Science.gov

Sample records for air circulation patterns

  1. Natural Circulation Patterns in the VHTR Air-Ingress Accident and Related Issues

    SciTech Connect

    Chang Ho Oh; Eung Soo Kim; Hyung Seok Kang

    2010-10-01

    A natural circulation pattern in a Very High Gas-Cooled Reactor during a hypothetical air-ingress accident has been investigated using computational fluid dynamic (CFD) methods in order to compare with the previous 1-D flow path model for the air-ingress analyses. The GT-MHR 600 MWt reactor was selected to be the reference design and modeled by a half symmetric 3-D geometry using FLUENT 6.3, a commercial CFD code. The simulation was carried out as steady-state calculations, and the boundary conditions were either assumed or provided from the 1-D GAMMA code results. Totally, 12 different cases have been estimated, and many notable findings and results have been obtained in this study. According to the simulations, the natural circulation pattern in the reactor was quite different from the previous 1-D assumptions. A large re-circulation flow with thermal stratification phenomena was clearly observed in the hot-leg and the lower plenum in the 3-D model. This re-circulation flow provided approximately an order faster air-ingress speed (0.46 m/s in superficial velocity) than previously predicted values by 1-D modeling (0.02~0.03 m/s). It indicates that the 1-D air-ingress modeling may significantly distort the air-ingress scenario and consequences. In addition, the complicated natural circulation pattern is eventually expected to lead to very complex graphite oxidations and corrosion patterns.

  2. Portable oven air circulator

    DOEpatents

    Jorgensen, Jorgen A.; Nygren, Donald W.

    1983-01-01

    A portable air circulating apparatus for use in cooking ovens which is used to create air currents in the oven which transfer heat to cooking foodstuffs to promote more rapid and more uniform cooking or baking, the apparatus including a motor, fan blade and housing of metallic materials selected from a class of heat resistant materials.

  3. Fluoride pollution of atmospheric precipitation and its relationship with air circulation and weather patterns (Wielkopolski National Park, Poland).

    PubMed

    Walna, Barbara; Kurzyca, Iwona; Bednorz, Ewa; Kolendowicz, Leszek

    2013-07-01

    A 2-year study (2010-2011) of fluorides in atmospheric precipitation in the open area and in throughfall in Wielkopolski National Park (west-central Poland) showed their high concentrations, reaching a maximum value of 2 mg/l under the tree crowns. These high values indicate substantial deposition of up to 52 mg/m(2)/year. In 2011, over 51% of open area precipitation was characterized by fluoride concentration higher than 0.10 mg/l, and in throughfall such concentrations were found in more than 86% of events. In 2010, a strong connection was evident between fluoride and acid-forming ions, and in 2011, a correlation between phosphate and nitrite ions was seen. Analysis of available data on F(-) concentrations in the air did not show an unequivocal effect on F(-) concentrations in precipitation. To find reasons for and source areas of high fluoride pollution, the cases of extreme fluoride concentration in rainwater were related to atmospheric circulation and weather patterns. Weather conditions on days of extreme pollution were determined by movement of weather fronts over western Poland, or by small cyclonic centers with meteorological fronts. Macroscale air advection over the sampling site originated in the western quadrant (NW, W, and SW), particularly in the middle layers of the troposphere (2,500-5,000 m a.s.l.). Such directions indicate western Poland and Germany as possible sources of the pollution. At the same time in the lower troposphere, air inflow was frequently from the north, showing short distance transport from local emitters, and from the agglomeration of Poznań.

  4. SpaceX Dragon Air Circulation System

    NASA Technical Reports Server (NTRS)

    Hernandez, Brenda; Piatrovich, Siarhei; Prina, Mauro

    2011-01-01

    The Dragon capsule is a reusable vehicle being developed by Space Exploration Technologies (SpaceX) that will provide commercial cargo transportation to the International Space Station (ISS). Dragon is designed to be a habitable module while it is berthed to ISS. As such, the Dragon Environmental Control System (ECS) consists of pressure control and pressure equalization, air sampling, fire detection, illumination, and an air circulation system. The air circulation system prevents pockets of stagnant air in Dragon that can be hazardous to the ISS crew. In addition, through the inter-module duct, the air circulation system provides fresh air from ISS into Dragon. To utilize the maximum volume of Dragon for cargo packaging, the Dragon ECS air circulation system is designed around cargo rack optimization. At the same time, the air circulation system is designed to meet the National Aeronautics Space Administration (NASA) inter-module and intra-module ventilation requirements and acoustic requirements. A flight like configuration of the Dragon capsule including the air circulation system was recently assembled for testing to assess the design for inter-module and intra-module ventilation and acoustics. The testing included the Dragon capsule, and flight configuration in the pressure section with cargo racks, lockers, all of the air circulation components, and acoustic treatment. The air circulation test was also used to verify the Computational Fluid Dynamics (CFD) model of the Dragon capsule. The CFD model included the same Dragon internal geometry that was assembled for the test. This paper will describe the Dragon air circulation system design which has been verified by testing the system and with CFD analysis.

  5. Isotopic composition of precipitation during different atmospheric circulation patterns

    NASA Astrophysics Data System (ADS)

    Brenčič, Mihael; Kononova, Nina; Vreča, Polona

    2016-04-01

    Precipitation generating processes depend on atmospheric circulation patterns and consequently it is expected that its water stable isotopic composition of hydrogen and oxygen is related to them. Precipitation generated at similar atmospheric circulation patterns should have similar empirical distribution of δ2H and δ18O values. There are several approaches in which atmospheric circulation patterns are classified as elementary air circulation mechanisms - ECM; in our approach we have applied Dzerdzeevskii classification. Two types of models of relation between ECM and isotopic composition of precipitation are proposed; first is based on the linear combination of δ2H and δ18O values with precipitation amount weighted average (Brenčič et al., 2015) and the second new one is based on the multiple regression approach. Both approaches make possible also to estimate empirical distributions' dispersion parameters. Application of the models is illustrated on the precipitation records from Ljubljana and Portorož GNIP stations, Slovenia. Estimated values of the parameters for empirical distributions of δ2H and δ18O of each ECM subtype have shown that calculated estimates are reasonable. Brenčič, M., Kononova, N.K., Vreča, P., 2015: Relation between isotopic composition of precipitation and atmospheric circulation patterns. Journal of Hydrology 529, 1422-1432: doi: 10.1016/j.jhydrol.2015.08.040

  6. Relation between isotopic composition of precipitation and atmospheric circulation patterns

    NASA Astrophysics Data System (ADS)

    Brenčič, Mihael; Kononova, Nina K.; Vreča, Polona

    2015-10-01

    Precipitation generating processes depend on atmospheric circulation patterns and consequently it is expected that its water stable isotopic composition of hydrogen and oxygen is related to them. Precipitation generated at similar atmospheric circulation patterns should have similar empirical distribution of δ2H and δ18O values. Mathematical model based on the linear combination of δ2H and δ18O values and on precipitation amount weighted average related to elementary air circulation mechanisms - ECM is proposed. The model enables estimation of average δ2H and δ18O values and their standard deviation for the precipitation generated at distinctive atmospheric circulation patterns. Approach in which atmospheric circulation patterns were classified as ECM based on the Dzerdzeevskii classification was applied. Application of the model is illustrated on the long term precipitation record from Ljubljana GNIP station Slovenia. Estimated values of the parameters for empirical distributions of δ2H and δ18O of each ECM subtype have shown that calculated estimates are reasonable. Further applications of the proposed model enable new insight into the understanding of isotopes spatial and temporal distribution in precipitation important also for better understanding of climate proxies.

  7. 40 CFR 230.23 - Current patterns and water circulation.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Current patterns and water circulation... patterns and water circulation. (a) Current patterns and water circulation are the physical movements of water in the aquatic ecosystem. Currents and circulation respond to natural forces as modified by...

  8. 40 CFR 230.23 - Current patterns and water circulation.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Current patterns and water circulation... patterns and water circulation. (a) Current patterns and water circulation are the physical movements of water in the aquatic ecosystem. Currents and circulation respond to natural forces as modified by...

  9. 40 CFR 230.23 - Current patterns and water circulation.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Current patterns and water circulation... patterns and water circulation. (a) Current patterns and water circulation are the physical movements of water in the aquatic ecosystem. Currents and circulation respond to natural forces as modified by...

  10. 40 CFR 230.23 - Current patterns and water circulation.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Current patterns and water circulation... patterns and water circulation. (a) Current patterns and water circulation are the physical movements of water in the aquatic ecosystem. Currents and circulation respond to natural forces as modified by...

  11. Circulation patterns in active lava lakes

    NASA Astrophysics Data System (ADS)

    Redmond, T. C.; Lev, E.

    2014-12-01

    Active lava lakes provide a unique window into magmatic conduit processes. We investigated circulation patterns of 4 active lava lakes: Kilauea's Halemaumau crater, Mount Erebus, Erta Ale and Nyiragongo, and in an artificial "lava lake" constructed at the Syracuse University Lava Lab. We employed visual and thermal video recordings collected at these volcanoes and use computer vision techniques to extract time-dependent, two-dimensional surface velocity maps. The large amount of data available from Halemaumau enabled us to identify several characteristic circulation patterns. One such pattern is a rapid acceleration followed by rapid deceleration, often to a level lower than the pre-acceleration level, and then a slow recovery. Another pattern is periodic asymmetric peaks of gradual acceleration and rapid deceleration, or vice versa, previously explained by gas pistoning. Using spectral analysis, we find that the dominant period of circulation cycles at approximately 30 minutes, 3 times longer than the dominant period identified previously for Mount Erebus. Measuring a complete surface velocity field allowed us to map and follow locations of divergence and convergence, therefore upwelling and downwelling, thus connecting the surface flow with that at depth. At Nyiragongo, the location of main upwelling shifts gradually, yet is usually at the interior of the lake, for Erebus it is usually along the perimeter yet often there is catastrophic downwelling at the interior; For Halemaumau upwelling/downwelling position is almost always on the perimeter. In addition to velocity fields, we developed an automated tool for counting crustal plates at the surface of the lava lakes, and found a correlation, and a lag time, between changes if circulation vigor and the average size of crustal plates. Circulation in the artificial basaltic lava "lake" was limited by its size and degree of foaming, yet we measured surface velocities and identify patterns. Maximum surface velocity

  12. Variability of Atmospheric Circulation Patterns associated with Major Baltic Inflows

    NASA Astrophysics Data System (ADS)

    Post, Piia; Lehmann, Andreas

    2014-05-01

    knowledge for studying their recurrence in different time periods. We defined the patterns of air flow over the Danish Straits by using the Jenkinson-Collison types (JCT) of atmospheric circulation. The JCT is based on six different flow indices, that quantify the zonal and meridional airflow and its vorticity. JCT could be called also synoptic weather types, which describe the positions of cyclones and anticyclones that determine the airflow. The gridded dataset of sea level pressures from NCEP/NCAR Reanalysis have been classified for 6 hourly data subsets into 26 circulation patterns over the period 1948-2013. The sequence and variability of circulation patterns over 60 days long periods, including 30 days before the main inflow period have been analyzed. During all 11 MBI events there was dominant SW, W or NW air flow, with very similar zonal gradient at the first day of inflow for all cases. The pre-inflow period was dominated by anticyclonic vorticity, while during the inflow period and the post-period cyclonic vorticity prevailed. These conclusions are in good accordance with previous studies. However, the detailed inspection of the JCT flow indices revealed high variability.

  13. Influence of Stratospheric Ozone Distribution on Tropospheric Circulation Patterns

    NASA Astrophysics Data System (ADS)

    Barodka, Siarhei; Krasouski, Aliaksandr; Mitskevich, Yaroslav; Shalamyansky, Arkady

    2015-04-01

    In the present study we investigate the cause-and-effect relationship between the stratospheric ozone distribution and tropospheric circulation, focusing our attention mainly on the possible "top-down" side of this interaction: the impact of the stratosphere on tropospheric circulation patterns and the associated weather and climate conditions. Proceeding from analysis of several decades of observational data performed at the A.I. Voeikov Main Geophysical Observatory, which suggests a clear relation between the stratospheric ozone distribution, temperature field of the lower stratosphere and air-masses boundaries in the upper troposphere, we combine atmospheric reanalyzes and ground-based observations with numerical simulations to identify features of the general circulation that can be traced back to anomalies in the stratospheric ozone field. Specifically, we analyze the time evolution of instantaneous position of the stationary upper-level atmospheric fronts, defining the boundaries of global tropospheric air masses associated with basic cells of general circulation. We assume that stratospheric heating in ozone-related processes can exert its influence on the location of stationary fronts and characteristics of general circulation cells by displacing the tropopause, which itself is defined by a dynamical equilibrium between tropospheric vertical convection and stratospheric radiative heating. As an example, we consider the Spring season of 2013. Unusually high total ozone column (TOC) values observed in Northern Hemisphere (NH) at the beginning of 2013 induced low tropopause level in the Atlantic region and southward displacement of the polar front, leading to an anomalously cold Spring in Europe. Furthermore, we study manifestations of this mechanism in the aftermath of sudden stratospheric warming (SSW) events. In particular, the November 2013 SSW over Eastern Siberia, which is characterized by abrupt stratospheric temperatures change in the course of one day

  14. Monitoring Air Circulation Under Reduced Pressures

    NASA Astrophysics Data System (ADS)

    Rygalov, Vadim

    Adequate air circulation is required for controlled environments to maintain uniform temperature and humidity control, and hence the ability to measure air flow accurately is important. Human and associated life support habitats (e.g.,. plant production systems) for future space missions will likely be operated at pressures less than 100 kPa to minimize gas leakage and structural mass. Under such reduced pressures, the outputs from conventional anemometers for monitoring air flow can change and require re-calibration. These effects of atmospheric pressure on different types of air flow measurements are not completely understood; hence we compared the performance of several air flow sensors across a range of hypobaric pressures. Sensors included a propeller type anemometer, a hot-wire anemometer, and a Pitot-tube based device. Theoretical schematics (including mathematical models) underlying these measurements were developed. Results demonstrated that changes in sensor outputs were predictable based on their operating principles, and that corrections could be developed for sensors calibrated under normal Earth atmosphere pressure ( 100 kPa) and then used at different pressures. The potential effects of hypobaric atmospheres and their altered air flows on plant physiology are also discussed.

  15. 24 CFR 3280.715 - Circulating air systems.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 5 2012-04-01 2012-04-01 false Circulating air systems. 3280.715... Systems § 3280.715 Circulating air systems. (a) Supply system. (1) Supply ducts and any dampers contained..., Class 1, or Class 2 air ducts. Class 2 air ducts shall be located at least 3 feet from the...

  16. 40 CFR 230.23 - Current patterns and water circulation.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Current patterns and water circulation... Potential Impacts on Physical and Chemical Characteristics of the Aquatic Ecosystem § 230.23 Current patterns and water circulation. (a) Current patterns and water circulation are the physical movements...

  17. Dunes Reveal Unprecedented Circulation Patterns During Great Plains Droughts

    NASA Astrophysics Data System (ADS)

    Oglesby, R. J.; Rowe, C. M.; Loope, D. B.; Sridhar, V.; Swinehart, J. B.; Mason, J. A.

    2006-12-01

    The Nebraska Sand Hills consist of sand dunes that currently are immobile, because growing season rainfall is sufficient for prairie grass growth, which in turn stabilizes the dunes. These dunes have undergone numerous periods of activation and mobility in the past, presumably because prolonged drought conditions removed the vegetation cover. In particular, dune reactivation occurred during the Medieval Warm Period (MWP) 800-1000 years ago. Analysis of dune morphology also provides one of the very few means of directly determining wind direction for pre-instrumental periods. Modern day winds over the Sand Hills (and central Great Plains as a whole) are dominantly from the northwest in winter, and from the southeast in late spring and summer. These southeast winds transport considerable moisture from the Gulf of Mexico and Caribbean, and hence play a key role in the May through July rainy season that occurs at present. Analysis of the dunes that activated during the MWP shows that the dominant winds must have been from the northwest and from the southwest. Assuming that the northwest winds reflected a winter pattern similar to that at present, the spring and summer wind regime and associated circulation patterns must have been very different. Southwesterly winds do occur at present, but only aloft, where they transport hot dry air from the Mexican plateau. We infer that during the MWP these southwesterlies must have reached the surface, sharply reducing moisture transport and yielding hot dry conditions relative to the present. Analysis of NCEP reanalyses from 1949-2002, as well as daily wind data from selected weather stations in and around the Sand Hills, yields no present-day analog, not even individual years, during which southwesterlies dominated during May through June. This implies that circulation patterns responsible for inducing and/or enhancing long-term drought over the central US may be very different than anything experienced during the recent times of

  18. Atmospheric circulation patterns and phenological anomalies of grapevine in Italy

    NASA Astrophysics Data System (ADS)

    Cola, Gabriele; Alilla, Roberta; Dal Monte, Giovanni; Epifani, Chiara; Mariani, Luigi; Parisi, Simone Gabriele

    2014-05-01

    Grapevine (Vitis vinifera L.) is a fundamental crop for Italian agriculture as testified by the first place of Italy in the world producers ranking. This justify the importance of quantitative analyses referred to this crucial crop and aimed to quantify meteorological resources and limitations to development and production. Phenological rhythms of grapevine are strongly affected by surface fields of air temperature which in their turn are affected by synoptic circulation. This evidence highlights the importance of an approach based on dynamic climatology in order to detect and explain phenological anomalies that can have relevant effects on quantity and quality of grapevine production. In this context, this research is aimed to study the existing relation among the 850 hPa circulation patterns over the Euro-Mediterranean area from NOAA Ncep dataset and grapevine phenological fields for Italy over the period 2006-2013, highlighting the main phenological anomalies and analyzing synoptic determinants. This work is based on phenological fields with a standard pixel of 2 km routinely produced from 2006 by the Iphen project (Italian Phenological network) on the base of phenological observations spatialized by means of a specific algorithm based on cumulated thermal resources expressed as Normal Heat Hours (NHH). Anomalies have been evaluated with reference to phenological normal fields defined for the Italian area on the base of phenological observations and Iphen model. Results show that relevant phenological anomalies observed over the reference period are primarily associated with long lasting blocking systems driving cold air masses (Arctic or Polar-Continental) or hot ones (Sub-Tropical) towards the Italian area. Specific cases are presented for some years like 2007 and 2011.

  19. Ships' logbooks and North Atlantic air circulation reconstructions 1685 - 1750

    NASA Astrophysics Data System (ADS)

    Wheeler, D.; Ward, C.; Wilkinson, C.; Garcia-Herrera, R.

    2010-09-01

    Much attention has been given to the study of documentary records that chronicle climatic events in Europe over the past half-millennium and more. It is inevitable that such sources have focussed on events on land. Hitherto it has often been assumed that correspondingly useful and contemporary material is not available for the oceans. This assumption is incorrect, and recent activities by the authors of this contribution have drawn increasingly wide attention to the vast fund of information available in the logbooks of ships, and particularly those of the Royal Navy. For the pre-instrumental period, which can be taken as before the mid-nineteenth century, some 120,000 logbooks reside in British archives containing over 20,000,000 days of observations of wind force and direction. This presentation takes a sub-sample of this huge collection and confines its attention to the North East Atlantic region, focussing on the seas around the British Isles. A daily record of wind force and direction has been abstracted and worked up into monthly-aggregated values for the period 1685 to 1750. We review the changing nature of air circulations over this critical period, which includes the Maunder Minimum and the years of gradual but by no means consistent warming that marked the first half of the eighteenth century. Conclusions are drawn about the fashion in which the organisation of the air circulations are reflected in, and help to, explain the temperature fluctuations of that period. Conclusions are also drawn concerning the changing patterns of wind strength and

  20. Circulation patterns governing October snowfalls in southern Siberia

    NASA Astrophysics Data System (ADS)

    Bednorz, Ewa; Wibig, Joanna

    2015-12-01

    This study is focused on early fall season in southern Siberia (50-60 N) and is purposed as a contribution to the discussion on the climatic relevance of October Eurasian snow cover. Analysis is based on the daily snow depth data from 43 stations from years 1980-2012, available in the database of All-Russian Research Institute of Hydrometeorological Information—World Data Centre. The snow cover season in southern Siberia starts in early autumn and the number of days with snowfall varies from less than 5 days in the southernmost zone along the parallel 50 N to more than 25 days in the northeastern part of the analyzed area. October snowfall in southern Siberia is associated with occurrence of negative anomalies of sea level pressure (SLP), usually spreading right over the place of recorded intense snowfall or extending eastward from it. Negative anomalies of air temperature at the 850 hPa geopotential level (T850) occurring with increased cyclonic activity are also observed. Negative T850 anomalies are located west or northwest of the SLP depressions. Counterclockwise circulation around low-pressure systems transports cold Arctic air from the north or even colder Siberian polar air from the east, to the west, and northwest parts of cyclones, and induces negative anomalies of temperature. The pattern of T850 anomalies during heavy snowfalls in the eastern part of the southern Siberia is shifted counterclockwise in regard to SLP anomalies: the strongest negative T850 anomalies are located west or northwest of the SLP depressions.

  1. Relationships between winter atmospheric circulation patterns and extreme tree growth anomalies in the Sierra Nevada

    NASA Astrophysics Data System (ADS)

    Garfin, Gregg M.

    1998-06-01

    Tree-ring data from mid-elevation (2000 m) giant sequoia (Sequoiadendron giganteum) and high elevation (3500 m) pines (Pinus balfouriana, Pinus albicaulis) were used to select extreme growth years from which temperature, precipitation and large-scale winter (November-March, NM) 500 mb circulation patterns associated with the extreme tree growth anomalies were examined.Winters preceding extreme high growth in both giant sequoia and pines are warm and wet and are characterized by anomalous low pressure in the northeastern Pacific Ocean and a tendency for southwesterly flow and advection of warm maritime air into California. For the pines, such winters exhibit a pattern of anomalous low pressure in the northern Pacific, anomalous high pressure over northwestern Canada and anomalous low pressure across the southern US. NM 500 mb heights suggest more meridional circulation during the warm and dry winters preceding extreme low growth in giant sequoia. Atmospheric circulation during these winters exhibits a persistent trough/ridge pattern between the central Pacific and the western US. Storms are deflected away from California during these winters. NM atmospheric circulation patterns associated with extreme low growth in the pines exhibit maximum westerlies north of their mean position and the tendency for enhanced ridging in the northeast Pacific, which advects cool dry air into the Sierra Nevada. As dendroclimatic reconstructions are more frequently employed in order to better understand past variability of temperature and precipitation, synoptic dendroclimatological studies such as this one provide useful insights about atmospheric circulation.

  2. Topographically induced circulation patterns and mixing over Condor seamount

    NASA Astrophysics Data System (ADS)

    Bashmachnikov, I.; Loureiro, C. M.; Martins, A.

    2013-12-01

    Analysis of mean and oscillatory circulation patterns over Condor seamount, situated near the central group of the Azores islands, was performed. During 1.5 years of observations, at least half of the time an anticyclonic cap was established over the summit. The vortex was characterised by a strong asymmetry: it was shifted to the south of the summit and strongly stretched along the gentle eastern and western slopes of the seamount.

  3. Autoregressive logistic regression applied to atmospheric circulation patterns

    NASA Astrophysics Data System (ADS)

    Guanche, Y.; Mínguez, R.; Méndez, F. J.

    2014-01-01

    Autoregressive logistic regression models have been successfully applied in medical and pharmacology research fields, and in simple models to analyze weather types. The main purpose of this paper is to introduce a general framework to study atmospheric circulation patterns capable of dealing simultaneously with: seasonality, interannual variability, long-term trends, and autocorrelation of different orders. To show its effectiveness on modeling performance, daily atmospheric circulation patterns identified from observed sea level pressure fields over the Northeastern Atlantic, have been analyzed using this framework. Model predictions are compared with probabilities from the historical database, showing very good fitting diagnostics. In addition, the fitted model is used to simulate the evolution over time of atmospheric circulation patterns using Monte Carlo method. Simulation results are statistically consistent with respect to the historical sequence in terms of (1) probability of occurrence of the different weather types, (2) transition probabilities and (3) persistence. The proposed model constitutes an easy-to-use and powerful tool for a better understanding of the climate system.

  4. Circulation patterns associated with droughts over southern Africa

    NASA Astrophysics Data System (ADS)

    Garanganga, B.

    2002-12-01

    The paper highlights the circulation patterns associated with droughts that have demonstrated the vulnerability of the socioeconomic development of around 200 million people from 14 the Southern African Development Community (SADC) countries to the vagaries of the climate system. The recent, apparently perennial droughts juxtaposed with floods across southern Africa have to be seen against the background of advances made by the scientific community in the understanding of the global ocean-atmosphere system. The paper seeks to contribute to such advances science is making in order to make humankind benefit from the knowledge science has provided. The data used in the analyses include actual rainfall from the SADC countries and those from the United States NOAA (NCEP/NCAR Reanalysis) data banks. The paper briefly looks at the regional climatology of the SADC countries, which shows that rains fall within the period October during one year to March of the following year. Most of the damaging droughts have tended to occur during January to March. Thus, the more detailed analysis of the circulation characteristics has a focus of composite of these months. A few recent drought years are selected for analyzing of the dynamical structures of the regional circulation patterns and the tropical ocean and global atmosphere. These tended to coincide with El Ninos. However, the selected years include the recent drought during the 2001/2002 rainfall season, which occurred in a neutral El Nino-Southern Oscillation (ENSO) phase. There emerged significant similarity between rainfall anomaly variability and the ENSO signals. The many parameters of the atmosphere showed consistent characteristics in different drought years. The regional circulation patterns associated with droughts show similarities in both active and neutral ENSO years. The study also shows how possible generators of the climate anomalies can be grouped together. Thus the diagnosis of the various fields contributes to

  5. General aviation air traffic pattern safety analysis

    NASA Technical Reports Server (NTRS)

    Parker, L. C.

    1973-01-01

    A concept is described for evaluating the general aviation mid-air collision hazard in uncontrolled terminal airspace. Three-dimensional traffic pattern measurements were conducted at uncontrolled and controlled airports. Computer programs for data reduction, storage retrieval and statistical analysis have been developed. Initial general aviation air traffic pattern characteristics are presented. These preliminary results indicate that patterns are highly divergent from the expected standard pattern, and that pattern procedures observed can affect the ability of pilots to see and avoid each other.

  6. African dust outbreaks over the western Mediterranean Basin: 11-year characterization of atmospheric circulation patterns and dust source areas

    NASA Astrophysics Data System (ADS)

    Salvador, P.; Alonso-Pérez, S.; Pey, J.; Artíñano, B.; de Bustos, J. J.; Alastuey, A.; Querol, X.

    2014-07-01

    The occurrence of African dust outbreaks over different areas of the western Mediterranean Basin were identified on an 11-year period (2001-2011). The main atmospheric circulation patterns causing the transport of African air masses were characterized by means of an objective classification methodology of atmospheric variable fields. Next, the potential source areas of mineral dust, associated to each circulation pattern were identified by trajectory statistical methods. Finally, an impact index was calculated to estimate the incidence of the African dust outbreaks produced during each circulation pattern, in the areas of study. Four circulation types were obtained (I-IV) and three main potential source areas of African dust were identified (Western Sahara and Morocco; Algeria; northeastern Algeria and Tunisia). The circulation pattern I (24% of the total number of episodic days) produced the transport of dust mainly in summer from Western Sahara, southern Morocco and Tunisia. The circulation pattern IV (33%) brings dust mainly from areas of northern and southern Algeria in summer and autumn, respectively. The circulation pattern II (31%) favored the transport of dust predominantly from northern Algeria, both in spring and summer. Finally, the circulation type III was the less frequently observed (12%). It occurred mainly in spring and with less intensity in winter, carrying dust from Western Sahara and southern Morocco. Our findings point out that the most intense episodes over the western Mediterranean Basin were produced in the summer period by the circulation type I (over the western side of the Iberian Peninsula) and the circulation type IV (over the central and eastern sides of the Iberian Peninsula and the Balearic Islands).

  7. Global Precipitation Patterns Associated with ENSO and Tropical Circulations

    NASA Technical Reports Server (NTRS)

    Curtis, Scott; Adler, Robert; Huffman, George; Bolvin, David; Nelkin, Eric

    1999-01-01

    Tropical precipitation and the accompanying latent heat release is the engine that drives the global circulation. An increase or decrease in rainfall in the tropics not only leads to the local effects of flooding or drought, but contributes to changes in the large scale circulation and global climate system. Rainfall in the tropics is highly variable, both seasonally (monsoons) and interannually (ENSO). Two experimental observational data sets, developed under the auspices of the Global Precipitation Climatology Project (GPCP), are used in this study to examine the relationships between global precipitation and ENSO and extreme monsoon events over the past 20 years. The V2x79 monthly product is a globally complete, 2.5 deg x 2.5 deg, satellite-gauge merged data set that covers the period 1979 to the present. Indices based on patterns of satellite-derived rainfall anomalies in the Pacific are used to analyze the teleconnections between ENSO and global precipitation, with emphasis on the monsoon systems. It has been well documented that dry (wet) Asian monsoons accompany warm (cold) ENSO events. However, during the summer seasons of the 1997/98 ENSO the precipitation anomalies were mostly positive over India and the Bay of Bengal, which may be related to an epoch-scale variability in the Asian monsoon circulation. The North American monsoon may be less well linked to ENSO, but a positive precipitation anomaly was observed over Mexico around the September following the 1997/98 event. For the twenty-year record, precipitation and SST patterns in the tropics are analyzed during wet and dry monsoons. For the Asian summer monsoon, positive rainfall anomalies accompany two distinct patterns of tropical precipitation and a warm Indian Ocean. Negative anomalies coincide with a wet Maritime Continent.

  8. Macroscale Circulation Patterns as Reflected in Spatial and Temporal Patterns of Precipitation over the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Conselyea, K.; Yin, Z.

    2007-12-01

    Circulation patterns such as the NAO, PNA, and AO have been known to impact climate both near the action centers and at great distances away. These macroscale circulation patterns can impact regional wind patterns, temperature gradients and pressure gradients. Changes in these gradients can cause an onset of various weather conditions including precipitation. Precipitation across the Tibetan Plateau is influenced by known phenomena such as monsoon systems and teleconnections. Previous studies have suggested that other forcing mechanisms also may play a vital role in influencing precipitation in this region. To evaluate potential forcing factors affecting precipitation across the Tibetan Plateau, the relationship between the spatial and temporal patterns of precipitation and the regional and macroscale circulation patterns will be investigated. To explore this relationship statistical analysis, such as Principal Component Analysis (PCA), Correlation Field Analysis, and Canonical Correspondence Analysis (CCA), is preformed. This study also incorporates tree ring chronologies from Qilian junipers (Sabina przewalskii Kom.) sampled in the Qaidam Basin, northeastern Tibetan Plateau. These data have been used in previous studies to indicate environmental change, and tree rings taken from this region have shown signatures of circulation patterns such as Arctic Oscillation (AO). Based on the relationship between tree ring data and circulation patterns it is possible to reconstruct past events. This information along with examination of National Centers for Environmental Protection/National Center for Atmospheric Research (NCEP/NCAR) Reanalysis data will aid in the examination of the relationship between teleconnection patterns and precipitation, and develop a greater understanding of the precipitation variability across the Tibetan Plateau.

  9. Variability patterns of the general circulation and sea water temperature in the North Sea

    NASA Astrophysics Data System (ADS)

    Mathis, M.; Elizalde, A.; Mikolajewicz, U.; Pohlmann, T.

    2015-06-01

    This study investigates patterns of spatio-temporal variability in the North Sea and their major driving mechanisms. Leading variability modes of the general circulation and sea water temperature are extracted from model results by means of Empirical Orthogonal Functions (EOF) analysis. The model results originate from an uncoupled simulation with the global ocean model MPIOM, forced with ERA40 reanalysis data at the air-sea interface. For this regional model study, MPIOM has been run with a stretched grid configuration enabling higher horizontal resolution in the Northwest European Shelf and North Atlantic ocean. The analysis is applied to interannual variabilities of winter and summer separately. The results indicate that on seasonal scales the leading variability mode of the general circulation affects the entire North Sea, accompanied by significant inflow anomalies through the Fair-Isle Passage. Correlations of the corresponding Principal Component (PC) with wind density functions reveal the circulation anomalies to coincide with westerly and south-westerly wind anomalies. The second mode describes circulation anomalies along the Norwegian Trench and English Channel, which correlate with north-westerly wind anomalies caused by variations in large-scale atmospheric pressure areas centered over the British Isles. For sea water temperature, distinct variability patterns are induced by variable surface heat fluxes, vertical mixing, and variable advective heat fluxes. The first mode of both the general circulation and water temperature in winter mainly represents the response to atmospheric variations in the North Atlantic Oscillation (NAO). However, the higher modes account for such variabilities that cannot be explained by the NAO. As a consequence of the integrated effects of the different variability modes on the circulation system and heat content, local correlations of the NAO with volume transports and water temperature are weakened in the regions of

  10. A comparative Study of Circulation Patterns at Active Lava Lakes

    NASA Astrophysics Data System (ADS)

    Lev, Einat; Oppenheimer, Clive; Spampinato, Letizia; Hernandez, Pedro; Unglert, Kathi

    2016-04-01

    Lava lakes present a rare opportunity to study magma dynamics in a large scaled-up "crucible" and provide a unique natural laboratory to ground-truth dynamic models of magma circulation. The persistence of lava lakes allows for long-term observations of flow dynamics and of lava properties, especially compared to surface lava flows. There are currently five persistent lava lakes in the world: Halemaumau in Kilauea (Hawaii, USA), Erta Ale (Ethiopia), Nyiragongo (Congo), Erebus (Antarctica), and Villarica (Chile). Marum and Benbow craters of Ambrym volcano (Vanuatu) and Masaya (Nicaragua) have often hosted lava lakes as well. We use visible-light and thermal infrared time-lapse and video footage collected at all above lakes (except Villarica, where the lake is difficult to observe), and compare the circulation patterns recorded. We calculate lake surface motion from the footage using the optical flow method (Lev et al., 2012) to produce 2D velocity fields. We mined both the surface temperature field and the surface velocity field for patterns using machine learning techniques such as "self-organizing maps (SOMs)" and "principle component analysis (PCA)". We use automatic detection technique to study the configuration of crustal plates at the lakes' surface. We find striking differences among the lakes, in flow direction, flow speed, frequency of changes in flow direction and speed, location and consistency of upwelling and downwelling, and crustal plate configuration. We relate the differences to lake size, shallow conduit geometry, lava viscosity, crystal and gas content, and crust integrity.

  11. The role of aerosol in altering North Atlantic atmospheric circulation in winter and air-quality feedbacks

    NASA Astrophysics Data System (ADS)

    Pausata, F. S. R.; Gaetani, M.; Messori, G.; Kloster, S.; Dentener, F. J.

    2014-09-01

    Numerical model scenarios of future climate depict a global increase in temperatures and changing precipitation patterns, driven by increasing greenhouse gas (GHG) concentrations. Aerosol concentrations also play an important role in altering Earth's radiation budget and consequently surface temperature. Here, we use the general circulation aerosol model ECHAM5-HAM, coupled to a mixed layer ocean model, to investigate the impacts of future air pollution mitigation strategies in Europe on winter atmospheric circulation over the North Atlantic. We analyze the extreme case of a maximum feasible end-of-pipe reduction of aerosols in the near future (2030), in combination with increasing GHG concentrations. Our results show a more positive North Atlantic Oscillation (NAO) mean state in the near future, together with a significant eastward shift of the southern centre of action of the sea level pressure (SLP). Moreover, we show a significantly increased blocking frequency over the western Mediterranean. By separating the aerosol and GHG impacts, our study suggests that the aerosol abatement in the near future may be the primary driver of such circulation changes. All these concomitant modifications of the atmospheric circulation over the Euro-Atlantic sector lead to more stagnant weather conditions that favor air pollutant accumulation in the Mediterranean, especially in the western sector. These changes in atmospheric circulation should be included in future air pollution mitigation assessments. Our results suggest that an evaluation of NAO changes in individual climate model simulations will allow an objective assessment of the role of changes in wintertime circulation on future air quality.

  12. Pattern of Circulation of Norovirus GII Strains during Natural Infection

    PubMed Central

    Fobisong, Cajetan; Tah, Ferdinand; Lindh, Magnus; Nkuo-Akenji, Theresia; Bergström, Tomas

    2014-01-01

    Norovirus (NoV) is considered a major cause of nonbacterial gastroenteritis among people of all ages worldwide, but the natural course of infection is incompletely known. In this study, the pattern of circulation of NoVs was studied among 146 children and 137 adults in a small community in southwestern Cameroon. The participants provided monthly fecal samples during a year. NoV RNA was detected in at least one sample from 82 (29%) of the participants. The partial VP1 region could be sequenced in 36 NoV GII-positive samples. Three different genotypes were identified (GII.1, GII.4, and GII.17), with each genotype circulating within 2 to 3 months and reappearing after a relapse period of 2 to 3 months. Most infections occurred once, and 2 episodes at most within a year were detected. No difference in the frequency of NoV infection between children and adults was recorded. The same genotype was detected for a maximum of 2 consecutive months in 3 children only, suggesting that a less than 30-day duration of viral shedding in natural infection was common. Reinfection within a year with the same genotype was not observed, consistent with short-term homotypic immune protection. The study revealed that NoV strains are circulating with a limited duration of viral shedding both in the individuals and the population as part of their natural infection. The results also provide evidence of cross-protective immunity of limited duration between genotypes of the same genogroup. PMID:25274996

  13. Genotype circulation pattern of human respiratory syncytial virus in Iran.

    PubMed

    Faghihloo, Ebrahim; Yavarian, Jila; Jandaghi, Nazanin Zahra Shafiei; Shadab, Azadeh; Azad, Talat Mokhtari

    2014-03-01

    In order to have information on the molecular epidemiology and genetic circulation pattern of human respiratory syncytial virus (HRSV) in Iran, we studied the genetic variability of both group A and B HRSV strains during seven consecutive years by sequencing the hypervariable C-terminal domain of G protein. A total of 485 children <2years of age who were negative for influenza viruses, screened for the presence of HRSV in this research. HRSV was detected in 94 (19.38%) of the samples using nested RT-PCR. Group A viruses were isolated during each year, while group B viruses were isolated during 2009 and 2013. Phylogenetic analysis showed that all HRSV group A viruses belonged to three genotypes: GA1, GA2, GA5 and the group B viruses were in BA genotype.

  14. An effective indicator of continental scale cold air outbreaks in northern winter: the intensity variation of the meridional mass circulation

    NASA Astrophysics Data System (ADS)

    Ren, R.; Yu, Y.; Cai, M.

    2015-12-01

    This study reports that the intensity variation of the meridional mass circulation can be an effective leading indicator of cold air outbreaks (CAOs) over midlatitudes in northern winter. It is found that continental-scale coldness by cold air outbreaks (CAOs) tend to preferentially occur within a week after stronger mass circulation events defined as the peak time when the net mass transport across 60°N in the upper warm or the lower cold air branch exceeds ~88×109 kg s-1. During weaker mass circulation events when the net mass transport across 60°N is below ~71.6×109 kg s-1, most areas of the mid-latitudes are generally in mild condition except the northern part of Western Europe. Composite pattern of circulation anomalies during stronger mass circulation events greatly resemble that of the winter-mean, with the two main routes of anomalous cold air outbreaks being along the climatological routes of polar cold air, namely, via East Asia and North America. The Siberian High shifts westward during stronger mass circulation events, opening up a third route of cold air outbreaks through Eastern Europe. The relationship of CAOs with Arctic Oscillation (AO) is less robust because temporal changes of AO are resulted from a small imbalance between the poleward and equatorward branches of the mass circulation. Only when the poleward branch leads the equatorward branch (44% of all cases), CAOs tend to take place within a week after a negative phase of AO. The daily ERA-Interim reanalysis data set for the 32 winters in 1979-2011 were used in this study.

  15. Influence of large-scale atmospheric circulation on marine air intrusion toward the East Antarctic coast

    NASA Astrophysics Data System (ADS)

    Kurita, Naoyuki; Hirasawa, Naohiko; Koga, Seizi; Matsushita, Junji; Steen-Larsen, Hans Christian; Masson-Delmotte, Valérie; Fujiyoshi, Yasushi

    2016-09-01

    Marine air intrusions into Antarctica play a key role in high-precipitation events. Here we use shipboard observations of water vapor isotopologues between Australia and Syowa on the East Antarctic coast to elucidate the mechanism by which large-scale circulation influences marine air intrusions. The temporal isotopic variations at Syowa reflect the meridional movement of a marine air front. They are also associated with atmospheric circulation anomalies that enhance the southward movement of cyclones over the Southern Ocean. The relationship between large-scale circulation and the movement of the front is explained by northerly winds which, in association with cyclones, move toward the Antarctic coast and push marine air with isotopically enriched moisture into the inland covered by glacial air with depleted isotopic values. Future changes in large-scale circulation may have a significant impact on the frequency and intensity of marine air intrusion into Antarctica.

  16. Consortial Book Circulation Patterns: The OCLC-OhioLINK Study

    ERIC Educational Resources Information Center

    O'Neill, Edward T.; Gammon, Julia A.

    2014-01-01

    The OhioLINK consortium and OCLC Research collected and analyzed circulation data for libraries within the consortium. The study, which examines the circulation of 28,475,701 items from more than 100 academic libraries, is the largest and most diverse compilation of academic usage data for books ever collected. The authors outline the study…

  17. Satellite observations of surface temperature patterns induced by synoptic circulation over the Eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Lensky, Itamar; Dayan, Uri

    2013-04-01

    Land Surface Temperature (LST) controls most physical and biological processes on Earth. Knowledge of the LST at high spatial resolution enables representation of different climate regimes. The main factors controlling LST are the seasonal and diurnal cycles, land cover, cloud cover, and atmospheric processes at several scales. Lensky and Dayan analyzed atmospheric processes at the topoclimatic scale, and the mesoscale (Lensky and Dayan 2011, 2012). Here we will demonstrate an analysis of the spatial distribution of LST anomaly as affected by typical synoptic circulation patterns over the Eastern Mediterranean (EM). LST anomaly is defined as the difference between daily and climatological LST. Using LST anomaly reduces the effects of land cover and the seasonal and diurnal cycles, enabling a better detection of surface temperature patterns induced by synoptic circulation. In this study we used all available 2000-2012 NASA daily MODIS LST data over the EM, together with NCEP/NCAR Reanalysis data of SLP, surface winds and Omega (at 700hPa). We will present two frequent synoptic circulation patterns as classified by Levy and Dayan (2008) to demonstrate the LST patterns induced by synoptic circulation over the EM. The first is the "Red Sea Trough" (RST) with eastern axis, which is an extension of a low surface pressure from a tropical depression toward the Red Sea, penetrating up north as far as Turkey. It migrates from south to north and mostly frequent during the autumn. The axis of the RST separates distinctively between regions of positive (warm) anomalies over Turkey and regions of negative anomalies (cold) over Egypt induced by the wind flow from both sides of the axis. The second synoptic circulation pattern is "shallow Cyprus low to the north", which is a disturbance of the polar front extending southward. This synoptic system some times migrates over the Mediterranean eastward toward the EM during the winter season. The strong northwesterly flow featuring the

  18. Impact of Large-scale Circulation Patterns on Surface Ozone Variability in Houston-Galveston-Brazoria

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Jia, B.; Xie, Y.

    2015-12-01

    The Bermuda High (BH) is a key driver of large-scale circulation patterns for Southeastern Texas and other Gulf coast states in summer, with the expected influence on surface ozone through its modulation of marine air inflow with lower ozone background from the Gulf of Mexico. We develop a statistical relationship through multiple linear regression (MLR) to quantify the impact of the BH variations on surface ozone variability during the ozone season in the Houston-Galveston-Brazoria (HGB) area, a major ozone nonattainment region on the Gulf Coast. We find that the variability in BH location, represented by a longitude index of the BH west edge (BH-Lon) in the MLR, explains 50-60% of the year-to-year variability in monthly mean ozone over HGB for Jun and July during 1998-2013, and the corresponding figure for Aug and Sep is 20%. Additional 30%-40% of the ozone variability for Aug and Sep can be explained by the variability in BH strength, represented by two BH intensity indices (BHI) in the MLR, but its contribution is only 5% for June and not significant for July. Including a maximum Through stepwise regression based on Akaike Information Criterion (AIC), the MLR model captures 58~72% of monthly ozone variability during Jun-Sep with a cross-validation R2 of 0.5. This observation-derived statistical relationship will be valuable to constrain model simulations of ozone variability attributable to large-scale circulation patterns.

  19. The role of aerosol in altering North Atlantic atmospheric circulation in winter and its impact on air quality

    NASA Astrophysics Data System (ADS)

    Pausata, F. S. R.; Gaetani, M.; Messori, G.; Kloster, S.; Dentener, F. J.

    2015-02-01

    Numerical model scenarios of future climate depict a global increase in temperatures and changing precipitation patterns, primarily driven by increasing greenhouse gas (GHG) concentrations. Aerosol particles also play an important role by altering the Earth's radiation budget and consequently surface temperature. Here, we use the general circulation aerosol model ECHAM5-HAM, coupled to a mixed layer ocean model, to investigate the impacts of future air pollution mitigation strategies in Europe on winter atmospheric circulation over the North Atlantic. We analyse the extreme case of a maximum feasible end-of-pipe reduction of aerosols in the near future (2030), in combination with increasing GHG concentrations. Our results show a more positive North Atlantic Oscillation (NAO) mean state by 2030, together with a significant eastward shift of the southern centre of action of sea-level pressure (SLP). Moreover, we show a significantly increased blocking frequency over the western Mediterranean. By separating the impacts of aerosols and GHGs, our study suggests that future aerosol abatement may be the primary driver of both the eastward shift in the southern SLP centre of action and the increased blocking frequency over the western Mediterranean. These concomitant modifications of the atmospheric circulation over the Euro-Atlantic sector lead to more stagnant weather conditions that favour air pollutant accumulation, especially in the western Mediterranean sector. Changes in atmospheric circulation should therefore be included in future air pollution mitigation assessments. The indicator-based evaluation of atmospheric circulation changes presented in this work will allow an objective first-order assessment of the role of changes in wintertime circulation on future air quality in other climate model simulations.

  20. Identifying a Sea Breeze Circulation Pattern Over the Los Angeles Basin Using Airborne In Situ Carbon Dioxide Measurements

    NASA Astrophysics Data System (ADS)

    Brannan, A. L.; Schill, S.; Trousdell, J.; Heath, N.; Lefer, B. L.; Yang, M. M.; Bertram, T. H.

    2014-12-01

    The Los Angeles Basin in Southern California is an optimal location for a circulation study, due to its location between the Pacific Ocean to the west and the Santa Monica and San Gabriel mountain ranges to the east, as well as its booming metropolitan population. Sea breeze circulation carries air at low altitudes from coastal to inland regions, where the air rises and expands before returning back towards the coast at higher altitudes. As a result, relatively clean air is expected at low altitudes over coastal regions, but following the path of sea breeze circulation should increase the amount of anthropogenic influence. During the 2014 NASA Student Airborne Research Program, a highly modified DC-8 aircraft completed flights from June 23 to 25 in and around the LA Basin, including missed approaches at four local airports—Los Alamitos and Long Beach (coastal), Ontario and Riverside (inland). Because carbon dioxide (CO2) is chemically inert and well-suited as a conserved atmospheric tracer, the NASA Langley Atmospheric Vertical Observations of CO2 in the Earth's Troposphere (AVOCET) instrument was used to make airborne in situ carbon dioxide measurements. Combining measured wind speed and direction data from the aircraft with CO2 data shows that carbon dioxide can be used to trace the sea breeze circulation pattern of the Los Angeles basin.

  1. Patterns in atmospheric circulation affect emission sources contributing to nitrogen deposition in the Columbia River Gorge, Pacific Northwest USA

    NASA Astrophysics Data System (ADS)

    Anderson, S. M.; Chung, S. H.; Welker, J. M.; Harlow, B.; Evans, R. D.

    2014-12-01

    The Columbia River Gorge separating Oregon and Washington provides an ideal setting to investigate how atmospheric circulation patterns determine types of emission sources contributing to atmospheric deposition. Up-gorge and down-gorge atmospheric circulation patterns each provide a different suite of emission sources. Up-gorge airflow originates in the Portland-Vancouver metro area dominated by urban and industrial sources. Down-gorge patterns originate in the Columbia River basin, which is dominated by agricultural production. We tested the dependence of emission sources contributing to atmospheric deposition on circulation patterns by measuring the isotopic composition of nitrate (NO3-) in 2003-2004 precipitation samples from the WA98-Columbia River Gorge NADP & USNIP site. Circulation patterns were determined using back-trajectory analysis with the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model using the archived EDAS meteorological dataset. We observed a significant difference (P=0.01) between up-gorge and down-gorge patterns with mean δ15N-NO3- of +1.8 and -2.1‰ for up- and down-gorge, respectively. The differences observed between these two patterns is likely tied to the different emission sources of N found in these different geographic areas. The lower δ15N of down-gorge sources is due to the large amount of agricultural production in the Columbia River basin. Observed values for the up-gorge patterns likely result from industrial and fossil fuel emissions of NOx, the precursor of deposited NO3-, in the Portland-Vancouver area. The significantly greater amount of NO3- in precipitation from up-gorge patterns (0.72 mg/L) compared to down-gorge patterns (0.36 mg/L, P=0.01) supports the influence of urban sources rather than relatively clean marine air which characteristically has low amounts of NO3-. No significant differences are found in δ18Onitrate or Δ17Onitrate between the two patterns, suggesting that atmospheric chemistry

  2. Air flow patterns in the operating theatre.

    PubMed

    Howorth, F H

    1980-04-01

    Bacteria-carrying particles and exhaled anaesthetic gases are the two contaminants found in the air flow patterns of operating rooms. Their origin, direction and speed were illustrated by a motion picture using Schlieren photography and smoke tracers. Compared with a conventionally well air conditioned operating theatre, it was shown that a downward flow of clean air reduced the number of bacteria-carrying particles at the wound site by sixty times. The Exflow method of achieving this without the restriction of any side panels or floor obstruction was described. The total body exhaust worn by the surgical team was shown to reduce the bacteria count by a further eleven times. Clinical results show that when both these systems are used together, patient infection was reduced from 9 per cent to between 0.3 per cent and 0.5 per cent, even when no pre-operative antibiotics were used. Anaesthetic gas pollution was measured and shown to be generally 1000 p.p.m. at the head of the patient, in induction, operating and recovery rooms, also in dental and labour rooms. A high volume low pressure active scavenging system was described together with its various attachments including one specially for paediatric scavenging. Results showed a reduction of nitrous oxide pollution to between zero and 3 p.p.m. The economy and cost effectiveness of both these pollution control systems was shown to be good due to the removal of health hazards from patients and theatre staff.

  3. Preliminary simulated tidal flow and circulation patterns in Hillsborough Bay, Florida

    USGS Publications Warehouse

    Goodwin, Carl R.

    1980-01-01

    The effect of channel dredging and island construction on tidal flow and circulation in Hillsborough Bay, Fla., due to the Tampa Harbor Deepening Project is being investigated using a two-dimensional, finite-difference numerical model. Preliminary model results are presented as a series of maps showing tidal flood, tidal ebb, and circulation patterns in the bay for predredging and postdredging conditions. Complex circulation patterns occur near the bay mouth in an area where there is (1) a change in thalweg alinement of the bay, (2) an intersection of three major ship channels, and (3) submergent and emergent dredged material located adjacent to each of the channels. (USGS)

  4. Global wind patterns and associated snow anomalies over Eurasia: predictability and influence on large scale monsoon circulation.

    NASA Astrophysics Data System (ADS)

    Corti, S.; Molteni, F.; Brankovic, C.

    2003-04-01

    In this study we focus on (the relationship between): (i) the global long-lasting (persisting from winter to the early summer) upper tropospheric anomalous circulation; (ii) the tropical SST anomalies (which can determine the kind of flow (i)) (iii) the snow depth anomalies over Eurasia ( which can be determined by (ii) through (i)); (iv) and the large scale monsoon circulation in the following summer (related to (i), (ii) and (iii)). The dataset is the 40-year record (1958-98) of NCEP/NCAR re-analyses for sea surface temperatures and upper air fields, while, for snow depth fields, the Historical Soviet Daily Snow Depth dataset (based on observations at a series of 284 World Meteorological Organization (WMO) stations throughout the Former Soviet Union) is used. First the leading variability patterns of the atmospheric flow are searched for by calculating empirical orthogonal functions (EOFs) of seasonal anomalies. The Eurasian snow depth anomalies and SST anomalies associated with the leading circulation patterns are then identified by computing, for each season, the covariance between the principal components (associated with the EOFs) and the snow/SST anomaly time series. The relationship with the large scale monsoon circulation is evaluated through (lagged) correlations with the Webster and Yang index.

  5. Modeling and Observational Study of the Stratospheric Ozone Influences on the Tropospheric Circulation Patterns

    NASA Astrophysics Data System (ADS)

    Barodka, S.; Krasouski, A.; Shalamyansky, A.

    2013-12-01

    It seems to be universally recognized that stratospheric ozone distribution and tropospheric dynamical formations are interconnected and both affect each other in manifold processes of stratosphere-troposphere interactions. In particular, numerous observational studies suggest a clear relation between the total ozone column (TOC) field and the distribution of air-masses in both the stratosphere and the troposphere. The tropopause height being a result of two rival categories of processes (the tropospheric vertical convection and the radiative heating of the stratosphere resulting from the ozone cycle), it is natural that tropospheric and stratospheric phenomena can have an effect on each other. Indeed, it has been shown that virtually all local ozone anomalies (synoptic-scale deviations in the TOC field) correspond to local uplifts of the tropopause level, and a significant amount of research was dedicated to identification of local patterns in the stratospheric ozone distribution as the outcome of tropospheric synoptic formations and weather systems. However, in the present study we focus our attention to the opposite side of the interaction: the impact of stratospheric ozone distribution on the features of tropospheric circulation and the associated weather and regional climate conditions. For that purpose, we proceed from analyzes of the observational data performed at the A.I. Voeikov Main Geophysical Observatory, which suggest a distinct correlation between stratospheric ozone distribution, synoptic formations and air-masses boundaries in the upper troposphere and the temperature field of the lower stratosphere. Furthermore, we perform a series of numerical simulations of formation, evolution and decay of ozone anomalies of different spatial and temporal scales, introducing disturbances to the stratospheric ozone and temperature variable fields and tracing the propagation of this perturbation to tropospheric model levels. Aiming to simulate dynamical processes

  6. Contribution of changes in atmospheric circulation patterns to extreme temperature trends.

    PubMed

    Horton, Daniel E; Johnson, Nathaniel C; Singh, Deepti; Swain, Daniel L; Rajaratnam, Bala; Diffenbaugh, Noah S

    2015-06-25

    Surface weather conditions are closely governed by the large-scale circulation of the Earth's atmosphere. Recent increases in the occurrence of some extreme weather phenomena have led to multiple mechanistic hypotheses linking changes in atmospheric circulation to increasing probability of extreme events. However, observed evidence of long-term change in atmospheric circulation remains inconclusive. Here we identify statistically significant trends in the occurrence of atmospheric circulation patterns, which partially explain observed trends in surface temperature extremes over seven mid-latitude regions of the Northern Hemisphere. Using self-organizing map cluster analysis, we detect robust circulation pattern trends in a subset of these regions during both the satellite observation era (1979-2013) and the recent period of rapid Arctic sea-ice decline (1990-2013). Particularly substantial influences include the contribution of increasing trends in anticyclonic circulations to summer and autumn hot extremes over portions of Eurasia and North America, and the contribution of increasing trends in northerly flow to winter cold extremes over central Asia. Our results indicate that although a substantial portion of the observed change in extreme temperature occurrence has resulted from regional- and global-scale thermodynamic changes, the risk of extreme temperatures over some regions has also been altered by recent changes in the frequency, persistence and maximum duration of regional circulation patterns.

  7. Contribution of changes in atmospheric circulation patterns to extreme temperature trends

    NASA Astrophysics Data System (ADS)

    Horton, Daniel E.; Johnson, Nathaniel C.; Singh, Deepti; Swain, Daniel L.; Rajaratnam, Bala; Diffenbaugh, Noah S.

    2015-06-01

    Surface weather conditions are closely governed by the large-scale circulation of the Earth's atmosphere. Recent increases in the occurrence of some extreme weather phenomena have led to multiple mechanistic hypotheses linking changes in atmospheric circulation to increasing probability of extreme events. However, observed evidence of long-term change in atmospheric circulation remains inconclusive. Here we identify statistically significant trends in the occurrence of atmospheric circulation patterns, which partially explain observed trends in surface temperature extremes over seven mid-latitude regions of the Northern Hemisphere. Using self-organizing map cluster analysis, we detect robust circulation pattern trends in a subset of these regions during both the satellite observation era (1979-2013) and the recent period of rapid Arctic sea-ice decline (1990-2013). Particularly substantial influences include the contribution of increasing trends in anticyclonic circulations to summer and autumn hot extremes over portions of Eurasia and North America, and the contribution of increasing trends in northerly flow to winter cold extremes over central Asia. Our results indicate that although a substantial portion of the observed change in extreme temperature occurrence has resulted from regional- and global-scale thermodynamic changes, the risk of extreme temperatures over some regions has also been altered by recent changes in the frequency, persistence and maximum duration of regional circulation patterns.

  8. Circulation Patterns in the Canary Basin in 1998

    NASA Astrophysics Data System (ADS)

    Auvray, C.; Gaillard, F.; Knoll, M.

    2001-12-01

    Hydrological data collected during the CANIGO experiment are combined with a linear box inverse model. Conservation of physical properties allows to deduce synoptic schemes of the circulation and water masses transports in the area between Azores Islands, Canary Islands, and the Gulf of Cadix during the spring of 1998. The spatial coverage of the dataset gives access to the termination of the Azores current and its connection with the eastern boundary and the subtropical gyre. Mediterranean water spreading from the Gulf of Cadix is tracked through the basin and the bottom water transport is quantified. Furthermore, four repeated surveys near the Canary Islands allow us to examine the variability of the easternmost boundary during 1997/1998:from the surface (with the Canary Current) to the bottom water sailing around the topography.

  9. Water circulation patterns in the Otranto Straits, eastern Mediterranean

    NASA Astrophysics Data System (ADS)

    Ferentinos, George; Kastanos, Nick

    1988-09-01

    Current measurements collected across the Otranto Straits, from mid-September to mid-October 1979, are discussed. Data analyses show there to be two-layer circulation: a northerly flowing current, which is restricted to the surface and mid-water depths over the Greek continental slope; and a southerly flowing current, which occupies the whole of the water column over the Italian continental shelf and slope and extends as far as the mid-channel. The northerly flow was found to be continuous over the period of measurement, whilst the southerly flow was interrupted by short period reversals, often followed by rotatory currents with an inertial period. Flow in the shear zone, between the northerly and southerly flow was variable and the result of inertially drifting parcels of water and northwards propagating cyclonic eddies; these were formed probably through baroclinic instability processes within the shear zone.

  10. Air pollution and circulating biomarkers of oxidative stress

    PubMed Central

    Staimer, Norbert; Vaziri, Nosratola D.

    2013-01-01

    Chemical components of air pollutant exposures that induce oxidative stress and subsequent inflammation may be partly responsible for associations of cardiovascular morbidity and mortality with airborne particulate matter and combustion-related pollutant gasses. However, epidemiologic evidence regarding this is limited. An exposure-assessment approach is to measure the oxidative potential of particle mixtures because it is likely that hundreds of correlated chemicals are involved in overall effects of air pollution on health. Oxidative potential likely depends on particle composition and size distribution, especially ultrafine particle concentration, and on transition metals and certain semivolatile and volatile organic chemicals. For health effects, measuring systemic oxidative stress in the blood is one feasible approach, but there is no universal biomarker of oxidative stress and there are many potential target molecules (lipids, proteins, DNA, nitric oxide, etc.), which may be more or less suitable for specific study goals. Concurrent with the measurement of oxidative stress, it is important to measure gene and/or protein expression of endogenous antioxidant enzymes because they can modify relations between oxidative stress biomarkers and air pollutants. Conversely, the expression and activities of these enzymes are modified by oxidative stress. This interplay will likely determine the observed effects of air pollutants on systemic inflammatory and thrombotic mediators and related clinical outcomes. Studies are needed to assess the reliability and validity of oxidative stress biomarkers, evaluate differences in associations between oxidative stress biomarkers and various pollutant measurements (mass, chemical components, and oxidative potential), and evaluate impacts of antioxidant responses on these relations. PMID:23626660

  11. 24 CFR 3280.715 - Circulating air systems.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ...) Sizing of ducts for heating. (i) Ducts shall be so designed that when a labeled forced-air furnace is... evaporator-coil specifically designed for the particular furnace is installed between the furnace and the... must be so designed and constructed that when the manufactured home is fully expanded or coupled,...

  12. 24 CFR 3280.715 - Circulating air systems.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... steel, tin-plated steel, or aluminum, or shall be listed Class 0, Class 1, or Class 2 air ducts. Class 2... with the structure shall be of durable construction that can be demonstrated to be equally resistant to fire and deterioration. Ducts constructed from sheet metal shall be in accordance with the...

  13. Anomalous circulation patterns in association with two types of daily precipitation extremes over southeastern China during boreal summer

    NASA Astrophysics Data System (ADS)

    Li, Minggang; Guan, Zhaoyong; Jin, Dachao; Han, Jie; Zhang, Qian

    2016-04-01

    Based on the daily rainfall data from China Meteorological Administration, the tropical cyclone (TC) best track data from Japan Meteorological Agency, and the NCEP-NCAR reanalysis data from NOAA, regional mean daily precipitation extreme (RDPE) events over southeastern China (specifically, the Fujian-Jiangxi region (FJR)) and the associated circulation anomalies are investigated. For the summers of 1979-2011, a total of 105 RDPE events are identified, among which 35 are TC-influenced (TCIn-RDPE) and 70 are TC-free events (TCFr-RDPE). Distinct differences between these two types of RDPEs are found in both their statistical features and the related circulation patterns. TCFr-RDPEs usually occur in June, while TCIn-RDPEs mainly take place during July-August. When TCFr-RDPEs happen, a center of the anomalous cyclonic circulation is observed over the FJR, with an anomalous anticyclonic circulation to the south of this region. The warm/moist air flows from the South China Sea (SCS) and western Pacific meet with colder air from the north, forming a narrow convergent belt of water vapor over the FJR. Simultaneously, positive diabatic forcing anomalies are observed over the FJR, whereas negative anomalies appear over both its south and north sides, facilitating the formation and maintenance of the cyclonic circulation anomaly, as well as the upward motion of the atmosphere, over the FJR. When TCIn-RDPEs occur, southeastern China is dominated by a TC-related stronger anomalous cyclonic circulation. An anomalous anticyclonic circulation in the mid and high latitudes north of the FJR exists in the mid and upper troposphere, opposite to the situation during TCFr-RDPE events. Abundant warm/wet air is carried into the FJR from both the Indian Ocean and the SCS, leading to a large amount of latent heat release over the FJR and inducing strong ascending motion there. Furthermore, large differences are also found in the manifestation of Rossby wave energy propagation between these

  14. Atmospheric circulation patterns associated with hail events in Lleida (Catalonia)

    NASA Astrophysics Data System (ADS)

    Aran, M.; Pena, J. C.; Torà, M.

    2011-06-01

    Although the advance of powerful computers has improved the outputs of meteorological models, a good synoptic classification can be very useful for weather forecasting. Therefore, the Meteorological Service of Catalonia is working on drawing up an accurate classification for extreme events. Hail events on the Lleida plain (inland Catalonia) were chosen to test different classifications. Since 1990 the Associació de Defensa Vegetal-Terres de Ponent has been collecting information on hailstorms and the damage caused in this area. Only the hail events with high impact were used to obtain the main synoptic patterns. A manual and an objective classification were carried out using the ERA-Interim reanalyses. The manual classification was done with the same variables (mean sea level pressure, temperature at 850 hPa and geopotential at 500 hPa) and the same domain as used in the objective classification. The methodology of the objective classification consisted of three steps. Firstly, a principal component analysis was used to reduce the dimension of the variables. Then, cluster analysis was applied to the component scores to obtain the atmospheric patterns. Finally, a discriminant analysis of the clusters was performed in order to improve the classification and to evaluate its goodness. Nine synoptic patterns were obtained in both classifications.

  15. Circulation system configuration characteristics of four rainfall patterns in summer over the East China

    NASA Astrophysics Data System (ADS)

    Zhao, Junhu; Yang, Liu; Feng, Guolin

    2017-01-01

    In this study, the simultaneous atmospheric circulation system configuration characteristics of the four rainfall patterns (FRP) over the East China during the period 1951-2015 are analyzed in order to investigate their formation mechanisms. The results confirm that the FRP possess obvious differences in the upper-level, middle-level, and lower-level troposphere. In northern China rainfall pattern (NCP) years, the East Asian subtropical westerly jet stream (EAJS) shows a northward trend, with a higher intensity than normal; the blocking high (BH) in the mid-high latitudes is inactive; and the western Pacific subtropical high (WPSH) tends to be stronger, with a location to the north of its normal position. The East Asian summer monsoon (EASM) is stronger, which promotes vapor transport to northern China, and this leads to increased rainfall. In intermediate rainfall pattern (IRP) years, the EAJS position is close to that in normal years; the BH is inactive; the WPSH tends to be weaker, with a location to the east of its normal position; and the EASM is stronger, which is conducive to increased rainfall over the Huaihe River Basin. In Yangtze River rainfall pattern (YRP) years, the circulations are found to be almost opposite in their features to those in NCP years. In South China rainfall pattern (SCP) years, the circulations are found to be almost opposite in their features to those in IRP years. This leads to increased rainfall over South China. Therefore, the different circulation system configuration characteristics lead to the different rainfall patterns.

  16. Pattern of maternal circulating CRH in laboratory-housed squirrel and owl monkeys.

    PubMed

    Power, M L; Williams, L E; Gibson, S V; Schulkin, J; Helfers, J; Zorrilla, E P

    2010-11-01

    The anthropoid primate placenta appears to be unique in producing corticotropin-releasing hormone (CRH). Placental CRH is involved in an endocrine circuit key to the production of estrogens during pregnancy. CRH induces cortisol production by the maternal and fetal adrenal glands, leading to further placental CRH production. CRH also stimulates the fetal adrenal glands to produce dehydroepiandrostendione sulfate (DHEAS), which the placenta converts into estrogens. There are at least two patterns of maternal circulating CRH across gestation among anthropoids. Monkeys examined to date (Papio and Callithrix) have an early-to-mid gestational peak of circulating CRH, followed by a steady decline to a plateau level, with a possible rise near parturition. In contrast, humans and great apes have an exponential rise in circulating CRH peaking at parturition. To further document and compare patterns of maternal circulating CRH in anthropoid primates, we collected monthly blood samples from 14 squirrel monkeys (Saimiri boliviensis) and ten owl monkeys (Aotus nancymaae) during pregnancy. CRH immunoreactivity was measured from extracted plasma by using solid-phase radioimmunoassay. Both squirrel and owl monkeys displayed a mid-gestational peak in circulating CRH: days 45-65 of the 152-day gestation for squirrel monkeys (mean±SEM CRH=2,694±276 pg/ml) and days 60-80 of the 133-day gestation for owl monkeys (9,871±974 pg/ml). In squirrel monkeys, circulating CRH declined to 36% of mean peak value by 2 weeks before parturition and then appeared to increase; the best model for circulating CRH over gestation in squirrel monkeys was a cubic function, similar to previous results for baboons and marmosets. In owl monkeys, circulating CRH appeared to reach plateau with no subsequent significant decline approaching parturition, although a cubic function was the best fit. This study provides additional evidence for a mid-gestational peak of maternal circulating CRH in ancestral

  17. Surface circulation and upwelling patterns around Sri Lanka

    NASA Astrophysics Data System (ADS)

    de Vos, A.; Pattiaratchi, C. B.; Wijeratne, E. M. S.

    2014-10-01

    Sri Lanka occupies a unique location within the equatorial belt in the northern Indian Ocean, with the Arabian Sea on its western side and the Bay of Bengal on its eastern side, and experiences bi-annually reversing monsoon winds. Aggregations of blue whale (Balaenoptera musculus) have been observed along the southern coast of Sri Lanka during the northeast (NE) monsoon, when satellite imagery indicates lower productivity in the surface waters. This study explored elements of the dynamics of the surface circulation and coastal upwelling in the waters around Sri Lanka using satellite imagery and numerical simulations using the Regional Ocean Modelling System (ROMS). The model was run for 3 years to examine the seasonal and shorter-term (~10 days) variability. The results reproduced correctly the reversing current system, between the Equator and Sri Lanka, in response to the changing wind field: the eastward flowing Southwest Monsoon Current (SMC) during the southwest (SW) monsoon transporting 11.5 Sv (mean over 2010-2012) and the westward flowing Northeast Monsoon Current (NMC) transporting 9.6 Sv during the NE monsoon, respectively. A recirculation feature located to the east of Sri Lanka during the SW monsoon, the Sri Lanka Dome, is shown to result from the interaction between the SMC and the island of Sri Lanka. Along the eastern and western coasts, during both monsoon periods, flow is southward converging along the southern coast. During the SW monsoon, the island deflects the eastward flowing SMC southward, whilst along the eastern coast, the southward flow results from the Sri Lanka Dome recirculation. The major upwelling region, during both monsoon periods, is located along the southern coast, resulting from southward flow converging along the southern coast and subsequent divergence associated with the offshore transport of water. Higher surface chlorophyll concentrations were observed during the SW monsoon. The location of the flow convergence and hence the

  18. Surface circulation and upwelling patterns around Sri Lanka

    NASA Astrophysics Data System (ADS)

    de Vos, A.; Pattiaratchi, C. B.; Wijeratne, E. M. S.

    2013-09-01

    Sri Lanka occupies a unique location within the equatorial belt in the northern Indian Ocean with the Arabian Sea on its western side and the Bay of Bengal on its eastern side. The region is characterised by bi-annually reversing monsoon winds resulting from seasonal differential heating and cooling of the continental land mass and the ocean. This study explored elements of the dynamics of the surface circulation and coastal upwelling in the waters around Sri Lanka using satellite imagery and the Regional Ocean Modelling System (ROMS) configured to the study region and forced with ECMWF interim data. The model was run for 2 yr to examine the seasonal and shorter term (∼10 days) variability. The results confirmed the presence of the reversing current system in response to the changing wind field: the eastward flowing Southwest Monsoon Current (SMC) during the Southwest (SW) monsoon transporting 11.5 Sv and the westward flowing Northeast Monsoon Current (NMC) transporting 9.5 Sv during the Northeast (NE) monsoon, respectively. A recirculation feature located to the east of Sri Lanka during the SW monsoon, the Sri Lanka Dome, is shown to result from the interaction between the SMC and the Island of Sri Lanka. Along the eastern and western coasts, during both monsoon periods, flow is southward converging along the south coast. During the SW monsoon the Island deflects the eastward flowing SMC southward whilst along the east coast the southward flow results from the Sri Lanka Dome recirculation. The major upwelling region, during both monsoon periods, is located along the south coast and is shown to be due to flow convergence and divergence associated with offshore transport of water. Higher surface chlorophyll concentrations were observed during the SW monsoon. The location of the flow convergence and hence the upwelling centre was dependent on the relative strengths of wind driven flow along the east and west coasts: during the SW (NE) monsoon the flow along the

  19. Synoptic-scale circulation patterns during summer derived from tree rings in mid-latitude Asia

    NASA Astrophysics Data System (ADS)

    Seim, Andrea; Schultz, Johannes A.; Leland, Caroline; Davi, Nicole; Byambasuren, Oyunsanaa; Liang, Eryuan; Wang, Xiaochun; Beck, Christoph; Linderholm, Hans W.; Pederson, Neil

    2016-11-01

    Understanding past and recent climate and atmospheric circulation variability is vital for regions that are affected by climate extremes. In mid-latitude Asia, however, the synoptic climatology is complex and not yet fully understood. The aim of this study was to investigate dominant synoptic-scale circulation patterns during the summer season using a multi-species tree-ring width (TRW) network comprising 78 sites from mid-latitude Asia. For each TRW chronology, we calculated an atmospheric circulation tree-ring index (ACTI), based on 1000 hPa geopotential height data, to directly link tree growth to 13 summertime weather types and their associated local climate conditions for the period 1871-1993. Using the ACTI, three groups of similarly responding tree-ring sites can be associated with distinct large-scale atmospheric circulation patterns: 1. growth of drought sensitive trees is positively affected by a cyclone over northern Russia; 2. temperature sensitive trees show positive associations to a cyclone over northwestern Russia and an anticyclone over Mongolia; 3. trees at two high elevation sites show positive relations to a zonal cyclone extending from mid-latitude Eurasia to the West Pacific. The identified synoptic-scale circulation patterns showed spatiotemporal variability in their intensity and position, causing temporally varying climate conditions in mid-latitude Asia. Our results highlight that for regions with less pronounced atmospheric action centers during summer such as the occurrence of large-scale cyclones and anticyclones, synoptic-scale circulation patterns can be extracted and linked to the Northern Hemisphere circulation system. Thus, we provide a new and solid envelope for climate studies covering the past to the future.

  20. Global circulation patterns of seasonal influenza viruses vary with antigenic drift

    NASA Astrophysics Data System (ADS)

    Bedford, Trevor; Riley, Steven; Barr, Ian G.; Broor, Shobha; Chadha, Mandeep; Cox, Nancy J.; Daniels, Rodney S.; Gunasekaran, C. Palani; Hurt, Aeron C.; Kelso, Anne; Klimov, Alexander; Lewis, Nicola S.; Li, Xiyan; McCauley, John W.; Odagiri, Takato; Potdar, Varsha; Rambaut, Andrew; Shu, Yuelong; Skepner, Eugene; Smith, Derek J.; Suchard, Marc A.; Tashiro, Masato; Wang, Dayan; Xu, Xiyan; Lemey, Philippe; Russell, Colin A.

