Science.gov

Sample records for air circulation system

  1. SpaceX Dragon Air Circulation System

    NASA Technical Reports Server (NTRS)

    Hernandez, Brenda; Piatrovich, Siarhei; Prina, Mauro

    2011-01-01

    The Dragon capsule is a reusable vehicle being developed by Space Exploration Technologies (SpaceX) that will provide commercial cargo transportation to the International Space Station (ISS). Dragon is designed to be a habitable module while it is berthed to ISS. As such, the Dragon Environmental Control System (ECS) consists of pressure control and pressure equalization, air sampling, fire detection, illumination, and an air circulation system. The air circulation system prevents pockets of stagnant air in Dragon that can be hazardous to the ISS crew. In addition, through the inter-module duct, the air circulation system provides fresh air from ISS into Dragon. To utilize the maximum volume of Dragon for cargo packaging, the Dragon ECS air circulation system is designed around cargo rack optimization. At the same time, the air circulation system is designed to meet the National Aeronautics Space Administration (NASA) inter-module and intra-module ventilation requirements and acoustic requirements. A flight like configuration of the Dragon capsule including the air circulation system was recently assembled for testing to assess the design for inter-module and intra-module ventilation and acoustics. The testing included the Dragon capsule, and flight configuration in the pressure section with cargo racks, lockers, all of the air circulation components, and acoustic treatment. The air circulation test was also used to verify the Computational Fluid Dynamics (CFD) model of the Dragon capsule. The CFD model included the same Dragon internal geometry that was assembled for the test. This paper will describe the Dragon air circulation system design which has been verified by testing the system and with CFD analysis.

  2. 24 CFR 3280.715 - Circulating air systems.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 24 Housing and Urban Development 5 2014-04-01 2014-04-01 false Circulating air systems. 3280.715... Systems § 3280.715 Circulating air systems. Link to an amendment published at 78 FR 73989, Dec. 9, 2013... steel, tin-plated steel, or aluminum, or shall be listed Class 0, Class 1, or Class 2 air ducts. Class...

  3. Cooling System Using Natural Circulation for Air Conditioning

    NASA Astrophysics Data System (ADS)

    Okazaki, Takashi; Seshimo, Yu

    In this paper, Cooling systems with natural circulation loop of refrigerants are reviewed. The cooling system can largely reduce energy consumption of a cooling system for the telecommunication base site. The cooling system consists of two refrigeration units; vapor compression refrigeration unit and sub-cooling unit with a natural-circulation loop. The experiments and calculations were carried out to evaluate the cycle performance of natural circulation loop with HFCs and CO2. The experimental results showed that the cooling capacity of R410A is approximately 30% larger than that of R407C at the temperature difference of 20K and the cooling capacity of CO2 was approximately 4-13% larger than that of R410A under the two-phase condition. On the other hand, the cooling capacity of CO2 was approximately 11% smaller than that of R410A under the supercritical condition. The cooling capacity took a maximum value at an amount of refrigerant and lineally increased as the temperature difference increases and the slightly increased as the height difference. The air intake temperature profile in the inlet of the heat exchangers makes the reverse circulation under the supercritical state and the driving head difference for the reverse circulation depends on the density change to temperature under the supercritical state. Also, a new fan control method to convert the reverse circulation into the normal circulation was reviewed.

  4. 24 CFR 3280.715 - Circulating air systems.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... inches of water or greater. (See § 3280.511). (ii) The refrigerated air cooling supply duct system... greater than 0.3 inches of water when measured at room temperature. In the case of application of external... water manometer or equivalent device calibrated to read in increments not greater than 1/10 inch...

  5. 24 CFR 3280.715 - Circulating air systems.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... inches of water or greater. (See § 3280.511). (ii) The refrigerated air cooling supply duct system... greater than 0.3 inches of water when measured at room temperature. In the case of application of external... water manometer or equivalent device calibrated to read in increments not greater than 1/10 inch...

  6. 24 CFR 3280.715 - Circulating air systems.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... inches of water or greater. (See § 3280.511). (ii) The refrigerated air cooling supply duct system... greater than 0.3 inches of water when measured at room temperature. In the case of application of external... water manometer or equivalent device calibrated to read in increments not greater than 1/10 inch...

  7. 24 CFR 3280.715 - Circulating air systems.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... inches of water or greater. (See § 3280.511). (ii) The refrigerated air cooling supply duct system... greater than 0.3 inches of water when measured at room temperature. In the case of application of external... water manometer or equivalent device calibrated to read in increments not greater than 1/10 inch...

  8. Portable oven air circulator

    DOEpatents

    Jorgensen, Jorgen A.; Nygren, Donald W.

    1983-01-01

    A portable air circulating apparatus for use in cooking ovens which is used to create air currents in the oven which transfer heat to cooking foodstuffs to promote more rapid and more uniform cooking or baking, the apparatus including a motor, fan blade and housing of metallic materials selected from a class of heat resistant materials.

  9. The effectiveness of circulating aeration in air and high purity oxygen systems for control of VOC emissions from aeration basins

    SciTech Connect

    Zhu, H.; Keener, T.C.; Bishop, P.L.; Orton, T.L.; Wang, M.; Siddiqui, K.F.

    1997-12-31

    A simple steady state circulating aeration system (CAS) model has been used to study the effects of volatility and degradability on the fate of VOCs in both air and high purity oxygen (HPO) systems. With increase of circulation ratio in an air CAS, air emissions by stripping can be significantly reduced for compounds of low degradabilities and high volatilities. Enhancement of biodegradation is more significant for compounds of high degradabilities and volatilities. A large portion of VOCs will remain in the wastewater when circulation ratio is high, especially for VOCs that are difficult to degrade. In HPO systems, emissions by stripping are much less than air systems. However, VOCs will remain in the wastewater if they have poor degradabilities. Volatilities of VOCs are not important in HPO systems. Due to their wide range and large uncertainties, degradation rate constants are a major factor determining the effectiveness of a CAS for VOC emission control

  10. CFD analyses of natural circulation in the air-cooled reactor cavity cooling system

    SciTech Connect

    Hu, R.; Pointer, W. D.

    2013-07-01

    The Natural Convection Shutdown Heat Removal Test Facility (NSTF) is currently being built at Argonne National Laboratory, to evaluate the feasibility of the passive Reactor Cavity Cooling System (RCCS) for Next Generation Nuclear Plant (NGNP). CFD simulations have been applied to evaluate the NSTF and NGNP RCCS designs. However, previous simulations found that convergence was very difficult to achieve in simulating the complex natural circulation. To resolve the convergence issue and increase the confidence of the CFD simulation results, additional CFD simulations were conducted using a more detailed mesh and a different solution scheme. It is found that, with the use of coupled flow and coupled energy models, the convergence can be greatly improved. Furthermore, the effects of convection in the cavity and the effects of the uncertainty in solid surface emissivity are also investigated. (authors)

  11. Comparison of the efficacy of a forced-air warming system and circulating-water mattress on core temperature and post-anesthesia shivering in elderly patients undergoing total knee arthroplasty under spinal anesthesia

    PubMed Central

    Lee, Kyu Chang; Lee, Myeong Jong; Kim, Mi-Na; Kim, Ji-Sub; Lee, Won Sang; Lee, Jung Hwa

    2014-01-01

    Background In the present study, we compared changes in body temperature and the occurrence of shivering in elderly patients undergoing total knee arthroplasty under spinal anesthesia during warming with either a forced-air warming system or a circulating-water mattress. Methods Forty-six patients were randomly assigned to either the forced-air warming system (N = 23) or circulating-water mattress (N = 23) group. Core temperature was recorded using measurements at the tympanic membrane and rectum. In addition, the incidence and intensity of post-anesthesia shivering and verbal analogue score for thermal comfort were simultaneously assessed. Results Core temperature outcomes did not differ between the groups. The incidence (13.0 vs 43.5%, P < 0.05) and intensity (20/2/1/0/0 vs 13/5/3/2/0, P < 0.05) of post-anesthesia shivering was significantly lower in the forced-air system group than in the circulating-water mattress group. Conclusions The circulating-water mattress was as effective as the forced-air warming system for maintaining body temperature. However, the forced-air warming system was superior to the circulating-water mattress in reducing the incidence of post-anesthesia shivering. PMID:24910726

  12. Air Circulation and Heat Exchange under Reduced Pressures

    NASA Astrophysics Data System (ADS)

    Rygalov, Vadim; Wheeler, Raymond; Dixon, Mike; Hillhouse, Len; Fowler, Philip

    Low pressure atmospheres were suggested for Space Greenhouses (SG) design to minimize sys-tem construction and re-supply materials, as well as system manufacturing and deployment costs. But rarified atmospheres modify heat exchange mechanisms what finally leads to alter-ations in thermal control for low pressure closed environments. Under low atmospheric pressures (e.g., lower than 25 kPa compare to 101.3 kPa for normal Earth atmosphere), convection is becoming replaced by diffusion and rate of heat exchange reduces significantly. During a period from 2001 to 2009, a series of hypobaric experiments were conducted at Space Life Sciences Lab (SLSLab) NASA's Kennedy Space Center and the Department of Space Studies, University of North Dakota. Findings from these experiments showed: -air circulation rate decreases non-linearly with lowering of total atmospheric pressure; -heat exchange slows down with pressure decrease creating risk of thermal stress (elevated leaf tem-peratures) for plants in closed environments; -low pressure-induced thermal stress could be reduced by either lowering system temperature set point or increasing forced convection rates (circulation fan power) within certain limits; Air circulation is an important constituent of controlled environments and plays crucial role in material and heat exchange. Theoretical schematics and mathematical models are developed from a series of observations. These models can be used to establish optimal control algorithms for low pressure environments, such as a space greenhouse, as well as assist in fundamental design concept developments for these or similar habitable structures.

  13. Circulation Control in NASA's Vehicle Systems

    NASA Technical Reports Server (NTRS)

    Rich, Paul; McKinley, Bob; Jones, Greg

    2005-01-01

    Specific to the application of any technology to a vehicle, such as circulation control, it is important to understand the process that NASA is using to set its direction in research and development. To see how circulation control fits into any given NASA program requires the reader to understand NASA's Vehicle Systems (VS) Program. The VS Program recently celebrated its first year of existence with an annual review - an opportunity to look back on accomplishments, solicit feedback, expand national advocacy and support for the program, and recognize key contributions. Since its formation last year, Vehicle Systems has coordinated seven existing entities in a streamlined aeronautics research effort. It invests in vehicle technologies to protect the environment, make air travel more accessible and affordable for Americans, enable exploration through new aerospace missions, and augment national security. This past year has seen a series of valuable partnerships with industry, academia, and government agencies to make crucial aeronautics advances and assure America s future in flight.

  14. Pneumatic system structure for circulation control aircraft

    NASA Technical Reports Server (NTRS)

    Krauss, Timothy A. (Inventor); Roman, Stephan (Inventor); Beurer, Robert J. (Inventor)

    1986-01-01

    A plenum for a circulation control rotor aircraft which surrounds the rotor drive shaft (18) and is so constructed that the top (32), outer (38) and bottom (36) walls through compressed air is admitted are fixed to aircraft structure and the inner wall (34) through which air passes to rotor blades (14) rotates with the drive shaft and rotor blades.

  15. A new circulation type classification based upon Lagrangian air trajectories

    NASA Astrophysics Data System (ADS)

    Ramos, Alexandre; Sprenger, Michael; Wernli, Heini; Durán-Quesada, Ana María; Lorenzo, Maria Nieves; Gimeno, Luis

    2014-10-01

    A new classification method of the large-scale circulation characteristic for a specific target area (NW Iberian Peninsula) is presented, based on the analysis of 90-h backward trajectories arriving in this area calculated with the 3-D Lagrangian particle dispersion model FLEXPART. A cluster analysis is applied to separate the backward trajectories in up to five representative air streams for each day. Specific measures are then used to characterise the distinct air streams (e.g., curvature of the trajectories, cyclonic or anticyclonic flow, moisture evolution, origin and length of the trajectories). The robustness of the presented method is demonstrated in comparison with the Eulerian Lamb weather type classification. A case study of the 2003 heatwave is discussed in terms of the new Lagrangian circulation and the Lamb weather type classifications. It is shown that the new classification method adds valuable information about the pertinent meteorological conditions, which are missing in an Eulerian approach. The new method is climatologically evaluated for the five-year time period from December 1999 to November 2004. The ability of the method to capture the inter-seasonal circulation variability in the target region is shown. Furthermore, the multi-dimensional character of the classification is shortly discussed, in particular with respect to inter-seasonal differences. Finally, the relationship between the new Lagrangian classification and the precipitation in the target area is studied.

  16. THE ESC COMPUTERIZED CIRCULATION SYSTEM MODEL II.

    ERIC Educational Resources Information Center

    SHAWVER, W.; STRAIN, P.M.

    A NEW CIRCULATION SYSTEM NOW IN USE AT THE ELECTRONICS SYSTEMS CENTER (ESC) LIBRARY, PART OF INTERNATIONAL BUSINESS MACHINES CORPORATION, IS BASED UPON A PREVIOUS SYSTEM WHICH USED TABULATING CARDS, UNIT RECORD MACHINES, AND A SMALL COMPUTER. THE NEW SYSTEM IS A TRANSACTION CARD SYSTEM, IN WHICH ONE BASIC TYPE OF CARD FORMAT IS USED FOR CHARGING,…

  17. Utilization of ventilation air methane as a supplementary fuel at a circulating fluidized bed combustion boiler.

    PubMed

    You, Changfu; Xu, Xuchang

    2008-04-01

    Ventilation air methane (VAM) accounts for 60-80% of the total emissions from coal mining activities in China, which is of serious greenhouse gas concerns as well as a waste of valuable fuel sources. This contribution evaluates the use of the VAM utilization methods as a supplementary fuel at a circulating fluidized bed combustion boiler. The paper describes the system design and discusses some potential technical challenges such as methane oxidation rate, corrosion, and efficiency. Laboratory experimentation has shown that the VAM can be burnt completely in circulated fluidized bed furnaces, and the VAM oxidation does not obviously affect the boiler operation when the methane concentration is less than 0.6%. The VAM decreased the incomplete combustion loss for the circulating fluidized bed combustion furnace. The economic benefit from the coal saving insures that the proposed system is more economically feasible. PMID:18505001

  18. Utilization of ventilation air methane as a supplementary fuel at a circulating fluidized bed combustion boiler

    SciTech Connect

    Changfu You; Xuchang Xu

    2008-04-01

    Ventilation air methane (VAM) accounts for 60-80% of the total emissions from underground coal mining activities in China, which is of serious greenhouse gas concerns as well as a waste of valuable fuel sources. This contribution evaluates the use of the VAM utilization methods as a supplementary fuel at a circulating fluidized bed combustion boiler. The paper describes the system design and discusses some potential technical challenges such as methane oxidation rate, corrosion, and efficiency. Laboratory experimentation has shown that the VAM can be burnt completely in circulated fluidized bed furnaces, and the VAM oxidation does not obviously affect the boiler operation when the methane concentration is less than 0.6%. The VAM decreased the incomplete combustion loss for the circulating fluidized bed combustion furnace. The economic benefit from the coal saving insures that the proposed system is more economically feasible. 17 refs., 3 figs., 1 tab.

  19. Circulating system simplifies dry scrubbing

    SciTech Connect

    Morrison, S.Q.; Jorgensen, C.

    1995-10-01

    This article describes a circulating dry scrubber, based on fluid-bed absorption process, which demonstrates high SO{sub 2} removal with minimal O and M requirements. Unlike other dry scrubbers, this one involves dry reagent and results in dry products. Before construction can begin on a new coal-fired plant, a rigorous set of permit requirements must be satisfied. When the Roanoke Valley Energy Facility, Weldon, NC, began the permitting process for their proposed 44-MW pulverized-coal (p-c)-fired Unit 2, the facility permit limited not only SO{sub 2} emissions (0.187 lb SO{sub 2}/million Btu) but also the removal efficiency of the flue-gas desulfurization process (93%) and the maximum amount of sulfur in the coal (1.6%).

  20. Cryogenic hydrogen circulation system of neutron source

    SciTech Connect

    Qiu, Y. N.; Hu, Z. J.; Wu, J. H.; Li, Q.; Zhang, Y.; Zhang, P.; Wang, G. P.

    2014-01-29

    Cold neutron sources of reactors and spallation neutron sources are classic high flux neutron sources in operation all over the world. Cryogenic fluids such as supercritical or supercooled hydrogen are commonly selected as a moderator to absorb the nuclear heating from proton beams. By comparing supercritical hydrogen circulation systems and supercooled hydrogen circulation systems, the merits and drawbacks in both systems are summarized. When supercritical hydrogen circulates as the moderator, severe pressure fluctuations caused by temperature changes will occur. The pressure control system used to balance the system pressure, which consists of a heater as an active controller for thermal compensation and an accumulator as a passive volume controller, is preliminarily studied. The results may provide guidelines for design and operation of other cryogenic hydrogen system for neutron sources under construction.

  1. Regional climates in the GISS general circulation model: Surface air temperature

    NASA Technical Reports Server (NTRS)

    Hewitson, Bruce

    1994-01-01

    One of the more viable research techniques into global climate change for the purpose of understanding the consequent environmental impacts is based on the use of general circulation models (GCMs). However, GCMs are currently unable to reliably predict the regional climate change resulting from global warming, and it is at the regional scale that predictions are required for understanding human and environmental responses. Regional climates in the extratropics are in large part governed by the synoptic-scale circulation and the feasibility of using this interscale relationship is explored to provide a way of moving to grid cell and sub-grid cell scales in the model. The relationships between the daily circulation systems and surface air temperature for points across the continental United States are first developed in a quantitative form using a multivariate index based on principal components analysis (PCA) of the surface circulation. These relationships are then validated by predicting daily temperature using observed circulation and comparing the predicted values with the observed temperatures. The relationships predict surface temperature accurately over the major portion of the country in winter, and for half the country in summer. These relationships are then applied to the surface synoptic circulation of the Goddard Institute for Space Studies (GISS) GCM control run, and a set of surface grid cell temperatures are generated. These temperatures, based on the larger-scale validated circulation, may now be used with greater confidence at the regional scale. The generated temperatures are compared to those of the model and show that the model has regional errors of up to 10 C in individual grid cells.

  2. Changes in large-scale air circulation and connection with climate variables in Romania

    NASA Astrophysics Data System (ADS)

    Stefan, Sabina; Barbu, Nicu

    2016-04-01

    The aim of this paper is the analysis of the relationship between climate variables (seasonal mean air temperature - T2m, and seasonal amount of precipitation - PP) and large-scale air circulation. In order to achieve this, the air circulation types were derived from GrossWetterTypen (GWT) and WetterLagenKlassifikation (WLK) Catalogues developed within COST733 framework. Daily air circulation types are divided into 18 groups according to the GWT Catalogue and in 40 groups according to the WLK Catalogue and for each type winter (DJF) and summer (JJA) occurrence frequency were calculated. To this end the Pearson correlation coefficient between climate variables and circulation type's frequency were computed. The results reveals that in wintertime the GWT circulation types captures better than WLK circulation types the T2m variability in time that for summer the WLK circulation types captures better than GWT circulation types. This is due to the seasonal variability of the horizontal extension of air masses. We found that the T2m is positive correlated to anticyclonic circulation types and negative correlated with cyclonic types and the PP is correlated to the cyclonic circulation and negative correlated to anticyclonic ones. Additionally, the trend significance of the climate variables as well as air circulation types have been analysed with the non-parametric Mann-Kendall test. The changes of the trends were detected by employing the non-parametric Pettit test. From the trend analysis we can state that some of the anticyclonic circulation types presents upward tendency and some of the cyclonic circulation presents downward tendency. This is an important results because explain the upward trend of the T2m and the downward trend of the PP.

  3. Combined air and water pollution control system

    NASA Technical Reports Server (NTRS)

    Wolverton, Billy C. (Inventor); Jarrell, Lamont (Inventor)

    1990-01-01

    A bioaquatic air pollution control system for controlling both water and atmospheric pollution is disclosed. The pollution control system includes an exhaust for directing polluted gases out of a furnace and a fluid circulating system which circulates fluid, such as waste water, from a source, past the furnace where the fluid flow entrains the pollutants from the furnace. The combined fluid and pollutants are then directed through a rock/plant/microbial filtering system. A suction pump pumps the treated waste water from the filter system past the exhaust to again entrain more pollutants from the furnace where they are combined with the fluid (waste water) and directed to the filter system.

  4. Air pollution and circulating biomarkers of oxidative stress

    PubMed Central

    Staimer, Norbert; Vaziri, Nosratola D.

    2013-01-01

    Chemical components of air pollutant exposures that induce oxidative stress and subsequent inflammation may be partly responsible for associations of cardiovascular morbidity and mortality with airborne particulate matter and combustion-related pollutant gasses. However, epidemiologic evidence regarding this is limited. An exposure-assessment approach is to measure the oxidative potential of particle mixtures because it is likely that hundreds of correlated chemicals are involved in overall effects of air pollution on health. Oxidative potential likely depends on particle composition and size distribution, especially ultrafine particle concentration, and on transition metals and certain semivolatile and volatile organic chemicals. For health effects, measuring systemic oxidative stress in the blood is one feasible approach, but there is no universal biomarker of oxidative stress and there are many potential target molecules (lipids, proteins, DNA, nitric oxide, etc.), which may be more or less suitable for specific study goals. Concurrent with the measurement of oxidative stress, it is important to measure gene and/or protein expression of endogenous antioxidant enzymes because they can modify relations between oxidative stress biomarkers and air pollutants. Conversely, the expression and activities of these enzymes are modified by oxidative stress. This interplay will likely determine the observed effects of air pollutants on systemic inflammatory and thrombotic mediators and related clinical outcomes. Studies are needed to assess the reliability and validity of oxidative stress biomarkers, evaluate differences in associations between oxidative stress biomarkers and various pollutant measurements (mass, chemical components, and oxidative potential), and evaluate impacts of antioxidant responses on these relations. PMID:23626660

  5. High efficiency air cycle air conditioning system

    SciTech Connect

    Rannenberg, G. C.

    1985-11-19

    An air cycle air conditioning system is provided with regenerative heat exchangers upstream and downstream of an expansion turbine. A closedloop liquid circulatory system serially connects the two regenerative heat exchangers for regeneration without the bulk associated with air-to-air heat exchange. The liquid circulatory system may also provide heat transport to a remote sink heat exchanger and from a remote load as well as heat exchange within the sink heat exchanger and load for enhanced compactness and efficiency.

  6. A low energy, bio-secure, 'hybrid' recirculation system incorporating air lift pumps for water circulation, aeration, and CO2 degassing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A ‘Hybrid’ recirculating aquaculture system design utilizes elements of both a ‘Centralized’ design concept with a single water treatment system for a number of fish tanks and the ‘Modular’ design concept which employs a individual treatment system for each fish culture tank. The ‘Hybrid’ recirculat...

  7. Variability of local PM10 mass concentrations in connection with blocking air circulation

    NASA Astrophysics Data System (ADS)

    Ştefan, Sabina; Roman, Iuliana

    2015-06-01

    The aim of this paper is to analyze the temporal variability of Particulate Matter mass concentrations in connection with air circulation, for eight rural sites situated in the Central and Eastern parts of Europe. The stations from Poland, Hungary and Romania are rural stations without sources of pollutants. The analysis covers four winters, between December 2004 and February 2008. The pollution episodes were selected to explain air circulation influence. The results show that the causes of pollution were local, due to high mean sea level pressure and the blocking, as air circulation on large scale, was dominant in the cases of enhanced pollution in the selected area.

  8. Circulation in a Short Cylindrical Couette System

    SciTech Connect

    Akira Kageyama; Hantao Ji; Jeremy Goodman

    2003-07-08

    In preparation for an experimental study of magnetorotational instability (MRI) in liquid metal, we explore Couette flows having height comparable to the gap between cylinders, centrifugally stable rotation, and high Reynolds number. Experiments in water are compared with numerical simulations. The flow is very different from that of an ideal, infinitely long Couette system. Simulations show that endcaps co-rotating with the outer cylinder drive a strong poloidal circulation that redistributes angular momentum. Predicted toroidal flow profiles agree well with experimental measurements. Spin-down times scale with Reynolds number as expected for laminar Ekman circulation; extrapolation from two-dimensional simulations at Re less than or equal to 3200 agrees remarkably well with experiment at Re approximately equal to 106. This suggests that turbulence does not dominate the effective viscosity. Further detailed numerical studies reveal a strong radially inward flow near both endcaps. After turning vertically along the inner cylinder, these flows converge at the midplane and depart the boundary in a radial jet. To minimize this circulation in the MRI experiment, endcaps consisting of multiple, differentially rotating rings are proposed. Simulations predict that an adequate approximation to the ideal Couette profile can be obtained with a few rings.

  9. Air heating system

    DOEpatents

    Primeau, John J.

    1983-03-01

    A self-starting, fuel-fired, air heating system including a vapor generator, a turbine, and a condenser connected in a closed circuit such that the vapor output from the vapor generator is conducted to the turbine and then to the condenser where it is condensed for return to the vapor generator. The turbine drives an air blower which passes air over the condenser for cooling the condenser. Also, a condensate pump is driven by the turbine. The disclosure is particularly concerned with the provision of heat exchanger and circuitry for cooling the condensed fluid output from the pump prior to its return to the vapor generator.

  10. Effects of a Circulating-water Garment and Forced-air Warming on Body Heat Content and Core Temperature

    PubMed Central

    Taguchi, Akiko; Ratnaraj, Jebadurai; Kabon, Barbara; Sharma, Neeru; Lenhardt, Rainer; Sessler, Daniel I.

    2005-01-01

    Background: Forced-air warming is sometimes unable to maintain perioperative normothermia. We therefore compared heat transfer, regional heat distribution, and core rewarming of forced-air warming with a novel circulating-water garment. Methods: Nine volunteers were each evaluated on two randomly ordered study days. They were anesthetized and cooled to a core temperature near 34°C. The volunteers were subsequently warmed for 2.5 hours with either a circulating-water garment or forced-air cover. Overall, heat balance was determined from the difference between cutaneous heat loss (thermal flux transducers) and metabolic heat production (oxygen consumption). Average arm and leg (peripheral) tissue temperatures were determined from 18 intramuscular needle thermocouples, 15 skin thermal flux transducers, and “deep” arm and foot thermometers. Results: Heat production (≈ 60 kcal/h) and loss (≈45 kcal/h) were similar with each treatment before warming. The increase in heat transfer across anterior portions of the skin surface was similar with each warming system (≈65 kcal/h). Forced-air warming had no effect on posterior heat transfer whereas circulating-water transferred 21 ± 9 kcal/h through the posterior skin surface after a half hour of warming. Over 2.5 h, circulating-water thus increased body heat content 56% more than forced air. Core temperatures thus increased faster than with circulating water than forced air, especially during the first hour, with the result that core temperature was 1.1 ± 0.7°C greater after 2.5 h (P < 0.001). Peripheral tissue heat content increased twice as much as core heat content with each device, but the core-to-peripheral tissue temperature gradient remained positive throughout the study. Conclusions: The circulating-water system transferred more heat than forced air, with the difference resulting largely from posterior heating. Circulating water rewarmed patients 0.4°C/h faster than forced air. A substantial peripheral

  11. Linear system identification of a cold flow circulating fluidized bed

    SciTech Connect

    Panday, R; Woerner, B D; Ludlow, J C; Shadle, L J; Boyle, E J

    2009-02-01

    Knowledge of the solids circulation rate (SCR) is essential to the control and improved performance of a circulating fluidized bed system. In the present work, the noise model is derived using the prediction error method considering process and measurement noises acting on the cold flow circulating fluidized bed (CFCFB) with a cork particulate material. The outputs of the initial model are the total pressure drop across the riser, the pressure drop across the crossover, the pressure drop across the primary cyclone, the total pressure drop across the stand-pipe, the pressure drop across the loop seal, and the SCR. The stochastic estimate of SCR is determined from the noise model using the stochastic pressure drop estimates. The deterministic estimate is obtained through the inputs taken as move air flow, riser aeration, and loop seal fluidization air that are all independent variables of the given setup and under the control of the user. The theory has been developed to convert a complete blackbox model to a grey box model through the output-to-state transformation such that both the models of the CFCFB consists of all these output variables as the states of the system, and only pressure drops across the system as the output measurements. Thus, the final models do not include any fictitious terms and they are defined only in terms of physical parameters of the given system. Both components of SCR are separately analysed. The combined SCR response of both the noise model and deterministic model is compared with the validation data set of this state variable in terms of modelfit, and the results are shown.

  12. Electrical Lumped Model Examination for Load Variation of Circulation System

    NASA Astrophysics Data System (ADS)

    Koya, Yoshiharu; Ito, Mitsuyo; Mizoshiri, Isao

    Modeling and analysis of the circulation system enables the characteristic decision of circulation system in the body to be made. So, many models of circulation system have been proposed. But, they are complicated because the models include a lot of elements. Therefore, we proposed a complete circulation model as a lumped electrical circuit, which is comparatively simple. In this paper, we examine the effectiveness of the complete circulation model as a lumped electrical circuit. We use normal, angina pectoris, dilated cardiomyopathy and myocardial infarction for evaluation of the ventricular contraction function.

  13. Development of a hydraulic model of the human systemic circulation

    NASA Technical Reports Server (NTRS)

    Sharp, M. K.; Dharmalingham, R. K.

    1999-01-01

    Physical and numeric models of the human circulation are constructed for a number of objectives, including studies and training in physiologic control, interpretation of clinical observations, and testing of prosthetic cardiovascular devices. For many of these purposes it is important to quantitatively validate the dynamic response of the models in terms of the input impedance (Z = oscillatory pressure/oscillatory flow). To address this need, the authors developed an improved physical model. Using a computer study, the authors first identified the configuration of lumped parameter elements in a model of the systemic circulation; the result was a good match with human aortic input impedance with a minimum number of elements. Design, construction, and testing of a hydraulic model analogous to the computer model followed. Numeric results showed that a three element model with two resistors and one compliance produced reasonable matching without undue complication. The subsequent analogous hydraulic model included adjustable resistors incorporating a sliding plate to vary the flow area through a porous material and an adjustable compliance consisting of a variable-volume air chamber. The response of the hydraulic model compared favorably with other circulation models.

  14. Results of theoretical and experimental studies of hydrodynamics of circulation loops in circulating fluidized bed reactors and systems with interconnected reactors

    NASA Astrophysics Data System (ADS)

    Ryabov, G. A.; Folomeev, O. M.; Sankin, D. A.; Melnikov, D. A.

    2015-02-01

    Problems of the calculation of circulation loops in circulating fluidized bed reactors and systems with interconnected reactors (polygeneration systems for the production of electricity, heat, and useful products and chemical cycles of combustion and gasification of solid fuels)are considered. A method has been developed for the calculation of circulation loop of fuel particles with respect to boilers with circulating fluidized bed (CFB) and systems with interconnected reactors with fluidized bed (FB) and CFB. New dependences for the connection between the fluidizing agent flow (air, gas, and steam) and performance of reactors and for the whole system (solids flow rate, furnace and cyclone pressure drops, and bed level in the riser) are important elements of this method. Experimental studies of hydrodynamics of circulation loops on the aerodynamic unit have been conducted. Experimental values of pressure drop of the horizontal part of the L-valve, which satisfy the calculated dependence, have been obtained.

  15. Air cleaning system

    SciTech Connect

    Tidwell, J.H.

    1987-06-16

    This patent describes an air cleaning system comprising: a motor housing; a motor mounted within the housing; a fan attached to and rotatably driven by the motor; a fan chamber surrounding the fan and having an air inlet and outlet; a separator housing means mounted adjacent to and in spaced relation with the motor housing, the separator housing means having an inlet disposed in communication with a chamber within separator housing means; an outlet disposed in communication with the fan chamber; an air driven separator means mounted in chamber of the separator housing means to receive airflow from inlet for rotation of the separator means and removal of foreign matter from airflow by centrifugal force responsive to rotation of the separator means; the airflow is further directed through the outlet of separator housing means to the fan chamber to be ejected by the fan.

  16. Re-circulating linac vacuum system

    SciTech Connect

    Wells, Russell P.; Corlett, John N.; Zholents, Alexander A.

    2003-05-09

    The vacuum system for a proposed 2.5 GeV, 10{Mu}A recirculating linac synchrotron light source [1] is readily achievable with conventional vacuum hardware and established fabrication processes. Some of the difficult technical challenges associated with synchrotron light source storage rings are sidestepped by the relatively low beam current and short beam lifetime requirements of a re-circulating linac. This minimal lifetime requirement leads directly to relatively high limits on the background gas pressure through much of the facility. The 10{Mu}A average beam current produces very little synchrotron radiation induced gas desorption and thus the need for an ante-chamber in the vacuum chamber is eliminated. In the arc bend magnets, and the insertion devices, the vacuum chamber dimensions can be selected to balance the coherent synchrotron radiation and resistive wall wakefield effects, while maintaining the modest limits on the gas pressure and minimal outgassing.

  17. Natural Circulation Patterns in the VHTR Air-Ingress Accident and Related Issues

    SciTech Connect

    Chang Ho Oh; Eung Soo Kim; Hyung Seok Kang

    2010-10-01

    A natural circulation pattern in a Very High Gas-Cooled Reactor during a hypothetical air-ingress accident has been investigated using computational fluid dynamic (CFD) methods in order to compare with the previous 1-D flow path model for the air-ingress analyses. The GT-MHR 600 MWt reactor was selected to be the reference design and modeled by a half symmetric 3-D geometry using FLUENT 6.3, a commercial CFD code. The simulation was carried out as steady-state calculations, and the boundary conditions were either assumed or provided from the 1-D GAMMA code results. Totally, 12 different cases have been estimated, and many notable findings and results have been obtained in this study. According to the simulations, the natural circulation pattern in the reactor was quite different from the previous 1-D assumptions. A large re-circulation flow with thermal stratification phenomena was clearly observed in the hot-leg and the lower plenum in the 3-D model. This re-circulation flow provided approximately an order faster air-ingress speed (0.46 m/s in superficial velocity) than previously predicted values by 1-D modeling (0.02~0.03 m/s). It indicates that the 1-D air-ingress modeling may significantly distort the air-ingress scenario and consequences. In addition, the complicated natural circulation pattern is eventually expected to lead to very complex graphite oxidations and corrosion patterns.

  18. Natural Circulation Patterns in the VHTR Air-Ingress Accident and Related Issues

    SciTech Connect

    Chang H. Oh; Eung S. Kim

    2012-08-01

    Natural circulation patterns in the VHTR during a hypothetical air-ingress accident have been investigated using computational fluid dynamic (CFD) methods in order to compare results from the previous 1-D model which was developed using GAMMA code for the air-ingress analyses. The GT-MHR 600 MWt reactor was selected to be the reference design and modeled by a half symmetric 3-D geometry using FLUENT 6.3, a commercial CFD code. CFD simulations were carried out as the steady-state calculation, and the boundary conditions were either assumed or provided from the 1-D GAMMA code results. Totally, 12 different cases have been reviewed, and many notable results have been obtained through in this work. According to the simulations, natural circulation patterns in the reactor were quite different from the previous 1-D assumptions. A large re-circulation flow with thermal stratification phenomena was clearly observed in the hot-leg and the lower plenum in the 3-D model. This re-circulation flow provided about an order faster air-ingress speed (0.46 m/s in superficial velocity) than previously predicted by 1-D modeling (0.02~0.03 m/s). It indicates that the 1-D air-ingress modeling may significantly distort the air-ingress scenario and consequences. In addition, complicated natural circulation patterns are eventually expected to result in very complex graphite oxidations and corrosion behaviors.

  19. Air System Information Management

    NASA Technical Reports Server (NTRS)

    Filman, Robert E.

    2004-01-01

    I flew to Washington last week, a trip rich in distributed information management. Buying tickets, at the gate, in flight, landing and at the baggage claim, myriad messages about my reservation, the weather, our flight plans, gates, bags and so forth flew among a variety of travel agency, airline and Federal Aviation Administration (FAA) computers and personnel. By and large, each kind of information ran on a particular application, often specialized to own data formats and communications network. I went to Washington to attend an FAA meeting on System-Wide Information Management (SWIM) for the National Airspace System (NAS) (http://www.nasarchitecture.faa.gov/Tutorials/NAS101.cfm). NAS (and its information infrastructure, SWIM) is an attempt to bring greater regularity, efficiency and uniformity to the collection of stovepipe applications now used to manage air traffic. Current systems hold information about flight plans, flight trajectories, weather, air turbulence, current and forecast weather, radar summaries, hazardous condition warnings, airport and airspace capacity constraints, temporary flight restrictions, and so forth. Information moving among these stovepipe systems is usually mediated by people (for example, air traffic controllers) or single-purpose applications. People, whose intelligence is critical for difficult tasks and unusual circumstances, are not as efficient as computers for tasks that can be automated. Better information sharing can lead to higher system capacity, more efficient utilization and safer operations. Better information sharing through greater automation is possible though not necessarily easy.

  20. Bucknell On-Line Circulation System; A Library Staff View.

    ERIC Educational Resources Information Center

    Rivoire, Helena

    The Bucknell On-Line Circulation System (BLOCS) was designed to meet the requirements of a circulation system of the Ellen Clarke Bertrand Library of Bucknell University. The requirements for an automated system were, in sum: (1) a system whose operations were not only reliable but simple enough for student assistants (many of whom work only 10…

  1. University of Waterloo Library Report on the Circulation System.

    ERIC Educational Resources Information Center

    Waterloo Univ. (Ontario). Dana Porter Arts Library.

    The circulation system of the University of Waterloo (Ontario) Library is analyzed. The analysis includes the environment in which the circulation system must function, general objectives and functional requirements of the system, and a description and evaluation of the existing system. Both the automated and manual elements of the circulation…

  2. Relationship between the large-scale air circulation and frequency of very warm days in Romania

    NASA Astrophysics Data System (ADS)

    Stefan, Sabina; Barbu, Nicu; Baciu, Madalina

    2015-04-01

    In this work is investigated the relationship between the large-scale air circulation and frequency of very warm days (frequency of days with maximum temperature greater or equal to 90th percentile - FrTmax90). This analysis is conducted for summer and winter over the period 1962-2010. Daily temperature data recorded at 85 Romanian meteorological stations with complete observations over the study period were used to calculate the FrTmax90 for summer and winter. Daily air circulation types computed by using two objective catalogues, namely GWT (GrossWetter-Typen) and WLK (WetterLargenKlassifikation) from COST733Action were used to calculate the air circulation frequency for summer and winter. NCEP/NCAR gridded reanalysis data sets were used. For the GWT catalogue the sea level pressure data sets were used to classify the air circulation in the 18 types. In the case of the WLK catalogue the geopotential height at 925 and 500 hPa, zonal and meridional components of wind vector at 700 hPa and precipitable water content for the entire atmospheric column were used to classify the air circulation in the 40 types. For winter were obtained 4 clusters and for summer 8 clusters of FrTmax90 by using a clusterization method. These clusters present homogeneity related to the FrTmax90. The Pearson correlation coefficient (R) is calculated between the FrTmax90 and the air circulation types. The results show that correlation coefficients are greatest in winter than in summer for the GWT catalogue compared to the WLK catalogue. The greatest correlation coefficients was obtained during winter for southwestern-anticyclones (SW[A]) circulation type for all the 4 clusters according to the GWT catalogue. The northwestern-anticyclones-wet (NW-AAW) circulation type presents the greatest correlation coefficient only for the cluster 3 according to the WLK catalogue. We can note that these results depend on the both large-scale air circulation and orography (the Carpathians).

  3. A pneumatic pressure-driven multi-throughput microfluidic circulation culture system.

    PubMed

    Satoh, T; Narazaki, G; Sugita, R; Kobayashi, H; Sugiura, S; Kanamori, T

    2016-06-21

    Here, we report a pneumatic pressure-driven microfluidic device capable of multi-throughput medium circulation culture. The circulation culture system has the following advantages for application in drug discovery: (i) simultaneous operation of multiple circulation units, (ii) use of a small amount of circulating medium (3.5 mL), (iii) pipette-friendly liquid handling, and (iv) a detachable interface with pneumatic pressure lines via sterile air-vent filters. The microfluidic device contains three independent circulation culture units, in which human umbilical vein endothelial cells (HUVECs) were cultured under physiological shear stress induced by circulation of the medium. Circulation of the medium in the three culture units was generated by programmed sequentially applied pressure from two pressure-control lines. HUVECs cultured in the microfluidic device were aligned under a one-way circulating flow with a shear stress of 10 dyn cm(-2); they exhibited a randomly ordered alignment under no shear stress and under reciprocating flow with a shear stress of 10 dyn cm(-2). We also observed 2.8- to 4.9-fold increases in expression of the mRNAs of endothelial nitric oxide synthase and thrombomodulin under one-way circulating flow with a shear stress of 10 dyn cm(-2) compared with conditions of no shear stress or reciprocating flow. PMID:27229626

  4. Automated Circulation Systems as a Source of Secondary Information.

    ERIC Educational Resources Information Center

    Chapin, Giny Ziegler

    This report looks at the use of public library online circulation systems for the generation of in-house secondary information--such as statistical reports and mailing lists--and also considers problems in maintaining confidentiality of patron records when using online circulation systems. Based on a survey of the literature, general information…

  5. Future Air Force systems.

    PubMed

    Tremaine, S A

    1986-10-01

    Planning for the future is under way in earnest at the Aeronautical Systems Division (ASD) at Wright-Patterson Air Force Base. It has been statistically established that it takes from 14-16 years from the generation of a new system idea to enter into engineering development. With this unpleasing, but realistic, schedule in mind, ASD has, during the last 3 years, been initiating long-term planning projects that are pre-starts for new system ideas. They are generated from throughout the Air Force and are locally managed and funded. Through this process, which spans from 12-14 months, specific and revolutionary new ideas for the systems of the future are generated. This article addresses more than a dozen specific new ideas in work at ASD today. These ideas range from a need to replace the C-130 type aircraft after the year 2000 to planning a follow-on to the B-18 well into the 21st century. Among other specific projects are investigation into an immortal fighter intended to be free of reliability and maintenance demands for an especially long period of operation, a new training system and advanced trainer to replace the T-38, a transatmospheric vehicle that could operate in the 100,000-500,000 foot flight region (30,480-152,400 m), and a new means of defending against hostile cruise missile launchers and cruise missiles. Other ideas are also addressed. The article concludes with emphasis on systems that can operate hypersonically in and out of the known atmosphere and greater use of airbreathing propulsion systems operating between Mach 3 and Mach 6. PMID:3778403

  6. Circulating microparticles in systemic Lupus Erythematosus.

    PubMed

    Nielsen, Christoffer Tandrup

    2012-11-01

    Systemic lupus erythematosus (SLE) is a systemic autoimmune disease presenting with a wide array of clinical manifestations and an elusive pathogenesis. A characteristic feature in SLE is the occurrence of autoantibodies against chromatin, double-stranded DNA, and RNA-binding ribonucleoproteins. Observations of defective clearance of dying cells in SLE combined with the generation and exposure of nuclear autoantigens during apoptosis have led to the hypothesis that improperly cleared apoptotic debris constitutes a source of autoantigens capable of triggering autoimmune disease. In blood, circulating, heterogeneous subcellular microparticles (MPs) are released from cells and platelets constitutively and upon cellular activation or apoptosis. Such MPs may reflect the state of their parental cells and tissues, and could serve as markers of pathology. Particular in SLE MPs may serve as carriers of autoantigens and constituents of immune complexes (ICs). The purposes of this PhD thesis were to develop and apply qualitative and quantitative methods to characterize circulating MPs with respect to numbers, cellular origins and composition in a large cohort of well-characterized SLE patients compared to healthy and disease controls and to explore associations with clinical, biochemical and serological parameters. The PhD thesis consists of a review and three papers. In the first paper we show that SLE patients have significantly decreased numbers of annexin V binding MPs and MPs from platelets, leukocytes and endothelial cells using flow cytometry. Two morphologically distinguishable populations of annexin V non-binding MPs were increased in the SLE patients. The annexin V non-binding MPs of most likely cellular origin were associated with the presence of lupus nephritis, markers of increased disease activity and levels of endothelial cell-derived MPs. In the second paper we present the development of a proteomic method to characterize the protein composition of purified

  7. Key Factors of Circulation System Analysis and Design

    ERIC Educational Resources Information Center

    McGee, Rob

    1972-01-01

    Explained are basic concepts and components that are common to manual, machine-aided, and computer-based systems, and their significance as key factors in the analysis and design of academic library circulation systems is documented. (2 references) (Author)

  8. Circulation Systems Interface via Dial-Up Access.

    ERIC Educational Resources Information Center

    Gosier, L. James; Crisco, Mary E.

    1982-01-01

    Describes the development of telephone communications links between automated circulation systems in six public library systems in the state of Maryland, and discusses the implications of such links for interlibrary loan programs. (JL)

  9. Drought Variability in Eastern Part of Romania and its Connection with Large-Scale Air Circulation

    NASA Astrophysics Data System (ADS)

    Barbu, Nicu; Stefan, Sabina; Georgescu, Florinela

    2014-05-01

    Drought is a phenomenon that appears due to precipitation deficit and it is intensified by strong winds, high temperatures, low relative humidity and high insolation; in fact, all these factors lead to increasing of evapotranspiration processes that contribute to soil water deficit. The Standardized Precipitation Evapotranspiration Index (SPEI) take into account all this factors listed above. The temporal variability of the drought in Eastern part of Romania for 50 years, during the period 1961-2010, is investigated. This study is focused on the drought variability related to large scale air circulation. The gridded dataset with spatial resolution of 0.5º lat/lon of SPEI, (https://digital.csic.es/handle/10261/72264) were used to analyze drought periods in connection with large scale air circulation determinate from the two catalogues (GWT - GrossWetter-Typen and WLK - WetterLargenKlassifikation) defined in COST733Action. The GWT catalogue uses at input dataset the sea level pressure and the WLK catalogue uses as input dataset the geopotential field at 925 hPa and 500 hPa, wind at 700 hPa and total water content for entire atmospheric column. In this study we use the GWT catalogue with 18 circulation types and the WLK catalogue with 40 circulation types. The analysis for Barlad Hydrological Basin indicated that the negative values (that means water deficit - drought period) of SPEI are associated with prevailing anticyclonic regime and positive values (that means water excess - rainy period) of SPEI are associated with prevailing cyclonic regime as was expected. In last decade was observed an increase of dry period associated with an increase of anticyclonic activity over Romania. Using GWT18 catalogue the drought are associated with the north-eastern anticyclonic circulation type (NE-A). According to the WLK40 catalogue, the dominant circulation type associated with the drought is north-west-anticyclonic-dry anticyclonic (NW-AAD) type. keywords: drought, SPEI

  10. Vertical air mass exchange driven by the local circulation on the northern slope of Mount Everest

    NASA Astrophysics Data System (ADS)

    Zhou, Libo; Zou, Han; Ma, Shupo; Li, Peng; Zhu, Jinhuan; Huo, Cuiping

    2011-01-01

    To better understand vertical air mass exchange driven by local circulation in the Himalayas, the volume flux of air mass is estimated in the Rongbuk Valley on the northern slope of Mount Everest, based on a volume closure method and wind-profiler measurements during the HEST2006 campaign in June 2006. Vertical air mass exchange was found to be dominated by a strong downward mass transfer from the late morning to late night. The average vertical air volume flux was 0.09 m s-1, which could be equivalent to a daily ventilation of 30 times the enclosed valley volume. This vertical air mass exchange process was greatly affected by the evolution of the South Asian summer monsoon (SASM), with a strong downward transfer during the SASM break stage, and a weak transfer during the SASM active stage.

  11. Air Circulation and Heat Exchange Under Reduced Pressures

    NASA Technical Reports Server (NTRS)

    Rygalov, V.; Wheeler, R.; Dixon, M.; Fowler, P.; Hillhouse, L.

    2010-01-01

    Heat exchange rates decrease non-linearly with reductions in atmospheric pressure. This decrease creates risk of thermal stress (elevated leaf temperatures) for plants under reduced pressures. Forced convection (fans) significantly increases heat exchange rate under almost all pressures except below 10 kPa. Plant cultivation techniques under reduced pressures will require forced convection. The cooling curve technique is a reliable means of assessing the influence of environmental variables like pressure and gravity on gas exchange of plant. These results represent the extremes of gas exchange conditions for simple systems under variable pressures. In reality, dense plant canopies will exhibit responses in between these extremes. More research is needed to understand the dependence of forced convection on atmospheric pressure. The overall thermal balance model should include latent and radiative exchange components.

  12. [Power units of implanted artificial heart and assisted circulation system].

    PubMed

    Kiselev, Iu M; Kremnev, V A; Sadov, V V; Spiridonov, V A

    1976-01-01

    The existing and presently planned systems of power supply for an artificially implanted heart and assisted circulation devices are reviewed. A comparative analysis as to their conformability to biological, functional and technical demands placed on the implanted systems is given. In an implanted artificial heart and assisted circulation systems most promising is shown to be the use of nuclear fuel as a source of power and as converters -- that of thermal engines with gas and steam cycle. PMID:1025440

  13. Long-term air temperature variation in the Karkonosze mountains according to atmospheric circulation

    NASA Astrophysics Data System (ADS)

    Migała, Krzysztof; Urban, Grzegorz; Tomczyński, Karol

    2016-07-01

    The results of meteorological measurements carried out continuously on Mt Śnieżka in Karkonosze mountains since 1880 well document the warming observed on a global scale. Data analysis indicates warming expressed by an increase in the mean annual air temperature of 0.8 °C/100 years. A much higher temperature increase was recorded in the last two decades at the turn of the twenty-first century. Mean decade air temperatures increased from -0.1 to 1.5 °C. It has been shown that there are relationships between air temperature at Mt Śnieżka and global mechanisms of atmospheric and oceanic circulation. Thermal conditions of the Karkonosze (Mt Śnieżka) accurately reflect global climate trends and impact of the North Atlantic Oscillation (NAO) index, macrotypes of atmospheric circulation in Europe (GWL) and Atlantic Multidecadal Oscillation (AMO). The increase in air temperature during the 1989-2012 solar magnetic cycle may reveal a synergy effect to which astrophysical effects and atmospheric and oceanic circulation effects contribute, modified by constantly increasing anthropogenic factors.

  14. 111. 'PROPOSED CIRCULATION SYSTEM.' FROM FAIRFIELD COUNTY PLANNING ASSOCIATION, FAIRFIELD: ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    111. 'PROPOSED CIRCULATION SYSTEM.' FROM FAIRFIELD COUNTY PLANNING ASSOCIATION, FAIRFIELD: THE FIRST PLANNED COUNTY IN NEW ENGLAND, JUNE 1933. - Merritt Parkway, Beginning in Greenwich & running 38 miles to Stratford, Greenwich, Fairfield County, CT

  15. A STRATEGY FOR PROTECTING CIRCULATING SEAWATER SYSTEMS FROM OIL SPILLS

    EPA Science Inventory

    A strategy is described for establishing a simple, inexpensive monitoring program for determining approximate levels of petroleum hydrocarbons in ambient water collected near intake structures of circulating seawater systems. The ambient water is obtained from the depth of intake...

  16. Vertical air circulation in a low-speed lateral flow wind turbine with rotary blades

    NASA Astrophysics Data System (ADS)

    Cheboxarov, Vik. V.; Cheboxarov, Val. V.

    2008-01-01

    The model of a large-scale lateral flow wind turbine with rotary blades is presented and the conditions of numerical aerodynamic investigation of this turbine are described. The results of numerical experiments show that air flowing past the turbine exhibits a considerable vertical (axial) circulation, which increases the power coefficient of the turbine. In the inner space of the turbine, two stable vortices are formed through which retarded streams partly leave the turbine upon flowing past the windward side, to be replaced by faster streams from adjacent layers of air.

  17. Relationship between climate extremes in Romania and their connection to large-scale air circulation

    NASA Astrophysics Data System (ADS)

    Barbu, Nicu; Ştefan, Sabina

    2015-04-01

    The aim of this paper is to investigate the connection between climate extremes (temperature and precipitation) in Romania and large-scale air circulation. Daily observational data of maximum air temperature and amount of precipitation for the period 1961-2010 were used to compute two seasonal indices associated with temperature and precipitation, quantifying their frequency, as follows: frequency of very warm days (FTmax90 ≥ 90th percentile), frequency of very wet days (FPp90; daily precipitation amount ≥ 90th percentile). Seasonally frequency of circulation types were calculated from daily circulation types determined by using two objective catalogues (GWT - GrossWetter-Typen and WLK - WetterLargenKlassifikation) from the COST733Action. Daily reanalysis data sets (sea level pressure, geopotential height at 925 and 500 hPa, u and v components of wind vector at 700 hPa and precipitable water content for the entire atmospheric column) build up by NCEP/NCAR, with 2.5°/2.5° lat/lon spatial resolution, were used to determine the circulation types. In order to select the optimal domain size related to the FTmax90 and the FPp90, the explained variance (EV) has been used. The EV determines the relation between the variance among circulation types and the total variance of the variable under consideration. This method quantifies the discriminatory power of a classification. The relationships between climate extremes in Romania and large-scale air circulation were investigated by using multiple linear regression model (MLRM), the predictands are FTmax90 and FPp90 and the circulation types were used as predictors. In order to select the independent predictors to build the MLRM the collinearity and multicollinearity analysis were performed. The study period is dividend in two periods: the period 1961-2000 is used to train the MLRM and the period 2001-2010 is used to validate the MLRM. The analytical relationship obtained by using MLRM can be used for future projection

  18. Air conditioning system

    DOEpatents

    Lowenstein, Andrew; Miller, Jeffrey; Gruendeman, Peter; DaSilva, Michael

    2005-02-01

    An air conditioner comprises a plurality of plates arranged in a successively stacked configuration with portions thereof having a spaced apart arrangement, and defining between successive adjacent pairs of plates at the spaced apart portions a first and second series of discrete alternating passages wherein a first air stream is passed through the first series of passages and a second air stream is passed through the second series of passages; and said stacked configuration of plates forming integrally therewith a liquid delivery means for delivering from a source a sufficient quantity of a liquid to the inside surfaces of the first series of fluid passages in a manner which provides a continuous flow of the liquid from a first end to a second end of the plurality of plates while in contact with the first air stream.

  19. Automated Bilingual Circulation System Using PC Local Area Networks.

    ERIC Educational Resources Information Center

    Iskanderani, A. I.; Anwar, M. A.

    1992-01-01

    Describes a personal computer and LAN-based automated circulation system capable of handling both Arabic and Latin characters that was developed for use at King Abdullaziz University (Jeddah, Saudi Arabia). Outlines system requirements, system structure, hardware needs, and individual functional modules of the system. Numerous examples and flow…

  20. Fundamentals of air quality systems

    SciTech Connect

    Noll, K.E.

    1999-08-01

    The book uses numerous examples to demonstrate how basic design concepts can be applied to the control of air emissions from industrial sources. It focuses on the design of air pollution control devices for the removal of gases and particles from industrial sources, and provides detailed, specific design methods for each major air pollution control system. Individual chapters provide design methods that include both theory and practice with emphasis on the practical aspect by providing numerous examples that demonstrate how air pollution control devices are designed. Contents include air pollution laws, air pollution control devices; physical properties of air, gas laws, energy concepts, pressure; motion of airborne particles, filter and water drop collection efficiency; fundamentals of particulate emission control; cyclones; fabric filters; wet scrubbers; electrostatic precipitators; control of volatile organic compounds; adsorption; incineration; absorption; control of gaseous emissions from motor vehicles; practice problems (with solutions) for the P.E. examination in environmental engineering. Design applications are featured throughout.

