols and their precursors to improve air quality will impact the climate through direct and indirect radiative forcing. We have investigated the impacts of changes in a range of aerosol and gas-phase emission fluxes and changes in temperature on air quality and climate change metrics using a global aerosol microphysics and chemistry model, GLOMAP. We investigate how the responses of PM2.5 and cloud condensation nuclei (CCN) are coupled, and how attempts to improve air quality could have inadvertent effects on CCN, clouds and climate. The parameter perturbations considered are a 5°C increase in global temperature, increased or decreased precursor emissions of anthropogenic SO2, NH3, and NOx, and biogenic monoterpenes, and increased or decreased primary emissions of organic and black carbon aerosols from wildfire, fossil fuel, and biofuel. To quantify the interactions, we define a new sensitivity metric in terms of the response of CCN divided by the response of PM in different regions. .Our results show that the coupled chemistry and aerosol processes cause complex responses that will make any co-benefit policy decision problematic. In particular, we show that reducing SO2 emissions effectively reduces surface-level PM2.5 over continental regions in summer when background PM2.5 is high, with a relatively small reduction in marine CCN (and hence indirect radiative cooling over ocean), which is beneficial for near-term climate. Reducing NOx emissions does not improve summertime air quality very effectively but leads to a relatively high reduction of marine CCN. Reducing NH3 emissions has moderate effects on both PM2.5 and CCN. These three species are strongly coupled chemically and microphysically and the effects of changing emissions of one species on mass and size distributions of aerosols are very complex and spatially and temporally variable. For example, reducing SO2 emissions leads to reductions in sulphate and ammonium mass

  8. Linking Urban Air Pollution to Global Tropospheric Chemistry and Climate

    NASA Technical Reports Server (NTRS)

    Wang, Chien

    2005-01-01

    The two major tasks of this project are to study: (a) the impact of urban nonlinear chemistry on chemical budgets of key pollutants in non-urban areas; and (b) the influence of air pollution control strategies in selected metropolitan areas, particularly of emerging economies in East and South Asia, on tropospheric chemistry and hence on regional and global climate.

  9. Examining the impact of nitryl chloride chemistry on summertime air quality

    NASA Astrophysics Data System (ADS)

    Sarwar, G.; Simon, H. A.; Bhave, P.; Hutzell, W. T.

    2011-12-01

    Results of recent field campaigns suggest that heterogeneous reactions can form nitryl chloride (ClNO2) at night. ClNO2 photodissociates into nitrogen dioxide and chlorine radicals during the day. Subsequent photolysis of nitrogen dioxide and reactions of chlorine radicals with volatile organic compounds increase ozone production. Thus, the presence of ClNO2 in the atmosphere can enhance ozone. In this study, the impact of the heterogeneous production of ClNO2 on summertime air quality in the United States is examined by using the Community Multiscale Air Quality (CMAQ) model. Laboratory chamber experimental studies have parameterized the yield of ClNO2 and the heterogeneous uptake of dinitrogen pentoxide on aerosols. We implement these parameterizations into the CMAQ model. In addition to the typical emissions, the model also includes emissions of sea-salt, anthropogenic particulate chloride, anthropogenic hydrochloric acid and molecular chlorine from the National Emissions Inventory. Model simulations are conducted without and with the heterogeneous ClNO2 formation reaction for September 1-10, 2006. The results of the study suggest that the heterogeneous reaction produces ClNO2 in many coastal areas as well as inland locations in the United States. The ClNO2 increase in coastal areas is caused by chloride emissions from sea-salt and in inland-areas by chloride emissions from fire and anthropogenic sources. Predicted ClNO2 levels reach nighttime peaks of up to 4.0 ppb in the Los Angeles area and up to 1.2 ppb near Houston, similar to the measured values reported in the literature. The ClNO2 chemistry decreases nitric acid as well as particulate nitrate by a large margin; consequently it changes composition of NOz. It increases hourly and daily maximum 8-hr ozone by up to 9 ppbv and 6 ppbv, respectively. It increases aerosol sulfate while decreasing aerosol nitrate and ammonium. The accompanying presentation identifies predicted spatial patterns of ClNO2

  10. A four-dimensional variational chemistry data assimilation scheme for Eulerian chemistry transport modeling

    NASA Astrophysics Data System (ADS)

    Eibern, Hendrik; Schmidt, Hauke

    1999-08-01

    The inverse problem of data assimilation of tropospheric trace gas observations into an Eulerian chemistry transport model has been solved by the four-dimensional variational technique including chemical reactions, transport, and diffusion. The University of Cologne European Air Pollution Dispersion Chemistry Transport Model 2 with the Regional Acid Deposition Model 2 gas phase mechanism is taken as the basis for developing a full four-dimensional variational data assimilation package, on the basis of the adjoint model version, which includes the adjoint operators of horizontal and vertical advection, implicit vertical diffusion, and the adjoint gas phase mechanism. To assess the potential and limitations of the technique without degrading the impact of nonperfect meteorological analyses and statistically not established error covariance estimates, artificial meteorological data and observations are used. The results are presented on the basis of a suite of experiments, where reduced records of artificial "observations" are provided to the assimilation procedure, while other "data" is retained for performance control of the analysis. The paper demonstrates that the four-dimensional variational technique is applicable for a comprehensive chemistry transport model in terms of computational and storage requirements on advanced parallel platforms. It is further shown that observed species can generally be analyzed, even if the "measurements" have unbiased random errors. More challenging experiments are presented, aiming to tax the skill of the method (1) by restricting available observations mostly to surface ozone observations for a limited assimilation interval of 6 hours and (2) by starting with poorly chosen first guess values. In this first such application to a three-dimensional chemistry transport model, success was also achieved in analyzing not only observed but also chemically closely related unobserved constituents.

  11. Evaluating the CALIOPE air quality modelling system: dynamics and chemistry over Europe and Iberian Peninsula for 2004 at high horizontal resolution

    NASA Astrophysics Data System (ADS)

    Piot, M.; Pay, M. T.; Jorba, O.; Baldasano, J. M.; Jiménez-Guerrero, P.; López, E.; Pérez, C.; Gassó, S.

    2009-04-01

    Often in Europe, population exposure to air pollution exceeds standards set by the EU and the World Health Organization (WHO). Urban/suburban areas are predominantly impacted upon, although exceedances of particulate matter (PM10 and PM2.5) and Ozone (O3) also take place in rural areas. In the frame of the CALIOPE project (Baldasano et al., 2008a), a high-resolution air quality forecasting system, WRF-ARW/HERMES/CMAQ/DREAM, has been developed and applied to the European domain (12km x 12km, 1hr) as well as to the Iberian Peninsula domain (4km x 4km, 1hr) to provide air quality forecasts for Spain (http://www.bsc.es/caliope/). The simulation of such high-resolution model system has been made possible by its implementation on the MareNostrum supercomputer. To reassure potential users and reduce uncertainties, the model system must be evaluated to assess its performances in terms of air quality levels and dynamics reproducibility. The present contribution describes a thorough quantitative evaluation study performed for a reference year (2004). The CALIOPE modelling system is configured with 38 vertical layers reaching up to 50 hPa for the meteorological core. Atmospheric initial and boundary conditions are obtained from the NCEP final analysis data. The vertical resolution of the CMAQ chemistry-transport model for gas-phase and aerosols has been increased from 8 to 15 layers in order to simulate vertical exchanges more accurately. Gas phase boundary conditions are provided by the LMDz-INCA2 global climate-chemistry model (see Hauglustaine et al., 2004). The DREAM model simulates long-range transport of mineral dust over the domains under study. For the European simulation, emissions are disaggregated from the EMEP expert emission inventory for 2004 to the utilized resolution using the criteria implemented in the HERMES emission model (Baldasano et al., 2008b). The HERMES model system, using a bottom-up approach, was adopted to estimate emissions for the Iberian

  12. Systematic evaluation of atmospheric chemistry-transport model CHIMERE

    NASA Astrophysics Data System (ADS)

    Khvorostyanov, Dmitry; Menut, Laurent; Mailler, Sylvain; Siour, Guillaume; Couvidat, Florian; Bessagnet, Bertrand; Turquety, Solene

    2017-04-01

    Regional-scale atmospheric chemistry-transport models (CTM) are used to develop air quality regulatory measures, to support environmentally sensitive decisions in the industry, and to address variety of scientific questions involving the atmospheric composition. Model performance evaluation with measurement data is critical to understand their limits and the degree of confidence in model results. CHIMERE CTM (http://www.lmd.polytechnique.fr/chimere/) is a French national tool for operational forecast and decision support and is widely used in the international research community in various areas of atmospheric chemistry and physics, climate, and environment (http://www.lmd.polytechnique.fr/chimere/CW-articles.php). This work presents the model evaluation framework applied systematically to the new CHIMERE CTM versions in the course of the continuous model development. The framework uses three of the four CTM evaluation types identified by the Environmental Protection Agency (EPA) and the American Meteorological Society (AMS): operational, diagnostic, and dynamic. It allows to compare the overall model performance in subsequent model versions (operational evaluation), identify specific processes and/or model inputs that could be improved (diagnostic evaluation), and test the model sensitivity to the changes in air quality, such as emission reductions and meteorological events (dynamic evaluation). The observation datasets currently used for the evaluation are: EMEP (surface concentrations), AERONET (optical depths), and WOUDC (ozone sounding profiles). The framework is implemented as an automated processing chain and allows interactive exploration of the results via a web interface.

  13. Modeling emissions for three-dimensional atmospheric chemistry transport models.

    PubMed

    Matthias, Volker; Arndt, Jan A; Aulinger, Armin; Bieser, Johannes; Denier Van Der Gon, Hugo; Kranenburg, Richard; Kuenen, Jeroen; Neumann, Daniel; Pouliot, George; Quante, Markus

    2018-01-24

    Poor air quality is still a threat for human health in many parts of the world. In order to assess measures for emission reductions and improved air quality, three-dimensional atmospheric chemistry transport modeling systems are used in numerous research institutions and public authorities. These models need accurate emission data in appropriate spatial and temporal resolution as input. This paper reviews the most widely used emission inventories on global and regional scale and looks into the methods used to make the inventory data model ready. Shortcomings of using standard temporal profiles for each emission sector are discussed and new methods to improve the spatio-temporal distribution of the emissions are presented. These methods are often neither top-down nor bottom-up approaches but can be seen as hybrid methods that use detailed information about the emission process to derive spatially varying temporal emission profiles. These profiles are subsequently used to distribute bulk emissions like national totals on appropriate grids. The wide area of natural emissions is also summarized and the calculation methods are described. Almost all types of natural emissions depend on meteorological information, which is why they are highly variable in time and space and frequently calculated within the chemistry transport models themselves. The paper closes with an outlook for new ways to improve model ready emission data, for example by using external databases about road traffic flow or satellite data to determine actual land use or leaf area. In a world where emission patterns change rapidly, it seems appropriate to use new types of statistical and observational data to create detailed emission data sets and keep emission inventories up-to-date. Emission data is probably the most important input for chemistry transport model (CTM) systems. It needs to be provided in high temporal and spatial resolution and on a grid that is in agreement with the CTM grid. Simple

  14. Air pollution in the Benelux/Rhine-Ruhr area: Numerical simulations with a multi-scale regional chemistry-transport model

    NASA Astrophysics Data System (ADS)

    Memmesheimer, M.; Jakobs, H. J.; Wurzler, S.; Friese, E.; Piekorz, G.; Ebel, A.

    2009-04-01

    The Rhine-Ruhr area is a strongly industrialized region with about 10 Million inhabitants. It is one of the regions in Europe, which has the characteristics of a megacity with respect to population density, traffic, industry and environmental issues. The main centre of European steel production and the biggest inland port of the world is located in Duisburg, one of the major cities in the Rhine-Ruhr area. Together with the nearby urban agglomerations in the Benelux area including Brussels, Amsterdam and in particular Rotterdam as one of the most important sea-harbours of the world together with Singapore and Shanghai, it forms one of the regions in Europe heavily loaded with air pollutants as ozone, NO2 and particulate matter. Ammonia emissions outside the urban agglomerations but within the domain are also on a quite high level due to intense agricultural usage in Benelux, North-Rhine-Westphalia and lower Saxony. Therefore this area acts also as an important source region for gaseous precursors contributing to the formation of secondary particles in the atmosphere. The Benelux/Rhine-Ruhr area therefore has been selected within the framework of the recently established FP7 research project CityZen as one hot spot for detailed investigations of the past and current status of air pollution and its future development on different spatial and temporal scales. Some examples from numerical simulations with the regional multi-scale chemistry transport model EURAD for Central Europe and the Rhine-Ruhr area will be presented. The model calculates the transport, chemical transformations and deposition of trace constituents in the troposphere from the surface up to about 16 km using MM5 as meteorological driver, the RACM-MIM gas-phase chemistry and MADE-SORGAM for the treatment of particulate matter. Horizontal grid sizes are in the range of 100 km down to 1 km for heavily polluted urbanized areas within Benelux/Rhine-Ruhr. The planetary boundary layer is resolved by 15

  15. Air quality models and unusually large ozone increases: Identifying model failures, understanding environmental causes, and improving modeled chemistry

    NASA Astrophysics Data System (ADS)

    Couzo, Evan A.

    Several factors combine to make ozone (O3) pollution in Houston, Texas, unique when compared to other metropolitan areas. These include complex meteorology, intense clustering of industrial activity, and significant precursor emissions from the heavily urbanized eight-county area. Decades of air pollution research have borne out two different causes, or conceptual models, of O 3 formation. One conceptual model describes a gradual region-wide increase in O3 concentrations "typical" of many large U.S. cities. The other conceptual model links episodic emissions of volatile organic compounds to spatially limited plumes of high O3, which lead to large hourly increases that have exceeded 100 parts per billion (ppb) per hour. These large hourly increases are known to lead to violations of the federal O 3 standard and impact Houston's status as a non-attainment area. There is a need to further understand and characterize the causes of peak O 3 levels in Houston and simulate them correctly so that environmental regulators can find the most cost-effective pollution controls. This work provides a detailed understanding of unusually large O 3 increases in the natural and modeled environments. First, we probe regulatory model simulations and assess their ability to reproduce the observed phenomenon. As configured for the purpose of demonstrating future attainment of the O3 standard, the model fails to predict the spatially limited O3 plumes observed in Houston. Second, we combine ambient meteorological and pollutant measurement data to identify the most likely geographic origins and preconditions of the concentrated O3 plumes. We find evidence that the O3 plumes are the result of photochemical activity accelerated by industrial emissions. And, third, we implement changes to the modeled chemistry to add missing formation mechanisms of nitrous acid, which is an important radical precursor. Radicals control the chemical reactivity of atmospheric systems, and perturbations to

  16. Air Quality Forecasts Using the NASA GEOS Model

    NASA Technical Reports Server (NTRS)

    Keller, Christoph A.; Knowland, K. Emma; Nielsen, Jon E.; Orbe, Clara; Ott, Lesley; Pawson, Steven; Saunders, Emily; Duncan, Bryan; Follette-Cook, Melanie; Liu, Junhua; hide

    2018-01-01

    We provide an introduction to a new high-resolution (0.25 degree) global composition forecast produced by NASA's Global Modeling and Assimilation office. The NASA Goddard Earth Observing System version 5 (GEOS-5) model has been expanded to provide global near-real-time forecasts of atmospheric composition at a horizontal resolution of 0.25 degrees (25 km). Previously, this combination of detailed chemistry and resolution was only provided by regional models. This system combines the operational GEOS-5 weather forecasting model with the state-of-the-science GEOS-Chem chemistry module (version 11) to provide detailed chemical analysis of a wide range of air pollutants such as ozone, carbon monoxide, nitrogen oxides, and fine particulate matter (PM2.5). The resolution of the forecasts is the highest resolution compared to current, publically-available global composition forecasts. Evaluation and validation of modeled trace gases and aerosols compared to surface and satellite observations will be presented for constituents relative to health air quality standards. Comparisons of modeled trace gases and aerosols against satellite observations show that the model produces realistic concentrations of atmospheric constituents in the free troposphere. Model comparisons against surface observations highlight the model's capability to capture the diurnal variability of air pollutants under a variety of meteorological conditions. The GEOS-5 composition forecasting system offers a new tool for scientists and the public health community, and is being developed jointly with several government and non-profit partners. Potential applications include air quality warnings, flight campaign planning and exposure studies using the archived analysis fields.

  17. Review of the Global Models Used Within Phase 1 of the Chemistry-Climate Model Initiative (CCMI)

    NASA Technical Reports Server (NTRS)

    Morgenstern, Olaf; Hegglin, Michaela I.; Rozanov, Eugene; O’Connor, Fiona M.; Abraham, N. Luke; Akiyoshi, Hideharu; Archibald, Alexander T.; Bekki, Slimane; Butchart, Neal; Chipperfield, Martyn P.; hide

    2017-01-01

    We present an overview of state-of-the-art chemistry-climate and chemistry transport models that are used within phase 1 of the Chemistry-Climate Model Initiative (CCMI-1). The CCMI aims to conduct a detailed evaluation of participating models using process-oriented diagnostics derived from observations in order to gain confidence in the models' projections of the stratospheric ozone layer, tropospheric composition, air quality, where applicable global climate change, and the interactions between them. Interpretation of these diagnostics requires detailed knowledge of the radiative, chemical, dynamical, and physical processes incorporated in the models. Also an understanding of the degree to which CCMI-1 recommendations for simulations have been followed is necessary to understand model responses to anthropogenic and natural forcing and also to explain inter-model differences. This becomes even more important given the ongoing development and the ever-growing complexity of these models. This paper also provides an overview of the available CCMI-1 simulations with the aim of informing CCMI data users.

  18. Gridded global surface ozone metrics for atmospheric chemistry model evaluation

    NASA Astrophysics Data System (ADS)

    Sofen, E. D.; Bowdalo, D.; Evans, M. J.; Apadula, F.; Bonasoni, P.; Cupeiro, M.; Ellul, R.; Galbally, I. E.; Girgzdiene, R.; Luppo, S.; Mimouni, M.; Nahas, A. C.; Saliba, M.; Tørseth, K.

    2016-02-01

    The concentration of ozone at the Earth's surface is measured at many locations across the globe for the purposes of air quality monitoring and atmospheric chemistry research. We have brought together all publicly available surface ozone observations from online databases from the modern era to build a consistent data set for the evaluation of chemical transport and chemistry-climate (Earth System) models for projects such as the Chemistry-Climate Model Initiative and Aer-Chem-MIP. From a total data set of approximately 6600 sites and 500 million hourly observations from 1971-2015, approximately 2200 sites and 200 million hourly observations pass screening as high-quality sites in regionally representative locations that are appropriate for use in global model evaluation. There is generally good data volume since the start of air quality monitoring networks in 1990 through 2013. Ozone observations are biased heavily toward North America and Europe with sparse coverage over the rest of the globe. This data set is made available for the purposes of model evaluation as a set of gridded metrics intended to describe the distribution of ozone concentrations on monthly and annual timescales. Metrics include the moments of the distribution, percentiles, maximum daily 8-hour average (MDA8), sum of means over 35 ppb (daily maximum 8-h; SOMO35), accumulated ozone exposure above a threshold of 40 ppbv (AOT40), and metrics related to air quality regulatory thresholds. Gridded data sets are stored as netCDF-4 files and are available to download from the British Atmospheric Data Centre (doi: 10.5285/08fbe63d-fa6d-4a7a-b952-5932e3ab0452). We provide recommendations to the ozone measurement community regarding improving metadata reporting to simplify ongoing and future efforts in working with ozone data from disparate networks in a consistent manner.

  19. Gridded global surface ozone metrics for atmospheric chemistry model evaluation

    NASA Astrophysics Data System (ADS)

    Sofen, E. D.; Bowdalo, D.; Evans, M. J.; Apadula, F.; Bonasoni, P.; Cupeiro, M.; Ellul, R.; Galbally, I. E.; Girgzdiene, R.; Luppo, S.; Mimouni, M.; Nahas, A. C.; Saliba, M.; Tørseth, K.; Wmo Gaw, Epa Aqs, Epa Castnet, Capmon, Naps, Airbase, Emep, Eanet Ozone Datasets, All Other Contributors To

    2015-07-01

    The concentration of ozone at the Earth's surface is measured at many locations across the globe for the purposes of air quality monitoring and atmospheric chemistry research. We have brought together all publicly available surface ozone observations from online databases from the modern era to build a consistent dataset for the evaluation of chemical transport and chemistry-climate (Earth System) models for projects such as the Chemistry-Climate Model Initiative and Aer-Chem-MIP. From a total dataset of approximately 6600 sites and 500 million hourly observations from 1971-2015, approximately 2200 sites and 200 million hourly observations pass screening as high-quality sites in regional background locations that are appropriate for use in global model evaluation. There is generally good data volume since the start of air quality monitoring networks in 1990 through 2013. Ozone observations are biased heavily toward North America and Europe with sparse coverage over the rest of the globe. This dataset is made available for the purposes of model evaluation as a set of gridded metrics intended to describe the distribution of ozone concentrations on monthly and annual timescales. Metrics include the moments of the distribution, percentiles, maximum daily eight-hour average (MDA8), SOMO35, AOT40, and metrics related to air quality regulatory thresholds. Gridded datasets are stored as netCDF-4 files and are available to download from the British Atmospheric Data Centre (doi:10.5285/08fbe63d-fa6d-4a7a-b952-5932e3ab0452). We provide recommendations to the ozone measurement community regarding improving metadata reporting to simplify ongoing and future efforts in working with ozone data from disparate networks in a consistent manner.

  20. Unconventional Constraints on Nitrogen Chemistry using DC3 Observations and Trajectory-based Chemical Modeling

    NASA Astrophysics Data System (ADS)

    Shu, Q.; Henderson, B. H.

    2017-12-01

    Chemical transport models underestimate nitrogen dioxide observations in the upper troposphere (UT). Previous research in the UT succeeded in combining model predictions with field campaign measurements to demonstrate that the nitric acid formation rate (HO + NO2 → HNO3 (R1)) is overestimated by 22% (Henderson et al., 2012). A subsequent publication (Seltzer et al., 2015) demonstrated that single chemical constraint alters ozone and aerosol formation/composition. This work attempts to replicate previous chemical constraints with newer observations and a different modeling framework. We apply the previously successful constraint framework to Deep Convection Clouds and Chemistry (DC3). DC3 is a more recent field campaign where simulated nitrogen imbalances still exist. Freshly convected air parcels, identified in the DC3 dataset, as initial coordinates to initiate Lagrangian trajectories. Along each trajectory, we simulate the air parcel chemical state. Samples along the trajectories will form ensembles that represent possible realizations of UT air parcels. We then apply Bayesian inference to constrain nitrogen chemistry and compare results to the existing literature. Our anticipated results will confirm overestimation of HNO3 formation rate in previous work and provide further constraints on other nitrogen reaction rate coefficients that affect terminal products from NOx. We will particularly focus on organic nitrate chemistry that laboratory literature has yet to fully address. The results will provide useful insights into nitrogen chemistry that affects climate and human health.

  1. Air quality modelling over the Eastern Mediterranean using the WRF/Chem model: Comparison of gas-phase chemistry and aerosol mechanisms

    NASA Astrophysics Data System (ADS)

    Georgiou, George K.; Christoudias, Theodoros; Proestos, Yiannis; Kushta, Jonilda; Hadjinicolaou, Panos; Lelieveld, Jos

    2017-04-01

    A comprehensive analysis of the performance of three coupled gas-phase chemistry and aerosol mechanisms included in the WRF/Chem model has been performed over the Eastern Mediterranean focusing on Cyprus during the CYPHEX campaign in 2014, using high temporal and spatial resolution. The model performance was evaluated by comparing calculations to measurements of gas phase species (O3, CO, NOx, SO2) and aerosols (PM10, PM2.5) from 13 ground stations. Initial results indicate that the calculated day-to-day and diurnal variations of the aforementioned species show good agreement with observations. The model was set up with three nested grids, downscaling to 4km over Cyprus. The meteorological boundary conditions were updated every 3 hours throughout the simulation using the Global Forecast System (GFS), while chemical boundary conditions were updated every 6 hours using the MOZART global chemical transport model. Biogenic emissions were calculated online by the the Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1). Anthropogenic emissions were based on the EDGAR HTAP v2 global emission inventory, provided on a horizontal grid resolution of 0.1o × 0.1o. Three simulations were performed employing different chemistry and aerosol mechanisms; i) RADM2 chemical mechanism and MADE/SORGAM aerosols, ii) CBMZ chemical mechanism and MOSAIC aerosols, iii) MOZART chemical mechanism and MOSAIC aerosols. Results show that the WRF/Chem model satisfactorily estimates the trace gases relative concentrations at the background sites but not at the urban and traffic sites, while some differences appear between the simulated concentrations by the three mechanisms. The resulting discrepancies between the model outcome and measurements, especially at the urban and traffic sites, suggest that a higher resolution anthropogenic emission inventory might help improve fine resolution, regional air quality modelling. Differences in the simulated concentrations by the

  2. Interactions of Chemistry and Meteorology: Transforming Air Pollution into Climate Change

    NASA Astrophysics Data System (ADS)

    Dickerson, R. R.

    2009-05-01

    PThe common goal of understanding and protecting Earth's environment has brought together chemists and meteorologists, despite the once widely held view that these are natural adversaries. Historically, dynamics, physics, chemistry, and biology were explored as isolated aspects of air quality and climate, but nature has proved to be much more interesting than that. Emissions and atmospheric photochemistry create air pollutants, but meteorology drives day to day variability in air quality. Air pollution, no matter how severe, has no substantive impact on global atmospheric composition or climate unless it is transported away from the sources, usually through frontal passage and advection, isentropic lifting or, especially lofting in deep convective clouds and thunderstorms. At higher altitudes, greater actinic flux accelerates photochemistry, stronger winds speed dispersal, and lower temperatures slow losses while amplifying radiative heating of greenhouse forcing substance such as ozone and carbonaceous aerosols. Examples include the transport of reactive nitrogen compounds from one part of North America to another, or on to the remote North Atlantic and Europe. Although measurement of NOy and NHx gases and particles still presents an analytical challenge, these trace species have major impacts on ecosystems and biogeochemical cycles. In East Asia chemistry and meteorology conspire to intensify long-range, even intercontinental transport of mineral dust and air pollutants. Recent discovery of a nonlocal dynamical driver to the Urban Heat Island effect shows that the adverse impact of urbanization can cascade to exacerbate heat stress, photochemical smog, and haze well downwind. A balanced consideration of meteorology and chemistry not only helps to identify and understand environmental problems, it can also provide powerful, policy relevant science that has led to success stories such as a regional approach to emissions controls and cleaner air over the eastern US.

  3. Implementing subgrid-scale cloudiness into the Model for Prediction Across Scales-Atmosphere (MPAS-A) for next generation global air quality modeling

    EPA Science Inventory

    A next generation air quality modeling system is being developed at the U.S. EPA to enable seamless modeling of air quality from global to regional to (eventually) local scales. State of the science chemistry and aerosol modules from the Community Multiscale Air Quality (CMAQ) mo...

  4. Dimethylsulfide Chemistry: Annual, Seasonal, and Spatial Impacts on Sulfate

    EPA Science Inventory

    We incorporated oceanic emissions and atmospheric chemistry of dimethylsulfide (DMS) into the hemispheric Community Multiscale Air Quality model and performed annual model simulations without and with DMS chemistry. The model without DMS chemistry predicts higher concentrations o...

  5. A model of CO-CH4 global transport/chemistry. I - Chemistry model

    NASA Technical Reports Server (NTRS)

    Peters, L. K.; Kitada, T.

    1980-01-01

    A simplified chemistry model was developed to incorporate the CO-CH4 chemistry into the global transport model of these compounds. CO is important because of its effects on atmospheric chemistry and is partly responsible for controlling the hydroxyl radical (OH) concentration in the troposphere. The model includes the photodissociation rate coefficients expressed as functions of solar zenith angle and altitude, and it was applied to determine the sensitivity of the OH concentration to trace gaseous species, such as NOx, O3, and H2O. Also, the concentrations and diurnal variations of OH and HO2, and the contribution of individual reactions to OH generation and consumption were calculated.

  6. Comprehensive evaluation of multi-year real-time air quality forecasting using an online-coupled meteorology-chemistry model over southeastern United States

    NASA Astrophysics Data System (ADS)

    Zhang, Yang; Hong, Chaopeng; Yahya, Khairunnisa; Li, Qi; Zhang, Qiang; He, Kebin

    2016-08-01

    An online-coupled meteorology-chemistry model, WRF/Chem-MADRID, has been deployed for real time air quality forecast (RT-AQF) in southeastern U.S. since 2009. A comprehensive evaluation of multi-year RT-AQF shows overall good performance for temperature and relative humidity at 2-m (T2, RH2), downward surface shortwave radiation (SWDOWN) and longwave radiation (LWDOWN), and cloud fraction (CF), ozone (O3) and fine particles (PM2.5) at surface, tropospheric ozone residuals (TOR) in O3 seasons (May-September), and column NO2 in winters (December-February). Moderate-to-large biases exist in wind speed at 10-m (WS10), precipitation (Precip), cloud optical depth (COT), ammonium (NH4+), sulfate (SO42-), and nitrate (NO3-) from the IMPROVE and SEARCH networks, organic carbon (OC) at IMPROVE, and elemental carbon (EC) and OC at SEARCH, aerosol optical depth (AOD) and column carbon monoxide (CO), sulfur dioxide (SO2), and formaldehyde (HCHO) in both O3 and winter seasons, column nitrogen dioxide (NO2) in O3 seasons, and TOR in winters. These biases indicate uncertainties in the boundary layer and cloud process treatments (e.g., surface roughness, microphysics cumulus parameterization), emissions (e.g., O3 and PM precursors, biogenic, mobile, and wildfire emissions), upper boundary conditions for all major gases and PM2.5 species, and chemistry and aerosol treatments (e.g., winter photochemistry, aerosol thermodynamics). The model shows overall good skills in reproducing the observed multi-year trends and inter-seasonal variability in meteorological and radiative variables such as T2, WS10, Precip, SWDOWN, and LWDOWN, and relatively well in reproducing the observed trends in surface O3 and PM2.5, but relatively poor in reproducing the observed column abundances of CO, NO2, SO2, HCHO, TOR, and AOD. The sensitivity simulations using satellite-constrained boundary conditions for O3 and CO show substantial improvement for both spatial distribution and domain-mean performance

  7. Description and Evaluation of IAP-AACM: A Global-regional Aerosol Chemistry Model for the Earth System Model CAS-ESM

    NASA Astrophysics Data System (ADS)

    Wei, Y.; Chen, X.

    2017-12-01

    We present a first description and evaluation of the IAP Atmospheric Aerosol Chemistry Model (IAP-AACM) which has been integrated into the earth system model CAS-ESM. In this way it is possible to research into interaction of clouds and aerosol by its two-way coupling with the IAP Atmospheric General Circulation Model (IAP-AGCM). The model has a nested global-regional grid based on the Global Environmental Atmospheric Transport Model (GEATM) and the Nested Air Quality Prediction Modeling System (NAQPMS). The AACM provides two optional gas chemistry schemes, the CBM-Z gas chemistry as well as a sulfur oxidize box designed specifically for the CAS-ESM. Now the model driven by AGCM has been applied to a 1-year simulation of tropospheric chemistry both on global and regional scales for 2014, and been evaluated against various observation datasets, including aerosol precursor gas concentration, aerosol mass and number concentrations. Furthermore, global budgets in AACM are compared with other global aerosol models. Generally, the AACM simulations are within the range of other global aerosol model predictions, and the model has a reasonable agreement with observations of gases and particles concentration both on global and regional scales.

  8. Model development of dust emission and heterogeneous chemistry within the Community Multiscale Air Quality modeling system and its application over East Asia

    NASA Astrophysics Data System (ADS)

    Dong, Xinyi; Fu, Joshua S.; Huang, Kan; Tong, Daniel; Zhuang, Guoshun

    2016-07-01

    The Community Multiscale Air Quality (CMAQ) model has been further developed in terms of simulating natural wind-blown dust in this study, with a series of modifications aimed at improving the model's capability to predict the emission, transport, and chemical reactions of dust. The default parameterization of initial threshold friction velocity constants are revised to correct the double counting of the impact of soil moisture in CMAQ by the reanalysis of field experiment data; source-dependent speciation profiles for dust emission are derived based on local measurements for the Gobi and Taklamakan deserts in East Asia; and dust heterogeneous chemistry is also implemented. The improved dust module in the CMAQ is applied over East Asia for March and April from 2006 to 2010. The model evaluation result shows that the simulation bias of PM10 and aerosol optical depth (AOD) is reduced, respectively, from -55.42 and -31.97 % by the original CMAQ to -16.05 and -22.1 % by the revised CMAQ. Comparison with observations at the nearby Gobi stations of Duolun and Yulin indicates that applying a source-dependent profile helps reduce simulation bias for trace metals. Implementing heterogeneous chemistry also results in better agreement with observations for sulfur dioxide (SO2), sulfate (SO42-), nitric acid (HNO3), nitrous oxides (NOx), and nitrate (NO3-). The investigation of a severe dust storm episode from 19 to 21 March 2010 suggests that the revised CMAQ is capable of capturing the spatial distribution and temporal variation of dust. The model evaluation also indicates potential uncertainty within the excessive soil moisture used by meteorological simulation. The mass contribution of fine-mode particles in dust emission may be underestimated by 50 %. The revised CMAQ model provides a useful tool for future studies to investigate the emission, transport, and impact of wind-blown dust over East Asia and elsewhere.

  9. Air quality modeling for the urban Jackson, Mississippi Region using a high resolution WRF/Chem model.

    PubMed

    Yerramilli, Anjaneyulu; Dodla, Venkata B; Desamsetti, Srinivas; Challa, Srinivas V; Young, John H; Patrick, Chuck; Baham, Julius M; Hughes, Robert L; Yerramilli, Sudha; Tuluri, Francis; Hardy, Mark G; Swanier, Shelton J

    2011-06-01

    In this study, an attempt was made to simulate the air quality with reference to ozone over the Jackson (Mississippi) region using an online WRF/Chem (Weather Research and Forecasting-Chemistry) model. The WRF/Chem model has the advantages of the integration of the meteorological and chemistry modules with the same computational grid and same physical parameterizations and includes the feedback between the atmospheric chemistry and physical processes. The model was designed to have three nested domains with the inner-most domain covering the study region with a resolution of 1 km. The model was integrated for 48 hours continuously starting from 0000 UTC of 6 June 2006 and the evolution of surface ozone and other precursor pollutants were analyzed. The model simulated atmospheric flow fields and distributions of NO2 and O3 were evaluated for each of the three different time periods. The GIS based spatial distribution maps for ozone, its precursors NO, NO2, CO and HONO and the back trajectories indicate that all the mobile sources in Jackson, Ridgeland and Madison contributing significantly for their formation. The present study demonstrates the applicability of WRF/Chem model to generate quantitative information at high spatial and temporal resolution for the development of decision support systems for air quality regulatory agencies and health administrators.

  10. Kinematic and diabatic vertical velocity climatologies from a chemistry climate model

    NASA Astrophysics Data System (ADS)

    Marinke Hoppe, Charlotte; Ploeger, Felix; Konopka, Paul; Müller, Rolf

    2016-05-01

    The representation of vertical velocity in chemistry climate models is a key element for the representation of the large-scale Brewer-Dobson circulation in the stratosphere. Here, we diagnose and compare the kinematic and diabatic vertical velocities in the ECHAM/Modular Earth Submodel System (MESSy) Atmospheric Chemistry (EMAC) model. The calculation of kinematic vertical velocity is based on the continuity equation, whereas diabatic vertical velocity is computed using diabatic heating rates. Annual and monthly zonal mean climatologies of vertical velocity from a 10-year simulation are provided for both kinematic and diabatic vertical velocity representations. In general, both vertical velocity patterns show the main features of the stratospheric circulation, namely, upwelling at low latitudes and downwelling at high latitudes. The main difference in the vertical velocity pattern is a more uniform structure for diabatic and a noisier structure for kinematic vertical velocity. Diabatic vertical velocities show higher absolute values both in the upwelling branch in the inner tropics and in the downwelling regions in the polar vortices. Further, there is a latitudinal shift of the tropical upwelling branch in boreal summer between the two vertical velocity representations with the tropical upwelling region in the diabatic representation shifted southward compared to the kinematic case. Furthermore, we present mean age of air climatologies from two transport schemes in EMAC using these different vertical velocities and analyze the impact of residual circulation and mixing processes on the age of air. The age of air distributions show a hemispheric difference pattern in the stratosphere with younger air in the Southern Hemisphere and older air in the Northern Hemisphere using the transport scheme with diabatic vertical velocities. Further, the age of air climatology from the transport scheme using diabatic vertical velocities shows a younger mean age of air in the

  11. Using a chemistry transport model to account for the spatial variability of exposure concentrations in epidemiologic air pollution studies.

    PubMed

    Valari, Myrto; Menut, Laurent; Chatignoux, Edouard

    2011-02-01

    Environmental epidemiology and more specifically time-series analysis have traditionally used area-averaged pollutant concentrations measured at central monitors as exposure surrogates to associate health outcomes with air pollution. However, spatial aggregation has been shown to contribute to the overall bias in the estimation of the exposure-response functions. This paper presents the benefit of adding features of the spatial variability of exposure by using concentration fields modeled with a chemistry transport model instead of monitor data and accounting for human activity patterns. On the basis of county-level census data for the city of Paris, France, and a Monte Carlo simulation, a simple activity model was developed accounting for the temporal variability between working and evening hours as well as during transit. By combining activity data with modeled concentrations, the downtown, suburban, and rural spatial patterns in exposure to nitrogen dioxide, ozone, and PM2.5 (particulate matter [PM] < or = 10 microm in aerodynamic diameter) were captured and parametrized. Exposures predicted with this model were used in a time-series study of the short-term effect of air pollution on total nonaccidental mortality for the 4-yr period from 2001 to 2004. It was shown that the time series of the exposure surrogates developed here are less correlated across co-pollutants than in the case of the area-averaged monitor data. This led to less biased exposure-response functions when all three co-pollutants were inserted simultaneously in the same regression model. This finding yields insight into pollutant-specific health effects that are otherwise masked by the high correlation among co-pollutants.

  12. Feedbacks between air pollution and weather, part 2: Effects on chemistry

    NASA Astrophysics Data System (ADS)

    Makar, P. A.; Gong, W.; Hogrefe, C.; Zhang, Y.; Curci, G.; Žabkar, R.; Milbrandt, J.; Im, U.; Balzarini, A.; Baró, R.; Bianconi, R.; Cheung, P.; Forkel, R.; Gravel, S.; Hirtl, M.; Honzak, L.; Hou, A.; Jiménez-Guerrero, P.; Langer, M.; Moran, M. D.; Pabla, B.; Pérez, J. L.; Pirovano, G.; San José, R.; Tuccella, P.; Werhahn, J.; Zhang, J.; Galmarini, S.

    2015-08-01

    Fully-coupled air-quality models running in ;feedback; and ;no-feedback; configurations were compared against each other and observation network data as part of Phase 2 of the Air Quality Model Evaluation International Initiative. In the ;no-feedback; mode, interactions between meteorology and chemistry through the aerosol direct and indirect effects were disabled, with the models reverting to climatologies of aerosol properties, or a no-aerosol weather simulation, while in the ;feedback; mode, the model-generated aerosols were allowed to modify the models' radiative transfer and/or cloud formation processes. Annual simulations with and without feedbacks were conducted for domains in North America for the years 2006 and 2010, and for Europe for the year 2010. Comparisons against observations via annual statistics show model-to-model variation in performance is greater than the within-model variation associated with feedbacks. However, during the summer and during intense emission events such as the Russian forest fires of 2010, feedbacks have a significant impact on the chemical predictions of the models. The aerosol indirect effect was usually found to dominate feedbacks compared to the direct effect. The impacts of direct and indirect effects were often shown to be in competition, for predictions of ozone, particulate matter and other species. Feedbacks were shown to result in local and regional shifts of ozone-forming chemical regime, between NOx- and VOC-limited environments. Feedbacks were shown to have a substantial influence on biogenic hydrocarbon emissions and concentrations: North American simulations incorporating both feedbacks resulted in summer average isoprene concentration decreases of up to 10%, while European direct effect simulations during the Russian forest fire period resulted in grid average isoprene changes of -5 to +12.5%. The atmospheric transport and chemistry of large emitting sources such as plumes from forest fires and large cities

  13. Dimethylsulfide chemistry: annual, seasonal, and spatial impacts on SO_4^(2-)

    EPA Science Inventory

    We incorporated oceanic emissions and atmospheric chemistry of dimethylsulfide (DMS) into the hemispheric Community Multiscale Air Quality model and performed annual model simulations without and with DMS chemistry. The model without DMS chemistry predicts higher concentrations o...

  14. Containment Sodium Chemistry Models in MELCOR.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Louie, David; Humphries, Larry L.; Denman, Matthew R

    To meet regulatory needs for sodium fast reactors’ future development, including licensing requirements, Sandia National Laboratories is modernizing MELCOR, a severe accident analysis computer code developed for the U.S. Nuclear Regulatory Commission (NRC). Specifically, Sandia is modernizing MELCOR to include the capability to model sodium reactors. However, Sandia’s modernization effort primarily focuses on the containment response aspects of the sodium reactor accidents. Sandia began modernizing MELCOR in 2013 to allow a sodium coolant, rather than water, for conventional light water reactors. In the past three years, Sandia has been implementing the sodium chemistry containment models in CONTAIN-LMR, a legacy NRCmore » code, into MELCOR. These chemistry models include spray fire, pool fire and atmosphere chemistry models. Only the first two chemistry models have been implemented though it is intended to implement all these models into MELCOR. A new package called “NAC” has been created to manage the sodium chemistry model more efficiently. In 2017 Sandia began validating the implemented models in MELCOR by simulating available experiments. The CONTAIN-LMR sodium models include sodium atmosphere chemistry and sodium-concrete interaction models. This paper presents sodium property models, the implemented models, implementation issues, and a path towards validation against existing experimental data.« less

  15. Online coupled regional meteorology-chemistry models in Europe: current status and prospects

    NASA Astrophysics Data System (ADS)

    Baklanov, A.; Schluenzen, K. H.; Suppan, P.; Baldasano, J.; Brunner, D.; Aksoyoglu, S.; Carmichael, G.; Douros, J.; Flemming, J.; Forkel, R.; Galmarini, S.; Gauss, M.; Grell, G.; Hirtl, M.; Joffre, S.; Jorba, O.; Kaas, E.; Kaasik, M.; Kallos, G.; Kong, X.; Korsholm, U.; Kurganskiy, A.; Kushta, J.; Lohmann, U.; Mahura, A.; Manders-Groot, A.; Maurizi, A.; Moussiopoulos, N.; Rao, S. T.; Savage, N.; Seigneur, C.; Sokhi, R.; Solazzo, E.; Solomos, S.; Sørensen, B.; Tsegas, G.; Vignati, E.; Vogel, B.; Zhang, Y.

    2013-05-01

    The simulation of the coupled evolution of atmospheric dynamics, pollutant transport, chemical reactions and atmospheric composition is one of the most challenging tasks in environmental modelling, climate change studies, and weather forecasting for the next decades as they all involve strongly integrated processes. Weather strongly influences air quality (AQ) and atmospheric transport of hazardous materials, while atmospheric composition can influence both weather and climate by directly modifying the atmospheric radiation budget or indirectly affecting cloud formation. Until recently, however, due to the scientific complexities and lack of computational power, atmospheric chemistry and weather forecasting have developed as separate disciplines, leading to the development of separate modelling systems that are only loosely coupled. The continuous increase in computer power has now reached a stage that enables us to perform online coupling of regional meteorological models with atmospheric chemical transport models. The focus on integrated systems is timely, since recent research has shown that meteorology and chemistry feedbacks are important in the context of many research areas and applications, including numerical weather prediction (NWP), AQ forecasting as well as climate and Earth system modelling. However, the relative importance of online integration and its priorities, requirements and levels of detail necessary for representing different processes and feedbacks can greatly vary for these related communities: (i) NWP, (ii) AQ forecasting and assessments, (iii) climate and earth system modelling. Additional applications are likely to benefit from online modelling, e.g.: simulation of volcanic ash or forest fire plumes, pollen warnings, dust storms, oil/gas fires, geo-engineering tests involving changes in the radiation balance. The COST Action ES1004 - European framework for online integrated air quality and meteorology modelling (EuMetChem) - aims at

  16. Comparisons of Three-Dimensional Variational Data Assimilation and Model Output Statistics in Improving Atmospheric Chemistry Forecasts

    NASA Astrophysics Data System (ADS)

    Ma, Chaoqun; Wang, Tijian; Zang, Zengliang; Li, Zhijin

    2018-07-01

    Atmospheric chemistry models usually perform badly in forecasting wintertime air pollution because of their uncertainties. Generally, such uncertainties can be decreased effectively by techniques such as data assimilation (DA) and model output statistics (MOS). However, the relative importance and combined effects of the two techniques have not been clarified. Here, a one-month air quality forecast with the Weather Research and Forecasting-Chemistry (WRF-Chem) model was carried out in a virtually operational setup focusing on Hebei Province, China. Meanwhile, three-dimensional variational (3DVar) DA and MOS based on one-dimensional Kalman filtering were implemented separately and simultaneously to investigate their performance in improving the model forecast. Comparison with observations shows that the chemistry forecast with MOS outperforms that with 3DVar DA, which could be seen in all the species tested over the whole 72 forecast hours. Combined use of both techniques does not guarantee a better forecast than MOS only, with the improvements and degradations being small and appearing rather randomly. Results indicate that the implementation of MOS is more suitable than 3DVar DA in improving the operational forecasting ability of WRF-Chem.

  17. Air Quality Modeling for the Urban Jackson, Mississippi Region Using a High Resolution WRF/Chem Model

    PubMed Central

    Yerramilli, Anjaneyulu; Dodla, Venkata B.; Desamsetti, Srinivas; Challa, Srinivas V.; Young, John H.; Patrick, Chuck; Baham, Julius M.; Hughes, Robert L.; Yerramilli, Sudha; Tuluri, Francis; Hardy, Mark G.; Swanier, Shelton J.

    2011-01-01

    In this study, an attempt was made to simulate the air quality with reference to ozone over the Jackson (Mississippi) region using an online WRF/Chem (Weather Research and Forecasting–Chemistry) model. The WRF/Chem model has the advantages of the integration of the meteorological and chemistry modules with the same computational grid and same physical parameterizations and includes the feedback between the atmospheric chemistry and physical processes. The model was designed to have three nested domains with the inner-most domain covering the study region with a resolution of 1 km. The model was integrated for 48 hours continuously starting from 0000 UTC of 6 June 2006 and the evolution of surface ozone and other precursor pollutants were analyzed. The model simulated atmospheric flow fields and distributions of NO2 and O3 were evaluated for each of the three different time periods. The GIS based spatial distribution maps for ozone, its precursors NO, NO2, CO and HONO and the back trajectories indicate that all the mobile sources in Jackson, Ridgeland and Madison contributing significantly for their formation. The present study demonstrates the applicability of WRF/Chem model to generate quantitative information at high spatial and temporal resolution for the development of decision support systems for air quality regulatory agencies and health administrators. PMID:21776240

  18. A comparison of atmospheric composition using the Carbon Bond and Regional Atmospheric Chemistry MechanismsChemistry Mechanisms

    EPA Science Inventory

    We incorporate the recently developed Regional Atmospheric Chemistry Mechanism (version 2, RACM2) into the Community Multiscale Air Quality modeling system for comparison with the existing 2005 Carbon Bond mechanism with updated toluene chemistry (CB05TU). Compared to CB05TU, RAC...

  19. Meteorological and air pollution modeling for an urban airport

    NASA Technical Reports Server (NTRS)

    Swan, P. R.; Lee, I. Y.

    1980-01-01

    Results are presented of numerical experiments modeling meteorology, multiple pollutant sources, and nonlinear photochemical reactions for the case of an airport in a large urban area with complex terrain. A planetary boundary-layer model which predicts the mixing depth and generates wind, moisture, and temperature fields was used; it utilizes only surface and synoptic boundary conditions as input data. A version of the Hecht-Seinfeld-Dodge chemical kinetics model is integrated with a new, rapid numerical technique; both the San Francisco Bay Area Air Quality Management District source inventory and the San Jose Airport aircraft inventory are utilized. The air quality model results are presented in contour plots; the combined results illustrate that the highly nonlinear interactions which are present require that the chemistry and meteorology be considered simultaneously to make a valid assessment of the effects of individual sources on regional air quality.

  20. Modeling the atmospheric chemistry of TICs

    NASA Astrophysics Data System (ADS)

    Henley, Michael V.; Burns, Douglas S.; Chynwat, Veeradej; Moore, William; Plitz, Angela; Rottmann, Shawn; Hearn, John

    2009-05-01

    An atmospheric chemistry model that describes the behavior and disposition of environmentally hazardous compounds discharged into the atmosphere was coupled with the transport and diffusion model, SCIPUFF. The atmospheric chemistry model was developed by reducing a detailed atmospheric chemistry mechanism to a simple empirical effective degradation rate term (keff) that is a function of important meteorological parameters such as solar flux, temperature, and cloud cover. Empirically derived keff functions that describe the degradation of target toxic industrial chemicals (TICs) were derived by statistically analyzing data generated from the detailed chemistry mechanism run over a wide range of (typical) atmospheric conditions. To assess and identify areas to improve the developed atmospheric chemistry model, sensitivity and uncertainty analyses were performed to (1) quantify the sensitivity of the model output (TIC concentrations) with respect to changes in the input parameters and (2) improve, where necessary, the quality of the input data based on sensitivity results. The model predictions were evaluated against experimental data. Chamber data were used to remove the complexities of dispersion in the atmosphere.

  1. Impact of a future H2-based road transportation sector on the composition and chemistry of the atmosphere - Part 1: Tropospheric composition and air quality

    NASA Astrophysics Data System (ADS)

    Wang, D.; Jia, W.; Olsen, S. C.; Wuebbles, D. J.; Dubey, M. K.; Rockett, A. A.

    2013-07-01

    Vehicles burning fossil fuel emit a number of substances that change the composition and chemistry of the atmosphere, and contribute to global air and water pollution and climate change. For example, nitrogen oxides and volatile organic compounds (VOCs) emitted as byproducts of fossil fuel combustion are key precursors to ground-level ozone and aerosol formation. In addition, on-road vehicles are major CO2 emitters. In order to tackle these problems, molecular hydrogen (H2) has been proposed as an energy carrier to substitute for fossil fuels in the future. However, before implementing any such strategy it is crucial to evaluate its potential impacts on air quality and climate. Here, we evaluate the impact of a future (2050) H2-based road transportation sector on tropospheric chemistry and air quality for several possible growth and technology adoption scenarios. The growth scenarios are based on the high and low emissions Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios, A1FI and B1, respectively. The technological adoption scenarios include H2 fuel cell and H2 internal combustion engine options. The impacts are evaluated with the Community Atmospheric Model Chemistry global chemistry transport model (CAM-Chem). Higher resolution simulations focusing on the contiguous United States are also carried out with the Community Multiscale Air Quality Modeling System (CMAQ) regional chemistry transport model. For all scenarios future air quality improves with the adoption of a H2-based road transportation sector; however, the magnitude and type of improvement depend on the scenario. Model results show that the adoption of H2 fuel cells would decrease tropospheric burdens of ozone (7%), CO (14%), NOx (16%), soot (17%), sulfate aerosol (4%), and ammonium nitrate aerosol (12%) in the A1FI scenario, and would decrease those of ozone (5%), CO (4%), NOx (11%), soot (7%), sulfate aerosol (4%), and ammonium nitrate aerosol (9%) in the B1 scenario

  2. Urban Climate Effects on Air Pollution and Atmospheric Chemistry

    NASA Astrophysics Data System (ADS)

    Rasoul, Tara; Bloss, William; Pope, Francis

    2016-04-01

    Tropospheric ozone, adversely affects the environment and human health. The presence of chlorine nitrate (ClNO2) in the troposphere can enhance ozone (O3) formation as it undergoes photolysis, releasing chlorine reactive atoms (Cl) and nitrogen dioxide (NO2), both of which enhance tropospheric ozone formation. The importance of new sources of tropospheric ClNO2 via heterogeneous processes has recently been highlighted. This study employed a box model, using the Master Chemical Mechanism (MCM version 3.2) to assess the effect of ClNO2 on air quality in urban areas within the UK. The model updated to include ClNO2 production, photolysis, a comprehensive parameterisation of dinitrogen pentoxide (N2O5) uptake, and ClNO2 production calculated from bulk aerosol composition. The model simulation revealed the presence of ClNO2 enhances the formation of NO2, organic peroxy radical (CH3O2), O3, and hydroxyl radicals (OH) when compared with simulations excluding ClNO2. In addition, the study examined the effect of temperature variation upon ClNO2 formation. The response of ClNO2 to temperature was analysed to identify the underlying drivers, of particular importance when assessing the response of atmospheric chemistry processes under potential future climates.

  3. Assessment of the MACC reanalysis and its influence as chemical boundary conditions for regional air quality modeling in AQMEII-2

    EPA Science Inventory

    The Air Quality Model Evaluation International Initiative (AQMEII) has now reached its second phase which is dedicated to the evaluation of online coupled chemistry-meteorology models. Sixteen modeling groups from Europe and five from North America have run regional air quality m...

  4. The impact of a future H2-based road transportation sector on the composition and chemistry of the atmosphere - Part 1: Tropospheric composition and air quality

    NASA Astrophysics Data System (ADS)

    Wang, D.; Jia, W.; Olsen, S. C.; Wuebbles, D. J.; Dubey, M. K.; Rockett, A. A.

    2012-08-01

    Vehicles burning fossil fuel emit a number of substances that change the composition and chemistry of the atmosphere, and contribute to global air and water pollution and climate change. For example, nitrogen oxides and volatile organic compounds (VOCs) emitted as byproducts of fossil fuel combustion are key precursors to ground-level ozone and aerosol formation. In addition, on-road vehicles are major CO2 emitters. In order to tackle these problems, molecular hydrogen (H2) has been proposed as an energy carrier to substitute for fossil fuel in the future. However, before implementing any such strategy it is crucial to evaluate its potential impacts on air quality and climate. Here we evaluate the impact of a future (2050) H2-based road transportation sector on tropospheric chemistry and air quality for several possible growth and technology adoption scenarios. The growth scenarios are based on the high and low emissions Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios, A1FI and B1, respectively. The technological adoption scenarios include H2 fuel cell and H2 internal combustion engine options. The impacts are evaluated with the Community Atmospheric Model Chemistry global chemistry transport model (CAM-Chem). Higher resolution simulations focusing on the contiguous United States are also carried out with the Community Multiscale Air Quality Modeling System (CMAQ) regional chemistry transport model. For all scenarios future air quality improves with the adoption of a H2-based road transportation sector, however, the magnitude and type of improvement depend on the scenario. Model results show that with the adoption of H2 fuel cells decreases tropospheric burdens of ozone (7%), CO (14%), NOx (16%), soot (17%), sulfate aerosol (4%), and ammonium nitrate aerosol (12%) in the A1FI scenario, and decreases those of ozone (5%), CO (4%), NOx (11%), soot (7%), sulfate aerosol (4%), and ammonium nitrate aerosol (9 %) in the B1 scenario. The

  5. Linking Global and Regional Models to Simulate U.S. Air Quality in the Year 2050

    EPA Science Inventory

    The potential impact of global climate change on future air quality in the United States is investigated with global and regional-scale models. Regional climate model scenarios are developed by dynamically downscaling the outputs from a global chemistry and climate model and are...

  6. Multi-model assessment of health impacts of air pollution in Europe and the U.S.

    NASA Astrophysics Data System (ADS)

    Im, Ulas; Brandt, Jørgen; Christensen, Jesper H.; Geels, Camilla; Hansen, Kaj M.; Andersen, Mikael S.; Solazzo, Efisio; Hogrefe, Christian; Galmarini, Stefano

    2017-04-01

    According to the World Health Organization (WHO), air pollution is now the world's largest single environmental health risk. Assessments of health impacts and the associated external costs related to air pollution are estimated based on observed and/or modelled air pollutant levels. Chemistry and transport models (CTMs) are useful tools to calculate the concentrations of health-related pollutants taking into account the non-linearities in the chemistry and the complex interactions between meteorology and chemistry. However, the CTMs include different chemical and aerosol schemes that introduce differences in the representation of the processes. Likewise, will differences in the emissions and boundary conditions used in the models add to the overall uncertainties. These uncertainties are introduced also into the health impact estimates using output from the CTMs. Multi-model (MM) ensembles can be useful to minimize these uncertainties introduced by the individual CTMs. In the present study, the simulated surface concentrations of health related air pollutants for the year 2010 from fifteen modelling groups participating in the AQMEII exercise, serve as input to the Economic Valuation of Air Pollution model (EVA), in order to calculate the impacts of these pollutants on human health and the associated external costs in Europe and U.S. In addition, the impacts of a 20% global emission reduction scenario on the human health and associated costs have been calculated. Preliminary results show that in Europe and U.S., the MM mean number of premature deaths due to air pollution is calculated to be 400 000 and 160 000, respectively. Estimated health impacts among different models can vary up to a factor of 3 and 1.2 in Europe and U.S., respectively. PM is calculated to be the major pollutant affecting the health impacts and the differences in models regarding the treatment of aerosol composition, physics and dynamics is a key factor. The total MM mean costs due to health

  7. Chemistry on the mesoscale: Modeling and measurement issues

    NASA Technical Reports Server (NTRS)

    Thompson, Anne; Pleim, John; Walcek, Christopher; Ching, Jason; Binkowski, Frank; Tao, Wei-Kuo; Dickerson, Russell; Pickering, Kenneth

    1993-01-01

    The topics covered include the following: Regional Acid Deposition Model (RADM) -- a coupled chemistry/mesoscale model; convection in RADM; unresolved issues for mesoscale modeling with chemistry -- nonprecipitating clouds; unresolved issues for mesoscale modeling with chemistry -- aerosols; tracer studies with Goddard Cumulus Ensemble Model (GCEM); field observations of trace gas transport in convection; and photochemical consequences of convection.

  8. Model development of dust emission and heterogeneous chemistry within the Community Multiscale Air Quality modeling system and its application over East Asia

    NASA Astrophysics Data System (ADS)

    Dong, X.; Fu, J. S.; Huang, K.; Tong, D.

    2015-12-01

    The Community Multiscale Air Quality (CMAQ) model has been further developed in terms of simulating natural wind-blown dust in this study, with a series of modifications aimed at improving the model's capability to predict the emission, transport, and chemical reactions of dust aerosols. The default parameterization of threshold friction velocity constants in the CMAQ are revised to avoid double counting of the impact of soil moisture based on the re-analysis of field experiment data; source-dependent speciation profiles for dust emission are derived based on local measurements for the Gobi and Taklamakan deserts in East Asia; and dust heterogeneous chemistry is implemented to simulate the reactions involving dust aerosol. The improved dust module in the CMAQ was applied over East Asia for March and April from 2006 to 2010. Evaluation against observations has demonstrated that simulation bias of PM10 and aerosol optical depth (AOD) is reduced from -55.42 and -31.97 % in the original CMAQ to -16.05 and -22.1 % in the revised CMAQ, respectively. Comparison with observations at the nearby Gobi stations of Duolun and Yulin indicates that applying a source-dependent profile helps reduce simulation bias for trace metals. Implementing heterogeneous chemistry is also found to result in better agreement with observations for sulfur dioxide (SO2), sulfate (SO42-), nitric acid (HNO3), nitrous oxides (NOx), and nitrate (NO3-). Investigation of a severe dust storm episode from 19 to 21 March 2010 suggests that the revised CMAQ is capable of capturing the spatial distribution and temporal variations of dust aerosols. Model evaluation indicates potential uncertainties within the excessive soil moisture fraction used by meteorological simulation. The mass contribution of fine mode aerosol in dust emission may be underestimated by 50 %. The revised revised CMAQ provides a useful tool for future studies to investigate the emission, transport, and impact of wind-blown dust over East

  9. Evaluation of the new EMAC-SWIFT chemistry climate model

    NASA Astrophysics Data System (ADS)

    Scheffler, Janice; Langematz, Ulrike; Wohltmann, Ingo; Rex, Markus

    2016-04-01

    It is well known that the representation of atmospheric ozone chemistry in weather and climate models is essential for a realistic simulation of the atmospheric state. Including atmospheric ozone chemistry into climate simulations is usually done by prescribing a climatological ozone field, by including a fast linear ozone scheme into the model or by using a climate model with complex interactive chemistry. While prescribed climatological ozone fields are often not aligned with the modelled dynamics, a linear ozone scheme may not be applicable for a wide range of climatological conditions. Although interactive chemistry provides a realistic representation of atmospheric chemistry such model simulations are computationally very expensive and hence not suitable for ensemble simulations or simulations with multiple climate change scenarios. A new approach to represent atmospheric chemistry in climate models which can cope with non-linearities in ozone chemistry and is applicable to a wide range of climatic states is the Semi-empirical Weighted Iterative Fit Technique (SWIFT) that is driven by reanalysis data and has been validated against observational satellite data and runs of a full Chemistry and Transport Model. SWIFT has recently been implemented into the ECHAM/MESSy (EMAC) chemistry climate model that uses a modular approach to climate modelling where individual model components can be switched on and off. Here, we show first results of EMAC-SWIFT simulations and validate these against EMAC simulations using the complex interactive chemistry scheme MECCA, and against observations.

  10. Simulation of tropospheric chemistry and aerosols with the climate model EC-Earth

    NASA Astrophysics Data System (ADS)

    van Noije, T. P. C.; Le Sager, P.; Segers, A. J.; van Velthoven, P. F. J.; Krol, M. C.; Hazeleger, W.

    2014-03-01

    We have integrated the atmospheric chemistry and transport model TM5 into the global climate model EC-Earth version 2.4. We present an overview of the TM5 model and the two-way data exchange between TM5 and the integrated forecasting system (IFS) model from the European Centre for Medium-Range Weather Forecasts (ECMWF), the atmospheric general circulation model of EC-Earth. In this paper we evaluate the simulation of tropospheric chemistry and aerosols in a one-way coupled configuration. We have carried out a decadal simulation for present-day conditions and calculated chemical budgets and climatologies of tracer concentrations and aerosol optical depth. For comparison we have also performed offline simulations driven by meteorological fields from ECMWF's ERA-Interim reanalysis and output from the EC-Earth model itself. Compared to the offline simulations, the online-coupled system produces more efficient vertical mixing in the troposphere, which likely reflects an improvement of the treatment of cumulus convection. The chemistry in the EC-Earth simulations is affected by the fact that the current version of EC-Earth produces a cold bias with too dry air in large parts of the troposphere. Compared to the ERA-Interim driven simulation, the oxidizing capacity in EC-Earth is lower in the tropics and higher in the extratropics. The methane lifetime is 7% higher in EC-Earth, but remains well within the range reported in the literature. We evaluate the model by comparing the simulated climatologies of surface carbon monoxide, tropospheric and surface ozone, and aerosol optical depth against observational data. The work presented in this study is the first step in the development of EC-Earth into an Earth system model with fully interactive atmospheric chemistry and aerosols.

  11. Simulation of tropospheric chemistry and aerosols with the climate model EC-Earth

    NASA Astrophysics Data System (ADS)

    van Noije, T. P. C.; Le Sager, P.; Segers, A. J.; van Velthoven, P. F. J.; Krol, M. C.; Hazeleger, W.; Williams, A. G.; Chambers, S. D.

    2014-10-01

    We have integrated the atmospheric chemistry and transport model TM5 into the global climate model EC-Earth version 2.4. We present an overview of the TM5 model and the two-way data exchange between TM5 and the IFS model from the European Centre for Medium-Range Weather Forecasts (ECMWF), the atmospheric general circulation model of EC-Earth. In this paper we evaluate the simulation of tropospheric chemistry and aerosols in a one-way coupled configuration. We have carried out a decadal simulation for present-day conditions and calculated chemical budgets and climatologies of tracer concentrations and aerosol optical depth. For comparison we have also performed offline simulations driven by meteorological fields from ECMWF's ERA-Interim reanalysis and output from the EC-Earth model itself. Compared to the offline simulations, the online-coupled system produces more efficient vertical mixing in the troposphere, which reflects an improvement of the treatment of cumulus convection. The chemistry in the EC-Earth simulations is affected by the fact that the current version of EC-Earth produces a cold bias with too dry air in large parts of the troposphere. Compared to the ERA-Interim driven simulation, the oxidizing capacity in EC-Earth is lower in the tropics and higher in the extratropics. The atmospheric lifetime of methane in EC-Earth is 9.4 years, which is 7% longer than the lifetime obtained with ERA-Interim but remains well within the range reported in the literature. We further evaluate the model by comparing the simulated climatologies of surface radon-222 and carbon monoxide, tropospheric and surface ozone, and aerosol optical depth against observational data. The work presented in this study is the first step in the development of EC-Earth into an Earth system model with fully interactive atmospheric chemistry and aerosols.

  12. WRF-Chem model predictions of the regional impacts of N2O5 heterogeneous processes on night-time chemistry over north-western Europe

    NASA Astrophysics Data System (ADS)

    Lowe, D.; Archer-Nicholls, S.; Morgan, W.; Allan, J.; Utembe, S.; Ouyang, B.; Aruffo, E.; Le Breton, M.; Zaveri, R. A.; Di Carlo, P.; Percival, C.; Coe, H.; Jones, R.; McFiggans, G.

    2015-02-01

    Chemical modelling studies have been conducted over north-western Europe in summer conditions, showing that night-time dinitrogen pentoxide (N2O5) heterogeneous reactive uptake is important regionally in modulating particulate nitrate and has a~modest influence on oxidative chemistry. Results from Weather Research and Forecasting model with Chemistry (WRF-Chem) model simulations, run with a detailed volatile organic compound (VOC) gas-phase chemistry scheme and the Model for Simulating Aerosol Interactions and Chemistry (MOSAIC) sectional aerosol scheme, were compared with a series of airborne gas and particulate measurements made over the UK in July 2010. Modelled mixing ratios of key gas-phase species were reasonably accurate (correlations with measurements of 0.7-0.9 for NO2 and O3). However modelled loadings of particulate species were less accurate (correlation with measurements for particulate sulfate and ammonium were between 0.0 and 0.6). Sulfate mass loadings were particularly low (modelled means of 0.5-0.7 μg kg-1air, compared with measurements of 1.0-1.5 μg kg-1air). Two flights from the campaign were used as test cases - one with low relative humidity (RH) (60-70%), the other with high RH (80-90%). N2O5 heterogeneous chemistry was found to not be important in the low-RH test case; but in the high-RH test case it had a strong effect and significantly improved the agreement between modelled and measured NO3 and N2O5. When the model failed to capture atmospheric RH correctly, the modelled NO3 and N2O5 mixing ratios for these flights differed significantly from the measurements. This demonstrates that, for regional modelling which involves heterogeneous processes, it is essential to capture the ambient temperature and water vapour profiles. The night-time NO3 oxidation of VOCs across the whole region was found to be 100-300 times slower than the daytime OH oxidation of these compounds. The difference in contribution was less for alkenes (× 80) and

  13. WRF-Chem model predictions of the regional impacts of N 2O 5 heterogeneous processes on night-time chemistry over north-western Europe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowe, Douglas; Archer-Nicholls, Scott; Morgan, Will

    Chemical modelling studies have been conducted over north-western Europe in summer conditions, showing that night-time dinitrogen pentoxide (N 2O 5) heterogeneous reactive uptake is important regionally in modulating particulate nitrate and has a~modest influence on oxidative chemistry. Results from Weather Research and Forecasting model with Chemistry (WRF-Chem) model simulations, run with a detailed volatile organic compound (VOC) gas-phase chemistry scheme and the Model for Simulating Aerosol Interactions and Chemistry (MOSAIC) sectional aerosol scheme, were compared with a series of airborne gas and particulate measurements made over the UK in July 2010. Modelled mixing ratios of key gas-phase species were reasonablymore » accurate (correlations with measurements of 0.7–0.9 for NO 2 and O 3). However modelled loadings of particulate species were less accurate (correlation with measurements for particulate sulfate and ammonium were between 0.0 and 0.6). Sulfate mass loadings were particularly low (modelled means of 0.5–0.7 μg kg −1 air, compared with measurements of 1.0–1.5 μg kg −1 air). Two flights from the campaign were used as test cases – one with low relative humidity (RH) (60–70%), the other with high RH (80–90%). N 2O 5 heterogeneous chemistry was found to not be important in the low-RH test case; but in the high-RH test case it had a strong effect and significantly improved the agreement between modelled and measured NO 3 and N 2O 5. When the model failed to capture atmospheric RH correctly, the modelled NO 3 and N 2O 5 mixing ratios for these flights differed significantly from the measurements. This demonstrates that, for regional modelling which involves heterogeneous processes, it is essential to capture the ambient temperature and water vapour profiles. The night-time NO 3 oxidation of VOCs across the whole region was found to be 100–300 times slower than the daytime OH oxidation of these compounds. The difference in

  14. WRF-Chem model predictions of the regional impacts of N 2O 5 heterogeneous processes on night-time chemistry over north-western Europe

    DOE PAGES

    Lowe, Douglas; Archer-Nicholls, Scott; Morgan, Will; ...

    2015-02-09

    Chemical modelling studies have been conducted over north-western Europe in summer conditions, showing that night-time dinitrogen pentoxide (N 2O 5) heterogeneous reactive uptake is important regionally in modulating particulate nitrate and has a~modest influence on oxidative chemistry. Results from Weather Research and Forecasting model with Chemistry (WRF-Chem) model simulations, run with a detailed volatile organic compound (VOC) gas-phase chemistry scheme and the Model for Simulating Aerosol Interactions and Chemistry (MOSAIC) sectional aerosol scheme, were compared with a series of airborne gas and particulate measurements made over the UK in July 2010. Modelled mixing ratios of key gas-phase species were reasonablymore » accurate (correlations with measurements of 0.7–0.9 for NO 2 and O 3). However modelled loadings of particulate species were less accurate (correlation with measurements for particulate sulfate and ammonium were between 0.0 and 0.6). Sulfate mass loadings were particularly low (modelled means of 0.5–0.7 μg kg −1 air, compared with measurements of 1.0–1.5 μg kg −1 air). Two flights from the campaign were used as test cases – one with low relative humidity (RH) (60–70%), the other with high RH (80–90%). N 2O 5 heterogeneous chemistry was found to not be important in the low-RH test case; but in the high-RH test case it had a strong effect and significantly improved the agreement between modelled and measured NO 3 and N 2O 5. When the model failed to capture atmospheric RH correctly, the modelled NO 3 and N 2O 5 mixing ratios for these flights differed significantly from the measurements. This demonstrates that, for regional modelling which involves heterogeneous processes, it is essential to capture the ambient temperature and water vapour profiles. The night-time NO 3 oxidation of VOCs across the whole region was found to be 100–300 times slower than the daytime OH oxidation of these compounds. The difference in

  15. Validation of chemistry models employed in a particle simulation method

    NASA Technical Reports Server (NTRS)

    Haas, Brian L.; Mcdonald, Jeffrey D.

    1991-01-01

    The chemistry models employed in a statistical particle simulation method, as implemented in the Intel iPSC/860 multiprocessor computer, are validated and applied. Chemical relaxation of five-species air in these reservoirs involves 34 simultaneous dissociation, recombination, and atomic-exchange reactions. The reaction rates employed in the analytic solutions are obtained from Arrhenius experimental correlations as functions of temperature for adiabatic gas reservoirs in thermal equilibrium. Favorable agreement with the analytic solutions validates the simulation when applied to relaxation of O2 toward equilibrium in reservoirs dominated by dissociation and recombination, respectively, and when applied to relaxation of air in the temperature range 5000 to 30,000 K. A flow of O2 over a circular cylinder at high Mach number is simulated to demonstrate application of the method to multidimensional reactive flows.

  16. A survey of upwind methods for flows with equilibrium and non-equilibrium chemistry and thermodynamics

    NASA Technical Reports Server (NTRS)

    Grossman, B.; Garrett, J.; Cinnella, P.

    1989-01-01

    Several versions of flux-vector split and flux-difference split algorithms were compared with regard to general applicability and complexity. Test computations were performed using curve-fit equilibrium air chemistry for an M = 5 high-temperature inviscid flow over a wedge, and an M = 24.5 inviscid flow over a blunt cylinder for test computations; for these cases, little difference in accuracy was found among the versions of the same flux-split algorithm. For flows with nonequilibrium chemistry, the effects of the thermodynamic model on the development of flux-vector split and flux-difference split algorithms were investigated using an equilibrium model, a general nonequilibrium model, and a simplified model based on vibrational relaxation. Several numerical examples are presented, including nonequilibrium air chemistry in a high-temperature shock tube and nonequilibrium hydrogen-air chemistry in a supersonic diffuser.