    2015-07-01

    Understanding the spatiotemporal patterns of emergence and circulation of new human seasonal influenza virus variants is a key scientific and public health challenge. The global circulation patterns of influenza A/H3N2 viruses are well characterized, but the patterns of A/H1N1 and B viruses have remained largely unexplored. Here we show that the global circulation patterns of A/H1N1 (up to 2009), B/Victoria, and B/Yamagata viruses differ substantially from those of A/H3N2 viruses, on the basis of analyses of 9,604 haemagglutinin sequences of human seasonal influenza viruses from 2000 to 2012. Whereas genetic variants of A/H3N2 viruses did not persist locally between epidemics and were reseeded from East and Southeast Asia, genetic variants of A/H1N1 and B viruses persisted across several seasons and exhibited complex global dynamics with East and Southeast Asia playing a limited role in disseminating new variants. The less frequent global movement of influenza A/H1N1 and B viruses coincided with slower rates of antigenic evolution, lower ages of infection, and smaller, less frequent epidemics compared to A/H3N2 viruses. Detailed epidemic models support differences in age of infection, combined with the less frequent travel of children, as probable drivers of the differences in the patterns of global circulation, suggesting a complex interaction between virus evolution, epidemiology, and human behaviour.

  1. A comprehensive classification of anomalous circulation patterns responsible for persistent precipitation extremes in South China

    NASA Astrophysics Data System (ADS)

    Wu, Hui; Zhai, Panmao; Chen, Yang

    2016-06-01

    Based on observational precipitation at 63 stations in South China and NCEP-NCAR reanalysis data during 1951-2010, a cluster analysis is performed to classify large-scale circulation patterns responsible for persistent precipitation extremes (PPEs) that are independent of the influence of tropical cyclones (TCs). Conceptual schematics depicting configurations among planetary-scale systems at different levels are established for each type. The PPEs free from TCs account for 38.6% of total events, and they tend to occur during April-August and October, with the highest frequency observed in June. Corresponding circulation patterns during June-August can be mainly categorized into two types, i.e., summer-I type and summer-II type. In summer-I type, the South Asian high takes the form of a zonal-belt type. The axis of upstream westerly jets is northwest-oriented. At the middle level, the westerly jets at midlatitudes extend zonally. Along the southern edge of the westerly jet, synoptic eddies steer cold air to penetrate southward; the Bay of Bengal (BOB) trough is located to the north; a shallow trough resides over coastal areas of western South China; and an intensified western Pacific subtropical high (WPSH) extends westward. The anomalous moisture is mainly contributed by horizontal advection via southwesterlies around 20 °N and southeasterlies from the southern flange of the WPSH. Moisture convergence maximizes in coastal regions of eastern South China, which is the very place recording extreme precipitation. In summer-II type, the South Asian high behaves as a western-center type. The BOB trough is much deeper, accompanied by a cyclone to its north; and a lower-level trough appears in northwestern parts of South China. Different to summer-I type, moisture transport via southwesterlies is mostly responsible for the anomalous moisture in this type. The moisture convergence zones cover Guangdong, Guangxi, and Hainan, matching well with the areas of flooding. It is

  2. Spatial patterns of diagenesis during geothermal circulation in carbonate platforms

    USGS Publications Warehouse

    Wilson, A.M.; Sanford, W.; Whitaker, F.; Smart, P.

    2001-01-01

    Geothermal convection of seawater deep in carbonate platforms could provide the necessary supply of magnesium for dolomitization at temperatures high enough to overcome kinetic limitations. We used reactive-transport simulations to predict the rates and spatial patterns of dolomitization during geothermal convection in a platform that was 40 km across and 2 km thick. In the simulations, porosity and permeability decrease with depth to account for sediment compaction. Dolomitization of a platform consisting of medium grained (???0.05 mm) sediments occurred in a broad band ranging from ???2.5 km depth near the margin to ???1.5 km depth near the platform center. The area of dolomitization is deep enough that temperatures exceed ???50??C but not so deep that low permeabilities restrict mass transport. Complete dolomitization in the center of this zone is estimated to require at least 60 my. Incorporation of permeability contrasts, permeable beds, and reactive beds focused dolomitization strongly and reduced the estimated time required for dolomitization by as much as 50 percent. Dolomitization created magnesium-depleted, calcium-rich fluids in less than 10 ky, and results support a link between dolomitization and anhydrite precipitation where adequate sulfate is available.

  3. A Warm Spitzer Survey of Circulation Patterns in Exoplanet Atmospheres

    NASA Astrophysics Data System (ADS)

    Knutson, H.

    2011-12-01

    The atmospheres of close-in extrasolar planets experience strong, asymmetrically distributed radiative forcing that can potentially lead to dramatic variations in both temperature and composition between the day- and night-side hemispheres. However, secondary eclipse observations only tell us about the properties of the dayside atmosphere, while transmission spectroscopy probes the region around the day-night terminator. By measuring changes in the infrared emission spectra of these planets as a function of orbital phase, we can resolve thermal and compositional gradients in these atmospheres, allowing us to obtain a complete picture of their local properties. The most extensively studied planet to date, HD 189733b, appears to have a relatively modest day-night temperature gradient as seen in the 8 and 24 micron Spitzer bands, suggesting that compositional gradients in its atmosphere are likely to be minimal. We present new, full-orbit phase curves at 3.6 and 4.5 um obtained with warm Spitzer, which we use to construct improved multi-color maps and to constrain variations in the pressure-temperature profile and atmospheric composition as a function of longitude. We also present preliminary results for complementary full-orbit observations of HAT-P-7b in the same bands, and discuss an emerging pattern in which the most highly irradiated (>2000 K) planets appear to undergo a shift towards large day-night temperature gradients, perhaps due to Lorentz braking or other MHD processes.

  4. Investigating the circulation patterns of the northern Adriatic Sea with a very high resolution model.

    NASA Astrophysics Data System (ADS)

    Zavatarelli, M.; Mattia, G.; Lovato, T.

    2015-12-01

    The NEMO model was implemented on the northern Adriatic sea with an high resolution (horizontal resolution of 800 m and vertical resolution of 2 m). The model is off-line nested with a general circulation model of Mediterranean sea providing open boundary data. Hindcast simulations with high frequency atmospheric forcing and daily river runoff, were performed and analyzed in order to study the interannual variability of the circulation pattern and of the shelf dense water (Northern Adriatic dense Water, NADW) production in relation to the freshwater input and heat and wind forcing. Whenever possible, the results were validated against available observations. The simulations highlighted the large interannual variability of the circulation patterns. This is a contribution of the EU-FP7 Project "PERSEUS" (Policy oriented environmental research in the Southern European Seas)

  5. Local Circulation Maintains the Coexistence of Lake-dune Pattern in the Badain Jaran Desert

    NASA Astrophysics Data System (ADS)

    Zhang, Kecun; Cai, Diwen; Ao, Yinhuan; An, Zhishan; Guo, Zichen

    2017-01-01

    Previous studies proposed various hypotheses to the formation of the mega-dunes and water recharge of the lakes in the Badain Jaran Desert but left the coexistence of lake-dune pattern unsolved. This research found that the local circulation, generated from the differences of thermodynamic properties and the unique landscape settings between lakes and mega-dunes, can be applied to interpret the pattern.

  6. Local Circulation Maintains the Coexistence of Lake-dune Pattern in the Badain Jaran Desert

    PubMed Central

    Zhang, Kecun; Cai, Diwen; Ao, Yinhuan; An, Zhishan; Guo, Zichen

    2017-01-01

    Previous studies proposed various hypotheses to the formation of the mega-dunes and water recharge of the lakes in the Badain Jaran Desert but left the coexistence of lake-dune pattern unsolved. This research found that the local circulation, generated from the differences of thermodynamic properties and the unique landscape settings between lakes and mega-dunes, can be applied to interpret the pattern. PMID:28054673

  7. Local Circulation Maintains the Coexistence of Lake-dune Pattern in the Badain Jaran Desert.

    PubMed

    Zhang, Kecun; Cai, Diwen; Ao, Yinhuan; An, Zhishan; Guo, Zichen

    2017-01-05

    Previous studies proposed various hypotheses to the formation of the mega-dunes and water recharge of the lakes in the Badain Jaran Desert but left the coexistence of lake-dune pattern unsolved. This research found that the local circulation, generated from the differences of thermodynamic properties and the unique landscape settings between lakes and mega-dunes, can be applied to interpret the pattern.

  8. EVALUATION OF GROUNDWATER FLOW PATTERNS AROUND A DUAL-SCREENED GROUNDWATER CIRCULATION WELL

    EPA Science Inventory

    Dual-screened groundwater circulation wells (GCWs) can be used to remove contaminant mass and to mix reagents in situ. GCWs are so named because they force water in a circular pattern between injection and extraction screens. The radial extent, flux and direction of the effective...

  9. Drought Variability in Eastern Part of Romania and its Connection with Large-Scale Air Circulation

    NASA Astrophysics Data System (ADS)

    Barbu, Nicu; Stefan, Sabina; Georgescu, Florinela

    2014-05-01

    Drought is a phenomenon that appears due to precipitation deficit and it is intensified by strong winds, high temperatures, low relative humidity and high insolation; in fact, all these factors lead to increasing of evapotranspiration processes that contribute to soil water deficit. The Standardized Precipitation Evapotranspiration Index (SPEI) take into account all this factors listed above. The temporal variability of the drought in Eastern part of Romania for 50 years, during the period 1961-2010, is investigated. This study is focused on the drought variability related to large scale air circulation. The gridded dataset with spatial resolution of 0.5º lat/lon of SPEI, (https://digital.csic.es/handle/10261/72264) were used to analyze drought periods in connection with large scale air circulation determinate from the two catalogues (GWT - GrossWetter-Typen and WLK - WetterLargenKlassifikation) defined in COST733Action. The GWT catalogue uses at input dataset the sea level pressure and the WLK catalogue uses as input dataset the geopotential field at 925 hPa and 500 hPa, wind at 700 hPa and total water content for entire atmospheric column. In this study we use the GWT catalogue with 18 circulation types and the WLK catalogue with 40 circulation types. The analysis for Barlad Hydrological Basin indicated that the negative values (that means water deficit - drought period) of SPEI are associated with prevailing anticyclonic regime and positive values (that means water excess - rainy period) of SPEI are associated with prevailing cyclonic regime as was expected. In last decade was observed an increase of dry period associated with an increase of anticyclonic activity over Romania. Using GWT18 catalogue the drought are associated with the north-eastern anticyclonic circulation type (NE-A). According to the WLK40 catalogue, the dominant circulation type associated with the drought is north-west-anticyclonic-dry anticyclonic (NW-AAD) type. keywords: drought, SPEI

  10. Air circulation and cooling effect through artificial screes : a preliminary case study (Fribourg, Switzerland)

    NASA Astrophysics Data System (ADS)

    Dorthe, J.; Abbet, D.; Delaloye, R.

    2009-04-01

    Keywords: Air circulation; sorted gravel heap; thermal regime; temperature measurements; electrical resistivity tomography Occurrences and thermal impacts of air circulation throughout a natural porous medium have been detected and investigated for the last decade in many talus slopes located in mid-latitude regions (e.g. in the Swiss Alps and Prealps). The process makes sporadic permafrost to occur far below the regional lower limit of discontinuous permafrost. It is commonly accepted that connected systems of large voids facilitates the movement of air. Which void size and structure do prevent the circulation of air and the significant cooling of the ventilated terrain is still a remaining open question. The investigation of artificial gravel heaps consisting each of material of different grain-size could provide key data to solve the problem. By the end of a 4-week period of cold weather (daily mean temperature often colder than -5°C) in December 2008 / January 2009, with 10-20 cm deep laying snow cover, investigations similar to those performed on natural talus slopes (visual observations, ground surface temperature measurements, 2D electrical resistivity tomography) have been carried out on 8 artificial gravel heaps from 2 to12 m high located in a gravel pit close to Fribourg (620 m a.s.l., Switzerland). The study was aimed to analyse the air circulation and its impact on the thermal regime of the artificial screes depending on the grain-size of the consisting material (>4 mm to 16-32 mm), the volume (10-2000 m3) and the porosity of the heaps. The first results of this ongoing study can be resumed hereafter. Any evidence of air circulation was not observed on the heaps with a grain-size <4 mm and a volume smaller than 30m3. Conversely, the three gravel heaps (900-2000 m3) with grain-size larger than 8-11 mm were affected by intense air circulation and showed the same evidences as those observed on natural talus slopes: on the one hand the top of each heap was

  11. Long-term air temperature variation in the Karkonosze mountains according to atmospheric circulation

    NASA Astrophysics Data System (ADS)

    Migała, Krzysztof; Urban, Grzegorz; Tomczyński, Karol

    2016-07-01

    The results of meteorological measurements carried out continuously on Mt Śnieżka in Karkonosze mountains since 1880 well document the warming observed on a global scale. Data analysis indicates warming expressed by an increase in the mean annual air temperature of 0.8 °C/100 years. A much higher temperature increase was recorded in the last two decades at the turn of the twenty-first century. Mean decade air temperatures increased from -0.1 to 1.5 °C. It has been shown that there are relationships between air temperature at Mt Śnieżka and global mechanisms of atmospheric and oceanic circulation. Thermal conditions of the Karkonosze (Mt Śnieżka) accurately reflect global climate trends and impact of the North Atlantic Oscillation (NAO) index, macrotypes of atmospheric circulation in Europe (GWL) and Atlantic Multidecadal Oscillation (AMO). The increase in air temperature during the 1989-2012 solar magnetic cycle may reveal a synergy effect to which astrophysical effects and atmospheric and oceanic circulation effects contribute, modified by constantly increasing anthropogenic factors.

  12. Influence of atmospheric circulation patterns on local cloud and solar variability in Bergen, Norway

    NASA Astrophysics Data System (ADS)

    Parding, Kajsa; Olseth, Jan Asle; Liepert, Beate G.; Dagestad, Knut-Frode

    2016-08-01

    In a previous paper, we have shown that long-term cloud and solar observations (1965-2013) in Bergen, Norway (60.39°N, 5.33°E) are compatible with a largely cloud dominated radiative climate. Here, we explicitly address the relationship between the large scale circulation over Europe and local conditions in Bergen, identifying specific circulation shifts that have contributed to the observed cloud and solar variations. As a measure of synoptic weather patterns, we use the Grosswetterlagen (GWL), a daily classification of European weather for 1881-2013. Empirical models of cloud cover, cloud base, relative sunshine duration, and normalised global irradiance are constructed based on the GWL frequencies, extending the observational time series by more than 70 years. The GWL models successfully reproduce the observed increase in cloud cover and decrease in solar irradiance during the 1970s and 1980s. This cloud-induced dimming is traced to an increasing frequency of cyclonic and decreasing frequency of anticyclonic weather patterns over northern Europe. The changing circulation patterns in winter can be understood as a shift from the negative to the positive phase of the North Atlantic and Arctic Oscillation. A recent period of increasing solar irradiance is observed but not reproduce by the GWL models, suggesting this brightening is associated with factors other than large scale atmospheric circulation, possibly decreasing aerosol loads and local cloud shifts.

  13. Utilization of ventilation air methane as a supplementary fuel at a circulating fluidized bed combustion boiler.

    PubMed

    You, Changfu; Xu, Xuchang

    2008-04-01

    Ventilation air methane (VAM) accounts for 60-80% of the total emissions from coal mining activities in China, which is of serious greenhouse gas concerns as well as a waste of valuable fuel sources. This contribution evaluates the use of the VAM utilization methods as a supplementary fuel at a circulating fluidized bed combustion boiler. The paper describes the system design and discusses some potential technical challenges such as methane oxidation rate, corrosion, and efficiency. Laboratory experimentation has shown that the VAM can be burnt completely in circulated fluidized bed furnaces, and the VAM oxidation does not obviously affect the boiler operation when the methane concentration is less than 0.6%. The VAM decreased the incomplete combustion loss for the circulating fluidized bed combustion furnace. The economic benefit from the coal saving insures that the proposed system is more economically feasible.

  14. The Use of Print Materials in the Internet Age: A Comparative Study of Academic Library Circulation Patterns

    ERIC Educational Resources Information Center

    Haley, Daniel Joseph

    2010-01-01

    The circulation records from 1997/98 to 2007/08 for UCLA and from 2000/01 to 2007/08 for Pasadena City College (PCC) were analyzed to examine patterns in the use of print materials during a period of increasingly available online digital information resources. The analysis included examinations of longitudinal circulation patterns broken down by…

  15. The combined influence of the main European circulation patterns on carbon uptake by ecosystems

    NASA Astrophysics Data System (ADS)

    Bastos, Ana; Gouveia, Célia; Trigo, Ricardo

    2014-05-01

    Understanding how natural climate variability affects carbon uptake by land and ocean pools is particularly relevant to better characterize human impact on the carbon cycle. Recently, we have contributed to assess the major role played by the El-Niño/Southern Oscillation in driving inter-annual variability (IAV) of carbon uptake by land ecosystems and significantly influencing global CO2 air-borne fraction [1]. Despite the prominent role played by ENSO, other important teleconnections on the hemispheric scale have deserved less attention. On the European scale, the main mode of variability is the North-Atlantic Oscillation (NAO), which controls storm tracks position and drives changes in temperature and precipitation over the whole region, affecting vegetation dynamics [2]. Besides NAO, a few additional large scale circulation patterns the Scandinavian (SC) and East-Atlantic (EA) Patterns, are also known to influence significantly the European climate [3]. Different combinations of these teleconnection polarities have been recently shown to modulate the overall role of the NAO impact location and strength, thus affecting winter temperature and precipitation patterns over Europe [4]. This work aims to answer the following questions: (i) how do NAO, EA and SC affect vegetation carbon uptake IAV? (ii) do the interactions between these three modes have a significant impact on land CO2 IAV? (iii) what is the contribution of the different physical variables to ecosystems' response to these modes? (iv) how well do the state-of-the-art Earth System Models (ESMs) from CMIP5 represent these climate variability modes and the corresponding carbon fluxes? We first analyze observational data to assess the relationships between the different combinations of NAO, SC and EA polarities and IAV of gross and net primary production (GPP and NPP, respectively), as well as the most relevant driving factors of ecosystem's response to those variability patterns. Although the winter state

  16. Association between atmospheric circulation patterns and firn-ice core records from the Inilchek glacierized area, central Tien Shan, Asia

    USGS Publications Warehouse

    Aizen, V.B.; Aizen, E.M.; Melack, J.M.; Kreutz, K.J.; Cecil, L.D.

    2004-01-01

    Glacioclimatological research in the central Tien Shan was performed in the summers of 1998 and 1999 on the South Inilchek Glacier at 5100-5460 m. A 14.36 m firn-ice core and snow samples were collected and used for stratigraphic, isotopic, and chemical analyses. The firn-ice core and snow records were related to snow pit measurements at an event scale and to meteorological data and synoptic indices of atmospheric circulation at annual and seasonal scales. Linear relationships between the seasonal air temperature and seasonal isotopic composition in accumulated precipitation were established. Changes in the ??18O air temperature relationship, in major ion concentration and in the ratios between chemical species, were used to identify different sources of moisture and investigate changes in atmospheric circulation patterns. Precipitation over the central Tien Shan is characterized by the lowest ionic content among the Tien Shan glaciers and indicates its mainly marine origin. In seasons of minimum precipitation, autumn and winter, water vapor was derived from the and and semiarid regions in central Eurasia and contributed annual maximal solute content to snow accumulation in Tien Shan. The lowest content of major ions was observed in spring and summer layers, which represent maximum seasonal accumulation when moisture originates over the Atlantic Ocean and Mediterranean and Black Seas. Copyright 2004 by the American Geophysical Union.

  17. Regional climates in the GISS general circulation model: Surface air temperature

    NASA Technical Reports Server (NTRS)

    Hewitson, Bruce

    1994-01-01

    One of the more viable research techniques into global climate change for the purpose of understanding the consequent environmental impacts is based on the use of general circulation models (GCMs). However, GCMs are currently unable to reliably predict the regional climate change resulting from global warming, and it is at the regional scale that predictions are required for understanding human and environmental responses. Regional climates in the extratropics are in large part governed by the synoptic-scale circulation and the feasibility of using this interscale relationship is explored to provide a way of moving to grid cell and sub-grid cell scales in the model. The relationships between the daily circulation systems and surface air temperature for points across the continental United States are first developed in a quantitative form using a multivariate index based on principal components analysis (PCA) of the surface circulation. These relationships are then validated by predicting daily temperature using observed circulation and comparing the predicted values with the observed temperatures. The relationships predict surface temperature accurately over the major portion of the country in winter, and for half the country in summer. These relationships are then applied to the surface synoptic circulation of the Goddard Institute for Space Studies (GISS) GCM control run, and a set of surface grid cell temperatures are generated. These temperatures, based on the larger-scale validated circulation, may now be used with greater confidence at the regional scale. The generated temperatures are compared to those of the model and show that the model has regional errors of up to 10 C in individual grid cells.

  18. The impact of sea breeze under different synoptic patterns on air pollution within Athens basin.

    PubMed

    Mavrakou, Thaleia; Philippopoulos, Kostas; Deligiorgi, Despina

    2012-09-01

    Air quality in densely populated urban coastal areas is directly related to the coupling of the synoptic and the local scale flows. The dispersion conditions within Athens basin, under the influence of different meteorological forcings, lead to distinct spatio-temporal air pollution patterns. The aim of the current observational research is to identify and examine the effect of sea breeze under different atmospheric circulation patterns on air pollution levels for a one-year study period (2007). The study employs surface pressure maps, routine meteorological observations at two coastal sites and nitrogen monoxide (NO), nitrogen dioxide (NO(2)) and ozone (O(3)) concentrations from a network of four air quality stations within the Athens basin. A three-step methodology is applied that incorporates a set of criteria for classifying atmospheric circulation and identifying sea breeze events under each circulation pattern. Two types of sea breeze development are identified (pure sea breeze-PSB and modified sea breeze-MSB) with distinct characteristics. Sea breeze is found to develop more frequently under offshore compared to onshore and parallel to the shoreline background flows. Poor dispersion conditions (high nitrogen oxides-NO(x) and O(3) concentrations) are connected to the pure sea breeze cases and to those cases where sea breeze interacts with a moderate northerly flow during the warm period. The levels of NO(x) and O(3) for the northern Athens basin area are found to be significantly higher during the sea breeze days compared to the Etesian days. Regarding the diurnal variation of ozone for the sea breeze days, peak concentrations and higher intra-daily ranges are observed. Day-to-day pollution accumulation (build-up effect) is measured for O(3) at the northern stations in the Athens basin.

  19. Observational and modeling studies of heat, moisture, precipitation, and global-scale circulation patterns

    NASA Technical Reports Server (NTRS)

    Vincent, Dayton G.; Robertson, Franklin

    1993-01-01

    The research sponsored by this grant is a continuation and an extension of the work conducted under a previous contract, 'South Pacific Convergence Zone and Global-Scale Circulations'. In the prior work, we conducted a detailed investigation of the South Pacific convergence zone (SPCZ), and documented many of its significant features and characteristics. We also conducted studies of its interaction with global-scale circulation features through the use of both observational and modeling studies. The latter was accomplished toward the end of the contract when Dr. James Hurrell, then a Ph.D. candidate, successfully ported the NASA GLA general circulation model (GCM) to Purdue University. In our present grant, we have expanded our previous research to include studies of other convectively-driven circulation systems in the tropics besides the SPCZ. Furthermore, we have continued to examine the relationship between these convective systems and global-scale circulation patterns. Our recent research efforts have focused on three objectives: (1) determining the periodicity of large-scale bands of organized convection in the tropics, primarily synoptic to intraseasonal time scales in the Southern Hemisphere; (2) examining the relative importance of tropical versus mid-latitude forcing for Southern Hemisphere summertime subtropical jets, particularly over the Pacific Ocean; and (3) estimating tropical precipitation, especially over oceans, using observational and budget methods. A summary list of our most significant accomplishments in the past year is given.

  20. Circulation patterns in open, wide and deep lacustrine embayments with different aspect ratios

    NASA Astrophysics Data System (ADS)

    Razmi, Amir Mehdi; Barry, David Andrew; Lemmin, Ulrich

    2013-04-01

    Numerical simulations were carried out to examine the effect of different horizontal aspect ratios on wind-induced circulation within open, wide and deep lacustrine embayments. Two adjacent embayments in Lake Geneva, Switzerland, located between Morges and Lausanne on the north shore of the lake, were compared. These embayments were selected because of their similar exposure with respect to wind forcing. However, their aspect ratios are different, making them ideal case studies to evaluate the impact of the aspect ratio on the resulting circulation pattern. A previously validated 3D hydrodynamic model (Delft3D-FLOW) was employed to simulate currents in the lake for the year 2010. Detailed over-lake maps of wind, temperature and humidity were used as input to drive the model. The embayments were compared in terms of circulation patterns and conditions leading to gyre formation. Furthermore, we carried out a systematic comparison, focusing on the embayment aspect ratio by constructing different "synthetic" embayments with aspect ratios in the range 1 - 4. Subsequently, the flow field within these embayments was computed for typical meteorological regimes (dominant wind regimes and seasonality). In particular, the generation of gyres was compared for different cases. The results revealed that, even for large aspect ratios (~ 3), wind-induced circulation can still occur in open, wide, and deep lacustrine embayments. The results showed that, as expected, gyres are formed less frequently as the embayment aspect ratio increases. For this reason, gyres are much more probable in the Morges embayment than in Vidy Bay.

  1. Probabilistic relationships between wind and surface water circulation patterns in the SE Bay of Biscay

    NASA Astrophysics Data System (ADS)

    Solabarrieta, Lohitzune; Rubio, Anna; Cárdenas, Mar; Castanedo, Sonia; Esnaola, Ganix; Méndez, Fernando J.; Medina, Raúl; Ferrer, Luis

    2015-09-01

    Non-linear K-means classification algorithm was used to obtain a comprehensive description of the winds and high-frequency radar-derived currents in the SE Bay of Biscay (study area), taking into account a wide range of scales, from several days to interannual variability. The results in the study area show that in summer, a stronger variability in winds and surface currents can be expected, while in winter, intense southwesterly winds and a cyclonic circulation prevail. In addition to the seasonal component of the currents, a significant spatial variability in terms of current patterns and a temporal variability at shorter and interannual scales were also identified, highlighting the complexity of the surface current dynamics. Moreover, the probabilistic relationships between wind and current patterns were explored, obtaining conditional probabilities. Most of the surface current patterns are clearly related to specific wind patterns that are recurrent in the study area. However, other common current patterns are not so clearly related to specific wind conditions. The presence of a seasonal slope current (Iberian Poleward Current, IPC) is one of the most relevant features of the local circulation. An IPC occurrence time series based on Sea Surface Temperature satellite imagery was used to obtain conditional probabilities with the high-frequency radar surface current patterns, showing a relation between the strongest IPC events and closed cyclonic currents, which are not linked to specific winds.

  2. Surface water circulation patterns in the southeastern Bay of Biscay: New evidences from HF radar data

    NASA Astrophysics Data System (ADS)

    Solabarrieta, Lohitzune; Rubio, Anna; Castanedo, Sonia; Medina, Raúl; Charria, Guillaume; Hernández, Carlos

    2014-02-01

    High frequency (HF) radar stations have been working operationally in the southeastern part of the Bay of Biscay since 2009. The (2) systems provide hourly surface currents, with 5 km spatial resolution and a radial coverage lying close to 180 km. The detailed and quantitative description of the spatial patterns observed by the HF radar offers new evidence on the main ocean processes, at different time scales, affecting a study area where surface currents show marked temporal and spatial variability. A clear seasonality in terms of sea surface currents and along-slope circulation is observed, with cyclonic and anticyclonic patterns during the winter and summer months, respectively. From the analysis of low-pass filtered currents, a key component of this seasonal variability is associated with the surface signature of the slope current (Iberian Poleward Current (IPC)). Clearly intensified over the upper part of the slope, this current circulates eastward off the Spanish coast and northward over the French shelves in winter.

  3. Novel water-air circulation quenching process for AISI 4140 steel

    NASA Astrophysics Data System (ADS)

    Zheng, Liyun; Zheng, Dawei; Zhao, Lixin; Wang, Lihui; Zhang, Kai

    2013-11-01

    AISI 4140 steel is usually used after quenching and tempering. During the heat treatment process in industry production, there are some problems, such as quenching cracks, related to water-cooling and low hardness due to oil quenching. A water-air circulation quenching process can solve the problems of quenching cracks with water and the high cost quenching with oil, which is flammable, unsafe and not enough to obtain the required hardness. The control of the water-cooling and air-cooling time is a key factor in the process. This paper focuses on the quenching temperature, water-air cycle time and cycle index to prevent cracking for AISI 4140 steel. The optimum heat treatment parameters to achieve a good match of the strength and toughness of AISI 4140 steel were obtained by repeated adjustment of the water-air circulation quenching process parameters. The tensile strength, Charpy impact energy at -10 °C and hardness of the heat treated AISI 4140 steel after quenching and tempering were approximately 1098 MPa, 67.5 J and 316 HB, respectively.

  4. Cooling of Air-cooled Engines by Forced Circulation of Air

    NASA Technical Reports Server (NTRS)

    1926-01-01

    This report presents the results of experiments on aerodynamic fuselages in which an air current is forced into the nose of the fuselage by the action of several fans revolving with the propeller. The air is then guided by special deflectors which cause it to flow along the exhaust pipes and cylinders and then, after having been utilized, pass out through annular ports. This system of cooling worked perfectly at all speeds.

  5. Quantifying the effects of mixing and residual circulation on trends of stratospheric mean age of air

    NASA Astrophysics Data System (ADS)

    Ploeger, Felix; Abalos, Marta; Birner, Thomas; Konopka, Paul; Legras, Bernard; Müller, Rolf; Riese, Martin

    2015-04-01

    Trends in stratospheric mean age of air are driven both by changes in the (slow, large scale) residual mean mass circulation and by changes in (fast, locally acting) eddy mixing. However, to what degree both effects affect mean age trends is an open question. Here, we present a method that allows the effects of mixing and residual circulation on trends of mean age of air to be quantified. This method is based on mean age simulations with the Lagrangian chemistry transport model CLaMS driven by ERA-Interim reanalysis, and on the mean age tracer continuity equation integrated along the residual circulation. CLaMS simulated climatological mean age in the lower stratosphere shows reliable agreement with balloon borne in-situ obsevations and with satellite observations by MIPAS (Michelson Interferometer for Passive Atmospheric Sounding). During 1990--2013, CLaMS simulated mean age decreases throughout most of the stratosphere, qualitatively consistent with results based on climate model simulations (e.g., Butchart et al., 2010). Remarkably, in the Northern hemisphere subtropics and mid-latitudes above about 24km CLaMS mean age trends are insignificant, consistent with published mean age trends from in-situ observations (Engel et al., 2009). Furthermore, during 2002--2012 CLaMS mean age changes show a clear hemispheric asymmetry in agreement with MIPAS satellite observations (Stiller et al., 2012; Ploeger et al., 2014) and HCl decadal changes (Mahieu et al., 2014). We find that changes in the transit time along the residual circulation alone cannot explain the mean age trends, and including the effect of mixing integrated along the air parcel history is essential. Therefore, differences in mean age trends between models or between models and observations are likely related to differences in the integrated effect of mixing on mean age of air. Above about 550K, trends in the integrated mixing effect appear to be likely coupled to residual circulation changes. References

  6. Abrupt shutdown of the Atlantic meridional overturning circulation and rainfall patterns in Mexico

    NASA Astrophysics Data System (ADS)

    Martinez-Lopez, B.; Garcia, C. Gay

    2010-03-01

    Abrupt shutdown of the Atlantic meridional overturning circulation and rainfall patterns in Mexico. Model simulations agree that the warming and the resulting freshening of the surface waters will significantly reduce deep water formation in the Labrador Sea during the next decades. A complete collapse of the Atlantic meridional overturning circulation (AMOC) would be associated with a strong cooling of several degrees in the North Atlantic region (Winton 2003). The future response of the AMOC, however, is predictable only within a broad range due to the existence of a critical threshold in the system and the large uncertainty about both the location of this threshold on the freshwater axis and the freshwater forcing (Zickfeld et al., 2007). According to Meehl et al. (2007), the probability of an abrupt slowdown or shutdown of the AMOC triggered by greenhouse gas forcing is low, but it is considered a high-impact event (Wood et al., 2003). An abrupt change in the AMOC could occur so unexpectedly and quickly that natural systems would have difficulty adapting to them (NRC, 2002). In this work we use coupled ocean-atmosphere models to asses the response of rainfall patterns in Mexico to an abrupt shutdown of the AMOC. First, a cooling pattern, triggered by a freshwater flux perturbation in the North Atlantic, is simulated by an isopycnic ocean model coupled to an atmospheric energy balance model. Then, this anomalous surface temperature pattern is used as a surface boundary condition for a numerical experiment performed using the simplified global atmospheric circulation model PUMA (Portable University Model of the Atmosphere; Fraedrich et al., 1998), which compute the perturbed rainfall patterns in Mexico.

  7. Circulation pattern and ice mass exchange for different water compositions in Lake Vostok, Antarctica

    NASA Astrophysics Data System (ADS)

    Mayer, C.; Grosfeld, K.; Siegert, M. J.

    2003-04-01

    Lake Vostok, Antarctica's largest known subglacial lake, isolated from direct exchange with the atmosphere or oceans for several million years due to its thick ice cover, provides a unique and so far inaccessible habitat. By implementing the newest available information about the lake geometry into a 3-dimensional fluid-dynamics model the lake circulation was investigated for different water compositions. In the case of fresh water, thermally driven circulation is predicted, as a result of the pressure-dependent melting point at the inclined ice-water interface, in agreement with other investigators. Ice pumping from north to south provides a steady supply of glacial water to the lake, whereby no unsusual geothermal conditions are required for maintaining the circulation and the melting/refreezing balance. The rather weak circulation is driven by very small, temperature determined, density contrasts between the resident lake water and the fresh melt water. The circulation pattern, however, is determined by the strongly structured trough geometry of the lake. For slightly saline water conditions, the circulation pattern is also influenced by the salinity impact on the equation of state and hence on the lake density. This results in a partly increased flow but influences the turnover time scale not significantly. Now, the freshwater flux due to melting of glacial ice stabilizes the stratification of the lake leading to a more pronounced temperature gradient over the water column. Colder water now overrides warmer water portions near bottom, which to a certain degree isolates the resident water mass from the circulation driven by meltig and freezing. In either saline or fresh water conditions approximately 200 m of refrozen ice accumulates beneath Vostok Station, which suggests either possibility is plausible under the current state of knowledge regarding the lake cavity and the hydrochemnistry. Our model results, however, show that the habitat of Lake Vostok will be

  8. Computer mapping of turbidity and circulation patterns in Saginaw Bay, Michigan from LANDSAT data

    NASA Technical Reports Server (NTRS)

    Rogers, R. H. (Principal Investigator); Reed, L. E.; Smith, V. E.

    1975-01-01

    The author has identified the following significant results. LANDSAT was used as a basis for producing geometrically-corrected, color-coded imagery of turbidity and circulation patterns in Saginaw Bay, Michigan (Lake Huron). This imagery shows nine discrete categories of turbidity, as indicated by nine Secchi depths between 0.3 and 3.3 meters. The categorized imagery provided an economical basis for extrapolating water quality parameters from point samples to unsample areas. LANDSAT furnished a synoptic view of water mass boundaries that no amount of ground sampling or monitoring could provide.

  9. Numerical modeling of the thermoelectric cooler with a complementary equation for heat circulation in air gaps

    NASA Astrophysics Data System (ADS)

    Fang, En; Wu, Xiaojie; Yu, Yuesen; Xiu, Junrui

    2017-01-01

    In this paper, a numerical model is developed by combining thermodynamics with heat transfer theory. Taking inner and external multi-irreversibility into account, it is with a complementary equation for heat circulation in air gaps of a steady cooling system with commercial thermoelectric modules operating in refrigeration mode. With two modes concerned, the equation presents the heat flowing through air gaps which forms heat circulations between both sides of thermoelectric coolers (TECs). In numerical modelling, a TEC is separated as two temperature controlled constant heat flux reservoirs in a thermal resistance network. In order to obtain the parameter values, an experimental apparatus with a commercial thermoelectric cooler was built to characterize the performance of a TEC with heat source and sink assembly. At constant power dissipation, steady temperatures of heat source and both sides of the thermoelectric cooler were compared with those in a standard numerical model. The method displayed that the relationship between Φf and the ratio Φ_{c}'/Φ_{c} was linear as expected. Then, for verifying the accuracy of proposed numerical model, the data in another system were recorded. It is evident that the experimental results are in good agreement with simulation(proposed model) data at different heat transfer rates. The error is small and mainly results from the instabilities of thermal resistances with temperature change and heat flux, heat loss of the device vertical surfaces and measurements.

  10. Pressure distributions and oil-flow patterns for a swept circulation-control wing

    NASA Technical Reports Server (NTRS)

    Keener, Earl R.; Sanderfer, Dwight T.; Wood, Norman J.

    1987-01-01

    Pressure distributions and photographs of oil flow patterns are presented for a circulation control wing. The model was an aspect ratio four semispan wing mounted on the side wall of the NASA Ames Transonic Wind Tunnel. The airfoil was a 20 percent thick ellipse, modified with circular leading and trailing edges of 4 percent radius, and had a 25.4 cm constant chord. This configuration does not represent a specific wing design, but is generic. A full span, tangetial, rearward blowing, circulation control slot was incorporated ahead of the trailing edge on the upper surface. The wing was tested at Mach numbers from 0.3 to 0.75 at sweep angle of 0 to 45 deg with internal to external pressure ratios of 1.0 to 3.0. Lift and pitching momemt coefficients were obtained from measured pressure distributions at five span stations. When the conventional corrections resulting from sweep angle are applied to the lift and moment of circulation control sections, no additional corrections are necessary to account for changes in blowing efficiency. This is demonstrated for an aft sweep angle of 45 deg. An empirical technique for estimating the downwash distribution of a swept wing was validated.

  11. Linking storm surge activity and circulation variability along the Spanish coast through a synoptic pattern classification

    NASA Astrophysics Data System (ADS)

    Rasilla Álvarez, Domingo; Garcia Codrón, Juan Carlos

    2010-05-01

    The potentially negative consequences resulting from the estimations of global sea level rising along the current century are a matter of serious concern in many coastal areas worldwide. Most of the negative consequences of the sea level variability, such as flooding or erosion, are linked to episodic events of strong atmospheric forcing represented by deep atmospheric disturbances, especially if they combine with extreme astronomical high tides. Moreover, the interaction between the prevailing flows during such events and the actual orientation of the coast line might accelerate or mitigate such impacts. This contribution analyses sea surge variations measured at five tide-gauge stations located around the Iberian Peninsula and their relationships with regional scale circulation patterns with local-scale winds. Its aim is to improve the knowledge of surge related-coastal-risks by analysing the relationship between surges and their atmospheric forcing factors at different spatial scales. The oceanographic data set consists of hourly data from 5 tide gauge stations (Santander, Vigo, Bonanza, Málaga, Valencia and Barcelona) disseminated along the Spanish coastline, provided by Puertos del Estado. To explore the atmospheric mechanisms responsible for the sign and magnitude of sea surges, a regional Eulerian approach (a synoptic typing) were combined with a larger-scale Lagrangian method, based on the analysis of storm-tracks over the Atlantic and local information (synop reports) obtained from the closest meteorological stations to the tide gauges. The synoptic catalogue was obtained following a procedure that combines Principal Component Analysis (PCA) for reduction purposes and clustering (Ward plus K-means) to define the circulation types. Sea level pressure, surface 10m U and V wind components gridded data were obtained from NCEP Reanalysis, while storm tracks and cyclone statistics were extracted from the CDC Map Room Climate Products Storm Track Data (http

  12. Can tree-ring density data reflect summer temperature extremes and associated circulation patterns over Fennoscandia?

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Ionita, Monica; Lohmann, Gerrit; Chen, Deliang; Linderholm, Hans W.

    2016-12-01

    Tree-ring maximum latewood density (MXD) records from Fennoscandia have been widely used to infer regional- and hemispheric-scale mean temperature variability. Here, we explore if MXD records can also be used to infer past variability of summer temperature extremes across Fennoscandia. The first principal component (PC1) based on 34 MXD chronologies in Fennoscandia explains 50% of the total variance in the observed warm-day extremes over the period 1901-1978. Variations in both observed summer warm-day extremes and PC1 are influenced by the frequency of anomalous anticyclonic pattern over the region, summer sea surface temperatures over the Baltic, North and Norwegian Seas, and the strength of the westerly zonal wind at 200 hPa across Fennoscandia. Both time series are associated with nearly identical atmospheric circulation and SST patterns according to composite map analysis. In a longer context, the first PC based on 3 millennium-long MXD chronologies in central and northern Fennoscandia explains 83% of the total variance of PC1 from the 34 MXD chronologies over the period 1901-1978, 48% of the total variance of the summer warm-day extreme variability over the period 1901-2006, and 36% of the total variance in the frequency of a summer anticyclonic pattern centered over eastern-central Fennoscandia in the period 1948-2006. The frequency of summer warm-day extremes in Fennoscandia is likely linked to a meridional shift of the northern mid-latitude jet stream. This study shows that the MXD network can be used to infer the variability of past summer warm-day extremes and the frequency of the associated summer anticyclonic circulation pattern over Fennoscandia.

  13. Investigation of the role of large-scale circulation patterns on Central European streamflow

    NASA Astrophysics Data System (ADS)

    Steirou, Eva; Apel, Heiko; Merz, Bruno

    2016-04-01

    Large scale oscillations-phenomena such as El Niño-Southern Oscillation (ENSO) and North Atlantic Oscillation (NAO) influence the climate and hydrological variables (temperature, precipitation, streamflow) in many areas around the globe. Here we review previous studies examining links between such phenomena and streamflow in Central Europe. The selected area under examination is the region covered by 9 countries: Germany, Poland, Switzerland, Lichtenstein, Austria, the Czech Republic, Slovakia, Hungary and Slovenia. The study takes into consideration only measured and not proxy data. Mean, low and high flows are examined separately in order to improve the understanding on the possible different influences of the climatic phenomena on different streamflow characteristics. Previous results form a consistent pattern that suggests causal relationships but only for certain indices and seasons. Most promising results concern the winter NAO index which seems to affect winter and spring streamflow in Central Europe and synoptic circulation patterns that have been linked to streamflow in the area throughout the year. Based on the findings of the review, we examine further the relations between NAO, synoptic circulation patterns and streamflow in the winter and spring season. In our analysis we examine 68 streamflow stations in Germany all covering the period 1932 to 2005. The investigation focuses on the interplay between NAO and synoptic patterns and on the effects of the climatic indices on the amplitude, spatial coherence and distributions of streamflow data. The preliminary results suggest that NAO weakly influences streamflow in both seasons and that a combined analysis with other climatic parameters may clarify possible existing links.

  14. Simulation of tidal flow and circulation patterns in the Loxahatchee River Estuary, southeastern Florida

    USGS Publications Warehouse

    Russell, G.M.; Goodwin, C.R.

    1987-01-01

    Results of a two-dimensional, vertically averaged, computer simulation model of the Loxahatchee River estuary show that under typical low freshwater inflow and vertically well mixed conditions, water circulation is dominated by freshwater inflow rather than by tidal influence. The model can simulate tidal flow and circulation in the Loxahatchee River estuary under typical low freshwater inflow and vertically well mixed conditions, but is limited, however, to low-flow and well mixed conditions. Computed patterns of residual water transport show a consistent seaward flow from the northwest fork through the central embayment and out Jupiter Inlet to the Atlantic Ocean. A large residual seaward flow was computed from the North Intracoastal Waterway to the inlet channel. Although the tide produces large flood and ebb flows in the estuary, tide-induced residual transport rates are low in comparison with freshwater-induced residual transport. Model investigations of partly mixed or stratified conditions in the estuary need to await development of systems capable of simulating three-dimensional flow patterns. (Author 's abstract)

  15. The influence of coastal topography, circulation patterns, and rafting in structuring populations of an intertidal alga.

    PubMed

    Muhlin, J F; Engel, C R; Stessel, R; Weatherbee, R A; Brawley, S H

    2008-03-01

    Understanding the dispersal processes that influence genetic structure in marine species requires estimating gene flow in a dynamic, fluid environment that is often poorly characterized at scales relevant to multiple dispersive stages (e.g. spores, gametes, zygotes, larvae, adults). We examine genetic structure in the marine alga Fucus vesiculosus L., which inhabits moderately exposed shores in the northern Atlantic but releases gametes only under sunny, calm conditions. We predicted genetic structure would correlate with coastal topography because weather frequently varies across coastal promontories on the Maine shore when F. vesiculosus is reproductive, which causes one side to experience high levels of water motion (= no gamete release) while one side is calm (= gamete release). Furthermore, we expected that the effect of low dispersal capacities of gametes and zygotes would result in spatial genetic structure over short distances. Using surface drifters, we characterized near-shore circulation patterns around the study sites to investigate whether directionality of gene flow was correlated with directionality of currents. We found significant genetic differentiation among sites sampled at two different peninsulas, but patterns of differentiation were unrelated to coastal topography and there was no within-site spatial structuring. Our genetic and near-shore circulation data, combined with an examination of gamete longevity, support the dependency of gene flow on storm-detached, rafting, reproductive adults. This study highlights the significance of rafting as a mechanism for structuring established populations of macroalgae and associated biota and demonstrates the importance of coupling population genetics' research with relevant hydrodynamic studies.

  16. Ground level air convection produces frost damage patterns in turfgrass.

    PubMed

    Ackerson, Bruce J; Beier, Richard A; Martin, Dennis L

    2015-11-01

    Frost injury patterns are commonly observed on the warm-season turfgrass species bermudagrass (Cynodon species Rich.), zoysiagrass (Zoysia species Willd.), and buffalograss [Bouteloua dactyloides (Nutt.) J.T. Columbus] in cool-temperate and subtropical zones. Qualitative observations of these injury patterns are presented and discussed. A model for the formation of such patterns based on thermal instability and convection of air is presented. The characteristic length scale of the observed frost pattern injury requires a temperature profile that decreases with height from the soil to the turfgrass canopy surface followed by an increase in temperature with height above the turfgrass canopy. This is justified by extending the earth temperature theory to include a turf layer with atmosphere above it. Then the theory for a thermally unstable layer beneath a stable region by Ogura and Kondo is adapted to a turf layer to include different parameter values for pure air, as well as for turf, which is treated as a porous medium. The earlier porous medium model of Thompson and Daniels proposed to explain frost injury patterns is modified to give reasonable agreement with observed patterns.

  17. Ground level air convection produces frost damage patterns in turfgrass

    NASA Astrophysics Data System (ADS)

    Ackerson, Bruce J.; Beier, Richard A.; Martin, Dennis L.

    2015-11-01

    Frost injury patterns are commonly observed on the warm-season turfgrass species bermudagrass ( Cynodon species Rich.), zoysiagrass ( Zoysia species Willd.), and buffalograss [ Bouteloua dactyloides (Nutt.) J.T. Columbus] in cool-temperate and subtropical zones. Qualitative observations of these injury patterns are presented and discussed. A model for the formation of such patterns based on thermal instability and convection of air is presented. The characteristic length scale of the observed frost pattern injury requires a temperature profile that decreases with height from the soil to the turfgrass canopy surface followed by an increase in temperature with height above the turfgrass canopy. This is justified by extending the earth temperature theory to include a turf layer with atmosphere above it. Then the theory for a thermally unstable layer beneath a stable region by Ogura and Kondo is adapted to a turf layer to include different parameter values for pure air, as well as for turf, which is treated as a porous medium. The earlier porous medium model of Thompson and Daniels proposed to explain frost injury patterns is modified to give reasonable agreement with observed patterns.

  18. Changes in atmospheric circulation patterns affect midcontinent wetlands sensitive to climate

    USGS Publications Warehouse

    LaBaugh, J.W.; Winter, T.C.; Swanson, G.A.; Rosenberry, D.

    1996-01-01

    Twenty-seven years of data from midcontinent wetlands indicate that the response of these wetlands to extremes in precipitation-drought and deluge-persists beyond the extreme events. Chemical changes transcend such simple relations as increased salinity during dry periods because drought provides mechanisms for removal of salt by deflation and seepage to groundwater. Inundation of vegetation zones including rooted or floating mats of cattail (Typha glauca) can stimulate sulfate reduction and shift the anion balance from sulfate to bicarbonate dominance. Disruptions in the circulation of moisture-laden air masses over the midcontinent, as in the drought of 1988 and the deluge of 1993, have a major effect on these wetlands, which are representatives of the primary waterfowl breeding habitat of the continent.

  19. Shear turbulence, Langmuir circulation and scalar transfer at an air-water interface

    NASA Astrophysics Data System (ADS)

    Hafsi, Amine; Tejada-Martinez, Andres; Veron, Fabrice

    2016-11-01

    DNS of an initially quiescent coupled air-water interface driven by an air-flow with free stream speed of 5 m/s generates gravity-capillary waves and small-scale (centimeter-scale) Langmuir circulation (LC) beneath the interface. In addition to LC, the waterside turbulence is characterized by shear turbulence with structures similar to classical "wall streaks" in wall-bounded flow. These streaks, denoted here as "shear streaks", consist of downwind-elongated vortices alternating in sign in the crosswind direction. The presence of interfacial waves causes interaction between these vortices giving rise to bigger vortices, namely LC. LES with momentum equation augmented with the Craik-Leibovich (C-L) vortex force is used to understand the roles of the shear streaks (i.e. the shear turbulence) and the LC in determining scalar flux from the airside to the waterside and vertical scalar transport beneath. The C-L force consists of the cross product between the Stokes drift velocity (induced by the interface waves) and the flow vorticity. It is observed that Stokes drift shear intensifies the shear streaks (with respect to flow without wave effects) leading to enhanced scalar flux at the air-water interface. LC leads to increased vertical scalar transport at depths below the interface.

  20. Decadal changes in North Atlantic atmospheric circulation patterns recorded by sand spits since 1800 CE

    NASA Astrophysics Data System (ADS)

    Poirier, Clément; Tessier, Bernadette; Chaumillon, Éric; Bertin, Xavier; Fruergaard, Mikkel; Mouazé, Dominique; Noël, Suzanne; Weill, Pierre; Wöppelmann, Guy

    2017-03-01

    Present-day coastal barriers represent around 15% of the world's oceanic shorelines, and play an important role as early warning indicators of environmental change. Among them, wave-dominated barriers are dynamic landforms that tend to migrate landward in response to storms and sea-level change. High rates of sediment supply can locally offset the global retrogradation trend, providing valuable records of past environmental change occurring on transgressive coasts. However, geochronological control limits the temporal resolution of such records to millennial or centennial timescales, and the decadal or even faster response of wave-built barriers to historical climate changes is therefore poorly understood. In this study, we show that shoreline dynamics of sand spits reconstructed from old cartographic documents has been synchronous on both margins of the North Atlantic Ocean since about 1800 CE. Spit growth accelerated drastically during three periods lasting about 15 years, characterised by positive North Atlantic Oscillation (NAO) and negative East Atlantic-West Russia (EA-WR) atmospheric circulation patterns. These changes are in phase with periods of increased volcanic activity. We use a high-resolution wave hindcast (1948-2014 CE) in a reference area to confirm the association between NAO and EA-WR as a proxy for offshore and nearshore wave height and for associated longshore sediment transport (LST) involved in spit growth. A 24-month lagged correlation between sediment transport and volcanic aerosol optical thickness (concentration of ashes in the atmosphere) is observed, suggesting that spit shoreline dynamics at the decadal timescale is partially forced by external climate drivers via cascading effects on atmospheric circulation patterns and wave climate. Our results imply that NAO variability alone is not sufficient to understand the evolution of wave-built coastal environments. The associated sediment record can be used to reconstruct multi

  1. The impact of large-scale circulation patterns on summer crop yields in IP

    NASA Astrophysics Data System (ADS)

    Capa Morocho, Mirian; Rodríguez Fonseca, Belén; Ruiz Ramos, Margarita

    2014-05-01

    Large-scale circulations patterns (ENSO, NAO) have been shown to have a significant impact on seasonal weather, and therefore on crop yield over many parts of the world(Garnett and Khandekar, 1992; Aasa et al., 2004; Rozas and Garcia-Gonzalez, 2012). In this study, we analyze the influence of large-scale circulation patterns and regional climate on the principal components of maize yield variability in Iberian Peninsula (IP) using reanalysis datasets. Additionally, we investigate the modulation of these relationships by multidecadal patterns. This study is performed analyzing long time series of maize yield, only climate dependent, computed with the crop model CERES-maize (Jones and Kiniry, 1986) included in Decision Support System for Agrotechnology Transfer (DSSAT v.4.5). To simulate yields, reanalysis daily data of radiation, maximum and minimum temperature and precipitation were used. The reanalysis climate data were obtained from National Center for Environmental Prediction (20th Century and NCEP) and European Centre for Medium-Range Weather Forecasts (ECMWF) data server (ERA 40 and ERA Interim). Simulations were run at five locations: Lugo (northwestern), Lerida (NE), Madrid (central), Albacete (southeastern) and Córdoba (S IP) (Gabaldón et al., 2013). From these time series standardized anomalies were calculated. Afterwards, time series were time filtered to focus on the interannual-to-multiannual variability, splitting up in two components: low frequency (LF) and high frequency (HF) time scales. The principal components of HF yield anomalies in IP were compared with a set of documented patterns. These relationships were compared with multidecadal patterns, as Atlanctic Multidecadal Oscillations (AMO) and Interdecadal Pacific Oscillations (IPO). The results of this study have important implications in crop forecasting. In this way, it may have a positive impact on both public (agricultural planning) and private (decision support to farmers, insurance

  2. The sensitivity of latent heat flux to the air humidity approximations used in ocean circulation models

    NASA Technical Reports Server (NTRS)

    Liu, W. Timothy; Niiler, Pearn P.

    1990-01-01

    In deriving the surface latent heat flux with the bulk formula for the thermal forcing of some ocean circulation models, two approximations are commonly made to bypass the use of atmospheric humidity in the formula. The first assumes a constant relative humidity, and the second supposes that the sea-air humidity difference varies linearly with the saturation humidity at sea surface temperature. Using climatological fields derived from the Marine Deck and long time series from ocean weather stations, the errors introduced by these two assumptions are examined. It is shown that the errors reach above 100 W/sq m over western boundary currents and 50 W/sq m over the tropical ocean. The two approximations also introduce erroneous seasonal and spatial variabilities with magnitudes over 50 percent of the observed variabilities.

  3. Patterns of Circulating Fibroblast Growth Factor 21 in Subjects with and without Type 2 Diabetes

    PubMed Central

    Ma, Xiaojing; Hao, Yaping; Lu, Wei; Li, Huating; Bao, Yuqian; Zhou, Jian; Jia, Weiping

    2015-01-01

    Background Fibroblast growth factor 21 (FGF21) exerts wide-range effects on carbohydrate and lipid metabolism. However, its perturbation in type 2 diabetes mellitus (T2DM) remains elusive. Besides, previous human studies in T2DM simply investigated fasting or stimulated levels of FGF21. The current study sought to evaluate the temporal changes of circulating FGF21 in subjects with and without T2DM. Methods Ten patients with T2DM and 16 normal controls (NC) were recruited. Participants were categorized as obese (BMI≥25 kg/m2) or lean (BMI<25 kg/m2). Blood samples were drawn every 30 min within 7 hours (8 a.m.-3 p.m.). Serum FGF21, blood glucose, insulin, free fatty acids (FFAs) and adiponectin were measured in all subjects. Results The peak levels of FGF21 were observed in the fasting state (8 a.m.) both in T2DM and NC groups (267.35 ±158.72 ng/L vs. 178.93±121.37 ng/L, P = 0.096). FGF21 AUC did not differ significantly between the two groups (T2DM: 949.4±471.47 ng/L; NC: 883.13±561.40 ng/L, P = 0.770). Obese subjects had higher FGF21 levels than lean ones in patients either with or without T2DM. The pattern of FFAs closely resembled that of FGF21. Correlation analysis showed that temporal levels of FGF21 were significantly related to FFAs (r = 0.749, P = 0.002),but not blood glucose, insulin or adiponectin (all P> 0.05). Conclusions These findings suggest that the pattern of circulating FGF21 does not differ significantly between T2DM and NC,although T2DM patients showed a trend toward higher fasting FGF21 than healthy subjects. The pattern of circulating FFAs is significantly associated with that of FGF21. PMID:26540514

  4. Two types of regional daily precipitation extremes over fujian-jiangxi of China and their related anomalous circulation patterns during boreal summer

    NASA Astrophysics Data System (ADS)

    Li, M.; Guan, Z.

    2015-12-01

    Based on daily rainfall data from CMA, best track data of Tropical Cyclones (TC) from JMA, and the NCEP-NCAR reanalysis from NOAA, regional mean daily precipitation extreme (RDPE) events over Fujian-Jiangxi Region (FJR) of China and the associated circulation anomalies have been investigated. During summers of 1979-2011, totaling 105 RDPE events are identified; out of which 35 are TC-influenced (TCIn-RDPE) and 70 no-TC-related (TCFr-RDPE). Distinct differences between these two types of RDPEs are found in both their statistical features and the related circulation patterns, except they all occurred more frequently with stronger intensities in recent two decades other than in 1980s. TCFr-RDPEs usually occur in June while TCIn-RDPEs mainly do in July-August. When TCFr-RDPEs happen, a center of the departure cyclonic circulation is observed over FJR, with an anomalous anticyclonic circulation to the south of this region. The warm/moist airflows from the South-China-Sea (SCS) and western Pacific meet with colder air from the north to form a narrow convergent belt of water vapor over FJR. Simultaneously, positive diabatic forcing anomalies are observed over FJR whereas negatives over both its south and north sides, facilitating the formation and maintenance of the cyclonic circulation anomaly as well as the upward motion of the atmosphere over FJR. As TCIn-RDPEs occur, southeastern China is dominated by a TC-related stronger anomalous cyclonic circulation. An anomalous anticyclonic circulation in mid- and high-latitudes north of the FJR exist in mid and lower troposphere, which looks opposite as compared to that of TCFr-RDPE events. The abundant warm/wet air is carried into the FJR from both the Indian Ocean and SCS, leading to large amount of latent heat to release over FJR, inducing strong ascent of air there. Furthermore, large differences are also found in ways of Rossby wave energy propagation between these two type RDPE events. These results are helpful for us to

  5. Patterns of circulating serotonin and related metabolites in multiparous dairy cows in the peripartum period.

    PubMed

    Moore, S A E; Laporta, J; Crenshaw, T D; Hernandez, L L

    2015-06-01

    Dairy cows are challenged to maintain Ca and glucose homeostasis during the transition period. Serotonin (5-HT) is a monoamine that modulates Ca and glucose homeostasis in rodents. Serotonin is positively correlated with Ca and glucose status in dairy cows on d 1 of lactation. However, the pattern of circulating concentrations of 5-HT over the course of a 305-d lactation is unknown. In this observational, longitudinal study, we examined the metabolite patterns of 5-HT, Ca, glucose, parathyroid hormone-related protein, and β-hydroxybutyrate on 2 commercial dairy farms in south-central Wisconsin. Cows sampled on farm 1 were multiparous Jersey cows (n=30) that calved within a 23-d period; cows on farm 2 were multiparous Holstein cows (n=35) that calved within a 20-d period. Blood samples were collected daily between d -5 and d 10 relative to parturition and on d 30, 60, 90, 150, and 300 of lactation. Farms 1 and 2 were analyzed individually because of the presence of a farm effect in the initial analysis; a time effect was present on both farms. Concentrations of 5-HT decreased near parturition compared with prepartum by 57.9 and 29.5% on farm 1 and 2, respectively. Transition period 5-HT nadirs were observed on d 1 on farm 1, and on d 1 and 9 on farm 2. Serotonin recovered to prepartum concentrations by d 5 on farm 1. On farm 2, 5-HT recovered to prepartum concentrations by d 4, with a subsequent decrease of 34.6% on d 9 to a level similar to that observed on d 1. Furthermore, 5-HT increased markedly in cows on both farms near peak lactation (d 60, 90, and 150) and decreased on d 300. Compared with prepartum concentrations, Ca decreased by 34.2 and 11.2% on farms 1 and 2, respectively. Circulating total Ca nadir was observed on d 1 on both farms. Circulating 5-HT and circulating Ca were positively correlated during the early lactation period (d 1 to 5 and d 6 to 10) on farm 1 (r=0.31 and r=0.22, respectively) and d 6 to 10 on farm 2 (r=0.16). Circulating 5-HT and

  6. Boreal Atmospheric circulation patterns on the basis of the world network weather station data

    NASA Astrophysics Data System (ADS)

    Melnikov, V. A.; Moskalenko, L. V.; Golenko, N. N.; Golenko, M. N.

    2012-04-01

    Due to the recent developments of various methods of data representation in meteorology, the image of the globe-scale atmospheric circulation system has appeared. Basically, the circulation assessment is based on the indirect teleconnection method and rotated principal component analysis of the sea level pressure or geopotential height fields. These methods have several constraints because of the integration of intermittent and frontal atmospheric synoptic variability.As follows from the work of prof. B.L. Dzerdzeevskii, due to the existing of Arctic blocking processes, simplified geostrophic wind concept on the basis of the low-frequency baric patterns of the permanent centers of action, should be reconsidered in more details. For this purpose, weather station direct in-situ data with the use of progressive vector diagrams for wind speed and direction time series visualization are appropriate. Wind diagrams incorporate various fluctuations with time scales from synoptic to climatic, which can be considered without any filtration applied. The subject of work is to study the long-term wind regimes in the Northern Hemisphere, with the aim to obtain atmospheric circulation patterns in the regions of interest, in particular induced by the NAO(North Atlantic oscillation), EAWR(East Atlantic-West Russia) and SH(Siberian High) centers of action at different time and space scales. The analysis is based on the standard meteorological data (including wind direction and speed) of WMO network weather stations in the period since 1998 up to the present. For intercalibration and validation, NCEP-NCAR and QuickSCAT sea winds databases were considered, as well. Basic features of the wind variability are governed by the relevant types of the large-scale synoptic atmospheric processes, which depend upon the state of the global atmospheric circulation, their large-scale gyres and separate smaller vorticity cells. All the individual wind diagrams appear as having rather simple low

  7. Long-term dynamics of atmospheric circulation over Siberia and its relationship with air temperature

    NASA Astrophysics Data System (ADS)

    Podnebesnykh, N. V.; Ippolitov, I. I.

    2012-12-01

    The main objective of this study is the investigation of cyclone characteristics variability in the region bounded by the coordinates 50°-70° N, 60°-110° W which includes Western Siberia and the part of Eastern Siberia for the time interval 1976-2006, as well as the establishment of statistical relationships between the temperature conditions and the atmospheric circulation. For the dynamics of the climatic characteristics of cyclones and anticyclones over Siberia surface synoptic maps were used, and to study the trends of air temperature daily data from 169 ground-based meteorological stations and posts located in the study area were analyzed. During the period of the modern warming the territory of Siberia was characterized by rapidly temperature increase: average annual value was 0.36°C/10 years, and average monthly value was 0.83°C/10 years. The positive trend of temperature increasing is shown for all months except November. The total number of cyclones over the territory of under study for the period of 1976-2006 has decreased at a rate of 1.4 cyclone/10 years. For further analysis all cyclones were divided into three groups, according to their directions: north, west and south. It was found the number of south and west cyclones decreased, whole the number of cyclone from north directions increased. Such multidirectional dynamics of cyclones from different directions can be associated with the processes of strengthening and weakening of the Polar and Arctic fronts in the Atlantic sector of the Northern Hemisphere. Among characteristics of vortex activity the pressure in the centers of cyclones and anticyclones has the greatest influence on the air temperature and the total number of cyclones has the smallest. Multiple regression models have shown that in different months of a year the circulation can describe from 54% to 82% of temperature variability.

  8. Reproducible copy number variation patterns among single circulating tumor cells of lung cancer patients

    PubMed Central

    Ni, Xiaohui; Zhuo, Minglei; Su, Zhe; Duan, Jianchun; Gao, Yan; Wang, Zhijie; Zong, Chenghang; Bai, Hua; Chapman, Alec R.; Zhao, Jun; Xu, Liya; An, Tongtong; Ma, Qi; Wang, Yuyan; Wu, Meina; Sun, Yu; Wang, Shuhang; Li, Zhenxiang; Yang, Xiaodan; Yong, Jun; Su, Xiao-Dong; Lu, Youyong; Bai, Fan; Xie, X. Sunney; Wang, Jie

    2013-01-01

    Circulating tumor cells (CTCs) enter peripheral blood from primary tumors and seed metastases. The genome sequencing of CTCs could offer noninvasive prognosis or even diagnosis, but has been hampered by low single-cell genome coverage of scarce CTCs. Here, we report the use of the recently developed multiple annealing and looping-based amplification cycles for whole-genome amplification of single CTCs from lung cancer patients. We observed characteristic cancer-associated single-nucleotide variations and insertions/deletions in exomes of CTCs. These mutations provided information needed for individualized therapy, such as drug resistance and phenotypic transition, but were heterogeneous from cell to cell. In contrast, every CTC from an individual patient, regardless of the cancer subtypes, exhibited reproducible copy number variation (CNV) patterns, similar to those of the metastatic tumor of the same patient. Interestingly, different patients with the same lung cancer adenocarcinoma (ADC) shared similar CNV patterns in their CTCs. Even more interestingly, patients of small-cell lung cancer have CNV patterns distinctly different from those of ADC patients. Our finding suggests that CNVs at certain genomic loci are selected for the metastasis of cancer. The reproducibility of cancer-specific CNVs offers potential for CTC-based cancer diagnostics. PMID:24324171

  9. Can tree-ring proxy reflect summer temperature extremes and their associated circulation patterns over Fennoscandia?

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Ionita, Monica; Lohmann, Gerrit; Chen, Deliang; Linderholm, Hans

    2016-04-01

    Tree-ring maximum latewood density (MXD) records in Fennoscandia have been widely used to infer the regional and hemispheric-scale mean temperature variability. Here, we explore whether the tree-ring record can be used to infer the variability of summer temperature extremes over Fennoscandia through a statistical analyses of gridded instrumental reanalysis and tree-ring data. The first principal component (PC1) of the MXD network in Fennoscandia, which explains 50% variance of the summer warm-day extreme variability over the period 1901-1978, has a mopolar structure with the highest loadings in the central and northern part of Fennoscandia. The corresponding time series (PC1) is influenced by the variability of a blocking-like anticyclonic pattern over Fennoscandia, and the northward shift of northeast Atlantic high-altitude jet stream. The strongest correlations are found between the PC1 and the summer warm-day extremes over Fennoscandia, consistent with the anticyclonic pattern. This study shows that the Fennoscandian MXD network can be used to infer the variability of the past high-temperature extremes in Fennoscandia and their associated circulation patterns over summer.

  10. Landscape analysis and pattern of hurricane impact and circulation on mangrove forests of the everglades

    USGS Publications Warehouse

    Doyle, T.W.; Krauss, K.W.; Wells, C.J.

    2009-01-01

    The Everglades ecosystem contains the largest contiguous tract of mangrove forest outside the tropics that were also coincidentally intersected by a major Category 5 hurricane. Airborne videography was flown to capture the landscape pattern and process of forest damage in relation to storm trajectory and circulation. Two aerial video transects, representing different topographic positions, were used to quantify forest damage from video frame analysis in relation to prevailing wind force, treefall direction, and forest height. A hurricane simulation model was applied to reconstruct wind fields corresponding to the ground location of each video frame and to correlate observed treefall and destruction patterns with wind speed and direction. Mangrove forests within the storm's eyepath and in the right-side (forewind) quadrants suffered whole or partial blowdowns, while left-side (backwind) sites south of the eyewall zone incurred moderate canopy reduction and defoliation. Sites along the coastal transect sustained substantially more storm damage than sites along the inland transect which may be attributed to differences in stand exposure and/or stature. Observed treefall directions were shown to be non-random and associated with hurricane trajectory and simulated forewind azimuths. Wide-area sampling using airborne videography provided an efficient adjunct to limited ground observations and improved our spatial understanding of how hurricanes imprint landscape-scale patterns of disturbance. ?? 2009 The Society of Wetland Scientists.

  11. Using Atmospheric Circulation Patterns to Detect and Attribute Changes in the Risk of Extreme Climate Events

    NASA Astrophysics Data System (ADS)

    Diffenbaugh, N. S.; Horton, D. E.; Singh, D.; Swain, D. L.; Touma, D. E.; Mankin, J. S.

    2015-12-01

    Because of the high cost of extreme events and the growing evidence that global warming is likely to alter the statistical distribution of climate variables, detection and attribution of changes in the probability of extreme climate events has become a pressing topic for the scientific community, elected officials, and the public. While most of the emphasis has thus far focused on analyzing the climate variable of interest (most often temperature or precipitation, but also flooding and drought), there is an emerging emphasis on applying detection and attribution analysis techniques to the underlying physical causes of individual extreme events. This approach is promising in part because the underlying physical causes (such as atmospheric circulation patterns) can in some cases be more accurately represented in climate models than the more proximal climate variable (such as precipitation). In addition, and more scientifically critical, is the fact that the most extreme events result from a rare combination of interacting causes, often referred to as "ingredients". Rare events will therefore always have a strong influence of "natural" variability. Analyzing the underlying physical mechanisms can therefore help to test whether there have been changes in the probability of the constituent conditions of an individual event, or whether the co-occurrence of causal conditions cannot be distinguished from random chance. This presentation will review approaches to applying detection/attribution analysis to the underlying physical causes of extreme events (including both "thermodynamic" and "dynamic" causes), and provide a number of case studies, including the role of frequency of atmospheric circulation patterns in the probability of hot, cold, wet and dry events.

  12. Effects of a Circulating-water Garment and Forced-air Warming on Body Heat Content and Core Temperature

    PubMed Central

    Taguchi, Akiko; Ratnaraj, Jebadurai; Kabon, Barbara; Sharma, Neeru; Lenhardt, Rainer; Sessler, Daniel I.

    2005-01-01

    Background: Forced-air warming is sometimes unable to maintain perioperative normothermia. We therefore compared heat transfer, regional heat distribution, and core rewarming of forced-air warming with a novel circulating-water garment. Methods: Nine volunteers were each evaluated on two randomly ordered study days. They were anesthetized and cooled to a core temperature near 34°C. The volunteers were subsequently warmed for 2.5 hours with either a circulating-water garment or forced-air cover. Overall, heat balance was determined from the difference between cutaneous heat loss (thermal flux transducers) and metabolic heat production (oxygen consumption). Average arm and leg (peripheral) tissue temperatures were determined from 18 intramuscular needle thermocouples, 15 skin thermal flux transducers, and “deep” arm and foot thermometers. Results: Heat production (≈ 60 kcal/h) and loss (≈45 kcal/h) were similar with each treatment before warming. The increase in heat transfer across anterior portions of the skin surface was similar with each warming system (≈65 kcal/h). Forced-air warming had no effect on posterior heat transfer whereas circulating-water transferred 21 ± 9 kcal/h through the posterior skin surface after a half hour of warming. Over 2.5 h, circulating-water thus increased body heat content 56% more than forced air. Core temperatures thus increased faster than with circulating water than forced air, especially during the first hour, with the result that core temperature was 1.1 ± 0.7°C greater after 2.5 h (P < 0.001). Peripheral tissue heat content increased twice as much as core heat content with each device, but the core-to-peripheral tissue temperature gradient remained positive throughout the study. Conclusions: The circulating-water system transferred more heat than forced air, with the difference resulting largely from posterior heating. Circulating water rewarmed patients 0.4°C/h faster than forced air. A substantial peripheral

  13. Surface circulation patterns in the Gulf of California derived from MODIS Aqua 250 m

    NASA Astrophysics Data System (ADS)

    Martínez-Flores, G.; Salinas-González, F.; Gutiérrez de Velasco-Sanromán, G.; Godínez-Orta, L.

    2009-04-01

    The Gulf of California (GC) is a marginal elongated and semi-enclosed sea located at northwest of Mexico, between the Peninsula of Baja California and the mainland Mexico. The considered area average 150 km in width and 1500 km in length, from the mouth of the Colorado River to Cabo Corrientes, Jalisco. It has a maximum depth of 3600 m at the southern inlet and the northern region average 200 m in deep. The study of superficial circulation patterns in the GC is of interest because its relevance to the mechanisms of transport for distribution of a variety of materials -plankton, contaminants, microalgae, etc.- and its association with areas of sedimentary deposits, zones where there is a higher probability for fishing or related to the presence of certain species of marine life. Recent studies explain the circulation of the GC as a result of the Pacific Ocean's forcing, wind, heat fluxes on the sea surface and the interaction between the flow produced by these agents and bathymetry. The objective of this work was to obtain evidence of the patterns of surface circulation using a spatial resolution of 250 m over a period of two to seven days (depending on cloud cover), which offered images from the MODIS Level 1B. This essay is an attempt to contribute with more information to the understanding of the regional dynamics of the GC and its local influence on the zones bordering the coast. Thus, MODIS Aqua 250 m data was used, to which algorithms were applied in order to enhance the contrast of reflectance levels of these bands (0.620-0.670 and 0.841-0.876 µm) within the marine environment. The results are associated with suspended particulate matter (SPM), which we used as tracers of the surface circulation, using a sequence of images from January 2004 to December 2008. Algorithms for dust and cloud detection were used and incorporated with thermal band images, in which zones of terrigenous contribution by eolian transport were identified. Furthermore, pluvial

  14. Circulation patterns and wave climate along the coast of the Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Rasilla Álvarez, D.; García Codrán, J. C.