  1. 76 FR 12217 - Exempt Discretionary Program Grants (Section 5309) for Urban Circulator Systems

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-04

    ... Federal Transit Administration Exempt Discretionary Program Grants (Section 5309) for Urban Circulator Systems AGENCY: Federal Transit Administration (FTA), DOT. ] ACTION: Urban Circulator Systems Announcement... program funds for the Urban Circulator program in support of DOT's Livability Initiative, which...

  2. Ambient particulate air pollution and circulating antioxidant enzymes: A repeated-measure study in healthy adults in Beijing, China.

    PubMed

    Wu, Shaowei; Wang, Bin; Yang, Di; Wei, Hongying; Li, Hongyu; Pan, Lu; Huang, Jing; Wang, Xin; Qin, Yu; Zheng, Chanjuan; Shima, Masayuki; Deng, Furong; Guo, Xinbiao

    2016-01-01

    The association of systemic antioxidant activity with ambient air pollution has been unclear. A panel of 40 healthy college students underwent repeated blood collection for 12 occasions under three exposure scenarios before and after relocating from a suburban area to an urban area in Beijing, China in 2010-2011. We measured various air pollutants including fine particles (PM2.5) and determined circulating levels of antioxidant enzymes extracellular superoxide dismutase (EC-SOD) and glutathione peroxidase 1 (GPX1) in the laboratory. An interquartile range increase of 63.4 μg/m(3) at 3-d PM2.5 moving average was associated with a 6.3% (95% CI: 0.6, 12.4) increase in EC-SOD and a 5.5% (95% CI: 1.3, 9.8) increase in GPX1. Several PM2.5 chemical constituents, including negative ions (nitrate and chloride) and metals (e.g., iron and strontium), were consistently associated with increases in EC-SOD and GPX1. Our results support activation of circulating antioxidant enzymes following exposure to particulate air pollution. PMID:26074023

  3. Advanced air revitalization system testing

    NASA Technical Reports Server (NTRS)

    Heppner, D. B.; Hallick, T. M.; Schubert, F. H.

    1983-01-01

    A previously developed experimental air revitalization system was tested cyclically and parametrically. One-button startup without manual interventions; extension by 1350 hours of tests with the system; capability for varying process air carbon dioxide partial pressure and humidity and coolant source for simulation of realistic space vehicle interfaces; dynamic system performance response on the interaction of the electrochemical depolarized carbon dioxide concentrator, the Sabatier carbon dioxide reduction subsystem, and the static feed water electrolysis oxygen generation subsystem, the carbon dioxide concentrator module with unitized core technology for the liquid cooled cell; and a preliminary design for a regenerative air revitalization system for the space station are discussed.

  4. The orbiter air data system

    NASA Technical Reports Server (NTRS)

    Hillje, E. R.

    1985-01-01

    Air data parameters are required during Orbiter atmospheric entry for use by the autoguidance, navigation, and flight control systems, and for crew displays. Conventional aircraft calibrations of the Orbiter air data system were not practicable for the Space Shuttle, therefore extensive wind tunnel testing was required to give confidence in the preflight calibrations. Many challenges became apparent as the program developed; in the overall system design, in the wind tunnel testing program, in the implementation of the air data system calibration, and in the use of the flight data to modify the wind tunnel results. These challenges are discussed along with the methods used to solve the problems.

  5. Variability of stratospheric mean age of air linked to residual circulation and eddy mixing

    NASA Astrophysics Data System (ADS)

    Ploeger, Felix; Riese, Martin; Konopka, Paul; Müller, Rolf; Stiller, Gabi

    2014-05-01

    We analyze the effects of the stratospheric residual circulation and eddy mixing on the variability of mean age of air (AoA) within the framework of the isentropic zonal mean continuity equation. The AoA for the period 2002-2012 has been simulated with the Lagrangian chemistry transport model CLaMS driven by ERA-Interim winds and diabatic heating rates. We find that throughout the stratosphere the effects of the residual circulation and of eddy mixing on AoA are opposite and cancel to a large degree, with the net AoA changes resulting from this delicate balance. Mixing increases AoA equatorwards of about 40 degrees by mixing in aged mid-latitude air, whereas it decreases AoA at higher latitudes. Throughout the tropical stratosphere and in the polar upper stratosphere AoA variability is dominated by the residual circulation. In the subtropics and mid-latitudes AoA variability is dominated mainly by eddy mixing and AoA is not a unique proxy for varibility in the residual circulation. The simulated AoA change during the last decade shows a nonuniform pattern, with a significant AoA increase in the northern hemisphere consistent with recent satellite observations by MIPAS, and decreasing AoA in the lowest stratosphere. Interpreting these AoA changes requires careful consideration of both changes in the residual circulation and changes in eddy mixing. The AoA decrease in the lowest stratosphere results from a strengthening residual circulation, related to an accelerating shallow residual circulation branch. Above about 450K simulated AoA evolves differently than below, with a clear increase in the northern subtropics and mid-latitudes and a decrease in the southern hemisphere. This AoA change pattern during the last decade appears to be related to a southward shift of the subtropical mixing barriers, in good agreement with recent analysis of MIPAS mean age and tracer data.

  6. Circulation System to Online Catalog: The Transition at OSU.

    ERIC Educational Resources Information Center

    Van Pulis, Noelle

    This paper describes the development of an online public access catalog from a limited-purpose online circulation system at Ohio State University (OSU) and the negative and positive aspects of this transition. It is noted that the online system, known as the Library Control System (LCS), was designed to be fully operational in July 1982. Steps in…

  7. Temperature field study of hot water circulation pump shaft system

    NASA Astrophysics Data System (ADS)

    Liu, Y. Y.; Kong, F. Y.; Daun, X. H.; Zhao, R. J.; Hu, Q. L.

    2016-05-01

    In the process of engineering application under the condition of hot water circulation pump, problems of stress concentration caused by the temperature rise may happen. In order to study the temperature field in bearing and electric motor chamber of the hot water circulation pump and optimize the structure, in present paper, the model of the shaft system is created through CREO. The model is analyzed by ANSYS workbench, in which the thermal boundary conditions are applied to calculate, which include the calorific values from the bearings, the thermal loss from electric motor and the temperature from the transporting medium. From the result, the finite element model can reflect the distribution of thermal field in hot water circulation pump. Further, the results show that the maximum temperature locates in the bearing chamber.The theoretical guidance for the electric motor heat dissipation design of the hot water circulation pump can be achieved.

  8. Air Pollution Surveillance Systems

    ERIC Educational Resources Information Center

    Morgan, George B.; And Others

    1970-01-01

    Describes atmospheric data monitoring as part of total airpollution control effort. Summarizes types of gaseous, liquid and solid pollutants and their sources; contrast between urban and rural environmental air quality; instrumentation to identify pollutants; and anticipated new non-wet chemical physical and physiochemical techniques tor cetection…

  9. Quantifying the effects of mixing and residual circulation on trends of stratospheric mean age of air

    NASA Astrophysics Data System (ADS)

    Ploeger, Felix; Abalos, Marta; Birner, Thomas; Konopka, Paul; Legras, Bernard; Müller, Rolf; Riese, Martin

    2015-04-01

    Trends in stratospheric mean age of air are driven both by changes in the (slow, large scale) residual mean mass circulation and by changes in (fast, locally acting) eddy mixing. However, to what degree both effects affect mean age trends is an open question. Here, we present a method that allows the effects of mixing and residual circulation on trends of mean age of air to be quantified. This method is based on mean age simulations with the Lagrangian chemistry transport model CLaMS driven by ERA-Interim reanalysis, and on the mean age tracer continuity equation integrated along the residual circulation. CLaMS simulated climatological mean age in the lower stratosphere shows reliable agreement with balloon borne in-situ obsevations and with satellite observations by MIPAS (Michelson Interferometer for Passive Atmospheric Sounding). During 1990--2013, CLaMS simulated mean age decreases throughout most of the stratosphere, qualitatively consistent with results based on climate model simulations (e.g., Butchart et al., 2010). Remarkably, in the Northern hemisphere subtropics and mid-latitudes above about 24km CLaMS mean age trends are insignificant, consistent with published mean age trends from in-situ observations (Engel et al., 2009). Furthermore, during 2002--2012 CLaMS mean age changes show a clear hemispheric asymmetry in agreement with MIPAS satellite observations (Stiller et al., 2012; Ploeger et al., 2014) and HCl decadal changes (Mahieu et al., 2014). We find that changes in the transit time along the residual circulation alone cannot explain the mean age trends, and including the effect of mixing integrated along the air parcel history is essential. Therefore, differences in mean age trends between models or between models and observations are likely related to differences in the integrated effect of mixing on mean age of air. Above about 550K, trends in the integrated mixing effect appear to be likely coupled to residual circulation changes. References

  10. Study of circulating immune complex size in systemic lupus erythematosus.

    PubMed Central

    Tung, K S; DeHoratius, R J; Williams, R C

    1981-01-01

    The molecular size of circulating immune complexes in patients with systemic lupus erythematosus was determined by the C1q solid-phase assay after the sera were fractionated by sucrose-gradient ultracentrifugation. Circulating immune complexes in patients with membranous glomerulonephritis were uniformly large, sedimenting exclusively above 19S, whereas the immune complexes in patients with cerebritis were small, at or just above 7S. In lupus patients with diffuse proliferative glomerulonephritis and patients without renal involvement, immune complexes of both large and small sizes were found. Of patients without renal involvement, more circulating immune complexes were associated with active disease (n = 22, prevalence = 82%, mean level = 24 standard deviations) than with inactive disease (n = 17, prevalence = 41%, mean level = 41%, mean level = 6 . 5 standard deviations). In patients with clinical evidence for renal involvement, circulating immune complexes were detected in all of five patients with membranous glomerulonephritis, in 88% of 17 patients with diffuse proliferative glomerulonephritis and in one of four patients with mesangial nephritis. Thus, in addition to the finding of an overall positive correlation between disease activity and circulating immune complex levels, circulating immune complexes of certain general molecular size ranges appear to be associated with different clinical manifestations of systemic lupus erythematosus. Images Fig. 1 Fig. 2 Fig. 3 PMID:7285395

  11. Air ejector augmented compressed air energy storage system

    DOEpatents

    Ahrens, Frederick W.; Kartsounes, George T.

    1980-01-01

    Energy is stored in slack demand periods by charging a plurality of underground reservoirs with air to the same peak storage pressure, during peak demand periods throttling the air from one storage reservoir into a gas turbine system at a constant inlet pressure until the air pressure in the reservoir falls to said constant inlet pressure, thereupon permitting air in a second reservoir to flow into said gas turbine system while drawing air from the first reservoir through a variable geometry air ejector and adjusting said variable geometry air ejector, said air flow being essentially at the constant inlet pressure of the gas turbine system.

  12. Air ejector augmented compressed air energy storage system

    DOEpatents

    Ahrens, F.W.; Kartsounes, G.T.

    Energy is stored in slack demand periods by charging a plurality of underground reservoirs with air to the same peak storage pressure, during peak demand periods throttling the air from one storage reservoir into a gas turbine system at a constant inlet pressure until the air presure in the reservoir falls to said constant inlet pressure, thereupon permitting air in a second reservoir to flow into said gas turbine system while drawing air from the first reservoir through a variable geometry air ejector and adjusting said variable geometry air ejector, said air flow being essentially at the constant inlet pressure of the gas turbine system.

  13. PRESSURE DROP EVALUATION OF THE HYDROGEN CIRCULATION SYSTEM FOR JSNS

    SciTech Connect

    Tatsumoto, H.; Aso, T.; Ohtsu, K.; Kato, T.; Futakawa, M.

    2010-04-09

    In J-PARC, an intense spallation neutron source (JSNS) driven by a proton beam of 1 MW has selected supercritical hydrogen with a temperature of around 20 K and the pressure of 1.5 MPa as a moderator material. A hydrogen-circulation system, which consists of two pumps, an ortho-para hydrogen converter, a heater, an accumulator and a helium-hydrogen heat exchanger, has been designed to provide supercritical hydrogen to the moderators and remove the nuclear heating there. A hydrogen-circulation system is cooled through the heat exchanger by a helium refrigerator with the refrigeration power of 6.45 kW at 15.5 K. It is important for the cooling design of the hydrogen-circulation system to understand the pressure drops through the equipments. In this work, the pressure drop through each component was analyzed by using a CFD code, STAR-CD. The correlation of the pressure drops through the components that can describe the analytical results within 14% differences has been derived. It is confirmed that the pressure drop in the hydrogen circulation system would be estimated to be 37 kPa for the circulation flow rate of 160 g/s by using the correlations derived here, and is sufficiently lower than the allowable pump head of 100 kPa.

  14. Pressure Drop Evaluation of the Hydrogen Circulation System for Jsns

    NASA Astrophysics Data System (ADS)

    Tatsumoto, H.; Aso, T.; Ohtsu, K.; Kato, T.; Futakawa, M.

    2010-04-01

    In J-PARC, an intense spallation neutron source (JSNS) driven by a proton beam of 1 MW has selected supercritical hydrogen with a temperature of around 20 K and the pressure of 1.5 MPa as a moderator material. A hydrogen-circulation system, which consists of two pumps, an ortho-para hydrogen converter, a heater, an accumulator and a helium-hydrogen heat exchanger, has been designed to provide supercritical hydrogen to the moderators and remove the nuclear heating there. A hydrogen-circulation system is cooled through the heat exchanger by a helium refrigerator with the refrigeration power of 6.45 kW at 15.5 K. It is important for the cooling design of the hydrogen-circulation system to understand the pressure drops through the equipments. In this work, the pressure drop through each component was analyzed by using a CFD code, STAR-CD. The correlation of the pressure drops through the components that can describe the analytical results within 14% differences has been derived. It is confirmed that the pressure drop in the hydrogen circulation system would be estimated to be 37 kPa for the circulation flow rate of 160 g/s by using the correlations derived here, and is sufficiently lower than the allowable pump head of 100 kPa.

  15. Performance of an efficient Helium Circulation System on a MEG

    NASA Astrophysics Data System (ADS)

    Takeda, T.; Okamoto, M.; Atsuda, K.; Katagiri, K.

    2009-02-01

    We report a Helium Circulation System (HCS) that re-liquefies all the evaporating helium gas, consumes far less power and has extremely lower magnetic noise compared with conventional systems. It collects warm helium gas about 300 K, cools it to about 40K and returns it to the neck tube of the Dewar to keep it cold. It also collects helium gas just above the liquid helium surface while it is still cold, re-liquefies and returns it to the Dewar. A special transfer tube (TT) about 2 m length with 7 multi-concentric pipes was developed to allow the dual helium streams. It separates the HCS with a MEG to reduce magnetic noise. A refiner to collect the contaminating gases such as oxygen and nitrogen effectively by freezing the gases is developed. It has an electric heater to remove the frozen contamination in the form of gases into the air. A gas flow controller is also developed, which automatically control the heater to cleanup the contamination. The developed TT has very low heat inflow less than 0.1W/m to the liquid helium ensuring the efficient operation. The HCS can re-liquefy up to 35.5 1/D of liquid helium from the evaporated helium gas using two 1.5W@4.2K GM cryocoolers (SRDK-415D, Sumitomo Heavy Industries, Ltd.). It has been confirmed that the HCS could be used with the real MEG system without any noise problem for over one year. The maintenance cost (electricity charges and cryocoolers maintenance fee) of the MEG has reduced to be less than 1/10 of the previous cost.

  16. The microbiological quality of air improves when using air conditioning systems in cars

    PubMed Central

    2010-01-01

    Background Because of better comfort, air conditioning systems are a common feature in automobiles these days. However, its impact on the number of particles and microorganisms inside the vehicle - and by this its impact on the risk of an allergic reaction - is yet unknown. Methods Over a time period of 30 months, the quality of air was investigated in three different types of cars (VW Passat, VW Polo FSI, Seat Alhambra) that were all equipped with a automatic air conditioning system. Operation modes using fresh air from outside the car as well as circulating air from inside the car were examined. The total number of microorganisms and the number of mold spores were measured by impaction in a high flow air sampler. Particles of 0.5 to 5.0 μm diameter were counted by a laser particle counter device. Results Overall 32 occasions of sampling were performed. The concentration of microorganisms outside the cars was always higher than it was inside the cars. Few minutes after starting the air conditioning system the total number of microorganisms was reduced by 81.7%, the number of mold spores was reduced by 83.3%, and the number of particles was reduced by 87.8%. There were no significant differences neither between the types of cars nor between the types of operation mode of the air conditioning system (fresh air vs. circulating air). All parameters that were looked for in this study improved during utilization of the car's air conditioning system. Conclusions We believe that the risk of an allergic reaction will be reduced during use also. Nevertheless, we recommend regular maintenance of the system and replacement of older filters after defined changing intervals. PMID:20515449

  17. Cold air systems: Sleeping giant

    SciTech Connect

    MacCracken, C.D. )

    1994-04-01

    This article describes how cold air systems help owners increase the profits from their buildings by reducing electric costs and improving indoor air quality through lower relative humidity levels. Cold air distribution involves energy savings, cost savings, space savings, greater comfort, cleaner air, thermal storage, tighter ducting, coil redesign, lower relative humidities, retrofitting, and improved indoor air quality (IAQ). It opens a door for architects, engineers, owners, builders, environmentalists, retrofitters, designers, occupants, and manufacturers. Three things have held up cold air's usage: multiple fan-powered boxes that ate up the energy savings of primary fans. Cold air room diffusers that provided inadequate comfort. Condensation from ducts, boxes, and diffusers. Such problems have been largely eliminated through research and development by utilities and manufacturers. New cold air diffusers no longer need fan powered boxes. It has also been found that condensation is not a concern so long as the ducts are located in air conditioned space, such as drop ceilings or central risers, where relative humidity falls quickly during morning startup.

  18. Cold-air outbreaks over the ocean at high latitudes and associated mesoscale atmospheric circulations: Problems of numerical modelling

    NASA Astrophysics Data System (ADS)

    Chechin, D. G.; Pichugin, M. K.

    2015-12-01

    A review of the current state of research in the field of numerical modelling and forecasting of cold-air outbreaks over the ocean at high latitudes and associated mesoscale circulations is presented. It is shown that the most relevant tasks are as follows: (1) the improvement of predictability and the adequacy of reproduction of polar mesocyclones, (2) a more adequate representation of the marginal sea-ice zone in the numerical models, and (3) solving problems of the parametrization and explicit reproduction of organized convection and orographic jets in numerical atmosphere models. It is demonstrated that these tasks only can be accomplished as a result of a comprehensive development of different components of the climatic system models and technology of the numerical weather prediction (NWP). One of the most promising approaches to overcome the identified problems is to develop and use methods of satellite remote sensing of the atmosphere and underlying surface in NWP technology. The high potential of analyzing the satellite multisensor data for quantifying parameters of different-scale atmospheric circulations is demonstrated using the example of cold-air outbreaks over the seas of the Far East.

  19. Coastal recirculation potential affecting air pollutants in Portugal: The role of circulation weather types

    NASA Astrophysics Data System (ADS)

    Russo, Ana; Gouveia, Célia; Levy, Ilan; Dayan, Uri; Jerez, Sonia; Mendes, Manuel; Trigo, Ricardo

    2016-06-01

    Coastal zones are under increasing development and experience air pollution episodes regularly. These episodes are often related to peaks in local emissions from industry or transportation, but can also be associated with regional transport from neighbour urban areas influenced by land-sea breeze recirculation. This study intends to analyze the relation between circulation weather patterns, air mass recirculation and pollution levels in three coastal airsheds of Portugal (Lisbon, Porto and Sines) based on the application of an objective quantitative measure of potential recirculation. Although ventilation events have a dominant presence throughout the studied 9-yrs period on all the three airsheds, recirculation and stagnation conditions occur frequently. The association between NO2, SO2 and O3 levels and recirculation potential is evident during summer months. Under high average recirculation potential and high variability, NO2 and SO2 levels are higher for the three airsheds, whilst for O3 each airshed responds differently. This indicates a high heterogeneity among the three airsheds in (1) the type of emission - traffic or industry - prevailing for each contaminant, and (2) the response to the various circulation weather patterns and recirculation situations. Irrespectively of that, the proposed methodology, based on iterative K-means clustering, allows to identify which prevailing patterns are associated with high recirculation potential, having the advantage of being applicable to any geographical location.

  20. Data Collection and Cost Modeling for Library Circulation Systems.

    ERIC Educational Resources Information Center

    Bourne, Charles P.

    The objectives of the study leading to this report were to review, analyze and summarize published library cost data; and to develop a cost model and a methodology for reporting data in a more consistent and useful way. The cost model and reporting procedure were developed and tested on the circulation system of three libraries: a large university…

  1. An Automated Circulation System for a Small Technical Library.

    ERIC Educational Resources Information Center

    Culnan, Mary J.

    The traditional manually-controlled circulation records of the Burroughs Corporation Library in Goleta, California, presented problems of inaccuracies, time time-consuming searches, and lack of use statistics. An automated system with the capacity to do file maintenance and statistical record-keeping was implemented on a Burroughts B1700 computer.…

  2. Performance of the Helium Circulation System on a Commercialized MEG

    NASA Astrophysics Data System (ADS)

    T, Takeda; M, Okamoto; T, Miyazaki; K, Katagiri

    2012-12-01

    We report the performance of a helium circulation system (HCS) mounted on a MEG (Magnetoencephalography) at Nagoya University, Japan. This instrument is the first commercialized version of an HCS. The HCS collects warm helium gas at approximately 300 K and then cools it to approximately 40 K. The gas is returned to the neck tube of a Dewar of the MEG to keep it cold. It also collects helium gas in the region just above the liquid helium surface while it is still cold, re-liquefies the gas and returns it to the Dewar. A special transfer tube (TT) of approximately 3 m length was developed to allow for dual helium streams. This tube separates the HCS using a MEG to reduce magnetic noise. A refiner was incorporated to effectively collect contaminating gases by freezing them. The refiner was equipped with an electric heater to remove the frozen contaminants as gases into the air. A gas flow controller was also developed, which automatically controlled the heater and electric valves to clean up contamination. The developed TT exhibited a very low heat inflow of less than 0.1 W/m to the liquid helium, ensuring efficient operation. The insert tube diameter, which was 1.5 in. was reduced to a standard 0.5 in. size. This dimensional change enabled the HCS to mount onto any commercialized MEG without any modifications to the MEG. The HCS can increase liquid helium in the Dewar by at least 3 liters/Day using two GM cryocoolers (SRDK-415D, Sumitomo Heavy Industries, Ltd.). The noise levels were virtually the same as before this installation.

  3. The role of aerosol in altering North Atlantic atmospheric circulation in winter and air-quality feedbacks

    NASA Astrophysics Data System (ADS)

    Pausata, F. S. R.; Gaetani, M.; Messori, G.; Kloster, S.; Dentener, F. J.

    2014-09-01

    Numerical model scenarios of future climate depict a global increase in temperatures and changing precipitation patterns, driven by increasing greenhouse gas (GHG) concentrations. Aerosol concentrations also play an important role in altering Earth's radiation budget and consequently surface temperature. Here, we use the general circulation aerosol model ECHAM5-HAM, coupled to a mixed layer ocean model, to investigate the impacts of future air pollution mitigation strategies in Europe on winter atmospheric circulation over the North Atlantic. We analyze the extreme case of a maximum feasible end-of-pipe reduction of aerosols in the near future (2030), in combination with increasing GHG concentrations. Our results show a more positive North Atlantic Oscillation (NAO) mean state in the near future, together with a significant eastward shift of the southern centre of action of the sea level pressure (SLP). Moreover, we show a significantly increased blocking frequency over the western Mediterranean. By separating the aerosol and GHG impacts, our study suggests that the aerosol abatement in the near future may be the primary driver of such circulation changes. All these concomitant modifications of the atmospheric circulation over the Euro-Atlantic sector lead to more stagnant weather conditions that favor air pollutant accumulation in the Mediterranean, especially in the western sector. These changes in atmospheric circulation should be included in future air pollution mitigation assessments. Our results suggest that an evaluation of NAO changes in individual climate model simulations will allow an objective assessment of the role of changes in wintertime circulation on future air quality.

  4. Air support facilities. [interface between air and surface transportation systems

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Airports are discussed in terms of the interface between the ground and air for transportation systems. The classification systems, design, facilities, administration, and operations of airports are described.

  5. Circulation and Purification in the LUX-ZEPLIN System Test

    NASA Astrophysics Data System (ADS)

    Alsum, Shaun; Lz Collaboration

    2016-03-01

    LZ is a dark-matter direct detection experiment whose detector is a two-phase TPC using approximately seven tons of active xenon as its scintillator. The xenon must have few electronegative impurities to ensure sufficient electron transport through the drift region. The LZ purification system is being prototyped in the LZ system test, a test platform located at SLAC using about 100kg of Xenon, which consists of gas circulation through a SAES getter. We utilize a dual-phase and a gas-phase heat exchanger to reduce needed cooling power. To achieve this circulation we employ an all metal seal triple diaphragm pump, also prototyped in the System Test. This talk will present early results from the system test as well as some baseline LZ designs. The LUX-ZEPLIN dark matter direct detection experiment.

  6. Magnus air turbine system

    DOEpatents

    Hanson, Thomas F.

    1982-01-01

    A Magnus effect windmill for generating electrical power is disclosed. A large nacelle-hub mounted pivotally (in Azimuth) atop a support tower carries, in the example disclosed, three elongated barrels arranged in a vertical plane and extending symmetrically radially outwardly from the nacelle. The system provides spin energy to the barrels by internal mechanical coupling in the proper sense to cause, in reaction to an incident wind, a rotational torque of a predetermined sense on the hub. The rotating hub carries a set of power take-off rollers which ride on a stationary circular track in the nacelle. Shafts carry the power, given to the rollers by the wind driven hub, to a central collector or accumulator gear assembly whose output is divided to drive the spin mechanism for the Magnus barrels and the main electric generator. A planetary gear assembly is interposed between the collector gears and the spin mechanism functioning as a differential which is also connected to an auxiliary electric motor whereby power to the spin mechanism may selectively be provided by the motor. Generally, the motor provides initial spin to the barrels for start-up after which the motor is braked and the spin mechanism is driven as though by a fixed ratio coupling from the rotor hub. During high wind or other unusual conditions, the auxiliary motor may be unbraked and excess spin power may be used to operate the motor as a generator of additional electrical output. Interposed between the collector gears of the rotating hub and the main electric generator is a novel variable speed drive-fly wheel system which is driven by the variable speed of the wind driven rotor and which, in turn, drives the main electric generator at constant angular speed. Reference is made to the complete specification for disclosure of other novel aspects of the system such as, for example, the aerodynamic and structural aspects of the novel Magnus barrels as well as novel gearing and other power coupling

  7. Jet engine air intake system

    NASA Technical Reports Server (NTRS)

    Sorensen, N. E.; Latham, E. A. (Inventor)

    1977-01-01

    An axisymmetric air intake system for a jet aircraft engine comprising a fixed cowl extending outwardly from the face of the engine, a centerbody coaxially disposed within the cowl, and an actuator for axially displacing the centerbody within the cowl was developed. The cowl and centerbody define a main airflow passageway therebetween, the configuration of which is changed by displacement of the centerbody. The centerbody includes a forwardly-located closeable air inlet which communicates with a centerbody auxiliary airflow passageway to provide auxiliary airflow to the engine. In one embodiment, a system for opening and closing the centerbody air inlet is provided by a dual-member centerbody, the forward member of which may be displaced axially with respect to the aft member.

  8. View-Angle Dependent AIRS Cloud Radiances and Fluctuations: Implications of Organized Cloud Structures for Tropical Circulations

    NASA Technical Reports Server (NTRS)

    Wu, Dong L.; Gong, Jie

    2012-01-01

    Interactions between wave dynamics and moisture generate clouds in a wide range of scales. Organized cloud structures produce statistically asymmetric radiances and perturbations in AIRS and AMSU-B measurements. With high resolution (approx.14 km beamwidth) and high-sensitivity instruments, these wave-modulated cloud structures can be readily detected from calibrated Levell radiance data. In this study we analyzed eight-year (2003 - 2010) statistics of AIRS cloud-induced radiances and found that in tropical convective regions the ascending (13:30 LST) measurements reveal higher view-angle asymmetry in cloud radiance than the descending (1:30 LST). The daytime asymmetry suggests 10% more cloudiness when the instrument views east, implying tilted and banded structures in most of the anvil clouds to which AIRS is sensitive. Such banded cloud structures are likely a manifestation of embedded westward propagating gravity waves in tropical convective systems. More importantly, organized cloud structures carry asymmetric momentum fluxes in addition to energy fluxes, which must be taken into account for modeling wave-wave and wave-mean flow interactions in tropical circulations.

  9. Variation in summer surface air temperature over Northeast Asia and its associated circulation anomalies

    NASA Astrophysics Data System (ADS)

    Chen, Wei; Hong, Xiaowei; Lu, Riyu; Jin, Aifen; Jin, Shizhu; Nam, Jae-Cheol; Shin, Jin-Ho; Goo, Tae-Young; Kim, Baek-Jo

    2016-01-01

    This study investigates the interannual variation of summer surface air temperature over Northeast Asia (NEA) and its associated circulation anomalies. Two leading modes for the temperature variability over NEA are obtained by EOF analysis. The first EOF mode is characterized by a homogeneous temperature anomaly over NEA and therefore is called the NEA mode. This anomaly extends from southeast of Lake Baikal to Japan, with a central area in Northeast China. The second EOF mode is characterized by a seesaw pattern, showing a contrasting distribution between East Asia (specifically including the Changbai Mountains in Northeast China, Korea, and Japan) and north of this region. This mode is named the East Asia (EA) mode. Both modes contribute equivalently to the temperature variability in EA. The two leading modes are associated with different circulation anomalies. A warm NEA mode is associated with a positive geopotential height anomaly over NEA and thus a weakened upper-tropospheric westerly jet. On the other hand, a warm EA mode is related to a positive height anomaly over EA and a northward displaced jet. In addition, the NEA mode tends to be related to the Eurasian teleconnection pattern, while the EA mode is associated with the East Asia-Pacific/Pacific-Japan pattern.

  10. Migration history of air-breathing fishes reveals Neogene atmospheric circulation patterns

    NASA Astrophysics Data System (ADS)

    Böhme, M.

    2004-05-01

    The migration history of an air-breathing fish group (Channidae; snakehead fishes) is used for reconstructing Neogene Eurasian precipitation and atmospheric circulation patterns. The study shows that snakeheads are sensitive indicators of summer precipitation maxima in subtropical and temperate regions, and are present regularly if the wettest month exceeds 150 mm precipitation and 20 °C mean temperature. The analysis of 515 fossil freshwater fish deposits of the past 50 m.y. from Africa and Eurasia shows two continental-scale migration events from the snakeheads' center of origin in the south Himalayan region, events that can be related to changes in the Northern Hemisphere circulation pattern. The first migration, ca. 17.5 Ma, into western and central Eurasia may have been caused by a northward shift of the Intertropical Convergence Zone that brought western Eurasia under the influence of trade winds that produced a zonal and meridional precipitation gradient in Europe. During the second migration, between 8 and 4 Ma, into Africa and East Asia, snakeheads reached their present-day distribution. This migration could have been related to the intensification of the Asian monsoon that brought summer precipitation to their migratory pathways in East Africa Arabia and East Asia.

  11. The sensitivity of latent heat flux to the air humidity approximations used in ocean circulation models

    NASA Technical Reports Server (NTRS)

    Liu, W. Timothy; Niiler, Pearn P.

    1990-01-01

    In deriving the surface latent heat flux with the bulk formula for the thermal forcing of some ocean circulation models, two approximations are commonly made to bypass the use of atmospheric humidity in the formula. The first assumes a constant relative humidity, and the second supposes that the sea-air humidity difference varies linearly with the saturation humidity at sea surface temperature. Using climatological fields derived from the Marine Deck and long time series from ocean weather stations, the errors introduced by these two assumptions are examined. It is shown that the errors reach above 100 W/sq m over western boundary currents and 50 W/sq m over the tropical ocean. The two approximations also introduce erroneous seasonal and spatial variabilities with magnitudes over 50 percent of the observed variabilities.

  12. Shuttle Entry Air Data System

    NASA Technical Reports Server (NTRS)

    Siemers, P. M., III

    1978-01-01

    The SEADS system (Shuttle Entry Air Data System) is being developed to provide research quality hypersonic (M greater than 3.5) air data. SEADS will accomplish this through the instrumentation of the orbiter's baseline nose cap. The SEADS development program consists of (1) the design and testing program required to define a reinforced carbon-carbon (RCC) nose cap penetration concept which will not degrade nose cap performance, (2) the definition of analytical techniques and design criteria for array definition and flight data analysis, (3) the verification of these analytical techniques and array criteria through a comprehensive wind-tunnel test program, (4) the demonstration of the system concept through detailed testing, and (5) the analyses and tests required to flight-certify the SEADS system.

  13. Steerable percussion air drilling system

    SciTech Connect

    Bui, H.D.; Meyers, J.A.; Yost, A.B. II

    1998-12-31

    By increasing penetration rates and bit life, especially in hard formations, the use of down-hole air hammers in the oil field has significantly reduced drilling costs in the Northeast US and West Texas. Unfortunately, drilling by this percussion method has been limited mostly to straight hole applications. This paper presents a new concept of a percussion drilling tool which performs both the function of a down-hole hammer as well as that of a down-hole motor. Such a drilling tool, being introduced here as Steerable Percussion Air Drilling System (SPADS), eliminates the necessity to rotate the drill string and, consequently, enables the use of down-hole air hammers to drill directional wells.

  14. Air quality data systems integration

    SciTech Connect

    Row, V.K.; Wilson, J.F.

    1998-12-31

    Traditionally, data used for compliance with air quality programs are obtained from various sources within the plant, on site lab, or perhaps from a product movement accounting program. For the most part, the data processing and subsequent calculations and reports were handled individually, thus generating huge spreadsheets and mounds of process data in paper format. The natural reaction to this overwhelming data management problem is to search for an off-the-shelf software package that will hopefully cover all of the plant`s needs for compliance with air quality regulations. Rather than searching for or trying to custom build a single electronic system, the authors suggest using internet browsing software to create links between existing repositories of air quality data and related information.

  15. MECHANIZED CIRCULATION SYSTEM, LEHIGH UNIVERSITY LIBRARY. LIBRARY SYSTEMS ANALYSIS, REPORT NUMBER 4.

    ERIC Educational Resources Information Center

    FLANNERY, ANNE; MACK, JAMES D.

    A MECHANIZED CIRCULATION SYSTEM CURRENTLY IN OPERATION AT LEHIGH UNIVERSITY HAS PROVEN TO GIVE RELIABLE CONTROL OF CIRCULATION ALTHOUGH IT HAS NOT SAVED ON OPERATING COSTS. WHEN THE STUDY WAS UNDERTAKEN TO DETERMINE THE FEASIBILITY OF CHANGING FROM THE PREVIOUS MANUAL SYSTEM TO THE CURRENT ONE, THE LIBRARY WAS SERVING A STUDENT BODY OF 4500…

  16. Optical air data systems and methods

    NASA Technical Reports Server (NTRS)

    Caldwell, Loren M. (Inventor); O'Brien, Martin J. (Inventor); Weimer, Carl S. (Inventor); Nelson, Loren D. (Inventor)

    2008-01-01

    Systems and methods for sensing air outside a moving aircraft are presented. In one embodiment, a system includes a laser for generating laser energy. The system also includes one or more transceivers for projecting the laser energy as laser radiation to the air. Subsequently, each transceiver receives laser energy as it is backscattered from the air. A computer processes signals from the transceivers to distinguish molecular scattered laser radiation from aerosol scattered laser radiation and determines one or more air parameters based on the scattered laser radiation. Such air parameters may include air speed, air pressure, air temperature and aircraft orientation angle, such as yaw, angle of attack and sideslip.

  17. Optical air data systems and methods

    NASA Technical Reports Server (NTRS)

    Caldwell, Loren M. (Inventor); Tang, Shoou-yu (Inventor); O'Brien, Martin (Inventor)

    2010-01-01

    Systems and methods for sensing air outside a moving aircraft are presented. In one embodiment, a system includes a laser for generating laser energy. The system also includes one or more transceivers for projecting the laser energy as laser radiation to the air. Subsequently, each transceiver receives laser energy as it is backscattered from the air. A computer processes signals from the transceivers to distinguish molecular scattered laser radiation from aerosol scattered laser radiation and determines one or more air parameters based on the scattered laser radiation. Such air parameters may include air speed, air pressure, air temperature and aircraft orientation angle, such as yaw, angle of attack and sideslip.

  18. Optical air data systems and methods

    NASA Technical Reports Server (NTRS)

    Caldwell, Loren M. (Inventor); O'Brien, Martin J. (Inventor); Weimer, Carl S. (Inventor); Nelson, Loren D. (Inventor)

    2005-01-01

    Systems and methods for sensing air outside a moving aircraft are presented. In one embodiment, a system includes a laser for generating laser energy. The system also includes one or more transceivers for projecting the laser energy as laser radiation to the air. Subsequently, each transceiver receives laser energy as it is backscattered from the air. A computer processes signals from the transceivers to distinguish molecular scattered laser radiation from aerosol scattered laser radiation and determines one or more air parameters based on the scattered laser radiation. Such air parameters may include air speed, air pressure, air temperature and aircraft orientation angle, such as yaw, angle of attack and sideslip.

  19. The role of aerosol in altering North Atlantic atmospheric circulation in winter and its impact on air quality

    NASA Astrophysics Data System (ADS)

    Pausata, F. S. R.; Gaetani, M.; Messori, G.; Kloster, S.; Dentener, F. J.

    2015-02-01

    Numerical model scenarios of future climate depict a global increase in temperatures and changing precipitation patterns, primarily driven by increasing greenhouse gas (GHG) concentrations. Aerosol particles also play an important role by altering the Earth's radiation budget and consequently surface temperature. Here, we use the general circulation aerosol model ECHAM5-HAM, coupled to a mixed layer ocean model, to investigate the impacts of future air pollution mitigation strategies in Europe on winter atmospheric circulation over the North Atlantic. We analyse the extreme case of a maximum feasible end-of-pipe reduction of aerosols in the near future (2030), in combination with increasing GHG concentrations. Our results show a more positive North Atlantic Oscillation (NAO) mean state by 2030, together with a significant eastward shift of the southern centre of action of sea-level pressure (SLP). Moreover, we show a significantly increased blocking frequency over the western Mediterranean. By separating the impacts of aerosols and GHGs, our study suggests that future aerosol abatement may be the primary driver of both the eastward shift in the southern SLP centre of action and the increased blocking frequency over the western Mediterranean. These concomitant modifications of the atmospheric circulation over the Euro-Atlantic sector lead to more stagnant weather conditions that favour air pollutant accumulation, especially in the western Mediterranean sector. Changes in atmospheric circulation should therefore be included in future air pollution mitigation assessments. The indicator-based evaluation of atmospheric circulation changes presented in this work will allow an objective first-order assessment of the role of changes in wintertime circulation on future air quality in other climate model simulations.

  20. Changes in bay circulation in an evolving multiple inlet system

    NASA Astrophysics Data System (ADS)

    Orescanin, Mara M.; Elgar, Steve; Raubenheimer, Britt

    2016-08-01

    Observations and numerical model (ADCIRC) simulations are used to quantify the changes in circulation within the evolving, shallow, two-inlet tidal Katama system, Martha's Vineyard, MA. From 2011 to 2013, Katama Inlet, connecting Katama Bay to the Atlantic, became 5 times longer, 1/3 as wide, and 1/3 as deep as the inlet migrated and rotated. This morphological evolution caused a significant loss of energy throughout Katama Bay and Edgartown Channel, which connects the bay to Vineyard Sound. The decrease in energy as the inlet evolved between 2011 and 2013 was not monotonic. Model simulations suggest bathymetric changes caused by Hurricane Irene (August 2011) resulted in a temporary increase in circulation energy throughout the inlets and bay. Changes in the M4 and M6 tidal constituents, harmonics of the primary M2 tidal forcing, suggest the changes in the observed circulation patterns primarily were owing to changes in friction, and not to changes in advection resulting from the evolving inlet location, orientation, or geometry, consistent with previous results.

  1. Air Sampling System Evaluation Template

    2000-05-09

    The ASSET1.0 software provides a template with which a user can evaluate an Air Sampling System against the latest version of ANSI N13.1 "Sampling and Monitoring Releases of Airborne Radioactive Substances from the Stacks and Ducts of Nuclear Facilities". The software uses the ANSI N13.1 PIC levels to establish basic design criteria for the existing or proposed sampling system. The software looks at such criteria as PIC level, type of radionuclide emissions, physical state ofmore » the radionuclide, nozzle entrance effects, particulate transmission effects, system and component accuracy and precision evaluations, and basic system operations to provide a detailed look at the subsystems of a monitoring and sampling system/program. A GAP evaluation can then be completed which leads to identification of design and operational flaws in the proposed systems. Corrective measures can then be limited to the GAPs.« less

  2. Internal circulating fluidized bed incineration system and design algorithm.

    PubMed

    Tian, W D; Wei, X L; Li, J; Sheng, H Z

    2001-04-01

    The internal circulating fluidized bed (ICFB) system is characterized with fast combustion, low emission, uniformity of bed temperature and controllability of combustion process. It is a kind of novel clean combustion system, especially for the low-grade fuels, such as municipal solid waste (MSW). The experimental systems of ICFB with and without combustion were designed and set up in this paper. A series of experiments were carried out for further understanding combustion process and characteristics of several design parameters for MSW. Based on the results, a design routine for the ICFB system was suggested for the calculation of energy balance, airflow rate, heat transfer rate, and geometry arrangement. A test system with ICFB combustor has been set up and the test results show that the design of the ICFB system is successful. PMID:11590739

  3. Exercise-Induced Systemic Venous Hypertension in the Fontan Circulation.

    PubMed

    Navaratnam, Devaraj; Fitzsimmons, Samantha; Grocott, Michael; Rossiter, Harry B; Emmanuel, Yaso; Diller, Gerard-Paul; Gordon-Walker, Timothy; Jack, Sandy; Sheron, Nick; Pappachan, John; Pratap, Jayant Nick; Vettukattil, Joseph J; Veldtman, Gruschen

    2016-05-15

    Increasingly end-organ injury is being demonstrated late after institution of the Fontan circulation, particularly liver fibrosis and cirrhosis. The exact mechanisms for these late phenomena remain largely elusive. Hypothesizing that exercise induces precipitous systemic venous hypertension and insufficient cardiac output for the exercise demand, that is, a possible mechanism for end-organ injury, we sought to demonstrate the dynamic exercise responses in systemic venous perfusion (SVP) and concurrent end-organ perfusion. Ten stable Fontan patients and 9 control subjects underwent incremental cycle ergometry-based cardiopulmonary exercise testing. SVP was monitored in the right upper limb, and regional tissue oxygen saturation was monitored in the brain and kidney using near-infrared spectroscopy. SVP rose profoundly in concert with workload in the Fontan group, described by the regression equation 15.97 + 0.073 watts per mm Hg. In contrast, SVP did not change in healthy controls. Regional renal (p <0.01) and cerebral tissue saturations (p <0.001) were significantly lower and decrease more rapidly in Fontan patients. We conclude that in a stable group of adult patients with Fontan circulation, high-intensity exercise was associated with systemic venous hypertension and reduced systemic oxygen delivery. This physiological substrate has the potential to contribute to end-organ injury. PMID:27032711

  4. Effects of flow speed and circulation interval on water quality and zooplankton in a pond-ditch circulation system.

    PubMed

    Ma, Lin; He, Feng; Sun, Jian; Huang, Tao; Xu, Dong; Zhang, Yi; Wu, Zhenbin

    2015-07-01

    A pond-ditch circulation system (PDCS) shows great promises for ecological restoration of rural contaminated water in southern China. In this study, the optimal flow speed, circulation interval, and their combination for the system were investigated for higher pollutant removal efficiency and lower costs in three separate experiments: I, II, and III, respectively. In each experiment, there are three PDCSs (S1, S2, and S3) with different water circulation speeds or circulation intervals, respectively. The results demonstrated that in experiment I, total nitrogen (TN) removal rates, species numbers, and diversity indexes of zooplankton in S1 with a flow speed of 3.6 L/h were significantly higher than those in S2 (7.2 L/h) and S3 (10.2 L/h), respectively. Similarly, in experiment II, S3 circulating every other 4 h had significantly higher TN reduction rates, species numbers, and diversity indexes than S1 and S2 circulating every other 1 and 2 h, respectively. In experiment III, water qualities in S1 (circulation of 3.6 L/h + interval of 4 h) were better than those in S2 (7.2 L/h + 4 h) and S3 (10.2 L/h + 6 h), respectively. Together, circulation at every other 4 h (3.6 L/h) is probably the optimal operating condition for the PDCS in remediating rural contaminated water. PMID:25693828

  5. 21 CFR 866.6020 - Immunomagnetic circulating cancer cell selection and enumeration system.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Immunomagnetic circulating cancer cell selection... Associated Antigen immunological Test Systems § 866.6020 Immunomagnetic circulating cancer cell selection and enumeration system. (a) Identification. An immunomagnetic circulating cancer cell selection and...

  6. 21 CFR 866.6020 - Immunomagnetic circulating cancer cell selection and enumeration system.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Immunomagnetic circulating cancer cell selection... Associated Antigen immunological Test Systems § 866.6020 Immunomagnetic circulating cancer cell selection and enumeration system. (a) Identification. An immunomagnetic circulating cancer cell selection and...

  7. 21 CFR 866.6020 - Immunomagnetic circulating cancer cell selection and enumeration system.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Immunomagnetic circulating cancer cell selection... Associated Antigen immunological Test Systems § 866.6020 Immunomagnetic circulating cancer cell selection and enumeration system. (a) Identification. An immunomagnetic circulating cancer cell selection and...

  8. 21 CFR 866.6020 - Immunomagnetic circulating cancer cell selection and enumeration system.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Immunomagnetic circulating cancer cell selection... Associated Antigen immunological Test Systems § 866.6020 Immunomagnetic circulating cancer cell selection and enumeration system. (a) Identification. An immunomagnetic circulating cancer cell selection and...

  9. 21 CFR 866.6020 - Immunomagnetic circulating cancer cell selection and enumeration system.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Immunomagnetic circulating cancer cell selection... Associated Antigen immunological Test Systems § 866.6020 Immunomagnetic circulating cancer cell selection and enumeration system. (a) Identification. An immunomagnetic circulating cancer cell selection and...

  10. A Low-Cost, Efficient, Machine-Assisted Manual Circulation System

    ERIC Educational Resources Information Center

    Stangl, Peter

    1975-01-01

    A circulation system uses plastic embossed user cards, an addressograph electric imprinter, a copy of the catalog card as a book card, and a pocket imprinted by the user's card and holding the book card during circulation. (LS)

  11. Variability of stratospheric mean age of air and of the local effects of residual circulation and eddy mixing

    NASA Astrophysics Data System (ADS)

    Ploeger, F.; Riese, M.; Haenel, F.; Konopka, P.; Müller, R.; Stiller, G.

    2015-01-01

    We analyze the variability of mean age of air (AoA) and of the local effects of the stratospheric residual circulation and eddy mixing on AoA within the framework of the isentropic zonal mean continuity equation. AoA for the period 1988-2013 has been simulated with the Lagrangian chemistry transport model CLaMS driven by ERA-Interim winds and diabatic heating rates. Model simulated AoA in the lower stratosphere shows good agreement with both in situ observations and satellite observations from Michelson Interferometer for Passive Atmospheric Sounding, even regarding interannual variability and changes during the last decade. The interannual variability throughout the lower stratosphere is largely affected by the quasi-biennial-oscillation-induced circulation and mixing anomalies, with year-to-year AoA changes of about 0.5 years. The decadal 2002-2012 change shows decreasing AoA in the lowest stratosphere, below about 450 K. Above, AoA increases in the Northern Hemisphere and decreases in the Southern Hemisphere. Mixing appears to be crucial for understanding AoA variability, with local AoA changes resulting from a close balance between residual circulation and mixing effects. Locally, mixing increases AoA at low latitudes (40°S-40°N) and decreases AoA at higher latitudes. Strongest mixing occurs below about 500 K, consistent with the separation between shallow and deep circulation branches. The effect of mixing integrated along the air parcel path, however, significantly increases AoA globally, except in the polar lower stratosphere. Changes of local effects of residual circulation and mixing during the last decade are supportive of a strengthening shallow circulation branch in the lowest stratosphere and a southward shifting circulation pattern above.

  12. Circulating intercellular adhesion molecule-1 in patients with systemic sclerosis.

    PubMed

    Sfikakis, P P; Tesar, J; Baraf, H; Lipnick, R; Klipple, G; Tsokos, G C

    1993-07-01

    In view of recent data demonstrating increased expression of intercellular adhesion molecule-1 (ICAM-1) in the skin of patients with systemic sclerosis (SSc) we studied whether levels of soluble ICAM-1 (s-ICAM-1) shed into the circulation are increased in patients with this disorder. We also compared blood levels of s-ICAM-1 in SSc with those in systemic lupus erythematosus (SLE) and we investigated any possible association of s-ICAM-1 with soluble IL-2 receptor (s-IL 2R) levels, the latter being considered as a marker of lymphocyte activation. Patients with SSc had increased levels of sICAM-1 compared with healthy control subjects (mean +/- SEM, 587 +/- 34 versus 373 +/- 27 ng/ml, P < 0.0001). Patients with diffuse rapidly progressive disease had the highest s-ICAM-1 levels. No association was observed between the extent of skin or internal organ involvement and s-ICAM-1 levels. Patients with digital ulcers had significantly elevated s-ICAM-1, but not s-IL 2R, levels. No correlation was detected between individual s-ICAM-1 and S-IL 2R levels in SSc patients. These novel findings suggest that circulating s-ICAM-1 levels may be a useful marker of endothelial activation in SSc; however, further studies are needed to determine the role of ICAM-1 in the pathogenesis of this disorder. PMID:8099861

  13. On Optimal Backward Perturbation Analysis for the Linear System with Skew Circulant Coefficient Matrix

    PubMed Central

    Jiang, Zhaolin; Shen, Nuo; Zhou, Jianwei

    2013-01-01

    We first give the style spectral decomposition of a special skew circulant matrix C and then get the style decomposition of arbitrary skew circulant matrix by making use of the Kronecker products between the elements of first row in skew circulant and the special skew circulant C. Besides that, we obtain the singular value of skew circulant matrix as well. Finally, we deal with the optimal backward perturbation analysis for the linear system with skew circulant coefficient matrix on the base of its style spectral decomposition. PMID:24369488

  14. Compressed air energy storage system

    SciTech Connect

    Ahrens, F.W.; Kartsounes, G.T.

    1981-07-28

    An internal combustion reciprocating engine is operable as a compressor during slack demand periods utilizing excess power from a power grid to charge air into an air storage reservoir and as an expander during peak demand periods to feed power into the power grid utilizing air obtained from the air storage reservoir together with combustible fuel. Preferably the internal combustion reciprocating engine is operated at high pressure and a low pressure turbine and compressor are also employed for air compression and power generation.

  15. Compressed air energy storage system

    DOEpatents

    Ahrens, Frederick W.; Kartsounes, George T.

    1981-01-01

    An internal combustion reciprocating engine is operable as a compressor during slack demand periods utilizing excess power from a power grid to charge air into an air storage reservoir and as an expander during peak demand periods to feed power into the power grid utilizing air obtained from the air storage reservoir together with combustible fuel. Preferably the internal combustion reciprocating engine is operated at high pressure and a low pressure turbine and compressor are also employed for air compression and power generation.

  16. Compressed air energy storage system

    DOEpatents

    Ahrens, F.W.; Kartsounes, G.T.

    An internal combustion reciprocating engine is operable as a compressor during slack demand periods utilizing excess power from a power grid to charge air into an air storage reservoir and as an expander during peak demand periods to feed power into the power grid utilizing air obtained from the air storage reservoir together with combustion reciprocating engine is operated at high pressure and a low pressure turbine and compressor are also employed for air compression and power generation.

  17. Strategy Guideline. Compact Air Distribution Systems

    SciTech Connect

    Burdick, Arlan

    2013-06-01

    This guideline discusses the benefits and challenges of using a compact air distribution system to handle the reduced loads and reduced air volume needed to condition the space within an energy efficient home. The decision criteria for a compact air distribution system must be determined early in the whole-house design process, considering both supply and return air design. However, careful installation of a compact air distribution system can result in lower material costs from smaller equipment, shorter duct runs, and fewer outlets; increased installation efficiencies, including ease of fitting the system into conditioned space; lower loads on a better balanced HVAC system, and overall improved energy efficiency of the home.

  18. Strategy Guideline: Compact Air Distribution Systems

    SciTech Connect

    Burdick, A.

    2013-06-01

    This Strategy Guideline discusses the benefits and challenges of using a compact air distribution system to handle the reduced loads and reduced air volume needed to condition the space within an energy efficient home. Traditional systems sized by 'rule of thumb' (i.e., 1 ton of cooling per 400 ft2 of floor space) that 'wash' the exterior walls with conditioned air from floor registers cannot provide appropriate air mixing and moisture removal in low-load homes. A compact air distribution system locates the HVAC equipment centrally with shorter ducts run to interior walls, and ceiling supply outlets throw the air toward the exterior walls along the ceiling plane; alternatively, high sidewall supply outlets throw the air toward the exterior walls. Potential drawbacks include resistance from installing contractors or code officials who are unfamiliar with compact air distribution systems, as well as a lack of availability of low-cost high sidewall or ceiling supply outlets to meet the low air volumes with good throw characteristics. The decision criteria for a compact air distribution system must be determined early in the whole-house design process, considering both supply and return air design. However, careful installation of a compact air distribution system can result in lower material costs from smaller equipment, shorter duct runs, and fewer outlets; increased installation efficiencies, including ease of fitting the system into conditioned space; lower loads on a better balanced HVAC system, and overall improved energy efficiency of the home.

  19. Air Force Training for Instructional Systems Development.

    ERIC Educational Resources Information Center

    Calkins, Ronald R.

    Detailed information is provided about the Air Force Instructional System Development (ISD) Model to supplement the 1979 AECT presentation made in New Orleans. Information of interest to instructional systems designers includes (1) a short overview of the Air Force ISD model, (2) an extended example which demonstrates the Air Training Command…

  20. Circulation system for flowing uranium hexafluoride cavity reactor experiments

    NASA Technical Reports Server (NTRS)

    Jaminet, J. F.; Kendall, J. S.

    1976-01-01

    Research related to determining the feasibility of producing continuous power from fissile fuel in the gaseous state is presented. The development of three laboratory-scale flow systems for handling gaseous UF6 at temperatures up to 500 K, pressure up to approximately 40 atm, and continuous flow rates up to approximately 50g/s is presented. A UF6 handling system fabricated for static critical tests currently being conducted is described. The system was designed to supply UF6 to a double-walled aluminum core canister assembly at temperatures between 300 K and 400 K and pressure up to 4 atm. A second UF6 handling system designed to provide a circulating flow of up to 50g/s of gaseous UF6 in a closed-loop through a double-walled aluminum core canister with controlled temperature and pressure is described. Data from flow tests using UF6 and UF6/He mixtures with this system at flow rates up to approximately 12g/s and pressure up to 4 atm are presented. A third UF6 handling system fabricated to provide a continuous flow of UF6 at flow rates up to 5g/s and at pressures up to 40 atm for use in rf-heated, uranium plasma confinement experiments is described.

  1. Optimization of the circulating water pumping system in power plants

    SciTech Connect

    Lapray, J.F.; Griffiths, I.L.; Chedru, P.J.