  17. Urban Air Quality Modelling with AURORA: Prague and Bratislava

    NASA Astrophysics Data System (ADS)

    Veldeman, N.; Viaene, P.; De Ridder, K.; Peelaerts, W.; Lauwaet, D.; Muhammad, N.; Blyth, L.

    2012-04-01

    The European Commission, in its strategy to protect the health of the European citizens, states that in order to assess the impact of air pollution on public health, information on long-term exposure to air pollution should be available. Currently, indicators of air quality are often being generated using measured pollutant concentrations. While air quality monitoring stations data provide accurate time series information at specific locations, air quality models have the advantage of being able to assess the spatial variability of air quality (for different resolutions) and predict air quality in the future based on different scenarios. When running such air quality models at a high spatial and temporal resolution, one can simulate the actual situation as closely as possible, allowing for a detailed assessment of the risk of exposure to citizens from different pollutants. AURORA (Air quality modelling in Urban Regions using an Optimal Resolution Approach), a prognostic 3-dimensional Eulerian chemistry-transport model, is designed to simulate urban- to regional-scale atmospheric pollutant concentration and exposure fields. The AURORA model also allows to calculate the impact of changes in land use (e.g. planting of trees) or of emission reduction scenario's on air quality. AURORA is currently being applied within the ESA atmospheric GMES service, PASODOBLE (http://www.myair-eu.org), that delivers information on air quality, greenhouse gases, stratospheric ozone, … At present there are two operational AURORA services within PASODOBLE. Within the "Air quality forecast service" VITO delivers daily air quality forecasts for Belgium at a resolution of 5 km and for the major Belgian cities: Brussels, Ghent, Antwerp, Liege and Charleroi. Furthermore forecast services are provided for Prague, Czech Republic and Bratislava, Slovakia, both at a resolution of 1 km. The "Urban/regional air quality assessment service" provides urban- and regional-scale maps (hourly resolution

  18. Towards the Next Generation Air Quality Modeling System: Current Progress on Implementing Chemistry into MPAS-A

    EPA Science Inventory

    The community multiscale air quality (CMAQ) model of the U.S. Environmental Protection Agency is one of the most widely used air quality model worldwide; it is employed for both research and regulatory applications at major universities and government agencies for improving under...

  19. Increasing the Use of Earth Science Data and Models in Air Quality Management.

    PubMed

    Milford, Jana B; Knight, Daniel

    2017-04-01

    In 2010, the U.S. National Aeronautics and Space Administration (NASA) initiated the Air Quality Applied Science Team (AQAST) as a 5-year, $17.5-million award with 19 principal investigators. AQAST aims to increase the use of Earth science products in air quality-related research and to help meet air quality managers' information needs. We conducted a Web-based survey and a limited number of follow-up interviews to investigate federal, state, tribal, and local air quality managers' perspectives on usefulness of Earth science data and models, and on the impact AQAST has had. The air quality managers we surveyed identified meeting the National Ambient Air Quality Standards for ozone and particulate matter, emissions from mobile sources, and interstate air pollution transport as top challenges in need of improved information. Most survey respondents viewed inadequate coverage or frequency of satellite observations, data uncertainty, and lack of staff time or resources as barriers to increased use of satellite data by their organizations. Managers who have been involved with AQAST indicated that the program has helped build awareness of NASA Earth science products, and assisted their organizations with retrieval and interpretation of satellite data and with application of global chemistry and climate models. AQAST has also helped build a network between researchers and air quality managers with potential for further collaborations. NASA's Air Quality Applied Science Team (AQAST) aims to increase the use of satellite data and global chemistry and climate models for air quality management purposes, by supporting research and tool development projects of interest to both groups. Our survey and interviews of air quality managers indicate they found value in many AQAST projects and particularly appreciated the connections to the research community that the program facilitated. Managers expressed interest in receiving continued support for their organizations' use of

  20. ATLAS - A new Lagrangian transport and mixing model with detailed stratospheric chemistry

    NASA Astrophysics Data System (ADS)

    Wohltmann, I.; Rex, M.; Lehmann, R.

    2009-04-01

    We present a new global Chemical Transport Model (CTM) with full stratospheric chemistry and Lagrangian transport and mixing called ATLAS. Lagrangian models have some crucial advantages over Eulerian grid-box based models, like no numerical diffusion, no limitation of the time step of the model by the CFL criterion, conservation of mixing ratios by design and easy parallelization of code. The transport module is based on a trajectory code developed at the Alfred Wegener Institute. The horizontal and vertical resolution, the vertical coordinate system (pressure, potential temperature, hybrid coordinate) and the time step of the model are flexible, so that the model can be used both for process studies and long-time runs over several decades. Mixing of the Lagrangian air parcels is parameterized based on the local shear and strain of the flow with a method similar to that used in the CLaMS model, but with some modifications like a triangulation that introduces no vertical layers. The stratospheric chemistry module was developed at the Institute and includes 49 species and 170 reactions and a detailed treatment of heterogenous chemistry on polar stratospheric clouds. We present an overview over the model architecture, the transport and mixing concept and some validation results. Comparison of model results with tracer data from flights of the ER2 aircraft in the stratospheric polar vortex in 1999/2000 which are able to resolve fine tracer filaments show that excellent agreement with observed tracer structures can be achieved with a suitable mixing parameterization.

  1. Evaluation and error apportionment of an ensemble of atmospheric chemistry transport modeling systems: multivariable temporal and spatial breakdown

    EPA Science Inventory

    Through the comparison of several regional-scale chemistry transport modelling systems that simulate meteorology and air quality over the European and American continents, this study aims at i) apportioning the error to the responsible processes using time-scale analysis, ii) hel...

  2. Evolutionary models of interstellar chemistry

    NASA Technical Reports Server (NTRS)

    Prasad, Sheo S.

    1987-01-01

    The goal of evolutionary models of interstellar chemistry is to understand how interstellar clouds came to be the way they are, how they will change with time, and to place them in an evolutionary sequence with other celestial objects such as stars. An improved Mark II version of an earlier model of chemistry in dynamically evolving clouds is presented. The Mark II model suggests that the conventional elemental C/O ratio less than one can explain the observed abundances of CI and the nondetection of O2 in dense clouds. Coupled chemical-dynamical models seem to have the potential to generate many observable discriminators of the evolutionary tracks. This is exciting, because, in general, purely dynamical models do not yield enough verifiable discriminators of the predicted tracks.

  3. Modeling atmospheric mineral aerosol chemistry to predict heterogeneous photooxidation of SO2

    NASA Astrophysics Data System (ADS)

    Yu, Zechen; Jang, Myoseon; Park, Jiyeon

    2017-08-01

    The photocatalytic ability of airborne mineral dust particles is known to heterogeneously promote SO2 oxidation, but prediction of this phenomenon is not fully taken into account by current models. In this study, the Atmospheric Mineral Aerosol Reaction (AMAR) model was developed to capture the influence of air-suspended mineral dust particles on sulfate formation in various environments. In the model, SO2 oxidation proceeds in three phases including the gas phase, the inorganic-salted aqueous phase (non-dust phase), and the dust phase. Dust chemistry is described as the absorption-desorption kinetics of SO2 and NOx (partitioning between the gas phase and the multilayer coated dust). The reaction of absorbed SO2 on dust particles occurs via two major paths: autoxidation of SO2 in open air and photocatalytic mechanisms under UV light. The kinetic mechanism of autoxidation was first leveraged using controlled indoor chamber data in the presence of Arizona Test Dust (ATD) particles without UV light, and then extended to photochemistry. With UV light, SO2 photooxidation was promoted by surface oxidants (OH radicals) that are generated via the photocatalysis of semiconducting metal oxides (electron-hole theory) of ATD particles. This photocatalytic rate constant was derived from the integration of the combinational product of the dust absorbance spectrum and wave-dependent actinic flux for the full range of wavelengths of the light source. The predicted concentrations of sulfate and nitrate using the AMAR model agreed well with outdoor chamber data that were produced under natural sunlight. For seven consecutive hours of photooxidation of SO2 in an outdoor chamber, dust chemistry at the low NOx level was attributed to 55 % of total sulfate (56 ppb SO2, 290 µg m-3 ATD, and NOx less than 5 ppb). At high NOx ( > 50 ppb of NOx with low hydrocarbons), sulfate formation was also greatly promoted by dust chemistry, but it was suppressed by the competition between NO2 and SO2

  4. Modeling urban air pollution in Budapest using WRF-Chem model

    NASA Astrophysics Data System (ADS)

    Kovács, Attila; Leelőssy, Ádám; Lagzi, István; Mészáros, Róbert

    2017-04-01

    Air pollution is a major problem for urban areas since the industrial revolution, including Budapest, the capital and largest city of Hungary. The main anthropogenic sources of air pollutants are industry, traffic and residential heating. In this study, we investigated the contribution of major industrial point sources to the urban air pollution in Budapest. We used the WRF (Weather Research and Forecasting) nonhydrostatic mesoscale numerical weather prediction system online coupled with chemistry (WRF-Chem, version 3.6).The model was configured with three nested domains with grid spacings of 15, 5 and 1 km, representing Central Europe, the Carpathian Basin and Budapest with its surrounding area. Emission data was obtained from the National Environmental Information System. The point source emissions were summed in their respective cells in the second nested domain according to latitude-longitude coordinates. The main examined air pollutants were carbon monoxide (CO) and nitrogen oxides (NOx), from which the secondary compound, ozone (O3) forms through chemical reactions. Simulations were performed under different weather conditions and compared to observations from the automatic monitoring site of the Hungarian Air Quality Network. Our results show that the industrial emissions have a relatively weak role in the urban background air pollution, confirming the effect of industrial developments and regulations in the recent decades. However, a few significant industrial sources and their impact area has been demonstrated.

  5. Using aircraft and satellite observations to improve regulatory air quality models

    NASA Astrophysics Data System (ADS)

    Canty, T. P.; Vinciguerra, T.; Anderson, D. C.; Carpenter, S. F.; Goldberg, D. L.; Hembeck, L.; Montgomery, L.; Liu, X.; Salawitch, R. J.; Dickerson, R. R.

    2014-12-01

    Federal and state agencies rely on EPA approved models to develop attainment strategies that will bring states into compliance with the National Ambient Air Quality Standards (NAAQS). We will describe modifications to the Community Multi-Scale Air Quality (CMAQ) model and Comprehensive Air Quality Model with Extensions (CAMx) frameworks motivated by analysis of NASA satellite and aircraft measurements. Observations of tropospheric column NO2 from OMI have already led to the identification of an important deficiency in the chemical mechanisms used by models; data collected during the DISCOVER-AQ field campaign has been instrumental in devising an improved representation of the chemistry of nitrogen species. Our recent work has focused on the use of: OMI observations of tropospheric O3 to assess and improve the representation of boundary conditions used by AQ models, OMI NO2 to derive a top down NOx emission inventory from commercial shipping vessels that affect air quality in the Eastern U.S., and OMI HCHO to assess the C5H8 emission inventories provided by bioegenic emissions models. We will describe how these OMI-driven model improvements are being incorporated into the State Implementation Plans (SIPs) being prepared for submission to EPA in summer 2015 and how future modeling efforts may be impacted by our findings.

  6. Improving UK Air Quality Modelling Through Exploitation of Satellite Observations

    NASA Astrophysics Data System (ADS)

    Pope, Richard; Chipperfield, Martyn; Savage, Nick

    2014-05-01

    In this work the applicability of satellite observations to evaluate the operational UK Met Office Air Quality in the Unified Model (AQUM) have been investigated. The main focus involved the AQUM validation against satellite observations, investigation of satellite retrieval error types and of synoptic meteorological-atmospheric chemistry relationships simulated/seen by the AQUM/satellite. The AQUM is a short range forecast model of atmospheric chemistry and aerosols up to 5 days. It has been designed to predict potentially hazardous air pollution events, e.g. high concentrations of surface ozone. The AQUM has only been validated against UK atmospheric chemistry recording surface stations. Therefore, satellite observations of atmospheric chemistry have been used to further validate the model, taking advantage of better satellite spatial coverage. Observations of summer and winter 2006 tropospheric column NO2 from both OMI and SCIAMACHY show that the AQUM generally compares well with the observations. However, in northern England positive biases (AQUM - satellite) suggest that the AQUM overestimates column NO2; we present results of sensitivity experiments on UK emissions datasets suspected to be the cause. In winter, the AQUM over predicts background column NO2 when compared to both satellite instruments. We hypothesise that the cause is the AQUM winter night-time chemistry, where the NO2 sinks are not substantially defined. Satellite data are prone to errors/uncertainty such as random, systematic and smoothing errors. We have investigated these error types and developed an algorithm to calculate and reduce the random error component of DOAS NO2 retrievals, giving more robust seasonal satellite composites. The Lamb Weather Types (LWT), an objective method of classifying the daily synoptic weather over the UK, were used to create composite satellite maps of column NO2 under different synoptic conditions. Under cyclonic conditions, satellite observed UK column NO2 is

  7. Air Quality Modeling and Forecasting over the United States Using WRF-Chem

    NASA Astrophysics Data System (ADS)

    Boxe, C.; Hafsa, U.; Blue, S.; Emmanuel, S.; Griffith, E.; Moore, J.; Tam, J.; Khan, I.; Cai, Z.; Bocolod, B.; Zhao, J.; Ahsan, S.; Gurung, D.; Tang, N.; Bartholomew, J.; Rafi, R.; Caltenco, K.; Rivas, M.; Ditta, H.; Alawlaqi, H.; Rowley, N.; Khatim, F.; Ketema, N.; Strothers, J.; Diallo, I.; Owens, C.; Radosavljevic, J.; Austin, S. A.; Johnson, L. P.; Zavala-Gutierrez, R.; Breary, N.; Saint-Hilaire, D.; Skeete, D.; Stock, J.; Salako, O.

    2016-12-01

    WRF-Chem is the Weather Research and Forecasting (WRF) model coupled with Chemistry. The model simulates the emission, transport, mixing, and chemical transformation of trace gases and aerosols simultaneously with the meteorology. The model is used for investigation of regional-scale air quality, field program analysis, and cloud-scale interactions between clouds and chemistry. The development of WRF-Chem is a collaborative effort among the community led by NOAA/ESRL scientists. The Official WRF-Chem web page is located at the NOAA web site. Our model development is closely linked with both NOAA/ESRL and DOE/PNNL efforts. Description of PNNL WRF-Chem model development is located at the PNNL web site as well as the PNNL Aerosol Modeling Testbed. High school and undergraduate students, representative of academic institutions throughout USA's Tri-State Area (New York, New Jersey, Connecticut), set up WRF-Chem on CUNY CSI's High Performance Computing Center. Students learned the back-end coding that governs WRF-Chems structure and the front-end coding that displays visually specified weather simulations and forecasts. Students also investigated the impact, to select baseline simulations/forecasts, due to the reaction, NO2 + OH + M → HOONO + M (k = 9.2 × 10-12 cm3 molecule-1 s-1, Mollner et al. 2010). The reaction of OH and NO2 to form gaseous nitric acid (HONO2) is among the most influential and in atmospheric chemistry. Till a few years prior, its rate coefficient remained poorly determined under tropospheric conditions because of difficulties in making laboratory measurements at 760 torr. These activities fosters student coding competencies and deep insights into weather forecast and air quality.

  8. Using GMD Data, AIRS Measurements, and the NASA Chemistry-Climate Model to Reveal Regional and Seasonal Variation of Methane

    NASA Astrophysics Data System (ADS)

    Steele, K. J.; Duncan, B. N.; Warner, J. X.; Nielsen, J. E.

    2010-12-01

    The concentration of methane (CH4) has more than doubled in the atmosphere since the preindustrial era due to a change in source-sink interactions. Many studies have aimed to quantify CH4 source contributions, but 1) the long tropospheric lifetime of CH4, resulting in a high background concentration, 2) along with sources often having overlapping distributions, and 3) the uncertainty in the chemical sink of CH4 with the hydroxyl radical makes it difficult to constrain inputs to the CH4 budget. The purpose of this study was to use a variety of observations in conjunction with the NASA GEOS-5 climate-chemistry model (CCM) to better understand regional and seasonal variation in atmospheric CH4. Seasonal variation in surface in situ data from the NOAA ESRL Global Monitoring Division (GMD) and data from the Japanese Airlines (JAL) in the upper troposphere (UT) were compared to satellite observations recorded by the Atmospheric Infrared Sounder (AIRS) on the EOS/Aqua satellite, which is most sensitive to CH4 in the UT. There was more variability in CH4 at the GMD sites than in the JAL data or AIRS because the GMD sites are closer to the source. As the CH4 is lofted into the UT, it mixes with the background CH4 so the seasonal variation is dampened. The JAL data followed the AIRS observations as expected. There was less variability in all measurements in the Southern Hemisphere and over oceans because these areas are farther away from sources. While the observations from AIRS, JAL flights, and the GMD sites provide valuable information regarding source locations and atmospheric CH4 concentration, it is important to understand which CH4 sources have the largest contribution to CH4 emissions in different regions of the world and the influence of these sources on the global CH4 cycle. Model output from the GEOS-5 CCM was used to monitor individual CH4 sources (e.g. from rice production, wetlands, biofuel use, etc.) as they are transported from the surface to the UT. The

  9. Session on coupled atmospheric/chemistry coupled models

    NASA Technical Reports Server (NTRS)

    Thompson, Anne

    1993-01-01

    The session on coupled atmospheric/chemistry coupled models is reviewed. Current model limitations, current issues and critical unknowns, and modeling activity are addressed. Specific recommendations and experimental strategies on the following are given: multiscale surface layer - planetary boundary layer - chemical flux measurements; Eulerian budget study; and Langrangian experiment. Nonprecipitating cloud studies, organized convective systems, and aerosols - heterogenous chemistry are also discussed.

  10. High-Resolution Modelling of Health Impacts from Air Pollution for Denmark using the Integrated Model System EVA

    NASA Astrophysics Data System (ADS)

    Brandt, Jørgen; Andersen, Mikael S.; Bønløkke, Jakob; Christensen, Jesper H.; Hansen, Kaj M.; Hertel, Ole; Im, Ulas; Jensen, Steen S.; Ketzel, Matthias; Nielsen, Ole-Kenneth; Plejdrup, Marlene S.; Sigsgaard, Torben; Geels, Camilla

    2015-04-01

    We have developed an integrated health impact assessment system EVA (Economic Valuation of Air pollution; Brandt et al., 2013a; 2013b), based on the impact-pathway chain, to assess the health impacts and health-related economic externalities of air pollution resulting from specific emission sources or sectors. The system is used to support policymaking with respect to emission control. The EVA system has previously been used to assess the health impacts based on results from a regional model DEHM (the Danish Eulerian Hemispheric Model; Brandt et al., 2012). In this study we have used a coupling of two chemistry transport models to calculate the air pollution concentration at different scales; the DEHM model to calculate the air pollution levels with a resolution down to 5.6 km x 5.6 km and the UBM model (Urban Background Model ; Berkowicz, 2000; Brandt et al., 2001) to further calculate the air pollution at 1 km x 1 km resolution for Denmark using results from DEHM as boundary conditions. Both the emission data based on the SPREAD model (Plejdrup and Gyldenkærne, 2011) as well as the population density has been represented in the model system with the same high resolution. The new developments of the integrated model system will be presented as well as results for health impacts and related external costs over the years 2006-2014 for Denmark. Furthermore, a sensitivity study of the health impact using coarse and fine resolutions in the model system has been carried out to evaluate the effect of improved description of the geographical population distribution with respect to location of local emissions. References Berkowicz, R., 2000. A Simple Model for Urban Background Pollution. Environmental Monitoring and Assessment, 65, 1/2, 259-267. Brandt, J., J. H. Christensen, L. M. Frohn, F. Palmgren, R. Berkowicz and Z. Zlatev, 2001: "Operational air pollution forecasts from European to local scale". Atmospheric Environment, Vol. 35, Sup. No. 1, pp. S91-S98, 2001 Brandt

  11. Updating Sea Spray Aerosol Emissions in the Community Multiscale Air Quality Model

    NASA Astrophysics Data System (ADS)

    Gantt, B.; Bash, J. O.; Kelly, J.

    2014-12-01

    Sea spray aerosols (SSA) impact the particle mass concentration and gas-particle partitioning in coastal environments, with implications for human and ecosystem health. In this study, the Community Multiscale Air Quality (CMAQ) model is updated to enhance fine mode SSA emissions, include sea surface temperature (SST) dependency, and revise surf zone emissions. Based on evaluation with several regional and national observational datasets in the continental U.S., the updated emissions generally improve surface concentrations predictions of primary aerosols composed of sea-salt and secondary aerosols affected by sea-salt chemistry in coastal and near-coastal sites. Specifically, the updated emissions lead to better predictions of the magnitude and coastal-to-inland gradient of sodium, chloride, and nitrate concentrations at Bay Regional Atmospheric Chemistry Experiment (BRACE) sites near Tampa, FL. Including SST-dependency to the SSA emission parameterization leads to increased sodium concentrations in the southeast U.S. and decreased concentrations along the Pacific coast and northeastern U.S., bringing predictions into closer agreement with observations at most Interagency Monitoring of Protected Visual Environments (IMPROVE) and Chemical Speciation Network (CSN) sites. Model comparison with California Research at the Nexus of Air Quality and Climate Change (CalNex) observations will also be discussed, with particular focus on the South Coast Air Basin where clean marine air mixes with anthropogenic pollution in a complex environment. These SSA emission updates enable more realistic simulation of chemical processes in coastal environments, both in clean marine air masses and mixtures of clean marine and polluted conditions.

  12. The Evaluation of the Spanish Air Quality Modelling System: CALIOPE. Dynamics and Chemistry over Europe and Iberian Peninsula for 2004 at high horizontal resolution

    NASA Astrophysics Data System (ADS)

    Piot, M.; Pay, M.; Jorba, O.; Lopez, E.; Pirez, C.; Gasso, S.; Baldasano, J. M.

    2009-12-01

    In Europe, human exposure to air pollution often exceeds standards set by the EU commission (Directives 1996/62/EC, 2002/3/EC, 2008/50/EC) and the World Health Organization (WHO). Urban/suburban areas are predominantly impacted upon, although exceedances of particulate matter (PM10 and PM2.5) and Ozone (O3) also take place in rural areas. Within the CALIOPE project, a high-resolution air quality forecasting system, namely WRF-ARW/HERMES04/CMAQ/BSC-DREAM, has been developed and applied to the European domain (12x12 sq. km, 1hr) as well as the Spanish domain (4x4 sq. km, 1hr). The simulation of such high-resolution model system has been made possible by its implementation on the MareNostrum supercomputer. This contribution describes a thorough quantitative evaluation study performed for the reference year 2004. The WRF-ARW meteorological model contains 38 vertical layers reaching up to 50 hPa. The vertical resolution of the CMAQ chemistry-transport model for gas-phase and aerosols has been increased from 8 to 15 layers in order to simulate vertical exchanges more accurately. Gas phase boundary conditions are provided by the LMDz-INCA2 global climate-chemistry model. For the European simulation, emissions are disaggregated from the EMEP emission inventory for 2004 to the utilized resolution using the criteria implemented in the HERMES04 emission model. The HERMES04 model system, running through a bottom-up approach, is used to estimate emissions for Spain at a 1x1 sq. km horizontal resolution, every hour. In order to evaluate the performances of the CALIOPE system, the model simulation for Europe was compared with ground-based measurements from the EMEP and the Spanish air quality networks (total of 60 stations for O3, 43 for NO2, 31 for SO2, 25 for PM10 and 16 for PM2.5). The model simulation for Europe satisfactorily reproduces O3 concentrations throughout the year (annual correlation: 0.66) with relatively small errors: MNGE values range from 13% to 26%, and MNBE

  13. Assessment of Health-Cost Externalities of Air Pollution at the National Level using the EVA Model System

    NASA Astrophysics Data System (ADS)

    Brandt, Jørgen; Silver, Jeremy David; Heile Christensen, Jesper; Skou Andersen, Mikael; Geels, Camilla; Gross, Allan; Buus Hansen, Ayoe; Mantzius Hansen, Kaj; Brandt Hedegaard, Gitte; Ambelas Skjøth, Carsten

    2010-05-01

    Air pollution has significant negative impacts on human health and well-being, which entail substantial economic consequences. We have developed an integrated model system, EVA (External Valuation of Air pollution), to assess health-related economic externalities of air pollution resulting from specific emission sources/sectors. The EVA system was initially developed to assess externalities from power production, but in this study it is extended to evaluate costs at the national level. The EVA system integrates a regional-scale atmospheric chemistry transport model (DEHM), address-level population data, exposure-response functions and monetary values applicable for Danish/European conditions. Traditionally, systems that assess economic costs of health impacts from air pollution assume linear approximations in the source-receptor relationships. However, atmospheric chemistry is non-linear and therefore the uncertainty involved in the linear assumption can be large. The EVA system has been developed to take into account the non-linear processes by using a comprehensive, state-of-the-art chemical transport model when calculating how specific changes to emissions affect air pollution levels and the subsequent impacts on human health and cost. Furthermore, we present a new "tagging" method, developed to examine how specific emission sources influence air pollution levels without assuming linearity of the non-linear behaviour of atmospheric chemistry. This method is more precise than the traditional approach based on taking the difference between two concentration fields. Using the EVA system, we have estimated the total external costs from the main emission sectors in Denmark, representing the ten major SNAP codes. Finally, we assess the impacts and external costs of emissions from international ship traffic around Denmark, since there is a high volume of ship traffic in the region.

  14. Dilution physics modeling: Dissolution/precipitation chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onishi, Y.; Reid, H.C.; Trent, D.S.

    This report documents progress made to date on integrating dilution/precipitation chemistry and new physical models into the TEMPEST thermal-hydraulics computer code. Implementation of dissolution/precipitation chemistry models is necessary for predicting nonhomogeneous, time-dependent, physical/chemical behavior of tank wastes with and without a variety of possible engineered remediation and mitigation activities. Such behavior includes chemical reactions, gas retention, solids resuspension, solids dissolution and generation, solids settling/rising, and convective motion of physical and chemical species. Thus this model development is important from the standpoint of predicting the consequences of various engineered activities, such as mitigation by dilution, retrieval, or pretreatment, that can affectmore » safe operations. The integration of a dissolution/precipitation chemistry module allows the various phase species concentrations to enter into the physical calculations that affect the TEMPEST hydrodynamic flow calculations. The yield strength model of non-Newtonian sludge correlates yield to a power function of solids concentration. Likewise, shear stress is concentration-dependent, and the dissolution/precipitation chemistry calculations develop the species concentration evolution that produces fluid flow resistance changes. Dilution of waste with pure water, molar concentrations of sodium hydroxide, and other chemical streams can be analyzed for the reactive species changes and hydrodynamic flow characteristics.« less

  15. Stratospheric Heterogeneous Chemistry and Microphysics: Model Development, Validation and Applications

    NASA Technical Reports Server (NTRS)

    Turco, Richard P.

    1996-01-01

    The objectives of this project are to: define the chemical and physical processes leading to stratospheric ozone change that involve polar stratospheric clouds (PSCS) and the reactions occurring on the surfaces of PSC particles; study the formation processes, and the physical and chemical properties of PSCS, that are relevant to atmospheric chemistry and to the interpretation of field measurements taken during polar stratosphere missions; develop quantitative models describing PSC microphysics and heterogeneous chemical processes; assimilate laboratory and field data into these models; and calculate the extent of chemical processing on PSCs and the impact of specific microphysical processes on polar composition and ozone depletion. During the course of the project, a new coupled microphysics/physical-chemistry/ photochemistry model for stratospheric sulfate aerosols and nitric acid and ice PSCs was developed and applied to analyze data collected during NASA's Arctic Airborne Stratospheric Expedition-II (AASE-II) and other missions. In this model, detailed treatments of multicomponent sulfate aerosol physical chemistry, sulfate aerosol microphysics, polar stratospheric cloud microphysics, PSC ice surface chemistry, as well as homogeneous gas-phase chemistry were included for the first time. In recent studies focusing on AASE measurements, the PSC model was used to analyze specific measurements from an aircraft deployment of an aerosol impactor, FSSP, and NO(y) detector. The calculated results are in excellent agreement with observations for particle volumes as well as NO(y) concentrations, thus confirming the importance of supercooled sulfate/nitrate droplets in PSC formation. The same model has been applied to perform a statistical study of PSC properties in the Northern Hemisphere using several hundred high-latitude air parcel trajectories obtained from Goddard. The rates of ozone depletion along trajectories with different meteorological histories are presently

  16. High-resolution modelling of health impacts and related external cost from air pollution over 36 years using the integrated model system EVA

    NASA Astrophysics Data System (ADS)

    Brandt, Jørgen; Andersen, Mikael S.; Bønløkke, Jakob; Christensen, Jesper H.; Geels, Camilla; Hansen, Kaj M.; Hertel, Ole; Im, Ulas; Jensen, Steen S.; Ketzel, Matthias; Nielsen, Ole-Kenneth; Plejdrup, Marlene S.; Sigsgaard, Torben

    2016-04-01

    A high-resolution assessment of health impacts from air pollution and related external cost has been conducted for Denmark using the integrated EVA model system. The EVA system is based on the impact-pathway methodology, where the site-specific emissions will result, via atmospheric transport and chemistry, in a concentration distribution, which together with detailed population data, is used to estimate the population-level exposure. Using exposure-response functions and economic valuations, the exposure is transformed into impacts on human health and related external costs. In this study we have used a coupling of two chemistry transport models to calculate the air pollution concentration at different domain and scales; the Danish Eulerian Hemispheric Model (DEHM) to calculate the air pollution levels in the Northern Hemisphere with a resolution down to 5.6 km x 5.6 km and the Urban Background Model (UBM) to further calculate the air pollution in Denmark at 1 km x 1 km resolution using results from DEHM as boundary conditions. Both the emission data as well as the population density has been represented in the model system with the same high resolution. Previous health impact assessments related to air pollution have been made on a lower resolution. In this study, the integrated model system, EVA, has been used to estimate the health impacts and related external cost for Denmark at a 1 km x 1 km resolution. New developments of the integrated model system will be presented as well as the development of health impacts and related external costs in Europe and Denmark over a period of 36 years (1979-2014). Acknowledgements This work was funded by: DCE - National Centre for Environment and Energy. Project: "Health impacts and external costs from air pollution in Denmark over 25 years" and NordForsk under the Nordic Programme on Health and Welfare. Project: "Understanding the link between air pollution and distribution of related health impacts and welfare in the

  17. Instructional Model and Thinking Skill in Chemistry Class

    NASA Astrophysics Data System (ADS)

    Langkudi, H. H.

    2018-02-01

    Chemistry course are considered a difficult lesson for students as evidenced by low learning outcomes on daily tests, mid-semester tests as well as final semester tests. This research intended to investigate the effect of instructional model, thinking skill and the interaction of these variables on students’ achievement in chemistry. Experimental method was applying used 2 x 2 factorial design. The results showed that the use of instructional model with thinking skill influences student’s learning outcomes, so that the chemistry teacher is recommended to pay attention to the learning model, and adjusted to the student’s skill thinking on the chemistry material being taught. The conclusion of this research is that discovery model is suitable for students who have formal thinking skill and conventional model is fit for the students that have concrete thinking skill.

  18. Tetraglyme Trap for the Determination of Volatile Organic Compounds in Urban Air: Projects for Undergraduate Analytical Chemistry

    ERIC Educational Resources Information Center

    Hope, Wilbert W.; Johnson, Clyde; Johnson, Leon P.

    2004-01-01

    The differences in the levels of volatile organic compounds (VOCs), in the ambient air from the two urban locations, were studied by the undergraduate analytical chemistry students. Tetraglyme is very widely used due to its simplicity and its potential for use to investigate VOCs in ambient and indoor air employing a purge-and-trap concentrator…

  19. Can a coupled meteorology–chemistry model reproduce the historical trend in aerosol direct radiative effects over the Northern Hemisphere?

    EPA Science Inventory

    The ability of a coupled meteorology–chemistry model, i.e., Weather Research and Forecast and Community Multiscale Air Quality (WRF-CMAQ), to reproduce the historical trend in aerosol optical depth (AOD) and clear-sky shortwave radiation (SWR) over the Northern Hemisphere h...

  20. Toward a lithium-"air" battery: the effect of CO2 on the chemistry of a lithium-oxygen cell.

    PubMed

    Lim, Hyung-Kyu; Lim, Hee-Dae; Park, Kyu-Young; Seo, Dong-Hwa; Gwon, Hyeokjo; Hong, Jihyun; Goddard, William A; Kim, Hyungjun; Kang, Kisuk

    2013-07-03

    Lithium-oxygen chemistry offers the highest energy density for a rechargeable system as a "lithium-air battery". Most studies of lithium-air batteries have focused on demonstrating battery operations in pure oxygen conditions; such a battery should technically be described as a "lithium-dioxygen battery". Consequently, the next step for the lithium-"air" battery is to understand how the reaction chemistry is affected by the constituents of ambient air. Among the components of air, CO2 is of particular interest because of its high solubility in organic solvents and it can react actively with O2(-•), which is the key intermediate species in Li-O2 battery reactions. In this work, we investigated the reaction mechanisms in the Li-O2/CO2 cell under various electrolyte conditions using quantum mechanical simulations combined with experimental verification. Our most important finding is that the subtle balance among various reaction pathways influencing the potential energy surfaces can be modified by the electrolyte solvation effect. Thus, a low dielectric electrolyte tends to primarily form Li2O2, while a high dielectric electrolyte is effective in electrochemically activating CO2, yielding only Li2CO3. Most surprisingly, we further discovered that a high dielectric medium such as DMSO can result in the reversible reaction of Li2CO3 over multiple cycles. We believe that the current mechanistic understanding of the chemistry of CO2 in a Li-air cell and the interplay of CO2 with electrolyte solvation will provide an important guideline for developing Li-air batteries. Furthermore, the possibility for a rechargeable Li-O2/CO2 battery based on Li2CO3 may have merits in enhancing cyclability by minimizing side reactions.

  1. Air Quality Forecasts Using the NASA GEOS Model: A Unified Tool from Local to Global Scales

    NASA Technical Reports Server (NTRS)

    Knowland, E. Emma; Keller, Christoph; Nielsen, J. Eric; Orbe, Clara; Ott, Lesley; Pawson, Steven; Saunders, Emily; Duncan, Bryan; Cook, Melanie; Liu, Junhua; hide

    2017-01-01

    We provide an introduction to a new high-resolution (0.25 degree) global composition forecast produced by NASA's Global Modeling and Assimilation office. The NASA Goddard Earth Observing System version 5 (GEOS-5) model has been expanded to provide global near-real-time forecasts of atmospheric composition at a horizontal resolution of 0.25 degrees (approximately 25 km). Previously, this combination of detailed chemistry and resolution was only provided by regional models. This system combines the operational GEOS-5 weather forecasting model with the state-of-the-science GEOS-Chem chemistry module (version 11) to provide detailed chemical analysis of a wide range of air pollutants such as ozone, carbon monoxide, nitrogen oxides, and fine particulate matter (PM2.5). The resolution of the forecasts is the highest resolution compared to current, publically-available global composition forecasts. Evaluation and validation of modeled trace gases and aerosols compared to surface and satellite observations will be presented for constituents relative to health air quality standards. Comparisons of modeled trace gases and aerosols against satellite observations show that the model produces realistic concentrations of atmospheric constituents in the free troposphere. Model comparisons against surface observations highlight the model's capability to capture the diurnal variability of air pollutants under a variety of meteorological conditions. The GEOS-5 composition forecasting system offers a new tool for scientists and the public health community, and is being developed jointly with several government and non-profit partners. Potential applications include air quality warnings, flight campaign planning and exposure studies using the archived analysis fields.

  2. Stochastic Lanchester Air-to-Air Campaign Model: Model Description and Users Guides

    DTIC Science & Technology

    2009-01-01

    STOCHASTIC LANCHESTER AIR-TO-AIR CAMPAIGN MODEL MODEL DESCRIPTION AND USERS GUIDES—2009 REPORT PA702T1 Rober t V. Hemm Jr. Dav id A . Lee...LMI © 2009. ALL RIGHTS RESERVED. Stochastic Lanchester Air-to-Air Campaign Model: Model Description and Users Guides—2009 PA702T1/JANUARY...2009 Executive Summary This report documents the latest version of the Stochastic Lanchester Air-to-Air Campaign Model (SLAACM), developed by LMI for

  3. Impact of RACM2, halogen chemistry, and updated ozone deposition velocity onhemispheric ozone predictions

    EPA Science Inventory

    We incorporate the Regional Atmospheric Chemistry Mechanism (RACM2) into the Community Multiscale Air Quality (CMAQ) hemispheric model and compare model predictions to those obtained using the existing Carbon Bond chemical mechanism with the updated toluene chemistry (CB05TU). Th...

  4. Fogwater Chemistry and Air Quality in the Texas-Louisiana Gulf Coast Corridor

    NASA Astrophysics Data System (ADS)

    Kommalapati, R. R.; Raja, S.; Ravikrishna, R.; Murugesan, K.; Collett, J. L.; Valsaraj, K.

    2007-05-01

    The presence of fog water in polluted atmosphere can influence atmospheric chemistry and air quality. The study of interactions between fog water and atmospheric gases and aerosols are very important in understanding the atmospheric fate of the pollutants. In this Study several air samples and fogwater samples were collected in the heavily industrialized area of Gulf Coast corridor( Houston, TX and Baton Rouge, LA). A total of 32 fogwater samples were collected, comprising of nine fog events in Baton Rouge (Nov 2004 to Feb 2005) and two fog events in Houston (Feb, 2006), during the fog sampling campaigns. These samples were analyzed for pH, total and dissolved carbon, major inorganic ions, organic acids, and aromatics, aldehydes, VOCs, and linear alkanes organic compounds. Fogwater samples collected in Houston show clear influence of marine and anthropogenic environment, while Baton Rouge samples reveal a relatively less polluted environment. Also, a time series observation of air samples indicated that fog event at the monitoring site impacted the air concentrations of the pollutants. This is attributed to presence of surface active organic matter in fog water.

  5. Modeling the Complex Photochemistry of Biomass Burning Plumes in Plume-Scale, Regional, and Global Air Quality Models

    NASA Astrophysics Data System (ADS)

    Alvarado, M. J.; Lonsdale, C. R.; Yokelson, R. J.; Travis, K.; Fischer, E. V.; Lin, J. C.

    2014-12-01

    Forecasting the impacts of biomass burning (BB) plumes on air quality is difficult due to the complex photochemistry that takes place in the concentrated young BB plumes. The spatial grid of global and regional scale Eulerian models is generally too large to resolve BB photochemistry, which can lead to errors in predicting the formation of secondary organic aerosol (SOA) and O3, as well as the partitioning of NOyspecies. AER's Aerosol Simulation Program (ASP v2.1) can be used within plume-scale Lagrangian models to simulate this complex photochemistry. We will present results of validation studies of the ASP model against aircraft observations of young BB smoke plumes. We will also present initial results from the coupling of ASP v2.1 into the Lagrangian particle dispersion model STILT-Chem in order to better examine the interactions between BB plume chemistry and dispersion. In addition, we have used ASP to develop a sub-grid scale parameterization of the near-source chemistry of BB plumes for use in regional and global air quality models. The parameterization takes inputs from the host model, such as solar zenith angle, temperature, and fire fuel type, and calculates enhancement ratios of O3, NOx, PAN, aerosol nitrate, and other NOy species, as well as organic aerosol (OA). We will present results from the ASP-based BB parameterization as well as its implementation into the global atmospheric composition model GEOS-Chem for the SEAC4RS campaign.

  6. Performance of European chemistry transport models as function of horizontal resolution

    NASA Astrophysics Data System (ADS)

    Schaap, M.; Cuvelier, C.; Hendriks, C.; Bessagnet, B.; Baldasano, J. M.; Colette, A.; Thunis, P.; Karam, D.; Fagerli, H.; Graff, A.; Kranenburg, R.; Nyiri, A.; Pay, M. T.; Rouïl, L.; Schulz, M.; Simpson, D.; Stern, R.; Terrenoire, E.; Wind, P.

    2015-07-01

    Air pollution causes adverse effects on human health as well as ecosystems and crop yield and also has an impact on climate change trough short-lived climate forcers. To design mitigation strategies for air pollution, 3D Chemistry Transport Models (CTMs) have been developed to support the decision process. Increases in model resolution may provide more accurate and detailed information, but will cubically increase computational costs and pose additional challenges concerning high resolution input data. The motivation for the present study was therefore to explore the impact of using finer horizontal grid resolution for policy support applications of the European Monitoring and Evaluation Programme (EMEP) model within the Long Range Transboundary Air Pollution (LRTAP) convention. The goal was to determine the "optimum resolution" at which additional computational efforts do not provide increased model performance using presently available input data. Five regional CTMs performed four runs for 2009 over Europe at different horizontal resolutions. The models' responses to an increase in resolution are broadly consistent for all models. The largest response was found for NO2 followed by PM10 and O3. Model resolution does not impact model performance for rural background conditions. However, increasing model resolution improves the model performance at stations in and near large conglomerations. The statistical evaluation showed that the increased resolution better reproduces the spatial gradients in pollution regimes, but does not help to improve significantly the model performance for reproducing observed temporal variability. This study clearly shows that increasing model resolution is advantageous, and that leaving a resolution of 50 km in favour of a resolution between 10 and 20 km is practical and worthwhile. As about 70% of the model response to grid resolution is determined by the difference in the spatial emission distribution, improved emission allocation

  7. A New Direct Coupled Regional-scale Meteorology and Chemistry Model

    NASA Astrophysics Data System (ADS)

    Li, J.; Hsu, S.; Liu, T.; Chiang, C.; Chang, J.

    2007-12-01

    WRF/Chem was first developed in the US and generously made available to the international research community a short time ago. Starting from this, many groups have contributed new components and subroutines to this model. Based on WRF/Chem, a new online integrated model system named WRF/ChemT was established in Taiwan. It is significantly different from WRF/Chem in the following important aspects. For an online model, all chemical species emission must be direct coupled to WRF meteorology. All publicly available versions of WRF/Chem do not have this fundamental coupling. For these WRF/Chem models all emission data must first be preprocessed by SMOKE or other emission models driven by MM5 or WRF meteorologies in offline manner. WRF/ChemT has a self-consistent online emission process. We replaced the old emission driver with NCU driver, the plume rise of point sources and biogenic VOCs emission are calculated online. So that meteorology model, emission model and chemistry transport model are coupled directly in WRF/ChemT. Cloud impact on actinic flux should be consistent with WRF cloud-aerosol submodel used, not just moisture parameterization. Photolysis rates in WRF/ChemT are self consistent in every sub modules. New dry deposition routines were developed including addition of a vertical mixing scheme named the Asymmetrical Convective Model (ACM) which is used in CMAQ. The advantage of using ACM submodel had been demonstrated in earlier studies. Computational inefficiency has been a lingering problem for WRF/Chem. We have worked on this aspect of WRF/Chem development and by using a new chemical solver and also reorganizing the operator splitting computational algorithm we have made significant computational speed gain. WRF/chemT is about a factor of 4 faster in the chemistry solver and a factor of 2 faster in chemical species transport. When added together it is about a factor of 2 faster than WRF/Chem(version 2.1.2), i. e. gas-phase chemistry and meteorology are

  8. “Impact of RACM2, halogen chemistry, and updated ozonedeposition velocity on hemispheric ozone predictions”

    EPA Science Inventory

    We incorporate the Regional Atmospheric Chemistry Mechanism (RACM2) into the Community Multiscale Air Quality (CMAQ) hemispheric model and compare model predictions to those obtained using the existing Carbon Bond chemical mechanism with updated toluene chemistry (CB05TU). The RA...

  9. The sensitivity of tropospheric chemistry to cloud interactions

    NASA Technical Reports Server (NTRS)

    Jonson, Jan E.; Isaksen, Ivar S. A.

    1994-01-01

    Clouds, although only occupying a relatively small fraction of the troposphere volume, can have a substantial impact on the chemistry of the troposphere. In newly formed clouds, or in clouds with air rapidly flowing through, the chemistry is expected to be far more active than in aged clouds with stagnant air. Thus, frequent cycling of air through shortlived clouds, i.e. cumulus clouds, is likely to be a much more efficient media for altering the composition of the atmosphere than an extensive cloud cover i.e. frontal cloud systems. The impact of clouds is tested out in a 2-D channel model encircling the globe in a latitudinal belt from 30 to 60 deg N. The model contains a detailed gas phase chemistry. In addition physiochemical interactions between the gas and aqueous phases are included. For species as H2O2, CH2O, O3, and SO2, Henry's law equilibria are assumed, whereas HNO3 and H2SO4 are regarded as completed dissolved in the aqueous phase. Absorption of HO2 and OH is assumed to be mass-transport limited. The chemistry of the aqueous phase is characterized by rapid cycling of odd hydrogen, (H2O2, HO2, and OH). O2(-) (produced through dissociation of HO2) reacting with dissolved O3 is a major source of OH in the aqueous phase. This reaction can be a significant sink for O3 in the troposphere. In the interstitial cloud air, odd hydrogen is depleted, whereas NO(x) remains in the gas phase, thus reducing ozone production due to the reaction between NO and HO2. Our calculations give markedly lower ozone levels when cloud interactions are included. This may in part explain the overpredictions of ozone levels often experienced in models neglecting cloud chemical interactions. In the present study, the existence of clouds, cloud types, and their lifetimes are modeled as pseudo random variables. Such pseudo random sequences are in reality deterministic and may, given the same starting values, be reproduced. The effects of cloud interactions on the overall chemistry of

  10. Current state of aerosol nucleation parameterizations for air-quality and climate modeling

    NASA Astrophysics Data System (ADS)

    Semeniuk, Kirill; Dastoor, Ashu

    2018-04-01

    Aerosol nucleation parameterization models commonly used in 3-D air quality and climate models have serious limitations. This includes classical nucleation theory based variants, empirical models and other formulations. Recent work based on detailed and extensive laboratory measurements and improved quantum chemistry computation has substantially advanced the state of nucleation parameterizations. In terms of inorganic nucleation involving BHN and THN including ion effects these new models should be considered as worthwhile replacements for the old models. However, the contribution of organic species to nucleation remains poorly quantified. New particle formation consists of a distinct post-nucleation growth regime which is characterized by a strong Kelvin curvature effect and is thus dependent on availability of very low volatility organic species or sulfuric acid. There have been advances in the understanding of the multiphase chemistry of biogenic and anthropogenic organic compounds which facilitate to overcome the initial aerosol growth barrier. Implementation of processes influencing new particle formation is challenging in 3-D models and there is a lack of comprehensive parameterizations. This review considers the existing models and recent innovations.

  11. DEVELOPMENT AND APPLICATION OF A NEW AIR POLLUTION MODELING SYSTEM--II. AEROSOL MODULE STRUCTURE AND DESIGN (R823186)

    EPA Science Inventory

    The methods used for simulating aerosol physical and chemical processes in a new air pollution modeling system are discussed and analyzed. Such processes include emissions, nucleation, coagulation, reversible chemistry, condensation, dissolution, evaporation, irreversible chem...

  12. Modelling Detailed-Chemistry Effects on Turbulent Diffusion Flames using a Parallel Solution-Adaptive Scheme

    NASA Astrophysics Data System (ADS)

    Jha, Pradeep Kumar

    Capturing the effects of detailed-chemistry on turbulent combustion processes is a central challenge faced by the numerical combustion community. However, the inherent complexity and non-linear nature of both turbulence and chemistry require that combustion models rely heavily on engineering approximations to remain computationally tractable. This thesis proposes a computationally efficient algorithm for modelling detailed-chemistry effects in turbulent diffusion flames and numerically predicting the associated flame properties. The cornerstone of this combustion modelling tool is the use of parallel Adaptive Mesh Refinement (AMR) scheme with the recently proposed Flame Prolongation of Intrinsic low-dimensional manifold (FPI) tabulated-chemistry approach for modelling complex chemistry. The effect of turbulence on the mean chemistry is incorporated using a Presumed Conditional Moment (PCM) approach based on a beta-probability density function (PDF). The two-equation k-w turbulence model is used for modelling the effects of the unresolved turbulence on the mean flow field. The finite-rate of methane-air combustion is represented here by using the GRI-Mech 3.0 scheme. This detailed mechanism is used to build the FPI tables. A state of the art numerical scheme based on a parallel block-based solution-adaptive algorithm has been developed to solve the Favre-averaged Navier-Stokes (FANS) and other governing partial-differential equations using a second-order accurate, fully-coupled finite-volume formulation on body-fitted, multi-block, quadrilateral/hexahedral mesh for two-dimensional and three-dimensional flow geometries, respectively. A standard fourth-order Runge-Kutta time-marching scheme is used for time-accurate temporal discretizations. Numerical predictions of three different diffusion flames configurations are considered in the present work: a laminar counter-flow flame; a laminar co-flow diffusion flame; and a Sydney bluff-body turbulent reacting flow

  13. Radially and temporally resolved electric field of positive streamers in air and modelling of the induced plasma chemistry

    NASA Astrophysics Data System (ADS)

    Hoder, T.; Šimek, M.; Bonaventura, Z.; Prukner, V.; Gordillo-Vázquez, F. J.

    2016-08-01

    The initial stages of transient luminous events (TLEs) occurring in the upper atmosphere of the Earth are, in a certain pressure range, controlled by the streamer mechanism. This paper presents the results of the first laboratory experiments to study the TLE streamer phenomena under conditions close to those of the upper atmosphere. Spectrally and highly spatiotemporally resolved emissions originating from radiative states {{\\text{N}}2}≤ft({{\\text{C}}3}{{\\Pi}u}\\right) (second positive system) and \\text{N}2+≤ft({{\\text{B}}2}Σu+\\right) (first negative system) have been recorded from the positive streamer discharge. Periodic ionizing events were generated in a barrier discharge arrangement at a pressure of 4 torr of synthetic air, i.e. simulating the pressure conditions at altitudes of ≃37 km. Employing Abel inversion on the radially scanned streamer emission and a 2D fitting procedure, access was obtained to the local spectral signatures within the over 106  m s-1 fast propagating streamers. The reduced electric field strength distribution within the streamer head was determined from the ratio of the \\text{N}2+/{{\\text{N}}2} band intensities with peak values up to 500 Td and overall duration of about 10 ns. The 2D profiles of the streamer head electric fields were used as an experimentally obtained input for kinetic simulations of the streamer-induced air plasma chemistry. The radial and temporal computed distribution of the ground vibrational levels of the radiative states involved in the radiative transitions analyzed (337.1 nm and 391.5 nm), atomic oxygen, nitrogen, nitric oxide and ozone concentrations are vizualized and discussed in comparison with available models of the streamer phase of Blue Jet discharges in the stratosphere.

  14. Modeling local chemistry in PWR steam generator crevices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Millett, P.J.

    1997-02-01

    Over the past two decades steam generator corrosion damage has been a major cost impact to PWR owners. Crevices and occluded regions create thermal-hydraulic conditions where aggressive impurities can become highly concentrated, promoting localized corrosion of the tubing and support structure materials. The type of corrosion varies depending on the local conditions, with stress corrosion cracking being the phenomenon of most current concern. A major goal of the EPRI research in this area has been to develop models of the concentration process and resulting crevice chemistry conditions. These models may then be used to predict crevice chemistry based on knowledgemore » of bulk chemistry, thereby allowing the operator to control corrosion damage. Rigorous deterministic models have not yet been developed; however, empirical approaches have shown promise and are reflected in current versions of the industry-developed secondary water chemistry guidelines.« less

  15. Nitrogenase Cofactor: Inspiration for Model Chemistry.

    PubMed

    Djurdjevic, Ivana; Einsle, Oliver; Decamps, Laure

    2017-07-04

    The cofactor of nitrogenase is the largest and most intricate metal cluster known in nature. Its reactivity, mode of action and even the precise binding site of substrate remain a matter of debate. For decades, synthetic chemists have taken inspiration from the exceptional structural, electronic and catalytic features of the cofactor and have tried to either mimic the unique topology of the entire site, or to extract its functional principles and build them into novel catalysts that achieve the same-or very similar-astounding transformations. We review some of the available model chemistry as it represents the various approaches that have been taken from studying the cofactor, to eventually summarize the current state of knowledge on catalysis by nitrogenase and highlight the mutually beneficial role of model chemistry and enzymology in bioinorganic chemistry. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. GEOS-5 Chemistry Transport Model User's Guide

    NASA Technical Reports Server (NTRS)

    Kouatchou, J.; Molod, A.; Nielsen, J. E.; Auer, B.; Putman, W.; Clune, T.

    2015-01-01

    The Goddard Earth Observing System version 5 (GEOS-5) General Circulation Model (GCM) makes use of the Earth System Modeling Framework (ESMF) to enable model configurations with many functions. One of the options of the GEOS-5 GCM is the GEOS-5 Chemistry Transport Model (GEOS-5 CTM), which is an offline simulation of chemistry and constituent transport driven by a specified meteorology and other model output fields. This document describes the basic components of the GEOS-5 CTM, and is a user's guide on to how to obtain and run simulations on the NCCS Discover platform. In addition, we provide information on how to change the model configuration input files to meet users' needs.

  17. Numerical study of supersonic combustion using a finite rate chemistry model

    NASA Technical Reports Server (NTRS)

    Chitsomboon, T.; Tiwari, S. N.; Kumar, A.; Drummond, J. P.

    1986-01-01

    The governing equations of two-dimensional chemically reacting flows are presented together with a global two-step chemistry model for H2-air combustion. The explicit unsplit MacCormack finite difference algorithm is used to advance the discrete system of the governing equations in time until convergence is attained. The source terms in the species equations are evaluated implicitly to alleviate stiffness associated with fast reactions. With implicit source terms, the species equations give rise to a block-diagonal system which can be solved very efficiently on vector-processing computers. A supersonic reacting flow in an inlet-combustor configuration is calculated for the case where H2 is injected into the flow from the side walls and the strut. Results of the calculation are compared against the results obtained by using a complete reaction model.

  18. Applying air pollution modelling within a multi-criteria decision analysis framework to evaluate UK air quality policies

    NASA Astrophysics Data System (ADS)

    Chalabi, Zaid; Milojevic, Ai; Doherty, Ruth M.; Stevenson, David S.; MacKenzie, Ian A.; Milner, James; Vieno, Massimo; Williams, Martin; Wilkinson, Paul

    2017-10-01

    A decision support system for evaluating UK air quality policies is presented. It combines the output from a chemistry transport model, a health impact model and other impact models within a multi-criteria decision analysis (MCDA) framework. As a proof-of-concept, the MCDA framework is used to evaluate and compare idealized emission reduction policies in four sectors (combustion in energy and transformation industries, non-industrial combustion plants, road transport and agriculture) and across six outcomes or criteria (mortality, health inequality, greenhouse gas emissions, biodiversity, crop yield and air quality legal compliance). To illustrate a realistic use of the MCDA framework, the relative importance of the criteria were elicited from a number of stakeholders acting as proxy policy makers. In the prototype decision problem, we show that reducing emissions from industrial combustion (followed very closely by road transport and agriculture) is more advantageous than equivalent reductions from the other sectors when all the criteria are taken into account. Extensions of the MCDA framework to support policy makers in practice are discussed.

  19. EURODELTA-Trends, a multi-model experiment of air quality hindcast in Europe over 1990-2010

    NASA Astrophysics Data System (ADS)

    Colette, Augustin; Andersson, Camilla; Manders, Astrid; Mar, Kathleen; Mircea, Mihaela; Pay, Maria-Teresa; Raffort, Valentin; Tsyro, Svetlana; Cuvelier, Cornelius; Adani, Mario; Bessagnet, Bertrand; Bergström, Robert; Briganti, Gino; Butler, Tim; Cappelletti, Andrea; Couvidat, Florian; D'Isidoro, Massimo; Doumbia, Thierno; Fagerli, Hilde; Granier, Claire; Heyes, Chris; Klimont, Zig; Ojha, Narendra; Otero, Noelia; Schaap, Martijn; Sindelarova, Katarina; Stegehuis, Annemiek I.; Roustan, Yelva; Vautard, Robert; van Meijgaard, Erik; Garcia Vivanco, Marta; Wind, Peter

    2017-09-01

    The EURODELTA-Trends multi-model chemistry-transport experiment has been designed to facilitate a better understanding of the evolution of air pollution and its drivers for the period 1990-2010 in Europe. The main objective of the experiment is to assess the efficiency of air pollutant emissions mitigation measures in improving regional-scale air quality. The present paper formulates the main scientific questions and policy issues being addressed by the EURODELTA-Trends modelling experiment with an emphasis on how the design and technical features of the modelling experiment answer these questions. The experiment is designed in three tiers, with increasing degrees of computational demand in order to facilitate the participation of as many modelling teams as possible. The basic experiment consists of simulations for the years 1990, 2000, and 2010. Sensitivity analysis for the same three years using various combinations of (i) anthropogenic emissions, (ii) chemical boundary conditions, and (iii) meteorology complements it. The most demanding tier consists of two complete time series from 1990 to 2010, simulated using either time-varying emissions for corresponding years or constant emissions. Eight chemistry-transport models have contributed with calculation results to at least one experiment tier, and five models have - to date - completed the full set of simulations (and 21-year trend calculations have been performed by four models). The modelling results are publicly available for further use by the scientific community. The main expected outcomes are (i) an evaluation of the models' performances for the three reference years, (ii) an evaluation of the skill of the models in capturing observed air pollution trends for the 1990-2010 time period, (iii) attribution analyses of the respective role of driving factors (e.g. emissions, boundary conditions, meteorology), (iv) a dataset based on a multi-model approach, to provide more robust model results for use in impact

  20. Regional Air Quality Model Application of the Aqueous-Phase ...

    EPA Pesticide Factsheets

    In most ecosystems, atmospheric deposition is the primary input of mercury. The total wet deposition of mercury in atmospheric chemistry models is sensitive to parameterization of the aqueous-phase reduction of divalent oxidized mercury (Hg2+). However, most atmospheric chemistry models use a parameterization of the aqueous-phase reduction of Hg2+ that has been shown to be unlikely under normal ambient conditions or use a non mechanistic value derived to optimize wet deposition results. Recent laboratory experiments have shown that Hg2+ can be photochemically reduced to elemental mercury (Hg) in the aqueous-phase by dissolved organic matter and a mechanism and the rate for Hg2+ photochemical reduction by dicarboxylic acids (DCA) has been proposed. For the first time in a regional scale model, the DCA mechanism has been applied. The HO2-Hg2+ reduction mechanism, the proposed DCA reduction mechanism, and no aqueous-phase reduction (NAR) of Hg2+ are evaluated against weekly wet deposition totals, concentrations and precipitation observations from the Mercury Deposition Network (MDN) using the Community Multiscale Air Quality (CMAQ) model version 4.7.1. Regional scale simulations of mercury wet deposition using a DCA reduction mechanism evaluated well against observations, and reduced the bias in model evaluation by at least 13% over the other schemes evaluated, although summertime deposition estimates were still biased by −31.4% against observations. The use of t

  1. Homogeneous and heterogeneous chemistry along air parcel trajectories

    NASA Technical Reports Server (NTRS)

    Jones, R. L.; Mckenna, D. L.; Poole, L. R.; Solomon, S.

    1990-01-01

    The study of coupled heterogeneous and homogeneous chemistry due to polar stratospheric clouds (PSC's) using Lagrangian parcel trajectories for interpretation of the Airborne Arctic Stratosphere Experiment (AASE) is discussed. This approach represents an attempt to quantitatively model the physical and chemical perturbation to stratospheric composition due to formation of PSC's using the fullest possible representation of the relevant processes. Further, the meteorological fields from the United Kingdom Meteorological office global model were used to deduce potential vorticity and inferred regions of PSC's as an input to flight planning during AASE.

  2. Nonmethane hydrocarbon chemistry in the remote marine boundary layer

    NASA Technical Reports Server (NTRS)

    Donahue, Neil M.; Prinn, Ronald G.

    1990-01-01

    A photochemical model of the remote marine boundary layer (MBL) is presented, with focus placed on the role of reactive nonmethane hydrocarbons (NMHC). A wide range of NMHC air-sea fluxes with various relative distributions of NMHC regions are considered. In particular, the flux magnitude at which NMHC emissions become significant, and then dominant, players in MBL chemistry is identified. Emphasis is placed on diurnal variability, diurnal ozone variations and sensitivity to NMHC emission fluxes, to CO, O3, H2O, and UV light, and to kinetics and isometric composition. Model runs indicate that, in the range consistent with current observations, the NMHCs may either dominate MBL chemistry, or simply be contributors at the 10-percent level. These model runs also show that existing observations of NMHCs in ocean water find them to scarce for fluxes from bulk-flux air-sea gas exchange models to be consistent with the fluxes needed in the proposed model to maintain the lowest observed MBL NMHC.

  3. Analysis of the isoprene chemistry observed during the New England Air Quality Study (NEAQS) 2002 intensive experiment

    NASA Astrophysics Data System (ADS)

    Roberts, James M.; Marchewka, Mathew; Bertman, Steven B.; Goldan, Paul; Kuster, William; de Gouw, Joost; Warneke, Carsten; Williams, Eric; Lerner, Brian; Murphy, Paul; Apel, Eric; Fehsenfeld, Fred C.

    2006-12-01

    Isoprene and its first and second generation photochemical products, methyl vinyl ketone (MVK), methacrolein (MACR), and peroxymethacrylic nitric anhydride (MPAN), were measured off the coast of New England during the 2002 New England Air Quality Study (NEAQS) on board the NOAA Research Vessel Ronald H. Brown. The results of these measurements were analyzed using a simple sequential reaction model that has been used previously to examine regional oxidant chemistry. The highest isoprene impact was observed in air masses that had passed over an area of high isoprene emission WSW of Boston. The relative concentrations of isoprene and its first generation products show that the photochemistry is consistently "older" than the isoprene photochemistry observed at continental sites. The sequential reaction model was also applied to the aldehyde-PANs (Peroxycarboxylic nitric anhydride) system, and the resulting PPN (peroxypropionic nitric anhydride)/propanal and PAN (peroxyacetic nitric anhydride)/acetaldehyde relationships were consistent with additional sources of PAN in this environment, e.g., isoprene photochemistry. This isoprene source was estimated to result in approximately 1.6 to 4 times more PAN in this environment relative to that produced from anthropogenic VOCs (volatile organic compounds) alone.

  4. A localized model of spatial cognition in chemistry

    NASA Astrophysics Data System (ADS)

    Stieff, Mike

    This dissertation challenges the assumption that spatial cognition, particularly visualization, is the key component to problem solving in chemistry. In contrast to this assumption, I posit a localized, or task-specific, model of spatial cognition in chemistry problem solving to locate the exact tasks in a traditional organic chemistry curriculum that require students to use visualization strategies to problem solve. Instead of assuming that visualization is required for most chemistry tasks simply because chemistry concerns invisible three-dimensional entities, I instead use the framework of the localized model to identify how students do and do not make use of visualization strategies on a wide variety of assessment tasks regardless of each task's explicit demand for spatial cognition. I establish the dimensions of the localized model with five studies. First, I designed two novel psychometrics to reveal how students selectively use visualization strategies to interpret and analyze molecular structures. The third study comprised a document analysis of the organic chemistry assessments that empirically determined only 12% of these tasks explicitly require visualization. The fourth study concerned a series of correlation analyses between measures of visuo-spatial ability and chemistry performance to clarify the impact of individual differences. Finally, I performed a series of micro-genetic analyses of student problem solving that confirmed the earlier findings and revealed students prefer to visualize molecules from alternative perspectives without using mental rotation. The results of each study reveal that occurrences of sophisticated spatial cognition are relatively infrequent in chemistry, despite instructors' ostensible emphasis on the visualization of three-dimensional structures. To the contrary, students eschew visualization strategies and instead rely on the use of molecular diagrams to scaffold spatial cognition. Visualization does play a key role

  5. Experiments with data assimilation in comprehensive air quality models: Impacts on model predictions and observation requirements (Invited)

    NASA Astrophysics Data System (ADS)

    Mathur, R.

    2009-12-01

    Emerging regional scale atmospheric simulation models must address the increasing complexity arising from new model applications that treat multi-pollutant interactions. Sophisticated air quality modeling systems are needed to develop effective abatement strategies that focus on simultaneously controlling multiple criteria pollutants as well as use in providing short term air quality forecasts. In recent years the applications of such models is continuously being extended to address atmospheric pollution phenomenon from local to hemispheric spatial scales over time scales ranging from episodic to annual. The need to represent interactions between physical and chemical atmospheric processes occurring at these disparate spatial and temporal scales requires the use of observation data beyond traditional in-situ networks so that the model simulations can be reasonably constrained. Preliminary applications of assimilation of remote sensing and aloft observations within a comprehensive regional scale atmospheric chemistry-transport modeling system will be presented: (1) A methodology is developed to assimilate MODIS aerosol optical depths in the model to represent the impacts long-range transport associated with the summer 2004 Alaskan fires on surface-level regional fine particulate matter (PM2.5) concentrations across the Eastern U.S. The episodic impact of this pollution transport event on PM2.5 concentrations over the eastern U.S. during mid-July 2004, is quantified through the complementary use of the model with remotely-sensed, aloft, and surface measurements; (2) Simple nudging experiments with limited aloft measurements are performed to identify uncertainties in model representations of physical processes and assess the potential use of such measurements in improving the predictive capability of atmospheric chemistry-transport models. The results from these early applications will be discussed in context of uncertainties in the model and in the remote sensing

  6. Importance and Challenges in Use and Uptake of Air Quality Modelling in Developing Countries: Use of CAMx for Air Quality Management in the City of Johannesburg.

    NASA Astrophysics Data System (ADS)

    Garland, R. M.; Naidoo, M.; Sibiya, B.; Naidoo, S.; Bird, T.; von Gruenewaldt, R.; Liebenberg-Enslin, H.; Nekhwalivhe, M.; Netshandama, J.; Mahlatji, M.

    2017-12-01

    Ambient air pollution levels are regulated in South Africa; however in many areas pollution concentrations exceed these levels. The South African Air Quality Act also stipulates that government across all levels must have Air Quality Management Plans (AQMP) in place that outline the current state of air quality and emissions, as well as the implementable plan to manage, and where necessary improve, air quality. Historically, dispersion models have been used to support air quality management decisions, including in AQMPs. However, with the focus of air quality management shifting from focusing on industrial point sources to a more integrated and holistic management of all sources, chemical transport models are needed. CAMx was used in the review and development of the City of Johannesburg's AQMP to simulate hot spots of air pollution, as well as to model intervention scenarios. As the pollutants of concern in Johannesburg are ozone and particulate matter, it is critical to use a model that can simulate chemistry. CAMx was run at 1 km with a locally derived emissions inventory for 2014. The sources of pollution in the City are diverse (including, industrial, vehicles, domestic burning, natural), and many sources have large uncertainties in estimating emissions due to lack of necessary data and local emission factors. These uncertainties, together with a lack of measurements to validate the model against, hinder the performance of the model to simulate air quality and thus inform air quality management. However, as air quality worsens in Africa, it is critical for decision makers to have a strong evidence base on the state of air quality and impact of interventions in order to improve air quality effectively. This presentation will highlight the findings from using a chemical transport model for air quality management in the largest city in South Africa, the use and limitations of these for decision-makers, and proposed way forward.

  7. Measurement of Atmospheric Pressure Air Plasma via Pulsed Electron Beam and Sustaining Electric Field

    DTIC Science & Technology

    2007-08-29

    cell plasma code ( MAGIC ) and an air-chemistry code are used to quantify beam propagation through an electron-beam transmission window into air and the...to generate and maintain plasma in air on the timescale of 1 ms. 15. SUBJECT TERMS Air Chemistry, Air Plasma, MAGIC Modeling, Plasma, Power, Test-Cell...Microwave diagnostics quantify electron number density and optical diagnostics quantify ozone production. A particle in cell plasma code ( MAGIC ) and an

  8. Modeling Urban Air Quality in the Berlin-Brandenburg Region: Evaluation of a WRF-Chem Setup

    NASA Astrophysics Data System (ADS)

    Kuik, F.; Churkina, G.; Butler, T. M.; Lauer, A.; Mar, K. A.

    2015-12-01

    Air pollution is the number one environmental cause of premature deaths in Europe. Despite extensive regulations, air pollution remains a challenging issue, especially in urban areas. For studying air quality in the Berlin-Brandenburg region of Germany the Weather Research and Forecasting Model with Chemistry (WRF-Chem) is set up and evaluated against meteorological and air quality observations from monitoring stations as well as from a field campaign conducted in 2014 (incl. black carbon, VOCs as well as mobile measurements of particle size distribution and particle mass). The model setup includes 3 nested domains with horizontal resolutions of 15km, 3km, and 1km, online biogenic emissions using MEGAN 2.0, and anthropogenic emissions from the TNO-MACC-II inventory. This work serves as a basis for future studies on different aspects of air pollution in the Berlin-Brandenburg region, including how heat waves affect emissions of biogenic volatile organic compounds (BVOC) from urban vegetation (summer 2006) and the impact of selected traffic measures on air quality in the Berlin-Brandenburg area (summer 2014). The model represents the meteorology as observed in the region well for both periods. An exception is the heat wave period in 2006, where the temperature simulated with 3km and 1km resolutions is biased low by around 2°C for urban built-up stations. First results of simulations with chemistry show that, on average, WRF-Chem simulates concentrations of O3 well. However, the 8 hr maxima are underestimated, and the minima are overestimated. While NOx daily means are modeled reasonably well for urban stations, they are overestimated for suburban stations. PM10 concentrations are underestimated by the model. The biases and correlation coefficients of simulated O3, NOx, and PM10 in comparison to surface observations do not show improvements for the 1km domain in comparison to the 3km domain. To improve the model performance of the 1km domain we will include an

  9. Estimating Lightning NOx Emissions for Regional Air Quality Modeling

    NASA Astrophysics Data System (ADS)

    Holloway, T.; Scotty, E.; Harkey, M.

    2014-12-01

    Lightning emissions have long been recognized as an important source of nitrogen oxides (NOx) on a global scale, and an essential emission component for global atmospheric chemistry models. However, only in recent years have regional air quality models incorporated lightning NOx emissions into simulations. The growth in regional modeling of lightning emissions has been driven in part by comparisons with satellite-derived estimates of column NO2, especially from the Ozone Monitoring Instrument (OMI) aboard the Aura satellite. We present and evaluate a lightning inventory for the EPA Community Multiscale Air Quality (CMAQ) model. Our approach follows Koo et al. [2010] in the approach to spatially and temporally allocating a given total value based on cloud-top height and convective precipitation. However, we consider alternate total NOx emission values (which translate into alternate lightning emission factors) based on a review of the literature and performance evaluation against OMI NO2 for July 2007 conditions over the U.S. and parts of Canada and Mexico. The vertical distribution of lightning emissions follow a bimodal distribution from Allen et al. [2012] calculated over 27 vertical model layers. Total lightning NO emissions for July 2007 show the highest above-land emissions in Florida, southeastern Texas and southern Louisiana. Although agreement with OMI NO2 across the domain varied significantly depending on lightning NOx assumptions, agreement among the simulations at ground-based NO2 monitors from the EPA Air Quality System database showed no meaningful sensitivity to lightning NOx. Emissions are compared with prior studies, which find similar distribution patterns, but a wide range of calculated magnitudes.

  10. Evaluation of mean climate in a chemistry-climate model simulation

    NASA Astrophysics Data System (ADS)

    Hong, S.; Park, H.; Wie, J.; Park, R.; Lee, S.; Moon, B. K.

    2017-12-01

    Incorporation of the interactive chemistry is essential for understanding chemistry-climate interactions and feedback processes in climate models. Here we assess a newly developed chemistry-climate model (GRIMs-Chem), which is based on the Global/Regional Integrated Model system (GRIMs) including the aerosol direct effect as well as stratospheric linearized ozone chemistry (LINOZ). We conducted GRIMs-Chem with observed sea surface temperature during the period of 1979-2010, and compared the simulation results with observations and also with CMIP models. To measure the relative performance of our model, we define the quantitative performance metric using the Taylor diagram. This metric allow us to assess overall features in simulating multiple variables. Overall, our model better reproduce the zonal mean spatial pattern of temperature, horizontal wind, vertical motion, and relative humidity relative to other models. However, the model did not produce good simulations at upper troposphere (200 hPa). It is currently unclear which model processes are responsible for this. AcknowledgementsThis research was supported by the Korea Ministry of Environment (MOE) as "Climate Change Correspondence Program."

  11. High fidelity chemistry and radiation modeling for oxy -- combustion scenarios

    NASA Astrophysics Data System (ADS)

    Abdul Sater, Hassan A.