    2010-09-01

    Evidences of an active erosion (beach retreat, falling cliffs, damaged infrastructures) are observed in many coastal areas around the Iberian Peninsula. Morphogenetic coastal processes result from individual episodes of storminess that can accelerate or mitigate the expected impacts of the global rising trend of average sea levels. Thus, a good understanding of the local forcing processes is required in order to assess the impacts of future sea levels. The spatial and temporal variability of the wave climate along the cost of the Iberian Peninsula and their relationships with regional scale circulation patterns and local-scale winds are the main objectives of this contribution. The oceanographic data set consists of observed hourly data from 7 buoys disseminated along the Spanish coastline, and hindcasted 3-hourly analogous parameters (SIMAR 44 database), provided by Puertos del Estado. Sea level pressure, surface 10m U and V wind components gridded data were obtained from NCEP Reanalysis, while storm tracks and cyclone statistics were extracted from the CDC Map Room Climate Products Storm Track Data (http://www.cdc.noaa.gov/map/clim/st_data.html). The influence of the local conditions was highlighted comparing meteorological data from the buoys and synop reports from coastal stations. To explore the regional atmospheric mechanisms responsible for the wave variability, a regional Eulerian approach (a synoptic typing) were combined with a larger-scale Lagrangian method, based on the analysis of storm-tracks over the area. The synoptic catalogue was obtained following a well-known procedure that combines Principal Component Analysis (PCA) for reduction purposes and clustering (Ward plus K-means) to define the circulation types. As expected, rougher wave climate are observed along the northern and western coast of the Iberian Peninsula, open to the Atlantic storms. The Mediterranean shorelines experiences calmer conditions, although the Gulf of Lions, Catalonian coast

  15. Unusual Circulation Patterns of the Rias Baixas Induced by Minho Freshwater Intrusion (NW of the Iberian Peninsula)

    PubMed Central

    Sousa, Magda Catarina; Mendes, Renato; Alvarez, Ines; Vaz, Nuno; Gomez-Gesteira, Moncho; Dias, João Miguel

    2014-01-01

    The Minho River, situated 30 km south of the Rias Baixas, is the most important freshwater source flowing into the Western Galician coast (NW of the Iberian Peninsula). The buoyancy generated by the Minho estuarine plume can reverse the normal circulation pattern inside the Rias Baixas affecting the exchange between the Rias and the ocean, changing the input of nutrients. Nevertheless, this inversion of the circulation patterns is not a well-monitored phenomenon. The only published results based on in situ data related to the presence of the Minho River plume inside the Rias de Vigo and Pontevedra correspond to an event measured on spring 1998. In this case unexpectedly higher inflow surface current velocities were found at the Ria de Pontevedra, located further away from Minho River. Thus, the main aim of this study is to research the main factors inducing this unusual pattern on the circulation of the Rias de Vigo and Pontevedra. A numerical model implementation of MOHID previously developed, calibrated, and validated for this coastal area was used. Several scenarios were performed in order to explain the individual effect of the Minho River, rivers discharging into each Rias, and estuarine morphology changes. According to the model results, the Minho River discharge is a key factor in the establishment of the negative circulation, while small rivers inside the Rias slightly attenuate this circulation. The negative circulation was stronger in Ria de Pontevedra independently of the distance of this coastal system from the Minho River mouth, showing that morphologic estuarine features are the main factor justifying the different local circulation patterns. PMID:25402444

  16. Unusual circulation patterns of the Rias Baixas induced by Minho freshwater intrusion (NW of the Iberian Peninsula).

    PubMed

    Sousa, Magda Catarina; Mendes, Renato; Alvarez, Ines; Vaz, Nuno; Gomez-Gesteira, Moncho; Dias, João Miguel

    2014-01-01

    The Minho River, situated 30 km south of the Rias Baixas, is the most important freshwater source flowing into the Western Galician coast (NW of the Iberian Peninsula). The buoyancy generated by the Minho estuarine plume can reverse the normal circulation pattern inside the Rias Baixas affecting the exchange between the Rias and the ocean, changing the input of nutrients. Nevertheless, this inversion of the circulation patterns is not a well-monitored phenomenon. The only published results based on in situ data related to the presence of the Minho River plume inside the Rias de Vigo and Pontevedra correspond to an event measured on spring 1998. In this case unexpectedly higher inflow surface current velocities were found at the Ria de Pontevedra, located further away from Minho River. Thus, the main aim of this study is to research the main factors inducing this unusual pattern on the circulation of the Rias de Vigo and Pontevedra. A numerical model implementation of MOHID previously developed, calibrated, and validated for this coastal area was used. Several scenarios were performed in order to explain the individual effect of the Minho River, rivers discharging into each Rias, and estuarine morphology changes. According to the model results, the Minho River discharge is a key factor in the establishment of the negative circulation, while small rivers inside the Rias slightly attenuate this circulation. The negative circulation was stronger in Ria de Pontevedra independently of the distance of this coastal system from the Minho River mouth, showing that morphologic estuarine features are the main factor justifying the different local circulation patterns.

  17. Interpulse interval in circulating growth hormone patterns regulates sexually dimorphic expression of hepatic cytochrome P450.

    PubMed

    Waxman, D J; Pampori, N A; Ram, P A; Agrawal, A K; Shapiro, B H

    1991-08-01

    Plasma growth hormone (GH) profiles are sexually differentiated in many species and regulate the sex-dependence of peripubescent growth rates and liver function, including steroid hydroxylase cytochrome P450 expression, by mechanisms that are poorly understood. By use of an external pump to deliver to hypophysectomized rats pulses of rat GH of varying frequency and amplitude, a critical element for liver discrimination between male and female GH patterns was identified. Liver expression of the male-specific steroid 2 alpha (or 16 alpha)-hydroxylase P450, designated CYP2C11, was stimulated by GH at both physiological and nonphysiological pulse amplitudes, durations, and frequencies, provided that an interpulse interval of no detectable GH was maintained for at least 2.5 hr. This finding suggests that hepatocytes undergo an obligatory recovery period after stimulation by a GH pulse. This period may be required to reset a GH-activated intracellular signaling pathway or may relate to the short-term absence of GH receptors at the hepatocyte surface after a cycle of GH binding and receptor internalization. These requirements were distinguished from those necessary for the stimulation by GH of normal male growth rates in hypophysectomized rats, indicating that different GH responses and, perhaps, different GH-responsive tissues recognize distinct signaling elements in the sexually dimorphic patterns of circulating GH.

  18. Air-based coal gasification in a two-chamber gas reactor with circulating fluidized bed

    NASA Astrophysics Data System (ADS)

    Dubinin, A. M.; Tuponogov, V. G.; Kagramanov, Y. A.

    2017-01-01

    During the bed gasification of solid fuels, the process temperature in the reaction zone is not high enough for reaching the maximum rate of the chemical efficiency factor of the gasification process. In order to increase the chemical efficiency factor, it is necessary to supply extra heat to the reaction zone to increase the reaction temperature. In this article, coal gasification in a chamber with forced fluidized bed is considered and it is proposed to supply extra heat with a circulating flow of an inert particulate heat transfer agent. Circulating inert particulate material is successively heated by coal combustion in a cone chamber with bubbling fluidized bed and in a combustion chamber with a spherical nozzle that inhibits the forced fluidized bed. After that, the heat transfer agent heated to 930-950°C enters first in a gasification chamber with bubbling bed and then in a chamber with forced fluidized bed, where it transfers the physical heat to the air fuel mixture. The experiments conducted with crushed Borodinsky coal and inert particulate heat transfer agent (electrocorundum) showed the temperature rise in a gasification chamber with from 760 to 870°C and the increase in the combustible component (CO) concentration in the gasification products by 5.5%. Based on the kinetic equations of the fuel combustion reactions and the CO2 reduction to CO and on the thermal balance equations of combustion and gasification chambers, the simulation model for the gas composition and the temperature rate calculated by the height of reaction chambers was developed. The experimental temperature rates and product gas compositions are in good agreement with the simulation results based on the proposed kinetic gasification model.

  19. Simulation of Lake Victoria Circulation Patterns Using the Regional Ocean Modeling System (ROMS)

    PubMed Central

    Sigurdsson, Sven; Tomasson, Tumi; Taabu-Munyaho, Anthony; Sitoki, Lewis; Stefansson, Gunnar

    2016-01-01

    Lake Victoria provides important ecosystem services including transport, water for domestic and industrial uses and fisheries to about 33 million inhabitants in three East African countries. The lake plays an important role in modulating regional climate. Its thermodynamics and hydrodynamics are also influenced by prevailing climatic and weather conditions on diel, seasonal and annual scales. However, information on water temperature and circulation in the lake is limited in space and time. We use a Regional Oceanographic Model System (ROMS) to simulate these processes from 1st January 2000 to 31st December 2014. The model is based on real bathymetry, river runoff and atmospheric forcing data using the bulk flux algorithm. Simulations show that the water column exhibits annual cycles of thermo-stratification (September–May) and mixing (June–August). Surface water currents take different patterns ranging from a lake-wide northward flow to gyres that vary in size and number. An under flow exists that leads to the formation of upwelling and downwelling regions. Current velocities are highest at the center of the lake and on the western inshore waters indicating enhanced water circulation in those areas. However, there is little exchange of water between the major gulfs (especially Nyanza) and the open lake, a factor that could be responsible for the different water quality reported in those regions. Findings of the present study enhance understanding of the physical processes (temperature and currents) that have an effect on diel, seasonal, and annual variations in stratification, vertical mixing, inshore—offshore exchanges and fluxes of nutrients that ultimately influence the biotic distribution and trophic structure. For instance information on areas/timing of upwelling and vertical mixing obtained from this study will help predict locations/seasons of high primary production and ultimately fisheries productivity in Lake Victoria. PMID:27030983

  20. Identification of tissue-specific cell death using methylation patterns of circulating DNA

    PubMed Central

    Lehmann-Werman, Roni; Neiman, Daniel; Zemmour, Hai; Moss, Joshua; Magenheim, Judith; Vaknin-Dembinsky, Adi; Rubertsson, Sten; Nellgård, Bengt; Blennow, Kaj; Zetterberg, Henrik; Spalding, Kirsty; Haller, Michael J.; Wasserfall, Clive H.; Schatz, Desmond A.; Greenbaum, Carla J.; Dorrell, Craig; Grompe, Markus; Zick, Aviad; Hubert, Ayala; Maoz, Myriam; Fendrich, Volker; Bartsch, Detlef K.; Golan, Talia; Ben Sasson, Shmuel A.; Zamir, Gideon; Razin, Aharon; Cedar, Howard; Shapiro, A. M. James; Glaser, Benjamin; Shemer, Ruth; Dor, Yuval

    2016-01-01

    Minimally invasive detection of cell death could prove an invaluable resource in many physiologic and pathologic situations. Cell-free circulating DNA (cfDNA) released from dying cells is emerging as a diagnostic tool for monitoring cancer dynamics and graft failure. However, existing methods rely on differences in DNA sequences in source tissues, so that cell death cannot be identified in tissues with a normal genome. We developed a method of detecting tissue-specific cell death in humans based on tissue-specific methylation patterns in cfDNA. We interrogated tissue-specific methylome databases to identify cell type-specific DNA methylation signatures and developed a method to detect these signatures in mixed DNA samples. We isolated cfDNA from plasma or serum of donors, treated the cfDNA with bisulfite, PCR-amplified the cfDNA, and sequenced it to quantify cfDNA carrying the methylation markers of the cell type of interest. Pancreatic β-cell DNA was identified in the circulation of patients with recently diagnosed type-1 diabetes and islet-graft recipients; oligodendrocyte DNA was identified in patients with relapsing multiple sclerosis; neuronal/glial DNA was identified in patients after traumatic brain injury or cardiac arrest; and exocrine pancreas DNA was identified in patients with pancreatic cancer or pancreatitis. This proof-of-concept study demonstrates that the tissue origins of cfDNA and thus the rate of death of specific cell types can be determined in humans. The approach can be adapted to identify cfDNA derived from any cell type in the body, offering a minimally invasive window for diagnosing and monitoring a broad spectrum of human pathologies as well as providing a better understanding of normal tissue dynamics. PMID:26976580

  1. Simulation of Lake Victoria Circulation Patterns Using the Regional Ocean Modeling System (ROMS).

    PubMed

    Nyamweya, Chrispine; Desjardins, Christopher; Sigurdsson, Sven; Tomasson, Tumi; Taabu-Munyaho, Anthony; Sitoki, Lewis; Stefansson, Gunnar

    2016-01-01

    Lake Victoria provides important ecosystem services including transport, water for domestic and industrial uses and fisheries to about 33 million inhabitants in three East African countries. The lake plays an important role in modulating regional climate. Its thermodynamics and hydrodynamics are also influenced by prevailing climatic and weather conditions on diel, seasonal and annual scales. However, information on water temperature and circulation in the lake is limited in space and time. We use a Regional Oceanographic Model System (ROMS) to simulate these processes from 1st January 2000 to 31st December 2014. The model is based on real bathymetry, river runoff and atmospheric forcing data using the bulk flux algorithm. Simulations show that the water column exhibits annual cycles of thermo-stratification (September-May) and mixing (June-August). Surface water currents take different patterns ranging from a lake-wide northward flow to gyres that vary in size and number. An under flow exists that leads to the formation of upwelling and downwelling regions. Current velocities are highest at the center of the lake and on the western inshore waters indicating enhanced water circulation in those areas. However, there is little exchange of water between the major gulfs (especially Nyanza) and the open lake, a factor that could be responsible for the different water quality reported in those regions. Findings of the present study enhance understanding of the physical processes (temperature and currents) that have an effect on diel, seasonal, and annual variations in stratification, vertical mixing, inshore-offshore exchanges and fluxes of nutrients that ultimately influence the biotic distribution and trophic structure. For instance information on areas/timing of upwelling and vertical mixing obtained from this study will help predict locations/seasons of high primary production and ultimately fisheries productivity in Lake Victoria.

  2. Circulation patterns in the deep Subtropical Northeast Atlantic with ARGO data

    NASA Astrophysics Data System (ADS)

    Calheiros, Tomas; Bashmachnikov, Igor

    2014-05-01

    In this work we study the dominant circulation patterns in the Subtropical Northeast Atlantic using ARGO data [25-45o N, 5-35o W]. The data were obtained from the Coriolis operational data center (ftp://ftp.ifremer.fr) for the years 1999-2013. During this period of time in the study there were available area 376 floats with 15062 float-months of total time. The floats were launched in the depths range between 300 and 2000 m, but most of the floats were concentrated at 1000 m (2000 float-months) and 1500 m (3400 float-months). In the upper 400-m layer there were also about 1000 float-months, but their number and distribution did not allow analysis of the mean currents over the study region. For each float position Lagrangian current velocity was computed as the difference between the position when the buoy started sinking to the reference depth and the consequent position of surfacing of the float, divided by the respective time interval. This allowed reducing the noise related with sea-surface drift of the buoys during the data-transmission periods. Mean Eulerian velocity and its error were computed in each of the 2ox2o square. Whenever in a 2ox2o square more than 150 observations of the Lagrangian velocity were available, the square was split into 4 smaller 1ox1o squares, in each of which the mean Eulerian velocities and their errors were estimated. Eulerian currents at 1000 m, as well as at 1500 m depth formed an overall anticyclonic circulation pattern in the study region. The modal velocity of all buoys at 1000 m level was 4 cm/s with an error of the mean of 1.8 cm/s. The modal velocity of all buoys at 1500m was 3 cm/s with an error of the mean of 1.4 cm/s. The southwestward flows near the Madeira Island and further westwards flow along the zonal band of 25-30o N at 1500 m depth well corresponded to the extension of the deep fraction of the Mediterranean Water salt tong.

  3. Surface circulation patterns at the southeastern Bay of Biscay: new observations from HF radar data

    NASA Astrophysics Data System (ADS)

    Solabarrieta, L.; Rubio, A.; Medina, R.; Paduan, J. D.; Castanedo, S.; Fontán, A.; Cook, M.; González, M.

    2012-12-01

    A CODAR Seasonde High Frequency (HF) radar network has been operational since the beginning of 2009 for the oceanic region of the Basque Country, Spain (south-eastern Bay of Biscay, Atlantic Ocean). It forms part of the Basque operational data acquisition system, established by the Directorate of Emergency Attention and Meteorology of the Basque Government. It is made up of two antennas, at the capes Higer (43d 23.554' N, 1d 47.745' W) and Matxitxako (43d 7.350' N, 2d 45.163' W), emitting at 4.525 MHz frequency and 30 kHz bandwidth. This system provides hourly surface currents with 5.12 km spatial resolution, covering 10,000 km2. Space- and time-covering measurements have been available in the study area since 2009. The data contribute considerably to the study of surface current patterns and the main physical processes in the area. Additional applications relate to security of navigation, maritime rescue, validation and improvement of numerical models, etc. For comparison with other validation studies and to obtain an estimate of the performance of the Basque system, statistical and spectral analysis of the surface currents obtained through the HF radar and different in-situ platforms have been conducted. The analyses show values of comparison between the different measuring systems consistent with those done by other authors (Paduan and Rosenfeld, 1996; Kaplan et al., 2005). The radar is able to reproduce the time evolution of the currents with a reasonable accuracy; likewise, the main three spectral peaks (inertial, semidiurnal and diurnal) are well resolved. In this context, the aim of this work is to show the HF radar ability to measure accurately the surface currents in the south-eastern Bay of Biscay and to study the ocean circulation in the area (figures 1 and 2). Surface current patterns are analysed and described for the period 2009-2011, for different timescales. A clear seasonality at a large-scale has been observed in accordance with previous work

  4. Studies of uncontrolled air traffic patterns, phase 1

    NASA Technical Reports Server (NTRS)

    Baxa, E. G., Jr.; Scharf, L. L.; Ruedger, W. H.; Modi, J. A.; Wheelock, S. L.; Davis, C. M.

    1975-01-01

    The general aviation air traffic flow patterns at uncontrolled airports are investigated and analyzed and traffic pattern concepts are developed to minimize the midair collision hazard in uncontrolled airspace. An analytical approach to evaluate midair collision hazard probability as a function of traffic densities is established which is basically independent of path structure. Two methods of generating space-time interrelationships between terminal area aircraft are presented; one is a deterministic model to generate pseudorandom aircraft tracks, the other is a statistical model in preliminary form. Some hazard measures are presented for selected traffic densities. It is concluded that the probability of encountering a hazard should be minimized independently of any other considerations and that the number of encounters involving visible-avoidable aircraft should be maximized at the expense of encounters in other categories.

  5. Characteristics of atmospheric circulation patterns associated with extreme temperatures over North America in observations and climate models

    NASA Astrophysics Data System (ADS)

    Loikith, Paul C.

    Motivated by a desire to understand the physical mechanisms involved in future anthropogenic changes in extreme temperature events, the key atmospheric circulation patterns associated with extreme daily temperatures over North America in the current climate are identified. Several novel metrics are used to systematically identify and describe these patterns for the entire continent. The orientation, physical characteristics, and spatial scale of these circulation patterns vary based on latitude, season, and proximity to important geographic features (i.e., mountains, coastlines). The anomaly patterns associated with extreme cold events tend to be similar to, but opposite in sign of, those associated with extreme warm events, especially within the westerlies, and tend to scale with temperature in the same locations. The influence of the Pacific North American (PNA) pattern, the Northern Annular Mode (NAM), and the El Niño-Southern Oscillation (ENSO) on extreme temperature days and months shows that associations between extreme temperatures and the PNA and NAM are stronger than associations with ENSO. In general, the association with extremes tends to be stronger on monthly than daily time scales. Extreme temperatures are associated with the PNA and NAM in locations typically influenced by these circulation patterns; however many extremes still occur on days when the amplitude and polarity of these patterns do not favor their occurrence. In winter, synoptic-scale, transient weather disturbances are important drivers of extreme temperature days; however these smaller-scale events are often concurrent with amplified PNA or NAM patterns. Associations are weaker in summer when other physical mechanisms affecting the surface energy balance, such as anomalous soil moisture content, are associated with extreme temperatures. Analysis of historical runs from seventeen climate models from the CMIP5 database suggests that most models simulate realistic circulation patterns

  6. The impact of Circulation Weather Types in Urban Air Quality in Portugal

    NASA Astrophysics Data System (ADS)

    Russo, Ana; Trigo, Ricardo

    2013-04-01

    It is now clear that emissions of the main air pollutants in Europe have declined significantly in recent decades (EEA, 2011). Nevertheless, many European countries (including Portugal) do not expect to comply with one (or more) pollutant emission ceilings and to air quality limit values, especially for particulate matter (PM), ground level ozone (O3) and nitrogen dioxide (NO2) (EEA, 2011). Consequently, and considering that air pollution (AP) plays a role as a major cause of human mortality and morbidity, exposure to pollutants remains a key environment-related health concern (EEA 2010). Thus, and to comply with the new limits, new strategies must be applied for air quality management. The main objective of this work is to present an objective classification of pre-defined and widely used CWTs affecting Portugal and, based on the most relevant patterns, provide a framework that is useful to characterise the occurrence of pollution episodes, namely its inter-annual and intra-annual variability, as well as the occurrence of extreme events. CWTs were determined using the simple Geostrophic approximation according to the methodology proposed by Trigo and DaCamara (2000). The interannual variability of the resulting CWTs was determined for the period with AP data (2002-2010) and the number of days for each CWT and season for the same period was accounted for. During this period, the most frequent CWTs were found to be the anticyclonic (A), the north (N) and the northeast (NE) types, accounting respectively for 34.7%, 10.9% and 14% of the days. However, higher-than average episodes tend to occur associated predominantly with situations characterized by a few less frequent CWTs, namely easterly (E), northeasterly (NE) and southeasterly (SE) types (that together contributed to less than one fourth of all observed days), are the ones which are associated to higher median and maximum concentrations of the three pollutants. Results obtained highlight the existence of strong

  7. The influence of atmospheric circulation types on regional patterns of precipitation in Marmara (NW Turkey)

    NASA Astrophysics Data System (ADS)

    Baltacı, H.; Kındap, T.; Ünal, A.; Karaca, M.

    2017-02-01

    In this study, regional patterns of precipitation in Marmara are described for the first time by means of Ward's hierarchical cluster analysis. Daily values of winter precipitation data based on 19 meteorological stations were used for the period from 1960 to 2012. Five clusters of coherent zones were determined, namely Black Sea-Marmara, Black Sea, Marmara, Thrace, and Aegean sub-regions. To investigate the prevailing atmospheric circulation types (CTs) that cause precipitation occurrence and intensity in these five different rainfall sub-basins, objective Lamb weather type (LWT) methodology was applied to National Centers of Environmental Prediction (NCEP)/National Center for Atmospheric Research (NCAR) reanalysis of daily mean sea level pressure (MSLP) data. Precipitation occurrence suggested that wet CTs (i.e. N, NE, NW, and C) offer a high chance of precipitation in all sub-regions. For the eastern (western) part of the region, the high probability of rainfall occurrence is shown under the influence of E (SE, S, SW) atmospheric CTs. In terms of precipitation intensity, N and C CTs had the highest positive gradients in all the sub-basins of the Marmara. In addition, although Marmara and Black Sea sub-regions have the highest daily rainfall potential during NE types, high daily rainfall totals are recorded in all sub-regions except the Black Sea during NW types.

  8. Determination of circulation and turbidity patterns in Kerr Lake from LANDSAT MSS imagery. [Kerr Lake, Virginia, North Carolina

    NASA Technical Reports Server (NTRS)

    Lecroy, S. R. (Principal Investigator)

    1981-01-01

    The LANDSAT imagery was historically analyzed to determine the circulation and turbidity patterns of Kerr Lake, located on the Virginia-North Carolina border. By examining the seasonal and regional turbidity and circulation patterns, a record of sediment transport and possible disposition can be obtained. Sketches were generated, displaying different intensities of brightness observed in bands 5 and 7 of LANDSAT's multispectral scanner data. Differences in and between bands 5 and 7 indicate variances in the levels of surface sediment concentrations. High sediment loads are revealed when distinct patterns appear in the band 7 imagery. The upwelled signal is exponential in nature and saturates in band 5 at low wavelengths for large concentrations of suspended solids.

  9. Seasonal circulation patterns of the Yellow and East China Seas derived from satellite-tracked drifter trajectories and hydrographic observations

    NASA Astrophysics Data System (ADS)

    Lie, Heung-Jae; Cho, Cheol-Ho

    2016-08-01

    We investigated seasonal circulation patterns of the Yellow and East China Seas (YECS), by reviewing previous works on the circulation and its dominant currents, and taking into account newly-compiled trajectories of satellite-tracked drifters collected between the 1980s and 2000s. The circulation patterns suggested before the 1990s can be categorized into two groups, depending on the identified origin of the Tsushima Warm Current in the Korea-Tsushima Straits: (i) branching from the Kuroshio southwest of Kyushu, or (ii) northeastward continuation of the Taiwan Strait throughflow. The branching of the Kuroshio southwest of Kyushu and northeast of Taiwan was clearly evidenced by current measurements and concurrent hydrographic surveys. However, there is still no clear evidence for the northeastward pathway of Taiwan Strait throughflow across the mid-shelf area of the East China Sea. Target-oriented surveys in the 1990s and 2000s employing advanced instruments, such as drifter tracking and acoustic Doppler current profiler measurements, now provide decisive proof of the clockwise rounding of the Cheju Warm Current around Jeju-do throughout the year, of the northeastward extension of Changjiang discharge in summer, and of the presence of the Yellow Sea Warm Current only in winter. Thus, both coastal currents in shallow water and secondary branch currents of the Kuroshio (such as the Yellow Sea Warm Current) are found to significantly change from winter to summer. To better present the basic pattern of YECS circulation and its seasonality, we have constructed seasonal circulations patterns, based on review results, on the newly-compiled drifter trajectories, and on hydrographic observations. Further investigations should be carried out in future, with support of comprehensive current measurements on shelf areas and through elaborate numerical modeling.

  10. Sea ice in the Baltic and Barents Seas in Relation to Large-Scale Atmospheric Circulation Patterns and Oceanic Productivity

    NASA Astrophysics Data System (ADS)

    Moore, J. C.; Kekonen, T.; Jevrejeva, S.; Isaksson, E.; Pohjola, V. A.; Mulvaney, R.

    2001-12-01

    The past record of sea ice conditions in the Baltic and Barents Seas has been the studied extensively using historical records, and extends back to 1715 and 1864 respectively. We have collected and chemically analysed an ice core from Lomonosovfonna, Svalbard, that also spans this period at close to annual resolution. Using singular spectrum analysis we have been able to identify several periodicities in the sea ice extent series that are also seen in the indices of large scale atmospheric circulation patterns such as the North Atlantic Oscillation. We are able to track the changes in amplitude of the various periodicities over time. Methansulfonic acid (MSA) is a tracer of marine biological productivity, which depends to a large degree on the sea ice cover. The ice core data shows that a significant change in MSA occurred in 1920, with the earlier period having higher concentrations than the later period. There is also a change in the phase of the MSA variations relative to those in sea ice extent around Svalbard. The 1920's marked the maximum extent of glaciers in Svalbard, and the largest rise in Svalbard air temperature occurred in 1917, there was also a dramatic reduction in ice coverage in the sea to the west of Svalbard. In the Baltic record we also see a change in character of the ice coverage, that also corresponds to a change in the North Atlantic Oscillation index. The re-organization of sea ice cover in the Barents Sea is closely associated with a change in the position of the Icelandic low pressure cell which affects the winter storm tracks across the Atlantic, leading to a change in the Baltic Sea ice conditions.

  11. Influence of the Aral Sea negative water balance on its seasonal circulation patterns: use of a 3D hydrodynamic model

    NASA Astrophysics Data System (ADS)

    Sirjacobs, D.; Grégoire, M.; Delhez, E.; Nihoul, J. C. J.

    2004-06-01

    A 3D hydrodynamic model of the Aral Sea was successfully implemented to address the complex hydrodynamic changes induced by the combined effect of hydrologic and climatic change in the Aral region. The first barotropic numerical experiments allowed us to produce a comparative description of the mean general seasonal circulation patterns corresponding to the original situation (1956-1960) and of the average situation for the period from 1981 to 1985, a very low river flow period. The dominant anticyclonic circulation suggested by our seasonal simulation is in good agreement with previous investigations. In addition, this main anticyclonic gyre was shown to be stable and clearly established from February to September, while winter winds led to another circulation scenario. In winter, the main anticyclonic gyre was considerably limited, and cyclonic circulations appeared in the deep western basin and in the northeast of the shallow basin. In contrast, stronger anticyclonic circulation was observed in the Small Aral Sea during winter. As a consequence of the 10-m sea level drop observed between the two periods considered, the 1981-1985 simulation suggests an intensification of seasonal variability. Total water transport of the main gyre was reduced with sea level drop by a minimum of 30% in May and up to 54% in September. Before 1960, the study of the net flows through Berg and Kokaral Straits allowed us to evaluate the component of water exchange between the Small and the Large Seas linked with the general anticyclonic circulation around Kokaral Island. This exchange was lowest in summer (with a mean anticyclonic exchange of 222 m 3/s for July and August), highest in fall and winter (with a mean value of 1356 m 3/s from September to February) and briefly reversed in the spring (mean cyclonic circulation of 316 m 3/s for April and May). In summer, the water exchange due to local circulation at the scale of each strait was comparatively more important because net flows

  12. Large-Scale Atmospheric Circulation Patterns Associated with Temperature Extremes as a Basis for Model Evaluation: Methodological Overview and Results

    NASA Astrophysics Data System (ADS)

    Loikith, P. C.; Broccoli, A. J.; Waliser, D. E.; Lintner, B. R.; Neelin, J. D.

    2015-12-01

    Anomalous large-scale circulation patterns often play a key role in the occurrence of temperature extremes. For example, large-scale circulation can drive horizontal temperature advection or influence local processes that lead to extreme temperatures, such as by inhibiting moderating sea breezes, promoting downslope adiabatic warming, and affecting the development of cloud cover. Additionally, large-scale circulation can influence the shape of temperature distribution tails, with important implications for the magnitude of future changes in extremes. As a result of the prominent role these patterns play in the occurrence and character of extremes, the way in which temperature extremes change in the future will be highly influenced by if and how these patterns change. It is therefore critical to identify and understand the key patterns associated with extremes at local to regional scales in the current climate and to use this foundation as a target for climate model validation. This presentation provides an overview of recent and ongoing work aimed at developing and applying novel approaches to identifying and describing the large-scale circulation patterns associated with temperature extremes in observations and using this foundation to evaluate state-of-the-art global and regional climate models. Emphasis is given to anomalies in sea level pressure and 500 hPa geopotential height over North America using several methods to identify circulation patterns, including self-organizing maps and composite analysis. Overall, evaluation results suggest that models are able to reproduce observed patterns associated with temperature extremes with reasonable fidelity in many cases. Model skill is often highest when and where synoptic-scale processes are the dominant mechanisms for extremes, and lower where sub-grid scale processes (such as those related to topography) are important. Where model skill in reproducing these patterns is high, it can be inferred that extremes are

  13. How do emission patterns in megacities affect regional air pollution?

    NASA Astrophysics Data System (ADS)

    Heil, A.; Richter, C.; Schroeder, S.; Schultz, M. G.

    2010-12-01

    Megacities around the world show distinctly different emission patterns in terms of absolute amounts and emission ratios of individual chemical compounds due to varying socio-economic developments and technological standards. The emission patterns influence the chemical reactivity of the urban pollution plume, and hence determine air quality in and around megacity areas. In this study, which is part of the European project CITYZEN (megaCITY - Zoom for the ENvironment), the effects of emission changes in four selected megacity areas on air pollution were investigated: BeNeLux (BNL), Istanbul (IST), Pearl River Delta (PRD) and Sao Paulo (SAP). The study aims at answering the question: how would air pollution in megacity X change if it had the same urban emissions per capita as megacity Y? Model simulations with the global chemistry climate model ECHAM5-MOZ were carried out for the year 2001 using a resolution of about 2 degrees in the horizontal and of 31 levels (surface to 10 hPa) in the vertical. The model was driven by meteorological input data from the ECMWF ERA Interim reanalysis. Emissions were taken from the gridded global ACCMIP emission inventory recently established for use in chemistry-climate simulations in connection to the IPCC-AR5 assessments (Lamarque et al. 2010). We carried out sensitivity simulations where emission patterns from each of the megacity areas were replaced by those from all others. This was done on the basis of the per capita emissions for each species and sector averaged over the respective region. Total per capita CO and NMVOC emissions are highest in PRD and lowest in SAP while total per capita NOx emissions are highest in BNL and lowest in SAP. There are strong differences in the relative contribution of the urban sectors to total emissions of individual compounds. As a result, each of the four megacity areas exhibits a very characteristic NMVOC speciation profile which determines the NMVOC-related photochemical ozone (O_3

  14. Air pollution exposure: An activity pattern approach for active transportation

    NASA Astrophysics Data System (ADS)

    Adams, Matthew D.; Yiannakoulias, Nikolaos; Kanaroglou, Pavlos S.

    2016-09-01

    In this paper, we demonstrate the calculation of personal air pollution exposure during trips made by active transportation using activity patterns without personal monitors. We calculate exposure as the inhaled dose of particulate matter 2.5 μg or smaller. Two modes of active transportation are compared, and they include cycling and walking. Ambient conditions are calculated by combining mobile and stationary monitoring data in an artificial neural network space-time model. The model uses a land use regression framework and has a prediction accuracy of R2 = 0.78. Exposure is calculated at 10 m or shorter intervals during the trips using inhalation rates associated with both modes. The trips are children's routes between home and school. The average dose during morning cycling trips was 2.17 μg, during morning walking trips was 3.19 μg, during afternoon cycling trips was 2.19 μg and during afternoon walking trips was 3.23 μg. The cycling trip dose was significantly lower than the walking trip dose. The air pollution exposure during walking or cycling trips could not be strongly predicted by either the school or household ambient conditions, either individually or in combination. Multiple linear regression models regressing both the household and school ambient conditions against the dose were only able to account for, at most, six percent of the variance in the exposure. This paper demonstrates that incorporating activity patterns when calculating exposure can improve the estimate of exposure compared to its calculation from ambient conditions.

  15. Participatory Patterns in an International Air Quality Monitoring Initiative

    PubMed Central

    Sîrbu, Alina; Becker, Martin; Caminiti, Saverio; De Baets, Bernard; Elen, Bart; Francis, Louise; Gravino, Pietro; Hotho, Andreas; Ingarra, Stefano; Loreto, Vittorio; Molino, Andrea; Mueller, Juergen; Peters, Jan; Ricchiuti, Ferdinando; Saracino, Fabio; Servedio, Vito D. P.; Stumme, Gerd; Theunis, Jan; Tria, Francesca; Van den Bossche, Joris

    2015-01-01

    The issue of sustainability is at the top of the political and societal agenda, being considered of extreme importance and urgency. Human individual action impacts the environment both locally (e.g., local air/water quality, noise disturbance) and globally (e.g., climate change, resource use). Urban environments represent a crucial example, with an increasing realization that the most effective way of producing a change is involving the citizens themselves in monitoring campaigns (a citizen science bottom-up approach). This is possible by developing novel technologies and IT infrastructures enabling large citizen participation. Here, in the wider framework of one of the first such projects, we show results from an international competition where citizens were involved in mobile air pollution monitoring using low cost sensing devices, combined with a web-based game to monitor perceived levels of pollution. Measures of shift in perceptions over the course of the campaign are provided, together with insights into participatory patterns emerging from this study. Interesting effects related to inertia and to direct involvement in measurement activities rather than indirect information exposure are also highlighted, indicating that direct involvement can enhance learning and environmental awareness. In the future, this could result in better adoption of policies towards decreasing pollution. PMID:26313263

  16. Participatory Patterns in an International Air Quality Monitoring Initiative.

    PubMed

    Sîrbu, Alina; Becker, Martin; Caminiti, Saverio; De Baets, Bernard; Elen, Bart; Francis, Louise; Gravino, Pietro; Hotho, Andreas; Ingarra, Stefano; Loreto, Vittorio; Molino, Andrea; Mueller, Juergen; Peters, Jan; Ricchiuti, Ferdinando; Saracino, Fabio; Servedio, Vito D P; Stumme, Gerd; Theunis, Jan; Tria, Francesca; Van den Bossche, Joris

    2015-01-01

    The issue of sustainability is at the top of the political and societal agenda, being considered of extreme importance and urgency. Human individual action impacts the environment both locally (e.g., local air/water quality, noise disturbance) and globally (e.g., climate change, resource use). Urban environments represent a crucial example, with an increasing realization that the most effective way of producing a change is involving the citizens themselves in monitoring campaigns (a citizen science bottom-up approach). This is possible by developing novel technologies and IT infrastructures enabling large citizen participation. Here, in the wider framework of one of the first such projects, we show results from an international competition where citizens were involved in mobile air pollution monitoring using low cost sensing devices, combined with a web-based game to monitor perceived levels of pollution. Measures of shift in perceptions over the course of the campaign are provided, together with insights into participatory patterns emerging from this study. Interesting effects related to inertia and to direct involvement in measurement activities rather than indirect information exposure are also highlighted, indicating that direct involvement can enhance learning and environmental awareness. In the future, this could result in better adoption of policies towards decreasing pollution.

  17. Air pollution in Accra neighborhoods: spatial, socioeconomic, and temporal patterns.

    PubMed

    Dionisio, Kathie L; Arku, Raphael E; Hughes, Allison F; Vallarino, Jose; Carmichael, Heather; Spengler, John D; Agyei-Mensah, Samuel; Ezzati, Majid

    2010-04-01

    This study examined the spatial, socioeconomic status (SES), and temporal patterns of ambient air pollution in Accra, Ghana. Over 22 months, integrated and continuous rooftop particulate matter (PM) monitors were placed at a total of 11 residential or roadside monitoring sites in four neighborhoods of varying SES and biomass fuel use. PM concentrations were highest in late December and January, due to dust blown from the Sahara. Excluding this period, annual PM(2.5) ranged from 39 to 53 microg/m(3) at roadside sites and 30 to 70 microg/m(3) at residential sites; mean annual PM(10) ranged from 80 to 108 microg/m(3) at roadside sites and 57 to 106 microg/m(3) at residential sites. The low-income and densely populated neighborhood of Jamestown/Ushertown had the single highest residential PM concentration. There was less difference across traffic sites. Daily PM increased at all sites at daybreak, followed by a mid-day peak at some sites, and a more spread-out evening peak at all sites. Average carbon monoxide concentrations at different sites and seasons ranged from 7 to 55 ppm, and were generally lower at residential sites than at traffic sites. The results show that PM in these four neighborhoods is substantially higher than the WHO Air Quality Guidelines and in some cases even higher than the WHO Interim Target 1, with the highest pollution in the poorest neighborhood.

  18. Air motion determination by tracking humidity patterns in isentropic layers

    NASA Technical Reports Server (NTRS)

    Mancuso, R. L.; Hall, D. J.

    1975-01-01

    Determining air motions by tracking humidity patterns in isentropic layers was investigated. Upper-air rawinsonde data from the NSSL network and from the AVE-II pilot experiment were used to simulate temperature and humidity profile data that will eventually be available from geosynchronous satellites. Polynomial surfaces that move with time were fitted to the mixing-ratio values of the different isentropic layers. The velocity components of the polynomial surfaces are part of the coefficients that are determined in order to give an optimum fitting of the data. In the mid-troposphere, the derived humidity motions were in good agreement with the winds measured by rawinsondes so long as there were few or no clouds and the lapse rate was relatively stable. In the lower troposphere, the humidity motions were unreliable primarily because of nonadiabatic processes and unstable lapse rates. In the upper troposphere, the humidity amounts were too low to be measured with sufficient accuracy to give reliable results. However, it appears that humidity motions could be used to provide mid-tropospheric wind data over large regions of the globe.

  19. Pattern for Victory: Forging and Leading Air Power at War

    DTIC Science & Technology

    2012-05-17

    Power Thinkers ( Maxwell AFB, AL: Air University Press, 2009), 82. 4 Air Forces as the Deputy Chief of Staff for Plans.17 The only memoir Kuter...the Albert F. Simpson Historical Research Center, Air University, Maxwell Air Force Base, Alabama. Finally, Generals Ira C. Eaker’s papers from the...and Ground Armies: Essays on the Evolution of Anglo-American Air Doctrine, 1940-43, ed. Daniel R. Mortensen ( Maxwell AFB, AL: Air University Press

  20. Greenland coastal air temperatures linked to Baffin Bay and Greenland Sea ice conditions during autumn through regional blocking patterns

    NASA Astrophysics Data System (ADS)

    Ballinger, Thomas J.; Hanna, Edward; Hall, Richard J.; Miller, Jeffrey; Ribergaard, Mads H.; Høyer, Jacob L.

    2017-03-01

    Variations in sea ice freeze onset and regional sea surface temperatures (SSTs) in Baffin Bay and Greenland Sea are linked to autumn surface air temperatures (SATs) around coastal Greenland through 500 hPa blocking patterns, 1979-2014. We find strong, statistically significant correlations between Baffin Bay freeze onset and SSTs and SATs across the western and southernmost coastal areas, while weaker and fewer significant correlations are found between eastern SATs, SSTs, and freeze periods observed in the neighboring Greenland Sea. Autumn Greenland Blocking Index values and the incidence of meridional circulation patterns have increased over the modern sea ice monitoring era. Increased anticyclonic blocking patterns promote poleward transport of warm air from lower latitudes and local warm air advection onshore from ocean-atmosphere sensible heat exchange through ice-free or thin ice-covered seas bordering the coastal stations. Temperature composites by years of extreme late freeze conditions, occurring since 2006 in Baffin Bay, reveal positive monthly SAT departures that often exceed 1 standard deviation from the 1981-2010 climate normal over coastal areas that exhibit a similar spatial pattern as the peak correlations.

  1. Seasonal variation of local atmospheric circulations and boundary layer structure in the Beijing-Tianjin-Hebei region and implications for air quality

    NASA Astrophysics Data System (ADS)

    Miao, Yucong; Hu, Xiao-Ming; Liu, Shuhua; Qian, Tingting; Xue, Ming; Zheng, Yijia; Wang, Shu

    2015-12-01

    The Beijing-Tianjin-Hebei (BTH) region experiences frequent heavy haze pollution in fall and winter. Pollution was often exacerbated by unfavorable atmospheric boundary layer (BL) conditions. The topography in this region impacts the BL processes in complex ways. Such impacts and implications on air quality are not yet clearly understood. The BL processes in all four seasons in BTH are thus investigated in this study using idealized simulations with the WRF-Chem model. Results suggest that seasonal variation of thermal conditions and synoptic patterns significantly modulates BL processes. In fall, with a relatively weak northwesterly synoptic forcing, thermal contrast between the mountains and the plain leads to a prominent mountain-plain breeze circulation (MPC). In the afternoon, the downward branch of the MPC, in addition to northwesterly warm advection, suppresses BL development over the western side of BTH. In the eastern coastal area, a sea-breeze circulation develops late in the morning and intensifies during the afternoon. In summer, southeasterly BL winds allow the see-breeze front to penetrate farther inland (˜150 km from the coast), and the MPC is less prominent. In spring and winter, with strong northwesterly synoptic winds, the sea-breeze circulation is confined in the coastal area, and the MPC is suppressed. The BL height is low in winter due to strong near-surface stability, while BL heights are large in spring due to strong mechanical forcing. The relatively low BL height in fall and winter may have exacerbated the air pollution, thus contributing to the frequent severe haze events in the BTH region.

  2. Determining rip current circulation patterns and velocities in the vicinity of a groin using GPS equipped drogues

    NASA Astrophysics Data System (ADS)

    Arnott, R.; Houser, C.

    2012-12-01

    Rip currents pose a significant hazard to swimmers on Galveston Island, Texas. Groin structures built to protect the Galveston Seawall from erosion consequently are responsible for the generation of quasi-permanent rips. A field study was conducted to better understand and quantify the current speeds and circulation patterns associated with rip currents at this location. Eight GPS equipped drogues were deployed over a range of wave and tidal conditions over 2 weeks from May 3rd to 14th, 2012. The drifter data reveals a fairly consistent circulation cell with peak offshore velocities ranging between 0.10m/s up to 1m/s although long wave pulsing caused the rip speeds to reach 1.5m/s. The areal extent of the rip cell circulation was dependent on the strength of the rip current and wind and wave conditions of the specific day. Green flag days resulted in larger circulation patterns often resulting in occasional drogue releases from the circulation cell and moving alongshore hundreds of metres. Yellow flag days decreased the size of the circulation cell to the order of tens of metres and distances of alongshore drift. Onshore winds aided in the creation of the rip cell circulation directing drogues back to shore. However, with an offshore wind drogues moving off shore in the rip were swiftly driven further out to sea resulting in 3 drogues drifting up to 2 km offshore, providing more evidence of the hazard associated with nearshore circulation processes. Throughout the experiment, the rip channel accreted sediment, contributing to the decrease of rip current velocities and limiting the influence of bathymetric gradients on the magnitude of the flow. Being able to quantify the rip current hazard in Galveston, Texas by correlating rip current speeds and flag colours provides the Galveston Island Beach Patrol with information that can be used to better educate the public and beach staff. Ultimately the increased knowledge or rip current processes around groin structures

  3. Interannual Variability of Heat Wave in South Korea and theirs Connection with Large-Scale Atmospheric Circulation Pattern

    NASA Astrophysics Data System (ADS)

    Lee, Woo-Seop; Lee, Myong-In

    2016-04-01

    This study investigates the interannual variation of heat wave frequency (HWF) in South Korea during the past 42 years (1973-2014) and examines its connection with large-scale atmospheric circulation changes. Korean heat waves tend to develop most frequently in late summer during July and August. The leading Empirical Orthogonal Function (EOF) accounting for 50% of the total variance shows a mono-signed pattern over South Korea, suggesting that the dominant mechanisms responsible for the heat wave are linked in a spatial scale much larger than the nation. It also exhibits a regional variation with more occurrences in the southeastern inland area. The regression of the leading principal component (PC) time series of HWF with large-scale atmospheric circulation identifies a north-south dipole pattern between the South China Sea and Northeast Asia. When this large-scale circulation mode facilitates deep convection in South China Sea, it tends to weaken moisture transport from the South China Sea to Northeast Asia. Enhanced deep convection in the South China Sea triggers a source of Rossby wave train along southerly wind that generates positive geopotential height anomalies around Korea. The anomalous high pressure pattern is accompanied by large-scale subsidence in Korea, thereby providing a favorable condition for extreme hot and dry days in Korea. This study highlights that there is a decadal change of the relationship between Korean heat waves and large-scale atmospheric circulation patterns. The tropical forcing tends to be weakened in the recent decade, with more influences from the Arctic variability from the mid-1990s.

  4. Land use changes and its impacts on air quality and atmospheric patterns

    NASA Astrophysics Data System (ADS)

    Freitas, E. D.; Mazzoli, C. R.; Martins, L. D.; Martins, J. A.; Carvalho, V.; Andrade, M.

    2013-05-01

    Possible modifications on atmospheric patterns and air quality caused by land use changes are discussed in this work. With the increasing interest in alternative energy sources, mainly due to the replacement of fossil fuels, large part of the Brazilian territory is being used for sugar cane cultivation. The resultant modifications in land use and some activities associated to this crop are studied with some detail through numerical modeling of the atmosphere. The same tool was applied to study the effect of surface type and emission sources over urban areas in the neighborhoods of the cultivated areas, in particular those located in the Metropolitan Area of Campinas, inside the state of São Paulo, Brazil. The main focus of this work was to identify some relationship between these two types of land use modification and its influence on the regional atmospheric circulation patterns and air quality over agricultural and urban areas affected by biomass burning and the traditional sources of pollutants, such as industries and vehicles. First, the effect of urban areas was analyzed and it was possible to identify typical patterns associated with urban heat islands, especially over the city of Campinas. In this region, air temperature differences up to 3 K were detected during night time. During the day, due to the atmospheric conditions of the studied period, this effect was not significant. Afterwards, the effect of sugar cane cultivated regions was discussed. The results show that the regions of sugar cane grow can significantly modify the surface energy fluxes, with direct consequences to the standards of local temperature and humidity and over nearby regions. Sensitivity tests were carried out during part of September, 2007, through the substitution of the sugar cane by a generic crop in the model, and show that during the day the cultivated areas can present temperatures up to 0,65 k higher than those in the case of the generic one. Throughout the dispersion module

  5. Simulated Topography in Western North America Impacts Hemispheric Circulation Patterns and Regional Precipitation in IPCC AR4 Coupled Models

    NASA Astrophysics Data System (ADS)

    McAfee, S. A.; Russell, J. L.

    2009-12-01

    Simulations of the late-20th century (1979-1999) by most of the coupled models used in the Intergovernmental Panel on Climate Change Fourth Assessment Report (IPCC AR4) overestimate mean winter (November to April) precipitation for all or part of western North America in comparison to observations from the Global Precipitation Climatology Project. These precipitation errors appear to be associated with 1) a southward bias in 200-hPa zonal-wind speeds, 2) overly zonal flow patterns (weak Pacific-North America pattern), and 3) muted rain shadows, all of which are also prevalent among general circulation models. In addition, the magnitude of error in simulations of late-20th century winter precipitation is significantly correlated with projected changes in winter precipitation in the mid- and late-21st century over parts of the southwestern United States and Mexico, increasing uncertainty about the timing and extent of drying in a region where water resources are already stressed and intensifying drought is expected. We suggest that these problems are related to difficulties in simulating the extent, volume, and topographic complexity of the Rocky Mountains, Sierra Nevada, Cascades and other mountain ranges in the West within the relatively coarse models. These results identify areas of concern in regional precipitation and water resource projections and suggest steps that can be taken to improve both hemispheric-scale circulation patterns and regional hydrological projections for western North America within general circulation models.

  6. Trends in persistent seasonal-scale atmospheric circulation patterns responsible for precipitation and temperature extremes in California

    NASA Astrophysics Data System (ADS)

    Swain, D. L.; Horton, D. E.; Singh, D.; Diffenbaugh, N. S.

    2015-12-01

    Long-lived anomalous atmospheric circulation patterns are often associated with surface weather extremes. This is particularly true from a hydroclimatic perspective in regions that have well-defined "wet seasons," where atmospheric anomalies that persist on a seasonal scale can lead to drought or (conversely) increase the risk of flood. Recent evidence suggests that both natural variability and global warming may be responsible for spatially and temporally heterogeneous changes in Northern Hemisphere atmospheric conditions over the past several decades. In this investigation, we assess observed trends in cool-season (Oct-May) circulation patterns over the northeastern Pacific Ocean which have historically been associated with precipitation and temperature extremes in California. We find that the occurrence of certain extreme seasonal-scale atmospheric configurations has changed substantially over the 1948-2015 period, and also that there has been a trend towards amplification of the cool-season mean state in this region. Notably, patterns similar to the persistent anticyclone associated with the extremely warm and dry conditions experienced during the ongoing 2012-2015 California drought occur more frequently in the second half of the observed record. This finding highlights the importance of examining changes in extreme and/or persistent atmospheric circulation configurations, which may exhibit different responses to natural and anthropogenic forcings than the mean state.

  7. Observed and modeled patterns of circulation in a semi-enclosed bay: Ria de Vigo (NW Iberia)

    NASA Astrophysics Data System (ADS)

    Pilczynski, Krzysztof; Dubert, Jesus; Nolasco, Rita; Barton, Des; Souto Torres, Carlos

    2016-04-01

    The Ría de Vigo, as a semi-enclosed bay, belonging to the area so-called Rias Baixas, located at the northern tip of the Iberian coastal upwelling system. The circulation of the Ria de Vigo, being one of the major areas of mussels production, has become the subject of intensive research. The Ria de Vigo behaves as a partially-mixed estuary with a two-layered residual circulation, and is influenced by water exchange with the surrounding ocean. During northerly (upwelling favorable) winds, water enters into the Ria through the northern mouth and leaves through the surface layer of the southern mouth, in a double layer circulation at this mouth. Nearly opposed situation occours during downwelling favourable wind periods. Numerical models have become useful tools to study the hydrology and circulation of the Ria de Vigo. In this research we used the ROMS - AGRIF model. The implementation of several nested domains to increase the spatial resolution (up to 150m resolution) allowed solving the interactions between Ria de Vigo and surrounding coastal ocean in a realistic way. We have obtained a detailed description of the circulation with good agreement between observational data (ADCP moorings at both mouths, and weekly hydrological cruises) and predicted currents, salinity and temperature fields. Two new patterns of circulation in the Ria are revealed by our research: -In particular conditions associated with northerly wind relaxation, there are two-layer circulation occurs in both mouths of the Ria, consisting of outflow and inflow though the surface and bottom layers. This situation happens in the absence of stratification during winter. -Also during winter, one-layer circulation in the southern mouth of the Ria (typically there are two layers) can occur during long periods of persistent and strong upwelling-favourable wind. Our research has provided a detailed study of the circulation and hydrology of the Ria de Vigo, explaining specifically different mechanisms of

  8. Can large scale surface circulation changes modulate the sea surface warming pattern in the Tropical Indian Ocean?

    NASA Astrophysics Data System (ADS)

    Rahul, S.; Gnanaseelan, C.

    2016-06-01

    The increased rate of Tropical Indian Ocean (TIO) surface warming has gained a lot of attention in the recent years mainly due to its regional climatic impacts. The processes associated with this increased surface warming is highly complex and none of the mechanisms in the past studies could comprehend the important features associated with this warming such as the negative trends in surface net heat fluxes and the decreasing temperature trends at thermocline level. In this work we studied a previously unexplored aspect, the changes in large scale surface circulation pattern modulating the surface warming pattern over TIO. We use ocean reanalysis datasets and a suit of Ocean General Circulation Model (OGCM) experiments to address this problem. Both reanalysis and OGCM reveal strengthening large scale surface circulation pattern in the recent years. The most striking feature is the intensification of cyclonic gyre circulation around the thermocline ridge in the southwestern TIO. The surface circulation change in TIO is mainly associated with the surface wind changes and the geostrophic response to sea surface height decrease in the western/southwestern TIO. The surface wind trends closely correspond to SST warming pattern. The strengthening mean westerlies over the equatorial region are conducive to convergence in the central and divergence in the western equatorial Indian Ocean (IO) resulting central warming and western cooling. The resulting east west SST gradient further enhances the equatorial westerlies. This positive feedback mechanism supports strengthening of the observed SST trends in the equatorial Indian Ocean. The cooling induced by the enhanced upwelling in the west is compensated to a large extent by warming due to reduction in mixed layer depth, thereby keeping the surface temperature trends in the west to weak positive values. The OGCM experiments showed that the wind induced circulation changes redistribute the excess heat received in the western

  9. Graphical User Interface Development for Representing Air Flow Patterns

    NASA Technical Reports Server (NTRS)

    Chaudhary, Nilika

    2004-01-01

    In the Turbine Branch, scientists carry out experimental and computational work to advance the efficiency and diminish the noise production of jet engine turbines. One way to do this is by decreasing the heat that the turbine blades receive. Most of the experimental work is carried out by taking a single turbine blade and analyzing the air flow patterns around it, because this data indicates the sections of the turbine blade that are getting too hot. Since the cost of doing turbine blade air flow experiments is very high, researchers try to do computational work that fits the experimental data. The goal of computational fluid dynamics is for scientists to find a numerical way to predict the complex flow patterns around different turbine blades without physically having to perform tests or costly experiments. When visualizing flow patterns, scientists need a way to represent the flow conditions around a turbine blade. A researcher will assign specific zones that surround the turbine blade. In a two-dimensional view, the zones are usually quadrilaterals. The next step is to assign boundary conditions which define how the flow enters or exits one side of a zone. way of setting up computational zones and grids, visualizing flow patterns, and storing all the flow conditions in a file on the computer for future computation. Such a program is necessary because the only method for creating flow pattern graphs is by hand, which is tedious and time-consuming. By using a computer program to create the zones and grids, the graph would be faster to make and easier to edit. Basically, the user would run a program that is an editable graph. The user could click and drag with the mouse to form various zones and grids, then edit the locations of these grids, add flow and boundary conditions, and finally save the graph for future use and analysis. My goal this summer is to create a graphical user interface (GUI) that incorporates all of these elements. I am writing the program in

  10. Five centuries of U.S. West Coast drought: Occurrence, spatial distribution, and associated atmospheric circulation patterns

    NASA Astrophysics Data System (ADS)

    Wise, Erika K.

    2016-05-01

    The U.S. West Coast drought commencing in 2012 developed in association with a large, persistent high-pressure ridge linked to internal atmospheric variability. This study places the occurrence, spatial patterns, and associated circulation features of West Coast drought into a paleoclimate context through a synoptic dendroclimatology approach linking atmospheric circulation to surface hydroclimate patterns. Spatial reconstructions of upper atmosphere pressure patterns and cool-season drought show that West Coast-wide drought, although relatively rare compared to north-south dipole drought, has occurred periodically since 1500 Common Era and is consistently associated with a strong ridge centered along the Pacific Northwest coast. Atmospheric blocking is also linked to north-dry dipole droughts, while south-dry and wider Western droughts indicate La Niña-type patterns. The transition latitude between the northern and southern sides of the western precipitation dipole, important for California hydroclimate patterns, has had frequent year-to-year fluctuations but remained centered on 40°N over the past five centuries.

  11. Recent changes in air temperature, heat waves occurrences, and atmospheric circulation in Northern Africa

    NASA Astrophysics Data System (ADS)

    Fontaine, Bernard; Janicot, Serge; Monerie, Paul-Arthur

    2013-08-01

    study documents the time evolution of air temperature and heat waves occurrences over Northern Africa for the period 1979-2011. A significant warming (1°-3°C), appearing by the mid-1960s over Sahara and Sahel, is associated with higher/lesser frequency of warm/cold temperatures, as with longer duration and higher occurrences of heat waves. Heat waves episodes of at least 4 day duration have been examined after removing the long-term evolution. These episodes are associated with specific anomalies: (i) in spring, positive low-level temperature anomalies over the Sahel and Sahara; low and midlevel cyclonic rotation over Morocco associated with a Rossby wave pattern, lessening the Harmattan; more/less atmospheric moisture westward/eastward to 0°; upward/downward anomalies above the western/eastern regions associated with the Rossby wave pattern; (ii) in summer, a similar but weaker positive low-level temperature anomaly (up to 3°C); less moisture westward to 10°W, a cyclonic anomaly in central Sahel favoring the monsoon eastward to 0° and a midlevel anticyclonic anomaly over the Western Sahara, increasing southward the flux divergence associated with the African Easterly Jet. In March-May, two to three heat waves propagate eastward. They are preceded by an abnormal warm cell over Libya and southwesterlies over the West Sahara. A large trough stands over North Atlantic while midtropospheric subsidence and anticyclonic rotation reinforce over the continent, then migrates toward the Arabian peninsula in breaking up. These signals are spatially coherent and might suggest the role of short Rossby waves with an eastward group velocity and a baroclinic mode, possibly associated with jet stream deformation.

  12. Pressure oscillations on the surface of Gale Crater and coincident observations of global circulation patterns.

    NASA Astrophysics Data System (ADS)

    De La Torre Juarez, M.; Kass, D. M.; Haberle, R. M.; Gómez-Elvira, J.; Harri, A. M.; Kleinboehl, A.; Kahanpää, H.; Kahre, M. A.; Lemmon, M. T.; Martín-Torres, J.; Newman, C. E.; Rafkin, S. C.; Rodriguez-Manfredi, J. A.; Peinado, V.; Vasavada, A. R.; Zorzano, M. P.

    2014-12-01

    The annual cycle of mean diurnal surface pressures observed by Curiosity's Rover Environmental Monitoring Station (REMS) has shown oscillations after two Southern Hemispheric storms that occurred before the annual pressure maxima and minima of the dusty season (Ls~250 and 330). The oscillations had a period of ~7 sols and were less visible or absent during the dust free seasons (Ls ~ 0). Martian airborne dust alters the atmosphere's response to solar radiation and the resulting heating profiles. Since the atmospheric circulation responds to thermal forcing by the Sun, atmospheric dust can alter the large-scale circulation. We use coincident global observations by the Mars Climate Sounder (MCS) to examine the global circulation. We find that the observed surface pressure oscillations relate to oscillations of the Hadley cell. We also analyze the potential impacts of these coupled oscillations especially as related to traveling waves and thermal tides.

  13. Winter to winter recurrence of atmospheric circulation anomalies over East Asia and its impact on winter surface air temperature anomalies.

    PubMed

    Zhao, Xia; Yang, Guang

    2017-01-01

    The persistence of atmospheric circulation anomalies over East Asia shows a winter to winter recurrence (WTWR) phenomenon. Seasonal variations in sea level pressure anomalies and surface wind anomalies display significantly different characteristics between WTWR and non-WTWR years. The WTWR years are characterized by the recurrence of both a strong (weak) anomalous Siberian High and an East Asian winter monsoon over two successive winters without persistence through the intervening summer. However, anomalies during the non-WTWR years have the opposite sign between the current and ensuing winters. The WTWR of circulation anomalies contributes to that of surface air temperature anomalies (SATAs), which is useful information for improving seasonal and interannual climate predictions over East Asia and China. In the positive (negative) WTWR years, SATAs are cooler (warmer) over East Asia in two successive winters, but the signs of the SATAs are opposite in the preceding and subsequent winters during the non-WTWR years.

  14. Winter to winter recurrence of atmospheric circulation anomalies over East Asia and its impact on winter surface air temperature anomalies

    PubMed Central

    2017-01-01

    The persistence of atmospheric circulation anomalies over East Asia shows a winter to winter recurrence (WTWR) phenomenon. Seasonal variations in sea level pressure anomalies and surface wind anomalies display significantly different characteristics between WTWR and non-WTWR years. The WTWR years are characterized by the recurrence of both a strong (weak) anomalous Siberian High and an East Asian winter monsoon over two successive winters without persistence through the intervening summer. However, anomalies during the non-WTWR years have the opposite sign between the current and ensuing winters. The WTWR of circulation anomalies contributes to that of surface air temperature anomalies (SATAs), which is useful information for improving seasonal and interannual climate predictions over East Asia and China. In the positive (negative) WTWR years, SATAs are cooler (warmer) over East Asia in two successive winters, but the signs of the SATAs are opposite in the preceding and subsequent winters during the non-WTWR years. PMID:28178351

  15. Characterization of Visual Scanning Patterns in Air Traffic Control

    PubMed Central

    McClung, Sarah N.; Kang, Ziho

    2016-01-01

    Characterization of air traffic controllers' (ATCs') visual scanning strategies is a challenging issue due to the dynamic movement of multiple aircraft and increasing complexity of scanpaths (order of eye fixations and saccades) over time. Additionally, terminologies and methods are lacking to accurately characterize the eye tracking data into simplified visual scanning strategies linguistically expressed by ATCs. As an intermediate step to automate the characterization classification process, we (1) defined and developed new concepts to systematically filter complex visual scanpaths into simpler and more manageable forms and (2) developed procedures to map visual scanpaths with linguistic inputs to reduce the human judgement bias during interrater agreement. The developed concepts and procedures were applied to investigating the visual scanpaths of expert ATCs using scenarios with different aircraft congestion levels. Furthermore, oculomotor trends were analyzed to identify the influence of aircraft congestion on scan time and number of comparisons among aircraft. The findings show that (1) the scanpaths filtered at the highest intensity led to more consistent mapping with the ATCs' linguistic inputs, (2) the pattern classification occurrences differed between scenarios, and (3) increasing aircraft congestion caused increased scan times and aircraft pairwise comparisons. The results provide a foundation for better characterizing complex scanpaths in a dynamic task and automating the analysis process. PMID:27239190

  16. Characterization of Visual Scanning Patterns in Air Traffic Control.

    PubMed

    McClung, Sarah N; Kang, Ziho

    2016-01-01

    Characterization of air traffic controllers' (ATCs') visual scanning strategies is a challenging issue due to the dynamic movement of multiple aircraft and increasing complexity of scanpaths (order of eye fixations and saccades) over time. Additionally, terminologies and methods are lacking to accurately characterize the eye tracking data into simplified visual scanning strategies linguistically expressed by ATCs. As an intermediate step to automate the characterization classification process, we (1) defined and developed new concepts to systematically filter complex visual scanpaths into simpler and more manageable forms and (2) developed procedures to map visual scanpaths with linguistic inputs to reduce the human judgement bias during interrater agreement. The developed concepts and procedures were applied to investigating the visual scanpaths of expert ATCs using scenarios with different aircraft congestion levels. Furthermore, oculomotor trends were analyzed to identify the influence of aircraft congestion on scan time and number of comparisons among aircraft. The findings show that (1) the scanpaths filtered at the highest intensity led to more consistent mapping with the ATCs' linguistic inputs, (2) the pattern classification occurrences differed between scenarios, and (3) increasing aircraft congestion caused increased scan times and aircraft pairwise comparisons. The results provide a foundation for better characterizing complex scanpaths in a dynamic task and automating the analysis process.

  17. Ambient particulate air pollution and circulating antioxidant enzymes: A repeated-measure study in healthy adults in Beijing, China.

    PubMed

    Wu, Shaowei; Wang, Bin; Yang, Di; Wei, Hongying; Li, Hongyu; Pan, Lu; Huang, Jing; Wang, Xin; Qin, Yu; Zheng, Chanjuan; Shima, Masayuki; Deng, Furong; Guo, Xinbiao

    2016-01-01

    The association of systemic antioxidant activity with ambient air pollution has been unclear. A panel of 40 healthy college students underwent repeated blood collection for 12 occasions under three exposure scenarios before and after relocating from a suburban area to an urban area in Beijing, China in 2010-2011. We measured various air pollutants including fine particles (PM2.5) and determined circulating levels of antioxidant enzymes extracellular superoxide dismutase (EC-SOD) and glutathione peroxidase 1 (GPX1) in the laboratory. An interquartile range increase of 63.4 μg/m(3) at 3-d PM2.5 moving average was associated with a 6.3% (95% CI: 0.6, 12.4) increase in EC-SOD and a 5.5% (95% CI: 1.3, 9.8) increase in GPX1. Several PM2.5 chemical constituents, including negative ions (nitrate and chloride) and metals (e.g., iron and strontium), were consistently associated with increases in EC-SOD and GPX1. Our results support activation of circulating antioxidant enzymes following exposure to particulate air pollution.

  18. Aeolian Dust Dynamics and Synoptic Atmospheric Circulation Patterns in the Black Sea Region Since Marine Isotope Stage 15

    NASA Astrophysics Data System (ADS)

    Markley, C.; Machalett, B.; Oches, E. A.; Markovic, S.; Endlicher, W.

    2010-12-01

    The aeolian dust record of the loess sequences in the Dobrogea, Romania, provides a unique terrestrial climate archive in proximity to the Black Sea, enabling us to reconstruct glacial-interglacial climate variability and past atmospheric circulation patterns from marine oxygen-isotope stage (MIS) 15 to the last glacial period. During the Pleistocene aeolian mineral dust was mainly derived from the floodplain of the Danube and the (exposed) coastal shelf of the Black Sea, and got deposited on the pseudo-plain of the upheaval complex of the Dobrogea. Presently located at the interface between Mediterranean and continental climates of central and eastern Europe, the loess record of Dobrogea offers insight into long-term paleoenvironmental oscillations triggered by the reciprocity of Mediterranean and continental atmospheric circulation patterns across central and eastern Europe. The 35m thick loess sequence at Mircea Voda shows a well exposed sequence of loess-paleosol couplets that can be traced laterally across a few hundred meters, suggesting a semi-continuous paleoclimate record since MIS 15. In order to assess the loess record of aeolian dynamics and associated past-synoptic atmospheric circulation modes, high resolution particle size analyses have been carried out using a Beckman-Coulter LS 13320 laser analyzer. With support of amino acid geochronology data the highly resolved proxy record of the SE European loess sequences reveals clear shifts in the aeolian dust dynamics and a general paleoclimatic trend from subtropical (MIS 15) to more continental climates (MIS 1). In consideration of the modern synoptic atmospheric circulation patterns and aeolian dust transport across the Eurasian landmass, we propose that the observed long trends in the aeolian dust record and the general tendency of a progressive aridification since the Middle Pleistocene reflect a long term signal of seasonality, triggered by changes in duration and permanency of the seasonal shift of

  19. Aeolian dust dynamics and synoptic atmospheric circulation patterns in the Black Sea Region since marine isotope stage 15

    NASA Astrophysics Data System (ADS)

    Markley, C.; Machalett, B.; Oches, E. A.

    2011-12-01

    The aeolian dust record of the loess sequences in the Dobrogea, Romania, provides a unique terrestrial climate archive in proximity to the Black Sea, enabling us to reconstruct glacial-interglacial climate variability and past atmospheric circulation patterns from marine oxygen-isotope stage (MIS) 15 to the last glacial period. During the Pleistocene aeolian mineral dust was mainly derived from the floodplain of the Danube and the (exposed) coastal shelf of the Black Sea, and got deposited on the pseudo-plain of the upheaval complex of the Dobrogea. Presently located at the interface between Mediterranean and continental climates of central and eastern Europe, the loess record of Dobrogea offers insight into long-term paleoenvironmental oscillations triggered by the reciprocity of Mediterranean and continental atmospheric circulation patterns across central and eastern Europe. The 35m thick loess sequence at Mircea Voda shows a well exposed sequence of loess-paleosol couplets that can be traced laterally across a few hundred meters, suggesting a semi-continuous paleoclimate record since MIS 15. In order to assess the loess record of aeolian dynamics and associated past-synoptic atmospheric circulation modes, high resolution particle size analyses have been carried out using a Beckman-Coulter LS 13-320 laser analyzer. With support of amino acid geochronology data the highly resolved proxy record of the SE European loess sequences reveals clear shifts in the aeolian dust dynamics and a general paleoclimatic trend from subtropical (MIS 15) to more continental climates (MIS 1). In consideration of the modern synoptic atmospheric circulation patterns and aeolian dust transport across the Eurasian landmass, we propose that the observed long trends in the aeolian dust record and the general tendency of a progressive aridification since the Middle Pleistocene reflect a long term signal of seasonality, triggered by changes in duration and permanency of the seasonal shift of

  20. Patterns of orographic uplift in the Sierra Nevada and their relationship to upper-level atmospheric circulation

    USGS Publications Warehouse

    Aguado, Edward; Cayan, Daniel R.; Reece, Brian D.; Riddle, Larry

    1993-01-01

    We examine monthly and seasonal patterns of precipitation across various elevations of the eastern Central Valley of California and the Sierra Nevada. A measure of the strength of the orographic effect called the “precipitation ratio” is calculated, and we separate months into four groups based on being wet or dry and having low or high precipitation ratios. Using monthly maps of mean 700-mb height anomalies, we describe the northern hemisphere mid-tropospheric circulation patterns associated with each of the four groups. Wet months are associated with negative height anomalies over the eastern Pacific, as expected. However, the orientation of the trough is different for years with high and low precipitation ratios. Wet months with high ratios typically have circulation patterns factoring a west-southwest to east-northeast storm track from around the Hawaiian Islands to the Pacific Northwest of the United States. Wet months with low precipitation ratios are associated with a trough centered near the Aleutians and a northwest to southeast storm track. Dry months are marked by anticyclones in the Pacific, but this feature is more localized to the eastern Pacific for months with low precipitation ratios than for those with high ratios. Using precipitation gauge and snow course data from the American River and Truckee-Tahoe basins, we determined that the strength of the orographic effect on a seasonal basis is spatially coherent at low and high elevations and on opposite sides of the Sierra Nevada crestline.

  1. Sensitivity of the Meridional Overturning Circulation to the Pattern of the Surface Density Flux

    DTIC Science & Technology

    2010-09-01

    of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503. 1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE ...September 2010 3. REPORT TYPE AND DATES COVERED Master’s Thesis 4. TITLE AND SUBTITLE Sensitivity of the Meridional Overturning Circulation to the...skepticism when they concluded, on the basis of radiocarbon sampling, that diapycnal mixing was insufficient to sustain the 15 Sverdrup (1 Sverdrup = 1 Sv

  2. The Pattern and Dynamics of the Meridional Overturning Circulation in the Upper Ocean

    DTIC Science & Technology

    2008-09-01

    CIRCULATION IN THE UPPER OCEAN Erick Lee Edwards Lieutenant Commander, United States Navy B.S., United States Naval Academy, 1998 Submitted in...ocean. Surface waters are warmed by this radiation. The heat capacity of the ocean, along with the presence of ocean currents, allows the ocean to...ocean is caused by a variety of factors. Wind-driven currents affect the upper parts of the ocean. Currents driven by density changes in water

  3. Analysis of long-range transport of particulate matters in connection with air circulation over Central and Eastern part of Europe

    NASA Astrophysics Data System (ADS)

    Stefan, Sabina; Necula, Cristian; Georgescu, Florinela

    The aim of this paper is to establish a practical methodology for examining the long-range transport of particulate matters (PM), named TSP. The daily concentration values of TSP from years 2001 and 2002, for three sites, Baia Mare (RO), Vienna (AU), Aosta (IT), were analyzed. In order to connect the main air circulation types with the aerosol concentrations at the selected sites, the catalogues of Circulation and Weather type Classification (COST733) were used. Spectral analysis was made using spectrum software based on Lomb-Scargle periodograms, and multiresolution analysis (MRA) technique based on Maximal Overlap Discrete Wavelet Transform (MODWT) with Fejer-Korovkin in 22 points wavelet filter (waveslim package). Spectral analysis shows a dominant one-year periodicity for all the time series with a variance around 22% for each time series. In addition, several winters TSP pollution episodes from each city were analyzed using a back trajectory model (HYSPLIT4), in order to compare with the resulted air circulation types. Two important concluding remarks emerge: (i) the Eastern part of Europe shows a dominant easterly air circulation and central Europe is characterized by south-west air circulations, which drive the maxima of pollutant concentrations; (ii) the choice of the domain for analysis of the circulation types is very important.