    1996-12-31

    The correct operation of power plants is dependent on the function of its major systems. The pumping station supplying cooling water is one such element. Cooling water systems in fossil fired and nuclear power plants are fed by pumps that must, without fail, run intensively. A shut down would automatically lead to a shut down of the plant unit it serves., e.g., a reduction of power output. The role of such pumps and the associated system is crucial and therefore cannot be compared with a drainage or irrigation pumping station that also handles large flows at low total head pressures. Operational reliability is of the utmost importance in the main circulating water systems. Pumping stations have increased in size following the turbine size rise. At one time a capacity of 130,000 USGPM was considered large, today`s requirements can be in the order of 2,600,000 USGPM. However, it is not just size that has increased, modern environmental considerations and economics require greater efficiency in all aspects, reductions in energy consumed, water usage, maintenance costs, etc. The once relatively simple principles that were taken into consideration in choice of equipment are no longer adaptable to the scale of current requirements. Optimization of not just the pumps but the complete integrated system as a whole must be paramount. This paper attempts to address the optimization of the complete system.

  2. Numerical simulation on pulverized coal combustion and NOx emissions in high temperature air from circulating fluidized bed

    NASA Astrophysics Data System (ADS)

    Zhu, Jianguo; Ouyang, Ziqu; Lu, Qinggang

    2013-06-01

    High temperature air combustion is a prospecting technology in energy saving and pollutants reduction. Numerical simulation on pulverized coal combustion and NOx emissions in high temperature air from circulating fluidized bed was presented. The down-fired combustor, taken as the calculation domain, has the diameter of 220 mm and the height of 3000 mm. 2 cases with air staging combustion are simulated. Compared the simulation results with experimental data, there is a good agreement. It is found that the combustion model and NOx formation model are applicable to simulate the pulverized coal combustion and NOx emissions in high temperature air from circulating fluidized bed. The results show that there is a uniform temperature profile along the axis of the down-fired combustor. The NOx emissions are lower than those of ordinary pulverized coal combustion, and the NOx emissions are 390 mg/m3 and 352 mg/m3 in Case 1 and Case 2, respectively. At the range of 300-600 mm below the nozzle, the NO concentration decreases, mainly resulting from some homogeneous reactions and heterogeneous reaction. NO concentration has a little increase at the position of 800 mm below the nozzle as the tertiary air supplied to the combustor at the position of 600 mm below the nozzle.

  3. Radiofrequency radiation alters the immune system. II. Modulation of in vivo lymphocyte circulation

    SciTech Connect

    Liburdy, R.P.

    1980-07-01

    In vivo lymphocyte circulation was significantly altered in mice exposed to whole-body radiofrequency radiation (RFR). In vivo lymphocyte circulation was followed by quantitating activity of sodium chromate-51-labeled lymphocytes in the lung, spleen, liver, and bone marrow of animals at different times after iv spleen lymphocyte injection. Immediately after cell injection, animals were exposed to 2.6-GHz RFR (CW) at 25 or 5 mW/cm/sup 2/ (3.8 W/kg) for 1 h. At 1,6, and 24 h aftr lymphocyte injection target organs were removed, weighed, and counted. Sham RFR, warm-air, and steroid-treated groups were included as controls. Hyperthermic RFR exposure (25 mW/cm/sup 2/, 2.0/sup 0/C increase in core temperature) led to a 37% reduction in lymphocytes leaving the lung to migrate into the spleen. In addition, a threefold increse in spleen lymphocytes entering the bone marrow occurred. Significantly, this pattern was also observed in the steroid-treated group; nonthermogenic RFR exposure (5 mWcm/sup 2/) and warm-air exposures did not lead to altered lymphocyte traffic. These results support the idea that steroid release associated with thermal stress and the process of thermoregulation is a significant operatnt factor responsible for RFR effects on the immune system.

  4. Microglial priming through the lung-brain axis: the role of air pollution-induced circulating factors.

    PubMed

    Mumaw, Christen L; Levesque, Shannon; McGraw, Constance; Robertson, Sarah; Lucas, Selita; Stafflinger, Jillian E; Campen, Matthew J; Hall, Pamela; Norenberg, Jeffrey P; Anderson, Tamara; Lund, Amie K; McDonald, Jacob D; Ottens, Andrew K; Block, Michelle L

    2016-05-01

    Air pollution is implicated in neurodegenerative disease risk and progression and in microglial activation, but the mechanisms are unknown. In this study, microglia remained activated 24 h after ozone (O3) exposure in rats, suggesting a persistent signal from lung to brain. Ex vivo analysis of serum from O3-treated rats revealed an augmented microglial proinflammatory response and β-amyloid 42 (Aβ42) neurotoxicity independent of traditional circulating cytokines, where macrophage-1 antigen-mediated microglia proinflammatory priming. Aged mice exhibited reduced pulmonary immune profiles and the most pronounced neuroinflammation and microglial activation in response to mixed vehicle emissions. Consistent with this premise, cluster of differentiation 36 (CD36)(-/-) mice exhibited impaired pulmonary immune responses concurrent with augmented neuroinflammation and microglial activation in response to O3 Further, aging glia were more sensitive to the proinflammatory effects of O3 serum. Together, these findings outline the lung-brain axis, where air pollutant exposures result in circulating, cytokine-independent signals present in serum that elevate the brain proinflammatory milieu, which is linked to the pulmonary response and is further augmented with age.-Mumaw, C. L., Levesque, S., McGraw, C., Robertson, S., Lucas, S., Stafflinger, J. E., Campen, M. J., Hall, P., Norenberg, J. P., Anderson, T., Lund, A. K., McDonald, J. D., Ottens, A. K., Block, M. L. Microglial priming through the lung-brain axis: the role of air pollution-induced circulating factors. PMID:26864854

  5. Performance of a helium circulation system for a MEG

    NASA Astrophysics Data System (ADS)

    Takeda, Tsunehiro; Okamoto, Masayoshi; Atsuda, Kazuhiro; Katagiri, Keishi

    2009-03-01

    We report the performance of a helium circulation system (HCS) for a magnetoencephalography (MEG) that re-liquefies all the evaporating helium gas using two 1.5 W GM cryocoolers operating at 4.2 K. The MEG with the HCS was used to measure human brain responses for over one and a half years without any noise problems. The noise level is below 10 fT/Hz 1/2 for 2-40 Hz, below 30 fT/Hz 1/2 at 1 Hz, and 200 fT/Hz 1/2 at 50 Hz, which is the power supply frequency. As the amount of liquid helium used decreases less than one percent, the maintenance cost of the MEG becomes less than one-tenth of the previous cost.

  6. Industrial Compressed Air System Energy Efficiency Guidebook.

    SciTech Connect

    United States. Bonneville Power Administration.

    1993-12-01

    Energy efficient design, operation and maintenance of compressed air systems in industrial plants can provide substantial reductions in electric power and other operational costs. This guidebook will help identify cost effective, energy efficiency opportunities in compressed air system design, re-design, operation and maintenance. The guidebook provides: (1) a broad overview of industrial compressed air systems, (2) methods for estimating compressed air consumption and projected air savings, (3) a description of applicable, generic energy conservation measures, and, (4) a review of some compressed air system demonstration projects that have taken place over the last two years. The primary audience for this guidebook includes plant maintenance supervisors, plant engineers, plant managers and others interested in energy management of industrial compressed air systems.

  7. The impact of circulation patterns on regional transport pathways and air quality over Beijing and its surroundings

    NASA Astrophysics Data System (ADS)

    Zhang, J. P.; Zhu, T.; Zhang, Q. H.; Li, C. C.; Shu, H. L.; Ying, Y.; Dai, Z. P.; Wang, X.; Liu, X. Y.; Liang, A. M.; Shen, H. X.; Yi, B. Q.

    2012-06-01

    This study investigated the air pollution characteristics of synoptic-scale circulation in the Beijing megacity, and provided quantitative evaluation of the impacts of circulation patterns on air quality during the 2008 Beijing Summer Olympics. Nine weather circulation types (CTs) were objectively identified over the North China region during 2000-2009, using obliquely rotated T-mode principal component analysis (PCA). The resulting CTs were examined in relation to the local meteorology, regional transport pathways, and air quality parameters, respectively. The FLEXPART-WRF model was used to calculate 48-h backward plume trajectories for each CT. Each CT was characterized with distinct local meteorology and air mass origin. CT 1 (high pressure to the west with a strong pressure gradient) was characterized by a northwestern air mass origin, with the smallest local and southeasterly air mass sources, and CT 6 (high pressure to the northwest) had air mass sources mostly from the north and east. On the contrary, CTs 5, 8, and 9 (weak pressure field, high pressure to the east, and low pressure to the northwest, respectively) were characterized by southern and southeastern trajectories, which indicated a greater influence of high pollutant emission sources. In turn, poor air quality in Beijing (high loadings of PM10, BC, SO2, NO2, NOx, O3, AOD, and low visibility) was associated with these CTs. Good air quality in Beijing was associated with CTs 1 and 6. The average visibilities (with ±1σ) in Beijing for CTs 1 and 6 during 2000-2009 were 18.5 ± 8.3 km and 14.3 ± 8.5 km, respectively. In contrast, low visibility values of 6.0 ± 3.5 km, 6.6 ± 3.7 km, and 6.7 ± 3.6 km were found in CTs 5, 8, and 9, respectively. The mean concentrations of PM10 for CTs 1, 6, 5, 8, and 9 during 2005-2009 were 90.3 ± 76.3 μg m-3, 111.7 ± 89.6 μg m-3, 173.4 ± 105.8 μg m-3, 158.4 ± 90.0 μg m-3, and 151.2 ± 93.1 μg m-3, respectively. Analysis of the relationship between

  8. The impact of circulation patterns on regional transport pathways and air quality over Beijing and its surroundings

    NASA Astrophysics Data System (ADS)

    Zhang, J. P.; Zhu, T.; Zhang, Q. H.; Li, C. C.; Shu, H. L.; Ying, Y.; Dai, Z. P.; Liu, X. Y.; Liang, A. M.; Shen, H. X.

    2011-12-01

    This study investigated the air pollution characteristics of synoptic-scale circulation in the Beijing megacity, and provided holistic evaluation of the impacts of circulation patterns on air quality during the 2008 Beijing Summer Olympics. Nine weather circulation types (CTs) were objectively identified over the North China region during 2000-2009, using obliquely rotated T-mode principal component analysis (PCA). The resulting CTs were examined in relation to the local meteorology, regional transport pathways, and air quality parameters, respectively. The FLEXPART-WRF model was used to calculate 48-h backward plume trajectories for each CT. Nine CTs were characterized, with distinct local meteorology and air mass origins. CT 1 (high to the west with a strong pressure gradient) was characterized by a northwestern origin, with the smallest local and southeasterly air mass sources, and CT 6 (high to the northwest) had air mass sources mostly from the north and east. In contrast, CTs 5, 8, and 9 (unique, high to the east, and low to the northwest, respectively) were characterized by southern and southeastern trajectories, which indicated a greater influence of high pollutant emission sources. In turn, poor air quality in Beijing (high loadings of PM10, BC, SO2, NO2, O3, AOD, and low visibility) was associated with these CTs. Good air quality in Beijing was associated with CTs 1 and 6. The average visibilities (with ±1 σ) in Beijing for CTs 1 and 6 during 2000-2009 were 18.5 ± 8.3 km and 14.3 ± 8.5 km, respectively. In contrast, poor visibility values of 6.0 ± 3.5 km, 6.6 ± 3.7 km, and 6.7 ± 3.6 km were found in CTs 5, 8, and 9, respectively. The mean concentrations of PM10 for CTs 1, 6, 5, 8, and 9 during 2005-2009 were 90.3 ± 76.3 μg m-3, 111.7 ± 89.6 μg m-3, 173.4 ± 105.8 μg m-3, 158.4 ± 90.0 μg m-3, and 151.2 ± 93.1 μg m-3, respectively. Analysis of the relationship between circulation pattern and air quality during the emission control period

  9. Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion System

    SciTech Connect

    Wei-Ping Pan; Zhongxian Cheng; Yan Cao; John Smith

    2006-09-30

    This report is to present the progress made on the project entitled ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period July 1, 2006 through September 30, 2006. The following activities have been completed: the steel floor grating around the riser in all levels and the three-phase power supply for CFBC System was installed. Erection of downcomers, loop seals, ash bunker, thermal expansion joints, fuel and bed material bunkers with load cells, rotary air-lock valves and fuel flow monitors is underway. Pilot-scale slipstream tests conducted with bromine compound addition were performed for two typical types of coal. The purposes of the tests were to study the effect of bromine addition on mercury oxidization. From the test results, it was observed that there was a strong oxidization effect for Powder River Basin (PRB) coal. The proposed work for next quarter and project schedule are also described.

  10. Changes in seasonal mean maximum air temperature in Romania and their connection with large-scale circulation

    NASA Astrophysics Data System (ADS)

    Tomozeiu, Rodica; Busuioc, Aristita; Stefan, Sabina

    2002-08-01

    This paper investigates the temporal and spatial variability of the seasonal mean of maximum air temperature in Romania and its links with the large-scale atmospheric circulation. The Romanian data sets are represented by time series at 14 stations. The large-scale parameters are represented by the observed sea-level pressure (SLP) and geopotential height at 500 hPa (Z500). The period analysed was 1922-98 for winter and 1960-98 for all seasons. Before analysis, the original temperature data were tested to detect for inhomogeneity using the standard normal homogeneity test. Empirical orthogonal functions (EOFs) were used to analyse the spatial and temporal variability of the local and large-scale parameters and to eliminate noise from the original data set. The time series associated with the first EOF pattern of the SLP and mean maximum temperature in Romania were analysed from trend and shifts point of view using the Pettitt and Mann-Kendall tests respectively. The covariance map computed using the Z500 and the seasonal mean of maximum temperature in Romania were used as additional methods to identify the large-scale circulation patterns influencing the local variability.Significant increasing trends were found for winter and summer mean maximum temperature in Romania, with upward shifts around 1947 and 1985 respectively. During autumn, a decreasing trend with a downward shift around 1969 was detected. These changes seem to be real, since they are connected to similar changes in the large-scale circulation. So, the intensification of the southwesterly circulation over Europe since 1933 overlapped with the enhancement of westerly circulation after the 1940s could be the reason for the change in winter mean maximum temperature. The slight weakening of the southwesterly circulation during autumn could be one of the reasons for the decrease in the regime of the mean maximum temperature for autumn seasons. Additionally, the covariance map technique reveals the

  11. Maintenance requirements in solar air heating systems

    SciTech Connect

    Lof, G.O.G.; Junk, J.P.

    1983-06-01

    The maintenance requirements of a well designed and constructed solar air-heating system are comparable to those of conventional, forced warm air heating systems. One of the major reasons for this low maintenance is the absence of problems associated with corrosion, freezing, boiling, and leakage often encountered in solar liquid systems. Experience shows that most problems are due to overly complex designs, control problems, faulty installation, and adjustment of the moving parts in the system. Operational histories show negligible requirements for maintenance of air collectors, pebble-bed heat-storage bins, and system ducts and connections. Good quality control in the manufacture and installation of airtight collectors, heat-storage bins, and interconnecting ductwork is essential, however. The paper includes a description of solar air-heating systems and their characteristics, an evaluation of the various maintenance requirements, and several case histories illustrating the handling of solar air system maintenance.

  12. Influence of high-resolution surface databases on the modeling of local atmospheric circulation systems

    NASA Astrophysics Data System (ADS)

    Paiva, L. M. S.; Bodstein, G. C. R.; Pimentel, L. C. G.

    2014-08-01

    Large-eddy simulations are performed using the Advanced Regional Prediction System (ARPS) code at horizontal grid resolutions as fine as 300 m to assess the influence of detailed and updated surface databases on the modeling of local atmospheric circulation systems of urban areas with complex terrain. Applications to air pollution and wind energy are sought. These databases are comprised of 3 arc-sec topographic data from the Shuttle Radar Topography Mission, 10 arc-sec vegetation-type data from the European Space Agency (ESA) GlobCover project, and 30 arc-sec leaf area index and fraction of absorbed photosynthetically active radiation data from the ESA GlobCarbon project. Simulations are carried out for the metropolitan area of Rio de Janeiro using six one-way nested-grid domains that allow the choice of distinct parametric models and vertical resolutions associated to each grid. ARPS is initialized using the Global Forecasting System with 0.5°-resolution data from the National Center of Environmental Prediction, which is also used every 3 h as lateral boundary condition. Topographic shading is turned on and two soil layers are used to compute the soil temperature and moisture budgets in all runs. Results for two simulated runs covering three periods of time are compared to surface and upper-air observational data to explore the dependence of the simulations on initial and boundary conditions, grid resolution, topographic and land-use databases. Our comparisons show overall good agreement between simulated and observational data, mainly for the potential temperature and the wind speed fields, and clearly indicate that the use of high-resolution databases improves significantly our ability to predict the local atmospheric circulation.

  13. An Integrated Systems Approach: A Description of an Automated Circulation Management System.

    ERIC Educational Resources Information Center

    Seifert, Jan E.; And Others

    These bidding specifications describe requirements for a turn-key automated circulation system for the University of Oklahoma Libraries. An integrated systems approach is planned, and requirements are presented for various subsystems: acquisitions, fund accounting, reserve room, and bibliographic and serials control. Also outlined are hardware…

  14. 36 CFR 910.17 - Pedestrian circulation system.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... GENERAL GUIDELINES AND UNIFORM STANDARDS FOR URBAN PLANNING AND DESIGN OF DEVELOPMENT WITHIN THE PENNSYLVANIA AVENUE DEVELOPMENT AREA Urban Planning and Design Concerns § 910.17 Pedestrian circulation...

  15. 36 CFR 910.17 - Pedestrian circulation system.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... GENERAL GUIDELINES AND UNIFORM STANDARDS FOR URBAN PLANNING AND DESIGN OF DEVELOPMENT WITHIN THE PENNSYLVANIA AVENUE DEVELOPMENT AREA Urban Planning and Design Concerns § 910.17 Pedestrian circulation...

  16. 36 CFR 910.18 - Vehicular circulation and storage systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... CORPORATION GENERAL GUIDELINES AND UNIFORM STANDARDS FOR URBAN PLANNING AND DESIGN OF DEVELOPMENT WITHIN THE PENNSYLVANIA AVENUE DEVELOPMENT AREA Urban Planning and Design Concerns § 910.18 Vehicular circulation...

  17. 36 CFR 910.17 - Pedestrian circulation system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... GENERAL GUIDELINES AND UNIFORM STANDARDS FOR URBAN PLANNING AND DESIGN OF DEVELOPMENT WITHIN THE PENNSYLVANIA AVENUE DEVELOPMENT AREA Urban Planning and Design Concerns § 910.17 Pedestrian circulation...

  18. 36 CFR 910.17 - Pedestrian circulation system.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... GENERAL GUIDELINES AND UNIFORM STANDARDS FOR URBAN PLANNING AND DESIGN OF DEVELOPMENT WITHIN THE PENNSYLVANIA AVENUE DEVELOPMENT AREA Urban Planning and Design Concerns § 910.17 Pedestrian circulation...

  19. 36 CFR 910.18 - Vehicular circulation and storage systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... CORPORATION GENERAL GUIDELINES AND UNIFORM STANDARDS FOR URBAN PLANNING AND DESIGN OF DEVELOPMENT WITHIN THE PENNSYLVANIA AVENUE DEVELOPMENT AREA Urban Planning and Design Concerns § 910.18 Vehicular circulation...

  20. 36 CFR 910.18 - Vehicular circulation and storage systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... CORPORATION GENERAL GUIDELINES AND UNIFORM STANDARDS FOR URBAN PLANNING AND DESIGN OF DEVELOPMENT WITHIN THE PENNSYLVANIA AVENUE DEVELOPMENT AREA Urban Planning and Design Concerns § 910.18 Vehicular circulation...

  1. 36 CFR 910.18 - Vehicular circulation and storage systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... CORPORATION GENERAL GUIDELINES AND UNIFORM STANDARDS FOR URBAN PLANNING AND DESIGN OF DEVELOPMENT WITHIN THE PENNSYLVANIA AVENUE DEVELOPMENT AREA Urban Planning and Design Concerns § 910.18 Vehicular circulation...

  2. 36 CFR 910.18 - Vehicular circulation and storage systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... CORPORATION GENERAL GUIDELINES AND UNIFORM STANDARDS FOR URBAN PLANNING AND DESIGN OF DEVELOPMENT WITHIN THE PENNSYLVANIA AVENUE DEVELOPMENT AREA Urban Planning and Design Concerns § 910.18 Vehicular circulation...

  3. 36 CFR 910.17 - Pedestrian circulation system.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... GENERAL GUIDELINES AND UNIFORM STANDARDS FOR URBAN PLANNING AND DESIGN OF DEVELOPMENT WITHIN THE PENNSYLVANIA AVENUE DEVELOPMENT AREA Urban Planning and Design Concerns § 910.17 Pedestrian circulation...

  4. Rooftop Unitary Air Conditioner with Integral Dedicated Outdoor Air System

    SciTech Connect

    Tiax Llc

    2006-02-28

    Energy use of rooftop and other unitary air-conditioners in commercial applications accounts for about 1 quad (10{sup 15} Btu) of primary energy use annually in the U.S. [Reference 7]. The realization that this cooling equipment accounts for the majority of commercial building cooled floorspace and the majority also of commercial building energy use has spurred development of improved-efficiency equipment as well as development of stricter standards addressing efficiency levels. Another key market driver affecting design of rooftop air-conditioning equipment has been concern regarding comfort and the control of humidity. Trends for increases in outdoor air ventilation rates in certain applications, and the increasing concern about indoor air quality problems associated with humidity levels and moisture in buildings points to a need for improved dehumidification capability in air-conditioning equipment of all types. In many cases addressing this issue exacerbates energy efficiency, and vice versa. The integrated dedicated outdoor air system configuration developed in this project addresses both energy and comfort/humidity issues.

  5. Performance of Desiccant Particle Dispersion Type Air Conditioning System

    NASA Astrophysics Data System (ADS)

    Hatano, Hiroyuki; Suzuki, Koichi; Kojima, Hiromitsu

    An investigation of desiccant air conditioning system is performed to demonstrate its performance in a dispersed desiccant particle systems, based on its higher gas solid contacting efficiency and isothermal dehumidification. Particle dispersion is achieved using the risers of a circulating fluidized bed, CFB, or of a pneumatic conveyer. The risers used for dehumidification are 1390 mm in height and 22 mm in diameter. The former is used to evaluate the overall dehumidification performance and the latter is used to measure the axial humidity distribution under 0.88 m/s of a superficial air velocity. Based on the results of the overall performance by changing solid loading rates, Gs, from 0.4 kg/m2s up to 6 kg/m2s, desiccant particle dispersion shows higher performance in dehumidification, while axial humidity distribution shows very rapid adsorption rate in the entrance zone of the riser. Removal of adsorption heat accelerates dehumidification rate compared to the adiabatic process.

  6. Aquifer-Circulating Water Curtain Cultivation System To Recover Groundwater Level And Temperature

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Ko, K.; Chon, C.; Oh, S.

    2011-12-01

    Groundwater temperature, which generally ranges 14 to 16 degree of Celsius all year long, can be said to be 'constant' compared to the amplitude of daily variation of air temperature or surface water. Water curtain cultivating method utilizes this 'constant' groundwater temperature to warm up the inside of greenhouse during winter night by splash groundwater on the roof of inner greenhouse. The area of water curtain cultivation system have increased up to 107.5 square kilometers as of 2006 since when it is first introduced to South Korea in 1984. Groundwater shortage problem became a great issue in a concentrated water curtain cultivation area because the pumped and splashed groundwater is abandoned to nearby stream and natural recharge rate is reduced by greenhouses. The amount of groundwater use for water curtain cultivation system in South Korea is calculated to be 587 million cubic meters which is 35% of national agricultural use of groundwater. A new water curtain cultivation system coupled with aquifer circulating of the splashed groundwater and greenhouse roof-top rainwater harvesting is developed and applied to field site in Nonsan-si, Chungnam province to minimize groundwater shortage problem and recover groundwater level. The aquifer circulating water curtain cultivation system is consist of a pumping well and a injection well of 80 m deep, groundwater transfer and splashing system, recovery tank and rainwater collecting waterway. The distance between injection and pumping well is 15 m and an observation well is installed in the middle of the wells. To characterize hydrogeological properties of this site, hydraulic test such as pumping tests and tracer tests with dye tracer, thermal tracer and ion tracer. Once the integrated system is constructed in this site, hydraulic head in all the wells and temperature of air, recovery tank and groundwater in all the wells are monitored during the operation for 3months in winter season. Hydraulic test and tracer

  7. Decadal variability in coupled sea-ice-thermohaline circulation systems

    SciTech Connect

    Yang, J.; Neelin, J.D.

    1997-12-01

    An interdecadal oscillation in a coupled ocean-ice system was identified in a previous study. This paper extends that study to further examine the stability of the oscillation and the sensitivity of its frequency to various parameters and forcing fields. Three models are used: (i) an analytical box model; (ii) a two-dimensional model for the ocean thermohaline circulation (THC) coupled to a thermodynamic ice model, as in the authors` previous study; and (iii) a three-dimensional ocean general circulation model (OGCM) coupled to a similar ice model. The box model is used to elucidate the essential feedbacks that give rise to this oscillation and to identify the most important parameters and processes that determine the period. The counted model becomes more stable toward low coupling, greater diffusion, and weaker THC feedback. Nonlinear effects in the sea-ice model become important in the higher ocean-ice coupling regime where the effective sea-ice damping associated with this nonlinearity stabilizes the model. The 3D OGCM is used to test this coupled ocean-ice mechanism in a more realistic model setting. This model generates an interdecadal oscillation whose characteristics and phase relations among the model variables are similar to the oscillation obtained in the 2D models. The major difference is that the oscillation frequency is considerably lower. The difference can be explained in terms of the analytical box model solution in which the period of oscillation depends on the rate of anomalous density production by melting/cooling of sea ice per SST anomaly, times the rate of warming/cooling by anomalous THC heat advection per change in density anomaly. The 3D model has a smaller THC response to high-latitude density perturbations than the 2D model, and anomalous velocities in the 3D case tend to follow the mean isotherms so anomalous heat advection is reduced. This slows the ocean-ice feedback process, leading to the longer oscillation period. 36 refs., 27 figs.

  8. Solar Hot-Air System --Memphis, Tennessee

    NASA Technical Reports Server (NTRS)

    1982-01-01

    Solar collectors using air as collection medium provide space heating for four-building office complex in Memphis. 98 page report furnishes details on installation, including: description of system; system startup and acceptance-test results; technical data on collector; installation manuals for collectors, air handler and heat-storage unit.

  9. Using Attribute Sampling to Assess the Accuracy of a Library Circulation System.

    ERIC Educational Resources Information Center

    Kiger, Jack E.; Wise, Kenneth

    1995-01-01

    Discusses how to use attribute sampling to assess the accuracy of a library circulation system. Describes the nature of sampling, sampling risk, and nonsampling error. Presents nine steps for using attribute sampling to determine the maximum percentage of incorrect records in a circulation system. (AEF)

  10. Optical air data systems and methods

    NASA Technical Reports Server (NTRS)

    Caldwell, Loren M. (Inventor); Tang, Shoou-yu (Inventor); Acott, Phillip E. (Inventor); Spaeth, Lisa G. (Inventor); O'Brien, Martin (Inventor)

    2011-01-01

    Systems and methods for sensing air includes at least one, and in some embodiments three, transceivers for projecting the laser energy as laser radiation to the air. The transceivers are scanned or aligned along several different axes. Each transceiver receives laser energy as it is backscattered from the air. A computer processes signals from the transceivers to distinguish molecular scattered laser radiation from aerosol scattered laser radiation and determines air temperatures, wind speeds, and wind directions based on the scattered laser radiation. Applications of the system to wind power site evaluation, wind turbine control, traffic safety, general meteorological monitoring and airport safety are presented.

  11. IMPACT OF TOPOGRAPHIC CIRCULATIONS ON THE TRANSPORT AND DISPERSION OF AIR POLLUTANTS

    EPA Science Inventory

    A numerical mesoscale model is utilized to examine slope flows and the classic mountain-plain circulation for idealized topography. Special emphasis is given to turbulent parameterization in the stable boundary layer and the unique characteristics of turbulent mixing in the slope...

  12. Air leakage in residential solar heating systems

    NASA Astrophysics Data System (ADS)

    Shingleton, J. G.; Cassel, D. E.; Overton, R. L.

    1981-02-01

    A series of computer simulations was performed to evaluate the effects of component air leakage on system thermal performance for a typical residential solar heating system, located in Madison, Wisconsin. Auxiliary energy required to supplement solar energy for space heating was determined using the TRNSYS computer program, for a range of air leakage rates at the solar collector and pebble bed storage unit. The effects of heat transfer and mass transfer between the solar equipment room and the heated building were investigated. The effect of reduced air infiltration into the building due to pressurized by the solar air heating system were determined. A simple method of estimating the effect of collector array air leakage on system thermal performance was evaluated, using the f CHART method.

  13. Fluid-bed air-supply system

    DOEpatents

    Zielinski, Edward A.; Comparato, Joseph R.

    1979-01-01

    The air-supply system for a fluidized-bed furnace includes two air conduits for the same combustion zone. The conduits feed separate sets of holes in a distributor plate through which fluidizing air flows to reach the bed. During normal operation, only one conduit and set of holes is used, but the second conduit and set of holes is employed during start-up.

  14. Control of the Cutaneous Circulation by the Central Nervous System.

    PubMed

    Blessing, William; McAllen, Robin; McKinley, Michael

    2016-01-01

    The central nervous system (CNS), via its control of sympathetic outflow, regulates blood flow to the acral cutaneous beds (containing arteriovenous anastomoses) as part of the homeostatic thermoregulatory process, as part of the febrile response, and as part of cognitive-emotional processes associated with purposeful interactions with the external environment, including those initiated by salient or threatening events (we go pale with fright). Inputs to the CNS for the thermoregulatory process include cutaneous sensory neurons, and neurons in the preoptic area sensitive to the temperature of the blood in the internal carotid artery. Inputs for cognitive-emotional control from the exteroceptive sense organs (touch, vision, sound, smell, etc.) are integrated in forebrain centers including the amygdala. Psychoactive drugs have major effects on the acral cutaneous circulation. Interoceptors, chemoreceptors more than baroreceptors, also influence cutaneous sympathetic outflow. A major advance has been the discovery of a lower brainstem control center in the rostral medullary raphé, regulating outflow to both brown adipose tissue (BAT) and to the acral cutaneous beds. Neurons in the medullary raphé, via their descending axonal projections, increase the discharge of spinal sympathetic preganglionic neurons controlling the cutaneous vasculature, utilizing glutamate, and serotonin as neurotransmitters. Present evidence suggests that both thermoregulatory and cognitive-emotional control of the cutaneous beds from preoptic, hypothalamic, and forebrain centers is channeled via the medullary raphé. Future studies will no doubt further unravel the details of neurotransmitter pathways connecting these rostral control centers with the medullary raphé, and those operative within the raphé itself. © 2016 American Physiological Society. Compr Physiol 6:1161-1197, 2016. PMID:27347889

  15. System and method for conditioning intake air to an internal combustion engine

    SciTech Connect

    Sellnau, Mark C.

    2015-08-04

    A system for conditioning the intake air to an internal combustion engine includes a means to boost the pressure of the intake air to the engine and a liquid cooled charge air cooler disposed between the output of the boost means and the charge air intake of the engine. Valves in the coolant system can be actuated so as to define a first configuration in which engine cooling is performed by coolant circulating in a first coolant loop at one temperature, and charge air cooling is performed by coolant flowing in a second coolant loop at a lower temperature. The valves can be actuated so as to define a second configuration in which coolant that has flowed through the engine can be routed through the charge air cooler. The temperature of intake air to the engine can be controlled over a wide range of engine operation.

  16. Troubleshooting the residential air conditioning system

    SciTech Connect

    Puzio, H.

    1996-01-01

    In order to effectively diagnose problems in a residential air conditioning system, the technician should develop and follow a logical step-by-step troubleshooting procedure. A list of problems, along with possible causes and solutions, that a technician may encounter when servicing a residential air conditioner is presented.

  17. Solar-powered hot-air system

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Solar-powered air heater supplies part or all of space heating requirements of residential or commercial buildings and is interfaced with air to water heat exchanger to heat domestic hot water. System has potential application in drying agricultural products such as cotton, lumber, corn, grains, and peanuts.

  18. Air Systems Provide Life Support to Miners

    NASA Technical Reports Server (NTRS)

    2014-01-01

    Through a Space Act Agreement with Johnson Space Center, Paragon Space Development Corporation, of Tucson, Arizona, developed the Commercial Crew Transport-Air Revitalization System, designed to provide clean air for crewmembers on short-duration space flights. The technology is now being used to help save miners' lives in the event of an underground disaster.

  19. AEROMETRIC INFORMATION RETRIEVAL SYSTEM (AIRS) - GRAPHICS

    EPA Science Inventory

    Aerometric Information Retrieval System (AIRS) is a computer-based repository of information about airborne pollution in the United States and various World Health Organization (WHO) member countries. AIRS is administered by the U.S. Environmental Protection Agency, and runs on t...

  20. AEROMETRIC INFORMATION RETRIEVAL SYSTEM (AIRS) EXECUTIVE

    EPA Science Inventory

    Aerometric Information Retrieval System (AIRS) is a computer-based repository of information about airborne pollution in the United States and various World Health Organization (WHO) member countries. AIRS is administered by the U.S. Environmental Protection Agency, and runs on t...

  1. AEROMETRIC INFORMATION RETRIEVAL SYSTEM - AIRS FACILITY SUBSYSTEM

    EPA Science Inventory

    Aerometric Information Retrieval System (AIRS) is a computer-based repository of information about airborne pollution in the United States and various World Health Organization (WHO) member countries. AIRS is administered by the U.S. Environmental Protection Agency, and runs on t...

  2. Testing Air-Filtering Systems

    PubMed Central

    Songer, Joseph R.; Sullivan, James F.; Hurd, James W.

    1963-01-01

    A procedure was developed for evaluating high-efficiency filters mounted in exhaust ducts at the National Animal Disease Laboratory. An aerosol of the test organism, Escherichia coli B T3 bacteriophage, was generated in a chamber attached to a ceiling exhaust register in concentrations of at least 1000 viable organisms per ft3 of air. Samples were collected from both the pre- and postfilter areas, and the number of organisms per ft3 of air was determined. The efficiency of the filter was calculated from these figures. A total of 269 high-efficiency filters were tested. Of these, 249 had efficiencies of 98% or greater. The remaining 20, with efficiencies of less than 98%, were repaired and retested. No filter was accepted with an efficiency of less than 98%. Images Fig. 2 PMID:14063779

  3. Technical Report for Water Circulation Pumping System for Trihalomethanes (THMs)

    SciTech Connect

    Bellah, W.

    2015-06-08

    The TSWWS was added as an active source of supply to the permit (No. 03-10-13P-003) in 2010, but has never been used due to the potential for formation of trihalomethanes (THMs) in the distribution system. THMs are formed as a by-product when chlorine is used to disinfect water for drinking. THMs are a group of chemicals generally referred to as disinfection by-products (DBPs). THMs result from the reaction of chlorine with organic matter that is present in the water. Some of the THMs are volatile and may easily vaporize into the air. This fact forms the basis of the design of the system discussed in this technical report. In addition, the design is based on the results of a study that has shown success using aeration as a means to reduce TTHMs to within allowable concentration levels with turn-over times as long as ten days. The Primary Drinking Water Standards of Regulated Contaminants Maximum Contaminant Level (MCL) for TTHMs is 80 parts per billion (ppb). No other changes to the existing drinking water distribution system and chlorination operations are anticipated before switching to the TSWWS as the primary drinking water source. The two groundwater wells (Wells 20 and 18) which are currently the primary and backup water sources for the system would be maintained for use as backup supply. In the future, one of the wells may be removed from the system. A permit amendment would be filed at that time if this modification was deemed appropriate.

  4. Results of experimental studies of the gas-dynamic behavior of airflow in the circulation line of the air condenser of steam-turbine plants

    NASA Astrophysics Data System (ADS)

    Fedorov, V. A.; Mil'man, O. O.; Gribin, V. G.; Anan'ev, P. A.

    2014-12-01

    The results of experimental studies and a physical model of the three-dimensional flow of cooling air in the circulation line (CL) of a dummy air condenser (AC) incorporating a fan, heat-exchange modules, a shell, and other auxiliary components are analyzed. The local air velocity fields determined experimentally at the AC CL inlet and at the fan diffuser outlet are presented. The guidelines for determining the head-capacity characteristics of the airflow through the AC CL are proposed.

  5. HESTIA Phase I Test Results: The Air Revitalization System

    NASA Technical Reports Server (NTRS)

    Wright, Sarah E.; Hansen, Scott W.

    2016-01-01

    In any human spaceflight mission, a number of Environmental Control & Life Support System (ECLSS) technologies work together to provide the conditions astronauts need to live healthily, productively, and comfortably in space. In a long-duration mission, many of these ECLSS technologies may use materials supplied by In-Situ Resource Utilization (ISRU), introducing more interactions between systems. The Human Exploration Spacecraft Test-bed for Integration & Advancement (HESTIA) Project aims to create a test-bed to evaluate ECLSS and ISRU technologies and how they interact in a high-fidelity, closed-loop, human-rated analog habitat. Air purity and conditioning are essential components within any ECLSS and for HESTIA's first test they were achieved with the Air Revitalization System (ARS) described below. The ARS provided four essential functions to the test-bed chamber: cooling the air, removing humidity from the air, removing trace contaminants, and scrubbing carbon dioxide (CO2) from the air. In this case, the oxygen supply function was provided by ISRU. In the current configuration, the ARS is a collection of different subsystems. A fan circulates the air, while a condensing heat exchanger (CHX) pulls humidity out of the air. A Trace Contaminant Removal System (TCRS) filters the air of potentially harmful contaminants. Lastly, a Reactive Plastic Lithium Hydroxide (RP-LiOH) unit removes CO2 from the breathing air. During the HESTIA Phase I test in September 2015, the ARS and its individual components each functioned as expected, although further analysis is underway. During the Phase I testing and in prior bench-top tests, the energy balance of heat removed by the CHX was not equal to the cooling it received. This indicated possible instrument error and therefore recalibration of the instruments and follow-up testing is planned in 2016 to address the issue. The ARS was tested in conjunction with two other systems: the Human Metabolic Simulator (HMS) and the

  6. Numerical characterization of the hydrodynamics and thermal behavior of air flow in flexible air distribution system

    NASA Astrophysics Data System (ADS)

    Gharehdaghi, Samad; Moujaes, Samir

    2013-10-01

    Flexible duct air distribution systems are used in a large percentage of residential and small commercial buildings in the United States . Very few empirical or predictive data are available though to help provide the HVAC design engineer with reliable information . Moreover, because of the ducts flexibility, the shapes of these ducts offer a different set of operating fluid flow and thermal conditions from traditional smooth metal ducts. Hence, both the flow field and heat transfer through this kind of ducts are much more complex and merit to be analyzed from a numerical predictive approach. The aim of this research paper is to compute some of the hydrodynamic and heat transfer characteristics of the air flow inside these ducts over a range of Re numbers commonly used in the flow conditions of these air distribution systems. The information resulting from this CFD simulation, where a κ-ɛ turbulent model is used to predict the flow conditions, provide pressure drop and average convective heat transfer coefficients that exist in these ducts and was compared to previously found data. Circulation zones in the depressions of these ducts are found to exist which are suspected of influencing the pressured drop and heat transfer coefficients as compared to smooth ducts. The results show that fully developed conditions exist much earlier with regard to the inlet for both hydrodynamic and thermal entrance regions than what would be expected in smooth ducts under the same turbulent conditions.

  7. Air quality and future energy system planning

    NASA Astrophysics Data System (ADS)

    Sobral Mourao, Zenaida; Konadu, Dennis; Lupton, Rick

    2016-04-01

    Ambient air pollution has been linked to an increasing number of premature deaths throughout the world. Projected increases in demand for food, energy resources and manufactured products will likely contribute to exacerbate air pollution with an increasing impact on human health, agricultural productivity and climate change. Current events such as tampering emissions tests by VW car manufacturers, failure to comply with EU Air Quality directives and WHO guidelines by many EU countries, the problem of smog in Chinese cities and new industrial emissions regulations represent unique challenges but also opportunities for regulators, local authorities and industry. However current models and practices of energy and resource use do not consider ambient air impacts as an integral part of the planing process. Furthermore the analysis of drivers, sources and impacts of air pollution is often fragmented, difficult to understand and lacks effective visualization tools that bring all of these components together. This work aims to develop a model that links impacts of air quality on human health and ecosystems to current and future developments in the energy system, industrial and agricultural activity and patterns of land use. The model will be added to the ForeseerTM tool, which is an integrated resource analysis platform that has been developed at the University of Cambridge initially with funding from BP and more recently through the EPSRC funded Whole Systems Energy Modeling (WholeSEM) project. The basis of the tool is a set of linked physical models for energy, water and land, including the technologies that are used to transform these resources into final services such as housing, food, transport and household goods. The new air quality model will explore different feedback effects between energy, land and atmospheric systems with the overarching goal of supporting better communication about the drivers of air quality and to incorporate concerns about air quality into

  8. Impact of Bay-Breeze Circulations on Surface Air Quality and Boundary Layer Export

    NASA Technical Reports Server (NTRS)

    Loughner, Christopher P.; Tzortziou, Maria; Follette-Cook, Melanie; Pickering, Kenneth E.; Goldberg, Daniel; Satam, Chinmay; Weinheimer, Andrew; Crawford, James H.; Knapp, David J.; Montzka, Denise D.; Diskin, Glenn S.; Dickerson, Russell R.

    2014-01-01

    Meteorological and air-quality model simulations are analyzed alongside observations to investigate the role of the Chesapeake Bay breeze on surface air quality, pollutant transport, and boundary layer venting. A case study was conducted to understand why a particular day was the only one during an 11-day ship-based field campaign on which surface ozone was not elevated in concentration over the Chesapeake Bay relative to the closest upwind site and why high ozone concentrations were observed aloft by in situ aircraft observations. Results show that southerly winds during the overnight and early-morning hours prevented the advection of air pollutants from the Washington, D.C., and Baltimore, Maryland, metropolitan areas over the surface waters of the bay. A strong and prolonged bay breeze developed during the late morning and early afternoon along the western coastline of the bay. The strength and duration of the bay breeze allowed pollutants to converge, resulting in high concentrations locally near the bay-breeze front within the Baltimore metropolitan area, where they were then lofted to the top of the planetary boundary layer (PBL). Near the top of the PBL, these pollutants were horizontally advected to a region with lower PBL heights, resulting in pollution transport out of the boundary layer and into the free troposphere. This elevated layer of air pollution aloft was transported downwind into New England by early the following morning where it likely mixed down to the surface, affecting air quality as the boundary layer grew.

  9. Systemic Analysis Approaches for Air Transportation

    NASA Technical Reports Server (NTRS)

    Conway, Sheila

    2005-01-01

    Air transportation system designers have had only limited success using traditional operations research and parametric modeling approaches in their analyses of innovations. They need a systemic methodology for modeling of safety-critical infrastructure that is comprehensive, objective, and sufficiently concrete, yet simple enough to be used with reasonable investment. The methodology must also be amenable to quantitative analysis so issues of system safety and stability can be rigorously addressed. However, air transportation has proven itself an extensive, complex system whose behavior is difficult to describe, no less predict. There is a wide range of system analysis techniques available, but some are more appropriate for certain applications than others. Specifically in the area of complex system analysis, the literature suggests that both agent-based models and network analysis techniques may be useful. This paper discusses the theoretical basis for each approach in these applications, and explores their historic and potential further use for air transportation analysis.

  10. System for controlling air-fuel ratio

    SciTech Connect

    Morozumi, T.

    1982-09-14

    A system for controlling the air-fuel ratio for an internal combustion engine having an induction passage, an exhaust passage , a choke valve in the induction passage, an automatic choke device comprising a positive temperature coefficient (Ptc) heater and a bimetal element connected to the choke valve, a detector for detecting the concentration of a constituent of exhaust gases passing through the exhaust passage, an electronic control circuit, an on-off type electromagnetic valve actuated by the output signal from the electronic control circuit for correcting the air-fuel ratio of the air-fuel mixture supplied by an airfuel mixture supplier, and means for actuating the on-off type electromagnetic valve at a fixed duty ratio during cold engine operation. The electronic control circuit comprises a vacuum sensor for converting the amount of the induced air to an electric quantity, an engine temperature detector for converting the engine temperature to an electric quantity, a first calculating circuit for producing a proper desired air-fuel mixture ratio signal from the output signals of the vacuum sensor and of the engine temperature detector, and a second calculation circuit for producing an actual air-fuel ratio signal from output signals of the vacuum sensor and of the ptc heater. A summing circuit for summing the proper air-fuel ratio signal and the actual air-fuel ratio signal produces a pulse duty ratio correcting signal which is applied to the electronic control circuit for correcting the fixed duty ratio.

  11. 30 CFR 75.1730 - Compressed air; general; compressed air systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Compressed air; general; compressed air systems... Compressed air; general; compressed air systems. (a) All pressure vessels shall be constructed, installed... Safety and Health district office. (b) Compressors and compressed-air receivers shall be equipped...

  12. 30 CFR 75.1730 - Compressed air; general; compressed air systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Compressed air; general; compressed air systems... Compressed air; general; compressed air systems. (a) All pressure vessels shall be constructed, installed... Safety and Health district office. (b) Compressors and compressed-air receivers shall be equipped...

  13. 30 CFR 75.1730 - Compressed air; general; compressed air systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Compressed air; general; compressed air systems... Compressed air; general; compressed air systems. (a) All pressure vessels shall be constructed, installed... Safety and Health district office. (b) Compressors and compressed-air receivers shall be equipped...

  14. 30 CFR 75.1730 - Compressed air; general; compressed air systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Compressed air; general; compressed air systems... Compressed air; general; compressed air systems. (a) All pressure vessels shall be constructed, installed... Safety and Health district office. (b) Compressors and compressed-air receivers shall be equipped...

  15. 30 CFR 75.1730 - Compressed air; general; compressed air systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Compressed air; general; compressed air systems... Compressed air; general; compressed air systems. (a) All pressure vessels shall be constructed, installed... Safety and Health district office. (b) Compressors and compressed-air receivers shall be equipped...

  16. 49 CFR 570.57 - Air brake system and air-over-hydraulic brake subsystem.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 6 2010-10-01 2010-10-01 false Air brake system and air-over-hydraulic brake... STANDARDS Vehicles With GVWR of More Than 10,000 Pounds § 570.57 Air brake system and air-over-hydraulic brake subsystem. The following requirements apply to vehicles with air brake and...

  17. Modular minimally invasive extracorporeal circulation systems; can they become the standard practice for performing cardiac surgery?

    PubMed

    Anastasiadis, K; Antonitsis, P; Argiriadou, H; Deliopoulos, A; Grosomanidis, V; Tossios, P

    2015-04-01

    Minimally invasive extracorporeal circulation (MiECC) has been developed in an attempt to integrate all advances in cardiopulmonary bypass technology in one closed circuit that shows improved biocompatibility and minimizes the systemic detrimental effects of CPB. Despite well-evidenced clinical advantages, penetration of MiECC technology into clinical practice is hampered by concerns raised by perfusionists and surgeons regarding air handling together with blood and volume management during CPB. We designed a modular MiECC circuit, bearing an accessory circuit for immediate transition to an open system that can be used in every adult cardiac surgical procedure, offering enhanced safety features. We challenged this modular circuit in a series of 50 consecutive patients. Our results showed that the modular AHEPA circuit design offers 100% technical success rate in a cohort of random, high-risk patients who underwent complex procedures, including reoperation and valve and aortic surgery, together with emergency cases. This pilot study applies to the real world and prompts for further evaluation of modular MiECC systems through multicentre trials. PMID:25564510

  18. Tracking air-dropped drogues and dyes from aircraft in support of ERTS-1 circulation studies. [Delaware Bay

    NASA Technical Reports Server (NTRS)

    Klemas, V. (Principal Investigator); Davis, G.; Wang, H.

    1974-01-01

    The author has identified the following significant results. For two years ERTS-1 has been employed to investigate current circulation patterns in Delaware Bay under different tidal, flow, and wind conditions. Since sufficient numbers of current meters and boats are not available, air-droppable drogues and dye packs have been developed and tested. The drogues consist of a styrofoam float and a line to which is attached a stainless steel biplane. The length of the line determines at what depth currents will be monitored. The floats are color coded to distinguish their movement and mark the depth of the biplanes. Simultaneously floating and anchored dye packs of fluorescein dye have been deployed from aircraft. The movement of the dye and drogues is tracked by sequential aerial photography, using fixed markers on shore or on buoys as reference points to calibrate the scale and direction of drogue movement. The current data obtained by this technique is then used to annotate current circulation maps derived from ERTS-1 imagery.

  19. Development of an Accident Reproduction Simulator System Using a Hemodialysis Extracorporeal Circulation System

    PubMed Central

    Nishite, Yoshiaki; Takesawa, Shingo

    2016-01-01

    Background: Accidents that occur during dialysis treatment are notified to the medical staff via alarms raised by the dialysis apparatus. Similar to such real accidents, apparatus activation or accidents can be reproduced by simulating a treatment situation. An alarm that corresponds to such accidents can be utilized in the simulation model. Objectives: The aim of this study was to create an extracorporeal circulation system (hereinafter, the circulation system) for dialysis machines so that it sets off five types of alarms for: 1) decreased arterial pressure, 2) increased arterial pressure, 3) decreased venous pressure, 4) increased venous pressure, and 5) blood leakage, according to the five types of accidents chosen based on their frequency of occurrence and the degree of severity. Materials and Methods: In order to verify the alarm from the dialysis apparatus connected to the circulation system and the accident corresponding to it, an evaluation of the alarm for its reproducibility of an accident was performed under normal treatment circumstances. The method involved testing whether the dialysis apparatus raised the desired alarm from the moment of control of the circulation system, and measuring the time it took until the desired alarm was activated. This was tested on five main models from four dialyzer manufacturers that are currently used in Japan. Results: The results of the tests demonstrated successful activation of the alarms by the dialysis apparatus, which were appropriate for each of the five types of accidents. The time between the control of the circulatory system to the alarm signal was as follows, 1) venous pressure lower limit alarm: 7 seconds; 2) venous pressure lower limit: 8 seconds; 3) venous pressure upper limit: 7 seconds; 4) venous pressure lower limit alarm: 2 seconds; and 5) blood leakage alarm: 19 seconds. All alarms were set off in under 20 seconds. Conclusions: Thus, we can conclude that a simulator system using an extracorporeal

  20. Heat fluxes and roll circulations over the western Gulf Stream during an intense cold-air outbreak

    NASA Technical Reports Server (NTRS)

    Chou, Shu-Hsien; Ferguson, Michael P.

    1991-01-01

    Turbulence and heat fluxes in the marine atmospheric boundary layer (MABL) for three aircraft stacks near the western Gulf Stream front, observed during the Genesis of Atlantic Lows Experiment (GALE) January 28, 1986 cold-air outbreak, has been studied using mixed-layer scaling. The GOES image and stability parameter indicates that these three stacks were in the roll vortex regime. The turbulence structure in the MABL is studied for this case, as well as the significance of roll vortices to heat fluxes. The roll circulations are shown to contribute significantly to the sensible (temperature) and latent heat (moisture) fluxes with importance increasing upward. The results suggest that the entrainment at the MABL top might affect the the budgets of temperature and humidity fluxes in the lower MABL, but not in the unstable surface layer.

  1. Influence of high-resolution surface databases on the modeling of local atmospheric circulation systems

    NASA Astrophysics Data System (ADS)

    Paiva, L. M. S.; Bodstein, G. C. R.; Pimentel, L. C. G.

    2013-12-01

    Large-eddy simulations are performed using the Advanced Regional Prediction System (ARPS) code at horizontal grid resolutions as fine as 300 m to assess the influence of detailed and updated surface databases on the modeling of local atmospheric circulation systems of urban areas with complex terrain. Applications to air pollution and wind energy are sought. These databases are comprised of 3 arc-sec topographic data from the Shuttle Radar Topography Mission, 10 arc-sec vegetation type data from the European Space Agency (ESA) GlobCover Project, and 30 arc-sec Leaf Area Index and Fraction of Absorbed Photosynthetically Active Radiation data from the ESA GlobCarbon Project. Simulations are carried out for the Metropolitan Area of Rio de Janeiro using six one-way nested-grid domains that allow the choice of distinct parametric models and vertical resolutions associated to each grid. ARPS is initialized using the Global Forecasting System with 0.5°-resolution data from the National Center of Environmental Prediction, which is also used every 3 h as lateral boundary condition. Topographic shading is turned on and two soil layers with depths of 0.01 and 1.0 m are used to compute the soil temperature and moisture budgets in all runs. Results for two simulated runs covering the period from 6 to 7 September 2007 are compared to surface and upper-air observational data to explore the dependence of the simulations on initial and boundary conditions, topographic and land-use databases and grid resolution. Our comparisons show overall good agreement between simulated and observed data and also indicate that the low resolution of the 30 arc-sec soil database from United States Geological Survey, the soil moisture and skin temperature initial conditions assimilated from the GFS analyses and the synoptic forcing on the lateral boundaries of the finer grids may affect an adequate spatial description of the meteorological variables.

  2. Tropical air-sea coupling accelerates the recovery of the Atlantic Meridional Overturning Circulation after glacial meltwater event

    NASA Astrophysics Data System (ADS)

    Krebs-Kanzow, U.; Timmermann, A.

    2009-04-01

    During "Heinrich events" brief and exceptionally large discharges of icebergs from the Laurentide and European ice sheets coincide with cold periods followed abrupt warmings. Climate reconstructions suggest that the freshwater pulses caused a temporary collapse of the Atlantic Meridional Overturning Circulation (AMOC) by stabilizing the stratification in the regions of North Atlantic Deep Water (NADW) formation. Using a coupled ocean sea-ice atmosphere model of intermediate complexity we trigger a complete shut-down of the AMOC by injection of a freshwater pulse to the northern North Atlantic. (Analyzing)The analysis of fully and partially coupled freshwater perturbation experiments under glacial conditions reveals that the reduction of northward heat transport in the North Atlantic leads to a cooling north of the thermal equator. Due to advection of cold air and an intensification of the tradewinds the Intertropical Convergence Zone (ITCZ) is shifted southward. Changes of the accumulated precipitation lead to generation of a positive salinity anomaly in the northern tropical Atlantic and a negative anomaly in the southern tropical Atlantic. During the shut-down phase of the AMOC, the cross-equatorial oceanic surface flow is halted, preventing a dilution of the positive salinity anomaly in the North Atlantic. Advected northward by the wind driven ocean circulation the positive salinity anomaly increases the upper ocean density in the deep water formation regions, thereby accelerating the recovery of the AMOC considerably. Partially coupled experiments which neglect tropical air-sea coupling reveal that the recovery time of the AMOC is almost twice as long as in the fully coupled case.

  3. Preparation, characterization, and photocatalytic studies on anatase nano-TiO{sub 2} at internal air lift circulating photocatalytic reactor

    SciTech Connect

    Xu, Hang Li, Mei; Jun, Zhang

    2013-09-01

    Graphical abstract: The micro morphological structure of the nano-TiO{sub 2} particles was also observed with TEM, as shown in figure. The TEM images clearly exhibited the homogeneous microstructure of particles with a size of around 10–15 nm. - Highlights: • Nano-TiO{sub 2} was prepared by complex techniques of sol–gel, micro-emulsion and solvent thermal. • The size of TiO{sub 2} was nano level and uniformity. • Nano-TiO{sub 2} exhibited high photo-catalytic activity at internal air lift circulating reactor. • The best nano-TiO{sub 2} dosage was obtained. - Abstract: Anatase nano-titania (TiO{sub 2}) powder was prepared by using a sol–gel process mediated in reverse microemulsion combined with a solvent thermal technique. The structures of the obtained TiO{sub 2} were characterized by TG-DSC, XRD, TEM. The photocatalytic decomposition of methylene blue (MB) on nano-TiO{sub 2} was studied by using an internal air lift circulating photocatalytic reactor. The results show that the anatase structure appears in the calcination temperature range of 400–510 °C, while the transformation of anatase into rutile takes place above 510 °C. The homogeneous microstructure of nano-TiO{sub 2} particles was obtained with a size of around 10–15 nm. In the photocatalytic performance, degradation process follows pseudo first order kinetics with different dosages of photocatalyst and initial MB concentrations and optimal TiO{sub 2} dosage is 0.1 g/L with neutral medium.