    To account for the thermal and chemical effects associated with the high CO2 concentrations in an oxy-combustion atmosphere, several refined gas-phase chemistry and radiative property models have been formulated for laminar to highly turbulent systems. This thesis examines the accuracies of several chemistry and radiative property models employed in computational fluid dynamic (CFD) simulations of laminar to transitional oxy-methane diffusion flames by comparing their predictions against experimental data. Literature review about chemistry and radiation modeling in oxy-combustion atmospheres considered turbulent systems where the predictions are impacted by the interplay and accuracies of the turbulence, radiation and chemistry models. Thus, by considering a laminar system we minimize the impact of turbulence and the uncertainties associated with turbulence models. In the first section of this thesis, an assessment and validation of gray and non-gray formulations of a recently proposed weighted-sum-of-gray gas model in oxy-combustion scenarios was undertaken. Predictions of gas, wall temperatures and flame lengths were in good agreement with experimental measurements. The temperature and flame length predictions were not sensitive to the radiative property model employed. However, there were significant variations between the gray and non-gray model radiant fraction predictions with the variations in general increasing with decrease in Reynolds numbers possibly attributed to shorter flames and steeper temperature gradients. The results of this section confirm that non-gray model predictions of radiative heat fluxes are more accurate than gray model predictions especially at steeper temperature gradients. In the second section, the accuracies of three gas-phase chemistry models were assessed by comparing their predictions against experimental measurements of temperature, species concentrations and flame lengths. The chemistry was modeled employing the Eddy

  12. Chemistry-Climate Interactions in the GISS GCM. Part 1; Tropospheric Chemistry Model Description and Evaluation

    NASA Technical Reports Server (NTRS)

    Shindell, Drew T.; Grenfell, J. Lee; Rind, David; Price, Colin; Grewe, Volker; Hansen, James E. (Technical Monitor)

    2001-01-01

    A tropospheric chemistry module has been developed for use within the Goddard Institute for Space Studies (GISS) general circulation model (GCM) to study interactions between chemistry and climate change. The model uses a simplified chemistry scheme based on CO-NOx-CH4 chemistry, and also includes a parameterization for emissions of isoprene, the most important non-methane hydrocarbon. The model reproduces present day annual cycles and mean distributions of key trace gases fairly well, based on extensive comparisons with available observations. Examining the simulated change between present day and pre-industrial conditions, we find that the model has a similar response to that seen in other simulations. It shows a 45% increase in the global tropospheric ozone burden, within the 25% - 57% range seen in other studies. Annual average zonal mean ozone increases by more than 125% at Northern Hemisphere middle latitudes near the surface. Comparison of model runs that allow the calculated ozone to interact with the GCM's radiation and meteorology with those that do not shows only minor differences for ozone. The common usage of ozone fields that are not calculated interactively seems to be adequate to simulate both the present day and the pre-industrial ozone distributions. However, use of coupled chemistry does alter the change in tropospheric oxidation capacity, enlarging the overall decrease in OH concentrations from the pre-industrial to the present by about 10% (-5.3% global annual average in uncoupled mode, -5.9% in coupled mode). This indicates that there may be systematic biases in the simulation of the pre-industrial to present day decrease in the oxidation capacity of the troposphere (though a 10% difference is well within the total uncertainty). Global annual average radiative forcing from pre-industrial to present day ozone change is 0.32 W/sq m. The forcing seems to be increased by about 10% when the chemistry is coupled to the GCM. Forcing values greater

  13. Characterizing physical properties and heterogeneous chemistry of single particles in air using optical trapping-Raman spectroscopy

    NASA Astrophysics Data System (ADS)

    Gong, Z.; Wang, C.; Pan, Y. L.; Videen, G.

    2017-12-01

    Heterogeneous reactions of solid particles in a gaseous environment are of increasing interest; however, most of the heterogeneous chemistry studies of airborne solids were conducted on particle ensembles. A close examination on the heterogeneous chemistry between single particles and gaseous-environment species is the key to elucidate the fundamental mechanisms of hydroscopic growth, cloud nuclei condensation, secondary aerosol formation, etc., and reduce the uncertainty of models in radiative forcing, climate change, and atmospheric chemistry. We demonstrate an optical trapping-Raman spectroscopy (OT-RS) system to study the heterogeneous chemistry of the solid particles in air at single-particle level. Compared to other single-particle techniques, optical trapping offers a non-invasive, flexible, and stable method to isolate single solid particle from substrates. Benefited from two counter-propagating hollow beams, the optical trapping configuration is adaptive to trap a variety of particles with different materials from inorganic substitution (carbon nanotubes, silica, etc.) to organic, dye-doped polymers and bioaerosols (spores, pollen, etc.), with different optical properties from transparent to strongly absorbing, with different sizes from sub-micrometers to tens of microns, or with distinct morphologies from loosely packed nanotubes to microspheres and irregular pollen grains. The particles in the optical trap may stay unchanged, surface degraded, or optically fragmented according to different laser intensity, and their physical and chemical properties are characterized by the Raman spectra and imaging system simultaneously. The Raman spectra is able to distinguish the chemical compositions of different particles, while the synchronized imaging system can resolve their physical properties (sizes, shapes, morphologies, etc.). The temporal behavior of the trapped particles also can be monitored by the OT-RS system at an indefinite time with a resolution from

  14. Prospective Chemistry Teachers' Mental Models of Vapor Pressure

    ERIC Educational Resources Information Center

    Tumay, Halil

    2014-01-01

    The main purpose of this study was to identify prospective chemistry teachers' mental models of vapor pressure. The study involved 85 students in the Chemistry Teacher Training Department of a state university in Turkey. Participants' mental models of vapor pressure were explored using a concept test that involved qualitative comparison tasks.…

  15. Updating sea spray aerosol emissions in the Community Multiscale Air Quality (CMAQ) model version 5.0.2

    NASA Astrophysics Data System (ADS)

    Gantt, B.; Kelly, J. T.; Bash, J. O.

    2015-11-01

    Sea spray aerosols (SSAs) impact the particle mass concentration and gas-particle partitioning in coastal environments, with implications for human and ecosystem health. Model evaluations of SSA emissions have mainly focused on the global scale, but regional-scale evaluations are also important due to the localized impact of SSAs on atmospheric chemistry near the coast. In this study, SSA emissions in the Community Multiscale Air Quality (CMAQ) model were updated to enhance the fine-mode size distribution, include sea surface temperature (SST) dependency, and reduce surf-enhanced emissions. Predictions from the updated CMAQ model and those of the previous release version, CMAQv5.0.2, were evaluated using several coastal and national observational data sets in the continental US. The updated emissions generally reduced model underestimates of sodium, chloride, and nitrate surface concentrations for coastal sites in the Bay Regional Atmospheric Chemistry Experiment (BRACE) near Tampa, Florida. Including SST dependency to the SSA emission parameterization led to increased sodium concentrations in the southeastern US and decreased concentrations along parts of the Pacific coast and northeastern US. The influence of sodium on the gas-particle partitioning of nitrate resulted in higher nitrate particle concentrations in many coastal urban areas due to increased condensation of nitric acid in the updated simulations, potentially affecting the predicted nitrogen deposition in sensitive ecosystems. Application of the updated SSA emissions to the California Research at the Nexus of Air Quality and Climate Change (CalNex) study period resulted in a modest improvement in the predicted surface concentration of sodium and nitrate at several central and southern California coastal sites. This update of SSA emissions enabled a more realistic simulation of the atmospheric chemistry in coastal environments where marine air mixes with urban pollution.

  16. Turbulent reacting flow computations including turbulence-chemistry interactions

    NASA Technical Reports Server (NTRS)

    Narayan, J. R.; Girimaji, S. S.

    1992-01-01

    A two-equation (k-epsilon) turbulence model has been extended to be applicable for compressible reacting flows. A compressibility correction model based on modeling the dilatational terms in the Reynolds stress equations has been used. A turbulence-chemistry interaction model is outlined. In this model, the effects of temperature and species mass concentrations fluctuations on the species mass production rates are decoupled. The effect of temperature fluctuations is modeled via a moment model, and the effect of concentration fluctuations is included using an assumed beta-pdf model. Preliminary results obtained using this model are presented. A two-dimensional reacting mixing layer has been used as a test case. Computations are carried out using the Navier-Stokes solver SPARK using a finite rate chemistry model for hydrogen-air combustion.

  17. Evaluation of COSMO-ART in the Framework of the Air Quality Model Evaluation International Initiative (AQMEII)

    NASA Astrophysics Data System (ADS)

    Giordano, Lea; Brunner, Dominik; Im, Ulas; Galmarini, Stefano

    2014-05-01

    The Air Quality Model Evaluation International Initiative (AQMEII) coordinated by the EC-JRC and US-EPA, promotes since 2008 research on regional air quality model evaluation across the atmospheric modelling communities of Europe and North America. AQMEII has now reached its Phase 2 that is dedicated to the evaluation of on-line coupled chemistry-meteorology models as opposed to Phase 1 where only off-line models were considered. At European level, AQMEII collaborates with the COST Action "European framework for on-line integrated air quality and meteorology modelling" (EuMetChem). All European groups participating in AQMEII performed simulations over the same spatial domain (Europe at a resolution of about 20 km) and using the same simulation strategy (e.g. no nudging allowed) and the same input data as much as possible. The initial and boundary conditions (IC/BC) were shared between all groups. Emissions were provided by the TNO-MACC database for anthropogenic emissions and the FMI database for biomass burning emissions. Chemical IC/BC data were taken from IFS-MOZART output, and meteorological IC/BC from the ECWMF global model. Evaluation data sets were collected by the Joint Research Center (JRC) and include measurements from surface in situ networks (AirBase and EMEP), vertical profiles from ozone sondes and aircraft (MOZAIC), and remote sensing (AERONET, satellites). Since Phase 2 focuses on on-line coupled models, a special effort is devoted to the detailed speciation of particulate matter components, with the goal of studying feedback processes. For the AQMEII exercise, COSMO-ART has been run with 40 levels of vertical resolution, and a chemical scheme that includes the SCAV module of Knote and Brunner (ACP 2013) for wet-phase chemistry and the SOA treatment according to VBS (volatility basis set) approach (Athanasopoulou et al., ACP 2013). The COSMO-ART evaluation shows that, next to a good performance in the meteorology, the gas phase chemistry is well

  18. Air plasma treatment of liquid covered tissue: long timescale chemistry

    NASA Astrophysics Data System (ADS)

    Lietz, Amanda M.; Kushner, Mark J.

    2016-10-01

    Atmospheric pressure plasmas have shown great promise for the treatment of wounds and cancerous tumors. In these applications, the sample is usually covered by a thin layer of a biological liquid. The reactive oxygen and nitrogen species (RONS) generated by the plasma activate and are processed by the liquid before the plasma produced activation reaches the tissue. The synergy between the plasma and the liquid, including evaporation and the solvation of ions and neutrals, is critical to understanding the outcome of plasma treatment. The atmospheric pressure plasma sources used in these procedures are typically repetitively pulsed. The processes activated by the plasma sources have multiple timescales—from a few ns during the discharge pulse to many minutes for reactions in the liquid. In this paper we discuss results from a computational investigation of plasma-liquid interactions and liquid phase chemistry using a global model with the goal of addressing this large dynamic range in timescales. In modeling air plasmas produced by a dielectric barrier discharge over liquid covered tissue, 5000 voltage pulses were simulated, followed by 5 min of afterglow. Due to the accumulation of long-lived species such as ozone and N x O y , the gas phase dynamics of the 5000th discharge pulse are different from those of the first pulse, particularly with regards to the negative ions. The consequences of applied voltage, gas flow, pulse repetition frequency, and the presence of organic molecules in the liquid on the gas and liquid reactive species are discussed.

  19. Representational Translation with Concrete Models in Organic Chemistry

    ERIC Educational Resources Information Center

    Stull, Andrew T.; Hegarty, Mary; Dixon, Bonnie; Stieff, Mike

    2012-01-01

    In representation-rich domains such as organic chemistry, students must be facile and accurate when translating between different 2D representations, such as diagrams. We hypothesized that translating between organic chemistry diagrams would be more accurate when concrete models were used because difficult mental processes could be augmented by…

  20. Estimating North American background ozone in U.S. surface air with two independent global models: Variability, uncertainties, and recommendations

    EPA Science Inventory

    Accurate estimates for North American background (NAB) ozone (O3) in surface air over the United States are needed for setting and implementing an attainable national O3 standard. These estimates rely on simulations with atmospheric chemistry-transport models that set North Amer...

  1. College Students Solving Chemistry Problems: A Theoretical Model of Expertise

    ERIC Educational Resources Information Center

    Taasoobshirazi, Gita; Glynn, Shawn M.

    2009-01-01

    A model of expertise in chemistry problem solving was tested on undergraduate science majors enrolled in a chemistry course. The model was based on Anderson's "Adaptive Control of Thought-Rational" (ACT-R) theory. The model shows how conceptualization, self-efficacy, and strategy interact and contribute to the successful solution of quantitative,…

  2. Teaching Chemistry for All Its Worth: The Interaction Between Facts, Ideas, and Language in Lavoisier's and Priestley's Chemistry Practice: The Case of the Study of the Composition of Air

    NASA Astrophysics Data System (ADS)

    de Berg, Kevin

    2014-10-01

    Both Lavoisier and Priestley were committed to the role of experiment and observation in their chemistry practice. According to Lavoisier the physical sciences embody three important ingredients; facts, ideas, and language, and Priestley would not have disagreed with this. Ideas had to be consistent with the facts generated from experiment and observation and language needed to be precise and reflect the known chemistry of substances. While Priestley was comfortable with a moderate amount of hypothesis making, Lavoisier had no time for what he termed theoretical speculation about the fundamental nature of matter and avoided the use of the atomic hypothesis and Aristotle's elements in his Elements of Chemistry. In the preface to this famous work he claims he has good educational reasons for this position. While Priestley and Lavoisier used similar kinds of apparatus in their chemistry practice, they came to their task with completely different worldviews as regards the nature of chemical reactivity. This paper examines these worldviews as practiced in the famous experiment on the composition of air and the implications of this for chemistry education are considered.

  3. Wintertime nitric acid chemistry - Implications from three-dimensional model calculations

    NASA Technical Reports Server (NTRS)

    Rood, Richard B.; Kaye, Jack A.; Douglass, Anne R.; Allen, Dale J.; Steenford, Stephen

    1990-01-01

    A three-dimensional simulation of the evolution of HNO3 has been run for the winter of 1979. Winds and temperatures are taken from a stratospheric data assimilation analysis, and the chemistry is based on Limb Infrared Monitor of the Stratosphere (LIMS) observations. The model is compared to LIMS observations to investigate the problem of 'missing' nitric acid chemistry in the winter hemisphere. Both the model and observations support the contention that a nitric acid source is needed outside of the polar vortex and north of the subtropics. Observations suggest that HNO3 is not dynamically controlled in middle latitudes. The model shows that given the time scales of conventional chemistry, dynamical control is expected. Therefore, an error exists in the conventional chemistry or additional processes are needed to bring the model and data into agreement. Since the polar vortex is dynamically isolated from the middle latitudes, and since the highest HNO3 values are observed in October and November, a source associated solely with polar stratospheric clouds cannot explain the deficiencies in the chemistry. The role of heterogeneous processes on background aerosols is reviewed in light of these results.

  4. Evaluation of Convective Transport in the GEOS-5 Chemistry and Climate Model

    NASA Technical Reports Server (NTRS)

    Pickering, Kenneth E.; Ott, Lesley E.; Shi, Jainn J.; Tao. Wei-Kuo; Mari, Celine; Schlager, Hans

    2011-01-01

    The NASA Goddard Earth Observing System (GEOS-5) Chemistry and Climate Model (CCM) consists of a global atmospheric general circulation model and the combined stratospheric and tropospheric chemistry package from the NASA Global Modeling Initiative (GMI) chemical transport model. The subgrid process of convective tracer transport is represented through the Relaxed Arakawa-Schubert parameterization in the GEOS-5 CCM. However, substantial uncertainty for tracer transport is associated with this parameterization, as is the case with all global and regional models. We have designed a project to comprehensively evaluate this parameterization from the point of view of tracer transport, and determine the most appropriate improvements that can be made to the GEOS-5 convection algorithm, allowing improvement in our understanding of the role of convective processes in determining atmospheric composition. We first simulate tracer transport in individual observed convective events with a cloud-resolving model (WRF). Initial condition tracer profiles (CO, CO2, O3) are constructed from aircraft data collected in undisturbed air, and the simulations are evaluated using aircraft data taken in the convective anvils. A single-column (SCM) version of the GEOS-5 GCM with online tracers is then run for the same convective events. SCM output is evaluated based on averaged tracer fields from the cloud-resolving model. Sensitivity simulations with adjusted parameters will be run in the SCM to determine improvements in the representation of convective transport. The focus of the work to date is on tropical continental convective events from the African Monsoon Multidisciplinary Analyses (AMMA) field mission in August 2006 that were extensively sampled by multiple research aircraft.

  5. Eurodelta-Trends, a Multi-Model Experiment of Air Quality Hindcast in Europe over 1990-2010. Experiment Design and Key Findings

    NASA Astrophysics Data System (ADS)

    Colette, A.; Ciarelli, G.; Otero, N.; Theobald, M.; Solberg, S.; Andersson, C.; Couvidat, F.; Manders-Groot, A.; Mar, K. A.; Mircea, M.; Pay, M. T.; Raffort, V.; Tsyro, S.; Cuvelier, K.; Adani, M.; Bessagnet, B.; Bergstrom, R.; Briganti, G.; Cappelletti, A.; D'isidoro, M.; Fagerli, H.; Ojha, N.; Roustan, Y.; Vivanco, M. G.

    2017-12-01

    The Eurodelta-Trends multi-model chemistry-transport experiment has been designed to better understand the evolution of air pollution and its drivers for the period 1990-2010 in Europe. The main objective of the experiment is to assess the efficiency of air pollutant emissions mitigation measures in improving regional scale air quality. The experiment is designed in three tiers with increasing degree of computational demand in order to facilitate the participation of as many modelling teams as possible. The basic experiment consists of simulations for the years 1990, 2000 and 2010. Sensitivity analysis for the same three years using various combinations of (i) anthropogenic emissions, (ii) chemical boundary conditions and (iii) meteorology complements it. The most demanding tier consists in two complete time series from 1990 to 2010, simulated using either time varying emissions for corresponding years or constant emissions. Eight chemistry-transport models have contributed with calculation results to at least one experiment tier, and six models have completed the 21-year trend simulations. The modelling results are publicly available for further use by the scientific community. We assess the skill of the models in capturing observed air pollution trends for the 1990-2010 time period. The average particulate matter relative trends are well captured by the models, even if they display the usual lower bias in reproducing absolute levels. Ozone trends are also well reproduced, yet slightly overestimated in the 1990s. The attribution study emphasizes the efficiency of mitigation measures in reducing air pollution over Europe, although a strong impact of long range transport is pointed out for ozone trends. Meteorological variability is also an important factor in some regions of Europe. The results of the first health and ecosystem impact studies impacts building upon a regional scale multi-model ensemble over a 20yr time period will also be presented.

  6. Chemistry Teachers' Knowledge and Application of Models

    ERIC Educational Resources Information Center

    Wang, Zuhao; Chi, Shaohui; Hu, Kaiyan; Chen, Wenting

    2014-01-01

    Teachers' knowledge and application of model play an important role in students' development of modeling ability and scientific literacy. In this study, we investigated Chinese chemistry teachers' knowledge and application of models. Data were collected through test questionnaire and analyzed quantitatively and qualitatively. The result indicated…

  7. Development and evaluation of the aerosol dynamics and gas phase chemistry model ADCHEM

    NASA Astrophysics Data System (ADS)

    Roldin, P.; Swietlicki, E.; Schurgers, G.; Arneth, A.; Lehtinen, K. E. J.; Boy, M.; Kulmala, M.

    2011-06-01

    The aim of this work was to develop a model suited for detailed studies of aerosol dynamics, gas and particle phase chemistry within urban plumes, from local scale (1 × 1 km2) to regional scale. This article describes and evaluates the trajectory model for Aerosol Dynamics, gas and particle phase CHEMistry and radiative transfer (ADCHEM). The model treats both vertical and horizontal dispersion perpendicular to an air mass trajectory (2-space dimensions). The Lagrangian approach enables a more detailed representation of the aerosol dynamics, gas and particle phase chemistry and a finer spatial and temporal resolution compared to that of available regional 3D-CTMs. These features make it among others well suited for urban plume studies. The aerosol dynamics model includes Brownian coagulation, dry deposition, wet deposition, in-cloud processing, condensation, evaporation, primary particle emissions and homogeneous nucleation. The organic mass partitioning was either modeled with a 2-dimensional volatility basis set (2D-VBS) or with the traditional two-product model approach. In ADCHEM these models consider the diffusion limited and particle size dependent condensation and evaporation of 110 and 40 different organic compounds respectively. The gas phase chemistry model calculates the gas phase concentrations of 61 different species, using 130 different chemical reactions. Daily isoprene and monoterpene emissions from European forests were simulated separately with the vegetation model LPJ-GUESS, and included as input to ADCHEM. ADCHEM was used to simulate the ageing of the urban plumes from the city of Malmö in southern Sweden (280 000 inhabitants). Several sensitivity tests were performed concerning the number of size bins, size structure method, aerosol dynamic processes, vertical and horizontal mixing, coupled or uncoupled condensation and the secondary organic aerosol formation. The simulations show that the full-stationary size structure gives accurate results

  8. ECHMERIT: A new on-line global mercury-chemistry model

    NASA Astrophysics Data System (ADS)

    Jung, G.; Hedgecock, I. M.; Pirrone, N.

    2009-04-01

    Mercury is a volatile metal, that is of concern because when deposited and transformed to methylmercury accumulates within the food-web. Due to the long lifetime of elemental mercury, which is the dominant fraction of mercury species in the atmosphere, mercury is prone to long-range transport and therefore distributed over the globe, transported and hence deposited even in regions far from anthropogenic emission sources. Mercury is released to the atmosphere from a variety of natural and anthropogenic sources, in elementary and oxidised forms, and as particulate mercury. It is then transported, but also transformed chemically in the gaseous phase, as well as in aqueous phase within cloud and rain droplets. Mercury (particularly its oxidised forms) is removed from the atmosphere though wet and dry deposition processes, a large fraction of deposited mercury is, after chemical or biological reduction, re-emitted to the atmosphere as elementary mercury. To investigate mercury chemistry and transport processes on the global scale, the new, global model ECHMERIT has been developed. ECHMERIT simulates meteorology, transport, deposition, photolysis and chemistry on-line. The general circulation model on which ECHMERIT is based is ECHAM5. Sophisticated chemical modules have been implemented, including gas phase chemistry based on the CBM-Z chemistry mechanism, as well as aqueous phase chemistry, both of which have been adapted to include Hg chemistry and Hg species gas-droplet mass transfer. ECHMERIT uses the fast-J photolysis routine. State-of-the-art procedures simulating wet and dry deposition and emissions were adapted and included in the model as well. An overview of the model structure, development, validation and sensitivity studies is presented.

  9. Multi-scale modeling of urban air pollution: development of a Street-in-Grid model

    NASA Astrophysics Data System (ADS)

    Kim, Youngseob; Wu, You; Seigneur, Christian; Roustan, Yelva

    2016-04-01

    A new multi-scale model of urban air pollution is presented. This model combines a chemical-transport model (CTM) that includes a comprehensive treatment of atmospheric chemistry and transport at spatial scales greater than 1 km and a street-network model that describes the atmospheric concentrations of pollutants in an urban street network. The street-network model is based on the general formulation of the SIRANE model and consists of two main components: a street-canyon component and a street-intersection component. The street-canyon component calculates the mass transfer velocity at the top of the street canyon (roof top) and the mean wind velocity within the street canyon. The estimation of the mass transfer velocity depends on the intensity of the standard deviation of the vertical velocity at roof top. The effect of various formulations of this mass transfer velocity on the pollutant transport at roof-top level is examined. The street-intersection component calculates the mass transfer from a given street to other streets across the intersection. These mass transfer rates among the streets are calculated using the mean wind velocity calculated for each street and are balanced so that the total incoming flow rate is equal to the total outgoing flow rate from the intersection including the flow between the intersection and the overlying atmosphere at roof top. In the default option, the Leighton photostationary cycle among ozone (O3) and nitrogen oxides (NO and NO2) is used to represent the chemical reactions within the street network. However, the influence of volatile organic compounds (VOC) on the pollutant concentrations increases when the nitrogen oxides (NOx) concentrations are low. To account for the possible VOC influence on street-canyon chemistry, the CB05 chemical kinetic mechanism, which includes 35 VOC model species, is implemented in this street-network model. A sensitivity study is conducted to assess the uncertainties associated with the use of

  10. Natural Air-Sea Flux of CO2 in Simulations of the NASA-GISS Climate Model: Sensitivity to the Physical Ocean Model Formulation

    NASA Technical Reports Server (NTRS)

    Romanou, A.; Gregg, Watson W.; Romanski, J.; Kelley, M.; Bleck, R.; Healy, R.; Nazarenko, L.; Russell, G.; Schmidt, G. A.; Sun, S.; hide

    2013-01-01

    Results from twin control simulations of the preindustrial CO2 gas exchange (natural flux of CO2) between the ocean and the atmosphere are presented here using the NASA-GISS climate model, in which the same atmospheric component (modelE2) is coupled to two different ocean models, the Russell ocean model and HYCOM. Both incarnations of the GISS climate model are also coupled to the same ocean biogeochemistry module (NOBM) which estimates prognostic distributions for biotic and abiotic fields that influence the air-sea flux of CO2. Model intercomparison is carried out at equilibrium conditions and model differences are contrasted with biases from present day climatologies. Although the models agree on the spatial patterns of the air-sea flux of CO2, they disagree on the strength of the North Atlantic and Southern Ocean sinks mainly because of kinematic (winds) and chemistry (pCO2) differences rather than thermodynamic (SST) ones. Biology/chemistry dissimilarities in the models stem from the different parameterizations of advective and diffusive processes, such as overturning, mixing and horizontal tracer advection and to a lesser degree from parameterizations of biogeochemical processes such as gravitational settling and sinking. The global meridional overturning circulation illustrates much of the different behavior of the biological pump in the two models, together with differences in mixed layer depth which are responsible for different SST, DIC and nutrient distributions in the two models and consequently different atmospheric feedbacks (in the wind, net heat and freshwater fluxes into the ocean).

  11. The effects of atmospheric chemistry on radiation budget in the Community Earth Systems Model

    NASA Astrophysics Data System (ADS)

    Choi, Y.; Czader, B.; Diao, L.; Rodriguez, J.; Jeong, G.

    2013-12-01

    The Community Earth Systems Model (CESM)-Whole Atmosphere Community Climate Model (WACCM) simulations were performed to study the impact of atmospheric chemistry on the radiation budget over the surface within a weather prediction time scale. The secondary goal is to get a simplified and optimized chemistry module for the short time period. Three different chemistry modules were utilized to represent tropospheric and stratospheric chemistry, which differ in how their reactions and species are represented: (1) simplified tropospheric and stratospheric chemistry (approximately 30 species), (2) simplified tropospheric chemistry and comprehensive stratospheric chemistry from the Model of Ozone and Related Chemical Tracers, version 3 (MOZART-3, approximately 60 species), and (3) comprehensive tropospheric and stratospheric chemistry (MOZART-4, approximately 120 species). Our results indicate the different details in chemistry treatment from these model components affect the surface temperature and impact the radiation budget.

  12. Feedbacks between Air Pollution and Weather, Part 2: Effects on Chemistry.

    EPA Science Inventory

    Fully-coupled air-quality models running in “feedback” and “no-feedback” configurations were compared against each other and observation network data as part of Phase 2 of the Air Quality Model Evaluation International Initiative. In the “no-feedback” mode, interactions between m...

  13. Evaluation of the Community Multiscale Air Quality (CMAQ) ...

    EPA Pesticide Factsheets

    The Community Multiscale Air Quality (CMAQ) model is a state-of-the-science air quality model that simulates the emission, transport and fate of numerous air pollutants, including ozone and particulate matter. The Computational Exposure Division (CED) of the U.S. Environmental Protection Agency develops the CMAQ model and periodically releases new versions of the model that include bug fixes and various other improvements to the modeling system. In the fall of 2016, CMAQ version 5.1.1 will be released. This new version of CMAQ will contain important bug fixes to several issues that were identified in CMAQv5.1 (the current public release version of the CMAQ model), and additionally include updates to other portions of the code. Some specific model updates include a new implementation of the wind-blown dust calculation in CMAQv5.1.1 which fixes several bugs that were identified in the current implementation of wind-blown dust in CMAQv5.1. Several other major updates to the model include an update to the calculation of aerosols; implementation of full halogen chemistry (CMAQv5.1 contains a partial implementation of halogen chemistry), which is particularly important for hemispheric applications of the CMAQ model, as halogen chemistry is need to accurately simulation the destruction of ozone over the ocean; and the new carbon bond 6 (CB6) chemical mechanism. Several annual, and numerous episodic, CMAQv5.1.1 simulations will be performed to assess the impact of these

  14. Evaluating the Contribution of Natural Variability and Climate Model Response to Uncertainty in Projections of Climate Change Impacts on U.S. Air Quality

    EPA Science Inventory

    We examine the effects of internal variability and model response in projections of climate impacts on U.S. ground-level ozone across the 21st century using integrated global system modeling and global atmospheric chemistry simulations. The impact of climate change on air polluti...

  15. Predictive Modeling in Actinide Chemistry and Catalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Ping

    2016-05-16

    These are slides from a presentation on predictive modeling in actinide chemistry and catalysis. The following topics are covered in these slides: Structures, bonding, and reactivity (bonding can be quantified by optical probes and theory, and electronic structures and reaction mechanisms of actinide complexes); Magnetic resonance properties (transition metal catalysts with multi-nuclear centers, and NMR/EPR parameters); Moving to more complex systems (surface chemistry of nanomaterials, and interactions of ligands with nanoparticles); Path forward and conclusions.

  16. Integrating Measurement Based New Knowledge on Wildland Fire Emissions and Chemistry into the AIRPACT Air Quality Forecasting for the Pacific Northwest

    NASA Astrophysics Data System (ADS)

    Nergui, T.; Lee, Y.; Chung, S. H.; Lamb, B. K.; Yokelson, R. J.; Barsanti, K.

    2017-12-01

    A number of chamber and field measurements have shown that atmospheric organic aerosols and their precursors produced from wildfires are significantly underestimated in the emission inventories used for air quality models for various applications such as regulatory strategy development, impact assessments of air pollutants, and air quality forecasting for public health. The AIRPACT real-time air quality forecasting system consistently underestimates surface level fine particulate matter (PM2.5) concentrations in the summer at both urban and rural locations in the Pacific Northwest, primarily result of errors in organic particulate matter. In this work, we implement updated chemical speciation and emission factors based on FLAME-IV (Fourth Fire Lab at Missoula Experiment) and other measurements in the Blue-Sky fire emission model and the SMOKE emission preprocessor; and modified parameters for the secondary organic aerosol (SOA) module in CMAQ chemical transport model of the AIRPACT modeling system. Simulation results from CMAQ version 5.2 which has a better treatment for anthropogenic SOA formation (as a base case) and modified parameterization used for fire emissions and chemistry in the model (fire-soa case) are evaluated against airborne measurements downwind of the Big Windy Complex Fire and the Colockum Tarps Fire, both of which occurred in the Pacific Northwest in summer 2013. Using the observed aerosol chemical composition and mass loadings for organics, nitrate, sulfate, ammonium, and chloride from aircraft measurements during the Studies of Emissions and Atmospheric Composition, Clouds, and Climate Coupling by Regional Surveys (SEAC4RS) and the Biomass Burning Observation Project (BBOP), we assess how new knowledge gained from wildfire measurements improve model predictions for SOA and its contribution to the total mass of PM2.5 concentrations.

  17. Modeling of multi-phase interactions of reactive nitrogen between snow and air in Antarctica

    NASA Astrophysics Data System (ADS)

    McCrystall, M.; Chan, H. G. V.; Frey, M. M.; King, M. D.

    2016-12-01

    In polar and snow-covered regions, the snowpack is an important link between atmospheric, terrestrial and oceanic systems. Trace gases, including nitrogen oxides, produced via photochemical reactions in snow are partially released to the lower atmosphere with considerable impact on its composition. However, the post-depositional processes that change the chemical composition and physical properties of the snowpack are still poorly understood. Most current snow chemistry models oversimplify as they assume air-liquid interactions and aqueous phase chemistry taking place at the interface between the snow grain and air. Here, we develop a novel temperature dependent multi-phase (gas-liquid-ice) physical exchange model for reactive nitrogen. The model is validated with existing year-round observations of nitrate in the top 0.5-2 cm of snow and the overlying atmosphere at two very different Antarctic locations: Dome C on the East Antarctic Plateau with very low annual mean temperature (-54ºC) and accumulation rate (<30 kg m-2 yr-1); and Halley, a coastal site with at times at or above freezing temperatures during summer, high accumulation rate and high background level of sea salt aerosol. We find that below the eutectic temperature of the H2O/dominant ion mixture the surface snow nitrate is controlled by kinetic adsorption onto the surface of snow grains followed by grain diffusion. Above the eutectic temperature, in addition to the former two processes, thermodynamic equilibrium of HNO3 between interstitial air and liquid water pockets, possibly present at triple junctions or grooves at grain boundaries, greatly enhances the nitrate uptake by snow in agreement with the concentration peak observed in summer.

  18. Stratospheric General Circulation with Chemistry Model (SGCCM)

    NASA Technical Reports Server (NTRS)

    Rood, Richard B.; Douglass, Anne R.; Geller, Marvin A.; Kaye, Jack A.; Nielsen, J. Eric; Rosenfield, Joan E.; Stolarski, Richard S.

    1990-01-01

    In the past two years constituent transport and chemistry experiments have been performed using both simple single constituent models and more complex reservoir species models. Winds for these experiments have been taken from the data assimilation effort, Stratospheric Data Analysis System (STRATAN).

  19. Role of photoexcited nitrogen dioxide chemistry on ozone formation and emission control strategy over the Pearl River Delta, China

    EPA Science Inventory

    A new hydroxyl radical formation pathway via photo-excited nitrogen dioxide chemistry is incorporated into a chemistry-only box model as well as a 3D air quality model to examine its potential role on ozone formation and emission control strategy over the Pearl River Delta region...

  20. Modeling the chemistry of complex petroleum mixtures.

    PubMed Central

    Quann, R J

    1998-01-01

    Determining the complete molecular composition of petroleum and its refined products is not feasible with current analytical techniques because of the astronomical number of molecular components. Modeling the composition and behavior of such complex mixtures in refinery processes has accordingly evolved along a simplifying concept called lumping. Lumping reduces the complexity of the problem to a manageable form by grouping the entire set of molecular components into a handful of lumps. This traditional approach does not have a molecular basis and therefore excludes important aspects of process chemistry and molecular property fundamentals from the model's formulation. A new approach called structure-oriented lumping has been developed to model the composition and chemistry of complex mixtures at a molecular level. The central concept is to represent an individual molecular or a set of closely related isomers as a mathematical construct of certain specific and repeating structural groups. A complex mixture such as petroleum can then be represented as thousands of distinct molecular components, each having a mathematical identity. This enables the automated construction of large complex reaction networks with tens of thousands of specific reactions for simulating the chemistry of complex mixtures. Further, the method provides a convenient framework for incorporating molecular physical property correlations, existing group contribution methods, molecular thermodynamic properties, and the structure--activity relationships of chemical kinetics in the development of models. PMID:9860903

  1. Feedbacks between Air-Quality, Meteorology, and the Forest Environment

    NASA Astrophysics Data System (ADS)

    Makar, Paul; Akingunola, Ayodeji; Stroud, Craig; Zhang, Junhua; Gong, Wanmin; Moran, Michael; Zheng, Qiong; Brook, Jeffrey; Sills, David

    2017-04-01

    The outcome of air quality forecasts depend in part on how the local environment surrounding the emissions regions influences chemical reaction rates and transport from those regions to the larger spatial scales. Forested areas alter atmospheric chemistry through reducing photolysis rates and vertical diffusivities within the forest canopy. The emitted pollutants, and their reaction products, are in turn capable of altering meteorology, through the well-known direct and indirect effects of particulate matter on radiative transfer. The combination of these factors was examined using version 2 of the Global Environmental Multiscale - Modelling Air-quality and CHemistry (GEM-MACH) on-line air pollution model. The model configuration used for this study included 12 aerosol size bins, eight aerosol species, homogeneous core Mie scattering, the Milbrandt-Yao two-moment cloud microphysics scheme with cloud condensation nuclei generated from model aerosols using the scheme of Abdul-Razzak and Ghan, and a new parameterization for forest canopy shading and turbulence. The model was nested to 2.5km resolution for a domain encompassing the lower Great Lakes, for simulations of a period in August of 2015 during the Pan American Games, held in Toronto, Canada. Four scenarios were carried out: (1) a "Base Case" scenario (the original model, in which coupling between chemistry and weather is not permitted; instead, the meteorological model's internal climatologies for aerosol optical and cloud condensation properties are used for direct and indirect effect calculations); (2) a "Feedback" scenario (the aerosol properties were derived from the internally simulated chemistry, and coupled to the meteorological model's radiative transfer and cloud formation modules); (3) a "Forest" scenario (canopy shading and turbulence were added to the Base Case); (4) a "Combined" scenario (including both direct and indirect effect coupling between meteorology and chemistry, as well as the forest

  2. Teaching Chemistry with Electron Density Models

    NASA Astrophysics Data System (ADS)

    Shusterman, Gwendolyn P.; Shusterman, Alan J.

    1997-07-01

    Linus Pauling once said that a topic must satisfy two criteria before it can be taught to students. First, students must be able to assimilate the topic within a reasonable amount of time. Second, the topic must be relevant to the educational needs and interests of the students. Unfortunately, the standard general chemistry textbook presentation of "electronic structure theory", set as it is in the language of molecular orbitals, has a difficult time satisfying either criterion. Many of the quantum mechanical aspects of molecular orbitals are too difficult for most beginning students to appreciate, much less master, and the few applications that are presented in the typical textbook are too limited in scope to excite much student interest. This article describes a powerful new method for teaching students about electronic structure and its relevance to chemical phenomena. This method, which we have developed and used for several years in general chemistry (G.P.S.) and organic chemistry (A.J.S.) courses, relies on computer-generated three-dimensional models of electron density distributions, and largely satisfies Pauling's two criteria. Students find electron density models easy to understand and use, and because these models are easily applied to a broad range of topics, they successfully convey to students the importance of electronic structure. In addition, when students finally learn about orbital concepts they are better prepared because they already have a well-developed three-dimensional picture of electronic structure to fall back on. We note in this regard that the types of models we use have found widespread, rigorous application in chemical research (1, 2), so students who understand and use electron density models do not need to "unlearn" anything before progressing to more advanced theories.

  3. Development and evaluation of the aerosol dynamic and gas phase chemistry model ADCHEM

    NASA Astrophysics Data System (ADS)

    Roldin, P.; Swietlicki, E.; Schurgers, G.; Arneth, A.; Lehtinen, K. E. J.; Boy, M.; Kulmala, M.

    2010-08-01

    The aim of this work was to develop a model ideally suited for detailed studies on aerosol dynamics, gas and particle phase chemistry within urban plumes, from local scale (1×1 km2) to regional or global scale. This article describes and evaluates the trajectory model for Aerosol Dynamics, gas and particle phase CHEMistry and radiative transfer (ADCHEM), which has been developed and used at Lund University since 2007. The model treats both vertical and horizontal dispersion perpendicular to an air mass trajectory (2-space dimensions), which is not treated in Lagrangian box-models (0-space dimensions). The Lagrangian approach enables a more detailed representation of the aerosol dynamics, gas and particle phase chemistry and a finer spatial and temporal resolution compared to that of available regional 3D-CTMs. These features make it among others ideally suited for urban plume studies. The aerosol dynamics model includes Brownian coagulation, dry deposition, wet deposition, in-cloud processing, condensation, evaporation, primary particle emissions and homogeneous nucleation. The gas phase chemistry model calculates the gas phase concentrations of 63 different species, using 119 different chemical reactions. Daily isoprene and monoterpene emissions from European forests were simulated separately with the vegetation model LPJ-GUESS, and included as input to ADCHEM. ADCHEM was used to simulate the ageing of the urban plumes from the city of Malmö in Southern Sweden (280 000 inhabitants). Several sensitivity tests were performed concerning the number of size bins, size structure method, coupled or uncoupled condensation, the volatility basis set (VBS) or traditional 2-product model for secondary organic aerosol formation, different aerosol dynamic processes and vertical and horizontal mixing. The simulations show that the full-stationary size structure gives accurate results with little numerical diffusion when more than 50 size bins are used between 1.5 and 2500 nm

  4. The Essential Role for Laboratory Studies in Atmospheric Chemistry.

    PubMed

    Burkholder, James B; Abbatt, Jonathan P D; Barnes, Ian; Roberts, James M; Melamed, Megan L; Ammann, Markus; Bertram, Allan K; Cappa, Christopher D; Carlton, Annmarie G; Carpenter, Lucy J; Crowley, John N; Dubowski, Yael; George, Christian; Heard, Dwayne E; Herrmann, Hartmut; Keutsch, Frank N; Kroll, Jesse H; McNeill, V Faye; Ng, Nga Lee; Nizkorodov, Sergey A; Orlando, John J; Percival, Carl J; Picquet-Varrault, Bénédicte; Rudich, Yinon; Seakins, Paul W; Surratt, Jason D; Tanimoto, Hiroshi; Thornton, Joel A; Tong, Zhu; Tyndall, Geoffrey S; Wahner, Andreas; Weschler, Charles J; Wilson, Kevin R; Ziemann, Paul J

    2017-03-07

    Laboratory studies of atmospheric chemistry characterize the nature of atmospherically relevant processes down to the molecular level, providing fundamental information used to assess how human activities drive environmental phenomena such as climate change, urban air pollution, ecosystem health, indoor air quality, and stratospheric ozone depletion. Laboratory studies have a central role in addressing the incomplete fundamental knowledge of atmospheric chemistry. This article highlights the evolving science needs for this community and emphasizes how our knowledge is far from complete, hindering our ability to predict the future state of our atmosphere and to respond to emerging global environmental change issues. Laboratory studies provide rich opportunities to expand our understanding of the atmosphere via collaborative research with the modeling and field measurement communities, and with neighboring disciplines.

  5. Numerical Simulation of Hydrogen Air Supersonic Coaxial Jet

    NASA Astrophysics Data System (ADS)

    Dharavath, Malsur; Manna, Pulinbehari; Chakraborty, Debasis

    2017-10-01

    In the present study, the turbulent structure of coaxial supersonic H2-air jet is explored numerically by solving three dimensional RANS equations along with two equation k-ɛ turbulence model. Grid independence of the solution is demonstrated by estimating the error distribution using Grid Convergence Index. Distributions of flow parameters in different planes are analyzed to explain the mixing and combustion characteristics of high speed coaxial jets. The flow field is seen mostly diffusive in nature and hydrogen diffusion is confined to core region of the jet. Both single step laminar finite rate chemistry and turbulent reacting calculation employing EDM combustion model are performed to find the effect of turbulence-chemistry interaction in the flow field. Laminar reaction predicts higher H2 mol fraction compared to turbulent reaction because of lower reaction rate caused by turbulence chemistry interaction. Profiles of major species and temperature match well with experimental data at different axial locations; although, the computed profiles show a narrower shape in the far field region. These results demonstrate that standard two equation class turbulence model with single step kinetics based turbulence chemistry interaction can describe H2-air reaction adequately in high speed flows.

  6. Future air pollution in the Shared Socio-economic Pathways

    DOE PAGES

    Rao, Shilpa; Klimont, Zbigniew; Smith, Steven J.; ...

    2016-07-15

    Emissions of air pollutants such as sulfur and nitrogen oxides and particulates have significant health impacts as well as effects on natural and anthropogenic ecosystems. These same emissions also can change atmospheric chemistry and the planetary energy balance, thereby impacting global and regional climate. Long-term scenarios for air pollutant emissions are needed as inputs to global climate and chemistry models, and for analysis linking air pollutant impacts across sectors. In this paper we present methodology and results for air pollutant emissions in Shared Socioeconomic Pathways (SSP) scenarios. We first present a set of three air pollution narratives that describe high,more » central, and low pollution control ambitions over the 21 st century. These narratives are then translated into quantitative guidance for use in integrated assessment models. We provide an overview of pollutant emission trajectories under the SSP scenarios. Pollutant emissions in these scenarios cover a wider range than the scenarios used in previous international climate model comparisons. Furthermore, the SSP scenarios provide the opportunity to access a more comprehensive range of future global and regional air quality outcomes.« less

  7. Future air pollution in the Shared Socio-economic Pathways

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, Shilpa; Klimont, Zbigniew; Smith, Steven J.

    Emissions of air pollutants such as sulfur and nitrogen oxides and particulates have significant health impacts as well as effects on natural and anthropogenic ecosystems. These same emissions also can change atmospheric chemistry and the planetary energy balance, thereby impacting global and regional climate. Long-term scenarios for air pollutant emissions are needed as inputs to global climate and chemistry models, and for analysis linking air pollutant impacts across sectors. In this paper we present methodology and results for air pollutant emissions in Shared Socioeconomic Pathways (SSP) scenarios. We first present a set of three air pollution narratives that describe high,more » central, and low pollution control ambitions over the 21 st century. These narratives are then translated into quantitative guidance for use in integrated assessment models. We provide an overview of pollutant emission trajectories under the SSP scenarios. Pollutant emissions in these scenarios cover a wider range than the scenarios used in previous international climate model comparisons. Furthermore, the SSP scenarios provide the opportunity to access a more comprehensive range of future global and regional air quality outcomes.« less

  8. Can a coupled meteorology–chemistry model reproduce the ...

    EPA Pesticide Factsheets

    The ability of a coupled meteorology–chemistry model, i.e., Weather Research and Forecast and Community Multiscale Air Quality (WRF-CMAQ), to reproduce the historical trend in aerosol optical depth (AOD) and clear-sky shortwave radiation (SWR) over the Northern Hemisphere has been evaluated through a comparison of 21-year simulated results with observation-derived records from 1990 to 2010. Six satellite-retrieved AOD products including AVHRR, TOMS, SeaWiFS, MISR, MODIS-Terra and MODIS-Aqua as well as long-term historical records from 11 AERONET sites were used for the comparison of AOD trends. Clear-sky SWR products derived by CERES at both the top of atmosphere (TOA) and surface as well as surface SWR data derived from seven SURFRAD sites were used for the comparison of trends in SWR. The model successfully captured increasing AOD trends along with the corresponding increased TOA SWR (upwelling) and decreased surface SWR (downwelling) in both eastern China and the northern Pacific. The model also captured declining AOD trends along with the corresponding decreased TOA SWR (upwelling) and increased surface SWR (downwelling) in the eastern US, Europe and the northern Atlantic for the period of 2000–2010. However, the model underestimated the AOD over regions with substantial natural dust aerosol contributions, such as the Sahara Desert, Arabian Desert, central Atlantic and northern Indian Ocean. Estimates of the aerosol direct radiative effect (DRE) at TOA a

  9. Modelling the chemistry of a gravitationally unstable protoplanetary disc

    NASA Astrophysics Data System (ADS)

    Ilee, J. D.; Boley, A. C.; Caselli, P.; Durisen, R. H.; Hartquist, T. W.; Rawlings, J. M. C.

    2011-05-01

    Until now, axisymmetric, α-disc simulations have been adopted to describe the dynamics used in the construction of chemical models of protoplanetary discs. While this approach is reasonable for many discs, it is not appropriate for young, massive discs in which self-gravity is important. Spiral waves and shocks cause significant temperature and density variations which affect the chemistry. We have used a dynamical model of solar mass star surrounded by a massive (0.39 M⊙), self-gravitating disc to model the chemistry of one of these objects.

  10. How well can global chemistry models calculate the reactivity of short-lived greenhouse gases in the remote troposphere, knowing the chemical composition

    NASA Astrophysics Data System (ADS)

    Prather, Michael J.; Flynn, Clare M.; Zhu, Xin; Steenrod, Stephen D.; Strode, Sarah A.; Fiore, Arlene M.; Correa, Gustavo; Murray, Lee T.; Lamarque, Jean-Francois

    2018-05-01

    We develop a new protocol for merging in situ measurements with 3-D model simulations of atmospheric chemistry with the goal of integrating these data to identify the most reactive air parcels in terms of tropospheric production and loss of the greenhouse gases ozone and methane. Presupposing that we can accurately measure atmospheric composition, we examine whether models constrained by such measurements agree on the chemical budgets for ozone and methane. In applying our technique to a synthetic data stream of 14 880 parcels along 180° W, we are able to isolate the performance of the photochemical modules operating within their global chemistry-climate and chemistry-transport models, removing the effects of modules controlling tracer transport, emissions, and scavenging. Differences in reactivity across models are driven only by the chemical mechanism and the diurnal cycle of photolysis rates, which are driven in turn by temperature, water vapor, solar zenith angle, clouds, and possibly aerosols and overhead ozone, which are calculated in each model. We evaluate six global models and identify their differences and similarities in simulating the chemistry through a range of innovative diagnostics. All models agree that the more highly reactive parcels dominate the chemistry (e.g., the hottest 10 % of parcels control 25-30 % of the total reactivities), but do not fully agree on which parcels comprise the top 10 %. Distinct differences in specific features occur, including the spatial regions of maximum ozone production and methane loss, as well as in the relationship between photolysis and these reactivities. Unique, possibly aberrant, features are identified for each model, providing a benchmark for photochemical module development. Among the six models tested here, three are almost indistinguishable based on the inherent variability caused by clouds, and thus we identify four, effectively distinct, chemical models. Based on this work, we suggest that water vapor

  11. SCIENCE VERSION OF PM CHEMISTRY MODEL

    EPA Science Inventory

    PM chemistry models containing detailed treatments of key chemical processes controlling ambient concentrations of inorganic and organic compounds in PM2.5 are needed to develop strategies for reducing PM2.5 concentrations. This task, that builds on previous research conducted i...

  12. Modeling the Dynamic Change of Air Quality and its Response to Emission Trends

    NASA Astrophysics Data System (ADS)

    Zhou, Wei

    This thesis focuses on evaluating atmospheric chemistry and transport models' capability in simulating the chemistry and dynamics of power plant plumes, evaluating their strengths and weaknesses in predicting air quality trends at regional scales, and exploring air quality trends in an urban area. First, the Community Mutlti-scale Air Quality (CMAQ) model is applied to simulate the physical and chemical evolution of power plant plumes (PPPs) during the second Texas Air Quality Study (TexAQS) in 2006. SO2 and NOy were observed to be rapidly removed from PPPs on cloudy days but not on cloud-free days, indicating efficient aqueous processing of these compounds in clouds, while the model fails to capture the rapid loss of SO2 and NOy in some plumes on the cloudy day. Adjustments to cloud liquid water content (QC) and the default metal concentrations in the cloud module could explain some of the SO 2 loss while NOy in the model was insensitive to QC. Second, CMAQ is applied to simulate the ozone (O3) change after the NO x SIP Call and mobile emission controls in the eastern U.S. from 2002 to 2006. Observed downward changes in 8-hour O3 concentrations in the NOx SIP Call region were under-predicted by 26%--66%. The under-prediction in O3 improvements could be alleviated by 5%--31% by constraining NOx emissions in each year based on observed NOx concentrations while temperature biases or uncertainties in chemical reactions had minor impact on simulated O3 trends. Third, changes in ozone production in the Houston area is assessed with airborne measurements from TexAQS 2000 and 2006. Simultaneous declines in nitrogen oxides (NOx=NO+NO2) and highly reactive Volatile Organic Compounds (HRVOCs) were observed in the Houston Ship Channel (HSC). The reduction in HRVOCs led to the decline in total radical concentration by 20-50%. Rapid ozone production rates in the Houston area declined by 40-50% from 2000 to 2006, to which the reduction in NOx and HRVOCs had the similar

  13. INEEL AIR MODELING PROTOCOL ext

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    C. S. Staley; M. L. Abbott; P. D. Ritter

    2004-12-01

    Various laws stemming from the Clean Air Act of 1970 and the Clean Air Act amendments of 1990 require air emissions modeling. Modeling is used to ensure that air emissions from new projects and from modifications to existing facilities do not exceed certain standards. For radionuclides, any new airborne release must be modeled to show that downwind receptors do not receive exposures exceeding the dose limits and to determine the requirements for emissions monitoring. For criteria and toxic pollutants, emissions usually must first exceed threshold values before modeling of downwind concentrations is required. This document was prepared to provide guidancemore » for performing environmental compliance-driven air modeling of emissions from Idaho National Engineering and Environmental Laboratory facilities. This document assumes that the user has experience in air modeling and dose and risk assessment. It is not intended to be a "cookbook," nor should all recommendations herein be construed as requirements. However, there are certain procedures that are required by law, and these are pointed out. It is also important to understand that air emissions modeling is a constantly evolving process. This document should, therefore, be reviewed periodically and revised as needed. The document is divided into two parts. Part A is the protocol for radiological assessments, and Part B is for nonradiological assessments. This document is an update of and supersedes document INEEL/INT-98-00236, Rev. 0, INEEL Air Modeling Protocol. This updated document incorporates changes in some of the rules, procedures, and air modeling codes that have occurred since the protocol was first published in 1998.« less

  14. Molecular Modeling and Computational Chemistry at Humboldt State University.

    ERIC Educational Resources Information Center

    Paselk, Richard A.; Zoellner, Robert W.

    2002-01-01

    Describes a molecular modeling and computational chemistry (MM&CC) facility for undergraduate instruction and research at Humboldt State University. This facility complex allows the introduction of MM&CC throughout the chemistry curriculum with tailored experiments in general, organic, and inorganic courses as well as a new molecular modeling…

  15. Assessing High School Chemistry Students' Modeling Sub-Skills in a Computerized Molecular Modeling Learning Environment

    ERIC Educational Resources Information Center

    Dori, Yehudit Judy; Kaberman, Zvia

    2012-01-01

    Much knowledge in chemistry exists at a molecular level, inaccessible to direct perception. Chemistry instruction should therefore include multiple visual representations, such as molecular models and symbols. This study describes the implementation and assessment of a learning unit designed for 12th grade chemistry honors students. The organic…

  16. Effects of different representations of transport in the new EMAC-SWIFT chemistry climate model

    NASA Astrophysics Data System (ADS)

    Scheffler, Janice; Langematz, Ulrike; Wohltmann, Ingo; Kreyling, Daniel; Rex, Markus

    2017-04-01

    It is well known that the representation of atmospheric ozone chemistry in weather and climate models is essential for a realistic simulation of the atmospheric state. Interactively coupled chemistry climate models (CCMs) provide a means to realistically simulate the interaction between atmospheric chemistry and dynamics. The calculation of chemistry in CCMs, however, is computationally expensive which renders the use of complex chemistry models not suitable for ensemble simulations or simulations with multiple climate change scenarios. In these simulations ozone is therefore usually prescribed as a climatological field or included by incorporating a fast linear ozone scheme into the model. While prescribed climatological ozone fields are often not aligned with the modelled dynamics, a linear ozone scheme may not be applicable for a wide range of climatological conditions. An alternative approach to represent atmospheric chemistry in climate models which can cope with non-linearities in ozone chemistry and is applicable to a wide range of climatic states is the Semi-empirical Weighted Iterative Fit Technique (SWIFT) that is driven by reanalysis data and has been validated against observational satellite data and runs of a full Chemistry and Transport Model. SWIFT has been implemented into the ECHAM/MESSy (EMAC) chemistry climate model that uses a modular approach to climate modelling where individual model components can be switched on and off. When using SWIFT in EMAC, there are several possibilities to represent the effect of transport inside the polar vortex: the semi-Lagrangian transport scheme of EMAC and a transport parameterisation that can be useful when using SWIFT in models not having transport of their own. Here, we present results of equivalent simulations with different handling of transport, compare with EMAC simulations with full interactive chemistry and evaluate the results with observations.

  17. An Introduction to Air Chemistry.

    ERIC Educational Resources Information Center

    Butcher, Samuel S.; Charlson, Robert J.

    Designed for those with no previous experience in the field, this book synthesizes the areas of chemistry and meteorology required to bring into focus some of the complex problems associated with the atmospheric environment. Subject matter moves from a review of the relevant chemical and meteorological principles to a discussion of the general…

  18. Air Quality Modeling

    EPA Pesticide Factsheets

    In this technical support document (TSD) EPA describes the air quality modeling performed to support the Environmental Protection Agency’s Transport Rule proposal (now known as the Cross-State Air Pollution Rule).

  19. Theoretical Modeling of Interstellar Chemistry

    NASA Technical Reports Server (NTRS)

    Charnley, Steven

    2009-01-01

    The chemistry of complex interstellar organic molecules will be described. Gas phase processes that may build large carbon-chain species in cold molecular clouds will be summarized. Catalytic reactions on grain surfaces can lead to a large variety of organic species, and models of molecule formation by atom additions to multiply-bonded molecules will be presented. The subsequent desorption of these mixed molecular ices can initiate a distinctive organic chemistry in hot molecular cores. The general ion-molecule pathways leading to even larger organics will be outlined. The predictions of this theory will be compared with observations to show how possible organic formation pathways in the interstellar medium may be constrained. In particular, the success of the theory in explaining trends in the known interstellar organics, in predicting recently-detected interstellar molecules, and, just as importantly, non-detections, will be discussed.

  20. Air Quality Modeling | Air Quality Planning & Standards | US ...

    EPA Pesticide Factsheets

    2016-06-08

    The basic mission of the Office of Air Quality Planning and Standards is to preserve and improve the quality of our nation's air. One facet of accomplishing this goal requires that new and existing air pollution sources be modeled for compliance with the National Ambient Air Quality Standards (NAAQS).

  1. Analyzing Students' Understanding of Models and Modeling Referring to the Disciplines Biology, Chemistry, and Physics

    ERIC Educational Resources Information Center

    Krell, Moritz; Reinisch, Bianca; Krüger, Dirk

    2015-01-01

    In this study, secondary school students' (N?=?617; grades 7 to 10) understanding of models and modeling was assessed using tasks which explicitly refer to the scientific disciplines of biology, chemistry, and physics and, as a control, to no scientific discipline. The students' responses are interpreted as their biology-, chemistry-, and…

  2. The first sustainable material designed for air particulate matter capture: An introduction to Azure Chemistry.

    PubMed

    Zanoletti, A; Bilo, F; Depero, L E; Zappa, D; Bontempi, E

    2018-07-15

    This work presents a new porous material (SUNSPACE) designed for air particulate matter (PM) capture. It was developed in answer to the European Commission request of an innovative, affordable, and sustainable solution, based on design-driven material, to reduce the concentration of air particulate matter in urban areas. SUNSPACE material was developed from by-products and low-cost materials, such as silica fume and sodium alginate. Its capability to catch ultrafine PM was evaluated by different ad-hoc tests, considering diesel exhaust fumes and incense smoke PM. Despite the fact that procedures and materials can be designed for remediation, the high impact on the environment, for example in terms of natural resources consumption and emissions, are not usually considered. Instead, we believe that the technologies must be always evaluated in terms of material embodied energy (EE) and carbon footprint (CF). We define our approach to solve environment problems by a sustainable methodology "Azure Chemistry". For the SUNSPACE synthesis, the multi-criteria decision analysis was performed to select the best sustainable solution. The emissions and the energies involved in the synthesis of SUNSPACE material were evaluated with the Azure Chemistry approach, showing that this could be the best available technology to face the problem of capturing the PM in urban area. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. An annual assessment of air quality with the CALIOPE modeling system over Spain.

    PubMed

    Baldasano, J M; Pay, M T; Jorba, O; Gassó, S; Jiménez-Guerrero, P

    2011-05-01

    The CALIOPE project, funded by the Spanish Ministry of the Environment, aims at establishing an air quality forecasting system for Spain. With this goal, CALIOPE modeling system was developed and applied with high resolution (4km×4km, 1h) using the HERMES emission model (including emissions of resuspended particles from paved roads) specifically built up for Spain. The present study provides an evaluation and the assessment of the modeling system, coupling WRF-ARW/HERMES/CMAQ/BSC-DREAM8b for a full-year simulation in 2004 over Spain. The evaluation focuses on the capability of the model to reproduce the temporal and spatial distribution of gas phase species (NO(2), O(3), and SO(2)) and particulate matter (PM10) against ground-based measurements from the Spanish air quality monitoring network. The evaluation of the modeling results on an hourly basis shows a strong dependency of the performance of the model on the type of environment (urban, suburban and rural) and the dominant emission sources (traffic, industrial, and background). The O(3) chemistry is best represented in summer, when mean hourly variability and high peaks are generally well reproduced. The mean normalized error and bias meet the recommendations proposed by the United States Environmental Protection Agency (US-EPA) and the European regulations. Modeled O(3) shows higher performance for urban than for rural stations, especially at traffic stations in large cities, since stations influenced by traffic emissions (i.e., high-NO(x) environments) are better characterized with a more pronounced daily variability. NO(x)/O(3) chemistry is better represented under non-limited-NO(2) regimes. SO(2) is mainly produced from isolated point sources (power generation and transformation industries) which generate large plumes of high SO(2) concentration affecting the air quality on a local to national scale where the meteorological pattern is crucial. The contribution of mineral dust from the Sahara desert through

  4. Lessons from a low-order coupled chemistry meteorology model and applications to a high-dimensional chemical transport model

    NASA Astrophysics Data System (ADS)

    Haussaire, Jean-Matthieu; Bocquet, Marc

    2016-04-01

    Atmospheric chemistry models are becoming increasingly complex, with multiphasic chemistry, size-resolved particulate matter, and possibly coupled to numerical weather prediction models. In the meantime, data assimilation methods have also become more sophisticated. Hence, it will become increasingly difficult to disentangle the merits of data assimilation schemes, of models, and of their numerical implementation in a successful high-dimensional data assimilation study. That is why we believe that the increasing variety of problems encountered in the field of atmospheric chemistry data assimilation puts forward the need for simple low-order models, albeit complex enough to capture the relevant dynamics, physics and chemistry that could impact the performance of data assimilation schemes. Following this analysis, we developped a low-order coupled chemistry meteorology model named L95-GRS [1]. The advective wind is simulated by the Lorenz-95 model, while the chemistry is made of 6 reactive species and simulates ozone concentrations. With this model, we carried out data assimilation experiments to estimate the state of the system as well as the forcing parameter of the wind and the emissions of chemical compounds. This model proved to be a powerful playground giving insights on the hardships of online and offline estimation of atmospheric pollution. Building on the results on this low-order model, we test advanced data assimilation methods on a state-of-the-art chemical transport model to check if the conclusions obtained with our low-order model still stand. References [1] Haussaire, J.-M. and Bocquet, M.: A low-order coupled chemistry meteorology model for testing online and offline data assimilation schemes, Geosci. Model Dev. Discuss., 8, 7347-7394, doi:10.5194/gmdd-8-7347-2015, 2015.

  5. The Essential Role for Laboratory Studies in Atmospheric Chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burkholder, James B.; Abbatt, Jonathan P. D.; Barnes, Ian

    Laboratory studies of atmospheric chemistry characterize the nature of atmospherically relevant processes down to the molecular level, providing fundamental information used to assess how human activities drive environmental phenomena such as climate change, urban air pollution, ecosystem health, indoor air quality, and stratospheric ozone depletion. Laboratory studies have a central role in addressing the incomplete fundamental knowledge of atmospheric chemistry. This paper highlights the evolving science needs for this community and emphasizes how our knowledge is far from complete, hindering our ability to predict the future state of our atmosphere and to respond to emerging global environmental change issues. Finally,more » laboratory studies provide rich opportunities to expand our understanding of the atmosphere via collaborative research with the modeling and field measurement communities, and with neighboring disciplines.« less

  6. Evaluation of Transport in the Lower Tropical Stratosphere in a Global Chemistry and Transport Model

    NASA Technical Reports Server (NTRS)

    Douglass, Anne R.; Schoeberl, Mark R.; Rood, Richard B.; Pawson, Steven

    2002-01-01

    A general circulation model (GCM) relies on various physical parameterizations and provides a solution to the atmospheric equations of motion. A data assimilation system (DAS) combines information from observations with a GCM forecast and produces analyzed meteorological fields that represent the observed atmospheric state. An off-line chemistry and transport model (CTM) can use winds and temperatures from a either a GCM or a DAS. The latter application is in common usage for interpretation of observations from various platforms under the assumption that the DAS transport represents the actual atmospheric transport. Here we compare the transport produced by a DAS with that produced by the particular GCM that is combined with observations to produce the analyzed fields. We focus on transport in the tropics and middle latitudes by comparing the age-of-air inferred from observations of SF6 and CO2 with the age-of-air calculated using GCM fields and DAS fields. We also compare observations of ozone, total reactive nitrogen, and methane with results from the two simulations. These comparisons show that DAS fields produce rapid upward tropical transport and excessive mixing between the tropics and middle latitudes. The unrealistic transport produced by the DAS fields may be due to implicit forcing that is required by the assimilation process when there is bias between the GCM forecast and observations that are combined to produce the analyzed fields. For example, the GCM does not produce a quasi-biennial oscillation (QBO). The QBO is present in the analyzed fields because it is present in the observations, and systematic implicit forcing is required by the DAS. Any systematic bias between observations and the GCM forecast used to produce the DAS analysis is likely to corrupt the transport produced by the analyzed fields. Evaluation of transport in the lower tropical stratosphere in a global chemistry and transport model.

  7. MIANN models in medicinal, physical and organic chemistry.

    PubMed

    González-Díaz, Humberto; Arrasate, Sonia; Sotomayor, Nuria; Lete, Esther; Munteanu, Cristian R; Pazos, Alejandro; Besada-Porto, Lina; Ruso, Juan M

    2013-01-01

    Reducing costs in terms of time, animal sacrifice, and material resources with computational methods has become a promising goal in Medicinal, Biological, Physical and Organic Chemistry. There are many computational techniques that can be used in this sense. In any case, almost all these methods focus on few fundamental aspects including: type (1) methods to quantify the molecular structure, type (2) methods to link the structure with the biological activity, and others. In particular, MARCH-INSIDE (MI), acronym for Markov Chain Invariants for Networks Simulation and Design, is a well-known method for QSAR analysis useful in step (1). In addition, the bio-inspired Artificial-Intelligence (AI) algorithms called Artificial Neural Networks (ANNs) are among the most powerful type (2) methods. We can combine MI with ANNs in order to seek QSAR models, a strategy which is called herein MIANN (MI & ANN models). One of the first applications of the MIANN strategy was in the development of new QSAR models for drug discovery. MIANN strategy has been expanded to the QSAR study of proteins, protein-drug interactions, and protein-protein interaction networks. In this paper, we review for the first time many interesting aspects of the MIANN strategy including theoretical basis, implementation in web servers, and examples of applications in Medicinal and Biological chemistry. We also report new applications of the MIANN strategy in Medicinal chemistry and the first examples in Physical and Organic Chemistry, as well. In so doing, we developed new MIANN models for several self-assembly physicochemical properties of surfactants and large reaction networks in organic synthesis. In some of the new examples we also present experimental results which were not published up to date.

  8. Effects of Chemistry on Blunt-Body Wake Structure

    NASA Technical Reports Server (NTRS)

    Dogra, Virendra K.; Moss, James N.; Wilmoth, Richard G.; Taylor, Jeff C.; Hassan, H. A.

    1995-01-01

    Results of a numerical study are presented for hypersonic low-density flow about a 70-deg blunt cone using direct simulation Monte Carlo (DSMC) and Navier-Stokes calculations. Particular emphasis is given to the effects of chemistry on the near-wake structure and on the surface quantities and the comparison of the DSMC results with the Navier-Stokes calculations. The flow conditions simulated are those experienced by a space vehicle at an altitude of 85 km and a velocity of 7 km/s during Earth entry. A steady vortex forms in the near wake for these freestream conditions for both chemically reactive and nonreactive air gas models. The size (axial length) of the vortex for the reactive air calculations is 25% larger than that of the nonreactive air calculations. The forebody surface quantities are less sensitive to the chemistry than the base surface quantities. The presence of the afterbody has no effect on the forebody flow structure or the surface quantities. The comparisons of DSMC and Navier-Stokes calculations show good agreement for the wake structure and the forebody surface quantities.

  9. GROUNDWATER MASS TRANSPORT AND EQUILIBRIUM CHEMISTRY MODEL FOR MULTICOMPONENT SYSTEMS

    EPA Science Inventory

    A mass transport model, TRANQL, for a multicomponent solution system has been developed. The equilibrium interaction chemistry is posed independently of the mass transport equations which leads to a set of algebraic equations for the chemistry coupled to a set of differential equ...

  10. Students' use of atomic and molecular models in learning chemistry

    NASA Astrophysics Data System (ADS)

    O'Connor, Eileen Ann

    1997-09-01

    The objective of this study was to investigate the development of introductory college chemistry students' use of atomic and molecular models to explain physical and chemical phenomena. The study was conducted during the first semester of the course at a University and College II. Public institution (Carnegie Commission of Higher Education, 1973). Students' use of models was observed during one-on-one interviews conducted over the course of the semester. The approach to introductory chemistry emphasized models. Students were exposed to over two-hundred and fifty atomic and molecular models during lectures, were assigned text readings that used over a thousand models, and worked interactively with dozens of models on the computer. These models illustrated various features of the spatial organization of valence electrons and nuclei in atoms and molecules. Despite extensive exposure to models in lectures, in textbook, and in computer-based activities, the students in the study based their explanation in large part on a simple Bohr model (electrons arranged in concentric circles around the nuclei)--a model that had not been introduced in the course. Students used visual information from their models to construct their explanation, while overlooking inter-atomic and intra-molecular forces which are not represented explicitly in the models. In addition, students often explained phenomena by adding separate information about the topic without either integrating or logically relating this information into a cohesive explanation. The results of the study demonstrate that despite the extensive use of models in chemistry instruction, students do not necessarily apply them appropriately in explaining chemical and physical phenomena. The results of this study suggest that for the power of models as aids to learning to be more fully realized, chemistry professors must give more attention to the selection, use, integration, and limitations of models in their instruction.

  11. Coupling Processes between Atmospheric Chemistry and Climate

    NASA Technical Reports Server (NTRS)

    Ko, Malcolm K. W.; Weisenstein, Debra K.; Shia, Run-Lie; Scott, Courtney J.; Sze, Nien Dak

    1998-01-01

    This is the fourth semi-annual report for NAS5-97039, covering the time period July through December 1998. The overall objective of this project is to improve the understanding of coupling processes between atmospheric chemistry and climate. Model predictions of the future distributions of trace gases in the atmosphere constitute an important component of the input necessary for quantitative assessments of global change. We will concentrate on the changes in ozone and stratospheric sulfate aerosol, with emphasis on how ozone in the lower stratosphere would respond to natural or anthropogenic changes. The key modeling tools for this work are the Atmospheric and Environmental Research (AER) two-dimensional chemistry-transport model, the AER two-dimensional stratospheric sulfate model, and the AER three-wave interactive model with full chemistry. For this six month period, we report on a modeling study of new rate constant which modify the NOx/NOy ratio in the lower stratosphere; sensitivity to changes in stratospheric water vapor in the future atmosphere; a study of N2O and CH4 observations which has allowed us to adjust diffusion in the 2-D CTM in order to obtain appropriate polar vortex isolation; a study of SF6 and age of air with comparisons of models and measurements; and a report on the Models and Measurements II effort.

  12. What Air Quality Models Tell Us About Sources and Sinks of Atmospheric Aldehydes

    NASA Astrophysics Data System (ADS)

    Luecken, D.; Hutzell, W. T.; Phillips, S.