  4. Results of experimental studies of the gas-dynamic behavior of airflow in the circulation line of the air condenser of steam-turbine plants

    NASA Astrophysics Data System (ADS)

    Fedorov, V. A.; Mil'man, O. O.; Gribin, V. G.; Anan'ev, P. A.

    2014-12-01

    The results of experimental studies and a physical model of the three-dimensional flow of cooling air in the circulation line (CL) of a dummy air condenser (AC) incorporating a fan, heat-exchange modules, a shell, and other auxiliary components are analyzed. The local air velocity fields determined experimentally at the AC CL inlet and at the fan diffuser outlet are presented. The guidelines for determining the head-capacity characteristics of the airflow through the AC CL are proposed.

  5. Seasonal variability of the Caspian Sea three-dimensional circulation, sea level and air-sea interaction

    NASA Astrophysics Data System (ADS)

    Ibrayev, R. A.; Özsoy, E.; Schrum, C.; Sur, H. I.

    2010-03-01

    A three-dimensional primitive equation model including sea ice thermodynamics and air-sea interaction is used to study seasonal circulation and water mass variability in the Caspian Sea under the influence of realistic mass, momentum and heat fluxes. River discharges, precipitation, radiation and wind stress are seasonally specified in the model, based on available data sets. The evaporation rate, sensible and latent heat fluxes at the sea surface are computed interactively through an atmospheric boundary layer sub-model, using the ECMWF-ERA15 re-analysis atmospheric data and model generated sea surface temperature. The model successfully simulates sea-level changes and baroclinic circulation/mixing features with forcing specified for a selected year. The results suggest that the seasonal cycle of wind stress is crucial in producing basin circulation. Seasonal cycle of sea surface currents presents three types: cyclonic gyres in December-January; Eckman south-, south-westward drift in February-July embedded by western and eastern southward coastal currents and transition type in August-November. Western and eastern northward sub-surface coastal currents being a result of coastal local dynamics at the same time play an important role in meridional redistribution of water masses. An important part of the work is the simulation of sea surface topography, yielding verifiable results in terms of sea level. The model successfully reproduces sea level variability for four coastal points, where the observed data are available. Analyses of heat and water budgets confirm climatologic estimates of heat and moisture fluxes at the sea surface. Experiments performed with variations in external forcing suggest a sensitive response of the circulation and the water budget to atmospheric and river forcing.

  6. Seasonal variability of the Caspian Sea three-dimensional circulation, sea level and air-sea interaction

    NASA Astrophysics Data System (ADS)

    Ibrayev, R. A.; Özsoy, E.; Schrum, C.; Sur, H. İ.

    2009-09-01

    A three-dimensional primitive equation model including sea ice thermodynamics and air-sea interaction is used to study seasonal circulation and water mass variability in the Caspian Sea under the influence of realistic mass, momentum and heat fluxes. River discharges, precipitation, radiation and wind stress are seasonally specified in the model, based on available data sets. The evaporation rate, sensible and latent heat fluxes at the sea surface are computed interactively through an atmospheric boundary layer sub-model, using the ECMWF-ERA15 re-analysis atmospheric data and model generated sea surface temperature. The model successfully simulates sea-level changes and baroclinic circulation/mixing features with forcing specified for a selected year. The results suggest that the seasonal cycle of wind stress is crucial in producing basin circulation. Seasonal cycle of sea surface currents presents three types: cyclonic gyres in December-January; Eckman south-, south-westward drift in February-July embedded by western and eastern southward coastal currents and transition type in August-November. Western and eastern northward sub-surface coastal currents being a result of coastal local dynamics at the same time play an important role in meridional redistribution of water masses. An important part of the work is the simulation of sea surface topography, yielding verifiable results in terms of sea level. Model successfully reproduces sea level variability for four coastal points, where the observed data are available. Analyses of heat and water budgets confirm climatologic estimates of heat and moisture fluxes at the sea surface. Experiments performed with variations in external forcing suggest a sensitive response of the circulation and the water budget to atmospheric and river forcing.

  7. An objective definition of air mass types affecting Athens, Greece; the corresponding atmospheric pressure patterns and air pollution levels.

    PubMed

    Sindosi, O A; Katsoulis, B D; Bartzokas, A

    2003-08-01

    This work aims at defining characteristic air mass types that dominate in the region of Athens, Greece during the cold (November-March) and the warm (May-September) period of the year and also at evaluating the corresponding concentration levels of the main air pollutants. For each air mass type, the mean atmospheric pressure distribution (composite maps) over Europe and the Mediterranean is estimated in order to reveal the association of atmospheric circulation with air pollution levels in Athens. The data basis for this work consists of daily values of thirteen meteorological and six pollutant parameters covering the period 1993-97. The definition of the characteristic air mass types is attempted objectively by using the methods of Factor Analysis and Cluster Analysis. The results show that during the cold period of the year there are six prevailing air mass types (at least 3% of the total number of days) and six infrequent ones. The examination of the corresponding air pollution concentration levels shows that the primary air pollutants appear with increased concentrations when light or southerly winds prevail. This is usually the case when a high pressure system is located over the central Mediterranean or a low pressure system lays over south Italy, respectively. Low levels of the primary pollutants are recorded under northeasterly winds, mainly caused by a high pressure system over Ukraine. During the warm period of the year, the southwestern Asia thermal low and the subtropical anticyclone of the Atlantic Ocean affect Greece. Though these synoptic systems cause almost stagnant conditions, four main air mass types are dominant and ten others, associated with extreme weather, are infrequent. Despite the large amounts of total solar radiation characterizing this period, ozone concentrations remain at low levels in central Athens because of its destruction by nitric oxide.

  8. Impact of Bay-Breeze Circulations on Surface Air Quality and Boundary Layer Export

    NASA Technical Reports Server (NTRS)

    Loughner, Christopher P.; Tzortziou, Maria; Follette-Cook, Melanie; Pickering, Kenneth E.; Goldberg, Daniel; Satam, Chinmay; Weinheimer, Andrew; Crawford, James H.; Knapp, David J.; Montzka, Denise D.; Diskin, Glenn S.; Dickerson, Russell R.

    2014-01-01

    Meteorological and air-quality model simulations are analyzed alongside observations to investigate the role of the Chesapeake Bay breeze on surface air quality, pollutant transport, and boundary layer venting. A case study was conducted to understand why a particular day was the only one during an 11-day ship-based field campaign on which surface ozone was not elevated in concentration over the Chesapeake Bay relative to the closest upwind site and why high ozone concentrations were observed aloft by in situ aircraft observations. Results show that southerly winds during the overnight and early-morning hours prevented the advection of air pollutants from the Washington, D.C., and Baltimore, Maryland, metropolitan areas over the surface waters of the bay. A strong and prolonged bay breeze developed during the late morning and early afternoon along the western coastline of the bay. The strength and duration of the bay breeze allowed pollutants to converge, resulting in high concentrations locally near the bay-breeze front within the Baltimore metropolitan area, where they were then lofted to the top of the planetary boundary layer (PBL). Near the top of the PBL, these pollutants were horizontally advected to a region with lower PBL heights, resulting in pollution transport out of the boundary layer and into the free troposphere. This elevated layer of air pollution aloft was transported downwind into New England by early the following morning where it likely mixed down to the surface, affecting air quality as the boundary layer grew.

  9. View-Angle Dependent AIRS Cloud Radiances and Fluctuations: Implications of Organized Cloud Structures for Tropical Circulations

    NASA Technical Reports Server (NTRS)

    Wu, Dong L.; Gong, Jie

    2012-01-01

    Interactions between wave dynamics and moisture generate clouds in a wide range of scales. Organized cloud structures produce statistically asymmetric radiances and perturbations in AIRS and AMSU-B measurements. With high resolution (approx.14 km beamwidth) and high-sensitivity instruments, these wave-modulated cloud structures can be readily detected from calibrated Levell radiance data. In this study we analyzed eight-year (2003 - 2010) statistics of AIRS cloud-induced radiances and found that in tropical convective regions the ascending (13:30 LST) measurements reveal higher view-angle asymmetry in cloud radiance than the descending (1:30 LST). The daytime asymmetry suggests 10% more cloudiness when the instrument views east, implying tilted and banded structures in most of the anvil clouds to which AIRS is sensitive. Such banded cloud structures are likely a manifestation of embedded westward propagating gravity waves in tropical convective systems. More importantly, organized cloud structures carry asymmetric momentum fluxes in addition to energy fluxes, which must be taken into account for modeling wave-wave and wave-mean flow interactions in tropical circulations.

  10. The Association of Subclinical Hypothyroidism and Pattern of Circulating Endothelial-Derived Microparticles Among Chronic Heart Failure Patients

    PubMed Central

    Berezin, Alexander E.; Kremzer, Alexander A.; Martovitskaya, Yulia V.; Samura, Tatyana A.; Berezina, Tatyana A.

    2015-01-01

    Background: Subclinical hypothyroidism (SH) is diagnosed biochemically by the presence of normal serum free thyroxine concentration, in conjunction with an elevated serum thyroid-stimulating hormone level. Recent studies have demonstrated the frequent association between SH and cardiovascular diseases and risk factors. Objectives: To evaluate the impact of SH on patterns of circulating endothelial-derived microparticles, (EMPs) among chronic heart failure (CHF) patients Patients and Methods: This is a retrospective study involving a cohort of 388 patients with CHF. Fifty-three CHF subjects had SH and 335 patients were free from thyroid dysfunction. Circulating levels of N-terminal-pro brain natriuretic peptide (NT-proBNP), high-sensitivity C-reactive protein (hs-CRP), thyroid-stimulating hormone (TSH), total and free thyroxine (T4), and triiodothyronine (T3), and endothelial apoptotic microparticles (EMPs), were measured at baseline. SH was defined, according to contemporary clinical guidelines, as a biochemical state associated with an elevated serum TSH level of greater 10 μU/L and normal basal free T3 and T4 concentrations. Results: Circulating CD31+/annexin V+ EMPs were higher in patients with SH compared to those without SH. In contrast, activated CD62E+ EMP numbers were not significantly different between both patient cohorts. Using uni (bi) variate and multivariate age- and gender-adjusted regression analysis, we found several predictors that affected the increase of the CD31+/annexin V+ to CD62E+ ratio in the patient study population. The independent impact of TSH per 6.5 μU/L (odds ratio [OR] = 1.23, P = 0.001), SH (OR = 1.22, P = 0.001), NT-proBNP (OR = 1.19, P = 0.001), NYHA class (OR = 1.09, P = 0.001), hs-CRP per 4.50 mg/L (OR = 1.05, P = 0.001), dyslipidemia (OR = 1.06, P = 0.001), serum uric acid per 9.5 mmol/L (OR = 1.04, P = 0.022) on the increase in the CD31+/annexin V+ to CD62E+ ratio, was determined. Conclusions: We believe that the SH state

  11. Absolute Interrogative Intonation Patterns in Buenos Aires Spanish

    ERIC Educational Resources Information Center

    Lee, Su Ar

    2010-01-01

    In Spanish, each uttered phrase, depending on its use, has one of a variety of intonation patterns. For example, a phrase such as "Maria viene manana" "Mary is coming tomorrow" can be used as a declarative or as an absolute interrogative (a yes/no question) depending on the intonation pattern that a speaker produces. …

  12. Subtidal circulation patterns in a shallow, highly stratified estuary: Mobile Bay, Alabama

    USGS Publications Warehouse

    Noble, M.A.; Schroeder, W.W.; Wiseman, W.J.; Ryan, H.F.; Gelfenbaum, G.

    1996-01-01

    Mobile Bay is a wide (25-50 km), shallow (3 m), highly stratified estuary on the Gulf coast of the United States. In May 1991 a series of instruments that measure near-surface and near-bed current, temperature, salinity, and middepth pressure were deployed for a year-long study of the bay. A full set of measurements were obtained at one site in the lower bay; all but current measurements were obtained at a midbay site. These observations show that the subtidal currents in the lower bay are highly sheared, despite the shallow depth of the estuary. The sheared flow patterns are partly caused by differential forcing from wind stress and river discharge. Two wind-driven flow patterns actually exist in lower Mobile Bay. A barotropic response develops when the difference between near-surface and near-bottom salinity is less than 5 parts per thousand. For stronger salinity gradients the wind-driven currents are larger and the response resembles a baroclinic flow pattern. Currents driven by river flows are sheared and also have a nonlinear response pattern. Only near-surface currents are driven seaward by discharges below 3000 m3/s. At higher discharge rates, surface current variability uncouples from the river flow and the increased discharge rates drive near-bed current seaward. This change in the river-forced flow pattern may be associated with a hydraulic jump in the mouth of the estuary. Copyright 1996 by the American Geophysical Union.

  13. Effect of Riser Geometry Structure on Local Flow Pattern in a Rectangular Circulating Fluidized Bed

    NASA Astrophysics Data System (ADS)

    Tian, Chen; Wang, Qinhui; Luo, Zhongyang; Zhang, Ximei; Cheng, Leming; Ni, Mingjiang; Cen, Kefa

    By using a high-speed video camera and particle image velocimetry (PIV) technique, the local flow properties of the solid-gas two phases flow were studied in a plexiglass rectangular CFB cold model with the a riser of 1.5×0.864×4.9m3. Measurements were carried out with transparent spherical glass bead between 0.1-0.425mm as bed materials and cold air as flow medium. The experimental results showed that the secondary air has an important influence on the particle velocity distribution. Because of the secondary air penetrating effect, the particle lateral movement was acute. In the dilute region, the outlet and the comer effect induced the defluxion of the particles movement and the core-annular distribution was broken. The closer to the outlet, the stronger the lateral velocity is. The obstruct of hanging screen reduced the furnace outlet effects between the hanging screen and the front wall, where the particle movement in the area was controlled by the gas flow and the constrain of the wall. High particle concentration areas were formed in the junction between the screen and the front wall and in the comer between the wall and the front wall.

  14. Heat fluxes and roll circulations over the western Gulf Stream during an intense cold-air outbreak

    NASA Technical Reports Server (NTRS)

    Chou, Shu-Hsien; Ferguson, Michael P.

    1991-01-01

    Turbulence and heat fluxes in the marine atmospheric boundary layer (MABL) for three aircraft stacks near the western Gulf Stream front, observed during the Genesis of Atlantic Lows Experiment (GALE) January 28, 1986 cold-air outbreak, has been studied using mixed-layer scaling. The GOES image and stability parameter indicates that these three stacks were in the roll vortex regime. The turbulence structure in the MABL is studied for this case, as well as the significance of roll vortices to heat fluxes. The roll circulations are shown to contribute significantly to the sensible (temperature) and latent heat (moisture) fluxes with importance increasing upward. The results suggest that the entrainment at the MABL top might affect the the budgets of temperature and humidity fluxes in the lower MABL, but not in the unstable surface layer.

  15. Preparation, characterization, and photocatalytic studies on anatase nano-TiO{sub 2} at internal air lift circulating photocatalytic reactor

    SciTech Connect

    Xu, Hang Li, Mei; Jun, Zhang

    2013-09-01

    Graphical abstract: The micro morphological structure of the nano-TiO{sub 2} particles was also observed with TEM, as shown in figure. The TEM images clearly exhibited the homogeneous microstructure of particles with a size of around 10–15 nm. - Highlights: • Nano-TiO{sub 2} was prepared by complex techniques of sol–gel, micro-emulsion and solvent thermal. • The size of TiO{sub 2} was nano level and uniformity. • Nano-TiO{sub 2} exhibited high photo-catalytic activity at internal air lift circulating reactor. • The best nano-TiO{sub 2} dosage was obtained. - Abstract: Anatase nano-titania (TiO{sub 2}) powder was prepared by using a sol–gel process mediated in reverse microemulsion combined with a solvent thermal technique. The structures of the obtained TiO{sub 2} were characterized by TG-DSC, XRD, TEM. The photocatalytic decomposition of methylene blue (MB) on nano-TiO{sub 2} was studied by using an internal air lift circulating photocatalytic reactor. The results show that the anatase structure appears in the calcination temperature range of 400–510 °C, while the transformation of anatase into rutile takes place above 510 °C. The homogeneous microstructure of nano-TiO{sub 2} particles was obtained with a size of around 10–15 nm. In the photocatalytic performance, degradation process follows pseudo first order kinetics with different dosages of photocatalyst and initial MB concentrations and optimal TiO{sub 2} dosage is 0.1 g/L with neutral medium.

  16. Air quality influenced by urban heat island coupled with synoptic weather patterns.

    PubMed

    Lai, Li-Wei; Cheng, Wan-Li

    2009-04-01

    Few studies have discussed the association between the urban heat island (UHI) phenomenon and air quality under synoptic weather patterns conducive to UHI. In this study, the authors used statistical analyses to study this association in the Taichung metropolis region. The air quality data obtained from government-owned observation stations and wind field profiles obtained from tethersonde monitoring (performed during 21-29 October 2004) were combined with the simulations of the horizontal wind fields at different heights by the air pollution model (TAPM). The results show that certain specific synoptic weather patterns worsen the air quality and induce the UHI phenomenon: Taichung's UHI appears clearly under the synoptic weather patterns featuring light air or breezes (0.56 m/s < or =wind speed <2.2 m/s) mainly from the north and west. Furthermore, under these weather patterns, the concentrations of air pollutants (NO2, CO2 and CO) increase significantly (P<0.05) with the UHI intensity. The convergence usually associated with nocturnal UHI causes the accumulation of O3 precursors, as well as other air pollutants, thereby worsening the air quality at that time and also during the following daytime period.

  17. [Serological evidence of St. Louis encephalitis virus circulation in birds from Buenos Aires City, Argentina].

    PubMed

    Beltrán, Fernando J; Díaz, Luis A; Konigheim, Brenda; Molina, José; Beaudoin, Juan B; Contigiani, Marta; Spinsanti, Lorena I

    2015-01-01

    Our goal was to determine the presence of neutralizing antibodies against St. Louis encephalitis virus (SLEV) and West Nile virus (WNV) in sera of wild and domestic birds from Buenos Aires City, Argentina. From October 2012 to April 2013, 180 samples were collected and processed by the microneutralization technique. A 7.2% of the sampled birds were seropositive for SLEV, while no seropositive birds for WNV were detected.

  18. Snowfall in the Northwest Iberian Peninsula: Synoptic Circulation Patterns and Their Influence on Snow Day Trends

    PubMed Central

    Merino, Andrés; Fernández, Sergio; Hermida, Lucía; López, Laura; Sánchez, José Luis; García-Ortega, Eduardo; Gascón, Estíbaliz

    2014-01-01

    In recent decades, a decrease in snowfall attributed to the effects of global warming (among other causes) has become evident. However, it is reasonable to investigate meteorological causes for such decrease, by analyzing changes in synoptic scale patterns. On the Iberian Peninsula, the Castilla y León region in the northwest consists of a central plateau surrounded by mountain ranges. This creates snowfalls that are considered both an important water resource and a transportation risk. In this work, we develop a classification of synoptic situations that produced important snowfalls at observation stations in the major cities of Castilla y León from 1960 to 2011. We used principal component analysis (PCA) and cluster techniques to define four synoptic patterns conducive to snowfall in the region. Once we confirmed homogeneity of the series and serial correlation of the snowfallday records at the stations from 1960 to 2011, we carried out a Mann-Kendall test. The results show a negative trend at most stations, so there are a decreased number of snowfall days. Finally, variations in these meteorological variables were related to changes in the frequencies of snow events belonging to each synoptic pattern favorable for snowfall production at the observatory locations. PMID:25152912

  19. Late Holocene Water Mass Change in the Norwegian Sea Caused by Different Ocean- Atmosphere Circulation Patterns

    NASA Astrophysics Data System (ADS)

    Bauch, H. A.; Kandiano, E. S.

    2008-12-01

    There is common consensus that the Holocene climate history of the polar North was strongly tied to the insolation change on one the hand and the specific post-deglacial water mass evolution on the other. Using deep-sea sediment records we have investigated two crucial areas of the Norwegian Sea (Arctic Front; Voring Plateau) in order to understand the natural variability of oceanic-atmospheric change in this area since the middle Holocene. The information available from this longer time scale allows better insight for predictive purposes, since these records would then provide a longer time frame within which to evaluate any natural variability. We analyzed different foraminiferal species for O-isotope analyses and interpreted the planktic foraminiferal assemblage variations in combination with records of ice-rafted detritus (IRD) >150μm. It is shown that surface temperatures started to decrease at the Arctic Front after 6 ka, concomitant with the occurrence of IRD. This cooling trend continued into the Little Ice Age (LIA) when highest IRD input is noted. At the Voring Plateau, relatively stable and warm conditions are still recognized between 2.5 and 1 ka, in both planktic and benthic O-isotopes. Although variability among certain foraminiferal species would indicate some surface changes, the abundance of the polar species N. pachyderma (s) increased from 30% before 1 ka to 70% during the LIA. This increase is associated with highly variable isotope values through the entire water column (up to 1‰) and the sudden occurrence of basaltic IRD, presumably from Iceland. We interpret the records of the last 2.5 ka, and in particular the time of the LIA, to be the result of a major change in overall ocean-atmosphere circulation (from NAO+ to NAO-) which forced colder water masses and sea ice far into the eastern Norwegian Sea.

  20. Impacts of multi-scale solar activity on climate. Part I: Atmospheric circulation patterns and climate extremes

    NASA Astrophysics Data System (ADS)

    Weng, Hengyi

    2012-07-01

    The impacts of solar activity on climate are explored in this two-part study. Based on the principles of atmospheric dynamics, Part I propose an amplifying mechanism of solar impacts on winter climate extremes through changing the atmospheric circulation patterns. This mechanism is supported by data analysis of the sunspot number up to the predicted Solar Cycle 24, the historical surface temperature data, and atmospheric variables of NCEP/NCAR Reanalysis up to the February 2011 for the Northern Hemisphere winters. For low solar activity, the thermal contrast between the low- and high-latitudes is enhanced, so as the mid-latitude baroclinic ultra-long wave activity. The land-ocean thermal contrast is also enhanced, which amplifies the topographic waves. The enhanced mid-latitude waves in turn enhance the meridional heat transport from the low to high latitudes, making the atmospheric "heat engine" more efficient than normal. The jets shift southward and the polar vortex is weakened. The Northern Annular Mode (NAM) index tends to be negative. The mid-latitude surface exhibits large-scale convergence and updrafts, which favor extreme weather/climate events to occur. The thermally driven Siberian high is enhanced, which enhances the East Asian winter monsoon (EAWM). For high solar activity, the mid-latitude circulation patterns are less wavy with less meridional transport. The NAM tends to be positive, and the Siberian high and the EAWM tend to be weaker than normal. Thus the extreme weather/climate events for high solar activity occur in different regions with different severity from those for low solar activity. The solar influence on the midto high-latitude surface temperature and circulations can stand out after removing the influence from the El Niño-Southern Oscillation. The atmospheric amplifying mechanism indicates that the solar impacts on climate should not be simply estimated by the magnitude of the change in the solar radiation over solar cycles when it is

  1. [PATTERNS IN CIRCULATION AND TRANSMISSION OF MARINE BIRD PARASITES IN HIGH ARCTIC: A CASE OF ACANTHOCEPHALAN POLYMORPHUS PHIPPSI (PALAEACANTHOCEPHALA, POLYMORPHIDAE)].

    PubMed

    Galaktionov, K V; Atrashkevich, G I

    2015-01-01

    This study, based on the materials on parasitic infection of marine birds and invertebrates in Frantz Josef Land (FJL) collected in 1991-1993, focussed on the acanthocephalan Polymorphus phippsi. We identified this parasite, confirmed its species status and analysed its circulation and transmission patterns in high Arctic. The causes of its erroneous identification as P. minutus in several studies were also examined. In contrast to P. minutus, the transmission of P. phippsi is realized in marine coastal ecosystems. Its' main intermediate host in the Arctic is the amphipod Gammarus (Lagunogammarus) setosus, commonin coastal. areas of the shelf zone throughout the Arctic basin. P. phippsi population in FJL and the entire European Arctic is on the whole maintained by a single obligate final host, the common eider Somateria mollissima. Prevalence (P) of P. phippsi in this bird reached 100 %, with the maximal infection intensity (IImax) of 1188 and the mean abundance (MA) of 492.1. Other species of birds found to be infected with P. phippsi (Arctic turn, black guillemot, purple sandpiper and several gulls) are facultative and/or eliminative hosts. The most heavily infected birds were Arctic terns (P = 72.7%, IImax = 227, MA = = 47.1), which contained single mature acanthocephalans. For one of the FJL regions, infections flows of P. phippsi through various host categories were calculated. Involvement of birds unrelated to the common eider into the circulation of P. phippsi is facilitated by their feeding character in the Arctic. While coastal crustaceans are abundant, fish food is relatively scarce (polar cod, snailfishes), and so amphipods make up a considerable part of the diet of marine birds in FJL, if not most of it, as for instance in case of Arctic tern. This promotes an easy entry of the larvae of crustaceans-parasitizing helminthes (cestodes and acanthocephalans, including cystacanths P. phippsi) into non-specific hosts and opens broad colonization possibilities

  2. Hemispheric Circulation Regimes Associated with Predominant Anomaly Patterns of Wintertime Temperature Distribution over the Far East

    NASA Astrophysics Data System (ADS)

    Mukougawa, H.; Mabuchi, M.

    2012-04-01

    Characteristics of extratropical planetary flow regimes in the Northern Hemisphere associated with prevailing spatial patterns of temperature anomaly distribution in the winter season (DJF) over the Far East are examined based on 2D phase space spanned by the leading two EOFs of the Far East low-frequency temperature variation by the use of ERA-40 reanalysis dataset from 1957/58 to 2001/02 winter and NOAA OLR dataset from 1979/80 to 2001/02 winter. The first EOF of 10-day low-pass filtered 850-hPa temperature anomaly in the winter season over the Far East (25˚N-50˚N, 120˚E-150˚E) represents a coherent temperature variation over the whole domain while the second EOF corresponds to a meridional dipole pattern with a node around 40˚N. These two leading EOFs explain 76% of the total temperature variance over the Far East. Regression analysis of 250-hPa height anomaly with respect to the corresponding PCs shows that EOF1 and EOF2 are related to the Eurasian (EU) and the West Pacific (WP) pattern, respectively. The PDF of 850-hPa low-frequency temperature anomaly is estimated by the kernel density estimation method of Kimoto and Ghil (1993) in 2D phase space spanned by the leading 2 PCs. Inhomogeneity of the observed PDF from the bivariate Gaussianity is evaluated by a nonparametric method, and we find the existence of two distinct regimes with significantly greater PDF than the Gaussianity: One regime (regime A) represents an atmospheric state with low temperature anomaly over the whole Far East region, especially over Western Japan. The other regime (regime B) corresponds to a state with a prevailing weak positive temperature anomaly over the Far East. Finally, a composite analysis of 250-hPa height anomaly associated with regime A based on the 2D phase space reveals its time evolution as follows: Blocking developing over the Alaska 15 days (day -15) before the mature phase of regime A has a retrograde phase velocity and resides over the Sea of Okhotsk. After day

  3. Influence of forced internal air circulation on airflow distribution and heat transfer in a gas double-dynamic solid-state fermentation bioreactor.

    PubMed

    Chen, Hongzhang; Qin, Lanzhi; Li, Hongqiang

    2014-02-01

    Internal air circulation affects the temperature field distribution in a gas double-dynamic solid-state fermentation bioreactor (GDSFB). To enhance heat transfer through strengthening internal air circulation in a GDSFB, we put an air distribution plate (ADP) into the bioreactor and studied the effects of forced internal air circulation on airflow, heat transfer, and cellulase activity of Trichoderma viride L3. Results showed that ADP could help form a steady and uniform airflow distribution, and with gas-guide tubes, air reversal was formed inside the bioreactor, thus resulting in a smaller temperature difference between medium and air by enhancing convective heat transfer inside the bioreactor. Using an ADP of 5.35 % aperture ratio caused a 1 °C decrease in the average temperature difference during the solid-state fermentation process of T. viride L3. Meanwhile, the cellulase activity of T. viride L3 increased by 13.5 %. The best heat-transfer effect was attained when using an ADP of 5.35 % aperture ratio and setting the fan power to 125 V (4.81 W) in the gas double-dynamic solid-state fermentation (GDSF) process. An option of suitable aperture ratio and fan power may be conducive to ADPs' industrial amplification.

  4. Spatial and temporal air quality pattern recognition using environmetric techniques: a case study in Malaysia.

    PubMed

    Syed Abdul Mutalib, Sharifah Norsukhairin; Juahir, Hafizan; Azid, Azman; Mohd Sharif, Sharifah; Latif, Mohd Talib; Aris, Ahmad Zaharin; Zain, Sharifuddin M; Dominick, Doreena

    2013-09-01

    The objective of this study is to identify spatial and temporal patterns in the air quality at three selected Malaysian air monitoring stations based on an eleven-year database (January 2000-December 2010). Four statistical methods, Discriminant Analysis (DA), Hierarchical Agglomerative Cluster Analysis (HACA), Principal Component Analysis (PCA) and Artificial Neural Networks (ANNs), were selected to analyze the datasets of five air quality parameters, namely: SO2, NO2, O3, CO and particulate matter with a diameter size of below 10 μm (PM10). The three selected air monitoring stations share the characteristic of being located in highly urbanized areas and are surrounded by a number of industries. The DA results show that spatial characterizations allow successful discrimination between the three stations, while HACA shows the temporal pattern from the monthly and yearly factor analysis which correlates with severe haze episodes that have happened in this country at certain periods of time. The PCA results show that the major source of air pollution is mostly due to the combustion of fossil fuel in motor vehicles and industrial activities. The spatial pattern recognition (S-ANN) results show a better prediction performance in discriminating between the regions, with an excellent percentage of correct classification compared to DA. This study presents the necessity and usefulness of environmetric techniques for the interpretation of large datasets aiming to obtain better information about air quality patterns based on spatial and temporal characterizations at the selected air monitoring stations.

  5. Surface circulation and upwelling patterns around Sri Lanka and formation of the Sri Lanka Dome

    NASA Astrophysics Data System (ADS)

    Pattiaratchi, C. B.; Wijeratne, S.; De Vos, A.

    2014-12-01

    Sri Lanka, a relatively large island (length 440 km; width 225 km), occupies a unique location within the equatorial belt in the northern Indian Ocean with the Arabian Sea on its western side and the Bay of Bengal on its eastern side and experiences bi-annually reversing monsoon winds. This allows for the Island to interact with the seasonally reversing monsoon currents leading to the the island mass effect and enhanced primary production. We will present elements of the dynamics of the surface circulation and coastal upwelling in the waters around Sri Lanka using satellite imagery and numerical simulations using the Regional Ocean Modelling System (ROMS). The model was run for 4 years to examine the inter-annual, seasonal and shorter term (~10 days) variability. The results confirmed the presence of the reversing current system, between the equator and Sri Lanka, in response to the changing wind field: the eastward flowing Southwest Monsoon Current (SMC) during the Southwest (SW) monsoon transporting 11.5 Sv and the westward flowing Northeast Monsoon Current (NMC) transporting 9.5 Sv during the Northeast (NE) monsoon, respectively. A recirculation feature located to the east of Sri Lanka during the SW monsoon, the Sri Lanka Dome, is shown to result from the interaction between the SMC and the Island of Sri Lanka. Along the eastern and western coasts, during both monsoon periods, flow is southward converging along the south coast (see Figure). During the SW monsoon the Island deflects the eastward flowing SMC southward whilst along the east coast the southward flow results from the Sri Lanka Dome recirculation. The major upwelling region, during both monsoon periods, is located along the south coast resulting from southward flow converging along the south coast and subsequent divergence associated with the offshore transport of water(see Figure). Higher surface chlorophyll concentrations were observed during the SW monsoon. The location of the flow convergence and

  6. Cloud Patterns and the Upper Air Wind Field,

    DTIC Science & Technology

    1979-10-01

    34DZ" with respect to the other air. Or, if moisture, dust, or smoke is introduced into the flow upstrean from "DZ", then "DZ" acts as a southeastern...34DZ" results in matter such as dust, smoke , or moisture in the system to be vertically thickest in a band along the DZ axis. It may become thicker by...sunrise. Sometimes during summer or late spring when the low level enviroment is very moist, the outflow boundaries from the convection will continue to

  7. Circumpolar Circulation Patterns Over the Northern Hemisphere Oceans in Late Winter, 1949-2002.

    NASA Technical Reports Server (NTRS)

    Otterman, J.; Starr, D. OC.; Atlas, R.; Jusem, J. C.; Saaroni, H.

    2003-01-01

    To assess interannual changes in ocean-to-land advection, we extract zonal winds for February and March, 1949-2002, from NCEP/NCAR Reanalysis. Winds are analyzed at pairs of locations (55 deg N and 35 deg N) in the N. Pacific (15 deg W), N. Atlantic (30 deg W) and Baltic/Mediterranean (30 deg E). The monthly means at the northern and southern sites are negatively correlated. For N. Pacific, winds at 55 deg N show negative trends at all levels (magnitude increasing with altitude), versus positive at 35 deg N. An opposite scenario is observed over N. Atlantic, positive (negative) trends at 55 deg N (35 deg N) and similarly, but weaker, over the Baltic/Mediterranean. The geographic variability of trends is attributed to displacement of the polar vortex wave pattern. Increasing storm strength/frequency over N. Hemisphere oceans is inherently related to the strong positive trends in wind speed and vertical shear.

  8. Atmospheric circulation patterns and geochemistry time series from ice/firn cores and snow samples of central Asian glaciers (Pamir, Tien Shan and Altai).

    NASA Astrophysics Data System (ADS)

    Aizen, E. M.; Aizen, V. B.; Joswiak, D. R.; Mayewski, P. A.

    2008-12-01

    Combination of high mountain ice-core isotope-geochemistry, ground based aerosol monitoring, NASA remote sensed and a NOAA atmospheric pressure distribution data were used to receive information on sources of dust/loess transport, their time and spatial extension in modern and pre-industrial time. Hundreds of samples from snow pits and ice/firn cores obtained from central Asian glaciers were collected, processed and analyzed. The NASA RS products address the gap in interpretation of available snow, firn and ice records by providing the spatial resolution necessary for identifying possible local and regional-scale dust sources, transport routes and depositions. NOAA Hypslit program modeled the air back-trajectories allowed to found association between the ice core geochemistry records and aerosol sources. To find the circulation patterns, which are closely associated with geochemistry ice core/snow pit records, the correlation coefficients between the Empirical Orthogonal Functions of the atmospheric circulation patterns and geochemistry time coefficients for first two unrotated scores were computed. The loess / dust storm sources with corresponding geo-chemical composition (trace elements, major ions and dust particles) in western, central and northern Asia were identified: 1. Tajik loess deposition and Iran, Afghanistan /Turkmenistan sands are for the Pamir. For example, the Pamir ice core records that associated with Tajikistan loess deposition are characterized by high concentrations of REEs and Al, high or median content of Ca, and a background S concentration. Samples from the Pamir Mountains differed in having low concentrations of Gadolinium. Occasional intrusions of Chinese loess to Pamir glaciers are not excluded. REE profile of pilot Pamir cores documented one of the most extreme droughts of 2001 and 2002 that developed in south-west Asia. 2. Chinese loess deposition in the Takla Makhan, sands in the Tajikistan Deserts and western Gobi, and dust aerosols

  9. Spatial assessment of air quality patterns in Malaysia using multivariate analysis

    NASA Astrophysics Data System (ADS)

    Dominick, Doreena; Juahir, Hafizan; Latif, Mohd Talib; Zain, Sharifuddin M.; Aris, Ahmad Zaharin

    2012-12-01

    This study aims to investigate possible sources of air pollutants and the spatial patterns within the eight selected Malaysian air monitoring stations based on a two-year database (2008-2009). The multivariate analysis was applied on the dataset. It incorporated Hierarchical Agglomerative Cluster Analysis (HACA) to access the spatial patterns, Principal Component Analysis (PCA) to determine the major sources of the air pollution and Multiple Linear Regression (MLR) to assess the percentage contribution of each air pollutant. The HACA results grouped the eight monitoring stations into three different clusters, based on the characteristics of the air pollutants and meteorological parameters. The PCA analysis showed that the major sources of air pollution were emissions from motor vehicles, aircraft, industries and areas of high population density. The MLR analysis demonstrated that the main pollutant contributing to variability in the Air Pollutant Index (API) at all stations was particulate matter with a diameter of less than 10 μm (PM10). Further MLR analysis showed that the main air pollutant influencing the high concentration of PM10 was carbon monoxide (CO). This was due to combustion processes, particularly originating from motor vehicles. Meteorological factors such as ambient temperature, wind speed and humidity were also noted to influence the concentration of PM10.

  10. Local and regional effects of large scale atmospheric circulation patterns on winter wind power output in Western Europe

    NASA Astrophysics Data System (ADS)

    Zubiate, Laura; McDermott, Frank; Sweeney, Conor; O'Malley, Mark

    2014-05-01

    Recent studies (Brayshaw, 2009, Garcia-Bustamante, 2010, Garcia-Bustamante, 2013) have drawn attention to the sensitivity of wind speed distributions and likely wind energy power output in Western Europe to changes in low-frequency, large scale atmospheric circulation patterns such as the North Atlantic Oscillation (NAO). Wind speed variations and directional shifts as a function of the NAO state can be larger or smaller depending on the North Atlantic region that is considered. Wind speeds in Ireland and the UK for example are approximately 20 % higher during NAO + phases, and up to 30 % lower during NAO - phases relative to the long-term (30 year) climatological means. By contrast, in southern Europe, wind speeds are 15 % lower than average during NAO + phases and 15 % higher than average during NAO - phases. Crucially however, some regions such as Brittany in N.W. France have been identified in which there is negligible variability in wind speeds as a function of the NAO phase, as observed in the ERA-Interim 0.5 degree gridded reanalysis database. However, the magnitude of these effects on wind conditions is temporally and spatially non-stationary. As described by Comas-Bru and McDermott (2013) for temperature and precipitation, such non-stationarity is caused by the influence of two other patterns, the East Atlantic pattern, (EA), and the Scandinavian pattern, (SCA), which modulate the position of the NAO dipole. This phenomenon has also implications for wind speeds and directions, which has been assessed using the ERA-Interim reanalysis dataset and the indices obtained from the PC analysis of sea level pressure over the Atlantic region. In order to study the implications for power production, the interaction of the NAO and the other teleconnection patterns with local topography was also analysed, as well as how these interactions ultimately translate into wind power output. The objective is to have a better defined relationship between wind speed and power

  11. Honeycomb superlattice pattern in a dielectric barrier discharge in argon/air

    SciTech Connect

    Zhu, Ping; Dong, Lifang Yang, Jing; Gao, Yenan; Wang, Yongjie; Li, Ben

    2015-02-15

    We report on a honeycomb superlattice pattern in a dielectric barrier discharge in argon/air for the first time. It consists of hexagon lattice and honeycomb framework and bifurcates from a hexagon pattern as the applied voltage increases. A phase diagram of the pattern as a function of the gas component and gas pressure is presented. The instantaneous images show that the hexagon lattice and honeycomb framework are ignited in turn in each half voltage cycle. The honeycomb framework is composed of filaments ignited randomly. The spatiotemporal dynamics of honeycomb superlattice pattern is discussed by wall charges.

  12. Urban air pollution patterns, land use, and thermal landscape: an examination of the linkage using GIS.

    PubMed

    Weng, Qihao; Yang, Shihong

    2006-06-01

    This article investigates the relationship of local air pollution pattern with urban land use and with urban thermal landscape using a GIS approach. Ambient air quality measurements for sulfur dioxide, nitrogen oxide, carbon monoxide, total suspended particles, and dust level were obtained for Guangzhou City in South China between 1981 and 2000. Landsat TM images and aerial photo derived maps were used to examine city's land use and land cover at different times and changes. Landsat thermal infrared data were employed to compute land surface temperatures and to assess urban thermal patterns. Relationships among the spatial patterns of air pollution, land use, and thermal landscape were sought through GIS and correlation analyses. Results show that the spatial patterns of air pollutants probed were positively correlated with urban built-up density, and with satellite derived land surface temperature values, particularly with measurements taken during the summer. It is suggested that further studies investigate the mechanisms of this linkage, and that remote sensing of air pollution delves into how the energy interacts with the atmosphere and the environment and how sensors see pollutants. Thermal infrared imagery could play a unique role in monitoring and modeling atmospheric pollution.

  13. Synoptic weather patterns and modification of the association between air pollution and human mortality.

    PubMed

    Rainham, Daniel G C; Smoyer-Tomic, Karen E; Sheridan, Scott C; Burnett, Richard T

    2005-10-01

    To assess whether meteorological conditions modify the relationship between short-term exposure to ambient air pollution and mortality, an examination of air pollution and human mortality associations (ecologic) using hybrid spatial synoptic classification procedures was conducted. Concentrations of air pollutants and human mortality from all non-accidental and cardiorespiratory causes were examined according to typical winter and summer synoptic climatologies in Toronto, Canada, between 1981 and 1999. Air masses were derived using a hybrid spatial synoptic classification procedure associating each day over the 19-year period with one of six different typical weather types, or a transition between two weather types. Generalized linear models (GLMs) were used to assess the risk of mortality from air pollution within specific air mass type subsets. Mortality follows a distinct seasonal pattern with a maximum in winter and a minimum in summer. Average air pollution concentrations were similar in both seasons with the exception of elevated sulfur dioxide levels in winter and elevated ozone levels in summer. Subtle changes in meteorological composition can alter the strength of pollutant associations with health outcomes, especially in the summer season. Although there does not appear to be any systematic patterning of modification, variation in pollutant concentrations seems dependent on the type of synoptic category present.

  14. Multi-scale approach to Euro-Atlantic climatic cycles based on phenological time series, air temperatures and circulation indexes.

    PubMed

    Mariani, Luigi; Zavatti, Franco

    2017-03-24

    The spectral periods in North Atlantic Oscillation (NAO), Atlantic Multidecadal Oscillation (AMO) and El Nino Southern Oscillation (ENSO) were analyzed and has been verified how they imprint a time series of European temperature anomalies (ETA), two European temperature time series and some phenological series (dates of cherry flowering and grapevine harvest). Such work had as reference scenario the linear causal chain MCTP (Macroscale Circulation→Temperature→Phenology of crops) that links oceanic and atmospheric circulation to surface air temperature which in its turn determines the earliness of appearance of phenological phases of plants. Results show that in the three segments of the MCTP causal chain are present cycles with the following central period in years (the % of the 12 analyzed time series interested by these cycles are in brackets): 65 (58%), 24 (58%), 20.5 (58%), 13.5 (50%), 11.5 (58%), 7.7 (75%), 5.5 (58%), 4.1 (58%), 3 (50%), 2.4 (67%). A comparison with short term spectral peaks of the four El Niño regions (nino1+2, nino3, nino3.4 and nino4) show that 10 of the 12 series are imprinted by periods around 2.3-2.4yr while 50-58% of the series are imprinted by El Niño periods of 4-4.2, 3.8-3.9, 3-3.1years. The analysis highlights the links among physical and biological variables of the climate system at scales that range from macro to microscale whose knowledge is crucial to reach a suitable understanding of the ecosystem behavior. The spectral analysis was also applied to a time series of spring - summer precipitation in order to evaluate the presence of peaks common with other 12 selected series with result substantially negative which brings us to rule out the existence of a linear causal chain MCPP (Macroscale Circulation→Precipitation→Phenology).

  15. Spatial pattern of ozone injury in Aleppo pine related to air pollution dynamics in a coastal-mountain region of eastern Spain.

    PubMed

    Sanz, M J; Calatayud, V; Calvo, E

    2000-05-01

    In eastern Spain, studies combining the tracking and meso-scale circulations of air pollutants with the evaluation of their effects on plants have been undertaken since 1994. Meso-scale processes are very important from the point of view of how and where forest ecosystems are affected by point sources and regional air pollution in the Mediterranean area. The first results of these field surveys show that in 1994, 1995 and 1996, the distribution pattern of ozone visual injury (chlorotic mottle) in Pinus halepensis correlated with the penetration of pollutants transported by the sea-breeze into coastal valleys of Castellón (eastern Spain). In this tree species, longer needles are associated with higher chlorotic mottle, and ozone injury seems to be among the factors affecting needle retention and crown transparency.

  16. Air plasma assisting microcontact deprinting and printing for gold thin film and PDMS patterns.

    PubMed

    Gou, Hong-Lei; Xu, Jing-Juan; Xia, Xing-Hua; Chen, Hong-Yuan

    2010-05-01

    In this paper, we present a simple method to fabricate gold film patterns and PDMS patterns by air plasma assisting microcontact deprinting and printing transfer approaches. Chemical gold plating is employed instead of conventional metal evaporation or sputtering to obtain perfect gold film both on flat and topographic PDMS chips, and complicated SAM precoating is replaced by simple air plasma treatment to activate both the surface of gold film and PDMS. In this way, large area patterns of conductive gold film and PDMS patterns could be easily obtained on the elastomeric PDMS substrate. Both the chemical plating gold film and transferred gold film were of good electrochemical properties and similar hydrophilicity with smooth and conductive surface, which made it potentially useful in microfluidic devices and electronics. The gold transfer mechanism is discussed in detail. For typical applications, a cell patterning chip based on the gold pattern was developed to imply the interfacial property, and dielectrophoresis control of live cells was carried out with the patterned gold as interdigital electrodes to show the conductivity.

  17. Spatial and temporal patterns of air pollutants in rural and urban areas of India.

    PubMed

    Sharma, Disha; Kulshrestha, U C

    2014-12-01

    In this study, we analysed spatial and temporal patterns of Suspended Particulate Matter (SPM) concentrations across India. We have also assessed MODIS-derived aerosol optical depth (AOD) variations to characterize the air quality and relate it to SPM, NO2 and SO2 in different areas. In addition, the pollutant concentrations have been mapped using geospatial techniques. The results indicated significant differences in air pollutant levels across rural and urban areas. In general, districts of central and northern India had relatively higher SPM concentrations compared to southern India. Out of the top ten SPM polluted districts in India, nine were located in the state of Uttar Pradesh (UP). We observed significant correlations between the SPM and AOD at different sites. Although spatial and temporal patterns of NO2 and SO2 matched AOD patterns, the correlation strength (r2) varied based on location. The causes and implications of these findings are presented.

  18. Mineralogical and chemical characterization of suspended atmospheric particles over the east Mediterranean based on synoptic-scale circulation patterns

    NASA Astrophysics Data System (ADS)

    Kalderon-Asael, Boriana; Erel, Yigal; Sandler, Amir; Dayan, Uri

    Suspended atmospheric particles were collected in Israel in order to identify their nature and relationships with the major synoptic-scale circulation patterns. The particles were analyzed for their major and trace element concentrations and mineralogical composition. Samples were collected during three synoptic systems associated with desert dust storms: Red Sea trough, Sharav cyclone and cold depression, and during deep and shallow modes of Persian Gulf trough, which prevails in the summer months and is not associated with dust storms. All samples mostly contain particles smaller than 2 μm. The suspended desert dust is composed primarily of illite-smectite and calcite. Some indicative secondary minerals were found for each of the dust transporting synoptic systems (e.g., palygorskite for Red Sea trough). The bulk chemistry data support the mineralogical observations and reveal additional chemical signatures of each dust transporting system. For instance, Red Sea trough samples have significantly higher Ca/Al and Ca/Mg in the carbonate and Mg/Al in Al-silicate fraction than cold depression samples. Nevertheless, Sharav cyclone samples have intermediate values in spite of the fact that the source of the dust during these conditions is similar to cold depression (i.e., North Africa). Even though differences in the chemical and the mineralogical composition of desert dust do exist, this study reveals their overall chemical and mineralogical similarities. In contrast to the synoptic systems that carry desert dust, the inorganic fraction of the Persian Gulf trough samples contains significant amount (up to 50%) of non-mineral material that has a pronounced chemical signature in terms of major element concentrations (e.g., Al, Ca, Mg, Na, S) implying their anthropogenic nature, probably from countries around the Black Sea. This striking finding is indicative for atmospheric pollution in the Eastern Mediterranean region during the summer.

  19. Circulation factors affecting precipitation over Bulgaria

    NASA Astrophysics Data System (ADS)

    Nojarov, Peter

    2017-01-01

    The objective of this paper is to determine the influence of circulation factors on precipitation in Bulgaria. The study succeeds investigation on the influence of circulation factors on air temperatures in Bulgaria, as the focus here is directed toward precipitation amounts. Circulation factors are represented through two circulation indices, showing west-east or south-north transport of air masses over Bulgaria and four teleconnection indices (patterns)—North Atlantic Oscillation, East Atlantic, East Atlantic/Western Russia, and Scandinavian. Omega values at 700-hPa level show vertical motions in the atmosphere. Annual precipitation trends are mixed and not statistically significant. A significant decrease of precipitation in Bulgaria is observed in November due to the strengthening of the eastward transport of air masses (strengthening of EA teleconnection pattern) and anticyclonal weather (increase of descending motions in the atmosphere). There is also a precipitation decrease in May and June due to the growing influence of the Azores High. An increase of precipitation happens in September. All this leads to a redistribution of annual precipitation course, but annual precipitation amounts remain the same. However, this redistribution has a negative impact on agriculture and winter ski tourism. Zonal circulation has a larger influence on precipitation in Bulgaria compared to meridional. Eastward transport throughout the year leads to lower than the normal precipitation, and vice versa. With regard to the four teleconnection patterns, winter precipitation in Bulgaria is determined mainly by EA/WR teleconnection pattern, spring and autumn by EA teleconnection pattern, and summer by SCAND teleconnection pattern.

  20. Experimental investigation on flame pattern formations of DME-air mixtures in a radial microchannel

    SciTech Connect

    Fan, Aiwu; Maruta, Kaoru; Nakamura, Hisashi; Kumar, Sudarshan; Liu, Wei

    2010-09-15

    Flame pattern formations of premixed DME-air mixture in a heated radial channel with a gap distance of 2.5 mm were experimentally investigated. The DME-air mixture was introduced into the radial channel through a delivery tube which connected with the center of the top disk. With an image-intensified high-speed video camera, rich flame pattern formations were identified in this configuration. Regime diagram of all these flame patterns was drawn based on the experimental findings in the equivalence ratio range of 0.6-2.0 and inlet velocity range of 1.0-5.0 m/s. Compared with our previous study on premixed methane-air flames, there are several distinct characteristics for the present study. First, Pelton-wheel-like rotary flames and traveling flames with kink-like structures were observed for the first time. Second, in most cases, flames can be stabilized near the inlet port of the channel, exhibiting a conical or cup-like shape, while the conventional circular flame was only observed under limited conditions. Thirdly, an oscillating flame phenomenon occurred under certain conditions. During the oscillation process, a target appearance was seen at some instance. These pattern formation characteristics are considered to be associated with the low-temperature oxidation of DME. (author)

  1. Stress and physiological, behavioral and performance patterns of children under varied air ion levels

    NASA Astrophysics Data System (ADS)

    Fornof, K. T.; Gilbert, G. O.

    1988-12-01

    The possibility that individual differences in reactivity to stressors are a major factor underlying discordant results reported for air ion studies prompted an investigation of response patterns in school children under both normal indoor air ion levels and moderately increased negative air ion levels (4000±500/cm3). It was hypothesized that the impact of stressors is reduced with high negative air ionization, and that resultant changes in stress effects would be differentially exhibited according to the children's normal degree of stimulus reactivity. A counter-balanced, replicative, withinssubject design was selected, and the subjects were 12 environmentally sensitive, 1st 4th grade school children. In addition to monitoring stress effects on activity level, attention span, concentration to task and conceptual performance, measures were also made of urinary 5-hydroxyindole acetic acid levels and skin resistance response (SRR) to determine if changes extended to the physiological state. The cold water test was used to add physical stress and enable calculations of Lacey's autonomic lability scores (ALS) as indicators of individual reactivity. The results show main effects for air ions on both physiological parameters, with 48% less change in %SRR ( P<0.01) and 46% less change in urinary 5-HIAA levels ( P<0.055) during negative air ions, indicating increased stress tolerance. Strong interactive effects for ALS x air ion condition appeared, with high and low ALS children reacting oppositely to negative air ions in measures of skin resistance level ( P<0.01), wrist activity ( P<0.01) and digit span backwards ( P<0.004). Thus individual differences in autonomic reactivity and the presence or absence of stressors appear as critical elements for internal validity, and in preventing consequent skewed results from obscuring progress in air ion research.

  2. Patterns of entrapped air dissolution in a two-dimensional pilot-scale synthetic aquifer.

    PubMed

    McLeod, Heather C; Roy, James W; Smith, James E

    2015-01-01

    Past studies of entrapped air dissolution have focused on one-dimensional laboratory columns. Here the multidimensional nature of entrapped air dissolution was investigated using an indoor tank (180 × 240 × 600 cm(3) ) simulating an unconfined sand aquifer with horizontal flow. Time domain reflectometry (TDR) probes directly measured entrapped air contents, while dissolved gas conditions were monitored with total dissolved gas pressure (PTDG ) probes. Dissolution occurred as a diffuse wedge-shaped front from the inlet downgradient, with preferential dissolution at depth. This pattern was mainly attributed to increased gas solubility, as shown by PTDG measurements. However, compression of entrapped air at greater depths, captured by TDR and leading to lower quasi-saturated hydraulic conductivities and thus greater velocities, also played a small role. Linear propagation of the dissolution front downgradient was observed at each depth, with both TDR and PTDG , with increasing rates with depth (e.g, 4.1 to 5.7× slower at 15 cm vs. 165 cm depth). PTDG values revealed equilibrium with the entrapped gas initially, being higher at greater depth and fluctuating with the barometric pressure, before declining concurrently with entrapped air contents to the lower PTDG of the source water. The observed dissolution pattern has long-term implications for a wide variety of groundwater management issues, from recharge to contaminant transport and remediation strategies, due to the persistence of entrapped air near the water table (potential timescale of years). This study also demonstrated the utility of PTDG probes for simple in situ measurements to detect entrapped air and monitor its dissolution.

  3. On the North Atlantic circulation

    SciTech Connect

    Schmitz, W.J. Jr.; McCartney, M.S. )

    1993-02-01

    A summary for North Atlantic circulation is proposed to replace the circulation scheme hypothesized by Worthington in 1976. Divergences from the previous model are in thermohaline circulation, cross-equatorical transport and Florida Current sources, flow in the eastern Atlantic, circulation in the Newfoundland Basin, slope water currents, and flow pattern near the Bahamas. The circulation patterns presented here are consistent with the majority of of published accounts of flow components. 77 refs., 14 figs., 3 tabs.

  4. 20th century trends of drought conditions in the Mediterranean: the influence of large-scale circulation patterns.

    NASA Astrophysics Data System (ADS)

    Sousa, Pedro; Trigo, Ricardo; Garcia-Herrera, Ricardo

    2010-05-01

    Here we have used the Self Calibrated PDSI (scPDSI) proposed by Wells et al (2004) as a more appropriate approach to characterize drought conditions in the Mediterranean area. The scPDSI has been shown to perform better (than the original PDSI) when evaluating spatial and temporal drought characteristics for regions outside the USA (Schrier et al, 2005). Seasonal and annual trends for the 1901-2000, 1901-1950 and 1951-2000 periods were computed using the standard Mann-Kendall test for trend significance evaluation. However, statistical significance obtained with this test can be highly misleading because it does not take into account the low variability nature that dominates the seasonal evolution of scPDSI fields. We have now improved these results by employing a modified Mann-Kendall test for auto-correlated series (Hamed and Ramachandra, 1997), such as the scPDSI case. This development allowed for a better definition of the Mediterranean areas characterized by significant changes in the scPDSI, namely the largely negative trends that dominate the Mediterranean basin, with the exceptions of parts of eastern Turkey and northwestern Iberia, since initially these areas were overestimated. The spatio-temporal variability of these indices was evaluated with an EOF analysis, in order to reduce the large dimensionality of the fields under analysis. Spatial representation of the first EOF patterns shows that EOF 1 covers the entire Mediterranean basin (16.4% of EV), while EOF2 is dominated by a W-E dipole (10% EV). The following EOF patterns present smaller scale features, and explain smaller amounts of variance. The EOF patterns have also facilitated the definition of four sub-regions with large socio-economic relevance: 1) Iberia, 2) Italian Peninsula, 3) Balkans and 4) Turkey. Afterwards we perform a comprehensive analysis on the links between the scPDSI and the large-scale atmospheric circulation indices that affect the Mediterranean basin, namely; NAO, EA, and SCAND

  5. On Temporal Patterns and Circulation of Influenza Virus Strains in Taiwan, 2008-2014: Implications of 2009 pH1N1 Pandemic

    PubMed Central

    Hsieh, Ying-Hen; Huang, Hsiang-Min; Lan, Yu-Ching

    2016-01-01

    Background It has been observed that, historically, strains of pandemic influenza led to succeeding seasonal waves, albeit with decidedly different patterns. Recent studies suggest that the 2009 A(H1N1)pdm09 pandemic has had an impact on the circulation patterns of seasonal influenza strains in the post-pandemic years. In this work we aim to investigate this issue and also to compare the relative transmissibility of these waves of differing strains using Taiwan influenza surveillance data before, during and after the pandemic. Methods We make use of the Taiwan Center for Disease Control and Prevention influenza surveillance data on laboratory-confirmed subtyping of samples and a mathematical model to determine the waves of circulating (and co-circulating) H1, H3 and B virus strains in Taiwan during 2008–2014; or namely, short before, during and after the 2009 pandemic. We further pinpoint the turning points and relative transmissibility of each wave, in order to ascertain whether any temporal pattern exists. Results/Findings For two consecutive years following the 2009 pandemic, A(H1N1)pdm09 circulated in Taiwan (as in most of Northern Hemisphere), sometimes co-circulating with AH3. From the evolution point of view, A(H1N1)pdm09 and AH3 were able to sustain their circulation patterns to the end of 2010. In fact, A(H1N1)pdm09 virus circulated in six separate waves in Taiwan between summer of 2009 and spring of 2014. Since 2009, a wave of A(H1N1)pmd09 occurred every fall/winter influenza season during our study period except 2011–2012 season, when mainly influenza strain B circulated. In comparing transmissibility, while the estimated per capita weekly growth rates for cumulative case numbers (and the reproduction number) seem to be lower for most of the influenza B waves (0.06~0.26; range of 95% CIs: 0.05~0.32) when compared to those of influenza A, the wave of influenza B from week 8 to week 38 of 2010 immediately following the fall/winter wave of 2009 A(H1N1

  6. Hurricane-related air-sea interactions, circulation modifications, and coastal impacts on the eastern Louisiana coastline

    NASA Astrophysics Data System (ADS)

    Walker, N. D.; Pilley, C.; Li, C.; Liu, B.; Leben, R. R.; Raghunthan, V.; Ko, D.; Teague, W. J.

    2012-12-01

    Beginning in 1995, Atlantic hurricane activity increased significantly relative to the 1970s and 1980s. In 2005, records were broken when two hurricanes intensified rapidly to Category 5 for a period of time within the Gulf of Mexico, later landed, and flooded vast expanses of Louisiana's coastal regions within the span of 30 days. In this study, we investigate major hurricane events (including 2005) to elucidate air-sea interactions pertinent to hurricane intensity changes, shelf circulation, coastal flooding, and coastal land losses. We employ satellite measurements from passive sensors (temperature, true color, pigments) and active sensors (scatterometers, altimeters) in tandem with in-situ measurements from WAVCIS, NDBC, USGS, and NRL, as well as dedicated field campaigns along the coast. A selection of hurricane events during the 1998 to 2008 time period are used in this investigation. Research has shown that the Loop Current and its warm-core anticyclonic eddies (with high heat content) can intensify hurricanes transiting the Gulf; whereas, the cold-core cyclonic eddies (which are upwelling regions) can weaken hurricanes. Hurricane winds can intensify cold-core cyclonic eddies, which in some cases can impact outer shelf currents, mixing, and thermal structure throughout the water column. The exceptionally strong winds and waves in the northeast quadrant of these cyclonic atmospheric storms drive strong and long-lived westward currents. Storm surges and/or set-up of 2-6 m commonly occur along the Louisiana coastline, sometimes as a result of hurricanes traveling across the central Gulf of Mexico, at great distances from the coastal region experiencing the flooding (e.g. Hurricanes Rita and Gustav). The eastern shelf, north of the Mississippi River Birdfoot Delta, is particularly vulnerable to water level set-up and storm surge intensification due to the coastal orientation that causes the trapping of water. This area experienced land loss of 169 km2, or ~20

  7. A method for the determination of potentially profitable service patterns for commuter air carriers

    NASA Technical Reports Server (NTRS)

    Ransone, R. K.; Kuhlthau, A. R.; Deptula, D. A.

    1975-01-01

    A methodology for estimating market conception was developed as a part of the short-haul air transportation program. It is based upon an analysis of actual documents which provide a record of known travel history. Applying this methodology a forecast was made of the demand for an air feeder service between Charlottesville, Virginia and Dulles International Airport. Local business travel vouchers and local travel agent records were selected to provide the documentation. The market was determined to be profitable for an 8-passenger Cessna 402B aircraft flying a 2-hour daily service pattern designed to mesh to the best extent possible with the connecting schedules at Dulles. The Charlottesville - Dulles air feeder service market conception forecast and its methodology are documented.

  8. Comparison study of laboratory and production spray guns in film coating: effect of pattern air and nozzle diameter.

    PubMed

    Müller, Ronny; Kleinebudde, Peter

    2006-01-01

    An optimal atomization air/pattern air ratio is necessary for a good coating process. The influences of variations in pattern air and nozzle diameter on the spray characteristics, such as droplet size, droplet velocity, and spray density, are investigated by using laboratory and production Schlick spray guns, both equipped with a new antibearding cap (ABC). An increase in the pattern air results in a wider spray accompanied with a decrease in droplet size in the spray center for both spray guns. Furthermore, an increase in the pattern air leads to a reduction in spray density in the spray center and, simultaneously, to an increase in spray density at the spray rim. A variation in nozzle diameter does not influence the spray characteristics for both spray guns.

  9. Exploratory Analysis of Spatial-Temporal Patterns of Air Pollution in the City

    NASA Astrophysics Data System (ADS)

    Champendal, Alexandre; Kanevski, Mikhail; Huguenot, Pierre-Emmanuel; Golay, Jean

    2013-04-01

    Air pollution in the city is an important problem influencing environment, well-being of society, economy, management of urban zones, etc. The problem is extremely difficult due to a very complex distribution of the pollution sources, morphology of the city and dispersion processes leading to multivariate nature of the phenomena and high local spatial-temporal variability. The task of understanding, modelling and prediction of spatial-temporal patterns of air pollution in urban zones is an interesting and challenging topic having many research axes from science-based modelling to geostatistics and data mining. The present research mainly deals with a comprehensive exploratory analysis of spatial-temporal air pollution data using statistical, geostatistical and machine learning tools. This analysis helps to 1) understand and model spatial-temporal correlations using variography, 2) explore the temporal evolution of spatial correlation matrix; 3) analyse and visualize an interconnection between measurement stations using network science tools; 4) quantify the availability and predictability of structured patterns. The real data case study deals with spatial-temporal air pollution data of canton Geneva (2002-2011). Carbon dioxide (NO2) have caught our attention. It has effects on health: nitrogen dioxide can irritate the lungs, effects on plants; NO2 contributes to the phenomenon of acid rain. The negative effects of nitrogen dioxides on plants are reducing the growth, production and pesticide resistance. And finally the effects on materials: nitrogen dioxides increase the corrosion. Well-defined patterns of spatial-temporal correlations were detected. The analysis and visualization of spatial correlation matrix for 91 stations were carried out using the network science tools and high levels of clustering were revealed. Moving Window Correlation Matrix and Spatio-temporal variography methods were applied to define and explore the dynamic of our data. More than just

  10. The Relationship of Loss, Mean Age of Air and the Distribution of CFC's to Stratospheric Circulation and Implications for Atmospheric Lifetimes

    NASA Technical Reports Server (NTRS)

    Douglas, A. R.; Stolarski, R. S.; Schoeberl, M. R.; Jackman, C. H.; Gupta, M. L.; Newman, P. A.; Nielsen, J. E.; Fleming, E. L.

    2008-01-01

    Model-derived estimates of the annually integrated destruction and lifetime for various ozone depleting substances (ODSs) depend on the simulated stratospheric transport and mixing in the global model used to produce the estimate. Observations in the middle and high latitude lower stratosphere show that the mean age of an air parcel (i.e., the time since its stratospheric entry) is related to the fractional release for the ODs (i.e., the amount of the ODS that has been destroyed relative to the amount at the time of stratospheric entry). We use back trajectory calculations to produce an age spectrum, and explain the relationship between the mean age and the fractional release by showing that older elements in the age spectrum have experienced higher altitudes and greater ODs destruction than younger elements. In our study, models with faster circulations produce distributions for the age-of-air that are 'young' compared to a distribution derived from observations. These models also fail to reproduce the observed relationship between the mean age of air and the fractional release. Models with slower circulations produce both realistic distributions for mean age and a realistic relationship between mean age and fractional release. These models also produce a CFCl3 lifetime of approximately 56 years, longer than the 45 year lifetime used to project future mixing ratios. We find that the use of flux boundary conditions in assessment models would have several advantages, including consistency between ODS evolution and simulated loss even if the simulated residual circulation changes due to climate change.

  11. Hemispheric asymmetries and seasonality of mean age of air in the lower stratosphere: Deep versus shallow branch of the Brewer-Dobson circulation

    NASA Astrophysics Data System (ADS)

    Konopka, Paul; Ploeger, Felix; Tao, Mengchu; Birner, Thomas; Riese, Martin

    2015-03-01

    Based on multiannual simulations with the Chemical Lagrangian Model of the Stratosphere, (CLaMS) driven by ECMWF ERA-Interim reanalysis, we discuss hemispheric asymmetries and the seasonality of the mean age of air (AoA) in the lower stratosphere. First, the planetary wave forcing of the Brewer-Dobson circulation is quantified in terms of Eliassen Palm flux divergence calculated by using the isentropic coordinate θ. While the forcing of the deep branch at θ = 1000 K (around 10 hPa) has a clear maximum in each hemisphere during the respective winter, the shallow branch of the Brewer-Dobson circulation, i.e., between 100 and 70 hPa (380 < θ < 420 K), shows almost opposite seasonality in both hemispheres with a pronounced minimum between June and September in the Southern Hemisphere. Second, we decompose the time-tendency of AoA into the contributions of the residual circulation and of eddy mixing by analyzing the zonally averaged tracer continuity equation. In the tropical lower stratosphere between ±30°, the air becomes younger during boreal winter and older during boreal summer. During boreal winter, the decrease of AoA due to tropical upwelling outweighs aging by isentropic mixing. In contrast, weaker isentropic mixing outweighs an even weaker upwelling in boreal summer and fall making the air older during these seasons. Poleward of 60°, the deep branch locally increases AoA and eddy mixing locally decreases AoA with the strongest net decrease during spring. Eddy mixing in the Northern Hemisphere outweighs that in the Southern Hemisphere throughout the year.

  12. Community Circulation Patterns of Oral Polio Vaccine Serotypes 1, 2, and 3 After Mexican National Immunization Weeks

    PubMed Central

    Troy, Stephanie B.; Ferreyra-Reyes, Leticia; Huang, ChunHong; Sarnquist, Clea; Canizales-Quintero, Sergio; Nelson, Christine; Báez-Saldaña, Renata; Holubar, Marisa; Ferreira-Guerrero, Elizabeth; García-García, Lourdes; Maldonado, Yvonne A.

    2014-01-01

    Background. With wild poliovirus nearing eradication, preventing circulating vaccine-derived poliovirus (cVDPV) by understanding oral polio vaccine (OPV) community circulation is increasingly important. Mexico, where OPV is given only during biannual national immunization weeks (NIWs) but where children receive inactivated polio vaccine (IPV) as part of their primary regimen, provides a natural setting to study OPV community circulation. Methods. In total, 216 children and household contacts in Veracruz, Mexico, were enrolled, and monthly stool samples and questionnaires collected for 1 year; 2501 stool samples underwent RNA extraction, reverse transcription, and real-time polymerase chain reaction (PCR) to detect OPV serotypes 1, 2, and 3. Results. OPV was detected up to 7 months after an NIW, but not at 8 months. In total, 35% of samples collected from children vaccinated the prior month, but only 4% of other samples, contained OPV. Although each serotype was detected in similar proportions among OPV strains shed as a result of direct vaccination, 87% of OPV acquired through community spread was serotype 2 (P < .0001). Conclusions. Serotype 2 circulates longer and is transmitted more readily than serotypes 1 or 3 after NIWs in a Mexican community primarily vaccinated with IPV. This may be part of the reason why most isolated cVDPV has been serotype 2. PMID:24367038

  13. Active and inactive phases of the South Pacific Convergence Zone and changes in global circulation patterns - A case study

    NASA Technical Reports Server (NTRS)

    Huang, H.-J.; Vincent, D. G.

    1988-01-01

    A set of FGGE Level III-b analyses produced at the NASA Goddard Laboratory for Atmospheres (GLA) is used to examine changes that occur in the global-scale circulation features during the period, January 10 - February 13,1979. In the first two weeks of this period, the South Pacific Convergence Zone (SPCZ) and its convective cloud band were observed to be dominant features of the circulation. Subsequent to January 24, there were marked changes in the global-scale circulation, particularly in the Southern Hemisphere tropics. Concomitant with these changes was the disappearance of the SPCZ and its cloud band. The primary purpose of this study is to compare some general circulation parameters, which frequently correspond to deep convection, for two 15-day periods: January 10-24, when the SPCZ was very convectively active, and January 28 - February 11 when it was inactive. Daily variations of some parameters are also shown. It is seen that distinct changes occur in each parameter by the end of the first period, particularly in the vicinity of the SPCZ. Suggestions are offered regarding mechanisms which might be responsible for the observed changes.

  14. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  15. Effects of synoptic-scale circulation pattern and local land surface condition on fog at Kushiro, northern Japan

    NASA Astrophysics Data System (ADS)

    Sugimoto, S.; Sato, T.; Nakamura, K.

    2012-12-01

    Marine stratiform clouds are frequently observed over western North Pacific offshore of the northeast Japan during summer when warm southerly wind prevails over underlying cold ocean current. Such clouds often migrate over Kushiro located in the coastal area of eastern Hokkaido Island, north Japan and are recognized as sea fog. On the other hand, Kushiro is a middle-sized city with population of over 180,000 and a large wetland expands at the north of Kushiro city. The difference of land surface condition between the city and the wetland might cause heterogeneity of the sea fog distribution over land, via dissipation and regeneration process of fog. In this study, long-term visibility data for Kushiro are investigated to clarify the relationship between interannual variation of fog frequency (FF) and large-scale circulation patterns. Furthermore, frequency of fog/low-level cloud (LC) is identified using satellite images and sensitivity experiments changing land surface condition are conducted using meteorological regional model to understand an impact of land use on the local fog distribution and its physical processes. Monthly mean FF trends observed at Kushiro during 1931 to 2010 shows significant decline (-3.3 day per decade). Since late 1970s, the decline at Kushiro has been particularly remarkable in July and August in association with an increased number of years with very low FF. Analysis of radiosonde data has revealed the development of shallow moist layer under a strong inversion layer during fog occurrence because of abundant moisture supply from southerly wind. However, cold and dry northerly wind prevents the formation of inversion layer during fog-free days. Composite analysis of reanalysis data suggests that the low-level southerly wind toward northeast Japan is weaker in the low FF month of July than climatology owing to a southward shift of the North Pacific High (NPH) and stronger Okhotsk High. In August, eastward displacement or shrinking of the

  16. Time-varying Atmospheric Circulation Patterns Caused by N2 Condensation Flows on a Simulated Triton Atmosphere

    NASA Astrophysics Data System (ADS)

    Miller, C.; Chanover, N.; Murphy, J. R.; Zalucha, A. M.

    2011-12-01

    Triton and Pluto are two members of a possible class of bodies with an N2 frost covered surface in vapor-pressure equilibrium with a predominately N2 atmosphere. Modeling the dynamics of such an atmosphere is useful for several reasons. First, winds on Triton were inferred from images of surface streaks and active plumes visible at the time of the Voyager 2 flyby in August 1989. Dynamic atmospheric simulations can reveal the seasonal conditions under which such winds would arise and therefore how long before the Voyager 2 encounter the ground streaks may have been deposited. Second, atmospheric conditions on Pluto at the time of the New Horizons flyby are expected to be similar to those on Triton. Therefore, a dynamical model of a cold, thin N2 atmosphere can be used to predict wind speed and direction on Pluto during the New Horizons encounter with the Pluto/Charon system in July 2015. We used a modified version of the NASA Ames Mars General Circulation Model, version 2.0, to model an N2 atmosphere in contact with N2 surface frosts. We altered the Ames GCM to simulate conditions found on Triton. These alterations included changing the size, rotation rate, orbital inclination, surface gravity, and distance to the Sun of the parent body to model the proper time-varying insolation. We defined the gas properties for an N2 atmosphere, including values for latent heat, specific heat, and the vapor pressure-temperature relationship for N2 frosts. Our simulations assumed an N2 atmosphere with an initial average surface pressure of 18 microbars and we chose N2 frost albedo and emissivity values that resulted in a stable surface pressure over time. We incorporated a 190-meter deep ten-layer water-ice subsurface layer covered with a 20-centimeter global layer of N2 frost. Our simulations did not include atmospheric radiative heat transfer, but did include conduction, convection, and surface-boundary layer heating. We ran simulations of 100 Triton days at 10 points along

  17. Patterns of cold-air drainage and microclimate in mid-latitude versus high-latitude mountains: contrasts and implications for climate change (Invited)

    NASA Astrophysics Data System (ADS)

    Pepin, N. C.