  4. Advanced Overfire Air system and design

    SciTech Connect

    Gene berkau

    2004-07-30

    The objective of the proposed project is to design, install and optimize a prototype advanced tangential OFA air system on two mass feed stoker boilers that can burn coal, biomass and a mixture of these fuels. The results will be used to develop a generalized methodology for retrofit designs and optimization of advanced OFA air systems. The advanced OFA system will reduce particulate and NOx emissions and improve overall efficiency by reducing carbon in the ash and excess oxygen. The advanced OFA will also provide capabilities for carrying full load and improved load following and transitional operations.

  5. Slip stream apparatus and method for treating water in a circulating water system

    DOEpatents

    Cleveland, Joe R.

    1997-01-01

    An apparatus (10) for treating water in a circulating water system (12) t has a cooling water basin (14) includes a slip stream conduit (16) in flow communication with the circulating water system (12), a source (36) of acid solution in flow communication with the slip stream conduit (16), and a decarbonator (58) in flow communication with the slip stream conduit (16) and the cooling water basin (14). In use, a slip stream of circulating water is drawn from the circulating water system (12) into the slip stream conduit (16) of the apparatus (10). The slip stream pH is lowered by contact with an acid solution provided from the source (36) thereof. The slip stream is then passed through a decarbonator (58) to form a treated slip stream, and the treated slip stream is returned to the cooling water basin (14).

  6. Slip stream apparatus and method for treating water in a circulating water system

    DOEpatents

    Cleveland, J.R.

    1997-03-18

    An apparatus is described for treating water in a circulating water system that has a cooling water basin which includes a slip stream conduit in flow communication with the circulating water system, a source of acid solution in flow communication with the slip stream conduit, and a decarbonator in flow communication with the slip stream conduit and the cooling water basin. In use, a slip stream of circulating water is drawn from the circulating water system into the slip stream conduit of the apparatus. The slip stream pH is lowered by contact with an acid solution provided from the source thereof. The slip stream is then passed through a decarbonator to form a treated slip stream, and the treated slip stream is returned to the cooling water basin. 4 figs.

  7. [Serological evidence of St. Louis encephalitis virus circulation in birds from Buenos Aires City, Argentina].

    PubMed

    Beltrán, Fernando J; Díaz, Luis A; Konigheim, Brenda; Molina, José; Beaudoin, Juan B; Contigiani, Marta; Spinsanti, Lorena I

    2015-01-01

    Our goal was to determine the presence of neutralizing antibodies against St. Louis encephalitis virus (SLEV) and West Nile virus (WNV) in sera of wild and domestic birds from Buenos Aires City, Argentina. From October 2012 to April 2013, 180 samples were collected and processed by the microneutralization technique. A 7.2% of the sampled birds were seropositive for SLEV, while no seropositive birds for WNV were detected. PMID:26627114

  8. Study on the flow in the pipelines of the support system of circulating fluidized bed

    NASA Astrophysics Data System (ADS)

    Meng, L.; Yang, J.; Zhou, L. J.; Wang, Z. W.; Zhuang, X. H.

    2013-12-01

    In the support system of Circulating Fluidized Bed (Below referred to as CFB) of thermal power plant, the pipelines of primary wind are used for transporting the cold air to the boiler, which is important in controlling and combustion effect. The pipeline design will greatly affect the energy loss of the system, and accordingly affect the thermal power plant economic benefits and production environment. Three-dimensional numerical simulation is carried out for the pipeline internal flow field of a thermal power plant in this paper. Firstly three turbulence models were compared and the results showed that the SST k-ω model converged better and the energy losses predicted were closer to the experimental results. The influence of the pipeline design form on the flow characteristics are analysed, then the optimization designs of the pipeline are proposed according to the energy loss distribution of the flow field, in order to reduce energy loss and improve the efficiency of tunnel. The optimization plan turned out to be efficacious; about 36% of the pressure loss is reduced.

  9. The Integrated Air Transportation System Evaluation Tool

    NASA Technical Reports Server (NTRS)

    Wingrove, Earl R., III; Hees, Jing; Villani, James A.; Yackovetsky, Robert E. (Technical Monitor)

    2002-01-01

    Throughout U.S. history, our nation has generally enjoyed exceptional economic growth, driven in part by transportation advancements. Looking forward 25 years, when the national highway and skyway systems are saturated, the nation faces new challenges in creating transportation-driven economic growth and wealth. To meet the national requirement for an improved air traffic management system, NASA developed the goal of tripling throughput over the next 20 years, in all weather conditions while maintaining safety. Analysis of the throughput goal has primarily focused on major airline operations, primarily through the hub and spoke system.However, many suggested concepts to increase throughput may operate outside the hub and spoke system. Examples of such concepts include the Small Aircraft Transportation System, civil tiltrotor, and improved rotorcraft. Proper assessment of the potential contribution of these technologies to the domestic air transportation system requires a modeling capability that includes the country's numerous smaller airports, acting as a fundamental component of the National Air space System, and the demand for such concepts and technologies. Under this task for NASA, the Logistics Management Institute developed higher fidelity demand models that capture the interdependence of short-haul air travel with other transportation modes and explicitly consider the costs of commercial air and other transport modes. To accomplish this work, we generated forecasts of the distribution of general aviation based aircraft and GA itinerant operations at each of nearly 3.000 airport based on changes in economic conditions and demographic trends. We also built modules that estimate the demand for travel by different modes, particularly auto, commercial air, and GA. We examined GA demand from two perspectives: top-down and bottom-up, described in detail.

  10. 14 CFR 23.1109 - Turbocharger bleed air system.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Turbocharger bleed air system. 23.1109... Induction System § 23.1109 Turbocharger bleed air system. The following applies to turbocharged bleed air systems used for cabin pressurization: (a) The cabin air system may not be subject to...

  11. 14 CFR 23.1109 - Turbocharger bleed air system.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Turbocharger bleed air system. 23.1109... Induction System § 23.1109 Turbocharger bleed air system. The following applies to turbocharged bleed air systems used for cabin pressurization: (a) The cabin air system may not be subject to...

  12. 14 CFR 23.1109 - Turbocharger bleed air system.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Turbocharger bleed air system. 23.1109... Induction System § 23.1109 Turbocharger bleed air system. The following applies to turbocharged bleed air systems used for cabin pressurization: (a) The cabin air system may not be subject to...

  13. 14 CFR 23.1109 - Turbocharger bleed air system.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Turbocharger bleed air system. 23.1109... Induction System § 23.1109 Turbocharger bleed air system. The following applies to turbocharged bleed air systems used for cabin pressurization: (a) The cabin air system may not be subject to...

  14. 14 CFR 23.1109 - Turbocharger bleed air system.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Induction System § 23.1109 Turbocharger bleed air system. The following applies to turbocharged bleed air systems used for cabin pressurization: (a) The cabin air system may not be subject to hazardous... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Turbocharger bleed air system....

  15. Air Storage System Energy Transfer (ASSET) plants

    NASA Astrophysics Data System (ADS)

    Stys, Z. S.

    1983-09-01

    The design features and performance capabilities of Air Storage System Energy Transfer (ASSET) plants for transferring off-peak utility electricity to on-peak hours are described. The plant operations involve compressing ambient air with an axial flow compressor and depositing it in an underground reservoir at 70 bar pressure. Released during a peaking cycle, the pressure is reduced to 43 bar, the air is heated to 550 C, passed through an expander after a turbine, and passed through a low pressure combustion chamber to be heated to 850 C. A West German plant built in 1978 to supply over 300 MW continuous power for up to two hours is detailed, noting its availability factor of nearly 98 percent and power delivery cost of $230/kW installed. A plant being constructed in Illinois will use limestone caverns as the air storage tank.

  16. Neptunic dikes and their relation to the hydrodynamic circulation of submarine hydrothermal systems

    NASA Astrophysics Data System (ADS)

    Hsu, Kenneth J.

    1983-08-01

    Neptunic dikes in Lower Jurassic sedimentary rocks of the Tethyan margins consist of internal sediment in cavities and submarine cement. The textures of the infilling sediment indicate downward and lateral movements of seawater beneath what was probably a deep-sea floor. This circulation probably was part of the hydrodynamic circulation that supplied hot, ore-bearing solutions to hydrothermal vents near a spreading-ridge system. This working hypothesis is being tested by stable-isotope studies now in progress.

  17. Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion System

    SciTech Connect

    Wei-Ping Pan; Yan Cao; John Smith

    2006-07-01

    This report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period April 1, 2006 through June 30, 2006. Substantial progress was made on the development and application of software for the effective operation and safe control of the Circulating Fluidized-Bed (CFB) Combustor, as well as for the display and logging of acquired data and operating parameters.

  18. Midlatitudes precipitation and the global atmospheric circulation

    NASA Astrophysics Data System (ADS)

    Pauluis, O.; Czaja, A.; Korty, R.; Laliberte, F.

    2008-12-01

    The global atmospheric circulation transports energy from the equatorial regions to higher latitudes. Due to the turbulent nature of the flow, describing a 'mean' circulation depends strongly on the averaging method and coordinates system. When averaged in isentropic coordinates, the circulation appears as a single overturning cell with a poleward flow of high entropy air and return flow at lower entropy. However, the entropy of a parcel of moist air is not uniquely defined, and different expression for the entropy yield different mean circulations. Here, the global circulation in the NCEP/NCAR Reanalysis is computed on surfaces of constant potential temperature, or dry isentropes, and on surfaces of constant equivalent potential temperature, or moist isentropes. The two analyses are qualitatively similar but differ quantitatively in that the circulation on moist isentropes is between 1.5 and 3 times larger than the circulation on dry isentropes. It is shown that the additional mass transport on moist isentropes corresponds to a poleward flow of warm, moist air near the Earth's surface that moves from the subtropics into the midlatitudes and rises in the upper troposphere within the stormtracks. In the subtropics, this flow is characterized by a low potential temperature but a much higher equivalent potential temperature. It does not appear in the circulation on dry isentropes, as it is hidden by the presence of a larger equatorward flow of drier air at same potential temperature. However, as the equivalent potential temperature in this low-level poleward flow is close to the potential temperature of the air near the tropopause, it is included in the total circulation on moist isentropes. The thermodynamic properties of this low-level poleward flow indicates that these poleward moving air parcels should ascend into the upper troposphere within the midlatitude stormtracks. Based on these findings, we propose a revised version of the global circulation. We argue that

  19. Air Pressure Controlled Mass Measurement System

    NASA Astrophysics Data System (ADS)

    Zhong, Ruilin; Wang, Jian; Cai, Changqing; Yao, Hong; Ding, Jin'an; Zhang, Yue; Wang, Xiaolei

    Mass measurement is influenced by air pressure, temperature, humidity and other facts. In order to reduce the influence, mass laboratory of National Institute of Metrology, China has developed an air pressure controlled mass measurement system. In this system, an automatic mass comparator is installed in an airtight chamber. The Chamber is equipped with a pressure controller and associate valves, thus the air pressure can be changed and stabilized to the pre-set value, the preferred pressure range is from 200 hPa to 1100 hPa. In order to keep the environment inside the chamber stable, the display and control part of the mass comparator are moved outside the chamber, and connected to the mass comparator by feed-throughs. Also a lifting device is designed for this system which can easily lift up the upper part of the chamber, thus weights can be easily put inside the mass comparator. The whole system is put on a marble platform, and the temperature and humidity of the laboratory is very stable. The temperature, humidity, and carbon dioxide content inside the chamber are measured in real time and can be used to get air density. Mass measurement cycle from 1100 hPa to 200 hPa and back to 1100 hPa shows the effective of the system.

  20. Secondary air injection system and method

    DOEpatents

    Wu, Ko-Jen; Walter, Darrell J.

    2014-08-19

    According to one embodiment of the invention, a secondary air injection system includes a first conduit in fluid communication with at least one first exhaust passage of the internal combustion engine and a second conduit in fluid communication with at least one second exhaust passage of the internal combustion engine, wherein the at least one first and second exhaust passages are in fluid communication with a turbocharger. The system also includes an air supply in fluid communication with the first and second conduits and a flow control device that controls fluid communication between the air supply and the first conduit and the second conduit and thereby controls fluid communication to the first and second exhaust passages of the internal combustion engine.

  1. Advanced Air Data Systems for Commercial Aircraft

    NASA Technical Reports Server (NTRS)

    2006-01-01

    It is possible to get a crude estimate of wind speed and direction while driving a car at night in the rain, with the motion of the raindrop reflections in the headlights providing clues about the wind. The clues are difficult to interpret, though, because of the relative motions of ground, car, air, and raindrops. More subtle interpretation is possible if the rain is replaced by fog, because the tiny droplets would follow the swirling currents of air around an illuminated object, like, for example, a walking pedestrian. Microscopic particles in the air (aerosols) are better for helping make assessments of the wind, and reflective air molecules are best of all, providing the most refined measurements. It takes a bright light to penetrate fog, so it is easy to understand how other factors, like replacing the headlights with the intensity of a searchlight, can be advantageous. This is the basic principle behind a lidar system. While a radar system transmits a pulse of radiofrequency energy and interprets the received reflections, a lidar system works in a similar fashion, substituting a near-optical laser pulse. The technique allows the measurement of relative positions and velocities between the transmitter and the air, which allows measurements of relative wind and of air temperature (because temperature is associated with high-frequency random motions on a molecular level). NASA, as well as the National Oceanic and Atmospheric Administration (NOAA), have interests in this advanced lidar technology, as much of their explorative research requires the ability to measure winds and turbulent regions within the atmosphere. Lidar also shows promise for providing warning of turbulent regions within the National Airspace System to allow commercial aircraft to avoid encounters with turbulence and thereby increase the safety of the traveling public. Both agencies currently employ lidar and optical sensing for a variety of weather-related research projects, such as analyzing

  2. Developing emulators of a general circulation model for applications in Earth system modelling

    NASA Astrophysics Data System (ADS)

    Tran, Giang; Oliver, Kevin; Sobester, Andras; Toal, David; Holden, Philip; Marsh, Robert; Challenor, Peter; Edwards, Neil

    2015-04-01

    To study climate change on multi-millennial timescales, efficient models with simplified and parameterized processes are required. This is particularly important if observations are to be used effectively constrain models, an endeavour which demands large numbers of simulations. Unfortunately, the reduction in explicitly modelled processes can lead to underestimation of responses in the system that are essential to the understanding of palaeoclimate. To address this, we intend to replace a simple component of an efficient model with a statistical model (an emulator) of a more comprehensive one. Efficient construction of such an emulator is achieved by exploiting the relationship among different levels of the climate model hierarchy. Using a multi-level emulation technique, outputs from an atmospheric general circulation model (GCM), called PLASIM, are efficiently emulated by utilising the extra information gained from the computationally cheap atmosphere of an efficient model called GENIE-1. Even though the two atmospheric models chosen have large structural differences, useful links between them are identified and Gaussian process emulators of PLASIM 2-D surface air temperature and precipitation fields are successfully constructed. The result shows that the multi-level emulators of PLASIM's output fields can be built using only one third the amount of expensive data required by the normal single-level technique. The constructed emulators are shown to capture 95.4% and 80.3% of the variance in surface air temperature and precipitation, respectively, across a validation ensemble. GCM emulators constructed using the proposed method can potentially replace the current simple component of the efficient model, resulting in a higher fidelity version of the model without a significant increase in computational cost.

  3. Solar powered desiccant air conditioning system

    NASA Astrophysics Data System (ADS)

    1981-07-01

    A solar-powered desiccant air conditioning system using silica gel was developed, and modifications to the existing unit and additional testing are proposed to demonstrate the feasibility of the unit. Conversion from a rotating bed to a fixed bed of silica gel is proposed. Some general plans for commercialization are briefly discussed.

  4. Tomorrows' Air Transportation System Breakout Series Report

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The purpose of this presentation is to discuss tomorrow's air transportation system. Section of this presentation includes: chair comments; other general comments; surface congestion alleviation; runway productivity; enhanced arrival/departure tools; integrated airspace decision support tools; national traffic flow management, runway independent operations; ATM TFM weather; and terminal weather.

  5. CONTROLLING AIR TOXICS: AN ADVISORY SYSTEM

    EPA Science Inventory

    The paper discusses the development and use of a computerized advisory system for the control of air toxics. The program, is written for the IBM PC using Microsoft C V3.0 compiler and Windows for Data Library V1.0 for screen and keyboard interaction. The permit reviewer inputs in...

  6. System model of a natural circulation integral test facility

    NASA Astrophysics Data System (ADS)

    Galvin, Mark R.

    The Department of Nuclear Engineering and Radiation Health Physics (NE/RHP) at Oregon State University (OSU) has been developing an innovative modular reactor plant concept since being initiated with a Department of Energy (DoE) grant in 1999. This concept, the Multi-Application Small Light Water Reactor (MASLWR), is an integral pressurized water reactor (PWR) plant that utilizes natural circulation flow in the primary and employs advanced passive safety features. The OSU MASLWR test facility is an electrically heated integral effects facility, scaled from the MASLWR concept design, that has been previously used to assess the feasibility of the concept design safety approach. To assist in evaluating operational scenarios, a simulation tool that models the test facility and is based on both test facility experimental data and analytical methods has been developed. The tool models both the test facility electric core and a simulated nuclear core, allowing evaluation of a broad spectrum of operational scenarios to identify those scenarios that should be explored experimentally using the test facility or design-quality multi-physics tools. Using the simulation tool, the total cost of experimentation and analysis can be reduced by directing time and resources towards the operational scenarios of interest.

  7. Testing the Patriot air defense weapon system

    NASA Astrophysics Data System (ADS)

    Graham, W. L.; McClay, L. F.

    1983-11-01

    A summary of the overall test program of the Patriot air defense weapon system is presented, including preparations for system integration tests and surveillance tests, with particular emphasis placed on the guidance flight test program. The major components of the system are described, and subsystem tests consisting of static and dynamic plume tests, static propulsion tests, dynamic propulsion test firings, and control system test firings are discussed. A series of system-level preflight guidance tests which consisted of a captive carry flight test program and other tests is considered. Tests on more sophisticated missions such as ECM, jamming, and combinations of ECM and chaff are addressed. Test data collection techniques are covered.

  8. Tracer measurements during long-term circulation of the Rosemanowes HDR geothermal system

    SciTech Connect

    Kwakwa, K.A.

    1988-01-01

    Circulation experiments have been in operation for over two years in the artificially stimulated hot dry rock (HDR) doublet of the Camborne School of Mines (CSM) research facility in Cornwall, England. During that period tracer tests have been run at intervals using inert and reactive compounds. Initially, the results of the inert tracer investigations showed that the active volume (indicated by modal and median volumes) of the circulating system was dormant. Then, after a period of sustained oscillation, notable increases in active volume were observed which depended on both the subsequent flow rate changes and circulation time. these dynamic changes had almost reached optimum values when a downhole pump was introduced in the production well. The drawdown in the production well caused a reduction of the modal volume, whilst the median volume remained almost the same. Since then, the active volume has remained unchanged and irresponsive to circulation time and flow rate. The results of the reactive tracer tests confirm increasing chemical reaction with increasing circulation time and correlate qualitatively with the opening of newer and hotter pathways within the reservoir. However, repeated production logs throughout the circulation have identified flow paths that have depleted thermally; a discrepancy that can be explained by the geometry of the system and the preferential downward reservoir growth.

  9. Air Conditioning System using Rankine Cycle

    NASA Astrophysics Data System (ADS)

    Nagatomo, Shigemi; Yamaguchi, Hiroichi; Hattori, Hitoshi; Futamura, Motonori

    Natural gas is used as the energy source to cope with the recent situation of increasing demand for electricity especially in summer. In this paper, the performance of a Rankine cycle air conditioning system driven by natural gas was studied. The following results were obtained : (1) Basic equations of performance, refrigerant mass flow rate and expander volume were developed by using the values of heating efficiency, regeneration efficiency, expander efficiency and compressor efficiency. (2) R134a refrigerant has been considered to be suitable for the Rankine cycle air conditioning system, compared with other refrigerants. (3)A Rankine cycle cooling system using R134a refrigerant as a single working fluid was developed. System COP of 0.47 was attained at typical operating condition.

  10. Natural circulating passive cooling system for nuclear reactor containment structure

    DOEpatents

    Gou, Perng-Fei; Wade, Gentry E.

    1990-01-01

    A passive cooling system for the contaminant structure of a nuclear reactor plant providing protection against overpressure within the containment attributable to inadvertent leakage or rupture of the system components. The cooling system utilizes natural convection for transferring heat imbalances and enables the discharge of irradiation free thermal energy to the atmosphere for heat disposal from the system.

  11. Clear air turbulence - An airborne alert system

    NASA Technical Reports Server (NTRS)

    Stearns, L. P.; Caracena, F.; Kuhn, P. M.; Kurkowski, R. L.

    1981-01-01

    An infrared radiometer system has been developed that can alert a pilot of an aircraft 2 to 9 minutes in advance of an encounter with clear air turbulence. The time between the warning and the clear air turbulence event varies with the flight altitude of the aircraft. In turbulence-free areas, the incidence of false alarms is found to be less than one in 3.4 hours of flight time compared to less than one per 10 hours of flight time in areas with turbulence.

  12. Evaluating Radionuclide Air Emission Stack Sampling Systems

    SciTech Connect

    Ballinger, Marcel Y.

    2002-12-16

    The Pacific Northwest National Laboratory (PNNL) operates a number of research and development (R&D) facilities for the U.S. Department of Energy at the Hanford Site, Washington. These facilities are subject to Clean Air Act regulations that require sampling of radionuclide air emissions from some of these facilities. A revision to an American National Standards Institute (ANSI) standard on sampling radioactive air emissions has recently been incorporated into federal and state regulations and a re-evaluation of affected facilities is being performed to determine the impact. The revised standard requires a well-mixed sampling location that must be demonstrated through tests specified in the standard. It also carries a number of maintenance requirements, including inspections and cleaning of the sampling system. Evaluations were performed in 2000 – 2002 on two PNNL facilities to determine the operational and design impacts of the new requirements. The evaluation included inspection and cleaning maintenance activities plus testing to determine if the current sampling locations meet criteria in the revised standard. Results show a wide range of complexity in inspection and cleaning activities depending on accessibility of the system, ease of removal, and potential impact on building operations (need for outages). As expected, these High Efficiency Particulate Air (HEPA)-filtered systems did not show deposition significant enough to cause concerns with blocking of the nozzle or other parts of the system. The tests for sampling system location in the revised standard also varied in complexity depending on accessibility of the sample site and use of a scale model can alleviate many issues. Previous criteria to locate sampling systems at eight duct diameters downstream and two duct diameters upstream of the nearest disturbances is no guarantee of meeting criteria in the revised standard. A computational fluid dynamics model was helpful in understanding flow and

  13. Optical nonreciprocity and optomechanical circulator in three-mode optomechanical systems

    NASA Astrophysics Data System (ADS)

    Xu, Xun-Wei; Li, Yong

    2015-05-01

    We demonstrate the possibility of optical nonreciprocal response in a three-mode optomechanical system where one mechanical mode is optomechanically coupled to two linearly coupled optical modes simultaneously. The optical nonreciprocal behavior is induced by the phase difference between the two optomechanical coupling rates, which breaks the time-reversal symmetry of the three-mode optomechanical system. Moreover, the three-mode optomechanical system can also be used as a three-port circulator for two optical modes and one mechanical mode, which we refer to as an optomechanical circulator.

  14. Lung Circulation.

    PubMed

    Suresh, Karthik; Shimoda, Larissa A

    2016-01-01

    The circulation of the lung is unique both in volume and function. For example, it is the only organ with two circulations: the pulmonary circulation, the main function of which is gas exchange, and the bronchial circulation, a systemic vascular supply that provides oxygenated blood to the walls of the conducting airways, pulmonary arteries and veins. The pulmonary circulation accommodates the entire cardiac output, maintaining high blood flow at low intravascular arterial pressure. As compared with the systemic circulation, pulmonary arteries have thinner walls with much less vascular smooth muscle and a relative lack of basal tone. Factors controlling pulmonary blood flow include vascular structure, gravity, mechanical effects of breathing, and the influence of neural and humoral factors. Pulmonary vascular tone is also altered by hypoxia, which causes pulmonary vasoconstriction. If the hypoxic stimulus persists for a prolonged period, contraction is accompanied by remodeling of the vasculature, resulting in pulmonary hypertension. In addition, genetic and environmental factors can also confer susceptibility to development of pulmonary hypertension. Under normal conditions, the endothelium forms a tight barrier, actively regulating interstitial fluid homeostasis. Infection and inflammation compromise normal barrier homeostasis, resulting in increased permeability and edema formation. This article focuses on reviewing the basics of the lung circulation (pulmonary and bronchial), normal development and transition at birth and vasoregulation. Mechanisms contributing to pathological conditions in the pulmonary circulation, in particular when barrier function is disrupted and during development of pulmonary hypertension, will also be discussed. © 2016 American Physiological Society. Compr Physiol 6:897-943, 2016. PMID:27065170

  15. Recent changes in air temperature, heat waves occurrences, and atmospheric circulation in Northern Africa

    NASA Astrophysics Data System (ADS)

    Fontaine, Bernard; Janicot, Serge; Monerie, Paul-Arthur

    2013-08-01

    study documents the time evolution of air temperature and heat waves occurrences over Northern Africa for the period 1979-2011. A significant warming (1°-3°C), appearing by the mid-1960s over Sahara and Sahel, is associated with higher/lesser frequency of warm/cold temperatures, as with longer duration and higher occurrences of heat waves. Heat waves episodes of at least 4 day duration have been examined after removing the long-term evolution. These episodes are associated with specific anomalies: (i) in spring, positive low-level temperature anomalies over the Sahel and Sahara; low and midlevel cyclonic rotation over Morocco associated with a Rossby wave pattern, lessening the Harmattan; more/less atmospheric moisture westward/eastward to 0°; upward/downward anomalies above the western/eastern regions associated with the Rossby wave pattern; (ii) in summer, a similar but weaker positive low-level temperature anomaly (up to 3°C); less moisture westward to 10°W, a cyclonic anomaly in central Sahel favoring the monsoon eastward to 0° and a midlevel anticyclonic anomaly over the Western Sahara, increasing southward the flux divergence associated with the African Easterly Jet. In March-May, two to three heat waves propagate eastward. They are preceded by an abnormal warm cell over Libya and southwesterlies over the West Sahara. A large trough stands over North Atlantic while midtropospheric subsidence and anticyclonic rotation reinforce over the continent, then migrates toward the Arabian peninsula in breaking up. These signals are spatially coherent and might suggest the role of short Rossby waves with an eastward group velocity and a baroclinic mode, possibly associated with jet stream deformation.

  16. 14 CFR 23.1091 - Air induction system.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Air induction system. 23.1091 Section 23... § 23.1091 Air induction system. (a) The air induction system for each engine and auxiliary power unit and their accessories must supply the air required by that engine and auxiliary power unit and...

  17. 14 CFR 23.1091 - Air induction system.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Air induction system. 23.1091 Section 23... § 23.1091 Air induction system. (a) The air induction system for each engine and auxiliary power unit and their accessories must supply the air required by that engine and auxiliary power unit and...

  18. 14 CFR 23.1091 - Air induction system.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Air induction system. 23.1091 Section 23... § 23.1091 Air induction system. (a) The air induction system for each engine and auxiliary power unit and their accessories must supply the air required by that engine and auxiliary power unit and...

  19. 30 CFR 77.412 - Compressed air systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Compressed air systems. 77.412 Section 77.412... for Mechanical Equipment § 77.412 Compressed air systems. (a) Compressors and compressed-air receivers... involving the pressure system of compressors, receivers, or compressed-air-powered equipment shall not...

  20. A Literature Survey of Operational and Emerging On-Line Library Circulation Systems.

    ERIC Educational Resources Information Center

    McGee, Rob

    This document describes and compares on-line library circulation systems that have been reported as operational or developing, based on a non-comprehensive survey of published articles and public and restricted technical documentation. A checklist of components and features is used to tabulate if and how each system accommodates four selected…

  1. COMPATIBLE AUTOMATED LIBRARY CIRCULATION CONTROL SYSTEMS. ARMY TECHNICAL LIBRARY IMPROVEMENT STUDIES (ATLIS), REPORT NO. 14.

    ERIC Educational Resources Information Center

    UMSTEAD, CHARLES R.; CROXTON, FRED E.

    CONVERSION AND COMPATIBILITY CONSTITUTE TWO MAJOR CONCERNS IN THE INSTITUTION OF AUTOMATED SYSTEMS IN LIBRARIES. AS A CONSEQUENCE OF THESE TWO FACTS, THIS REPORT DESCRIBES IN DETAIL FIVE MORE OR LESS STANDARD AND HIGHLY COMPATIBLE CIRCULATION SYSTEMS WHICH INCORPORATE A COMMON FORM OF INPUT AND WHICH REQUIRE A MINIMUM OF CONVERSION FROM…

  2. Automated Circulation Systems in Libraries Serving the Blind and Physically Handicapped: A Reference Guide for Planning.

    ERIC Educational Resources Information Center

    Wanger, Judith; And Others

    Designed to facilitate communications in future automation projects between library and data processing personnel, especially those projects involving the use of automated systems in the service of disabled patrons, this guide identifies and describes a master set of major circulation system requirements and design considerations, and illustrates…

  3. Observing System Simulation Experiments for air quality

    NASA Astrophysics Data System (ADS)

    Timmermans, R. M. A.; Lahoz, W. A.; Attié, J.-L.; Peuch, V.-H.; Curier, R. L.; Edwards, D. P.; Eskes, H. J.; Builtjes, P. J. H.

    2015-08-01

    This review paper provides a framework for the application of the Observing System Simulation Experiment (OSSE) methodology to satellite observations of atmospheric constituents relevant for air quality. The OSSEs are experiments used to determine the potential benefit of future observing systems using an existing monitoring or forecasting system and by this can help to define optimal characteristics of future instruments. To this end observations from future instruments are simulated from a model representing the realistic state of the atmosphere and an instrument simulator. The added value of the new observations is evaluated through assimilation into another model or model version and comparison with the simulated true state and a control run. This paper provides an overview of existing air quality OSSEs focusing on ozone, CO and aerosol. Using illustrative examples from these studies we present the main elements of an air quality OSSE and associated requirements based on evaluation of the existing studies and experience within the meteorological community. The air quality OSSEs performed hitherto provide evidence of their usefulness for evaluation of future observations although most studies published do not meet all the identified requirements. Especially the evaluation of the OSSE set-up requires more attention; the differences between the assimilation model and the simulated truth should approximate differences between models and real observations. Although this evaluation is missing in many studies, it is required to ensure realistic results. Properly executed air quality OSSEs are a valuable and cost effective tool to space agencies and instrument builders when applied at the start of the development stage to ensure future observations provide added value to users of Earth Observation data.

  4. Air Conditioning with Magnetic Refrigeration : An Efficient, Green Compact Cooling System Using Magnetic Refrigeration

    SciTech Connect

    2010-09-01

    BEETIT Project: Astronautics is developing an air conditioning system that relies on magnetic fields. Typical air conditioners use vapor compression to cool air. Vapor compression uses a liquid refrigerant to circulate within the air conditioner, absorb the heat, and pump the heat out into the external environment. Astronautics’ design uses a novel property of certain materials, called “magnetocaloric materials”, to achieve the same result as liquid refrigerants. These magnetocaloric materials essentially heat up when placed within a magnetic field and cool down when removed, effectively pumping heat out from a cooler to warmer environment. In addition, magnetic refrigeration uses no ozone-depleting gases and is safer to use than conventional air conditioners which are prone to leaks.

  5. 49 CFR 570.57 - Air brake system and air-over-hydraulic brake subsystem.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...-tension shall be sufficient to prevent slippage. Inspection procedure. With the air system charged, open... sufficient to prevent slippage. Inspection procedure. With the air system charged, open the drain cocks...

  6. 49 CFR 570.57 - Air brake system and air-over-hydraulic brake subsystem.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ...-tension shall be sufficient to prevent slippage. Inspection procedure. With the air system charged, open... sufficient to prevent slippage. Inspection procedure. With the air system charged, open the drain cocks...

  7. 49 CFR 570.57 - Air brake system and air-over-hydraulic brake subsystem.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...-tension shall be sufficient to prevent slippage. Inspection procedure. With the air system charged, open... sufficient to prevent slippage. Inspection procedure. With the air system charged, open the drain cocks...

  8. 49 CFR 570.57 - Air brake system and air-over-hydraulic brake subsystem.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...-tension shall be sufficient to prevent slippage. Inspection procedure. With the air system charged, open... sufficient to prevent slippage. Inspection procedure. With the air system charged, open the drain cocks...

  9. System Analysis for Decay Heat Removal in Lead-Bismuth-Cooled Natural-Circulation Reactors

    SciTech Connect

    Sakai, Takaaki; Enuma, Yasuhiro; Iwasaki, Takashi

    2004-03-15

    Decay heat removal analyses for lead-bismuth-cooled natural-circulation reactors are described in this paper. A combined multidimensional plant dynamics code (MSG-COPD) has been developed to conduct the system analysis for the natural-circulation reactors. For the preliminary study, transient analysis has been performed for a 300-MW(thermal) lead-bismuth-cooled reactor designed by Argonne National Laboratory. In addition, decay heat removal characteristics of a 400-MW(electric) lead-bismuth-cooled natural-circulation reactor designed by the Japan Nuclear Cycle Development Institute (JNC) has been evaluated by using MSG-COPD. The primary reactor auxiliary cooling system (PRACS) is prepared for the JNC concept to get sufficient heat removal capacity. During 2000 s after the transient, the outlet temperature shows increasing tendency up to the maximum temperature of 430 deg. C because the buoyancy force in a primary circulation path is temporarily reduced. However, the natural circulation is recovered by the PRACS system, and the outlet temperature decreases successfully.

  10. System Analysis for Decay Heat Removal in Lead-Bismuth Cooled Natural Circulated Reactors

    SciTech Connect

    Takaaki Sakai; Yasuhiro Enuma; Takashi Iwasaki; Kazuhiro Ohyama

    2002-07-01

    Decay heat removal analyses for lead-bismuth cooled natural circulation reactors are described in this paper. A combined multi-dimensional plant dynamics code (MSG-COPD) has been developed to conduct the system analysis for the natural circulation reactors. For the preliminary study, transient analysis has been performed for a 100 MWe lead-bismuth-cooled reactor designed by Argonne National Laboratory (ANL). In addition, decay heat removal characteristics of a 400 MWe lead-bismuth-cooled natural circulation reactor designed by Japan Nuclear Cycle Development Institute (JNC) has been evaluated by using MSG-COPD. PRACS (Primary Reactor Auxiliary Cooling System) is prepared for the JNC's concept to get sufficient heat removal capacity. During 2000 sec after the transient, the outlet temperature shows increasing tendency up to the maximum temperature of 430 Centigrade, because the buoyancy force in a primary circulation path is temporary reduced. However, the natural circulation is recovered by the PRACS system and the out let temperature decreases successfully. (authors)

  11. Integrated gasification iron-air electrical system

    SciTech Connect

    Brown, J.T.

    1988-05-17

    An integrated, gasification, iron-air electrical system, capable of generating electrical energy from a carbonaceous material is described comprising: (A) a gasification means for carbonaceous materials comprising at least one gasification reactor, where a carbonaceous material is contacted and reacted with a gaseous medium containing steam and air, at a temperature and for a time effective to gasify the carbonaceous material and produce a hot gaseous reaction product comprising CO and H/sub 2/; (B) an iron-air cell containing at least one discharged iron electrode; (C) means to remove the discharged iron electrode from the cell of (B), and contact it with the gaseous reaction product produced in (A); (D) the discharged iron electrode removed from the cell of (B), containing material consisting essentially of Fe and Fe(OH)/sub 2/, which electrode is contacted with the hot gaseous reaction product produced in the gasification reactor of (A), directly, at a temperature of from about 450/sup 0/C to about 700/sup 0/C, for a time effective to convert, by reduction, discharged iron compounds consisting essentially of Fe and Fe(OH)/sub 2/ to charge iron compounds in the electrode and provide a recharged iron electrode; (E) an iron-air cell into which the recharged iron electrode provided in (D) is placed; (F) means to transport the recharged iron electrode provided in (D) to the iron-air cell of (E); and (G) electrical connection means attached to the iron-air cell of (E), providing the cell with capability of generating electrical energy.

  12. HEDL air filter examination system software

    SciTech Connect

    Stapleton, E.E.

    1984-10-01

    This document describes the system software and operation of the Hanford Engineering Development Laboratory (HEDL) air filter sample counting systems. Included are a description of how each program functions with flow charts, sample printouts, program listings and a listing with comments of test routines that exercise the hardware. This effort is a result of a work order from HEDL Operational Safety to the Instrument Calibration and Evaluations section of the Pacific Northwest Laboratory (PNL) to upgrade the HEDL counting systems to include standardization, radon subtraction, and detector cooling.

  13. Air conditioned suit

    NASA Technical Reports Server (NTRS)

    Carl, G. R. (Inventor)

    1973-01-01

    An environmentally controlled suit is described consisting of an airtight outergarment attached by an airtight bellows to the wall of a sterile chamber, an undergarment providing for circulation of air near the skin of the wearer, and a circulation system comprised of air supply and distribution to the extremities of the undegarment and central collection and exhaust of air from the midsection of the undergarment. A workman wearing the undergarment and attached circulation system enters the outer garment through a tunnel in the chamber wall and the attached bellows to work in the chamber without any danger of spreading bacteria.

  14. Program Aids Design Of Fluid-Circulating Systems

    NASA Technical Reports Server (NTRS)

    Bacskay, Allen; Dalee, Robert

    1992-01-01

    Computer Aided Systems Engineering and Analysis (CASE/A) program is interactive software tool for trade study and analysis, designed to increase productivity during all phases of systems engineering. Graphics-based command-driven software package provides user-friendly computing environment in which engineer analyzes performance and interface characteristics of ECLS/ATC system. Useful during all phases of spacecraft-design program, from initial conceptual design trade studies to actual flight, including pre-flight prediction and in-flight analysis of anomalies. Written in FORTRAN 77.

  15. Separation of Circulating MicroRNAs Using Apheresis in Patients With Systemic Lupus Erythematosus.

    PubMed

    Kusaoi, Makio; Yamaji, Ken; Ishibe, Yusuke; Murayama, Go; Nemoto, Takuya; Sekiya, Fumio; Kon, Takayuki; Ogasawara, Michihiro; Kempe, Kazuo; Tamura, Naoto; Takasaki, Yoshinari

    2016-08-01

    MicroRNAs (miRNAs), which are important inhibitors of mRNA translation, participate in differentiation, migration, cell proliferation, and cell death. The pathology of miRNAs results in alterations in protein expression. Recently, miRNAs circulating in peripheral blood have been shown to control the synthesis and translation of proteins at distal sites after intake into local cells. A number of studies are currently being conducted to investigate how to use miRNAs in disease treatment, but no studies have attempted to alleviate disease by directly eliminating miRNAs from blood. Therefore, we examined whether the removal or reduction of circulating miRNAs with apheresis improved pathologies caused by miRNAs. After approval of the study by our medical school's ethics committee, we collected blood and separated plasma samples from three patients with systemic lupus erythematosus who were undergoing plasmapheresis at our hospital. Peripheral blood was collected before and after it was passed through a primary membrane, centrifuged, and used to extract circulating miRNAs. A comprehensive expression analysis was then performed with a miRNA array chip. The levels of expression of a large number of circulating miRNAs were measured in the plasma samples separated by the primary membranes from all 3 patients with systemic lupus erythematosus. We present the first report that circulating miRNAs in peripheral blood can be separated and possibly directly removed using membrane separation apheresis. PMID:27523074

  16. Air intake side secondary air supply system for an internal combustion engine

    SciTech Connect

    Kobayashi, H.; Tomobe, N.

    1987-03-10

    This patent describes an air intake side secondary air supply system for an internal combustion engine having a choke valve and a throttle valve in an intake air passage. The system is adapted to supply an air intake side secondary air into an intake air passage downstream of the throttle valve by a control valve and in response to an operating condition of the engine during a cold operation of the engine. The improvement described here comprises means for detecting a no-load operating state of the engine during the cold operation of the engine in which the choke valve is actuated to close the intake air passage, and means for stopping a supply of the air intake side secondary air upon detection of the non-load operating state so as to enrich an air-fuel mixture supplied to the engine.

  17. Numerical Study of Tidal Circulation in the Magdalena-Almejas Lagoon System, Mexico

    NASA Astrophysics Data System (ADS)

    Zaytsev, O.; Sanchez-Montante, O.

    2006-12-01

    The Magdalena-Almejas lagoon system (MALS), the most extensive coastal system on the west coast of the Baja California Peninsula, Mexico, is characterized by high primary productivity. The tidal circulation in the MALS was simulated with a three-dimensional numerical Estuarine and Coastal Ocean Model (ECOM, Blumberg and Mellor). The model was forced by tidal sea level variations at the main inlets. Tidal mixing and water exchange through the lagoon inlets were also specified. Non-periodic mass transport, related to the tidal- induced residual circulation, and wind-driven circulation were simulated by means of the numerical experiments. The results of the numerical experiments show significant spatial variations of the tidal circulation, associated with bottom topography and tidal forcing through the inlets. A comparison between model outputs and field observation data provides satisfactory model calibration. It was found that the tidal circulation in the interior of the MALS is mainly driven by tidal flows through the Magdalena Bay (MB) inlet. A hydraulic effect modulates the tidal exchange between the bays which comprise the MALS. Tidal propagation through the channel connecting Magdalena and Almejas Bays establishes a time lag between tidal variations of sea level in these bays. Maximum tidal currents in MB during spring tide reached 0.8 m/s, and differences in current intensity rate as much as 3.3 times have been found between spring and neap tides. In comparison, the current generated by constant NW winds of 5 m/s was, on average, one order of magnitude smaller than the maximum tidal currents, but 10 times greater than the residual tide-induced currents. Nevertheless, the cyclonic residual circulation in the deepest part of the MB could transport cold oceanic water with high concentrations of nutrients to the inner part of the MALS and form a characteristic feature of the termohaline structure inside the lagoon system.

  18. 14 CFR 23.1091 - Air induction system.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Air induction system. 23.1091 Section 23... AIRWORTHINESS STANDARDS: NORMAL, UTILITY, ACROBATIC, AND COMMUTER CATEGORY AIRPLANES Powerplant Induction System § 23.1091 Air induction system. (a) The air induction system for each engine and auxiliary power...

  19. 14 CFR 23.1111 - Turbine engine bleed air system.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Turbine engine bleed air system. 23.1111 Section 23.1111 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Induction System § 23.1111 Turbine engine bleed air system. For turbine engine bleed air systems,...

  20. 14 CFR 23.1111 - Turbine engine bleed air system.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Turbine engine bleed air system. 23.1111 Section 23.1111 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Induction System § 23.1111 Turbine engine bleed air system. For turbine engine bleed air systems,...

  1. 14 CFR 23.1111 - Turbine engine bleed air system.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Turbine engine bleed air system. 23.1111 Section 23.1111 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Induction System § 23.1111 Turbine engine bleed air system. For turbine engine bleed air systems,...

  2. 14 CFR 23.1111 - Turbine engine bleed air system.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Turbine engine bleed air system. 23.1111 Section 23.1111 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Induction System § 23.1111 Turbine engine bleed air system. For turbine engine bleed air systems,...

  3. 14 CFR 23.1111 - Turbine engine bleed air system.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Turbine engine bleed air system. 23.1111 Section 23.1111 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION... Induction System § 23.1111 Turbine engine bleed air system. For turbine engine bleed air systems,...

  4. Air Force geographic information and analysis system

    SciTech Connect

    Henney, D.A.; Jansing, D.S.; Durfee, R.C.; Margle, S.M.; Till, L.E.

    1987-01-01

    A microcomputer-based geographic information and analysis system (GIAS) was developed to assist Air Force planners with environmental analysis, natural resources management, and facility and land-use planning. The system processes raster image data, topological data structures, and geometric or vector data similar to that produced by computer-aided design and drafting (CADD) systems, integrating the data where appropriate. Data types included Landsat imagery, scanned images of base maps, digitized point and chain features, topographic elevation data, USGS stream course data, highway networks, railroad networks, and land use/land cover information from USGS interpreted aerial photography. The system is also being developed to provide an integrated display and analysis capability with base maps and facility data bases prepared on CADD systems. 3 refs.

  5. A new method to control electrolytes pH by circulation system in electrokinetic soil remediation.

    PubMed

    Lee, H H; Yang, J W

    2000-10-01

    To simultaneously avoid a decrease of electro-osmotic flow by hydrogen ions and to increase heavy metal precipitation due to hydroxide ions, simulated electrokinetic remediation was conducted in saturated kaolinite specimens loaded with lead(II) using an electrolyte circulation method to control electrolyte pH. At an electrolyte circulation rate of 1.1 ml/min, it was possible to increase the anolyte pH from 2 to 4 and decrease the catholyte pH from 12 to 8. Using electrolyte circulation, it was observed that the rate of decrease of clay pH due to the change of electrolyte pH was reduced. As a result, the operable period was extended and the removal efficiency for lead(II) was also increased. It was observed that most of the effluent lead(II) from the cathode compartment was electroplated onto the cathode and that residual effluent lead(II) did not precipitate onto, or adsorb to, the clay at the anode compartment during circulation. Therefore, there was no need to treat the electrolyte because there was virtually no effluent from the cathode compartment in the circulation system. It was also found that the electrolyte volume required to sustain the electrolytic reaction was sufficient for the whole electrokinetic remediation process. PMID:10946130

  6. Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion System

    SciTech Connect

    Wei-Ping Pan; Yan Cao; John Smith

    2007-03-31

    This report is to present the progress made on the project entitled ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period January 1, 2007 through March 31, 2007. The effort in this quarter has concentrated on installing the CFBC Facility and for conducting cold fluidization operations tests in the CFBC facility. The assembly of the ash recirculation pipe duct from the cyclones back to the bed area of the combustor, including the upper and lower loop seals was completed. The electric bed pre-heater was installed to heat the fluidizing air as it enters the wind box. The induced draft fan along with its machine base and power supply was received and installed. The flue gas duct from secondary cyclone outlet to induced draft fan inlet was received and installed, as well as the induced fan flue gas discharge duct. Pressure testing from the forced draft fan to the outlet of the induced fan was completed. In related research a pilot-scale halogen addition test was conducted in the empty slipstream reactor (without (Selective Catalytic Reduction) SCR catalyst loading) and the SCR slipstream reactor with two commercial SCR catalysts. The greatest benefits of conducting slipstream tests can be flexible control and isolation of specific factors. This facility is currently used in full-scale utility and will be combined into 0.6MW CFBC in the future. This work attempts to first investigate performance of the SCR catalyst in the flue gas atmosphere when burning Powder River Basin (PRB), including the impact of PRB coal flue gas composition on the reduction of nitrogen oxides (NOx) and the oxidation of elemental mercury (Hg(0)) under SCR conditions. Secondly, the impacts of hydrogen halogens (Hydrogen fluoride (HF), Hydrogen chloride (HCl), Hydrogen Bromide (HBr) and Hydrogen Iodine (HI)) on Hg(0) oxidation and their mechanisms can be explored.

  7. Electrochemical air revitalization system optimization investigation

    NASA Technical Reports Server (NTRS)

    Woods, R. R.; Schubert, F. H.; Hallick, T. M.

    1975-01-01

    A program to characterize a Breadboard of an Electrochemical Air Revitalization System (BEARS) was successfully completed. The BEARS is composed of three components: (1) a water vapor electrolysis module (WVEM) for O2 production and partial humidity control, (2) an electrochemical depolarized carbon dioxide concentrator module (EDCM) for CO2 control, and (3) a power-sharing controller, designed to utilize the power produced by the EDCM to partially offset the WVEM power requirements. It is concluded from the results of this work that the concept of electrochemical air revitalization with power-sharing is a viable solution to the problem of providing a localized topping force for O2 generation, CO2 removal and partial humidity control aboard manned spacecraft. Continued development of the EARS concept is recommended, applying the operational experience and limits identified during the BEARS program to testing of a one-man capacity system and toward the development of advanced system controls to optimize EARS operation for given interfaces and requirements. Successful completion of this development will produce timely technology necessary to plan future advanced environmental control and life support system programs and experiments.

  8. Operating systems in the air transportation environment.

    NASA Technical Reports Server (NTRS)

    Cherry, G. W.

    1971-01-01

    Consideration of the problems facing air transport at present, and to be expected in the future. In the Northeast Corridor these problems involve community acceptance, airway and airport congestion and delays, passenger acceptance, noise reduction, and improvements in low-density short-haul economics. In the development of a superior short-haul operating system, terminal-configured vs cruise-configured vehicles are evaluated. CTOL, STOL, and VTOL aircraft of various types are discussed. In the field of noise abatement, it is shown that flight procedural techniques are capable of supplementing ?quiet engine' technology.

  9. Enhancement of natural circulation type domestic solar hot water system performance by using a wind turbine

    NASA Astrophysics Data System (ADS)

    Ramasamy, K. K.; Srinivasan, P. S. S.

    2011-08-01

    Performance improvement of existing 200 litres capacity natural convection type domestic solar hot water system is attempted. A two-stage centrifugal pump driven by a vertical axis windmill having Savonius type rotor is added to the fluid loop. The windmill driven pump circulates the water through the collector. The system with necessary instrumentation is tested over a day. Tests on Natural Circulation System (NCS) mode and Wind Assisted System (WAS) mode are carried out during January, April, July and October, 2009. Test results of a clear day are reported. Daily average efficiency of 25-28 % during NCS mode and 33-37 % during WAS mode are obtained. With higher wind velocities, higher collector flow rates and hence higher efficiencies are obtained. In general, WAS mode provides improvements in efficiency when compared to NCS mode.

  10. Air and sea rescue via satellite systems

    NASA Astrophysics Data System (ADS)

    Scales, W. C.; Swanson, R.

    1984-03-01

    Two approaches to a satellite system for air and sea rescue to be put into use by the 1990s, one employing polar-orbiting satellites and the other using fixed geosynchronous satellites over the equator, are discussed. A battery-powered transmitter on a ship or aircraft would be activated in an accident to emit a low-power omnidirectional signal that would be relayed by a satellite to an earth station. The polar-orbiting approach, now being evaluated on a small-scale with the Cospas-Sarsat system, allows complete coverage of the earth, including the poles, and provides a fix on the origin of the distress signals by means of the Doppler shift. A parallel effort for the testing of geostationary satellites to measure system sensitivity to various interference sources, to optimize design, and to measure land and sea performance is reviewed.

  11. Compact counter-flow cooling system with subcooled gravity-fed circulating liquid nitrogen

    NASA Astrophysics Data System (ADS)

    Ivanov, Yu.; Radovinsky, A.; Zhukovsky, A.; Sasaki, A.; Watanabe, H.; Kawahara, T.; Hamabe, M.; Yamaguchi, S.

    2010-11-01

    A liquid nitrogen (LN2) is usually used to keep the high-temperature superconducting (HTS) cable low temperature. A pump is utilized to circulate LN2 inside the cryopipes. In order to minimize heat leakage, a thermal siphon circulation scheme can be realized instead. Here, we discuss the effectiveness of thermal siphon with counter-flow circulation loop composed of cryogen flow channel and inner cable channel. The main feature of the system is the existence of essential parasitic heat exchange between upwards and downwards flows. Feasibility of the proposed scheme for cable up to 500 m in length has been investigated numerically. Calculated profiles of temperature and pressure show small differences of T and p in the inner and the outer flows at the same elevation, which allows not worrying about mechanical stability of the cable. In the case under consideration the thermal insulating properties of a conventional electrical insulating material (polypropylene laminated paper, PPLP) appear to be sufficient. Two interesting effects were disclosed due to analysis of subcooling of LN2. In case of highly inclined siphon subcooling causes significant increase of temperature maximum that can breakup of superconductivity. In case of slightly inclined siphon high heat flux from outer flow to inner flow causes condensation of nitrogen gas in outer channel. It leads to circulation loss. Results of numerical analyses indicate that counter-flow thermosiphon cooling system is a promising way to increase performance of short-length power transmission (PT) lines, but conventional subcooling technique should be applied carefully.

  12. The promise of air cargo: System aspects and vehicle design

    NASA Technical Reports Server (NTRS)

    Whitehead, A. H., Jr.

    1976-01-01

    The current operation of the air cargo system is reviewed. An assessment of the future of air cargo is provided by: (1) analyzing statistics and trends, (2) by noting system problems and inefficiencies, (3) by analyzing characteristics of 'air eligible' commodities, and (4) by showing the promise of new technology for future cargo aircraft with significant improvements in costs and efficiency. The following topics are discussed: (1) air cargo demand forecasts; (2) economics of air cargo transport; (3) the integrated air cargo system; (4) evolution of airfreighter design; and (5) the span distributed load concept.

  13. UV disinfection system for cabin air

    NASA Astrophysics Data System (ADS)

    Lim, Soojung; Blatchley, Ernest R.

    2009-10-01

    The air of indoor cabin environments is susceptible to contamination by airborne microbial pathogens. A number of air treatment processes are available for inactivation or removal of airborne pathogens; included among these processes is ultraviolet (UV) irradiation. The effectiveness of UV-based processes is known to be determined by the combined effects of UV dose delivery by the reactor and the UV dose-response behavior of the target microbe(s). To date, most UV system designs for air treatment have been based on empirical approaches, often involving crude representations of dose delivery and dose-response behavior. The objective of this research was to illustrate the development of a UV system for disinfection of cabin air based on well-defined methods of reactor and reaction characterization. UV dose-response behavior of a test microorganism was measured using a laboratory (bench-scale) system. Target microorganisms (bacterial spores) were first applied to membrane filters at sub-monolayer coverage. The filters were then transferred to a humidity chamber at fixed relative humidity (RH) and allowed to equilibrate with their surroundings. Microorganisms were then subjected to UV exposure under a collimated beam. The experiment was repeated at RH values ranging from 20% to 100%. UV dose-response behavior was observed to vary with RH. For example, at 100% RH, a UV dose of 20 mJ/cm 2 accomplished 99.7% (2.5 log10 U) of the Bacillus subtilis spore inactivation, whereas 99.94% (3.2 log10 U) inactivation was accomplished at this same UV dose under 20% RH conditions. To determine reactor behavior, UV dose-response behavior was combined with simulated results of computational fluid dynamics (CFD) and radiation intensity field models. This modeling approach allowed estimating the UV dose distribution delivered by the reactor. The advantage of this approach is that simulation of many reactor configurations can be done in a relatively short period of time. Moreover, by

  14. Walker-Type Mean Circulations and Convectively Coupled Tropical Waves as an Interacting System.

    NASA Astrophysics Data System (ADS)

    Yano, Jun-Ichi; Moncrieff, Mitchell W.; Grabowski, Wojciech W.