    2010-12-01

    Atmospheric aldehydes play important roles in several aspects of air quality: they are critical radical sources that drive ozone formation, they are hazardous air pollutants that are national drivers for cancer risk, they participate in aqueous chemistry and potentially aerosol formation, and are key species for evaluating the accuracy of isoprene emissions. For these reasons, it is important to accurately understand their sources and sinks, and the sensitivity of their concentrations to emission controls. While both compounds have been included in air quality modeling for many years, current, state-of-the-science chemical mechanisms have difficulty reproducing measured values of aldehydes, which calls into question the robustness of ozone, HAPs and aerosol predictions. In the past, we have attributed discrepancies to measurement errors, inventory errors, or the focus on high-NOx urban regimes. Despite improvements in all of these areas, the measurements still diverge from model predictions, with formaldehyde often underpredicted by 50% and acetaldehyde showing a large degree of scatter - from 20% overprediction to 50% underprediction. To better examine the sources of aldehydes, we implemented the new SAPRC07T mechanism in the Community Multi-Scale Air Quality (CMAQ) model. This mechanism incorporates current recommendations for kinetic data and has the most detailed representation of product formation under a wide variety of conditions of any mechanism used in regional air quality models. We use model simulations to pinpoint where and when aldehyde concentrations tend to deviate from measurements. We demonstrate the role of secondary production versus primary emissions in aldehdye concentrations and find that secondary sources produce the largest deviations from measurements. We identify which VOCs are most responsible for aldehyde secondary production in the areas of the U.S. where the largest health effects are seen, and discuss how this affects consideration of

  13. Modeling the chemistry of plasma polymerization using mass spectrometry.

    PubMed

    Ihrig, D F; Stockhaus, J; Scheide, F; Winkelhake, Oliver; Streuber, Oliver

    2003-04-01

    The goal of the project is a solvent free painting shop. The environmental technologies laboratory is developing processes of plasma etching and polymerization. Polymerized thin films are first-order corrosion protection and primer for painting. Using pure acetylene we get very nice thin films which were not bonded very well. By using air as bulk gas it is possible to polymerize, in an acetylene plasma, well bonded thin films which are stable first-order corrosion protections and good primers. UV/Vis spectroscopy shows nitrogen oxide radicals in the emission spectra of pure nitrogen and air. But nitrogen oxide is fully suppressed in the presence of acetylene. IR spectroscopy shows only C=O, CH(2) and CH(3) groups but no nitrogen species. With the aid of UV/Vis spectra and the chemistry of ozone formation it is possible to define reactive traps and steps, molecule depletion and processes of proton scavenging and proton loss. Using a numerical model it is possible to evaluate these processes and to calculate theoretical mass spectra. Adjustment of theoretical mass spectra to real measurements leads to specific channels of polymerization which are driven by radicals especially the acetyl radical. The estimated theoretical mass spectra show the specific channels of these chemical processes. It is possible to quantify these channels. This quantification represents the mass flow through this chemical system. With respect to these chemical processes it is possible to have an idea of pollutant production processes.

  14. Uncertainty characterization and quantification in air pollution models. Application to the CHIMERE model

    NASA Astrophysics Data System (ADS)

    Debry, Edouard; Mallet, Vivien; Garaud, Damien; Malherbe, Laure; Bessagnet, Bertrand; Rouïl, Laurence

    2010-05-01

    . Sportisse (2006), Uncertainty in a chemistry-transport model due to physical parameterizations and numerical approximations: An ensemble approach applied to ozone modeling, J. Geophys. Res., 111, D01302, doi:10.1029/2005JD006149. (5) Romanowicz, R. and Higson, H. and Teasdale, I. Bayesian uncertainty estimation methodology applied to air pollution modelling, Environmetrics, 2000, 11, 351-371.

  15. Modeling the Explicit Chemistry of Anthropogenic and Biogenic Organic Aerosols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madronich, Sasha

    2015-12-09

    The atmospheric burden of Secondary Organic Aerosols (SOA) remains one of the most important yet uncertain aspects of the radiative forcing of climate. This grant focused on improving our quantitative understanding of SOA formation and evolution, by developing, applying, and improving a highly detailed model of atmospheric organic chemistry, the Generation of Explicit Chemistry and Kinetics of Organics in the Atmosphere (GECKO-A) model. Eleven (11) publications have resulted from this grant.

  16. Chemistry and kinetics of the pyrophoric plutonium hydride-air reaction

    DOE PAGES

    Haschke, John M.; Dinh, Long N.

    2016-12-18

    The chemistry and kinetics of the pyrophoric reaction of the plutonium hydride solid solution (PuH x, 1.9 ≤ x ≤ 3) are derived from pressure-time and gas analysis data obtained after exposure of PuH 2.7 to air in a closed system. The reaction is described in this paper by two sequential steps that result in reaction of all O 2, partial reaction of N 2, and formation of H 2. Hydrogen formed by indiscriminate reaction of N 2 and O 2 at their 3.71:1 M ratio in air during the initial step is accommodated as PuH 3 inside a productmore » layer of Pu 2O 3 and PuN. H 2 is formed by reaction of O 2 and partial reaction of N 2 with PuH 3 during the second step. Both steps of reaction are described by general equations for all values of x. The rate of the first step is proportional to the square of the O 2 pressure, but independent of temperature, x, and N 2 pressure. The second step is a factor of ten slower than step one with its rate controlled by diffusion of O 2 through a boundary layer of product H 2 and unreacted N 2. Finally, rates and enthalpies of reaction are presented and anticipated effects of reactant configuration on the heat flux are discussed.« less

  17. Indoor Air Quality in Chemistry Laboratories.

    ERIC Educational Resources Information Center

    Hays, Steve M.

    This paper presents air quality and ventilation data from an existing chemical laboratory facility and discusses the work practice changes implemented in response to deficiencies in ventilation. General methods for improving air quality in existing laboratories are presented and investigation techniques for characterizing air quality are…

  18. Modelling the emissions from ships in ports and their impact on air quality in the metropolitan area of Hamburg

    NASA Astrophysics Data System (ADS)

    Ramacher, Martin; Karl, Matthias; Aulinger, Armin; Bieser, Johannes; Matthias, Volker; Quante, Markus

    2016-04-01

    Exhaust emissions from shipping contribute significantly to the anthropogenic burden of air pollutants such as nitrogen oxides (NOX) and particulate matter (PM). Ships emit not only when sailing on open sea, but also when approaching harbors, during port manoeuvers and at berth to produce electricity and heat for the ship's operations. This affects the population of harbor cities because long-term exposure to PM and NOX has significant effects on human health. The European Union has therefore has set air quality standards for air pollutants. Many port cities have problems meeting these standards. The port of Hamburg with around 10.000 ship calls per year is Germany's largest seaport and Europe's second largest container port. Air quality standard reporting in Hamburg has revealed problems in meeting limits for NO2 and PM10. The amount and contribution of port related ship emissions (38% for NOx and 17% for PM10) to the overall emissions in the metropolitan area in 2005 [BSU Hamburg (2012): Luftreinhalteplan für Hamburg. 1. Fortschreibung 2012] has been modelled with a bottom up approach by using statistical data of ship activities in the harbor, technical vessel information and specific emission algorithms [GAUSS (2008): Quantifizierung von gasförmigen Emissionen durch Maschinenanlagen der Seeschiffart an der deutschen Küste]. However, knowledge about the spatial distribution of the harbor ship emissions over the city area is crucial when it comes to air quality standards and policy decisions to protect human health. Hence, this model study examines the spatial distribution of harbor ship emissions (NOX, PM10) and their deposition in the Hamburg metropolitan area. The transport and chemical transformation of atmospheric pollutants is calculated with the well-established chemistry transport model TAPM (The Air Pollution Model). TAPM is a three-dimensional coupled prognostic meteorological and air pollution model with a condensed chemistry scheme including

  19. Modelling Hot Air Balloons.

    ERIC Educational Resources Information Center

    Brimicombe, M. W.

    1991-01-01

    A macroscopic way of modeling hot air balloons using a Newtonian approach is presented. Misleading examples using a car tire and the concept of hot air rising are discussed. Pressure gradient changes in the atmosphere are used to explain how hot air balloons work. (KR)

  20. Fundamental Mechanisms, Predictive Modeling, and Novel Aerospace Applications of Plasma Assisted Combustion. Overview of OSU Research Plan

    DTIC Science & Technology

    2009-11-04

    air, low-temperature plasma chemistry kinetic model Nonequilibrium Thermodynamics Laboratories The Ohio State University • Air plasma model...problems require separate analysis: • Nsec pulse plasma / sheath models cannot incorporate detailed reactive plasma chemistry : too many species ( 100...and reactions ( 1 000)~ ~ , • Detailed plasma chemistry models (quasi-neutral) cannot incorporate repetitive, nsec time scale sheath dynamics and plasma

  1. Guided-Inquiry Experiments for Physical Chemistry: The POGIL-PCL Model

    ERIC Educational Resources Information Center

    Hunnicutt, Sally S.; Grushow, Alexander; Whitnell, Robert

    2015-01-01

    The POGIL-PCL project implements the principles of process-oriented, guided-inquiry learning (POGIL) in order to improve student learning in the physical chemistry laboratory (PCL) course. The inquiry-based physical chemistry experiments being developed emphasize modeling of chemical phenomena. In each experiment, students work through at least…

  2. A framework for expanding aqueous chemistry in the ...

    EPA Pesticide Factsheets

    This paper describes the development and implementation of an extendable aqueous-phase chemistry option (AQCHEM − KMT(I)) for the Community Multiscale Air Quality (CMAQ) modeling system, version 5.1. Here, the Kinetic PreProcessor (KPP), version 2.2.3, is used to generate a Rosenbrock solver (Rodas3) to integrate the stiff system of ordinary differential equations (ODEs) that describe the mass transfer, chemical kinetics, and scavenging processes of CMAQ clouds. CMAQ's standard cloud chemistry module (AQCHEM) is structurally limited to the treatment of a simple chemical mechanism. This work advances our ability to test and implement more sophisticated aqueous chemical mechanisms in CMAQ and further investigate the impacts of microphysical parameters on cloud chemistry. Box model cloud chemistry simulations were performed to choose efficient solver and tolerance settings, evaluate the implementation of the KPP solver, and assess the direct impacts of alternative solver and kinetic mass transfer on predicted concentrations for a range of scenarios. Month-long CMAQ simulations for winter and summer periods over the US reveal the changes in model predictions due to these cloud module updates within the full chemical transport model. While monthly average CMAQ predictions are not drastically altered between AQCHEM and AQCHEM − KMT, hourly concentration differences can be significant. With added in-cloud secondary organic aerosol (SOA) formation from bio

  3. TESTING PHYSICS AND CHEMISTRY SENSITIVITIES IN THE U.S. EPA COMMUNITY MULTISCALE AIR QUALITY MODELING SYSTEM (CMAQ)

    EPA Science Inventory

    Uncertainties in key elements of emissions and meteorology inputs to air quality models (AQMs) can range from 50 to 100% with some areas of emissions uncertainty even higher (Russell and Dennis, 2000). Uncertainties in the chemical mechanisms are thought to be smaller (Russell an...

  4. Study of Regional Downscaled Climate and Air Quality in the United States

    NASA Astrophysics Data System (ADS)

    Gao, Y.; Fu, J. S.; Drake, J.; Lamarque, J.; Lam, Y.; Huang, K.

    2011-12-01

    Due to the increasing anthropogenic greenhouse gas emissions, the global and regional climate patterns have significantly changed. Climate change has exerted strong impact on ecosystem, air quality and human life. The global model Community Earth System Model (CESM v1.0) was used to predict future climate and chemistry under projected emission scenarios. Two new emission scenarios, Representative Community Pathways (RCP) 4.5 and RCP 8.5, were used in this study for climate and chemistry simulations. The projected global mean temperature will increase 1.2 and 1.7 degree Celcius for the RCP 4.5 and RCP 8.5 scenarios in 2050s, respectively. In order to take advantage of local detailed topography, land use data and conduct local climate impact on air quality, we downscaled CESM outputs to 4 km by 4 km Eastern US domain using Weather Research and Forecasting (WRF) Model and Community Multi-scale Air Quality modeling system (CMAQ). The evaluations between regional model outputs and global model outputs, regional model outputs and observational data were conducted to verify the downscaled methodology. Future climate change and air quality impact were also examined on a 4 km by 4 km high resolution scale.

  5. Modeling of Trans-boundary Transport of Air Pollutants in the California-Mexico Border Region during Cal-Mex 2010

    NASA Astrophysics Data System (ADS)

    Bei, N.; Zavala, M. A.; Lei, W.; Li, G.; Molina, L. T.

    2010-12-01

    The US and Mexico share a common air basin along the ~200 km border between California and Baja California. The economical activities in this region are heavily influenced by the international trade and commerce between Mexico and the US that mainly occurs through the borders of the sister cities of San Diego-Tijuana and Calexico-Mexicali. The diversity and differences in the characteristics of emissions sources of air pollutants in the California-Mexico border region make this an important area for the study of the chemistry and trans-boundary transport of air pollutants. During May-June of 2010, the Cal-Mex 2010 field campaign included a series of measurements aimed at characterizing the emissions from major sources in the California-Mexico border region and assessing the possible impacts of these emissions on local and regional air quality. In this work we will present the results of the use of the Comprehensive Air quality model with extensions (CAMx) in a modeling domain that includes the sister cities of San Diego-Tijuana and Calexico-Mexicali for studying events of trans-boundary transport of air pollutants during Cal-Mex 2010. The measurements obtained during the Cal-Mex 2010 field campaign are used in the evaluation of the model performance and in the design of air quality improvement policies in the California-Mexico border region.

  6. New framework for extending cloud chemistry in the Community Multiscale Air Quality (CMAQ) modeling

    EPA Science Inventory

    Clouds and fogs significantly impact the amount, composition, and spatial distribution of gas and particulate atmospheric species, not least of which through the chemistry that occurs in cloud droplets. Atmospheric sulfate is an important component of fine aerosol mass and in an...

  7. The Australian methane budget: Interpreting surface and train-borne measurements using a chemistry transport model

    NASA Astrophysics Data System (ADS)

    Fraser, Annemarie; Chan Miller, Christopher; Palmer, Paul I.; Deutscher, Nicholas M.; Jones, Nicholas B.; Griffith, David W. T.

    2011-10-01

    We investigate the Australian methane budget from 2005-2008 using the GEOS-Chem 3D chemistry transport model, focusing on the relative contribution of emissions from different sectors and the influence of long-range transport. To evaluate the model, we use in situ surface measurements of methane, methane dry air column average (XCH4) from ground-based Fourier transform spectrometers (FTSs), and train-borne surface concentration measurements from an in situ FTS along the north-south continental transect. We use gravity anomaly data from Gravity Recovery and Climate Experiment to describe the spatial and temporal distribution of wetland emissions and scale it to a prior emission estimate, which better describes observed atmospheric methane variability at tropical latitudes. The clean air sites of Cape Ferguson and Cape Grim are the least affected by local emissions, while Wollongong, located in the populated southeast with regional coal mining, samples the most locally polluted air masses (2.5% of the total air mass versus <1% at other sites). Averaged annually, the largest single source above background of methane at Darwin is long-range transport, mainly from Southeast Asia, accounting for ˜25% of the change in surface concentration above background. At Cape Ferguson and Cape Grim, emissions from ruminant animals are the largest source of methane above background, at approximately 20% and 30%, respectively, of the surface concentration. At Wollongong, emissions from coal mining are the largest source above background representing 60% of the surface concentration. The train data provide an effective way of observing transitions between urban, desert, and tropical landscapes.

  8. The Met Office HadGEM3-ES chemistry-climate model: evaluation of stratospheric dynamics and its impact on ozone

    NASA Astrophysics Data System (ADS)

    Hardiman, Steven C.; Butchart, Neal; O'Connor, Fiona M.; Rumbold, Steven T.

    2017-03-01

    Free-running and nudged versions of a Met Office chemistry-climate model are evaluated and used to investigate the impact of dynamics versus transport and chemistry within the model on the simulated evolution of stratospheric ozone. Metrics of the dynamical processes relevant for simulating stratospheric ozone are calculated, and the free-running model is found to outperform the previous model version in 10 of the 14 metrics. In particular, large biases in stratospheric transport and tropical tropopause temperature, which existed in the previous model version, are substantially reduced, making the current model more suitable for the simulation of stratospheric ozone. The spatial structure of the ozone hole, the area of polar stratospheric clouds, and the increased ozone concentrations in the Northern Hemisphere winter stratosphere following sudden stratospheric warmings, were all found to be sensitive to the accuracy of the dynamics and were better simulated in the nudged model than in the free-running model. Whilst nudging can, in general, provide a useful tool for removing the influence of dynamical biases from the evolution of chemical fields, this study shows that issues can remain in the climatology of nudged models. Significant biases in stratospheric vertical velocities, age of air, water vapour, and total column ozone still exist in the Met Office nudged model. Further, these can lead to biases in the downward flux of ozone into the troposphere.

  9. Air quality modelling in the summer over the eastern Mediterranean using WRF-Chem: chemistry and aerosol mechanism intercomparison

    NASA Astrophysics Data System (ADS)

    Georgiou, George K.; Christoudias, Theodoros; Proestos, Yiannis; Kushta, Jonilda; Hadjinicolaou, Panos; Lelieveld, Jos

    2018-02-01

    We employ the WRF-Chem model to study summertime air pollution, the intense photochemical activity and their impact on air quality over the eastern Mediterranean. We utilize three nested domains with horizontal resolutions of 80, 16 and 4 km, with the finest grid focusing on the island of Cyprus, where the CYPHEX campaign took place in July 2014. Anthropogenic emissions are based on the EDGAR HTAP global emission inventory, while dust and biogenic emissions are calculated online. Three simulations utilizing the CBMZ-MOSAIC, MOZART-MOSAIC, and RADM2-MADE/SORGAM gas-phase and aerosol mechanisms are performed. The results are compared with measurements from a dense observational network of 14 ground stations in Cyprus. The model simulates T2 m, Psurf, and WD10 m accurately, with minor differences in WS10 m between model and observations at coastal and mountainous stations attributed to limitations in the representation of the complex topography in the model. It is shown that the south-eastern part of Cyprus is mostly affected by emissions from within the island, under the dominant (60 %) westerly flow during summertime. Clean maritime air from the Mediterranean can reduce concentrations of local air pollutants over the region during westerlies. Ozone concentrations are overestimated by all three mechanisms (9 % ≤ NMB ≤ 23 %) with the smaller mean bias (4.25 ppbV) obtained by the RADM2-MADE/SORGAM mechanism. Differences in ozone concentrations can be attributed to the VOC treatment by the three mechanisms. The diurnal variability of pollution and ozone precursors is not captured (hourly correlation coefficients for O3 ≤ 0.29). This might be attributed to the underestimation of NOx concentrations by local emissions by up to 50 %. For the fine particulate matter (PM2.5), the lowest mean bias (9 µg m-3) is obtained with the RADM2-MADE/SORGAM mechanism, with overestimates in sulfate and ammonium aerosols. Overestimation of sulfate aerosols by this mechanism may be

  10. Analysis of chemistry textbook content and national science education standards in terms of air quality-related learning goals

    NASA Astrophysics Data System (ADS)

    Naughton, Wendy

    In this study's Phase One, representatives of nine municipal agencies involved in air quality education were interviewed and interview transcripts were analyzed for themes related to what citizens need to know or be able to do regarding air quality concerns. Based on these themes, eight air quality Learning Goal Sets were generated and validated via peer and member checks. In Phase Two, six college-level, liberal-arts chemistry textbooks and the National Science Education Standards (NSES) were analyzed for congruence with Phase One learning goals. Major categories of desired citizen understandings highlighted in agency interviews concerned air pollution sources, impact, detection, and transport. Identified cognitive skills focused on information-gathering and -evaluating skills, enabling informed decision-making. A content match was found between textbooks and air quality learning goals, but most textbooks fail to address learning goals that remediate citizen misconceptions and inabilities---particularly those with a "personal experience" focus. A partial match between NSES and air quality learning goals was attributed to differing foci: Researcher-derived learning goals deal specifically with air quality, while NSES focus is on "fundamental science concepts," not "many science topics." Analysis of findings within a situated cognition framework suggests implications for instruction and NSES revision.

  11. Effects of `Environmental Chemistry' Elective Course Via Technology-Embedded Scientific Inquiry Model on Some Variables

    NASA Astrophysics Data System (ADS)

    Çalik, Muammer; Özsevgeç, Tuncay; Ebenezer, Jazlin; Artun, Hüseyin; Küçük, Zeynel

    2014-06-01

    The purpose of this study is to examine the effects of `environmental chemistry' elective course via Technology-Embedded Scientific Inquiry (TESI) model on senior science student teachers' (SSSTs) conceptions of environmental chemistry concepts/issues, attitudes toward chemistry, and technological pedagogical content knowledge (TPACK) levels. Within one group pre-test-post-test design, the study was conducted with 117 SSSTs (68 females and 49 males—aged 21-23 years) enrolled in an `environmental chemistry' elective course in the spring semester of 2011-2012 academic-years. Instruments for data collection comprised of Environmental Chemistry Conceptual Understanding Questionnaire, TPACK survey, and Chemistry Attitudes and Experiences Questionnaire. Significant increases in the SSSTs' conceptions of environmental chemistry concepts/issues, attitudes toward chemistry, and TPACK levels are attributed to the SSSTs learning how to use the innovative technologies in the contexts of the `environmental chemistry' elective course and teaching practicum. The study implies that the TESI model may serve a useful purpose in experimental science courses that use the innovative technologies. However, to generalize feasibility of the TESI model, it should be evaluated with SSSTs in diverse learning contexts.

  12. The GEOS Chemistry Climate Model: Comparisons to Satellite Data

    NASA Technical Reports Server (NTRS)

    Stolarski, Richard S.; Douglass, Anne R.

    2008-01-01

    The Goddard Earth Observing System Chemistry Climate Model (GEOS CCM) has been developed by combining the atmospheric chemistry and transport modules developed over the years at Goddard and the GEOS general circulation model, also developed at Goddard. We will compare model simulations of ozone, and the minor constituents that affect ozone, for the period around 1980 with newly released revised data from the Limb Infrared Monitor of the Stratosphere (LIMS) instrument on Nimbus 4. We will also compare model simulations for the period of the early 2000s with the data from the Microwave Limb Sounder (MLS) and the High Resolution Dynamic Limb Sounder (HRDLS) on the Aura satellite. We will use these comparisons to examine the performance of the model for the present atmosphere and for the change that has occurred during the last 2 decades of ozone loss due to chlorine and bromine compounds released from chlorofluorocarbons and halons.

  13. Utility of NCEP Operational and Emerging Meteorological Models for Driving Air Quality Prediction

    NASA Astrophysics Data System (ADS)

    McQueen, J.; Huang, J.; Huang, H. C.; Shafran, P.; Lee, P.; Pan, L.; Sleinkofer, A. M.; Stajner, I.; Upadhayay, S.; Tallapragada, V.

    2017-12-01

    Operational air quality predictions for the United States (U. S.) are provided at NOAA by the National Air Quality Forecasting Capability (NAQFC). NAQFC provides nationwide operational predictions of ozone and particulate matter twice per day (at 06 and 12 UTC cycles) at 12 km resolution and 1 hour time intervals through 48 hours and distributed at http://airquality.weather.gov. The NOAA National Centers for Environmental Prediction (NCEP) operational North American Mesoscale (NAM) 12 km weather prediction is used to drive the Community Multiscale Air Quality (CMAQ) model. In 2017, the NAM was upgraded in part to reduce a warm 2m temperature bias in Summer (V4). At the same time CMAQ was updated to V5.0.2. Both versions of the models were run in parallel for several months. Therefore the impact of improvements from the atmospheric chemistry model versus upgrades with the weather prediction model could be assessed. . Improvements to CMAQ were related to improvements to improvements in NAM 2 m temperature bias through increasing the opacity of clouds and reducing downward shortwave radiation resulted in reduced ozone photolysis. Higher resolution operational NWP models have recently been introduced as part of the NCEP modeling suite. These include the NAM CONUS Nest (3 km horizontal resolution) run four times per day through 60 hours and the High Resolution Rapid Refresh (HRRR, 3 km) run hourly out to 18 hours. In addition, NCEP with other NOAA labs has begun to develop and test the Next Generation Global Prediction System (NGGPS) based on the FV3 global model. This presentation also overviews recent developments with operational numerical weather prediction and evaluates the ability of these models for predicting low level temperatures, clouds and capturing boundary layer processes important for driving air quality prediction in complex terrain. The assessed meteorological model errors could help determine the magnitude of possible pollutant errors from CMAQ if used

  14. Air-Quality and Climate Coupling in High Resolution for Urban Heat Island Study

    NASA Astrophysics Data System (ADS)

    Halenka, T.; Huszar, P.; Belda, M.

    2012-04-01

    Recent studies show considerable effect of atmospheric chemistry and aerosols on climate on regional and local scale. For the purpose of qualifying and quantifying the magnitude of climate forcing due to atmospheric chemistry/aerosols on regional scale and climate change effects on air-quality the regional climate model RegCM and chemistry/aerosol model CAMx was coupled. Climate change impacts on air-quality have been studied in high resolution of 10km with interactive two-way coupling of the effects of air-quality on climate. The experiments with the couple were performed for EC FP7 project MEGAPOLI assessing the impact of the megacities and industrialized areas on climate. New experiments in high resolution are prepared andsimulated for Urban Heat Island studies within the OP Central Europe Project UHI. Meteorological fields generated by RCM drive CAMx transport, chemistry and a dry/wet deposition. A preprocessor utility was developed for transforming RegCM provided fields to CAMx input fields and format. There is critical issue of the emission inventories available for 10km resolution including the urban hot-spots, TNO emissions are adopted for the experiments. Sensitivity tests switching on/off urban areas emissions are analysed as well. The results for year 2005 are presented and discussed, interactive coupling is compared to study the potential of possible impact of urban air-pollution to the urban area climate.

  15. Simulation of Aerosols and Chemistry with a Unified Global Model

    NASA Technical Reports Server (NTRS)

    Chin, Mian

    2004-01-01

    This project is to continue the development of the global simulation capabilities of tropospheric and stratospheric chemistry and aerosols in a unified global model. This is a part of our overall investigation of aerosol-chemistry-climate interaction. In the past year, we have enabled the tropospheric chemistry simulations based on the GEOS-CHEM model, and added stratospheric chemical reactions into the GEOS-CHEM such that a globally unified troposphere-stratosphere chemistry and transport can be simulated consistently without any simplifications. The tropospheric chemical mechanism in the GEOS-CHEM includes 80 species and 150 reactions. 24 tracers are transported, including O3, NOx, total nitrogen (NOy), H2O2, CO, and several types of hydrocarbon. The chemical solver used in the GEOS-CHEM model is a highly accurate sparse-matrix vectorized Gear solver (SMVGEAR). The stratospheric chemical mechanism includes an additional approximately 100 reactions and photolysis processes. Because of the large number of total chemical reactions and photolysis processes and very different photochemical regimes involved in the unified simulation, the model demands significant computer resources that are currently not practical. Therefore, several improvements will be taken, such as massive parallelization, code optimization, or selecting a faster solver. We have also continued aerosol simulation (including sulfate, dust, black carbon, organic carbon, and sea-salt) in the global model to cover most of year 2002. These results have been made available to many groups worldwide and accessible from the website http://code916.gsfc.nasa.gov/People/Chin/aot.html.

  16. Impact of two chemistry mechanisms fully coupled with mesoscale model on the atmospheric pollutants distribution

    NASA Astrophysics Data System (ADS)

    Arteta, J.; Cautenet, S.; Taghavi, M.; Audiffren, N.

    Air quality models (AQM) consist of many modules (meteorology, emission, chemistry, deposition), and in some conditions such as: vicinity of clouds or aerosols plumes, complex local circulations (mountains, sea breezes), fully coupled models (online method) are necessary. In order to study the impact of lumped chemical mechanisms in AQM simulations, we examine the ability of both different chemical mechanisms: (i) simplified: Condensed Version of the MOdèle de Chimie Atmosphérique 2.2 (CV-MOCA2.2), and (ii) reference: Regional Atmospheric Chemistry Model (RACM), which are coupled online with the Regional Atmospheric Modeling Systems (RAMS) model, on the distribution of pollutants. During the ESCOMPTE experiment (Expérience sur Site pour COntraindre les Modèles de Pollution et de Transport d'Emissions) conducted over Southern France (including urban and industrial zones), Intensive observation periods (IOP) characterized by various meteorological and mixed chemical conditions are simulated. For both configurations of modeling, numerical results are compared with surface measurements (75 stations) for primary (NO x) and secondary (O 3) species. We point out the impact of the two different chemical mechanisms on the production of species involved in the oxidizing capacity such as ozone and radicals within urban and industrial areas. We highlight that both chemical mechanisms produce very similar results for the main pollutants (NO x and O 3) in three-dimensional (3D) distribution, despite large discrepancies in 0D modeling. For ozone concentration, we found sometimes small differences (5-10 ppb) between the mechanisms under study according to the cases (polluted or not). The relative difference between the two mechanisms over the whole domain is only -7% for ozone from CV-MOCA 2.2 versus RACM. When the order of magnitude is needed rather than an accurate estimate, a reduced mechanism is satisfactory. It has the advantage of running faster (four times less than CPU

  17. A review of air exchange rate models for air pollution exposure assessments.

    PubMed

    Breen, Michael S; Schultz, Bradley D; Sohn, Michael D; Long, Thomas; Langstaff, John; Williams, Ronald; Isaacs, Kristin; Meng, Qing Yu; Stallings, Casson; Smith, Luther

    2014-11-01

    A critical aspect of air pollution exposure assessments is estimation of the air exchange rate (AER) for various buildings where people spend their time. The AER, which is the rate of exchange of indoor air with outdoor air, is an important determinant for entry of outdoor air pollutants and for removal of indoor-emitted air pollutants. This paper presents an overview and critical analysis of the scientific literature on empirical and physically based AER models for residential and commercial buildings; the models highlighted here are feasible for exposure assessments as extensive inputs are not required. Models are included for the three types of airflows that can occur across building envelopes: leakage, natural ventilation, and mechanical ventilation. Guidance is provided to select the preferable AER model based on available data, desired temporal resolution, types of airflows, and types of buildings included in the exposure assessment. For exposure assessments with some limited building leakage or AER measurements, strategies are described to reduce AER model uncertainty. This review will facilitate the selection of AER models in support of air pollution exposure assessments.

  18. Algebraic Turbulence-Chemistry Interaction Model

    NASA Technical Reports Server (NTRS)

    Norris, Andrew T.

    2012-01-01

    The results of a series of Perfectly Stirred Reactor (PSR) and Partially Stirred Reactor (PaSR) simulations are compared to each other over a wide range of operating conditions. It is found that the PaSR results can be simulated by a PSR solution with just an adjusted chemical reaction rate. A simple expression has been developed that gives the required change in reaction rate for a PSR solution to simulate the PaSR results. This expression is the basis of a simple turbulence-chemistry interaction model. The interaction model that has been developed is intended for use with simple one-step global reaction mechanisms and for steady-state flow simulations. Due to the simplicity of the model there is very little additional computational cost in adding it to existing CFD codes.

  19. Multi-scale modeling of urban air pollution: development and application of a Street-in-Grid model (v1.0) by coupling MUNICH (v1.0) and Polair3D (v1.8.1)

    NASA Astrophysics Data System (ADS)

    Kim, Youngseob; Wu, You; Seigneur, Christian; Roustan, Yelva

    2018-02-01

    A new multi-scale model of urban air pollution is presented. This model combines a chemistry-transport model (CTM) that includes a comprehensive treatment of atmospheric chemistry and transport on spatial scales down to 1 km and a street-network model that describes the atmospheric concentrations of pollutants in an urban street network. The street-network model is the Model of Urban Network of Intersecting Canyons and Highways (MUNICH), which consists of two main components: a street-canyon component and a street-intersection component. MUNICH is coupled to the Polair3D CTM of the Polyphemus air quality modeling platform to constitute the Street-in-Grid (SinG) model. MUNICH is used to simulate the concentrations of the chemical species in the urban canopy, which is located in the lowest layer of Polair3D, and the simulation of pollutant concentrations above rooftops is performed with Polair3D. Interactions between MUNICH and Polair3D occur at roof level and depend on a vertical mass transfer coefficient that is a function of atmospheric turbulence. SinG is used to simulate the concentrations of nitrogen oxides (NOx) and ozone (O3) in a Paris suburb. Simulated concentrations are compared to NOx concentrations measured at two monitoring stations within a street canyon. SinG shows better performance than MUNICH for nitrogen dioxide (NO2) concentrations. However, both SinG and MUNICH underestimate NOx. For the case study considered, the model performance for NOx concentrations is not sensitive to using a complex chemistry model in MUNICH and the Leighton NO-NO2-O3 set of reactions is sufficient.

  20. Nonequilibrium radiation and chemistry models for aerocapture vehicle flowfields

    NASA Technical Reports Server (NTRS)

    Carlson, Leland A.

    1990-01-01

    The continued development and improvement of the viscous shock layer (VSL) nonequilibrium chemistry blunt body engineering code, the incorporation in a coupled manner of radiation models into the VSL code, and the initial development of appropriate precursor models are presented.

  1. [Global Atmospheric Chemistry/Transport Modeling and Data-Analysis

    NASA Technical Reports Server (NTRS)

    Prinn, Ronald G.

    1999-01-01

    This grant supported a global atmospheric chemistry/transport modeling and data- analysis project devoted to: (a) development, testing, and refining of inverse methods for determining regional and global transient source and sink strengths for trace gases; (b) utilization of these inverse methods which use either the Model for Atmospheric Chemistry and Transport (MATCH) which is based on analyzed observed winds or back- trajectories calculated from these same winds for determining regional and global source and sink strengths for long-lived trace gases important in ozone depletion and the greenhouse effect; (c) determination of global (and perhaps regional) average hydroxyl radical concentrations using inverse methods with multiple "titrating" gases; and (d) computation of the lifetimes and spatially resolved destruction rates of trace gases using 3D models. Important ultimate goals included determination of regional source strengths of important biogenic/anthropogenic trace gases and also of halocarbons restricted by the Montreal Protocol and its follow-on agreements, and hydrohalocarbons now used as alternatives to the above restricted halocarbons.

  2. Enviro-HIRLAM online integrated meteorology-chemistry modelling system: strategy, methodology, developments and applications (v7.2)

    NASA Astrophysics Data System (ADS)

    Baklanov, Alexander; Smith Korsholm, Ulrik; Nuterman, Roman; Mahura, Alexander; Pagh Nielsen, Kristian; Hansen Sass, Bent; Rasmussen, Alix; Zakey, Ashraf; Kaas, Eigil; Kurganskiy, Alexander; Sørensen, Brian; González-Aparicio, Iratxe

    2017-08-01

    The Environment - High Resolution Limited Area Model (Enviro-HIRLAM) is developed as a fully online integrated numerical weather prediction (NWP) and atmospheric chemical transport (ACT) model for research and forecasting of joint meteorological, chemical and biological weather. The integrated modelling system is developed by the Danish Meteorological Institute (DMI) in collaboration with several European universities. It is the baseline system in the HIRLAM Chemical Branch and used in several countries and different applications. The development was initiated at DMI more than 15 years ago. The model is based on the HIRLAM NWP model with online integrated pollutant transport and dispersion, chemistry, aerosol dynamics, deposition and atmospheric composition feedbacks. To make the model suitable for chemical weather forecasting in urban areas, the meteorological part was improved by implementation of urban parameterisations. The dynamical core was improved by implementing a locally mass-conserving semi-Lagrangian numerical advection scheme, which improves forecast accuracy and model performance. The current version (7.2), in comparison with previous versions, has a more advanced and cost-efficient chemistry, aerosol multi-compound approach, aerosol feedbacks (direct and semi-direct) on radiation and (first and second indirect effects) on cloud microphysics. Since 2004, the Enviro-HIRLAM has been used for different studies, including operational pollen forecasting for Denmark since 2009 and operational forecasting atmospheric composition with downscaling for China since 2017. Following the main research and development strategy, further model developments will be extended towards the new NWP platform - HARMONIE. Different aspects of online coupling methodology, research strategy and possible applications of the modelling system, and fit-for-purpose model configurations for the meteorological and air quality communities are discussed.

  3. Seasonal dynamics of water and air chemistry in an indoor chlorinated swimming pool.

    PubMed

    Zare Afifi, Mehrnaz; Blatchley, Ernest R

    2015-01-01

    Although swimming is known to be beneficial in terms of cardiovascular health, as well as for some forms of rehabilitation, swimming is also known to present risks to human health, largely in the form of exposure to microbial pathogens and disinfection byproducts (DBPs). Relatively little information is available in the literature to characterize the seasonal dynamics of air and water chemistry in indoor chlorinated swimming pools. To address this issue, water samples were collected five days per week from an indoor chlorinated swimming pool facility at a high school during the academic year and once per week during summer over a fourteen-month period. The samples were analyzed for free and combined chlorine, urea, volatile DBPs, pH, temperature and total alkalinity. Membrane Introduction Mass Spectrometry (MIMS) was used to identify and measure the concentrations of eleven aqueous-phase volatile DBPs. Variability in the concentrations of these DBPs was observed. Factors that influenced variability included bather loading and mixing by swimmers. These compounds have the ability to adversely affect water and air quality and human health. A large fraction of the existing literature regarding swimming pool air quality has focused on trichloramine (NCl₃). For this work, gas-phase NCl₃ was analyzed by an air sparging-DPD/KI method. The results showed that gas-phase NCl₃ concentration is influenced by bather loading and liquid-phase NCl₃ concentration. Urea is the dominant organic-N compound in human urine and sweat, and is known to be an important precursor for producing NCl₃ in swimming pools. Results of daily measurements of urea indicated a link between bather load and urea concentration in the pool.

  4. From UNIX to PC via X-Windows: Molecular Modeling for the General Chemistry Lab

    NASA Astrophysics Data System (ADS)

    Pavia, Donald; Wicholas, Mark

    1997-04-01

    The emphasis of molecular modeling in the undergraduate curriculum has generally been directed toward sophomore organic and higher-level chemistry instruction, especially when UNIX systems are used. When developing plans for incorporating molecular modeling into the curriculum, we decided to also include it in our first-year general chemistry course. Modeling would serve primarily as a visualization tool to augment the general chemistry coverage of bonding and structure. Our first thoughts were rather naive: we would set up a number of workstations and somehow get our general chemistry students, as many as 480 in one academic quarter, directly onto these machines at some time in a 1-2 week period during their weekly 3-hour lab. Further exploration of our options revealed that a better approach was to use PCs as dummy terminals for UNIX workstations. Described below are the hardware and software for this venture and the modeling experiment done by our students in general chemistry.

  5. Improving Air Quality (and Weather) Predictions using Advanced Data Assimilation Techniques Applied to Coupled Models during KORUS-AQ

    NASA Astrophysics Data System (ADS)

    Carmichael, G. R.; Saide, P. E.; Gao, M.; Streets, D. G.; Kim, J.; Woo, J. H.

    2017-12-01

    Ambient aerosols are important air pollutants with direct impacts on human health and on the Earth's weather and climate systems through their interactions with radiation and clouds. Their role is dependent on their distributions of size, number, phase and composition, which vary significantly in space and time. There remain large uncertainties in simulated aerosol distributions due to uncertainties in emission estimates and in chemical and physical processes associated with their formation and removal. These uncertainties lead to large uncertainties in weather and air quality predictions and in estimates of health and climate change impacts. Despite these uncertainties and challenges, regional-scale coupled chemistry-meteorological models such as WRF-Chem have significant capabilities in predicting aerosol distributions and explaining aerosol-weather interactions. We explore the hypothesis that new advances in on-line, coupled atmospheric chemistry/meteorological models, and new emission inversion and data assimilation techniques applicable to such coupled models, can be applied in innovative ways using current and evolving observation systems to improve predictions of aerosol distributions at regional scales. We investigate the impacts of assimilating AOD from geostationary satellite (GOCI) and surface PM2.5 measurements on predictions of AOD and PM in Korea during KORUS-AQ through a series of experiments. The results suggest assimilating datasets from multiple platforms can improve the predictions of aerosol temporal and spatial distributions.

  6. Topotactic redox chemistry of NaFeAs in water and air and superconducting behavior with stoichiometry change.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Todorov, I.; Chung, D. Y.; Claus, H.

    2010-07-13

    We report experimental evidence that shows superconductivity in NaFeAs occurs when it is Na deficient. The oxidation of NaFeAs progresses differently in water and in air. In water the material oxidizes slowly and slightly retaining the original anti-PbFCl structure. In air NaFeAs oxidizes topotactically quickly and extensively transforming to the ThCr{sub 2}Si{sub 2} structure type. Water acts as a mild oxidizing agent on the FeAs layer by extracting electrons and Na{sup +} cations from the structure, while oxidation in air is more extensive and leads to change in structure type from NaFeAs to NaFe{sub 2}As{sub 2}. The superconducting transition temperaturemore » moves dramatically during the oxidation process. Exposed to water for an extended time period NaFeAs shows a substantial increase in T{sub c} up to 25 K with contraction of unit cell volume. NaFe{sub 2}As{sub 2}, the air oxidized product, shows T{sub c} of 12 K. We report detailed characterization of the redox chemistry and transformation of NaFeAs in water and air using single crystal and powder X-ray diffraction, magnetization studies, transmission electron microscopy, Moessbauer spectroscopy, pOH and elemental analysis.« less

  7. Examining Air Quality-Meteorology Interactions on Regional to Hemispheric Scales

    EPA Science Inventory

    This presentation provides motivation for coupling the atmospheric dynamics and chemistry calculations in air pollution modeling systems, provides an overview of how this coupling is achieved in the WRF-CMAQ 2-way coupled model, presents results from various applications of the m...

  8. Overview and Evaluation of the Community Multiscale Air ...

    EPA Pesticide Factsheets

    The Community Multiscale Air Quality (CMAQ) model is a state-of-the-science air quality model that simulates the emission, transport and fate of numerous air pollutants, including ozone and particulate matter. The Computational Exposure Division (CED) of the U.S. Environmental Protection Agency develops the CMAQ model and periodically releases new versions of the model that include bug fixes and various other improvements to the modeling system. In late 2016 or early 2017, CMAQ version 5.2 will be released. This new version of CMAQ will contain important updates from the current CMAQv5.1 modeling system, along with several instrumented versions of the model (e.g. decoupled direct method and sulfur tracking). Some specific model updates include the implementation of a new wind-blown dust treatment in CMAQv5.2, a significant improvement over the treatment in v5.1 which can severely overestimate wind-blown dust under certain conditions. Several other major updates to the modeling system include an update to the calculation of aerosols; implementation of full halogen chemistry (CMAQv5.1 contains a partial implementation of halogen chemistry); the new carbon bond 6 (CB6) chemical mechanism; updates to cloud model in CMAQ; and a new lightning assimilation scheme for the WRF model which significant improves the placement and timing of convective precipitation in the WRF precipitation fields. Numerous other updates to the modeling system will also be available in v5.2.

  9. COMPUTATIONAL CHEMISTRY: AN EMERGING TECHNOLOGY FOR SOLVING PROBLEMS IN ATMOSPHERIC CHEMISTRY

    EPA Science Inventory

    Over the past three decades, atmospheric chemistry has served as an important component in developing strategies for reducing ambient concentrations of air pollutants. Laboratory studies are carried out to investigate the key chemical reactions that determine the fates and lif...

  10. Do Chemistry-Climate Models Project the Same Greenhouse Gas Chemistry if Initialized with Observations of the Trace Gases: A Pre-ATom Test

    NASA Astrophysics Data System (ADS)

    Flynn, C. M.; Prather, M. J.; Zhu, X.; Strode, S. A.; Steenrod, S. D.; Strahan, S. E.; Lamarque, J. F.; Fiore, A. M.; Horowitz, L. W.; Mao, J.; Murray, L. T.; Shindell, D. T.

    2016-12-01

    Experience with climate and chemistry model intercomparison projects (MIPs) has demonstrated a diversity in model projections for the chemical greenhouse gases CH4 and O3, even when forced by the same emissions. In general, the MIPs show that models diverge in the distribution of the many key trace species that control the reactivity of the troposphere (defined here as the loss of CH4 and the production and loss of O3). Two possible sources of model differences are the chemistry-transport coupling that creates the pattern of the essential precursor species, and the calculation of reactivity. Suppose that observations, such as those planned by NASA's Atmospheric Tomography (ATom) mission, provide us with enough of a chemical climatology to constrain the modeled distribution of the essential chemical species for the current epoch. Would the models calculate the same reactivity? ATom uses the DC-8 to make in situ measurements slicing through the middle of the Pacific and Atlantic Ocean basins each season and measuring the essential trace species. Unfortunately, ATom measurements will not be available until mid-2017. Here we take the baseline chemistry from one model version (as pseudo-observations) and use it to initialize 6 other global chemistry models. In this pre-ATom MIP, we take the full chemical composition for meridional slices centered on the Dateline (UC Irvine Chemistry-Transport Model, 0.6 deg resolution, 30 layers in the troposphere). We use grid cells between 0.5 and 12 km from 60 S to 60 N to initialize grid cells in the other six models (GEOS-Chem, GFDL-AM3, GISS ModelE2, GSFC GMI, NCAR, UCI CTM). The models are then integrated for 1 day and the key chemical rates (CH4, O3) are saved. These simulations assume that the initialized parcels remain unmixed over the 24 hours, and, hence, model-to-model variations will be due to differences in photochemistry, including clouds. In addition, we assess the relative importance of the precursor species by running

  11. OPTIMIZING MODEL PERFORMANCE: VARIABLE SIZE RESOLUTION IN CLOUD CHEMISTRY MODELING. (R826371C005)

    EPA Science Inventory

    Under many conditions size-resolved aqueous-phase chemistry models predict higher sulfate production rates than comparable bulk aqueous-phase models. However, there are special circumstances under which bulk and size-resolved models offer similar predictions. These special con...

  12. Application of Weather Research and Forecasting Model with Chemistry (WRF/Chem) over northern China: Sensitivity study, comparative evaluation, and policy implications

    NASA Astrophysics Data System (ADS)

    Wang, Litao; Zhang, Yang; Wang, Kai; Zheng, Bo; Zhang, Qiang; Wei, Wei

    2016-01-01

    An extremely severe and persistent haze event occurred over the middle and eastern China in January 2013, with the record-breaking high concentrations of fine particulate matter (PM2.5). In this study, an online-coupled meteorology-air quality model, the Weather Research and Forecasting Model with Chemistry (WRF/Chem), is applied to simulate this pollution episode over East Asia and northern China at 36- and 12-km grid resolutions. A number of simulations are conducted to examine the sensitivities of the model predictions to various physical schemes. The results show that all simulations give similar predictions for temperature, wind speed, wind direction, and humidity, but large variations exist in the prediction for precipitation. The concentrations of PM2.5, particulate matter with aerodynamic diameter of 10 μm or less (PM10), sulfur dioxide (SO2), and nitrogen dioxide (NO2) are overpredicted partially due to the lack of wet scavenging by the chemistry-aerosol option with the 1999 version of the Statewide Air Pollution Research Center (SAPRC-99) mechanism with the Model for Simulating Aerosol Interactions and Chemistry (MOSAIC) and the Volatility Basis Set (VBS) for secondary organic aerosol formation. The optimal set of configurations with the best performance is the simulation with the Gorddard shortwave and RRTM longwave radiation schemes, the Purdue Lin microphysics scheme, the Kain-Fritsch cumulus scheme, and a nudging coefficient of 1 × 10-5 for water vapor mixing ratio. The emission sensitivity simulations show that the PM2.5 concentrations are most sensitive to nitrogen oxide (NOx) and SO2 emissions in northern China, but to NOx and ammonia (NH3) emissions in southern China. 30% NOx emission reductions may result in an increase in PM2.5 concentrations in northern China because of the NH3-rich and volatile organic compound (VOC) limited conditions over this area. VOC emission reductions will lead to a decrease in PM2.5 concentrations in eastern China

  13. Numerical modelling of the effect of dry air traces in a helium parallel plate dielectric barrier discharge

    NASA Astrophysics Data System (ADS)

    Lazarou, C.; Belmonte, T.; Chiper, A. S.; Georghiou, G. E.

    2016-10-01

    A validated numerical model developed for the study of helium barrier discharges in the presence of dry air impurities is presented in this paper. The model was used to numerically investigate the influence of air traces on the evolution of the helium dielectric barrier discharge (DBD). The level of dry air used as impurity was in the range from 0 to 1500 ppm, which corresponds to the most commonly encountered range in atmospheric pressure discharge experiments. The results presented in this study clearly show that the plasma chemistry and consequently the discharge evolution is highly affected by the concentration level of impurities in the mixture. In particular, it was observed that air traces assist the discharge ignition at low concentration levels (~55 ppm), while on the other hand, they increase the burning voltage at higher concentration levels (~1000 ppm). Furthermore, it was found that the discharge symmetry during the voltage cycle highly depends on the concentration of air. For the interpretation of the results, a detailed analysis of the processes that occur in the discharge gap is performed and the main reaction pathways of ion production are described. Thanks to this approach, useful insight into the physics behind the evolution of the discharge is obtained.

  14. Analysis of air quality management with emphasis on transportation sources

    NASA Technical Reports Server (NTRS)

    English, T. D.; Divita, E.; Lees, L.

    1980-01-01

    The current environment and practices of air quality management were examined for three regions: Denver, Phoenix, and the South Coast Air Basin of California. These regions were chosen because the majority of their air pollution emissions are related to mobile sources. The impact of auto exhaust on the air quality management process is characterized and assessed. An examination of the uncertainties in air pollutant measurements, emission inventories, meteorological parameters, atmospheric chemistry, and air quality simulation models is performed. The implications of these uncertainties to current air quality management practices is discussed. A set of corrective actions are recommended to reduce these uncertainties.

  15. Multi-year downscaling application of two-way coupled WRF v3.4 and CMAQ v5.0.2 over east Asia for regional climate and air quality modeling: model evaluation and aerosol direct effects

    NASA Astrophysics Data System (ADS)

    Hong, Chaopeng; Zhang, Qiang; Zhang, Yang; Tang, Youhua; Tong, Daniel; He, Kebin

    2017-06-01

    In this study, a regional coupled climate-chemistry modeling system using the dynamical downscaling technique was established by linking the global Community Earth System Model (CESM) and the regional two-way coupled Weather Research and Forecasting - Community Multi-scale Air Quality (WRF-CMAQ) model for the purpose of comprehensive assessments of regional climate change and air quality and their interactions within one modeling framework. The modeling system was applied over east Asia for a multi-year climatological application during 2006-2010, driven with CESM downscaling data under Representative Concentration Pathways 4.5 (RCP4.5), along with a short-term air quality application in representative months in 2013 that was driven with a reanalysis dataset. A comprehensive model evaluation was conducted against observations from surface networks and satellite observations to assess the model's performance. This study presents the first application and evaluation of the two-way coupled WRF-CMAQ model for climatological simulations using the dynamical downscaling technique. The model was able to satisfactorily predict major meteorological variables. The improved statistical performance for the 2 m temperature (T2) in this study (with a mean bias of -0.6 °C) compared with the Coupled Model Intercomparison Project Phase 5 (CMIP5) multi-models might be related to the use of the regional model WRF and the bias-correction technique applied for CESM downscaling. The model showed good ability to predict PM2. 5 in winter (with a normalized mean bias (NMB) of 6.4 % in 2013) and O3 in summer (with an NMB of 18.2 % in 2013) in terms of statistical performance and spatial distributions. Compared with global models that tend to underpredict PM2. 5 concentrations in China, WRF-CMAQ was able to capture the high PM2. 5 concentrations in urban areas. In general, the two-way coupled WRF-CMAQ model performed well for both climatological and air quality applications. The coupled

  16. When the Sun's Away, N2O5 Comes Out to Play: An Updated Analysis of Ambient N2O5 Heterogeneous Chemistry

    NASA Astrophysics Data System (ADS)

    McDuffie, E. E.; Brown, S. S.

    2017-12-01

    The heterogeneous chemistry of N2O5 impacts the budget of tropospheric oxidants, which directly controls air quality at Earth's surface. The reaction between gas-phase N2O5 and aerosol particles occurs largely at night, and is therefore more important during the less-intensively-studied winter season. Though N2O5-aerosol interactions are vital for the accurate understanding and simulation of tropospheric chemistry and air quality, many uncertainties persist in our understanding of how various environmental factors influence the reaction rate and probability. Quantitative and accurate evaluation of these factors directly improves the predictive capabilities of atmospheric models, used to inform mitigation strategies for wintertime air pollution. In an update to last year's presentation, The Wintertime Fate of N2O5: Observations and Box Model Analysis for the 2015 WINTER Aircraft Campaign, this presentation will focus on recent field results regarding new information about N2O5 heterogeneous chemistry and future research directions.

  17. Gaseous Chemistry and Aerosol Mechanism Developments for Version 3.5.1 of the Online Regional Model, WRF-Chem

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Archer-Nicholls, Scott; Lowe, Douglas; Utembe, Steve

    We have made a number of developments in the regional coupled model WRF-Chem, with the aim of making the model more suitable for prediction of atmospheric composition and of interactions between air quality and weather. We have worked on the European domain, with a particular focus on making the model suitable for the study of night time chemistry and oxidation by the nitrate radical in the UK atmosphere. A reduced form of the Common Reactive Intermediates gas-phase chemical mechanism (CRIv2-R5) has been implemented to enable more explicit simulation of VOC degradation. N2O5 heterogeneous chemistry has been added to the existingmore » sectional MOSAIC aerosol module, and coupled to both the CRIv2-R5 and existing CBM-Z gas phase scheme. Modifications have also been made to the sea-spray aerosol emission representation, allowing the inclusion of primary organic material in sea-spray aerosol. Driven by appropriate emissions, wind fields and chemical boundary conditions, implementation of the different developments is illustrated in order to demonstrate the impact that these changes have in the North-West European domain. These developments are now part of the freely available WRF-Chem distribution.« less

  18. Environmental Chemistry: Air and Water Pollution.

    ERIC Educational Resources Information Center

    Stoker, H. Stephen; Seager, Spencer L.

    This is a book about air and water pollution whose chapters cover the topics of air pollution--general considerations, carbon monoxide, oxides of nitrogen, hydrocarbons and photochemical oxidants, sulfur oxides, particulates, temperature inversions and the greenhouse effect; and water pollution--general considerations, mercury, lead, detergents,…

  19. Using Transport Diagnostics to Understand Chemistry Climate Model Ozone Simulations

    NASA Technical Reports Server (NTRS)

    Strahan, S. E.; Douglass, A. R.; Stolarski, R. S.; Akiyoshi, H.; Bekki, S.; Braesicke, P.; Butchart, N.; Chipperfield, M. P.; Cugnet, D.; Dhomse, S.; hide

    2010-01-01

    We demonstrate how observations of N2O and mean age in the tropical and midlatitude lower stratosphere (LS) can be used to identify realistic transport in models. The results are applied to 15 Chemistry Climate Models (CCMs) participating in the 2010 WMO assessment. Comparison of the observed and simulated N2O/mean age relationship identifies models with fast or slow circulations and reveals details of model ascent and tropical isolation. The use of this process-oriented N2O/mean age diagnostic identifies models with compensating transport deficiencies that produce fortuitous agreement with mean age. We compare the diagnosed model transport behavior with a model's ability to produce realistic LS O3 profiles in the tropics and midlatitudes. Models with the greatest tropical transport problems show the poorest agreement with observations. Models with the most realistic LS transport agree more closely with LS observations and each other. We incorporate the results of the chemistry evaluations in the SPARC CCMVal Report (2010) to explain the range of CCM predictions for the return-to-1980 dates for global (60 S-60 N) and Antarctic column ozone. Later (earlier) Antarctic return dates are generally correlated to higher (lower) vortex Cl(sub y) levels in the LS, and vortex Cl(sub y) is generally correlated with the model's circulation although model Cl(sub y) chemistry or Cl(sub y) conservation can have a significant effect. In both regions, models that have good LS transport produce a smaller range of predictions for the return-to-1980 ozone values. This study suggests that the current range of predicted return dates is unnecessarily large due to identifiable model transport deficiencies.

  20. The global chemistry transport model TM5: description and evaluation of the tropospheric chemistry version 3.0

    NASA Astrophysics Data System (ADS)

    Huijnen, V.; Williams, J.; van Weele, M.; van Noije, T.; Krol, M.; Dentener, F.; Segers, A.; Houweling, S.; Peters, W.; de Laat, J.; Boersma, F.; Bergamaschi, P.; van Velthoven, P.; Le Sager, P.; Eskes, H.; Alkemade, F.; Scheele, R.; Nédélec, P.; Pätz, H.-W.

    2010-10-01

    We present a comprehensive description and benchmark evaluation of the tropospheric chemistry version of the global chemistry transport model TM5 (Tracer Model 5, version TM5-chem-v3.0). A full description is given concerning the photochemical mechanism, the interaction with aerosol, the treatment of the stratosphere, the wet and dry deposition parameterizations, and the applied emissions. We evaluate the model against a suite of ground-based, satellite, and aircraft measurements of components critical for understanding global photochemistry for the year 2006. The model exhibits a realistic oxidative capacity at a global scale. The methane lifetime is ~8.9 years with an associated lifetime of methyl chloroform of 5.86 years, which is similar to that derived using an optimized hydroxyl radical field. The seasonal cycle in observed carbon monoxide (CO) is well simulated at different regions across the globe. In the Northern Hemisphere CO concentrations are underestimated by about 20 ppbv in spring and 10 ppbv in summer, which is related to missing chemistry and underestimated emissions from higher hydrocarbons, as well as to uncertainties in the seasonal variation of CO emissions. The model also captures the spatial and seasonal variation in formaldehyde tropospheric columns as observed by SCIAMACHY. Positive model biases over the Amazon and eastern United States point to uncertainties in the isoprene emissions as well as its chemical breakdown. Simulated tropospheric nitrogen dioxide columns correspond well to observations from the Ozone Monitoring Instrument in terms of its seasonal and spatial variability (with a global spatial correlation coefficient of 0.89), but TM5 fields are lower by 25-40%. This is consistent with earlier studies pointing to a high bias of 0-30% in the OMI retrievals, but uncertainties in the emission inventories have probably also contributed to the discrepancy. TM5 tropospheric nitrogen dioxide profiles are in good agreement (within ~0

  1. The global chemistry transport model TM5: description and evaluation of the tropospheric chemistry version 3.0

    NASA Astrophysics Data System (ADS)

    Huijnen, V.; Williams, J. E.; van Weele, M.; van Noije, T. P. C.; Krol, M. C.; Dentener, F.; Segers, A.; Houweling, S.; Peters, W.; de Laat, A. T. J.; Boersma, K. F.; Bergamaschi, P.; van Velthoven, P. F. J.; Le Sager, P.; Eskes, H. J.; Alkemade, F.; Scheele, M. P.; Nédélec, P.; Pätz, H.-W.

    2010-07-01

    We present a comprehensive description and benchmark evaluation of the tropospheric chemistry version of the global chemistry transport model TM5 (Tracer Model 5, version TM5-chem-v3.0). A full description is given concerning the photochemical mechanism, the interaction with aerosol, the treatment of the stratosphere, the wet and dry deposition parameterizations, and the applied emissions. We evaluate the model against a suite of ground-based, satellite, and aircraft measurements of components critical for understanding global photochemistry for the year 2006. The model exhibits a realistic oxidative capacity at a global scale. The methane lifetime is ~8.9 years with an associated lifetime of methyl chloroform of 5.86 years, which is similar to that derived using an optimized hydroxyl radical field. The seasonal cycle in observed carbon monoxide (CO) is well simulated at different regions across the globe. In the Northern Hemisphere CO concentrations are underestimated by about 20 ppbv in spring and 10 ppbv in summer, which is related to missing chemistry and underestimated emissions from higher hydrocarbons, as well as to uncertainties in the seasonal variation of CO emissions. The model also captures the spatial and seasonal variation in formaldehyde tropospheric columns as observed by SCIAMACHY. Positive model biases over the Amazon and eastern United States point to uncertainties in the isoprene emissions as well as its chemical breakdown. Simulated tropospheric nitrogen dioxide columns correspond well to observations from the Ozone Monitoring Instrument in terms of its seasonal and spatial variability (with a global spatial correlation coefficient of 0.89), but TM5 fields are lower by 25-40%. This is consistent with earlier studies pointing to a high bias of 0-30% in the OMI retrievals, but uncertainties in the emission inventories have probably also contributed to the discrepancy. TM5 tropospheric nitrogen dioxide profiles are in good agreement (within ~0

  2. Disciplines, models, and computers: the path to computational quantum chemistry.

    PubMed

    Lenhard, Johannes

    2014-12-01

    Many disciplines and scientific fields have undergone a computational turn in the past several decades. This paper analyzes this sort of turn by investigating the case of computational quantum chemistry. The main claim is that the transformation from quantum to computational quantum chemistry involved changes in three dimensions. First, on the side of instrumentation, small computers and a networked infrastructure took over the lead from centralized mainframe architecture. Second, a new conception of computational modeling became feasible and assumed a crucial role. And third, the field of computa- tional quantum chemistry became organized in a market-like fashion and this market is much bigger than the number of quantum theory experts. These claims will be substantiated by an investigation of the so-called density functional theory (DFT), the arguably pivotal theory in the turn to computational quantum chemistry around 1990.

  3. Air Pollution.

    ERIC Educational Resources Information Center

    Fox, Donald L.

    1989-01-01

    Materials related to air pollution are reviewed for the period January 1987, to October 1988. The topics are pollution monitoring, air pollution, and environmental chemistry. The organization consists of two major analytical divisions: (1) gaseous methods; and (2) aerosol and particulate methods. (MVL)

  4. Air Pollution and Environmental Justice Awareness

    NASA Astrophysics Data System (ADS)

    Bouvier-Brown, N. C.

    2014-12-01

    Air pollution is not equally dispersed in all neighborhoods and this raises many social concerns, such as environmental justice. "Real world" data, whether extracted from online databases or collected in the field, can be used to demonstrate air quality patterns. When students explore these trends, they not only learn about atmospheric chemistry, but they also become socially aware of any inequities. This presentation outlines specific ways to link air pollution and environmental justice suitable for an undergraduate upper division Air Pollution or Atmospheric Chemistry course.

  5. Application of Stochastic and Deterministic Approaches to Modeling Interstellar Chemistry

    NASA Astrophysics Data System (ADS)

    Pei, Yezhe

    This work is about simulations of interstellar chemistry using the deterministic rate equation (RE) method and the stochastic moment equation (ME) method. Primordial metal-poor interstellar medium (ISM) is of our interest and the socalled “Population-II” stars could have been formed in this environment during the “Epoch of Reionization” in the baby universe. We build a gas phase model using the RE scheme to describe the ionization-powered interstellar chemistry. We demonstrate that OH replaces CO as the most abundant metal-bearing molecule in such interstellar clouds of the early universe. Grain surface reactions play an important role in the studies of astrochemistry. But the lack of an accurate yet effective simulation method still presents a challenge, especially for large, practical gas-grain system. We develop a hybrid scheme of moment equations and rate equations (HMR) for large gas-grain network to model astrochemical reactions in the interstellar clouds. Specifically, we have used a large chemical gas-grain model, with stochastic moment equations to treat the surface chemistry and deterministic rate equations to treat the gas phase chemistry, to simulate astrochemical systems as of the ISM in the Milky Way, the Large Magellanic Cloud (LMC) and Small Magellanic Cloud (SMC). We compare the results to those of pure rate equations and modified rate equations and present a discussion about how moment equations improve our theoretical modeling and how the abundances of the assorted species are changed by varied metallicity. We also model the observed composition of H2O, CO and CO2 ices toward Young Stellar Objects in the LMC and show that the HMR method gives a better match to the observation than the pure RE method.

  6. Statistical Downscaling of WRF-Chem Model: An Air Quality Analysis over Bogota, Colombia

    NASA Astrophysics Data System (ADS)

    Kumar, Anikender; Rojas, Nestor

    2015-04-01

    Statistical downscaling is a technique that is used to extract high-resolution information from regional scale variables produced by coarse resolution models such as Chemical Transport Models (CTMs). The fully coupled WRF-Chem (Weather Research and Forecasting with Chemistry) model is used to simulate air quality over Bogota. Bogota is a tropical Andean megacity located over a high-altitude plateau in the middle of very complex terrain. The WRF-Chem model was adopted for simulating the hourly ozone concentrations. The computational domains were chosen of 120x120x32, 121x121x32 and 121x121x32 grid points with horizontal resolutions of 27, 9 and 3 km respectively. The model was initialized with real boundary conditions using NCAR-NCEP's Final Analysis (FNL) and a 1ox1o (~111 km x 111 km) resolution. Boundary conditions were updated every 6 hours using reanalysis data. The emission rates were obtained from global inventories, namely the REanalysis of the TROpospheric (RETRO) chemical composition and the Emission Database for Global Atmospheric Research (EDGAR). Multiple linear regression and artificial neural network techniques are used to downscale the model output at each monitoring stations. The results confirm that the statistically downscaled outputs reduce simulated errors by up to 25%. This study provides a general overview of statistical downscaling of chemical transport models and can constitute a reference for future air quality modeling exercises over Bogota and other Colombian cities.

  7. Modeling the Relationship between High School Students' Chemistry Self-Efficacy and Metacognitive Awareness

    ERIC Educational Resources Information Center

    Kirbulut, Zubeyde Demet

    2014-01-01

    In this study, the relationship between students' chemistry self-efficacy beliefs and metacognitive awareness was investigated utilizing a path model. There were 268 chemistry high school students (59% 10th grade and 41% 11th grade) participated in the study. The students took two-hour chemistry course in the 9th and 10th grade and three-hour…

  8. Numerical modeling of a glow discharge through a supersonic bow shock in air

    NASA Astrophysics Data System (ADS)

    Rassou, S.; Packan, D.; Elias, P.-Q.; Tholin, F.; Chemartin, L.; Labaune, J.

    2017-03-01

    The interaction between a glow discharge and the bow shock of a Mach 3 air flow around a truncated conical model with a central spike is modeled, and comparison is made with prior experimental results. The KRONOS workflow for plasma modeling in flow fields, which has recently been developed at ONERA, was used for the modeling. Based on the quasi-neutral approximation, it couples hypersonic and reactive flow fields with electron chemistry, including the effect of non-Maxwellian electron energy distribution function. The model used for the discharge involves 12 species and 82 reactions, including ionization, electronic and vibrational excitation, and attachment. The simulations reproduce the main features of the discharge observed experimentally well, in particular, the very recognizable topology of the discharge. It was found from the simulations that behind the bow shock, in the afterglow, the negative ion flow ensures the electrical conduction and the establishment of the glow discharge. The influence of kinetic rates on the voltage-current characteristics is discussed.

  9. Examining the Impact of Nitrous Acid Chemistry on Ozone and PM over the Pearl River Delta Region

    EPA Science Inventory

    The impact of nitrous acid (HONO) chemistry on regional ozone and particulate matter in Pearl River Delta region was investigated using the community multiscale air quality (CMAQ) modeling system and the CB05 mechanism. Model simulations were conducted for a ten-day period in Oct...

  10. Modelling hot air balloons

    NASA Astrophysics Data System (ADS)

    Brimicombe, N. W.

    1991-07-01

    Hot air balloons can be modelled in a number of different ways. The most satisfactory, but least useful model is at a microscopic level. Macroscopic models are easier to use but can be very misleading.

  11. Climate Change, Air Pollution, and the Economics of Health Impacts

    NASA Astrophysics Data System (ADS)

    Reilly, J.; Yang, T.; Paltsev, S.; Wang, C.; Prinn, R.; Sarofim, M.

    2003-12-01

    Climate change and air pollution are intricately linked. The distinction between greenhouse substances and other air pollutants is resolved at least for the time being in the context of international negotiations on climate policy through the identification of CO2, CH4, N2O, SF6 and the per- and hydro- fluorocarbons as substances targeted for control. Many of the traditional air pollutant emissions including for example CO, NMVOCs, NOx, SO2, aerosols, and NH3 also directly or indirectly affect the radiative balance of the atmosphere. Among both sets of gases are precursors of and contributors to pollutants such as tropopospheric ozone, itself a strong greenhouse gas, particulate matter, and other pollutants that affect human health. Fossil fuel combustion, production, or transportation is a significant source for many of these substances. Climate policy can thus affect traditional air pollution or air pollution policy can affect climate. Health effects of acute or chronic exposure to air pollution include increased asthma, lung cancer, heart disease and bronchitis among others. These, in turn, redirect resources in the economy toward medical expenditures or result in lost labor or non-labor time with consequent effects on economic activity, itself producing a potential feedback on emissions levels. Study of these effects ultimately requires a fully coupled earth system model. Toward that end we develop an approach for introducing air pollution health impacts into the Emissions Prediction and Policy Analysis (EPPA) model, a component of the MIT Integrated Global Systems Model (IGSM) a coupled economics-chemistry-atmosphere-ocean-terrestrial biosphere model of earth systems including an air pollution model resolving the urban scale. This preliminary examination allows us to consider how climate policy affects air pollution and consequent health effects, and to study the potential impacts of air pollution policy on climate. The novel contribution is the effort to

  12. Urban air chemistry and diesel vehicles emissions: Quantifying small and big hydrocarbons by CIMS to improve emission inventories

    NASA Astrophysics Data System (ADS)

    Jobson, B. T.; Derstroff, B.; Edtbauer, A.; VanderSchelden, G. S.; Williams, J.

    2017-10-01

    Emissions from vehicles are a major source of volatile organic compounds (VOCs) in urban environments. Photochemical oxidation of VOCs emitted from vehicle exhaust contributes to O3 and PM2.5 formation, harmful pollutants that major urban areas struggle to control. How will a shift to a diesel engine fleet impact urban air chemistry? Diesel vehicles are a growing fraction of the passenger vehicle fleet in Europe as a result of a deliberate policy to reduce energy consumption and CO2 emissions from the transportation sector (Sullivan et al., 2004). In countries such as France the diesel passenger fleet was already ∼50% of the total in 2009, up from 20% in 1995. Dunmore et al. (2015) have recently inferred that in London, HO radical loss rates to organic compounds is dominated by diesel engine emissions. In the US, increasingly more stringent vehicles emission standards and requirement for improved energy efficiency means spark ignition passenger vehicle emissions have declined significantly over the last 20 years, resulting in the urban diesel fleet traffic (freight trucks) having a growing importance as a source of vehicle pollution (McDonald et al., 2013). The recent scandal involving a major car manufacturer rigging emission controls for diesel passenger cars is a reminder that real world emissions of VOCs from diesel engines are not well understood nor thoroughly accounted for in air quality modeling.

  13. AerChemMIP: Quantifying the effects of chemistry and aerosols in CMIP6

    DOE PAGES

    Collins, William J.; Lamarque, Jean -François; Schulz, Michael; ...

    2017-02-09

    The Aerosol Chemistry Model Intercomparison Project (AerChemMIP) is endorsed by the Coupled-Model Intercomparison Project 6 (CMIP6) and is designed to quantify the climate and air quality impacts of aerosols and chemically reactive gases. These are specifically near-term climate forcers (NTCFs: methane, tropospheric ozone and aerosols, and their precursors), nitrous oxide and ozone-depleting halocarbons. The aim of AerChemMIP is to answer four scientific questions. 1. How have anthropogenic emissions contributed to global radiative forcing and affected regional climate over the historical period? 2. How might future policies (on climate, air quality and land use) affect the abundances of NTCFs and theirmore » climate impacts? 3.How do uncertainties in historical NTCF emissions affect radiative forcing estimates? 4. How important are climate feedbacks to natural NTCF emissions, atmospheric composition, and radiative effects? These questions will be addressed through targeted simulations with CMIP6 climate models that include an interactive representation of tropospheric aerosols and atmospheric chemistry. These simulations build on the CMIP6 Diagnostic, Evaluation and Characterization of Klima (DECK) experiments, the CMIP6 historical simulations, and future projections performed elsewhere in CMIP6, allowing the contributions from aerosols and/or chemistry to be quantified. As a result, specific diagnostics are requested as part of the CMIP6 data request to highlight the chemical composition of the atmosphere, to evaluate the performance of the models, and to understand differences in behaviour between them.« less

  14. AerChemMIP: Quantifying the effects of chemistry and aerosols in CMIP6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, William J.; Lamarque, Jean -François; Schulz, Michael

    The Aerosol Chemistry Model Intercomparison Project (AerChemMIP) is endorsed by the Coupled-Model Intercomparison Project 6 (CMIP6) and is designed to quantify the climate and air quality impacts of aerosols and chemically reactive gases. These are specifically near-term climate forcers (NTCFs: methane, tropospheric ozone and aerosols, and their precursors), nitrous oxide and ozone-depleting halocarbons. The aim of AerChemMIP is to answer four scientific questions. 1. How have anthropogenic emissions contributed to global radiative forcing and affected regional climate over the historical period? 2. How might future policies (on climate, air quality and land use) affect the abundances of NTCFs and theirmore » climate impacts? 3.How do uncertainties in historical NTCF emissions affect radiative forcing estimates? 4. How important are climate feedbacks to natural NTCF emissions, atmospheric composition, and radiative effects? These questions will be addressed through targeted simulations with CMIP6 climate models that include an interactive representation of tropospheric aerosols and atmospheric chemistry. These simulations build on the CMIP6 Diagnostic, Evaluation and Characterization of Klima (DECK) experiments, the CMIP6 historical simulations, and future projections performed elsewhere in CMIP6, allowing the contributions from aerosols and/or chemistry to be quantified. As a result, specific diagnostics are requested as part of the CMIP6 data request to highlight the chemical composition of the atmosphere, to evaluate the performance of the models, and to understand differences in behaviour between them.« less

  15. Beginning Chemistry Can Be Relevant

    ERIC Educational Resources Information Center

    Corwin, James F.