    2009-12-01

    Predictions of current spatial patterns of climate are difficult in areas of complex relief in all parts of the world, because of the interweaving influences of topography, elevation and aspect. These influences vary temporally as a result of the seasonal and diurnal cycles in radiation balance. In periods of negative energy balance, surface decoupling can occur as cold air drainage develops low-level temperature inversions, and the surface temperature regime beneath the inversion becomes divorced from free atmospheric forcing. Both the spatial scale and temporal persistence of this decoupling vary according to latitude, and although the physical processes that influence inversion formation are similar in polar areas and mid-latitude mountains, the contrasting seasonal and diurnal forcings make the end results very different. Examples are contrasted from detailed field temperature measurements (~50 sites per field area) taken over several years in areas of complex relief in the eastern Pyrenees (~42.5 deg N), the Oregon Cascades (also ~42.5 deg N) and Finnish Lapland (70 deg N and above the Arctic circle). In the former two locations decoupling is mostly diurnally driven, and small-scale topography is important in mediating the effects. Summer decoupling is brief and spatially limited, whereas winter decoupling can be more spatially extensive. There are strong relationships between synoptic conditions, as measured by objective flow indices at the 700 mb level (derived from NCEP/NCAR reanalysis fields) and the patterns of decoupling, which allow us to assess the effects of past and potential future circulation change on spatial patterns of future climate warming. In Finnish Lapland the decoupling regime most clearly approaches the mid-latitude pattern around the equinoxes when there are clear day and night periods. In winter and summer however (the polar night and polar day) with the muting of the diurnal cycle, processes are more poorly understood. Winter cold

  18. Changes in Central European Soil Moisture Availability and Atmospheric Circulation Patterns between 1875 and 2005 - Regional Climate Change in Progress?

    NASA Astrophysics Data System (ADS)

    Trnka, M.; Kysely, J.; Dubrovsky, M.; Mozny, M.; Hostynek, J.; Svoboda, M.; Hayes, M. J.; Zalud, Z.

    2007-12-01

    Relationships between the soil moisture availability and the atmospheric circulation in Central Europe were analyzed for the period 1881-2005. The analysis was based on the Hess-Brezowsky catalogue of circulation types (CTs), and a series of weekly self-calibrated Palmer Z-index (scZ-index) and Palmer Drought Severity Index (scPDSI) values at seven stations where high-quality daily data has recently become available. The results show that the large-scale droughts during spring months (MAM) were associated with east (E), south (S), and south- east (SE) circulation types, whereas during summer (JJA) and the whole vegetation season, i.e., April-September (VEG), the Central Europe high pressure systems (HM) and east (E) circulation types were conducive to drought. Statistically significant drying trends were noted at a majority of the stations, especially during MAM and JJA, over the whole period for which the scPDSI and scZ-index series were available (1875-2005). Although almost no statistically significant tendencies were found prior to 1940, a significant tendency towards more intense drought was present at all sites after this year. The largest drying trend was noted during the VEG and AMJ seasons. The overall drying trend might be associated with shifts in the frequency of CTs, especially during AMJ. Although the aggregate frequency of occurrence of drought-conducive CTs (i.e. E, S and HM) remained stable at approximately 30% up to the 1940s, a steady increase to the present 55% frequency is observed afterwards. Higher frequencies of S and HM types drove the observed increase of drought-conducive CTs at the expense of N types that are associated with wet conditions. The long-term shifts in the frequency of circulation types conducive to drought explain more than 50% of the long-term variations of both scZ-index and PDSI values over the territory of the Czech Republic, and they are likely to affect whole central European region as well. Acknowledgement: This study

  19. Pattern of polynuclear aromatic hydrocarbons on indoor air: Exploratory principal component analysis

    SciTech Connect

    Mitra, S. ) Wilson, N.K. )

    1992-01-01

    Principal component analysis (PCA) was used to study polynuclear aromatic hydrocarbon (PAH) profiles in indoor air. Fifteen PAHs were measured in ten different homes in Columbus (Ohio) which had different indoor emission characteristics such as gas utilities, wood-burning fireplaces, and cigarette smokers. Different PAH concentration patterns emerged depending upon the emission sources present in the different homes. Of these, cigarette smoking appeared to have the greatest impact on the indoor PAH concentrations. The PCA allowed convenient displays of the multidimensional data set from which the PAH concentration characteristics could be elucidated. The interrelationship between the different PAHs was also studied by correlation analysis.

  20. Flow patterns of natural convection in an air-filled vertical cavity

    NASA Astrophysics Data System (ADS)

    Wakitani, Shunichi

    1998-08-01

    Flow patterns of two-dimensional natural convection in a vertical air-filled tall cavity with differentially heated sidewalls are investigated. Numerical simulations based on a finite difference method are carried out for a wide range of Rayleigh numbers and aspect ratios from the onset of the steady multicellular flow, through the reverse transition to the unicellular pattern, to the unsteady multicellular flow. For aspect ratios (height/width) from 10 to 24, the various cellular structures characterized by the number of secondary cells are clarified from the simulations by means of gradually increasing Rayleigh number to 106. Unsteady multicellular solutions are found in some region of Rayleigh numbers less than those at which the reverse transition has occurred.

  1. Evaluating and mapping of spatial air ion quality patterns in a residential garden using a geostatistic method.

    PubMed

    Wu, Chen-Fa; Lai, Chun-Hsien; Chu, Hone-Jay; Lin, Wen-Huang

    2011-06-01

    Negative air ions (NAI) produce biochemical reactions that increase the levels of the mood chemical serotonin in the environment. Moreover, they benefit both the psychological well being and the human body's physiological condition. The aim of this research was to estimate and measure the spatial distributions of negative and positive air ions in a residential garden in central Taiwan. Negative and positive air ions were measured at thirty monitoring locations in the study garden from July 2009 to June 2010. Moreover, Kriging was applied to estimate the spatial distribution of negative and positive air ions, as well as the air ion index in the study area. The measurement results showed that the numbers of NAI and PAI differed greatly during the four seasons, the highest and the lowest negative and positive air ion concentrations were found in the summer and winter, respectively. Moreover, temperature was positively affected negative air ions concentration. No matter what temperature is, the ranges of variogram in NAI/PAI were similar during four seasons. It indicated that spatial patterns of NAI/PAI were independent of the seasons and depended on garden elements and configuration, thus the NAP/PAI was a good estimate of the air quality regarding air ions. Kriging maps depicted that the highest negative and positive air ion concentration was next to the waterfall, whereas the lowest air ions areas were next to the exits of the garden. The results reveal that waterscapes are a source of negative and positive air ions, and that plants and green space are a minor source of negative air ions in the study garden. Moreover, temperature and humidity are positively and negatively affected negative air ions concentration, respectively. The proposed monitoring and mapping approach provides a way to effectively assess the patterns of negative and positive air ions in future landscape design projects.

  2. The Breath of Planet Earth: Atmospheric Circulation. Assimilation of Surface Wind Observations

    NASA Technical Reports Server (NTRS)

    Atlas, Robert; Bloom, Stephen; Otterman, Joseph

    2000-01-01

    Differences in air pressure are a major cause of atmospheric circulation. Because heat excites the movement of atoms, warm temperatures cause, air molecules to expand. Because those molecules now occupy a larger space, the pressure that their weight exerts is decreased. Air from surrounding high-pressure areas is pushed toward the low-pressure areas, creating circulation. This process causes a major pattern of global atmosphere movement known as meridional circulation. In this form of convection, or vertical air movement, heated equatorial air rises and travels through the upper atmosphere toward higher latitudes. Air just above the equator heads toward the North Pole, and air just below the equator moves southward. This air movement fills the gap created where increased air pressure pushes down cold air. The ,cold air moves along the surface back toward the equator, replacing the air masses that rise there. Another influence on atmospheric. circulation is the Coriolis force. Because of the Earth's rotation, large-scale wind currents move in the direction of this axial spin around low-pressure areas. Wind rotates counterclockwise in the Northern Hemisphere and clockwise in the Southern Hemisphere. just as the Earth's rotation affects airflow, so too does its surface. In the phenomenon of orographic lifting, elevated topographic features such as mountain ranges lift air as it moves up their surface.

  3. Elimination of young erythrocytes from blood circulation and altered erythropoietic patterns during paraquat induced anemic phase in mice.

    PubMed

    Bhardwaj, Nitin; Saxena, Rajiv K

    2014-01-01

    Paraquat a widely used herbicide causes a variety of toxic effects on humans and animals. The present study is focused on the interaction of paraquat with the mouse erythroid system. Administration of paraquat (10 mg/kg body weight i.p. on alternate days in C57Bl/6 mice) induced a significant fall in blood erythrocyte count on 7, 14, and 21 day time points but the erythrocyte count reverted back to normal by 28th day indicating the emergence of refractoriness to paraquat. A marked surge in the blood reticulocyte count was observed in paraquat treated mice that also subsided by 28th day. Young erythrocytes in circulation were randomly eliminated from blood circulation in paraquat treated mice and a significant elevation in the level of reactive oxygen species (ROS) was also observed maximally the erythrocytes of this age group. Cells representing various stages of erythroid differentiation in bone marrow and spleen were identified and enumerated flow cytometrically based on their expression of Ter119 and transferrin (CD71) receptor. Proliferative activity of erythroid cells, their relative proportion as well as their absolute numbers fell significantly in bone marrow of paraquat treated mice but all these parameters were significantly elevated in spleens of paraquat treated mice. These changes were essentially restricted to the cells belonging to the two earliest stages of erythroid differentiation. Taken together our results indicate that paraquat treatment causes a transient anemia in mice resulting from random elimination of young circulating erythrocytes as well as depressed erythropoietic activity in bone marrow. Spleen erythropoietic activity however was elevated in paraquat treated mice.

  4. Genesis of Bénard-Marangoni Patterns in Thin Liquid Films Drying into Air

    NASA Astrophysics Data System (ADS)

    Colinet, P.; Chauvet, F.; Dehaeck, S.

    Inspired by many years of motivating collaboration between the first author and Prof. Manuel G. Velarde, in the field of surface-tension-driven instabilities, pattern formation, and transition to turbulence, this paper presents recent experimental results obtained in collaboration with the second and third authors at the TIPs laboratory in Brussels. Namely, the evolution of Bénard-like patterns is explored for pure liquid layers evaporating into air, from chaotic regimes down to more stable structures with predominant hexagonal symmetry. Drying liquid layers indeed appear as a particularly simple example of system where, due to the decreasing liquid depth, the preferred wavelength of the pattern is continuously decreased in time, hence requiring perpetual creation of new convective cells. Such pattern "genesis" appears to lead to disordered structures with interesting characteristics, whose preliminary experimental investigation is carried out here. This paper is dedicated to Prof. Manuel G. Velarde, at the occasion of his 70th birthday, as a mark of deep gratitude for all positive scientific and cultural influences he had and he still has on many young scientists.

  5. Spatial analysis on China's regional air pollutants and CO2 emissions: emission pattern and regional disparity

    NASA Astrophysics Data System (ADS)

    Dong, Liang; Liang, Hanwei

    2014-08-01

    China has suffered from serious air pollution and CO2 emission. Challenges of emission reduction policy not only come from technology advancement, but also generate from the fact that, China has pronounced disparity between regions, in geographical and socioeconomic. How to deal with regional disparity is important to achieve the reduction target effectively and efficiently. This research conducts a spatial analysis on the emission patterns of three air pollutants named SO2, NOx and PM2.5, and CO2, in China's 30 provinces, applied with spatial auto-correlation and multi regression modeling. We further analyze the regional disparity and inequity issues with the approach of Lorenz curve and Gini coefficient. Results highlight that: there is evident cluster effect for the regional air pollutants and CO2 emissions. While emission amount increases from western regions to eastern regions, the emission per GDP is in inverse trend. The Lorenz curve shows an even larger unequal distribution of GDP/emissions than GDP/capita in 30 regions. Certain middle and western regions suffers from a higher emission with lower GDP, which reveal the critical issue of emission leakage. Future policy making to address such regional disparity is critical so as to promote the emission control policy under the “equity and efficiency” principle.

  6. Time-Location Patterns of a Diverse Population of Older Adults: The Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air)

    PubMed Central

    Spalt, Elizabeth W.; Curl, Cynthia L.; Allen, Ryan W.; Cohen, Martin; Adar, Sara D.; Stukovsky, Karen Hinckley; Avol, Ed; Castro-Diehl, Cecilia; Nunn, Cathy; Mancera-Cuevas, Karen; Kaufman, Joel D.

    2015-01-01

    The primary aim of this analysis was to present and describe questionnaire data characterizing time-location patterns of an older, multi-ethnic population from six American cities. We evaluated consistency of results from repeated administration of this questionnaire and between this questionnaire and other questionnaires collected from participants of the Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air). Participants reported spending most of their time inside their homes (average: 121 hours/week or 72%). More than 50% of participants reported spending no time in several of the location options, including at home outdoors, at work/volunteer/school locations indoors or outdoors, or in “other” locations outdoors. We observed consistency between self-reported time-location patterns from repeated administration of the time-location questionnaire and compared with other survey instruments. Comparisons to national cohorts demonstrated differences in time-location patterns in the MESA Air cohort due to differences in demographics, but the data showed similar trends in patterns by age, gender, season, and employment status. This study was the first to explicitly examine time-location patterns in an older, multi-ethnic population and the first to add data on Chinese participants. These data can be used to inform future epidemiological research of MESA Air and other studies that include diverse populations. PMID:25921083

  7. The circulation pattern and day-night heat transport in the atmosphere of a synchronously rotating aquaplanet: Dependence on planetary rotation rate

    NASA Astrophysics Data System (ADS)

    Noda, S.; Ishiwatari, M.; Nakajima, K.; Takahashi, Y. O.; Takehiro, S.; Onishi, M.; Hashimoto, G. L.; Kuramoto, K.; Hayashi, Y.-Y.

    2017-01-01

    In order to investigate a possible variety of atmospheric states realized on a synchronously rotating aquaplanet, an experiment studying the impact of planetary rotation rate is performed using an atmospheric general circulation model (GCM) with simplified hydrological and radiative processes. The entire planetary surface is covered with a swamp ocean. The value of planetary rotation rate is varied from zero to the Earth's, while other parameters such as planetary radius, mean molecular weight and total mass of atmospheric dry components, and solar constant are set to the present Earth's values. The integration results show that the atmosphere reaches statistically equilibrium states for all runs; none of the calculated cases exemplifies the runaway greenhouse state. The circulation patterns obtained are classified into four types: Type-I characterized by the dominance of a day-night thermally direct circulation, Type-II characterized by a zonal wave number one resonant Rossby wave over a meridionally broad westerly jet on the equator, Type-III characterized by a long time scale north-south asymmetric variation, and Type-IV characterized by a pair of mid-latitude westerly jets. With the increase of planetary rotation rate, the circulation evolves from Type-I to Type-II and then to Type-III gradually and smoothly, whereas the change from Type-III to Type-IV is abrupt and discontinuous. Over a finite range of planetary rotation rate, both Types-III and -IV emerge as statistically steady states, constituting multiple equilibria. In spite of the substantial changes in circulation, the net energy transport from the day side to the night side remains almost insensitive to planetary rotation rate, although the partition into dry static energy and latent heat energy transports changes. The reason for this notable insensitivity is that the outgoing longwave radiation over the broad area of the day side is constrained by the radiation limit of a moist atmosphere, so that the

  8. Characterising the hydrothermal circulation patterns beneath thermal springs in the limestones of the Carboniferous Dublin Basin, Ireland: a geophysical and geochemical approach.

    NASA Astrophysics Data System (ADS)

    Blake, Sarah; Henry, Tiernan; Muller, Mark R.; Jones, Alan G.; Moore, John Paul; Murray, John; Campanyà, Joan; Vozár, Jan; Walsh, John; Rath, Volker

    2016-04-01

    A hydrogeological conceptual model of the sources, circulation pathways and temporal variations of two low-enthalpy thermal springs is derived from a multi-disciplinary approach. The springs are situated in the Carboniferous limestones of the Dublin Basin, in east-central Ireland. Kilbrook spring (Co. Kildare) has the highest recorded temperatures for any thermal spring in Ireland (maximum of 25.0 °C), and St. Gorman's Well (Co. Meath) has a complex and variable temperature profile (maximum of 21.8 °C). These temperatures are elevated with respect to average Irish groundwater temperatures (9.5 - 10.5 °C), and represent a geothermal energy potential, which is currently under evaluation. A multi-disciplinary investigation based upon audio-magnetotelluric (AMT) surveys, time-lapse temperature and chemistry measurements, and hydrochemical analysis, has been undertaken with the aims of investigating the provenance of the thermal groundwater and characterising the geological structures facilitating groundwater circulation in the bedrock. The hydrochemical analysis indicates that the thermal waters flow within the limestones of the Dublin Basin, and there is evidence that Kilbrook spring receives a contribution from deep-basinal fluids. The time-lapse temperature, electrical conductivity and water level records for St. Gorman's Well indicate a strongly non-linear response to recharge inputs to the system, suggestive of fluid flow in karst conduits. The 3-D electrical resistivity models of the subsurface revealed two types of geological structure beneath the springs; (1) Carboniferous normal faults, and (2) Cenozoic strike-slip faults. These structures are dissolutionally enhanced, particularly where they intersect. The karstification of these structures, which extend to depths of at least 500 m, has provided conduits that facilitate the operation of a relatively deep hydrothermal circulation pattern (likely estimated depths between 240 and 1,000 m) within the Dublin

  9. Zoogeography of intertidal communities in the West Indian Ocean as determined by ocean circulation systems: patterns from the Tetraclita barnacles.

    PubMed

    Tsang, Ling Ming; Achituv, Yair; Chu, Ka Hou; Chan, Benny Kwok Kan

    2012-01-01

    The Indian Ocean is the least known ocean in the world with the biogeography of marine species in the West Indian Ocean (WIO) understudied. The hydrography of WIO is characterized by four distinct oceanographic systems and there were few glacial refugia formations in the WIO during the Pleistocene. We used the widely distributed intertidal barnacle Tetraclita to test the hypothesis that the distribution and connectivity of intertidal animals in the WIO are determined by the major oceanographic regime but less influenced by historical events such as Pleistocene glaciations. Tetraclita were studied from 32 locations in the WIO. The diversity and distribution of Tetraclita species in the Indian Ocean were examined based on morphological examination and sequence divergence of two mitochondrial genes (12S rDNA and COI) and one nuclear gene (histone 3, H3). Divergence in DNA sequences revealed the presence of seven evolutionarily significant units (ESUs) of Tetraclita in WIO, with most of them recognized as valid species. The distribution of these ESUs is closely tied to the major oceanographic circulation systems. T. rufotincta is distributed in the Monsoonal Gyre. T. ehsani is present in the Gulf of Oman and NW India. Tetraclita sp. nov. is associated with the Hydrochemical Front at 10°S latitude. T. reni is confined to southern Madagascan and Mauritian waters, influenced by the West Wind Drift. The endemic T. achituvi is restricted to the Red Sea. Tetraclita serrata consists of two ESUs (based on mtDNA analysis) along the east to west coast of South Africa. The two ESUs could not be distinguished from morphological analysis and nuclear H3 sequences. Our results support that intertidal species in the West Indian Ocean are associated with each of the major oceanographic circulation systems which determine gene flow. Geographical distribution is, however, less influenced by the geological history of the region.

  10. Zoogeography of Intertidal Communities in the West Indian Ocean as Determined by Ocean Circulation Systems: Patterns from the Tetraclita Barnacles

    PubMed Central

    Tsang, Ling Ming; Achituv, Yair; Chu, Ka Hou; Chan, Benny Kwok Kan

    2012-01-01

    The Indian Ocean is the least known ocean in the world with the biogeography of marine species in the West Indian Ocean (WIO) understudied. The hydrography of WIO is characterized by four distinct oceanographic systems and there were few glacial refugia formations in the WIO during the Pleistocene. We used the widely distributed intertidal barnacle Tetraclita to test the hypothesis that the distribution and connectivity of intertidal animals in the WIO are determined by the major oceanographic regime but less influenced by historical events such as Pleistocene glaciations. Tetraclita were studied from 32 locations in the WIO. The diversity and distribution of Tetraclita species in the Indian Ocean were examined based on morphological examination and sequence divergence of two mitochondrial genes (12S rDNA and COI) and one nuclear gene (histone 3, H3). Divergence in DNA sequences revealed the presence of seven evolutionarily significant units (ESUs) of Tetraclita in WIO, with most of them recognized as valid species. The distribution of these ESUs is closely tied to the major oceanographic circulation systems. T. rufotincta is distributed in the Monsoonal Gyre. T. ehsani is present in the Gulf of Oman and NW India. Tetraclita sp. nov. is associated with the Hydrochemical Front at 10°S latitude. T. reni is confined to southern Madagascan and Mauritian waters, influenced by the West Wind Drift. The endemic T. achituvi is restricted to the Red Sea. Tetraclita serrata consists of two ESUs (based on mtDNA analysis) along the east to west coast of South Africa. The two ESUs could not be distinguished from morphological analysis and nuclear H3 sequences. Our results support that intertidal species in the West Indian Ocean are associated with each of the major oceanographic circulation systems which determine gene flow. Geographical distribution is, however, less influenced by the geological history of the region. PMID:23024801

  11. Horizontal coring using air as the circulating fluid: Some prototype studies conducted in G Tunnel at the Nevada Test Site for the Yucca Mountain Project

    SciTech Connect

    Chornack, M.P.; French, C.A.

    1989-12-31

    Horizontal coring using air as the circulating fluid has been conducted in the G Tunnel Underground Facility (GTUF) at the Nevada Test Site. This work is part of the prototype investigations of hydrogeology for the Yucca Mountain Project. The work is being conducted to develop methods and procedures that will be used at the Department of Energy`s Yucca Mountain Site, a candidate site for the nation`s first high-level nuclear waste repository, during the site characterization phase of the investigations. The United States Geological Survey (USGS) is conducting this prototype testing under the guidance of the Los Alamos National Laboratory (LANL) and in conjunction with Reynolds Electrical & Engineering Company (REECo), the drilling contractor. 7 refs., 8 figs., 5 tabs.

  12. Lead isotopes in North Pacific deep water - Implications for past changes in input sources and circulation patterns

    USGS Publications Warehouse

    van de Flierdt, T.; Frank, M.; Halliday, A.N.; Hein, J.R.; Hattendorf, B.; Gunther, D.; Kubik, P.W.

    2003-01-01

    The sources of non-anthropogenic Pb in seawater have been the subject of debate. Here we present Pb isotope time-series that indicate that the non-anthropogenic Pb budget of the northernmost Pacific Ocean has been governed by ocean circulation and riverine inputs, which in turn have ultimately been controlled by tectonic processes. Despite the fact that the investigated locations are situated within the Asian dust plume, and proximal to extensive arc volcanism, eolian contributions have had little impact. We have obtained the first high-resolution and high-precision Pb isotope time-series of North Pacific deep water from two ferromanganese crusts from the Gulf of Alaska in the NE Pacific Ocean, and from the Detroit Seamount in the NW Pacific Ocean. Both crusts were dated applying 10 Be/9Be ratios and yield continuous time-series for the past 13.5 and 9.6 Myr, respectively. Lead isotopes show a monotonic evolution in 206Pb/204Pb from low values in the Miocene (??? 18.57) to high values at present day (??? 18.84) in both crusts, even though they are separated by more than 3000 km along the Aleutian Arc. The variation exceeds the amplitude found in Equatorial Pacific deep water records by about three-fold. There also is a striking similarity in 207Pb/204Pb and 208Pb/ 204Pb ratios of the two crusts, indicating the existence of a local circulation cell in the sub-polar North Pacific, where efficient lateral mixing has taken place but only limited exchange (in terms of Pb) with deep water from the Equatorial Pacific has occurred. Both crusts display well-defined trends with age in Pb-Pb isotope mixing plots, which require the involvement of at least four distinct Pb sources for North Pacific deep water. The Pb isotope time-series reveal that eolian supplies (volcanic ash and continent-derived loess) have only been of minor importance for the dissolved Pb budget of marginal sites in the deep North Pacific over the past 6 Myr. The two predominant sources have been young

  13. Lead isotopes in North Pacific deep water - implications for past changes in input sources and circulation patterns

    NASA Astrophysics Data System (ADS)

    van de Flierdt, Tina; Frank, Martin; Halliday, Alex N.; Hein, James R.; Hattendorf, Bodo; Günther, Detlef; Kubik, Peter W.

    2003-04-01

    The sources of non-anthropogenic Pb in seawater have been the subject of debate. Here we present Pb isotope time-series that indicate that the non-anthropogenic Pb budget of the northernmost Pacific Ocean has been governed by ocean circulation and riverine inputs, which in turn have ultimately been controlled by tectonic processes. Despite the fact that the investigated locations are situated within the Asian dust plume, and proximal to extensive arc volcanism, eolian contributions have had little impact. We have obtained the first high-resolution and high-precision Pb isotope time-series of North Pacific deep water from two ferromanganese crusts from the Gulf of Alaska in the NE Pacific Ocean, and from the Detroit Seamount in the NW Pacific Ocean. Both crusts were dated applying 10Be/ 9Be ratios and yield continuous time-series for the past 13.5 and 9.6 Myr, respectively. Lead isotopes show a monotonic evolution in 206Pb/ 204Pb from low values in the Miocene (≤18.57) to high values at present day (≥18.84) in both crusts, even though they are separated by more than 3000 km along the Aleutian Arc. The variation exceeds the amplitude found in Equatorial Pacific deep water records by about three-fold. There also is a striking similarity in 207Pb/ 204Pb and 208Pb/ 204Pb ratios of the two crusts, indicating the existence of a local circulation cell in the sub-polar North Pacific, where efficient lateral mixing has taken place but only limited exchange (in terms of Pb) with deep water from the Equatorial Pacific has occurred. Both crusts display well-defined trends with age in Pb-Pb isotope mixing plots, which require the involvement of at least four distinct Pb sources for North Pacific deep water. The Pb isotope time-series reveal that eolian supplies (volcanic ash and continent-derived loess) have only been of minor importance for the dissolved Pb budget of marginal sites in the deep North Pacific over the past 6 Myr. The two predominant sources have been young

  14. A combination of air and fluid drilling technique for zones of lost circulation in the Black Warrior Basin

    SciTech Connect

    Graves, S.L.; Niederhofer, J.D.; Beavers, W.M.

    1986-02-01

    Structural geologic information available for the coal-bearing formations in the Black Warrior basin documents the occurrence of numerous fault and fracture zones. A combination air/fluid drilling technique may be advantageous to coalbed-methane operations in this and other areas with similar hydrologic and geologic conditions. The authors successfully used this technique recently on coalbed-methane wells in Tuscaloosa County, AL.

  15. Modeling of Air-Sea Interaction and Ocean Processes for the Northern Arabian Sea Circulation Autonomous Research Project

    DTIC Science & Technology

    2015-09-30

    and space-time variability in the Northwestern Indian Ocean and Arabian Sea on time scales from days up to several seasonal cycles . OBJECTIVES...determine the mechanisms causing vertical mixing in the Arabian Sea: wind mixing, role of air- sea interaction and surface heat and fresh water ...equatorial region and the East African Coastal current, a source of low-salinity water for the Arabian Sea. APPROACH The fast-flowing Somali

  16. High-resolution records of Bonneville Basin paleohydrology offer new insights into changing atmospheric circulation patterns over North America from 26 ka through the Holocene

    NASA Astrophysics Data System (ADS)

    Steponaitis, E.; McGee, D.; Quade, J.; Andrews, A.; Edwards, R.; Hsieh, Y.; Broecker, W. S.; Cheng, H.

    2013-12-01

    The tremendous lateral extent of the Bonneville Basin, which covers much of western Utah, makes paleoclimate records from this region highly sensitive to global-scale changes in atmospheric circulation and hydrology. New paleoclimate records from speleothems and lacustrine carbonates offer insight into the hydrology the Bonneville Basin spanning from 26 ka through the Holocene. Anchored by high-precision U-Th dates, Sr records from crystalline lacustrine carbonates from throughout the basin provide a mechanism for constraining zonal variations in precipitation over time. To accomplish this, we exploit spatial variations in the 87Sr/86Sr ratios of fluvial inputs to Lake Bonneville (Hart et al. 2004). Paired with stable isotope records, these Sr records give a spatially detailed view of the response of Great Basin to global climate change, and by extension, insight into atmospheric circulation patterns over North America during abrupt climate changes. Stable isotope and trace metal records from Lehman Cave speleothems provide a high-resolution extension of these Great Basin hydrological records into the Holocene. Here we provide an overview of these unique paired records, focusing particular attention on the region's response to the Younger Dryas and Heinrich events 1 and 2. Hart, W.S. et al., The 87Sr/86Sr ratios of lacustrine carbonates and lake-level history of the Bonneville paleolake system. GSA Bulletin. 2004; 116: 1107-1119.

  17. The Concentrations of Circulating Plasma Oxytocin and the Pattern of Oxytocin Release in Mare during Oestrus and after Ovulation

    NASA Astrophysics Data System (ADS)

    Bae, Sung Eun

    Mares susceptible to persistent mating-induced endometritis (PMIE) accumulate intrauterine fluid after mating. One of the factors causing delayed uterine clearance is thought to be impaired uterine contractility. Oxytocin is central in controlling myometrial contractility. The objective of the present study was to describe peripheral oxytocin release during estrus and in the early postovulatory period in reproductively-normal mares and to compare the baseline circulating oxytocin concentrations in reproductively-normal mares and mares with PMIE. Blood samples were collected from reproductively-normal mares (n=5) from day -5 of estrus to day 2 postovulation and every 5 min for 30 min from reproductively-normal mares (n=5) and mares with PMIE (n=5) on day 3 of estrus. Pulsatile secretion of oxytocin was observed in all mares. Mean plasma oxytocin concentrations were significantly higher (P<0.05) in estrus (day -5 to day -2) than on the day of ovulation (day 0). After ovulation, plasma oxytocin concentrations tended to increase. On day 3 of estrus, plasma oxytocin concentrations were significantly higher (P<0.01) in reproductively-normal mares than in mares with PMIE. The results showed there is a significant difference in plasma oxytocin concentrations between mares to PMIE. The low plasma oxytocin concentrations in mares with PMIE may contribute to predisposing factors in their poor uterine clearance in these mares.

  18. Pattern recognition techniques for visualizing the biotropic waveform of air temperature and pressure

    NASA Astrophysics Data System (ADS)

    Ozheredov, V. A.

    2012-12-01

    It is known that long periods of adverse weather have a negative effect on the human cardiovascular system. A number of studies have set a lower limit of around 5 days for the duration of these periods. However, the specific features of the negative dynamics of the main weather characteristics—air temperature and atmospheric pressure—remained open. To address this problem, the present paper proposes a conjunctive method of the theory of pattern recognition. It is shown that this method approaches a globally optimal (in the sense of recognition errors) Neumann critical region and can be used to solve various problems in heliobiology. To illustrate the efficiency of this method, we show that some quickly relaxing short sequences of temperature and pressure time series (the so-called temperature waves and waves of atmospheric pressure changes) increase the risk of cardiovascular diseases and can lead to serious organic lesions (particularly myocardial infarction). It is established that the temperature waves and waves of atmospheric pressure changes increase the average morbidity rate of myocardial infarction by 90% and 110%, respectively. Atmospheric pressure turned out to be a more biotropic factor than air temperature.

  19. Patterns of household concentrations of multiple indoor air pollutants in China.

    PubMed

    He, Gongli; Ying, Bo; Liu, Jiang; Gao, Shirong; Shen, Shaolin; Balakrishnan, Kalpana; Jin, Yinlong; Liu, Fan; Tang, Ning; Shi, Kai; Baris, Enis; Ezzati, Majid

    2005-02-15

    Most previous studies on indoor air pollution from household use of solid fuels have used either indirect proxies for human exposure or measurements of individual pollutants at a single point, as indicators of (exposure to) the mixture of pollutants in solid fuel smoke. A heterogeneous relationship among pollutant-location pairs should be expected because specific fuel-stove technology and combustion and dispersion conditions such as temperature, moisture, and air flow are likely to affect the emissions and dispersion of the various pollutants differently. We report on a study for monitoring multiple pollutants--including respirable particles (RPM), carbon monoxide, sulfur dioxide, fluoride, and arsenic--at four points inside homes that used coal and/or biomass fuels in Guizhou and Shaanxi provinces of China. All pollutants exhibited large variability in emissions and spatial dispersion within and between provinces and were generally poorly correlated. RPM, followed by SO2, was generally higher than common health-based guidelines/standards and provided sufficient resolution for assessing variations within and between households in both provinces. Indoor heating played an important role in the level and spatial patterns of pollution inside homes, possibly to an extent more important than cooking. The findings indicate the need for monitoring of RPM and selected other pollutants in longer-term health studies, with focus on both cooking and living/sleeping areas.

  20. Understanding hydrothermal circulation patterns at a low-enthalpy thermal spring using audio-magnetotelluric data: A case study from Ireland

    NASA Astrophysics Data System (ADS)

    Blake, Sarah; Henry, Tiernan; Muller, Mark R.; Jones, Alan G.; Moore, John Paul; Murray, John; Campanyà, Joan; Vozar, Jan; Walsh, John; Rath, Volker

    2016-09-01

    Kilbrook spring is a thermal spring in east-central Ireland. The temperatures in the spring are the highest recorded for any thermal spring in Ireland (maximum of 25 °C). The temperature is elevated with respect to average Irish groundwater temperatures (9.5-10.5 °C), and represents a geothermal energy potential, which is currently under evaluation. A multi-disciplinary investigation based upon an audio-magnetotelluric (AMT) survey, and hydrochemical analysis including time-lapse temperature and chemistry measurements, has been undertaken with the aims of investigating the provenance of the thermal groundwater and characterising the geological structures facilitating groundwater circulation in the bedrock. The three-dimensional (3-D) electrical resistivity model of the subsurface at Kilbrook spring was obtained by the inversion of AMT impedances and vertical magnetic transfer functions. The model is interpreted alongside high resolution temperature and electrical conductivity measurements, and a previous hydrochemical analysis. The hydrochemical analysis and time-lapse measurements suggest that the thermal waters have a relatively stable temperature and major ion hydrochemistry, and flow within the limestones of the Carboniferous Dublin Basin at all times. The 3-D resistivity model of the subsurface reveals a prominent NNW aligned structure within a highly resistive limestone lithology that is interpreted as a dissolutionally enhanced strike-slip fault, of Cenozoic age. The karstification of this structure, which extends to depths of at least 500 m directly beneath the spring, has provided conduits that facilitate the operation of a relatively deep hydrothermal circulation pattern (likely estimated depths between 560 and 1000 m) within the limestone succession of the Dublin Basin. The results of this study support the hypothesis that the winter thermal maximum and simultaneous increased discharge at Kilbrook spring is the result of rapid infiltration, heating and

  1. Geostrophic circulation or shelf turbidity currents The dilemma of paleoflow patterns in storm-influenced prograding shoreline systems

    SciTech Connect

    Duke, W.L. )

    1990-05-01

    In ancient storm-influenced prograding shoreline sequences, tool marks from hummocky cross-stratified sandstones commonly are oriented normal to paleoshoreline. Asymmetrical tool marks indicate flows directed offshore. Many workers have attributed them to storm-generated turbidity currents. This interpretation conflicts with observations from modern shelves, where storm circulation is geostrophically balanced and time-averaged bottom currents parallel bathymetric contours and the shoreline. The resolution of this conflict may lie in the realization that tool marks (and many other small paleoflow indicators) form almost instantly as the result of instantaneous flow conditions near the bed. Beneath storm-generated flows in the shallow ocean instantaneous and time-averaged characteristics of the bottom boundary layer generally exhibit little similarity. Storm-generated tool marks form within the thin (less than 1 m) inner boundary layer resulting from the superimposition of waves and currents. The orientation of peak instantaneous shear stress under such flows mainly reflects the orientation of the wave-induced shear stress, which typically is normal to shore. The magnitude of stress is greatly increased in the offshore direction (and decreased in the onshore direction) by superimposition of a steady current with an offshore flow component; however, the direction of stress is only slightly affected. Thus, ancient shore-normal tool marks generally were not formed by turbidity currents; rather, their orientation is best attributed to shoaling waves approaching the coast at a very high angle. Asymmetrical tool marks are directed offshore due to enhanced shear stress on the offshore stroke of waves superimposed on a geostrophic current with an offshore flow component. These tool marks do not reflect time-averaged bottom flow direction.

  2. The impact of traffic-flow patterns on air quality in urban street canyons.

    PubMed

    Thaker, Prashant; Gokhale, Sharad

    2016-01-01

    We investigated the effect of different urban traffic-flow patterns on pollutant dispersion in different winds in a real asymmetric street canyon. Free-flow traffic causes more turbulence in the canyon facilitating more dispersion and a reduction in pedestrian level concentration. The comparison of with and without a vehicle-induced-turbulence revealed that when winds were perpendicular, the free-flow traffic reduced the concentration by 73% on the windward side with a minor increase of 17% on the leeward side, whereas for parallel winds, it reduced the concentration by 51% and 29%. The congested-flow traffic increased the concentrations on the leeward side by 47% when winds were perpendicular posing a higher risk to health, whereas reduced it by 17-42% for parallel winds. The urban air quality and public health can, therefore, be improved by improving the traffic-flow patterns in street canyons as vehicle-induced turbulence has been shown to contribute significantly to dispersion.

  3. Patterns of understory diversity in mixed coniferous forests of southern California impacted by air pollution.

    PubMed

    Allen, Edith B; Temple, Patrick J; Bytnerowicz, Andrzej; Arbaugh, Michael J; Sirulnik, Abby G; Rao, Leela E

    2007-03-21

    species in 2003. The easternmost site is also the driest and has the most sunlight filtering to the forest floor, possibly accounting for the higher species richness. The confounding effects of the precipitation gradient and possibly local disturbances do not show a simple correlation of air pollution with patterns of native and invasive species cover and richness. Nevertheless, the decline of native species and dominance by exotic species in the two westernmost polluted sites is cause for concern that air pollution is affecting the understory vegetation adversely.

  4. The Relationship of Loss, Mean Age of Air and the Distribution of CFCs to Stratospheric Circulation and Implications for Atmospheric Lifetimes

    NASA Technical Reports Server (NTRS)

    Douglass, A. R.; Stolarski, R. S.; Schoeberl, M. R.; Jackman, C. H.; Guptal, M. L.; Newman, P. A.; Nielsen, J. E.; Fleming, E. L.

    2007-01-01

    Man-made molecules called chlorofluorcarbons (CFCs) are broken apart in the stratosphere by high energy light, and the reactive chlorine gases that come from them cause the ozone hole. Since the ozone layer stops high energy light from reaching low altitudes, CFCs must be transported to high altitudes to be broken apart. The number of molecules per volume (the density) is much smaller at high altitudes than near the surface, and CFC molecules have a very small chance of reaching that altitude in any particular year. Many tons of CFCs were put into the atmosphere during the end of the last century, and it will take many years for all of them to be destroyed. Each CFC has an atmospheric lifetime that depends on the amount of energy required to break them apart. Two of the gases that were made the most are CFC13 and CF2C12. It takes more energy to break apart CF2C12 than CFC13, and its lifetime is about 100 years, nearly twice as long as the lifetime for CFC13. It is hard to figure out the lifetimes from surface measurements because we don't know exactly how much was released into the air each year. Atmospheric models are used to predict what will happen to ozone and other gases as the CFCs decrease and other gases like C02 continue to increase during the next century. CFC lifetimes are used to predict future concentrations and all assessment models use the predicted future concentrations. The models have different circulations and the amount of CFC lost according to the model may not match the loss that is expected according to the lifetime. In models the amount destroyed per year depends on how fast the model pushes air into the stratosphere and how much goes to high altitudes each year. This paper looks at the way the model circulation changes the lifetimes, and looks at measurements that tell us which model is more realistic. Some models do a good job reproducing the age-of-air, which tells us that these models are circulating the stratospheric air at the right

  5. The vascular pattern and viability of microvascularized rib grafts based on periosteal circulation--an experimental study

    SciTech Connect

    Papanastasiou, V.W.; Lalonde, D.H.; Williams, H.B.

    1984-11-01

    Previous reports have stressed the importance of the nutrient blood supply in rib grafts transferred by microvascular anastomoses. In the present experimental study, we have demonstrated that a rib graft transferred by microvascular anastomoses based on periosteal vessels can survive; vascular clearing studies demonstrated that the vascularity of these grafts extends not only into the cortex but the medulla as well. The relative facility of harvesting these grafts (compared with those based on nutrient vessels) should make them the favored choice. Technetium bone scintigraphy proved accurate in the assessment of both vascular pattern and microanastomotic patency. Tetracycline labeling did not correlate well with the patency of a rib graft's pedicle blood supply.

  6. Eastern Caribbean Circulation and Island Mass Effect on St. Croix, US Virgin Islands: A Mechanism for Relatively Consistent Recruitment Patterns

    PubMed Central

    Chérubin, Laurent Marcel; Garavelli, Lysel

    2016-01-01

    The northeastern Caribbean Sea is under the seasonal influence of the Trade Winds but also of the Orinoco/Amazon freshwater plume. The latter is responsible for intensification of the Caribbean Current in general and of its eddy activity in the northern part of the Caribbean Sea. More importantly, we show in this study that the front of the freshwater plume drives a northward flow that impinges directly on the island of St. Croix in the United States Virgin Islands. The angle of incidence of the incoming flow controls the nature of the wake on both sides and ends of the island, which changes from cyclonic to anticylonic wake flow, with either attached or shed eddies. Using an off-line bio-physical model, we simulated the dispersal and recruitment of an abundant Caribbean coral reef fish, the bluehead wrasse (Thalassoma bifasciatum) in the context of the wake flow variability around St. Croix. Our results revealed the role played by the consistent seasonal forcing of the wake flow on the recruitment patterns around the island at the interannual scale. The interannual variability of the timing of arrival and northward penetration of the plume instead controls the nature of the wake, hence the regional spatial recruitment patterns. PMID:26942575

  7. Subgroup prevalence and genotype circulation patterns of human respiratory syncytial virus in Belgium during ten successive epidemic seasons.

    PubMed

    Zlateva, Kalina T; Vijgen, Leen; Dekeersmaeker, Nathalie; Naranjo, Cecilia; Van Ranst, Marc

    2007-09-01

    Human respiratory syncytial virus (HRSV) is the leading viral cause of severe respiratory illness for infants and young children worldwide. Two major antigenic groups (A and B) of HRSV exist, and viruses from both subgroups can cocirculate during epidemics; however, their frequencies might differ between seasons. The subgroup prevalence and genotype distribution patterns of HRSV strains were investigated in a community in Belgium during 10 successive epidemic seasons (1996 to 2006). A regular 3-year cyclic pattern of subgroup dominance was observed, consisting of two predominant HRSV-A seasons, followed by a single HRSV-B-dominant year. HRSV infections with both subgroups were more prevalent among children younger than 6 months and had a peak incidence in December. The most frequently detected genotypes were GA5 and GB13, the latter including strains with the 60-nucleotide duplication in the G gene. Furthermore, GA5 remained the dominant HRSV genotype in two consecutive epidemic seasons twice during the study period. Additional variability was detected among the GB13 isolates, due to the usage of a novel termination codon in the G gene. Dual infections with both HRSV subgroups were detected for 9 patients, and subsequent infections with the heterologous HRSV subgroup were documented for 15 patients. Among five patients with homologous reinfections, only one was caused by HRSV-B. Our results support the hypothesis that the overall prevalence of HRSV-A over HRSV-B could be due to a more-transient subgroup A-specific immune protection.

  8. Eastern Caribbean Circulation and Island Mass Effect on St. Croix, US Virgin Islands: A Mechanism for Relatively Consistent Recruitment Patterns.

    PubMed

    Chérubin, Laurent Marcel; Garavelli, Lysel

    2016-01-01

    The northeastern Caribbean Sea is under the seasonal influence of the Trade Winds but also of the Orinoco/Amazon freshwater plume. The latter is responsible for intensification of the Caribbean Current in general and of its eddy activity in the northern part of the Caribbean Sea. More importantly, we show in this study that the front of the freshwater plume drives a northward flow that impinges directly on the island of St. Croix in the United States Virgin Islands. The angle of incidence of the incoming flow controls the nature of the wake on both sides and ends of the island, which changes from cyclonic to anticylonic wake flow, with either attached or shed eddies. Using an off-line bio-physical model, we simulated the dispersal and recruitment of an abundant Caribbean coral reef fish, the bluehead wrasse (Thalassoma bifasciatum) in the context of the wake flow variability around St. Croix. Our results revealed the role played by the consistent seasonal forcing of the wake flow on the recruitment patterns around the island at the interannual scale. The interannual variability of the timing of arrival and northward penetration of the plume instead controls the nature of the wake, hence the regional spatial recruitment patterns.

  9. Mask-Free Patterning of High-Conductivity Metal Nanowires in Open Air by Spatially Modulated Femtosecond Laser Pulses.

    PubMed

    Wang, Andong; Jiang, Lan; Li, Xiaowei; Liu, Yang; Dong, Xianzi; Qu, Liangti; Duan, Xuanming; Lu, Yongfeng

    2015-10-28

    A novel high-resolution nanowire fabrication method is developed by thin-film patterning using a spatially modulated femtosecond laser pulse. Deep subwavelength (≈1/13 of the laser wavelength) and high conductivity (≈1/4 of the bulk gold) nanowires are fabricated in the open air without using masks, which offers a single-step arbitrary direct patterning approach for electronics, plasmonics, and optoelectronics nanodevices.

  10. Climate mean, variability and dominant patterns of the Northern Hemisphere wintertime mean atmospheric circulation in the NCEP CFSv2

    NASA Astrophysics Data System (ADS)

    Peng, Peitao; Kumar, Arun; Jha, Bhaskar

    2014-05-01

    In this study, the climate mean, variability, and dominant patterns of the Northern Hemisphere wintertime mean 200 hPa geopotential height (Z200) in a CMIP and a set of AMIP simulations from the National Centers for Environmental Prediction (NCEP) Climate Forecast System Version 2 (CFSv2) are analyzed and compared with the NCEP/NCAR reanalysis. For the climate mean, it is found that a component of the bias in stationary waves characterized with wave trains emanating from the tropics into both the hemispheres can be attributed to the precipitation deficit over the Maritime continent. The lack of latent heating associated with the precipitation deficit may have served as the forcing of the wave trains. For the variability of the seasonal mean, both the CMIP and AMIP successfully simulated the geographical locations of the major centers of action, but the simulated intensity was generally weaker than that in the reanalysis, particularly for the center over the Davis Strait-southern Greenland area. It is also noted that the simulated action center over Aleutian Islands was southeastward shifted to some extent. The shift was likely caused by the eastward extension of the Pacific jet. Differences also existed between the CMIP and the AMIP simulations, with the center of actions over the Aleutian Islands stronger in the AMIP and the center over the Davis Strait-southern Greenland area stronger in the CMIP simulation. In the mode analysis, the El Nino-Southern Oscillation (ENSO) teleconnection pattern in each dataset was first removed from the data, and a rotated empirical orthogonal function (REOF) analysis was then applied to the residual. The purpose of this separation was to avoid possible mixing between the ENSO mode and those generated by the atmospheric internal dynamics. It was found that the simulated ENSO teleconnection patterns from both model runs well resembled that from the reanalysis, except for a small eastward shift. Based on the REOF modes of the residual

  11. Circulation patterns related to debris-flow triggering in the Zermatt valley in current and future climates

    NASA Astrophysics Data System (ADS)

    van den Heuvel, Floor; Goyette, Stéphane; Rahman, Kazi; Stoffel, Markus

    2016-11-01

    The principal objective of this study was to investigate the types of large-scale meteorological situations that are conducive to the precipitation and temperature conditions most likely to trigger debris flows in the Zermatt valley, Switzerland, under current and future climates. A two-dimensional Bayesian probability calculation was applied to take account of uncertainties in debris-flow triggering. Precipitation quantities exceeding the 95th percentile of daily precipitation amounts were found to have a significantly higher probability to coincide with observed debris flows. A different relationship exists for extreme temperatures, however. Southerly air flows, weak horizontal pressure gradients over Europe, and westerly flows are mostly associated with observed debris flows and 95th precipitation percentile exceedances. These principal flow directions are well represented in the regional climate model (RCM) HIRHAM control simulations for events exceeding the 95th precipitation percentile and the 30th temperature percentile. Under the IPCC A2 emission scenario, westerly and southerly flows are mostly responsible for these precipitation and temperature conditions under the hypothesis of slow adaptation to climate change (HS1/HC1). Under the hypothesis of rapid adaptation to climate change (HS1/HS1), southerly flows and weak horizontal pressure gradients are likely to gain in importance. In both scenarios for the future, southeasterly flows are among the principal flow directions responsible for the joint exceedance of the 95th precipitation percentile and the 30th temperature percentile, while these were absent in observations and the control simulation.

  12. Long-term trends of continental-scale PCB patterns studied using a global atmosphere-ocean general circulation model.

    PubMed

    Stemmler, Irene; Lammel, Gerhard

    2012-07-01

    Continental-scale distribution and inter-continental transport of four polychlorinated biphenyl (PCB) congeners (28, 101, 153, 180) from 1950 to 2010 were studied using the global multicompartment chemistry transport model MPI-MCTM. Following identical primary emissions for all PCB congeners into air, most of the burden is stored in terrestrial (soil and vegetation) compartments. Thereby, PCB-28, PCB-101 and PCB-153 show a shift of the soil burden maxima from source to remote regions. This shift is downwind with regard to the westerlies for Eurasia and upwind for North America and more prominent for the lighter PCBs than for PCB-153 or PCB-180. In meridional direction, all congeners' distributions underwent a northward migration in Eurasia and North America since the 1950s. Inter-continental transport from Eurasian sources accounts largely for contamination of Alaska and British Columbia and determines the migration of the PCB distribution in soil in North America. Trans-Pacific transport occurs mainly in the gas phase in boreal winter (December-January-February) at 3-4 km altitude and is on a multi-year time scale strongly linked to the atmospheric pressure systems over the Pacific. Inter-continental transport of the lighter, more volatile PCBs is more efficient than for the heavier PCBs.

  13. Impact of cercal air currents on singing motor pattern generation in the cricket (Gryllus bimaculatus DeGeer).

    PubMed

    Jacob, Pedro F; Hedwig, Berthold

    2015-11-01

    The cercal system of crickets detects low-frequency air currents produced by approaching predators and self-generated air currents during singing, which may provide sensory feedback to the singing motor network. We analyzed the effect of cercal stimulation on singing motor pattern generation to reveal the response of a singing interneuron to predator-like signals and to elucidate the possible role of self-generated air currents during singing. In fictive singing males, we recorded an interneuron of the singing network while applying air currents to the cerci; additionally, we analyzed the effect of abolishing the cercal system in freely singing males. In fictively singing crickets, the effect of short air stimuli is either to terminate prematurely or to lengthen the interchirp interval, depending on their phase in the chirp cycle. Within our stimulation paradigm, air stimuli of different velocities and durations always elicited an inhibitory postsynaptic potential in the singing interneuron. Current injection in the singing interneuron elicited singing motor activity, even during the air current-evoked inhibitory input from the cercal pathway. The disruptive effects of air stimuli on the fictive singing pattern and the inhibitory response of the singing interneuron point toward the cercal system being involved in initiating avoidance responses in singing crickets, according to the established role of cerci in a predator escape pathway. After abolishing the activity of the cercal system, the timing of natural singing activity was not significantly altered. Our study provides no evidence that self-generated cercal sensory activity has a feedback function for singing motor pattern generation.

  14. Impact of cercal air currents on singing motor pattern generation in the cricket (Gryllus bimaculatus DeGeer)

    PubMed Central

    2015-01-01

    The cercal system of crickets detects low-frequency air currents produced by approaching predators and self-generated air currents during singing, which may provide sensory feedback to the singing motor network. We analyzed the effect of cercal stimulation on singing motor pattern generation to reveal the response of a singing interneuron to predator-like signals and to elucidate the possible role of self-generated air currents during singing. In fictive singing males, we recorded an interneuron of the singing network while applying air currents to the cerci; additionally, we analyzed the effect of abolishing the cercal system in freely singing males. In fictively singing crickets, the effect of short air stimuli is either to terminate prematurely or to lengthen the interchirp interval, depending on their phase in the chirp cycle. Within our stimulation paradigm, air stimuli of different velocities and durations always elicited an inhibitory postsynaptic potential in the singing interneuron. Current injection in the singing interneuron elicited singing motor activity, even during the air current-evoked inhibitory input from the cercal pathway. The disruptive effects of air stimuli on the fictive singing pattern and the inhibitory response of the singing interneuron point toward the cercal system being involved in initiating avoidance responses in singing crickets, according to the established role of cerci in a predator escape pathway. After abolishing the activity of the cercal system, the timing of natural singing activity was not significantly altered. Our study provides no evidence that self-generated cercal sensory activity has a feedback function for singing motor pattern generation. PMID:26334014

  15. Interannual Variability and Trends in Daily Temperature and Precipitation Extreme Indices in Finland in Relation to Atmospheric Circulation Patterns, 1961-2011

    NASA Astrophysics Data System (ADS)

    Irannezhad, Masoud; Kløve, Bjørn

    2016-04-01

    Daily temperature (minimum and maximum) and precipitation datasets applied at regular grid points (10×10 km2) throughout Finland for 1961-2011 were analyzed with the aim to evaluate variability and trends in weather extremes on both national and spatial scale of the country and their relationships with atmospheric circulation patterns (ACPs). Recommending by the Expert Team on Climate Change Detection and Indices (ETCCDI), the extreme indices considered for daily temperature were frost days (FD), summer days (SD) and ice days (ID); and for daily precipitation were heavy precipitation days (R10), consecutive dry days (CDD), consecutive wet days (CWD), highest 1-day precipitation amount (RX1day), simple daily intensity index (SDII) and precipitation fraction due to 95th percentile of the reference period (R95pTOT). This study used the well-known influential ACPs for Finland climate variability: North Atlantic Oscillation (NAO), Arctic Oscillation (AO), East Atlantic (EA), East Atlantic/West Russia (EA/WR), Polar (POL), Scandinavia (SCA). The non-parametric Mann-Kendall test was used to determine significant historical trends in extreme indices, and the Spearman rank correlation (rho) to identify relationships between extreme indices and ACPs. For daily temperature indices, statistically significant (p<0.05) decreasing trends were found in ID (-0.40±0.34 days/year) and FD (-0.45±0.27 days/year) on a national scale of Finland during 1961-2011. The AO and EA/WR were most significant ACPs affecting variations in ID and FD, with rho = -0.73 and 0.42, respectively. For the daily precipitation extreme indices on the nation-wide of country over the study period (1961-2011), significant trends were only determined in SDII (0.01±0.00 mm/wet days year) and R95pTOT (0.19±0.09 %/year). Both of these indices (SDII and R95pTOT) showed the strongest correlations with the EA/WR pattern, with rho between from -0.42 to -0.34. The EA/WR pattern was also the most influential ACP for

  16. A novel trapezoid fin pattern applicable for air-cooled heat sink

    NASA Astrophysics Data System (ADS)

    Chen, Chien-Hung; Wang, Chi-Chuan

    2015-11-01

    The present study proposed a novel step or trapezoid surface design applicable to air-cooled heat sink under cross flow condition. A total of five heat sinks were made and tested, and the corresponding fin patterns are (a) plate fin; (b) step fin (step 1/3, 3 steps); (c) 2-step fin (step 1/2, 2 steps); (d) trapezoid fin (trap 1/3, cutting 1/3 length from the rear end) and (e) trapezoid fin (trap 1/2, cutting 1/2 length from the rear end). The design is based on the heat transfer augmentation via (1) longer perimeter of entrance region and (2) larger effective temperature difference at the rear part of the heat sink. From the test results, it is found that either step or trapezoid design can provide a higher heat transfer conductance and a lower pressure drop at a specified frontal velocity. The effective conductance of trap 1/3 design exceeds that of plate surface by approximately 38 % at a frontal velocity of 5 m s-1 while retains a lower pressure drop of 20 % with its surface area being reduced by 20.6 %. For comparisons exploiting the overall thermal resistance versus pumping power, the resultant thermal resistance of the proposed trapezoid design 1/3, still reveals a 10 % lower thermal resistance than the plate fin surface at a specified pumping power.

  17. National patterns in environmental injustice and inequality: outdoor NO2 air pollution in the United States.

    PubMed

    Clark, Lara P; Millet, Dylan B; Marshall, Julian D

    2014-01-01

    We describe spatial patterns in environmental injustice and inequality for residential outdoor nitrogen dioxide (NO2) concentrations in the contiguous United States. Our approach employs Census demographic data and a recently published high-resolution dataset of outdoor NO2 concentrations. Nationally, population-weighted mean NO2 concentrations are 4.6 ppb (38%, p<0.01) higher for nonwhites than for whites. The environmental health implications of that concentration disparity are compelling. For example, we estimate that reducing nonwhites' NO2 concentrations to levels experienced by whites would reduce Ischemic Heart Disease (IHD) mortality by ∼7,000 deaths per year, which is equivalent to 16 million people increasing their physical activity level from inactive (0 hours/week of physical activity) to sufficiently active (>2.5 hours/week of physical activity). Inequality for NO2 concentration is greater than inequality for income (Atkinson Index: 0.11 versus 0.08). Low-income nonwhite young children and elderly people are disproportionately exposed to residential outdoor NO2. Our findings establish a national context for previous work that has documented air pollution environmental injustice and inequality within individual US metropolitan areas and regions. Results given here can aid policy-makers in identifying locations with high environmental injustice and inequality. For example, states with both high injustice and high inequality (top quintile) for outdoor residential NO2 include New York, Michigan, and Wisconsin.

  18. Benthic ostracode δ13C as sensor for early Holocene establishment of modern circulation patterns in Central Europe

    NASA Astrophysics Data System (ADS)

    Schwalb, Antje; Dean, Walter; Güde, Hans; Hanisch, Sabine; Sobek, Sebastian; Wessels, Martin

    2013-04-01

    Shells from adult specimen of the benthic ostracodes Limnocytherina sanctipatricii and Leucocythere mirabilis selected from a 8.7 m long piston core provide continuous stable oxygen and carbon records for the past approximately 16 ka. Oxygen isotopes from both species show identical values and track the general North Atlantic and European temperature history since deglaciation in great detail. Values of ostracode δ18O values suggest that about 16 cal ka the average annual air temperatures were about 11 °C colder than today. Carbon isotopic values from both species of ostracodes are similar during the Lateglacial and early Holocene, and show an overall decrease from -4‰ to -7‰ that is probably related to an increase in photosynthetic productivity in the water column, as suggested by an increase in organic carbon, delivering 13C-depleted organic matter to the bottom waters (carbon pump). About 9 cal ka only L. mirabilis δ13C values decreased about -2.5‰ within 300 years. Higher δ13C variability and ecological evidence suggests that L. mirabilis represents a summer signal, whereas L. sanctipatricii displays a more subdued annual average. After about 7 cal ka another -1.5% decrease for both species, accompanied by an increase in magnetic susceptibility, a decrease in carbonate content, and more positive bulk carbonate isotope values followed, suggesting higher detrital-clastic input into the lake. In order to provide a possible mechanism explaining the negative L. mirabilis δ13C-values, sediment pore water profiles of O2 and CH4 in short cores collected from sites distal to proximal to the Alpine Rhine River delta, were inspected. Sediments in cores from more proximal sites to the Rhine delta become anoxic at shallower sediment depth due to the decay of high allochthonous organic carbon input to the sediment, which greatly increases concentrations of methane in pore waters closer to the Rhine inflow. When methane is oxidized close to the sediment

  19. Pattern dynamics and filamentation of femtosecond terawatt laser pulses in air including the higher-order Kerr effects.

    PubMed

    Huang, T W; Zhou, C T; He, X T

    2013-05-01

    Plasma defocusing and higher-order Kerr effects on multiple filamentation and pattern formation of ultrashort laser pulse propagation in air are investigated. Linear analyses and numerical results show that these two saturable nonlinear effects can destroy the coherent evolution of the laser field, and small-scale spatial turbulent structures rapidly appear. For the two-dimensional case, numerical simulations show that blow-up-like solutions, spatial chaos, and pseudorecurrence can appear at higher laser intensities if only plasma defocusing is included. These complex patterns result from the stochastic evolution of the higher- or shorter-wavelength modes of the laser light spectrum. From the viewpoint of nonlinear dynamics, filamentation can be attributed to the modulational instability of these spatial incoherent localized structures. Furthermore, filament patterns associated with multiphoton ionization of the air molecules with and without higher-order Kerr effects are compared.

  20. Statistical downscaling of general-circulation-model- simulated average monthly air temperature to the beginning of flowering of the dandelion (Taraxacum officinale) in Slovenia

    NASA Astrophysics Data System (ADS)

    Bergant, Klemen; Kajfež-Bogataj, Lučka; Črepinšek, Zalika

    2002-02-01

    Phenological observations are a valuable source of information for investigating the relationship between climate variation and plant development. Potential climate change in the future will shift the occurrence of phenological phases. Information about future climate conditions is needed in order to estimate this shift. General circulation models (GCM) provide the best information about future climate change. They are able to simulate reliably the most important mean features on a large scale, but they fail on a regional scale because of their low spatial resolution. A common approach to bridging the scale gap is statistical downscaling, which was used to relate the beginning of flowering of Taraxacum officinale in Slovenia with the monthly mean near-surface air temperature for January, February and March in Central Europe. Statistical models were developed and tested with NCAR/NCEP Reanalysis predictor data and EARS predictand data for the period 1960-1999. Prior to developing statistical models, empirical orthogonal function (EOF) analysis was employed on the predictor data. Multiple linear regression was used to relate the beginning of flowering with expansion coefficients of the first three EOF for the Janauary, Febrauary and March air temperatures, and a strong correlation was found between them. Developed statistical models were employed on the results of two GCM (HadCM3 and ECHAM4/OPYC3) to estimate the potential shifts in the beginning of flowering for the periods 1990-2019 and 2020-2049 in comparison with the period 1960-1989. The HadCM3 model predicts, on average, 4 days earlier occurrence and ECHAM4/OPYC3 5 days earlier occurrence of flowering in the period 1990-2019. The analogous results for the period 2020-2049 are a 10- and 11-day earlier occurrence.

  1. Analysis of weather patterns associated with air quality degradation and potential health impacts

    EPA Science Inventory

    Emissions from anthropogenic and natural sources into the atmosphere are determined in large measure by prevailing weather conditions through complex physical, dynamical and chemical processes. Air pollution episodes are characterized by degradation in air quality as reflected by...

  2. Spatiotemporal Patterns, Monitoring Network Design, and Environmental Justice of Air Pollution in the Phoenix Metropolitan Region: A Landscape Approach

    NASA Astrophysics Data System (ADS)

    Pope, Ronald L.

    Air pollution is a serious problem in most urban areas around the world, which has a number of negative ecological and human health impacts. As a result, it's vitally important to detect and characterize air pollutants to protect the health of the urban environment and our citizens. An important early step in this process is ensuring that the air pollution monitoring network is properly designed to capture the patterns of pollution and that all social demographics in the urban population are represented. An important aspect in characterizing air pollution patterns is scale in space and time which, along with pattern and process relationships, is a key subject in the field of landscape ecology. Thus, using multiple landscape ecological methods, this dissertation research begins by characterizing and quantifying the multi-scalar patterns of ozone (O3) and particulate matter (PM10) in the Phoenix, Arizona, metropolitan region. Results showed that pollution patterns are scale-dependent, O3 is a regionally-scaled pollutant at longer temporal scales, and PM10 is a locally-scaled pollutant with patterns sensitive to season. Next, this dissertation examines the monitoring network within Maricopa County. Using a novel multiscale indicator-based approach, the adequacy of the network was quantified by integrating inputs from various academic and government stakeholders. Furthermore, deficiencies were spatially defined and recommendations were made on how to strengthen the design of the network. A sustainability ranking system also provided new insight into the strengths and weaknesses of the network. Lastly, the study addresses the question of whether distinct social groups were experiencing inequitable exposure to pollutants - a key issue of distributive environmental injustice. A novel interdisciplinary method using multi-scalar ambient pollution data and hierarchical multiple regression models revealed environmental inequities between air pollutants and race, ethnicity

  3. Understanding temporal patterns and characteristics of air quality in Beijing: A local and regional perspective

    NASA Astrophysics Data System (ADS)

    Chen, Ziyue; Xu, Bing; Cai, Jun; Gao, Bingbo

    2016-02-01

    Sources, characteristics and seasonal variation of airborne pollutants in China, especially in Beijing, have been massively examined. However, most studies analyze local air quality from an isolated perspective and interactions between local and regional air quality have not been fully considered. This research attempts to evaluate Beijing air quality at the local and regional scale. The weighted cross correlogram spectral matching (CCSM) and convergent cross mapping (CCM) method are employed for similarity and causality analysis respectively. At the local scale, the air quality in Beijing experiences frequent and sudden change, yet changes smoothly across a day's time. At the regional scale, the air quality in Beijing and four neighboring cities is compared. The result suggests that although air quality in Beijing and neighboring cities is of some differences, strong bidirectional coupling exists between the local and regional air quality. The research indicates that air quality in Beijing is better than the general situation in this region, and Tianjin should be a good comparative site for monitoring and evaluating air quality in Beijing. This research provides a feasible methodology for comprehensive analysis of local air quality at multiple scales, which may shed some lights on the forthcoming implementation of local air quality evaluation.

  4. Huntington beach shoreline contamination investigation, phase III: coastal circulation and transport patterns : the likelihood of OCSD's plume impacting Huntington beach shoreline

    USGS Publications Warehouse

    Noble, Marlene; Xu, Jingping; Rosenfeld, Leslie; Largier, John; Hamilton, Peter; Jones, Burt; Robertson, George

    2003-01-01

    A consortium of agencies have conducted an extensive investigation of the coastal ocean circulation and transport pathways off Huntington Beach, with the aim of identifying any causal links that may exist between the offshore discharge of wastewater by OCSD and the significant bacterial contamination observed along the Huntington Beach shoreline. This is the third study supported by OCSD to determine possible land-based and coa Although the study identifies several possible coastal ocean pathways by which diluted wastewater may be transported to the beach, including internal tide, sea-breeze and subtidal flow features, there were no direct observations of either the high bacteria concentrations seen in the OCSD plume at the shelf break reaching the shoreline in significant levels or of an association between the existence of a coastal ocean process and beach contamination at or above AB411 levels. It is concluded that the OCSD plume is not a major cause of beach contamination; no causal links could be demonstrated. This conclusion is based on the absence of direct observation of plume-beach links, on analysis of the spatial and temporal patterns of shoreline contamination and coastal ocean processes, and on the observation of higher levels of contamination at the beach than in the plume.

  5. [Effect of air-electric fields on driving and reaction patterns. Test subjects in the car driving simulator (author's transl)].

    PubMed

    Anselm, D; Danner, M; Kirmaier, N; König, H L; Müller-Limmroth, W; Reis, A; Schauerte, W

    1977-06-10

    In the relevant frequency range of about 10 Hertz cars can be considered very largely as Faraday cages and consequently as screens against air-electric fields. This may have a negative influence on driving and reaction patterns as a result. In an extensive investigation 48 subjects in a driving simulator were exposed to definite artificially produced air-electric fields. The self-rating of the performance and concentration of the subjects, reaction times and driving errors were determined. While the reaction times remained practically constant, the driving behavior of the subjects improved.

  6. Academic Calendar Change Impact on Enrollment Patterns and Instructional Outcomes. AIR 1983 Annual Forum Paper.

    ERIC Educational Resources Information Center

    Coleman, Daniel; And Others

    The effects of a calendar change from the quarter system to the semester system on enrollment patterns, student credit hour productivity, grading patterns, and course completion patterns were investigated. Enrollment and grade pattern data were collected for nine Florida public universities and Iowa State University, for 1980-1982. Additionally, a…

  7. High efficient OLED displays prepared with the air-gapped bridges on quantum dot patterns for optical recycling.

    PubMed

    Kim, Hyo-Jun; Shin, Min-Ho; Kim, Joo-Suc; Kim, Se-Eun; Kim, Young-Joo

    2017-02-17

    An optically efficient structure was proposed and fabricated to realize high brightness organic light emitting diode (OLED) displays based on a white OLED prepared with the air-gapped bridges on the quantum dot (QD) patterns. Compared with a conventional white OLED display, in our experiments, the optical intensity of the proposed OLED display shows the enhancement of 58.2% in the red color and 16.8% in the green color after applying the air-gapped bridge structure on QD patterns of 20 wt% concentration. This enhancement comes from the two facts that the QD patterns downconvert unnecessary blue or blue/green light to the required green or red light and the air-gapped bridges increase the color conversion efficiency of QDs by optical recycling using total internal reflection (TIR) at the interface. In addition, the color gamut of the proposed OLED display increases from 65.5 to 75.9% (NTSC x, y ratio) due to the narrow emission spectra of QDs.

  8. High efficient OLED displays prepared with the air-gapped bridges on quantum dot patterns for optical recycling

    PubMed Central

    Kim, Hyo-Jun; Shin, Min-Ho; Kim, Joo-Suc; Kim, Se-Eun; Kim, Young-Joo

    2017-01-01

    An optically efficient structure was proposed and fabricated to realize high brightness organic light emitting diode (OLED) displays based on a white OLED prepared with the air-gapped bridges on the quantum dot (QD) patterns. Compared with a conventional white OLED display, in our experiments, the optical intensity of the proposed OLED display shows the enhancement of 58.2% in the red color and 16.8% in the green color after applying the air-gapped bridge structure on QD patterns of 20 wt% concentration. This enhancement comes from the two facts that the QD patterns downconvert unnecessary blue or blue/green light to the required green or red light and the air-gapped bridges increase the color conversion efficiency of QDs by optical recycling using total internal reflection (TIR) at the interface. In addition, the color gamut of the proposed OLED display increases from 65.5 to 75.9% (NTSC x, y ratio) due to the narrow emission spectra of QDs. PMID:28211516

  9. High efficient OLED displays prepared with the air-gapped bridges on quantum dot patterns for optical recycling

    NASA Astrophysics Data System (ADS)

    Kim, Hyo-Jun; Shin, Min-Ho; Kim, Joo-Suc; Kim, Se-Eun; Kim, Young-Joo

    2017-02-01

    An optically efficient structure was proposed and fabricated to realize high brightness organic light emitting diode (OLED) displays based on a white OLED prepared with the air-gapped bridges on the quantum dot (QD) patterns. Compared with a conventional white OLED display, in our experiments, the optical intensity of the proposed OLED display shows the enhancement of 58.2% in the red color and 16.8% in the green color after applying the air-gapped bridge structure on QD patterns of 20 wt% concentration. This enhancement comes from the two facts that the QD patterns downconvert unnecessary blue or blue/green light to the required green or red light and the air-gapped bridges increase the color conversion efficiency of QDs by optical recycling using total internal reflection (TIR) at the interface. In addition, the color gamut of the proposed OLED display increases from 65.5 to 75.9% (NTSC x, y ratio) due to the narrow emission spectra of QDs.

  10. THE PATTERN OF AIR FLOW OUT OF THE MOUTH DURING SPEECH.

    ERIC Educational Resources Information Center

    LANE, H.; AND OTHERS

    SINCE THE 19TH CENTURY, KYMOGRAPHIC RECORDING OF TOTAL AIR FLOW OUT OF THE MOUTH HAS BEEN USED TO DIAGNOSE THE VARYING DURATIONS AND DEGREES OF CONSTRICTIONS OF THE VOCAL TRACT DURING SPEECH. THE PRESENT PROJECT ATTEMPTS TO INTRODUCE A SECOND DIMENSION TO RECORDINGS OF AIR FLOW OUT OF THE MOUTH--NAMELY, CROSS-SECTIONAL AREA OF FLOW--ON THE…

  11. TROPICAL METEOROLOGY & Climate: Hadley Circulation

    SciTech Connect

    Lu, Jian; Vecchi, Gabriel A.

    2015-01-30

    The Hadley circulation, a prominent circulation feature characterized by rising air near the Equator and sinking air in the subtropics, defines the position of dry subtropical areas and is a fundamental regulator of the earth’s energy and momentum budgets. The character of the Hadley circulation, and its related precipitation regimes, exhibits variation and change in response to both climate variability and radiative forcing changes. The strength and position of the Hadley circulation change from year to year paced by El Niño and La Niña events. Over the last few decades of the twentieth century, the Hadley cell has expanded poleward in both hemispheres, with changes in atmospheric composition (including stratospheric ozone depletion and greenhouse gas increases) thought to have contributed to its expansion. This article introduces the basic phenomenology and driving mechanism of the Hadley circulation and discusses its variations under both natural and anthropogenic climate forcings.

  12. Atmospheric circulation patterns, cloud-to-ground lightning, and locally intense convective rainfall associated with debris flow initiation in the Dolomite Alps of northeastern Italy

    NASA Astrophysics Data System (ADS)

    Underwood, S. J.; Schultz, M. D.; Berti, M.; Gregoretti, C.; Simoni, A.; Mote, T. L.; Saylor, A. M.

    2015-09-01

    The Dolomite Alps of northeastern Italy experience debris flows with great frequency during the summer months. An ample supply of unconsolidated material on steep slopes and a summer season climate regime characterized by recurrent thunderstorms combine to produce an abundance of these destructive hydrogeologic events. In the past debris flow events have been studied primarily in the context of their geologic and geomorphic characteristics. The atmospheric contribution to these mass wasting events has been limited to recording rainfall and developing intensity thresholds for debris mobilization. This study aims to expand the examination of atmospheric processes that preceded both locally intense convective rainfall (LICR) and debris flows in the Dolomite region. 500 hPa pressure level plots of geopotential heights were constructed for a period of three days prior to debris flow events to gain insight into the synoptic scale processes which provide an environment conducive to LICR in the Dolomites. Cloud-to-ground (CG) lightning flash data recorded at the meso-scale were incorporated to assess the convective environment proximal to debris flow source regions. Twelve events were analyzed and from this analysis three common synoptic scale circulation patterns were identified. Evaluation of CG flashes at smaller spatial and temporal scales illustrated that convective processes vary in their production of CG flashes (total number) and the spatial distribution of flashes can also be quite different between events over longer periods. During the 60 min interval immediately preceding debris flow a majority of cases exhibited spatial and temporal collocation of LICR and CG flashes. Also a number of CG flash parameters were found to be significantly correlated to rainfall intensity prior to debris flow initiation.