    2002-05-01

    Interactions between convectively coupled tropical waves and Walker-type mean circulations are examined using a two-dimensional analytic model wherein drying and cooling of the boundary layer by convective and mesoscale downdrafts are in equilibrium with the wind-induced perturbations of surface fluxes. The moist thermodynamic state directly affects the stability of the large-scale circulation by controlling the wind perturbation on surface fluxes and the strength of the convective downdrafts. Stability analyses yield two major conclusions.(i) The mean Walker circulation is linearly unstable, suggesting that it may only exist in a quasi-steady sense through the spontaneous generation of transient waves. The instability is a manifestation of positive feedback: enhanced low-level convergence increases the surface wind speed, which increases the surface flux. As a result, convective heating is increased, which further enhances the low-level convergence. The mean circulation is more unstable when its horizontal extent is small and its depth large. Hence, when the horizontal extent of the mean circulation is a few thousand kilometers, as in the authors' recent cloud-resolving simulations, the deep first-baroclinic mode circulation is too unstable to be maintained even in a quasi-steady sense, realizing a shallow double-cell structure.(ii) The convectively coupled large-scale wave differs from traditional tropical large-scale instabilities of a homogeneous mean state in an important way: the longest waves are the most unstable rather than the shortest. Linear coupling of the waves with the mean state, through wind-induced surface flux perturbations, induces monotonically growing instabilities when the ascent of the mean circulation occupies more than half of the total domain. These instabilities occur only with the odd-wavenumber modes, which have parity with the mean circulation. Otherwise, the system supports linear neutral waves that propagate slower than the dry

  15. Optical system for trapping particles in air.

    PubMed

    Kampmann, R; Chall, A K; Kleindienst, R; Sinzinger, S

    2014-02-01

    An innovative optical system for trapping particles in air is presented. We demonstrate an optical system specifically optimized for high precision positioning of objects with a size of several micrometers within a nanopositioning and nanomeasuring machine (NPMM). Based on a specification sheet, an initial system design was calculated and optimized in an iterative design process. By combining optical design software with optical force simulation tools, a highly efficient optical system was developed. Both components of the system, which include a refractive double axicon and a parabolic ring mirror, were fabricated by ultra-precision turning. The characterization of the optical elements and the whole system, especially the force simulations based on caustic measurements, represent an important interim result for the subsequently performed trapping experiments. The caustic of the trapping beam produced by the system was visualized with the help of image processing techniques. Finally, we demonstrated the unique efficiency of the configuration by reproducibly trapping fused silica spheres with a diameter of 10 μm at a distance of 2.05 mm from the final optical surface. PMID:24514197

  16. Drying oven with heat reclamation and air pollution control system

    SciTech Connect

    Jamaluddin, A.A.

    1980-12-23

    A system of drying ovens is disclosed with associated means for heat reclamation and air pollution control. The ovens are primarily for drying or baking paint or other coatings on pipes or the like where the emissions are primarily hydrocarbons. In this system of ovens, hydrocarbon fumes are concentrated at the ends of the oven. Solvent laden fumes are, therefore, collected where the concentration is the highest. The exhaust from the oven is located at the central portion and leads to a combustion/incineration chamber where it is exhausted to atmosphere after incineration and a major part of the heat is recovered and recirculated to the oven. In a sequence of ovens, the exhaust from one oven is circulated to the next at a high linear velocity, but low volume (At 25% lel) and heated to a high temperature (1400/sup 0/F.) by in-line incineration of the fumes. The low volume, high velocity, high temperature gasses are mixed with a high volume, low velocity, low temperature exhaust collected from the end of that oven. This incineration and mixing and recirculation of gasses is repeated in each succeeding oven and no gasses are exhausted to atmosphere until the last oven. In the last oven, in sequence, a burner is provided to incinerate fumes recirculated at one end of the oven and the exhaust goes to atmosphere through an incinerator/heat exchanger where the reclaimed heat is supplied to outside air being fed to support combustion in the incinerator at one end of the last oven.

  17. Assessment of left heart and pulmonary circulation flow dynamics by a new pulsed mock circulatory system

    NASA Astrophysics Data System (ADS)

    Tanné, David; Bertrand, Eric; Kadem, Lyes; Pibarot, Philippe; Rieu, Régis

    2010-05-01

    We developed a new mock circulatory system that is able to accurately simulate the human blood circulation from the pulmonary valve to the peripheral systemic capillaries. Two independent hydraulic activations are used to activate an anatomical-shaped left atrial and a left ventricular silicon molds. Using a lumped model, we deduced the optimal voltage signals to control the pumps. We used harmonic analysis to validate the experimental pulmonary and systemic circulation models. Because realistic volumes are generated for the cavities and the resulting pressures were also coherent, the left atrium and left ventricle pressure-volume loops were concordant with those obtained in vivo. Finally we explored left atrium flow pattern using 2C-3D+T PIV measurements. This gave a first overview of the complex 3D flow dynamics inside realistic left atrium geometry.

  18. Research on Air Flow Measurement and Optimization of Control Algorithm in Air Disinfection System

    NASA Astrophysics Data System (ADS)

    Bing-jie, Li; Jia-hong, Zhao; Xu, Wang; Amuer, Mohamode; Zhi-liang, Wang

    2013-01-01

    As the air flow control system has the characteristics of delay and uncertainty, this research designed and achieved a practical air flow control system by using the hydrodynamic theory and the modern control theory. Firstly, the mathematical model of the air flow distribution of the system is analyzed from the hydrodynamics perspective. Then the model of the system is transformed into a lumped parameter state space expression by using the Galerkin method. Finally, the air flow is distributed more evenly through the estimation of the system state and optimal control. The simulation results show that this algorithm has good robustness and anti-interference ability

  19. One man electrochemical air revitalization system

    NASA Technical Reports Server (NTRS)

    Huddleston, J. C.; Aylward, J. R.

    1975-01-01

    An integrated water vapor electrolysis (WVE) hydrogen depolarized CO2 concentrator (HDC) system sized for one man support over a wide range of inlet air conditions was designed, fabricated, and tested. Data obtained during 110 days of testing verified that this system can provide the necessary oxygen, CO2 removal, and partial humidity control to support one man (without exceeding a cabin partial pressure of 3.0 mmHg for CO2 and while maintaining a 20% oxygen level), when operated at a WVE current of 50 amperes and an HDC current of 18 amperes. An evaluation to determine the physical properties of tetramethylammonium bicarbonate (TMAC) and hydroxide was made. This provides the necessary electrolyte information for designing an HDC cell using TMAC.

  20. Molecular Characterization of Circulating Plasma Cells in Patients with Active Systemic Lupus Erythematosus

    PubMed Central

    Lugar, Patricia L.; Love, Cassandra; Grammer, Amrie C.; Dave, Sandeep S.; Lipsky, Peter E.

    2012-01-01

    Systemic lupus erythematosus (SLE) is a generalized autoimmune disease characterized by abnormal B cell activation and the occurrence of increased frequencies of circulating plasma cells (PC). The molecular characteristics and nature of circulating PC and B cells in SLE have not been completely characterized. Microarray analysis of gene expression was used to characterize circulating PC in subjects with active SLE. Flow cytometry was used to sort PC and comparator B cell populations from active SLE blood, normal blood and normal tonsil. The gene expression profiles of the sorted B cell populations were then compared. SLE PC exhibited a similar gene expression signature as tonsil PC. The differences in gene expression between SLE PC and normal tonsil PC and tonsil plasmablasts (PB) suggest a mature Ig secreting cell phenotype in the former population. Despite this, SLE PC differed in expression of about half the genes from previously published gene expression profiles of normal bone marrow PC, indicating that these cells had not achieved a fully mature status. Abnormal expression of several genes, including CXCR4 and S1P1, suggests a mechanism for the persistence of SLE PC in the circulation. All SLE B cell populations revealed an interferon (IFN) gene signature previously only reported in unseparated SLE peripheral blood mononuclear cells. These data indicate that SLE PC are a unique population of Ig secreting cells with a gene expression profile indicative of a mature, but not fully differentiated phenotype. PMID:23028528

  1. 46 CFR 197.310 - Air compressor system.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 7 2013-10-01 2013-10-01 false Air compressor system. 197.310 Section 197.310 Shipping... GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.310 Air compressor system. A compressor used to supply breathing air to a diver must have— (a) A volume tank that is— (1) Built and stamped...

  2. 46 CFR 197.310 - Air compressor system.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 7 2012-10-01 2012-10-01 false Air compressor system. 197.310 Section 197.310 Shipping... GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.310 Air compressor system. A compressor used to supply breathing air to a diver must have— (a) A volume tank that is— (1) Built and stamped...

  3. Hurricane-related air-sea interactions, circulation modifications, and coastal impacts on the eastern Louisiana coastline

    NASA Astrophysics Data System (ADS)

    Walker, N. D.; Pilley, C.; Li, C.; Liu, B.; Leben, R. R.; Raghunthan, V.; Ko, D.; Teague, W. J.

    2012-12-01

    Beginning in 1995, Atlantic hurricane activity increased significantly relative to the 1970s and 1980s. In 2005, records were broken when two hurricanes intensified rapidly to Category 5 for a period of time within the Gulf of Mexico, later landed, and flooded vast expanses of Louisiana's coastal regions within the span of 30 days. In this study, we investigate major hurricane events (including 2005) to elucidate air-sea interactions pertinent to hurricane intensity changes, shelf circulation, coastal flooding, and coastal land losses. We employ satellite measurements from passive sensors (temperature, true color, pigments) and active sensors (scatterometers, altimeters) in tandem with in-situ measurements from WAVCIS, NDBC, USGS, and NRL, as well as dedicated field campaigns along the coast. A selection of hurricane events during the 1998 to 2008 time period are used in this investigation. Research has shown that the Loop Current and its warm-core anticyclonic eddies (with high heat content) can intensify hurricanes transiting the Gulf; whereas, the cold-core cyclonic eddies (which are upwelling regions) can weaken hurricanes. Hurricane winds can intensify cold-core cyclonic eddies, which in some cases can impact outer shelf currents, mixing, and thermal structure throughout the water column. The exceptionally strong winds and waves in the northeast quadrant of these cyclonic atmospheric storms drive strong and long-lived westward currents. Storm surges and/or set-up of 2-6 m commonly occur along the Louisiana coastline, sometimes as a result of hurricanes traveling across the central Gulf of Mexico, at great distances from the coastal region experiencing the flooding (e.g. Hurricanes Rita and Gustav). The eastern shelf, north of the Mississippi River Birdfoot Delta, is particularly vulnerable to water level set-up and storm surge intensification due to the coastal orientation that causes the trapping of water. This area experienced land loss of 169 km2, or ~20

  4. Consideration of sub-cooled LN2 circulation system for HTS power machines

    NASA Astrophysics Data System (ADS)

    Yoshida, Shigeru; Hirai, Hirokazu; Nara, N.; Nagasaka, T.; Hirokawa, M.; Okamoto, H.; Hayashi, H.; Shiohara, Y.

    2012-06-01

    We consider a sub-cooled liquid nitrogen (LN) circulation system for HTS power equipment. The planned circulation system consists of a sub-cool heat exchanger (subcooler) and a circulation pump. The sub-cooler will be connected to a neon turbo- Brayton cycle refrigerator with a cooling power of 2 kW at 65 K. Sub-cooled LN will be delivered into the sub-cooler by the pump and cooled within it. Sub-cooled LN is adequate fluid for cooling HTS power equipment, because its dielectric strength is high and it supports a large critical current. However, a possibility of LN solidification in the sub-cooler is a considerable issue. The refrigerator will produce cold neon gas of about 60 K, which is lower than the nitrogen freezing temperature of 63 K. Therefore, we designed two-stage heat exchangers which are based on a plate-fin type and a tube-intube type. Process simulations of those heat exchangers indicate that sub-cooled LN is not frozen in either sub-cooler. The plate-fin type sub-cooler is consequently adopted for its reliability and compactness. Furthermore, we found that a cooling system with a Brayton refrigerator has the same total cooling efficiency as a cooling system with a Stirling refrigerator.

  5. Gas turbine engine and its associated air intake system

    SciTech Connect

    Ballard, J.R.; Bennett, G.H.; Lee, L.A.

    1984-01-17

    A gas turbine engine and its associated air intake system are disclosed in which the air intake system comprises a generally horizontally extending duct through which an airflow is induced by an ejector pump powered by the engine. A portion of the air passing through the duct is directed through a second duct to the air inlet of the engine. The second duct is connected to the first duct in such a manner that the air directed to the engine air inlet is derived from a vertically upper region of the first duct. The arrangement is intended to reduce the amount of airborne particulate material ingested by the gas turbine engine.

  6. Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion System

    SciTech Connect

    Wei-Ping Pan; Yan Cao; John Smith

    2008-05-31

    On February 14, 2002, President Bush announced the Clear Skies Initiative, a legislative proposal to control the emissions of nitrogen oxides (NO{sub x}), sulfur dioxide (SO{sub 2}), and mercury from power plants. In response to this initiative, the National Energy Technology Laboratory organized a Combustion Technology University Alliance and hosted a Solid Fuel Combustion Technology Alliance Workshop. The workshop identified multi-pollutant control; improved sorbents and catalysts; mercury monitoring and capture; and improved understanding of the underlying reaction chemistry occurring during combustion as the most pressing research needs related to controlling environmental emissions from fossil-fueled power plants. The Environmental Control Technology Laboratory will help meet these challenges and offer solutions for problems associated with emissions from fossil-fueled power plants. The goal of this project was to develop the capability and technology database needed to support municipal, regional, and national electric power generating facilities to improve the efficiency of operation and solve operational and environmental problems. In order to effectively provide the scientific data and the methodologies required to address these issues, the project included the following aspects: (1) Establishing an Environmental Control Technology Laboratory using a laboratory-scale, simulated fluidized-bed combustion (FBC) system; (2) Designing, constructing, and operating a bench-scale (0.6 MW{sub th}), circulating fluidized-bed combustion (CFBC) system as the main component of the Environmental Control Technology Laboratory; (3) Developing a combustion technology for co-firing municipal solid waste (MSW), agricultural waste, and refuse-derived fuel (RDF) with high sulfur coals; (4) Developing a control strategy for gaseous emissions, including NO{sub x}, SO{sub 2}, organic compounds, and heavy metals; and (5) Developing new mercury capturing sorbents and new

  7. HVAC system performance and indoor air quality

    SciTech Connect

    Newman, J.L. )

    1991-01-01

    This paper reports that in the mid-seventies, the American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE) promulgated ASHRAE Standard 90-75 Energy Conservation in New Building Design, which called for revised minimum ventilation rates and the elimination of energy-wasting HVAC systems. Most building codes which cover energy conservation in the late seventies and eighties referred to this standard. This lowering of ventilation rates, coupled with the tighter building envelope (walls, windows, doors and roof) led to a reduction in outside air, both by engineering design and by minimizing infiltration through the structure. The minimum ventilation rates are based on the assumption that average concentrations of tobacco smoke exist in all enclosed spaces (30 percent of the population being smokers at two cigarettes per hour), rather than having separate rates for smoking and nonsmoking areas, as in the 1981 revision of the Standard. If tobacco smoke is ever declared a carcinogen, it will undoubtedly prompt a review of Standard 62-1989, as well as hasten totally smoke-free buildings.

  8. ESTABLISHMENT OF AN ENVIRONMENTAL CONTROL TECHNOLOGY LABORATORY WITH A CIRCULATING FLUIDIZED-BED COMBUSTION SYSTEM

    SciTech Connect

    Wei-Ping Pan; Andy Wu; John T. Riley

    2004-10-30

    This report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period July 1, 2004 through September 30, 2004. The following tasks have been completed. First, renovation of the new Combustion Laboratory and the construction of the Circulating Fluidized-Bed (CFB) Combustor Building have started. Second, the design if the component parts of the CFBC system have been reviewed and finalized so that the drawings may be released to the manufacturers during the next quarter. Third, the experiments for solid waste (chicken litter) incineration have been conducted using a Thermogravimetric Analyzer (TGA). This is in preparation for testing in the simulated fluidized-bed combustor. The experimental results from this study are presented in this report. Finally, the proposed work for the next quarter has been outlined in this report.

  9. Numerical Study on an Autonomous Decentralized Model-Based Simulation of Resources Circulation Systems

    NASA Astrophysics Data System (ADS)

    Matsumoto, Takuya; Tamaki, Hisashi; Murao, Hajime; Kitamura, Shinzo

    In this paper, a methodology for modeling and controlling of resources circulation systems is studied. We propose a model structure by introducing two kinds of sub-models: a physical model and an information model. The physical model is used for simulating the flow of materials, products and also money, while the information model is used for representing flow of information and decision-making on production, consumption, recycling/reuse, discard, etc. Moreover, we introduce an additional top-level component, a supervisor, who observes the global behavior of the system and controls it indirectly. Based on the proposed approach, we implement a prototype of simulation model including producers, consumers and recyclers. Through some computer simulations based on the model, it is shown that the model has price adjustment function and its global behavior is very complicated. Then, we examine influences of the informational as well as the physical indirect control on the resources circulation.

  10. EFFECTS OF OXYGEN AND AIR MIXING ON VOID FRACTIONS IN A LARGE SCALE SYSTEM

    SciTech Connect

    Leishear, R; Hector Guerrero, H; Michael Restivo, M

    2008-09-11

    Oxygen and air mixing with spargers was performed in a 30 foot tall by 30 inch diameter column, to investigate mass transfer as air sparged up through the column and removed saturated oxygen from solution. The mixing techniques required to support this research are the focus of this paper. The fluids tested included water, water with an antifoam agent (AFA), and a high, solids content, Bingham plastic, nuclear waste simulant with AFA, referred to as AZ01 simulant, which is non-radioactive. Mixing of fluids in the column was performed using a recirculation system and an air sparger. The re-circulation system consisted of the column, a re-circulating pump, and associated piping. The air sparger was fabricated from a two inch diameter pipe concentrically installed in the column and open near the bottom of the column. The column contents were slowly re-circulated while fluids were mixed with the air sparger. Samples were rheologically tested to ensure effective mixing, as required. Once the fluids were adequately mixed, oxygen was homogeneously added through the re-circulation loop using a sintered metal oxygen sparger followed by a static mixer. Then the air sparger was re-actuated to remove oxygen from solution as air bubbled up through solution. To monitor mixing effectiveness several variables were monitored, which included flow rates, oxygen concentration, differential pressures along the column height, fluid levels, and void fractions, which are defined as the percent of dissolved gas divided by the total volume of gas and liquid. Research showed that mixing was uniform for water and water with AFA, but mixing for the AZ101 fluid was far more complex. Although mixing of AZ101 was uniform throughout most of the column, gas entrapment and settling of solids significantly affected test results. The detailed test results presented here provide some insight into the complexities of mixing and void fractions for different fluids and how the mixing process itself

  11. A Comparison of the Lower Stratospheric Age-Spectra Derived from a General Circulation Model and Two Data Assimilation Systems

    NASA Technical Reports Server (NTRS)

    Schoeberl, Mark R.; Douglass, Anne R.; Zhu, Zhengxin; Pawson, Steven

    2002-01-01

    We use kinematic and diabatic back trajectory calculations, driven by winds from a general circulation model (GCM) and two different data assimilation systems (DAS), to compute the age spectrum at three latitudes in the lower stratosphere. The age-spectra are compared to chemical transport model (CTM) calculations, and the mean ages from all of these studies are compared to observations. The age spectra computed using the GCM winds show a reasonably isolated tropics in good agreement with observations; however, the age spectra determined from the DAS differ from the GCM spectra. For the DAS diabatic trajectory calculations there is too much exchange between the tropics and mid-latitudes. The age spectrum is thus too broad and the tropical mean age is too old as a result of mixing older mid latitude air with tropical air. Likewise the mid latitude mean age is too young due to the in mixing of tropical air. The DAS kinematic trajectory calculations show excessive vertical dispersion of parcels in addition to excessive exchange between the tropics and mid latitudes. Because air is moved rapidly to the troposphere from the vertical dispersion, the age spectrum is shifted toward the young side. The excessive vertical and meridional dispersion compensate in the kinematic case giving a reasonable tropical mean age. The CTM calculation of the age spectrum using the DAS winds shows the same vertical and meridional dispersive characteristics of the kinematic trajectory calculation. These results suggest that the current DAS products will not give realistic trace gas distributions for long integrations; they also help explain why the extra tropical mean ages determined in a number of previous DAS driven CTM s are too young compared with observations. Finally, we note trajectory-generated age spectra . show significant age anomalies correlated with the seasonal cycles. These anomalies can be linked to year-to-year variations in the tropical heating rate. The anomalies are

  12. Pathways and Hydrography in the Mesoamerican Barrier Reef System Part 1: Circulation

    NASA Astrophysics Data System (ADS)

    Carrillo, L.; Johns, E. M.; Smith, R. H.; Lamkin, J. T.; Largier, J. L.

    2015-10-01

    Acoustic Doppler Current Profiler (ADCP) measurements and surface drifters released from two oceanographic cruises conducted during March 2006 and January/February 2007 are used to investigate the circulation off the Mesoamerican Barrier Reef System (MBRS). We show that the MBRS circulation can be divided into two distinct regimes, a northern region dominated by the strong, northward-flowing Yucatan Current, and a southern region with weaker southward coastal currents and the presence of the Honduras Gyre. The latitude of impingement of the Cayman Current onto the coastline varies with time, and creates a third region, which acts as a boundary between the northern and southern circulation regimes. This circulation pattern yields two zones in terms of dispersal, with planktonic propagules in the northern region being rapidly exported to the north, whereas plankton in the southern and impingement regions may be retained locally or regionally. The latitude of the impingement region shifts interannually and intra-annually up to 3° in latitude. Sub-mesoscale features are observed in association with topography, e.g., flow bifurcation around Cozumel Island, flow wake north of Chinchorro Bank and separation of flow from the coast just north of Bahia de la Ascencion. This third feature is evident as cyclonic recirculation in coastal waters, which we call the Ascencion-Cozumel Coastal Eddy. An understanding of the implications of these different circulation regimes on water mass distributions, population connectivity, and the fate of land-based pollutants in the MBRS is critically important to better inform science-based resource management and conservation plans for the MBRS coral reefs.

  13. Heating, ventilation and air conditioning systems

    SciTech Connect

    Kyle, D.M.; Sullivan, R.A.

    1993-02-01

    A study is made of several outstanding issues concerning the commercial development of environmental control systems for electric vehicles (EVs). Engineering design constraints such as federal regulations and consumer requirements are first identified. Next, heating and cooling loads in a sample automobile are calculated using a computer model available from the literature. The heating and cooling loads are then used as a basis for estimating the electrical consumption that is to be expected for heat pumps installed in EVs. The heat pump performance is evaluated using an automobile heat pump computer model which has been developed recently at Oak Ridge National Laboratory (ORNL). The heat pump design used as input to the model consists of typical finned-tube heat exchangers and a hermetic compressor driven by a variable-speed brushless dc motor. The simulations suggest that to attain reasonable system efficiencies, the interior heat exchangers that are currently installed as automobile air conditioning will need to be enlarged. Regarding the thermal envelope of the automobile itself, calculations are made which show that considerable energy savings will result if steps are taken to reduce {open_quote}hot soak{close_quote} temperatures and if the outdoor air ventilation rate is well controlled. When these changes are made, heating and cooling should consume less than 10% of the total stored electrical energy for steady driving in most U.S. climates. However, this result depends strongly upon the type of driving: The fraction of total power for heating and cooling ({open_quote}range penalty{close_quote}) increases sharply for driving scenarios having low average propulsion power, such as stop-and-go driving.

  14. Thermodynamic Analysis of a Novel Liquid Air Energy Storage System

    NASA Astrophysics Data System (ADS)

    Xue, X. D.; Wang, S. X.; Zhang, X. L.; Cui, C.; Chen, L. B.; Zhou, Y.; Wang, J. J.

    In this study, a novel liquid air energy storage system for electrical power load shifting application is introduced. It is a combination of an air liquefaction cycle and a gas turbine power generation cycle without fuel combustion. Thermodynamic analysis is conducted to investigate the performance of this system. The results show that liquid air energy storage systems could be very effective systems for electrical power storage with high efficiency, high energy density and extensive application prospects.

  15. ESTABLISHMENT OF AN ENVIRONMENTAL CONTROL TECHNOLOGY LABORATORY WITH A CIRCULATING FLUIDIZED-BED COMBUSTION SYSTEM

    SciTech Connect

    Wei-Ping Pan; Andy Wu; John T. Riley

    2005-01-30

    This report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period October 1, 2004 through December 31, 2004. The following tasks have been completed. First, the renovation of the new Combustion Laboratory and the construction of the Circulating Fluidized-Bed (CFB) Combustor Building have proceeded well. Second, the detailed design of supporting and hanging structures for the CFBC was completed. Third, the laboratory-scale simulated fluidized-bed facility was modified after completing a series of pretests. The two problems identified during the pretest were solved. Fourth, the carbonization of chicken waste and coal was investigated in a tube furnace and a Thermogravimetric Analyzer (TGA). The experimental results from this study are presented in this report. Finally, the proposed work for the next quarter has been outlined in this report.

  16. Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion System

    SciTech Connect

    Wei-Ping Pan; Yan Cao; Songgeng Li

    2006-04-01

    This report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period January 1, 2006 through March 31, 2006. Work was performed on the following activities. First, the fabrication and manufacture of the CFBC Facility were completed. The riser, primary cyclone and secondary cyclone of Circulating Fluidized Bed (CFB) Combustor have been erected. Second, the Mercury Control Workshop and the Grand Opening of Institute for Combustion Science and Environmental Technology (ICSET) were successfully held on February 22 and 23, 2006, respectively. Third, effects of hydrogen chlorine (HCl) and sulfur dioxide (SO{sub 2}) on mercury oxidation were studied in a drop tube reactor. The experimental results from this study are presented in this report. Finally, the proposed work for the next quarter is described in this report.

  17. Innovative open air brayton combined cycle systems for the next generation nuclear power plants

    NASA Astrophysics Data System (ADS)

    Zohuri, Bahman

    The purpose of this research was to model and analyze a nuclear heated multi-turbine power conversion system operating with atmospheric air as the working fluid. The air is heated by a molten salt, or liquid metal, to gas heat exchanger reaching a peak temperature of 660 0C. The effects of adding a recuperator or a bottoming steam cycle have been addressed. The calculated results are intended to identify paths for future work on the next generation nuclear power plant (GEN-IV). This document describes the proposed system in sufficient detail to communicate a good understanding of the overall system, its components, and intended uses. The architecture is described at the conceptual level, and does not replace a detailed design document. The main part of the study focused on a Brayton --- Rankine Combined Cycle system and a Recuperated Brayton Cycle since they offer the highest overall efficiencies. Open Air Brayton power cycles also require low cooling water flows relative to other power cycles. Although the Recuperated Brayton Cycle achieves an overall efficiency slightly less that the Brayton --- Rankine Combined Cycle, it is completely free of a circulating water system and can be used in a desert climate. Detailed results of modeling a combined cycle Brayton-Rankine power conversion system are presented. The Rankine bottoming cycle appears to offer a slight efficiency advantage over the recuperated Brayton cycle. Both offer very significant advantages over current generation Light Water Reactor steam cycles. The combined cycle was optimized as a unit and lower pressure Rankine systems seem to be more efficient. The combined cycle requires a lot less circulating water than current power plants. The open-air Brayton systems appear to be worth investigating, if the higher temperatures predicted for the Next Generation Nuclear Plant do materialize.

  18. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  19. Temperature As Tracer of the Groundwater Circulation within a Complex Volcano-Detritic System

    NASA Astrophysics Data System (ADS)

    Selles, A.; Violette, S.; Goblet, P.; Hendrayana, H.

    2014-12-01

    The understanding of groundwater circulations into a volcano-detritic edifice is difficult because of the heterogeneous geological formations and the alternating construction and dismantling phases. In Indonesia, most of the groundwater resources are located into these complex volcanic systems. Furthermore, over the world this kind of context is poorly documented. In this study, we used a multi-disciplinary method based on field observations at watershed scale (geology, geomorphology, pumping tests, physico-chemical monthly monitoring over two hydrological years, etc.) and water stable isotope analysis to built a conceptual model of the hydrogeological behaviour of the Merapi volcano located in Central Java. Temperature appears to be a relevant tracer of local and regional groundwater circulations. A numerical model (METIS code) was used to verify the hydrogeological conceptual model. The steady state flow simulations were constrained first by isotope ratios (δ18O) dispersion transport and then by heat dispersion transfer in 2D vertical cross section. The heat spatial distribution and especially the "spring temperature anomaly" have been reproduced. The numerical code allowed us to describe the relation between the geothermal gradient and the relatively cold groundwater circulations provide by the high elevation recharge. Therefore, the results of this study highlight that water temperature offers several advantages as a tracer of groundwater circulations because it is easy, quick, and inexpensive to measure accurately in the field even in volcanic systems under tropical conditions. We show also that a simple but relatively accurate numerical modelling can be achieved when it is constrained by multi-disciplinary study results.

  20. A parallel Atmosphere-Ocean Global Circulation Model of intermediate complexity for Earth system climate research

    NASA Astrophysics Data System (ADS)

    Silva, T. A.; Schmittner, A.

    2007-12-01

    We present the evolution of an Earth System model of intermediate complexity featuring an ocean global circulation model to include a fully coupled 3D primitive equations atmospheric model. The original Earth System climate model, UVic ESCM (Weaver et al. 2001), uses an ocean global circulation model coupled to a one layer atmospheric energy-moisture balance model. It also comprises a viscous-plastic rheology sea ice model, a mechanical land ice model, land surface, oceanic and terrestrial carbon models and a simple 3D marine ecosystem model (Schmittner et al. 2005). A spectral atmospheric, model, PUMA (Fraedrich et al. 2005), was coupled to the UVic ESCM to provide an atmosphere with nonlinear dynamics in target resolutions of T21, T31 and T42, as required. The coupling with the atmosphere, which involves data transfer, preprocessing and interpolation, is done through the OASIS3 coupler. During a run there are 2 + 2N parallel processes: the UVic ESCM, the Oasis3 coupler and the PUMA model with its domain split across 2N processes. The choice of N allows to balance more or less complex configurations of UVic model (e.g. higher level marine ecosystem model or number of biogeochemical tracers) with the atmospheric model at different resolutions, in order to maintain computational efficiency. The relatively simple parameterizations make this new atmosphere-ocean global circulation model much faster than a state-of-the-art Atmosphere-Ocean Global Circulation Model, and so optimally geared for decadal to millennial scale integrations. The latter require special care with the conservation of fluxes during coupling. A second order conservative interpolation method was applied (Jones 1999) and this is compared with the use of typical non-conservative methods.

  1. Systems evaluation of low density air transportation concepts

    NASA Technical Reports Server (NTRS)

    Bruce, R. W.; Webb, H. M.

    1972-01-01

    Methods were studied for improving air transportation to low-density population regions in the U.S. through the application of new aeronautical technology. The low-density air service concepts are developed for selected regions, and critical technologies that presently limit the effective application of low-density air transportation systems are identified.

  2. AIR TEMPERATURE DISTRIBUTION IN SEED COTTON DRYING SYSTEMS

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ten tests were conducted in the fall of 2007 to measure air temperature variation within various heated air seed cotton drying systems with the purpose of: checking validation of recommendations by a professional engineering society and measuring air temperature variation across the airflow ductwork...

  3. INTEGRATED AIR POLLUTION CONTROL SYSTEM (IAPCS) COST MODEL (AIR POLLUTION TECHNOLOGY BRANCH, AIR POLLUTION PREVENTION AND CONTROL DIVISION, NRMRL)

    EPA Science Inventory

    The Air Pollution Technology Branch's (APPCD, NRMRL) Integrated Air Pollution Control System Cost Model is a compiled model written in FORTRAN and C language that is designed to be used on an IBM or compatible PC with 640K or lower RAM and at least 1.5 Mb of hard drive space. It ...

  4. A global multiscale mathematical model for the human circulation with emphasis on the venous system.

    PubMed

    Müller, Lucas O; Toro, Eleuterio F

    2014-07-01

    We present a global, closed-loop, multiscale mathematical model for the human circulation including the arterial system, the venous system, the heart, the pulmonary circulation and the microcirculation. A distinctive feature of our model is the detailed description of the venous system, particularly for intracranial and extracranial veins. Medium to large vessels are described by one-dimensional hyperbolic systems while the rest of the components are described by zero-dimensional models represented by differential-algebraic equations. Robust, high-order accurate numerical methodology is implemented for solving the hyperbolic equations, which are adopted from a recent reformulation that includes variable material properties. Because of the large intersubject variability of the venous system, we perform a patient-specific characterization of major veins of the head and neck using MRI data. Computational results are carefully validated using published data for the arterial system and most regions of the venous system. For head and neck veins, validation is carried out through a detailed comparison of simulation results against patient-specific phase-contrast MRI flow quantification data. A merit of our model is its global, closed-loop character; the imposition of highly artificial boundary conditions is avoided. Applications in mind include a vast range of medical conditions. Of particular interest is the study of some neurodegenerative diseases, whose venous haemodynamic connection has recently been identified by medical researchers. PMID:24431098

  5. Hemispheric asymmetries and seasonality of mean age of air in the lower stratosphere: Deep versus shallow branch of the Brewer-Dobson circulation

    NASA Astrophysics Data System (ADS)

    Konopka, Paul; Ploeger, Felix; Tao, Mengchu; Birner, Thomas; Riese, Martin

    2015-03-01

    Based on multiannual simulations with the Chemical Lagrangian Model of the Stratosphere, (CLaMS) driven by ECMWF ERA-Interim reanalysis, we discuss hemispheric asymmetries and the seasonality of the mean age of air (AoA) in the lower stratosphere. First, the planetary wave forcing of the Brewer-Dobson circulation is quantified in terms of Eliassen Palm flux divergence calculated by using the isentropic coordinate θ. While the forcing of the deep branch at θ = 1000 K (around 10 hPa) has a clear maximum in each hemisphere during the respective winter, the shallow branch of the Brewer-Dobson circulation, i.e., between 100 and 70 hPa (380 < θ < 420 K), shows almost opposite seasonality in both hemispheres with a pronounced minimum between June and September in the Southern Hemisphere. Second, we decompose the time-tendency of AoA into the contributions of the residual circulation and of eddy mixing by analyzing the zonally averaged tracer continuity equation. In the tropical lower stratosphere between ±30°, the air becomes younger during boreal winter and older during boreal summer. During boreal winter, the decrease of AoA due to tropical upwelling outweighs aging by isentropic mixing. In contrast, weaker isentropic mixing outweighs an even weaker upwelling in boreal summer and fall making the air older during these seasons. Poleward of 60°, the deep branch locally increases AoA and eddy mixing locally decreases AoA with the strongest net decrease during spring. Eddy mixing in the Northern Hemisphere outweighs that in the Southern Hemisphere throughout the year.

  6. The Relationship of Loss, Mean Age of Air and the Distribution of CFC's to Stratospheric Circulation and Implications for Atmospheric Lifetimes

    NASA Technical Reports Server (NTRS)

    Douglas, A. R.; Stolarski, R. S.; Schoeberl, M. R.; Jackman, C. H.; Gupta, M. L.; Newman, P. A.; Nielsen, J. E.; Fleming, E. L.

    2008-01-01

    Model-derived estimates of the annually integrated destruction and lifetime for various ozone depleting substances (ODSs) depend on the simulated stratospheric transport and mixing in the global model used to produce the estimate. Observations in the middle and high latitude lower stratosphere show that the mean age of an air parcel (i.e., the time since its stratospheric entry) is related to the fractional release for the ODs (i.e., the amount of the ODS that has been destroyed relative to the amount at the time of stratospheric entry). We use back trajectory calculations to produce an age spectrum, and explain the relationship between the mean age and the fractional release by showing that older elements in the age spectrum have experienced higher altitudes and greater ODs destruction than younger elements. In our study, models with faster circulations produce distributions for the age-of-air that are 'young' compared to a distribution derived from observations. These models also fail to reproduce the observed relationship between the mean age of air and the fractional release. Models with slower circulations produce both realistic distributions for mean age and a realistic relationship between mean age and fractional release. These models also produce a CFCl3 lifetime of approximately 56 years, longer than the 45 year lifetime used to project future mixing ratios. We find that the use of flux boundary conditions in assessment models would have several advantages, including consistency between ODS evolution and simulated loss even if the simulated residual circulation changes due to climate change.

  7. Closed-loop air cooling system for a turbine engine

    DOEpatents

    North, William Edward

    2000-01-01

    Method and apparatus are disclosed for providing a closed-loop air cooling system for a turbine engine. The method and apparatus provide for bleeding pressurized air from a gas turbine engine compressor for use in cooling the turbine components. The compressed air is cascaded through the various stages of the turbine. At each stage a portion of the compressed air is returned to the compressor where useful work is recovered.

  8. Detection Of Multilayer Cavities By Employing RC-DTH Air Hammer System And Cavity Auto Scanning Laser System

    NASA Astrophysics Data System (ADS)

    Luo, Yongjiang; Li, Lijia; Peng, Jianming; Yin, Kun; Li, Peng; Gan, Xin; Zhao, Letao; Su, Wei

    2015-12-01

    The subterranean cavities are seriously threatened to construction and mining safety, and it's important to obtain the exact localization and dimensions of subterranean cavities for the planning of geotechnical and mining activities. Geophysical investigation is an alternative method for cavity detection, but it usually failed for the uncertainly solution of information and data obtained by Geophysical methods. Drilling is considered as the most accurate method for cavity detection. However, the conventional drilling methods can only be used for single cavity detection, and there is no effective solution for multilayer cavities detection have been reported. In this paper, a reverse circulation (RC) down-the-hole (DTH) air hammer system with a special structured drill bit is built and a cavity auto scanning laser system based on laser range finding technique was employed to confirm the localization and dimensions of the cavities. This RC-DTH air hammer system allows drilling through the upper cavities and putting the cavity auto scanning laser system into the cavity area through the central passage of the drill tools to protect the detection system from collapsing of borehole wall. The RC-DTH air hammer system was built, and field tests were conducted in Lanxian County Iron Ore District, which is located in Lv Liang city of Shan Xi province, the northwest of china. Field tests show that employing the RC-DTH air hammer system assisted by the cavity auto scanning laser system is an efficiency method to detect multilayer cavities.

  9. Energy savings potential in air conditioners and chiller systems

    SciTech Connect

    Kaya, Durmus; Alidrisi, Hisham

    2014-01-22

    In the current paper we quantified and evaluated the energy saving potential in air conditioners and chiller systems. Here, we also showed how to reduce the cost of air conditioners and chiller systems in existing facilities on the basis of payback periods. Among the measures investigated were: (1) installing higher efficiency air conditioners, (2) installing higher efficiency chillers, (3) duty cycling air conditioning units, and (4) utilizing existing economizers on air conditioning units. For each method, examples were provided from Arizona, USA. In these examples, the amount of saved energy, the financial evaluation of this energy, and the investment cost and pay back periods were calculated.

  10. Energy savings potential in air conditioners and chiller systems

    DOE PAGESBeta

    Kaya, Durmus; Alidrisi, Hisham

    2014-01-22

    In the current paper we quantified and evaluated the energy saving potential in air conditioners and chiller systems. Here, we also showed how to reduce the cost of air conditioners and chiller systems in existing facilities on the basis of payback periods. Among the measures investigated were: (1) installing higher efficiency air conditioners, (2) installing higher efficiency chillers, (3) duty cycling air conditioning units, and (4) utilizing existing economizers on air conditioning units. For each method, examples were provided from Arizona, USA. In these examples, the amount of saved energy, the financial evaluation of this energy, and the investment costmore » and pay back periods were calculated.« less

  11. Natural circulation loop using liquid nitrogen for cryo-detection system

    SciTech Connect

    Choi, Yeon Suk

    2014-01-29

    The natural circulation loop is designed for the cryogenic insert in a Fourier transform ion cyclotron resonance (FTICR) mass spectrometer. Sensitivity is the key parameter of a FTICR mass spectrometer and the cryo-cooling of the pre-amplifier can reduce the thermal noise level and thereby improve the signal-to-noise ratio. The pre-amplifier consisted of non-magnetic materials is thermally connected to the cooling loop which is passing through the flange maintaining ultra-high vacuum in the ion cell. The liquid nitrogen passes through inside of the loop to cool the pre-amplifier indirectly. At the end, a cryocooler is located to re-condense nitrogen vapor generated due to the heat from the pre-amplifier. The circulating fluid removes heat from the pre-amplifier and transports it to the cryocooler or heat sink. In this paper the natural circulation loop for cryogenic pre-amplifier is introduced for improving the sensitivity of cryo-detector. In addition, the initial cool-down of the system by a cryocooler is presented and the temperature of the radiation shield is discussed with respect to the thickness of shield and the thermal radiation load.

  12. Design Result of the Cryogenic Hydrogen Circulation System for 1 MW Pulse Spallation Neutron Source (JSNS) in J-PARC

    SciTech Connect

    Aso, T.; Tatsumoto, H.; Hasegawa, S.; Ushijima, I.; Ohtsu, K.; Kato, T.; Ikeda, Y.

    2006-04-27

    A cryogenic hydrogen circulation system to cool cryogenic hydrogen moderators for the spallation neutron source in J-PARC has been designed. This system consists of a helium refrigerator system and a hydrogen circulation system. The refrigeration capacity required for the cryogenic system is specified to be around 6 kW at 17 K. The hydrogen circulation system is composed of a hydrogen-helium heat exchanger, two circulation pumps, multiple transfer lines, three moderator vessels, an Ortho-Para hydrogen converter, an accumulator, a heater and others. The system adopts a centrifugal-type hydrogen pump that can circulate the cryogenic hydrogen (20 K, 0.5 to 1.5 MPa) with the mass flow up to 162 g/s through the three moderators. This forced-flow circulation can remove the nuclear heating from the moderators and can keep the temperature difference through the moderators within 3 K. The Ortho-Para hydrogen converter will be installed to maintain the Para-hydrogen concentration of more than 99% at the inlet of the moderators. For the pressure changes due to the proton beam being turned on and off, we will prepare an accumulator and a heater, which is called a hybrid pressure control. The cryogenic system has been designed with safety concepts that protect the public.

  13. Refining the Subseafloor Circulation Model of the Middle Valley Hydrothermal System Using Fluid Geochemistry

    NASA Astrophysics Data System (ADS)

    Inderbitzen, K. E.; Wheat, C. G.; Baker, P. A.; Fisher, A. T.

    2014-12-01

    Currently, fluid circulation patterns and the evolution of rock/fluid compositions as circulation occurs in subseafloor hydrothermal systems are poorly constrained. Sedimented spreading centers provide a unique opportunity to study subsurface flow because sediment acts as an insulating blanket that traps heat from the cooling magma body and limits: (a) potential flow paths for seawater to recharge the aquifer in permeable upper basaltic basement and (b) points of altered fluid egress. This also allows for a range of thermal and geochemical gradients to exist near the sediment-water interface. Models of fluid circulation patterns in this type of hydrologic setting have been generated (eg. Stein and Fisher, 2001); however fluid chemistry datasets have not previously been used to test the model's viability. We address this issue by integrating the existing circulation model with fluid compositional data collected from sediment pore waters and high temperature hydrothermal vents located in Middle Valley on the Juan de Fuca Ridge. Middle Valley hosts a variety of hydrologic regimes: including areas of fluid recharge (Site 855), active venting (Site 858/1036; Dead Dog vent field), recent venting (Site 856/1035; Bent Hill Massive Sulfide deposit) and a section of heavily sedimented basement located between recharge and discharge sites (Site 857). We will present new results based on thermal and geochemical data from the area of active venting (Sites 858 and 1036), that was collected during Ocean Drilling Program Legs 139 and 169 and a subsequent heat flow/gravity coring effort. These results illuminate fine scale controls on secondary recharge and fluid flow within the sediment section at Site 858/1036. The current status of high temperature vents in this area (based on observations made in July, 2014) will also be outlined.

  14. The air transportation/energy system

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The changing pattern of transportation is discussed, and the energy intensiveness of various modes of transportation is also analyzed. Sociopsychological data affecting why people travel by air are presented, along with governmental regulation and air transportation economics. The aviation user tax structure is shown in tabular form.

  15. An Open Source Low-Cost Wireless Control System for a Forced Circulation Solar Plant

    PubMed Central

    Salamone, Francesco; Belussi, Lorenzo; Danza, Ludovico; Ghellere, Matteo; Meroni, Italo

    2015-01-01

    The article describes the design phase, development and practical application of a low-cost control system for a forced circulation solar plant in an outdoor test cell located near Milan. Such a system provides for the use of an electric pump for the circulation of heat transfer fluid connecting the solar thermal panel to the storage tank. The running plant temperatures are the fundamental parameter to evaluate the system performance such as proper operation, and the control and management system has to consider these parameters. A solar energy-powered wireless-based smart object was developed, able to monitor the running temperatures of a solar thermal system and aimed at moving beyond standard monitoring approaches to achieve a low-cost and customizable device, even in terms of installation in different environmental conditions. To this end, two types of communications were used: the first is a low-cost communication based on the ZigBee protocol used for control purposes, so that it can be customized according to specific needs, while the second is based on a Bluetooth protocol used for data display. PMID:26556356

  16. An Open Source Low-Cost Wireless Control System for a Forced Circulation Solar Plant.

    PubMed

    Salamone, Francesco; Belussi, Lorenzo; Danza, Ludovico; Ghellere, Matteo; Meroni, Italo

    2015-01-01

    The article describes the design phase, development and practical application of a low-cost control system for a forced circulation solar plant in an outdoor test cell located near Milan. Such a system provides for the use of an electric pump for the circulation of heat transfer fluid connecting the solar thermal panel to the storage tank. The running plant temperatures are the fundamental parameter to evaluate the system performance such as proper operation, and the control and management system has to consider these parameters. A solar energy-powered wireless-based smart object was developed, able to monitor the running temperatures of a solar thermal system and aimed at moving beyond standard monitoring approaches to achieve a low-cost and customizable device, even in terms of installation in different environmental conditions. To this end, two types of communications were used: the first is a low-cost communication based on the ZigBee protocol used for control purposes, so that it can be customized according to specific needs, while the second is based on a Bluetooth protocol used for data display. PMID:26556356

  17. Effect of Mechanical Assistance of the Systemic Ventricle in Single Ventricle Circulation with Cavopulmonary Connection

    PubMed Central

    Sinha, Pranava; Deutsch, Nina; Ratnayaka, Kanishka; He, Dingchao; Zurakowski, Mark Nuszkowski David; Jonas, Richard

    2014-01-01

    Background Previous attempts to support the single ventricle circulation mechanically have suggested that a custom-built assist device is needed to push rather than pull through the pulmonary circulation. We hypothesized that using a conventional ventricular assist device, with or without conversion of a total cavopulmonary connection to a bidirectional Glenn cavopulmonary connection would allow assistance by pulling blood through the circuit and improve cardiac index (CI). Methods Cavopulmonary connections were established in each of five Yorkshire pigs (25kg) using ePTFE conduits in a “Y” configuration with appropriate clamping of limbs of the Y to achieve: total cavopulmonary Fontan connection (TCPC), SVC cavopulmonary connection (SVC Glenn) and IVC cavopulmonary connection (IVC Glenn). A common atrium had been established previously by balloon septostomy. Mechanical circulatory assistance of the single systemic ventricle was achieved using a centrifugal pump with common atrial inflow and proximal ascending aortic outflow. CI was calculated using an ultrasonic flow meter placed on the distal ascending aorta and compared between assisted and non-assisted circulation for 3 conditions: TCPC, SVC Glenn and IVC Glenn. Mean pulmonary artery pressure (PAP), common atrial pressure (LAP), arterial oxygen saturation (SAT), partial pressure of arterial oxygen (PO2) and oxygen delivery (DO2) were calculated. Results Unassisted SVC Glenn CI tended to be higher than TCPC or IVC Glenn (Figure 1). Significant augmentation of total CI was achieved with mechanical assistance for SVC Glenn (109% ± 24%, P =.04) and also with TCPC (130% ± 109%, P = .01). Assisted CI achieved at least mean baseline biventricular CI for all 3-support modes. Oxygen delivery was highest for assisted SVC Glenn 1786 ± 1307 ml/l/min and lowest with TCPC 1146 ± 386 ml/l/min, with a trend toward lower common atrial pressure and lower pulmonary artery pressure for SVC Glenn. Conclusions SVC

  18. PremAir{trademark} catalyst systems: A new approach to clean air

    SciTech Connect

    Poles, T.; Anderson, D.R.; Durilla, M.; Heck, R.; Hoke, J.; Ober, R.; Rudy, W.

    1996-12-01

    PremAir{trademark} catalyst systems represents a new approach to air pollution control--one that focuses on destroying pollutants already in the air. PremAir is the trademark for a family of developmental catalysts capable of reducing ozone, carbon monoxide and potentially other pollutants in ambient air that comes into contact with catalyst-coated surfaces. The more air that comes into contact with the surface the more pollutants that can be destroyed. For this reason, Engelhard has focused its attention on heat-exchange equipment such as automotive radiators and air-conditioner condensers. It is because of advances in catalysis achieved at Engelhard that PremAir catalysts are active at the low temperatures found in these environments. In Los Angeles, which has the country`s worst smog problem, approximately one trillion cubic feet per day of air pass through car radiators and five trillion cubic feet per day pass through air conditioners. Most of the research, development and testing work performed to date has been on ozone catalysts and their application to car radiators. This paper discusses that work and the potential benefits associated with the PremAir technology. In addition, preliminary work on stationary applications of this new technology is discussed.

  19. Urban air quality simulation with community multi-scale air quality (CMAQ) modeling system

    SciTech Connect

    Byun, D.; Young, J.; Gipson, G.; Schere, K.; Godowitch, J.

    1998-11-01

    In an effort to provide a state-of-the-science air quality modeling capability, US EPA has developed a new comprehensive and flexible Models-3 Community Multi-scale Air Quality (CMAQ) modeling system. The authors demonstrate CMAQ simulations for a high ozone episode in the northeastern US during 12-15 July 1995 and discuss meteorological issues important for modeling of urban air quality.

  20. Circulating images of virtual systems: trodes, gloves, and goggles in the eighties and nineties

    NASA Astrophysics Data System (ADS)

    Ito, Mizuko; Fisher, Scott S.

    1997-05-01

    Since the late 80s, the popular imagination surrounding virtual systems has been lively and contested, an intriguing brew of cyberpunk fiction, government and corporate research, and product development, with a dash of countercultural excess. Virtual systems, in their myriad forms, have captured the interest not only of scientists and engineers, but also of a broad spectrum of social actors, including the popular and alternative press, fiction and comic writers, visual artists, film and television producers, as well as large sectors of a curious public, all of whom have produced diverse and creative images of these systems for a range of different audiences. The circulation of images of virtual systems points to some of the ways in which the production of technology can be located not only in engineering labs but also various realms of mass media and public culture. Focusing on images of gloves and goggles, this paper describes some of the pathways through which images of virtual systems have traveled.

  1. Trend analysis of air temperature time series in Greece and their relationship with circulation using surface and satellite data: recent trends and an update to 2013

    NASA Astrophysics Data System (ADS)

    Feidas, H.

    2016-07-01

    In this paper, the surface and lower tropospheric temperature trends in Greece and their relationship to the atmospheric circulation for the period 1955-2013 were examined, updating the study of Feidas et al. (Theor Appl Climatol 79:185-208, 2004) for data observed during the 12-year period 2002-2013. The trend analysis is based on a combination of three statistical tests. The trends are now examined for all the seasonal time series, new atmospheric circulation indices were added in the analysis, and maps with the spatial distribution of correlation between air temperature and atmospheric circulation were constructed and analysed. The series updated to 2013 for 18 stations reveal a clearer positive trend than that found for the period 1955-2001 on both the annual and the seasonal timescales. The warming signal detected only in summer in the study of Feidas et al. (Theor Appl Climatol 79:185-208, 2004) has now intensified and spread in other seasons. This warming appears to be mainly caused by the very high temperatures in the last decade (after 2004) of the record. At the national scale, there is now a match between surface temperature trends in Greece and Northern Hemisphere (NH) but only for summer, spring and annual time series, which are the only time series presenting a statistically significant warming trend in Greece. Satellite-induced lower tropospheric temperatures now show a statistically significant tropospheric temperature warming trend for the period 1979-2013, for both areas (Greece and NH). Lower tropospheric and surface air temperatures for the same period (1979-2013) show a very good agreement, with differences only in winter and summer for Greece. The influence of atmospheric circulation on the temperature variability in Greece was also examined using two more circulation indices: the Eastern Mediterranean Pattern Index (EMPI) and the North-Sea Caspian Pattern Index (NCPI). EMPI and especially NCPI explain better now the temperature variance in

  2. Ventilation System Effectiveness and Tested Indoor Air Quality Impacts

    SciTech Connect

    Rudd, A.; Bergey, D.

    2014-02-01

    Ventilation system effectiveness testing was conducted at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy. It was inferior because the source of outside air was not direct from outside, the ventilation air was not distributed, and no provision existed for air filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the Exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four System Factor Categories: Balance, Distribution, Outside Air Source, and Recirculation Filtration. Recommended System Factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year.

  3. Ventilation System Effectiveness and Tested Indoor Air Quality Impacts

    SciTech Connect

    Rudd, Armin; Bergey, Daniel

    2014-02-01

    In this project, Building America research team Building Science Corporation tested the effectiveness of ventilation systems at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy. This was because the source of outside air was not direct from outside, the ventilation air was not distributed, and no provision existed for air filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four system factor categories: balance, distribution, outside air source, and recirculation filtration. Recommended system factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year.

  4. Immunoconjugates and long circulating systems: Origins, current state of the art and future directions☆

    PubMed Central

    Koshkaryev, Alexander; Sawant, Rupa; Deshpande, Madhura; Torchilin, Vladimir

    2012-01-01

    Significant progress has been made recently in the area of immunoconjugated drugs and drug delivery systems (DDS). The immuno-modification of either the drug or DDS has proven to be a very promising approach that has significantly improved the targeted accumulation in pathological sites while decreasing its undesirable side effects in healthy tissues. The arrangement for both prolonged life in the circulation and specific target recognition represents another potent strategy in the development of immuno-targeted systems. The longevity of immuno-targeted DDS such as immunoliposomes and immunomicelles improves their targetability even in the presence of the additional passive accumulation in areas with a compromised vasculature. The added use of the immuno-targeted systems takes advantage of the specific microenvironment of pathological sites including lowered pH, increased temperature, and variation in the enzymatic activity. “Smart” stimulus-responsive systems combine different valuable functionalities including PEG-protection, targeting antibody, cell-penetration, and stimulus-sensitive functions. In this review we examined the evolution, current status and future directions in the area of therapeutical immunoconjugates and long-circulating immuno-targeted DDS. PMID:22964425

  5. Optical air data systems and methods

    NASA Technical Reports Server (NTRS)

    Caldwell, Loren M. (Inventor); Tang, Shoou-Yu (Inventor); O'Brien, Martin J. (Inventor)

    2009-01-01

    A method for remotely sensing air outside a moving aircraft includes generating laser radiation within a swept frequency range. A portion of the laser radiation is projected from the aircraft into the air to induce scattered laser radiation. Filtered scattered laser radiation, filtered laser radiation, and unfiltered laser radiation are detected. At least one actual ratio is determined from data corresponding to the filtered scattered laser radiation and the unfiltered laser radiation. One or more air parameters are determined by correlating the actual ratio to at least one reference ratio.

  6. Optical air data systems and methods

    NASA Technical Reports Server (NTRS)

    Caldwell, Loren M. (Inventor); Tang, Shoou-Yu (Inventor); O'Brien, Martin J. (Inventor)

    2011-01-01

    A method for remotely sensing air outside a moving aircraft includes generating laser radiation within a swept frequency range. A portion of the laser radiation is projected from the aircraft into the air to induce scattered laser radiation. Filtered scattered laser radiation, filtered laser radiation, and unfiltered laser radiation are detected. At least one actual ratio is determined from data corresponding to the filtered scattered laser radiation and the unfiltered laser radiation. One or more air parameters are determined by correlating the actual ratio to at least one reference ratio.

  7. Gastrointestinal and hepatic mechanisms limiting entry and dissemination of lipopolysaccharide into the systemic circulation.