    1971-01-01

    Reviews ways of applying laboratory work in general and analytical chemistry to supermarket products. Describes ways water and air pollution analysis can illustrate acid-base reactions, redox reactions, precipitimetry, and colorimetry. (PR)

  16. Motorization of China implies changes in Pacific air chemistry and primary production

    NASA Astrophysics Data System (ADS)

    Elliott, Scott; Blake, Donald R.; Duce, Robert A.; Lai, C. Aaron; McCreary, Iain; McNair, Laurie A.; Rowland, F. Sherwood; Russell, Armistead G.; Streit, Gerald E.; Turco, Richard P.

    1997-11-01

    The People's Republic of China, the world's most populous nation, is considering extensive development of its automotive transportation infrastructure. Upper limits to the associated pollution increases can be defined through scenarios with Western style vehicles and vehicle-to-person ratios. Here we construct estimates of fundamental changes to chemistry of the Pacific ocean/atmosphere system through simple budgeting procedures. Regional increases in tropospheric ozone could reach tens of parts per billion. Observations/experiments suggest that enhanced nitrogen oxides will react with sea salt aerosols to yield chlorine atoms in the marine boundary layer. Nitrate deposition onto the open sea surface would support several percent of exported North Pacific carbon production. Transport of biologically active iron to surface waters may follow from increases in mineral dust and acid sulfate aerosols. Altered plankton ecodynamics will feed back into climate processes through sea to air flux of reduced sulfur gases and through carbon dioxide drawdown.

  17. Experimental and modeling studies of small molecule chemistry in expanding spherical flames

    NASA Astrophysics Data System (ADS)

    Santner, Jeffrey

    Accurate models of flame chemistry are required in order to predict emissions and flame properties, such that clean, efficient engines can be designed more easily. There are three primary methods used to improve such combustion chemistry models - theoretical reaction rate calculations, elementary reaction rate experiments, and combustion system experiments. This work contributes to model improvement through the third method - measurements and analysis of the laminar burning velocity at constraining conditions. Modern combustion systems operate at high pressure with strong exhaust gas dilution in order to improve efficiency and reduce emissions. Additionally, flames under these conditions are sensitized to elementary reaction rates such that measurements constrain modeling efforts. Measurement conditions of the present work operate within this intersection between applications and fundamental science. Experiments utilize a new pressure-release, heated spherical combustion chamber with a variety of fuels (high hydrogen content fuels, formaldehyde (via 1,3,5-trioxane), and C2 fuels) at pressures from 0.5--25 atm, often with dilution by water vapor or carbon dioxide to flame temperatures below 2000 K. The constraining ability of these measurements depends on their uncertainty. Thus, the present work includes a novel analytical estimate of the effects of thermal radiative heat loss on burning velocity measurements in spherical flames. For 1,3,5-trioxane experiments, global measurements are sufficiently sensitive to elementary reaction rates that optimization techniques are employed to indirectly measure the reaction rates of HCO consumption. Besides the influence of flame chemistry on propagation, this work also explores the chemistry involved in production of nitric oxide, a harmful pollutant, within flames. We find significant differences among available chemistry models, both in mechanistic structure and quantitative reaction rates. There is a lack of well

  18. Integrated Meteorology and Chemistry Modeling: Evaluation and Research Needs

    EPA Science Inventory

    Over the past decade several online integrated atmospheric chemical-transport and meteorology modeling systems with varying levels of interactions among different atmospheric processes have been developed. A variety of approaches to meteorology-chemistry integration with differe...

  19. Uncertainty characterization and quantification in air pollution models. Application to the ADMS-Urban model.

    NASA Astrophysics Data System (ADS)

    Debry, E.; Malherbe, L.; Schillinger, C.; Bessagnet, B.; Rouil, L.

    2009-04-01

    uncertainty analysis. We chose the Monte Carlo method which has already been applied to atmospheric dispersion models [2, 3, 4]. The main advantage of this method is to be insensitive to the number of perturbed parameters but its drawbacks are its computation cost and its slow convergence. In order to speed up this one we used the method of antithetic variable which takes adavantage of the symmetry of probability laws. The air quality model simulations were carried out by the Association for study and watching of Atmospheric Pollution in Alsace (ASPA). The output concentrations distributions can then be updated with a Bayesian method. This work is part of an INERIS Research project also aiming at assessing the uncertainty of the CHIMERE dispersion model used in the Prev'Air forecasting platform (www.prevair.org) in order to deliver more accurate predictions. (1) Rao, K.S. Uncertainty Analysis in Atmospheric Dispersion Modeling, Pure and Applied Geophysics, 2005, 162, 1893-1917. (2) Beekmann, M. and Derognat, C. Monte Carlo uncertainty analysis of a regional-scale transport chemistry model constrained by measurements from the Atmospheric Pollution Over the PAris Area (ESQUIF) campaign, Journal of Geophysical Research, 2003, 108, 8559-8576. (3) Hanna, S.R. and Lu, Z. and Frey, H.C. and Wheeler, N. and Vukovich, J. and Arunachalam, S. and Fernau, M. and Hansen, D.A. Uncertainties in predicted ozone concentrations due to input uncertainties for the UAM-V photochemical grid model applied to the July 1995 OTAG domain, Atmospheric Environment, 2001, 35, 891-903. (4) Romanowicz, R. and Higson, H. and Teasdale, I. Bayesian uncertainty estimation methodology applied to air pollution modelling, Environmetrics, 2000, 11, 351-371.

  20. Multiscale modeling of multi-decadal trends in air pollutant concentrations and their radiative properties: the role of models in an integrated observing system

    NASA Astrophysics Data System (ADS)

    Mathur, R.; Xing, J.; Szykman, J.; Gan, C. M.; Hogrefe, C.; Pleim, J. E.

    2015-12-01

    Air Pollution simulation models must address the increasing complexity arising from new model applications that treat multi-pollutant interactions across varying space and time scales. Setting and attaining lower ambient air quality standards requires an improved understanding and quantification of source attribution amongst the multiple anthropogenic and natural sources, on time scales ranging from episodic to annual and spatial scales ranging from urban to continental. Changing emission patterns over the developing regions of the world are likely to exacerbate the impacts of long-range pollutant transport on background pollutant levels, which may then impact the attainment of local air quality standards. Thus, strategies for reduction of pollution levels of surface air over a region are complicated not only by the interplay of local emissions sources and several complex physical, chemical, dynamical processes in the atmosphere, but also hemispheric background levels of pollutants. Additionally, as short-lived climate forcers, aerosols and ozone exert regionally heterogeneous radiative forcing and influence regional climate trends. EPA's coupled WRF-CMAQ modeling system is applied over a domain encompassing the northern hemisphere for the period spanning 1990-2010. This period has witnessed significant reductions in anthropogenic emissions in North America and Europe as a result of implementation of control measures and dramatic increases across Asia associated with economic and population growth, resulting in contrasting trends in air pollutant distributions and transport patterns across the northern hemisphere. Model results (trends in pollutant concentrations, optical and radiative characteristics) across the northern hemisphere are analyzed in conjunction with surface, aloft and remote sensing measurements to contrast the differing trends in air pollution and aerosol-radiation interactions in these regions over the past two decades. Given the future LEO (Trop

  1. High Resolution Time Series Cave Ventilation Processes and the Effects on Cave Air Chemistry and Drip Waters: Speleoclimatology and Proxy Calibration

    NASA Astrophysics Data System (ADS)

    Kowalczk, A. J.; Froelich, P. N.; Gaffka, C.; Tremaine, D.

    2008-12-01

    Continuous high resolution (sub-hourly), long-term (Nov 2007-present) monitoring of cave air chemistry (Temperature, Relative Humidity, Barometric Pressure, Radon-222, CO2, Air flow, Wind speed and direction) in a shallow subtropical cave (Hollow Ridge) in N Florida reveals two major ventilation mechanisms: 1) ventilation driven by winds across the cave entrances, and 2) ventilation driven by density differences between atmospheric and cave air. The degree and type of ventilation strongly influence the 222Rn and CO2 of cave air, which in turn affects the timing and extent of calcite deposition in speleothems. The degree of ventilation is estimated using a cave air CO2-δ13CO2 Keeling Plot, or a simple radon deficiency model. Results show cave air has an atmospheric component ranging from 10-90%. During fall and winter, average CO2 (700 ppmv) and 222Rn (50-100 dpm/L) are lower than in spring and summer (CO2 = 1200 ppmv; 222Rn = 1000 dpm/L) due to increased winter ventilation. Decreased ventilation during the summer allows CO2 and 222Rn levels to rise. Winter daily ventilation is primarily a function of density gradients between cave air and atmospheric air, while summer daily ventilation is primarily a function of late morning NW-NE winds above the cave. Stable isotope analyses of drip water (fracture drip and pore flow drip) and aquifer water from Hollow Ridge agree with previous isotope studies of drip water at Florida Caverns State Park, 2 km to the NE. During summer, isotopic composition of pore flow drip water (δ18O -3.8 to -4.0 per mil; δD -17.3 to -20.2 per mil VSMOW) and aquifer water (δ18O -4.0 per mil; δD -18.0 to -21.1 per mil) are similar to average annual weighted isotopic composition of precipitation (δ18O -3.6 per mil) while fracture drip waters (δ18O -3 to -3.4 per mil; δD -11.9 to -14.3 per mil) likely reflect the isotopic composition of individual precipitation events. Pore flow drip waters δ18O are weakly correlated with drip rates

  2. Validation of a novel air toxic risk model with air monitoring.

    PubMed

    Pratt, Gregory C; Dymond, Mary; Ellickson, Kristie; Thé, Jesse

    2012-01-01

    Three modeling systems were used to estimate human health risks from air pollution: two versions of MNRiskS (for Minnesota Risk Screening), and the USEPA National Air Toxics Assessment (NATA). MNRiskS is a unique cumulative risk modeling system used to assess risks from multiple air toxics, sources, and pathways on a local to a state-wide scale. In addition, ambient outdoor air monitoring data were available for estimation of risks and comparison with the modeled estimates of air concentrations. Highest air concentrations and estimated risks were generally found in the Minneapolis-St. Paul metropolitan area and lowest risks in undeveloped rural areas. Emissions from mobile and area (nonpoint) sources created greater estimated risks than emissions from point sources. Highest cancer risks were via ingestion pathway exposures to dioxins and related compounds. Diesel particles, acrolein, and formaldehyde created the highest estimated inhalation health impacts. Model-estimated air concentrations were generally highest for NATA and lowest for the AERMOD version of MNRiskS. This validation study showed reasonable agreement between available measurements and model predictions, although results varied among pollutants, and predictions were often lower than measurements. The results increased confidence in identifying pollutants, pathways, geographic areas, sources, and receptors of potential concern, and thus provide a basis for informing pollution reduction strategies and focusing efforts on specific pollutants (diesel particles, acrolein, and formaldehyde), geographic areas (urban centers), and source categories (nonpoint sources). The results heighten concerns about risks from food chain exposures to dioxins and PAHs. Risk estimates were sensitive to variations in methodologies for treating emissions, dispersion, deposition, exposure, and toxicity. © 2011 Society for Risk Analysis.

  3. Space based inverse modeling of seasonal variations of anthropogenic and natural emissions of nitrogen oxides over China and effects of uncertainties in model meteorology and chemistry

    NASA Astrophysics Data System (ADS)

    Lin, J.

    2011-12-01

    Nitrogen oxides (NOx ≡ NO + NO2) are important atmospheric constituents affecting the tropospheric chemistry, surface air quality and climatic forcing. They are emitted both from anthropogenic and from natural (soil, lightning, biomass burning, etc.) sources, which can be estimated inversely from satellite remote sensing of the vertical column densities (VCDs) of nitrogen dioxide (NO2) in the troposphere. Based on VCDs of NO2 retrieved from OMI, a novel approach is developed in this study to separate anthropogenic emissions of NOx from natural sources over East China for 2006. It exploits the fact that anthropogenic and natural emissions vary with seasons with distinctive patterns. The global chemical transport model (CTM) GEOS-Chem is used to establish the relationship between VCDs of NO2 and emissions of NOx for individual sources. Derived soil emissions are compared to results from a newly developed bottom-up approach. Effects of uncertainties in model meteorology and chemistry over China, an important source of errors in the emission inversion, are evaluated systematically for the first time. Meteorological measurements from space and the ground are used to analyze errors in meteorological parameters driving the CTM.

  4. FAST TRACK COMMUNICATION: Contrasting characteristics of sub-microsecond pulsed atmospheric air and atmospheric pressure helium-oxygen glow discharges

    NASA Astrophysics Data System (ADS)

    Walsh, J. L.; Liu, D. X.; Iza, F.; Rong, M. Z.; Kong, M. G.

    2010-01-01

    Glow discharges in air are often considered to be the ultimate low-temperature atmospheric pressure plasmas for numerous chamber-free applications. This is due to the ubiquitous presence of air and the perceived abundance of reactive oxygen and nitrogen species in air plasmas. In this paper, sub-microsecond pulsed atmospheric air plasmas are shown to produce a low concentration of excited oxygen atoms but an abundance of excited nitrogen species, UV photons and ozone molecules. This contrasts sharply with the efficient production of excited oxygen atoms in comparable helium-oxygen discharges. Relevant reaction chemistry analysed with a global model suggests that collisional excitation of O2 by helium metastables is significantly more efficient than electron dissociative excitation of O2, electron excitation of O and ion-ion recombination. These results suggest different practical uses of the two oxygen-containing atmospheric discharges, with air plasmas being well suited for nitrogen and UV based chemistry and He-O2 plasmas for excited atomic oxygen based chemistry.

  5. A Model of Titan-like Chemistry to Connect Experiments and Cassini Observations

    NASA Astrophysics Data System (ADS)

    Raymond, Alexander W.; Sciamma-O’Brien, Ella; Salama, Farid; Mazur, Eric

    2018-02-01

    A numerical model is presented for interpreting the chemical pathways that lead to the experimental mass spectra acquired in the Titan Haze Simulation (THS) laboratory experiments and for comparing the electron density and temperature of the THS plasma to observations made at Titan by the Cassini spacecraft. The THS plasma is a pulsed glow-discharge experiment designed to simulate the reaction of N2/CH4-dominated gas in Titan's upper atmosphere. The transient, one-dimensional model of THS chemistry tracks the evolution of more than 120 species in the direction of the plasma flow. As the minor species C2H2 and C2H4 are added to the N2/CH4-based mixture, the model correctly predicts the emergence of reaction products with up to five carbon atoms in relative abundances that agree well with measured mass spectra. Chemical growth in Titan's upper atmosphere transpires through ion–neutral and neutral–neutral chemistry, and the main reactions involving a series of known atmospheric species are retrieved from the calculation. The model indicates that the electron density and chemistry are steady during more than 99% of the 300 μs long discharge pulse. The model also suggests that the THS ionization fraction and electron temperature are comparable to those measured in Titan's upper atmosphere. These findings reaffirm that the THS plasma is a controlled analog environment for studying the first and intermediate steps of chemistry in Titan's upper atmosphere.

  6. GNAQPMS v1.1: accelerating the Global Nested Air Quality Prediction Modeling System (GNAQPMS) on Intel Xeon Phi processors

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Chen, Huansheng; Wu, Qizhong; Lin, Junmin; Chen, Xueshun; Xie, Xinwei; Wang, Rongrong; Tang, Xiao; Wang, Zifa

    2017-08-01

    The Global Nested Air Quality Prediction Modeling System (GNAQPMS) is the global version of the Nested Air Quality Prediction Modeling System (NAQPMS), which is a multi-scale chemical transport model used for air quality forecast and atmospheric environmental research. In this study, we present the porting and optimisation of GNAQPMS on a second-generation Intel Xeon Phi processor, codenamed Knights Landing (KNL). Compared with the first-generation Xeon Phi coprocessor (codenamed Knights Corner, KNC), KNL has many new hardware features such as a bootable processor, high-performance in-package memory and ISA compatibility with Intel Xeon processors. In particular, we describe the five optimisations we applied to the key modules of GNAQPMS, including the CBM-Z gas-phase chemistry, advection, convection and wet deposition modules. These optimisations work well on both the KNL 7250 processor and the Intel Xeon E5-2697 V4 processor. They include (1) updating the pure Message Passing Interface (MPI) parallel mode to the hybrid parallel mode with MPI and OpenMP in the emission, advection, convection and gas-phase chemistry modules; (2) fully employing the 512 bit wide vector processing units (VPUs) on the KNL platform; (3) reducing unnecessary memory access to improve cache efficiency; (4) reducing the thread local storage (TLS) in the CBM-Z gas-phase chemistry module to improve its OpenMP performance; and (5) changing the global communication from writing/reading interface files to MPI functions to improve the performance and the parallel scalability. These optimisations greatly improved the GNAQPMS performance. The same optimisations also work well for the Intel Xeon Broadwell processor, specifically E5-2697 v4. Compared with the baseline version of GNAQPMS, the optimised version was 3.51 × faster on KNL and 2.77 × faster on the CPU. Moreover, the optimised version ran at 26 % lower average power on KNL than on the CPU. With the combined performance and energy

  7. Impact of Enhanced Ozone Deposition and Halogen Chemistry on Tropospheric Ozone over the Northern Hemisphere.

    PubMed

    Sarwar, Golam; Gantt, Brett; Schwede, Donna; Foley, Kristen; Mathur, Rohit; Saiz-Lopez, Alfonso

    2015-08-04

    Fate of ozone in marine environments has been receiving increased attention due to the tightening of ambient air quality standards. The role of deposition and halogen chemistry is examined through incorporation of an enhanced ozone deposition algorithm and inclusion of halogen chemistry in a comprehensive atmospheric modeling system. The enhanced ozone deposition treatment accounts for the interaction of iodide in seawater with ozone and increases deposition velocities by 1 order of magnitude. Halogen chemistry includes detailed chemical reactions of organic and inorganic bromine and iodine species. Two different simulations are completed with the halogen chemistry: without and with photochemical reactions of higher iodine oxides. Enhanced deposition reduces mean summer-time surface ozone by ∼3% over marine regions in the Northern Hemisphere. Halogen chemistry without the photochemical reactions of higher iodine oxides reduces surface ozone by ∼15% whereas simulations with the photochemical reactions of higher iodine oxides indicate ozone reductions of ∼48%. The model without these processes overpredicts ozone compared to observations whereas the inclusion of these processes improves predictions. The inclusion of photochemical reactions for higher iodine oxides leads to ozone predictions that are lower than observations, underscoring the need for further refinement of the halogen emissions and chemistry scheme in the model.

  8. Chemistry Modeling for Aerothermodynamics and TPS

    NASA Technical Reports Server (NTRS)

    Wang, Dunyou; Stallcop, James R.; Dateo, Christopher e.; Schwenke, David W.; Halicioglu, Timur; Huo, winifred M.

    2005-01-01

    Recent advances in supercomputers and highly scalable quantum chemistry software render computational chemistry methods a viable means of providing chemistry data for aerothermal analysis at a specific level of confidence. Four examples of first principles quantum chemistry calculations will be presented. Study of the highly nonequilibrium rotational distribution of a nitrogen molecule from the exchange reaction N + N2 illustrates how chemical reactions can influence rotational distribution. The reaction C2H + H2 is one example of a radical reaction that occurs during hypersonic entry into an atmosphere containing methane. A study of the etching of a Si surface illustrates our approach to surface reactions. A recently developed web accessible database and software tool (DDD) that provides the radiation profile of diatomic molecules is also described.

  9. Chemistry Modeling for Aerothermodynamics and TPS

    NASA Technical Reports Server (NTRS)

    Wang, Dun-You; Stallcop, James R.; Dateo, Christopher E.; Schwenke, David W.; Haliciogiu, Timur; Huo, Winifred

    2004-01-01

    Recent advances in supercomputers and highly scalable quantum chemistry software render computational chemistry methods a viable means of providing chemistry data for aerothermal analysis at a specific level of confidence. Four examples of first principles quantum chemistry calculations will be presented. The study of the highly nonequilibrium rotational distribution of nitrogen molecule from the exchange reaction N + N2 illustrates how chemical reactions can influence the rotational distribution. The reaction C2H + H2 is one example of a radical reaction that occurs during hypersonic entry into a methane containing atmosphere. A study of the etching of Si surface illustrates our approach to surface reactions. A recently developed web accessible database and software tool (DDD) that provides the radiation profile of diatomic molecules is also described.

  10. Community Multiscale Air Quality Modeling System (CMAQ)

    EPA Pesticide Factsheets

    CMAQ is a computational tool used for air quality management. It models air pollutants including ozone, particulate matter and other air toxics to help determine optimum air quality management scenarios.

  11. Chemistry and dynamics of the Arctic winter 2015/2016: Simulations with the Chemistry-Climate Model EMAC

    NASA Astrophysics Data System (ADS)

    Khosrawi, Farahnaz; Kirner, Ole; Sinnhuber, Bjoern-Martin; Ruhnke, Roland; Hoepfner, Michael; Woiwode, Wolfgang; Oelhaf, Hermann; Santee, Michelle L.; Manney, Gloria L.; Froidevaux, Lucien; Murtagh, Donal; Braesicke, Peter

    2016-04-01

    Model simulations of the Arctic winter 2015/2016 were performed with the atmospheric chemistry-climate model ECHAM5/MESSy Atmospheric Chemistry (EMAC) for the POLSTRACC (Polar Stratosphere in a Changing Climate) project. The POLSTRACC project is a HALO mission (High Altitude and LOng Range Research Aircraft) that aims to investigate the structure, composition and evolution of the Arctic Upper Troposphere Lower Stratosphere (UTLS) in a changing climate. Especially, the chemical and physical processes involved in Arctic stratospheric ozone depletion, transport and mixing processes in the UTLS at high latitudes, polar stratospheric clouds as well as cirrus clouds are investigated. The model simulations were performed with a resolution of T42L90, corresponding to a quadratic Gaussian grid of approximately 2.8°× 2.8° degrees in latitude and longitude, and 90 vertical layers from the surface up to 0.01 hPa (approx. 80 km). A Newtonian relaxation technique of the prognostic variables temperature, vorticity, divergence and surface pressure towards ECMWF data was applied above the boundary layer and below 10 hPa, in order to nudge the model dynamics towards the observed meteorology. During the Arctic winter 2015/2016 a stable vortex formed in early December, with a cold pool where temperatures reached below the Nitric Acid Trihydrate (NAT) existence temperature of 195 K, thus allowing Polar Stratospheric Clouds (PSCs) to form. The early winter has been exceptionally cold and satellite observations indicate that sedimenting PSC particles have lead to denitrification as well as dehydration of stratospheric layers. In this presentation an overview of the chemistry and dynamics of the Arctic winter 2015/2016 as simulated with EMAC will be given and comparisons to satellite observations such as e.g. Aura/MLS and Odin/SMR will be shown.

  12. Diurnal variations of wildfire emissions in Europe: analysis of the MODIS and SEVIRI measurements in the framework of the regional scale air pollution modelling

    NASA Astrophysics Data System (ADS)

    Konovalov, Igor B.; Beekmann, Matthias; Kaiser, Johannes W.; Shudyaev, Anton A.; Yurova, Alla; Kuznetsova, Irina N.

    2013-04-01

    Wildfires episodically provide a major contribution to air pollution in many regions of the world. For example, the extreme air pollution level and strongly reduced visibility were observed in the Central European region of Russia during the intensive wildfire events in summer of 2010. Such episodes provide a strong impetus for further developments in air pollution modeling, aimed at improving the ability of chemistry transport models to simulate and predict evolution of atmospheric composition affected by wildfires. The main goals of our study are (1) to investigate the diurnal cycles of air pollutant emissions from wildfires in several European regions, taking into account the fire radiative power (FRP) satellite measurements for different vegetation land cover types and (2) to examine the possibilities of improving air pollution simulations by assimilating the diurnal variability of the FRP measurements performed by the polar orbiting (MODIS) and geostationary (SEVIRI) satellite instruments into a chemistry transport model. These goals are addressed for the case of wildfires occurred in summer 2010. The analysis of both the MODIS and SEVIRI data indicate that air pollutant emissions from wildfires in Europe in summer 2010 were typically much larger during daytime than during nighttime. The important exception is intensive fires around Moscow, featuring an almost "flat" diurnal cycle. These findings confirm the similar results reported earlier [1] but also extend them by attributing the flat diurnal cycle only to forest fires and by examining a hypothetical association of the "abnormal" diurnal cycle of FRP with peat fires. The derived diurnal variations of wildfire emissions have been used in the framework of the modeling system employed in our previous studies of the atmospheric effects of the 2010 Russian wildfires [2, 3]. The numerical experiments reveal that while the character of the diurnal variation of wildfire emissions has a rather small impact on the

  13. Selection of Authentic Modelling Practices as Contexts for Chemistry Education

    ERIC Educational Resources Information Center

    Prins, Gjalt T.; Bulte, Astrid M. W.; van Driel, Jan H.; Pilot, Albert

    2008-01-01

    In science education, students should come to understand the nature and significance of models. In the case of chemistry education it is argued that the present use of models is often not meaningful from the students' perspective. A strategy to overcome this problem is to use an authentic chemical modelling practice as a context for a curriculum…

  14. Uncertainty evaluation of mass values determined by electronic balances in analytical chemistry: a new method to correct for air buoyancy.

    PubMed

    Wunderli, S; Fortunato, G; Reichmuth, A; Richard, Ph

    2003-06-01

    A new method to correct for the largest systematic influence in mass determination-air buoyancy-is outlined. A full description of the most relevant influence parameters is given and the combined measurement uncertainty is evaluated according to the ISO-GUM approach [1]. A new correction method for air buoyancy using an artefact is presented. This method has the advantage that only a mass artefact is used to correct for air buoyancy. The classical approach demands the determination of the air density and therefore suitable equipment to measure at least the air temperature, the air pressure and the relative air humidity within the demanded uncertainties (i.e. three independent measurement tasks have to be performed simultaneously). The calculated uncertainty is lower for the classical method. However a field laboratory may not always be in possession of fully traceable measurement systems for these room climatic parameters.A comparison of three approaches applied to the calculation of the combined uncertainty of mass values is presented. Namely the classical determination of air buoyancy, the artefact method, and the neglecting of this systematic effect as proposed in the new EURACHEM/CITAC guide [2]. The artefact method is suitable for high-precision measurement in analytical chemistry and especially for the production of certified reference materials, reference values and analytical chemical reference materials. The method could also be used either for volume determination of solids or for air density measurement by an independent method.

  15. Impact of air exposure and surface chemistry on Li-Li 7La 3Zr 2O 12 interfacial resistance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharafi, Asma; Yu, Seungho; Naguib, Michael

    Li 7La 3Zr 2O 12 (LLZO) is a promising solid-state electrolyte that could enable solid-state-batteries (SSB) employing metallic Li anodes. For a SSB to be viable, the stability and charge transfer kinetics at the Li–LLZO interface should foster facile plating and stripping of Li. Contrary to these goals, recent studies have reported high Li–LLZO interfacial resistance which was attributed to a contamination layer that forms upon exposure of LLZO to air. This study clarifies the mechanisms and consequences associated with air exposure of LLZO; additionally, strategies to minimize these effects are described. First-principles calculations reveal that LLZO readily reacts withmore » humid air; the most favorable reaction pathway involves protonation of LLZO and formation of Li2CO3. X-ray photoelectron spectroscopy, scanning electron microscopy, Raman spectroscopy, and transmission electron microscopy were used to characterize the surface and subsurface chemistry of LLZO as a function of relative humidity and exposure time. Additionally, electrochemical impedance spectroscopy was used to measure the Li–LLZO interfacial resistance as a function of surface contamination. These data indicate that air exposure-induced contamination impacts the interfacial resistance significantly, when exposure time exceeds 24 h. The results of this study provide valuable insight into the sensitivity of LLZO to air and how the effects of air contamination can be reversed.« less

  16. Air carrier operations system model

    DOT National Transportation Integrated Search

    2001-03-01

    Representatives from the Federal Aviation Administration (FAA) and several 14 Code of Federal Regulations (CFR) Part 121 air carriers met several times during 1999-2000 to develop a system engineering model of the generic functions of air carrier ope...

  17. The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP): Overview and Description of Models, Simulations and Climate Diagnostics

    NASA Technical Reports Server (NTRS)

    Lamarque, J.-F.; Shindell, D. T.; Naik, V.; Plummer, D.; Josse, B.; Righi, M.; Rumbold, S. T.; Schulz, M.; Skeie, R. B.; Strode, S.; hide

    2013-01-01

    The Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) consists of a series of time slice experiments targeting the long-term changes in atmospheric composition between 1850 and 2100, with the goal of documenting composition changes and the associated radiative forcing. In this overview paper, we introduce the ACCMIP activity, the various simulations performed (with a requested set of 14) and the associated model output. The 16 ACCMIP models have a wide range of horizontal and vertical resolutions, vertical extent, chemistry schemes and interaction with radiation and clouds. While anthropogenic and biomass burning emissions were specified for all time slices in the ACCMIP protocol, it is found that the natural emissions are responsible for a significant range across models, mostly in the case of ozone precursors. The analysis of selected present-day climate diagnostics (precipitation, temperature, specific humidity and zonal wind) reveals biases consistent with state-of-the-art climate models. The model-to- model comparison of changes in temperature, specific humidity and zonal wind between 1850 and 2000 and between 2000 and 2100 indicates mostly consistent results. However, models that are clear outliers are different enough from the other models to significantly affect their simulation of atmospheric chemistry.

  18. The Extrapolar SWIFT model (version 1.0): fast stratospheric ozone chemistry for global climate models

    NASA Astrophysics Data System (ADS)

    Kreyling, Daniel; Wohltmann, Ingo; Lehmann, Ralph; Rex, Markus

    2018-03-01

    The Extrapolar SWIFT model is a fast ozone chemistry scheme for interactive calculation of the extrapolar stratospheric ozone layer in coupled general circulation models (GCMs). In contrast to the widely used prescribed ozone, the SWIFT ozone layer interacts with the model dynamics and can respond to atmospheric variability or climatological trends.The Extrapolar SWIFT model employs a repro-modelling approach, in which algebraic functions are used to approximate the numerical output of a full stratospheric chemistry and transport model (ATLAS). The full model solves a coupled chemical differential equation system with 55 initial and boundary conditions (mixing ratio of various chemical species and atmospheric parameters). Hence the rate of change of ozone over 24 h is a function of 55 variables. Using covariances between these variables, we can find linear combinations in order to reduce the parameter space to the following nine basic variables: latitude, pressure altitude, temperature, overhead ozone column and the mixing ratio of ozone and of the ozone-depleting families (Cly, Bry, NOy and HOy). We will show that these nine variables are sufficient to characterize the rate of change of ozone. An automated procedure fits a polynomial function of fourth degree to the rate of change of ozone obtained from several simulations with the ATLAS model. One polynomial function is determined per month, which yields the rate of change of ozone over 24 h. A key aspect for the robustness of the Extrapolar SWIFT model is to include a wide range of stratospheric variability in the numerical output of the ATLAS model, also covering atmospheric states that will occur in a future climate (e.g. temperature and meridional circulation changes or reduction of stratospheric chlorine loading).For validation purposes, the Extrapolar SWIFT model has been integrated into the ATLAS model, replacing the full stratospheric chemistry scheme. Simulations with SWIFT in ATLAS have proven that the

  19. Innovations in projecting emissions for air quality modeling

    EPA Science Inventory

    Air quality modeling is used in setting air quality standards and in evaluating their costs and benefits. Historically, modeling applications have projected emissions and the resulting air quality only 5 to 10 years into the future. Recognition that the choice of air quality mana...

  20. Circumstellar chemistry

    NASA Technical Reports Server (NTRS)

    Glassgold, Alfred E.; Huggins, Patrick J.

    1987-01-01

    The study of the outer envelopes of cool evolved stars has become an active area of research. The physical properties of CS envelopes are presented. Observations of many wavelengths bands are relevant. A summary of observations and a discussion of theoretical considerations concerning the chemistry are summarized. Recent theoretical considerations show that the thermal equilibrium model is of limited use for understanding the chemistry of the outer CS envelopes. The theoretical modeling of the chemistry of CS envelopes provides a quantitive test of chemical concepts which have a broader interest than the envelopes themselves.

  1. Halogen Chemistry in the CMAQ Model

    EPA Science Inventory

    Halogens (iodine and bromine) emitted from oceans alter atmospheric chemistry and influence atmospheric ozone mixing ratio. We previously incorporated a representation of detailed halogen chemistry and emissions of organic and inorganic halogen species into the hemispheric Commun...

  2. Evaluation of model-predicted hazardous air pollutants (HAPs) near a mid-sized U.S. airport

    NASA Astrophysics Data System (ADS)

    Vennam, Lakshmi Pradeepa; Vizuete, William; Arunachalam, Saravanan

    2015-10-01

    Accurate modeling of aircraft-emitted pollutants in the vicinity of airports is essential to study the impact on local air quality and to answer policy and health-impact related issues. To quantify air quality impacts of airport-related hazardous air pollutants (HAPs), we carried out a fine-scale (4 × 4 km horizontal resolution) Community Multiscale Air Quality model (CMAQ) model simulation at the T.F. Green airport in Providence (PVD), Rhode Island. We considered temporally and spatially resolved aircraft emissions from the new Aviation Environmental Design Tool (AEDT). These model predictions were then evaluated with observations from a field campaign focused on assessing HAPs near the PVD airport. The annual normalized mean error (NME) was in the range of 36-70% normalized mean error for all HAPs except for acrolein (>70%). The addition of highly resolved aircraft emissions showed only marginally incremental improvements in performance (1-2% decrease in NME) of some HAPs (formaldehyde, xylene). When compared to a coarser 36 × 36 km grid resolution, the 4 × 4 km grid resolution did improve performance by up to 5-20% NME for formaldehyde and acetaldehyde. The change in power setting (from traditional International Civil Aviation Organization (ICAO) 7% to observation studies based 4%) doubled the aircraft idling emissions of HAPs, but led to only a 2% decrease in NME. Overall modeled aircraft-attributable contributions are in the range of 0.5-28% near a mid-sized airport grid-cell with maximum impacts seen only within 4-16 km from the airport grid-cell. Comparison of CMAQ predictions with HAP estimates from EPA's National Air Toxics Assessment (NATA) did show similar annual mean concentrations and equally poor performance. Current estimates of HAPs for PVD are a challenge for modeling systems and refinements in our ability to simulate aircraft emissions have made only incremental improvements. Even with unrealistic increases in HAPs aviation emissions the model

  3. STEMS-Air: a simple GIS-based air pollution dispersion model for city-wide exposure assessment.

    PubMed

    Gulliver, John; Briggs, David

    2011-05-15

    Current methods of air pollution modelling do not readily meet the needs of air pollution mapping for short-term (i.e. daily) exposure studies. The main limiting factor is that for those few models that couple with a GIS there are insufficient tools for directly mapping air pollution both at high spatial resolution and over large areas (e.g. city wide). A simple GIS-based air pollution model (STEMS-Air) has been developed for PM(10) to meet these needs with the option to choose different exposure averaging periods (e.g. daily and annual). STEMS-Air uses the grid-based FOCALSUM function in ArcGIS in conjunction with a fine grid of emission sources and basic information on meteorology to implement a simple Gaussian plume model of air pollution dispersion. STEMS-Air was developed and validated in London, UK, using data on concentrations of PM(10) from routinely available monitoring data. Results from the validation study show that STEMS-Air performs well in predicting both daily (at four sites) and annual (at 30 sites) concentrations of PM(10). For daily modelling, STEMS-Air achieved r(2) values in the range 0.19-0.43 (p<0.001) based solely on traffic-related emissions and r(2) values in the range 0.41-0.63 (p<0.001) when adding information on 'background' levels of PM(10). For annual modelling of PM(10), the model returned r(2) in the range 0.67-0.77 (P<0.001) when compared with monitored concentrations. The model can thus be used for rapid production of daily or annual city-wide air pollution maps either as a screening process in urban air quality planning and management, or as the basis for health risk assessment and epidemiological studies. Crown Copyright © 2011. Published by Elsevier B.V. All rights reserved.

  4. A prescribed fire emission factors database for land management and air quality applications

    Treesearch

    E. Lincoln; WeiMin Hao; S. Baker; R. J. Yokelson; I. R. Burling; Shawn Urbanski; W. Miller; D. R. Weise; T. J. Johnson

    2010-01-01

    Prescribed fire is a significant emissions source in the U.S. and that needs to be adequately characterized in atmospheric transport/chemistry models. In addition, the Clean Air Act, its amendments, and air quality regulations require that prescribed fire managers estimate the quantity of emissions that a prescribed fire will produce. Several published papers contain a...

  5. AIR Model Preflight Analysis

    NASA Technical Reports Server (NTRS)

    Tai, H.; Wilson, J. W.; Maiden, D. L.

    2003-01-01

    The atmospheric ionizing radiation (AIR) ER-2 preflight analysis, one of the first attempts to obtain a relatively complete measurement set of the high-altitude radiation level environment, is described in this paper. The primary thrust is to characterize the atmospheric radiation and to define dose levels at high-altitude flight. A secondary thrust is to develop and validate dosimetric techniques and monitoring devices for protecting aircrews. With a few chosen routes, we can measure the experimental results and validate the AIR model predictions. Eventually, as more measurements are made, we gain more understanding about the hazardous radiation environment and acquire more confidence in the prediction models.

  6. Moving Towards Air Quality Models with Chemistry Linked to the Master Chemical Mechanism: CRI Performance in U.S. Regional Models

    EPA Science Inventory

    This presentation described implementation of the Common Representative Intermediate (CRI) atmospheric chemistry in CMAQ, a short analysis of its performance in CMAQ relative to other mechanisms and an example of the additional detail it gives us for understanding atmospheric che...

  7. Acceleration of the chemistry solver for modeling DI engine combustion using dynamic adaptive chemistry (DAC) schemes

    NASA Astrophysics Data System (ADS)

    Shi, Yu; Liang, Long; Ge, Hai-Wen; Reitz, Rolf D.

    2010-03-01

    Acceleration of the chemistry solver for engine combustion is of much interest due to the fact that in practical engine simulations extensive computational time is spent solving the fuel oxidation and emission formation chemistry. A dynamic adaptive chemistry (DAC) scheme based on a directed relation graph error propagation (DRGEP) method has been applied to study homogeneous charge compression ignition (HCCI) engine combustion with detailed chemistry (over 500 species) previously using an R-value-based breadth-first search (RBFS) algorithm, which significantly reduced computational times (by as much as 30-fold). The present paper extends the use of this on-the-fly kinetic mechanism reduction scheme to model combustion in direct-injection (DI) engines. It was found that the DAC scheme becomes less efficient when applied to DI engine simulations using a kinetic mechanism of relatively small size and the accuracy of the original DAC scheme decreases for conventional non-premixed combustion engine. The present study also focuses on determination of search-initiating species, involvement of the NOx chemistry, selection of a proper error tolerance, as well as treatment of the interaction of chemical heat release and the fuel spray. Both the DAC schemes were integrated into the ERC KIVA-3v2 code, and simulations were conducted to compare the two schemes. In general, the present DAC scheme has better efficiency and similar accuracy compared to the previous DAC scheme. The efficiency depends on the size of the chemical kinetics mechanism used and the engine operating conditions. For cases using a small n-heptane kinetic mechanism of 34 species, 30% of the computational time is saved, and 50% for a larger n-heptane kinetic mechanism of 61 species. The paper also demonstrates that by combining the present DAC scheme with an adaptive multi-grid chemistry (AMC) solver, it is feasible to simulate a direct-injection engine using a detailed n-heptane mechanism with 543 species

  8. Modeling study of biomass burning plumes and their impact on urban air quality; a case study of Santiago de Chile

    NASA Astrophysics Data System (ADS)

    Cuchiara, Gustavo C.; Rappenglück, Bernhard; Angelica Rubio, Maria; Lissi, Eduardo; Gramsch, Ernesto; Garreaud, Rene D.

    2017-04-01

    Wildfires are a significant direct source of atmospheric pollutants; on a global scale biomass burning is believed to be the largest source of primary fine particles in the atmosphere and the second largest source of trace gases after anthropogenic emission sources. During the summer of 2014, an intense forest and dry pasture wildfire occurred nearby the city of Santiago de Chile. The biomass-burning plume was transported towards the metropolitan area of Santiago and exacerbated the air quality in this region. In this study, we investigated this wildfire event using a forward plume-rise and a chemistry (WRF/Chem) simulation. These data sets provided an opportunity to validate a regional air-quality simulation over Santiago, and a unique case to assess the performance of biomass burning plume modeling in complex topography and validated against an established air quality network. The results from both meteorological and air quality models provide insights about the transport of biomass-burning plumes from the wildfire region towards the metropolitan region of Santiago de Chile. We studied a seven-day period between January 01-07, 2014, and the impact of biomass burning plume emissions estimated by Fire Inventory from NCAR version 1 (FINNv1) on the air quality of Santiago de Chile.

  9. Highway Air Pollution Dispersion Modeling : Preliminary Evaluation of Thirteen Models

    DOT National Transportation Integrated Search

    1978-06-01

    Thirteen highway air pollution dispersion models have been tested, using a portion of the Airedale air quality data base. The Transportation Air Pollution Studies (TAPS) System, a data base management system specifically designed for evaluating dispe...

  10. Highway Air Pollution Dispersion Modeling : Preliminary Evaluation of Thirteen Models

    DOT National Transportation Integrated Search

    1977-01-01

    Thirteen highway air pollution dispersion models have been tested, using a portion of the Airedale air quality data base. The Transportation Air Pollution Studies (TAPS) System, a data base management system specifically designed for evaluating dispe...

  11. Tropospheric jet response to Antarctic ozone depletion: An update with Chemistry-Climate Model Initiative (CCMI) models

    NASA Astrophysics Data System (ADS)

    Son, Seok-Woo; Han, Bo-Reum; Garfinkel, Chaim I.; Kim, Seo-Yeon; Park, Rokjin; Abraham, N. Luke; Akiyoshi, Hideharu; Archibald, Alexander T.; Butchart, N.; Chipperfield, Martyn P.; Dameris, Martin; Deushi, Makoto; Dhomse, Sandip S.; Hardiman, Steven C.; Jöckel, Patrick; Kinnison, Douglas; Michou, Martine; Morgenstern, Olaf; O’Connor, Fiona M.; Oman, Luke D.; Plummer, David A.; Pozzer, Andrea; Revell, Laura E.; Rozanov, Eugene; Stenke, Andrea; Stone, Kane; Tilmes, Simone; Yamashita, Yousuke; Zeng, Guang

    2018-05-01

    The Southern Hemisphere (SH) zonal-mean circulation change in response to Antarctic ozone depletion is re-visited by examining a set of the latest model simulations archived for the Chemistry-Climate Model Initiative (CCMI) project. All models reasonably well reproduce Antarctic ozone depletion in the late 20th century. The related SH-summer circulation changes, such as a poleward intensification of westerly jet and a poleward expansion of the Hadley cell, are also well captured. All experiments exhibit quantitatively the same multi-model mean trend, irrespective of whether the ocean is coupled or prescribed. Results are also quantitatively similar to those derived from the Coupled Model Intercomparison Project phase 5 (CMIP5) high-top model simulations in which the stratospheric ozone is mostly prescribed with monthly- and zonally-averaged values. These results suggest that the ozone-hole-induced SH-summer circulation changes are robust across the models irrespective of the specific chemistry-atmosphere-ocean coupling.

  12. Use of North American and European Air Quality Networks to Evaluate Global Chemistry-Climate Modeling of Surface Ozone

    NASA Technical Reports Server (NTRS)

    Schnell, J. L.; Prather, M. J.; Josse, B.; Naik, V.; Horowitz, L. W.; Cameron-Smith, P.; Bergmann, D.; Zeng, G.; Plummer, D. A.; Sudo, K.; hide

    2015-01-01

    We test the current generation of global chemistry-climate models in their ability to simulate observed, present-day surface ozone. Models are evaluated against hourly surface ozone from 4217 stations in North America and Europe that are averaged over 1 degree by 1 degree grid cells, allowing commensurate model-measurement comparison. Models are generally biased high during all hours of the day and in all regions. Most models simulate the shape of regional summertime diurnal and annual cycles well, correctly matching the timing of hourly (approximately 15:00 local time (LT)) and monthly (mid-June) peak surface ozone abundance. The amplitude of these cycles is less successfully matched. The observed summertime diurnal range (25 ppb) is underestimated in all regions by about 7 parts per billion, and the observed seasonal range (approximately 21 parts per billion) is underestimated by about 5 parts per billion except in the most polluted regions, where it is overestimated by about 5 parts per billion. The models generally match the pattern of the observed summertime ozone enhancement, but they overestimate its magnitude in most regions. Most models capture the observed distribution of extreme episode sizes, correctly showing that about 80 percent of individual extreme events occur in large-scale, multi-day episodes of more than 100 grid cells. The models also match the observed linear relationship between episode size and a measure of episode intensity, which shows increases in ozone abundance by up to 6 parts per billion for larger-sized episodes. We conclude that the skill of the models evaluated here provides confidence in their projections of future surface ozone.

  13. Turbulent transport and chemistry of isoprene and monoterpenes within and above tropical forest canopies

    NASA Astrophysics Data System (ADS)

    Gerken, T.; Chamecki, M.; Fuentes, J. D.; Stoy, P. C.; Trowbridge, A.; Wei, D.

    2016-12-01

    The Amazon rainforest and other rainforests emit large quantities of biogenic volatile organic compounds (BVOCs), including isoprene and monoterpenes, which react with and produce atmospheric oxidants such as ozone and the hydroxyl radical. Some of the resulting reaction products condense to form secondary organic aerosols, which due to the typically clean tropical air can make up a large portion of the total atmospheric aerosols and may thus impact cloud development and regional climate. To better understand the role of tropical forests on cloud development and climate, it is necessary to quantify not only BVOC emissions, but also turbulent transport and the resulting atmospheric chemistry within both the forest canopy and atmospheric boundary-layer. To date, most research has ignored within-canopy chemical processes that are typically not resolved in regional models that treat the forest as a lower boundary condition. We use canopy-resolving Large Eddy Simulation (LES) to study the role of turbulence and chemistry in the isoprene lifetime under conditions observed during a 2014 field campaign in central Amazonia. The LES includes a simple chemical mechanism for the oxidation of isoprene and aggregated monoterpenes (34 reactions), which we use to quantify the impact of within-canopy and boundary-layer processes on the transport and air chemistry of isoprene, monoterpenes, and primary reaction products on their export at the top of the boundary layer. LES results show air parcel residence times in the dense Amazon rainforest, which govern the time available for in-canopy reactions, to range from a few seconds near the canopy top to 30 minutes near the ground. Such residence times are comparable to chemical lifetimes of many reactive species and the convective eddy turnover timescale. Additionally, monoterpene oxidation with ambient ozone levels can increase within-canopy hydroxyl radical concentrations from 5 x 104 to 3 x 105 radicals cm-3, thus greatly increasing

  14. Finite-Difference Solution for Laminar or Turbulent Boundary Layer Flow over Axisymmetric Bodies with Ideal Gas, CF4, or Equilibrium Air Chemistry

    NASA Technical Reports Server (NTRS)

    Hamilton, H. Harris, II; Millman, Daniel R.; Greendyke, Robert B.

    1992-01-01

    A computer code was developed that uses an implicit finite-difference technique to solve nonsimilar, axisymmetric boundary layer equations for both laminar and turbulent flow. The code can treat ideal gases, air in chemical equilibrium, and carbon tetrafluoride (CF4), which is a useful gas for hypersonic blunt-body simulations. This is the only known boundary layer code that can treat CF4. Comparisons with experimental data have demonstrated that accurate solutions are obtained. The method should prove useful as an analysis tool for comparing calculations with wind tunnel experiments and for making calculations about flight vehicles where equilibrium air chemistry assumptions are valid.

  15. Finite-difference solution for laminar or turbulent boundary layer flow over axisymmetric bodies with ideal gas, CF4, or equilibrium air chemistry

    NASA Astrophysics Data System (ADS)

    Hamilton, H. Harris, II; Millman, Daniel R.; Greendyke, Robert B.

    1992-12-01

    A computer code was developed that uses an implicit finite-difference technique to solve nonsimilar, axisymmetric boundary layer equations for both laminar and turbulent flow. The code can treat ideal gases, air in chemical equilibrium, and carbon tetrafluoride (CF4), which is a useful gas for hypersonic blunt-body simulations. This is the only known boundary layer code that can treat CF4. Comparisons with experimental data have demonstrated that accurate solutions are obtained. The method should prove useful as an analysis tool for comparing calculations with wind tunnel experiments and for making calculations about flight vehicles where equilibrium air chemistry assumptions are valid.

  16. Air Quality Response Modeling for Decision Support | Science ...

    EPA Pesticide Factsheets

    Air quality management relies on photochemical models to predict the responses of pollutant concentrations to changes in emissions. Such modeling is especially important for secondary pollutants such as ozone and fine particulate matter which vary nonlinearly with changes in emissions. Numerous techniques for probing pollutant-emission relationships within photochemical models have been developed and deployed for a variety of decision support applications. However, atmospheric response modeling remains complicated by the challenge of validating sensitivity results against observable data. This manuscript reviews the state of the science of atmospheric response modeling as well as efforts to characterize the accuracy and uncertainty of sensitivity results. The National Exposure Research Laboratory′s (NERL′s) Atmospheric Modeling and Analysis Division (AMAD) conducts research in support of EPA′s mission to protect human health and the environment. AMAD′s research program is engaged in developing and evaluating predictive atmospheric models on all spatial and temporal scales for forecasting the Nation′s air quality and for assessing changes in air quality and air pollutant exposures, as affected by changes in ecosystem management and regulatory decisions. AMAD is responsible for providing a sound scientific and technical basis for regulatory policies based on air quality models to improve ambient air quality. The models developed by AMAD are being use

  17. How does Interactive Chemistry Influence the Representation of Stratosphere-Troposphere Coupling in a Climate Model?

    NASA Astrophysics Data System (ADS)

    Haase, S.; Matthes, K. B.

    2017-12-01

    Changes in stratospheric ozone can trigger tropospheric circulation changes. In the Southern hemisphere (SH), the observed shift of the Southern Annular Mode was attributed to the observed trend in lower stratospheric ozone. In the Northern Hemisphere (NH), a recent study showed that extremely low stratospheric ozone conditions during spring produce robust anomalies in the troposphere (zonal wind, temperature and precipitation). This could only be reproduced in a coupled chemistry climate model indicating that chemical-dynamical feedbacks are also important on the NH. To further investigate the importance of interactive chemistry for surface climate, we conducted a set of experiments using NCAR's Community Earth System Model (CESM1) with the Whole Atmosphere Community Climate Model (WACCM) as the atmosphere component. WACCM contains a fully interactive stratospheric chemistry module in its standard configuration. It also allows for an alternative configuration, referred to as SC-WACCM, in which the chemistry (O3, NO, O, O2, CO2 and chemical and shortwave heating rates) is specified as a 2D field in the radiation code. A comparison of the interactive vs. the specified chemistry version enables us to evaluate the relative importance of interactive chemistry by systematically inhibiting the feedbacks between chemistry and dynamics. To diminish the effect of temporal interpolation when prescribing ozone, we use daily resolved zonal mean ozone fields for the specified chemistry run. Here, we investigate the differences in stratosphere-troposphere coupling between the interactive and specified chemistry simulations for the mainly chemically driven SH as well as for the mainly dynamically driven NH. We will especially consider years that are characterized by extremely low stratospheric ozone on the one hand and by large dynamical disturbances, i.e. Sudden Stratospheric Warmings, on the other hand.

  18. Effects of '"Environmental Chemistry" Elective Course via Technology-Embedded Scientific Inquiry Model on Some Variables

    ERIC Educational Resources Information Center

    Çalik, Muammer; Özsevgeç, Tuncay; Ebenezer, Jazlin; Artun, Hüseyin; Küçük, Zeynel

    2014-01-01

    The purpose of this study is to examine the effects of "environmental chemistry" elective course via Technology-Embedded Scientific Inquiry (TESI) model on senior science student teachers' (SSSTs) conceptions of environmental chemistry concepts/issues, attitudes toward chemistry, and technological pedagogical content knowledge…

  19. Nonequilibrium radiation and chemistry models for aerocapture vehicle flowfields

    NASA Technical Reports Server (NTRS)

    Carlson, Leland A.

    1990-01-01

    The primary tasks during January 1990 to June 1990 have been the development and evaluation of various electron and electron-electronic energy equation models, the continued development of improved nonequilibrium radiation models for molecules and atoms, and the continued development and investigation of precursor models and their effects. In addition, work was initiated to develop a vibrational model for the viscous shock layer (VSL) nonequilibrium chemistry blunt body engineering code. Also, an effort was started associated with the effects of including carbon species, say from an ablator, in the flowfield.

  20. The chemistry-climate model ECHAM6.3-HAM2.3-MOZ1.0

    NASA Astrophysics Data System (ADS)

    Schultz, Martin G.; Stadtler, Scarlet; Schröder, Sabine; Taraborrelli, Domenico; Franco, Bruno; Krefting, Jonathan; Henrot, Alexandra; Ferrachat, Sylvaine; Lohmann, Ulrike; Neubauer, David; Siegenthaler-Le Drian, Colombe; Wahl, Sebastian; Kokkola, Harri; Kühn, Thomas; Rast, Sebastian; Schmidt, Hauke; Stier, Philip; Kinnison, Doug; Tyndall, Geoffrey S.; Orlando, John J.; Wespes, Catherine

    2018-05-01

    The chemistry-climate model ECHAM-HAMMOZ contains a detailed representation of tropospheric and stratospheric reactive chemistry and state-of-the-art parameterizations of aerosols using either a modal scheme (M7) or a bin scheme (SALSA). This article describes and evaluates the model version ECHAM6.3-HAM2.3-MOZ1.0 with a focus on the tropospheric gas-phase chemistry. A 10-year model simulation was performed to test the stability of the model and provide data for its evaluation. The comparison to observations concentrates on the year 2008 and includes total column observations of ozone and CO from IASI and OMI, Aura MLS observations of temperature, HNO3, ClO, and O3 for the evaluation of polar stratospheric processes, an ozonesonde climatology, surface ozone observations from the TOAR database, and surface CO data from the Global Atmosphere Watch network. Global budgets of ozone, OH, NOx, aerosols, clouds, and radiation are analyzed and compared to the literature. ECHAM-HAMMOZ performs well in many aspects. However, in the base simulation, lightning NOx emissions are very low, and the impact of the heterogeneous reaction of HNO3 on dust and sea salt aerosol is too strong. Sensitivity simulations with increased lightning NOx or modified heterogeneous chemistry deteriorate the comparison with observations and yield excessively large ozone budget terms and too much OH. We hypothesize that this is an impact of potential issues with tropical convection in the ECHAM model.

  1. The Pimlico Chemistry Trail.

    ERIC Educational Resources Information Center

    Borrows, Peter

    1984-01-01

    Describes a chemistry "trail" (similar to a nature trail) which focuses on chemical phenomena in the environment. The trail includes 20 stops in and around a local school. Types of phenomena examined include building materials, air pollution, corrosion of metals, swimming pools, and others. Additional activities are also suggested. (DH)

  2. Lessons Learned from the Bay Region Atmospheric Chemistry Experiment (BRACE) and Implications for Nitrogen Management of Tampa Bay

    EPA Science Inventory

    Results from air quality modeling and field measurements made as part of the Bay Region Atmospheric Chemistry Experiment (BRACE) along with related scientific literature were reviewed to provide an improved estimate of atmospheric reactive nitrogen (N) deposition to Tampa Bay, to...

  3. Frozen Chemistry Effects on Nozzle Performance Simulations

    NASA Technical Reports Server (NTRS)

    Yoder, Dennis A.; Georgiadis, Nicholas J.; O'Gara, Michael R.

    2009-01-01

    Simulations of exhaust nozzle flows are typically conducted assuming the gas is calorically perfect, and typically modeled as air. However the gas inside a real nozzle is generally composed of combustion products whose thermodynamic properties may differ. In this study, the effect of gas model assumption on exhaust nozzle simulations is examined. The three methods considered model the nozzle exhaust gas as calorically perfect air, a calorically perfect exhaust gas mixture, and a frozen exhaust gas mixture. In the latter case the individual non-reacting species are tracked and modeled as a gas which is only thermally perfect. Performance parameters such as mass flow rate, gross thrust, and thrust coefficient are compared as are mean flow and turbulence profiles in the jet plume region. Nozzles which operate at low temperatures or have low subsonic exit Mach numbers experience relatively minor temperature variations inside the nozzle, and may be modeled as a calorically perfect gas. In those which operate at the opposite extreme conditions, variations in the thermodynamic properties can lead to different expansion behavior within the nozzle. Modeling these cases as a perfect exhaust gas flow rather than air captures much of the flow features of the frozen chemistry simulations. Use of the exhaust gas reduces the nozzle mass flow rate, but has little effect on the gross thrust. When reporting nozzle thrust coefficient results, however, it is important to use the appropriate gas model assumptions to compute the ideal exit velocity. Otherwise the values obtained may be an overly optimistic estimate of nozzle performance.

  4. Using WRF-Chem to investigate the impact of night time nitrate radical chemistry and N2O5 heterogeneous chemistry on the chemical composition of the UK troposphere.

    NASA Astrophysics Data System (ADS)

    Archer-Nicholls, S.; Lowe, D.; Utembe, S.; McFiggans, G.

    2012-04-01

    It is believed that NO3 is the primary oxidant at night time, significantly impacting ozone formation, rain acidification and the formation and transformation of aerosols, particularly through the formation of the ammonium nitrate particulate (Allan et. al., 2000). However, many of the basic chemical processes controlling the formation and removal of NO3, in particular, the N2O5 heterogeneous reactions, are often not represented in models, although general parameterisations have been developed (c.f. Bertram & Thornton, 2009). The ROle of Night time chemistry in controlling the Oxidising Capacity of the atmOsphere (RONOCO) campaign is a project being funded by NERC and being carried out by a collaboration of UK Universities. It aims to better understand the role of the NO3 radical on the chemistry of the night time atmosphere, its oxidation capacity and thus its overall effects on the composition of the troposphere. The Weather Research and Forecasting model with Chemistry (WRF-Chem) is a state of the art regional climate model with fully coupled online air quality and meteorological components allowing for better resolution of aerosol and gas-phase chemistry (Grell et. al., 2005). It has been extended to include the Common Representative Intermediates scheme (CRIv2-R5) (Watson et. al., 2008), a reduced chemical scheme designed to simulate the atmospheric degradation of 220 species of hydrocarbons and VOCs. The MOSAIC aerosol scheme (Zaveri et. al., 2008), has been extended to include a reduced complexity condensed organic phase consisting of 13 semi-volatile and 2 involatile species (Topping et. al., 2012), as well as the N2O5 heterogeneous reaction scheme of Bertram & Thornton (2009). We aim to use WRF-Chem to compare the oxidation capacity of nighttime NO3 chemistry with that of daytime OH chemistry. The model was run using two nested grids: a 15km resolution domain over western Europe, containing a 5km resolution domain over the UK. The RONOCO campaign consisted

  5. Evaluation of an instructional model to teach clinically relevant medicinal chemistry in a campus and a distance pathway.

    PubMed

    Alsharif, Naser Z; Galt, Kimberly A

    2008-04-15

    To evaluate an instructional model for teaching clinically relevant medicinal chemistry. An instructional model that uses Bloom's cognitive and Krathwohl's affective taxonomy, published and tested concepts in teaching medicinal chemistry, and active learning strategies, was introduced in the medicinal chemistry courses for second-professional year (P2) doctor of pharmacy (PharmD) students (campus and distance) in the 2005-2006 academic year. Student learning and the overall effectiveness of the instructional model were assessed. Student performance after introducing the instructional model was compared to that in prior years. Student performance on course examinations improved compared to previous years. Students expressed overall enthusiasm about the course and better understood the value of medicinal chemistry to clinical practice. The explicit integration of the cognitive and affective learning objectives improved student performance, student ability to apply medicinal chemistry to clinical practice, and student attitude towards the discipline. Testing this instructional model provided validation to this theoretical framework. The model is effective for both our campus and distance-students. This instructional model may also have broad-based applications to other science courses.

  6. Wintertime ozone and nitrogen oxide photochemistry and nighttime chemistry in a Western oil and gas basin

    NASA Astrophysics Data System (ADS)

    Brown, S. S.; Edwards, P. M.; Patel, S.; Dube, W. P.; Williams, E. J.; Roberts, J. M.; McLaren, R.; Kercher, J. P.; Gilman, J. B.; Lerner, B. M.; Warneke, C.; Geiger, F.; De Gouw, J. A.; Tsai, C.; Stutz, J.; Young, C. J.; Washenfelder, R. A.; Parrish, D. D.

    2012-12-01

    Oil and gas development in mountain basins of the Western United States has led to frequent exceedences of National Ambient Air Quality Standards for ozone during the winter season. The Uintah Basin Winter Ozone Study took place during February and March 2012 in northeast Utah with the goal of providing detailed chemical and meteorological data to understand this phenomenon. Although snow and cold pool stagnation conditions that lead to winter ozone buildup were not encountered during the study period, the detailed measurements did provide a unique data set to understand the chemistry of key air pollutants in a desert environment during winter. This presentation will examine both the photochemistry and the nighttime chemistry of nitrogen oxides, ozone and VOCs, with the goal of understanding the observed photochemistry and its relationship to nighttime chemistry through a set of box models. The photochemical box model is based on the master chemical mechanism (MCM), a detailed model for VOC degradation and ozone production. The presentation will examine the sensitivity of ozone photochemistry to different parameters, including pollutant concentrations likely to be characteristic of cold pool conditions, and the strength of radical sources derived from heterogeneous chemical reactions. The goal of the analysis will be to identify the factors most likely to be responsible for the higher ozone events that have been observed during colder years with less detailed chemical measurements.

  7. Chemistry Experiments

    NASA Technical Reports Server (NTRS)

    Brasseur, Guy; Remsberg, Ellis; Purcell, Patrick; Bhatt, Praful; Sage, Karen H.; Brown, Donald E.; Scott, Courtney J.; Ko, Malcolm K. W.; Tie, Xue-Xi; Huang, Theresa

    1999-01-01

    The purpose of the chemistry component of the model comparison is to assess to what extent differences in the formulation of chemical processes explain the variance between model results. Observed concentrations of chemical compounds are used to estimate to what degree the various models represent realistic situations. For readability, the materials for the chemistry experiment are reported in three separate sections. This section discussed the data used to evaluate the models in their simulation of the source gases and the Nitrogen compounds (NO(y)) and Chlorine compounds (Cl(y)) species.

  8. Air quality modelling in the Berlin-Brandenburg region using WRF-Chem v3.7.1: sensitivity to resolution of model grid and input data

    NASA Astrophysics Data System (ADS)

    Kuik, Friderike; Lauer, Axel; Churkina, Galina; Denier van der Gon, Hugo A. C.; Fenner, Daniel; Mar, Kathleen A.; Butler, Tim M.

    2016-12-01

    Air pollution is the number one environmental cause of premature deaths in Europe. Despite extensive regulations, air pollution remains a challenge, especially in urban areas. For studying summertime air quality in the Berlin-Brandenburg region of Germany, the Weather Research and Forecasting Model with Chemistry (WRF-Chem) is set up and evaluated against meteorological and air quality observations from monitoring stations as well as from a field campaign conducted in 2014. The objective is to assess which resolution and level of detail in the input data is needed for simulating urban background air pollutant concentrations and their spatial distribution in the Berlin-Brandenburg area. The model setup includes three nested domains with horizontal resolutions of 15, 3 and 1 km and anthropogenic emissions from the TNO-MACC III inventory. We use RADM2 chemistry and the MADE/SORGAM aerosol scheme. Three sensitivity simulations are conducted updating input parameters to the single-layer urban canopy model based on structural data for Berlin, specifying land use classes on a sub-grid scale (mosaic option) and downscaling the original emissions to a resolution of ca. 1 km × 1 km for Berlin based on proxy data including traffic density and population density. The results show that the model simulates meteorology well, though urban 2 m temperature and urban wind speeds are biased high and nighttime mixing layer height is biased low in the base run with the settings described above. We show that the simulation of urban meteorology can be improved when specifying the input parameters to the urban model, and to a lesser extent when using the mosaic option. On average, ozone is simulated reasonably well, but maximum daily 8 h mean concentrations are underestimated, which is consistent with the results from previous modelling studies using the RADM2 chemical mechanism. Particulate matter is underestimated, which is partly due to an underestimation of secondary organic aerosols

  9. Assimilation of surface NO2 and O3 observations into the SILAM chemistry transport model

    NASA Astrophysics Data System (ADS)

    Vira, J.; Sofiev, M.

    2015-02-01

    This paper describes the assimilation of trace gas observations into the chemistry transport model SILAM (System for Integrated modeLling of Atmospheric coMposition) using the 3D-Var method. Assimilation results for the year 2012 are presented for the prominent photochemical pollutants ozone (O3) and nitrogen dioxide (NO2). Both species are covered by the AirBase observation database, which provides the observational data set used in this study. Attention was paid to the background and observation error covariance matrices, which were obtained primarily by the iterative application of a posteriori diagnostics. The diagnostics were computed separately for 2 months representing summer and winter conditions, and further disaggregated by time of day. This enabled the derivation of background and observation error covariance definitions, which included both seasonal and diurnal variation. The consistency of the obtained covariance matrices was verified using χ2 diagnostics. The analysis scores were computed for a control set of observation stations withheld from assimilation. Compared to a free-running model simulation, the correlation coefficient for daily maximum values was improved from 0.8 to 0.9 for O3 and from 0.53 to 0.63 for NO2.

  10. Chemistry and Transport In a Multi-Dimensional Model

    NASA Technical Reports Server (NTRS)

    Yung, Yuk L.; Allen, M.; Zurek, R. W.; Salawitch, R. J.

    2002-01-01

    The focus of the work funded under this proposal is the exchange between the stratosphere and the troposphere, and between the troposphere and the blaspheme. These two interfaces represent the frontiers of atmospheric chemistry. It is the combination of exchange processes at both interfaces that ultimately controls how the blaspheme (including human activities) affects the ozone layer. The modeling work was motivated by and attempts to integrate information obtained by aircraft, spacecraft, shuttle and oceanic measurements. The model development and research activities accomplished in the past three years provide a technical and intellectual basis for the research in this group. The innovative part of our research program is related to the IAV of ozone and the hydrological cycle. Other related but independently supported work include the study of isotopic fractionation of atmospheric species, e.g., N2O and CO2. Our theory suggests that we now have the ability to probe the middle atmosphere at a level of sensitivity where subtle details such as the isotopic composition of simple molecules can yield measurable systematic effects. This creates the possibility for probing the chemistry and dynamics of the middle atmosphere using all of the N2O and CO2 isotopologues. In the following we will briefly describe the model development and review the highlights of recent accomplishments.

  11. GEM-AQ, an On-line Global Multiscale Chemical Weather System: Model Description and Evaluation of Gas Phase Chemistry Processes

    NASA Astrophysics Data System (ADS)

    Neary, L.; Kaminski, J. W.; Struzewska, J.; Ainslie, B.; McConnell, J. C.

    2007-12-01

    Tropospheric chemistry and air quality processes were implemented on-line in the Global Environmental Multiscale model. The integrated model, GEM-AQ, has been developed as a platform to investigate chemical weather at scales from global to urban. On the global scale, the model was exercised for five years (2001-2005) to evaluate its ability to simulate seasonal variations and regional distributions of trace gases such as ozone, nitrogen dioxide and carbon monoxide. The model results are compared with observations from satellites, aircraft measurement campaigns and balloon sondes. The same model has also been evaluated on the regional (~15km resolution) and urban scale (~3km resolution). A simulation of the formation and transport of photooxidants during the European heat wave of 2006 was performed and compared with surface observations throughout central and eastern Europe. The complex topographic region of the Lower Fraser Valley in British Columbia was the focus of another model evaluation during the PACIFIC 2001 field campaign. Comparison of model results with observations during this period will be shown.

  12. Comparing and evaluating model estimates of background ozone in surface air over North America

    NASA Astrophysics Data System (ADS)

    Oberman, J.; Fiore, A. M.; Lin, M.; Zhang, L.; Jacob, D. J.; Naik, V.; Horowitz, L. W.

    2011-12-01

    Tropospheric ozone adversely affects human health and vegetation, and is thus a criteria pollutant regulated by the U.S. Environmental Protection Agency (EPA) under the National Ambient Air Quality Standard (NAAQS). Ozone is produced in the atmosphere via photo-oxidation of volatile organic compounds (VOCs) and carbon monoxide (CO) in the presence of nitrogen oxides (NOx). The present EPA approach considers health risks associated with exposure to ozone enhancement above the policy-relevant background (PRB), which is currently defined as the surface concentration of ozone that would exist without North American anthropogenic emissions. PRB thus includes production by natural precursors, production by precursors emitted on foreign continents, and transport of stratospheric ozone into surface air. As PRB is not an observable quantity, it must be estimated using numerical models. We compare PRB estimates for the year 2006 from the GFDL Atmospheric Model 3 (AM3) chemistry-climate model (CCM) and the GEOS-Chem (GC) chemical transport model (CTM). We evaluate the skill of the models in reproducing total surface ozone observed at the U.S. Clean Air Status and Trends Network (CASTNet), dividing the stations into low-elevation (< 1.5 km in altitude, primarily eastern) and high-elevation (> 1.5 km in altitude, all western) subgroups. At the low-elevation sites AM3 estimates of PRB (38±9 ppbv in spring, 27±9 ppbv in summer) are higher than GC (27±7 ppbv in spring, 21±8 ppbv in summer) in both seasons. Analysis at these sites is complicated by a positive bias in AM3 total ozone with respect to the observed total ozone, the source of which is yet unclear. At high-elevation sites, AM3 PRB is higher in the spring (47±8 ppbv) than in the summer (33±8 ppbv). In contrast, GC simulates little seasonal variation at high elevation sites (39±5 ppbv in spring vs. 38±7 ppbv in summer). Seasonal average total ozone at these sites was within 4 ppbv of the observations for both

  13. InMAP: A model for air pollution interventions

    DOE PAGES

    Tessum, Christopher W.; Hill, Jason D.; Marshall, Julian D.; ...

    2017-04-19

    Mechanistic air pollution modeling is essential in air quality management, yet the extensive expertise and computational resources required to run most models prevent their use in many situations where their results would be useful. We present InMAP (Intervention Model for Air Pollution), which offers an alternative to comprehensive air quality models for estimating the air pollution health impacts of emission reductions and other potential interventions. InMAP estimates annual-average changes in primary and secondary fine particle (PM2.5) concentrations—the air pollution outcome generally causing the largest monetized health damages–attributable to annual changes in precursor emissions. InMAP leverages pre-processed physical and chemical informationmore » from the output of a state-of-the-science chemical transport model and a variable spatial resolution computational grid to perform simulations that are several orders of magnitude less computationally intensive than comprehensive model simulations. In comparisons we run, InMAP recreates comprehensive model predictions of changes in total PM2.5 concentrations with population-weighted mean fractional bias (MFB) of -17% and population-weighted R2 = 0.90. Although InMAP is not specifically designed to reproduce total observed concentrations, it is able to do so within published air quality model performance criteria for total PM2.5. Potential uses of InMAP include studying exposure, health, and environmental justice impacts of potential shifts in emissions for annual-average PM2.5. InMAP can be trained to run for any spatial and temporal domain given the availability of appropriate simulation output from a comprehensive model. The InMAP model source code and input data are freely available online under an open-source license.« less

  14. InMAP: A model for air pollution interventions

    PubMed Central

    Hill, Jason D.; Marshall, Julian D.

    2017-01-01

    Mechanistic air pollution modeling is essential in air quality management, yet the extensive expertise and computational resources required to run most models prevent their use in many situations where their results would be useful. Here, we present InMAP (Intervention Model for Air Pollution), which offers an alternative to comprehensive air quality models for estimating the air pollution health impacts of emission reductions and other potential interventions. InMAP estimates annual-average changes in primary and secondary fine particle (PM2.5) concentrations—the air pollution outcome generally causing the largest monetized health damages–attributable to annual changes in precursor emissions. InMAP leverages pre-processed physical and chemical information from the output of a state-of-the-science chemical transport model and a variable spatial resolution computational grid to perform simulations that are several orders of magnitude less computationally intensive than comprehensive model simulations. In comparisons run here, InMAP recreates comprehensive model predictions of changes in total PM2.5 concentrations with population-weighted mean fractional bias (MFB) of −17% and population-weighted R2 = 0.90. Although InMAP is not specifically designed to reproduce total observed concentrations, it is able to do so within published air quality model performance criteria for total PM2.5. Potential uses of InMAP include studying exposure, health, and environmental justice impacts of potential shifts in emissions for annual-average PM2.5. InMAP can be trained to run for any spatial and temporal domain given the availability of appropriate simulation output from a comprehensive model. The InMAP model source code and input data are freely available online under an open-source license. PMID:28423049

  15. InMAP: A model for air pollution interventions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tessum, Christopher W.; Hill, Jason D.; Marshall, Julian D.