  13. Atmospheric circulation patterns, cloud-to-ground lightning, and locally intense convective rainfall associated with debris flow initiation in the Dolomite Alps of northeastern Italy

    NASA Astrophysics Data System (ADS)

    Underwood, S. Jeffrey; Schultz, Michael D.; Berti, Metteo; Gregoretti, Carlo; Simoni, Alessandro; Mote, Thomas L.; Saylor, Anthony M.

    2016-02-01

    The Dolomite Alps of northeastern Italy experience debris flows with great frequency during the summer months. An ample supply of unconsolidated material on steep slopes and a summer season climate regime characterized by recurrent thunderstorms combine to produce an abundance of these destructive hydro-geologic events. In the past, debris flow events have been studied primarily in the context of their geologic and geomorphic characteristics. The atmospheric contribution to these mass-wasting events has been limited to recording rainfall and developing intensity thresholds for debris mobilization. This study aims to expand the examination of atmospheric processes that preceded both locally intense convective rainfall (LICR) and debris flows in the Dolomite region. 500 hPa pressure level plots of geopotential heights were constructed for a period of 3 days prior to debris flow events to gain insight into the synoptic-scale processes which provide an environment conducive to LICR in the Dolomites. Cloud-to-ground (CG) lightning flash data recorded at the meso-scale were incorporated to assess the convective environment proximal to debris flow source regions. Twelve events were analyzed and from this analysis three common synoptic-scale circulation patterns were identified. Evaluation of CG flashes at smaller spatial and temporal scales illustrated that convective processes vary in their production of CF flashes (total number) and the spatial distribution of flashes can also be quite different between events over longer periods. During the 60 min interval immediately preceding debris flow a majority of cases exhibited spatial and temporal colocation of LICR and CG flashes. Also a number of CG flash parameters were found to be significantly correlated to rainfall intensity prior to debris flow initiation.

  14. Changing pattern of dengue virus serotypes circulating during 2008-2012 and reappearance of dengue serotype 3 may cause outbreak in Kolkata, India.

    PubMed

    Saha, Kallol; Ghosh, Monika; Firdaus, Rushna; Biswas, Aritra; Seth, Bikash; Bhattacharya, Debojyoti; Mukherjee, Kheya; Sadhukhan, Provash Chandra

    2016-10-01

    Dengue virus infection is a major cause of morbidity within the endemic tropical and subtropical regions of the world. Dengue virus has four distinct serotypes with specific clinical manifestations. In this study, we observed the changing pattern of dengue serotypes, age-wise dengue infection and useful sero-detection methods needed in a dengue endemic region. We identified dengue serotypes during a period of 5 years among patients with dengue symptoms visiting one of the largest tertiary care infectious disease hospitals of eastern India in Kolkata. A total of 433 dengue RNA positive samples were isolated from 712 acute dengue suspected cases. Age wise distribution highlighted the susceptible age group being >21 years (24.02%) followed by 11-15 years (21.71%) and 5-10 years (21.02%) of the total infected population. Higher numbers of infected cases were found within females as they are involved in more indoor works. The period of study experienced two dengue outbreaks one in 2008 and another in 2012. For early dengue detection, NS1 was found to be more confirmatory than IgM ELISA regarding sensitivity and specificity. DENV-1, 2, and 4 serotypes were the common circulating strains from 2008 until 2010, after which DENV-3 serotype infections rise and led to a massive dengue outbreak in Kolkata with increased numbers of DHF and DSS cases in 2012. The finding within our study emphasizes the public health importance of such prospective surveillance programs with respect to the changing dengue viral etiology and serotypes. J. Med. Virol. 88:1697-1702, 2016. © 2016 Wiley Periodicals, Inc.

  15. Air-void embedded GaN-based light-emitting diodes grown on laser drilling patterned sapphire substrates

    NASA Astrophysics Data System (ADS)

    Liu, Hao; Li, Yufeng; Wang, Shuai; Feng, Lungang; Xiong, Han; Su, Xilin; Yun, Feng

    2016-07-01

    Air-void structure was introduced in GaN-based blue light-emitting diodes (LED) with one-step growth on periodic laser drilling patterned sapphire substrate, which free of any photolithography or wet/dry etching process. The influence of filling factors (FF) of air-void on crystal quality and optical performance were investigate. Transmission electron microscopy images and micro-Raman spectroscopy indicated that the dislocation was bended and the partially compressed strain was released. When FF was 55.43%, compared with the LED structure grown on flat sapphire substrate, the incorporation of air-void was observed to reduce the compressed stress of ˜20% and the luminance intensity has improved by 128%. Together with the simulated reflection intensity enhancement by finite difference time-domain (FDTD) method, we attribute the enhanced optical performance to the combined contribution of strong back-side light reflection of air-void and better GaN epitaxial quality. This approach provides a simple replacement to the conventional air-void embedded LED process.

  16. Evaluation of HCMM satellite data for estuarine tidal circulation patterns and thermal inertia soil moisture measurements. [Delaware Bay, Cooper River, and the Potomac River estuaries; Luverne, Minnesota, soil moisture, and water temperature of Lake Anna, Virginia

    NASA Technical Reports Server (NTRS)

    Wiesnet, D. R.; Mcginnis, D. F., Jr. (Principal Investigator); Matson, M.; Pritchard, J. A.

    1981-01-01

    Digital thermal maps of the Cooper River (SC) and the Potomac River estuaries were prepared from heat capacity mapping radiometer (HCMR) tapes. Tidal phases were correctly interpreted and verified. Synoptic surface circulation patterns were charted by location thermal fronts and water mass boundaries within the estuaries. Thermal anomalies were detected adjacent of a conventional power plant on the Potomac. Under optimum conditions, estuaries as small as the Cooper River can be monitored for generalized thermal/tidal circulation patterns by the HCMM-type IR sensors. The HCMM thermal inertia approach to estimating soil moisture at the Luverne (MN) test site was found to be unsatisfactory as a NESS operational satellite technique because of cloud cover interference. Thermal-IR data show similar structure of the Baltimore and Washington heat islands when compared to NOAA AVHRR thermal-IR data. Thermal anomalies from the warm water discharge water of a nuclear power plant were mapped in Lake Anna, Virginia.

  17. HEPA air filter (image)

    MedlinePlus

    ... pet dander and other irritating allergens from the air. Along with other methods to reduce allergens, such ... controlling the amount of allergens circulating in the air. HEPA filters can be found in most air ...

  18. Effects of lung disease on the three-dimensional structure and air flow pattern in the human airway tree

    NASA Astrophysics Data System (ADS)

    van de Moortele, Tristan; Nemes, Andras; Wendt, Christine; Coletti, Filippo

    2016-11-01

    The morphological features of the airway tree directly affect the air flow features during breathing, which determines the gas exchange and inhaled particle transport. Lung disease, Chronic Obstructive Pulmonary Disease (COPD) in this study, affects the structural features of the lungs, which in turn negatively affects the air flow through the airways. Here bronchial tree air volume geometries are segmented from Computed Tomography (CT) scans of healthy and diseased subjects. Geometrical analysis of the airway centerlines and corresponding cross-sectional areas provide insight into the specific effects of COPD on the airway structure. These geometries are also used to 3D print anatomically accurate, patient specific flow models. Three-component, three-dimensional velocity fields within these models are acquired using Magnetic Resonance Imaging (MRI). The three-dimensional flow fields provide insight into the change in flow patterns and features. Additionally, particle trajectories are determined using the velocity fields, to identify the fate of therapeutic and harmful inhaled aerosols. Correlation between disease-specific and patient-specific anatomical features with dysfunctional airflow patterns can be achieved by combining geometrical and flow analysis.

  19. Particle size distribution and air pollution patterns in three urban environments in Xi'an, China.

    PubMed

    Niu, Xinyi; Guinot, Benjamin; Cao, Junji; Xu, Hongmei; Sun, Jian

    2015-10-01

    Three urban environments, office, apartment and restaurant, were selected to investigate the indoor and outdoor air quality as an inter-comparison in which CO2, particulate matter (PM) concentration and particle size ranging were concerned. In this investigation, CO2 level in the apartment (623 ppm) was the highest among the indoor environments and indoor levels were always higher than outdoor levels. The PM10 (333 µg/m(3)), PM2.5 (213 µg/m(3)), PM1 (148 µg/m(3)) concentrations in the office were 10-50% higher than in the restaurant and apartment, and the three indoor PM10 levels all exceeded the China standard of 150 µg/m(3). Particles ranging from 0.3 to 0.4 µm, 0.4 to 0.5 µm and 0.5 to 0.65 µm make largest contribution to particle mass in indoor air, and fine particles number concentrations were much higher than outdoor levels. Outdoor air pollution is mainly affected by heavy traffic, while indoor air pollution has various sources. Particularly, office environment was mainly affected by outdoor sources like soil dust and traffic emission; apartment particles were mainly caused by human activities; restaurant indoor air quality was affected by multiple sources among which cooking-generated fine particles and the human steam are main factors.

  20. Flow structures and particle deposition patterns in double-bifurcation airway models. Part 1. Air flow fields

    NASA Astrophysics Data System (ADS)

    Comer, J. K.; Kleinstreuer, C.; Zhang, Z.

    2001-05-01

    The understanding and quantitative assessment of air flow fields and local micron-particle wall concentrations in tracheobronchial airways are very important for estimating the health risks of inhaled particulate pollutants, developing algebraic transfer functions of global lung deposition models used in dose-response analyses, and/or determining proper drug-aerosol delivery to target sites in the lung. In this paper (Part 1) the theory, model geometries, and air flow results are provided. In a companion paper (Part 2, Comer et al. 2001), the history of particle deposition patterns and comparisons with measured data sets are reported. Decoupling of the naturally dilute particle suspension makes it feasible to present the results in two parts.

  1. Fjord water circulation patterns and dysoxic/anoxic conditions in a Mediterranean semi-enclosed embayment in the Amvrakikos Gulf, Greece

    NASA Astrophysics Data System (ADS)

    Ferentinos, George; Papatheodorou, George; Geraga, Maria; Iatrou, Margarita; Fakiris, Elias; Christodoulou, Dimitris; Dimitriou, Evagelos; Koutsikopoulos, Constantin

    2010-08-01

    Oceanographic research in the Amvrakikos Gulf in Western Greece, a semi-enclosed embayment isolated from the Ionian Sea by a narrow, shallow sill, has shown that it is characterised by a fjord-like oceanographic regime. The Gulf is characterised by a well-stratified two layer structure in the water column made up of a surface layer and a bottom layer that are separated by a strong pycnocline. At the entrance over the sill, there is a brackish water outflow in the surface water and a saline water inflow in the near-bed region. This morphology and water circulation pattern makes the Amvrakikos Gulf the only Mediterranean Sea fjord. The investigations have also shown that the surface layer is well oxygenated, whereas in the pycnocline, the dissolved oxygen (DO) declines sharply and finally attains a value of zero, thus dividing the water column into oxic, dysoxic and anoxic environments. At the dysoxic/anoxic interface, at a depth of approximately 35 m, a sharp redox cline develops with Eh values between 0 and 120 mV occurring above and values between 0 and -250 mV occurring below, where oxic and anoxic biochemical processes prevail, respectively. On the seafloor underneath the anoxic waters, a black silt layer and a white mat cover resembling Beggiatoa-like cells are formed. The dysoxic/anoxic conditions appeared during the last 20 to 30 years and have been caused by the excessive use of fertilisers, the increase in animal stocks, intensive fish farming and domestic effluents. The inflicted dysoxia/anoxia has resulted in habitat loss on the seafloor over an area that makes up just over 50% of the total Gulf area and approximately 28% of the total water volume. Furthermore, anoxia is also considered to have been responsible for the sudden fish mortality which occurred in aquaculture rafts in the Gulf in February 2008. Therefore, anoxic conditions can be considered to be a potential hazard to the ecosystem and to the present thriving fishing and mariculture industry in

  2. Use of weather types to disaggregate general circulation model predictions

    USGS Publications Warehouse

    Hay, L.E.; McCabe, G.J.; Wolock, D.M.; Ayers, M.A.

    1992-01-01

    A method has been developed that uses weather-type analysis as a tool to spatially disaggregate GCM predictions to make them useful for water resource studies. The method has been applied to the Delaware River basin to predict the effects of doubling atmospheric carbon dioxide on precipitation patterns in the region. An application of the technique to the Delaware River basin indicates that future climate conditions will show minimal changes in weather-type frequency, implying that air circulation patterns will remain unchanged -from Authors

  3. The pattern of northern hemisphere surface air temperature during prolonged periods of low solar output

    NASA Technical Reports Server (NTRS)

    Ruzmaikin, A.; Feyman, J.; Jiang, X.; Noone, D. C.; Waple, A. M.; Yung, Y. L.

    2004-01-01

    We show that the reconstructed sensitivity of the sea level temperature to long term solar forcing in the Northern Hemisphere is in very good agreement with the empirical temperature pattern corresponding to changes of the North Annular Mode (NAM).

  4. Traffic-related air pollution and circulating levels of total and allergen-specific IgE among children in Detroit, Michigan

    EPA Science Inventory

    Introduction: There is a growing body of literature suggesting a relationship between traffic-related air pollution and allergic health outcomes. Animal studies have demonstrated that air pollution, particularly diesel exhaust particles, may stimulate or enhance atopic responses...

  5. Twentieth-century atmospheric river activity along the west coasts of Europe and North America: algorithm formulation, reanalysis uncertainty and links to atmospheric circulation patterns

    NASA Astrophysics Data System (ADS)

    Brands, S.; Gutiérrez, J. M.; San-Martín, D.

    2016-04-01

    A new atmospheric-river detection and tracking scheme based on the magnitude and direction of integrated water vapour transport is presented and applied separately over 13 regions located along the west coasts of Europe (including North Africa) and North America. Four distinct reanalyses are considered, two of which cover the entire twentieth-century: NOAA-CIRES Twentieth Century Reanalysis v2 (NOAA-20C) and ECMWF ERA-20C. Calculations are done separately for the OND and JFM-season and, for comparison with previous studies, for the ONDJFM-season as a whole. Comparing the AR-counts from NOAA-20C and ERA-20C with a running 31-year window looping through 1900-2010 reveals differences in the climatological mean and inter-annual variability which, at the start of the twentieth-century, are much more pronounced in western North America than in Europe. Correlating European AR-counts with the North Atlantic Oscillation (NAO) reveals a pattern reminiscent of the well-know precipitation dipole which is stable throughout the entire century. A similar analysis linking western North American AR-counts to the North Pacific index (NPI) is hampered by the aforementioned poor reanalysis agreement at the start of the century. During the second half of the twentieth-century, the strength of the NPI-link considerably varies with time in British Columbia and the Gulf of Alaska. Considering the period 1950-2010, AR-counts are then associated with other relevant large-scale circulation indices such as the East Atlantic, Scandinavian, Pacific-North American and West Pacific patterns (EA, SCAND, PNA and WP). Along the Atlantic coastline of the Iberian Peninsula and France, the EA-link is stronger than the NAO-link if the OND season is considered and the SCAND-link found in northern Europe is significant during both seasons. Along the west coast of North America, teleconnections are generally stronger during JFM in which case the NPI-link is significant in any of the five considered

  6. Distinct synoptic patterns and air masses responsible for long-range desert dust transport and sea spray in Palermo, Italy

    NASA Astrophysics Data System (ADS)

    Dimitriou, K.; Paschalidou, A. K.; Kassomenos, P. A.

    2016-09-01

    Undoubtedly, anthropogenic emissions carry a large share of the risk posed on public health by particles exposure in urban areas. However, natural emissions, in the form of desert dust and sea spray, are well known to contribute significantly to the PM load recorded in many Mediterranean environments, posing an extra risk burden on public health. In the present paper, we examine the synoptic climatology in a background station in Palermo, Italy, through K-means clustering of the mean sea-level pressure (MSLP) maps, in an attempt to associate distinct synoptic patterns with increased PM10 levels. Four-day backward trajectory analysis is then applied, in order to study the origins and pathways of air masses susceptible of PM10 episodes. It is concluded that a number of atmospheric patterns result in several kind of flows, namely south, west, and slow-moving/stagnant flows, associated with long-range dust transport and sea spray.

  7. Influence of synoptic and local atmospheric patterns on PM10 air pollution levels: a model application to Naples (Italy)

    NASA Astrophysics Data System (ADS)

    Fortelli, Alberto; Scafetta, Nicola; Mazzarella, Adriano

    2016-10-01

    We investigate the relationship between synoptic/local meteorological patterns and PM10 air pollution levels in the metropolitan area of Naples, Italy. We found that severe air pollution crises occurred when the 850 and 500 hpa geopotential heights and their relative temperatures present maximum values above the city. The most relevant synoptic parameter was the 850 hPa geopotential height, which is located about 1500 m of altitude. We compared local meteorological conditions (specifically wind stress, rain amount and thermal inversion) against the urban air pollution levels from 2009 to 2013. We found several empirical criteria for forecasting high daily PM10 air pollution levels in Naples. Pollution crises occurred when (a) the wind stress was between 1 and 2 m/s, (b) the thermal inversion between two strategic locations was at least 3°C/200 m and (c) it did not significantly rain for at least 7 days. Beside these meteorological conditions, severe pollution crises occurred also during festivals when fireworks and bonfires are lighted, and during anomalous breeze conditions and severe fire accidents. Finally, we propose a basic model to predict PM10 concentration levels from local meteorological conditions that can be easily forecast a few days in advance. The synthetic PM10 record predicted by the model was found to correlate with the PM10 observations with a correlation coefficient close to 0.80 with a confidence level greater than 99%. The proposed model is expected to provide reliable information to city officials to carry out practical strategies to mitigate air pollution effects. Although the proposed model equation is calibrated on the topographical and meteorological conditions of Naples, it should be easily adaptable to alternative locations.

  8. Understanding and Portraying the Global Atmospheric Circulation.

    ERIC Educational Resources Information Center

    Harrington, John, Jr.; Oliver, John E.

    2000-01-01

    Examines teaching models of atmospheric circulation and resultant surface pressure patterns, focusing on the three-cell model and the meaning of meridional circulation as related to middle and high latitudes. Addresses the failure of the three-cell model to explain seasonal variations in atmospheric circulation. Suggests alternative models. (CMK)

  9. Regional and local vegetation patterns: The responses of vegetation to subcontinental air masses

    SciTech Connect

    Neilson, R.P.; King, G.A.; DeVelice, R.L.; Lenihan, J.M.

    1990-03-01

    Spatial patterns of biodiversity in plants were examined through a range of scales from continental and biome to patterns of local habitat variation. The authors propose a hierarchy of constraints on these patterns. Large-scale climate is proposed to structure continental patterns of species richness and the diversity and distribution of physiognomic types in the form of biomes. Within biomes regional climatic gradients modulate the length scales of habitats and, hence, the amount of substrate variation within a grain that is perceived by an organism as homogeneous. Most resource variation in the core of biomes is within a given species range of tolerance and large areas of the landscape are perceived as essentially homogeneous. As one moves toward ecotones, the convergence of regional climatic stresses constrains the suitability of habitats to smaller scale variations in substrate and topography. Thus, the size of habitat grain declines, while the diversity of habitat grains increases toward biome ecotones. Biotic interactions form a third level of constraint, operating at yet a smaller spatial scale, to further modify local species associations. The regional gradients in habitat size and variability provide explanatory power of observed patterns in biodiversity and provide a monitoring tool for climate-induced changes in ecotones.

  10. Pattern recognition methods and air pollution source identification. [based on wind direction

    NASA Technical Reports Server (NTRS)

    Leibecki, H. F.; King, R. B.

    1978-01-01

    Directional air samplers, used for resolving suspended particulate matter on the basis of time and wind direction were used to assess the feasibility of characterizing and identifying emission source types in urban multisource environments. Filters were evaluated for 16 elements and X-ray fluorescence methods yielded elemental concentrations for direction, day, and the interaction of direction and day. Large numbers of samples are necessary to compensate for large day-to-day variations caused by wind perturbations and/or source changes.

  11. Environmental Assessment for QSEU116038 - Lower Pattern Altitude at Moody Air Force Base, Georgia

    DTIC Science & Technology

    2012-04-01

    continue to utilize the area as they currently do and the Air Force does not expect any significant impacts to wildlife and sensitive bird species as a...Figure 2-1 are representative of actual flight tracks flown, as reported by pilots. Ground tracks vary depending on winds and other factors. Only...NF = fan speed; C TIT = turbine inlet temperature in Celsius; LFO load kts = level flight overhead carrying a load and fling at 100 knots; kts

  12. Consistent pattern of elevated symptoms in air-conditioned office buildings: a reanalysis of epidemiologic studies.

    PubMed Central

    Mendell, M J; Smith, A H

    1990-01-01

    Published studies of the relation between type of building ventilation system and work-related symptom prevalence in office workers have been contradictory. A reanalysis was performed of six studies meeting specific eligibility criteria, combining published data with unpublished information obtained from study authors. Five eligible studies were from the United Kingdom, and one was from Denmark. Standardized categories of building ventilation type were created to allow comparison of effects across studies. Within each study, prevalence odds ratios (PORs) were calculated for symptoms in each ventilation category relative to a baseline category of naturally ventilated buildings. Air-conditioned buildings were consistently associated with increased prevalence of work-related headache (POR = 1.3-3.1), lethargy (POR = 1.4-5.1), and upper respiratory/mucus membrane symptoms (POR = 1.3-4.8). Humidification was not a necessary factor for the higher symptom prevalence associated with air-conditioning. Mechanical ventilation without air-conditioning was not associated with higher symptom prevalence. The consistent associations found between type of building ventilation and reported symptom prevalence have potentially important public health and economic implications. PMID:2400029

  13. Fetal Circulation

    MedlinePlus

    ... Echocardiography/Your Unborn Baby's Heart - Fetal Echocardiogram Test - Detection of a Heart Defect - Fetal Circulation • Care & Treatment • Tools & Resources Popular Articles 1 Understanding Blood Pressure Readings 2 Sodium and Salt 3 Target Heart Rates 4 Heart Attack Symptoms in Women ...

  14. Summer atmospheric circulation anomalies over the Arctic Ocean and their influences on September sea ice extent: A cautionary tale

    NASA Astrophysics Data System (ADS)

    Serreze, Mark C.; Stroeve, Julienne; Barrett, Andrew P.; Boisvert, Linette N.

    2016-10-01

    Numerous studies have addressed links between summer atmospheric circulation patterns and interannual variability and the downward trend in total September Arctic sea ice extent. In general, low extent is favored when the preceding summer is characterized by positive sea level pressure (SLP) anomalies over the central Arctic Ocean north of Alaska. High extent is favored when low pressure dominates. If such atmospheric patterns could be predicted several months out, these links provide an avenue for improved seasonal predictability of total September extent. We analyze detrended September extent time series (1979-2015), atmospheric reanalysis fields, ice age and motion, and Atmospheric Infrared Sounder data, to show that while there is merit to this summer circulation framework, it has limitations. Large departures in total September extent relative to the trend line are preceded by a wide range of summer circulation patterns. While patterns for the four years with the largest positive departures in September extent have below average SLP over the central Arctic Ocean, they differ markedly in the magnitude and location of pressure and air temperature anomalies. Differences in circulation for the four years with the largest negative departures are equally prominent. Circulation anomalies preceding Septembers with ice extent close to the trend also have a wide range of patterns. In turn, years (such as 2013 and 2014) with almost identical total September extent were preceded by very different summer circulation patterns. September ice conditions can also be strongly shaped by events as far back as the previous winter or spring.

  15. Modeling Spatial Patterns of Traffic-Related Air Pollutants in Complex Urban Terrain

    PubMed Central

    Zwack, Leonard M.; Paciorek, Christopher J.; Spengler, John D.; Levy, Jonathan I.

    2011-01-01

    Background The relationship between traffic emissions and mobile-source air pollutant concentrations is highly variable over space and time and therefore difficult to model accurately, especially in urban settings with complex terrain. Regression-based approaches using continuous real-time mobile measurements may be able to characterize spatiotemporal variability in traffic-related pollutant concentrations but require methods to incorporate temporally varying meteorology and source strength in a physically interpretable fashion. Objective We developed a statistical model to assess the joint impact of both meteorology and traffic on measured concentrations of mobile-source air pollutants over space and time. Methods In this study, traffic-related air pollutants were continuously measured in the Williamsburg neighborhood of Brooklyn, New York (USA), which is affected by traffic on a large bridge and major highway. One-minute average concentrations of ultrafine particulate matter (UFP), fine particulate matter [≤ 2.5 μm in aerodynamic diameter (PM2.5)], and particle-bound polycyclic aromatic hydrocarbons were measured using a mobile-monitoring protocol. Regression modeling approaches to quantify the influence of meteorology, traffic volume, and proximity to major roadways on pollutant concentrations were used. These models incorporated techniques to capture spatial variability, long- and short-term temporal trends, and multiple sources. Results We observed spatial heterogeneity of both UFP and PM2.5 concentrations. A variety of statistical methods consistently found a 15–20% decrease in UFP concentrations within the first 100 m from each of the two major roadways. For PM2.5, temporal variability dominated spatial variability, but we observed a consistent linear decrease in concentrations from the roadways. Conclusions The combination of mobile monitoring and regression analysis was able to quantify local source contributions relative to background while

  16. Three dimensional simulations of pattern formation during high-pressure, freely localized microwave breakdown in air

    SciTech Connect

    Kourtzanidis, K. Boeuf, J. P.; Rogier, F.

    2014-12-15

    Recent experiments have demonstrated that a freely localized 100 GHz microwave discharge can propagate towards the microwave source with high speed, forming a complex pattern of self-organized filaments. We present three-dimensional simulations of the formation and propagation of such patterns that reveal more information on their nature and interaction with the electromagnetic waves. The developed three-dimensional Maxwell-plasma solver permits the study of different forms of incident field polarization. Results for linear and circular polarization of the wave are presented and comparisons with recent experiments show a good overall agreement. The three dimensional simulations provide a quantitative analysis of the parameters controlling the time and length scales of the strongly non-linear plasma dynamics and could be useful for potential microwave plasma applications such as aerodynamic flow and combustion control.

  17. Precipitation chemistry and corresponding transport patterns of influencing air masses at Huangshan Mountain in East China

    NASA Astrophysics Data System (ADS)

    Shi, ChunE; Deng, Xueliang; Yang, Yuanjian; Huang, Xiangrong; Wu, Biwen

    2014-09-01

    One hundred and ten samples of rainwater were collected for chemical analysis at the summit of Huangshan Mountain, a high-altitude site in East China, from July 2010 to June 2011. The volume-weighted-mean (VWM) pH for the whole sampling period was 5.03. SO{4/2-} and Ca2+ were the most abundant anion and cation, respectively. The ionic concentrations varied monthly with the highest concentrations in winter/spring and the lowest in summer. Evident inter-correlations were found among most ions, indicating the common sources for some species and fully mixing characteristics of the alpine precipitation chemistry. The VWM ratio of [SO{4/2-}]/[NO{3/-}] was 2.54, suggesting the acidity of rainwater comes from both nitric and sulfuric acids. Compared with contemporary observations at other alpine continental sites in China, the precipitation at Huangshan Mountain was the least polluted, with the lowest ionic concentrations. Trajectories to Huangshan Mountain on rainy days could be classified into six groups. The rainwater with influencing air masses originating in Mongolia was the most polluted with limited effect. The emissions of Jiangxi, Anhui, Zhejiang and Jiangsu provinces had a strong influence on the overall rain chemistry at Huangshan Mountain. The rainwater with influencing air masses from Inner Mongolia was heavily polluted by anthropogenic pollutants.

  18. Short-term effects of air pollution on hospitalization for acute myocardial infarction: age effect on lag pattern.

    PubMed

    Collart, Philippe; Dramaix, Michele; Levêque, Alain; Coppieters, Yves

    2017-02-01

    The aim of the present study is to analyse the age effect on the lag patterns of relative risk of hospitalization for acute myocardial infarction and NO2, PM10 and O3. Daily hospitalizations for AMI during the period 2008-2011 were extracted from administrative data. Analyses were performed using the quasi-Poisson regression model adjusted for seasonality, long-term trend, day of the week and temperature. We observed very different patterns depending on age. For NO2 and PM10, the younger group (25-54 years) shows a more delayed effect in comparison with the two older age groups (55-64 and ≥ 65 years). Overall, the associations between NO2 and AMI are higher compared to PM10. There are no associations between O3 and AMI. This study indicates that age plays a major role in the lag pattern. Younger people have delayed effects, but they are nevertheless sensitive to air pollution.

  19. Airport noise complaint patterns and interviews of frequent complainers at two major air carrier airports

    NASA Astrophysics Data System (ADS)

    Jaggers, Nicholas; Eiff, Gary

    2005-09-01

    The complex and highly sensitive topic of aircraft noise and population annoyance continues to be a major inhibitor to airport development plans. The projected growth of air travel necessitates expanded capacity at many existing airports and the development and construction of new airports in order to accommodate burgeoning traveler needs. Concerns by citizens near major airports about their economic, health, and social welfare continue to generate community and individual declarations of annoyance and concern which threaten timely solutions to airport expansion plans. A deeper understanding of the nature of these concerns is important to more effectively cope with airport expansion concerns among adjacent communities and surrounding neighbors. This study analyzed existing noise complaints registered at Denver International Airport (DEN) and Fort Lauderdale/Hollywood International Airport (FLL) in an attempt to gain greater understanding of noise complaint drivers and public annoyance. Interviews of frequent complainers were utilized in order to gain richer data concerning individual annoyance issues.

  20. Atmospheric circulation classification comparison based on wildfires in Portugal

    NASA Astrophysics Data System (ADS)

    Pereira, M. G.; Trigo, R. M.

    2009-04-01

    Atmospheric circulation classifications are not a simple description of atmospheric states but a tool to understand and interpret the atmospheric processes and to model the relation between atmospheric circulation and surface climate and other related variables (Radan Huth et al., 2008). Classifications were initially developed with weather forecasting purposes, however with the progress in computer processing capability, new and more robust objective methods were developed and applied to large datasets prompting atmospheric circulation classification methods to one of the most important fields in synoptic and statistical climatology. Classification studies have been extensively used in climate change studies (e.g. reconstructed past climates, recent observed changes and future climates), in bioclimatological research (e.g. relating human mortality to climatic factors) and in a wide variety of synoptic climatological applications (e.g. comparison between datasets, air pollution, snow avalanches, wine quality, fish captures and forest fires). Likewise, atmospheric circulation classifications are important for the study of the role of weather in wildfire occurrence in Portugal because the daily synoptic variability is the most important driver of local weather conditions (Pereira et al., 2005). In particular, the objective classification scheme developed by Trigo and DaCamara (2000) to classify the atmospheric circulation affecting Portugal have proved to be quite useful in discriminating the occurrence and development of wildfires as well as the distribution over Portugal of surface climatic variables with impact in wildfire activity such as maximum and minimum temperature and precipitation. This work aims to present: (i) an overview the existing circulation classification for the Iberian Peninsula, and (ii) the results of a comparison study between these atmospheric circulation classifications based on its relation with wildfires and relevant meteorological

  1. Levels and pattern of alkyl nitrates, multifunctional alkyl nitrates, and halocarbons in the air over the Atlantic Ocean

    NASA Astrophysics Data System (ADS)

    Fischer, Ralf G.; Kastler, Jürgen; Ballschmiter, Karlheinz

    2000-06-01

    The Albatross Campaign was a research cruise of the German research vessel RV Polarstern (cruise ANT XFV/1) in October and November 1996 across the Atlantic Ocean. The cruise started in Bremerhaven, Germany, reached the polar region at 67°N, followed the 30°W meridian longitude, crossed the equatorial region, and ended at 50°S at Punta Quilla, Argentina. A second cruise leg closer to the African continent started from Capetown, South Africa, passed the Canary Island, and ended through the English Channel at Bremerhaven, Germany, in May/June 1998. Measurements of atmospheric levels of C1-C13 alkyl mononitrates, 24 alkyl dinitrates (C3-C6), 19 hydroxy alkyl nitrates (C2-C6), and benzyl nitrate, as well as the halocarbons tetrachloroethene, hexachloroethane, and bromoform are presented in this work. The halocarbons are used to assess the origin of the air parcels analyzed. Levels and patterns of multifunctional alkyl nitrates in the marine air are described here for the first time. The air masses include polluted air from the northern Europe, as well as highly degraded air masses of the South Atlantic trade wind region that represent global baseline levels. Two independent analytical methods were used in combination to cover the whole range of organic nitrates. First, the low-volume adsorptive enrichment of organic traces on Tenax, followed by thermodesorption cold trap HRGC-ECD and thermodesorption cold trap HRGC-(EI)MSD was used. Second, high-volume adsorptive enrichment of organic traces on silica gel was applied followed by solvent desorption, NP-HPLC group separation, and HRGC-(EI)-MSD. Short-chain alkyl nitrates (C4-C6) showed mixing ratios in the range of 0.2-2.5 parts per trillion by volume (pptv), with a local minimum for the tropical regions and significantly lower ratios for the Southern Hemisphere. The mixing ratio of the sum of 36 long-chain alkyl mononitrates (C7-C13) ranged from 0.02-0.43 pptv, the mixing ratio of the sum of 23 alkyl dinitrates (C3-C

  2. Arctic circulation regimes.

    PubMed

    Proshutinsky, Andrey; Dukhovskoy, Dmitry; Timmermans, Mary-Louise; Krishfield, Richard; Bamber, Jonathan L

    2015-10-13

    Between 1948 and 1996, mean annual environmental parameters in the Arctic experienced a well-pronounced decadal variability with two basic circulation patterns: cyclonic and anticyclonic alternating at 5 to 7 year intervals. During cyclonic regimes, low sea-level atmospheric pressure (SLP) dominated over the Arctic Ocean driving sea ice and the upper ocean counterclockwise; the Arctic atmosphere was relatively warm and humid, and freshwater flux from the Arctic Ocean towards the subarctic seas was intensified. By contrast, during anticylonic circulation regimes, high SLP dominated driving sea ice and the upper ocean clockwise. Meanwhile, the atmosphere was cold and dry and the freshwater flux from the Arctic to the subarctic seas was reduced. Since 1997, however, the Arctic system has been under the influence of an anticyclonic circulation regime (17 years) with a set of environmental parameters that are atypical for this regime. We discuss a hypothesis explaining the causes and mechanisms regulating the intensity and duration of Arctic circulation regimes, and speculate how changes in freshwater fluxes from the Arctic Ocean and Greenland impact environmental conditions and interrupt their decadal variability.

  3. Arctic circulation regimes

    PubMed Central

    Proshutinsky, Andrey; Dukhovskoy, Dmitry; Timmermans, Mary-Louise; Krishfield, Richard; Bamber, Jonathan L.

    2015-01-01

    Between 1948 and 1996, mean annual environmental parameters in the Arctic experienced a well-pronounced decadal variability with two basic circulation patterns: cyclonic and anticyclonic alternating at 5 to 7 year intervals. During cyclonic regimes, low sea-level atmospheric pressure (SLP) dominated over the Arctic Ocean driving sea ice and the upper ocean counterclockwise; the Arctic atmosphere was relatively warm and humid, and freshwater flux from the Arctic Ocean towards the subarctic seas was intensified. By contrast, during anticylonic circulation regimes, high SLP dominated driving sea ice and the upper ocean clockwise. Meanwhile, the atmosphere was cold and dry and the freshwater flux from the Arctic to the subarctic seas was reduced. Since 1997, however, the Arctic system has been under the influence of an anticyclonic circulation regime (17 years) with a set of environmental parameters that are atypical for this regime. We discuss a hypothesis explaining the causes and mechanisms regulating the intensity and duration of Arctic circulation regimes, and speculate how changes in freshwater fluxes from the Arctic Ocean and Greenland impact environmental conditions and interrupt their decadal variability. PMID:26347536

  4. Application of XAD-resin based passive air samplers to assess local (roadside) and regional patterns of persistent organic pollutants.

    PubMed

    Barthel, Paul; Thuens, Sabine; Shunthirasingham, Chubashini; Westgate, John N; Wania, Frank; Radke, Michael

    2012-07-01

    We used XAD-resin based passive air samplers (PAS) to measure atmospheric levels of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs) at five ombrotrophic bogs in Eastern Canada. The aims of our study were to investigate the influence of local roads on contaminant levels in the bogs, to derive the regional pattern of atmospheric concentrations, and to assess the uncertainties of the method. Expanded uncertainties based on the duplicate PAS deployed at 24 sites were good for the PAHs, while the deployment period of approx. 100 days was too short to yield acceptable uncertainties for PCBs. The regional PAH distribution was in good agreement with the calculated source proximity of the sampled bogs. We conclude that XAD-resin based PAS deployed for comparatively short periods are well suited for measuring atmospheric concentrations of volatile PAHs, while in remote regions longer deployment is necessary for less volatile PAHs and for PCBs.

  5. Demonstration of an advanced circulation fludized bed coal combustor phase 1: Cold model study. Final report

    SciTech Connect

    Govind, R.

    1993-03-20

    It was found that there was a strong dependence of the density profile on the secondary air injection location and that there was a pronounced solid separation from the conveying gas, due to the swirl motion. Furthermore, the swirl motion generated strong internal circulation patterns and higher slip velocities than in the case of nonswirl motion as in an ordinary circulating fluidized bed. Radial solids flux profiles were measured at different axial locations. The general radial profile in a swirling circulating fluidized bed indicated an increased downward flow of solids near the bed walls, and strong variations in radial profiles along the axial height. For swirl numbers less than 0.9, which is typical for swirling circulating fluidized beds, there is no significant increase in erosion due to swirl motion inside the bed. Pending further investigation of swirl motion with combustion, at least from our cold model studies, no disadvantages due to the introduction of swirl motion were discovered.

  6. Slow and Steady: Ocean Circulation. The Influence of Sea Surface Height on Ocean Currents

    NASA Technical Reports Server (NTRS)

    Haekkinen, Sirpa

    2000-01-01

    The study of ocean circulation is vital to understanding how our climate works. The movement of the ocean is closely linked to the progression of atmospheric motion. Winds close to sea level add momentum to ocean surface currents. At the same time, heat that is stored and transported by the ocean warms the atmosphere above and alters air pressure distribution. Therefore, any attempt to model climate variation accurately must include reliable calculations of ocean circulation. Unlike movement of the atmosphere, movement of the ocean's waters takes place mostly near the surface. The major patterns of surface circulation form gigantic circular cells known as gyres. They are categorized according to their general location-equatorial, subtropical, subpolar, and polar-and may run across an entire ocean. The smaller-scale cell of ocean circulation is known' as an eddy. Eddies are much more common than gyres and much more difficult to track in computer simulations of ocean currents.

  7. Phases, line tension and pattern formation in molecularly thin films at the air-water interface

    NASA Astrophysics Data System (ADS)

    Mandal, Pritam

    A Langmuir film, which is a molecularly thin insoluble film on a liquid substrate, is one practical realization of a quasi-two dimensional matter. The major advantages of this system for the study of phase separation and phase co-existence are (a) it allows accurate control of the components and molecular area of the film and (b) it can be studied by various methods that require very flat films. Phase separation in molecularly thin films plays an important role in a range of systems from biomembranes to biosensors. For example, phase-separated lipid nano-domains in biomembranes are thought to play crucial roles in membrane function. I use Brewster Angel Microscopy (BAM) coupled with Fluorescence Microscopy (FM) and static Light Scattering Microscopy (LSM) to image phases and patterns within Langmuir films. The three microscopic techniques --- BAM, FM and LSM --- are complimentary to each other, providing distinct sets of information. They allow direct comparison with literature results in lipid systems. I have quantitatively validated the use of detailed hydrodynamic simulations to determine line tension in monolayers. Line tension decreases as temperature rises. This decrease gives us information on the entropy associated with the line, and thus about line structure. I carefully consider the thermodynamics of line energy and entropy to make this connection. In the longer run, LSM will be exploited to give us further information about line structure. I have also extended the technique by testing it on domains within the curved surface of a bilayer vesicle. I also note that in the same way that the presence of surface-active agents, known as surfactants, affects surface energy, the addiction of line active agents alters the inter-phase line energy. Thus my results set to stage to systematically study the influence of line active agents ---'linactants' --- on the inter-phase line energy. Hierarchal self-assembled chiral patterns were observed as a function of

  8. Spatial patterns of air pollutants and social groups: a distributive environmental justice study in the phoenix metropolitan region of USA.

    PubMed

    Pope, Ronald; Wu, Jianguo; Boone, Christopher

    2016-11-01

    Quantifying spatial distribution patterns of air pollutants is imperative to understand environmental justice issues. Here we present a landscape-based hierarchical approach in which air pollution variables are regressed against population demographics on multiple spatiotemporal scales. Using this approach, we investigated the potential problem of distributive environmental justice in the Phoenix metropolitan region, focusing on ambient ozone and particulate matter. Pollution surfaces (maps) are evaluated against the demographics of class, age, race (African American, Native American), and ethnicity (Hispanic). A hierarchical multiple regression method is used to detect distributive environmental justice relationships. Our results show that significant relationships exist between the dependent and independent variables, signifying possible environmental inequity. Although changing spatiotemporal scales only altered the overall direction of these relationships in a few instances, it did cause the relationship to become nonsignificant in many cases. Several consistent patterns emerged: people aged 17 and under were significant predictors for ambient ozone and particulate matter, but people 65 and older were only predictors for ambient particulate matter. African Americans were strong predictors for ambient particulate matter, while Native Americans were strong predictors for ambient ozone. Hispanics had a strong negative correlation with ambient ozone, but a less consistent positive relationship with ambient particulate matter. Given the legacy conditions endured by minority racial and ethnic groups, and the relative lack of mobility of all the groups, our findings suggest the existence of environmental inequities in the Phoenix metropolitan region. The methodology developed in this study is generalizable with other pollutants to provide a multi-scaled perspective of environmental justice issues.

  9. Non-equilibrium magnetic colloidal dispersions at liquid-air interfaces: dynamic patterns, magnetic order and self-assembled swimmers.

    SciTech Connect

    Snezhko, A.

    2011-04-20

    Colloidal dispersions of interacting particles subjected to an external periodic forcing often develop nontrivial self-assembled patterns and complex collective behavior. A fundamental issue is how collective ordering in such non-equilibrium systems arises from the dynamics of discrete interacting components. In addition, from a practical viewpoint, by working in regimes far from equilibrium new self-organized structures which are generally not available through equilibrium thermodynamics can be created. In this review spontaneous self-assembly phenomena in magnetic colloidal dispersions suspended at liquid-air interfaces and driven out of equilibrium by an alternating magnetic field are presented. Experiments reveal a new type of nontrivially ordered self-assembled structures emerging in such systems in a certain range of excitation parameters. These dynamic structures emerge as a result of the competition between magnetic and hydrodynamic forces and have complex unconventional magnetic ordering. Nontrivial self-induced hydrodynamic fields accompany each out-of-equilibrium pattern. Spontaneous symmetry breaking of the self-induced surface flows leading to a formation of self-propelled microstructures has been discovered. Some features of the self-localized structures can be understood in the framework of the amplitude equation (Ginzburg-Landau type equation) for parametric waves coupled to the conservation law equation describing the evolution of the magnetic particle density and the Navier-Stokes equation for hydrodynamic flows. To understand the fundamental microscopic mechanisms governing self-assembly processes in magnetic colloidal dispersions at liquid-air interfaces a first-principle model for a non-equilibrium self-assembly is presented. The latter model allows us to capture in detail the entire process of out-of-equilibrium self-assembly in the system and reproduces most of the observed phenomenology.

  10. Spatial patterns of air pollutants and social groups: a distributive environmental justice study in the phoenix metropolitan region of USA

    NASA Astrophysics Data System (ADS)

    Pope, Ronald; Wu, Jianguo; Boone, Christopher

    2016-11-01

    Quantifying spatial distribution patterns of air pollutants is imperative to understand environmental justice issues. Here we present a landscape-based hierarchical approach in which air pollution variables are regressed against population demographics on multiple spatiotemporal scales. Using this approach, we investigated the potential problem of distributive environmental justice in the Phoenix metropolitan region, focusing on ambient ozone and particulate matter. Pollution surfaces (maps) are evaluated against the demographics of class, age, race (African American, Native American), and ethnicity (Hispanic). A hierarchical multiple regression method is used to detect distributive environmental justice relationships. Our results show that significant relationships exist between the dependent and independent variables, signifying possible environmental inequity. Although changing spatiotemporal scales only altered the overall direction of these relationships in a few instances, it did cause the relationship to become nonsignificant in many cases. Several consistent patterns emerged: people aged 17 and under were significant predictors for ambient ozone and particulate matter, but people 65 and older were only predictors for ambient particulate matter. African Americans were strong predictors for ambient particulate matter, while Native Americans were strong predictors for ambient ozone. Hispanics had a strong negative correlation with ambient ozone, but a less consistent positive relationship with ambient particulate matter. Given the legacy conditions endured by minority racial and ethnic groups, and the relative lack of mobility of all the groups, our findings suggest the existence of environmental inequities in the Phoenix metropolitan region. The methodology developed in this study is generalizable with other pollutants to provide a multi-scaled perspective of environmental justice issues.

  11. Traffic flow pattern and meteorology at two distinct urban junctions with impacts on air quality

    NASA Astrophysics Data System (ADS)

    Gokhale, Sharad

    2011-04-01

    Traffic during operation at a junction undergoes different flow conditions and modal events which result into dynamic fleet characteristics generating more emissions and stronger vehicle-induced heat and wakes generating obscure dispersion. Traffic in a manner operated at junctions often creates pockets of higher concentrations the locations of which shift as a result of the combine effects of traffic dynamics and random airflow. This research examined the impacts of traffic dynamics and meteorology on the levels and locations of higher concentrations of pollutant CO, NO 2 and PM within the influence of signalized traffic intersection and a conventional two-lane roundabout in a response to varying flow conditions and emissions resulted from the traffic operations. Three line source dispersion models have been used to determine the impact on air quality. Emissions have been calculated for different scenarios developed from different combinations of semi-empirical and field based time and space-mean speeds and lane-width based density when traffic undergoes free, interrupted and congested-flow conditions during operation. It has been found that the locations of highest concentrations within the domain change as traffic with different modal share encounters different flow conditions at different times of a day.

  12. Slowdown of the Walker circulation driven by tropical Indo-Pacific warming.

    PubMed

    Tokinaga, Hiroki; Xie, Shang-Ping; Deser, Clara; Kosaka, Yu; Okumura, Yuko M

    2012-11-15

    Global mean sea surface temperature (SST) has risen steadily over the past century, but the overall pattern contains extensive and often uncertain spatial variations, with potentially important effects on regional precipitation. Observations suggest a slowdown of the zonal atmospheric overturning circulation above the tropical Pacific Ocean (the Walker circulation) over the twentieth century. Although this change has been attributed to a muted hydrological cycle forced by global warming, the effect of SST warming patterns has not been explored and quantified. Here we perform experiments using an atmospheric model, and find that SST warming patterns are the main cause of the weakened Walker circulation over the past six decades (1950-2009). The SST trend reconstructed from bucket-sampled SST and night-time marine surface air temperature features a reduced zonal gradient in the tropical Indo-Pacific Ocean, a change consistent with subsurface temperature observations. Model experiments with this trend pattern robustly simulate the observed changes, including the Walker circulation slowdown and the eastward shift of atmospheric convection from the Indonesian maritime continent to the central tropical Pacific. Our results cannot establish whether the observed changes are due to natural variability or anthropogenic global warming, but they do show that the observed slowdown in the Walker circulation is presumably driven by oceanic rather than atmospheric processes.

  13. Air-sea CO2 flux pattern along the southern Bay of Bengal waters

    NASA Astrophysics Data System (ADS)

    Shanthi, R.; Poornima, D.; Naveen, M.; Thangaradjou, T.; Choudhury, S. B.; Rao, K. H.; Dadhwal, V. K.

    2016-12-01

    Physico-chemical observations made from January 2013 to March 2015 in coastal waters of the southwest Bay of Bengal show pronounced seasonal variation in physico-chemical parameters including total alkalinity (TA: 1927.390-4088.642 μmol kg-1), chlorophyll (0.13-19.41 μg l-1) and also calculated dissolved inorganic carbon (DIC: 1574.219-3790.954 μmol kg-1), partial pressure of carbon dioxide (pCO2: 155.520-1488.607 μatm) and air-sea CO2 flux (FCO2: -4.808 to 11.255 mmol Cm-2 d-1). Most of the physical parameters are at their maximum during summer due to the increased solar radiation at cloud free conditions, less or no riverine inputs, and lack of vertical mixing of water column which leads to the lowest nutrients concentration, dissolved oxygen (DO), biological production, pCO2 and negative flux of CO2 to the atmosphere. Chlorophyll and DO concentrations enhanced due to increased nutrients during premonsoon and monsoon season due to the vertical mixing of water column driven by the strong winds and external inputs at respective seasons. The constant positive loading of nutrients, TA, DIC, chlorophyll, pCO2 and FCO2 against atmospheric temperature (AT), lux, sea surface temperature (SST), pH and salinity observed in principal component analysis (PCA) suggested that physical and biological parameters play vital role in the seasonal distribution of pCO2 along the southwest Bay of Bengal. The annual variability of CO2 flux clearly depicted that the southwest Bay of Bengal switch from sink (2013) to source status in the recent years (2014 and 2015) and it act as significant source of CO2 to the atmosphere with a mean flux of 0.204 ± 1.449 mmol Cm-2 d-1.

  14. DNA methylation map in circulating leukocytes mirrors subcutaneous adipose tissue methylation pattern: a genome-wide analysis from non-obese and obese patients

    PubMed Central

    Crujeiras, A. B.; Diaz-Lagares, A.; Sandoval, J.; Milagro, F. I.; Navas-Carretero, S.; Carreira, M. C.; Gomez, A.; Hervas, D.; Monteiro, M. P.; Casanueva, F. F.; Esteller, M.; Martinez, J. A.

    2017-01-01

    The characterization of the epigenetic changes within the obesity-related adipose tissue will provide new insights to understand this metabolic disorder, but adipose tissue is not easy to sample in population-based studies. We aimed to evaluate the capacity of circulating leukocytes to reflect the adipose tissue-specific DNA methylation status of obesity susceptibility. DNA samples isolated from subcutaneous adipose tissue and circulating leukocytes were hybridized in the Infinium HumanMethylation 450 BeadChip. Data were compared between samples from obese (n = 45) and non-obese (n = 8–10) patients by Wilcoxon-rank test, unadjusted for cell type distributions. A global hypomethylation of the differentially methylated CpG sites (DMCpGs) was observed in the obese subcutaneous adipose tissue and leukocytes. The overlap analysis yielded a number of genes mapped by the common DMCpGs that were identified to reflect the obesity state in the leukocytes. Specifically, the methylation levels of FGFRL1, NCAPH2, PNKD and SMAD3 exhibited excellent and statistically significant efficiencies in the discrimination of obesity from non-obesity status (AUC > 0.80; p < 0.05) and a great correlation between both tissues. Therefore, the current study provided new and valuable DNA methylation biomarkers of obesity-related adipose tissue pathogenesis through peripheral blood analysis, an easily accessible and minimally invasive biological material instead of adipose tissue. PMID:28211912

  15. Estimation of spatial patterns of urban air pollution over a 4-week period from repeated 5-min measurements

    NASA Astrophysics Data System (ADS)

    Gillespie, Jonathan; Masey, Nicola; Heal, Mathew R.; Hamilton, Scott; Beverland, Iain J.

    2017-02-01

    Determination of intra-urban spatial variations in air pollutant concentrations for exposure assessment requires substantial time and monitoring equipment. The objective of this study was to establish if short-duration measurements of air pollutants can be used to estimate longer-term pollutant concentrations. We compared 5-min measurements of black carbon (BC) and particle number (PN) concentrations made once per week on 5 occasions, with 4 consecutive 1-week average nitrogen dioxide (NO2) concentrations at 18 locations at a range of distances from busy roads in Glasgow, UK. 5-min BC and PN measurements (averaged over the two 5-min periods at the start and end of a week) explained 40-80%, and 7-64% respectively, of spatial variation in the intervening 1-week NO2 concentrations for individual weeks. Adjustment for variations in background concentrations increased the percentage of explained variation in the bivariate relationship between the full set of NO2 and BC measurements over the 4-week period from 28% to 50% prior to averaging of repeat measurements. The averages of five 5-min BC and PN measurements made over 5 weeks explained 75% and 33% respectively of the variation in average 1-week NO2 concentrations over the same period. The relatively high explained variation observed between BC and NO2 measured on different time scales suggests that, with appropriate steps to correct or average out temporal variations, repeated short-term measurements can be used to provide useful information on longer-term spatial patterns for these traffic-related pollutants.

  16. NEIGHBORHOOD SCALE AIR QUALITY MODELING IN HOUSTON USING URBAN CANOPY PARAMETERS IN MM5 AND CMAQ WITH IMPROVED CHARACTERIZATION OF MESOSCALE LAKE-LAND BREEZE CIRCULATION

    EPA Science Inventory

    Advanced capability of air quality simulation models towards accurate performance at finer scales will be needed for such models to serve as tools for performing exposure and risk assessments in urban areas. It is recognized that the impact of urban features such as street and t...

  17. Tropical cyclone activity in a warmer climate as simulated by a high-resolution coupled general circulation model: changes in frequency and air-sea interaction.

    NASA Astrophysics Data System (ADS)

    Scoccimarro, Enrico; Gualdi, Silvio; Navarra, Antonio

    2010-05-01

    This study investigates the possible changes that the greenhouse global warming might generate in the characteristics of the tropical cyclones (TCs). The analysis has been performed using climate scenario simulations carried out with a fully coupled high-resolution global general circulation model (INGV-SXG) with a T106 atmospheric resolution. The capability of the model to reproduce a reasonably realistic TC climatology has been assessed by comparing the model results from a simulation of the XX Century with observations. The model appears to be able to simulate tropical cyclone-like vortices with many features similar to the observed TCs. The simulated TC activity exhibits realistic geographical distribution, seasonal modulation and interannual variability, suggesting that the model is able to reproduce the major basic mechanisms that link the TC occurrence with the large scale circulation. The results from the climate scenarios reveal a substantial general reduction of the TC frequency when the atmospheric CO2 concentration is doubled and quadrupled. The reduction appears particularly evident for the tropical north west Pacific (NWP) and north Atlantic (ATL). In the NWP the weaker TC activity seems to be associated with a reduced amount of convective instabilities. In the ATL region the weaker TC activity seems to be due to both the increased stability of the atmosphere and a stronger vertical wind shear. Despite the generally reduced TC activity, there is evidence of increased rainfall associated with the simulated cyclones. Using the new fully coupled CMCC model (CMCC_MED), with a T159 atmospheric resolution, we found a significant modulation of the Ocean Heat Transport (OHT) induced by the TC activity. Thus the possible changes that greenhouse induced global warming during 21st century might generate in the characteristics of the TC-induced OHT have been analyzed.

  18. The fetal circulation.

    PubMed

    Kiserud, Torvid; Acharya, Ganesh

    2004-12-30

    Accumulating data on the human fetal circulation shows the similarity to the experimental animal physiology, but with important differences. The human fetus seems to circulate less blood through the placenta, shunt less through the ductus venosus and foramen ovale, but direct more blood through the lungs than the fetal sheep. However, there are substantial individual variations and the pattern changes with gestational age. The normalised umbilical blood flow decreases with gestational age, and, at 28 to 32 weeks, a new level of development seems to be reached. At this stage, the shunting through the ductus venosus and the foramen ovale reaches a minimum, and the flow through the lungs a maximum. The ductus venosus and foramen ovale are functionally closely related and represent an important distributional unit for the venous return. The left portal branch represents a venous watershed, and, similarly, the isthmus aorta an arterial watershed. Thus, the fetal central circulation is a very flexible and adaptive circulatory system. The responses to increased afterload, hypoxaemia and acidaemia in the human fetus are equivalent to those found in animal studies: increased ductus venosus and foramen ovale shunting, increased impedance in the lungs, reduced impedance in the brain, increasingly reversed flow in the aortic isthmus and a more prominent coronary blood flow.

  19. A continued fraction representation for Theodorsen's circulation function

    NASA Technical Reports Server (NTRS)

    Desmarais, R. N.

    1980-01-01

    Theodorsen's circulation function relates lift to downwash in unsteady two dimensional incompressible flow. A continued fraction representation for the circulation function is described. The continued fraction converges and has a particularly simple coefficient pattern.

  20. Aircraft study of the impact of lake-breeze circulations on trace gases and particles during BAQS-Met 2007

    NASA Astrophysics Data System (ADS)

    Hayden, K. L.; Sills, D. M. L.; Brook, J. R.; Li, S.-M.; Makar, P. A.; Markovic, M. Z.; Liu, P.; Anlauf, K. G.; O'Brien, J. M.; Li, Q.; McLaren, R.

    2011-10-01

    High time-resolved aircraft data, concurrent surface measurements and air quality model simulations were explored to diagnose the processes influencing aerosol chemistry under the influence of lake-breeze circulations in a polluted region of southwestern Ontario, Canada. The analysis was based upon horizontal aircraft transects conducted at multiple altitudes across an entire lake-breeze circulation. Air mass boundaries due to lake-breeze fronts were identified in the aircraft meteorological and chemical data, which were consistent with the frontal locations determined from surface analyses. Observations and modelling support the interpretation of a lake-breeze circulation where pollutants were lofted at a lake-breeze front, transported in the synoptic flow, caught in a downdraft over the lake, and then confined by onshore flow. The detailed analysis led to the development of conceptual models that summarize the complex 3-D circulation patterns and their interaction with the synoptic flow. The identified air mass boundaries, the interpretation of the lake-breeze circulation, and the air parcel circulation time in the lake-breeze circulation (3.0 to 5.0 h) enabled formation rates of organic aerosol (OA/ΔCO) and SO42- to be determined. The formation rate for OA (relative to excess CO in ppmv) was found to be 11.6-19.4 μg m-3 ppmv-1 h-1 and the SO42- formation rate was 5.0-8.8% h-1. The formation rates are enhanced relative to regional background rates implying that lake-breeze circulations are an important dynamic in the formation of SO42- and secondary organic aerosol. The presence of cumulus clouds associated with the lake-breeze fronts suggests that these enhancements could be due to cloud processes. Additionally, the effective confinement of pollutants along the shoreline may have limited pollutant dilution leading to elevated oxidant concentrations.

  1. Aircraft study of the impact of lake-breeze circulations on trace gases and particles during BAQS-Met 2007

    NASA Astrophysics Data System (ADS)

    Hayden, K. L.; Sills, D. M. L.; Brook, J. R.; Li, S.-M.; Makar, P. A.; Markovic, M. Z.; Liu, P.; Anlauf, K. G.; O'Brien, J. M.; Li, Q.; McLaren, R.

    2011-04-01

    High time-resolved aircraft data, concurrent surface measurements and air quality model simulations were explored to diagnose the processes influencing aerosol chemistry under the influence of lake-breeze circulations in a polluted region of southwestern Ontario, Canada. The analysis was based upon horizontal aircraft transects at multiple altitudes across an entire lake-breeze circulation. Air mass boundaries due to lake-breeze fronts were identified in the aircraft meteorological and chemical data, which were consistent with the frontal locations determined from surface analyses. Observations and modelling support the interpretation of a lake-breeze circulation where pollutants were lofted at a lake-breeze front, transported in the synoptic flow, caught in a downdraft over the lake, and then confined by onshore flow. The detailed analysis led to the development of conceptual models that summarize the complex 3-D circulation patterns and their interaction with the synoptic flow. The identified air mass boundaries, the interpretation of the lake-breeze circulation, and best estimates for air parcel circulation times in the lake-breeze circulation (1.2 to 3.0 h) enabled formation rates of oxygenated organic aerosol (OOA/ΔCO) and SO42- to be determined. The formation rate for OOA, relative to excess CO, was found to be 2.5-6.2 μg m-3 ppmv-1 h-1 and the SO42- formation rate was 1.8-4.6% h-1. The formation rates are enhanced relative to regional background rates implying that lake-breeze circulations are an important dynamic in the formation of SO42- and secondary organic aerosol. The presence of cumulus clouds associated with the lake-breeze fronts suggests that these enhancements could be due to cloud processes. Additionally, the effective confinement of pollutants along the shoreline may have limited pollutant dilution leading to elevated oxidant concentrations.

  2. Air-sea interactions and oceanic processes in the development of different Atlantic Niño patterns

    NASA Astrophysics Data System (ADS)

    Martin-Rey, Marta; Polo, Irene; Rodríguez-Fonseca, Belén; Lazar, Alban

    2016-04-01

    Atlantic Niño is the leading mode of inter-annual variability of the tropical Atlantic basin at inter-annual time scales. A recent study has put forward that two different Atlantic Niño patterns co-exist in the tropical Atlantic basin during negative phases of the Atlantic Multidecadal Oscillation. The leading mode, Basin-Wide (BW) Atlantic Niño is characterized by an anomalous warming extended along the whole tropical basin. The second mode, the Dipolar (D) Atlantic Niño presents positive Sea Surface Temperature (SST) anomalies in the central-eastern equatorial band, surrounded by negative ones in the North and South tropical Atlantic. The BW Atlantic Niño is associated with a weakening of both Azores and Sta Helena High, which reduces the tropical trades during previous autumn-winter. On the other hand, the D-Atlantic Niño is related to a strengthening of the Azores and a weakening of Helena High given rise to a meridional Sea Level Pressure (SLP) gradient that originates an intensification of the subtropical trades and anomalous westerlies along the equatorial band. This different wind forcing suggests that different oceanic processes could act in the development of the BW and D Atlantic Niño patterns. For this reason, an inter-annual simulation with the ocean NEMO model has been performed and the heat budget analysis has been analysed for each Atlantic Niño mode. The results suggest that the two Atlantic Nino configurations have different timing. The heat budget analysis reveals that BW Atlantic Nino SST pattern is due to anomalous air-sea heat fluxes in the south tropical and western equatorial Atlantic during the autumn-winter, while vertical processes are responsible of the warming in the central and eastern part of the basin during late-winter and spring. For the D-Atlantic Nino, the subtropical cooling is attributed to turbulent heat fluxes, the equatorial SST signal is mainly forced by vertical entrainment. The role of the oceanic waves in the

  3. Gene expression patterns through oral squamous cell carcinoma development: PD-L1 expression in primary tumor and circulating tumor cells

    PubMed Central

    Oliveira-Costa, Joao Paulo; de Carvalho, Alex Fiorini; da Silveira, Giorgia Gobbi; Amaya, Peter; Wu, Yongqi; Park, Kyoung-Joo Jenny; Gigliola, Mabel Pinilla; Lustberg, Maryam; Buim, Marcilei Eliza Cavicchioli; Ferreira, Elisa Napolitano; Kowalski, Luiz Paulo; Chalmers, Jeffrey J.; Soares, Fernando Augusto; Carraro, Dirce Maria; Ribeiro-Silva, Alfredo

    2015-01-01

    Oral squamous cell carcinoma (OSCC) is the most common tumor of the oral cavity and has been associated with poor prognosis. Scarce prognostic markers are available for guiding treatment and/or sub-classifying patients. This study aims to identify biomarkers by searching for genes whose expression is increased or decreased during tumor progression (through T1 to T4 stages). Thirty-six samples from all tumor size stages (from T1 to T4) were analyzed using cDNA microarrays. Selected targets were analyzed by immunohistochemistry and in circulating tumor cells by immunofluorescence and Nanostring. Correlation was shown between PD-L1 and tumor size and lymph node metastasis, HOXB9 and tumor size, BLNK and perineural invasion, and between ZNF813 and perineural invasion. PD-L1 positivity was an independent prognostic factor in this cohort (p = 0.044, HH = 0.426). In CTCs from patients with locally advanced OSCC, we found a strong cytoplasmatic expression of PD-L1. PD-L1 is a ligand of PD-1 and is believed to limit T cell activity in inflammatory responses and limit autoimmune diseases. We demonstrated an important role for PD-L1 in primary tumors according to tumor size, and in disease specific survival. Therefore, we could further determine individuals with PD-L1+ CTCs, and possibly follow treatment using CTCs. PMID:26041877

  4. Gene expression patterns through oral squamous cell carcinoma development: PD-L1 expression in primary tumor and circulating tumor cells.

    PubMed

    Oliveira-Costa, Joao Paulo; de Carvalho, Alex Fiorini; da Silveira, da Giorgia Gobbi; Amaya, Peter; Wu, Yongqi; Park, Kyoung-Joo Jenny; Gigliola, Mabel Pinilla; Lustberg, Maryam; Buim, Marcilei Eliza Cavicchioli; Ferreira, Elisa Napolitano; Kowalski, Luiz Paulo; Chalmers, Jeffrey J; Soares, Fernando Augusto; Carraro, Dirce Maria; Ribeiro-Silva, Alfredo

    2015-08-28

    Oral squamous cell carcinoma (OSCC) is the most common tumor of the oral cavity and has been associated with poor prognosis. Scarce prognostic markers are available for guiding treatment and/or sub-classifying patients. This study aims to identify biomarkers by searching for genes whose expression is increased or decreased during tumor progression (through T1 to T4 stages). Thirty-six samples from all tumor size stages (from T1 to T4) were analyzed using cDNA microarrays. Selected targets were analyzed by immunohistochemistry and in circulating tumor cells by immunofluorescence and Nanostring. Correlation was shown between PD-L1 and tumor size and lymph node metastasis, HOXB9 and tumor size, BLNK and perineural invasion, and between ZNF813 and perineural invasion. PD-L1 positivity was an independent prognostic factor in this cohort (p = 0.044, HH = 0.426). In CTCs from patients with locally advanced OSCC, we found a strong cytoplasmatic expression of PD-L1. PD-L1 is a ligand of PD-1 and is believed to limit T cell activity in inflammatory responses and limit autoimmune diseases. We demonstrated an important role for PD-L1 in primary tumors according to tumor size, and in disease specific survival. Therefore, we could further determine individuals with PD-L1+ CTCs, and possibly follow treatment using CTCs.

  5. Patterns of polymorphism and divergence in the VP1 gene of enterovirus 71 circulating in the Asia-Pacific region between 1994 and 2013.

    PubMed

    Wu, Jun-Song; Zhao, Na; Pan, Hao; Wang, Cheng-Min; Wu, Bin; Zhang, Hong-Mei; He, Hong-Xuan; Liu, Dan; Amer, Said; Liu, She-Lan

    2013-11-01

    Enterovirus 71 has been implicated in several outbreaks of hand, foot and mouth disease in the Asia-Pacific region. The present study aimed to achieve comprehensive evolutionary dynamic aspects of EV71 during 1994-2013, based on phylogenetic analyses of the VP1 sequences. The results indicated that 4 genotypes, namely C4, C1, C2 and B4 are the predominant strains, especially in Southeast Asian countries. No common ancestor was shared in different countries. Fourteen sites of substitutions were detected in the VP1 gene sequences; including the most common sites related to neutralization at position V249I [47.1% (189/401)] and A289T [42.6% (171/401)]. However, the sites Q22H and Q22R associated with increased virulence were recognized only in 13.7% (55/401) and 18% (72/401), respectively. None of the above mutations seemed to become fixed because the ratio of Ka/Ks was greater than 1.0. Mutations K43E, A58T, S184T, and T240S could possibly change the spatial structure. Two mutations, G145E and T240S, could obviously affect the hydrophobicity of VP1 and thus alter the EV71 immunoreactivity. In conclusion, the VP1 gene of EV71 strains circulating in the Asia-Pacific region during 1994-2013, showed polymorphisms and divergence with very slow evolution rate, which may be one of the reasons for periodic outbreaks in this area.

  6. Pneumatic system structure for circulation control aircraft

    NASA Technical Reports Server (NTRS)

    Krauss, Timothy A. (Inventor); Roman, Stephan (Inventor); Beurer, Robert J. (Inventor)

    1986-01-01

    A plenum for a circulation control rotor aircraft which surrounds the rotor drive shaft (18) and is so constructed that the top (32), outer (38) and bottom (36) walls through compressed air is admitted are fixed to aircraft structure and the inner wall (34) through which air passes to rotor blades (14) rotates with the drive shaft and rotor blades.

  7. Flow pattern, void fraction and pressure drop of two-phase air-water flow in a horizontal circular micro-channel

    SciTech Connect

    Saisorn, Sira; Wongwises, Somchai

    2008-01-15

    Adiabatic two-phase air-water flow characteristics, including the two-phase flow pattern as well as the void fraction and two-phase frictional pressure drop, in a circular micro-channel are experimentally studied. A fused silica channel, 320 mm long, with an inside diameter of 0.53 mm is used as the test section. The test runs are done at superficial velocity of gas and liquid ranging between 0.37-16 and 0.005-3.04 m/s, respectively. The flow pattern map is developed from the observed flow patterns i.e. slug flow, throat-annular flow, churn flow and annular-rivulet flow. The flow pattern map is compared with those of other researchers obtained from different working fluids. The present single-phase experiments also show that there are no significant differences in the data from the use of air or nitrogen gas, and water or de-ionized water. The void fraction data obtained by image analysis tends to correspond with the homogeneous flow model. The two-phase pressure drops are also used to calculate the frictional multiplier. The multiplier data show a dependence on flow pattern as well as mass flux. A new correlation of two-phase frictional multiplier is also proposed for practical application. (author)

  8. Assessing the radiative impacts of precipitating clouds on winter surface air temperatures and land surface properties in general circulation models using observations

    NASA Astrophysics Data System (ADS)

    Li, J.-L. F.; Lee, Wei-Liang; Wang, Yi-Hui; Richardson, Mark; Yu, Jia-Yuh; Suhas, E.; Fetzer, Eric; Lo, Min-Hui; Yue, Qing

    2016-10-01

    Using CloudSat-CALIPSO ice water, cloud fraction, and radiation; Clouds and the Earth's Radiant Energy System (CERES) radiation; and long-term station-measured surface air temperature (SAT), we identified a substantial underestimation of the total ice water path, total cloud fraction, land surface radiative flux, land surface temperature (LST), and SAT during Northern Hemisphere winter in Coupled Model Intercomparison Project Phase 5 (CMIP5) models. We perform sensitivity experiments with the National Center for Atmospheric Research (NCAR) Community Earth System Model version 1 (CESM1) in fully coupled modes to identify processes driving these biases. We found that biases in land surface properties are associated with the exclusion of downwelling longwave heating from precipitating ice during Northern Hemisphere winter. The land surface temperature biases introduced by the exclusion of precipitating ice radiative effects in CESM1 and CMIP5 both spatially correlate with winter biases over Eurasia and North America. The underestimated precipitating ice radiative effect leads to colder LST, associated surface energy-budget adjustments, and cooler SAT. This bias also shifts regional soil moisture state from liquid to frozen, increases snow cover, and depresses evapotranspiration (ET) and total leaf area index in Northern Hemisphere winter. The inclusion of the precipitating ice radiative effects largely reduces the model biases of surface radiative fluxes (more than 15 W m-2), SAT (up to 2-4 K), and snow cover and ET (25-30%), compared with those without snow-radiative effects.

  9. Control of a Circulating Fluidized Bed

    SciTech Connect

    Shim, Hoowang; Rickards, Gretchen; Famouri, Parviz; Turton, Richard; Sams, W. Neal; Koduro, Praveen; Patankar, Amol; Davari, Assad; Lawson, Larry; Boyle, Edward J.

    2001-11-06

    Two methods for optimally controlling the operation of a circulating fluidized bed are being investigated, neural network control and Kalman filter control. The neural network controls the solids circulation rate by adjusting the flow of move air in the non-mechanical valve. Presented is the method of training the neural network from data generated by the circulating fluidized bed (CFB), the results of a sensitivity study indicating that adjusting the move air can control solids flow, and the results of controlling solids circulation rate. The Kalman filter approach uses a dynamic model and a measurement model of the standpipe section of the CFB. Presented are results showing that a Kalman filter can successfully find the standpipe bed height.

  10. Exploring EKC, trends of growth patterns and air pollutants concentration level in Malaysia: A Nemerow Index Approach

    NASA Astrophysics Data System (ADS)

    Bekhet, Hussain A.; >Tahira Yasmin,

    2013-06-01

    The present study examines an Environmental Kuznets Curve (EKC) hypothesis by analyzing annual data of air pollutants concentartion and per capita GDP as economic indicator over the (1996-2010) period in Malaysia. Nemerow Index Approach (I) used to generate a measures of air pollution. The results show that ambient air quality indicators supports the EKC hypothesis which stated that pollution levels increase as a country develops, but begin to decrease as rising incomes pass beyond a turning poin. Also, the I result is justifying that most pollutants are showing value less than 1.

  11. Air conditioned suit

    NASA Technical Reports Server (NTRS)

    Carl, G. R. (Inventor)

    1973-01-01

    An environmentally controlled suit is described consisting of an airtight outergarment attached by an airtight bellows to the wall of a sterile chamber, an undergarment providing for circulation of air near the skin of the wearer, and a circulation system comprised of air supply and distribution to the extremities of the undegarment and central collection and exhaust of air from the midsection of the undergarment. A workman wearing the undergarment and attached circulation system enters the outer garment through a tunnel in the chamber wall and the attached bellows to work in the chamber without any danger of spreading bacteria.