    PubMed

    Guerville, Mathilde; Boudry, Gaëlle

    2016-07-01

    The human microbiota consists of 100 trillion microorganisms that provide important metabolic and biological functions benefiting the host. However, the presence in host plasma of a gut-derived bacteria component, the lipopolysaccharide (LPS), has been identified as a causal or complicating factor in multiple serious diseases such as sepsis and septic shock and, more recently, obesity-associated metabolic disorders. Understanding the precise mechanisms by which gut-derived LPS is transported from the gut lumen to the systemic circulation is crucial to advance our knowledge of LPS-associated diseases and elaborate targeted strategies for their prevention. The aim of this review is to synthetize current knowledge on the host mechanisms limiting the entry and dissemination of LPS into the systemic circulation. To prevent bacterial colonization and penetration, the intestinal epithelium harbors multiple defense mechanisms including the secretion of antimicrobial peptides and mucins as well as detoxification enzymes. Despite this first line of defense, LPS can reach the apical site of intestinal epithelial cells (IECs) and, because of its large size, likely crosses IECs via transcellular transport, either lipid raft- or clathrin-mediated endocytosis or goblet cell-associated passage. However, the precise pathway remains poorly described. Finally, if LPS crosses the gut mucosa, it is directed via the portal vein to the liver, where major detoxification processes occur by deacetylation and excretion through the bile. If this disposal process is not sufficient, LPS enters the systemic circulation, where it is handled by numerous transport proteins that clear it back to the liver for further excretion. PMID:27151941

  8. Air conditioning system with supplemental ice storing and cooling capacity

    DOEpatents

    Weng, Kuo-Lianq; Weng, Kuo-Liang

    1998-01-01

    The present air conditioning system with ice storing and cooling capacity can generate and store ice in its pipe assembly or in an ice storage tank particularly equipped for the system, depending on the type of the air conditioning system. The system is characterized in particular in that ice can be produced and stored in the air conditioning system whereby the time of supplying cooled air can be effectively extended with the merit that the operation cycle of the on and off of the compressor can be prolonged, extending the operation lifespan of the compressor in one aspect. In another aspect, ice production and storage in great amount can be performed in an off-peak period of the electrical power consumption and the stored ice can be utilized in the peak period of the power consumption so as to provide supplemental cooling capacity for the compressor of the air conditioning system whereby the shift of peak and off-peak power consumption can be effected with ease. The present air conditioning system can lower the installation expense for an ice-storing air conditioning system and can also be applied to an old conventional air conditioning system.

  9. Seasonal variation of local atmospheric circulations and boundary layer structure in the Beijing-Tianjin-Hebei region and implications for air quality

    NASA Astrophysics Data System (ADS)

    Miao, Yucong; Hu, Xiao-Ming; Liu, Shuhua; Qian, Tingting; Xue, Ming; Zheng, Yijia; Wang, Shu

    2015-12-01

    The Beijing-Tianjin-Hebei (BTH) region experiences frequent heavy haze pollution in fall and winter. Pollution was often exacerbated by unfavorable atmospheric boundary layer (BL) conditions. The topography in this region impacts the BL processes in complex ways. Such impacts and implications on air quality are not yet clearly understood. The BL processes in all four seasons in BTH are thus investigated in this study using idealized simulations with the WRF-Chem model. Results suggest that seasonal variation of thermal conditions and synoptic patterns significantly modulates BL processes. In fall, with a relatively weak northwesterly synoptic forcing, thermal contrast between the mountains and the plain leads to a prominent mountain-plain breeze circulation (MPC). In the afternoon, the downward branch of the MPC, in addition to northwesterly warm advection, suppresses BL development over the western side of BTH. In the eastern coastal area, a sea-breeze circulation develops late in the morning and intensifies during the afternoon. In summer, southeasterly BL winds allow the see-breeze front to penetrate farther inland (˜150 km from the coast), and the MPC is less prominent. In spring and winter, with strong northwesterly synoptic winds, the sea-breeze circulation is confined in the coastal area, and the MPC is suppressed. The BL height is low in winter due to strong near-surface stability, while BL heights are large in spring due to strong mechanical forcing. The relatively low BL height in fall and winter may have exacerbated the air pollution, thus contributing to the frequent severe haze events in the BTH region.

  10. Two-phase flow stability structure in a natural circulation system

    SciTech Connect

    Zhou, Zhiwei

    1995-09-01

    The present study reports a numerical analysis of two-phase flow stability structures in a natural circulation system with two parallel, heated channels. The numerical model is derived, based on the Galerkin moving nodal method. This analysis is related to some design options applicable to integral heating reactors with a slightly-boiling operation mode, and is also of general interest to similar facilities. The options include: (1) Symmetric heating and throttling; (2) Asymmetric heating and symmetric throttling; (3) Asymmetric heating and throttling. The oscillation modes for these variants are discussed. Comparisons with the data from the INET two-phase flow stability experiment have qualitatively validated the present analysis.

  11. Circulating non-human microfilaria in a patient with systemic lupus erythematosus.

    PubMed

    Greene, B M; Otto, G F; Greenough, W B

    1978-09-01

    A 12-yr-old girl with systemic lupus erythematosus requiring steroid therapy was found to have a circulating microfilaria during an exacerbation of her illness. Morphologically, the microfilaria does not correspond precisely with any previously described species, though similarities exist between the patient's microfilaria and those of Dipetalonema reconditum of the dog and D. interstitium of the grey squirrel. The organism reported here is probably an undescribed species from a wild mammal. Although the association may be merely coincidental, this case suggests that compromised immunity might have led to this unusual infection with a non-human filaria. PMID:568893

  12. Effective hydrogen generation and resource circulation based on sulfur cycle system

    NASA Astrophysics Data System (ADS)

    Takahashi, Hideyuki; Mabuchi, Takashi; Hayashi, Tsugumi; Yokoyama, Shun; Tohji, Kazuyuki

    2013-12-01

    For the effective hydrogen generation from H2S, it should be compatible that the increscent of the photocatalytic (or electrochemical) activities and the development of effective utilization method of by-products (poly sulfide ion). In this study, "system integration" to construct the sulfur cycle system, which is compatible with the increscent of the hydrogen and or electron energy generation ratio and resource circulation, is investigated. Photocatalytic hydrogen generation rate can be enhanced by using stratified photocatalysts. Photo excited electron can be transpired to electrode to convert the electron energy to hydrogen energy. Poly sulfide ion as the by-products can be transferred into elemental sulfur and/or industrial materials such as rubber. Moreover, elemental sulfur can be transferred into H2S which is the original materials for hydrogen generation. By using this "system integration", the sulfur cycle system for the new energy generation can be constructed.

  13. Effective hydrogen generation and resource circulation based on sulfur cycle system

    SciTech Connect

    Takahashi, Hideyuki; Mabuchi, Takashi; Hayashi, Tsugumi; Yokoyama, Shun; Tohji, Kazuyuki

    2013-12-10

    For the effective hydrogen generation from H{sub 2}S, it should be compatible that the increscent of the photocatalytic (or electrochemical) activities and the development of effective utilization method of by-products (poly sulfide ion). In this study, “system integration” to construct the sulfur cycle system, which is compatible with the increscent of the hydrogen and or electron energy generation ratio and resource circulation, is investigated. Photocatalytic hydrogen generation rate can be enhanced by using stratified photocatalysts. Photo excited electron can be transpired to electrode to convert the electron energy to hydrogen energy. Poly sulfide ion as the by-products can be transferred into elemental sulfur and/or industrial materials such as rubber. Moreover, elemental sulfur can be transferred into H{sub 2}S which is the original materials for hydrogen generation. By using this “system integration”, the sulfur cycle system for the new energy generation can be constructed.

  14. Air pollution and the respiratory system.

    PubMed

    Arbex, Marcos Abdo; Santos, Ubiratan de Paula; Martins, Lourdes Conceição; Saldiva, Paulo Hilário Nascimento; Pereira, Luiz Alberto Amador; Braga, Alfésio Luis Ferreira

    2012-01-01

    Over the past 250 years-since the Industrial Revolution accelerated the process of pollutant emission, which, until then, had been limited to the domestic use of fuels (mineral and vegetal) and intermittent volcanic emissions-air pollution has been present in various scenarios. Today, approximately 50% of the people in the world live in cities and urban areas and are exposed to progressively higher levels of air pollutants. This is a non-systematic review on the different types and sources of air pollutants, as well as on the respiratory effects attributed to exposure to such contaminants. Aggravation of the symptoms of disease, together with increases in the demand for emergency treatment, the number of hospitalizations, and the number of deaths, can be attributed to particulate and gaseous pollutants, emitted by various sources. Chronic exposure to air pollutants not only causes decompensation of pre-existing diseases but also increases the number of new cases of asthma, COPD, and lung cancer, even in rural areas. Air pollutants now rival tobacco smoke as the leading risk factor for these diseases. We hope that we can impress upon pulmonologists and clinicians the relevance of investigating exposure to air pollutants and of recognizing this as a risk factor that should be taken into account in the adoption of best practices for the control of the acute decompensation of respiratory diseases and for maintenance treatment between exacerbations. PMID:23147058

  15. Breathing Easy over Air Quality.

    ERIC Educational Resources Information Center

    Greim, Clifton; Turner, William

    1991-01-01

    School systems should test the air in every school building for the presence and level of contaminants such as radon and asbestos and whether the ventilation system is circulating the proper amount of air. Periodic maintenance is required for all mechanical systems. (MLF)

  16. ESTABLISHMENT OF AN ENVIRONMENTAL CONTROL TECHNOLOGY LABORATORY WITH A CIRCULATING FLUIDIZED-BED COMBUSTION SYSTEM

    SciTech Connect

    Wei-Ping Pan; Andy Wu; John T. Riley

    2005-07-30

    This purpose of this report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period April 1, 2005 through June 30, 2005. The following tasks have been completed. First, the new Combustion Laboratory was occupied on June 15, 2005, and the construction of the Circulating Fluidized-Bed (CFB) Combustor Building is in the final painting stage. Second, the fabrication and manufacturing contract for the CFBC Facility was awarded to Sterling Boiler & Mechanical, Inc. of Evansville, Indiana. Sterling is manufacturing the assembly and component parts of the CFBC system. The erection of the CFBC system is expected to start September 1, 2005. Third, mercury emissions from the cofiring of coal and chicken waste was studied experimentally in the laboratory-scale simulated fluidized-bed combustion facility. The experimental results from this study are presented in this report. Finally, the proposed work for the next quarter is described.

  17. Design of gas circulation system in the high power fast axial flow CO2 laser

    NASA Astrophysics Data System (ADS)

    Huang, Hongyan; Wang, Youqing; Li, Qing; Jia, Xinting

    2009-08-01

    Increasing the output power of the fast axial flow CO2 laser requires a proportional growth of the mass flow with the laser power for convective cooling of the active laser medium. The previous research on high power CO2 laser was mostly focused on gas discharge. However, little attention was focused on the gas circulation system, which is also an essential technology to ensure the long time stable work of the high power fast axial flow CO2 laser. Based on the analysis of the characteristics of the 7 KW fast axial flow CO2 laser, expounded the important role of the gas circulation system, and then analyzed the parameters, the structure and the design of the system. After that, this paper compared various types of blowers and heat exchangers, chose magnetic levitation radial turbine blower and rectangle finned heat exchanger, in light of the prominent performance and compact structure. Further more, this paper also supplied the methods of the blower and heat exchanger selection and design. The results indicate that the magnetic levitation radial turbine blower and rectangle finned heat exchanger which have been chosen are suitable to the 7 kW fast axial flow CO2 laser.

  18. Enrichment of circulating tumor cells using a centrifugal affinity plate system.

    PubMed

    Lee, Sung-Woo; Hyun, Kyung-A; Kim, Seung-Il; Kang, Ji-Yoon; Jung, Hyo-Il

    2014-12-19

    Circulating tumor cells (CTCs) are defined as cells that have detached from a primary tumor and are circulating in the bloodstream. Their isolation and quantification is of great value for cancer prognoses and drug testing. Here, the development of a centrifugal affinity plate (CAP) system is described, in which centrifugal force and antibody-based capture are exploited to enrich CTCs on one plate and hematological cells on the other. The CAP is rotated to exert centrifugal force on the cells in a blood sample, quickly transporting them to the anti-epithelial adhesion molecule (EpCAM)-coated and anti-CD45-coated surface of the CAP to shorten the reaction time and increase the adhesion force between the tumor and blood cells and each antibody. The effect of a rotating process on cell capture was investigated, and the capture efficiency was demonstrated using blood samples from healthy donors spiked with human non-small cell lung cancer (NCI-H1650) and breast cancer (MCF-7) cells. The CAP system was capable of rapid isolation and identification of CTCs without the requirement for pretreatment of blood samples. Finally, the CAP system was tested to evaluate the detection efficiency of CTCs in the blood samples of breast cancer patients. The number of captured CTCs in only 1ml of blood varied from 6 to 10. PMID:25435456

  19. Current Understanding of Circulating Tumor Cells – Potential Value in Malignancies of the Central Nervous System

    PubMed Central

    Adamczyk, Lukasz A.; Williams, Hannah; Frankow, Aleksandra; Ellis, Hayley Patricia; Haynes, Harry R.; Perks, Claire; Holly, Jeff M. P.; Kurian, Kathreena M.

    2015-01-01

    Detection of circulating tumor cells (CTCs) in the blood via so-called “liquid biopsies” carries enormous clinical potential in malignancies of the central nervous system (CNS) because of the potential to follow disease evolution with a blood test, without the need for repeat neurosurgical procedures with their inherent risk of patient morbidity. To date, studies in non-CNS malignancies, particularly in breast cancer, show increasing reproducibility of detection methods for these rare tumor cells in the circulation. However, no method has yet received full recommendation to use in clinical practice, in part because of lack of a sufficient evidence base regarding clinical utility. In CNS malignancies, one of the main challenges is finding a suitable biomarker for identification of these cells, because automated systems, such as the widely used Cell Search system, are reliant on markers, such as the epithelial cell adhesion molecule, which are not present in CNS tumors. This review examines methods for CTC enrichment and detection, and reviews the progress in non-CNS tumors and the potential for using this technique in human brain tumors. PMID:26322014

  20. 46 CFR 197.310 - Air compressor system.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 7 2010-10-01 2010-10-01 false Air compressor system. 197.310 Section 197.310 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE OCCUPATIONAL SAFETY AND HEALTH STANDARDS GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.310 Air compressor system. A...

  1. 46 CFR 197.310 - Air compressor system.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 7 2011-10-01 2011-10-01 false Air compressor system. 197.310 Section 197.310 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE OCCUPATIONAL SAFETY AND HEALTH STANDARDS GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.310 Air compressor system. A...

  2. Thermal Environment for Classrooms. Central System Approach to Air Conditioning.

    ERIC Educational Resources Information Center

    Triechler, Walter W.

    This speech compares the air conditioning requirements of high-rise office buildings with those of large centralized school complexes. A description of one particular air conditioning system provides information about the system's arrangement, functions, performance efficiency, and cost effectiveness. (MLF)

  3. COSTS OF AIR POLLUTION ABATEMENT SYSTEMS FOR SEWAGE SLUDGE INCINERATORS

    EPA Science Inventory

    Capital and annual costs were calculated for applying six different air pollution control systems to municipal sewage sludge incinerators that were using multiple-hearth furnaces. The systems involved three principal types of air pollution equipment-wet scrubbers, fabric filters,...

  4. 46 CFR 197.310 - Air compressor system.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 7 2014-10-01 2014-10-01 false Air compressor system. 197.310 Section 197.310 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE OCCUPATIONAL SAFETY AND HEALTH STANDARDS GENERAL PROVISIONS Commercial Diving Operations Equipment § 197.310 Air compressor system. A...

  5. EMISSIONS PROCESSING FOR THE ETA/ CMAQ AIR QUALITY FORECAST SYSTEM

    EPA Science Inventory

    NOAA and EPA have created an Air Quality Forecast (AQF) system. This AQF system links an adaptation of the EPA's Community Multiscale Air Quality Model with the 12 kilometer ETA model running operationally at NOAA's National Center for Environmental Predication (NCEP). One of the...

  6. 14 CFR 33.66 - Bleed air system.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Bleed air system. 33.66 Section 33.66 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.66 Bleed air system....

  7. 14 CFR 33.66 - Bleed air system.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Bleed air system. 33.66 Section 33.66 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.66 Bleed air system....

  8. 14 CFR 33.66 - Bleed air system.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Bleed air system. 33.66 Section 33.66 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.66 Bleed air system....

  9. 14 CFR 33.66 - Bleed air system.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Bleed air system. 33.66 Section 33.66 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.66 Bleed air system....

  10. 14 CFR 33.66 - Bleed air system.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Bleed air system. 33.66 Section 33.66 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.66 Bleed air system....

  11. [Air decontamination and the fine filtration system "Potok 150MK"].

    PubMed

    Kapustina, E A; Volodina, E V

    2004-01-01

    Longevity of space stations is dependent on efficiency and robustness of the life support systems. The article describes the principle of operation of air decontamination system Potok 150MK intended for providing microbial safety of the orbital station environment. High quality of air disinfection and decontamination has been demonstrated aboard SS Mir and the International space station. PMID:15233040

  12. Air Pollution Information System, Increasing Usability Through Automation

    ERIC Educational Resources Information Center

    Renner, Fred; And Others

    1971-01-01

    The conversion of an information system containing air pollution related documents from manual to automatic computer-based operation is outlined with emphasis on the increased services to system users which resulted from the conversion. (Author)

  13. Improving Compressed Air System Performance: A Sourcebook for Industry

    SciTech Connect

    2003-11-01

    NREL will produce this sourcebook for DOE's Industrial Technologies Office as part of a series of documents on industrial energy equipment. The sourcebook is a reference for industrial compressed air system users, outlining opportunities to improve system efficiency.

  14. Acceptance Test Report for 241-U compressed air system

    SciTech Connect

    Freeman, R.D.

    1994-10-20

    This Acceptance Test Report (ATR) documents the results of acceptance testing of a newly upgraded compressed air system at 241-U Farm. The system was installed and the test successfully performed under work package 2W-92-01027.

  15. Residential Forced Air System Cabinet Leakage and Blower Performance

    SciTech Connect

    Walker, Iain S.; Dickerhoff, Darryl J.; Delp, William W.

    2010-03-01

    This project evaluated the air leakage and electric power consumption of Residential HVAC components, with a particular focus on air leakage of furnace cabinets. Laboratory testing of HVAC components indicated that air leakage can be significant and highly variable from unit to unit ? indicating the need for a standard test method and specifying maximum allowable air leakage in California State energy codes. To further this effort, this project provided technical assistance for the development of a national standard for Residential HVAC equipment air leakage. This standard is being developed by ASHRAE and is called"ASHRAE Standard 193P - Method of test for Determining the Air Leakage Rate of HVAC Equipment". The final part of this project evaluated techniques for measurement of furnace blower power consumption. A draft test procedure for power consumption was developed in collaboration with the Canadian General Standards Board: CSA 823"Performance Standard for air handlers in residential space conditioning systems".

  16. A New Current Drogue System for Remotely Monitoring Shelf Current Circulation

    NASA Technical Reports Server (NTRS)

    Klemas, V. (Principal Investigator); Davis, G.; Whelan, W.; Tornatore, G.

    1975-01-01

    The author has identified the following significant results. An ocean current drogue system was developed for use in the coastal zone and continental shelf region. The method features an extremely simple radiosonde device whose position is determined from a pair of cooperative shore stations. These ocean sondes follow the tradition of the atmospheric radiosonde in that they are economically disposable at the end of their mission. The system was successfully tested in a number of environments, including the North Atlantic in two winter coastal storms. Tracking to the edge of the Baltimore and Wilmington trenches was achieved. The drogue system is being used in conjunction with remote sensing aircraft and satellites to chart current circulation at ocean waste disposal sites 40 miles off Delaware's coast.

  17. ESTABLISHMENT OF AN ENVIRONMENTAL CONTROL TECHNOLOGY LABORATORY WITH A CIRCULATING FLUIDIZED-BED COMBUSTION SYSTEM

    SciTech Connect

    Wei-Ping Pan; Kunlei Liu; John T. Riley

    2004-01-01

    The purpose of this report is to summarize the progress made on the project ''Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion (CFBC) System'' in this quarter (September-December of 2003). The main tasks in this quarter consisted of the following four parts. First, all documents for managing this project have been prepared and sent to the Office of Project Management at the US Department of Energy's (DOE's) National Energy Technology Laboratory (NETL). Second, plans for the renovation of space for a new combustion laboratory for the CFBC system has progressed smoothly. Third, considerable progress in the design of the CFBC system has been made. Finally, a lab-scale simulated fluidized-bed combustion facility has been set up in order to make some fundamental investigations of the co-firing of coal with waste materials in the next quarter. Proposed work for the next quarter has been outlined in this report.

  18. A numerical study of circulation in a coastal reef-lagoon system

    NASA Astrophysics Data System (ADS)

    Lowe, Ryan J.; Falter, James L.; Monismith, Stephen G.; Atkinson, Marlin J.

    2009-06-01

    A coupled wave-circulation numerical model was used to simulate the distribution of wave energy, as well as the circulation induced by wave breaking, wind, and tidal forcing, within a coral reef system in Kaneohe Bay, Oahu, Hawaii. Modeled wave, current, and wave setup fields were compared with field measurements collected on the forereef, reef flat, and reef channels and in the lagoon over a 4-week period. The predicted wave height transformation across the reef-lagoon system was in good agreement with field observations, using single-parameter (spatially uniform) values to describe both wave-breaking and frictional dissipation. The spatial distribution of the resulting wave setup field drove a persistent wave-driven flow across the reef flat that returned to the ocean through two deeper channels in the reef. Both the magnitude and direction of these currents were well described using a spatially uniform hydraulic roughness length scale. Notably, the model lends support to field observations that setup within the coastally bounded lagoon was a substantial fraction of the maximum setup on the reef (˜60-80%), which generated relatively weak cross-reef wave-driven flows (˜10-20 cm s-1) compared with reefs having mostly unbounded lagoons (e.g., many atolls and barrier reefs). Numerical experiments conducted using Lagrangian particle tracking revealed that residence times within Kaneohe Bay are extremely heterogeneous, typically ranging from <1 day on the reef to >1 month within its sheltered southern lagoon.

  19. Effect of ash circulation in gasification melting system on concentration and leachability of lead in melting furnace fly ash.

    PubMed

    Okada, Takashi; Suzuki, Masaru

    2013-11-30

    In some gasification-melting plants, generated melting furnace fly ash is returned back to the melting furnace for converting the ash to slag. This study investigated the effect of such ash circulation in the gasification-melting system on the concentration and leachability of lead in the melting furnace fly ash. The ash circulation in the melting process was simulated by a thermodynamic calculation, and an elemental analysis and leaching tests were performed on a melting furnace fly ash sample collected from the gasification-melting plant with the ash circulation. It was found that by the ash circulation in the gasification-melting, lead was highly concentrated in the melting furnace fly ash to the level equal to the fly ash from the ash-melting process. The thermodynamic calculation predicted that the lead volatilization by the chlorination is promoted by the ash circulation resulting in the high lead concentration. In addition, the lead extraction from the melting furnace fly ash into a NaOH solution was also enhanced by the ash circulation, and over 90% of lead in the fly ash was extracted in 5 min when using 0.5 mol l(-1) NaOH solution with L/S ratio of 10 at 100 °C. Based on the results, a combination of the gasification-melting with the ash circulation and the NaOH leaching method is proposed for the high efficient lead recovery. PMID:24121545

  20. Cold Vacuum Drying Instrument Air System Design Description (SYS 12)

    SciTech Connect

    SHAPLEY, B.J.; TRAN, Y.S.

    2000-06-05

    This system design description (SDD) addresses the instrument air (IA) system of the spent nuclear fuel (SNF). This IA system provides instrument quality air to the Cold Vacuum Drying (CVD) Facility. The IA system is a general service system that supports the operation of the heating, ventilation, and air conditioning (HVAC) system, the process equipment skids, and process instruments in the CVD Facility. The following discussion is limited to the compressor, dryer, piping, and valving that provide the IA as shown in Drawings H-1-82222, Cold Vacuum Drying Facility Mechanical Utilities Compressed & Instrument Air P&ID, and H-1.82161, Cold Vacuum Drying Facility Process Equipment Skid P&ID MCO/Cusk Interface. Figure 1-1 shows the physical location of the 1A system in the CVD Facility.

  1. An historical analysis of the California Current circulation using ROMS 4D-Var: System configuration and diagnostics

    NASA Astrophysics Data System (ADS)

    Neveu, Emilie; Moore, Andrew M.; Edwards, Christopher A.; Fiechter, Jérôme; Drake, Patrick; Crawford, William J.; Jacox, Michael G.; Nuss, Emma

    2016-03-01

    The Regional Ocean Modeling System (ROMS) 4-dimensional variational (4D-Var) data assimilation tool has been used to compute two sequences of circulation analyses for the U.S. west coast. One sequence of analyses spans the period 1980-2010 and is subject to surface forcing derived from relatively low resolution atmospheric products from the Cross-Calibrated Multi-Platform wind product (CCMP) and the European Centre for Medium Range Weather Forecasts (ECMWF) reanalysis project. The second sequence spans the shorter period 1999-2012 and is subject to forcing derived from a high resolution product from the Naval Research Laboratory Coupled Ocean Atmosphere Mesoscale Prediction System (COAMPS). The two analysis periods are divided into eight day windows, and all available satellite observations of sea surface temperature and sea surface height, as well as in situhydrographic profiles are assimilated into ROMS using 4D-Var. The performance of the system is monitored in terms of the cost function and the statistics of the innovations, and the impact of data assimilated on the circulation is assessed by comparing the posterior circulation estimates with the prior circulation and the circulation from a run of the model without data assimilation, with particular emphasis on eddy kinetic energy. This is part I of a two part series, and the circulation variability of the 4D-Var analyses will be documented in part II.

  2. DNS and measurements of scalar transfer across an air-water interface during inception and growth of Langmuir circulation

    NASA Astrophysics Data System (ADS)

    Hafsi, A.; Ma, Y.; Buckley, M.; Tejada-Martinez, A. E.; Veron, F.

    2016-05-01

    Direct numerical simulations (DNS) of an initially quiescent coupled air-water interface driven by an air flow with free stream speed of 5 m/s have been conducted and scalar transfer from the air side to the water side and subsequent vertical transport in the water column have been analysed. Two simulations are compared: one with a freely deforming interface, giving rise to gravity-capillary waves and aqueous Langmuir turbulence (LT) characterized by small-scale (centimeter-scale) Langmuir cells (LC), and the other with the interface intentionally held flat, i.e., without LC. It is concluded that LT serves to enhance vertical transport of the scalar in the water side and in the process increases scalar transfer efficiency from the air side to the water side relative to the shear-dominated turbulence in the flat interface case. Furthermore, transition to LT was observed to be accompanied by a spike in scalar flux characterized by an order of magnitude increase. These episodic flux increases, if linked to gusts and overall unsteadiness in the wind field, are expected to be an important contributor in determining the long-term average of the air-sea gas fluxes.

  3. Thermodynamic model of a thermal storage air conditioning system with dynamic behavior

    SciTech Connect

    Fleming, E; Wen, SY; Shi, L; da Silva, AK

    2013-12-01

    A thermodynamic model was developed to predict transient behavior of a thermal storage system, using phase change materials (PCMs), for a novel electric vehicle climate conditioning application. The main objectives of the paper are to consider the system's dynamic behavior, such as a dynamic air flow rate into the vehicle's cabin, and to characterize the transient heat transfer process between the thermal storage unit and the vehicle's cabin, while still maintaining accurate solution to the complex phase change heat transfer. The system studied consists of a heat transfer fluid circulating between either of the on-board hot and cold thermal storage units, which we refer to as thermal batteries, and a liquid-air heat exchanger that provides heat exchange with the incoming air to the vehicle cabin. Each thermal battery is a shell-and-tube configuration where a heat transfer fluid flows through parallel tubes, which are surrounded by PCM within a larger shell. The system model incorporates computationally inexpensive semianalytic solution to the conjugated laminar forced convection and phase change problem within the battery and accounts for airside heat exchange using the Number of Transfer Units (NTUs) method for the liquid-air heat exchanger. Using this approach, we are able to obtain an accurate solution to the complex heat transfer problem within the battery while also incorporating the impact of the airside heat transfer on the overall system performance. The implemented model was benchmarked against a numerical study for a melting process and against full system experimental data for solidification using paraffin wax as the PCM. Through modeling, we demonstrate the importance of capturing the airside heat exchange impact on system performance, and we investigate system response to dynamic operating conditions, e.g., air recirculation. (C) 2013 Elsevier Ltd. All rights reserved.

  4. Air cycle machine for an aircraft environmental control system

    NASA Technical Reports Server (NTRS)

    Decrisantis, Angelo A. (Inventor); O'Coin, James R. (Inventor); Taddey, Edmund P. (Inventor)

    2010-01-01

    An ECS system includes an ACM mounted adjacent an air-liquid heat exchanger through a diffuser that contains a diffuser plate. The diffuser plate receives airflow from the ACM which strikes the diffuser plate and flows radially outward and around the diffuser plate and into the air-liquid heat exchanger to provide minimal pressure loss and proper flow distribution into the air-liquid heat exchanger with significantly less packaging space.

  5. A model study of the seasonality of sea surface temperature and circulation in the Atlantic North-Eastern Tropical Upwelling System.

    NASA Astrophysics Data System (ADS)

    Faye, Saliou; Lazar, Alban; Sow, Bamol; Gaye, Amadou

    2015-09-01

    The climatological seasonal cycle of the sea surface temperature (SST) in the north-eastern tropical Atlantic (7-25°N, 26-12°W) is studied using a mixed layer heat budget in a regional ocean general circulation model. The region, which experiences one of the larger SST cycle in the tropics, forms the main part of the Guinea Gyre. It is characterized by a seasonally varying open ocean and coastal upwelling system, driven by the movements of the intertropical convergence zone (ITCZ). The model annual mean heat budget has two regimes schematically. South of roughly 12°N, advection of equatorial waters, mostly warm, and warming by vertical mixing, is balanced by net air-sea flux. In the rest of the domain, a cooling by vertical mixing, reinforced by advection at the coast, is balanced by the air-sea fluxes. Regarding the seasonal cycle, within a narrow continental band, in zonal mean, the SST early decrease (from September, depending on latitude, until December) is driven by upwelling dynamics off Senegal and Mauritania (15°-20°N), and instead by air-sea fluxes north and south of these latitudes. Paradoxically, the later peaks of upwelling intensity (from March to July, with increasing latitude) essentially damp the warming phase, driven by air-sea fluxes. The open ocean cycle to the west, is entirely driven by the seasonal net air-sea fluxes. The oceanic processes significantly oppose it, but for winter north of ~18°N. Vertical mixing in summer-autumn tends to cool (warm) the surface north (south) of the ITCZ, and advective cooling or warming by the geostrophic Guinea Gyre currents and the Ekman drift. This analysis supports previous findings on the importance of air-sea fluxes offshore. It mainly offers quantitative elements on the modulation of the SST seasonal cycle by the ocean circulation, and particularly by the upwelling dynamics. Keywords: SST, upwelling, circulation, heat budget, observations, modeling

  6. Position paper -- Tank ventilation system design air flow rates

    SciTech Connect

    Goolsby, G.K.

    1995-01-04

    The purpose of this paper is to document a project position on required ventilation system design air flow rates for the waste storage tanks currently being designed by project W-236A, the Multi-Function Waste Tank Facility (MWTF). The Title 1 design primary tank heat removal system consists of two systems: a primary tank vapor space ventilation system; and an annulus ventilation system. At the conclusion of Title 1 design, air flow rates for the primary and annulus ventilation systems were 960 scfm and 4,400 scfm, respectively, per tank. These design flow rates were capable of removing 1,250,000 Btu/hr from each tank. However, recently completed and ongoing studies have resulted in a design change to reduce the extreme case heat load to 700,000 Btu/hr. This revision of the extreme case heat load, coupled with results of scale model evaporative testing performed by WHC Thermal Hydraulics, allow for a reduction of the design air flow rates for both primary and annulus ventilation systems. Based on the preceding discussion, ICF Kaiser Hanford Co. concludes that the design should incorporate the following design air flow rates: Primary ventilation system--500 scfm maximum and Annulus ventilation system--1,100 scfm maximum. In addition, the minimum air flow rates in the primary and annulus ventilation systems will be investigated during Title 2 design. The results of the Title 2 investigation will determine the range of available temperature control using variable air flows to both ventilation systems.

  7. Designing Forced-Air HVAC Systems

    SciTech Connect

    2010-08-31

    This guide explains proper calculation of heating and cooling design loads for homes.used to calculated for the home using the protocols set forth in the latest edition of the Air Conditioning Contractors of America’s (ACCA) Manual J (currently the 8th edition), ASHRAE 2009 Handbook of Fundamentals, or an equivalent computation procedure.

  8. Investigations on natural circulation in reactor models and shutdown heat removal systems for LMFBRs (liquid metal fast breeder reactors)

    SciTech Connect

    Hoffmann, H.; Weinberg, D.; Marten, K. ); Ieda, Yoshiaki )

    1989-11-01

    For sodium-cooled pool-type reactors, studies have been undertaken to remove the decay heat by natural convection alone, as in the case of failure of all power supplies. For this purpose, four immersion coolers (ICs), two each installed at a 180-deg circumferential position with respect to the others, are arranged within the reactor tank. They are connected with natural-drift air coolers through independent intermediate circuits. The primary sodium in the tank as well as the secondary sodium in the intermediate loop circulate by natural convection. The general functioning of this passive shutdown decay heat removal (DHR) system is demonstrated in 1:20 and 1:5 scale test models using water as a simulant fluid for sodium. The model design is based on the thermohydraulics similarity criteria. In the RAMONA three-dimensional 1:20 scale model, experiments were carried out to clarify the steady-state in-vessel thermohydraulics for different parameter combinations (core power, radial power distribution across the core, DHR by 2 or 4 ICs in operation, above-core structure geometry and position, different IC designs). For all mentioned parameters, temperatures and their fluctuations were measured and used to indicate isotherms and lines of identical temperature fluctuations. The flow patterns were observed visually. The experiments were recalculated by an updated version of the single-phase three-dimensional thermohydraulics code COMMIX.

  9. Design of an efficient electrolyte circulation system for the lead-acid battery

    NASA Astrophysics Data System (ADS)

    Thuerk, D.

    The design and operation of an electrolyte circulation system are described. Application of lead acid batteries to electric vehicle and other repetitive deep cycle services produces a nondesirable state in the battery cells, electrolyte stratification. This stratification is the result of acid and water generation at the electrodes during cycling. With continued cycling, the extent of the stratification increases and prevents complete charging with low percentages of overcharge. Ultimately this results in extremely short life for the battery system. The stratification problem was overcome by substantially overcharging the battery. This abusive overcharge produces gassing rates sufficient to mix the electrolyte during the end portion of the charge. Overcharge, even though it is required to eliminate stratification, produces the undesirable results related to high voltage and gassing rates.

  10. Three-Dimensional Air Quality System (3D-AQS)

    NASA Astrophysics Data System (ADS)

    Engel-Cox, J.; Hoff, R.; Weber, S.; Zhang, H.; Prados, A.

    2007-12-01

    The 3-Dimensional Air Quality System (3DAQS) integrates remote sensing observations from a variety of platforms into air quality decision support systems at the U.S. Environmental Protection Agency (EPA), with a focus on particulate air pollution. The decision support systems are the Air Quality System (AQS) / AirQuest database at EPA, Infusing satellite Data into Environmental Applications (IDEA) system, the U.S. Air Quality weblog (Smog Blog) at UMBC, and the Regional East Atmospheric Lidar Mesonet (REALM). The project includes an end user advisory group with representatives from the air quality community providing ongoing feedback. The 3DAQS data sets are UMBC ground based LIDAR, and NASA and NOAA satellite data from MODIS, OMI, AIRS, CALIPSO, MISR, and GASP. Based on end user input, we are co-locating these measurements to the EPA's ground-based air pollution monitors as well as re-gridding to the Community Multiscale Air Quality (CMAQ) model grid. These data provide forecasters and the scientific community with a tool for assessment, analysis, and forecasting of U.S Air Quality. The third dimension and the ability to analyze the vertical transport of particulate pollution are provided by aerosol extinction profiles from the UMBC LIDAR and CALIPSO. We present examples of a 3D visualization tool we are developing to facilitate use of this data. We also present two specific applications of 3D-AQS data. The first is comparisons between PM2.5 monitor data and remote sensing aerosol optical depth (AOD) data, which show moderate agreement but variation with EPA region. The second is a case study for Baltimore, Maryland, as an example of 3D-analysis for a metropolitan area. In that case, some improvement is found in the PM2.5 /LIDAR correlations when using vertical aerosol information to calculate an AOD below the boundary layer.

  11. Numerical Analysis on Air Ingress Behavior in GTHTR300-Cogeneration System

    NASA Astrophysics Data System (ADS)

    Takeda, Tetsuaki; Yan, Xing; Kunitomi, Kazuhiko

    The objective of this study is to clarify safety characteristics of a High Temperature Gas-Cooled Reactor (HTGR) for the pipe rupture accident. Japan Atomic Energy Agency (JAEA) has been developing the analytical code for the safety characteristics of the HTGR and carrying out design study of the gas turbine high temperature reactor of 300MWe nominal-capacity for hydrogen production, the GTHTR300C (Gas Turbine High Temperature Reactor 300 for Cogeneration). A numerical analysis of heat and mass transfer fluid flow with multi-component gas mixture has been performed to obtain the variation of the density of the gas mixture, and the onset time of natural circulation of air. From the results obtained in this analysis, it was found that the duration time of the air ingress by molecular diffusion would increase due to the existence of the recuperator in the GTHTR300C system.

  12. ESTABLISHMENT OF AN ENVIRONMENTAL CONTROL TECHNOLOGY LABORATORY WITH A CIRCULATING FLUIDIZED-BED COMBUSTION SYSTEM

    SciTech Connect

    Wei-Ping Pan; Andy Wu; John T. Riley

    2005-04-30

    This report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period January 1, 2005 through March 31, 2005. The following tasks have been completed. First, the renovation of the new Combustion Laboratory is nearly complete, and the construction of the Circulating Fluidized-Bed (CFB) Combustor Building is in the final stages. Second, the fabrication and manufacture of the CFBC Facility is being discussed with a potential contractor. Discussions with potential contactor regarding the availability of materials and current machining capabilities have resulted in the modification of the original designs. The selection of the fabrication contractor for the CFBC Facility is expected during the next quarter. Third, co-firing experiments conducted with coal and chicken waste have been initiated in the laboratory-scale simulated fluidized-bed facility. The experimental results from this study are presented in this report. Finally, the proposed work for the next quarter is described in this report.

  13. The density-driven circulation of the coastal hypersaline system of the Great Barrier Reef, Australia.

    PubMed

    Salamena, Gerry G; Martins, Flávio; Ridd, Peter V

    2016-04-15

    The coastal hypersaline system of the Great Barrier Reef (GBR) in the dry season, was investigated for the first time using a 3D baroclinic model. In the shallow coastal embayments, salinity increases to c.a. 1‰ above typical offshore salinity (~35.4‰). This salinity increase is due to high evaporation rates and negligible freshwater input. The hypersalinity drifts longshore north-westward due to south-easterly trade winds and may eventually pass capes or headlands, e.g. Cape Cleveland, where the water is considerably deeper (c.a. 15m). Here, a pronounced thermohaline circulation is predicted to occur which flushes the hypersalinity offshore at velocities of up to 0.08m/s. Flushing time of the coastal embayments is around 2-3weeks. During the dry season early summer, the thermohaline circulation reduces and therefore, flushing times are predicted to be slight longer due to the reduced onshore-offshore density gradient compared to that in the dry season winter period. PMID:26880128

  14. In situ vertical circulation column: Containment system for small-scale DNAPL field experiments

    SciTech Connect

    Sorel, D.; Cherry, J.A.; Lesage, S.

    1998-12-31

    The in situ vertical circulation column (ISVCC) is a cylindrical containment system consisting of an instrumented steel cylinder used for experimental ground water studies in sandy aquifers. Vertical flow is imposed inside the ISVCC. Although vertical wells are an option, the ISVCC installed in the Borden Aquifer is instrumented with horizontal wells and monitoring ports to avoid creating vertical preferential flow paths. Pure phase DNAPL (tetrachloroethene and 1,1,1-trichloroethane) was slowly pumped into two ports in the center of the column. Following this DNAPL injection, an aqueous solution of vitamin B{sub 12} and reduced titanium was circulated through the column to promote degradation of the solvents. Processes observed in the ISVCC included DNAPL distribution, dissolution, and degradation, and geochemical evolution of the aquifer. The ISVCC provides a convenient means for testing in situ technologies in the experimental stage or for selection of proven technologies to find the most effective at a specific site. It is inexpensive, easy to install, and maximizes control over flow distribution in a heterogeneous aquifer. Its application will be restricted where low hydraulic conductivity beds are present in the aquifer.

  15. Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion System

    SciTech Connect

    Wei-Ping Pan; Songgeng Li; John T. Riley

    2005-10-01

    This report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period July 1, 2005 through September 30, 2005. The following tasks have been completed. First, the construction of the Circulating Fluidized-Bed (CFB) Combustor Building was completed. The experimental facilities have been moved into the CFB Combustor Building. Second, the fabrication and manufacture of the CFBC Facility is in the final stage and is expected to be completed before November 30, 2005. Third, the drop tube reactor has been remodeled and installed to meet the specific requirements for the investigation of the effects of flue gas composition on mercury oxidation. This study will start in the next quarter. Fourth, the effect of sulfur dioxide on molecular chlorine via the Deacon reaction was investigated. The experimental results from this study are presented in this report. Finally, the proposed work for the next quarter is described in this report.

  16. Development of a multiple-microhole aerostatic air bearing system

    NASA Astrophysics Data System (ADS)

    Fan, Kuang-Chao; Ho, Chi-Chung; Mou, Jong-I.

    2002-09-01

    New types of aerostatic air bearing and linear slide systems have been developed. The prototype of a multiple-microhole, instead of a porous-type, air bearing was developed and the surface roughness was improved by finished process. Instead of the conventional drilling process, the air bearing pads were fabricated by using microfabrication technology in this research. The spectral element method was employed to simulate the pressure distribution of air bearing and a comparison was made with experimental results. A granite straight edge was used as linear slide to guide the moving table that was supported by the developed air bearing system. A laser interferometer system was used to assess the performance of the stage.

  17. Interactions between Oceanic Saharan Air Layer and African Easterly Jet- African Easterly Waves System

    NASA Astrophysics Data System (ADS)

    Hosseinpour, F.; Wilcox, E. M.

    2013-12-01

    Aerosols have robust influences on multi-scale climatic systems and variability. Non-linear aerosol-cloud-climate interactions depend on many parameters such as aerosol features, regional atmospheric dynamics and variability. Although there are remarkable modeling studies indicating that aerosols induce robust modifications in cloud properties, circulations and the hydrological cycle, many of the physical and dynamical processes involving in these complex interactions between aerosols and Earth's system are still poorly understood. Better understanding the contribution of aerosols with atmospheric phenomena and their transient changes are crucial for efforts to evaluate climate predictions by next generation climate models. This study provides strong evidence of mechanistic relationships between perturbations of the oceanic Saharan air layer (OSAL) and anomalies of atmospheric circulations over the eastern tropical Atlantic/Africa. These relationships are characterized using an ensemble of daily datasets including the Modern-Era Retrospective Analysis for Research and Applications (MERRA), the Moderate Resolution Imaging Spectro-radiometer (MODIS), and the Sea-viewing Wide Field-of-View Sensor (SeaWIFS) for the boreal summer season. The study is motivated by previous results suggesting that oceanic dust-induced large-scale to meso-scale climatic adjustments. Our hypothesis is that perturbations in OSAL significantly interact with regional climate variability through African Easterly Jet- African Easterly Waves (AEJ-AEW) system. Passive/ active phases of AEWs in the northern and southern-track wave packets are associated with dipole patterns of thermal/dynamical anomalies correlated with perturbations of aerosol optical depth (AOD) in OSAL. Enhanced (suppressed) dust AOD in OSAL are significantly correlated with convective re-circulation within subsidence region of Hadley cell as well as robust mid-level dipole vorticity disturbances downstream of the AEJ core

  18. Attenuating noise generated by variable-air-volume systems

    SciTech Connect

    Stokes, R.

    1985-03-01

    Sound generated by HVAC systems is receiving much attention because they are generally the principal contributors to room background sound levels that may become irritating and distracting noise if not controlled. This article discusses the creation of a quiet working environment through an analysis of the three traditional sound paths associated with air handling systems: radiated sound, inlet or return air sound and discharge sound. Recommended standards are given as well as a brief overview of materials used to fabricate HVAC system components.

  19. COMMUNITY MULTISCALE AIR QUALITY MODELING SYSTEM (ONE ATMOSPHERE)

    EPA Science Inventory

    This task supports ORD's strategy by providing responsive technical support of EPA's mission and provides credible state of the art air quality models and guidance. This research effort is to develop and improve the Community Multiscale Air Quality (CMAQ) modeling system, a mu...

  20. TAPAS: Topographic air pollution analysis system. Technical note

    SciTech Connect

    Riebau, A.; Fox, D.A.; Marlatt, W.E.

    1987-05-01

    This report presents information on the Topographic Air Pollution Analysis System (TAPAS), currentlu under development by the Bureau of Land Management, U.S. Forest Service, and Colorado State University. TAPAS is designed to provide resource managers with air quality dispersion modeling tools to accomplish more efficient and economical air resource studies. TAPAS consists of a group of interactive air quality computer models that can be operated independently, or in combination for more detailed applications. TAPAS applications include support for resource management plans, environmental impact statements, siting of remote automatic weather stations, PSD permit evaluations, and smoke management for prescribed burns.

  1. Sensitive cytometry based system for enumeration, capture and analysis of gene mutations of circulating tumor cells.

    PubMed

    Sawada, Takeshi; Watanabe, Masaru; Fujimura, Yuu; Yagishita, Shigehiro; Shimoyama, Tatsu; Maeda, Yoshiharu; Kanda, Shintaro; Yunokawa, Mayu; Tamura, Kenji; Tamura, Tomohide; Minami, Hironobu; Koh, Yasuhiro; Koizumi, Fumiaki

    2016-03-01

    Methods for the enumeration and molecular characterization of circulating tumor cells (CTC) have been actively investigated. However, such methods are still technically challenging. We have developed a novel epithelial cell adhesion molecule independent CTC enumeration system integrated with a sorting system using a microfluidics chip. We compared the number of CTC detected using our system with those detected using the CellSearch system in 46 patients with various cancers. We also evaluated epidermal growth factor receptor (EGFR) and PIK3CA mutations of captured CTC in a study of 4 lung cancer and 4 breast cancer patients. The percentage of samples with detected CTC was significantly higher with our system (65.2%) than with CellSearch (28.3%). The number of detected CTC per patient using our system was statistically higher than that using CellSearch (median 5, 0; P = 0.000172, Wilcoxon test). In the mutation analysis study, the number of detected CTC per patient was low (median for lung, 4.5; median for breast, 5.5); however, it was easy to detect EGFR and PIK3CA mutations in the CTC of 2 lung and 1 breast cancer patient, respectively, using a commercially available kit. Our system is more sensitive than CellSearch in CTC enumeration of various cancers and is also capable of detecting EGFR and PIK3CA mutations in the CTC of lung and breast cancer patients, respectively. PMID:26708016

  2. Test results of lithium pool-air reaction suppression systems

    SciTech Connect

    Jeppson, D.W.

    1987-02-01

    Engineered reaction suppression systems were demonstrated to be effective in suppressing lithium pool-air reactions for lithium quantities up to 100 kg. Lithium pool-air reaction suppression system tests were conducted to evaluate suppression system effectiveness for potential use in fusion facilities in mitigating consequences of postulated lithium spills. Small-scale perforated and sacrificial cover plate suppression systems with delayed inert gas purging proved effective in controlling the lithium-air interaction for lithium quantities near 15 kg at initial temperatures up to 450/sup 0/C. A large-scale suppression system with a sacrificial cover, a diverter plate, an inert gas atmosphere, and remotely retrievable catch pans proved effective in controlling lithium pool-air interaction for a 100-kg lithium discharge at an initial temperature of 550/sup 0/C. This suppression system limited the maximum pool temperature to about 600/sup 0/C less than that expected for a similar lithium pool-air reaction without a suppression system. Lithium aerosol release from this large-scale suppression system was a factor of about 10,000 less than that expected for a lithium pool-air reaction with no suppression system. Remote retrieval techniques for lithium cleanup, such as (1) in-place lithium siphoning and overhead crane dismantling, and (2) lithium catch pan removal by use of an overhead crane, were demonstrated as part of this large-scale test.

  3. An investigation of natural circulation decay heat removal from an SP-100 reactor system for a lunar outpost

    NASA Astrophysics Data System (ADS)

    El-Genk, Mohamed S.; Xue, Huimin

    1992-01-01

    A transient thermal-hydraulic model of the decay heat removal from a 550 kWe SP-100 power system for a lunar outpost has been developed and used to assess the coolability of the system by natural circulation after reactor shutdown. Results show that natural circulation of lithium coolant is sufficient to ensure coolability of the reactor core after shutdown. Further improvement of the decay heat removal capability of the system could be achieved by increasing the dimensions of the decay heat exchanger duct. A radiator area of 10-15 m2 would be sufficient to maintain the reactor core safely coolable by natural circulation after shutdown. Increasing the area of the decay heat rejection radiator or the diameter of the heat pipes in the guard vessel wall insignificantly affects the decay heat removal capability of the system.

  4. Characterization of urban air quality using GIS as a management system.

    PubMed

    Puliafito, E; Guevara, M; Puliafito, C

    2003-01-01

    Keeping the air quality acceptable has become an important task for decision makers as well as for non-governmental organizations. Particulate and gaseous emissions of pollutant from industries and auto-exhausts are responsible for rising discomfort, increasing airway diseases, decreasing productivity and the deterioration of artistic and cultural patrimony in urban centers. A model to determine the air quality in urban areas using a geographical information system will be presented here. This system permits the integration, handling, analysis and simulation of spatial and temporal data of the ambient concentration of the main pollutant. It allows the users to characterize and recognize areas with a potential increase or improvement in its air pollution situation. It is also possible to compute past or present conditions by changing basic input information as traffic flow, or stack emission rates. Additionally the model may be used to test the compliance of local standard air quality, to study the environmental impact of new industries or to determine the changes in the conditions when the vehicle circulation is increased. PMID:12535599

  5. The Adverse Effects of Air Pollution on the Nervous System

    PubMed Central

    Genc, Sermin; Zadeoglulari, Zeynep; Fuss, Stefan H.; Genc, Kursad

    2012-01-01

    Exposure to ambient air pollution is a serious and common public health concern associated with growing morbidity and mortality worldwide. In the last decades, the adverse effects of air pollution on the pulmonary and cardiovascular systems have been well established in a series of major epidemiological and observational studies. In the recent past, air pollution has also been associated with diseases of the central nervous system (CNS), including stroke, Alzheimer's disease, Parkinson's disease, and neurodevelopmental disorders. It has been demonstrated that various components of air pollution, such as nanosized particles, can easily translocate to the CNS where they can activate innate immune responses. Furthermore, systemic inflammation arising from the pulmonary or cardiovascular system can affect CNS health. Despite intense studies on the health effects of ambient air pollution, the underlying molecular mechanisms of susceptibility and disease remain largely elusive. However, emerging evidence suggests that air pollution-induced neuroinflammation, oxidative stress, microglial activation, cerebrovascular dysfunction, and alterations in the blood-brain barrier contribute to CNS pathology. A better understanding of the mediators and mechanisms will enable the development of new strategies to protect individuals at risk and to reduce detrimental effects of air pollution on the nervous system and mental health. PMID:22523490

  6. Combined air stripper/membrane vapor separation systems. Final report

    SciTech Connect

    Wijmans, J.G.; Baker, R.W.; Kamaruddin, H.D.; Kaschemekat, J.; Olsen, R.P.; Rose, M.E.; Segelke, S.V.

    1992-11-01

    Air stripping is an economical and efficient method of removing dissolved volatile organic compounds (VOCs) from contaminated groundwater. Air strippers, however, produce a vent air stream, which must meet the local air quality limits. If the VOC content exceeds the limits, direct discharge is not possible; therefore, a carbon adsorption VOC capture system is used to treat the vent air. This treatment step adds a cost of at least $50/lb of VOC captured. In this program, a combined air stripper/membrane vapor separation system was constructed and demonstrated in the laboratory. The membrane system captures VOCs from the stripper vent stream at a projected cost of $15/lb VOC for a water VOC content of 5 ppmw, and $75/lb VOC for a water VOC content of 1 ppmw. The VOCs are recovered as a small, concentrated liquid fraction for disposal or solvent recycling. The concept has been demonstrated in experiments with a system capable of handling up to 150,000 gpd of water. The existing demonstration system is available for field tests at a DOE facility or remediation site. Replacement of the current short air stripping tower (effective height 3 m) with a taller tower is recommended to improve VOC removal.

  7. A combination of air and fluid drilling technique for zones of lost circulation in the Black Warrior Basin

    SciTech Connect

    Graves, S.L.; Niederhofer, J.D.; Beavers, W.M.

    1986-02-01

    Structural geologic information available for the coal-bearing formations in the Black Warrior basin documents the occurrence of numerous fault and fracture zones. A combination air/fluid drilling technique may be advantageous to coalbed-methane operations in this and other areas with similar hydrologic and geologic conditions. The authors successfully used this technique recently on coalbed-methane wells in Tuscaloosa County, AL.

  8. [The seasonality of population contacts with medical organizations because of diseases of blood circulation system].

    PubMed

    Maksimova, T M; Belov, V B; Saurina, O S; Lushkina, N P

    2014-01-01

    The comprehension of significance of health impacting of such unchangeable factors as climate and atmospheric phenomenons allows carrying out measures to decrease their negative effect on human health. The data of study implemented in Orel in 2009-2012 made it possible to distribute the annual totality of diagnoses registered in medical organizations on the groups of diseases of blood circulation system according ICD-10. The analysis established lower level of visits to physician because of these conditions both in ambulatory polyclinic institutions and hospital during summer period. The corresponding percentage came to 21.9% out of all diagnoses in polyclinic and 22% in hospital at highest levels of 27% in summer period. Therefore, in development of population contacts with medical organizations an expressed seasonality is detected. This occurrence is possibly related to characteristics of development of pathological conditions in different seasons. PMID:25373289

  9. Acute Changes in Peripheral Vascular Tonus and Systemic Circulation during Static Stretching.

    PubMed

    Inami, Takayuki; Baba, Reizo; Nakagaki, Akemi; Shimizu, Takuya

    2015-01-01

    This study aimed to investigate the acute effect of static stretching (SS) on peripheral vascular tonus and to clarify the effect of SS on systemic circulation. Twenty healthy young male volunteers performed a 1-min SS motion of the right triceps surae muscle, repeated five times. The peripheral vascular tonus (|d/a| ratio) was obtained using second derivatives of the photoplethysmogram readings before, during, and after SS. Heart rate and blood pressure (BP) were also measured. The |d/a| ratio and BP were transiently, but significantly, elevated during SS and returned to baseline immediately after SS. Furthermore, we observed a significant correlation between the amount of change in the |d/a| ratio and the ankle range of motion during SS (r = 0.793 to 0.832, P = 0.01). These responses may be caused by mechanical stress during SS. PMID:25833293

  10. Variational data assimilation system with nesting model for high resolution ocean circulation

    NASA Astrophysics Data System (ADS)

    Ishikawa, Yoichi; In, Teiji; Nakada, Satoshi; Nishina, Kei; Igarashi, Hiromichi; Hiyoshi, Yoshimasa; Sasaki, Yuji; Wakamatsu, Tsuyoshi; Awaji, Toshiyuki

    2015-10-01

    To obtain the high-resolution analysis fields for ocean circulation, a new incremental approach is developed using a four-dimensional variational data assimilation system with nesting models. The results show that there are substantial biases when using a classical method combined with data assimilation and downscaling, caused by different dynamics resulting from the different resolutions of the models used within the nesting models. However, a remarkable reduction in biases of the low-resolution model relative to the high-resolution model was observed using our new approach in narrow strait regions, such as the Tsushima and Tsugaru straits, where the difference in the dynamics represented by the high- and low-resolution models is substantial. In addition, error reductions are demonstrated in the downstream region of these narrow channels associated with the propagation of information through the model dynamics.