    Mechanistic air pollution modeling is essential in air quality management, yet the extensive expertise and computational resources required to run most models prevent their use in many situations where their results would be useful. We present InMAP (Intervention Model for Air Pollution), which offers an alternative to comprehensive air quality models for estimating the air pollution health impacts of emission reductions and other potential interventions. InMAP estimates annual-average changes in primary and secondary fine particle (PM2.5) concentrations—the air pollution outcome generally causing the largest monetized health damages–attributable to annual changes in precursor emissions. InMAP leverages pre-processed physical and chemical informationmore » from the output of a state-of-the-science chemical transport model and a variable spatial resolution computational grid to perform simulations that are several orders of magnitude less computationally intensive than comprehensive model simulations. In comparisons we run, InMAP recreates comprehensive model predictions of changes in total PM2.5 concentrations with population-weighted mean fractional bias (MFB) of -17% and population-weighted R2 = 0.90. Although InMAP is not specifically designed to reproduce total observed concentrations, it is able to do so within published air quality model performance criteria for total PM2.5. Potential uses of InMAP include studying exposure, health, and environmental justice impacts of potential shifts in emissions for annual-average PM2.5. InMAP can be trained to run for any spatial and temporal domain given the availability of appropriate simulation output from a comprehensive model. The InMAP model source code and input data are freely available online under an open-source license.« less

  16. An advanced modeling study on the impacts and atmospheric implications of multiphase dimethyl sulfide chemistry

    PubMed Central

    Hoffmann, Erik Hans; Tilgner, Andreas; Schrödner, Roland; Bräuer, Peter; Wolke, Ralf; Herrmann, Hartmut

    2016-01-01

    Oceans dominate emissions of dimethyl sulfide (DMS), the major natural sulfur source. DMS is important for the formation of non-sea salt sulfate (nss-SO42−) aerosols and secondary particulate matter over oceans and thus, significantly influence global climate. The mechanism of DMS oxidation has accordingly been investigated in several different model studies in the past. However, these studies had restricted oxidation mechanisms that mostly underrepresented important aqueous-phase chemical processes. These neglected but highly effective processes strongly impact direct product yields of DMS oxidation, thereby affecting the climatic influence of aerosols. To address these shortfalls, an extensive multiphase DMS chemistry mechanism, the Chemical Aqueous Phase Radical Mechanism DMS Module 1.0, was developed and used in detailed model investigations of multiphase DMS chemistry in the marine boundary layer. The performed model studies confirmed the importance of aqueous-phase chemistry for the fate of DMS and its oxidation products. Aqueous-phase processes significantly reduce the yield of sulfur dioxide and increase that of methyl sulfonic acid (MSA), which is needed to close the gap between modeled and measured MSA concentrations. Finally, the simulations imply that multiphase DMS oxidation produces equal amounts of MSA and sulfate, a result that has significant implications for nss-SO42− aerosol formation, cloud condensation nuclei concentration, and cloud albedo over oceans. Our findings show the deficiencies of parameterizations currently used in higher-scale models, which only treat gas-phase chemistry. Overall, this study shows that treatment of DMS chemistry in both gas and aqueous phases is essential to improve the accuracy of model predictions. PMID:27688763

  17. Whole Atmosphere Community Climate Model With Lower Ionospheric Chemistry: Improved Modeling of Nitric Acid and Active Chlorine During Energetic Particle Precipitation

    NASA Astrophysics Data System (ADS)

    Verronen, P. T.; Andersson, M. E.; Marsh, D. R.; Kovacs, T.; Plane, J. M. C.; Päivärinta, S. M.

    2016-12-01

    Energetic particle precipitation (EPP) and ion chemistry affect the neutral composition of the polar middle atmosphere. For example, production of odd nitrogen and odd hydrogen during EPP events can decrease ozone by tens of percent. However, the standard ion chemistry parameterizations used in atmospheric models neglect the effects on some important species, such as nitric acid. We present WACCM-D, a variant of the Whole Atmosphere Community Climate Model, which includes a set of lower ionosphere (D-region) chemistry: 307 reactions of 20 positive ions and 21 negative ions. Compared to the Sodankylä Ion and Neutral Chemistry (SIC), a state-of-the-art 1-D model of the D-region chemistry, WACCM-D represents the lower ionosphere well. Comparison of ion concentrations between the models shows that the WACCM-D bias is typically within ±10% or less below 70 km. At 70-90 km, when strong altitude gradients in ionization rates and/or ion concentrations exist, the bias can be larger for some ions but is still within tens of percent. We also compare WACCM-D results for the January 2005 solar proton event (SPE) to those from the standard WACCM and observations from the Aura/MLS and SCISAT/ACE-FTS instruments. The results indicate that WACCM-D improves the modeling of {HNO3}, {HCl}, {ClO}, {OH}, and {NOx} during the SPE. For example, Northern Hemispheric {HNO3} from WACCM-D shows an increase by two orders of magnitude at 40-70 km compared to WACCM, reaching 2.6 ppbv, in agreement with the observations. Based on our results, WACCM-D provides a state-of-the-art global representation of D-region ion chemistry and improves modeling of EPP atmospheric effects considerably.

  18. Isoprene derived secondary organic aerosol in a global aerosol chemistry climate model

    NASA Astrophysics Data System (ADS)

    Stadtler, Scarlet; Kühn, Thomas; Taraborrelli, Domenico; Kokkola, Harri; Schultz, Martin

    2017-04-01

    Secondary organic aerosol (SOA) impacts earth's climate and human health. Since its precursor chemistry and its formation are not fully understood, climate models cannot catch its direct and indirect effects. Global isoprene emissions are higher than any other non-methane hydrocarbons. Therefore, SOA from isoprene-derived, low volatile species (iSOA) is simulated using a global aerosol chemistry climate model ECHAM6-HAM-SALSA-MOZ. Isoprene oxidation in the chemistry model MOZ is following a novel semi-explicit scheme, embedded in a detailed atmospheric chemical mechanism. For iSOA formation four low volatile isoprene oxidation products were identified. The group method by Nanoonlal et al. 2008 was used to estimate their evaporation enthalpies ΔHvap. To calculate the saturation concentration C∗(T) the sectional aerosol model SALSA uses the gas phase concentrations simulated by MOZ and their corresponding ΔHvap to obtain the saturation vapor pressure p∗(T) from the Clausius Clapeyron equation. Subsequently, the saturation concentration is used to calculate the explicit kinetic partitioning of these compounds forming iSOA. Furthermore, the irreversible heterogeneous reactions of IEPOX and glyoxal from isoprene were included. The possibility of reversible heterogeneous uptake was ignored at this stage, leading to an upper estimate of the contribution of glyoxal to iSOA mass.

  19. Robustness analysis of a green chemistry-based model for the ...

    EPA Pesticide Factsheets

    This paper proposes a robustness analysis based on Multiple Criteria Decision Aiding (MCDA). The ensuing model was used to assess the implementation of green chemistry principles in the synthesis of silver nanoparticles. Its recommendations were also compared to an earlier developed model for the same purpose to investigate concordance between the models and potential decision support synergies. A three-phase procedure was adopted to achieve the research objectives. Firstly, an ordinal ranking of the evaluation criteria used to characterize the implementation of green chemistry principles was identified through relative ranking analysis. Secondly, a structured selection process for an MCDA classification method was conducted, which ensued in the identification of Stochastic Multi-Criteria Acceptability Analysis (SMAA). Lastly, the agreement of the classifications by the two MCDA models and the resulting synergistic role of decision recommendations were studied. This comparison showed that the results of the two models agree between 76% and 93% of the simulation set-ups and it confirmed that different MCDA models provide a more inclusive and transparent set of recommendations. This integrative research confirmed the beneficial complementary use of MCDA methods to aid responsible development of nanosynthesis, by accounting for multiple objectives and helping communication of complex information in a comprehensive and traceable format, suitable for stakeholders and

  20. Linking Meteorology, Air Quality Models and Observations to ...

    EPA Pesticide Factsheets

    Epidemiologic studies are critical in establishing the association between exposure to air pollutants and adverse health effects. Results of epidemiologic studies are used by U.S. EPA in developing air quality standards to protect the public from the health effects of air pollutants. A major challenge in environmental epidemiology is adequate exposure characterization. Numerous health studies have used measurements from a few central-site ambient monitors to characterize air pollution exposures. Relying solely on central-site ambient monitors does not account for the spatial-heterogeneity of ambient air pollution patterns, the temporal variability in ambient concentrations, nor the influence of infiltration and indoor sources. Central-site monitoring becomes even more problematic for certain air pollutants that exhibit significant spatial heterogeneity. Statistical interpolation techniques and passive monitoring methods can provide additional spatial resolution in ambient concentration estimates. In addition, spatio-temporal models, which integrate GIS data and other factors, such as meteorology, have also been developed to produce more resolved estimates of ambient concentrations. Models, such as the Community Multi-Scale Air Quality (CMAQ) model, estimate ambient concentrations by combining information on meteorology, source emissions, and chemical-fate and transport. Hybrid modeling approaches, which integrate regional scale models with local scale dispersion

  1. A general method for the inclusion of radiation chemistry in astrochemical models.

    PubMed

    Shingledecker, Christopher N; Herbst, Eric

    2018-02-21

    In this paper, we propose a general formalism that allows for the estimation of radiolysis decomposition pathways and rate coefficients suitable for use in astrochemical models, with a focus on solid phase chemistry. Such a theory can help increase the connection between laboratory astrophysics experiments and astrochemical models by providing a means for modelers to incorporate radiation chemistry into chemical networks. The general method proposed here is targeted particularly at the majority of species now included in chemical networks for which little radiochemical data exist; however, the method can also be used as a starting point for considering better studied species. We here apply our theory to the irradiation of H 2 O ice and compare the results with previous experimental data.

  2. Sketching the Invisible to Predict the Visible: From Drawing to Modeling in Chemistry.

    PubMed

    Cooper, Melanie M; Stieff, Mike; DeSutter, Dane

    2017-10-01

    Sketching as a scientific practice goes beyond the simple act of inscribing diagrams onto paper. Scientists produce a wide range of representations through sketching, as it is tightly coupled to model-based reasoning. Chemists in particular make extensive use of sketches to reason about chemical phenomena and to communicate their ideas. However, the chemical sciences have a unique problem in that chemists deal with the unseen world of the atomic-molecular level. Using sketches, chemists strive to develop causal mechanisms that emerge from the structure and behavior of molecular-level entities, to explain observations of the macroscopic visible world. Interpreting these representations and constructing sketches of molecular-level processes is a crucial component of student learning in the modern chemistry classroom. Sketches also serve as an important component of assessment in the chemistry classroom as student sketches give insight into developing mental models, which allows instructors to observe how students are thinking about a process. In this paper we discuss how sketching can be used to promote such model-based reasoning in chemistry and discuss two case studies of curricular projects, CLUE and The Connected Chemistry Curriculum, that have demonstrated a benefit of this approach. We show how sketching activities can be centrally integrated into classroom norms to promote model-based reasoning both with and without component visualizations. Importantly, each of these projects deploys sketching in support of other types of inquiry activities, such as making predictions or depicting models to support a claim; sketching is not an isolated activity but is used as a tool to support model-based reasoning in the discipline. Copyright © 2017 Cognitive Science Society, Inc.

  3. Kinetic mechanism of molecular energy transfer and chemical reactions in low-temperature air-fuel plasmas.

    PubMed

    Adamovich, Igor V; Li, Ting; Lempert, Walter R

    2015-08-13

    This work describes the kinetic mechanism of coupled molecular energy transfer and chemical reactions in low-temperature air, H2-air and hydrocarbon-air plasmas sustained by nanosecond pulse discharges (single-pulse or repetitive pulse burst). The model incorporates electron impact processes, state-specific N(2) vibrational energy transfer, reactions of excited electronic species of N(2), O(2), N and O, and 'conventional' chemical reactions (Konnov mechanism). Effects of diffusion and conduction heat transfer, energy coupled to the cathode layer and gasdynamic compression/expansion are incorporated as quasi-zero-dimensional corrections. The model is exercised using a combination of freeware (Bolsig+) and commercial software (ChemKin-Pro). The model predictions are validated using time-resolved measurements of temperature and N(2) vibrational level populations in nanosecond pulse discharges in air in plane-to-plane and sphere-to-sphere geometry; temperature and OH number density after nanosecond pulse burst discharges in lean H(2)-air, CH(4)-air and C(2)H(4)-air mixtures; and temperature after the nanosecond pulse discharge burst during plasma-assisted ignition of lean H2-mixtures, showing good agreement with the data. The model predictions for OH number density in lean C(3)H(8)-air mixtures differ from the experimental results, over-predicting its absolute value and failing to predict transient OH rise and decay after the discharge burst. The agreement with the data for C(3)H(8)-air is improved considerably if a different conventional hydrocarbon chemistry reaction set (LLNL methane-n-butane flame mechanism) is used. The results of mechanism validation demonstrate its applicability for analysis of plasma chemical oxidation and ignition of low-temperature H(2)-air, CH(4)-air and C(2)H(4)-air mixtures using nanosecond pulse discharges. Kinetic modelling of low-temperature plasma excited propane-air mixtures demonstrates the need for development of a more accurate

  4. Symposium on PhD Education in Chemistry: A Four-Year Model for the PhD Degree Program in Chemistry.

    ERIC Educational Resources Information Center

    Burke, James D.

    1988-01-01

    Proposes an educational model for chemistry PhD education that emphasizes productivity and centrality of research. Supports greater development of communication skills and suggests a four-year timeline. Listed is a curriculum usable for most sciences. (ML)

  5. Influence of air quality model resolution on uncertainty associated with health impacts

    NASA Astrophysics Data System (ADS)

    Thompson, T. M.; Selin, N. E.

    2012-06-01

    We use regional air quality modeling to evaluate the impact of model resolution on uncertainty associated with the human health benefits resulting from proposed air quality regulations. Using a regional photochemical model (CAMx), we ran a modeling episode with meteorological inputs representing conditions as they occurred during August through September 2006, and two emissions inventories (a 2006 base case and a 2018 proposed control scenario, both for Houston, Texas) at 36, 12, 4 and 2 km resolution. The base case model performance was evaluated for each resolution against daily maximum 8-h averaged ozone measured at monitoring stations. Results from each resolution were more similar to each other than they were to measured values. Population-weighted ozone concentrations were calculated for each resolution and applied to concentration response functions (with 95% confidence intervals) to estimate the health impacts of modeled ozone reduction from the base case to the control scenario. We found that estimated avoided mortalities were not significantly different between 2, 4 and 12 km resolution runs, but 36 km resolution may over-predict some potential health impacts. Given the cost/benefit analysis requirements of the Clean Air Act, the uncertainty associated with human health impacts and therefore the results reported in this study, we conclude that health impacts calculated from population weighted ozone concentrations obtained using regional photochemical models at 36 km resolution fall within the range of values obtained using fine (12 km or finer) resolution modeling. However, in some cases, 36 km resolution may not be fine enough to statistically replicate the results achieved using 2 and 4 km resolution. On average, when modeling at 36 km resolution, 7 deaths per ozone month were avoided because of ozone reductions resulting from the proposed emissions reductions (95% confidence interval was 2-9). When modeling at 2, 4 or 12 km finer scale resolution, on

  6. Measurements of PANs during the New England Air Quality Study 2002

    NASA Astrophysics Data System (ADS)

    Roberts, J. M.; Marchewka, M.; Bertman, S. B.; Sommariva, R.; Warneke, C.; de Gouw, J.; Kuster, W.; Goldan, P.; Williams, E.; Lerner, B. M.; Murphy, P.; Fehsenfeld, F. C.

    2007-10-01

    Measurements of peroxycarboxylic nitric anhydrides (PANs) were made during the New England Air Quality Study 2002 cruise of the NOAA RV Ronald H Brown. The four compounds observed, PAN, peroxypropionic nitric anhydride (PPN), peroxymethacrylic nitric anhydride (MPAN), and peroxyisobutyric nitric anhydride (PiBN) were compared with results from other continental and Gulf of Maine sites. Systematic changes in PPN/PAN ratio, due to differential thermal decomposition rates, were related quantitatively to air mass aging. At least one early morning period was observed when O3 seemed to have been lost probably due to NO3 and N2O5 chemistry. The highest O3 episode was observed in the combined plume of isoprene sources and anthropogenic volatile organic compounds (VOCs) and NOx sources from the greater Boston area. A simple linear combination model showed that the organic precursors leading to elevated O3 were roughly half from the biogenic and half from anthropogenic VOC regimes. An explicit chemical box model confirmed that the chemistry in the Boston plume is well represented by the simple linear combination model. This degree of biogenic hydrocarbon involvement in the production of photochemical ozone has significant implications for air quality control strategies in this region.

  7. Net Influence of an Internally Generated Guasi-biennial Oscillation on Modelled Stratospheric Climate and Chemistry

    NASA Technical Reports Server (NTRS)

    Hurwitz, Margaret M.; Oman, Luke David; Newman, Paul A.; Song, InSun

    2013-01-01

    A Goddard Earth Observing System Chemistry- Climate Model (GEOSCCM) simulation with strong tropical non-orographic gravity wave drag (GWD) is compared to an otherwise identical simulation with near-zero tropical non-orographic GWD. The GEOSCCM generates a quasibiennial oscillation (QBO) zonal wind signal in response to a tropical peak in GWD that resembles the zonal and climatological mean precipitation field. The modelled QBO has a frequency and amplitude that closely resembles observations. As expected, the modelled QBO improves the simulation of tropical zonal winds and enhances tropical and subtropical stratospheric variability. Also, inclusion of the QBO slows the meridional overturning circulation, resulting in a generally older stratospheric mean age of air. Slowing of the overturning circulation, changes in stratospheric temperature and enhanced subtropical mixing all affect the annual mean distributions of ozone, methane and nitrous oxide. Furthermore, the modelled QBO enhances polar stratospheric variability in winter. Because tropical zonal winds are easterly in the simulation without a QBO, there is a relative increase in tropical zonal winds in the simulation with a QBO. Extratropical differences between the simulations with and without a QBO thus reflect the westerly shift in tropical zonal winds: a relative strengthening of the polar stratospheric jet, polar stratospheric cooling and a weak reduction in Arctic lower stratospheric ozone.

  8. Evaluation of an Instructional Model to Teach Clinically Relevant Medicinal Chemistry in a Campus and a Distance Pathway

    PubMed Central

    Galt, Kimberly A.

    2008-01-01

    Objectives To evaluate an instructional model for teaching clinically relevant medicinal chemistry. Methods An instructional model that uses Bloom's cognitive and Krathwohl's affective taxonomy, published and tested concepts in teaching medicinal chemistry, and active learning strategies, was introduced in the medicinal chemistry courses for second-professional year (P2) doctor of pharmacy (PharmD) students (campus and distance) in the 2005-2006 academic year. Student learning and the overall effectiveness of the instructional model were assessed. Student performance after introducing the instructional model was compared to that in prior years. Results Student performance on course examinations improved compared to previous years. Students expressed overall enthusiasm about the course and better understood the value of medicinal chemistry to clinical practice. Conclusion The explicit integration of the cognitive and affective learning objectives improved student performance, student ability to apply medicinal chemistry to clinical practice, and student attitude towards the discipline. Testing this instructional model provided validation to this theoretical framework. The model is effective for both our campus and distance-students. This instructional model may also have broad-based applications to other science courses. PMID:18483599

  9. Representation of the Community Earth System Model (CESM1) CAM4-chem within the Chemistry-Climate Model Initiative (CCMI)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tilmes, Simone; Lamarque, Jean -Francois; Emmons, Louisa K.

    The Community Earth System Model (CESM1) CAM4-chem has been used to perform the Chemistry Climate Model Initiative (CCMI) reference and sensitivity simulations. In this model, the Community Atmospheric Model version 4 (CAM4) is fully coupled to tropospheric and stratospheric chemistry. Details and specifics of each configuration, including new developments and improvements are described. CESM1 CAM4-chem is a low-top model that reaches up to approximately 40 km and uses a horizontal resolution of 1.9° latitude and 2.5° longitude. For the specified dynamics experiments, the model is nudged to Modern-Era Retrospective Analysis for Research and Applications (MERRA) reanalysis. We summarize the performance ofmore » the three reference simulations suggested by CCMI, with a focus on the last 15 years of the simulation when most observations are available. Comparisons with selected data sets are employed to demonstrate the general performance of the model. We highlight new data sets that are suited for multi-model evaluation studies. Most important improvements of the model are the treatment of stratospheric aerosols and the corresponding adjustments for radiation and optics, the updated chemistry scheme including improved polar chemistry and stratospheric dynamics and improved dry deposition rates. These updates lead to a very good representation of tropospheric ozone within 20 % of values from available observations for most regions. In particular, the trend and magnitude of surface ozone is much improved compared to earlier versions of the model. Furthermore, stratospheric column ozone of the Southern Hemisphere in winter and spring is reasonably well represented. In conclusion, all experiments still underestimate CO most significantly in Northern Hemisphere spring and show a significant underestimation of hydrocarbons based on surface observations.« less

  10. Representation of the Community Earth System Model (CESM1) CAM4-chem within the Chemistry-Climate Model Initiative (CCMI)

    DOE PAGES

    Tilmes, Simone; Lamarque, Jean -Francois; Emmons, Louisa K.; ...

    2016-05-20

    The Community Earth System Model (CESM1) CAM4-chem has been used to perform the Chemistry Climate Model Initiative (CCMI) reference and sensitivity simulations. In this model, the Community Atmospheric Model version 4 (CAM4) is fully coupled to tropospheric and stratospheric chemistry. Details and specifics of each configuration, including new developments and improvements are described. CESM1 CAM4-chem is a low-top model that reaches up to approximately 40 km and uses a horizontal resolution of 1.9° latitude and 2.5° longitude. For the specified dynamics experiments, the model is nudged to Modern-Era Retrospective Analysis for Research and Applications (MERRA) reanalysis. We summarize the performance ofmore » the three reference simulations suggested by CCMI, with a focus on the last 15 years of the simulation when most observations are available. Comparisons with selected data sets are employed to demonstrate the general performance of the model. We highlight new data sets that are suited for multi-model evaluation studies. Most important improvements of the model are the treatment of stratospheric aerosols and the corresponding adjustments for radiation and optics, the updated chemistry scheme including improved polar chemistry and stratospheric dynamics and improved dry deposition rates. These updates lead to a very good representation of tropospheric ozone within 20 % of values from available observations for most regions. In particular, the trend and magnitude of surface ozone is much improved compared to earlier versions of the model. Furthermore, stratospheric column ozone of the Southern Hemisphere in winter and spring is reasonably well represented. In conclusion, all experiments still underestimate CO most significantly in Northern Hemisphere spring and show a significant underestimation of hydrocarbons based on surface observations.« less

  11. Bioinorganic modeling chemistry of carbon monoxide dehydrogenases: description of model complexes, current status and possible future scopes.

    PubMed

    Majumdar, Amit

    2014-08-28

    Carbon monoxide dehydrogenases (CODHs) use CO as their sole source of carbon and energy and are found in both aerobic and anaerobic carboxidotrophic bacteria. Reversible transformation of CO to CO2 is catalyzed by a bimetallic [Mo-(μ2-S)-Cu] system in aerobic and by a highly asymmetric [Ni-Fe-S] cluster in anaerobic CODH active sites. The CODH activity in the microorganisms effects the removal of almost 10(8) tons of CO annually from the lower atmosphere and earth and thus help to maintain a sub-toxic concentration of CO. Despite an appreciable amount of work, the mechanism of CODH activity is not clearly understood yet. Moreover, biomimetic chemistry directed towards the active sites of CODHs faces several synthetic challenges. The synthetic problems associated with the modeling chemistry and strategies adopted to overcome those problems are discussed along with their limitations. A critical analysis of the exciting results delineating the present status of CODH modeling chemistry and its future prospects are presented.

  12. Study and modeling of finite rate chemistry effects in turbulent non-premixed flames

    NASA Technical Reports Server (NTRS)

    Vervisch, Luc

    1993-01-01

    The development of numerical models that reflect some of the most important features of turbulent reacting flows requires information about the behavior of key quantities in well defined combustion regimes. In turbulent flames, the coupling between turbulent and chemical processes is so strong that it is extremely difficult to isolate the role played by one individual physical phenomenon. Direct numerical simulation (hereafter DNS) allows us to study in detail the turbulence-chemistry interaction in some restricted but completely defined situations. Globally, non-premixed flames are controlled by two limiting regimes: the fast chemistry case, where the turbulent flame can be pictured as a random distribution of local chemical equilibrium problems; and the slow chemistry case, where the chemistry integrates in time the turbulent fluctuations. The Damkoehler number, ratio of a mechanical time scale to chemical time scale, is used to distinguish between these regimes. Today most of the industrial computer codes are able to perform predictions in the hypothesis of local equilibrium chemistry using a presumed shape for the probability density function (pdt) of the conserved scalar. However, the finite rate chemistry situation is of great interest because industrial burners usually generate regimes in which, at some points, the flame is undergoing local extinction or at least non-equilibrium situations. Moreover, this variety of situations strongly influences the production of pollutants. To quantify finite rate chemistry effect, the interaction between a non-premixed flame and a free decaying turbulence is studied using DNS. The attention is focused on the dynamic of extinction, and an attempt is made to quantify the effect of the reaction on the small scale mixing process. The unequal diffusivity effect is also addressed. Finally, a simple turbulent combustion model based on the DNS observations and tractable in real flow configurations is proposed.

  13. The Atlanta Urban Heat Island Mitigation and Air Quality Modeling Project: How High-Resoution Remote Sensing Data Can Improve Air Quality Models

    NASA Technical Reports Server (NTRS)

    Quattrochi, Dale A.; Estes, Maurice G., Jr.; Crosson, William L.; Khan, Maudood N.

    2006-01-01

    The Atlanta Urban Heat Island and Air Quality Project had its genesis in Project ATLANTA (ATlanta Land use Analysis: Temperature and Air quality) that began in 1996. Project ATLANTA examined how high-spatial resolution thermal remote sensing data could be used to derive better measurements of the Urban Heat Island effect over Atlanta. We have explored how these thermal remote sensing, as well as other imaged datasets, can be used to better characterize the urban landscape for improved air quality modeling over the Atlanta area. For the air quality modeling project, the National Land Cover Dataset and the local scale Landpro99 dataset at 30m spatial resolutions have been used to derive land use/land cover characteristics for input into the MM5 mesoscale meteorological model that is one of the foundations for the Community Multiscale Air Quality (CMAQ) model to assess how these data can improve output from CMAQ. Additionally, land use changes to 2030 have been predicted using a Spatial Growth Model (SGM). SGM simulates growth around a region using population, employment and travel demand forecasts. Air quality modeling simulations were conducted using both current and future land cover. Meteorological modeling simulations indicate a 0.5 C increase in daily maximum air temperatures by 2030. Air quality modeling simulations show substantial differences in relative contributions of individual atmospheric pollutant constituents as a result of land cover change. Enhanced boundary layer mixing over the city tends to offset the increase in ozone concentration expected due to higher surface temperatures as a result of urbanization.

  14. Impact of inherent meteorology uncertainty on air quality ...

    EPA Pesticide Factsheets

    It is well established that there are a number of different classifications and sources of uncertainties in environmental modeling systems. Air quality models rely on two key inputs, namely, meteorology and emissions. When using air quality models for decision making, it is important to understand how uncertainties in these inputs affect the simulated concentrations. Ensembles are one method to explore how uncertainty in meteorology affects air pollution concentrations. Most studies explore this uncertainty by running different meteorological models or the same model with different physics options and in some cases combinations of different meteorological and air quality models. While these have been shown to be useful techniques in some cases, we present a technique that leverages the initial condition perturbations of a weather forecast ensemble, namely, the Short-Range Ensemble Forecast system to drive the four-dimensional data assimilation in the Weather Research and Forecasting (WRF)-Community Multiscale Air Quality (CMAQ) model with a key focus being the response of ozone chemistry and transport. Results confirm that a sizable spread in WRF solutions, including common weather variables of temperature, wind, boundary layer depth, clouds, and radiation, can cause a relatively large range of ozone-mixing ratios. Pollutant transport can be altered by hundreds of kilometers over several days. Ozone-mixing ratios of the ensemble can vary as much as 10–20 ppb

  15. A review of AirQ Models and their applications for forecasting the air pollution health outcomes.

    PubMed

    Oliveri Conti, Gea; Heibati, Behzad; Kloog, Itai; Fiore, Maria; Ferrante, Margherita

    2017-03-01

    Even though clean air is considered as a basic requirement for the maintenance of human health, air pollution continues to pose a significant health threat in developed and developing countries alike. Monitoring and modeling of classic and emerging pollutants is vital to our knowledge of health outcomes in exposed subjects and to our ability to predict them. The ability to anticipate and manage changes in atmospheric pollutant concentrations relies on an accurate representation of the chemical state of the atmosphere. The task of providing the best possible analysis of air pollution thus requires efficient computational tools enabling efficient integration of observational data into models. A number of air quality models have been developed and play an important role in air quality management. Even though a large number of air quality models have been discussed or applied, their heterogeneity makes it difficult to select one approach above the others. This paper provides a brief review on air quality models with respect to several aspects such as prediction of health effects.

  16. Modeling Human Serum Albumin Tertiary Structure to Teach Upper-Division Chemistry Students Bioinformatics and Homology Modeling Basics

    ERIC Educational Resources Information Center

    Petrovic, Dus?an; Zlatovic´, Mario

    2015-01-01

    A homology modeling laboratory experiment has been developed for an introductory molecular modeling course for upper-division undergraduate chemistry students. With this experiment, students gain practical experience in homology model preparation and assessment as well as in protein visualization using the educational version of PyMOL…

  17. A Process Model for the Comprehension of Organic Chemistry Notation

    ERIC Educational Resources Information Center

    Havanki, Katherine L.

    2012-01-01

    This dissertation examines the cognitive processes individuals use when reading organic chemistry equations and factors that affect these processes, namely, visual complexity of chemical equations and participant characteristics (expertise, spatial ability, and working memory capacity). A six stage process model for the comprehension of organic…

  18. Graduate Student Outreach: Model of a One-Day "Chemistry Camp" for Elementary School Students

    ERIC Educational Resources Information Center

    Houck, Joseph D.; Machamer, Natalie K.; Erickson, Karla A.

    2014-01-01

    One-day chemistry camps, managed by graduate students from the Departments of Chemistry at the Universities of Virginia (UVA) and Vermont (UVM), have proven successful as an outreach initiative. The camp model engages kindergarten through fifth grade elementary school students in hands-on, inquiry-based science experiments to educate and excite…

  19. Air Quality Modeling Using the NASA GEOS-5 Multispecies Data Assimilation System

    NASA Technical Reports Server (NTRS)

    Keller, Christoph A.; Pawson, Steven; Wargan, Krzysztof; Weir, Brad

    2018-01-01

    The NASA Goddard Earth Observing System (GEOS) data assimilation system (DAS) has been expanded to include chemically reactive tropospheric trace gases including ozone (O3), nitrogen dioxide (NO2), and carbon monoxide (CO). This system combines model analyses from the GEOS-5 model with detailed atmospheric chemistry and observations from MLS (O3), OMI (O3 and NO2), and MOPITT (CO). We show results from a variety of assimilation test experiments, highlighting the improvements in the representation of model species concentrations by up to 50% compared to an assimilation-free control experiment. Taking into account the rapid chemical cycling of NO2 when applying the assimilation increments greatly improves assimilation skills for NO2 and provides large benefits for model concentrations near the surface. Analysis of the geospatial distribution of the assimilation increments suggest that the free-running model overestimates biomass burning emissions but underestimates lightning NOx emissions by 5-20%. We discuss the capability of the chemical data assimilation system to improve atmospheric composition forecasts through improved initial value and boundary condition inputs, particularly during air pollution events. We find that the current assimilation system meaningfully improves short-term forecasts (1-3 day). For longer-term forecasts more emphasis on updating the emissions instead of initial concentration fields is needed.

  20. Modeling the acid-base surface chemistry of montmorillonite.

    PubMed

    Bourg, Ian C; Sposito, Garrison; Bourg, Alain C M

    2007-08-15

    Proton uptake on montmorillonite edge surfaces can control pore water pH, solute adsorption, dissolution kinetics and clay colloid behavior in engineered clay barriers and natural weathering environments. Knowledge of proton uptake reactions, however, is currently limited by strong discrepancies between reported montmorillonite titration data sets and by conflicting estimates of edge structure, reactivity and electrostatics. In the present study, we show that the apparent discrepancy between titration data sets results in large part from the widespread use of an erroneous assumption of zero specific net proton surface charge at the onset of titration. Using a novel simulation scheme involving a surface chemistry model to simulate both pretreatment and titration, we find that montmorillonite edge surface chemistry models that account for the "spillover" of electrostatic potential from basal onto edge surfaces and for the stabilization of deprotonated Al-Si bridging sites through bond-length relaxation at the edge surface can reproduce key features of the best available experimental titration data (the influence of pretreatment conditions on experimental results, the absence of a point of zero salt effect, buffer capacity in the acidic pH range). However, no combination of current models of edge surface structure, reactivity and electrostatics can quantitatively predict, without fitted parameters, the experimental titration data over the entire range of pH (4.5 to 9) and ionic strength (0.001 to 0.5 mol dm(-3)) covered by available data.

  1. Quantifying the effect of mixing on the mean age of air in CCMVal-2 and CCMI-1 models

    NASA Astrophysics Data System (ADS)

    Dietmüller, Simone; Eichinger, Roland; Garny, Hella; Birner, Thomas; Boenisch, Harald; Pitari, Giovanni; Mancini, Eva; Visioni, Daniele; Stenke, Andrea; Revell, Laura; Rozanov, Eugene; Plummer, David A.; Scinocca, John; Jöckel, Patrick; Oman, Luke; Deushi, Makoto; Kiyotaka, Shibata; Kinnison, Douglas E.; Garcia, Rolando; Morgenstern, Olaf; Zeng, Guang; Stone, Kane Adam; Schofield, Robyn

    2018-05-01

    The stratospheric age of air (AoA) is a useful measure of the overall capabilities of a general circulation model (GCM) to simulate stratospheric transport. Previous studies have reported a large spread in the simulation of AoA by GCMs and coupled chemistry-climate models (CCMs). Compared to observational estimates, simulated AoA is mostly too low. Here we attempt to untangle the processes that lead to the AoA differences between the models and between models and observations. AoA is influenced by both mean transport by the residual circulation and two-way mixing; we quantify the effects of these processes using data from the CCM inter-comparison projects CCMVal-2 (Chemistry-Climate Model Validation Activity 2) and CCMI-1 (Chemistry-Climate Model Initiative, phase 1). Transport along the residual circulation is measured by the residual circulation transit time (RCTT). We interpret the difference between AoA and RCTT as additional aging by mixing. Aging by mixing thus includes mixing on both the resolved and subgrid scale. We find that the spread in AoA between the models is primarily caused by differences in the effects of mixing and only to some extent by differences in residual circulation strength. These effects are quantified by the mixing efficiency, a measure of the relative increase in AoA by mixing. The mixing efficiency varies strongly between the models from 0.24 to 1.02. We show that the mixing efficiency is not only controlled by horizontal mixing, but by vertical mixing and vertical diffusion as well. Possible causes for the differences in the models' mixing efficiencies are discussed. Differences in subgrid-scale mixing (including differences in advection schemes and model resolutions) likely contribute to the differences in mixing efficiency. However, differences in the relative contribution of resolved versus parameterized wave forcing do not appear to be related to differences in mixing efficiency or AoA.

  2. Linking Air Quality and Human Health Effects Models: An Application to the Los Angeles Air Basin.

    PubMed

    Stewart, Devoun R; Saunders, Emily; Perea, Roberto A; Fitzgerald, Rosa; Campbell, David E; Stockwell, William R

    2017-01-01

    Proposed emission control strategies for reducing ozone and particulate matter are evaluated better when air quality and health effects models are used together. The Community Multiscale Air Quality (CMAQ) model is the US Environmental Protection Agency's model for determining public policy and forecasting air quality. CMAQ was used to forecast air quality changes due to several emission control strategies that could be implemented between 2008 and 2030 for the South Coast Air Basin that includes Los Angeles. The Environmental Benefits Mapping and Analysis Program-Community Edition (BenMAP-CE) was used to estimate health and economic impacts of the different emission control strategies based on CMAQ simulations. BenMAP-CE is a computer program based on epidemiologic studies that link human health and air quality. This modeling approach is better for determining optimum public policy than approaches that only examine concentration changes.

  3. Multi-model study of mercury dispersion in the atmosphere: atmospheric processes and model evaluation

    NASA Astrophysics Data System (ADS)

    Travnikov, Oleg; Angot, Hélène; Artaxo, Paulo; Bencardino, Mariantonia; Bieser, Johannes; D'Amore, Francesco; Dastoor, Ashu; De Simone, Francesco; Diéguez, María del Carmen; Dommergue, Aurélien; Ebinghaus, Ralf; Feng, Xin Bin; Gencarelli, Christian N.; Hedgecock, Ian M.; Magand, Olivier; Martin, Lynwill; Matthias, Volker; Mashyanov, Nikolay; Pirrone, Nicola; Ramachandran, Ramesh; Read, Katie Alana; Ryjkov, Andrei; Selin, Noelle E.; Sena, Fabrizio; Song, Shaojie; Sprovieri, Francesca; Wip, Dennis; Wängberg, Ingvar; Yang, Xin

    2017-04-01

    Current understanding of mercury (Hg) behavior in the atmosphere contains significant gaps. Some key characteristics of Hg processes, including anthropogenic and geogenic emissions, atmospheric chemistry, and air-surface exchange, are still poorly known. This study provides a complex analysis of processes governing Hg fate in the atmosphere involving both measured data from ground-based sites and simulation results from chemical transport models. A variety of long-term measurements of gaseous elemental Hg (GEM) and reactive Hg (RM) concentration as well as Hg wet deposition flux have been compiled from different global and regional monitoring networks. Four contemporary global-scale transport models for Hg were used, both in their state-of-the-art configurations and for a number of numerical experiments to evaluate particular processes. Results of the model simulations were evaluated against measurements. As follows from the analysis, the interhemispheric GEM gradient is largely formed by the prevailing spatial distribution of anthropogenic emissions in the Northern Hemisphere. The contributions of natural and secondary emissions enhance the south-to-north gradient, but their effect is less significant. Atmospheric chemistry has a limited effect on the spatial distribution and temporal variation of GEM concentration in surface air. In contrast, RM air concentration and wet deposition are largely defined by oxidation chemistry. The Br oxidation mechanism can reproduce successfully the observed seasonal variation of the RM / GEM ratio in the near-surface layer, but it predicts a wet deposition maximum in spring instead of in summer as observed at monitoring sites in North America and Europe. Model runs with OH chemistry correctly simulate both the periods of maximum and minimum values and the amplitude of observed seasonal variation but shift the maximum RM / GEM ratios from spring to summer. O3 chemistry does not predict significant seasonal variation of Hg

  4. Antimicrobial Applications of Ambient--Air Plasmas

    NASA Astrophysics Data System (ADS)

    Pavlovich, Matthew John

    The emerging field of plasma biotechology studies the applications of the plasma phase of matter to biological systems. "Ambient-condition" plasmas created at or near room temperature and atmospheric pressure are especially promising for biomedical applications because of their convenience, safety to patients, and compatibility with existing medical technology. Plasmas can be created from many different gases; plasma made from air contains a number of reactive oxygen and nitrogen species, or RONS, involved in various biological processes, including immune activity, signaling, and gene expression. Therefore, ambient-condition air plasma is of particular interest for biological applications. To understand and predict the effects of treating biological systems with ambient-air plasma, it is necessary to characterize and measure the chemical species that these plasmas produce. Understanding both gaseous chemistry and the chemistry in plasma-treated aqueous solution is important because many biological systems exist in aqueous media. Existing literature about ambient-air plasma hypothesizes the critical role of reactive oxygen and nitrogen species; a major aim of this dissertation is to better quantify RONS by produced ambient-air plasma and understand how RONS chemistry changes in response to different plasma processing conditions. Measurements imply that both gaseous and aqueous chemistry are highly sensitive to operating conditions. In particular, chemical species in air treated by plasma exist in either a low-power ozone-dominated mode or a high-power nitrogen oxide-dominated mode, with an unstable transition region at intermediate discharge power and treatment time. Ozone (O3) and nitrogen oxides (NO and NO2, or NOx) are mutually exclusive in this system and that the transition region corresponds to the transition from ozone- to nitrogen oxides-mode. Aqueous chemistry agrees well with to air plasma chemistry, and a similar transition in liquid-phase composition

  5. Tracking chemistry self-efficacy and achievement in a preparatory chemistry course

    NASA Astrophysics Data System (ADS)

    Garcia, Carmen Alicia

    Self-efficacy is a person's own perception about performing a task with a certain level of proficiency (Bandura, 1986). An important affective aspect of learning chemistry is chemistry self-efficacy (CSE). Several researchers have found chemistry self-efficacy to be a fair predictor of achievement in chemistry. This study was done in a college preparatory chemistry class for science majors exploring chemistry self-efficacy and its change as it relates to achievement. A subscale of CAEQ, Chemistry Attitudes and Experiences Questionnaire (developed by Dalgety et al, 2003) as well as student interviews were used to determine student chemistry self-efficacy as it changed during the course. The questionnaire was given to the students five times during the semester: in the first class and the class before each the four tests taken through the semester. Twenty-six students, both men and women, of the four major races/ethnicities were interviewed three times during the semester and events that triggered changes in CSE were followed through the interviews. HLM (hierarchical linear modeling) was used to model the results of the CSE surveys. Among the findings, women who started at significantly lower CSE than men accomplished a significant gain by the end of the semester. Blacks' CSE trends through the semester were found to be significantly different from the rest of the ethnicities.

  6. AIR QUALITY MODELING OF PM AND AIR TOXICS AT NEIGHBORHOOD SCALES

    EPA Science Inventory

    The current interest in fine particles and toxics pollutants provide an impetus for extending air quality modeling capability towards improving exposure modeling and assessments. Human exposure models require information on concentration derived from interpolation of observati...

  7. Application of Satellite and Ozonesonde Data to the Study of Nighttime Tropospheric Ozone Impacts and Relationship to Air Quality

    NASA Astrophysics Data System (ADS)

    Osterman, G. B.; Eldering, A.; Neu, J. L.; Tang, Y.; McQueen, J.; Pinder, R. W.

    2011-12-01

    To help protect human health and ecosystems, regional-scale atmospheric chemistry models are used to forecast high ozone events and to design emission control strategies to decrease the frequency and severity of ozone events. Despite the impact that nighttime aloft ozone can have on surface ozone, regional-scale atmospheric chemistry models often do not simulate the nighttime ozone concentrations well and nor do they sufficiently capture the ozone transport patterns. Fully characterizing the importance of the nighttime ozone has been hampered by limited measurements of the vertical distribution of ozone and ozone-precursors. The main focus of this work is to begin to utilize remote sensing data sets to characterize the impact of nighttime aloft ozone to air quality events. We will describe our plans to use NASA satellite data sets, transport models and air quality models to study ozone transport, focusing primarily on nighttime ozone and provide initial results. We will use satellite and ozonesonde data to help understand how well the air quality models are simulating ozone in the lower free troposphere and attempt to characterize the impact of nighttime ozone to air quality events. Our specific objectives are: 1) Characterize nighttime aloft ozone using remote sensing data and sondes. 2) Evaluate the ability of the Community Multi-scale Air Quality (CMAQ) model and the National Air Quality Forecast Capability (NAQFC) model to capture the nighttime aloft ozone and its relationship to air quality events. 3) Analyze a set of air quality events and determine the relationship of air quality events to the nighttime aloft ozone. We will achieve our objectives by utilizing the ozone profile data from the NASA Earth Observing System (EOS) Tropospheric Emission Spectrometer (TES) and other sensors, ozonesonde data collected during the Aura mission (IONS), EPA AirNow ground station ozone data, the CMAQ continental-scale air quality model, and the National Air Quality

  8. Reduced-form air quality modeling for community-scale ...

    EPA Pesticide Factsheets

    Transportation plays an important role in modern society, but its impact on air quality has been shown to have significant adverse effects on public health. Numerous reviews (HEI, CDC, WHO) summarizing findings of hundreds of studies conducted mainly in the last decade, conclude that exposures to traffic emissions near roads are a public health concern. The Community LINE Source Model (C-LINE) is a web-based model designed to inform the community user of local air quality impacts due to roadway vehicles in their region of interest using a simplified modeling approach. Reduced-form air quality modeling is a useful tool for examining what-if scenarios of changes in emissions, such as those due to changes in traffic volume, fleet mix, or vehicle speed. Examining various scenarios of air quality impacts in this way can identify potentially at-risk populations located near roadways, and the effects that a change in traffic activity may have on them. C-LINE computes dispersion of primary mobile source pollutants using meteorological conditions for the region of interest and computes air-quality concentrations corresponding to these selected conditions. C-LINE functionality has been expanded to model emissions from port-related activities (e.g. ships, trucks, cranes, etc.) in a reduced-form modeling system for local-scale near-port air quality analysis. This presentation describes the Community modeling tools C-LINE and C-PORT that are intended to be used by local gove

  9. Tropospheric Ozone Changes, Radiative Forcing and Attribution to Emissions in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP)

    NASA Technical Reports Server (NTRS)

    Stevenson, D.S.; Young, P.J.; Naik, V.; Lamarque, J.-F.; Shindell, D. T.; Voulgarakis, A.; Skeie, R. B.; Dalsoren, S. B.; Myhre, G.; Berntsen, T. K.; hide

    2013-01-01

    Ozone (O3) from 17 atmospheric chemistry models taking part in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP) has been used to calculate tropospheric ozone radiative forcings (RFs). All models applied a common set of anthropogenic emissions, which are better constrained for the present-day than the past. Future anthropogenic emissions follow the four Representative Concentration Pathway (RCP) scenarios, which define a relatively narrow range of possible air pollution emissions. We calculate a value for the pre-industrial (1750) to present-day (2010) tropospheric ozone RF of 410 mW m-2. The model range of pre-industrial to present-day changes in O3 produces a spread (+/-1 standard deviation) in RFs of +/-17%. Three different radiation schemes were used - we find differences in RFs between schemes (for the same ozone fields) of +/-10 percent. Applying two different tropopause definitions gives differences in RFs of +/-3 percent. Given additional (unquantified) uncertainties associated with emissions, climate-chemistry interactions and land-use change, we estimate an overall uncertainty of +/-30 percent for the tropospheric ozone RF. Experiments carried out by a subset of six models attribute tropospheric ozone RF to increased emissions of methane (44+/-12 percent), nitrogen oxides (31 +/- 9 percent), carbon monoxide (15 +/- 3 percent) and non-methane volatile organic compounds (9 +/- 2 percent); earlier studies attributed more of the tropospheric ozone RF to methane and less to nitrogen oxides. Normalising RFs to changes in tropospheric column ozone, we find a global mean normalised RF of 42 mW m(-2) DU(-1), a value similar to previous work. Using normalised RFs and future tropospheric column ozone projections we calculate future tropospheric ozone RFs (mW m(-2); relative to 1750) for the four future scenarios (RCP2.6, RCP4.5, RCP6.0 and RCP8.5) of 350, 420, 370 and 460 (in 2030), and 200, 300, 280 and 600 (in 2100). Models show some

  10. The influence of synoptic weather regimes on UK air quality: regional model studies of tropospheric column NO2

    NASA Astrophysics Data System (ADS)

    Pope, R. J.; Savage, N. H.; Chipperfield, M. P.; Ordóñez, C.; Neal, L. S.

    2015-07-01

    Synoptic meteorology can have a significant influence on UK air quality. Cyclonic (anticyclonic) conditions lead to the dispersion (accumulation) of air pollutants away from (over) source regions. Meteorology also modifies atmospheric chemistry processes such as photolysis and wet deposition. Previous studies have shown a relationship between observed satellite tropospheric column NO2 and synoptic meteorology in different seasons. Here, we test whether the UK Met Office Air Quality in the Unified Model (AQUM) can reproduce these observations and then use the model to determine the controlling factors. We show that AQUM successfully captures the observed relationships, when sampled under the Lamb Weather Types, an objective classification of midday UK circulation patterns. By using a range of idealised NOx-like tracers with different e-folding lifetimes, we show that under different synoptic regimes the NO2 lifetime in AQUM is approximately 6 h in summer and 12 h in winter. The longer lifetime can explain why synoptic spatial column NO2 variations are more significant in winter compared to summer, due to less NO2 photochemical loss. We also show that cyclonic conditions have more seasonality in column NO2 than anticyclonic conditions as they result in more extreme spatial departures from the wintertime seasonal average. Within a season (summer or winter) under different synoptic regimes, a large proportion of the spatial pattern in the UK column NO2 field can be explained by the idealised model tracers, showing that transport is an important factor in governing the variability of UK air quality on seasonal synoptic timescales.

  11. Modeling, Monitoring and Fault Diagnosis of Spacecraft Air Contaminants

    NASA Technical Reports Server (NTRS)

    Ramirez, W. Fred; Skliar, Mikhail; Narayan, Anand; Morgenthaler, George W.; Smith, Gerald J.

    1996-01-01

    Progress and results in the development of an integrated air quality modeling, monitoring, fault detection, and isolation system are presented. The focus was on development of distributed models of the air contaminants transport, the study of air quality monitoring techniques based on the model of transport process and on-line contaminant concentration measurements, and sensor placement. Different approaches to the modeling of spacecraft air contamination are discussed, and a three-dimensional distributed parameter air contaminant dispersion model applicable to both laminar and turbulent transport is proposed. A two-dimensional approximation of a full scale transport model is also proposed based on the spatial averaging of the three dimensional model over the least important space coordinate. A computer implementation of the transport model is considered and a detailed development of two- and three-dimensional models illustrated by contaminant transport simulation results is presented. The use of a well established Kalman filtering approach is suggested as a method for generating on-line contaminant concentration estimates based on both real time measurements and the model of contaminant transport process. It is shown that high computational requirements of the traditional Kalman filter can render difficult its real-time implementation for high-dimensional transport model and a novel implicit Kalman filtering algorithm is proposed which is shown to lead to an order of magnitude faster computer implementation in the case of air quality monitoring.

  12. LIF instrument development, in situ measurement at South Pole and one-dimensional air-snowpack modeling of atmospheric nitrous acid (HONO)

    NASA Astrophysics Data System (ADS)

    Liao, Wei

    Atmospheric nitrous acid (HONO) is a significant and sometimes dominant OH source in Polar Regions. In the polar atmosphere, measurements of HONO are an important part of understanding the dynamics of snow-air chemistry and atmospheric photochemistry. The low levels of HONO present in such regions necessitate the development of instrumentation with low detection limits. An improved method of detecting HONO is developed using photo-fragmentation and laser-induced fluorescence. The detection limit of this method is 2-3 pptv for ten-minute integration time with 35% uncertainty. The ANTCI 2003 measurements confirm the high N oxides observed previously in ISCAT 1998 and 2000. The median LIF observed mixing ratio of HONO 10m above the snow was 5.8 pptv (mean value 6.3 pptv) with a maximum of 18.2pptv on Nov 30th, Dec 1st, 3rd, 15th, 17th, 21st, 22nd, 25th, 27th and 28th. The LIF HONO observations are compared to concurrent HONO observations performed by mist chamber/ion chromatography (MC/IC). Both the LIF and MC/IC techniques observed enhanced HONO; however, the MC/IC observations were higher than the LIF observations by a factor of 7.2+/-2.3 in the median. It is suggested that the MC/IC technique might suffer from interference from HNO4. As in ISCAT 2000, the abundance of both HONO measurements exceeds the pure gas phase model predictions, with LIF higher than the pure gas phase model by a factor of 1.92+/-0.67, which implies snow emission of HONO must occur. The LIF measured HONO concentrations are not high enough to significantly influence the NOx budget during ANTCI 2003, but will increase the modeled HOx over-prediction by 28%+/-15% and lead to a dramatic over-prediction of measured OH by 157%+/-35%. Given the short lifetime of HONO, these differences are hard to reconcile with observed low OH levels unless there is a missing HO x sink. It appears, however, that HONO competes with O3 and HCHO as the dominant source of OH at South Pole during ANTCI 2003. Since pure

  13. Linking Air Quality and Human Health Effects Models: An Application to the Los Angeles Air Basin

    PubMed Central

    Stewart, Devoun R; Saunders, Emily; Perea, Roberto A; Fitzgerald, Rosa; Campbell, David E; Stockwell, William R

    2017-01-01

    Proposed emission control strategies for reducing ozone and particulate matter are evaluated better when air quality and health effects models are used together. The Community Multiscale Air Quality (CMAQ) model is the US Environmental Protection Agency’s model for determining public policy and forecasting air quality. CMAQ was used to forecast air quality changes due to several emission control strategies that could be implemented between 2008 and 2030 for the South Coast Air Basin that includes Los Angeles. The Environmental Benefits Mapping and Analysis Program—Community Edition (BenMAP-CE) was used to estimate health and economic impacts of the different emission control strategies based on CMAQ simulations. BenMAP-CE is a computer program based on epidemiologic studies that link human health and air quality. This modeling approach is better for determining optimum public policy than approaches that only examine concentration changes. PMID:29162976

  14. AIR QUALITY MODELING OF AMMONIA: A REGIONAL MODELING PERSPECTIVE

    EPA Science Inventory

    The talk will address the status of modeling of ammonia from a regional modeling perspective, yet the observations and comments should have general applicability. The air quality modeling system components that are central to modeling ammonia will be noted and a perspective on ...

  15. Discharge in Long Air Gaps; Modelling and applications

    NASA Astrophysics Data System (ADS)

    Beroual, A.; Fofana, I.

    2016-06-01

    Discharge in Long Air Gaps: Modelling and applications presents self-consistent predictive dynamic models of positive and negative discharges in long air gaps. Equivalent models are also derived to predict lightning parameters based on the similarities between long air gap discharges and lightning flashes. Macroscopic air gap discharge parameters are calculated to solve electrical, empirical and physical equations, and comparisons between computed and experimental results for various test configurations are presented and discussed. This book is intended to provide a fresh perspective by contributing an innovative approach to this research domain, and universities with programs in high-voltage engineering will find this volume to be a working example of how to introduce the basics of electric discharge phenomena.

  16. From biota to chemistry and climate: towards a comprehensive description of trace gas exchange between the biosphere and atmosphere

    NASA Astrophysics Data System (ADS)

    Arneth, A.; Sitch, S.; Bondeau, A.; Butterbach-Bahl, K.; Foster, P.; Gedney, N.; de Noblet-Ducoudré, N.; Prentice, I. C.; Sanderson, M.; Thonicke, K.; Wania, R.; Zaehle, S.

    2010-01-01

    Exchange of non-CO2 trace gases between the land surface and the atmosphere plays an important role in atmospheric chemistry and climate. Recent studies have highlighted its importance for interpretation of glacial-interglacial ice-core records, the simulation of the pre-industrial and present atmosphere, and the potential for large climate-chemistry and climate-aerosol feedbacks in the coming century. However, spatial and temporal variations in trace gas emissions and the magnitude of future feedbacks are a major source of uncertainty in atmospheric chemistry, air quality and climate science. To reduce such uncertainties Dynamic Global Vegetation Models (DGVMs) are currently being expanded to mechanistically represent processes relevant to non-CO2 trace gas exchange between land biota and the atmosphere. In this paper we present a review of important non-CO2 trace gas emissions, the state-of-the-art in DGVM modelling of processes regulating these emissions, identify key uncertainties for global scale model applications, and discuss a methodology for model integration and evaluation.

  17. From biota to chemistry and climate: towards a comprehensive description of trace gas exchange between the biosphere and atmosphere

    NASA Astrophysics Data System (ADS)

    Arneth, A.; Sitch, S.; Bondeau, A.; Butterbach-Bahl, K.; Foster, P.; Gedney, N.; de Noblet-Ducoudré, N.; Prentice, I. C.; Sanderson, M.; Thonicke, K.; Wania, R.; Zaehle, S.

    2009-07-01

    Exchange of non-CO2 trace gases between the land surface and the atmosphere plays an important role in atmospheric chemistry and climate. Recent studies have highlighted its importance for interpretation of glacial-interglacial ice-core records, the simulation of the pre-industrial and present atmosphere, and the potential for large climate-chemistry and climate-aerosol feedbacks in the coming century. However, spatial and temporal variations in trace gas emissions and the magnitude of future feedbacks are a major source of uncertainty in atmospheric chemistry, air quality and climate science. To reduce such uncertainties Dynamic Global Vegetation Models (DGVMs) are currently being expanded to mechanistically represent processes relevant to non-CO2 trace gas exchange between land biota and the atmosphere. In this paper we present a review of important non-CO2 trace gas emissions, the state-of-the-art in DGVM modelling of processes regulating these emissions, identify key uncertainties for global scale model applications, and discuss a methodology for model integration and evaluation.

  18. DEVELOPMENT AND ANALYSIS OF AIR QUALITY MODELING SIMULATIONS FOR HAZARDOUS AIR POLLUTANTS

    EPA Science Inventory

    The concentrations of five hazardous air pollutants were simulated using the Community Multi Scale Air Quality (CMAQ) modeling system. Annual simulations were performed over the continental United States for the entire year of 2001 to support human exposure estimates. Results a...

  19. Air Pollution Data for Model Evaluation and Application

    EPA Science Inventory

    One objective of designing an air pollution monitoring network is to obtain data for evaluating air quality models that are used in the air quality management process and scientific discovery.1.2 A common use is to relate emissions to air quality, including assessing ...

  20. An exploratory study of proficient undergraduate Chemistry II students' application of Lewis's model

    NASA Astrophysics Data System (ADS)

    Lewis, Sumudu R.

    This exploratory study was based on the assumption that proficiency in chemistry must not be determined exclusively on students' declarative and procedural knowledge, but it should be also described as the ability to use variety of reasoning strategies that enrich and diversify procedural methods. The study furthermore assumed that the ability to describe the structure of a molecule using Lewis's model and use it to predict its geometry as well as some of its properties is indicative of proficiency in the essential concepts of covalent bonding and molecule structure. The study therefore inquired into the reasoning methods and procedural techniques of proficient undergraduate Chemistry II students when solving problems, which require them to use Lewis's model. The research design included an original survey, designed by the researcher for this study, and two types of interviews, with students and course instructors. The purpose of the survey was two-fold. First and foremost, the survey provided a base for the student interview selection, and second it served as the foundation for the inquiry into the strategies the student use when solving survey problems. Twenty two students were interviewed over the course of the study. The interview with six instructors allowed to identify expected prior knowledge and skills, which the students should have acquired upon completion of the Chemistry I course. The data, including videos, audios, and photographs of the artifacts produced by students during the interviews, were organized and analyzed manually and using QSR NVivo 10. The research found and described the differences between proficient and non-proficient students' reasoning and procedural strategies when using Lewis's model to describe the structure of a molecule. One of the findings clearly showed that the proficient students used a variety of cues to reason, whereas other students used one memorized cue, or an algorithm, which often led to incorrect representations in

  1. Using statistical models to explore ensemble uncertainty in climate impact studies: the example of air pollution in Europe

    NASA Astrophysics Data System (ADS)

    Lemaire, Vincent E. P.; Colette, Augustin; Menut, Laurent

    2016-03-01

    Because of its sensitivity to unfavorable weather patterns, air pollution is sensitive to climate change so that, in the future, a climate penalty could jeopardize the expected efficiency of air pollution mitigation measures. A common method to assess the impact of climate on air quality consists in implementing chemistry-transport models forced by climate projections. However, the computing cost of such methods requires optimizing ensemble exploration techniques. By using a training data set from a deterministic projection of climate and air quality over Europe, we identified the main meteorological drivers of air quality for eight regions in Europe and developed statistical models that could be used to predict air pollutant concentrations. The evolution of the key climate variables driving either particulate or gaseous pollution allows selecting the members of the EuroCordex ensemble of regional climate projections that should be used in priority for future air quality projections (CanESM2/RCA4; CNRM-CM5-LR/RCA4 and CSIRO-Mk3-6-0/RCA4 and MPI-ESM-LR/CCLM following the EuroCordex terminology). After having tested the validity of the statistical model in predictive mode, we can provide ranges of uncertainty attributed to the spread of the regional climate projection ensemble by the end of the century (2071-2100) for the RCP8.5. In the three regions where the statistical model of the impact of climate change on PM2.5 offers satisfactory performances, we find a climate benefit (a decrease of PM2.5 concentrations under future climate) of -1.08 (±0.21), -1.03 (±0.32), -0.83 (±0.14) µg m-3, for respectively Eastern Europe, Mid-Europe and Northern Italy. In the British-Irish Isles, Scandinavia, France, the Iberian Peninsula and the Mediterranean, the statistical model is not considered skillful enough to draw any conclusion for PM2.5. In Eastern Europe, France, the Iberian Peninsula, Mid-Europe and Northern Italy, the statistical model of the impact of climate change

  2. Stratospheric chemistry and transport

    NASA Technical Reports Server (NTRS)

    Prather, Michael; Garcia, Maria M.

    1990-01-01

    A Chemical Tracer Model (CTM) that can use wind field data generated by the General Circulation Model (GCM) is developed to implement chemistry in the three dimensional GCM of the middle atmosphere. Initially, chemical tracers with simple first order losses such as N2O are used. Successive models are to incorporate more complex ozone chemistry.

  3. Metadynamics for training neural network model chemistries: A competitive assessment

    NASA Astrophysics Data System (ADS)

    Herr, John E.; Yao, Kun; McIntyre, Ryker; Toth, David W.; Parkhill, John

    2018-06-01

    Neural network model chemistries (NNMCs) promise to facilitate the accurate exploration of chemical space and simulation of large reactive systems. One important path to improving these models is to add layers of physical detail, especially long-range forces. At short range, however, these models are data driven and data limited. Little is systematically known about how data should be sampled, and "test data" chosen randomly from some sampling techniques can provide poor information about generality. If the sampling method is narrow, "test error" can appear encouragingly tiny while the model fails catastrophically elsewhere. In this manuscript, we competitively evaluate two common sampling methods: molecular dynamics (MD), normal-mode sampling, and one uncommon alternative, Metadynamics (MetaMD), for preparing training geometries. We show that MD is an inefficient sampling method in the sense that additional samples do not improve generality. We also show that MetaMD is easily implemented in any NNMC software package with cost that scales linearly with the number of atoms in a sample molecule. MetaMD is a black-box way to ensure samples always reach out to new regions of chemical space, while remaining relevant to chemistry near kbT. It is a cheap tool to address the issue of generalization.

  4. NASA/Air Force Cost Model: NAFCOM

    NASA Technical Reports Server (NTRS)

    Winn, Sharon D.; Hamcher, John W. (Technical Monitor)

    2002-01-01

    The NASA/Air Force Cost Model (NAFCOM) is a parametric estimating tool for space hardware. It is based on historical NASA and Air Force space projects and is primarily used in the very early phases of a development project. NAFCOM can be used at the subsystem or component levels.

  5. Finite-rate chemistry effects upon convective and radiative heating of an atmospheric entry vehicle. [reentry aerothermochemistry

    NASA Technical Reports Server (NTRS)

    Guillermo, P.

    1975-01-01

    A mathematical model of the aerothermochemical environment along the stagnation line of a planetary return spacecraft using an ablative thermal protection system was developed and solved for conditions typical of atmospheric entry from planetary missions. The model, implemented as a FORTRAN 4 computer program, was designed to predict viscous, reactive and radiative coupled shock layer structure and the resulting body heating rates. The analysis includes flow field coupling with the ablator surface, binary diffusion, coupled line and continuum radiative and equilibrium or finite rate chemistry effects. The gas model used includes thermodynamic, transport, kinetic and radiative properties of air and ablation product species, including 19 chemical species and 16 chemical reactions. Specifically, the impact of nonequilibrium chemistry effects upon stagnation line shock layer structure and body heating rates was investigated.

  6. Global Environmental Multiscale model - a platform for integrated environmental predictions

    NASA Astrophysics Data System (ADS)

    Kaminski, Jacek W.; Struzewska, Joanna; Neary, Lori; Dearden, Frank

    2017-04-01

    The Global Environmental Multiscale model was developed by the Government of Canada as an operational weather prediction model in the mid-1990s. Subsequently, it was used as the host meteorological model for an on-line implementation of air quality chemistry and aerosols from global to the meso-gamma scale. Further model developments led to the vertical extension of the modelling domain to include stratospheric chemistry, aerosols, and formation of polar stratospheric clouds. In parallel, the modelling platform was used for planetary applications where dynamical, radiative transfer and chemical processes in the atmosphere of Mars were successfully simulated. Undoubtedly, the developed modelling platform can be classified as an example capable of the seamless and coupled modelling of the dynamics and chemistry of planetary atmospheres. We will present modelling results for global, regional, and local air quality episodes and the long-term air quality trends. Upper troposphere and lower stratosphere modelling results will be presented in terms of climate change and subsonic aviation emissions modelling. Model results for the atmosphere of Mars will be presented in the context of the 2016 ExoMars mission and the anticipated observations from the NOMAD instrument. Also, we will present plans and the design to extend the GEM model to the F region with further coupling with a magnetospheric model that extends to 15 Re.

  7. Exploration of OMI Products for Air Quality Applications Through Comparisons with Models and Observations

    NASA Technical Reports Server (NTRS)

    Pickering, K. E.; Ziemke, J.; Bucsela, E.; Gleason, J.; Marufu, L.; Dickerson, R.; Mathur, R.; Davidson, P.; Duncan, B.; Bhartia, P. K.

    2006-01-01

    The Ozone Monitoring Instrument (OMI) on board NASA s Aura satellite was launched in July 2004, and is now providing daily global observations of total column ozone, NO2, and SO2, as well as aerosol information. Algorithms have also been developed to produce daily tropospheric ozone and NO2 products. The tropospheric ozone product reported here is a tropospheric residual computed through use of Aura Microwave Limb Sounder (MLS) ozone profile data to quantify stratospheric ozone. We are investigating the applicability of OMI products for use in air quality modeling, forecasting, and analysis. These investigations include comparison of the OMI tropospheric O3 and NO2 products with global and regional models and with lower tropospheric aircraft observations. Large-scale transport of pollution seen in the OM1 tropospheric O3 data is compared with output from NASA's Global Modeling Initiative global chemistry and transport model. On the regional scale we compare the OMI tropospheric O3 and NO2 with fields from the National Oceanic and Atmospheric Administration and Environmental Protection Agency (NOAA/EPA) operational Eta/CMAQ air quality forecasting model over the eastern United States. This 12-km horizontal resolution model output is roughly of equivalent resolution to the OMI pixel data. Correlation analysis between lower tropospheric aircraft O3 profile data taken by the University of Maryland over the Mid-Atlantic States and OMI tropospheric column mean volume mixing ratio for O3 will be presented. These aircraft data are representative of the lowest 3 kilometers of the atmosphere, the region in which much of the locally-generated and regionally-transported ozone exists.

  8. Effects of Greenhouse Gas Increase and Stratospheric Ozone Depletion on Stratospheric Mean Age of Air in 1960-2010

    NASA Technical Reports Server (NTRS)

    Li, Feng; Newman, Paul; Pawson, Steven; Perlwitz, Judith

    2018-01-01

    The relative impacts of greenhouse gas (GHG) increase and stratospheric ozone depletion on stratospheric mean age of air in the 1960-2010 period are quantified using the Goddard Earth Observing System Chemistry-�Climate Model. The experiment compares controlled simulations using a coupled atmosphere-�ocean version of the Goddard Earth Observing System Chemistry-�Climate Model, in which either GHGs or ozone depleting substances, or both factors evolve over time. The model results show that GHGs and ozone-depleting substances have about equal contributions to the simulated mean age decrease, but GHG increases account for about two thirds of the enhanced strength of the lower stratospheric residual circulation. It is also found that both the acceleration of the diabatic circulation and the decrease of the mean age difference between downwelling and upwelling regions are mainly caused by GHG forcing. The results show that ozone depletion causes an increase in the mean age of air in the Antarctic summer lower stratosphere through two processes: (1) a seasonal delay in the Antarctic polar vortex breakup that inhibits young midlatitude air from mixing with the older air inside the vortex, and (2) enhanced Antarctic downwelling that brings older air from middle and upper stratosphere into the lower stratosphere.

  9. Dynamical variability in the modelling of chemistry-climate interactions.

    PubMed

    Pyle, J A; Braesicke, P; Zeng, G

    2005-01-01

    We have used a version of the Met Office's climate model, into which we have introduced schemes for atmospheric chemistry, to study chemistry-dynamics-climate interactions. We have considered the variability of the stratospheric polar vortex, whose behaviour influences stratospheric ozone loss and will affect ozone recovery. In particular, we analyse the dynamical control of high latitude ozone in a model version which includes an assimilation of the equatorial quasi-biennial oscillation (QBO), demonstrating the stability of the linear relation between vortex strength and high latitude ozone. We discuss the effect of interactive model ozone on polar stratospheric cloud (PSC) area/volume and winter-spring stratospheric ozone loss in the northern hemisphere. In general we find larger polar ozone losses calculated in those model integrations in which modelled ozone is used interactively in the radiation scheme, even though we underestimate the slope of the ozone loss per PSC volume relation derived from observations. We have also looked at the influence of changing stratosphere-to-troposphere exchange on the tropospheric oxidizing capacity and, in particular, have considered the variability of tropospheric composition under different climate regimes (El Niño/La Niña, etc.). Focusing on the UT/LS, we show the response of ozone to El Niño in two different model set-ups (tropospheric/ stratospheric). In the stratospheric model set-up we find a distinct signal in the lower tropical stratosphere, which shows an anti-correlation between the Niño 3 index and the ozone column amount. In contrast ozone generally increases in the upper troposphere of the tropospheric model set-up after an El Niño. Understanding future trends in stratospheric ozone and tropospheric oxidizing capacity requires an understanding of natural variability, which we explore here.

  10. Remote sensing of atmospheric chemistry; Proceedings of the Meeting, Orlando, FL, Apr. 1-3, 1991

    NASA Technical Reports Server (NTRS)

    Mcelroy, James L. (Editor); Mcneal, Robert J. (Editor)

    1991-01-01

    The present volume on remote sensing of atmospheric chemistry discusses special remote sensing space observations and field experiments to study chemical change in the atmosphere, network monitoring for detection of stratospheric chemical change, stratospheric chemistry studies, and the combining of model, in situ, and remote sensing in atmospheric chemistry. Attention is given to the measurement of tropospheric carbon monoxide using gas filter radiometers, long-path differential absorption measurements of tropospheric molecules, air quality monitoring with the differential optical absorption spectrometer, and a characterization of tropospheric methane through space-based remote sensing. Topics addressed include microwave limb sounder experiments for UARS and EOS, an overview of the spectroscopy of the atmosphere using an FIR emission experiment, the detection of stratospheric ozone trends by ground-based microwave observations, and a FIR Fabry-Perot spectrometer for OH measurements.

  11. Variational data assimilation schemes for transport and transformation models of atmospheric chemistry

    NASA Astrophysics Data System (ADS)

    Penenko, Alexey; Penenko, Vladimir; Tsvetova, Elena; Antokhin, Pavel

    2016-04-01

    The work is devoted to data assimilation algorithm for atmospheric chemistry transport and transformation models. In the work a control function is introduced into the model source term (emission rate) to provide flexibility to adjust to data. This function is evaluated as the constrained minimum of the target functional combining a control function norm with a norm of the misfit between measured data and its model-simulated analog. Transport and transformation processes model is acting as a constraint. The constrained minimization problem is solved with Euler-Lagrange variational principle [1] which allows reducing it to a system of direct, adjoint and control function estimate relations. This provides a physically-plausible structure of the resulting analysis without model error covariance matrices that are sought within conventional approaches to data assimilation. High dimensionality of the atmospheric chemistry models and a real-time mode of operation demand for computational efficiency of the data assimilation algorithms. Computational issues with complicated models can be solved by using a splitting technique. Within this approach a complex model is split to a set of relatively independent simpler models equipped with a coupling procedure. In a fine-grained approach data assimilation is carried out quasi-independently on the separate splitting stages with shared measurement data [2]. In integrated schemes data assimilation is carried out with respect to the split model as a whole. We compare the two approaches both theoretically and numerically. Data assimilation on the transport stage is carried out with a direct algorithm without iterations. Different algorithms to assimilate data on nonlinear transformation stage are compared. In the work we compare data assimilation results for both artificial and real measurement data. With these data we study the impact of transformation processes and data assimilation to the performance of the modeling system [3]. The

  12. Global Modeling of Tropospheric Chemistry with Assimilated Meteorology: Model Description and Evaluation

    NASA Technical Reports Server (NTRS)

    Bey, Isabelle; Jacob, Daniel J.; Yantosca, Robert M.; Logan, Jennifer A.; Field, Brendan D.; Fiore, Arlene M.; Li, Qin-Bin; Liu, Hong-Yu; Mickley, Loretta J.; Schultz, Martin G.