  12. Interdecadal variations of the thermohaline circulation in a coupled ocean-atmosphere model

    SciTech Connect

    Delworth, T.; Manabe, S.; Stouffer, R.J. )

    1993-11-01

    A fully coupled ocean-atmosphere model is shown to have irregular oscillations of the thermohaline circulation in the NOrth Atlantic Ocean with a time scale of approximately 50 years. The irregular oscillation appears to be driven by density anomalies in the sinking region of the thermohaline circulation (approximately 52[degrees]N to 72[degrees]N) combined with much smaller density anomalies of opposite sign in the broad, rising region. The spatial pattern of sea surface temperature anomalies associated with this irregular oscillation bears an encouraging resemblance to a pattern of observed interdecadal variability in the North Atlantic. The anomalies of sea surface temperature induce model surface air temperature anomalies over the northern North Atlantic, Arctic, and northwestern Europe. 21 refs., 28 figs.

  13. Impact of Stratospheric Ozone Distribution on Features of Tropospheric Circulation

    NASA Astrophysics Data System (ADS)

    Barodka, Siarhei; Krasouski, Aliaksandr; Mitskevich, Yaroslav; Shalamyansky, Arkady

    2016-04-01

    In this work we study connections between stratospheric ozone distribution and general circulation patterns in the troposphere and aim to investigate the causal relationship between them, including the practical side of the influence of stratospheric ozone on tropospheric medium-range weather and regional climate. Analysis of several decades of observational data, which has been performed at the A.I. Voeikov Main Geophysical Observatory, suggests a clear relation between the stratospheric ozone distribution, upper stratospheric temperature field and planetary-scale air-masses boundaries in the troposphere [1]. Furthermore, it has been shown that each global air-mass, which can be attributed to the corresponding circulation cell in a conceptual model of tropospheric general circulation, has a distinct "regime" of ozone vertical distribution in the stratosphere [1-3]. Proceeding from atmospheric reanalyses combined with satellite and ground-based observations, we study time evolution of the upper-level frontal zones (stationary fronts) with the relevant jet streams, which can be treated as boundaries of global air-masses, in connection with the tropopause height and distribution of ozone in the stratosphere. For that, we develop an algorithm for automated identification of jet streams, stationary fronts and tropopause surface from gridded data (reanalyses or modelling results), and apply it for several cases associated with rapid changes in the stratospheric temperature and ozone fields, including SSW events over Eastern Siberia. Aiming to study the causal relationship between the features of tropospheric circulation and changes in the stratospheric ozone field, we estimate the time lag between these categories of processes on different time scales. Finally, we discuss the possibility to use the elementary circulation mechanisms classification (by B.L. Dzerdzeevski) in connection with analysis of the stratospheric ozone field and the relevant stratosphere

  14. Tracers of Past Ocean Circulation

    NASA Astrophysics Data System (ADS)

    Lynch-Stieglitz, J.

    2003-12-01

    Information about how the ocean circulated during the past is useful in understanding changes in ocean and atmospheric chemistry, changes in the fluxes of heat and freshwater between the ocean and atmosphere, and changes in global wind patterns. The circulation of surface waters in the ocean leaves an imprint on sea surface temperature, and is also inextricably linked to the patterns of oceanic productivity. Much valuable information about past ocean circulation has been inferred from reconstructions of surface ocean temperature and productivity, which are covered in separate chapters. Here the focus is on the geochemical tracers that are used to infer the flow patterns and mixing of subsurface water masses.Several decades ago it was realized that chemistry of the shells of benthic foraminifera (carbon isotope and Cd/Ca ratios) carried an imprint of the nutrient content of deep-water masses (Shackleton, 1977; Broecker, 1982; Boyle, 1981). This led rapidly to the recognition that the water masses in the Atlantic Ocean were arrayed differently during the last glacial maximum than they are today, and the hypothesis that the glacial arrangement reflected a diminished contribution of low-nutrient North Atlantic deep water (NADW) ( Curry and Lohmann, 1982; Boyle and Keigwin, 1982). More detailed spatial reconstructions indicated a shallow nutrient-depleted water mass overlying a more nutrient-rich water mass in the glacial Atlantic. These findings spurred advances not only in geochemistry but in oceanography and climatology, as workers in these fields attempted to simulate the inferred glacial circulation patterns and assess the vulnerability of the modern ocean circulation to changes such as observed for the last ice age.While the nutrient distributions in the glacial Atlantic Ocean were consistent with a diminished flow of NADW, they also could have reflected an increase in inflow from the South Atlantic and/or a shallower yet undiminished deep-water mass. Clearly

  15. Upper Circulation Patterns in the Ulleung Basin

    DTIC Science & Technology

    2005-07-27

    EKWC meander. The Ulleung theory predicts 100km (Matsuyama et al., 1990), Warm Eddy generally occupies an area about fractal dimension analysis gives...of Atmospheric garu Warm Current system with its possible cause. La Mer and Oceanic Technology, 21, 1895-1909. 20, 41-51. Miyao, T., 1994. The fractal

  16. Circulation exchange patterns in Sinclair Inlet, Washington

    USGS Publications Warehouse

    Noble, Marlene A.; Rosenberger, Kurt J.; Paulson, Anthony J.; Gartner, Anne L.

    2013-01-01

    In 1994, the U.S. Geological Survey (USGS), in cooperation with the U.S. Navy, deployed three sets of moorings in Sinclair Inlet, which is a relatively small embayment on the western side of Puget Sound (fig. 1). This inlet is home to the Puget Sound Naval Shipyard. One purpose of the measurement program was to determine the transport pathways and fate of contaminants known to be present in Sinclair Inlet. Extensive descriptions of the program and the resultant information about contaminant pathways have been reported in Gartner and others (1998). This report primarily focused on the bottom boundary layer and the potential for resuspension and transport of sediments on the seabed in Sinclair Inlet as a result of tides and waves. Recently (2013), interest in transport pathways for suspended and dissolved materials in Sinclair Inlet has been rekindled. In particular, the USGS scientists in Washington and California have been asked to reexamine the datasets collected in the earlier study to refine not only our understanding of transport pathways through the inlet, but to determine how those transport pathways are affected by subtidal currents, local wind stress, and fresh water inputs. Because the prior study focused on the bottom boundary layer and not the water column, a reanalysis of the datasets could increase our understanding of the dynamic forces that drive transport within and through the inlet. However, the early datasets are limited in scope and a comprehensive understanding of these transport processes may require more extensive datasets or the development of a detailed numerical model of transport processes for the inlet, or both.

  17. Atmospheric Circulation of Exoplanets

    NASA Astrophysics Data System (ADS)

    Showman, A. P.; Cho, J. Y.-K.; Menou, K.

    2010-12-01

    We survey the basic principles of atmospheric dynamics relevant to explaining existing and future observations of exoplanets, both gas giant and terrestrial. Given the paucity of data on exoplanet atmospheres, our approach is to emphasize fundamental principles and insights gained from solar system studies that are likely to be generalizable to exoplanets. We begin by presenting the hierarchy of basic equations used in atmospheric dynamics, including the Navier-Stokes, primitive, shallow-water, and two-dimensional nondivergent models. We then survey key concepts in atmospheric dynamics, including the importance of planetary rotation, the concept of balance, and simple scaling arguments to show how turbulent interactions generally produce large-scale east-west banding on rotating planets. We next turn to issues specific to giant planets, including their expected interior and atmospheric thermal structures, the implications for their wind patterns, and mechanisms to pump their east-west jets. Hot Jupiter atmospheric dynamics are given particular attention, as these close-in planets have been the subject of most of the concrete developments in the study of exoplanetary atmospheres. We then turn to the basic elements of circulation on terrestrial planets as inferred from solar system studies, including Hadley cells, jet streams, processes that govern the large-scale horizontal temperature contrasts, and climate, and we discuss how these insights may apply to terrestrial exoplanets. Although exoplanets surely possess a greater diversity of circulation regimes than seen on the planets in our solar system, our guiding philosophy is that the multidecade study of solar system planets reviewed here provides a foundation upon which our understanding of more exotic exoplanetary meteorology must build.

  18. Evaluating the effect of human activity patterns on air pollution exposure using an integrated field-based and agent-based modelling framework

    NASA Astrophysics Data System (ADS)

    Schmitz, Oliver; Beelen, Rob M. J.; de Bakker, Merijn P.; Karssenberg, Derek

    2015-04-01

    Constructing spatio-temporal numerical models to support risk assessment, such as assessing the exposure of humans to air pollution, often requires the integration of field-based and agent-based modelling approaches. Continuous environmental variables such as air pollution are best represented using the field-based approach which considers phenomena as continuous fields having attribute values at all locations. When calculating human exposure to such pollutants it is, however, preferable to consider the population as a set of individuals each with a particular activity pattern. This would allow to account for the spatio-temporal variation in a pollutant along the space-time paths travelled by individuals, determined, for example, by home and work locations, road network, and travel times. Modelling this activity pattern requires an agent-based or individual based modelling approach. In general, field- and agent-based models are constructed with the help of separate software tools, while both approaches should play together in an interacting way and preferably should be combined into one modelling framework, which would allow for efficient and effective implementation of models by domain specialists. To overcome this lack in integrated modelling frameworks, we aim at the development of concepts and software for an integrated field-based and agent-based modelling framework. Concepts merging field- and agent-based modelling were implemented by extending PCRaster (http://www.pcraster.eu), a field-based modelling library implemented in C++, with components for 1) representation of discrete, mobile, agents, 2) spatial networks and algorithms by integrating the NetworkX library (http://networkx.github.io), allowing therefore to calculate e.g. shortest routes or total transport costs between locations, and 3) functions for field-network interactions, allowing to assign field-based attribute values to networks (i.e. as edge weights), such as aggregated or averaged

  19. MODELING ASSESSMENT OF TRANSPORT AND DEPOSITION PATTERNS OF MERCURY AIR EMISSIONS FROM THE U.S. AND CANADA

    EPA Science Inventory

    In December 1997, the U.S. EPA submitted the Mercury Study Report to Congress which included a regional-scale modeling assessment of the transport and deposition of U.S. air emissions of mercury. This modeling was performed with a modified version of the Regional Lagrangian Mode...

  20. Sensitivity of the sea circulation to the atmospheric forcing in the Sicily Channel

    NASA Astrophysics Data System (ADS)

    Omrani, Hiba; Arsouze, Thomas; Béranger, Karine; Boukthir, Moncef; Drobinski, Philippe; Lebeaupin-Brossier, Cindy; Mairech, Hanen

    2016-01-01

    We investigate the sensitivity of the sea surface circulation in the Sicily Channel to surface winds, using a 15-year long (1994-2008) air-sea coupled numerical simulation. Analysis is based on the clustering of six main wind regimes over the Sicily Channel domain. The analysis of the corresponding sea current clusters shows that sea circulation in this area is sensitive to surface wind patterns. This wind modulates the strength of the two main branches of the sea circulation in the Sicily Channel (i.e. the Atlantic Tunisian Current and the Atlantic Ionian Stream). The modulation of these two currents depends on the wind regime, and displays a strong seasonal variability. It is also shown that the sea circulation in the Sicily Channel is strongly controlled by the thermohaline circulation and the bathymetry (geostrophic current). However, the contribution to the total current of its ageostrophic component forced by the surface winds is significant, with a correlation coefficient varying from 0.3 to 0.7.

  1. Estuarine turbidity, flushing, salinity, and circulation

    NASA Technical Reports Server (NTRS)

    Pritchard, D. W.

    1972-01-01

    The effects of estuarine turbidity, flushing, salinity, and circulation on the ecology of the Chesapeake Bay are discussed. The sources of fresh water, the variations in salinity, and the circulation patterns created by temperature and salinity changes are analyzed. The application of remote sensors for long term observation of water temperatures is described. The sources of sediment and the biological effects resulting from increased sediments and siltation are identified.

  2. Circulating glioma biomarkers

    PubMed Central

    Kros, Johan M.; Mustafa, Dana M.; Dekker, Lennard J.M.; Sillevis Smitt, Peter A.E.; Luider, Theo M.; Zheng, Ping-Pin

    2015-01-01

    Validated biomarkers for patients suffering from gliomas are urgently needed for standardizing measurements of the effects of treatment in daily clinical practice and trials. Circulating body fluids offer easily accessible sources for such markers. This review highlights various categories of tumor-associated circulating biomarkers identified in blood and cerebrospinal fluid of glioma patients, including circulating tumor cells, exosomes, nucleic acids, proteins, and oncometabolites. The validation and potential clinical utility of these biomarkers is briefly discussed. Although many candidate circulating protein biomarkers were reported, none of these have reached the required validation to be introduced for clinical practice. Recent developments in tracing circulating tumor cells and their derivatives as exosomes and circulating nuclear acids may become more successful in providing useful biomarkers. It is to be expected that current technical developments will contribute to the finding and validation of circulating biomarkers. PMID:25253418

  3. Electro-hydrodynamic force field and flow patterns generated by a DC corona discharge in the air

    NASA Astrophysics Data System (ADS)

    Monrolin, Nicolas; Plouraboue, Franck; Praud, Olivier

    2016-11-01

    Ionic wind refers to the electro-convection of ionised air between high voltage electrodes. Microscopic ion-neutral collisions are responsible for momentum transfer from accelerated ions, subjected to the electric field, to the neutral gas molecules resulting in a macroscopic airflow acceleration. In the past decades it has been investigated for various purposes from food drying through aerodynamic flow control and eventually laptop cooling. One consequence of air acceleration between the electrodes is thrust generation, often referred to as the Biefeld-Brown effect or electro-hydrodynamic thrust. In this experimental study, the ionic wind velocity field is measured with the PIV method. From computing the acceleration of the air we work out the electrostatic force field for various electrodes configurations. This enables an original direct evaluation of the force distribution as well as the influence of electrodes shape and position. Thrust computation based on the flow acceleration are compared with digital scale measurements. Complex flow features are highlighted such as vortex shedding, indicating that aerodynamic effects may play a significant role. Furthermore, the aerodynamic drag force exerted on the electrodes is quantified by choosing an appropriate control volume. Authors thank Region Midi-Pyrenee and CNES Launcher Directorate for financial support.

  4. Diagnosis of abnormal patterns in multivariate microclimate monitoring: a case study of an open-air archaeological site in Pompeii (Italy).

    PubMed

    Merello, Paloma; García-Diego, Fernando-Juan; Zarzo, Manuel

    2014-08-01

    Chemometrics has been applied successfully since the 1990s for the multivariate statistical control of industrial processes. A new area of interest for these tools is the microclimatic monitoring of cultural heritage. Sensors record climatic parameters over time and statistical data analysis is performed to obtain valuable information for preventive conservation. A case study of an open-air archaeological site is presented here. A set of 26 temperature and relative humidity data-loggers was installed in four rooms of Ariadne's house (Pompeii). If climatic values are recorded versus time at different positions, the resulting data structure is equivalent to records of physical parameters registered at several points of a continuous chemical process. However, there is an important difference in this case: continuous processes are controlled to reach a steady state, whilst open-air sites undergo tremendous fluctuations. Although data from continuous processes are usually column-centred prior to applying principal components analysis, it turned out that another pre-treatment (row-centred data) was more convenient for the interpretation of components and to identify abnormal patterns. The detection of typical trajectories was more straightforward by dividing the whole monitored period into several sub-periods, because the marked climatic fluctuations throughout the year affect the correlation structures. The proposed statistical methodology is of interest for the microclimatic monitoring of cultural heritage, particularly in the case of open-air or semi-confined archaeological sites.

  5. Physiology of the fetal circulation.

    PubMed

    Kiserud, Torvid

    2005-12-01

    Our understanding of fetal circulatory physiology is based on experimental animal data, and this continues to be an important source of new insight into developmental mechanisms. A growing number of human studies have investigated the human physiology, with results that are similar but not identical to those from animal studies. It is time to appreciate these differences and base more of our clinical approach on human physiology. Accordingly, the present review focuses on distributional patterns and adaptational mechanisms that were mainly discovered by human studies. These include cardiac output, pulmonary and placental circulation, fetal brain and liver, venous return to the heart, and the fetal shunts (ductus venosus, foramen ovale and ductus arteriosus). Placental compromise induces a set of adaptational and compensational mechanisms reflecting the plasticity of the developing circulation, with both short- and long-term implications. Some of these aspects have become part of the clinical physiology of today with consequences for surveillance and treatment.

  6. COMPUTATIONAL MODELING OF CIRCULATING FLUIDIZED BED REACTORS

    SciTech Connect

    Ibrahim, Essam A

    2013-01-09

    Details of numerical simulations of two-phase gas-solid turbulent flow in the riser section of Circulating Fluidized Bed Reactor (CFBR) using Computational Fluid Dynamics (CFD) technique are reported. Two CFBR riser configurations are considered and modeled. Each of these two riser models consist of inlet, exit, connecting elbows and a main pipe. Both riser configurations are cylindrical and have the same diameter but differ in their inlet lengths and main pipe height to enable investigation of riser geometrical scaling effects. In addition, two types of solid particles are exploited in the solid phase of the two-phase gas-solid riser flow simulations to study the influence of solid loading ratio on flow patterns. The gaseous phase in the two-phase flow is represented by standard atmospheric air. The CFD-based FLUENT software is employed to obtain steady state and transient solutions for flow modulations in the riser. The physical dimensions, types and numbers of computation meshes, and solution methodology utilized in the present work are stated. Flow parameters, such as static and dynamic pressure, species velocity, and volume fractions are monitored and analyzed. The differences in the computational results between the two models, under steady and transient conditions, are compared, contrasted, and discussed.

  7. Caribbean international circulation: are Puerto Rican women tied-circulators?

    PubMed

    Conway, D; Ellis, M; Shiwdhan, N

    1990-01-01

    Aspects of migration between Puerto Rico and the United States are explored. "This examination of the multiple-movement behaviour of a sample of Puerto Rican women seeks to unravel the relations between their circulation patterns, their family and contextual situations and their declared motives for undertaking international mobility. The leading question asked in this study is whether this international mobility behaviour of Puerto Rican women is autonomous or dependent upon the movement or decision-making of others. Structural theory suggests the latter is most likely, but behavioural divergence occurs in return movement."

  8. Mortality related to cold and air pollution in London after allowance for effects of associated weather patterns.

    PubMed

    Keatinge, W R; Donaldson, G C

    2001-07-01

    We looked for atypical weather patterns that could confound, and explain large inconsistencies in, conventional estimates of mortality due to SO(2), CO, and smoke. Using Greater London data for 1976-1995 in the linear temperature/mortality range 0-15 degrees C we determined weather patterns associated with pollutants (all deseasonalized) by single regressions of daily temperature, wind, rain, humidity, and sunshine at successive days advance and delay. Polluted days were colder (P<0.01 for SO(2), CO, and smoke) and less windy and rainy than usual, and this cold weather was more prolonged than usual with 50% maximum temperature depression 5.9 days (95% interval 4.0-7.7) before high SO(2), compared to 2.0 (1.6-2.3) days before average cold days. We also used multiple regression of mortality at 50+ years of age on all these weather factors and pollutants at 0-, 1-, 2- to 4-, 5- to 13-, and 14- to 24-day delays to allow for the atypical weather patterns. This showed cold weather associated with 2.77 excess deaths per million during 24 days following a 1 degrees C fall for 1 day, but no net excess deaths with SO(2) (mean 28.0 ppb) or CO (1.26 ppm). It suggested (P>0.05) some increase with smoke, perhaps acting as surrogate for PM(10), for which data were too scanty to analyze.

  9. Implementation of Tritium in the Lmdz-Iso General Circulation Model: First Promising Results for the Study of the Relationships Between Stratospheric Air Inputs into the Lower Troposphere in Polar Regions, Water Cycle and Climate

    NASA Astrophysics Data System (ADS)

    Cauquoin, A.; Jean Baptiste, P.; Risi, C. M.; Fourre, E.; Landais, A.

    2014-12-01

    Understanding the links between climate and water cycle is essential in the current context of global warming. The water isotopic composition, quantified as δD, δ18O or δ17O, has a great potential to trace the organization of present-day hydrological cycle. When recorded in various archives as tree rings, sediments, ice cores, they have also been largely used to reconstruct the past evolution of climate and water. The Antarctic cap is extremely sensitive to climate change. Moreover, this region is under the influence of exchanges between the troposphere and the stratosphere because of the presence of the polar vortex. Tritium (3H) has been shown to be an appropriate tracer for the intrusion of stratospheric air masses into the lower troposphere. Natural tritium is mainly produced by the interaction of cosmic radiations with the upper atmosphere. This tritium enters the hydrological cycle in the form of tritiated water molecules (HTO) and has a radioactive half-life of 4500±8 days. In an approach combining data and model, we have first implemented tritium in the coupled Laboratoire de Météorologie Dynamique Zoom (LMDZ) Atmospheric General Circulation Model developed at IPSL [Risi et al., 2010]: LMDZ-iso. The implementation of natural tritium uses the same model architecture as for the other water isotopes, after a correct description of associated cosmogenic production terms [Masarik and Beer, 2009]. The model is used in a configuration dedicated to the simulation of the stratosphere, with 39 layers. In this presentation, we will focus on the modeling of spatial and temporal natural variations of tritium content in precipitation. The model is validated against a compilation of available data for natural tritium. We show that the continental and latitudinal effects are well reproduced by the model and that simulated seasonal variations of the tritium content of precipitation are coherent with our current knowledge of troposphere-stratosphere exchanges. Masarik

  10. Using non-negative matrix factorization for the identification of daily patterns of particulate air pollution in Beijing during 2004-2008

    NASA Astrophysics Data System (ADS)

    Thiem, A.; Schlink, U.; Pan, X.-C.; Hu, M.; Peters, A.; Wiedensohler, A.; Breitner, S.; Cyrys, J.; Wehner, B.; Rösch, C.; Franck, U.

    2012-05-01

    Increasing traffic density and a changing car fleet on the one hand as well as various reduction measures on the other hand may influence the composition of the particle population and, hence, the health risks for residents of megacities like Beijing. A suitable tool for identification and quantification of source group-related particle exposure compositions is desirable in order to derive optimal adaptation and reduction strategies and therefore, is presented in this paper. Particle number concentrations have been measured in high time- and space-resolution at an urban background monitoring site in Beijing, China, during 2004-2008. In this study a new pattern recognition procedure based on non-negative matrix factorization (NMF) was introduced to extract characteristic diurnal air pollution patterns of particle number and volume size distributions for the study period. Initialization and weighting strategies for NMF applications were carefully considered and a scaling procedure for ranking of obtained patterns was implemented. In order to account for varying particle sizes in the full diameter range [3 nm; 10 μm] two separate NMF applications (a) for diurnal particle number concentration data (NMF-N) and (b) volume concentration data (NMF-V) have been performed. Five particle number concentration-related NMF-N factors were assigned to patterns mainly describing the development of ultrafine (particle diameter Dp < 100 nm instead of DP) as well as fine particles (Dp < 2.5 μm), since absolute number concentrations are highest in these diameter ranges. The factors are classified into primary and secondary sources. Primary sources mostly involved anthropogenic emission sources such as traffic emissions or emissions of nearby industrial plants, whereas secondary sources involved new particle formation and accumulation (particle growth) processes. For the NMF-V application the five extracted factors mainly described coarse particle (2.5 μm < Dp < 10 μm) variations

  11. H3K9 acetylation change patterns in rats after exposure to traffic-related air pollution.

    PubMed

    Ding, Rui; Jin, Yongtang; Liu, Xinneng; Zhu, Ziyi; Zhang, Yuan; Wang, Ting; Xu, Yinchun

    2016-03-01

    Traffic-related air pollution (TRAP) has been acknowledged as a potential risk factor for numerous respiratory disorders including lung cancer; however, the exact mechanisms involved are still unclear. Here we investigated the effects of TRAP exposure on the H3K9 acetylation in rats. The exposure was performed in both spring and autumn with identical study procedures. In each season, 48 healthy Wistar rats were exposed to different levels of TRAP for 4 h, 7 d, 14 d, and 28 d, respectively. H3K9 acetylation levels in both the peripheral blood mononuclear cells (PBMCs) and lung tissues were quantified. Multiple linear regression was applied to assess the influence of air pollutants on H3K9 acetylation levels. The levels of PM2.5, PM10, and NO2 in the tunnel and crossroad groups were significantly higher than in the control group. The H3K9 acetylation levels were not significantly different between spring and autumn. When spring and autumn data were analyzed together, no significant association between the TRAP and H3K9 acetylation was found in 4h exposure window. However, in the 7 d exposure window, PM2.5 and PM10 exposures were associated with changes in H3K9 acetylation ranging from 0.276 (0.053, 0.498) to 0.475 (0.103, 0.848) per 1 μg/m(3) increase in the pollutant concentration. In addition, prolonged exposure of the rats in the tunnel showed that both PM2.5 and PM10 concentrations were positively associated with H3k9 acetylation in both PBMCs and lung tissues. The findings showed that 7-d and prolonged TRAP exposure could effectively increase the H3K9 acetylation level in both PBMCs and lung tissues of rats.

  12. Experimental and numerical investigation on air-side performance of fin-and-tube heat exchangers with various fin patterns

    SciTech Connect

    Tang, L.H.; Zeng, M.; Wang, Q.W.

    2009-07-15

    Air-side heat transfer and friction characteristics of five kinds of fin-and-tube heat exchangers, with the number of tube rows (N = 12) and the diameter of tubes (D{sub o} = 18 mm), have been experimentally investigated. The test samples consist of five types of fin configurations: crimped spiral fin, plain fin, slit fin, fin with delta-wing longitudinal vortex generators (VGs) and mixed fin with front 6-row vortex-generator fin and rear 6-row slit fin. The heat transfer and friction factor correlations for different types of heat exchangers were obtained with the Reynolds numbers ranging from 4000 to 10000. It was found that crimped spiral fin provides higher heat transfer and pressure drop than the other four fins. The air-side performance of heat exchangers with the above five fins has been evaluated under three sets of criteria and it was shown that the heat exchanger with mixed fin (front vortex-generator fin and rear slit fin) has better performance than that with fin with delta-wing vortex generators, and the slit fin offers best heat transfer performance at high Reynolds numbers. Based on the correlations of numerical data, Genetic Algorithm optimization was carried out, and the optimization results indicated that the increase of VG attack angle or length, or decrease of VG height may enhance the performance of vortex-generator fin. The heat transfer performances for optimized vortex-generator fin and slit fin at hand have been compared with numerical method. (author)

  13. Circulation Systems on Microcomputers.

    ERIC Educational Resources Information Center

    Carlson, Gary

    1984-01-01

    Reports on the use of microcomputers in comprehensive library circulation systems. Topics covered include system requirements (reliability, completeness); determining circulation system needs (saving money, improving service, modernization); limitations of microcomputers (capacity, kinds of data stored, number of stations or terminals); system…

  14. City-Specific Spatiotemporal Infant and Neonatal Mortality Clusters: Links with Socioeconomic and Air Pollution Spatial Patterns in France

    PubMed Central

    Padilla, Cindy M.; Kihal-Talantikit, Wahida; Vieira, Verónica M.; Deguen, Séverine

    2016-01-01

    Infant and neonatal mortality indicators are known to vary geographically, possibly as a result of socioeconomic and environmental inequalities. To better understand how these factors contribute to spatial and temporal patterns, we conducted a French ecological study comparing two time periods between 2002 and 2009 for three (purposefully distinct) Metropolitan Areas (MAs) and the city of Paris, using the French census block of parental residence as the geographic unit of analysis. We identified areas of excess risk and assessed the role of neighborhood deprivation and average nitrogen dioxide concentrations using generalized additive models to generate maps smoothed on longitude and latitude. Comparison of the two time periods indicated that statistically significant areas of elevated infant and neonatal mortality shifted northwards for the city of Paris, are present only in the earlier time period for Lille MA, only in the later time period for Lyon MA, and decrease over time for Marseille MA. These city-specific geographic patterns in neonatal and infant mortality are largely explained by socioeconomic and environmental inequalities. Spatial analysis can be a useful tool for understanding how risk factors contribute to disparities in health outcomes ranging from infant mortality to infectious disease—a leading cause of infant mortality. PMID:27338439

  15. The effects of channel diameter on flow pattern, void fraction and pressure drop of two-phase air-water flow in circular micro-channels

    SciTech Connect

    Saisorn, Sira; Wongwises, Somchai

    2010-05-15

    Two-phase air-water flow characteristics are experimentally investigated in horizontal circular micro-channels. Test sections are made of fused silica. The experiments are conducted based on three different inner diameters of 0.53, 0.22 and 0.15 mm with the corresponding lengths of 320, 120 and 104 mm, respectively. The test runs are done at superficial velocities of gas and liquid ranging between 0.37-42.36 and 0.005-3.04 m/s, respectively. The flow visualisation is facilitated by systems mainly including stereozoom microscope and high-speed camera. The flow regime maps developed from the observed flow patterns are presented. The void fractions are determined based on image analysis. New correlation for two-phase frictional multiplier is also proposed for practical applications. (author)

  16. Air-permeable hole-pattern and nose-droop control improve aerodynamic performance of primary feathers.

    PubMed

    Eder, Heinrich; Fiedler, Wolfgang; Pascoe, Xaver

    2011-01-01

    Primary feathers of soaring land birds have evolved into highly specialized flight feathers characterized by morphological improvements affecting aerodynamic performance. The foremost feathers in the cascade have to bear high lift-loading with a strong bending during soaring flight. A challenge to the study of feather aerodynamics is to understand how the observed low drag and high lift values in the Reynolds (Re) regime from 1.0 to 2.0E4 can be achieved. Computed micro-tomography images show that the feather responds to high lift-loading with an increasing nose-droop and profile-camber. Wind-tunnel tests conducted with the foremost primary feather of a White Stork (Ciconia ciconia) at Re = 1.8E4 indicated a surprisingly high maximum lift coefficient of 1.5 and a glide ratio of nearly 10. We present evidence that this is due to morphologic characteristics formed by the cristae dorsales as well as air-permeable arrays along the rhachis. Measurements of lift and drag forces with open and closed pores confirmed the efficiency of this mechanism. Porous structures facilitate a blow out, comparable to technical blow-hole turbulators for sailplanes and low speed turbine-blades. From our findings, we conclude that the mechanism has evolved in order to affect the boundary layer and to reduce aerodynamic drag of the feather.

  17. Relationship between patterns of alcohol use and negative alcohol-related outcomes among U.S. Air Force recruits.

    PubMed

    Taylor, Jennifer E; Haddock, Keith; Poston, W S Carlos; Talcott, Wayne G

    2007-04-01

    The negative impact of alcohol use on workplace performance is of significant concern to the U.S. military, given the costs associated with recruiting, hiring, and training personnel. However, little is known about the extent of potential alcohol use problems of recruits. We examined the history of alcohol-related problems among recruits entering the Air Force (N=37858). Although the average age of recruits was <21 years, 78% reported consuming alcohol and 49% reported binging before basic military training. Recruits who drank reported having negative alcohol-related outcomes (NAROs). In fact, >95% reported that they or someone else had been injured as a result of their drinking and that a relative, friend, doctor, or other health care worker has been concerned about their drinking. The remaining NAROs were reported by approximately one-quarter of those who drank. However, recruits who reported binge drinking were substantially more likely to report more NAROs, such as morning drinking, inability to stop drinking, having others be concerned about their drinking, having blackouts, fighting, having injured or been injured, feeling guilty about their drinking, and wanting to reduce the amount they drink. Results suggest that alcohol-related problems are common among recruits before basic military training and screening for future problems may be beneficial.

  18. Using synoptic classification and trajectory analysis to assess air quality during the winter heating period in Ürümqi, China

    NASA Astrophysics Data System (ADS)

    Wang, Lili; Wang, Yuesi; Sun, Yang; Li, Yuanyuan

    2012-03-01

    Synoptic patterns identified by an automated procedure employing principal-component analysis and a two-stage cluster analysis, and backward trajectory analysis clustered by the HYSPLIT4.9 model were used to examine air quality patterns over Ürümqi, China, one of the most heavily polluted cities in the world. Six synoptic patterns representing different atmospheric circulation patterns and air-mass characteristics were classified during the winter heating periods from 2001 to 2008, and seven trajectory clusters representing different paths of air masses arriving at Ürümqi were calculated during the winter heating periods from 2005 to 2008. Then air quality was evaluated using these two approaches, and significant variations were found across both synoptic patterns and trajectory clusters. The heaviest air-pollution episodes occurred when Ürümqi was either in an extremely cold, strong anticyclone or at the front of a migrating cyclone. Both conditions were characterized by with light winds, cold, wet surface air, and relatively dry upper air. Ürümqi was predominately influenced by air masses from the southwest and from local areas. Air pollution index (API) levels were highest for air masses originating from the southwest with a longer path or for the local area, because of transport from semi-desert/desert regions by strong winds and because of local heavy pollution emissions, respectively. The interactions between these two analytical approaches showed that poor diffusion conditions, together with local circulation, enhanced air pollution, besides, regional air-mass transport caused by strong winds contributed to serious air quality under relatively good diffusion conditions.

  19. X-ray Lithography on Perovskite Nanocrystals Films: From Patterning with Anion-Exchange Reactions to Enhanced Stability in Air and Water

    PubMed Central

    2015-01-01

    Films of colloidal CsPbX3 (X = I, Br or Cl) nanocrystals, prepared by solution drop-casting or spin-coating on a silicon substrate, were exposed to a low flux of X-rays from an X-ray photoelectron spectrometer source, causing intermolecular C=C bonding of the organic ligands that coat the surface of the nanocrystals. This transformation of the ligand shell resulted in a greater stability of the film, which translated into the following features: (i) Insolubility of the exposed regions in organic solvents which caused instead complete dissolution of the unexposed regions. This enabled the fabrication of stable and strongly fluorescent patterns over millimeter scale areas. (ii) Inhibition of the irradiated regions toward halide anion exchange reactions, when the films were exposed either to halide anions in solution or to hydrohalic vapors. This feature was exploited to create patterned regions of different CsPbIxBryClz compositions, starting from a film with homogeneous CsPbX3 composition. (iii) Resistance of the films to degradation caused by exposure to air and moisture, which represents one of the major drawbacks for the integration of these materials in devices. (iv) Stability of the film in water and biological buffer, which can open interesting perspectives for applications of halide perovskite nanocrystals in aqueous environments. PMID:26617344

  20. Effects of winter atmospheric circulation on temporal and spatial variability in annual streamflow in the western United States

    USGS Publications Warehouse

    McCabe, G.J.

    1996-01-01

    Winter mean 700-hectoPascal (hPa) height anomalies, representing the average atmospheric circulation during the snow season, are compared with annual streamflow measured at 140 streamgauges in the western United States. Correlation and anomaly pattern analyses are used to identify relationships between winter mean atmospheric circulation and temporal and spatial variability in annual streamflow. Results indicate that variability in winter mean 700-Hpa height anomalies accounts for a statistically significant portion of the temporal variability in annual streamflow in the western United States. In general, above-average annual streamflow is associated with negative winter mean 700-Hpa height anomalies over the eastern North Pacific Ocean and/or the western United States. The anomalies produce an anomalous flow of moist air from the eastern North Pacific Ocean into the western United States that increases winter precipitation and snowpack accumulations, and subsequently streamflow. Winter mean 700-hPa height anomalies also account for statistically significant differences in spatial distributions of annual streamflow. As part of this study, winter mean atmospheric circulation patterns for the 40 years analysed were classified into five winter mean 700-hPa height anomaly patterns. These patterns are related to statistically significant and physically meaningful differences in spatial distributions of annual streamflow.

  1. A Reinforcement Learning Model Equipped with Sensors for Generating Perception Patterns: Implementation of a Simulated Air Navigation System Using ADS-B (Automatic Dependent Surveillance-Broadcast) Technology.

    PubMed

    Álvarez de Toledo, Santiago; Anguera, Aurea; Barreiro, José M; Lara, Juan A; Lizcano, David

    2017-01-19

    Over the last few decades, a number of reinforcement learning techniques have emerged, and different reinforcement learning-based applications have proliferated. However, such techniques tend to specialize in a particular field. This is an obstacle to their generalization and extrapolation to other areas. Besides, neither the reward-punishment (r-p) learning process nor the convergence of results is fast and efficient enough. To address these obstacles, this research proposes a general reinforcement learning model. This model is independent of input and output types and based on general bioinspired principles that help to speed up the learning process. The model is composed of a perception module based on sensors whose specific perceptions are mapped as perception patterns. In this manner, similar perceptions (even if perceived at different positions in the environment) are accounted for by the same perception pattern. Additionally, the model includes a procedure that statistically associates perception-action pattern pairs depending on the positive or negative results output by executing the respective action in response to a particular perception during the learning process. To do this, the model is fitted with a mechanism that reacts positively or negatively to particular sensory stimuli in order to rate results. The model is supplemented by an action module that can be configured depending on the maneuverability of each specific agent. The model has been applied in the air navigation domain, a field with strong safety restrictions, which led us to implement a simulated system equipped with the proposed model. Accordingly, the perception sensors were based on Automatic Dependent Surveillance-Broadcast (ADS-B) technology, which is described in this paper. The results were quite satisfactory, and it outperformed traditional methods existing in the literature with respect to learning reliability and efficiency.

  2. A Reinforcement Learning Model Equipped with Sensors for Generating Perception Patterns: Implementation of a Simulated Air Navigation System Using ADS-B (Automatic Dependent Surveillance-Broadcast) Technology

    PubMed Central

    Álvarez de Toledo, Santiago; Anguera, Aurea; Barreiro, José M.; Lara, Juan A.; Lizcano, David

    2017-01-01

    Over the last few decades, a number of reinforcement learning techniques have emerged, and different reinforcement learning-based applications have proliferated. However, such techniques tend to specialize in a particular field. This is an obstacle to their generalization and extrapolation to other areas. Besides, neither the reward-punishment (r-p) learning process nor the convergence of results is fast and efficient enough. To address these obstacles, this research proposes a general reinforcement learning model. This model is independent of input and output types and based on general bioinspired principles that help to speed up the learning process. The model is composed of a perception module based on sensors whose specific perceptions are mapped as perception patterns. In this manner, similar perceptions (even if perceived at different positions in the environment) are accounted for by the same perception pattern. Additionally, the model includes a procedure that statistically associates perception-action pattern pairs depending on the positive or negative results output by executing the respective action in response to a particular perception during the learning process. To do this, the model is fitted with a mechanism that reacts positively or negatively to particular sensory stimuli in order to rate results. The model is supplemented by an action module that can be configured depending on the maneuverability of each specific agent. The model has been applied in the air navigation domain, a field with strong safety restrictions, which led us to implement a simulated system equipped with the proposed model. Accordingly, the perception sensors were based on Automatic Dependent Surveillance-Broadcast (ADS-B) technology, which is described in this paper. The results were quite satisfactory, and it outperformed traditional methods existing in the literature with respect to learning reliability and efficiency. PMID:28106849

  3. Circulating serotonin in vertebrates.

    PubMed

    Maurer-Spurej, E

    2005-08-01

    The role of circulating serotonin is unclear and whether or not serotonin is present in the blood of non-mammalian species is not known. This study provides the first evidence for the presence of serotonin in thrombocytes of birds and three reptilian species, the endothermic leatherback sea turtle, the green sea turtle and the partially endothermic American alligator. Thrombocytes from a fresh water turtle, American bullfrog, Yellowfin tuna, and Chinook salmon did not contain serotonin. Serotonin is a vasoactive substance that regulates skin blood flow, a major mechanism for endothermic body temperature regulation, which could explain why circulating serotonin is present in warm-blooded species. The temperature sensitivity of human blood platelets with concomitant changes in serotonin content further supports a link between circulating serotonin and thermoregulation. Phylogenetic comparison of the presence of circulating serotonin indicated an evolutionary divergence within reptilian species that might coincide with the emergence of endothermy.

  4. Structural Determination of Circulation.

    ERIC Educational Resources Information Center

    Blankenburg, William B.

    1981-01-01

    Analyzes the effects of both structural factors (demographics, economic conditions, and competition) and discretionary factors (content, design, and marketing techniques) and concludes that it is the former that determine a newspaper's circulation. (FL)

  5. Interannual rainfall variability and SOM-based circulation classification

    NASA Astrophysics Data System (ADS)

    Wolski, Piotr; Jack, Christopher; Tadross, Mark; van Aardenne, Lisa; Lennard, Christopher

    2017-03-01

    Self-Organizing Maps (SOM) based classifications of synoptic circulation patterns are increasingly being used to interpret large-scale drivers of local climate variability, and as part of statistical downscaling methodologies. These applications rely on a basic premise of synoptic climatology, i.e. that local weather is conditioned by the large-scale circulation. While it is clear that this relationship holds in principle, the implications of its implementation through SOM-based classification, particularly at interannual and longer time scales, are not well recognized. Here we use a SOM to understand the interannual synoptic drivers of climate variability at two locations in the winter and summer rainfall regimes of South Africa. We quantify the portion of variance in seasonal rainfall totals that is explained by year to year differences in the synoptic circulation, as schematized by a SOM. We furthermore test how different spatial domain sizes and synoptic variables affect the ability of the SOM to capture the dominant synoptic drivers of interannual rainfall variability. Additionally, we identify systematic synoptic forcing that is not captured by the SOM classification. The results indicate that the frequency of synoptic states, as schematized by a relatively disaggregated SOM (7 × 9) of prognostic atmospheric variables, including specific humidity, air temperature and geostrophic winds, captures only 20-45% of interannual local rainfall variability, and that the residual variance contains a strong systematic component. Utilising a multivariate linear regression framework demonstrates that this residual variance can largely be explained using synoptic variables over a particular location; even though they are used in the development of the SOM their influence, however, diminishes with the size of the SOM spatial domain. The influence of the SOM domain size, the choice of SOM atmospheric variables and grid-point explanatory variables on the levels of explained

  6. Transverse ageostrophic circulations associated with elevated mixed layers

    NASA Technical Reports Server (NTRS)

    Keyser, D.; Carlson, T. N.

    1984-01-01

    The nature of the frontogenetically forced transverse ageostrophic circulations connected with elevated mixed layer structure is investigated as a first step toward diagnosing the complex vertical circulation patterns occurring in the vicinity of elevated mixed layers within a severe storm environment. The Sawyer-Eliassen ageostrophic circulation equation is reviewed and applied to the elevated mixed layer detected in the SESAME IV data set at 2100 GMT of May 9, 1979. The results of the ageostrophic circulation diagnosis are confirmed and refined by considering an analytic specification for the elevated mixed layer structure.

  7. Direct inversion of circulation and mixing from tracer measurements - Part 1: Method

    NASA Astrophysics Data System (ADS)

    von Clarmann, Thomas; Grabowski, Udo

    2016-11-01

    From a series of zonal mean global stratospheric tracer measurements sampled in altitude vs. latitude, circulation and mixing patterns are inferred by the inverse solution of the continuity equation. As a first step, the continuity equation is written as a tendency equation, which is numerically integrated over time to predict a later atmospheric state, i.e., mixing ratio and air density. The integration is formally performed by the multiplication of the initially measured atmospheric state vector by a linear prediction operator. Further, the derivative of the predicted atmospheric state with respect to the wind vector components and mixing coefficients is used to find the most likely wind vector components and mixing coefficients which minimize the residual between the predicted atmospheric state and the later measurement of the atmospheric state. Unless multiple tracers are used, this inversion problem is under-determined, and dispersive behavior of the prediction further destabilizes the inversion. Both these problems are addressed by regularization. For this purpose, a first-order smoothness constraint has been chosen. The usefulness of this method is demonstrated by application to various tracer measurements recorded with the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS). This method aims at a diagnosis of the Brewer-Dobson circulation without involving the concept of the mean age of stratospheric air, and related problems like the stratospheric tape recorder, or intrusions of mesospheric air into the stratosphere.

  8. Assessing Patterns in the Surface Electric Field Prior to First CG Flashes and After Last CG Flashes in Air-Mass Thunderstorms

    NASA Astrophysics Data System (ADS)

    Williams, D. E.; Beasley, W. H.; Hyland, P. T.

    2007-12-01

    In an effort to elicit patterns in the temporal and spatial evolution of the contours of surface electric field relevant to the occurrence of cloud-to-ground (CG) lightning, we have analyzed data from the network of 31 electric-field mills jointly operated by the John F. Kennedy Space Center (KSC) and Cape Canaveral Air Force Station (CCAFS). To identify cases of interest, we used lightning ground-strike data, maps of in-cloud lightning discharges, rainfall data, and radar data. In particular, we have focused on two critical problems: 1) estimation of when and where the first CG flash in a storm might occur and 2) assessment of the likelihood of CG flashes occurring late in a storm after a long period without a CG flash. Our long-term goal is to understand the evolution of surface contours of electric field for periods of 30 minutes or more before the first flash of any kind and 30 minutes or more before and after the last flash of any kind. For practical reasons, we are reporting here on analysis of data for periods of 30 minutes before the first CG flash and 30 minutes after the last CG flash in each storm of interest. We have analyzed electric-field data from isolated air-mass convective storms that developed over KSC/CCAFS from late May through early September, 2004-2006. To identify thunderstorms that fit the air-mass, or "pop-up" criteria, we started by examining rainfall and CG lightning data, then looked at radar data. Then, for the storms selected, we performed a two-pass Barnes objective analysis on the electric-field data. Each analysis cycle resulted in one contour plot of 20-second averaged data, yielding 90 plots for each 30 minute interval, which we then animated. This resulted in 58 animations of the field contours prior to first CG flashes and 62 animations of the field contours after last CG flashes. Preliminary impressions from examinations of these cases suggest that the electric-field contours before the first flash exhibit a smooth transition

  9. Relations between winter precipitation and atmospheric circulation simulated by the Geophysical Fluid Dynamics Laboratory general circulation model

    USGS Publications Warehouse

    McCabe, G.J.; Dettinger, M.D.

    1995-01-01

    General circulation model (GCM) simulations of atmospheric circulation are more reliable than GCM simulations of temperature and precipitation. In this study, temporal correlations between 700 hPa height anomalies simulated winter precipitation at eight locations in the conterminous United States are compared with corresponding correlations in observations. The objectives are to 1) characterize the relations between atmospheric circulation and winter precipitation simulated by the GFDL, GCM for selected locations in the conterminous USA, ii) determine whether these relations are similar to those found in observations of the actual climate system, and iii) determine if GFDL-simulated precipitation is forced by the same circulation patterns as in the real atmosphere. -from Authors

  10. Variability of the Atuel River streamflow annual cycle and its relationship with the tropospheric circulation

    NASA Astrophysics Data System (ADS)

    Araneo, D. C.; Agosta, E. A.

    2013-05-01

    sufficient (insufficient) snowfalls in the high subtropical Andes as a result of northward (southward) shift of the stormtracks that can be associated with the tropospheric circulation anomalies in the southeastern Pacific induced by the SST anomalies in the equatorial Pacific (El Niño/La Niña events). The PC2 streamflow pattern is significantly associated with late spring and early summer tropospheric circulation conditions. The years with a propensity to undergo streamflow peaks in the late spring (the early autumn) could be associated with anomalous air warming (cooling) over the subtropical Andes mainly due to the strengthening (weakening) of the South Atlantic anticyclone and the induced meridional circulation over subtropical latitudes.

  11. Ocean circulation using altimetry

    NASA Technical Reports Server (NTRS)

    Minster, Jean-Francois; Brossier, C.; Gennero, M. C.; Mazzega, P.; Remy, F.; Letraon, P. Y.; Blanc, F.

    1991-01-01

    Our group has been very actively involved in promoting satellite altimetry as a unique tool for observing ocean circulation and its variability. TOPEX/POSEIDON is particularly interesting as it is optimized for this purpose. It will probably be the first instrument really capable of observing the seasonal and interannual variability of subtropical and polar gyres and the first to eventually document the corresponding variability of their heat flux transport. The studies of these phenomena require data of the best quality, unbiased extraction of the signal, mixing of these satellite data with in situ measurements, and assimilation of the whole set into a dynamic description of ocean circulation. Our group intends to develop responses to all these requirements. We will concentrate mostly on the circulation of the South Atlantic and Indian Oceans: This will be done in close connection with other groups involved in the study of circulation of the tropical Atlantic Ocean, in the altimetry measurements (in particular, those of the tidal issue), and in the techniques of data assimilation in ocean circulation models.

  12. Jovian Stratospheric Circulation: driven radiatively or mechanically?

    NASA Astrophysics Data System (ADS)

    Zhang, Xi; Shia, Run-Lie; Showman, Adam; Yung, Yuk

    2013-04-01

    The existence of large-scale stratospheric circulation has been hypothesized since the 1990s (e.g., Conrath et al. 1990; West et al. 1992). The evidences come from the recent observations of stratospheric tracers such as hydrogen cyanide (HCN), carbon dioxide (CO2), acetylene (C2H2) and ethane (C2H6) (Lellouch et al. 2006; Nixon et al. 2010). Previous studies (e.g., Friedson et al. 1999; Liang et al. 2005) also proposed that horizontal eddy mixing affects meridional transport processes. But the relative roles of diffusion (eddy-mixing) and advection in the horizontal transport are highly uncertain (Lellouch et al., 2006). On the other hand, whether the stratospheric circulation on Jupiter is induced by differential heating or mechanical forcing from below is still debated (e.g., Conrath et al., 1990; West et al., 1992), because the lower stratosphere of Jupiter might not be purely radiatively controlled (Simon-Miller et al., 2006; Zhang et al., 2012). In order to investigate the circulation pattern in detail, we introduce a two-dimensional photochemical-diffusive-advective model to simulate the distribution of stratospheric hydrocarbons. Analytical solutions are derived to gain the physical insight of the coupled chemical-transport processes, and validate the numerical methods (Zhang et al., 2013). The meridional transport processes are constrained using the latitudinal distributions of C2H2 and C2H6 retrieved from Cassini spacecraft measurements during Jupiter flyby in 2000 (Zhang et al., 2012). The derived residual mean circulation pattern shows inconsistency with the instantaneous zonally averaged radiative forcing map during the Cassini flyby (Zhang, 2012), implying that the lower stratospheric circulation might be partly mechanically driven, as is the case for the Brewer-Dobson circulation on Earth. This research was supported in part by NASA NNX09AB72G grant to the California Institute of Technology. XZ was supported by the Bisgrove Fellowship in the

  13. The contribution of atmospheric circulation to decadal trends in northern hemisphere temperature

    NASA Astrophysics Data System (ADS)

    Iles, Carley; Hegerl, Gabriele

    2016-04-01

    The early twentieth century (1920s-1940s) was characterised by a warming period, concentrated particularly in the Arctic in winter. The causes of this Arctic warming are not completely understood but a combination of internal variability and external forcing has been suggested. Here we investigate the contribution of atmospheric circulation to this northern hemisphere warming trend. We identify the atmospheric pressure patterns that occurred during this period using reanalysis data. We then calculate their contribution to the observed winter temperature trends through an analogue technique in which similar atmospheric circulation patterns are identified in interannual variability across the whole twentieth century, and their relationship to northern hemisphere temperature calculated through regression. We also examine the contribution of other known atmospheric modes to northern hemisphere temperature during this period and for other periods of increasing and decreasing temperature, including the North Atlantic Oscillation/ Arctic Oscillation and the Cold Ocean Warm Land Pattern, which is associated with warm air advection from ocean to land in the northern hemisphere in winter.

  14. The Martian Upper Atmosphere Circulation

    NASA Astrophysics Data System (ADS)

    Bougher, S. W.; Bell, J. M.; Baird, D. T.; Murphy, J. R.

    2005-08-01

    New Mars spacecraft datasets and 3-D modeling capabilities are emerging to characterize the Mars thermospheric circulation patterns for the first time. Upper atmosphere wind constraints are available from recent aerobraking and Mars Express measurements. Mars Global Surveyor (1997-1999) and Mars Odyssey (2001-2002) Accelerometer datasets obtained during aerobraking operations provide density and temperature distributions over limited local time and latitude regions at lower thermospheric altitudes ( ˜100-160 km) [e.g. Keating et al., 1998; 2002; 2003; Withers et al., 2003]. Latitudinal gradients of these fields (i.e. into the winter polar night) vary greatly with the changing Martian seasons. The winter polar warming features observed serve as a tracer of the strength and variability of the Martian thermospheric wind patterns during solstice conditions [Keating et al., 2003; Bougher et al., 2005].Accelerometer data is also being used to estimate cross-track (zonal) wind speeds in the Mars lower thermosphere ( ˜100-130 km) [Baird et al., 2005], yielding values as large as 300-400 m/sec. Most recently, the Mars Express SPICAM instrument discovered nitric oxide (NO) nightglow spectral features in the γ and δ -bands from limb observations (Ls = 74) [Bertaux et al., 2005]. These observed UV nightglow emissions are brightest in the winter polar night region. The solstice winds required to produce the Mars winter polar warming features are also responsible for transporting dayside produced N and O atoms to the nightside where radiative recombination and UV chemiluminescence occurs. These new dynamical constraints for the Martian upper atmosphere are now investigated using coupled MGCM (NASA Ames) and MTGCM (Michigan) simulations for aphelion (Ls = 90) and perihelion (Ls = 270) conditions appropriate to MGS and Odyssey aerobraking datasets described above. Seasonal variations in the thermospheric circulation, and the underlying mechanisms likely responsible for these

  15. Long-term patterns of air temperatures, daily temperature range, precipitation, grass-reference evapotranspiration and aridity index in the USA Great Plains: Part I. Spatial trends

    NASA Astrophysics Data System (ADS)

    Kukal, M.; Irmak, S.

    2016-11-01

    Due to their substantial spatio-temporal behavior, long-term quantification and analyses of important hydrological variables are essential for practical applications in water resources planning, evaluating the water use of agricultural crop production and quantifying crop evapotranspiration patterns and irrigation management vs. hydrologic balance relationships. Observed data at over 800 sites across the Great Plains of USA, comprising of 9 states and 2,307,410 km2 of surface area, which is about 30% of the terrestrial area of the USA, were used to quantify and map large-scale and long-term (1968-2013) spatial trends of air temperatures, daily temperature range (DTR), precipitation, grass-reference evapotranspiration (ETo) and aridity index (AI) at monthly, growing season and annual time steps. Air temperatures had a strong north to south increasing trend, with annual average varying from -1 to 24 °C, and growing season average temperature varying from 8 to 30 °C. DTR gradually decreased from western to eastern parts of the region, with a regional annual and growing season averages of 14.25 °C and 14.79 °C, respectively. Precipitation had a gradual shift towards higher magnitudes from west to east, with the average annual and growing season (May-September) precipitation ranging from 163 to 1486 mm and from 98 to 746 mm, respectively. ETo had a southwest-northeast decreasing trend, with regional annual and growing season averages of 1297 mm and 823 mm, respectively. AI increased from west to east, indicating higher humidity (less arid) towards the east, with regional annual and growing season averages of 0.49 and 0.44, respectively. The spatial datasets and maps for these important climate variables can serve as valuable background for climate change and hydrologic studies in the Great Plains region. Through identification of priority areas from the developed maps, efforts of the concerned personnel and agencies and resources can be diverted towards development

  16. Distribution patterns, infiltration and health risk assessment of PM2.5-bound PAHs in indoor and outdoor air in cold zone.

    PubMed

    Mohammed, Mohammed O A; Song, Wei-Wei; Ma, Yong-Liang; Liu, Li-Yan; Ma, Wan-Li; Li, Wen-Long; Li, Yi-Fan; Wang, Feng-Yan; Qi, Mei-Yun; Lv, Na; Wang, Ding-Zhen; Khan, Afed Ulla

    2016-07-01

    In this study we investigated the distribution patterns, infiltration and health risk assessment of PM2.5-bound PAHs in indoor and outdoor air done in Harbin city, northeastern China. Simultaneous indoor and outdoor sampling was done to collect 264 PM2.5 samples from four sites during winter, summer, and spring. Infiltration of PAHs into indoors was estimated using Retene, Benzo [ghi]perylene and Chrysene as reference compounds, where the latter compound was suggested to be a good estimator and subsequently used for further calculation of infiltration factors (IFs). Modeling with positive matrix factorization (PMF5) and estimation of diagnostic isomeric ratios were applied for identifying sources, where coal combustion, crop residues burning and traffic being the major contributors, particularly during winter. Linear discriminant analysis (LDA) has been utilized to show the distribution patterns of individual PAH congeners. LDA showed that, the greatest seasonal variability was attributed to high molecular weight compounds (HMW PAHs). Potential health risk of PAHs exposure was assessed through relative potency factor approach (RPF). The levels of the sum of 16 US EPA priority PAHs during colder months were very high, with average values of 377 ± 228 ng m(-)(3) and 102 ± 75.8 ng m(-)(3), for the outdoors and indoors, respectively. The outdoor levels reported to be 19 times higher than the outdoor concentrations during warmer months (summer + spring), while the indoor concentrations were suggested to be 9 times and 10 times higher than that for indoor summer (average 11.73 ± 4 ng m(-3)) and indoor spring (9.5 ± 3.3 ng m(-3)). During nighttime, outdoor PAHs revealed wider range of values compared to datytime which was likely due to outdoor temperature, a weather parameter with the strongest negative influence on ∑16PAHs compared to low impact of relative humidity and wind speed.

  17. Meridional Circulation in the Tropical North Atlantic

    DTIC Science & Technology

    1993-01-01

    nominally located at 1 I°N was carried out in March 1989. In this paper relative geostrophic velocities are computed from these data via the thermal wind...from these analysis techniques is presented, and indicates a North Brazil Current transport of nearly 12 Sv. Transports of the shallow waters are found...Schematic circulation patterns of the NADW and AABW are also presented. The deep waters of the western basin are dominated by a cyclonic recirculation

  18. An epidemiological study of gastrointestinal parasites of dogs from Southern Greater Buenos Aires (Argentina): age, gender, breed, mixed infections, and seasonal and spatial patterns.

    PubMed

    Fontanarrosa, María F; Vezzani, Darío; Basabe, Julia; Eiras, Diego F

    2006-03-31

    A total of 2193 fecal samples from owned dogs were collected during the 2003-2004 period in Southern Greater Buenos Aires, and were evaluated for the presence of intestinal parasites by a flotation-centrifugation method. The overall prevalence was 52.4%, and the 11 species found were: Ancylostoma caninum (13%), Isospora ohioensis complex (12%), Toxocara canis (11%), Trichuris vulpis (10%), Sarcocystis sp. (10%), Giardia duodenalis (9%), Isospora canis (3%), Hammondia-Neospora complex (3%), Dipilydium caninum (18 cases), Cryptosporidium sp. (5 cases), and Toxascaris leonina (1 case). There was no significant difference in the overall prevalence between genders (female = 50.4%, male = 54.6%), and breeds (pure = 52.3%, mixed = 53%), but prevalence in puppies (<1 year) was higher than in adult dogs (62.7% versus 40.8%, respectively). Only the prevalence of A. caninum differed between genders, with higher values for males. The prevalences of six of the parasite species showed a decreasing trend with increasing host age, and an inverse pattern was found for two other species. The prevalences of three protozoa were significantly higher in pure-breed dogs, and those of two nematodes were significantly higher in mixed-breed dogs. The prevalences of T. canis, A. caninum, and T. vulpis were spatially heterogeneous with a clear Southwest-Northeast gradient. Only prevalences of Sarcocystis sp. and G. duodenalis showed seasonal variation. The frequency distribution of the number of species per fecal sample did not differ from a random distribution. Results obtained throughout the world were discussed.

  19. Seasonal dynamics of circulation in Hooghly Estuary and its adjacent coastal oceans

    NASA Astrophysics Data System (ADS)

    Mishra, Shashank Kr.; Nayak, Gourav; Nayak, R. K.; Dadhwal, V. K.

    2016-05-01

    Hooghly is one of the major estuaries in Ganges, the largest and longest river in the Indian subcontinent. The Hooghly estuary is a coastal plain estuary lying approximately between 21°-23° N and 87°-89° E. We used a terrain following ocean model to study tide driven residual circulations, seasonal mean flow patterns and its energetics in the Hooghly estuary and adjacent coastal oceans on the north eastern continental shelf of India. The model is driven by tidal levels at open ocean end and winds at the air-sea interface. The sources of forcing fields for tides were from FES2012, winds from ECMWF. Harmonic analysis is carried out to compute the tidal and non-tidal components of currents and sea level from the model solutions. The de-tidal components were averaged for the entire period of simulation to describe residual and mean-seasonal circulations in the regions. We used tide-gauge, SARAL-ALTIKA along track sea level measurements to evaluate model solutions. Satellite measure Chla were used along with simulated currents to describe important features of the circulations in the region.

  20. Walker circulation in a transient climate

    NASA Astrophysics Data System (ADS)

    Plesca, Elina; Grützun, Verena; Buehler, Stefan A.

    2016-04-01

    The tropical overturning circulations modulate the heat exchange across the tropics and between the tropics and the poles. The anthropogenic influence on the climate system will affect these circulations, impacting the dynamics of the Earth system. In this work we focus on the Walker circulation. We investigate its temporal and spatial dynamical changes and their link to other climate features, such as surface and sea-surface temperature patterns, El-Niño Southern Oscillation (ENSO), and ocean heat-uptake, both at global and regional scale. In order to determine the impact of anthropogenic climate change on the tropical circulation, we analyze the outputs of 28 general circulation models (GCMs) from the CMIP5 project. We use the experiment with 1% year-1 increase in CO2 concentration from pre-industrial levels to quadrupling of the concentration. Consistent with previous studies (ex. Ma and Xie 2013), we find that for this experiment most GCMs associate a weakening Walker circulation to a warming transient climate. Due to the role of the Walker Pacific cell in the meridional heat and moisture transport across the tropical Pacific and also the connection to ENSO, we find that a weakened Walker circulation correlates with more extreme El-Niño events, although without a change in their frequency. The spatial analysis of the Pacific Walker cell suggests an eastward displacement of the ascending branch, which is consistent with positive SST anomalies over the tropical Pacific and the link of the Pacific Walker cell to ENSO. Recent studies (ex. England et al. 2014) have linked a strengthened Walker circulation to stronger ocean heat uptake, especially in the western Pacific. The inter-model comparison of the correlation between Walker circulation intensity and ocean heat uptake does not convey a robust response for the investigated experiment. However, there is some evidence that a stronger weakening of the Walker circulation is linked to a higher transient climate

  1. Breathing Easy over Air Quality.

    ERIC Educational Resources Information Center

    Greim, Clifton; Turner, William

    1991-01-01

    School systems should test the air in every school building for the presence and level of contaminants such as radon and asbestos and whether the ventilation system is circulating the proper amount of air. Periodic maintenance is required for all mechanical systems. (MLF)

  2. Posterior Circulation Ischemic Stroke.

    PubMed

    Go, Steven

    2015-01-01

    Approximately 20-25% of all acute strokes occur in the posterior circulation. These strokes can be rather difficult to diagnose because they present in such diverse ways, and can easily be mistaken for more benign entities. A fastidious history, physical exam, high clinical suspicion, and appropriate use of imaging are essential for the emergency physician to properly diagnose and treat these patients. Expert stroke neurologist consultation should be utilized liberally.

  3. Ocean circulation studies

    NASA Technical Reports Server (NTRS)

    Koblinsky, C. J.

    1984-01-01

    Remotely sensed signatures of ocean surface characteristics from active and passive satellite-borne radiometers in conjunction with in situ data were utilized to examine the large scale, low frequency circulation of the world's oceans. Studies of the California Current, the Gulf of California, and the Kuroshio Extension Current in the western North Pacific were reviewed briefly. The importance of satellite oceanographic tools was emphasized.

  4. Learning Circulant Sensing Kernels

    DTIC Science & Technology

    2014-03-01

    Compressive sensing based high resolution channel estimation for OFDM system. To appear in IEEE Journal of Selected Topics in Signal Processing, Special...and R. D. Nowak. Toeplitz compressed sensing ma- trices with applications to sparse channel estimation . Submitted to IEEE Transactions on Information...various applications. For compressive sens- ing, recent work has used random Toeplitz and circulant sensing matrices and proved their efficiency in theory

  5. Circulation Control in NASA's Vehicle Systems

    NASA Technical Reports Server (NTRS)

    Rich, Paul; McKinley, Bob; Jones, Greg

    2005-01-01

    Specific to the application of any technology to a vehicle, such as circulation control, it is important to understand the process that NASA is using to set its direction in research and development. To see how circulation control fits into any given NASA program requires the reader to understand NASA's Vehicle Systems (VS) Program. The VS Program recently celebrated its first year of existence with an annual review - an opportunity to look back on accomplishments, solicit feedback, expand national advocacy and support for the program, and recognize key contributions. Since its formation last year, Vehicle Systems has coordinated seven existing entities in a streamlined aeronautics research effort. It invests in vehicle technologies to protect the environment, make air travel more accessible and affordable for Americans, enable exploration through new aerospace missions, and augment national security. This past year has seen a series of valuable partnerships with industry, academia, and government agencies to make crucial aeronautics advances and assure America s future in flight.

  6. Radiofrequency radiation alters the immune system. II. Modulation of in vivo lymphocyte circulation

    SciTech Connect

    Liburdy, R.P.

    1980-07-01

    In vivo lymphocyte circulation was significantly altered in mice exposed to whole-body radiofrequency radiation (RFR). In vivo lymphocyte circulation was followed by quantitating activity of sodium chromate-51-labeled lymphocytes in the lung, spleen, liver, and bone marrow of animals at different times after iv spleen lymphocyte injection. Immediately after cell injection, animals were exposed to 2.6-GHz RFR (CW) at 25 or 5 mW/cm/sup 2/ (3.8 W/kg) for 1 h. At 1,6, and 24 h aftr lymphocyte injection target organs were removed, weighed, and counted. Sham RFR, warm-air, and steroid-treated groups were included as controls. Hyperthermic RFR exposure (25 mW/cm/sup 2/, 2.0/sup 0/C increase in core temperature) led to a 37% reduction in lymphocytes leaving the lung to migrate into the spleen. In addition, a threefold increse in spleen lymphocytes entering the bone marrow occurred. Significantly, this pattern was also observed in the steroid-treated group; nonthermogenic RFR exposure (5 mWcm/sup 2/) and warm-air exposures did not lead to altered lymphocyte traffic. These results support the idea that steroid release associated with thermal stress and the process of thermoregulation is a significant operatnt factor responsible for RFR effects on the immune system.

  7. Carbon dioxide, ground air and carbon cycling in Gibraltar karst

    NASA Astrophysics Data System (ADS)

    Mattey, D. P.; Atkinson, T. C.; Barker, J. A.; Fisher, R.; Latin, J.-P.; Durrell, R.; Ainsworth, M.

    2016-07-01

    We put forward a general conceptual model of CO2 behaviour in the vadose zone of karst aquifers, based on physical principles of air flow through porous media and caves, combined with a geochemical interpretation of cave monitoring data. This 'Gibraltar model' links fluxes of water, air and carbon through the soil with the porosity of the vadose zone, the circulation of ground air and the ventilation of caves. Gibraltar hosts many natural caves whose locations span the full length and vertical range of the Rock. We report results of an 8-year monitoring study of carbon in soil organic matter and bedrock carbonate, dissolved inorganic carbon in vadose waters, and gaseous CO2 in soil, cave and ground air. Results show that the regime of cave air CO2 results from the interaction of cave ventilation with a reservoir of CO2-enriched ground air held within the smaller voids of the bedrock. The pCO2 of ground air, and of vadose waters that have been in close contact with it, are determined by multiple factors that include recharge patterns, vegetation productivity and root respiration, and conversion of organic matter to CO2 within the soil, the epikarst and the whole vadose zone. Mathematical modelling and field observations show that ground air is subject to a density-driven circulation that reverses seasonally, as the difference between surface and underground temperatures reverses in sign. The Gibraltar model suggests that cave air pCO2 is not directly related to CO2 generated in the soil or the epikarstic zone, as is often assumed. Ground air CO2 formed by the decay of organic matter (OM) washed down into the deeper unsaturated zone is an important additional source of pCO2. In Gibraltar the addition of OM-derived CO2 is the dominant control on the pCO2 of ground air and the Ca-hardness of waters within the deep vadose zone. The seasonal regime of CO2 in cave air depends on the position of a cave in relation to the density-driven ground air circulation pattern which

  8. Effects of latent heating on driving atmospheric circulation of brown dwarfs and directly imaged giant planets

    NASA Astrophysics Data System (ADS)

    Tan, Xianyu; Showman, Adam P.

    2015-12-01

    Growing observations of brown dwarfs (BDs) and directly imaged extrasolar giant planets (EGPs), such as brightness variability and surface maps have provided evidence for strong atmospheric circulation on these worlds. Previous studies that serve to understand the atmospheric circulation of BDs include modeling of convection from the interior and its interactions with stably stratified atmospheres. These models show that such interactions can drive an atmospheric circulation, forming zonal jets and/or vortices. However, these models are dry, not including condensation of various chemical species. Latent heating from condensation of water has previously been shown to play an important role on driving the zonal jets on four giant planets in our solar system. As such, condensation cycles of various chemical species are believed to be an important source in driving the atmospheric circulation of BDs and directly imaged EGPs. Here we present results from three-dimensional simulations for the atmospheres of BDs and EGPs based on a general circulation model that includes the effect of a condensate cycle. Large-scale latent heating and molecular weight effect due to condensation of a single species are treated explicitly. We examine the circulation patterns caused by large-scale latent heating which results from condensation of silicate vapor in hot dwarfs and water vapor in the cold dwarfs. By varying the abundance of condensable vapor and the radiative timescale, we conclude that under normal atmospheric conditions of BDs (hot and thus with relatively short radiative timescale), latent heating alone by silicate vapor is unable to drive a global circulation, leaving a quiescent atmosphere, because of the suppression to moist instability by downward transport of dry air. Models with relatively long radiative timescale, which may be the case for cooler bodies, tend to maintain an active hydrological cycle and develop zonal jets. Once condensation happens, storms driven by

  9. Atmospheric Circulation of Brown Dwarfs and Directly Imaged Extrasolar Giant Planets

    NASA Astrophysics Data System (ADS)

    Tan, X.; Showman, A. P.

    2015-12-01

    Growing observations of brown dwarfs (BDs) and directly imaged extrasolar giant planets (EGPs), such as brightness variability and surface maps have provided evidence for strong atmospheric circulation on these worlds. Previous studies that serve to understand the atmospheric circulation of BDs include modeling of convection from the interior and its interactions with stably stratified atmospheres. These models show that such interactions can drive an atmospheric circulation, forming zonal jets and/or vortices. However, these models are dry, not including condensation of various chemical species. Condensation of water has previously been shown to play an important role on driving the zonal jets on four giant planets in our solar system. As such, condensation cycles of various chemical species are believed to be an important source in driving the atmospheric circulation of BDs and directly imaged EGPs. Here we present results from three-dimensional simulations for the stably stratified atmospheres of BDs and EGPs based on a general circulation model that includes the effect of a condensate cycle. Large-scale latent heating and molecular weight effect due to condensation of a single species are treated explicitly. We examine the circulation patterns caused by large-scale latent heating which results from condensation of silicate vapor in hot dwarfs and water vapor in the cold dwarfs. By varying the abundance of condensable vapor and the radiative timescale, we conclude that under normal conditions of BDs (near 1x solar abundance and relatively short radiative timescale), latent heating alone by silicate vapors is unable to drive a global circulation, leaving a quiescent atmosphere, because of the suppression to moist instability by downward transport of dry air. Models with high abundance of condensates (~5x solar) and relatively long radiative timescale, which may be the case of directly imaged EGPs, tend to maintain an active hydrological cycle and develop zonal

  10. Variability in AIRS CO2 during active and break phases of Indian summer monsoon.

    PubMed

    Revadekar, J V; Ravi Kumar, K; Tiwari, Yogesh K; Valsala, Vinu

    2016-01-15

    Due to human activities, the atmospheric concentration of Carbon Dioxide (CO2) has been rising extensively since the Industrial Revolution. Indian summer monsoon (ISM) has a dominant westerly component from ocean to land with a strong tendency to ascend and hence may have role in CO2 distribution in lower and middle troposphere over Indian sub-continent. A substantial component of ISM variability arises from the fluctuations on the intra-seasonal scale between active and break phases which correspond to strong and weak monsoon circulation. In view of the above, an attempt is made in this study to examine the AIRS/AQUA satellite retrieved CO2 distribution in response to atmospheric circulation with focus on active and break phase. Correlation analysis indicates the increase in AIRS CO2 linked with strong monsoon circulation. Study also reveals that anomalous circulation pattern during active and break phase show resemblance with high and low values of AIRS CO2. Homogeneous monsoon regions of India show substantial increase in CO2 levels during active phase. Hilly regions of India show strong contrast in CO2 and vertical velocity during active and break phases.

  11. Some features of the technology for thermochemical reprocessing of coals in a circulating fluidized bed

    NASA Astrophysics Data System (ADS)

    Rokhman, B. B.

    2007-06-01

    Results from theoretical investigations into transfer processes during the combustion of anthracite culm in a circulating fluidized bed furnace are presented. A method is described according to which hot air is separately admitted into the furnace: the primary air, to under the fluidized-bed grate, and the secondary air, to over its upper boundary. Calculation results together with their discussion are presented.

  12. General circulation of the ocean

    SciTech Connect

    Abarbanel, H.D.I.; Young, W.R.

    1986-01-01

    This book is an analysis of the geophysics of ocean circulation and its interaction with the atmosphere. It reviews the new concepts and models which have emerged in the last five years, as well as classical theories and observations. The contributions cover topics such as: the observational basis for large-scale circulation, including surface and deep circulation and subtropical gyres; thermocline theories; inverse methods for ocean circulation; baroclinic theories of the wind-driven circulation; and single layer models. This volume sets the current research literature in context, and suggests promising avenues for future study.

  13. Four Rivers second generation Pressurized Circulating Fluidized Bed Combustion Project

    SciTech Connect

    Holley, E.P.; Lewnard, J.J.; von Wedel, G.; Richardson, K.W.; Morehead, H.T.

    1995-04-01

    Air Products has been selected in the DOE Clean Coal Technology Round V program to build, own, and operate the first commercial power plant using second generation Pressurized Circulating Fluidized Bed (PCFB) combustion technology. The four Rivers Energy Project (Four Rivers) will produce up to 400,000 lb/hr steam, or an equivalent gross capacity of 95 MWe. The unit will be used to repower an Air Products chemicals manufacturing facility in Calvert City, Kentucky.