  11. Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion System

    SciTech Connect

    Wei-Ping Pan; Songgeng Li

    2006-01-01

    This report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the period October 1, 2005 through December 31, 2005. Work was performed on the following activities. First, the fabrication and manufacture of the CFBC Facility is nearly completed. The erection of the CFBC facility is expected to start in the second week of February, 2006. Second, effect of flue gas components on mercury oxidation was investigated in a drop tube reactor. As a first step, experiment for mercury oxidation by chlorine was investigated. The experimental results from this study are presented in this report. Finally, the proposed work for the next quarter is described in this report.

  12. Prototype air cleaning system for a firing range

    SciTech Connect

    Glissmeyer, J.A.; Mishima, J.; Bamberger, J.A.

    1985-01-01

    This report recommends air cleaning system components for the US Army Ballistics Research Laboratory's new large-caliber firing range, which is used for testing depleted uranium (DU) penetrators. The new air cleaning system has lower operating costs during the life of the system compared to that anticipated for the existing air cleaning system. The existing system consists of three banks of filters in series; the first two banks are prefilters and the last are high-efficiency particulate air (HEPA) filters. The principal disadvantage of the existing filters is that they are not cleanable and reusable. Pacific Northwest Laboratory focused the search for alternate air cleaning equipment on devices that do not employ liquids as part of the particle collection mechanism. Collected dry particles were assumed preferable to a liquid waste stream. The dry particle collection devices identified included electrostatic precipitators; inertial separators using turning vanes or cyclones; and several devices employing a filter medium such as baghouses, cartridge houses, cleanable filters, and noncleanable filters similar to those in the existing system. The economics of practical air cleaning systems employing the dry particle collection devices were evaluated in 294 different combinations. 7 references, 21 figures, 78 tables.

  13. View of building 11070 showing vents and forced air system ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of building 11070 showing vents and forced air system on east side, looking southwest. - Naval Ordnance Test Station Inyokern, China Lake Pilot Plant, Maintenance Shop, C Street, China Lake, Kern County, CA

  14. 7. Northeast view interior, air traffic control and landing system ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    7. Northeast view interior, air traffic control and landing system room 25 - Selfridge Field, Building No. 1050, Northwest corner of Doolittle Avenue & D Street; Harrison Township, Mount Clemens, Macomb County, MI

  15. Design strategies and applications of circulating cell-mediated drug delivery systems

    PubMed Central

    Kim, Gloria B.; Dong, Cheng; Yang, Jian

    2015-01-01

    Drug delivery systems, particularly nanomaterial-based drug delivery systems, possess a tremendous amount of potential to improve diagnostic and therapeutic effects of drugs. Controlled drug delivery targeted to a specific disease is designed to significantly improve the pharmaceutical effects of drugs and reduce their side effects. Unfortunately, only a few targeted drug delivery systems can achieve high targeting efficiency after intravenous injection, even with the development of numerous surface markers and targeting modalities. Thus, alternative drug and nanomedicine targeting approaches are desired. Circulating cells, such as erythrocytes, leukocytes, and stem cells, present innate disease sensing and homing properties. Hence, using living cells as drug delivery carriers has gained increasing interest in recent years. This review highlights the recent advances in the design of cell-mediated drug delivery systems and targeting mechanisms. The approaches of drug encapsulation/conjugation to cell-carriers, cell-mediated targeting mechanisms, and the methods of controlled drug release are elaborated here. Cell-based “live” targeting and delivery could be used to facilitate a more specific, robust, and smart payload distribution for the next-generation drug delivery systems. PMID:25984572

  16. Numerical 3D models support two distinct hydrothermal circulation systems at fast spreading ridges

    NASA Astrophysics Data System (ADS)

    Hasenclever, Jörg; Theissen-Krah, Sonja; Rüpke, Lars

    2013-04-01

    We present 3D numerical calculations of hydrothermal fluid flow at fast spreading ridges. The setup of the 3D models is based our previous 2D studies, in which we have coupled numerical models for crustal accretion and hydrothermal fluid flow. One result of these calculations is a crustal permeability field that leads to a thermal structure in the crust that matches seismic tomography data of the East Pacific Rise (EPR). The 1000°C isotherm obtained from the 2D results is now used as the lower boundary of the 3D model domain, while the upper boundary is a smoothed bathymetry of the EPR. The same permeability field as in the 2D models is used, with the highest permeability at the ridge axis and a decrease with both depth and distance to the ridge. Permeability is also reduced linearly between 600 and 1000°C. Using a newly developed parallel finite element code written in Matlab that solves for thermal evolution, fluid pressure and Darcy flow, we simulate the flow patterns of hydrothermal circulation in a segment of 5000m along-axis, 10000m across-axis and up to 5000m depth. We observe two distinct hydrothermal circulation systems: An on-axis system forming a series of vents with a spacing ranging from 100 to 500m that is recharged by nearby (100-200m) downflows on both sides of the ridge axis. Simultaneously a second system with much broader extensions both laterally and vertically exists off-axis. It is recharged by fluids intruding between 1500m to 5000m off-axis and sampling both upper and lower crust. These fluids are channeled in the deepest and hottest regions with high permeability and migrate up-slope following the 600°C isotherm until reaching the edge of the melt lens. Depending on the width of the melt lens these off-axis fluids either merge with the on-axis hydrothermal system or form separate vents. We observe separate off-axis vent fields if the magma lens half-width exceeds 1000m and confluence of both systems for half-widths smaller than 500m. For

  17. On-Line Remote Catalog Access and Circulation Control System. Part I: Functional Specifications. Part II: User's Manual.

    ERIC Educational Resources Information Center

    International Business Machines Corp., Gaithersburg, MD. Data Processing Div.

    The Ohio State University Libraries On-line Remote Catalog Access and Circulation Control System (LCS) began on-line operations with the conversion of one department library in November 1970. By December all 26 libraries had been converted to the automated system and LCS was fully operational one month ahead of schedule. LCS is designed as a…

  18. The ALIS Online Circulation Control System of Danmarks Tekniske Bibliotek. Stockholm Papers in Library and Information Science.

    ERIC Educational Resources Information Center

    Barnholdt, B.; Hojer-Pedersen, N.

    This report on the Automated Library Information Control System (ALIS) of the National Technological Library of Denmark focuses on the circulation control functions of the integrated, distributed processing system, which also functions as an online catalog for a bibliographic database of approximately 120,000 records with library location codes.…

  19. 9. Water Purification System and Instrument Air Receiver Tank, view ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Water Purification System and Instrument Air Receiver Tank, view to the south. The water purification system is visible in the right foreground of the photograph and the instrument air receiver tank is visible in the right background of the photograph. - Washington Water Power Clark Fork River Cabinet Gorge Hydroelectric Development, Powerhouse, North Bank of Clark Fork River at Cabinet Gorge, Cabinet, Bonner County, ID

  20. A reliability study of instrument air system design options

    SciTech Connect

    Guey, C.; Skelley, W. ); Gilbert, L.; Anoba, R.; Stutzke, M. )

    1992-01-01

    The existing instrument air system at Turkey Point station uses mobile diesel-driven air compressors. Although these diesel compressors have performed their function well, they represent a maintenance and financial burden requiring engineering review. An engineering evaluation is ongoing to develop several feasible conceptual design options to upgrade the instrument air systems. This phase-1 study was performed to assess the reliability of the various proposed design options. A phase-2 study will be conducted later to determine the core damage frequency for a selected option.

  1. Performance and stability analysis of gas-injection enhanced natural circulation in heavy-liquid-metal-cooled systems

    NASA Astrophysics Data System (ADS)

    Yoo, Yeon-Jong

    The purpose of this study is to investigate the performance and stability of the gas-injection enhanced natural circulation in heavy-liquid-metal-cooled systems. The target system is STAR-LM, which is a 400-MWt-class advanced lead-cooled fast reactor under development by Argonne National Laboratory and Oregon State University. The primary loop of STAR-LM relies on natural circulation to eliminate main circulation pumps for enhancement of passive safety. To significantly increase the natural circulation flow rate for the incorporation of potential future power uprates, the injection of noncondensable gas into the coolant above the core is envisioned ("gas lift pump"). Reliance upon gas-injection enhanced natural circulation raises the concern of flow instability due to the relatively high temperature change in the reactor core and the two-phase flow condition in the riser. For this study, the one-dimensional flow field equations were applied to each flow section and the mixture models of two-phase flow, i.e., both the homogeneous and drift-flux equilibrium models were used in the two-phase region of the riser. For the stability analysis, the linear perturbation technique based on the frequency-domain approach was used by employing the Nyquist stability criterion and a numerical root search method. It has been shown that the thermal power of the STAR-LM natural circulation system could be increased from 400 up to 1152 MW with gas injection under the limiting void fraction of 0.30 and limiting coolant velocity of 2.0 m/s from the steady-state performance analysis. As the result of the linear stability analysis, it has turned out that the STAR-LM natural circulation system would be stable even with gas injection. In addition, through the parametric study, it has been found that the thermal inertia effects of solid structures such as fuel rod and heat exchanger tube should be considered in the stability analysis model. The results of this study will be a part of the

  2. Ocean circulation during the Middle Jurassic in the presence/absence of a circumglobal current system

    NASA Astrophysics Data System (ADS)

    Brunetti, Maura; Baumgartner, Peter O.; Vérard, Christian; Hochard, Cyril

    2013-04-01

    Pangea breakup started in the Early Jurassic by the formation of the Central Atlantic and its connection with the Neotethys. By the Middle Jurassic, rifting between North and South America may have opened a first marine proto-Caribbean passage. However, the oldest known proto-Caribbean ocean crust is only of early Late Jurassic age. Based on earlier plate tectonic reconstructions featuring a wide open proto-Caribbean seaway, the existence of a circumglobal equatorial current system has been suggested by many authors as a possible physical mechanism for increasing the poleward ocean heat transport, and hence, producing the reduced meridional temperature gradient documented for the Middle Jurassic. Models with increased atmospheric pCO2, estimated to be between 1 and 7 times pre-industrial values in the Jurassic, generate elevated temperatures both in the tropics and in polar regions, but do not reduce the meridional gradient. A different mechanism needs to be considered in order to reproduce such reduced meridional temperature gradient. A possibility is enhanced poleward heat transport through the ocean. However, this hypothesis has been questioned by Late Jurassic simulations with a specified, reduced meridional gradient, which showed that the required ocean heat transport is much smaller than in present-day simulations. We investigate the critical role of a Tethyan-Atlantic-proto-Caribbean passage with respect to the Middle Jurassic ocean circulation by means of coupled ocean/sea-ice numerical models based on detailed plate reconstructions of the oceanic realms. We perform numerical experiments with an open/closed western boundary of the proto-Caribbean basin and we discuss the water properties, the gyre transport and the overturning meridional circulation for these different bathymetric configurations. For an open western boundary, we find a trans-Pangean circumglobal current of the order of 1 Sv, that flows in the upper 300 m along the northern margin of the

  3. a 24/7 High Resolution Storm Surge, Inundation and Circulation Forecasting System for Florida Coast

    NASA Astrophysics Data System (ADS)

    Paramygin, V.; Davis, J. R.; Sheng, Y.

    2012-12-01

    A 24/7 forecasting system for Florida is needed because of the high risk of tropical storm surge-induced coastal inundation and damage, and the need to support operational management of water resources, utility infrastructures, and fishery resources. With the anticipated climate change impacts, including sea level rise, coastal areas are facing the challenges of increasing inundation risk and increasing population. Accurate 24/7 forecasting of water level, inundation, and circulation will significantly enhance the sustainability of coastal communities and environments. Supported by the Southeast Coastal Ocean Observing Regional Association (SECOORA) through NOAA IOOS, a 24/7 high-resolution forecasting system for storm surge, coastal inundation, and baroclinic circulation is being developed for Florida using CH3D Storm Surge Modeling System (CH3D-SSMS). CH3D-SSMS is based on the CH3D hydrodynamic model coupled to a coastal wave model SWAN and basin scale surge and wave models. CH3D-SSMS has been verified with surge, wave, and circulation data from several recent hurricanes in the U.S.: Isabel (2003); Charley, Dennis and Ivan (2004); Katrina and Wilma (2005); Ike and Fay (2008); and Irene (2011), as well as typhoons in the Pacific: Fanapi (2010) and Nanmadol (2011). The effects of tropical cyclones on flow and salinity distribution in estuarine and coastal waters has been simulated for Apalachicola Bay as well as Guana-Tolomato-Matanzas Estuary using CH3D-SSMS. The system successfully reproduced different physical phenomena including large waves during Ivan that damaged I-10 Bridges, a large alongshore wave and coastal flooding during Wilma, salinity drop during Fay, and flooding in Taiwan as a result of combined surge and rain effect during Fanapi. The system uses 4 domains that cover entire Florida coastline: West, which covers the Florida panhandle and Tampa Bay; Southwest spans from Florida Keys to Charlotte Harbor; Southeast, covering Biscayne Bay and Miami and

  4. Transformations in Air Transportation Systems For the 21st Century

    NASA Technical Reports Server (NTRS)

    Holmes, Bruce J.

    2004-01-01

    Globally, our transportation systems face increasingly discomforting realities: certain of the legacy air and ground infrastructures of the 20th century will not satisfy our 21st century mobility needs. The consequence of inaction is diminished quality of life and economic opportunity for those nations unable to transform from the 20th to 21st century systems. Clearly, new thinking is required regarding business models that cater to consumers value of time, airspace architectures that enable those new business models, and technology strategies for innovating at the system-of-networks level. This lecture proposes a structured way of thinking about transformation from the legacy systems of the 20th century toward new systems for the 21st century. The comparison and contrast between the legacy systems of the 20th century and the transformed systems of the 21st century provides insights into the structure of transformation of air transportation. Where the legacy systems tend to be analog (versus digital), centralized (versus distributed), and scheduled (versus on-demand) for example, transformed 21st century systems become capable of scalability through technological, business, and policy innovations. Where air mobility in our legacy systems of the 20th century brought economic opportunity and quality of life to large service markets, transformed air mobility of the 21st century becomes more equitable available to ever-thinner and widely distributed populations. Several technological developments in the traditional aircraft disciplines as well as in communication, navigation, surveillance and information systems create new foundations for 21st thinking about air transportation. One of the technological developments of importance arises from complexity science and modern network theory. Scale-free (i.e., scalable) networks represent a promising concept space for modeling airspace system architectures, and for assessing network performance in terms of robustness

  5. Investigation on wind energy-compressed air power system.

    PubMed

    Jia, Guang-Zheng; Wang, Xuan-Yin; Wu, Gen-Mao

    2004-03-01

    Wind energy is a pollution free and renewable resource widely distributed over China. Aimed at protecting the environment and enlarging application of wind energy, a new approach to application of wind energy by using compressed air power to some extent instead of electricity put forward. This includes: explaining the working principles and characteristics of the wind energy-compressed air power system; discussing the compatibility of wind energy and compressor capacity; presenting the theoretical model and computational simulation of the system. The obtained compressor capacity vs wind power relationship in certain wind velocity range can be helpful in the designing of the wind power-compressed air system. Results of investigations on the application of high-pressure compressed air for pressure reduction led to conclusion that pressure reduction with expander is better than the throttle regulator in energy saving. PMID:14727304

  6. Future Air Transportation System Breakout Series Report

    NASA Technical Reports Server (NTRS)

    2001-01-01

    This presentation discusses: AvSTAR Future System Effort Critically important; Investment in the future; Need to follow a systems engineering process; and Efforts need to be worked in worldwide context

  7. Autonomous Integrated Receive System (AIRS) requirements definition. Volume 4: Functional specification for the prototype Automated Integrated Receive System (AIRS)

    NASA Technical Reports Server (NTRS)

    Chie, C. M.

    1984-01-01

    The functional requirements for the performance, design, and testing for the prototype Automated Integrated Receive System (AIRS) to be demonstrated for the TDRSS S-Band Single Access Return Link are presented.

  8. Simulation of Lake Victoria Circulation Patterns Using the Regional Ocean Modeling System (ROMS).

    PubMed

    Nyamweya, Chrispine; Desjardins, Christopher; Sigurdsson, Sven; Tomasson, Tumi; Taabu-Munyaho, Anthony; Sitoki, Lewis; Stefansson, Gunnar

    2016-01-01

    Lake Victoria provides important ecosystem services including transport, water for domestic and industrial uses and fisheries to about 33 million inhabitants in three East African countries. The lake plays an important role in modulating regional climate. Its thermodynamics and hydrodynamics are also influenced by prevailing climatic and weather conditions on diel, seasonal and annual scales. However, information on water temperature and circulation in the lake is limited in space and time. We use a Regional Oceanographic Model System (ROMS) to simulate these processes from 1st January 2000 to 31st December 2014. The model is based on real bathymetry, river runoff and atmospheric forcing data using the bulk flux algorithm. Simulations show that the water column exhibits annual cycles of thermo-stratification (September-May) and mixing (June-August). Surface water currents take different patterns ranging from a lake-wide northward flow to gyres that vary in size and number. An under flow exists that leads to the formation of upwelling and downwelling regions. Current velocities are highest at the center of the lake and on the western inshore waters indicating enhanced water circulation in those areas. However, there is little exchange of water between the major gulfs (especially Nyanza) and the open lake, a factor that could be responsible for the different water quality reported in those regions. Findings of the present study enhance understanding of the physical processes (temperature and currents) that have an effect on diel, seasonal, and annual variations in stratification, vertical mixing, inshore-offshore exchanges and fluxes of nutrients that ultimately influence the biotic distribution and trophic structure. For instance information on areas/timing of upwelling and vertical mixing obtained from this study will help predict locations/seasons of high primary production and ultimately fisheries productivity in Lake Victoria. PMID:27030983

  9. Simulation of Lake Victoria Circulation Patterns Using the Regional Ocean Modeling System (ROMS)

    PubMed Central

    Sigurdsson, Sven; Tomasson, Tumi; Taabu-Munyaho, Anthony; Sitoki, Lewis; Stefansson, Gunnar

    2016-01-01

    Lake Victoria provides important ecosystem services including transport, water for domestic and industrial uses and fisheries to about 33 million inhabitants in three East African countries. The lake plays an important role in modulating regional climate. Its thermodynamics and hydrodynamics are also influenced by prevailing climatic and weather conditions on diel, seasonal and annual scales. However, information on water temperature and circulation in the lake is limited in space and time. We use a Regional Oceanographic Model System (ROMS) to simulate these processes from 1st January 2000 to 31st December 2014. The model is based on real bathymetry, river runoff and atmospheric forcing data using the bulk flux algorithm. Simulations show that the water column exhibits annual cycles of thermo-stratification (September–May) and mixing (June–August). Surface water currents take different patterns ranging from a lake-wide northward flow to gyres that vary in size and number. An under flow exists that leads to the formation of upwelling and downwelling regions. Current velocities are highest at the center of the lake and on the western inshore waters indicating enhanced water circulation in those areas. However, there is little exchange of water between the major gulfs (especially Nyanza) and the open lake, a factor that could be responsible for the different water quality reported in those regions. Findings of the present study enhance understanding of the physical processes (temperature and currents) that have an effect on diel, seasonal, and annual variations in stratification, vertical mixing, inshore—offshore exchanges and fluxes of nutrients that ultimately influence the biotic distribution and trophic structure. For instance information on areas/timing of upwelling and vertical mixing obtained from this study will help predict locations/seasons of high primary production and ultimately fisheries productivity in Lake Victoria. PMID:27030983

  10. Advanced air revitalization system modeling and testing

    NASA Technical Reports Server (NTRS)

    Dall-Baumann, Liese; Jeng, Frank; Christian, Steve; Edeer, Marybeth; Lin, Chin

    1990-01-01

    To support manned lunar and Martian exploration, an extensive evaluation of air revitalization subsystems (ARS) is being conducted. The major operations under study include carbon dioxide removal and reduction; oxygen and nitrogen production, storage, and distribution; humidity and temperature control; and trace contaminant control. A comprehensive analysis program based on a generalized block flow model was developed to facilitate the evaluation of various processes and their interaction. ASPEN PLUS was used in modelling carbon dioxide removal and reduction. Several life support test stands were developed to test new and existing technologies for their potential applicability in space. The goal was to identify processes which use compact, lightweight equipment and maximize the recovery of oxygen and water. The carbon dioxide removal test stands include solid amine/vacuum desorption (SAVD), regenerative silver oxide chemisorption, and electrochemical carbon dioxide concentration (EDC). Membrane-based carbon dioxide removal and humidity control, catalytic reduction of carbon dioxide, and catalytic oxidation of trace contaminants were also investigated.

  11. An Air Quality Data Analysis System for Interrelating Effects, Standards and Needed Source Reductions

    ERIC Educational Resources Information Center

    Larsen, Ralph I.

    1973-01-01

    Makes recommendations for a single air quality data system (using average time) for interrelating air pollution effects, air quality standards, air quality monitoring, diffusion calculations, source-reduction calculations, and emission standards. (JR)

  12. Register Closing Effects on Forced Air Heating System Performance

    SciTech Connect

    Walker, Iain S.

    2003-11-01

    Closing registers in forced air heating systems and leaving some rooms in a house unconditioned has been suggested as a method of quickly saving energy for California consumers. This study combined laboratory measurements of the changes in duct leakage as registers are closed together with modeling techniques to estimate the changes in energy use attributed to closing registers. The results of this study showed that register closing led to increased energy use for a typical California house over a wide combination of climate, duct leakage and number of closed registers. The reduction in building thermal loads due to conditioning only a part of the house was offset by increased duct system losses; mostly due to increased duct leakage. Therefore, the register closing technique is not recommended as a viable energy saving strategy for California houses with ducts located outside conditioned space. The energy penalty associated with the register closing technique was found to be minimized if registers furthest from the air handler are closed first because this tends to only affect the pressures and air leakage for the closed off branch. Closing registers nearer the air handler tends to increase the pressures and air leakage for the whole system. Closing too many registers (more than 60%) is not recommended because the added flow resistance severely restricts the air flow though the system leading to safety concerns. For example, furnaces may operate on the high-limit switch and cooling systems may suffer from frozen coils.

  13. Seismicity and fluid geochemistry at Lassen Volcanic National Park, California: Evidence for two circulation cells in the hydrothermal system

    USGS Publications Warehouse

    Janik, C.J.; McLaren, M.K.

    2010-01-01

    Seismic analysis and geochemical interpretations provide evidence that two separate hydrothermal cells circulate within the greater Lassen hydrothermal system. One cell originates south to SW of Lassen Peak and within the Brokeoff Volcano depression where it forms a reservoir of hot fluid (235-270 ??C) that boils to feed steam to the high-temperature fumarolic areas, and has a plume of degassed reservoir liquid that flows southward to emerge at Growler and Morgan Hot Springs. The second cell originates SSE to SE of Lassen Peak and flows southeastward along inferred faults of the Walker Lane belt (WLB) where it forms a reservoir of hot fluid (220-240 ??C) that boils beneath Devils Kitchen and Boiling Springs Lake, and has an outflow plume of degassed liquid that boils again beneath Terminal Geyser. Three distinct seismogenic zones (identified as the West, Middle, and East seismic clusters) occur at shallow depths (< 6 km) in Lassen Volcanic National Park, SW to SSE of Lassen Peak and adjacent to areas of high-temperature (??? 161 ??C) fumarolic activity (Sulphur Works, Pilot Pinnacle, Little Hot Springs Valley, and Bumpass Hell) and an area of cold, weak gas emissions (Cold Boiling Lake). The three zones are located within the inferred Rockland caldera in response to interactions between deeply circulating meteoric water and hot brittle rock that overlies residual magma associated with the Lassen Volcanic Center. Earthquake focal mechanisms and stress inversions indicate primarily N-S oriented normal faulting and E-W extension, with some oblique faulting and right lateral shear in the East cluster. The different focal mechanisms as well as spatial and temporal earthquake patterns for the East cluster indicate a greater influence by regional tectonics and inferred faults within the WLB. A fourth, deeper (5-10 km) seismogenic zone (the Devils Kitchen seismic cluster) occurs SE of the East cluster and trends NNW from Sifford Mountain toward the Devils Kitchen thermal

  14. Seismicity and fluid geochemistry at Lassen Volcanic National Park, California: Evidence for two circulation cells in the hydrothermal system

    NASA Astrophysics Data System (ADS)

    Janik, Cathy J.; McLaren, Marcia K.

    2010-01-01

    Seismic analysis and geochemical interpretations provide evidence that two separate hydrothermal cells circulate within the greater Lassen hydrothermal system. One cell originates south to SW of Lassen Peak and within the Brokeoff Volcano depression where it forms a reservoir of hot fluid (235-270 °C) that boils to feed steam to the high-temperature fumarolic areas, and has a plume of degassed reservoir liquid that flows southward to emerge at Growler and Morgan Hot Springs. The second cell originates SSE to SE of Lassen Peak and flows southeastward along inferred faults of the Walker Lane belt (WLB) where it forms a reservoir of hot fluid (220-240 °C) that boils beneath Devils Kitchen and Boiling Springs Lake, and has an outflow plume of degassed liquid that boils again beneath Terminal Geyser. Three distinct seismogenic zones (identified as the West, Middle, and East seismic clusters) occur at shallow depths (< 6 km) in Lassen Volcanic National Park, SW to SSE of Lassen Peak and adjacent to areas of high-temperature (≤ 161 °C) fumarolic activity (Sulphur Works, Pilot Pinnacle, Little Hot Springs Valley, and Bumpass Hell) and an area of cold, weak gas emissions (Cold Boiling Lake). The three zones are located within the inferred Rockland caldera in response to interactions between deeply circulating meteoric water and hot brittle rock that overlies residual magma associated with the Lassen Volcanic Center. Earthquake focal mechanisms and stress inversions indicate primarily N-S oriented normal faulting and E-W extension, with some oblique faulting and right lateral shear in the East cluster. The different focal mechanisms as well as spatial and temporal earthquake patterns for the East cluster indicate a greater influence by regional tectonics and inferred faults within the WLB. A fourth, deeper (5-10 km) seismogenic zone (the Devils Kitchen seismic cluster) occurs SE of the East cluster and trends NNW from Sifford Mountain toward the Devils Kitchen thermal

  15. Performance of a photovoltaically powered air-conditioning system

    SciTech Connect

    Kern, Jr, E. C.; Millner, A. R.

    1980-01-01

    A vapor-compression air conditioner coupled directly to a photovoltaic array is discussed. Previous analyses of such a system are reviewed, and a development system designed to test the concept is described. Preliminary experiments indicate that the performance of this initial system falls considerably short of analytic expectations.

  16. Retrofitting Air Conditioning and Duct Systems in Hot, Dry Climates

    SciTech Connect

    Shapiro, Carl; Aldrich, Robb; Arena, Lois

    2012-07-01

    This technical report describes CARB's work with Clark County Community Resources Division in Las Vegas, Nevada, to optimize procedures for upgrading cooling systems on existing homes in the area to implement health, safety, and energy improvements. Detailed monitoring of five AC systems showed that three of the five systems met or exceeded air flow rate goals.

  17. Hot metal runner system with air pollution controls

    SciTech Connect

    La Bate, M.D.

    1982-10-26

    A runner for hot metal as from a blast furnace is formed of a series of interconnected modular units which are prefabricated, preferably from refractory based materials. A plurality of flat slab-like covers are positioned continuously on the runners formed of the interconnected modular units so as to confine fumes , gas, smoke and other air pollutants. Live steam is introduced at selected locations along the runners to collect, absorb and mix with the fumes, gases and air pollutants. Vacuum devices in communication with the covered runners remove the air, steam and pollutants and direct them through scrubbers and/or precipitron equipment to remove the air pollutants before the air entrained in the system is released to the atmosphere.

  18. Turbulent Drag Reduction with Surfactant Additives — Basic Research and Application to an Air Conditioning System

    NASA Astrophysics Data System (ADS)

    Kawaguchi, Y.; Li, F. C.; Yu, B.; Wei, J. J.

    It is well known that a small amount of chemicals such as water-soluble polymers or surfactants dramatically suppresses turbulence when they are added to liquid flow at large Reynolds number. In the last two decades, the application of surfactants to heat transportation systems such as district heating and cooling systems has attracted much interest among researchers. It has been revealed that 70% of the pumping power used to drive hot water in primary pipelines or district heating systems was saved by adding only a few hundred ppm of surfactant into the circulating water. The technological achievement requires a new design strategy for pipeline networks and heat exchangers to handle the drag reducing liquid flow. In the case of a Newtonian fluid such as water or air, the knowledge for designing fluid systems has been accumulated and the accuracy of numerical prediction is sufficient. On the other hand, the design system for surfactant solutions is not mature because drag-reducing flow phenomena are much more complicated than for Newtonian flow, for example, the friction factor for a surfactant solution depends not only on Reynolds number but also pipe diameter. In order to provide a design strategy for heat transportation systems using surfactant additives, we are now carrying out both experimental and numerical studies for surfactant solutions. In this lecture, experimental and numerical studies on the turbulence structure in drag reducing flow will be introduced. The result of an application study relating to the air conditioning system will be also shown.

  19. Wake Vortex Wingtip-Turbine Powered Circulation Control High-Lift System

    NASA Technical Reports Server (NTRS)

    Moore, Mark D.

    2005-01-01

    NASA s Vehicle Systems Program is investing in aeronautics technology development across six vehicle sectors, in order to improve future air travel. These vehicle sectors include subsonic commercial transports, supersonic vehicles, Uninhabited Aerial Vehicles (UAVs), Extreme Short Takeoff and Landing (ESTOL) vehicles, Rotorcraft, and Personal Air Vehicles (PAVs). While the subsonic transport is firmly established in U.S. markets, the other vehicle sectors have not developed a sufficient technology or regulatory state to permit widespread, practical use. The PAV sector has legacy products in the General Aviation (GA) market, but currently only accounts for negligible revenue miles, sales, or market share of personal travel. In order for PAV s to ever capture a significant market, these small aircraft require technologies that permit them to be less costly, environmentally acceptable, safer, easier to operate, more efficient, and less dependent on large support infrastructures.

  20. The Relationship of Loss, Mean Age of Air and the Distribution of CFCs to Stratospheric Circulation and Implications for Atmospheric Lifetimes

    NASA Technical Reports Server (NTRS)

    Douglass, A. R.; Stolarski, R. S.; Schoeberl, M. R.; Jackman, C. H.; Guptal, M. L.; Newman, P. A.; Nielsen, J. E.; Fleming, E. L.

    2007-01-01

    Man-made molecules called chlorofluorcarbons (CFCs) are broken apart in the stratosphere by high energy light, and the reactive chlorine gases that come from them cause the ozone hole. Since the ozone layer stops high energy light from reaching low altitudes, CFCs must be transported to high altitudes to be broken apart. The number of molecules per volume (the density) is much smaller at high altitudes than near the surface, and CFC molecules have a very small chance of reaching that altitude in any particular year. Many tons of CFCs were put into the atmosphere during the end of the last century, and it will take many years for all of them to be destroyed. Each CFC has an atmospheric lifetime that depends on the amount of energy required to break them apart. Two of the gases that were made the most are CFC13 and CF2C12. It takes more energy to break apart CF2C12 than CFC13, and its lifetime is about 100 years, nearly twice as long as the lifetime for CFC13. It is hard to figure out the lifetimes from surface measurements because we don't know exactly how much was released into the air each year. Atmospheric models are used to predict what will happen to ozone and other gases as the CFCs decrease and other gases like C02 continue to increase during the next century. CFC lifetimes are used to predict future concentrations and all assessment models use the predicted future concentrations. The models have different circulations and the amount of CFC lost according to the model may not match the loss that is expected according to the lifetime. In models the amount destroyed per year depends on how fast the model pushes air into the stratosphere and how much goes to high altitudes each year. This paper looks at the way the model circulation changes the lifetimes, and looks at measurements that tell us which model is more realistic. Some models do a good job reproducing the age-of-air, which tells us that these models are circulating the stratospheric air at the right

  1. Pan Air Geometry Management System (PAGMS): A data-base management system for PAN AIR geometry data

    NASA Technical Reports Server (NTRS)

    Hall, J. F.

    1981-01-01

    A data-base management system called PAGMS was developed to facilitate the data transfer in applications computer programs that create, modify, plot or otherwise manipulate PAN AIR type geometry data in preparation for input to the PAN AIR system of computer programs. PAGMS is composed of a series of FORTRAN callable subroutines which can be accessed directly from applications programs. Currently only a NOS version of PAGMS has been developed.

  2. ESTABLISHMENT OF AN ENVIRONMENTAL CONTROL TECHNOLOGY LABORATORY WITH A CIRCULATING FLUIDIZED-BED COMBUSTION SYSTEM

    SciTech Connect

    Wei-Ping Pan, Kunlei Liu; John T. Riley

    2004-07-30

    This report presents the progress made on the project ''Establishment of an Environmental Control Technology Laboratory (ECTL) with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the quarter April 1--June 30, 2004. The following tasks have been completed. First, the final specifications for the renovation of the new Combustion Laboratory and the construction of the CFB Combustor Building have been delivered to the architect, and invitations for construction bids for the two tasks have been released. Second, the component parts of the CFBC system have been designed after the design work for assembly parts of the CFBC system was completed. Third, the literature pertaining to Polychlorinated Dibenzo-p-Dioxins (PCDD) and Polychlorinated Dibenzofurans (PCDF) released during the incineration of solid waste, including municipal solid waste (MSW) and refuse-derived fuel (RDF) have been reviewed, and an experimental plan for fundamental research of MSW incineration on a simulated fluidized-bed combustion (FBC) facility has been prepared. Finally, the proposed work for the next quarter has been outlined in this report.

  3. Left ventricular finite element model bounded by a systemic circulation model.

    PubMed

    Veress, A I; Raymond, G M; Gullberg, G T; Bassingthwaighte, J B

    2013-05-01

    A series of models were developed in which a circulatory system model was coupled to an existing series of finite element (FE) models of the left ventricle (LV). The circulatory models were used to provide realistic boundary conditions for the LV models. This was developed for the JSim analysis package and was composed of a systemic arterial, capillary, and venous system in a closed loop with a varying elastance LV and left atria to provide the driving pressures and flows matching those of the FE model. Three coupled models were developed, a normal LV under normotensive aortic loading (116/80 mm Hg), a mild hypertension (137/89 mm Hg) model, and a moderate hypertension model (165/100 mm Hg). The initial step in the modeling analysis was that the circulation was optimized to the end-diastolic pressure and volume values of the LV model. The cardiac FE models were then optimized to the systolic pressure/volume characteristics of the steady-state JSim circulatory model solution. Comparison of the stress predictions for the three models indicated that the mild hypertensive case produced a 21% increase in the average fiber stress levels, and the moderate hypertension case had a 36% increase in average stress. The circulatory work increased by 18% and 43% over that of the control for the mild and moderate hypertensive cases, respectively. PMID:24231963

  4. 14 CFR 29.1103 - Induction systems ducts and air duct systems.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Induction systems ducts and air duct... TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Induction System § 29.1103 Induction systems ducts and air duct systems. (a) Each induction system duct upstream of the...

  5. Air-flow regulation system for a coal gasifier

    DOEpatents

    Fasching, George E.

    1984-01-01

    An improved air-flow regulator for a fixed-bed coal gasifier is provided which allows close air-flow regulation from a compressor source even though the pressure variations are too rapid for a single primary control loop to respond. The improved system includes a primary controller to control a valve in the main (large) air supply line to regulate large slow changes in flow. A secondary controller is used to control a smaller, faster acting valve in a secondary (small) air supply line parallel to the main line valve to regulate rapid cyclic deviations in air flow. A low-pass filter with a time constant of from 20 to 50 seconds couples the output of the secondary controller to the input of the primary controller so that the primary controller only responds to slow changes in the air-flow rate, the faster, cyclic deviations in flow rate sensed and corrected by the secondary controller loop do not reach the primary controller due to the high frequency rejection provided by the filter. This control arrangement provides at least a factor of 5 improvement in air-flow regulation for a coal gasifier in which air is supplied by a reciprocating compressor through a surge tank.

  6. Ice storage systems spark air conditioning savings

    SciTech Connect

    Kohlenberger, C.R.

    1981-03-01

    Thermal storage systems similar to giant storage batteries are explained by means of storing energy (either hot or cold) during these off-peak times for use at the more convenient time when the actual load is impressed on to the system. This load shifting, of course, does not actually save energy. It merely shifts the load to a time when the electric utility can more conveniently handle that load. In fact, more actual KW hours may be utilized by this shift, but with the resulting cost to the consumer being reduced. System concepts are described and energy cost comparisons are made. Various methods of ice making systems are presented and analyzed.

  7. Optimal Control of Hybrid Systems in Air Traffic Applications

    NASA Astrophysics Data System (ADS)

    Kamgarpour, Maryam

    Growing concerns over the scalability of air traffic operations, air transportation fuel emissions and prices, as well as the advent of communication and sensing technologies motivate improvements to the air traffic management system. To address such improvements, in this thesis a hybrid dynamical model as an abstraction of the air traffic system is considered. Wind and hazardous weather impacts are included using a stochastic model. This thesis focuses on the design of algorithms for verification and control of hybrid and stochastic dynamical systems and the application of these algorithms to air traffic management problems. In the deterministic setting, a numerically efficient algorithm for optimal control of hybrid systems is proposed based on extensions of classical optimal control techniques. This algorithm is applied to optimize the trajectory of an Airbus 320 aircraft in the presence of wind and storms. In the stochastic setting, the verification problem of reaching a target set while avoiding obstacles (reach-avoid) is formulated as a two-player game to account for external agents' influence on system dynamics. The solution approach is applied to air traffic conflict prediction in the presence of stochastic wind. Due to the uncertainty in forecasts of the hazardous weather, and hence the unsafe regions of airspace for aircraft flight, the reach-avoid framework is extended to account for stochastic target and safe sets. This methodology is used to maximize the probability of the safety of aircraft paths through hazardous weather. Finally, the problem of modeling and optimization of arrival air traffic and runway configuration in dense airspace subject to stochastic weather data is addressed. This problem is formulated as a hybrid optimal control problem and is solved with a hierarchical approach that decouples safety and performance. As illustrated with this problem, the large scale of air traffic operations motivates future work on the efficient

  8. Underfloor air distribution systems: Benefits and when to use the system in building design

    SciTech Connect

    McCarry, B.T.

    1995-12-31

    Underfloor air distribution systems are a viable option for mechanical system building design. They are comprised of raised floor panels with a supply air plenum in the void between the raised floor and the concrete structure. Supply air grilles are flush mounted to the floor to create a flat floor and walking surface. The engineering challenge is to determine when to use underfloor air distribution systems and how to effectively apply them. The best places to use this system are in owner-occupied buildings with a high churn rate and/or frequent technology changes. The benefits of this system include fresh air at the level where building occupants are located, forgiveness for variations in internal cooling loads, easy relocation of the supply air grilles to suit revised layouts, a reduction in energy costs for the mechanical system, and an improvement in indoor air quality.

  9. Establishment of urban air quality prediction system

    SciTech Connect

    Ben-Jei Tsuang; Jime-Ming Huang

    1996-12-31

    By using the data of Taipei metropolitan and Taichung city, it was found that the concentrations of the PM{sub 10} and SO{sub 2} were strongly associated with wind speed, rain, surface layer stability and their initial concentrations. Among these factors, stability in the atmospheric surface layer was not fully addressed in traditional box model. A new box model formula was derived to include the stability parameter. After analysis of exchange/removal mechanisms operating in the PBL by using this new model, we find that the near ground pollutant concentration after reaching steady state is dose to q{sub 0}l/2ul{sub e} under stable, low wind speed and rainless day, where q{sub 0} is emission rate, 1 length of a city, u wind speed and l{sub e} stability scale length. Under calm wind speed in addition to the aforementioned conditions, the air quality became most deteriorated and close to q{sub 0}/V{sub d}, where V{sub d} is dry deposition rate. This formula works well in simulating PM{sub 10} and SO{sub 2} concentration of Pancho and Taichung city. In addition, this formula also can handle most of the deteriorated days.

  10. Measurement results obtained from air quality monitoring system

    SciTech Connect

    Turzanski, P.K.; Beres, R.

    1995-12-31

    An automatic system of air pollution monitoring operates in Cracow since 1991. The organization, assembling and start-up of the network is a result of joint efforts of the US Environmental Protection Agency and the Cracow environmental protection service. At present the automatic monitoring network is operated by the Provincial Inspection of Environmental Protection. There are in total seven stationary stations situated in Cracow to measure air pollution. These stations are supported continuously by one semi-mobile (transportable) station. It allows to modify periodically the area under investigation and therefore the 3-dimensional picture of creation and distribution of air pollutants within Cracow area could be more intelligible.

  11. On the design of distributed air quality monitoring systems

    NASA Astrophysics Data System (ADS)

    Velasco, Alejandro; Ferrero, Renato; Gandino, Filippo; Montrucchio, Bartolomeo; Rebaudengo, Maurizio

    2015-12-01

    Nowadays, the air quality is considered a key point, and its monitoring is not only suggested but it is even required in many countries. Since traditional standard monitors for air quality are very expensive, the use of a low-cost distributed network of sensors represents a valid complementary approach. This paper discusses the benefits of a distributed approach and analyzes the main elements that should be taken into account during the design of a distributed system for the air quality monitoring. This paper aims at representing a valuable aid for researchers and practitioners interested in the topic.

  12. Experimental study of an air-cooled thermal management system for high capacity lithium-titanate batteries

    NASA Astrophysics Data System (ADS)

    Giuliano, Michael R.; Prasad, Ajay K.; Advani, Suresh G.

    2012-10-01

    Lithium-titanate batteries have become an attractive option for battery electric vehicles and hybrid electric vehicles. In order to maintain safe operating temperatures, these batteries must be actively cooled during operation. Liquid-cooled systems typically employed for this purpose are inefficient due to the parasitic power consumed by the on-board chiller unit and the coolant pump. A more efficient option would be to circulate ambient air through the battery bank and directly reject the heat to the ambient. We designed and fabricated such an air-cooled thermal management system employing metal-foam based heat exchanger plates for sufficient heat removal capacity. Experiments were conducted with Altairnano's 50 Ah cells over a range of charge-discharge cycle currents at two air flow rates. It was found that an airflow of 1100 mls-1 per cell restricts the temperature rise of the coolant air to less than 10 °C over ambient even for 200 A charge-discharge cycles. Furthermore, it was shown that the power required to drive the air through the heat exchanger was less than a conventional liquid-cooled thermal management system. The results indicate that air-cooled systems can be an effective and efficient method for the thermal management of automotive battery packs.

  13. Integration of air separation membrane and coalescing filter for use on an inlet air system of an engine

    DOEpatents

    Moncelle, Michael E.

    2003-01-01

    An intake air separation system suitable for combustion air of an internal combustion engine. An air separation device of the system includes a plurality of fibers, each fiber having a tube with a permeation barrier layer on the outer surface thereof and a coalescing layer on the inner surface thereof, to restrict fluid droplets from contacting the permeation barrier layer.

  14. Numerical simulation of circulation in Kara and Pechora Seas using the system of operational diagnosis and forecast of the marine dynamics

    NASA Astrophysics Data System (ADS)

    Diansky, Nikolay; Fomin, Vladimir; Kabatchenko, Ilya; Gusev, Anatoly

    2015-04-01

    The system of operational diagnosis and forecast (SODaF) is presented for hydrometeorological characteristics of Kara and Pechora Seas, which is implemented in the N.N.Zubov State Oceanography Institute (SOI). It includes the computation of atmospheric forcing using the WRF model, computation of currents, sea level, temperature, salinity and sea ice using the model INMOM, and computation of wind wave parameters using Russian Wind Wave Model (RWWM).The results of the verification are presented including simulated hydrometeocharacteristics obtained by SODaF for Kara and Pechora Seas. As well, the retrospective simulation was performed for thermohydrodynamical characteristics of these seas for the ice-free period of 2003-2012. The important features of circulation in Kara and Pechora Seas and the structure of water exchange between them in the ice-free period are shown. The use of non-hydrostatic atmospheric model WRF allows one to reproduce katabatic winds formed over the glaciers. In general, the direction and speed of katabatic winds are fairly permanent. In accordance with the nature of katabatic winds, they are intensified from warm to cold period that is well manifested in the wind map for August. The basis of the Kara Sea circulation is NewLand, Yamal and Ob-Yenisey currents, which are well reproduced with the INMOM. It is shown that the main contribution to the monthly mean circulation of Kara and Pechora seas is made by wind currents. In the western part of the Kara Sea between the mainland and the New Land in the fall the pronounced cyclonic circulation is formed that is typical for closed seas. The main components of the circulation are the NewLand and Yamal currents flowing respectively along the eastern coast of NewLand and the western coast of the Yamal Peninsula.It is caused by regional winds directed from the "cold" land to the "warm" sea. In summer,such a circulation is broken along the coast of the mainland, so that the Yamal flow is reduced. This

  15. Integrated Collision Avoidance System for Air Vehicle

    NASA Technical Reports Server (NTRS)

    Lin, Ching-Fang (Inventor)

    2013-01-01

    Collision with ground/water/terrain and midair obstacles is one of the common causes of severe aircraft accidents. The various data from the coremicro AHRS/INS/GPS Integration Unit, terrain data base, and object detection sensors are processed to produce collision warning audio/visual messages and collision detection and avoidance of terrain and obstacles through generation of guidance commands in a closed-loop system. The vision sensors provide more information for the Integrated System, such as, terrain recognition and ranging of terrain and obstacles, which plays an important role to the improvement of the Integrated Collision Avoidance System.

  16. Application of solar energy to air conditioning systems

    NASA Technical Reports Server (NTRS)

    Nash, J. M.; Harstad, A. J.

    1976-01-01

    The results of a survey of solar energy system applications of air conditioning are summarized. Techniques discussed are both solar powered (absorption cycle and the heat engine/Rankine cycle) and solar related (heat pump). Brief descriptions of the physical implications of various air conditioning techniques, discussions of status, proposed technological improvements, methods of utilization and simulation models are presented, along with an extensive bibliography of related literature.

  17. Operational dead air space testing of the chemically protected DEPloyable MEDical Systems (cp DEPMEDS). Final report, Aug-Oct 91

    SciTech Connect

    Seitzinger, A.; Richardson, T.

    1992-07-01

    This report documents the results and findings of dead air space tests on the chemically protected deployable medical systems (DEPMEDS) conducted at Fort Indiantown Gap, PA. The DEPMEDS are composed of various size overpressurized chemically protected shelters connected by viaducts. Designed by the U.S. Army Natick Research, Development and Engineering Center (NATICK), the shelters provide a clean air conditioned atmosphere to treat wounded personnel in a chemical warfare environment. NATICK requested the U.S. Army Chemical Research, Development and Engineering Center's support to identify any dead air spaces, because these spaces would be a potential chemical agent vapor accumulation location, and threaten the collective protection of the shelters. Initially, a smoke generator was utilized to observe the air flow patterns within the DEPMEDS, and suspect dead air space locations were identified. However, subsequent dissemination of sulfur hexafluoride into the ventilation system of the shelter indicated that no dead air spaces were present. This report includes a few suggestions to improve the air circulation of the DEPMEDS, namely elimination of the interior shelter liners and using doors between the viaducts connecting the various shelters. Sulfur, Ventilation kinetics, Shelters, Collective protection, Hexafluoride, Chemical agent simulants.

  18. Is circulating endotoxin the trigger for the systemic inflammatory response syndrome seen after injury?

    PubMed Central

    Kelly, J L; O'Sullivan, C; O'Riordain, M; O'Riordain, D; Lyons, A; Doherty, J; Mannick, J A; Rodrick, M L

    1997-01-01

    OBJECTIVE: Patients with severe traumatic or burn injury and a mouse model of burn injury were studied early after injury to determine the relation of plasma endotoxin (lipopolysaccharide [LPS]) to the production of proinflammatory cytokines and subsequent resistance to infection. SUMMARY BACKGROUND DATA: Elevated levels of plasma LPS have been reported in patients after serious injury. It has been suggested that circulating LPS may be a trigger for increased proinflammatory cytokine production and may play a role in the septic syndromes seen in a substantial portion of such patients. Yet, despite multiple reports of leakage of LPS from the gut and bacterial translocation after injury in animal models, there is little direct evidence linking circulating LPS with production of inflammatory mediators. METHODS: The authors studied serial samples of peripheral blood from 10 patients with 25% to 50% surface area burns and 8 trauma patients (injury Severity Score, 25-57). Patients were compared with 18 healthy volunteers. The study was focused on the first 10 days after injury before the onset of sepsis or the systemic inflammatory response syndrome. Plasma samples were assayed for LPS, and adherent cells from the blood were studied for basal and LPS-stimulated production of tumor necrosis factor-alpha (TNF-alpha), interleukin-1 beta (IL-1 beta), and interleukin-6 (IL-6). The correlation of increased plasma LPS with TNF-alpha production was studied as was the association of increased plasma LPS and increased TNF-alpha production with subsequent septic complications. We also studied a mouse model of 25% burn injury. Burn mice were compared with sham burn control subjects. Plasma samples were assayed at serial intervals for LPS, and adherent cells from the spleens were studied for basal- and LPS-stimulated production of TNF-alpha, IL-1 beta, and IL-6. Expression of the messenger RNAs for IL-1 beta and TNF-alpha also was measured. The relation of increased TNF

  19. Design of an efficient electrolyte circulation system for the lead-acid battery

    SciTech Connect

    Thuerk, D.

    1982-01-01

    Application of lead-acid batteries to electric vehicle and other repetitive deep-cycle services produces a non-desirable state in the battery cells, electrolyte stratification. This stratification is the result of acid and water generation at the electrodes during cycling. Water, which is generated during discharge, rises to the electrolyte surface due to gravity differences, whereas the concentrated sulfuric acid generated during charge falls to the bottom of the container. With continued cycling, the extent of the stratification increases and prevents complete charging with low percentages of overcharge. Ultimately this results in extremely short life for the battery system. The industry presently overcomes the stratification problem by substantially overcharging the battery. This abusive overcharge produces gassing rates sufficient to mix the electrolyte during the end portion of the charge. The amount of recharge typically used to mix the electrolyte ranges from 120% to 140% of the prior discharge. Overcharge, even though it is required to eliminate stratification, produces the undesirable results related to high voltage and gassing rates. The design and operation of an electrolyte circulation system are described. (WHK)

  20. A novel mechanical lung assist system sustains primary bidirectional cavopulmonary shunt circulation in pigs.

    PubMed

    Honjo, Osami; Merklinger, Sandra L; Poe, John; Guerguerian, Anne-Marie; Alghamdi, Abdullah A; Takatani, Setsuo; Van Arsdell, Glen S

    2007-01-01

    Primary creation of a bidirectional cavopulmonary shunt (BCPS), which provides a stable in-series circulation, might improve survival in patients with hypoplastic left heart syndrome. However, pulmonary vascular immaturity and high pulmonary vascular resistance must be overcome to achieve a successful primary neonatal BCPS. This study tested the hypothesis that a novel mechanical lung assist (MLA) system would permit a primary BCPS in juvenile pigs. A BCPS (1(1/2) ventricle repair physiology) was created in nine 4-5-week-old pigs (mean weight 17.9 kg), followed by MLA with a miniature centrifugal pump and a hand-made double-lumen cannula for 2 hours. Systemic and cerebral hemodynamic and metabolic data were evaluated. A mean BCPS flow of 331 +/- 56 ml/min was obtained with a mean pump speed of 3899 +/- 306 rpm at 30 minutes after MLA initiation. Adequate oxygenation, ventilation, and hemodynamics were maintained. Transcranial Doppler ultrasound demonstrated consistent pre- and postoperative peak systolic and diastolic velocities of the middle cerebral artery, indicating sustained cerebral perfusion pressure. This study demonstrated that the MLA is able to sustain a high-resistance BCPS and provides a strategy or rationale for developing a primary neonatal cavopulmonary connection in appropriately selected neonates with congenital heart disease. PMID:18043155

  1. Simulation study of autoregulation responses of peripheral circulation to systemic pulsatility

    PubMed Central

    Aletti, Federico; Lanzarone, Ettore; Costantino, Maria Laura; Baselli, Giuseppe

    2009-01-01

    Background This simulation study investigated potential modulations of total peripheral resistance (TPR), due to distributed peripheral vascular activity, by means of a lumped model of the arterial tree and a non linear model of microcirculation, inclusive of local controls of blood flow and tissue-capillary fluid exchange. Results Numerical simulations of circulation were carried out to compute TPR under different conditions of blood flow pulsatility, and to extract the pressure-flow characteristics of the cardiovascular system. Simulations showed that TPR seen by the large arteries was increased in absence of pulsatility, while it decreased with an augmented harmonic content. This is a typically non linear effect due to the contribution of active, non linear autoregulation of the peripheral microvascular beds, which also generated a nonlinear relationship between arterial blood pressure and cardiac output. Conclusion This simulation study, though focused on a simple effect attaining TPR modulation due to pulsatility, suggests that non-linear autoregulation mechanisms cannot be overlooked while studying the integrated behavior of the global cardiovascular system, including the arterial tree and the peripheral vascular bed. PMID:19630959

  2. A circulation mud system used in long-distance ore pipeline transportation

    NASA Astrophysics Data System (ADS)

    Li, Youling; Wang, Hua

    2011-10-01

    The long-distance ore pipeline transportation is a new and high-tech industry, which is non-polluting, zero emissions, and in line with the strategy needs of national low-carbon economy and energy demand reduction. The long-distance ore transport needs multi-station pumping station transportation, however, the low concentration slurry that does not match the technological requirements, such as slurry head and so on. This paper designs a circulation mud system used in long-distance pipeline transportation, which solves the following issues: (1) the technical pool can't storage water during the period of cleaning mine, so can't meet the needs of non-suspension production; (2) slurry spot cool dry easy to bring serious environmental pollution; (3) the refined iron dug out from the process pool need transport to iron and steel industry, trucking transportation needs a huge costs. Experience has shown that the system effectively improve the production efficiency and propagate.

  3. Artificial immune system approach for air combat maneuvering

    NASA Astrophysics Data System (ADS)

    Kaneshige, John; Krishnakumar, Kalmanje

    2007-04-01

    Since future air combat missions will involve both manned and unmanned aircraft, the primary motivation for this research is to enable unmanned aircraft with intelligent maneuvering capabilities. During air combat maneuvering, pilots use their knowledge and experience of maneuvering strategies and tactics to determine the best course of action. As a result, we try to capture these aspects using an artificial immune system approach. The biological immune system protects the body against intruders by recognizing and destroying harmful cells or molecules. It can be thought of as a robust adaptive system that is capable of dealing with an enormous variety of disturbances and uncertainties. However, another critical aspect of the immune system is that it can remember how previous encounters were successfully defeated. As a result, it can respond faster to similar encounters in the future. This paper describes how an artificial immune system is used to select and construct air combat maneuvers. These maneuvers are composed of autopilot mode and target commands, which represent the low-level building blocks of the parameterized system. The resulting command sequences are sent to a tactical autopilot system, which has been enhanced with additional modes and an aggressiveness factor for enabling high performance maneuvers. Just as vaccinations train the biological immune system how to combat intruders, training sets are used to teach the maneuvering system how to respond to different enemy aircraft situations. Simulation results are presented, which demonstrate the potential of using immunized maneuver selection for the purposes of air combat maneuvering.