    2001-01-01

    We present a first description and evaluation of GEOS-CHEM, a global three-dimensional (3-D) model of tropospheric chemistry driven by assimilated meteorological observations from the Goddard Earth Observing System (GEOS) of the NASA Data Assimilation Office (DAO). The model is applied to a 1-year simulation of tropospheric ozone-NOx-hydrocarbon chemistry for 1994, and is evaluated with observations both for 1994 and for other years. It reproduces usually to within 10 ppb the concentrations of ozone observed from the worldwide ozonesonde data network. It simulates correctly the seasonal phases and amplitudes of ozone concentrations for different regions and altitudes, but tends to underestimate the seasonal amplitude at northern midlatitudes. Observed concentrations of NO and peroxyacetylnitrate (PAN) observed in aircraft campaigns are generally reproduced to within a factor of 2 and often much better. Concentrations of HNO3 in the remote troposphere are overestimated typically by a factor of 2-3, a common problem in global models that may reflect a combination of insufficient precipitation scavenging and gas-aerosol partitioning not resolved by the model. The model yields an atmospheric lifetime of methylchloroform (proxy for global OH) of 5.1 years, as compared to a best estimate from observations of 5.5 plus or minus 0.8 years, and simulates H2O2 concentrations observed from aircraft with significant regional disagreements but no global bias. The OH concentrations are approximately 20% higher than in our previous global 3-D model which included an UV-absorbing aerosol. Concentrations of CO tend to be underestimated by the model, often by 10-30 ppb, which could reflect a combination of excessive OH (a 20% decrease in model OH could be accommodated by the methylchloroform constraint) and an underestimate of CO sources (particularly biogenic). The model underestimates observed acetone concentrations over the South Pacific in fall by a factor of 3; a missing source

  13. Impact of reaction products from building materials and furnishings on indoor air quality—A review of recent advances in indoor chemistry

    NASA Astrophysics Data System (ADS)

    Uhde, E.; Salthammer, T.

    The variety of chemical substances present in modern building products, household products and furnishings provides potential for chemical reactions in the material (case 1), on the material surface (case 2) and in the gas phase (case 3). Such "indoor chemistry" is known as one of the main reasons for primary and secondary emissions. The conditions of production often cause unwanted side reactions and a number of new compounds can be found in finished products. Elevated temperatures are responsible for the degradation of cellulose, decomposition of non-heat-resistant additives and other thermally induced reactions like Diels-Alder synthesis. Heterogeneous chemistry takes place on the surface of materials. Well-known examples are the formation of aliphatic aldehydes from the oxidation of unsaturated fatty acids or the cleavage of photoinitiators under the influence of light. In case of composite flooring structures hydrolysis is one of the major pathways for the appearance of alcohols from esters. If different kinds of material are fixed together, emissions of new VOCs formed by inter-species reactions are possible. Other indoor air pollutants are formed by rearrangement of cleavage products or by metabolism. Compounds with -C dbnd C- bonds like terpenes, styrene, 4-phenylcyclohexene, etc. undergo gas phase reactions with O 3, NO x, OH and other reactive gases. It has been shown that such products derived from indoor-related reactions may have a negative impact on indoor air quality due to their low odor threshold or health-related properties. Therefore, the understanding of primary and secondary emissions and the chemical processes behind is essential for the evaluation of indoor air quality. This publication gives an overview on the current state of research and new findings regarding primary and secondary emissions from building products and furnishings.

  14. High specific energy and specific power aluminum/air battery for micro air vehicles

    NASA Astrophysics Data System (ADS)

    Kindler, A.; Matthies, L.

    2014-06-01

    Micro air vehicles developed under the Army's Micro Autonomous Systems and Technology program generally need a specific energy of 300 - 550 watt-hrs/kg and 300 -550 watts/kg to operate for about 1 hour. At present, no commercial cell can fulfill this need. The best available commercial technology is the Lithium-ion battery or its derivative, the Li- Polymer cell. This chemistry generally provides around 15 minutes flying time. One alternative to the State-of-the Art is the Al/air cell, a primary battery that is actually half fuel cell. It has a high energy battery like aluminum anode, and fuel cell like air electrode that can extract oxygen out of the ambient air rather than carrying it. Both of these features tend to contribute to a high specific energy (watt-hrs/kg). High specific power (watts/kg) is supported by high concentration KOH electrolyte, a high quality commercial air electrode, and forced air convection from the vehicles rotors. The performance of this cell with these attributes is projected to be 500 watt-hrs/kg and 500 watts/kg based on simple model. It is expected to support a flying time of approximately 1 hour in any vehicle in which the usual limit is 15 minutes.

  15. High-Latitude Stratospheric Sensitivity to QBO Width in a Chemistry-Climate Model with Parameterized Ozone Chemistry

    NASA Technical Reports Server (NTRS)

    Hurwitz, M. M.; Braesicke, P.; Pyle, J. A.

    2010-01-01

    In a pair of idealized simulations with a simplified chemistry-climate model, the sensitivity of the wintertime Arctic stratosphere to variability in the width of the quasi-biennial oscillation (QBO) is assessed. The width of the QBO appears to have equal influence on the Arctic stratosphere as does the phase (i.e. the Holton-Tan mechanism). In the model, a wider QBO acts like a preferential shift toward the easterly phase of the QBO, where zonal winds at 60 N tend to be relatively weaker, while 50 hPa geopotential heights and polar ozone values tend to be higher.

  16. The effect of future ambient air pollution on human premature mortality to 2100 using output from the ACCMIP model ensemble

    NASA Astrophysics Data System (ADS)

    Silva, Raquel A.; West, J. Jason; Lamarque, Jean-François; Shindell, Drew T.; Collins, William J.; Dalsoren, Stig; Faluvegi, Greg; Folberth, Gerd; Horowitz, Larry W.; Nagashima, Tatsuya; Naik, Vaishali; Rumbold, Steven T.; Sudo, Kengo; Takemura, Toshihiko; Bergmann, Daniel; Cameron-Smith, Philip; Cionni, Irene; Doherty, Ruth M.; Eyring, Veronika; Josse, Beatrice; MacKenzie, Ian A.; Plummer, David; Righi, Mattia; Stevenson, David S.; Strode, Sarah; Szopa, Sophie; Zengast, Guang

    2016-08-01

    Ambient air pollution from ground-level ozone and fine particulate matter (PM2.5) is associated with premature mortality. Future concentrations of these air pollutants will be driven by natural and anthropogenic emissions and by climate change. Using anthropogenic and biomass burning emissions projected in the four Representative Concentration Pathway scenarios (RCPs), the ACCMIP ensemble of chemistry-climate models simulated future concentrations of ozone and PM2.5 at selected decades between 2000 and 2100. We use output from the ACCMIP ensemble, together with projections of future population and baseline mortality rates, to quantify the human premature mortality impacts of future ambient air pollution. Future air-pollution-related premature mortality in 2030, 2050 and 2100 is estimated for each scenario and for each model using a health impact function based on changes in concentrations of ozone and PM2.5 relative to 2000 and projected future population and baseline mortality rates. Additionally, the global mortality burden of ozone and PM2.5 in 2000 and each future period is estimated relative to 1850 concentrations, using present-day and future population and baseline mortality rates. The change in future ozone concentrations relative to 2000 is associated with excess global premature mortality in some scenarios/periods, particularly in RCP8.5 in 2100 (316 thousand deaths year-1), likely driven by the large increase in methane emissions and by the net effect of climate change projected in this scenario, but it leads to considerable avoided premature mortality for the three other RCPs. However, the global mortality burden of ozone markedly increases from 382 000 (121 000 to 728 000) deaths year-1 in 2000 to between 1.09 and 2.36 million deaths year-1 in 2100, across RCPs, mostly due to the effect of increases in population and baseline mortality rates. PM2.5 concentrations decrease relative to 2000 in all scenarios, due to projected reductions in emissions, and

  17. The Effect of Future Ambient Air Pollution on Human Premature Mortality to 2100 Using Output from the ACCMIP Model Ensemble

    NASA Technical Reports Server (NTRS)

    Silva, Raquel A.; West, J. Jason; Lamarque, Jean-Francois; Shindell, Drew T.; Collins, William J.; Dalsoren, Stig; Faluvegi, Greg; Folberth, Gerd; Horowitz, Larry W.; Nagashima, Tatsuya; hide

    2016-01-01

    Ambient air pollution from ground-level ozone and fine particulate matter (PM(sub 2.5)) is associated with premature mortality. Future concentrations of these air pollutants will be driven by natural and anthropogenic emissions and by climate change. Using anthropogenic and biomass burning emissions projected in the four Representative Concentration Pathway scenarios (RCPs), the ACCMIP ensemble of chemistry climate models simulated future concentrations of ozone and PM(sub 2.5) at selected decades between 2000 and 2100. We use output from the ACCMIP ensemble, together with projections of future population and baseline mortality rates, to quantify the human premature mortality impacts of future ambient air pollution. Future air-pollution-related premature mortality in 2030, 2050 and 2100 is estimated for each scenario and for each model using a health impact function based on changes in concentrations of ozone and PM(sub 2.5) relative to 2000 and projected future population and baseline mortality rates. Additionally, the global mortality burden of ozone and PM(sub 2.5) in 2000 and each future period is estimated relative to 1850 concentrations, using present-day and future population and baseline mortality rates. The change in future ozone concentrations relative to 2000 is associated with excess global premature mortality in some scenarios/periods, particularly in RCP8.5 in 2100 (316 thousand deaths per year), likely driven by the large increase in methane emissions and by the net effect of climate change projected in this scenario, but it leads to considerable avoided premature mortality for the three other RCPs. However, the global mortality burden of ozone markedly increases from 382000 (121000 to 728000) deaths per year in 2000 to between 1.09 and 2.36 million deaths per year in 2100, across RCPs, mostly due to the effect of increases in population and baseline mortality rates. PM(sub 2.5) concentrations decrease relative to 2000 in all scenarios, due to

  18. The effect of future ambient air pollution on human premature mortality to 2100 using output from the ACCMIP model ensemble.

    PubMed

    Silva, Raquel A; West, J Jason; Lamarque, Jean-François; Shindell, Drew T; Collins, William J; Dalsoren, Stig; Faluvegi, Greg; Folberth, Gerd; Horowitz, Larry W; Nagashima, Tatsuya; Naik, Vaishali; Rumbold, Steven T; Sudo, Kengo; Takemura, Toshihiko; Bergmann, Daniel; Cameron-Smith, Philip; Cionni, Irene; Doherty, Ruth M; Eyring, Veronika; Josse, Beatrice; MacKenzie, I A; Plummer, David; Righi, Mattia; Stevenson, David S; Strode, Sarah; Szopa, Sophie; Zeng, Guang

    2016-01-01

    Ambient air pollution from ground-level ozone and fine particulate matter (PM 2.5 ) is associated with premature mortality. Future concentrations of these air pollutants will be driven by natural and anthropogenic emissions and by climate change. Using anthropogenic and biomass burning emissions projected in the four Representative Concentration Pathway scenarios (RCPs), the ACCMIP ensemble of chemistry-climate models simulated future concentrations of ozone and PM 2.5 at selected decades between 2000 and 2100. We use output from the ACCMIP ensemble, together with projections of future population and baseline mortality rates, to quantify the human premature mortality impacts of future ambient air pollution. Future air pollution-related premature mortality in 2030, 2050 and 2100 is estimated for each scenario and for each model using a health impact function based on changes in concentrations of ozone and PM 2.5 relative to 2000 and projected future population and baseline mortality rates. Additionally, the global mortality burden of ozone and PM 2.5 in 2000 and each future period is estimated relative to 1850 concentrations, using present-day and future population and baseline mortality rates. The change in future ozone concentrations relative to 2000 is associated with excess global premature mortality in some scenarios/periods, particularly in RCP8.5 in 2100 (316 thousand deaths/year), likely driven by the large increase in methane emissions and by the net effect of climate change projected in this scenario, but it leads to considerable avoided premature mortality for the three other RCPs. However, the global mortality burden of ozone markedly increases from 382,000 (121,000 to 728,000) deaths/year in 2000 to between 1.09 and 2.36 million deaths/year in 2100, across RCPs, mostly due to the effect of increases in population and baseline mortality rates. PM 2.5 concentrations decrease relative to 2000 in all scenarios, due to projected reductions in emissions, and

  19. Air Quality Modeling Technical Support Document for the Final Cross State Air Pollution Rule Update

    EPA Pesticide Factsheets

    In this technical support document (TSD) we describe the air quality modeling performed to support the final Cross State Air Pollution Rule for the 2008 ozone National Ambient Air Quality Standards (NAAQS).

  20. COMMUNITY MULTISCALE AIR QUALITY MODELING SYSTEM (ONE ATMOSPHERE)

    EPA Science Inventory

    This task supports ORD's strategy by providing responsive technical support of EPA's mission and provides credible state of the art air quality models and guidance. This research effort is to develop and improve the Community Multiscale Air Quality (CMAQ) modeling system, a mu...

  1. College Chemistry Students' Mental Models of Acids and Acid Strength

    ERIC Educational Resources Information Center

    McClary, LaKeisha; Talanquer, Vicente

    2011-01-01

    The central goal of this study was to characterize the mental models of acids and acid strength expressed by advanced college chemistry students when engaged in prediction, explanation, and justification tasks that asked them to rank chemical compounds based on their relative acid strength. For that purpose we completed a qualitative research…

  2. Key Issues for Seamless Integrated Chemistry–Meteorology Modeling

    EPA Science Inventory

    Online coupled meteorology–atmospheric chemistry models have greatly evolved in recent years. Although mainly developed by the air quality modeling community, these integrated models are also of interest for numerical weather prediction and climate modeling, as they can con...

  3. Influence of air quality model resolution on uncertainty associated with health impacts

    NASA Astrophysics Data System (ADS)

    Thompson, T. M.; Selin, N. E.

    2012-10-01

    We use regional air quality modeling to evaluate the impact of model resolution on uncertainty associated with the human health benefits resulting from proposed air quality regulations. Using a regional photochemical model (CAMx), we ran a modeling episode with meteorological inputs simulating conditions as they occurred during August through September 2006 (a period representative of conditions leading to high ozone), and two emissions inventories (a 2006 base case and a 2018 proposed control scenario, both for Houston, Texas) at 36, 12, 4 and 2 km resolution. The base case model performance was evaluated for each resolution against daily maximum 8-h averaged ozone measured at monitoring stations. Results from each resolution were more similar to each other than they were to measured values. Population-weighted ozone concentrations were calculated for each resolution and applied to concentration response functions (with 95% confidence intervals) to estimate the health impacts of modeled ozone reduction from the base case to the control scenario. We found that estimated avoided mortalities were not significantly different between the 2, 4 and 12 km resolution runs, but the 36 km resolution may over-predict some potential health impacts. Given the cost/benefit analysis requirements motivated by Executive Order 12866 as it applies to the Clean Air Act, the uncertainty associated with human health impacts and therefore the results reported in this study, we conclude that health impacts calculated from population weighted ozone concentrations obtained using regional photochemical models at 36 km resolution fall within the range of values obtained using fine (12 km or finer) resolution modeling. However, in some cases, 36 km resolution may not be fine enough to statistically replicate the results achieved using 2, 4 or 12 km resolution. On average, when modeling at 36 km resolution, an estimated 5 deaths per week during the May through September ozone season are avoided

  4. Modeling of episodic particulate matter events using a 3-D air quality model with fine grid: Applications to a pair of cities in the US/Mexico border

    NASA Astrophysics Data System (ADS)

    Choi, Yu-Jin; Hyde, Peter; Fernando, H. J. S.

    High (episodic) particulate matter (PM) events over the sister cities of Douglas (AZ) and Agua Prieta (Sonora), located in the US-Mexico border, were simulated using the 3D Eulerian air quality model, MODELS-3/CMAQ. The best available input information was used for the simulations, with pollution inventory specified on a fine grid. In spite of inherent uncertainties associated with the emission inventory as well as the chemistry and meteorology of the air quality simulation tool, model evaluations showed acceptable PM predictions, while demonstrating the need for including the interaction between meteorology and emissions in an interactive mode in the model, a capability currently unavailable in MODELS-3/CMAQ when dealing with PM. Sensitivity studies on boundary influence indicate an insignificant regional (advection) contribution of PM to the study area. The contribution of secondary particles to the occurrence of high PM events was trivial. High PM episodes in the study area, therefore, are purely local events that largely depend on local meteorological conditions. The major PM emission sources were identified as vehicular activities on unpaved/paved roads and wind-blown dust. The results will be of immediate utility in devising PM mitigation strategies for the study area, which is one of the US EPA-designated non-attainment areas with respect to PM.

  5. Why has the bohr-sommerfeld model of the atom been ignoredby general chemistry textbooks?

    PubMed

    Niaz, Mansoor; Cardellini, Liberato

    2011-12-01

    Bohr's model of the atom is considered to be important by general chemistry textbooks. A major shortcoming of this model was that it could not explain the spectra of atoms containing more than one electron. In order to increase the explanatory power of the model, Sommerfeld hypothesized the existence of elliptical orbits. This study has the following objectives: 1) Formulation of criteria based on a history and philosophy of science framework; and 2) Evaluation of university-level general chemistry textbooks based on the criteria, published in Italy and U.S.A. Presentation of a textbook was considered to be "satisfactory" if it included a description of the Bohr-Sommerfeld model along with diagrams of the elliptical orbits. Of the 28 textbooks published in Italy that were analyzed, only five were classified as "satisfactory". Of the 46 textbooks published in U.S.A., only three were classified as "satisfactory". This study has the following educational implications: a) Sommerfeld's innovation (auxiliary hypothesis) by introducing elliptical orbits, helped to restore the viability of Bohr's model; b) Bohr-Sommerfeld's model went no further than the alkali metals, which led scientists to look for other models; c) This clearly shows that scientific models are tentative in nature; d) Textbook authors and chemistry teachers do not consider the tentative nature of scientific knowledge to be important; e) Inclusion of the Bohr-Sommerfeld model in textbooks can help our students to understand how science progresses.

  6. Experience with turbulence interaction and turbulence-chemistry models at Fluent Inc.

    NASA Technical Reports Server (NTRS)

    Choudhury, D.; Kim, S. E.; Tselepidakis, D. P.; Missaghi, M.

    1995-01-01

    This viewgraph presentation discusses (1) turbulence modeling: challenges in turbulence modeling, desirable attributes of turbulence models, turbulence models in FLUENT, and examples using FLUENT; and (2) combustion modeling: turbulence-chemistry interaction and FLUENT equilibrium model. As of now, three turbulence models are provided: the conventional k-epsilon model, the renormalization group model, and the Reynolds-stress model. The renormalization group k-epsilon model has broadened the range of applicability of two-equation turbulence models. The Reynolds-stress model has proved useful for strongly anisotropic flows such as those encountered in cyclones, swirlers, and combustors. Issues remain, such as near-wall closure, with all classes of models.

  7. Radiation chemistry of salicylic and methyl substituted salicylic acids: Models for the radiation chemistry of pharmaceutical compounds

    NASA Astrophysics Data System (ADS)

    Ayatollahi, Shakiba; Kalnina, Daina; Song, Weihua; Turks, Maris; Cooper, William J.

    2013-11-01

    Salicylic acid and its derivatives are components of many medications and moieties found in numerous pharmaceutical compounds. They have been used as models for various pharmaceutical compounds in pharmacological studies, for the treatment of pharmaceuticals and personal care products (PPCPs), and, reactions with natural organic matter (NOM). In this study, the radiation chemistry of benzoic acid, salicylic acid and four methyl substituted salicylic acids (MSA) is reported. The absolute bimolecular reaction rate constants for hydroxyl radical reaction with benzoic and salicylic acids as well as 3-methyl-, 4-methyl-, 5-methyl-, and 6-methyl-salicylic acid were determined (5.86±0.54)×109, (1.07±0.07)×1010, (7.48±0.17)×109, (7.31±0.29)×109, (5.47±0.25)×109, (6.94±0.10)×109 (M-1 s-1), respectively. The hydrated electron reaction rate constants were measured (3.02±0.10)×109, (8.98±0.27)×109, (5.39±0.21)×109, (4.33±0.17)×109, (4.72±0.15)×109, (1.42±0.02)×109 (M-1 s-1), respectively. The transient absorption spectra for the six model compounds were examined and their role as model compounds for the radiation chemistry of pharmaceuticals investigated.

  8. Generic Surface-to-Air Missile Model.

    DTIC Science & Technology

    1979-10-01

    describes the Generic Surface-to-Air Missile Model (GENSAM) which evaluates the outcome of an engagement between a surface-to-air missile system and an...DETAILS OF THE GENERIC SAM MODEL 3-1 3.1 Coordinate Transformations 3-1 3.1.1 Coordinate Systems 3-1 3.1.2 Coordinate Transformations 3-4 3.1.3 Functions...Tracking Radars 3-54 3.3.11 Deception Jamming and Tracking Radars 3-55 3.3.12 Jaming and Track Radar Downlinks 3-56 3.3.13 Infrared Surveillance Systems 3

  9. New approach for optimal electricity planning and dispatching with hourly time-scale air quality and health considerations.

    PubMed

    Kerl, Paul Y; Zhang, Wenxian; Moreno-Cruz, Juan B; Nenes, Athanasios; Realff, Matthew J; Russell, Armistead G; Sokol, Joel; Thomas, Valerie M

    2015-09-01

    Integrating accurate air quality modeling with decision making is hampered by complex atmospheric physics and chemistry and its coupling with atmospheric transport. Existing approaches to model the physics and chemistry accurately lead to significant computational burdens in computing the response of atmospheric concentrations to changes in emissions profiles. By integrating a reduced form of a fully coupled atmospheric model within a unit commitment optimization model, we allow, for the first time to our knowledge, a fully dynamical approach toward electricity planning that accurately and rapidly minimizes both cost and health impacts. The reduced-form model captures the response of spatially resolved air pollutant concentrations to changes in electricity-generating plant emissions on an hourly basis with accuracy comparable to a comprehensive air quality model. The integrated model allows for the inclusion of human health impacts into cost-based decisions for power plant operation. We use the new capability in a case study of the state of Georgia over the years of 2004-2011, and show that a shift in utilization among existing power plants during selected hourly periods could have provided a health cost savings of $175.9 million dollars for an additional electricity generation cost of $83.6 million in 2007 US dollars (USD2007). The case study illustrates how air pollutant health impacts can be cost-effectively minimized by intelligently modulating power plant operations over multihour periods, without implementing additional emissions control technologies.

  10. New approach for optimal electricity planning and dispatching with hourly time-scale air quality and health considerations

    PubMed Central

    Kerl, Paul Y.; Zhang, Wenxian; Moreno-Cruz, Juan B.; Nenes, Athanasios; Realff, Matthew J.; Russell, Armistead G.; Sokol, Joel; Thomas, Valerie M.

    2015-01-01

    Integrating accurate air quality modeling with decision making is hampered by complex atmospheric physics and chemistry and its coupling with atmospheric transport. Existing approaches to model the physics and chemistry accurately lead to significant computational burdens in computing the response of atmospheric concentrations to changes in emissions profiles. By integrating a reduced form of a fully coupled atmospheric model within a unit commitment optimization model, we allow, for the first time to our knowledge, a fully dynamical approach toward electricity planning that accurately and rapidly minimizes both cost and health impacts. The reduced-form model captures the response of spatially resolved air pollutant concentrations to changes in electricity-generating plant emissions on an hourly basis with accuracy comparable to a comprehensive air quality model. The integrated model allows for the inclusion of human health impacts into cost-based decisions for power plant operation. We use the new capability in a case study of the state of Georgia over the years of 2004–2011, and show that a shift in utilization among existing power plants during selected hourly periods could have provided a health cost savings of $175.9 million dollars for an additional electricity generation cost of $83.6 million in 2007 US dollars (USD2007). The case study illustrates how air pollutant health impacts can be cost-effectively minimized by intelligently modulating power plant operations over multihour periods, without implementing additional emissions control technologies. PMID:26283358

  11. The GEOS Chemistry Climate Model: Implications of Climate Feedbacks on Ozone Depletion and Recovery

    NASA Technical Reports Server (NTRS)

    Stolarski, Richard S.; Pawson, Steven; Douglass, Anne R.; Newman, Paul A.; Kawa, S. Randy; Nielsen, J. Eric; Rodriquez, Jose; Strahan, Susan; Oman, Luke; Waugh, Darryn

    2008-01-01

    The Goddard Earth Observing System Chemistry Climate Model (GEOS CCM) has been developed by combining the atmospheric chemistry and transport modules developed over the years at Goddard and the GEOS general circulation model, also developed at Goddard. The first version of the model was used in the CCMVal intercomparison exercises that contributed to the 2006 WMO/UNEP Ozone Assessment. The second version incorporates the updated version of the GCM (GEOS 5) and will be used for the next round of CCMVal evaluations and the 2010 Ozone Assessment. The third version, now under development, incorporates the combined stratosphere and troposphere chemistry package developed under the Global Modeling Initiative (GMI). We will show comparison to past observations that indicate that we represent the ozone trends over the past 30 years. We will also show the basic temperature, composition, and dynamical structure of the simulations. We will further show projections into the future. We will show results from an ensemble of transient and time-slice simulations, including simulations with fixed 1960 chlorine, simulations with a best guess scenario (Al), and simulations with extremely high chlorine loadings. We will discuss planned extensions of the model to include emission-based boundary conditions for both anthropogenic and biogenic compounds.

  12. Current and future climate- and air pollution-mediated impacts on human health.

    PubMed

    Doherty, Ruth M; Heal, Mathew R; Wilkinson, Paul; Pattenden, Sam; Vieno, Massimo; Armstrong, Ben; Atkinson, Richard; Chalabi, Zaid; Kovats, Sari; Milojevic, Ai; Stevenson, David S

    2009-12-21

    We describe a project to quantify the burden of heat and ozone on mortality in the UK, both for the present-day and under future emission scenarios. Mortality burdens attributable to heat and ozone exposure are estimated by combination of climate-chemistry modelling and epidemiological risk assessment. Weather forecasting models (WRF) are used to simulate the driving meteorology for the EMEP4UK chemistry transport model at 5 km by 5 km horizontal resolution across the UK; the coupled WRF-EMEP4UK model is used to simulate daily surface temperature and ozone concentrations for the years 2003, 2005 and 2006, and for future emission scenarios. The outputs of these models are combined with evidence on the ozone-mortality and heat-mortality relationships derived from epidemiological analyses (time series regressions) of daily mortality in 15 UK conurbations, 1993-2003, to quantify present-day health burdens. During the August 2003 heatwave period, elevated ozone concentrations > 200 microg m-3 were measured at sites in London and elsewhere. This and other ozone photochemical episodes cause breaches of the UK air quality objective for ozone. Simulations performed with WRF-EMEP4UK reproduce the August 2003 heatwave temperatures and ozone concentrations. There remains day-to-day variability in the high ozone concentrations during the heatwave period, which on some days may be explained by ozone import from the European continent.Preliminary calculations using extended time series of spatially-resolved WRF-EMEP4UK model output suggest that in the summers (May to September) of 2003, 2005 & 2006 over 6000 deaths were attributable to ozone and around 5000 to heat in England and Wales. The regional variation in these deaths appears greater for heat-related than for ozone-related burdens.Changes in UK health burdens due to a range of future emission scenarios will be quantified. These future emissions scenarios span a range of possible futures from assuming current air quality

  13. The effect of future outdoor air pollution on human health and the contribution of climate change

    NASA Astrophysics Data System (ADS)

    Silva, R.; West, J. J.; Lamarque, J.; Shindell, D.; Collins, W.; Dalsoren, S. B.; Faluvegi, G. S.; Folberth, G.; Horowitz, L. W.; Nagashima, T.; Naik, V.; Rumbold, S.; Skeie, R.; Sudo, K.; Takemura, T.; Bergmann, D. J.; Cameron-Smith, P. J.; Cionni, I.; Doherty, R. M.; Eyring, V.; Josse, B.; MacKenzie, I. A.; Plummer, D.; Righi, M.; Stevenson, D. S.; Strode, S. A.; Szopa, S.; Zeng, G.

    2013-12-01

    At present, exposure to outdoor air pollution from ozone and fine particulate matter (PM2.5) causes over 2 million deaths per year, due to respiratory and cardiovascular diseases and lung cancer. Future ambient concentrations of ozone and PM2.5 will be affected by both air pollutant emissions and climate change. Here we estimate the potential impact of future outdoor air pollution on premature human mortality, and isolate the contribution of future climate change due to its effect on air quality. We use modeled present-day (2000) and future global ozone and PM2.5 concentrations from simulations with an ensemble of chemistry-climate models from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Future air pollution was modeled for global greenhouse gas and air pollutant emissions in the four IPCC AR5 Representative Concentration Pathway (RCP) scenarios, for 2030, 2050 and 2100. All model outputs are regridded to a common 0.5°x0.5° horizontal resolution. Future premature mortality is estimated for each RCP scenario and year based on changes in concentrations of ozone and PM2.5 relative to 2000. Using a health impact function, changes in concentrations for each RCP scenario are combined with future population and cause-specific baseline mortality rates as projected by a single independent scenario in which the global incidence of cardiopulmonary diseases is expected to increase. The effect of climate change is isolated by considering the difference between air pollutant concentrations from simulations with 2000 emissions and a future year climate and simulations with 2000 emissions and climate. Uncertainties in the results reflect the uncertainty in the concentration-response function and that associated with variability among models. Few previous studies have quantified the effects of future climate change on global human health via changes in air quality, and this is the first such study to use an ensemble of global models.

  14. Observational Insights into N2O5 Heterogeneous Chemistry: Influencing Factors and Contribution to Wintertime Air Pollution

    NASA Astrophysics Data System (ADS)

    McDuffie, E. E.; Fibiger, D. L.; Womack, C.; Dube, W. P.; Lopez-Hilfiker, F.; Goldberger, L.; Thornton, J. A.; Shah, V.; Jaegle, L.; Guo, H.; Weber, R. J.; Schroder, J. C.; Campuzano Jost, P.; Jimenez, J. L.; Franchin, A.; Middlebrook, A. M.; Baasandorj, M.; Brown, S. S.

    2017-12-01

    Chemical mechanisms that underlie wintertime air pollution, including tropospheric ozone and aerosol nitrate, are poorly characterized. Due to colder temperatures and fewer hours of solar radiation, nocturnal heterogeneous uptake of N2O5 plays a relatively larger role during wintertime in controlling the oxidation of NOx (=NO+NO2) and its influence on ozone and soluble nitrate. After uptake to aerosol, N2O5 can act as both a nocturnal NOx reservoir and sink depending on the partitioning between its nitric acid and photo labile, ClNO2 reaction products. In addition, N2O5 itself can act as a NOx reservoir if the aerosol uptake coefficient is small. As a result, the nocturnal fate of N2O5 dictates the amount of NOx in an air parcel and the subsequent formation of aerosol nitrate and following-day ozone. Models of winter air pollution therefore require accurate parameterization of the N2O5 uptake coefficient, as well as factors that control its magnitude and N2O5 product partitioning. There are currently only a small number of ambient N2O5 and ClNO2 observations during the winter season concurrent with measurements of relevant variables such as aerosol size distributions and composition. The Wintertime INvestigation of Transport, Emissions, and Reactivity (WINTER) campaign conducted 10 nighttime research flights with the NCAR C-130 over the eastern U.S. during February and March, 2015. The more recent Utah Wintertime Fine Particulate Study (UWFPS) conducted over 20 research flights with the NOAA twin otter aircraft during January-February 2017 in three mountain basins near and including Salt Lake City, Utah. The two campaigns were similarly instrumented and have provided the first aircraft observations of N2O5, ClNO2, and aerosol composition in the wintertime boundary layer in these urban-influenced regions. Analysis of heterogeneous chemistry under a wide range of real environmental conditions provides insight into the factors controlling the N2O5 uptake coefficient

  15. Gordon Research Conference in Organometallic Chemistry, held August 16-20, 1982 Andover, New Hampshire.

    DTIC Science & Technology

    1983-03-01

    Guido MLS 33 Mbtts, Graham MLS 31 Air Products and Chemicals , Inc . University of Pittsburgh PO Box 538 Chemistry Dept. Allentown, PA 18105 Pittsburgh... Products and Chemicals Inc . Boston College P0 Box 538, Corp Science Ctr. Chestnut Hill, MA 02167 AllenCwn, PA 18105 Nicholas, Paul Carriage 4 McGinnis...CA 94025 Dept of Chnmaistry Evanston, IL 60201 Organcietallic Chemistry Registration List -5- Marsella, John MLS 26 Nicholas, Kenneth MLS 31 Air

  16. INDOOR AIR QUALITY MODELING (CHAPTER 58)

    EPA Science Inventory

    The chapter discussses indoor air quality (IAQ) modeling. Such modeling provides a way to investigate many IAQ problems without the expense of large field experiments. Where experiments are planned, IAQ models can be used to help design experiments by providing information on exp...

  17. A new Geoengineering Model Intercomparison Project (GeoMIP) experiment designed for climate and chemistry models

    DOE PAGES

    Tilmes, S.; Mills, Mike; Niemeier, Ulrike; ...

    2015-01-15

    A new Geoengineering Model Intercomparison Project (GeoMIP) experiment "G4 specified stratospheric aerosols" (short name: G4SSA) is proposed to investigate the impact of stratospheric aerosol geoengineering on atmosphere, chemistry, dynamics, climate, and the environment. In contrast to the earlier G4 GeoMIP experiment, which requires an emission of sulfur dioxide (SO₂) into the model, a prescribed aerosol forcing file is provided to the community, to be consistently applied to future model experiments between 2020 and 2100. This stratospheric aerosol distribution, with a total burden of about 2 Tg S has been derived using the ECHAM5-HAM microphysical model, based on a continuous annualmore » tropical emission of 8 Tg SO₂ yr⁻¹. A ramp-up of geoengineering in 2020 and a ramp-down in 2070 over a period of 2 years are included in the distribution, while a background aerosol burden should be used for the last 3 decades of the experiment. The performance of this experiment using climate and chemistry models in a multi-model comparison framework will allow us to better understand the impact of geoengineering and its abrupt termination after 50 years in a changing environment. The zonal and monthly mean stratospheric aerosol input data set is available at https://www2.acd.ucar.edu/gcm/geomip-g4-specified-stratospheric-aerosol-data-set.« less

  18. Merging curriculum design with chemical epistemology: A case of teaching and learning chemistry through modeling

    NASA Astrophysics Data System (ADS)

    Erduran, Sibel

    The central problem underlying this dissertation is the design of learning environments that enable the teaching and learning of chemistry through modeling. Significant role of models in chemistry knowledge is highlighted with a shift in emphasis from conceptual to epistemological accounts of models. Research context is the design and implementation of student centered Acids & Bases Curriculum, developed as part of Project SEPIA. Qualitative study focused on 3 curriculum activities conducted in one 7th grade class of 19 students in an urban, public middle school in eastern United States. Questions guiding the study were: (a) How can learning environments be designed to promote growth of chemistry knowledge through modeling? (b) What epistemological criteria facilitate learning of growth of chemistry knowledge through modeling? Curriculum materials, and verbal data from whole class conversations and student group interviews were analyzed. Group interviews consisted of same 4 students, selected randomly before curriculum implementation, and were conducted following each activity to investigate students' developing understandings of models. Theoretical categories concerning definition, properties and kinds of models as well as educational and chemical models informed curriculum design, and were redefined as codes in the analysis of verbal data. Results indicate more diversity of codes in student than teacher talk across all activities. Teacher concentrated on educational and chemical models. A significant finding is that model properties such as 'compositionality' and 'projectability' were not present in teacher talk as expected by curriculum design. Students did make reference to model properties. Another finding is that students demonstrate an understanding of models characterized by the seventeenth century Lemery model of acids and bases. Two students' developing understandings of models across curriculum implementation suggest that curriculum bears some change in

  19. A Self Consistent RF Discharge, Plasma Chemistry and Surface Model for Plasma Enhanced Chemical Vapor Deposition

    DTIC Science & Technology

    1988-06-30

    consists of three submodels for the electron kinetics, plasma chemistry , and surface deposition kinetics for a-Si:H deposited from radio frequency...properties. Plasma enhanced, Chemical vapor deposition, amorphous silicon, Modeling, Electron kinetics, Plasma chemistry , Deposition kinetics, Rf discharge, Silane, Film properties, Silicon.

  20. Students' Understanding of the Descriptive and Predictive Nature of Teaching Models in Organic Chemistry

    ERIC Educational Resources Information Center

    Treagust, David F.; Chittleborough, Gail D.; Mamiala, Thapelo L.

    2004-01-01

    The purpose of the study was to investigate secondary students' understanding of the descriptive and predictive nature of teaching models used in representing compounds in introductory organic chemistry. Of interest were the relationships between teaching models, scientific models, and students' mental models and expressed models. The results from…

  1. The influence of synoptic weather regimes on UK air quality: regional model studies of tropospheric column NO2

    NASA Astrophysics Data System (ADS)

    Pope, R. J.; Savage, N. H.; Chipperfield, M. P.; Ordóñez, C.; Neal, L. S.

    2015-10-01

    Synoptic meteorology can have a significant influence on UK air quality. Cyclonic conditions lead to the dispersion of air pollutants away from source regions, while anticyclonic conditions lead to their accumulation over source regions. Meteorology also modifies atmospheric chemistry processes such as photolysis and wet deposition. Previous studies have shown a relationship between observed satellite tropospheric column NO2 and synoptic meteorology in different seasons. Here, we test whether the UK Met Office Air Quality in the Unified Model (AQUM) can reproduce these observations and then use the model to explore the relative importance of various factors. We show that AQUM successfully captures the observed relationships when sampled under the Lamb weather types, an objective classification of midday UK circulation patterns. By using a range of idealized NOx-like tracers with different e-folding lifetimes, we show that under different synoptic regimes the NO2 lifetime in AQUM is approximately 6 h in summer and 12 h in winter. The longer lifetime can explain why synoptic spatial tropospheric column NO2 variations are more significant in winter compared to summer, due to less NO2 photochemical loss. We also show that cyclonic conditions have more seasonality in tropospheric column NO2 than anticyclonic conditions as they result in more extreme spatial departures from the wintertime seasonal average. Within a season (summer or winter) under different synoptic regimes, a large proportion of the spatial pattern in the UK tropospheric column NO2 field can be explained by the idealized model tracers, showing that transport is an important factor in governing the variability of UK air quality on seasonal synoptic timescales.

  2. The cost of simplifying air travel when modeling disease spread.

    PubMed

    Lessler, Justin; Kaufman, James H; Ford, Daniel A; Douglas, Judith V

    2009-01-01

    Air travel plays a key role in the spread of many pathogens. Modeling the long distance spread of infectious disease in these cases requires an air travel model. Highly detailed air transportation models can be over determined and computationally problematic. We compared the predictions of a simplified air transport model with those of a model of all routes and assessed the impact of differences on models of infectious disease. Using U.S. ticket data from 2007, we compared a simplified "pipe" model, in which individuals flow in and out of the air transport system based on the number of arrivals and departures from a given airport, to a fully saturated model where all routes are modeled individually. We also compared the pipe model to a "gravity" model where the probability of travel is scaled by physical distance; the gravity model did not differ significantly from the pipe model. The pipe model roughly approximated actual air travel, but tended to overestimate the number of trips between small airports and underestimate travel between major east and west coast airports. For most routes, the maximum number of false (or missed) introductions of disease is small (<1 per day) but for a few routes this rate is greatly underestimated by the pipe model. If our interest is in large scale regional and national effects of disease, the simplified pipe model may be adequate. If we are interested in specific effects of interventions on particular air routes or the time for the disease to reach a particular location, a more complex point-to-point model will be more accurate. For many problems a hybrid model that independently models some frequently traveled routes may be the best choice. Regardless of the model used, the effect of simplifications and sensitivity to errors in parameter estimation should be analyzed.

  3. Development of the GEM-MACH-FireWork System: An Air Quality Model with On-line Wildfire Emissions within the Canadian Operational Air Quality Forecast System

    NASA Astrophysics Data System (ADS)

    Pavlovic, Radenko; Chen, Jack; Beaulieu, Paul-Andre; Anselmp, David; Gravel, Sylvie; Moran, Mike; Menard, Sylvain; Davignon, Didier

    2014-05-01

    A wildfire emissions processing system has been developed to incorporate near-real-time emissions from wildfires and large prescribed burns into Environment Canada's real-time GEM-MACH air quality (AQ) forecast system. Since the GEM-MACH forecast domain covers Canada and most of the U.S.A., including Alaska, fire location information is needed for both of these large countries. During AQ model runs, emissions from individual fire sources are injected into elevated model layers based on plume-rise calculations and then transport and chemistry calculations are performed. This "on the fly" approach to the insertion of the fire emissions provides flexibility and efficiency since on-line meteorology is used and computational overhead in emissions pre-processing is reduced. GEM-MACH-FireWork, an experimental wildfire version of GEM-MACH, was run in real-time mode for the summers of 2012 and 2013 in parallel with the normal operational version. 48-hour forecasts were generated every 12 hours (at 00 and 12 UTC). Noticeable improvements in the AQ forecasts for PM2.5 were seen in numerous regions where fire activity was high. Case studies evaluating model performance for specific regions and computed objective scores will be included in this presentation. Using the lessons learned from the last two summers, Environment Canada will continue to work towards the goal of incorporating near-real-time intermittent wildfire emissions into the operational air quality forecast system.

  4. Downscaling a Global Climate Model to Simulate Climate Change Impacts on U.S. Regional and Urban Air Quality

    NASA Technical Reports Server (NTRS)

    Trail, M.; Tsimpidi, A. P.; Liu, P.; Tsigaridis, K.; Hu, Y.; Nenes, A.; Russell, A. G.

    2013-01-01

    Climate change can exacerbate future regional air pollution events by making conditions more favorable to form high levels of ozone. In this study, we use spectral nudging with WRF to downscale NASA earth system GISS modelE2 results during the years 2006 to 2010 and 2048 to 2052 over the continental United States in order to compare the resulting meteorological fields from the air quality perspective during the four seasons of five-year historic and future climatological periods. GISS results are used as initial and boundary conditions by the WRF RCM to produce hourly meteorological fields. The downscaling technique and choice of physics parameterizations used are evaluated by comparing them with in situ observations. This study investigates changes of similar regional climate conditions down to a 12km by 12km resolution, as well as the effect of evolving climate conditions on the air quality at major U.S. cities. The high resolution simulations produce somewhat different results than the coarse resolution simulations in some regions. Also, through the analysis of the meteorological variables that most strongly influence air quality, we find consistent changes in regional climate that would enhance ozone levels in four regions of the U.S. during fall (Western U.S., Texas, Northeastern, and Southeastern U.S), one region during summer (Texas), and one region where changes potentially would lead to better air quality during spring (Northeast). We also find that daily peak temperatures tend to increase in most major cities in the U.S. which would increase the risk of health problems associated with heat stress. Future work will address a more comprehensive assessment of emissions and chemistry involved in the formation and removal of air pollutants.

  5. Modelling interstellar physics and chemistry: implications for surface and solid-state processes.

    PubMed

    Williams, David; Viti, Serena

    2013-07-13

    We discuss several types of regions in the interstellar medium of the Milky Way and other galaxies in which the chemistry appears to be influenced or dominated by surface and solid-state processes occurring on or in interstellar dust grains. For some of these processes, for example, the formation of H₂ molecules, detailed experimental and theoretical approaches have provided excellent fundamental data for incorporation into astrochemical models. In other cases, there is an astrochemical requirement for much more laboratory and computational study, and we highlight these needs in our description. Nevertheless, in spite of the limitations of the data, it is possible to infer from astrochemical modelling that surface and solid-state processes play a crucial role in astronomical chemistry from early epochs of the Universe up to the present day.

  6. Engineering Strategies and Methods for Avoiding Air-Quality Externalities: Dispersion Modeling, Home Energy Conservation, and Scenario Planning

    NASA Astrophysics Data System (ADS)

    Knox, Andrew James

    Energy conservation can improve air quality by reducing emissions from fuel combustion. The human health value retained through better air quality can then offset the cost of energy conservation. Through this thesis' innovative yet widely-accessible combination of air pollution dispersion modeling and atmospheric chemistry, it is estimated that the health value retained by avoiding emissions from Ontario's former coal-fired generating stations is 5.74/MWh (using an upper-bound value of 265,000 per year of life lost). This value is combined with energy modeling of homes in the first-ever assessment of the air-quality health benefits of low-energy buildings. It is shown that avoided health damages can equal 7% of additional construction costs of energy efficient buildings in Ontario. At 7%, health savings are a significant item in the cost analysis of efficient buildings. Looking to energy efficiency in the context of likely future low-resource natural gas scenarios, building efficient buildings today is shown to be more economically efficient than any building retrofit option. Considering future natural gas scarcity in the context of Ontario's Long-Term Energy Plan reveals that Ontario may be forced to return to coal-fired electricity. Projected coal use would result in externalities greater than $600 million/year; 80% more than air-quality externalities from Ontario's electricity in 1985. Radically aggressive investment in electricity conservation (75% reduction per capita by 2075) is one promising path forward that keeps air-quality externalities below 1985 levels. Non-health externalities are an additional concern, the quantification, and ultimately monetization, of which could be practical using emerging air pollution monitoring technologies. Energy, conservation, energy planning, and energy's externalities form a complex situation in which today's decisions are critical to a successful future. It is clear that reducing the demand for energy is essential and

  7. RCA: A route city attraction model for air passengers

    NASA Astrophysics Data System (ADS)

    Huang, Feihu; Xiong, Xi; Peng, Jian; Guo, Bing; Tong, Bo

    2018-02-01

    Human movement pattern is a research hotspot of social computing and has practical values in various fields, such as traffic planning. Previous studies mainly focus on the travel activities of human beings on the ground rather than those in the air. In this paper, we use the reservation records of air passengers to explore air passengers' movement characteristics. After analyzing the effect of the route-trip length on the throughput, we find that most passengers eventually return to their original departure city and that the mobility of air passengers is not related to the route length. Based on these characteristics, we present a route city attraction (RCA) model, in which GDP or population is considered for the calculation of the attraction. The sub models of our RCA model show the better prediction performance of throughput than the radiation model and the gravity model.

  8. Air Pollution Exposure Modeling for Health Studies | Science ...

    EPA Pesticide Factsheets

    Dr. Michael Breen is leading the development of air pollution exposure models, integrated with novel personal sensor technologies, to improve exposure and risk assessments for individuals in health studies. He is co-investigator for multiple health studies assessing the exposure and effects of air pollutants. These health studies include participants with asthma, diabetes, and coronary artery disease living in various U.S. cities. He has developed, evaluated, and applied novel exposure modeling and time-activity tools, which includes the Exposure Model for Individuals (EMI), GPS-based Microenvironment Tracker (MicroTrac) and Exposure Tracker models. At this seminar, Dr. Breen will present the development and application of these models to predict individual-level personal exposures to particulate matter (PM) for two health studies in central North Carolina. These health studies examine the association between PM and adverse health outcomes for susceptible individuals. During Dr. Breen’s visit, he will also have the opportunity to establish additional collaborations with researchers at Harvard University that may benefit from the use of exposure models for cohort health studies. These research projects that link air pollution exposure with adverse health outcomes benefit EPA by developing model-predicted exposure-dose metrics for individuals in health studies to improve the understanding of exposure-response behavior of air pollutants, and to reduce participant

  9. On Regional Modeling to Support Air Quality Policies

    EPA Science Inventory

    We examine the use of the Community Multiscale Air Quality (CMAQ) model in simulating the changes in the extreme values of air quality that are of interest to the regulatory agencies. Year-to-year changes in ozone air quality are attributable to variations in the prevailing mete...

  10. The ASAC Air Carrier Investment Model (Second Generation)

    NASA Technical Reports Server (NTRS)

    Wingrove, Earl R., III; Johnson, Jesse P.; Sickles, Robin C.; Good, David H.

    1997-01-01

    To meet its objective of assisting the U.S. aviation industry with the technological challenges of the future, NASA must identify research areas that have the greatest potential for improving the operation of the air transportation system. To accomplish this, NASA is building an Aviation System Analysis Capability (ASAC). The ASAC differs from previous NASA modeling efforts in that the economic behavior of buyers and sellers in the air transportation and aviation industries is central to its conception. To link the economics of flight with the technology of flight, ASAC requires a parametrically based mode with extensions that link airline operations and investments in aircraft with aircraft characteristics. This model also must provide a mechanism for incorporating air travel demand and profitability factors into the airlines' investment decisions. Finally, the model must be flexible and capable of being incorporated into a wide-ranging suite of economic and technical models that are envisioned for ASAC. We describe a second-generation Air Carrier Investment Model that meets these requirements. The enhanced model incorporates econometric results from the supply and demand curves faced by U.S.-scheduled passenger air carriers. It uses detailed information about their fleets in 1995 to make predictions about future aircraft purchases. It enables analysts with the ability to project revenue passenger-miles flown, airline industry employment, airline operating profit margins, numbers and types of aircraft in the fleet, and changes in aircraft manufacturing employment under various user-defined scenarios.

  11. QUANTIFYING SUBGRID POLLUTANT VARIABILITY IN EULERIAN AIR QUALITY MODELS

    EPA Science Inventory

    In order to properly assess human risk due to exposure to hazardous air pollutants or air toxics, detailed information is needed on the location and magnitude of ambient air toxic concentrations. Regional scale Eulerian air quality models are typically limited to relatively coar...

  12. Changes in the chemistry of small Irish lakes.

    PubMed

    Burton, Andrew W; Aherne, Julian

    2012-03-01

    A re-survey of acid-sensitive lakes in Ireland (initial survey 1997) was carried out during spring 2007 (n = 60). Since 1997, atmospheric emissions of sulfur dioxide and deposition of non-marine sulfate (SO(4) (2-)) in Ireland have decreased by ~63 and 36%, respectively. Comparison of water chemistry between surveys showed significant decreases in the concentration of SO(4) (2-), non-marine SO(4) (2-), and non-marine base cations. In concert, alkalinity increased significantly; however, no change was observed in surface water pH and total aluminum. High inter-annual variability in sea salt inputs and increasing (albeit non-significant) dissolved organic carbon may have influenced the response of pH and total aluminum (as ~70% is organic aluminum). Despite their location on the western periphery of Europe, and dominant influence from Atlantic air masses, the repeat survey suggests that the chemistry of small Irish lakes has shown a significant response to reductions in air pollution driven primarily by the implementation of the Gothenburg Protocol under the UNECE Convention on Long-Range Transboundary Air Pollution.

  13. The air quality forecast in Beijing with Community Multi-scale Air Quality Modeling (CMAQ) System: model evaluation and improvement

    NASA Astrophysics Data System (ADS)

    Wu, Q.

    2013-12-01

    The MM5-SMOKE-CMAQ model system, which is developed by the United States Environmental Protection Agency(U.S. EPA) as the Models-3 system, has been used for the daily air quality forecast in the Beijing Municipal Environmental Monitoring Center(Beijing MEMC), as a part of the Ensemble Air Quality Forecast System for Beijing(EMS-Beijing) since the Olympic Games year 2008. In this study, we collect the daily forecast results of the CMAQ model in the whole year 2010 for the model evaluation. The results show that the model play a good model performance in most days but underestimate obviously in some air pollution episode. A typical air pollution episode from 11st - 20th January 2010 was chosen, which the air pollution index(API) of particulate matter (PM10) observed by Beijing MEMC reaches to 180 while the prediction of PM10-API is about 100. Taking in account all stations in Beijing, including urban and suburban stations, three numerical methods are used for model improvement: firstly, enhance the inner domain with 4km grids, the coverage from only Beijing to the area including its surrounding cities; secondly, update the Beijing stationary area emission inventory, from statistical county-level to village-town level, that would provide more detail spatial informance for area emissions; thirdly, add some industrial points emission in Beijing's surrounding cities, the latter two are both the improvement of emission. As the result, the peak of the nine national standard stations averaged PM10-API, which is simulated by CMAQ as daily hindcast PM10-API, reach to 160 and much near to the observation. The new results show better model performance, which the correlation coefficent is 0.93 in national standard stations average and 0.84 in all stations, the relative error is 15.7% in national standard stations averaged and 27% in all stations. The time series of 9 national standard in Beijing urban The scatter diagram of all stations in Beijing, the red is the forecast and

  14. COMMUNITY SCALE AIR TOXICS MODELING WITH CMAQ

    EPA Science Inventory

    Consideration and movement for an urban air toxics control strategy is toward a community, exposure and risk-based modeling approach, with emphasis on assessments of areas that experience high air toxic concentration levels, the so-called "hot spots". This strategy will requir...

  15. Airborne measurements of air pollution chemistry and transport. 1: Initial survey of major air basins in California

    NASA Technical Reports Server (NTRS)

    Gloria, H. R.; Pitts, J. N., Jr.; Behar, J. V.; Bradburn, G. A.; Reinisch, R. F.; Zafonte, L.

    1972-01-01

    An instrumented aircraft has been used to study photochemical air pollution in the State of California. Simultaneous measurements of the most important chemical constituents (ozone, total oxidant, hydrocarbons, and nitrogen oxides, as well as several meteorological variables) were made. State-of-the-art measurement techniques and sampling procedures are discussed. Data from flights over the South Coast Air Basin, the San Francisco Bay Area, the San Joaquin Valley, the Santa Clara and Salinas Valleys, and the Pacific Ocean within 200 miles of the California coast are presented. Pollutants were found to be concentrated in distant layers up to at least 18,000 feet. In many of these layers, the pollutant concentrations were much higher than at ground level. These findings bring into serious question the validity of the present practice of depending solely on data from ground-based monitoring stations for predictive models.

  16. Polar boundary layer bromine explosion and ozone depletion events in the chemistry-climate model EMAC v2.52: implementation and evaluation of AirSnow algorithm

    NASA Astrophysics Data System (ADS)

    Falk, Stefanie; Sinnhuber, Björn-Martin

    2018-03-01

    Ozone depletion events (ODEs) in the polar boundary layer have been observed frequently during springtime. They are related to events of boundary layer enhancement of bromine. Consequently, increased amounts of boundary layer volume mixing ratio (VMR) and vertical column densities (VCDs) of BrO have been observed by in situ observation, ground-based as well as airborne remote sensing, and from satellites. These so-called bromine explosion (BE) events have been discussed serving as a source of tropospheric BrO at high latitudes, which has been underestimated in global models so far. We have implemented a treatment of bromine release and recycling on sea-ice- and snow-covered surfaces in the global chemistry-climate model EMAC (ECHAM/MESSy Atmospheric Chemistry) based on the scheme of Toyota et al. (2011). In this scheme, dry deposition fluxes of HBr, HOBr, and BrNO3 over ice- and snow-covered surfaces are recycled into Br2 fluxes. In addition, dry deposition of O3, dependent on temperature and sunlight, triggers a Br2 release from surfaces associated with first-year sea ice. Many aspects of observed bromine enhancements and associated episodes of near-complete depletion of boundary layer ozone, both in the Arctic and in the Antarctic, are reproduced by this relatively simple approach. We present first results from our global model studies extending over a full annual cycle, including comparisons with Global Ozone Monitoring Experiment (GOME) satellite BrO VCDs and surface ozone observations.

  17. A time-dependent anisotropic plasma chemistry model of the Io plasma torus

    NASA Astrophysics Data System (ADS)

    Arridge, C. S.

    2016-12-01

    The physics of the Io plasma torus is typically modelled using one box neutral-plasma chemistry models, often referred to as neutral cloud theory models (e.g., Barbosa 1994; Delamere and Bagenal 2003). These models incorporate electron impact and photoionisation, charge exchange, molecular dissociation/recombination reactions, atomic radiatiative losses and Coulomb collisional heating. Isotropic Maxwellian distributions are usually assumed in the implementation of these models. Observationally a population of suprathermal electrons has been identified in the plasma torus and theoretically they have been shown to be important in reproducing the observed ionisation balance in the torus (e.g., Barbosa 1994). In this paper we describe an anisotropic plasma chemistry model for the Io torus that is inspired by ion cyclotron wave observations (Huddleston et al. 1994; Leisner et al. 2011), ion anisotropies due to pick up (Wilson et al. 2008), and theoretical ideas on the maintenance of the suprathermal electron population (Barbosa 1994). We present both steady state calculations and also time varying solutions (e.g., Delamere et al. 2004) where increases in the neutral source rate in the torus generates perturbations in ion anisotropies that subsequently decay over a timescale much longer than the duration of the initial perturbation. We also present a method for incorporating uncertainties in reaction rates into the model.

  18. Evaluating Air-Quality Models: Review and Outlook.

    NASA Astrophysics Data System (ADS)

    Weil, J. C.; Sykes, R. I.; Venkatram, A.

    1992-10-01

    Over the past decade, much attention has been devoted to the evaluation of air-quality models with emphasis on model performance in predicting the high concentrations that are important in air-quality regulations. This paper stems from our belief that this practice needs to be expanded to 1) evaluate model physics and 2) deal with the large natural or stochastic variability in concentration. The variability is represented by the root-mean- square fluctuating concentration (c about the mean concentration (C) over an ensemble-a given set of meteorological, source, etc. conditions. Most air-quality models used in applications predict C, whereas observations are individual realizations drawn from an ensemble. For cC large residuals exist between predicted and observed concentrations, which confuse model evaluations.This paper addresses ways of evaluating model physics in light of the large c the focus is on elevated point-source models. Evaluation of model physics requires the separation of the mean model error-the difference between the predicted and observed C-from the natural variability. A residual analysis is shown to be an elective way of doing this. Several examples demonstrate the usefulness of residuals as well as correlation analyses and laboratory data in judging model physics.In general, c models and predictions of the probability distribution of the fluctuating concentration (c), (c, are in the developmental stage, with laboratory data playing an important role. Laboratory data from point-source plumes in a convection tank show that (c approximates a self-similar distribution along the plume center plane, a useful result in a residual analysis. At pmsent,there is one model-ARAP-that predicts C, c, and (c for point-source plumes. This model is more computationally demanding than other dispersion models (for C only) and must be demonstrated as a practical tool. However, it predicts an important quantity for applications- the uncertainty in the very high and

  19. D-region ion-neutral coupled chemistry (Sodankylä Ion Chemistry, SIC) within the Whole Atmosphere Community Climate Model (WACCM 4) - WACCM-SIC and WACCM-rSIC

    NASA Astrophysics Data System (ADS)

    Kovács, Tamás; Plane, John M. C.; Feng, Wuhu; Nagy, Tibor; Chipperfield, Martyn P.; Verronen, Pekka T.; Andersson, Monika E.; Newnham, David A.; Clilverd, Mark A.; Marsh, Daniel R.

    2016-09-01

    This study presents a new ion-neutral chemical model coupled into the Whole Atmosphere Community Climate Model (WACCM). The ionospheric D-region (altitudes ˜ 50-90 km) chemistry is based on the Sodankylä Ion Chemistry (SIC) model, a one-dimensional model containing 307 ion-neutral and ion recombination, 16 photodissociation and 7 photoionization reactions of neutral species, positive and negative ions, and electrons. The SIC mechanism was reduced using the simulation error minimization connectivity method (SEM-CM) to produce a reaction scheme of 181 ion-molecule reactions of 181 ion-molecule reactions of 27 positive and 18 negative ions. This scheme describes the concentration profiles at altitudes between 20 km and 120 km of a set of major neutral species (HNO3, O3, H2O2, NO, NO2, HO2, OH, N2O5) and ions (O2+, O4+, NO+, NO+(H2O), O2+(H2O), H+(H2O), H+(H2O)2, H+(H2O)3, H+(H2O)4, O3-, NO2-, O-, O2, OH-, O2-(H2O), O2-(H2O)2, O4-, CO3-, CO3-(H2O), CO4-, HCO3-, NO2-, NO3-, NO3-(H2O), NO3-(H2O)2, NO3-(HNO3), NO3-(HNO3)2, Cl-, ClO-), which agree with the full SIC mechanism within a 5 % tolerance. Four 3-D model simulations were then performed, using the impact of the January 2005 solar proton event (SPE) on D-region HOx and NOx chemistry as a test case of four different model versions: the standard WACCM (no negative ions and a very limited set of positive ions); WACCM-SIC (standard WACCM with the full SIC chemistry of positive and negative ions); WACCM-D (standard WACCM with a heuristic reduction of the SIC chemistry, recently used to examine HNO3 formation following an SPE); and WACCM-rSIC (standard WACCM with a reduction of SIC chemistry using the SEM-CM method). The standard WACCM misses the HNO3 enhancement during the SPE, while the full and reduced model versions predict significant NOx, HOx and HNO3 enhancements in the mesosphere during solar proton events. The SEM-CM reduction also identifies the important ion-molecule reactions that affect the partitioning of

  20. Improving Students' Understanding of Molecular Structure through Broad-Based Use of Computer Models in the Undergraduate Organic Chemistry Lecture

    ERIC Educational Resources Information Center

    Springer, Michael T.

    2014-01-01

    Several articles suggest how to incorporate computer models into the organic chemistry laboratory, but relatively few papers discuss how to incorporate these models broadly into the organic chemistry lecture. Previous research has suggested that "manipulating" physical or computer models enhances student understanding; this study…

  1. CONCENTRATIONS OF TOXIC AIR POLLUTANTS IN THE U.S. SIMULATED BY AN AIR QUALITY MODEL

    EPA Science Inventory

    As part of the US National Air Toxics Assessment, we have applied the Community Multiscale Air Quality Model, CMAQ, to study the concentrations of twenty gas-phase, toxic, hazardous air pollutants (HAPs) in the atmosphere over the continental United States. We modified the Carbo...

  2. Pure rotational CARS thermometry studies of low-temperature oxidation kinetics in air and ethene-air nanosecond pulse discharge plasmas

    NASA Astrophysics Data System (ADS)

    Zuzeek, Yvette; Choi, Inchul; Uddi, Mruthunjaya; Adamovich, Igor V.; Lempert, Walter R.

    2010-03-01

    Pure rotational CARS thermometry is used to study low-temperature plasma assisted fuel oxidation kinetics in a repetitive nanosecond pulse discharge in ethene-air at stoichiometric and fuel lean conditions at 40 Torr pressure. Air and fuel-air mixtures are excited by a burst of high-voltage nanosecond pulses (peak voltage, 20 kV; pulse duration, ~ 25 ns) at a 40 kHz pulse repetition rate and a burst repetition rate of 10 Hz. The number of pulses in the burst is varied from a few pulses to a few hundred pulses. The results are compared with the previously developed hydrocarbon-air plasma chemistry model, modified to incorporate non-empirical scaling of the nanosecond discharge pulse energy coupled to the plasma with number density, as well as one-dimensional conduction heat transfer. Experimental time-resolved temperature, determined as a function of the number of pulses in the burst, is found to agree well with the model predictions. The results demonstrate that the heating rate in fuel-air plasmas is much faster compared with air plasmas, primarily due to energy release in exothermic reactions of fuel with O atoms generated by the plasma. It is found that the initial heating rate in fuel-air plasmas is controlled by the rate of radical (primarily O atoms) generation and is nearly independent of the equivalence ratio. At long burst durations, the heating rate in lean fuel air-mixtures is significantly reduced when all fuel is oxidized.

  3. Air Modeling - Observational Meteorological Data

    EPA Pesticide Factsheets

    Observed meteorological data for use in air quality modeling consist of physical parameters that are measured directly by instrumentation, and include temperature, dew point, wind direction, wind speed, cloud cover, cloud layer(s), ceiling height,

  4. A Multiplatform Observations of Air Quality in Korea as the Pre-campaign of Korea and US Air Quality (KORUS-AQ) Study.

    NASA Astrophysics Data System (ADS)

    Park, J. H.; Hong, J.; Hong, Y.; Song, C. K.; Kim, S. K.; Chang, L. S.; Lim, J.; Ahn, J.; Kim, J. Y.; Han, Y. J.; Kim, J.; Park, R.; Lee, G.; Park, J.

    2015-12-01

    Despite the Korea government's efforts to regulate air pollutant emission for attaining the national air quality standard, current serious dust events and high ozone episodes in summer time remain important societal issues in Korea. In order to make effective policy for air quality attainment, it is contingent upon a thorough understanding of chemical production/loss mechanism of air pollutants and their precursors which drive air quality such as nitrogen oxides (NOX), volatile organic compounds (VOCs), and oxidants (e.g. OH, HO2, RO, RO2, etc.). At present, policy development is constrained by a lack of data for broad suite of chemical species which significantly affect on air quality.During 4 weeks between May and June 2013, the pre-campaign for the Korea and U.S. Air Quality (KORUS-AQ) study took place in multiplatform including fifteen ground sites, one mobile laboratory, and one small air crafts. An integrated research activity covering field observations, chemical transport models, and remote sensing has been intensively conducted. This study was focused on studying photochemistry and nighttime chemistry in urban area and transboundary transport of air pollutants from upwind. Scientific overview and outcomes from the campaign will be presented.

  5. Atomic oxygen dynamics in an air dielectric barrier discharge: a combined diagnostic and modeling approach

    NASA Astrophysics Data System (ADS)

    Baldus, Sabrina; Schröder, Daniel; Bibinov, Nikita; Schulz-von der Gathen, Volker; Awakowicz, Peter

    2015-06-01

    Cold atmospheric pressure plasmas are a promising alternative therapy for treatment of chronic wounds, as they have already shown in clinical trials. In this study an air dielectric barrier discharge (DBD) developed for therapeutic use in dermatology is characterized with respect to the plasma produced reactive oxygen species, namely atomic oxygen and ozone, which are known to be of great importance to wound healing. To understand the plasma chemistry of the applied DBD, xenon-calibrated two-photon laser-induced fluorescence spectroscopy and optical absorption spectroscopy are applied. The measured spatial distributions are shown and compared to each other. A model of the afterglow chemistry based on optical emission spectroscopy is developed to cross-check the measurement results and obtain insight into the dynamics of the considered reactive oxygen species. The atomic oxygen density is found to be located mostly between the electrodes with a maximum density of {{n}\\text{O}}=6× {{10}16} cm-3 . Time resolved measurements reveal a constant atomic oxygen density between two high voltage pulses. The ozone is measured up to 3 mm outside the active plasma volume, reaching a maximum value of {{n}{{\\text{O}3}}}=3× {{10}16} cm-3 between the electrodes.

  6. Evaluation of the Community Multiscale Air Quality model version 5.1

    EPA Science Inventory

    The Community Multiscale Air Quality model is a state-of-the-science air quality model that simulates the emission, transport and fate of numerous air pollutants, including ozone and particulate matter. The Atmospheric Modeling and Analysis Division (AMAD) of the U.S. Environment...

  7. The coupled atmosphere-chemistry-ocean model SOCOL-MPIOM

    NASA Astrophysics Data System (ADS)

    Muthers, S.; Anet, J. G.; Stenke, A.; Raible, C. C.; Rozanov, E.; Brönnimann, S.; Peter, T.; Arfeuille, F. X.; Shapiro, A. I.; Beer, J.; Steinhilber, F.; Brugnara, Y.; Schmutz, W.

    2014-05-01

    The newly developed atmosphere-ocean-chemistry-climate model SOCOL-MPIOM is presented by demonstrating the influence of the interactive chemistry module on the climate state and the variability. Therefore, we compare pre-industrial control simulations with (CHEM) and without (NOCHEM) interactive chemistry. In general, the influence of the chemistry on the mean state and the variability is small and mainly restricted to the stratosphere and mesosphere. The largest differences are found for the atmospheric dynamics in the polar regions, with slightly stronger northern and southern winter polar vortices in CHEM. The strengthening of the vortex is related to larger stratospheric temperature gradients, which are attributed to a parametrization of the absorption of ozone and oxygen in the Lyman-alpha, Schumann-Runge, Hartley, and Higgins bands. This effect is parametrized in the version with interactive chemistry only. A second reason for the temperature differences between CHEM and NOCHEM is related to diurnal variations in the ozone concentrations in the higher atmosphere, which are missing in NOCHEM. Furthermore, stratospheric water vapour concentrations differ substantially between the two experiments, but their effect on the temperatures is small. In both setups, the simulated intensity and variability of the northern polar vortex is inside the range of present day observations. Sudden stratospheric warming events are well reproduced in terms of their frequency, but the distribution amongst the winter months is too uniform. Additionally, the performance of SOCOL-MPIOM under changing external forcings is assessed for the period 1600-2000 using an ensemble of simulations driven by a spectral solar forcing reconstruction. The amplitude of the reconstruction is large in comparison to other state-of-the-art reconstructions, providing an upper limit for the importance of the solar signal. In the pre-industrial period (1600-1850) the simulated surface temperature trends

  8. Application of ion chemistry and the SIFT technique to the quantitative analysis of trace gases in air and on breath

    NASA Astrophysics Data System (ADS)

    Smith, David; Španěl, Patrik

    . These results and those for banana and onion vapours and butane/air flame forcibly demonstrate the value and the scope of our Sift ion chemistry approach to the analysis of very complex gas mixtures, and that this method is accurately quantitative if the appropriate ion chemistry is properly understood.

  9. COMIS -- an international multizone air-flow and contaminant transport model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feustel, H.E.

    1998-08-01

    A number of interzonal models have been developed to calculate air flows and pollutant transport mechanisms in both single and multizone buildings. A recent development in multizone air-flow modeling, the COMIS model, has a number of capabilities that go beyond previous models, much as COMIS can be used as either a stand-alone air-flow model with input and output features or as an infiltration module for thermal building simulation programs. COMIS was designed during a 12 month workshop at Lawrence Berkeley National Laboratory (LBNL) in 1988-89. In 1990, the Executive Committee of the International Energy Agency`s Energy Conservation in Buildings andmore » Community Systems program created a working group on multizone air-flow modeling, which continued work on COMIS. The group`s objectives were to study physical phenomena causing air flow and pollutant (e.g., moisture) transport in multizone buildings, develop numerical modules to be integrated in the previously designed multizone air flow modeling system, and evaluate the computer code. The working group supported by nine nations, officially finished in late 1997 with the release of IISiBat/COMIS 3.0, which contains the documented simulation program COMIS, the user interface IISiBat, and reports describing the evaluation exercise.« less

  10. Hybrid Air Quality Modeling Approach For Use in the Near ...

    EPA Pesticide Factsheets

    The Near-road EXposures to Urban air pollutant Study (NEXUS) investigated whether children with asthma living in close proximity to major roadways in Detroit, MI, (particularly near roadways with high diesel traffic) have greater health impacts associated with exposure to air pollutants than those living farther away. A major challenge in such health and exposure studies is the lack of information regarding pollutant exposure characterization. Air quality modeling can provide spatially and temporally varying exposure estimates for examining relationships between traffic-related air pollutants and adverse health outcomes. This paper presents a hybrid air quality modeling approach and its application in NEXUS in order to provide spatial and temporally varying exposure estimates and identification of the mobile source contribution to the total pollutant exposure. Model-based exposure metrics, associated with local variations of emissions and meteorology, were estimated using a combination of the AERMOD and R-LINE dispersion models, local emission source information from the National Emissions Inventory, detailed road network locations and traffic activity, and meteorological data from the Detroit City Airport. The regional background contribution was estimated using a combination of the Community Multiscale Air Quality (CMAQ) model and the Space/Time Ordinary Kriging (STOK) model. To capture the near-road pollutant gradients, refined “mini-grids” of model recep

  11. The Ames two-dimensional stratosphere-mesospheric model. [chemistry and transport of SST pollution

    NASA Technical Reports Server (NTRS)

    Whitten, R. C.; Borucki, W. J.; Watson, V. R.; Capone, L. A.; Maples, A. L.; Riegel, C. A.

    1974-01-01

    A two-dimensional model of the stratosphere and mesosphere has recently been developed at Ames Research Center. The model contains chemistry based on 18 species that are solved for at each step and a seasonally-varying transport model based on both winds and eddy transport. The model is described and a preliminary assessment of the impact of supersonic aircraft flights on the ozone layer is given.