  14. AIR COOLED NEUTRONIC REACTOR

    DOEpatents

    Fermi, E.; Szilard, L.

    1958-05-27

    A nuclear reactor of the air-cooled, graphite moderated type is described. The active core consists of a cubicle mass of graphite, approximately 25 feet in each dimension, having horizontal channels of square cross section extending between two of the opposite faces, a plurality of cylindrical uranium slugs disposed in end to end abutting relationship within said channels providing a space in the channels through which air may be circulated, and a cadmium control rod extending within a channel provided in the moderator. Suitable shielding is provlded around the core, as are also provided a fuel element loading and discharge means, and a means to circulate air through the coolant channels through the fuel charels to cool the reactor.

  15. Disinfecting Filters For Recirculated Air

    NASA Technical Reports Server (NTRS)

    Pilichi, Carmine A.

    1992-01-01

    Simple treatment disinfects air filters by killing bacteria, algae, fungi, mycobacteria, viruses, spores, and any other micro-organisms filters might harbor. Concept applied to reusable stainless-steel wire mesh filters and disposable air filters. Treatment used on filters in air-circulation systems in spacecraft, airplanes, other vehicles, and buildings to help prevent spread of colds, sore throats, and more-serious illnesses.

  16. NUCLA Circulating Atmospheric Fluidized Bed Demonstration Project

    SciTech Connect

    Keith, Raymond E.; Heller, Thomas J.; Bush, Stuart A.

    1991-01-01

    This Annual Report on Colorado-Ute Electric Association's NUCLA Circulating Fluidized Bed (CFB) Demonstration Program covers the period from February 1987 through December 1988. The outline for presentation in this report includes a summary of unit operations along with individual sections covering progress in study plan areas that commenced during this reporting period. These include cold-mode shakedown and calibration, plant commercial performance statistics, unit start-up (cold), coal and limestone preparation and handling, ash handling system performance and operating experience, tubular air heater, baghouse operation and performance, materials monitoring, and reliability monitoring. During this reporting period, the coal-mode shakedown and calibration plan was completed. (VC)

  17. The lens circulation.

    PubMed

    Mathias, Richard T; Kistler, Joerg; Donaldson, Paul

    2007-03-01

    The lens is the largest organ in the body that lacks a vasculature. The reason is simple: blood vessels scatter and absorb light while the physiological role of the lens is to be transparent so it can assist the cornea in focusing light on the retina. We hypothesize this lack of blood supply has led the lens to evolve an internal circulation of ions that is coupled to fluid movement, thus creating an internal micro-circulatory system, which makes up for the lack of vasculature. This review covers the membrane transport systems that are believed to generate and direct this internal circulatory system.

  18. World Ocean Circulation Experiment

    NASA Technical Reports Server (NTRS)

    Clarke, R. Allyn

    1992-01-01

    The oceans are an equal partner with the atmosphere in the global climate system. The World Ocean Circulation Experiment is presently being implemented to improve ocean models that are useful for climate prediction both by encouraging more model development but more importantly by providing quality data sets that can be used to force or to validate such models. WOCE is the first oceanographic experiment that plans to generate and to use multiparameter global ocean data sets. In order for WOCE to succeed, oceanographers must establish and learn to use more effective methods of assembling, quality controlling, manipulating and distributing oceanographic data.

  19. High-Resolution Dynamical Downscaling of ERA-Interim Using the WRF Regional Climate Model for the Area of Poland. Part 2: Model Performance with Respect to Automatically Derived Circulation Types

    NASA Astrophysics Data System (ADS)

    Ojrzyńska, Hanna; Kryza, Maciej; Wałaszek, Kinga; Szymanowski, Mariusz; Werner, Małgorzata; Dore, Anthony J.

    2017-02-01

    This paper presents the application of the high-resolution WRF model data for the automatic classification of the atmospheric circulation types and the evaluation of the model results for daily rainfall and air temperatures. The WRF model evaluation is performed by comparison with measurements and gridded data (E-OBS). The study is focused on the area of Poland and covers the 1981-2010 period, for which the WRF model has been run using three nested domains with spatial resolution of 45 km × 45 km, 15 km × 15 km and 5 km × 5 km. For the model evaluation, we have used the data from the innermost domain, and data from the second domain were used for circulation typology. According to the circulation type analysis, the anticyclonic types (AAD and AAW) are the most frequent. The WRF model is able to reproduce the daily air temperatures and the error statistics are better, compared with the interpolation-based gridded dataset. The high-resolution WRF model shows a higher spatial variability of both air temperature and rainfall, compared with the E-OBS dataset. For the rainfall, the WRF model, in general, overestimates the measured values. The model performance shows a seasonal pattern and is also dependent on the atmospheric circulation type, especially for daily rainfall.

  20. Wuchereria bancrofti filariasis in French Polynesia: age-specific patterns of microfilaremia, circulating antigen, and specific IgG and IgG4 responses according to transmission level.

    PubMed

    Chanteau, S; Glaziou, P; Plichart, C; Luquiaud, P; Moulia-Pelat, J P; N'Guyen, L; Cartel, J L

    1995-01-01

    The age-specific patterns of microfilaremia, Og4C3 antigenemia, anti-Brugia malayi IgG and IgG4 were assessed in 3 villages of low, medium and high transmission level for Wuchereria bancrofti filariasis. The prevalence rates for each of the 4 markers were clearly age dependent and their patterns strongly associated with the transmission level. The antigenemia prevalence rate was consistently higher than the microfilaremia prevalence rate, in all age groups. The prevalences of anti-B. malayi IgG and IgG4 responses were very similar and much higher than those of microfilaremia or antigenemia. Antibody responses reached the plateau at an earlier age and at a higher prevalence with increased intensity of transmission. For all the markers, the prevalence rates were significantly higher in males than in females.

  1. The influence of coastal shape on winter mesoscale air-sea interaction

    NASA Technical Reports Server (NTRS)

    Atlas, D.; Chou, S.-H.; Byerly, W. P.

    1983-01-01

    In cold air outbreaks, the combination of coastal shape and sea surface isotherms has a profound effect in the establishment of mesoscale atmospheric circulation, due to differential heating resulting from both overwater path length and underlying sea surface temperature (SST) variations. Where coastal effects are dominant, a mesoscale front forms downstream of the point which marks the major bend in the coastline's orientation. The strength of the induced mesoscale circulation depends on the original contrast between the land air temperature and the SST. It is noted that where the coastline and the isotherm pattern are approximately normal to the mean boundary layer flow, and thermal contrast is sufficiently large, the cloud streets formed downstream will be convective in nature, and oriented with the axis of roll vortices along the wind direction.

  2. How Circulation of Water Affects Freezing in Ponds

    ERIC Educational Resources Information Center

    Moreau, Theresa; Lamontagne, Robert; Letzring, Daniel

    2007-01-01

    One means of preventing the top of a pond from freezing involves running a circulating pump near the bottom to agitate the surface and expose it to air throughout the winter months. This phenomenon is similar to that of the flowing of streams in subzero temperatures and to the running of taps to prevent pipe bursts in winter. All of these cases…

  3. 36 CFR 910.18 - Vehicular circulation and storage systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... maintain air quality, to encourage the use of mass transit, and to provide sufficient off-street parking... of parking spaces per development; and (3) To encourage the use of public transportation by linking... 36 Parks, Forests, and Public Property 3 2014-07-01 2014-07-01 false Vehicular circulation...

  4. 36 CFR 910.18 - Vehicular circulation and storage systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... maintain air quality, to encourage the use of mass transit, and to provide sufficient off-street parking... of parking spaces per development; and (3) To encourage the use of public transportation by linking... 36 Parks, Forests, and Public Property 3 2011-07-01 2011-07-01 false Vehicular circulation...

  5. 36 CFR 910.18 - Vehicular circulation and storage systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... maintain air quality, to encourage the use of mass transit, and to provide sufficient off-street parking... of parking spaces per development; and (3) To encourage the use of public transportation by linking... 36 Parks, Forests, and Public Property 3 2012-07-01 2012-07-01 false Vehicular circulation...

  6. Circulation of Stars

    NASA Astrophysics Data System (ADS)

    Boitani, P.

    2016-01-01

    Since the dawn of man, contemplation of the stars has been a primary impulse in human beings, who proliferated their knowledge of the stars all over the world. Aristotle sees this as the product of primeval and perennial “wonder” which gives rise to what we call science, philosophy, and poetry. Astronomy, astrology, and star art (painting, architecture, literature, and music) go hand in hand through millennia in all cultures of the planet (and all use catasterisms to explain certain phenomena). Some of these developments are independent of each other, i.e., they take place in one culture independently of others. Some, on the other hand, are the product of the “circulation of stars.” There are two ways of looking at this. One seeks out forms, the other concentrates on the passing of specific lore from one area to another through time. The former relies on archetypes (for instance, with catasterism), the latter constitutes a historical process. In this paper I present some of the surprising ways in which the circulation of stars has occurred—from East to West, from East to the Far East, and from West to East, at times simultaneously.

  7. Molecular characterization of Oryza sativa arsenic-induced RING E3 ligase 1 (OsAIR1): Expression patterns, localization, functional interaction, and heterogeneous overexpression.

    PubMed

    Hwang, Sun-Goo; Park, Hyeon Mi; Han, A-Reum; Jang, Cheol Seong

    2016-02-01

    High levels of arsenic (As) in plants are a serious threat to human health, and arsenic accumulation affects plant metabolism and ultimately photosynthesis, growth, and development. We attempted to isolate As-responsive Really Interesting New Gene (RING) E3 ubiquitin ligase genes from rice, and we have designated one such gene Oryza sativa arsenic-induced RING E3 ligase 1 (OsAIR1). OsAIR1 expression was induced under abiotic stress conditions, including drought, salt, heat, and As exposure. Results from an in vitro ubiquitination assay showed that OsAIR1 possesses E3 ligase activity. Within the cell, the expression of this gene was found to be localized to the vacuole. In a network-based analysis, we found significantly enriched gene ontology (GO) functions, which included ribonucleoprotein complexes such as ribosomes, suggesting that the function of OsAIR1 are related to translation. Differences in the proportion of seedlings with expanded cotyledons and root lengths, and the lack of differences in germination rates between OsAIR1-overexpressing lines and control plants under AsV stress, suggest that OsAIR1 may positively regulate post-germination plant growth under stress conditions.

  8. Currents connecting communities: nearshore community similarity and ocean circulation.

    PubMed

    Watson, J R; Hays, C G; Raimondi, P T; Mitarai, S; Dong, C; McWilliams, J C; Blanchette, C A; Caselle, J E; Siegel, D A

    2011-06-01

    Understanding the mechanisms that create spatial heterogeneity in species distributions is fundamental to ecology. For nearshore marine systems, most species have a pelagic larval stage where dispersal is strongly influenced by patterns of ocean circulation. Concomitantly, nearshore habitats and the local environment are also influenced by ocean circulation. Because of the shared dependence on the seascape, distinguishing the relative importance of the local environment from regional patterns of dispersal for community structure remains a challenge. Here, we quantify the "oceanographic distance" and "oceanographic asymmetry" between nearshore sites using ocean circulation modeling results. These novel metrics quantify spatial separation based on realistic patterns of ocean circulation, and we explore their explanatory power for intertidal and subtidal community similarity in the Southern California Bight. We find that these metrics show significant correspondence with patterns of community similarity and that their combined explanatory power exceeds that of the thermal structure of the domain. Our approach identifies the unique influence of ocean circulation on community structure and provides evidence for oceanographically mediated dispersal limitation in nearshore marine communities.

  9. Congenital cardiovascular malformations and the fetal circulation.

    PubMed

    Rudolph, A M

    2010-03-01

    After birth, gas exchange is achieved in the lung, whereas prenatally it occurs in the placenta. This is associated with differences in blood flow patterns in the fetus as compared with the postnatal circulation. Congenital cardiovascular malformations are associated with haemodynamic changes in the fetus, which differ from those occurring postnatally. Obstruction to cardiac outflow may alter myocardial development, resulting in progressive ventricular hypoplasia. Alteration of oxygen content may profoundly influence pulmonary vascular and ductus arteriosus responses. Interference in blood flow and oxygen content may affect cerebral development as a result of inadequate oxygen or energy substrate supply. The circulatory effects may be gestational dependent, related to maturation of vascular responses in different organs. These prenatal influences of congenital cardiac defects may severely affect immediate, as well as longterm, postnatal prognosis and survival. This has stimulated the development of techniques for palliation of disturbed circulation during fetal life.

  10. Atmospheric circulation of extrasolar giant planets

    NASA Astrophysics Data System (ADS)

    Showman, A. P.

    2012-12-01

    Of the many known extrasolar planets, over 100 have orbital semi-major axes less than 0.1 AU, and a significant fraction of these hot Jupiters and Neptunes are known to transit their stars, allowing them to be characterized with the Spitzer, Hubble, and groundbased telescopes. The stellar flux incident on these planets is expected to drive an atmospheric circulation that shapes the day-night temperature difference, infrared light curves, spectra, albedo, and atmospheric composition, and recent Spitzer infrared light curves show evidence for dynamical meteorology in these planets' atmospheres. Here, I will survey basic dynamical ideas and detailed 3D numerical models that illuminate the atmospheric circulation of these exotic, tidally locked planets. These models suggest that, generally, the circulation will be characterized by broad, fast zonal jets, with day-night temperature contrasts at the photosphere that may vary from small in some cases to large in others. I will discuss the dynamical mechanisms for maintaining the fast zonal jets that develop in these models, as well as the mechanisms for controlling the temperature patterns, including the day-night temperature contrasts. These mechanisms help to explain current observations, and they predict regime transitions for how the wind and temperature patterns should vary with the incident stellar flux, strength of atmospheric drag, and other parameters. These transitions are observable and in some cases are already becoming evident in the data. I will also compare the circulation of the hot Jupiters to that of young, massive giant planets being directly imaged around other stars, which will be the subject of a new observational vanguard over the next decade. To emphasize the similarities as well as differences, I will ground this discussion in our understanding of the more familiar atmospheric dynamical regime of Earth, as well as our "local" giant planets Jupiter, Saturn, Uranus, and Neptune.

  11. Atmospheric circulation of extrasolar giant planets

    NASA Astrophysics Data System (ADS)

    Showman, A. P.

    2011-12-01

    Of the many known extrasolar planets, nearly 200 have orbital semi-major axes less than 0.1 AU, and a significant fraction of these hot Jupiters and Neptunes are known to transit their stars, allowing them to be characterized with the Spitzer, Hubble, and groundbased telescopes. The stellar flux incident on these planets is expected to drive an atmospheric circulation that shapes the day-night temperature difference, infrared light curves, spectra, albedo, and atmospheric composition, and recent Spitzer infrared light curves show evidence for dynamical meteorology in these planets' atmospheres. Here, I will survey basic dynamical ideas and detailed 3D numerical models that illuminate the atmospheric circulation of these exotic, tidally locked planets. These models suggest that, generally, the circulation will be characterized by broad, fast zonal jets, with day-night temperature contrasts at the photosphere that may vary from small in some cases to large in others. I will discuss the dynamical mechanisms for maintaining the fast zonal jets that develop in these models, as well as the mechanisms for controlling the temperature patterns, including the day-night temperature contrasts. These mechanisms help to explain current observations, and they predict regime transitions for how the wind and temperature patterns should vary with the incident stellar flux, strength of atmospheric drag, and other parameters. These transitions are observable and in some cases are already becoming evident in the data. I will also compare the circulation of the hot Jupiters to that of young, massive giant planets being directly imaged around other stars, which will be the subject of a new observational vanguard over the next decade. To emphasize the similarities as well as differences, I will ground this discussion in our understanding of the more familiar atmospheric dynamical regime of Earth, as well as our "local" giant planets Jupiter, Saturn, Uranus, and Neptune.

  12. Air-water centrifugal convection

    NASA Astrophysics Data System (ADS)

    Herrada, Miguel; Shtern, Vladimir

    2014-07-01

    A sealed cylindrical container is filled with air and water. The container rotation and the axial gradient of temperature induce the steady axisymmetric meridional circulation of both fluids due to the thermal buoyancy and surface-tension (Marangoni) effects. If the temperature gradient is small, the water circulation is one-cellular while the air circulation can be one- or two-cellular depending on water fraction Wf. The numerical simulations are performed for the cylinder length-to-radius ratio l = 1 and l = 4. The l = 4 results and the analytical solution for l → ∞ agree in the cylinder's middle part. As the temperature gradient increases, the water circulation becomes one-, two-, or three-cellular depending on Wf. The results are of fundamental interest and can be applied for bioreactors.

  13. Impact of the synoptic circulation on the near surface layer thermal profile

    NASA Astrophysics Data System (ADS)

    Lensky, Itamar; Dayan, Uri; Guez, Oded

    2014-05-01

    We examine the near surface lapse rate, defined as the difference between the skin surface and 2 m air temperatures, retrieved from satellite (MODIS) and 94 meteorological stations over the Eastern Mediterranean (EM). This profile is important for estimation of sensible heat flux, an essential ingredient in the near surface energy balance equation and the water cycle. The lapse rate is enhanced by stronger solar insolation and attenuated by turbulence generated by stronger winds. These parameters vary according to atmospheric conditions e.g. horizontal pressure gradient and cloud cover, which are represented here by different synoptic categories. Strong longitudinal climatic and vegetation gradient over the EM as reflected by MODIS NDVI also lead to a gradual shift in the lapse rate. Climatological values of the lapse rate show a distinct seasonal signature, whereas fluctuations are attributed to changes in atmospheric flow patterns. Therefore, we assess the role of seasonality, synoptic scale circulation and vegetation cover on the near surface thermal profile. The effects of circulation on this profile are demonstrated for three synoptic categories covering all seasons. In the first synoptic category, continental conditions lead to larger daytime positive lapse rate over arid regions, and nighttime inversion. These thermal profiles are attenuated over regions with denser vegetation. At summer, a unique circulation system prevails leading to thermal profile signature similar to the seasonal. The windy and cloudy conditions associated with the third synoptic category increase the spatial variability of the thermal profile and delay the built-up of nighttime inversion. Based on knowledge of the atmospheric flow pattern, we will demonstrate retrieval of the near surface layer thermal profile at satellite resolution (MODIS NDVI, 250 m).

  14. Circulating Biomarkers in Bladder Cancer

    PubMed Central

    Nandagopal, Lakshminarayanan; Sonpavde, Guru

    2016-01-01

    Bladder cancer is a molecularly heterogeneous disease characterized by multiple unmet needs in the realm of diagnosis, clinical staging, monitoring and therapy. There is an urgent need to develop precision medicine for advanced urothelial carcinoma. Given the difficulty of serial analyses of metastatic tumor tissue to identify resistance and new therapeutic targets, development of non-invasive monitoring using circulating molecular biomarkers is critically important. Although the development of circulating biomarkers for the management of bladder cancer is in its infancy and may currently suffer from lower sensitivity of detection, they have inherent advantages owing to non-invasiveness. Additionally, circulating molecular alterations may capture tumor heterogeneity without the sampling bias of tissue biopsy. This review describes the accumulating data to support further development of circulating biomarkers including circulating tumor cells, cell-free circulating tumor (ct)-DNA, RNA, micro-RNA and proteomics to improve the management of bladder cancer. PMID:28035318

  15. Labour circulation and the village economy in Fiji.

    PubMed

    Sofer, M

    1992-12-01

    The author examines circular labor migration in Fiji. "This paper is organized into five sections. The first section provides a brief discussion of two major perspectives of labour circulation in developing countries. The second section presents the state of the Fijian village in the context of the current pattern of uneven development in Fiji. The practice of labour circulation by Fijian villagers is dealt with in the third section. In the last two sections, issues concerning the maintenance of the polarized pattern and the preservation of the village mode of production are discussed."

  16. Fate of Stream-Evaded CO2 in Relation to Air Drainage Patterns in a BC Coastal Douglas-Fir Forest During Pre- and Post-Harvest Periods

    NASA Astrophysics Data System (ADS)

    Johnson, M. S.; Hawthorne, I.; Black, T.; Jassal, R. S.

    2011-12-01

    directions were strongly katabatic, suggesting evaded CO2 from the stream was advecting down gradient and away from the EC flux tower. Under these conditions, stream-evaded CO2 would not be detected by the EC tower. During pre-harvest summer months, nighttime airflows remained down gradient (e.g. katabatic cold-air drainage), while daytime airflows for summer months exhibited anabatic and katabatic conditions, suggesting some stream-evaded CO2 was directed back into the tower footprint during summer days. During post-harvest months, nocturnal airflows remained katabatic and away from the tower. Post-harvest summer daytime airflows were less organized compared with pre-harvest conditions, with a more pronounced anabatic pattern that likely transports stream-evaded CO2 back towards the EC tower footprint throughout summer days. Overall, airflows were predominantly down-gradient and away from the EC tower, suggesting that a large fraction of stream-evaded CO2 from the stream was not detected by the EC system.

  17. Lost Circulation Technology Development Status

    SciTech Connect

    Glowka, David A.; Schafer, Diane M.; Loeppke, Glen E.; Scott, Douglas D.; Wernig, Marcus D.; Wright, Elton K.

    1992-03-24

    Lost circulation is the loss of drilling fluid from the wellbore to fractures or pores in the rock formation. In geothermal drilling, lost circulation is often a serious problem that contributes greatly to the cost of the average geothermal well. The Lost Circulation Technology Development Program is sponsored at Sandia National Laboratories by the U.S. Department of Energy. The goal of the program is to reduce lost circulation costs by 30-50% through the development of mitigation and characterization technology. This paper describes the technical progress made in this program during the period April, 1991-March, 1992.

  18. Global ocean circulation by altimetry

    NASA Technical Reports Server (NTRS)

    Wunsch, Carl; Haidvogel, D.

    1991-01-01

    The overall objectives of this project are to determine the general circulation of the oceans and many of its climate and biochemical consequences through the optimum use of altimetry data from TOPEX/POSEIDON and related missions. Emphasis is on the global-scale circulation, as opposed to the regional scale, but some more local studies will be carried out. Because of funding limitations, the primary initial focus will be on the time-dependent global-scale circulation rather than the mean; eventually, the mean circulation must be dealt with as well.

  19. Ocean General Circulation Models

    SciTech Connect

    Yoon, Jin-Ho; Ma, Po-Lun

    2012-09-30

    1. Definition of Subject The purpose of this text is to provide an introduction to aspects of oceanic general circulation models (OGCMs), an important component of Climate System or Earth System Model (ESM). The role of the ocean in ESMs is described in Chapter XX (EDITOR: PLEASE FIND THE COUPLED CLIMATE or EARTH SYSTEM MODELING CHAPTERS). The emerging need for understanding the Earth’s climate system and especially projecting its future evolution has encouraged scientists to explore the dynamical, physical, and biogeochemical processes in the ocean. Understanding the role of these processes in the climate system is an interesting and challenging scientific subject. For example, a research question how much extra heat or CO2 generated by anthropogenic activities can be stored in the deep ocean is not only scientifically interesting but also important in projecting future climate of the earth. Thus, OGCMs have been developed and applied to investigate the various oceanic processes and their role in the climate system.

  20. PULMONARY CIRCULATION AT EXERCISE

    PubMed Central

    NAEIJE, R; CHESLER, N

    2012-01-01

    The pulmonary circulation is a high flow and low pressure circuit, with an average resistance of 1 mmHg.min.L−1 in young adults, increasing to 2.5 mmHg.min.L−1 over 4–6 decades of life. Pulmonary vascular mechanics at exercise are best described by distensible models. Exercise does not appear to affect the time constant of the pulmonary circulation or the longitudinal distribution of resistances. Very high flows are associated with high capillary pressures, up to a 20–25 mmHg threshold associated with interstitial lung edema and altered ventilation/perfusion relationships. Pulmonary artery pressures of 40–50 mmHg, which can be achieved at maximal exercise, may correspond to the extreme of tolerable right ventricular afterload. Distension of capillaries that decrease resistance may be of adaptative value during exercise, but this is limited by hypoxemia from altered diffusion/perfusion relationships. Exercise in hypoxia is associated with higher pulmonary vascular pressures and lower maximal cardiac output, with increased likelihood of right ventricular function limitation and altered gas exchange by interstitial lung edema. Pharmacological interventions aimed at the reduction of pulmonary vascular tone have little effect on pulmonary vascular pressure-flow relationships in normoxia, but may decrease resistance in hypoxia, unloading the right ventricle and thereby improving exercise capacity. Exercise in patients with pulmonary hypertension is associated with sharp increases in pulmonary artery pressure and a right ventricular limitation of aerobic capacity. Exercise stress testing to determine multipoint pulmonary vascular pressures-flow relationships may uncover early stage pulmonary vascular disease. PMID:23105961

  1. Circulating tumor cells

    PubMed Central

    Raimondi, Cristina; Nicolazzo, Chiara; Gradilone, Angela; Giannini, Giuseppe; De Falco, Elena; Chimenti, Isotta; Varriale, Elisa; Hauch, Siegfried; Plappert, Linda; Cortesi, Enrico; Gazzaniga, Paola

    2014-01-01

    The hypothesis of the “liquid biopsy” using circulating tumor cells (CTCs) emerged as a minimally invasive alternative to traditional tissue biopsy to determine cancer therapy. Discordance for biomarkers expression between primary tumor tissue and circulating tumor cells (CTCs) has been widely reported, thus rendering the biological characterization of CTCs an attractive tool for biomarkers assessment and treatment selection. Studies performed in metastatic colorectal cancer (mCRC) patients using CellSearch, the only FDA-cleared test for CTCs assessment, demonstrated a much lower yield of CTCs in this tumor type compared with breast and prostate cancer, both at baseline and during the course of treatment. Thus, although attractive, the possibility to use CTCs as therapy-related biomarker for colorectal cancer patients is still limited by a number of technical issues mainly due to the low sensitivity of the CellSearch method. In the present study we found a significant discordance between CellSearch and AdnaTest in the detection of CTCs from mCRC patients. We then investigated KRAS pathway activating mutations in CTCs and determined the degree of heterogeneity for KRAS oncogenic mutations between CTCs and tumor tissues. Whether KRAS gene amplification may represent an alternative pathway responsible for KRAS activation was further explored. KRAS gene amplification emerged as a functionally equivalent and mutually exclusive mechanism of KRAS pathway activation in CTCs, possibly related to transcriptional activation. The serial assessment of CTCs may represent an early biomarker of treatment response, able to overcome the intrinsic limit of current molecular biomarkers represented by intratumor heterogeneity. PMID:24521660

  2. Pulmonary circulation at exercise.

    PubMed

    Naeije, Robert; Chesler, N

    2012-01-01

    The pulmonary circulation is a high-flow and low-pressure circuit, with an average resistance of 1 mmHg/min/L in young adults, increasing to 2.5 mmHg/min/L over four to six decades of life. Pulmonary vascular mechanics at exercise are best described by distensible models. Exercise does not appear to affect the time constant of the pulmonary circulation or the longitudinal distribution of resistances. Very high flows are associated with high capillary pressures, up to a 20 to 25 mmHg threshold associated with interstitial lung edema and altered ventilation/perfusion relationships. Pulmonary artery pressures of 40 to 50 mmHg, which can be achieved at maximal exercise, may correspond to the extreme of tolerable right ventricular afterload. Distension of capillaries that decrease resistance may be of adaptative value during exercise, but this is limited by hypoxemia from altered diffusion/perfusion relationships. Exercise in hypoxia is associated with higher pulmonary vascular pressures and lower maximal cardiac output, with increased likelihood of right ventricular function limitation and altered gas exchange by interstitial lung edema. Pharmacological interventions aimed at the reduction of pulmonary vascular tone have little effect on pulmonary vascular pressure-flow relationships in normoxia, but may decrease resistance in hypoxia, unloading the right ventricle and thereby improving exercise capacity. Exercise in patients with pulmonary hypertension is associated with sharp increases in pulmonary artery pressure and a right ventricular limitation of aerobic capacity. Exercise stress testing to determine multipoint pulmonary vascular pressures-flow relationships may uncover early stage pulmonary vascular disease.

  3. Does Hydrothermal Circulation Matter?

    NASA Astrophysics Data System (ADS)

    Stein, C. A.; Stein, S.; von Herzen, R. P.; Fisher, A. T.

    2006-05-01

    Determining Earth's energy budget and the sources and mechanisms for heat transfer within it depends largely on assumptions of the heat loss from the formation and cooling of oceanic lithosphere, which covers about 60% of Earth's surface. Recently Hofmeister and Criss (2005) have suggested that the total global heat flow is about 30 TW, about 25% less than previously estimated by Pollack et al. (1993). The main difference between the two estimates is whether the effects of heat transfer by hydrothermal circulation are included. Thermal models describe the evolution of the lithosphere by the conductive cooling of hot material as it moves away from spreading centers. The frequently used half-space (boundary layer) and "plate" models generally successfully represent heat flow, depth, and geoid values with age, and depth-dependent properties such as flexural thickness, maximum depth of intraplate earthquakes, and lithospheric thickness. However, such models overpredict the measured heat flow from ridge crest to about 65 Myr crust. This difference is generally assumed to reflect water flow in the crust transporting heat, as shown by the spectacular hot springs at midocean ridges. If so, the observed heat flow is lower than the model's predictions, which assume that all heat is transferred by conduction. Because hydrothermal heat transport is hard to quantify, heat flow is about 50% larger than directly measured. This estimate is consistent with observations of hydrothermal circulation which indicate that the discrepancy is largely a result of the water fluxing along the oceanic basement and upwelling at isolated basement highs and outcrops. Detailed studies at such areas often show high heat flow near these outcrops and low heat flow in the surrounding areas. Hence isolated measurements are biased towards lower values and underpredict the total heat flow.

  4. Broad Range of Hepatitis B Virus (HBV) Patterns, Dual Circulation of Quasi-Subgenotype A3 and HBV/E and Heterogeneous HBV Mutations in HIV-Positive Patients in Gabon

    PubMed Central

    Bivigou-Mboumba, Berthold; François-Souquière, Sandrine; Deleplancque, Luc; Sica, Jeanne; Mouinga-Ondémé, Augustin; Amougou-Atsama, Marie; Chaix, Marie-Laure; Njouom, Richard; Rouet, François

    2016-01-01

    Integrated data on hepatitis B virus (HBV) patterns, HBV genotypes and mutations are lacking in human immunodeficiency virus type 1 (HIV-1) co-infected patients from Africa. This survey was conducted in 2010–2013 among 762 HIV-1-positive adults from Gabon who were predominantly treated with 3TC-based antiretroviral treatment. HBV patterns were identified using immunoassays detecting total antibody to hepatitis B core antigen (HBcAb), hepatitis B surface antigen (HBsAg), IgM HBcAb, hepatitis B e antigen (HBeAg), antibody to HBsAg (HBsAb) and an in-house real-time PCR test for HBV DNA quantification. Occult hepatitis B (OBI) was defined by the presence of isolated anti-HBc with detectable serum HBV DNA. HBV genotypes and HBV mutations were analyzed by PCR-direct sequencing method. Seventy-one (9.3%) patients tested positive for HBsAg, including one with acute hepatitis B (0.1%; 95% CI, 0.0%-0.2%), nine with HBeAg-positive chronic hepatitis B (CHB) (1.2%; 95% CI, 0.6%–2.2%), 16 with HBeAg-negative CHB (2.1%; 95% CI, 1.2%–3.3%) and 45 inactive HBV carriers (5.9%; 95% CI, 4.4%–7.8%). Sixty-one (8.0%; 95% CI, 6.2%–10.1%) patients showed OBI. Treated patients showed similar HBV DNA levels to those obtained in untreated patients, regardless of HBV patterns. Around 15.0% of OBI patients showed high (>1,000 UI/mL) viremia. The mutation M204V/I conferring resistance to 3TC was more common in HBV/A (47.4%) than in HBV/E isolates (0%) (P = .04). Our findings encouraged clinicians to promote HBV vaccination in patients with no exposure to HBV and to switch 3TC to universal TDF in those with CHB. PMID:26764909

  5. Broad Range of Hepatitis B Virus (HBV) Patterns, Dual Circulation of Quasi-Subgenotype A3 and HBV/E and Heterogeneous HBV Mutations in HIV-Positive Patients in Gabon.

    PubMed

    Bivigou-Mboumba, Berthold; François-Souquière, Sandrine; Deleplancque, Luc; Sica, Jeanne; Mouinga-Ondémé, Augustin; Amougou-Atsama, Marie; Chaix, Marie-Laure; Njouom, Richard; Rouet, François

    2016-01-01

    Integrated data on hepatitis B virus (HBV) patterns, HBV genotypes and mutations are lacking in human immunodeficiency virus type 1 (HIV-1) co-infected patients from Africa. This survey was conducted in 2010-2013 among 762 HIV-1-positive adults from Gabon who were predominantly treated with 3TC-based antiretroviral treatment. HBV patterns were identified using immunoassays detecting total antibody to hepatitis B core antigen (HBcAb), hepatitis B surface antigen (HBsAg), IgM HBcAb, hepatitis B e antigen (HBeAg), antibody to HBsAg (HBsAb) and an in-house real-time PCR test for HBV DNA quantification. Occult hepatitis B (OBI) was defined by the presence of isolated anti-HBc with detectable serum HBV DNA. HBV genotypes and HBV mutations were analyzed by PCR-direct sequencing method. Seventy-one (9.3%) patients tested positive for HBsAg, including one with acute hepatitis B (0.1%; 95% CI, 0.0%-0.2%), nine with HBeAg-positive chronic hepatitis B (CHB) (1.2%; 95% CI, 0.6%-2.2%), 16 with HBeAg-negative CHB (2.1%; 95% CI, 1.2%-3.3%) and 45 inactive HBV carriers (5.9%; 95% CI, 4.4%-7.8%). Sixty-one (8.0%; 95% CI, 6.2%-10.1%) patients showed OBI. Treated patients showed similar HBV DNA levels to those obtained in untreated patients, regardless of HBV patterns. Around 15.0% of OBI patients showed high (>1,000 UI/mL) viremia. The mutation M204V/I conferring resistance to 3TC was more common in HBV/A (47.4%) than in HBV/E isolates (0%) (P = .04). Our findings encouraged clinicians to promote HBV vaccination in patients with no exposure to HBV and to switch 3TC to universal TDF in those with CHB.

  6. Circulation in gas-slurry column reactors

    SciTech Connect

    Clark, N.; Kuhlman, J.; Celik, I.; Gross, R.; Nebiolo, E.; Wang, Yi-Zun.

    1990-08-15

    Circulation in bubble columns, such as those used in fischer-tropsch synthesis, detracts from their performance in that gas is carried on average more rapidly through the column, and the residence time distribution of the gas in the column is widened. Both of these factors influence mass-transfer operations in bubble columns. Circulation prediction and measurement has been undertaken using probes, one-dimensional models, laser Doppler velocimetry, and numerical modeling. Local void fraction was measured using resistance probes and a newly developed approach to determining air/water threshold voltage for the probe. A tall column of eight inch diameter was constructed of Plexiglas and the distributor plate was manufactured to distribute air evenly through the base of the column. Data were gathered throughout the volume at three different gas throughputs. Bubble velocities proved difficult to measure using twin probes with cross-correlation because of radial bubble movement. A series of three-dimensional mean and RMS bubble and liquid velocity measurements were also obtained for a turbulent flow in a laboratory model of a bubble column. These measurements have been made using a three-component laser Doppler velocimeter (LDV), to determine velocity distributions non-intrusively. Finally, the gas-liquid flow inside a vertically situated circular isothermal column reactor was simulated numerically. 74 refs., 170 figs., 5 tabs.

  7. Air pollutant transport in a coastal environment—II. Three-dimensional simulations over Los Angeles basin

    NASA Astrophysics Data System (ADS)

    Lu, Rong; Turco, Richard P.

    The: air quality problems in the Los Angeles basin are related to the local climate. A strong temperature inversion and stagnant synoptic conditions associated with the Pacific high-pressure system favor the generation of severe air pollution episodes. Sea-breezes and mountain-induced flows play an important role: in controlling pollutant transport over the basin. The distributions of pollutants over the basin display complicated three-dimensional patterns, including distinct elevated layers. A three-dimensional meteorological model is used to simulate air flow patterns and pollutant transport in the Los Angeles basin under such conditions. The complex simulated flows are analyzed to explain the origin of the observed pollution layers. Pollutants found in the afternoon mixed layer may be dispersed to three different regions: the high desert to the east and north of the Los Angeles basin; the free troposphere above the temperature inversion; and within the temperature inversion layer itself. Several mechanisms transfer pollution into the inversion layer. Convergence zones in the San Fernando Valley and near Lake Elsinore lift polluted air into the inversion. A coupled sea-bree~eymountain-flow circulation along the southwest flank of the Santa Ana Mts creates pollution layers that extend westward over the coastal plain and offshore. The afternoon pollution layers frequently observed in the western Los Angeles basin are caused by the sea-breeze circulation or the coupled sea-breeze/mountain-flow circulation over the south slope of the San Gabriel Nlts. As the boundary layer stabilizes during the early evening, layers of polluted air are left suspended over the eastern basin. Pollutants trapped in the inversion layer act as a reservoir of poor-quality air for the basin, and may contribute to extreme pollutant concentrations seen after several days of stagnant air.

  8. Circulation dynamics of Mediterranean precipitation variability 1948-98

    NASA Astrophysics Data System (ADS)

    Dünkeloh, A.; Jacobeit, J.

    2003-12-01

    Canonical correlation analysis is used to identify main coupled circulation-rainfall patterns and to relate recent variability and trends of Mediterranean precipitation to large-scale circulation dynamics. Analyses are based on geopotential heights (500 and 1000 hPa levels) for the North Atlantic-European area (National Centers for Environmental Prediction-National Center for Atmospheric Research reanalysis) and on highly resolved (0.5° × 0.5° ) monthly rainfall grids (Climatic Research Unit, Norwich) selected for the Mediterranean area during the 1948-98 period. Combining monthly analyses with similar characteristics to seasonal samples yields winter (October-March), spring (April-May) and summer (June-September) types of coupled variability; a particular autumn type for the whole Mediterranean does not occur on the monthly time scale. Coupled patterns specifically linked to one or two seasons include an east Atlantic jet (EA-Jet) related pattern for summer and a Mediterranean meridional circulation (MMC) pattern for winter and spring. The most important pattern recurring with dynamical adjustments throughout the whole year reflects the seasonal cycle of the Mediterranean oscillation (MO), which is linked (with seasonal dependence) to the Northern Hemisphere teleconnection modes of the Arctic oscillation (AO) and North Atlantic oscillation (NAO). Winter rainfall trends of the recent decades marked by widespread decreases in the Mediterranean area and by opposite conditions in the southeastern part are linked to particular changes over time in several of the associated circulation patterns. Thus, different regional rainfall changes are integrated into an overall interrelation between Mediterranean rainfall patterns and large-scale atmospheric circulation dynamics.

  9. Adhesion patterning by a novel air-lock technique enables localization and in-situ real-time imaging of reprogramming events in one-to-one electrofused hybrids

    PubMed Central

    Sakamoto, S.; Yamazaki, S.; Kurosawa, O.; Oana, H.; Kotera, H.; Washizu, M.

    2016-01-01

    Although fusion of somatic cells with embryonic stem (ES) cells has been shown to induce reprogramming, single-cell level details of the transitory phenotypic changes that occur during fusion-based reprogramming are still lacking. Our group previously reported on the technique of one-to-one electrofusion via micro-slits in a microfluidic platform. In this study, we focused on developing a novel air-lock patterning technique for creating localized adhesion zones around the micro-slits for cell localization and real-time imaging of post fusion events with a single-cell resolution. Mouse embryonic fibroblasts (MEF) were fused individually with mouse ES cells using a polydimethylsiloxane (PDMS) fusion chip consisting of two feeder channels with a separating wall containing an array of micro-slits (slit width ∼3 μm) at a regular spacing. ES cells and MEFs were introduced separately into the channels, juxtaposed on the micro-slits by dielectrophoresis and fused one-to-one by a pulse voltage. To localize fused cells for on-chip culture and time-lapse microscopy, we implemented a two-step approach of air-lock bovine serum albumin patterning and Matrigel coating to create localized adhesion areas around the micro-slits. As a result of time-lapse imaging, we could determine that cell division occurs within 24 h after fusion, much earlier than the 2–3 days reported by earlier studies. Remarkably, Oct4-GFP (Green Fluorescent Protein) was confirmed after 25 h of fusion and thereafter stably expressed by daughter cells of fused cells. Thus, integrated into our high-yield electrofusion platform, the technique of air-lock assisted adhesion patterning enables a single-cell level tracking of fused cells to highlight cell-level dynamics during fusion-based reprogramming. PMID:27822330

  10. The Role of Anthropogenic Aerosol in Atmospheric Circulation Changes

    NASA Astrophysics Data System (ADS)

    Wilcox, L.; Polvani, L. M.; Highwood, E.

    2015-12-01

    Changes in atmospheric circulation patterns play a dominant role in determining the impacts of a changing climate at the continental scale. Using CMIP5 single forcing experiments from an ensemble of models that provided anthropogenic aerosol only simulations to the archive, we quantify the influence of anthropogenic aerosol on several aspects of the atmospheric circulation, including tropical width, jet position, and jet strength. We show that there is a robust circulation response to anthropogenic aerosol in the mid twentieth century, induced by the large increases in emissions at that time. Although most anthropogenic aerosol is found in the Northern Hemisphere, a response is found in both the Northern and Southern hemispheres. We investigate the extent to which diversity in the temperature and circulation responses to aerosol are related to diversity in aerosol loading and radiative forcing.

  11. Air Research

    EPA Pesticide Factsheets

    EPA's air research provides the critical science to develop and implement outdoor air regulations under the Clean Air Act and puts new tools and information in the hands of air quality managers and regulators to protect the air we breathe.

  12. A Description of the Practice Pattern Characteristics of Anesthesia Care in Small, Medium and Large Teaching and Non-Teaching Medical Treatment Facilities in the Air Force

    DTIC Science & Technology

    1999-05-20

    provide pain management services with 50% of small facilities, staffed solely by CRNAs, having this service. The anesthetic agents most utilized...include Fentanyl, Propofol, Versed, Desflurane, Isoflurane, Lidocaine and Rocuronium; others, Bupivicaine, Cisatricurium and Remifentanyl are rarely used...Obstetrical Services .................... 32 Table 6. Percentage of Air Force MTFs Providing Pain Management ........................ 32 Table 7

  13. Internet Use Patterns, Acceptance Levels. and Policy Recommendations: An Information Technology Infusion Approach to the Internet and the United States Air Force.

    DTIC Science & Technology

    1996-12-01

    well as policy recommendations regarding Internet use in the Air Force. The research provides substantial evidence that Internet technology is not being...highly infused at the headquaners-level than it is at base-level. This research also demonstrates that supervisory support for Internet use positively

  14. Biochemical acclimation, stomatal limitation and precipitation patterns underlie decreases in photosynthetic stimulation of Soybean (Glycine max) at elevated [CO2] and temperatures under fully open air field conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The net effect of elevated [CO2] and temperature on photosynthetic acclimation and plant productivity is poorly resolved. We assessed the effects of canopy warming and fully open air [CO2] enrichment on 1) the acclimation of two biochemical parameters that frequently limit photosynthesis (A), the ma...

  15. Natural Flow Air Cooled Photovoltaics

    NASA Astrophysics Data System (ADS)

    Tanagnostopoulos, Y.; Themelis, P.

    2010-01-01

    Our experimental study aims to investigate the improvement in the electrical performance of a photovoltaic installation on buildings through cooling of the photovoltaic panels with natural air flow. Our experimental study aims to investigate the improvement in the electrical performance of a photovoltaic installation on buildings through cooling of the photovoltaic panels with natural air flow. We performed experiments using a prototype based on three silicon photovoltaic modules placed in series to simulate a typical sloping building roof with photovoltaic installation. In this system the air flows through a channel on the rear side of PV panels. The potential for increasing the heat exchange from the photovoltaic panel to the circulating air by the addition of a thin metal sheet (TMS) in the middle of air channel or metal fins (FIN) along the air duct was examined. The operation of the device was studied with the air duct closed tightly to avoid air circulation (CLOSED) and the air duct open (REF), with the thin metal sheet (TMS) and with metal fins (FIN). In each case the experiments were performed under sunlight and the operating parameters of the experimental device determining the electrical and thermal performance of the system were observed and recorded during a whole day and for several days. We collected the data and form PV panels from the comparative diagrams of the experimental results regarding the temperature of solar cells, the electrical efficiency of the installation, the temperature of the back wall of the air duct and the temperature difference in the entrance and exit of the air duct. The comparative results from the measurements determine the improvement in electrical performance of the photovoltaic cells because of the reduction of their temperature, which is achieved by the naturally circulating air.

  16. Monsoon-extratropical circulation interactions in Himalayan extreme rainfall

    NASA Astrophysics Data System (ADS)

    Vellore, Ramesh K.; Kaplan, Michael L.; Krishnan, R.; Lewis, John M.; Sabade, Sudhir; Deshpande, Nayana; Singh, Bhupendra B.; Madhura, R. K.; Rama Rao, M. V. S.

    2016-06-01

    Extreme precipitation and flood episodes in the Himalayas are oftentimes traced to synoptic situations involving connections between equatorward advancing upper level extratropical circulations and moisture-laden tropical monsoon circulation. While previous studies have documented precipitation characteristics in the Himalayan region during severe storm cases, a comprehensive understanding of circulation dynamics of extreme precipitation mechanisms is still warranted. In this study, a detailed analysis is performed using rainfall observations and reanalysis circulation products to understand the evolution of monsoon-extratropical circulation features and their interactions based on 34 extreme precipitation events which occurred in the Western Himalayas (WEH) during the period 1979-2013. Our results provide evidence for a common large-scale circulation pattern connecting the extratropics and the South Asian monsoon region, which is favorable for extreme precipitation occurrences in the WEH region. This background upper level large-scale circulation pattern consists of a deep southward penetrating midlatitude westerly trough, a blocking high over western Eurasia and an intensifying Tibetan anticyclone. It is further seen from our analysis that the key elements of monsoon-midlatitude interactions, responsible for extreme precipitation events over the WEH region, are: (1) midlatitude Rossby wave breaking, (2) west-northwest propagation of monsoon low-pressure system from the Bay of Bengal across the Indian subcontinent, (3) eddy shedding of the Tibetan anticyclone, (4) ageostrophic motions and transverse circulation across the Himalayas, and (5) strong moist convection over the Himalayan foothills. Furthermore, high-resolution numerical simulations indicate that diabatic heating and mesoscale ageostrophic effects can additionally amplify the convective motions and precipitation in the WEH region.

  17. The impact of mineral dust on regional tropical circulation

    NASA Astrophysics Data System (ADS)

    Bangalath, H.; Stenchikov, G. L.

    2012-12-01

    Dust aerosols from the West Asian and African subtropical deserts likely play an important role in regional low-latitude circulation patterns. These aerosols both absorb solar and terrestrial radiation and reflect solar radiation and therefore both cool the surface and warm the lower troposphere. Since the distribution of dust is spatially non-uniform, its cooling/heating effect could significantly disturb regional temperature and pressure fields and affect tropical circulation patterns, including the Hadley and Walker Cells, as well as the Monsoon Circulation. Here, we investigate the direct radiative effect of desert dust on the circulation over the Middle East and North Africa (MENA) and South Asia regions using the high-resolution atmospheric general circulation model (HiRAM) developed at the NOAA Geophysical Fluid Dynamics Laboratory. We conducted simulations with and without dust aerosols with a spatial resolution of 25 km globally, which allowed investigation of the regional features of the tropical circulations and their interactions with global-scale processes. Our analysis of the 200 hPa velocity potential indicated that mineral dust increased the strength of the Hadley Cell. In general, the Hadley, Walker, and Monsoon circulations over the African continent and East Atlantic were intensified by the dust effect, whereas we observed the opposite response over the Pacific. An anomalous strengthening of the wind convergence at the northern border of the Hadley cell over the African continent and in the East Atlantic, especially in the summer, became evident from our simulations. We found that dust aerosols play an important role in the formation of the climate and circulation regimes over MENA and South Asia, suggesting that they should be accounted for in future climate projections.

  18. Discriminatory Air Pollution

    ERIC Educational Resources Information Center

    McCaull, Julian

    1976-01-01

    Described are the patterns of air pollution in certain large urban areas. Persons in poverty, in occupations below the management or professional level, in low-rent districts, and in black population are most heavily exposed to air pollution. Pollution paradoxically is largely produced by high energy consuming middle-and upper-class households.…

  19. Effect of two types of helium circulators on the performance of a subsonic nuclear powered airplane

    NASA Technical Reports Server (NTRS)

    Strack, W. C.

    1971-01-01

    Two types of helium circulators are analytically compared on the bases of their influence on airplane payload and on propulsion system variables. One type of circulator is driven by the turbofan engines with power takeoff shafting while the other, a turbocirculator, is powered by a turbine placed in the helium loop between the nuclear reactor and the helium-to-air heat exchangers inside the engines. Typical results show that the turbocirculator yields more payload for circulator efficiencies greater than 0.82. Optimum engine and heat exchanger temperatures and pressures are significantly lower in the turbocirculator case compared to the engine-driven circulator scheme.

  20. Testing Mantle Circulation Models

    NASA Astrophysics Data System (ADS)

    Webb, P.; Davies, D.; Davies, J.

    2008-12-01

    Over the past decade, a new family of mantle convection models have been developed, which are conditioned by recent plate motion history (e.g. Bunge et al., 1997). They are commonly known as 'mantle circulation models' and allow for comparisons between present-day model predictions and ever improving seismic tomography images (e.g. Li et al. 2008). In this work, we present results from systematic investigations into the influence of various model parameters upon final model prediction/tomography correlations, to obtain a better understanding of their relative importance. These include a range of material properties, such as the radial viscosity structure, the Clapeyron slope of mineral phase transitions and compressibility; in addition to other aspects, such as the initial condition for the simulation. For our comparisons, we focus in particular on two large robust mid-mantle seismic anomalies, which others have related to the subduction of the Farallon and Tethys plates (e.g. Romanowicz, 1980). While these features are recovered with some fidelity in most simulations, the match can vary greatly. We find that there is a great deal of information in this mismatch, which includes information on the plate motion history.

  1. Ockham's Razorblade Shaving Wind-Induced Circulation

    NASA Astrophysics Data System (ADS)

    Bergmann, Juan Carlos

    2010-05-01

    Terrestrial physical oceanography is fortunate because of the existence of the continents that divide the low-latitude oceans into basins. At first glance, the previous statement appears to be not obvious because an ocean-planet should be much simpler to describe. Simple-case explanation is the central aspect of Ockham's Razorblade: If a theory fails to describe the most-simple case properly, the theory is, at least, ‘not good'. Also Descartes' methodical rules take the most-simple case as starting point. The analysis of wind-induced circulation on an ocean-planet will support the initial statement. Earth's south hemisphere is dominated by the oceans. The continents' influence on the zonal-average zonal-wind climate is relatively small. Therefore, South Hemisphere's zonal wind pattern is a relatively good proxy for that of an ocean planet. Application of this wind-stress pattern to an ocean planet yields reasonable meridional mass-flow results from the polar-regions down to the high-pressure belts: Down-welling and up-welling of water-mass are approximately balanced. However, the entire tropical circulation can in principle not be closed because there is only down-welling - even if the extreme down-welling in the equatorial belt (± 8°, with a singularity at the equator) is disregarded. The only input to the calculations is the observed terrestrial south-hemisphere zonal wind-stress pattern. Meridional stress is irrelevant because it produces a closed zonal Ekman-transport around the ocean planet (sic!). Vertical mass-transport is calculated from the divergence of the wind-induced meridional Ekman-mass-transport, which in its turn is a necessary consequence of angular-momentum conservation. No assumptions are made on how the return-flows at depth are forced because the wind-force equations cannot contribute hereto. This circumstance expresses a fundamental difference to atmospheric circulation, where mechanical forcing is caused by the pressure-fields that

  2. Recent warming on Spitsbergen—Influence of atmospheric circulation and sea ice cover

    NASA Astrophysics Data System (ADS)

    Isaksen, K.; Nordli, Å.; Førland, E. J.; Łupikasza, E.; Eastwood, S.; Niedźwiedź, T.

    2016-10-01

    Spitsbergen has experienced some of the most severe temperature changes in the Arctic during the last three decades. This study relates the recent warming to variations in large-scale atmospheric circulation (AC), air mass characteristics, and sea ice concentration (SIC), both regionally around Spitsbergen and locally in three fjords. We find substantial warming for all AC patterns for all seasons, with greatest temperature increase in winter. A major part of the warming can be attributed to changes in air mass characteristics associated with situations of both cyclonic and anticyclonic air advection from north and east and situations with a nonadvectional anticyclonic ridge. In total, six specific AC types (out of 21), which occur on average 41% of days in a year, contribute approximately 80% of the recent warming. The relationship between the land-based surface air temperature (SAT) and local and regional SIC was highly significant, particularly for the most contributing AC types. The high correlation between SAT and SIC for air masses from east and north of Spitsbergen suggests that a major part of the atmospheric warming observed in Spitsbergen is driven by heat exchange from the larger open water area in the Barents Sea and region north of Spitsbergen. Finally, our results show that changes in frequencies of AC play a minor role to the total recent surface warming. Thus, the strong warming in Spitsbergen in the latest decades is not driven by increased frequencies of "warm" AC types but rather from sea ice decline, higher sea surface temperatures, and a general background warming.

  3. Impact of atmospheric circulation fluctuations on the zoobenthos dynamics in the Sea of Azov

    NASA Astrophysics Data System (ADS)

    Matishov, G. G.; Gargopa, Yu. M.; Sarvilina, S. V.

    2010-02-01

    The impact of atmospheric circulation fluctuations (Vangengeim’s classification) on the zoobenthos dynamics in the Sea of Azov was studied. The “western” circulation processes lead to zoobenthos biomass decrease, and the opposite pattern was observed when “eastern” circulation processes prevail. A quasiperiodicity with 3-7 to 10-15 year cycles is revealed for the zoobenthos biomass dynamics. These changes are closely connected with the climatically induced increase of the zoobenthos biomass in the Sea of Azov.

  4. Continental Shelf Embayments of the Eastern Margin of the Philippines; Lamon Bay Stratification & Circulation

    DTIC Science & Technology

    2012-09-30

    in 2011. Data from R/V Revelle hull mounted ADCP. The hull ADCP and the CTD thermohaline stratification reveal a shift in circulation pattern...Philippines; Lamon Bay Stratification & Circulation Arnold L. Gordon Lamont-Doherty Earth Observatory 61 Route 9W Palisades, NY 10964-8000... circulation , stratification and the Shelf-Slope interaction, and the resultant ocean productivity, within a major embayment, Lamon Bay, of the eastern

  5. Recent accelerating mass loss of southeast Tibetan glaciers and the relationship with changes in macroscale atmospheric circulations

    NASA Astrophysics Data System (ADS)

    Yang, Wei; Guo, Xiaofeng; Yao, Tandong; Zhu, Meilin; Wang, Yongjie

    2016-08-01

    The mass balance history (1980-2010) of a monsoon-dominated glacier in the southeast Tibetan Plateau is reconstructed using an energy balance model and later interpreted with regard to macroscale atmospheric variables. The results show that this glacier is characterized by significant interannual mass fluctuations over the past three decades, with a remarkably high mass loss during the recent period of 2003-2010. Analysis of the relationships between glacier mass balance and climatic variables shows that interannual temperature variability in the monsoonal season (June-September) is a primary driver of its mass balance fluctuations, but monsoonal precipitation tends to play an accentuated role for driving the observed glacier mass changes due to their covariation (concurrence of warm/dry and cold/wet climates) in the monsoon-influenced southeast Tibetan Plateau. Analysis of the atmospheric circulation pattern reveals that the predominance of anticyclonic/cyclonic circulations prevailing in the southeastern/northern Tibetan Plateau during 2003-2010 contributes to increased air temperature and decreased precipitation in the southeast Tibetan Plateau. Regionally contrasting atmospheric circulations explain the distinct mass changes between in the monsoon-influenced southeast Tibetan Plateau and in the north Tibetan Plateau/Tien Shan Mountains during 2003-2010. The macroscale climate change seems to be linked with the Europe-Asia teleconnection.

  6. Mexico City basin wind circulation during the MCMA-2003 field campaign

    NASA Astrophysics Data System (ADS)

    de Foy, B.; Caetano, E.; Magaña, V.; Zitácuaro, A.; Cárdenas, B.; Retama, A.; Ramos, R.; Molina, L. T.; Molina, M. J.

    2005-05-01

    MCMA-2003 was a major field campaign investigating the atmospheric chemistry of the Mexico City Metropolitan Area (MCMA) in April of 2003. This paper describes the wind circulation patterns during the campaign both within the Mexico City basin and on the regional scale. ''Time roses'' are introduced to concisely analyze the diurnal wind patterns. Three episode types were identified that explain the conditions encountered: ''O3-South'', ''Cold Surge'' and ''O3-North''. These can be diagnosed from a combination of synoptic and basin observations based on whether the day was predominantly cloudy, or whether the O3 peak was in the north or south of the basin. O3-South days have weak synoptic forcing due to an anti-cyclone over the eastern Pacific. Strong solar heating leads to northerly flows in the basin and an evening shift due to a gap flow from the south-east. Peak ozone concentrations are in the convergence zone in the south of the city. Cold Surge days are associated with ''El Norte'' events, with strong surface northerlies bringing cold moist air and rain. Stable conditions lead to high concentrations of primary pollutants and peak ozone in the city center. O3-North days occur when the sub-tropical jet is closer to Mexico City. With strong westerlies aloft, the circulation pattern is the same as O3-South days except for a wind shift in the mid-afternoon leading to ozone peaks in the north of the city. This classification is proposed as a means of understanding pollutant transport in the Mexico City basin and as a basis for future meteorological and chemical analysis. Furthermore, model evaluation and design of policy recommendations will need to take into account the three episode types.

  7. Mexico City basin wind circulation during the MCMA-2003 field campaign

    NASA Astrophysics Data System (ADS)

    de Foy, B.; Caetano, E.; Magaña, V.; Zitácuaro, A.; Cárdenas, B.; Retama, A.; Ramos, R.; Molina, L. T.; Molina, M. J.

    2005-08-01

    MCMA-2003 was a major field campaign investigating the atmospheric chemistry of the Mexico City Metropolitan Area (MCMA) in April of 2003. This paper describes the wind circulation patterns during the campaign both within the Mexico City basin and on the regional scale. ''Time roses'' are introduced to concisely analyze the diurnal wind patterns. Three episode types were identified that explain the conditions encountered: ''O3-South'', ''Cold Surge'' and ''O3-North''. These can be diagnosed from a combination of synoptic and basin observations based on whether the day was predominantly cloudy, or whether the O3 peak was in the north or south of the basin. O3-South days have weak synoptic forcing due to an anti-cyclone over the eastern Pacific. Strong solar heating leads to northerly flows in the basin and an evening shift due to a gap flow from the south-east. Peak ozone concentrations are in the convergence zone in the south of the city. Cold Surge days are associated with ''El Norte'' events, with strong surface northerlies bringing cold moist air and rain. Stable conditions lead to high concentrations of primary pollutants and peak ozone in the city center. O3-North days occur when the sub-tropical jet is closer to Mexico City. With strong westerlies aloft, the circulation pattern is the same as O3-South days except for a wind shift in the mid-afternoon leading to ozone peaks in the north of the city. This classification is proposed as a means of understanding pollutant transport in the Mexico City basin and as a basis for future meteorological and chemical analysis. Furthermore, model evaluation and design of policy recommendations will need to take into account the three episode types.

  8. Why was Atmospheric Circulation Decoupled from Tropical Pacific SSTs in 2014/15 winter?

    NASA Astrophysics Data System (ADS)

    Peng, P.

    2015-12-01

    In late 2014 and early 2015, although Niño3.4 index exceeded the threshold for a weak-moderate El Niño, a canonical atmospheric response to ENSO event was not observed in the central and eastern equatorial Pacific. In an effort to understand why it was so, this study decomposed the DJF mean sea surface temperature (SST), precipitation rate and 200hPa stream function anomalies observed in the 2014/15 winter into the patterns related to the principal components of the DJF SST variability. It is found that the anomalies of these variables were mainly determined by the patterns related to two SST modes, one is the North Pacific Mode (NPM), and the other the El Niño and South Oscillation (ENSO) mode. The NPM was the dominant factor and was responsible for the apparent uncoupled air-sea relationship in the central equatorial Pacific and the east-west structure of the circulation anomalies over North America. The ENSO mode was important for SSTs in the central and eastern equatorial Pacific and for the circulation in the central equatorial Pacific. Further, ENSO signal likely evolved from the NPM pattern in the 2013/14 winter, however, its full development was impeded by the unusual persistence of the strong NPM throughout the year. The analysis for DJF 2014/15 winter indicates that the SST anomalies in Niño3.4 alone were not adequate for capturing the coupling of ocean and atmosphere anomalies in the tropical Pacific, due to the fact that it can't distinguish if the SST anomaly in the Niño3.4 region is associated with the ENSO mode or NPM, or both.

  9. Circulation, Systems, and Space: A Commentary on Interrelationships.

    ERIC Educational Resources Information Center

    Sinclair, Dorothy

    Membership in a library system, consortium, council, or network can affect a library's circulation in a number of ways that, in turn, impact on the library's space requirements. Reciprocal borrowing privileges may change the library use patterns of patrons, increasing traffic in an especially convenient, or well-supplied library. A reciprocal…

  10. Different approaches to model the nearshore circulation in the south shore of O'ahu, Hawaii

    NASA Astrophysics Data System (ADS)

    Marcos Azevedo Correia de Souza, Joao; Powell, Brian

    2017-01-01

    The dynamical interaction between currents, bathymetry, waves, and estuarine outflow has significant impacts on the surf zone. We investigate the impacts of two strategies to include the effect of surface gravity waves on an ocean circulation model of the south shore of O'ahu, Hawaii. This area provides an ideal laboratory for the development of nearshore circulation modeling systems for reef-protected coastlines. We use two numerical models for circulation and waves: Regional Ocean Modeling System (ROMS) and Simulating Waves Nearshore (SWAN) model, respectively. The circulation model is nested within larger-scale models that capture the tidal, regional, and wind-forced circulation of the Hawaiian archipelago. Two strategies are explored for circulation modeling: forcing by the output of the wave model and online, two-way coupling of the circulation and wave models. In addition, the circulation model alone provides the reference for the circulation without the effect of the waves. These strategies are applied to two experiments: (1) typical trade-wind conditions that are frequent during summer months, and (2) the arrival of a large winter swell that wraps around the island. The results show the importance of considering the effect of the waves on the circulation and, particularly, the circulation-wave coupled processes. Both approaches show a similar nearshore circulation pattern, with the presence of an offshore current in the middle beaches of Waikiki. Although the pattern of the offshore circulation remains the same, the coupled waves and circulation produce larger significant wave heights ( ≈ 10 %) and the formation of strong alongshore and cross-shore currents ( ≈ 1 m s-1).

  11. A case study of the Borneo Vortex genesis and its interactions with the global circulation

    NASA Astrophysics Data System (ADS)

    Ooi, See Hai; Samah, Azizan Abu; Braesicke, Peter

    2011-11-01

    During the East Asian winter or the northeast monsoon (November-March), cold surges associated with cold air outbreaks from the Siberian high propagate equatorward and interact with the near-equatorial trough in the southern South China Sea. Usually, in the later phase of the monsoon, the so-called Borneo vortex develops over the sea and is the main driver for the formation of deep convection and heavy rainfall in East Malaysia. We present a case study of a cold-surge-induced event during January 2010. We diagnose a substantial export of potential energy from the Borneo vortex strengthening the subtropical jet. At 200 hPa, the velocity potential maximum related to the established Hadley circulation is shifted eastward from 140°E toward the dateline from presurge to postsurge periods. This modifies the general circulation patterns in the Southern Hemisphere with possible consequences for trace gas distributions. In addition, we explore implications for vertical transport by deep convection occurring in association with the Borneo vortex by diagnosing potential vorticity changes in the vicinity of the vortex.

  12. Bay of Campeche circulation: An update

    NASA Astrophysics Data System (ADS)

    Vázquez de la Cerda, A. M.; Reid, R. O.; DiMarco, S. F.; Jochens, A. E.

    We address four independent sources of observational evidence pertaining to circulation in the Bay of Campeche (BOC), located south of 23°N in the western Gulf of Mexico, with the objective of characterizing its mean circulation, its variability, and the probable forcing thereof. The observational information includes historic hydrographic and dissolved oxygen data, Lagrangian current data, satellite-derived sea surface height anomaly (SSHA), and special observations of marine winds in the BOC. The hydrographic data reveals that the mean surface circulation relative to 425 db and to 800 db includes a weak cyclone with cyclic transport of about 4×106 m3 · s-1. Ten years of near-surface drifter observations shows a statistically meaningful mean cyclonic pattern of current with westward intensification that is consistent with the mean surface dynamic topography relative to 800 db. Observations of mean currents in the BOC at 900 m based on deep floats by G. L. Weatherly and others allows estimation of the current shear from the Lagrangian data and this is geostrophically consistent with that from the dynamic topography relative to 800 m. The mean cyclonic wind stress curl field deduced from two sources of marine wind data indicate a forced Sverdrup transport consistent with that observed. Moreover a seasonal cycle is suggested in the near surface drifter data that is coherent with the seasonal signal in the wind stress curl. Finally, the historic SSHA for a period of over 8 years in the 1990s allows a characterization of the dominant empirical spatial patterns and their temporal variability.

  13. Assessment of the Impact of The East Asian Summer Monsoon on the Air Quality Over China

    NASA Astrophysics Data System (ADS)

    Hao, Nan; Ding, Aijun; Safieddine, Sarah; Valks, Pieter; Clerbaux, Cathy; Trautmann, Thomas

    2016-04-01

    Air pollution is one of the most important environmental problems in developing Asian countries like China. In this region, studies showed that the East Asian monsoon plays a significant role in characterizing the temporal variation and spatial patterns of air pollution, since monsoon is a major atmospheric system affecting air mass transport, convection, and precipitation. Knowledge gaps still exist in the understanding of Asian monsoon impact on the air quality in China under the background of global climate change. For the first time satellite observations of tropospheric ozone and its precursors will be integrated with the ground-based, aircraft measurements of air pollutants and model simulations to study the impact of the East Asian monsoon on air quality in China. We apply multi-platform satellite observations by the GOME-2, IASI, and MOPITT instruments to analyze tropospheric ozone and CO, precursors of ozone (NO2, HCHO and CHOCHO) and other related trace gases over China. Two years measurements of air pollutants including NO2, HONO, SO2, HCHO and CHOCHO at a regional back-ground site in the western part of the Yangtze River Delta (YRD) in eastern China will be presented. The potential of using the current generation of satellite instruments, ground-based instruments and aircraft to monitor air quality changes caused by the East Asian monsoon circulation will be presented. Preliminary comparison results between satellite measurement and limited but valuable ground-based and aircraft measurements will also be showed.

  14. Influence of Human Activity Patterns, particle composition, and residential air exchange rates on modeled distributions of PM 2.5 exposure compared with central-site monitoring data

    EPA Science Inventory

    Central-site monitors do not account for factors such as outdoor-to-indoor transport and human activity patterns that influence personal exposures to ambient fine-particulate matter (PM2.5). We describe and compare different ambient PM2.5 exposure estimation...

  15. Zymosan-induced immune challenge modifies the stress response of hypoxic air-breathing fish (Anabas testudineus Bloch): Evidence for reversed patterns of cortisol and thyroid hormone interaction, differential ion transporter functions and non-specific immune response.

    PubMed

    Simi, S; Peter, Valsa S; Peter, M C Subhash

    2016-11-18

    Fishes have evolved physiological mechanisms to exhibit stress response, where hormonal signals interact with an array of ion transporters and regulate homeostasis. As major ion transport regulators in fish, cortisol and thyroid hormones have been shown to interact and fine-tune the stress response. Likewise, in fishes many interactions have been identified between stress and immune components, but the physiological basis of such interaction has not yet delineated particularly in air-breathing fish. We, therefore, investigated the responses of thyroid hormones and cortisol, ion transporter functions and non-specific immune response of an obligate air-breathing fish Anabas testudineus Bloch to zymosan treatment or hypoxia stress or both, to understand how immune challenge modifies the pattern of stress response in this fish. Induction of experimental peritonitis in these fish by zymosan treatment (200ngg(-1)) for 24h produced rise in respiratory burst and lysozomal activities in head kidney phagocytes. In contrast, hypoxia stress for 30min in immune-challenged fish reversed these non-specific responses of head kidney phagocytes. The decline in plasma cortisol in zymosan-treated fish and its further suppression by hypoxia stress indicate that immune challenge suppresses the cortisol-driven stress response of this fish. Likewise, the decline in plasma T3 and T4 after zymosan-treatment and the rise in plasma T4 after hypoxia stress in immune-challenged fish indicate a critical role for thyroid hormone in immune-stress response due to its differential sensitivity to both immune and stress challenges. Further, analysis of the activity pattern of ion-dependent ATPases viz. Na(+)/K(+)-ATPase, H(+)/K(+)-ATPase and Na(+)/NH4(+)-ATPase indicates a functional interaction of ion transport system with the immune response as evident in its differential and spatial modifications after hypoxia stress in immune-challenged fish. The immune-challenge that produced differential pattern

  16. Computation of spanwise distribution of circulation and lift coefficient for flapped wings of arbitrary planform

    NASA Technical Reports Server (NTRS)

    Razak, K.

    1980-01-01

    The question of the effect of distribution and magnitude of spanwise circulation and shed vorticity from an airplane wing on the distribution pattern of agricultural products distributed from an airplane was studied. The first step in an analysis of this question is the determination of the actual distribution of lift along an airplane wing, from which the pattern of shed vorticity can be determined. A procedure is developed to calculate the span loading for flapped and unflapped wings of arbitrary aspect ratio and taper ratio. The procedure was programmed on a small programmable calculator, the Hewlett Packard HP-97, and also was programmed in BASIC language. They could be used to explore the variations in span loading that can be secured by variable flap deflections or the effect of flying at varying air speeds at different airplane gross weights. Either an absolute evaluation of span loading can be secured or comparative span loading can be evaluated to determine their effect on swath width and swath distribution pattern. The programs are intended to assist the user in evaluating the effect of a given spanload distribution.

  17. Interannual variability of summer rainfall over the northern part of China and the related circulation features

    NASA Astrophysics Data System (ADS)

    Bueh, Cholaw; Li, Yan; Lin, Dawei; Lian, Yi

    2016-08-01

    In this study, interannual variability of summer rainfall over the northern part of China (NPC) and associated circulation patterns were investigated by using long-term (1961-2013) observational and reanalysis data. Two important NPC rainfall modes were identified by empirical orthogonal function analysis: the first is characterized by an almost uniformly distributed rainfall anomaly over most parts of the NPC, while the second shows rainfall variability in Northeast China (NEC) and its out-of-phase relationship with that in North China (NC) and the northern part of Northwest China. The results also suggest that the NPC summer rainfall anomalies are also closely associated with those in some other parts of China. It is revealed that the circumglobal teleconnection pattern associated with the anomalous Indian summer monsoon (ISM) and the Polar/Eurasia (PEA) pattern work in concert to constitute the typical circulation pattern of the first rainfall mode. The cooperative engagement of the anomalous ISM circulation and the PEA pattern is fundamental in transporting water vapor to the NPC. The study emphasizes that the PEA pattern is essential for the water vapor transport to the NPC through the anomalous midlatitude westerly. In the second NPC rainfall mode, the typical circulation pattern is characterized by the anomalous surface Okhotsk high and the attendant lower tropospheric circulation anomaly over NEC. The circulation anomaly over NEC leads to a redistribution of water vapor fluxes over the NPC and constitutes an out-of-phase relationship between the rainfall anomalies over NEC and NC.

  18. Effect of surface gravity waves on atmospheric circulation

    SciTech Connect

    Janssen, P.A.E.M. |

    1994-12-31

    During the last decade there has been considerable interest in the problem of the interaction of wind and waves with emphasis on the sea state dependence of the momentum transfer across the air-sea interface. Simulations with the WAM model show that, depending on the sea state, the drag coefficient may vary by a factor of two. Therefore, one may wonder whether two-way interaction has impact on e.g. the evolution of a depression and the atmospheric circulation. In order to study systematic effects on the atmospheric circulation, climate runs have to be performed. Performing Monte Carlo Forecasting with the coupled WAM-ECMWF model for the winter season 1990, it is concluded that surface gravity waves have a significant impact on the atmospheric circulation.

  19. Circulating Progenitor Cells and Scleroderma

    PubMed Central

    2010-01-01

    Scleroderma (systemic sclerosis) is a disease of unknown origins that involves tissue ischemia and fibrosis in the skin and internal organs such as the lungs. The tissue ischemia is due to a lack of functional blood vessels and an inability to form new blood vessels. Bone marrow–derived circulating endothelial progenitor cells play a key role in blood vessel repair and neovascularization. Scleroderma patients appear to have defects in the number and function of circulating endothelial progenitor cells. Scleroderma patients also develop fibrotic lesions, possibly as the result of tissue ischemia. Fibroblast-like cells called fibrocytes that differentiate from a different pool of bone marrow–derived circulating progenitor cells seem to be involved in this process. Manipulating the production, function, and differentiation of circulating progenitor cells represents an exciting new possibility for treating scleroderma. PMID:18638425

  20. LLNL Ocean General Circulation Model

    SciTech Connect

    Wickett, M. E.; Caldeira, K.; Duffy, P.

    2005-12-29

    The LLNL OGCM is a numerical ocean modeling tool for use in studying ocean circulation over a wide range of space and time scales, with primary applications to climate change and carbon cycle science.