  12. Trace Chemistry

    NASA Technical Reports Server (NTRS)

    Radhakrishnan, Krishnan; Whitefield, Philip

    1999-01-01

    , in addition, of the pressure, temperature, and velocity. A near term goal of the experimental program should be to confirm the nonlinear effects of sulfur speciation, and if present, to provide an explanation for them. It is also desirable to examine if the particulate matter retains any sulfur. The recommendation is to examine the effects on SOx production of variations in fuel-bound sulfur and aromatic content (which may affect the amount of particulates formed). These experiments should help us to understand if there is a coupling between particulate formation and SO, concentration. Similarly, any coupling with NOx can be examined either by introducing NOx into the combustion air or by using fuel-bound nitrogen. Also of immediate urgency is the need to establish and validate a detailed mechanism for sulfur oxidation/aerosol formation, whose chemistry is concluded to be homogeneous, because there is not enough surface area for heterogeneous effects. It is envisaged that this work will involve both experimental and theoretical programs. The experimental work will require, in addition to the measurements described above, fundamental studies in devices such as flow reactors and shock tubes. Complementing this effort should be modeling and theoretical activities. One impediment to the successful modeling of sulfur oxidation is the lack of reliable data for thermodynamic and transport properties for several species, such as aqueous nitric acid, sulfur oxides, and sulfuric acid. Quantum mechanical calculations are recommended as a convenient means of deriving values for these properties. Such calculations would also help establish rate constants for several important reactions for which experimental measurements are inherently fraught with uncertainty. Efforts to implement sufficiently detailed chemistry into computational fluid dynamic codes should be continued. Zero- and one-dimensional flow models are also useful vehicles for elucidating the minimal set of species and

  13. EPA RESEARCH HIGHLIGHTS -- MODELS-3/CMAQ OFFERS COMPREHENSIVE APPROACH TO AIR QUALITY MODELING

    EPA Science Inventory

    Regional and global coordinated efforts are needed to address air quality problems that are growing in complexity and scope. Models-3 CMAQ contains a community multi-scale air quality modeling system for simulating urban to regional scale pollution problems relating to troposphe...

  14. Thirsty Walls: A New Paradigm for Air Revitalization in Life Support

    NASA Technical Reports Server (NTRS)

    Graf, John; Brennecke, Joan; Weislogel, Mark

    2015-01-01

    Carbon Dioxide removal systems on submarines are compact and reliable. They use solubility chemistry. They spray a Carbon Dioxide adsorbing chemical directly into the air stream, and allow the liquid to settle. Carbon Dioxide removal systems on ISS are large and need repair. They use adsorption chemistry. They force air through a bed packed with granular zeolite, and heat the bed to desorb the Carbon Dioxide. The thermal cycles cause the zeolite to dust. New advances in additive manufacturing, and a better understanding of uid behavior in microgravity make it possible to expose a liquid directly to air in a microgravity environment. It is now practical to use submarine style solubility chemistry for atmosphere revitalization in space. It is now possible to develop space systems that achieve submarine levels of reliability. New developments in Ionic Liquid research make it possible to match the solubility performance characteristics of MEA used on submarines - with Ionic Liquids that do not release chemical vapors into the air. "Thirsty Walls" provide gentle, passive contact between ventilation air and Air Revitalization functions of temperature control, relative humidity control, and Carbon Dioxide removal. "Thirsty Walls" eliminates the need of large blowers and compressors that need to force air at high velocities through restrictive Air Revitalization hardware.

  15. An Aerosol Physical Chemistry Model for the Upper Troposphere

    NASA Technical Reports Server (NTRS)

    Lin, Jin-Sheng

    2001-01-01

    This report is the final report for the Cooperative Agreement NCC2-1000. The tasks outlined in the various proposals are: (1) Development of an aerosol chemistry model; (2) Utilization of satellite measurements of trace gases along with analysis of temperatures and dynamic conditions to understand ice cloud formation, dehydration and sedimentation in the winter polar regions; (3) Comparison of the HALOE and SAGE II time dependencies of the Pinatubo aerosol decay. The publications are attached.

  16. Aqueous organic chemistry in the atmosphere: sources and chemical processing of organic aerosols.

    PubMed

    McNeill, V Faye

    2015-02-03

    Over the past decade, it has become clear that aqueous chemical processes occurring in cloud droplets and wet atmospheric particles are an important source of organic atmospheric particulate matter. Reactions of water-soluble volatile (or semivolatile) organic gases (VOCs or SVOCs) in these aqueous media lead to the formation of highly oxidized organic particulate matter (secondary organic aerosol; SOA) and key tracer species, such as organosulfates. These processes are often driven by a combination of anthropogenic and biogenic emissions, and therefore their accurate representation in models is important for effective air quality management. Despite considerable progress, mechanistic understanding of some key aqueous processes is still lacking, and these pathways are incompletely represented in 3D atmospheric chemistry and air quality models. In this article, the concepts, historical context, and current state of the science of aqueous pathways of SOA formation are discussed.

  17. The analysis of a generic air-to-air missile simulation model

    NASA Technical Reports Server (NTRS)

    Kaplan, Joseph A.; Chappell, Alan R.; Mcmanus, John W.

    1994-01-01

    A generic missile model was developed to evaluate the benefits of using a dynamic missile fly-out simulation system versus a static missile launch envelope system for air-to-air combat simulation. This paper examines the performance of a launch envelope model and a missile fly-out model. The launch envelope model bases its probability of killing the target aircraft on the target aircraft's position at the launch time of the weapon. The benefits gained from a launch envelope model are the simplicity of implementation and the minimal computational overhead required. A missile fly-out model takes into account the physical characteristics of the missile as it simulates the guidance, propulsion, and movement of the missile. The missile's probability of kill is based on the missile miss distance (or the minimum distance between the missile and the target aircraft). The problems associated with this method of modeling are a larger computational overhead, the additional complexity required to determine the missile miss distance, and the additional complexity of determining the reason(s) the missile missed the target. This paper evaluates the two methods and compares the results of running each method on a comprehensive set of test conditions.

  18. Atmospheric Chemistry Over Southern Africa

    NASA Technical Reports Server (NTRS)

    Gatebe, Charles K.; Levy, Robert C.; Thompson, Anne M.

    2011-01-01

    During the southern African dry season, regional haze from mixed industrial pollution, biomass burning aerosol and gases from domestic and grassland fires, and biogenic sources from plants and soils is worsened by a semi-permanent atmosphere gyre over the subcontinent. These factors were a driver of several major international field campaigns in the 1990s and early 2000s, and attracted many scientists to the region. Some researchers were interested in understanding fundamental processes governing chemistry of the atmosphere and interaction with climate change. Others found favorable conditions for evaluating satellite-derived measurements of atmospheric properties and a changing land surface. With that background in mind a workshop on atmospheric chemistry was held in South Africa. Sponsored by the International Commission for Atmospheric Chemistry and Global Pollution (ICACGP; http://www.icacgp.org/), the workshop received generous support from the South African power utility, Eskom, and the Climatology Research Group of the University of the Witwatersrand, Johannesburg, South Africa. The purpose of the workshop was to review some earlier findings as well as more recent findings on southern African climate vulnerability, chemical changes due to urbanization, land-use modification, and how these factors interact. Originally proposed by John Burrows, president of ICACGP, the workshop was the first ICACGP regional workshop to study the interaction of air pollution with global chemical and climate change. Organized locally by the University of the Witwatersrand, the workshop attracted more than 60 delegates from South Africa, Mozambique, Botswana, Zimbabwe, France, Germany, Canada, and the United States. More than 30 presentations were given, exploring both retrospective and prospective aspects of the science. In several talks, attention was focused on southern African chemistry, atmospheric pollution monitoring, and climate processes as they were studied in the field

  19. Modelling heat and mass transfer in a membrane-based air-to-air enthalpy exchanger

    NASA Astrophysics Data System (ADS)

    Dugaria, S.; Moro, L.; Del, D., Col

    2015-11-01

    The diffusion of total energy recovery systems could lead to a significant reduction in the energy demand for building air-conditioning. With these devices, sensible heat and humidity can be recovered in winter from the exhaust airstream, while, in summer, the incoming air stream can be cooled and dehumidified by transferring the excess heat and moisture to the exhaust air stream. Membrane based enthalpy exchangers are composed by different channels separated by semi-permeable membranes. The membrane allows moisture transfer under vapour pressure difference, or water concentration difference, between the two sides and, at the same time, it is ideally impermeable to air and other contaminants present in exhaust air. Heat transfer between the airstreams occurs through the membrane due to the temperature gradient. The aim of this work is to develop a detailed model of the coupled heat and mass transfer mechanisms through the membrane between the two airstreams. After a review of the most relevant models published in the scientific literature, the governing equations are presented and some simplifying assumptions are analysed and discussed. As a result, a steady-state, two-dimensional finite difference numerical model is setup. The developed model is able to predict temperature and humidity evolution inside the channels. Sensible and latent heat transfer rate, as well as moisture transfer rate, are determined. A sensitive analysis is conducted in order to determine the more influential parameters on the thermal and vapour transfer.

  20. Experimental and modeling study on effects of N2 and CO2 on ignition characteristics of methane/air mixture

    PubMed Central

    Zeng, Wen; Ma, Hongan; Liang, Yuntao; Hu, Erjiang

    2014-01-01

    The ignition delay times of methane/air mixture diluted by N2 and CO2 were experimentally measured in a chemical shock tube. The experiments were performed over the temperature range of 1300–2100 K, pressure range of 0.1–1.0 MPa, equivalence ratio range of 0.5–2.0 and for the dilution coefficients of 0%, 20% and 50%. The results suggest that a linear relationship exists between the reciprocal of temperature and the logarithm of the ignition delay times. Meanwhile, with ignition temperature and pressure increasing, the measured ignition delay times of methane/air mixture are decreasing. Furthermore, an increase in the dilution coefficient of N2 or CO2 results in increasing ignition delays and the inhibition effect of CO2 on methane/air mixture ignition is stronger than that of N2. Simulated ignition delays of methane/air mixture using three kinetic models were compared to the experimental data. Results show that GRI_3.0 mechanism gives the best prediction on ignition delays of methane/air mixture and it was selected to identify the effects of N2 and CO2 on ignition delays and the key elementary reactions in the ignition chemistry of methane/air mixture. Comparisons of the calculated ignition delays with the experimental data of methane/air mixture diluted by N2 and CO2 show excellent agreement, and sensitivity coefficients of chain branching reactions which promote mixture ignition decrease with increasing dilution coefficient of N2 or CO2. PMID:25750753

  1. Modeling of the chemistry in oxidation flow reactors with high initial NO

    NASA Astrophysics Data System (ADS)

    Peng, Zhe; Jimenez, Jose L.

    2017-10-01

    Oxidation flow reactors (OFRs) are increasingly employed in atmospheric chemistry research because of their high efficiency of OH radical production from low-pressure Hg lamp emissions at both 185 and 254 nm (OFR185) or 254 nm only (OFR254). OFRs have been thought to be limited to studying low-NO chemistry (in which peroxy radicals (RO2) react preferentially with HO2) because NO is very rapidly oxidized by the high concentrations of O3, HO2, and OH in OFRs. However, many groups are performing experiments by aging combustion exhaust with high NO levels or adding NO in the hopes of simulating high-NO chemistry (in which RO2 + NO dominates). This work systematically explores the chemistry in OFRs with high initial NO. Using box modeling, we investigate the interconversion of N-containing species and the uncertainties due to kinetic parameters. Simple initial injection of NO in OFR185 can result in more RO2 reacted with NO than with HO2 and minor non-tropospheric photolysis, but only under a very narrow set of conditions (high water mixing ratio, low UV intensity, low external OH reactivity (OHRext), and initial NO concentration (NOin) of tens to hundreds of ppb) that account for a very small fraction of the input parameter space. These conditions are generally far away from experimental conditions of published OFR studies with high initial NO. In particular, studies of aerosol formation from vehicle emissions in OFRs often used OHRext and NOin several orders of magnitude higher. Due to extremely high OHRext and NOin, some studies may have resulted in substantial non-tropospheric photolysis, strong delay to RO2 chemistry due to peroxynitrate formation, VOC reactions with NO3 dominating over those with OH, and faster reactions of OH-aromatic adducts with NO2 than those with O2, all of which are irrelevant to ambient VOC photooxidation chemistry. Some of the negative effects are the worst for alkene and aromatic precursors. To avoid undesired chemistry, vehicle emissions

  2. THE ATMOSPHERIC MODEL EVALUATION TOOL (AMET); AIR QUALITY MODULE

    EPA Science Inventory

    This presentation reviews the development of the Atmospheric Model Evaluation Tool (AMET) air quality module. The AMET tool is being developed to aid in the model evaluation. This presentation focuses on the air quality evaluation portion of AMET. Presented are examples of the...

  3. AIR QUALITY SIMULATION MODEL PERFORMANCE FOR ONE-HOUR AVERAGES

    EPA Science Inventory

    If a one-hour standard for sulfur dioxide were promulgated, air quality dispersion modeling in the vicinity of major point sources would be an important air quality management tool. Would currently available dispersion models be suitable for use in demonstrating attainment of suc...

  4. Unusually high soil nitrogen oxide emissions influence air quality in a high-temperature agricultural region

    PubMed Central

    Oikawa, P. Y.; Ge, C.; Wang, J.; Eberwein, J. R.; Liang, L. L.; Allsman, L. A.; Grantz, D. A.; Jenerette, G. D.

    2015-01-01

    Fertilized soils have large potential for production of soil nitrogen oxide (NOx=NO+NO2), however these emissions are difficult to predict in high-temperature environments. Understanding these emissions may improve air quality modelling as NOx contributes to formation of tropospheric ozone (O3), a powerful air pollutant. Here we identify the environmental and management factors that regulate soil NOx emissions in a high-temperature agricultural region of California. We also investigate whether soil NOx emissions are capable of influencing regional air quality. We report some of the highest soil NOx emissions ever observed. Emissions vary nonlinearly with fertilization, temperature and soil moisture. We find that a regional air chemistry model often underestimates soil NOx emissions and NOx at the surface and in the troposphere. Adjusting the model to match NOx observations leads to elevated tropospheric O3. Our results suggest management can greatly reduce soil NOx emissions, thereby improving air quality. PMID:26556236

  5. Bridging the scales in a eulerian air quality model to assess megacity export of pollution

    NASA Astrophysics Data System (ADS)

    Siour, G.; Colette, A.; Menut, L.; Bessagnet, B.; Coll, I.; Meleux, F.

    2013-08-01

    In Chemistry Transport Models (CTMs), spatial scale interactions are often represented through off-line coupling between large and small scale models. However, those nested configurations cannot give account of the impact of the local scale on its surroundings. This issue can be critical in areas exposed to air mass recirculation (sea breeze cells) or around regions with sharp pollutant emission gradients (large cities). Such phenomena can still be captured by the mean of adaptive gridding, two-way nesting or using model nudging, but these approaches remain relatively costly. We present here the development and the results of a simple alternative multi-scale approach making use of a horizontal stretched grid, in the Eulerian CTM CHIMERE. This method, called "stretching" or "zooming", consists in the introduction of local zooms in a single chemistry-transport simulation. It allows bridging online the spatial scales from the city (∼1 km resolution) to the continental area (∼50 km resolution). The CHIMERE model was run over a continental European domain, zoomed over the BeNeLux (Belgium, Netherlands and Luxembourg) area. We demonstrate that, compared with one-way nesting, the zooming method allows the expression of a significant feedback of the refined domain towards the large scale: around the city cluster of BeNeLuX, NO2 and O3 scores are improved. NO2 variability around BeNeLux is also better accounted for, and the net primary pollutant flux transported back towards BeNeLux is reduced. Although the results could not be validated for ozone over BeNeLux, we show that the zooming approach provides a simple and immediate way to better represent scale interactions within a CTM, and constitutes a useful tool for apprehending the hot topic of megacities within their continental environment.

  6. The ASAC Air Carrier Investment Model (Third Generation)

    NASA Technical Reports Server (NTRS)

    Wingrove, Earl R., III; Gaier, Eric M.; Santmire, Tara E.

    1998-01-01

    To meet its objective of assisting the U.S. aviation industry with the technological challenges of the future, NASA must identify research areas that have the greatest potential for improving the operation of the air transportation system. To accomplish this, NASA is building an Aviation System Analysis Capability (ASAC). The ASAC differs from previous NASA modeling efforts in that the economic behavior of buyers and sellers in the air transportation and aviation industries is central to its conception. To link the economics of flight with the technology of flight, ASAC requires a parametrically based model with extensions that link airline operations and investments in aircraft with aircraft characteristics. This model also must provide a mechanism for incorporating air travel demand and profitability factors into the airlines' investment decisions. Finally, the model must be flexible and capable of being incorporated into a wide-ranging suite of economic and technical models flat are envisioned for ASAC.

  7. Future directions of meteorology related to air-quality research.

    PubMed

    Seaman, Nelson L

    2003-06-01

    Meteorology is one of the major factors contributing to air-pollution episodes. More accurate representation of meteorological fields has been possible in recent years through the use of remote sensing systems, high-speed computers and fine-mesh meteorological models. Over the next 5-20 years, better meteorological inputs for air quality studies will depend on making better use of a wealth of new remotely sensed observations in more advanced data assimilation systems. However, for fine mesh models to be successful, parameterizations used to represent physical processes must be redesigned to be more precise and better adapted for the scales at which they will be applied. Candidates for significant overhaul include schemes to represent turbulence, deep convection, shallow clouds, and land-surface processes. Improvements in the meteorological observing systems, data assimilation and modeling, coupled with advancements in air-chemistry modeling, will soon lead to operational forecasting of air quality in the US. Predictive capabilities can be expected to grow rapidly over the next decade. This will open the way for a number of valuable new services and strategies, including better warnings of unhealthy atmospheric conditions, event-dependent emissions restrictions, and now casting support for homeland security in the event of toxic releases into the atmosphere.

  8. Air-quality and Climatic Consequences of Bioenergy Crop Cultivation

    NASA Astrophysics Data System (ADS)

    Porter, William Christian

    Bioenergy is expected to play an increasingly significant role in the global energy budget. In addition to the use of liquid energy forms such as ethanol and biodiesel, electricity generation using processed energy crops as a partial or full coal alternative is expected to increase, requiring large-scale conversions of land for the cultivation of bioenergy feedstocks such as cane, grasses, or short rotation coppice. With land-use change identified as a major contributor to changes in the emission of biogenic volatile organic compounds (BVOCs), many of which are known contributors to the pollutants ozone (O 3) and fine particulate matter (PM2.5), careful review of crop emission profiles and local atmospheric chemistry will be necessary to mitigate any unintended air-quality consequences. In this work, the atmospheric consequences of bioenergy crop replacement are examined using both the high-resolution regional chemical transport model WRF/Chem (Weather Research and Forecasting with Chemistry) and the global climate model CESM (Community Earth System Model). Regional sensitivities to several representative crop types are analyzed, and the impacts of each crop on air quality and climate are compared. Overall, the high emitting crops (eucalyptus and giant reed) were found to produce climate and human health costs totaling up to 40% of the value of CO 2 emissions prevented, while the related costs of the lowest-emitting crop (switchgrass) were negligible.

  9. Clean Air Markets - Monitoring Surface Water Chemistry

    EPA Pesticide Factsheets

    Learn about how EPA uses Long Term Monitoring (LTM) and Temporily Integrated Monitoring of Ecosystems (TIME) to track the effect of the Clean Air Act Amendments on acidity of surface waters in the eastern U.S.

  10. Atmospheric Model Evaluation Tool for meteorological and air quality simulations

    EPA Pesticide Factsheets

    The Atmospheric Model Evaluation Tool compares model predictions to observed data from various meteorological and air quality observation networks to help evaluate meteorological and air quality simulations.

  11. Indoor Air Quality Building Education and Assessment Model

    EPA Pesticide Factsheets

    The Indoor Air Quality Building Education and Assessment Model (I-BEAM), released in 2002, is a guidance tool designed for use by building professionals and others interested in indoor air quality in commercial buildings.

  12. DESCRIPTION OF ATMOSPHERIC TRANSPORT PROCESSES IN EULERIAN AIR QUALITY MODELS

    EPA Science Inventory

    Key differences among many types of air quality models are the way atmospheric advection and turbulent diffusion processes are treated. Gaussian models use analytical solutions of the advection-diffusion equations. Lagrangian models use a hypothetical air parcel concept effecti...

  13. Development of the Next Generation Air Quality Modeling System

    EPA Science Inventory

    A next generation air quality modeling system is being developed at the U.S. EPA to enable modeling of air quality from global to regional to (eventually) local scales. We envision that the system will have three configurations: 1. Global meteorology with seamless mesh refinemen...

  14. Redox Models in Chemistry Textbooks for the Upper Secondary School: Friend or Foe?

    ERIC Educational Resources Information Center

    Osterlund, Lise-Lotte; Berg, Anders; Ekborg, Margareta

    2010-01-01

    We have investigated how chemistry textbooks use models of redox reactions in different subject areas, how they change models between and within the topics, and how they deal with specific learning difficulties identified in the literature. The textbooks examined were published for use in the natural science programme in Swedish upper secondary…

  15. Biosynthetic inorganic chemistry.

    PubMed

    Lu, Yi

    2006-08-25

    Inorganic chemistry and biology can benefit greatly from each other. Although synthetic and physical inorganic chemistry have been greatly successful in clarifying the role of metal ions in biological systems, the time may now be right to utilize biological systems to advance coordination chemistry. One such example is the use of small, stable, easy-to-make, and well-characterized proteins as ligands to synthesize novel inorganic compounds. This biosynthetic inorganic chemistry is possible thanks to a number of developments in biology. This review summarizes the progress in the synthesis of close models of complex metalloproteins, followed by a description of recent advances in using the approach for making novel compounds that are unprecedented in either inorganic chemistry or biology. The focus is mainly on synthetic "tricks" learned from biology, as well as novel structures and insights obtained. The advantages and disadvantages of this biosynthetic approach are discussed.

  16. Overview of Global/Regional Models Used to Evaluate Tropospheric Ozone in North America

    NASA Technical Reports Server (NTRS)

    Johnson, Matthew S.

    2015-01-01

    Ozone (O3) is an important greenhouse gas, toxic pollutant, and plays a major role in atmospheric chemistry. Tropospheric O3 which resides in the planetary boundary layer (PBL) is highly reactive and has a lifetime on the order of days, however, O3 in the free troposphere and stratosphere has a lifetime on the order of weeks or months. Modeling O3 mixing ratios at and above the surface is difficult due to the multiple formation/destruction processes and transport pathways that cause large spatio-temporal variability in O3 mixing ratios. This talk will summarize in detail the global/regional models that are commonly used to simulate/predict O3 mixing ratios in the United States. The major models which will be focused on are the: 1) Community Multi-scale Air Quality Model (CMAQ), 2) Comprehensive Air Quality Model with Extensions (CAMx), 3) Goddard Earth Observing System with Chemistry (GEOS-Chem), 4) Real Time Air Quality Modeling System (RAQMS), 5) Weather Research and Forecasting/Chemistry (WRF-Chem) model, National Center for Atmospheric Research (NCAR)'s Model for OZone And Related chemical Tracers (MOZART), and 7) Geophysical Fluid Dynamics Laboratory (GFDL) AM3 model. I will discuss the major modeling components which impact O3 mixing ratio calculations in each model and the similarities/differences between these models. This presentation is vital to the 2nd Annual Tropospheric Ozone Lidar Network (TOLNet) Conference as it will provide an overview of tools, which can be used in conjunction with TOLNet data, to evaluate the complex chemistry and transport pathways controlling tropospheric O3 mixing ratios.

  17. Development of collaborative-creative learning model using virtual laboratory media for instrumental analytical chemistry lectures

    NASA Astrophysics Data System (ADS)

    Zurweni, Wibawa, Basuki; Erwin, Tuti Nurian

    2017-08-01

    The framework for teaching and learning in the 21st century was prepared with 4Cs criteria. Learning providing opportunity for the development of students' optimal creative skills is by implementing collaborative learning. Learners are challenged to be able to compete, work independently to bring either individual or group excellence and master the learning material. Virtual laboratory is used for the media of Instrumental Analytical Chemistry (Vis, UV-Vis-AAS etc) lectures through simulations computer application and used as a substitution for the laboratory if the equipment and instruments are not available. This research aims to design and develop collaborative-creative learning model using virtual laboratory media for Instrumental Analytical Chemistry lectures, to know the effectiveness of this design model adapting the Dick & Carey's model and Hannafin & Peck's model. The development steps of this model are: needs analyze, design collaborative-creative learning, virtual laboratory media using macromedia flash, formative evaluation and test of learning model effectiveness. While, the development stages of collaborative-creative learning model are: apperception, exploration, collaboration, creation, evaluation, feedback. Development of collaborative-creative learning model using virtual laboratory media can be used to improve the quality learning in the classroom, overcome the limitation of lab instruments for the real instrumental analysis. Formative test results show that the Collaborative-Creative Learning Model developed meets the requirements. The effectiveness test of students' pretest and posttest proves significant at 95% confidence level, t-test higher than t-table. It can be concluded that this learning model is effective to use for Instrumental Analytical Chemistry lectures.

  18. Combined field/modelling approaches to represent the air-vegetation distribution of benzo[a]pyrene using different vegetation species

    NASA Astrophysics Data System (ADS)

    Ratola, Nuno; Jiménez-Guerrero, Pedro

    2015-04-01

    A strategy designed to combine the features of field-based experiments and modelling approaches is presented in this work to assess air-vegetation distribution of benzo(a)pyrene (BaP) in the Iberian Peninsula (IP). Given the lack of simultaneous data in both environmental matrices, a methodology with two main steps was employed. First, evaluating the simulations with the chemistry transport model (CTM) WRF (Weather Research and Forecasting) + CHIMERE data against the European Monitoring and Evaluation Programme (EMEP) network, to test the aptitude of the CTM to replicate the respective atmospheric levels. Then, using modelled concentrations and a method to estimate air levels of BaP from biomonitoring data to compare the performance of different pine species (Pinus pinea, Pinus pinaster, Pinus nigra and Pinus halepensis) to describe the atmospheric evidences. The comparison of modelling vs. biomonitoring has a higher dependence on the location of the sampling points, rather than on the pine species, as some tend to overestimate and others to underestimate BaP concentrations, in most cases regardless of the season. The climatology of the canopy levels of BaP was successfully validated with the concentrations in pine needles (most biases below 26%), however, the model was unable to distinguish between species. This should be taken into consideration in future studies, as biases can rise up to 48%, especially in summer and autumn, the. The comparison with biomonitoring data showed a similar pattern, but with the best results in the warmer months.

  19. Evidence for widespread tropospheric Cl chemistry in free tropospheric air masses from the South China Sea

    NASA Astrophysics Data System (ADS)

    Baker, Angela K.; Sauvage, Carina; Thorenz, Ute R.; Brenninkmeijer, Carl A. M.; Oram, David E.; van Velthoven, Peter; Zahn, Andreas; Williams, Jonathan

    2015-04-01

    While the primary global atmospheric oxidant is the hydroxyl radical (OH), under certain circumstances chlorine radicals (Cl) can compete with OH and perturb the oxidative cycles of the troposphere. During flights between Bangkok, Thailand and Kuala Lumpur, Malaysia conducted over two fall/winter seasons (November 2012 - March 2013 and November 2013 - January 2014) the IAGOS-CARIBIC (www.caribic-atmospheric.com) observatory consistently encountered free tropospheric air masses (9-11 km) originating over the South China Sea which had non-methane hydrocarbon (NMHC) signatures characteristic of processing by Cl. These signatures were observed in November and December of both years, but were not seen in other months, suggesting that oxidation by Cl is a persistent seasonal feature in this region. These Cl signatures were observed over a range of ~1500 km indicating a large-scale phenomenon. In this region, where transport patterns facilitate global redistribution of pollutants and persistent deep convection creates a fast-track for cross-tropopause transport, there exists the potential for regional chemistry to have impacts further afield. Here we use observed relationships between NMHCs to estimate the significance and magnitude of Cl oxidation in this region. From the relative depletions of NMHCs in these air masses we infer OH to Cl ratios of 83±28 to 139±40 [OH]/[Cl], which we believe represents an upper limit, based on the technique employed. At a predicted average [OH] of 1.5×106 OH cm-3 this corresponds to an average (minimum) [Cl] exposure of 1-2×104 Cl cm-3 during air mass transport. Lastly, in addition to estimating Cl abundances we have used IAGOS-CARIBIC observations to elucidate whether the origin of this Cl is predominantly natural or anthropogenic.

  20. Development of a Grid-Independent Geos-Chem Chemical Transport Model (v9-02) as an Atmospheric Chemistry Module for Earth System Models

    NASA Technical Reports Server (NTRS)

    Long, M. S.; Yantosca, R.; Nielsen, J. E; Keller, C. A.; Da Silva, A.; Sulprizio, M. P.; Pawson, S.; Jacob, D. J.

    2015-01-01

    The GEOS-Chem global chemical transport model (CTM), used by a large atmospheric chemistry research community, has been re-engineered to also serve as an atmospheric chemistry module for Earth system models (ESMs). This was done using an Earth System Modeling Framework (ESMF) interface that operates independently of the GEOSChem scientific code, permitting the exact same GEOSChem code to be used as an ESM module or as a standalone CTM. In this manner, the continual stream of updates contributed by the CTM user community is automatically passed on to the ESM module, which remains state of science and referenced to the latest version of the standard GEOS-Chem CTM. A major step in this re-engineering was to make GEOS-Chem grid independent, i.e., capable of using any geophysical grid specified at run time. GEOS-Chem data sockets were also created for communication between modules and with external ESM code. The grid-independent, ESMF-compatible GEOS-Chem is now the standard version of the GEOS-Chem CTM. It has been implemented as an atmospheric chemistry module into the NASA GEOS- 5 ESM. The coupled GEOS-5-GEOS-Chem system was tested for scalability and performance with a tropospheric oxidant-aerosol simulation (120 coupled species, 66 transported tracers) using 48-240 cores and message-passing interface (MPI) distributed-memory parallelization. Numerical experiments demonstrate that the GEOS-Chem chemistry module scales efficiently for the number of cores tested, with no degradation as the number of cores increases. Although inclusion of atmospheric chemistry in ESMs is computationally expensive, the excellent scalability of the chemistry module means that the relative cost goes down with increasing number of cores in a massively parallel environment.

  1. Nitrogen Chemistry in Sea Level Air Following Large Radiation Doses.

    DTIC Science & Technology

    1984-06-15

    majur reactions NO + 0 + M +N0 2 + M (9) ’.o, NO+0 3 +N 2 +0 2 (1) NO + HO2 + NO2 + OH (11) 0 + NO2 NO + U 2 (12) H + NO2 + No + OOH (13) NO + OH...8217 ’, ,-7- 0 DEPARTMENT OF THE NAVY DEPARTMENT OF THE AIR FORCE (Continued) 0 Joint Cruise Missiles Project...Ofc Air Force Space Technology Ctr ATTN: JCMG-707 ATTN: YH Naval Air Systems Command Air Force !-!ight Aeronautical Lab/AAAD ATTN: PMA 271 ATjN: W

  2. Global emissions of trace gases, particulate matter, and hazardous air pollutants from open burning of domestic waste

    EPA Science Inventory

    The open burning of waste, whether at individual residences, businesses, or dump sites, is a large source of air pollutants. These emissions, however, are not included in many current emission inventories used in chemistry and climate modeling applications. This paper presents th...

  3. Fire and Smoke Model Evaluation Experiment (FASMEE): Modeling gaps and data needs

    Treesearch

    Yongqiang Liu; Adam Kochanski; Kirk Baker; Ruddy Mell; Rodman Linn; Ronan Paugam; Jan Mandel; Aime Fournier; Mary Ann Jenkins; Scott Goodrick; Gary Achtemeier; Andrew Hudak; Matthew Dickson; Brian Potter; Craig Clements; Shawn Urbanski; Roger Ottmar; Narasimhan Larkin; Timothy Brown; Nancy French; Susan Prichard; Adam Watts; Derek McNamara

    2017-01-01

    Fire and smoke models are numerical tools for simulating fire behavior, smoke dynamics, and air quality impacts of wildland fires. Fire models are developed based on the fundamental chemistry and physics of combustion and fire spread or statistical analysis of experimental data (Sullivan 2009). They provide information on fire spread and fuel consumption for safe and...

  4. Integrating Computational Chemistry into the Physical Chemistry Curriculum

    ERIC Educational Resources Information Center

    Johnson, Lewis E.; Engel, Thomas

    2011-01-01

    Relatively few undergraduate physical chemistry programs integrate molecular modeling into their quantum mechanics curriculum owing to concerns about limited access to computational facilities, the cost of software, and concerns about increasing the course material. However, modeling exercises can be integrated into an undergraduate course at a…

  5. Static Chemistry in Disks or Clouds

    NASA Astrophysics Data System (ADS)

    Semenov, D.; Wiebe, D.

    2006-11-01

    This FORTRAN77 code can be used to model static, time-dependent chemistry in ISM and circumstellar disks. Current version is based on the OSU'06 gas-grain astrochemical network with all updates to the reaction rates, and includes surface chemistry from Hasegawa & Herbst (1993) and Hasegawa, Herbst, and Leung (1992). Surface chemistry can be modeled either with the standard rate equation approach or modified rate equation approach (useful in disks). Gas-grain interactions include sticking of neutral molecules to grains, dissociative recombination of ions on grains as well as thermal, UV, X-ray, and CRP-induced desorption of frozen species. An advanced X-ray chemistry and 3 grain sizes with power-law size distribution are also included. An deuterium extension to this chemical model is available.

  6. Air Quality Modeling Technical Support Document for the 2008 Ozone NAAQS Cross-State Air Pollution Rule Proposal

    EPA Pesticide Factsheets

    In this technical support document (TSD) we describe the air quality modeling performed to support the proposed Cross-State Air Pollution Rule for the 2008 ozone National Ambient Air Quality Standards (NAAQS)

  7. Impact of inherent meteorology uncertainty on air quality model predictions

    EPA Science Inventory

    It is well established that there are a number of different classifications and sources of uncertainties in environmental modeling systems. Air quality models rely on two key inputs, namely, meteorology and emissions. When using air quality models for decision making, it is impor...

  8. Modeling Trends in Air Pollutant Concentrations over the ...

    EPA Pesticide Factsheets

    Regional model calculations over annual cycles have pointed to the need for accurately representing impacts of long-range transport. Linking regional and global scale models have met with mixed success as biases in the global model can propagate and influence regional calculations and often confound interpretation of model results. Since transport is efficient in the free-troposphere and since simulations over Continental scales and annual cycles provide sufficient opportunity for “atmospheric turn-over”, i.e., exchange between the free-troposphere and the boundary-layer, a conceptual framework is needed wherein interactions between processes occurring at various spatial and temporal scales can be consistently examined. The coupled WRF-CMAQ model is expanded to hemispheric scales and model simulations over period spanning 1990-current are analyzed to examine changes in hemispheric air pollution resulting from changes in emissions over this period. The National Exposure Research Laboratory (NERL) Atmospheric Modeling and Analysis Division (AMAD) conducts research in support of EPA mission to protect human health and the environment. AMAD research program is engaged in developing and evaluating predictive atmospheric models on all spatial and temporal scales for forecasting the air quality and for assessing changes in air quality and air pollutant exposures, as affected by changes in ecosystem management and regulatory decisions. AMAD is responsible for pr

  9. HOx Radical Chemistry in an Indiana Forest Environment: Measurement and Model Comparison

    NASA Astrophysics Data System (ADS)

    Lew, M.; Bottorff, B.; Sigler, P. S. R.; Stevens, P. S.; Sklaveniti, S.; Leonardis, T.; Locoge, N.; Dusanter, S.; Kundu, S.; Deming, B.; Wood, E. C. D.; Gentner, D. R.

    2015-12-01

    Reactions of the hydroxyl (OH) and peroxy radicals (HO2 and RO2) play a central role in the chemistry of the atmosphere. In addition to controlling the lifetimes of many trace gases important to issues of global climate change, OH radical reactions initiate the oxidation of volatile organic compounds (VOCs) which can lead to the production of ozone and secondary organic aerosols in the atmosphere. Previous measurements of these radicals in forest environments characterized by high mixing ratios of isoprene and low mixing ratios of NOx have shown serious discrepancies with modeled concentrations. These results bring into question our understanding of the atmospheric chemistry of isoprene and other biogenic VOCs under low NOx conditions. In the summer of 2015, HOx radicals were measured using Laser-Induced Fluorescence Fluorescence Assay by Gas Expansion (LIF-FAGE) technique as part of the Indiana Radical, Reactivity and Ozone Production Intercomparison (IRRONIC). This campaign took place in a forested area at the Indiana Research and Teaching Preserve (IURTP) near the Bloomington campus characterized by high mixing ratios of isoprene and low mixing ratios of NOx. Supporting measurements of photolysis rates, volatile organic compounds, nitrogen oxides, and other species were used to constrain a zero-dimensional box model based on the Regional Atmospheric Chemistry Mechanism (RACM2) and the Master Chemical Mechanism (MCM).

  10. InMAP: a new model for air pollution interventions

    NASA Astrophysics Data System (ADS)

    Tessum, C. W.; Hill, J. D.; Marshall, J. D.

    2015-10-01

    Mechanistic air pollution models are essential tools in air quality management. Widespread use of such models is hindered, however, by the extensive expertise or computational resources needed to run most models. Here, we present InMAP (Intervention Model for Air Pollution), which offers an alternative to comprehensive air quality models for estimating the air pollution health impacts of emission reductions and other potential interventions. InMAP estimates annual-average changes in primary and secondary fine particle (PM2.5) concentrations - the air pollution outcome generally causing the largest monetized health damages - attributable to annual changes in precursor emissions. InMAP leverages pre-processed physical and chemical information from the output of a state-of-the-science chemical transport model (WRF-Chem) within an Eulerian modeling framework, to perform simulations that are several orders of magnitude less computationally intensive than comprehensive model simulations. InMAP uses a variable resolution grid that focuses on human exposures by employing higher spatial resolution in urban areas and lower spatial resolution in rural and remote locations and in the upper atmosphere; and by directly calculating steady-state, annual average concentrations. In comparisons run here, InMAP recreates WRF-Chem predictions of changes in total PM2.5 concentrations with population-weighted mean fractional error (MFE) and bias (MFB) < 10 % and population-weighted R2 ~ 0.99. Among individual PM2.5 species, the best predictive performance is for primary PM2.5 (MFE: 16 %; MFB: 13 %) and the worst predictive performance is for particulate nitrate (MFE: 119 %; MFB: 106 %). Potential uses of InMAP include studying exposure, health, and environmental justice impacts of potential shifts in emissions for annual-average PM2.5. Features planned for future model releases include a larger spatial domain, more temporal information, and the ability to predict ground-level ozone (O3

  11. Chemistry resolved kinetic flow modeling of TATB based explosives

    NASA Astrophysics Data System (ADS)

    Vitello, Peter; Fried, Laurence E.; William, Howard; Levesque, George; Souers, P. Clark

    2012-03-01

    Detonation waves in insensitive, TATB-based explosives are believed to have multiple time scale regimes. The initial burn rate of such explosives has a sub-microsecond time scale. However, significant late-time slow release in energy is believed to occur due to diffusion limited growth of carbon. In the intermediate time scale concentrations of product species likely change from being in equilibrium to being kinetic rate controlled. We use the thermo-chemical code CHEETAH linked to an ALE hydrodynamics code to model detonations. We term our model chemistry resolved kinetic flow, since CHEETAH tracks the time dependent concentrations of individual species in the detonation wave and calculates EOS values based on the concentrations. We present here two variants of our new rate model and comparison with hot, ambient, and cold experimental data for PBX 9502.

  12. The use of ARL trajectories for the evaluation of precipitation chemistry data

    Treesearch

    John M. Miller; James N. Galloway; Gene E. Likens

    1976-01-01

    One of the major problems in interpreting precipitation chemistry data is determining the possible source areas of the materials found in the precipitation. To investigate this problem, the trajectory program developed at Air Resources Laboratories (NOAA) was used to compute five-day backward air trajectories from Ithaca, New York.

  13. An Integrated Approach to Economic and Environmental Aspects of Air Pollution and Climate Interactions

    NASA Astrophysics Data System (ADS)

    Sarofim, M. C.

    2007-12-01

    Emissions of greenhouses gases and conventional pollutants are closely linked through shared generation processes and thus policies directed toward long-lived greenhouse gases affect emissions of conventional pollutants and, similarly, policies directed toward conventional pollutants affect emissions of greenhouse gases. Some conventional pollutants such as aerosols also have direct radiative effects. NOx and VOCs are ozone precursors, another substance with both radiative and health impacts, and these ozone precursors also interact with the chemistry of the hydroxyl radical which is the major methane sink. Realistic scenarios of future emissions and concentrations must therefore account for both air pollution and greenhouse gas policies and how they interact economically as well as atmospherically, including the regional pattern of emissions and regulation. We have modified a 16 region computable general equilibrium economic model (the MIT Emissions Prediction and Policy Analysis model) by including elasticities of substitution for ozone precursors and aerosols in order to examine these interactions between climate policy and air pollution policy on a global scale. Urban emissions are distributed based on population density, and aged using a reduced form urban model before release into an atmospheric chemistry/climate model (the earth systems component of the MIT Integrated Global Systems Model). This integrated approach enables examination of the direct impacts of air pollution on climate, the ancillary and complementary interactions between air pollution and climate policies, and the impact of different population distribution algorithms or urban emission aging schemes on global scale properties. This modeling exercise shows that while ozone levels are reduced due to NOx and VOC reductions, these reductions lead to an increase in methane concentrations that eliminates the temperature effects of the ozone reductions. However, black carbon reductions do have

  14. A simple model for molecular hydrogen chemistry coupled to radiation hydrodynamics

    NASA Astrophysics Data System (ADS)

    Nickerson, Sarah; Teyssier, Romain; Rosdahl, Joakim

    2018-06-01

    We introduce non-equilibrium molecular hydrogen chemistry into the radiation-hydrodynamics code RAMSES-RT. This is an adaptive mesh refinement grid code with radiation hydrodynamics that couples the thermal chemistry of hydrogen and helium to moment-based radiative transfer with the Eddington tensor closure model. The H2 physics that we include are formation on dust grains, gas phase formation, formation by three-body collisions, collisional destruction, photodissociation, photoionisation, cosmic ray ionisation and self-shielding. In particular, we implement the first model for H2 self-shielding that is tied locally to moment-based radiative transfer by enhancing photo-destruction. This self-shielding from Lyman-Werner line overlap is critical to H2 formation and gas cooling. We can now track the non-equilibrium evolution of molecular, atomic, and ionised hydrogen species with their corresponding dissociating and ionising photon groups. Over a series of tests we show that our model works well compared to specialised photodissociation region codes. We successfully reproduce the transition depth between molecular and atomic hydrogen, molecular cooling of the gas, and a realistic Strömgren sphere embedded in a molecular medium. In this paper we focus on test cases to demonstrate the validity of our model on small scales. Our ultimate goal is to implement this in large-scale galactic simulations.

  15. Importance of formaldehyde in cloud chemistry

    NASA Technical Reports Server (NTRS)

    Adewuyi, Y. G.; Cho, S.-Y.; Tsay, R.-P.; Carmichael, G. R.

    1984-01-01

    A physical-chemical model which is an extension of that of Hong and Carmichael (1983) is used to investigate the role of formaldehyde in cloud chemistry. This model takes into account the mass transfer of SO2, O3, NH3, HNO3, H2O2, CO2, HCl, HCHO, O2, OH and HO2 into cloud droplets and their subsequent chemical reactions. The model is used to assess the importance of S(IV)-HCHO adduct formation, the reduction of H2O2 by HCHO, HCHO-free radical interactions, and the formation of HCOOH in the presence of HCHO in cloud droplets. Illustrative calculations indicate that the presence of HCHO inhibits sulfate production rate in cloud droplets. The direct inhibition of sulfate production rate in cloudwater due to nucleophilic addition of HSO3(-) to HCHO(aq) to form hydroxymethanesulfonate is generally low for concentrations of HCHO typical of ambient air. However, inhibition of sulfate production due to formaldehyde-free radical interactions in solution can be important. These formaldehyde-free radical reactions can also generate appreciable quantities of formic acid.

  16. Performance of Versions 1,2 and 3 of the Goddard Earth Observing System (GEOS) Chemistry-Climate Model (CCM)

    NASA Technical Reports Server (NTRS)

    Pawson, Steven; Stolarski, Richard S.; Nielsen, J. Eric; Duncan, Bryan N.

    2008-01-01

    Version 1 of the Goddard Earth Observing System Chemistry-Climate Model (GEOS CCM) was used in the first CCMVa1 model evaluation and forms the basis for several studies of links between ozone and the circulation. That version of the CCM was based on the GEOS-4 GCM. Versions 2 and 3 of the GEOS CCM are based on the GEOS-5 GCM, which retains the "Lin-Rood" dynamical core but has a totally different set of physical parameterizatiOns to GEOS-4. In Version 2 of the GEOS CCM the Goddard stratospheric chemistry module is retained. Difference between Versions 1 and 2 thus reflect the physics changes of the underlying GCMs. Several comparisons between these two models are made, several of which reveal improvements in Version 2 (including a more realistic representation of the interannual variability of the Antarctic vortex). In Version 3 of the GEOS CCM, the stratospheric chemistry mechanism is replaced by the "GMI COMBO" code that includes tropospheric chemistry and different computational approaches. An advantage of this model version. is the reduction of high ozone biases that prevail at low chlorine loadings in Versions 1 and 2. This poster will compare and contrast various aspects of the three model versions that are relevant for understanding interactions between ozone and climate.

  17. Impact of ship emissions on air pollution and AOD over North Atlantic and European Arctic

    NASA Astrophysics Data System (ADS)

    Kaminski, Jacek W.; Struzewska, Joanna; Jefimow, Maciej; Durka, Pawel

    2016-04-01

    The iAREA project is combined of experimental and theoretical research in order to contribute to the new knowledge on the impact of absorbing aerosols on the climate system in the European Arctic (http://www.igf.fuw.edu.pl/iAREA). A tropospheric chemistry model GEM-AQ (Global Environmental Multiscale Air Quality) was used as a computational tool. The core of the model is based on a weather prediction model with environmental processes (chemistry and aerosols) implanted on-line and are interactive (i.e. providing feedback of chemistry on radiation and dynamics). The numerical grid covered the Euro-Atlantic region with the resolution of 50 km. Emissions developed by NILU in the ECLIPSE project was used (Klimont et al., 2013). The model was run for two 1-year scenarios. 2014 was chosen as a base year for simulations and analysis. Scenarios include a base run with most up-to-date emissions and a run without maritime emissions. The analysis will focus on the contribution of maritime emissions on levels of particulate matter and gaseous pollutants over the European Arctic, North Atlantic and coastal areas. The annual variability will be assessed based on monthly mean near-surface concentration fields. Analysis of shipping transport on near-surface air pollution over the Euro-Atlantic region will be assessed for ozone, NO2, SO2, CO, PM10, PM2.5. Also, a contribution of ship emissions to AOD will be analysed.

  18. Air quality over Europe and Iberian Peninsula for 2004 at high horizontal resolution: evaluation of the CALIOPE modelling system

    NASA Astrophysics Data System (ADS)

    Jorba, O.; Piot, M.; Pay, M. T.; Jiménez-Guerrero, P.; López, E.; Pérez, C.; Gassó, S.; Baldasano, J. M.

    2009-09-01

    In the frame of the CALIOPE project (Baldasano et al., 2008a), a high-resolution air quality forecasting system, WRF-ARW/HERMES/CMAQ/DREAM, is under development and applied to the European domain (12km x 12km, 1hr) as well as to the Iberian Peninsula domain (4km x 4km, 1hr) to provide air quality forecasts for Spain (http://www.bsc.es/caliope/). The simulation of such high-resolution model system is possible by its implementation on the MareNostrum supercomputer. To reassure potential users and reduce uncertainties, the model system must be evaluated to assess its performances in terms of air quality levels and dynamics reproducibility. The present contribution describes a thorough quantitative evaluation study performed for a reference year (2004). CALIOPE is a complex system that integrates a variety of environmental models. WRF-ARW provides high-resolution meteorological fields to the system. It is configured with 38 vertical layers reaching up to 50 hPa. Meteorological initial and boundary conditions are obtained from the NCEP final analysis data. The HERMES emission model (Baldasano et al., 2008b) computes the emissions for the Iberian Peninsula simulation at 4 km horizontal resolution every hour using a bottom-up approach. For the European domain, HERMES disaggregates the EMEP expert emission inventory for 2004. The CMAQ chemical transport model solves the physico-chemical processes in the system. The vertical resolution of CMAQ for gas-phase and aerosols has been increased from 8 to 15 layers in order to simulate vertical exchanges more accurately. Chemical boundary conditions are provided by the LMDz-INCA2 global climate-chemistry model (see Hauglustaine et al., 2004). Finally, the DREAM model simulates long-range transport of mineral dust over the domains under study. In order to evaluate the performances of the CALIOPE system, model simulations were compared with ground-based measurements from the EMEP and Spanish air quality networks. For the European

  19. Downscaler Model for predicting daily air pollution

    EPA Pesticide Factsheets

    This model combines daily ozone and particulate matter monitoring and modeling data from across the U.S. to provide improved fine-scale estimates of air quality in communities and other specific locales.

  20. Large unexplained suite of chemically reactive compounds present in ambient air due to biomass fires.

    PubMed

    Kumar, V; Chandra, B P; Sinha, V

    2018-01-12

    Biomass fires impact global atmospheric chemistry. The reactive compounds emitted and formed due to biomass fires drive ozone and organic aerosol formation, affecting both air quality and climate. Direct hydroxyl (OH) Reactivity measurements quantify total gaseous reactive pollutant loadings and comparison with measured compounds yields the fraction of unmeasured compounds. Here, we quantified the magnitude and composition of total OH reactivity in the north-west Indo-Gangetic Plain. More than 120% increase occurred in total OH reactivity (28 s -1 to 64 s -1 ) and from no missing OH reactivity in the normal summertime air, the missing OH reactivity fraction increased to ~40 % in the post-harvest summertime period influenced by large scale biomass fires highlighting presence of unmeasured compounds. Increased missing OH reactivity between the two summertime periods was associated with increased concentrations of compounds with strong photochemical source such as acetaldehyde, acetone, hydroxyacetone, nitromethane, amides, isocyanic acid and primary emissions of acetonitrile and aromatic compounds. Currently even the most detailed state-of-the art atmospheric chemistry models exclude formamide, acetamide, nitromethane and isocyanic acid and their highly reactive precursor alkylamines (e.g. methylamine, ethylamine, dimethylamine, trimethylamine). For improved understanding of atmospheric chemistry-air quality-climate feedbacks in biomass-fire impacted atmospheric environments, future studies should include these compounds.

  1. Modelling the Contribution of Long-range Transport of Ammonium Nitrates to Urban Air Pollution and Human Exposure in the United Kingdom

    NASA Astrophysics Data System (ADS)

    Reis, S.; Vieno, M.; Beck, R.; Ots, R.; Moring, A.; Steinle, S.; Heal, M. R.; Doherty, R. M.

    2014-12-01

    Urban air pollution and its effects on human health remain to be a challenge in spite of substantial reductions in the emissions of air pollutants (e.g. sulphur dioxide, nitrogen oxides) over the past decades in Europe. While primary pollutants play a vital role in urban air pollution, recent model studies highlight and quantify the relevance of long-range transport of secondary pollution (e.g. secondary inorganic aerosols such as ammonium sulphates and nitrates, or ground level ozone) for the exceedance of local air quality limit values in urban areas across Europe. This contribution can be seen in recurring episodes, for instance in spring 2014, with very high levels of fine particulate matter (PM2.5) in Paris, London and other European cities, as well as in elevated background levels throughout the year. While we will focus on the contribution to exceedances of PM2.5 limit values here, this transboundary transport has wider implications for the deposition of reactive nitrogen far from the source as well. As local authorities are tasked with ensuring the attainment of air quality limit values, exceedances caused by long-range transport, with emissions originating from sources outside of their jurisdiction present substantial challenges. Furthermore, while policy measures have successfully addressed emissions from large point sources in the past, and made progress towards reducing pollution from road vehicles, emissions of ammonia from agricultural sources - a key component for the long-range transport of secondary inorganic aerosols - have remained relatively stable in Europe. Using the example of Europe and the UK, we demonstrate in our presentation how atmospheric chemistry transport modelling across different scales (from regional to local) can provide vital insight in the mechanisms of and relative contributions to the formation of secondary inorganic aerosols. In addition, we illustrate how this modelling capability can inform the design of efficient control

  2. MODELING THE ATMOSPHERE FORMATION OF REACTIVE MERCURY IN FLORIDA AND THE GREAT LAKES

    EPA Science Inventory

    Reactive mercury in the troposphere is affected by a complex mix of local emissions, global-scale transport, and gas and aqueous-phase chemistry. Here, we describe a modified version of the EPA model for urban/regional air quality (CMAQ) to include the chemistry of mercury, and m...

  3. Performance of the air2stream model that relates air and stream water temperatures depends on the calibration method

    NASA Astrophysics Data System (ADS)

    Piotrowski, Adam P.; Napiorkowski, Jaroslaw J.

    2018-06-01

    A number of physical or data-driven models have been proposed to evaluate stream water temperatures based on hydrological and meteorological observations. However, physical models require a large amount of information that is frequently unavailable, while data-based models ignore the physical processes. Recently the air2stream model has been proposed as an intermediate alternative that is based on physical heat budget processes, but it is so simplified that the model may be applied like data-driven ones. However, the price for simplicity is the need to calibrate eight parameters that, although have some physical meaning, cannot be measured or evaluated a priori. As a result, applicability and performance of the air2stream model for a particular stream relies on the efficiency of the calibration method. The original air2stream model uses an inefficient 20-year old approach called Particle Swarm Optimization with inertia weight. This study aims at finding an effective and robust calibration method for the air2stream model. Twelve different optimization algorithms are examined on six different streams from northern USA (states of Washington, Oregon and New York), Poland and Switzerland, located in both high mountains, hilly and lowland areas. It is found that the performance of the air2stream model depends significantly on the calibration method. Two algorithms lead to the best results for each considered stream. The air2stream model, calibrated with the chosen optimization methods, performs favorably against classical streamwater temperature models. The MATLAB code of the air2stream model and the chosen calibration procedure (CoBiDE) are available as Supplementary Material on the Journal of Hydrology web page.

  4. Soil Moisture-Atmosphere Feedbacks on Atmospheric Tracers: The Effects of Soil Moisture on Precipitation and Near-Surface Chemistry

    NASA Astrophysics Data System (ADS)

    Tawfik, Ahmed B.

    The atmospheric component is described by rapid fluctuations in typical state variables, such as temperature and water vapor, on timescales of hours to days and the land component evolves on daily to yearly timescales. This dissertation examines the connection between soil moisture and atmospheric tracers under varying degrees of soil moisture-atmosphere coupling. Land-atmosphere coupling is defined over the United States using a regional climate model. A newly examined soil moisture-precipitation feedback is identified for winter months extending the previous summer feedback to colder temperature climates. This feedback is driven by the freezing and thawing of soil moisture, leading to coupled land-atmosphere conditions near the freezing line. Soil moisture can also affect the composition of the troposphere through modifying biogenic emissions of isoprene (C5H8). A novel first-order Taylor series decomposition indicates that isoprene emissions are jointly driven by temperature and soil moisture in models. These compounds are important precursors for ozone formation, an air pollutant and a short-lived forcing agent for climate. A mechanistic description of commonly observed relationships between ground-level ozone and meteorology is presented using the concept of soil moisture-temperature coupling regimes. The extent of surface drying was found to be a better predictor of ozone concentrations than temperature or humidity for the Eastern U.S. This relationship is evaluated in a coupled regional chemistry-climate model under several land-atmosphere coupling and isoprene emissions cases. The coupled chemistry-climate model can reproduce the observed soil moisture-temperature coupling pattern, yet modeled ozone is insensitive to changes in meteorology due to the balance between isoprene and the primary atmospheric oxidant, the hydroxyl radical (OH). Overall, this work highlights the importance of soil moisture-atmosphere coupling for previously neglected cold climate

  5. Model Calculations of the Impact of NO(x) from Air Traffic, Lightning and Surface Emissions, Compared with Measurements

    NASA Technical Reports Server (NTRS)

    Meijer, E. W.; vanVelthoven, P. F. J.; Thompson, A. M.; Pfister, L.; Schlager, H.; Schulte, P.; Kelder, H.

    1999-01-01

    The impact of NO(x) from aircraft emissions, lightning and surface contributions on atmospheric nitrogen oxides and ozone has been investigated with the three-dimensional global chemistry transport model TM3 by partitioning the nitrogen oxides and ozone according to source category. The results have been compared with POLINAT II and SONEX airborne measurements in the North Atlantic flight corridor in 1997. Various cases have been investigated: measurements during a stagnant anti-cyclone and an almost cut-off low, both with expected high aircraft contributions, a southward bound flight with an expected strong flight corridor gradient and lightning contributions in the South, and a transatlantic flight with expected boundary layer pollution near the U.S. coast. The agreement between modeled results and measurements is reasonably good for NO and ozone. Also, the calculated impact of the three defined sources were consistent with the estimated exposure of the sampled air to these sources, obtained by specialized back-trajectory model products.

  6. Contributions of mobile, stationary and biogenic sources to air pollution in the Amazon rainforest: a numerical study with the WRF-Chem model

    NASA Astrophysics Data System (ADS)

    Abou Rafee, Sameh A.; Martins, Leila D.; Kawashima, Ana B.; Almeida, Daniela S.; Morais, Marcos V. B.; Souza, Rita V. A.; Oliveira, Maria B. L.; Souza, Rodrigo A. F.; Medeiros, Adan S. S.; Urbina, Viviana; Freitas, Edmilson D.; Martin, Scot T.; Martins, Jorge A.

    2017-06-01

    This paper evaluates the contributions of the emissions from mobile, stationary and biogenic sources on air pollution in the Amazon rainforest by using the Weather Research and Forecasting with Chemistry (WRF-Chem) model. The analyzed air pollutants were CO, NOx, SO2, O3, PM2. 5, PM10 and volatile organic compounds (VOCs). Five scenarios were defined in order to evaluate the emissions by biogenic, mobile and stationary sources, as well as a future scenario to assess the potential air quality impact of doubled anthropogenic emissions. The stationary sources explain the highest concentrations for all air pollutants evaluated, except for CO, for which the mobile sources are predominant. The anthropogenic sources considered resulted an increasing in the spatial peak-temporal average concentrations of pollutants in 3 to 2780 times in relation to those with only biogenic sources. The future scenario showed an increase in the range of 3 to 62 % in average concentrations and 45 to 109 % in peak concentrations depending on the pollutant. In addition, the spatial distributions of the scenarios has shown that the air pollution plume from the city of Manaus is predominantly transported west and southwest, and it can reach hundreds of kilometers in length.

  7. Assessment of chemistry models for compressible reacting flows

    NASA Astrophysics Data System (ADS)

    Lapointe, Simon; Blanquart, Guillaume

    2014-11-01

    Recent technological advances in propulsion and power devices and renewed interest in the development of next generation supersonic and hypersonic vehicles have increased the need for detailed understanding of turbulence-combustion interactions in compressible reacting flows. In numerical simulations of such flows, accurate modeling of the fuel chemistry is a critical component of capturing the relevant physics. Various chemical models are currently being used in reacting flow simulations. However, the differences between these models and their impacts on the fluid dynamics in the context of compressible flows are not well understood. In the present work, a numerical code is developed to solve the fully coupled compressible conservation equations for reacting flows. The finite volume code is based on the theoretical and numerical framework developed by Oefelein (Prog. Aero. Sci. 42 (2006) 2-37) and employs an all-Mach-number formulation with dual time-stepping and preconditioning. The numerical approach is tested on turbulent premixed flames at high Karlovitz numbers. Different chemical models of varying complexity and computational cost are used and their effects are compared.

  8. Community Multiscale Air Quality Model

    EPA Science Inventory

    The U.S. EPA developed the Community Multiscale Air Quality (CMAQ) system to apply a “one atmosphere” multiscale and multi-pollutant modeling approach based mainly on the “first principles” description of the atmosphere. The multiscale capability is supported by the governing di...

  9. Modelling alkali metal emissions in large-eddy simulation of a preheated pulverised-coal turbulent jet flame using tabulated chemistry

    NASA Astrophysics Data System (ADS)

    Wan, Kaidi; Xia, Jun; Vervisch, Luc; Liu, Yingzu; Wang, Zhihua; Cen, Kefa

    2018-03-01

    The numerical modelling of alkali metal reacting dynamics in turbulent pulverised-coal combustion is discussed using tabulated sodium chemistry in large eddy simulation (LES). A lookup table is constructed from a detailed sodium chemistry mechanism including five sodium species, i.e. Na, NaO, NaO2, NaOH and Na2O2H2, and 24 elementary reactions. This sodium chemistry table contains four coordinates, i.e. the equivalence ratio, the mass fraction of the sodium element, the gas-phase temperature, and a progress variable. The table is first validated against the detailed sodium chemistry mechanism by zero-dimensional simulations. Then, LES of a turbulent pulverised-coal jet flame is performed and major coal-flame parameters compared against experiments. The chemical percolation devolatilisation (CPD) model and the partially stirred reactor (PaSR) model are employed to predict coal pyrolysis and gas-phase combustion, respectively. The response of the five sodium species in the pulverised-coal jet flame is subsequently examined. Finally, a systematic global sensitivity analysis of the sodium lookup table is performed and the accuracy of the proposed tabulated sodium chemistry approach has been calibrated.

  10. Chemistry Resolved Kinetic Flow Modeling of TATB Based Explosives

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vitello, P A; Fried, L E; Howard, W M

    2011-07-21

    Detonation waves in insensitive, TATB based explosives are believed to have multi-time scale regimes. The initial burn rate of such explosives has a sub-microsecond time scale. However, significant late-time slow release in energy is believed to occur due to diffusion limited growth of carbon. In the intermediate time scale concentrations of product species likely change from being in equilibrium to being kinetic rate controlled. They use the thermo-chemical code CHEETAH linked to an ALE hydrodynamics code to model detonations. They term their model chemistry resolved kinetic flow as CHEETAH tracks the time dependent concentrations of individual species in the detonationmore » wave and calculates EOS values based on the concentrations. A HE-validation suite of model simulations compared to experiments at ambient, hot, and cold temperatures has been developed. They present here a new rate model and comparison with experimental data.« less

  11. Modelling the physical multiphase interactions of HNO3 between snow and air on the Antarctic Plateau (Dome C) and coast (Halley)

    NASA Astrophysics Data System (ADS)

    Chan, Hoi Ga; Frey, Markus M.; King, Martin D.

    2018-02-01

    , respectively. It is also found that the liquid volume of the snow grain and air-micropocket partitioning of HNO3 are sensitive to both the total solute concentration of mineral ions within the snow and pH of the snow. The second model provides an alternative method to predict nitrate concentration in the surface snow layer which is applicable over the entire range of environmental conditions typical for Antarctica and forms a basis for a future full 1-D snowpack model as well as parameterisations in regional or global atmospheric chemistry models.

  12. IN-PACKAGE CHEMISTRY ABSTRACTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    E. Thomas

    2005-07-14

    This report was developed in accordance with the requirements in ''Technical Work Plan for Postclosure Waste Form Modeling'' (BSC 2005 [DIRS 173246]). The purpose of the in-package chemistry model is to predict the bulk chemistry inside of a breached waste package and to provide simplified expressions of that chemistry as a function of time after breach to Total Systems Performance Assessment for the License Application (TSPA-LA). The scope of this report is to describe the development and validation of the in-package chemistry model. The in-package model is a combination of two models, a batch reactor model, which uses the EQ3/6more » geochemistry-modeling tool, and a surface complexation model, which is applied to the results of the batch reactor model. The batch reactor model considers chemical interactions of water with the waste package materials, and the waste form for commercial spent nuclear fuel (CSNF) waste packages and codisposed (CDSP) waste packages containing high-level waste glass (HLWG) and DOE spent fuel. The surface complexation model includes the impact of fluid-surface interactions (i.e., surface complexation) on the resulting fluid composition. The model examines two types of water influx: (1) the condensation of water vapor diffusing into the waste package, and (2) seepage water entering the waste package as a liquid from the drift. (1) Vapor-Influx Case: The condensation of vapor onto the waste package internals is simulated as pure H{sub 2}O and enters at a rate determined by the water vapor pressure for representative temperature and relative humidity conditions. (2) Liquid-Influx Case: The water entering a waste package from the drift is simulated as typical groundwater and enters at a rate determined by the amount of seepage available to flow through openings in a breached waste package.« less

  13. Modeling of the chemistry in oxidation flow reactors with high initial NO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peng, Zhe; Jimenez, Jose L.

    Oxidation flow reactors (OFRs) are increasingly employed in atmospheric chemistry research because of their high efficiency of OH radical production from low-pressure Hg lamp emissions at both 185 and 254 nm (OFR185) or 254 nm only (OFR254). OFRs have been thought to be limited to studying low-NO chemistry (in which peroxy radicals (RO 2) react preferentially with HO 2) because NO is very rapidly oxidized by the high concentrations of O 3, HO 2, and OH in OFRs. However, many groups are performing experiments by aging combustion exhaust with high NO levels or adding NO in the hopes of simulating high-NO chemistry (in which RO 2 +more » NO dominates). This work systematically explores the chemistry in OFRs with high initial NO. Using box modeling, we investigate the interconversion of N-containing species and the uncertainties due to kinetic parameters. Simple initial injection of NO in OFR185 can result in more RO 2 reacted with NO than with HO 2 and minor non-tropospheric photolysis, but only under a very narrow set of conditions (high water mixing ratio, low UV intensity, low external OH reactivity (OHR ext), and initial NO concentration (NO in) of tens to hundreds of ppb) that account for a very small fraction of the input parameter space. These conditions are generally far away from experimental conditions of published OFR studies with high initial NO. In particular, studies of aerosol formation from vehicle emissions in OFRs often used OHR ext and NO in several orders of magnitude higher. Due to extremely high OHR ext and NO in, some studies may have resulted in substantial non-tropospheric photolysis, strong delay to RO 2 chemistry due to peroxynitrate formation, VOC reactions with NO 3 dominating over those with OH, and faster reactions of OH–aromatic adducts with NO 2 than those with O 2, all of which are irrelevant to ambient VOC photooxidation chemistry. Some of the negative effects are the worst for alkene and aromatic precursors. To avoid

  14. Modeling of the chemistry in oxidation flow reactors with high initial NO

    DOE PAGES

    Peng, Zhe; Jimenez, Jose L.

    2017-10-10

    Oxidation flow reactors (OFRs) are increasingly employed in atmospheric chemistry research because of their high efficiency of OH radical production from low-pressure Hg lamp emissions at both 185 and 254 nm (OFR185) or 254 nm only (OFR254). OFRs have been thought to be limited to studying low-NO chemistry (in which peroxy radicals (RO 2) react preferentially with HO 2) because NO is very rapidly oxidized by the high concentrations of O 3, HO 2, and OH in OFRs. However, many groups are performing experiments by aging combustion exhaust with high NO levels or adding NO in the hopes of simulating high-NO chemistry (in which RO 2 +more » NO dominates). This work systematically explores the chemistry in OFRs with high initial NO. Using box modeling, we investigate the interconversion of N-containing species and the uncertainties due to kinetic parameters. Simple initial injection of NO in OFR185 can result in more RO 2 reacted with NO than with HO 2 and minor non-tropospheric photolysis, but only under a very narrow set of conditions (high water mixing ratio, low UV intensity, low external OH reactivity (OHR ext), and initial NO concentration (NO in) of tens to hundreds of ppb) that account for a very small fraction of the input parameter space. These conditions are generally far away from experimental conditions of published OFR studies with high initial NO. In particular, studies of aerosol formation from vehicle emissions in OFRs often used OHR ext and NO in several orders of magnitude higher. Due to extremely high OHR ext and NO in, some studies may have resulted in substantial non-tropospheric photolysis, strong delay to RO 2 chemistry due to peroxynitrate formation, VOC reactions with NO 3 dominating over those with OH, and faster reactions of OH–aromatic adducts with NO 2 than those with O 2, all of which are irrelevant to ambient VOC photooxidation chemistry. Some of the negative effects are the worst for alkene and aromatic precursors. To avoid

  15. The TensorMol-0.1 model chemistry: a neural network augmented with long-range physics.

    PubMed

    Yao, Kun; Herr, John E; Toth, David W; Mckintyre, Ryker; Parkhill, John

    2018-02-28

    Traditional force fields cannot model chemical reactivity, and suffer from low generality without re-fitting. Neural network potentials promise to address these problems, offering energies and forces with near ab initio accuracy at low cost. However a data-driven approach is naturally inefficient for long-range interatomic forces that have simple physical formulas. In this manuscript we construct a hybrid model chemistry consisting of a nearsighted neural network potential with screened long-range electrostatic and van der Waals physics. This trained potential, simply dubbed "TensorMol-0.1", is offered in an open-source Python package capable of many of the simulation types commonly used to study chemistry: geometry optimizations, harmonic spectra, open or periodic molecular dynamics, Monte Carlo, and nudged elastic band calculations. We describe the robustness and speed of the package, demonstrating its millihartree accuracy and scalability to tens-of-thousands of atoms on ordinary laptops. We demonstrate the performance of the model by reproducing vibrational spectra, and simulating the molecular dynamics of a protein. Our comparisons with electronic structure theory and experimental data demonstrate that neural network molecular dynamics is poised to become an important tool for molecular simulation, lowering the resource barrier to simulating chemistry.

  16. Investigation of Infra-red and Nonequilibrium Air Radiation

    NASA Technical Reports Server (NTRS)

    Kruger, Charles H.; Laux, Christophe O.

    1994-01-01

    This report summarizes the results obtained during a research program on the infrared radiation of air plasmas conducted in the High Temperature Gasdynamics Laboratory at Stanford University. This program was intended to investigate the masking of infrared signatures by the air plasma formed behind the bow shock of high velocity missiles. Prior to this work, the radiative emission of air plasmas in the infrared had been the object of few experimental investigations, and although several infrared systems were already modeled in radiation codes such as NEQAIR, measurements were required to validate numerical predictions and indicate whether all transitions of importance were accounted for in the model. The program was further motivated by the fact that 9 excited states (A, B, C, D, B', F, H, and H') of NO radiate in the infrared, especially between 1 and 1.5 microns where at least 9 transitions involving can be observed. Because these IR transitions are relatively well separated from each other, excited NO states concentrations can be easily measured, thus providing essential information on excited-state chemistry for use in optical diagnostics or in electronic excitation model validation. Detailed comparisons between measured and simulated spectra are presented.

  17. POPULATION EXPOSURE AND DOSE MODEL FOR AIR TOXICS: A BENZENE CASE STUDY

    EPA Science Inventory

    The EPA's National Exposure Research Laboratory (NERL) is developing a human exposure and dose model called the Stochastic Human Exposure and Dose Simulation model for Air Toxics (SHEDS-AirToxics) to characterize population exposure to air toxics in support of the National Air ...

  18. THE EMERGENCE OF NUMERICAL AIR QUALITY FORECASTING MODELS AND THEIR APPLICATION

    EPA Science Inventory

    In recent years the U.S. and other nations have begun programs for short-term local through regional air quality forecasting based upon numerical three-dimensional air quality grid models. These numerical air quality forecast (NAQF) models and systems have been developed and test...

  19. THE EMERGENCE OF NUMERICAL AIR QUALITY FORCASTING MODELS AND THEIR APPLICATIONS

    EPA Science Inventory

    In recent years the U.S. and other nations have begun programs for short-term local through regional air quality forecasting based upon numerical three-dimensional air quality grid models. These numerical air quality forecast (NAQF) models and systems have been developed and test...

  20. Modeling quiescent phase transport of air bubbles induced by breaking waves

    NASA Astrophysics Data System (ADS)

    Shi, Fengyan; Kirby, James T.; Ma, Gangfeng

    Simultaneous modeling of both the acoustic phase and quiescent phase of breaking wave-induced air bubbles involves a large range of length scales from microns to meters and time scales from milliseconds to seconds, and thus is computational unaffordable in a surfzone-scale computational domain. In this study, we use an air bubble entrainment formula in a two-fluid model to predict air bubble evolution in the quiescent phase in a breaking wave event. The breaking wave-induced air bubble entrainment is formulated by connecting the shear production at the air-water interface and the bubble number intensity with a certain bubble size spectra observed in laboratory experiments. A two-fluid model is developed based on the partial differential equations of the gas-liquid mixture phase and the continuum bubble phase, which has multiple size bubble groups representing a polydisperse bubble population. An enhanced 2-DV VOF (Volume of Fluid) model with a k - ɛ turbulence closure is used to model the mixture phase. The bubble phase is governed by the advection-diffusion equations of the gas molar concentration and bubble intensity for groups of bubbles with different sizes. The model is used to simulate air bubble plumes measured in laboratory experiments. Numerical results indicate that, with an appropriate parameter in the air entrainment formula, the model is able to predict the main features of bubbly flows as evidenced by reasonable agreement with measured void fraction. Bubbles larger than an intermediate radius of O(1 mm) make a major contribution to void fraction in the near-crest region. Smaller bubbles tend to penetrate deeper and stay longer in the water column, resulting in significant contribution to the cross-sectional area of the bubble cloud. An underprediction of void fraction is found at the beginning of wave breaking when large air pockets take place. The core region of high void fraction predicted by the model is dislocated due to use of the shear