  4. Performance evaluation of four different methods for circulating water in commercial-scale, split-pond aquaculture systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The split-pond consists of a fish-culture basin that is connected to a waste-treatment lagoon by two conveyance structures. Water is circulated between the two basins with high-volume pumps and many different pumping systems are being used on commercial farms. Pump performance was evaluated with fou...

  5. Coupling of wave and circulation models in coastal-ocean predicting systems: a case study for the German Bight

    NASA Astrophysics Data System (ADS)

    Staneva, Joanna; Wahle, Kathrin; Günther, Heinz; Stanev, Emil

    2016-06-01

    This study addresses the impact of coupling between wave and circulation models on the quality of coastal ocean predicting systems. This is exemplified for the German Bight and its coastal area known as the Wadden Sea. The latter is the area between the barrier islands and the coast. This topic reflects the increased interest in operational oceanography to reduce prediction errors of state estimates at coastal scales, which in many cases are due to unresolved non-linear feedback between strong currents and wind waves. In this study we present analysis of wave and hydrographic observations, as well as results of numerical simulations. A nested-grid modelling system is used to produce reliable nowcasts and short-term forecasts of ocean state variables, including waves and hydrodynamics. The database includes ADCP observations and continuous measurements from data stations. The individual and combined effects of wind, waves and tidal forcing are quantified. The performance of the forecast system is illustrated for the cases of several extreme events. The combined role of wave effects on coastal circulation and sea level are investigated by considering the wave-dependent stress and wave breaking parameterization. Also the response, which the circulation exerts on the waves, is tested for the coastal areas. The improved skill of the coupled forecasts compared to the non-coupled ones, in particular during extreme events, justifies the further enhancements of coastal operational systems by including wave effects in circulation models.

  6. The Life Cycles of Intense Cyclonic and Anticyclonic Circulation Systems Observed over Oceans

    NASA Technical Reports Server (NTRS)

    Smith, Phillip J.

    1996-01-01

    This report presents a summary of research accomplished over the past four years under the sponsorship of NASA grant #NAG8-915. Building on previously funded NASA grants, this part of the project focused on the following specific goals relative to cyclone/anticyclone systems: the jet streak link between block formation and upstream cyclone activity; the role of northward warm air advection in block formation; the importance of cooperative participation of several forcing mechanisms during explosive cyclone development; and the significance of the vertical distribution of forcing processes during cyclone/anticyclone development.

  7. Real-Time Measurement of Oil Circulation Ratio in CO2 Heat Pump System Using Optical Method

    NASA Astrophysics Data System (ADS)

    Takigawa, Ryusuke; Shimizu, Takao; Matsusaka, Yukio; Gao, Lei; Honda, Tomohiro

    The lubricating oil in the refrigerant flow in a CO2 heat pump system has a great influence on cycle performance. In order to measure the OCR (Oil circulation ratio), a mixing chamber and a visual vessel were installed at the outlet of the gas-cooler. By mixing the oil and refrigerant, the liquid mixture of oil and refrigerant becomes cloudy at the outlet of the gas-cooler. By measuring the infrared ray transmittance of the oil-refrigerant liquid mixture, it was found that the transmittance decreases with an increase in the oil circulation ratio. For this reason, it is found that, in spite of immiscible refrigerant and oil, the measurement of the oil circulation ratio is possible by measuring the transmittance of infrared ray at the outlet of the gas-cooler.

  8. Circulating Plasma microRNAs can differentiate Human Sepsis and Systemic Inflammatory Response Syndrome (SIRS)

    PubMed Central

    Caserta, Stefano; Kern, Florian; Cohen, Jonathan; Drage, Stephen; Newbury, Sarah F.; Llewelyn, Martin J.

    2016-01-01

    Systemic inflammation in humans may be triggered by infection, termed sepsis, or non-infective processes, termed non-infective systemic inflammatory response syndrome (SIRS). MicroRNAs regulate cellular processes including inflammation and may be detected in blood. We aimed to establish definitive proof-of-principle that circulating microRNAs are differentially affected during sepsis and non-infective SIRS. Critically ill patients with severe (n = 21) or non-severe (n = 8) intra-abdominal sepsis; severe (n = 23) or non-severe (n = 21) non-infective SIRS; or no SIRS (n = 16) were studied. Next-generation sequencing and qRT-PCR were used to measure plasma microRNAs. Detectable blood miRNAs (n = 116) were generally up-regulated in SIRS compared to no-SIRS patients. Levels of these ‘circulating inflammation-related microRNAs’ (CIR-miRNAs) were 2.64 (IQR: 2.10–3.29) and 1.52 (IQR: 1.15–1.92) fold higher for non-infective SIRS and sepsis respectively (p < 0.0001), hence CIR-miRNAs appeared less abundant in sepsis than in SIRS. Six CIR-miRNAs (miR-30d-5p, miR-30a-5p, miR-192-5p, miR-26a-5p, miR-23a-5p, miR-191-5p) provided good-to-excellent discrimination of severe sepsis from severe SIRS (0.742–0.917 AUC of ROC curves). CIR-miRNA levels inversely correlated with pro-inflammatory cytokines (IL-1, IL-6 and others). Thus, among critically ill patients, sepsis and non-infective SIRS are associated with substantial, differential changes in CIR-miRNAs. CIR-miRNAs may be regulators of inflammation and warrant thorough evaluation as diagnostic and therapeutic targets. PMID:27320175

  9. Circulating Plasma microRNAs can differentiate Human Sepsis and Systemic Inflammatory Response Syndrome (SIRS).

    PubMed

    Caserta, Stefano; Kern, Florian; Cohen, Jonathan; Drage, Stephen; Newbury, Sarah F; Llewelyn, Martin J

    2016-01-01

    Systemic inflammation in humans may be triggered by infection, termed sepsis, or non-infective processes, termed non-infective systemic inflammatory response syndrome (SIRS). MicroRNAs regulate cellular processes including inflammation and may be detected in blood. We aimed to establish definitive proof-of-principle that circulating microRNAs are differentially affected during sepsis and non-infective SIRS. Critically ill patients with severe (n = 21) or non-severe (n = 8) intra-abdominal sepsis; severe (n = 23) or non-severe (n = 21) non-infective SIRS; or no SIRS (n = 16) were studied. Next-generation sequencing and qRT-PCR were used to measure plasma microRNAs. Detectable blood miRNAs (n = 116) were generally up-regulated in SIRS compared to no-SIRS patients. Levels of these 'circulating inflammation-related microRNAs' (CIR-miRNAs) were 2.64 (IQR: 2.10-3.29) and 1.52 (IQR: 1.15-1.92) fold higher for non-infective SIRS and sepsis respectively (p < 0.0001), hence CIR-miRNAs appeared less abundant in sepsis than in SIRS. Six CIR-miRNAs (miR-30d-5p, miR-30a-5p, miR-192-5p, miR-26a-5p, miR-23a-5p, miR-191-5p) provided good-to-excellent discrimination of severe sepsis from severe SIRS (0.742-0.917 AUC of ROC curves). CIR-miRNA levels inversely correlated with pro-inflammatory cytokines (IL-1, IL-6 and others). Thus, among critically ill patients, sepsis and non-infective SIRS are associated with substantial, differential changes in CIR-miRNAs. CIR-miRNAs may be regulators of inflammation and warrant thorough evaluation as diagnostic and therapeutic targets. PMID:27320175

  10. Infrared Laser System for Extended Area Monitoring of Air Pollution

    NASA Technical Reports Server (NTRS)

    Snowman, L. R.; Gillmeister, R. J.

    1971-01-01

    An atmospheric pollution monitoring system using a spectrally scanning laser has been developed by the General Electric Company. This paper will report on an evaluation of a breadboard model, and will discuss applications of the concept to various ambient air monitoring situations. The system is adaptable to other tunable lasers. Operating in the middle infrared region, the system uses retroreflectors to measure average concentrations over long paths at low, safe power levels. The concept shows promise of meeting operational needs in ambient air monitoring and providing new data for atmospheric research.

  11. One-man electrochemical air revitalization system evaluation

    NASA Technical Reports Server (NTRS)

    Schbert, F. H.; Marshall, R. D.; Hallick, T. M.; Woods, R. R.

    1976-01-01

    A program to evaluate the performance of a one man capacity, self contained electrochemical air revitalization system was successfully completed. The technology readiness of this concept was demonstrated by characterizing the performance of this one man system over wide ranges in cabin atmospheric conditions. The electrochemical air revitalization system consists of a water vapor electrolysis module to generate oxygen from water vapor in the cabin air, and an electrochemical depolarized carbon dioxide concentrator module to remove carbon dioxide from the cabin air. A control/monitor instrumentation package that uses the electrochemical depolarized concentrator module power generated to partially offset the water vapor electrolysis module power requirements and various structural fluid routing components are also part of the system. The system was designed to meet the one man metabolic oxygen generation and carbon dioxide removal requirements, thereby controlling cabin partial pressure of oxygen at 22 kN/sq m and cabin pressure of carbon dioxide at 400 N/sq m over a wide range in cabin air relative humidity conditions.

  12. 14 CFR 29.1103 - Induction systems ducts and air duct systems.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Induction systems ducts and air duct systems. 29.1103 Section 29.1103 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Powerplant Induction System § 29.1103 Induction systems ducts and air...

  13. Hydrogen-air energy storage gas-turbine system

    NASA Astrophysics Data System (ADS)

    Schastlivtsev, A. I.; Nazarova, O. V.

    2016-02-01

    A hydrogen-air energy storage gas-turbine unit is considered that can be used in both nuclear and centralized power industries. However, it is the most promising when used for power-generating plants based on renewable energy sources (RES). The basic feature of the energy storage system in question is combination of storing the energy in compressed air and hydrogen and oxygen produced by the water electrolysis. Such a process makes the energy storage more flexible, in particular, when applied to RES-based power-generating plants whose generation of power may considerably vary during the course of a day, and also reduces the specific cost of the system by decreasing the required volume of the reservoir. This will allow construction of such systems in any areas independent of the local topography in contrast to the compressed-air energy storage gas-turbine plants, which require large-sized underground reservoirs. It should be noted that, during the energy recovery, the air that arrives from the reservoir is heated by combustion of hydrogen in oxygen, which results in the gas-turbine exhaust gases practically free of substances hazardous to the health and the environment. The results of analysis of a hydrogen-air energy storage gas-turbine system are presented. Its layout and the principle of its operation are described and the basic parameters are computed. The units of the system are analyzed and their costs are assessed; the recovery factor is estimated at more than 60%. According to the obtained results, almost all main components of the hydrogen-air energy storage gas-turbine system are well known at present; therefore, no considerable R&D costs are required. A new component of the system is the H2-O2 combustion chamber; a difficulty in manufacturing it is the necessity of ensuring the combustion of hydrogen in oxygen as complete as possible and preventing formation of nitric oxides.

  14. Examination of Ventricular Contraction Function Using Electrical Lumped Circuit Model of Circulation System

    NASA Astrophysics Data System (ADS)

    Ito, Mitsuyo; Koya, Yoshiharu; Mizoshiri, Isao

    Presently, many of the already proposed blood circulation models are mainly partial models although they are precise models. A complete model that is a combination of these partial models are difficult to analyze because it is complicated to consider both the viscosity of blood and circulatory details at the same time. So, it is difficult to control the model parameters in order to adapt to various cases of circulatory diseases. This paper proposes a complete circulation model as a lumped electrical circuit, which is comparatively simple. In the circuit model, total blood is modeled as seven lumped capacitors, representing the functions of atriums, ventricles, arteries, veins and lungs. We regard the variation of the ventricle capacitance as the driving force of the complete circulation model. In our model, we considered only the variation of pressure between each part and the blood capacity of each part. In particular, the contraction function of the left ventricle is examined under the consideration of whole blood circulation.

  15. Utilizing air purge to reduce water contamination of lube systems

    SciTech Connect

    Sirois, H.J.

    1994-12-31

    Lubrication systems are exposed to contaminants including dirt, process dilutants and water. Water contamination of lubricating oil is commonly experienced by users of machinery such as steam and gas turbines, compressors, pumps, motors, generators and others. Poorly designed or maintained turbomachinery features such as bearing housing seals and shaft packing do not prevent moisture laden air, the primary source of water, from entering the lube system. This paper presents a case history where a mechanical drive steam turbine and boiler feed pump was experiencing severe water contamination of the lube system. Bearing and control system component failures resulted from water induced corrosion. Various systems and approaches for dealing with this contamination are reviewed. Installation of a very simple and cost effective system using low pressure air applied directly to the bearing housing oil seals proved a most effective method for eliminating measurable water contamination of the lubrication system and can be applied to machinery of all types.

  16. Pulse Detonation Engine Air Induction System Analysis

    NASA Technical Reports Server (NTRS)

    Pegg, R. J.; Hunter, L. G.; Couch, B. D.

    1996-01-01

    A preliminary mixed-compression inlet design concept for potential pulse-detonation engine (PDE) powered supersonic aircraft was defined and analyzed. The objectives of this research were to conceptually design and integrate an inlet/PDE propulsion system into a supersonic aircraft, perform time-dependent CFD analysis of the inlet flowfield, and to estimate the installed PDE cycle performance. The study was baselined to a NASA Mach 5 Waverider study vehicle in which the baseline over/under turboramjet engines were replaced with a single flowpath PDE propulsion system. As much commonality as possible was maintained with the baseline configuration, including the engine location and forebody lines. Modifications were made to the inlet system's external ramp angles and a rotating cowl lip was incorporated to improve off-design inlet operability and performance. Engines were sized to match the baseline vehicle study's ascent trajectory thrust requirement at Mach 1.2. The majority of this study was focused on a flight Mach number of 3.0. The time-dependent Navier Stokes CFD analyses of a two-dimensional approximation of the inlet was conducted for the Mach 3.0 condition. The Lockheed Martin Tactical Aircraft Systems-developed FALCON CFD code with a two equation 'k-1' turbulence model was used. The downstream PDE was simulated by an array of four sonic nozzles in which the flow areas were rapidly varied in various opening/closing combinations. Results of the CFD study indicated that the inlet design concept operated successfully at the Mach 3.0 condition, satisfying mass capture, total pressure recovery, and operability requirements. Time-dependent analysis indicated that pressure and expansion waves from the simulated valve perturbations did not effect the inlet's operability or performance.

  17. Economics of water injected air screw compressor systems

    NASA Astrophysics Data System (ADS)

    Venu Madhav, K.; Kovačević, A.

    2015-08-01

    There is a growing need for compressed air free of entrained oil to be used in industry. In many cases it can be supplied by oil flooded screw compressors with multi stage filtration systems, or by oil free screw compressors. However, if water injected screw compressors can be made to operate reliably, they could be more efficient and therefore cheaper to operate. Unfortunately, to date, such machines have proved to be insufficiently reliable and not cost effective. This paper describes an investigation carried out to determine the current limitations of water injected screw compressor systems and how these could be overcome in the 15-315 kW power range and delivery pressures of 6-10 bar. Modern rotor profiles and approach to sealing and cooling allow reasonably inexpensive air end design. The prototype of the water injected screw compressor air system was built and tested for performance and reliability. The water injected compressor system was compared with the oil injected and oil free compressor systems of the equivalent size including the economic analysis based on the lifecycle costs. Based on the obtained results, it was concluded that water injected screw compressor systems could be designed to deliver clean air free of oil contamination with a better user value proposition than the oil injected or oil free screw compressor systems over the considered range of operations.

  18. Stability limit of room air temperature of a VAV system

    SciTech Connect

    Matsuba, Tadahiko; Kamimura, Kazuyuki; Kasahara, Masato; Kimbara, Akiomi; Kurosu, Shigeru; Murasawa, Itaru; Hashimoto, Yukihiko

    1998-12-31

    To control heating, ventilating, and air-conditioning (HVAC) systems, it has been necessary to accept an analog system controlled mainly by proportional-plus-integral-plus-derivative (PID) action. However, when conventional PID controllers are replaced with new digital controllers by selecting the same PID parameters as before, the control loops have often got into hunting phenomena, which result in undamped oscillations. Unstable control characteristics (such as huntings) are thought to be one of the crucial problems faced by field operators. The PID parameters must be carefully selected to avoid instabilities. In this study, a room space is simulated as a thermal system that is air-conditioned by a variable-air-volume (VAV) control system. A dynamic room model without infiltration or exfiltration, which is directly connected to a simple air-handling unit without an economizer, is developed. To explore the possible existence of huntings, a numerical system model is formulated as a bilinear system with time-delayed feedback, and a parametric analysis of the stability limit is presented. Results are given showing the stability region affected by the selection of control and system parameters. This analysis was conducted to help us tune the PID controllers for optimal HVAC control.

  19. FFTF primary system transition to natural circulation from low reactor power

    SciTech Connect

    Bouchey, G.D.; Additon, S.L.; Nutt, W.T.

    1980-01-01

    Plans for reactor and primary loop natural circulation testing in the Fast Flux Test Facility (FFTF) are summarized. Detailed pretest planning with an emphasis on understanding the implications of process noise and model uncertainties for model verification and test acceptance are discussed for a transition to natural circulation in the reactor core and primary heat transport loops from initial conditions of 5% of rated reactor power and 75% of full flow.

  20. Regenerable Air Purification System for Gas-Phase Contaminant Control

    NASA Technical Reports Server (NTRS)

    Constantinescu, Ileana C.; Finn, John E.; LeVan, M. Douglas; Lung, Bernadette (Technical Monitor)

    2000-01-01

    Tests of a pre-prototype regenerable air purification system (RAPS) that uses water vapor to displace adsorbed contaminants from an adsorbent column have been performed at NASA Ames Research Center. A unit based on this design can be used for removing trace gas-phase contaminants from spacecraft cabin air or from polluted process streams including incinerator exhaust. During the normal operation mode, contaminants are removed from the air on the column. Regeneration of the column is performed on-line. During regeneration, contaminants are displaced and destroyed inside the closed oxidation loop. In this presentation we discuss initial experimental results for the performance of RAPS in the removal and treatment of several important spacecraft contaminant species from air.

  1. Underground storage systems for high-pressure air and gases

    NASA Technical Reports Server (NTRS)

    Beam, B. H.; Giovannetti, A.

    1975-01-01

    This paper is a discussion of the safety and cost of underground high-pressure air and gas storage systems based on recent experience with a high-pressure air system installed at Moffett Field, California. The system described used threaded and coupled oil well casings installed vertically to a depth of 1200 ft. Maximum pressure was 3000 psi and capacity was 500,000 lb of air. A failure mode analysis is presented, and it is shown that underground storage offers advantages in avoiding catastrophic consequences from pressure vessel failure. Certain problems such as corrosion, fatigue, and electrolysis are discussed in terms of the economic life of such vessels. A cost analysis shows that where favorable drilling conditions exist, the cost of underground high-pressure storage is approximately one-quarter that of equivalent aboveground storage.

  2. Innovative coal gasification system with high temperature air

    SciTech Connect

    Yoshikawa, K.; Katsushima, H.; Kasahara, M.; Hasegawa, T.; Tanaka, R.; Ootsuka, T.

    1997-12-31

    This paper proposes innovative coal gasification power generation systems where coal is gasified with high temperature air of about 1300K produced by gasified coal fuel gas. The main features of these systems are high thermal efficiency, low NO{sub x} emission, compact desulfurization and dust removal equipment and high efficiency molten slag removal with a very compact gasifier. Recent experimental results on the pebble bed coal gasifier appropriate for high temperature air coal gasification are reported, where 97.7% of coal ash is successfully caught in the pebble bed and extracted without clogging. A new concept of high temperature air preheating system is proposed which is characterized by its high reliability and low cost.

  3. A semi-implicit ocean circulation model using a generalized topography-following coordinate system

    SciTech Connect

    Song, Yuhe; Haidvogel, D.

    1994-11-01

    We introduce a new ocean circulation model featuring an improved vertical coordinate representation. This new coordinate is a generalized {sigma}coordinate; however, it is capable of simultaneously maintaining high resolution in the surface layer as well as dealing with steep and/or tall topography. The model equations are the tree-dimensional, free surface, primitive equations with orthogonal curvilinear coordinates in the horizontal and the new general coordinate in the vertical. Vertical mixing is treated implicitly by the generalized Crank-Nicolson method based on a Galerkin finite element formulation. Two alternate parameterizations of surface mixing are incorporated, based respectively on the approaches of Price, Weller, and Pinkel and Mellor and Yamada. Finally, a quadrature formula of Lagrange interpolation is employed to produce a more accurate calculation of pressure and vertical velocity. Three tests are used to demonstrate the accuracy, stability, and applicability of the model: the diurnal cycling of the surface mixed layer, flow around a tall seamount, and a regional simulation of the California current system.

  4. Increased binding of circulating systemic lupus erythematosus autoantibodies to recombinant interferon alpha 2b.

    PubMed

    Khan, Wahid Ali; Qureshi, Javed Anwer

    2015-12-01

    Systemic lupus erythematosus (SLE) is a multisystem autoimmune disease characterized by various types of immunological abnormalities including circulating and tissue-fixed autoantibodies reactive with autoantigens. The mechanism that can explain the production of these antibodies is unclear. Here we address the binding specificity of SLE autoantibodies with recombinant alpha interferon 2b (hrIFN α-2b), commercially available interferon (IFN α-2b), and the gene (cIFN α-2b) encoding this interferon. hrIFN α-2b showed higher binding with naturally occurring SLE autoantibodies as compared to IFN α-2b (p < 0.05) or cIFN α-2b gene (p < 0.001) as assessed by direct binding, inhibition ELISA, and quantitative precipitin titration. The relative affinity of SLE autoantibodies for hrIFN α-2b, IFN α-2b, and cIFN α-2b gene was in the order of 1.13 × 10(-7) , 1.38 × 10(-6) , and 1.22 × 10(-6) , respectively. hrIFN α-2b is shown to have unique epitopes that would explain the possible antigenic role of hrIFN α-2b in the generation of SLE autoantibodies. Anti-hrIFN α-2b antibodies have been shown to represent an alternative immunological probe for the estimation of interferon alpha 2b in the serum of SLE patients. PMID:26547367

  5. Circulating colony-forming units of granulocytes and monocytes/macrophages in systemic lupus erythematosus.

    PubMed Central

    López-Karpovitch, X; Cardiel, M; Cardenas, R; Piedras, J; Alarcón-Segovia, D

    1989-01-01

    In systemic lupus erythematosus (SLE) patients, in vitro bone marrow (BM) colony-forming units of granulocytes and monocytes/macrophages (CFU-GM) are decreased, suggesting that granulomonopoietic failure may play an important role in the mechanism of peripheral blood (PB) depletion of neutrophils and monocytes. No information concerning CFU-GM in PB of patients with SLE is available. The present study was undertaken in order to determine whether SLE itself and the inactive or active stage of disease would modify the number of GFU-GM in PB samples from 20 treatment-free SLE women, 12 inactive and eight active. CFU-GM growth was significantly decreased in both inactive (P = 0.018) and active (P = 0.008) SLE patients as compared with controls (n = 8). The difference in CFU-GM growth between SLE groups was not significant. These results indicate that the number of circulating CFU-GM is significantly reduced in patients with SLE regardless of disease activity or remission. PMID:2766577

  6. ESTABLISHMENT OF AN ENVIRONMENTAL CONTROL TECHNOLOGY LABORATORY WITH A CIRCULATING FLUIDIZED-BED COMBUSTION SYSTEM

    SciTech Connect

    Wei-Ping Pan; Kunlei Liu; John T. Riley

    2004-04-01

    The purpose of this report is to present the progress made on the project ''Establishment of an Environmental Control Technology Laboratory with a Circulating Fluidized-Bed Combustion (CFBC) System'' during the quarter January--March 2004. The following tasks have been completed. First, plans for the renovation of space for a new Combustion Laboratory for the CFBC Facility have progressed smoothly. Second, the design calculations, including the mass balances, energy balances, heat transfer, and strength calculations have been completed. Third, considerable modifications have been made on the draft design of the CFBC Facility based on discussions conducted during the project kick-off meeting held on January 13, 2004 at the National Energy Technology Laboratory (NETL). Comments received from various experts were also used to improve the design. Finally, the drawings of all assembly parts have been completed in order to develop specifications for the fabrication of individual parts. At the same time, the proposed work for the next quarter has been outlined in this report.

  7. Compressed Air System Optimization: Case Study Food Industry in Indonesia

    NASA Astrophysics Data System (ADS)

    Widayati, Endang; Nuzahar, Hasril

    2016-01-01

    Compressors and compressed air systems was one of the most important utilities in industries or factories. Approximately 10% of the cost of electricity in the industry was used to produce compressed air. Therefore the potential for energy savings in the compressors and compressed air systems had a big challenge. This field was conducted especially in Indonesia food industry or factory. Compressed air system optimization was a technique approach to determine the optimal conditions for the operation of compressors and compressed air systems that included evaluation of the energy needs, supply adjustment, eliminating or reconfiguring the use and operation of inefficient, changing and complementing some equipment and improving operating efficiencies. This technique gave the significant impact for energy saving and costs. The potential savings based on this study through measurement and optimization e.g. system that lowers the pressure of 7.5 barg to 6.8 barg would reduce energy consumption and running costs approximately 4.2%, switch off the compressor GA110 and GA75 was obtained annual savings of USD 52,947 ≈ 455 714 kWh, running GA75 light load or unloaded then obtained annual savings of USD 31,841≈ 270,685 kWh, install new compressor 2x132 kW and 1x 132 kW VSD obtained annual savings of USD 108,325≈ 928,500 kWh. Furthermore it was needed to conduct study of technical aspect of energy saving potential (Investment Grade Audit) and performed Cost Benefit Analysis. This study was one of best practice solutions how to save energy and improve energy performance in compressors and compressed air system.

  8. New challenges to air/gas cleaning systems

    SciTech Connect

    Kovach, J.L.

    1997-08-01

    This paper discusses the need for changes in the design and manufacturing of air and gas cleaning systems to meet waste management and site remediation requirements. Current design and manufacturing practices are primarily directed toward evaluating operational problems with existing systems in nuclear reactor facilities. However, nuclear waste management needs have developed which are much broader in scope and have different processing conditions. Numerous examples of air cleaning needs for waste management activities are provided; the major differences from operating facility needs are the requirement for continuous effluent treatment under widely different processing conditions. Related regulatory issues are also discussed briefly. 1 ref.

  9. Low power, constant-flow air pump systems

    SciTech Connect

    Polito, M.D.; Albert, B.

    1994-01-01

    A rugged, yet small and lightweight constant-flow air pump system has been designed. Flow control is achieved using a novel approach which is three times more power efficient than previous designs. The resultant savings in battery size and weight makes these pumps ideal for sampling air on balloon platforms. The pump package includes meteorological sensors and an onboard computer that stores time and sensor data and turns the constant-flow pump circuit on/off. Some applications of these systems are also presented in this report.

  10. Measured Air Distribution Effectiveness for Residential Mechanical Ventilation Systems

    SciTech Connect

    Sherman, Max; Sherman, Max H.; Walker, Iain S.

    2008-05-01

    The purpose of ventilation is dilute or remove indoor contaminants that an occupant is exposed to. In a multi-zone environment such as a house, there will be different dilution rates and different source strengths in every zone. Most US homes have central HVAC systems, which tend to mix the air thus the indoor conditions between zones. Different types of ventilation systems will provide different amounts of exposure depending on the effectiveness of their air distribution systems and the location of sources and occupants. This paper will report on field measurements using a unique multi-tracer measurement system that has the capacity to measure not only the flow of outdoor air to each zone, but zone-to-zone transport. The paper will derive seven different metrics for the evaluation of air distribution. Measured data from two homes with different levels of natural infiltration will be used to evaluate these metrics for three different ASHRAE Standard 62.2 compliant ventilation systems. Such information can be used to determine the effectiveness of different systems so that appropriate adjustments can be made in residential ventilation standards such as ASHRAE Standard 62.2.

  11. Design of Complex Systems to Achieve Passive Safety: Natural Circulation Cooling of Liquid Salt Pebble Bed Reactors

    NASA Astrophysics Data System (ADS)

    Scarlat, Raluca Olga

    This dissertation treats system design, modeling of transient system response, and characterization of individual phenomena and demonstrates a framework for integration of these three activities early in the design process of a complex engineered system. A system analysis framework for prioritization of experiments, modeling, and development of detailed design is proposed. Two fundamental topics in thermal-hydraulics are discussed, which illustrate the integration of modeling and experimentation with nuclear reactor design and safety analysis: thermal-hydraulic modeling of heat generating pebble bed cores, and scaled experiments for natural circulation heat removal with Boussinesq liquids. The case studies used in this dissertation are derived from the design and safety analysis of a pebble bed fluoride salt cooled high temperature nuclear reactor (PB-FHR), currently under development in the United States at the university and national laboratories level. In the context of the phenomena identification and ranking table (PIRT) methodology, new tools and approaches are proposed and demonstrated here, which are specifically relevant to technology in the early stages of development, and to analysis of passive safety features. A system decomposition approach is proposed. Definition of system functional requirements complements identification and compilation of the current knowledge base for the behavior of the system. Two new graphical tools are developed for ranking of phenomena importance: a phenomena ranking map, and a phenomena identification and ranking matrix (PIRM). The functional requirements established through this methodology were used for the design and optimization of the reactor core, and for the transient analysis and design of the passive natural circulation driven decay heat removal system for the PB-FHR. A numerical modeling approach for heat-generating porous media, with multi-dimensional fluid flow is presented. The application of this modeling

  12. Dynamics of the circulation in the Sea of Marmara: numerical modeling experiments and observations from the Turkish straits system experiment

    NASA Astrophysics Data System (ADS)

    Chiggiato, Jacopo; Jarosz, Ewa; Book, Jeffrey W.; Dykes, James; Torrisi, Lucio; Poulain, Pierre-Marie; Gerin, Riccardo; Horstmann, Jochen; Beşiktepe, Şükrü

    2012-01-01

    During September 2008 and February 2009, the NR/V Alliance extensively sampled the waters of the Sea of Marmara within the framework of the Turkish Straits System (TSS) experiment coordinated by the NATO Undersea Research Centre. The observational effort provided an opportunity to set up realistic numerical experiments for modeling the observed variability of the Marmara Sea upper layer circulation at mesoscale resolution over the entire basin during the trial period, complementing relevant features and forcing factors revealed by numerical model results with information acquired from in situ and remote sensing datasets. Numerical model solutions from realistic runs using the Regional Ocean Modeling System (ROMS) produce a general circulation in the Sea of Marmara that is consistent with previous knowledge of the circulation drawn from past hydrographic measurements, with a westward meandering current associated with a recurrent large anticyclone. Additional idealized numerical experiments illuminate the role various dynamics play in determining the Sea of Marmara circulation and pycnocline structure. Both the wind curl and the strait flows are found to strongly influence the strength and location of the main mesoscale features. Large displacements of the pycnocline depth were observed during the sea trials. These displacements can be interpreted as storm-driven upwelling/downwelling dynamics associated with northeasterly winds; however, lateral advection associated with flow from the Straits also played a role in some displacements.

  13. Optimization and Evaluation of a Novel Size Based Circulating Tumor Cell Isolation System

    PubMed Central

    Xu, Lei; Mao, Xueying; Imrali, Ahmet; Syed, Ferrial; Mutsvangwa, Katherine; Berney, Daniel; Cathcart, Paul; Hines, John; Shamash, Jonathan; Lu, Yong-Jie

    2015-01-01

    Isolation of circulating tumor cells (CTCs) from peripheral blood has the potential to provide a far easier “liquid biopsy” than tumor tissue biopsies, to monitor tumor cell populations during disease progression and in response to therapies. Many CTC isolation technologies have been developed. We optimized the Parsortix system, an epitope independent, size and compressibility-based platform for CTCs isolation, making it possible to harvest CTCs at the speed and sample volume comparable to standard CellSearch system. We captured more than half of cancer cells from different cancer cell lines spiked in blood samples from healthy donors using this system. Cell loss during immunostaining of cells transferred and fixed on the slides is a major problem for analyzing rare cell samples. We developed a novel cell transfer and fixation method to retain >90% of cells on the slide after the immunofluorescence process without affecting signal strength and specificity. Using this optimized method, we evaluated the Parsortix system for CTC harvest in prostate cancer patients in comparison to immunobead based CTC isolation systems IsoFlux and CellSearch. We harvested a similar number (p = 0.33) of cytokeratin (CK) positive CTCs using Parsortix and IsoFlux from 7.5 mL blood samples of 10 prostate cancer patients (an average of 33.8 and 37.6 respectively). The purity of the CTCs harvested by Parsortix at 3.1% was significantly higher than IsoFlux at 1.0% (p = 0.02). Parsortix harvested significantly more CK positive CTCs than CellSearch (p = 0.04) in seven prostate cancer patient samples, where both systems were utilized (an average of 32.1 and 10.1 respectively). We also captured CTC clusters using Parsortix. Using four-color immunofluorescence we found that 85.8% of PC3 cells expressed EpCAM, 91.7% expressed CK and 2.5% cells lacked both epithelial markers. Interestingly, 95.6% of PC3 cells expressed Vimentin, including those cells that lacked both epithelial marker

  14. Optimization and Evaluation of a Novel Size Based Circulating Tumor Cell Isolation System.

    PubMed

    Xu, Lei; Mao, Xueying; Imrali, Ahmet; Syed, Ferrial; Mutsvangwa, Katherine; Berney, Daniel; Cathcart, Paul; Hines, John; Shamash, Jonathan; Lu, Yong-Jie

    2015-01-01

    Isolation of circulating tumor cells (CTCs) from peripheral blood has the potential to provide a far easier "liquid biopsy" than tumor tissue biopsies, to monitor tumor cell populations during disease progression and in response to therapies. Many CTC isolation technologies have been developed. We optimized the Parsortix system, an epitope independent, size and compressibility-based platform for CTCs isolation, making it possible to harvest CTCs at the speed and sample volume comparable to standard CellSearch system. We captured more than half of cancer cells from different cancer cell lines spiked in blood samples from healthy donors using this system. Cell loss during immunostaining of cells transferred and fixed on the slides is a major problem for analyzing rare cell samples. We developed a novel cell transfer and fixation method to retain >90% of cells on the slide after the immunofluorescence process without affecting signal strength and specificity. Using this optimized method, we evaluated the Parsortix system for CTC harvest in prostate cancer patients in comparison to immunobead based CTC isolation systems IsoFlux and CellSearch. We harvested a similar number (p = 0.33) of cytokeratin (CK) positive CTCs using Parsortix and IsoFlux from 7.5 mL blood samples of 10 prostate cancer patients (an average of 33.8 and 37.6 respectively). The purity of the CTCs harvested by Parsortix at 3.1% was significantly higher than IsoFlux at 1.0% (p = 0.02). Parsortix harvested significantly more CK positive CTCs than CellSearch (p = 0.04) in seven prostate cancer patient samples, where both systems were utilized (an average of 32.1 and 10.1 respectively). We also captured CTC clusters using Parsortix. Using four-color immunofluorescence we found that 85.8% of PC3 cells expressed EpCAM, 91.7% expressed CK and 2.5% cells lacked both epithelial markers. Interestingly, 95.6% of PC3 cells expressed Vimentin, including those cells that lacked both epithelial marker expression

  15. Determination of the relative bioavailability of salbutamol to the lungs and systemic circulation following nebulization

    PubMed Central

    Silkstone, V L; Corlett, S A; Chrystyn, H

    2002-01-01

    the systemic circulation. PMID:12207629

  16. Air Cleaning Devices for HVAC Supply Systems in Schools. Technical Bulletin.

    ERIC Educational Resources Information Center

    Wheeler, Arthur E.

    Guidelines for maintaining indoor air quality in schools with HVAC air cleaning systems are provided in this document. Information is offered on the importance of air cleaning, sources of air contaminants and indoor pollutants, types of air cleaners and particulate filters used in central HVAC systems, vapor and gas removal, and performance…

  17. Air Purification in Closed Environments: An Overview of Spacecraft Systems

    NASA Technical Reports Server (NTRS)

    Perry, Jay L.; LeVan, Douglas; Crumbley, Robert (Technical Monitor)

    2002-01-01

    The primary goal for a collective protection system and a spacecraft environmental control and life support system (ECLSS) are strikingly similar. Essentially both function to provide the occupants of a building or vehicle with a safe, habitable environment. The collective protection system shields military and civilian personnel from short-term exposure to external threats presented by toxic agents and industrial chemicals while an ECLSS sustains astronauts for extended periods within the hostile environment of space. Both have air quality control similarities with various aircraft and 'tight' buildings. This paper reviews basic similarities between air purification system requirements for collective protection and an ECLSS that define surprisingly common technological challenges and solutions. Systems developed for air revitalization on board spacecraft are discussed along with some history on their early development as well as a view of future needs. Emphasis is placed upon two systems implemented by the National Aeronautics and Space Administration (NASA) onboard the International Space Station (ISS): the trace contaminant control system (TCCS) and the molecular sieve-based carbon dioxide removal assembly (CDRA). Over its history, the NASA has developed and implemented many life support systems for astronauts. As the duration, complexity, and crew size of manned missions increased from minutes or hours for a single astronaut during Project Mercury to days and ultimately months for crews of 3 or more during the Apollo, Skylab, Shuttle, and ISS programs, these systems have become more sophisticated. Systems aboard spacecraft such as the ISS have been designed to provide long-term environmental control and life support. Challenges facing the NASA's efforts include minimizing mass, volume, and power for such systems, while maximizing their safety, reliability, and performance. This paper will highlight similarities and differences among air purification systems

  18. Simulation of the secondary air system of aero engines

    NASA Astrophysics Data System (ADS)

    Kutz, K. J.; Speer, T. M.

    1994-04-01

    This paper describes a computer program for the simulation of secondary air systems. Typical flow system elements are presented, such as restrictors, tappings, seals, vortices, and coverplates. Two-phase flow as occurring in bearing chamber vent systems is briefly discussed. An algorithm is described for the solution of the resulting nonlinear equations. The validity of the simulation over the engine operation envelope is demonstrated by a comparison with test results.

  19. Terra-Preta-Technology as an innovative system component to create circulation oriented, sustainable land use systems

    NASA Astrophysics Data System (ADS)

    Dotterweich, M.; Böttcher, J.; Krieger, A.

    2012-04-01

    This paper presents current research and application projects on innovative system solutions which are based on the implementation of a regional resource efficient material flow management as well as utilising "Terra-Preta-Technology" as an innovative system component. Terra Preta Substrate (TPS) is a recently developed substance composed of liquid and solid organic matter, including biochar, altered by acid-lactic fermentation. Based on their properties, positive effects on water and nutrient retention, soil microbiological activity, and cation-exchange capacity are expected and currently investigated by different projects. TPS further sequesters carbon and decreases NO2 emissions from fertilized soils as observed by the use of biochar. The production of TPS is based on a circulation oriented organic waste management system directly adapted to the local available inputs and desired soil amendment properties. The production of TPS is possible with simple box systems for subsistence farming but also on a much larger scale as modular industrial plants for farmers or commercial and municipal waste management companies in sizes from 500 and 50,000 m3. The Terra-Preta-Technology enhances solutions to soil conservation, soil amelioration, humic formation, reduced water consumption, long term carbon sequestration, nutrient retention, containment binding, and to biodiversity on local to a regional scale. The projects also involve research of ancient land management systems to enhance resource efficiency by means of an integrative and transdisciplinary approach.

  20. Numerical Models of Human Circulatory System under Altered Gravity: Brain Circulation

    NASA Technical Reports Server (NTRS)

    Kim, Chang Sung; Kiris, Cetin; Kwak, Dochan; David, Tim

    2003-01-01

    A computational fluid dynamics (CFD) approach is presented to model the blood flow through the human circulatory system under altered gravity conditions. Models required for CFD simulation relevant to major hemodynamic issues are introduced such as non-Newtonian flow models governed by red blood cells, a model for arterial wall motion due to fluid-wall interactions, a vascular bed model for outflow boundary conditions, and a model for auto-regulation mechanism. The three-dimensional unsteady incompressible Navier-Stokes equations coupled with these models are solved iteratively using the pseudocompressibility method and dual time stepping. Moving wall boundary conditions from the first-order fluid-wall interaction model are used to study the influence of arterial wall distensibility on flow patterns and wall shear stresses during the heart pulse. A vascular bed modeling utilizing the analogy with electric circuits is coupled with an auto-regulation algorithm for multiple outflow boundaries. For the treatment of complex geometry, a chimera overset grid technique is adopted to obtain connectivity between arterial branches. For code validation, computed results are compared with experimental data for steady and unsteady non-Newtonian flows. Good agreement is obtained for both cases. In sin-type Gravity Benchmark Problems, gravity source terms are added to the Navier-Stokes equations to study the effect of gravitational variation on the human circulatory system. This computational approach is then applied to localized blood flows through a realistic carotid bifurcation and two Circle of Willis models, one using an idealized geometry and the other model using an anatomical data set. A three- dimensional anatomical Circle of Willis configuration is reconstructed from human-specific magnetic resonance images using an image segmentation method. The blood flow through these Circle of Willis models is simulated to provide means for studying gravitational effects on the brain

  1. Laser Pulse Circulation System for Compact Monochromatic Tunable Hard X-Ray Source

    NASA Astrophysics Data System (ADS)

    Ogino, Haruyuki; de, Meng; Yamamoto, Tomohiko; Sakamoto, Fumito; Dobashi, Katsuhiro; Uesaka, Mitsuru

    2007-09-01

    We are construcing a laser electron Compton scattering monochromatic tunable hard X-ray source. It consists of the X-band (11.424 GHz) electron linear accelerator and Q-switch Nd:YAG laser. This work is a part of the JST(Japan Science and Technology Agency) project. The whole system is a part of the national project on the advanced compact medical accelerator development, hosted by NIRS(National Institute for Radiological Science). The University of Tokyo and KEK are working for the X-ray source. Main advantage of this X-ray source is monochromatic tunable hard X-rays(10-50keV) with the intensities of 108-109 photons/s. The table-top size X-ray source can generate dual energy monochromatic hard X-ray by turns and it takes about 40ms to chage the X-ray energy. It is calculated that the X-ray intensity is 107 photons/RF-pulse (108 photons/s in 10 pps) by the 35MeV electron and YAG laser(2J/pulse). The X-band beam line for the demonstration is under construction. We designed a laser pulse circulation system to increase the X-ray yield 10 times higer (up to 108 photons/RF-pulse, 109 photons/s). It can be proved that the laser total energy increases 10 times higher by the principle experiment with the lower energy laser (25mJ/pulse).

  2. Laser Pulse Circulation System for Compact Monochromatic Tunable Hard X-Ray Source

    NASA Astrophysics Data System (ADS)

    Ogino, Haruyuki; de, Meng; Yamamoto, Tomohiko; Sakamoto, Fumito; Dobashi, Katsuhiro; Uesaka, Mitsuru

    We are construcing a laser electron Compton scattering monochromatic tunable hard X-ray source. It consists of the X-band (11.424 GHz) electron linear accelerator and Q-switch Nd:YAG laser. This work is a part of the JST (Japan Science and Technology Agency) project. The whole system is a part of the national project on the advanced compact medical accelerator development, hosted by NIRS (National Institute for Radiological Science). The University of Tokyo and KEK are working for the X-ray source. Main advantage of this X-ray source is monochromatic tunable hard X-rays (10-50keV) with the intensities of 108-109 photons/s. The table-top size X-ray source can generate dual energy monochromatic hard X-ray by turns and it takes about 40ms to chage the X-ray energy. It is calculated that the X-ray intensity is 107 photons/RF-pulse (108 photons/s in 10 pps) by the 35MeV electron and YAG laser (2J/pulse). The X-band beam line for the demonstration is under construction. We designed a laser pulse circulation system to increase the X-ray yield 10 times higer (up to 108 photons/RF-pulse, 109 photons/s). It can be proved that the laser total energy increases 10 times higher by the principle experiment with the lower energy laser (25mJ/pulse).

  3. The Energy Implications of Air-Side Fouling in Constant Air Volume HVAC Systems

    NASA Astrophysics Data System (ADS)

    Wilson, Eric J. H.

    2011-12-01

    This thesis examines the effect of air-side fouling on the energy consumption of constant air volume (CAV) heating, ventilating, and air conditioning (HVAC) systems in residential and small commercial buildings. There is a particular focus on evaluating the potential energy savings that may result from the remediation of such fouling from coils, filters, and other air system components. A computer model was constructed to simulate the behavior of a building and its duct system under various levels of fouling. The model was verified through laboratory and field testing and then used to run parametric simulations to examine the range of energy impacts for various climates and duct system characteristics. A sensitivity analysis was conducted to determine the impact of parameters like duct insulation, duct leakage, duct location, and duct design on savings potential. Duct system pressures, temperatures, and energy consumption for two houses were monitored for one month. The houses' duct systems, which were both in conditioned space, were given a full cleaning, and were then monitored for another month. The flow rates at the houses improved by 10% and 6%. The improvements were primarily due to installing a new filter, as both houses had only light coil fouling. The results indicate that there was negligible change in heating energy efficiency due to the system cleaning. The parametric simulation results are in agreement with the field experiment: for systems in all eight climates, with flowrates degraded by 20% or less, if ducts are located within the thermal zone, HVAC source energy savings from cleaning are negligible or even slightly negative. However, if ducts are outside the thermal zone, savings are in the 1 to 5% range. For systems with flowrates degraded by 40%, if ducts are within the thermal zone, savings from cleaning occurs only for air conditioning energy, up to 8% in climates like Miami, FL. If ducts are outside the thermal zone, savings occurs with both

  4. Hollow Fiber Membrane Dehumidification Device for Air Conditioning System.

    PubMed

    Zhao, Baiwang; Peng, Na; Liang, Canzeng; Yong, Wai Fen; Chung, Tai-Shung

    2015-01-01

    In order to provide a comfortable living and working environment indoors in tropical countries, the outdoor air often needs to be cooled and dehumidified before it enters the rooms. Membrane separation is an emerging technology for air dehumidification and it is based on the solution diffusion mechanism. Water molecules are preferentially permeating through the membranes due to its smaller kinetic diameter and higher condensability than the other gases. Compared to other dehumidification technologies such as direct cooling or desiccation, there is no phase transition involved in membrane dehumidification, neither the contact between the fresh air stream and the desiccants. Hence, membrane dehumidification would not only require less energy consumption but also avoid cross-contamination problems. A pilot scale air dehumidification system is built in this study which comprises nine pieces of one-inch PAN/PDMS hollow fiber membrane modules. A 150 h long-term test shows that the membrane modules has good water vapor transport properties by using a low vacuum force of only 0.78 bar absolute pressure at the lumen side. The water vapor concentration of the feed humid air decreases dramatically from a range of 18-22 g/m³ to a range of 13.5-18.3 g/m³. Most importantly, the total energy saving is up to 26.2% compared with the conventional air conditioning process. PMID:26580660

  5. Hollow Fiber Membrane Dehumidification Device for Air Conditioning System

    PubMed Central

    Zhao, Baiwang; Peng, Na; Liang, Canzeng; Yong, Wai Fen; Chung, Tai-Shung

    2015-01-01

    In order to provide a comfortable living and working environment indoors in tropical countries, the outdoor air often needs to be cooled and dehumidified before it enters the rooms. Membrane separation is an emerging technology for air dehumidification and it is based on the solution diffusion mechanism. Water molecules are preferentially permeating through the membranes due to its smaller kinetic diameter and higher condensability than the other gases. Compared to other dehumidification technologies such as direct cooling or desiccation, there is no phase transition involved in membrane dehumidification, neither the contact between the fresh air stream and the desiccants. Hence, membrane dehumidification would not only require less energy consumption but also avoid cross-contamination problems. A pilot scale air dehumidification system is built in this study which comprises nine pieces of one-inch PAN/PDMS hollow fiber membrane modules. A 150 h long-term test shows that the membrane modules has good water vapor transport properties by using a low vacuum force of only 0.78 bar absolute pressure at the lumen side. The water vapor concentration of the feed humid air decreases dramatically from a range of 18–22 g/m3 to a range of 13.5–18.3 g/m3. Most importantly, the total energy saving is up to 26.2% compared with the conventional air conditioning process. PMID:26580660

  6. Voidage and pressure profile characteristics of sand-iron ore-coal-FCC single-particle systems in the riser of a pilot plant circulating fluidized bed

    SciTech Connect

    Das, M.; Meikap, B.C.; Saha, R.K.

    2008-06-15

    Hydrodynamic behaviors of single system of particles were investigated in a circulating fluidized bed (CFB) unit. Particles belonging to Geldart groups A and B like sand of various sizes (90, 300, 417, 522, 599, and 622 mu m), FCC catalyst (120 mu m), iron ore (166 and 140 {mu} m), and coal (335 and 168 {mu} m) were used to study the hydrodynamic characteristics. Superficial air velocity used in the present study ranged between 2.01 and 4.681 m/s and corresponding mass fluxes were 12.5-50 kg/(m{sup 2} s). A CFB needs the creation of some special hydrodynamic conditions, namely a certain combination of superficial gas velocity, solids circulation rate, particle diameter, density of particle, etc. which can give rise to a state wherein the solid particles are subjected to an upward velocity greater than the terminal or free fall velocity of the majority of the individual particles. The hydrodynamics of the bed was investigated in depth and theoretical analysis is presented to support the findings. Based on gas-solid momentum balance in the riser, a distinction between apparent and real voidage has been made. The effects of acceleration and friction on the real voidage have been estimated. Results indicated a 0.995 voidage for higher superficial gas velocity of 4.681. m/s.

  7. TEWI Evaluation for Household Refrigeration and Air-Conditioning Systems

    NASA Astrophysics Data System (ADS)

    Sobue, Atsushi; Watanabe, Koichi

    In the present study, we have quantitatively evaluated the global warming impact by household refrigerator and air-conditioning systems on the basis of reliable TEWI information. In TEWI evaluation of household refrigerators, the percentage of the impact by refrigerant released to the atmosphere (direct effect) is less than 18.6% in TEWI. In case of room air-conditioners, however, the percentage of direct effect is less than 5.4% in TEWI. Therefore, it was confirmed that impact by CO2 released as a result of the energy consumed to drive the refrigeration or air-conditioning systems throughout their lifetime (indirect effect) is far larger than direct effect by the entire system. A reduction of indirect effect by energy saving is the most effective measure in reducing the global warming impact by refrigeration and air-conditioning systems, For a realization of the energy saving, not only the advanced improvement in energy efficiency by household appliance manufacturers but also the improvement of consumer's mind in selecting the systems and a way of using are concluded important.

  8. Improved fireman's compressed air breathing system pressure vessel development program

    NASA Technical Reports Server (NTRS)

    King, H. A.; Morris, E. E.

    1973-01-01

    Prototype high pressure glass filament-wound, aluminum-lined pressurant vessels suitable for use in a fireman's compressed air breathing system were designed, fabricated, and acceptance tested in order to demonstrate the feasibility of producing such high performance, lightweight units. The 4000 psi tanks have a 60 standard cubic foot (SCF) air capacity, and have a 6.5 inch diamter, 19 inch length, 415 inch volume, weigh 13 pounds when empty, and contain 33 percent more air than the current 45 SCF (2250 psi) steel units. The current steel 60 SCF (3000 psi) tanks weigh approximately twice as much as the prototype when empty, and are 2 inches, or 10 percent shorter. The prototype units also have non-rusting aluminum interiors, which removes the hazard of corrosion, the need for internal coatings, and the possibility of rust particles clogging the breathing system.

  9. Prototype Systems for Measuring Outdoor Air Intake Rates in Rooftop Air Handlers

    SciTech Connect

    Fisk, William J.; Chan, Wanyu R.; Hotchi, Toshifumi

    2015-01-01

    The widespread absence of systems for real-time measurement and feedback control, of minimum outdoor air intake rates in HVAC systems contributes to the poor control of ventilation rates in commercial buildings. Ventilation rates affect building energy consumption and influence occupant health. The project designed fabricated and tested four prototypes of systems for measuring rates of outdoor air intake into roof top air handlers. All prototypes met the ±20% accuracy target at low wind speeds, with all prototypes accurate within approximately ±10% after application of calibration equations. One prototype met the accuracy target without a calibration. With two of four prototype measurement systems, there was no evidence that wind speed or direction affected accuracy; however, winds speeds were generally below usually 3.5 m s-1 (12.6 km h-1) and further testing is desirable. The airflow resistance of the prototypes was generally less than 35 Pa at maximum RTU air flow rates. A pressure drop of this magnitude will increase fan energy consumption by approximately 4%. The project did not have resources necessary to estimate costs of mass produced systems. The retail cost of components and materials used to construct prototypes ranged from approximately $1,200 to $1,700. The test data indicate that the basic designs developed in this project, particularly the designs of two of the prototypes, have considerable merit. Further design refinement, testing, and cost analysis would be necessary to fully assess commercial potential. The designs and test results will be communicated to the HVAC manufacturing community.

  10. Merging Air Quality and Public Health Decision Support Systems

    NASA Astrophysics Data System (ADS)

    Hudspeth, W. B.; Bales, C. L.

    2003-12-01

    The New Mexico Air Quality Mapper (NMAQM) is a Web-based, open source GIS prototype application that Earth Data Analysis Center is developing under a NASA Cooperative Agreement. NMAQM enhances and extends existing data and imagery delivery systems with an existing Public Health system called the Rapid Syndrome Validation Project (RSVP). RSVP is a decision support system operating in several medical and public health arenas. It is evolving to ingest remote sensing data as input to provide early warning of human health threats, especially those related to anthropogenic atmospheric pollutants and airborne pathogens. The NMAQM project applies measurements of these atmospheric pollutants, derived from both remotely sensed data as well as from in-situ air quality networks, to both forecasting and retrospective analyses that influence human respiratory health. NMAQM provides a user-friendly interface for visualizing and interpreting environmentally-linked epidemiological phenomena. The results, and the systems made to provide the information, will be applicable not only to decision-makers in the public health realm, but also to air quality organizations, demographers, community planners, and other professionals in information technology, and social and engineering sciences. As an accessible and interactive mapping and analysis application, it allows environment and health personnel to study historic data for hypothesis generation and trend analysis, and then, potentially, to predict air quality conditions from daily data acquisitions. Additional spin off benefits to such users include the identification of gaps in the distribution of in-situ monitoring stations, the dissemination of air quality data to the public, and the discrimination of local vs. more regional sources of air pollutants that may bear on decisions relating to public health and public policy.

  11. Development of a thermodynamic control system for the Fontan circulation pulsation device using shape memory alloy fibers.

    PubMed

    Yamada, Akihiro; Shiraishi, Yasuyuki; Miura, Hidekazu; Hashem, Hashem Mohamed Omran; Tsuboko, Yusuke; Yamagishi, Masaaki; Yambe, Tomoyuki

    2015-09-01

    The Fontan procedure is one of the common surgical treatments for circulatory reconstruction in pediatric patients with congenital heart disease. In Fontan circulation, low pulsatility may induce localized lung ischemia and may impair the development of pulmonary peripheral endothelial cells. To promote pulmonary circulation in Fontan circulation, we have been developing a pediatric pulmonary circulatory pulsation device using shape memory alloy fibers attached from the outside of total cavopulmonary connection. In this study, we developed a new thermal control system for the device and examined its functions. We mounted on the device 16 fibers connected in parallel around an ePTFE graft circumferentially. To provide optimized contraction, we designed the new thermal control system. The system consisted of a thermistor, a pressure sensor, and a regulator that was controlled by the adaptive thermodynamic transfer functions. We monitored the parameters and calculated heat transfer function as well as pressure distribution on the graft surface. Then we examined and compared the dynamic contractile pressure and changes in surface temperature. As a result, by the application of the control based on the new feedback system analysis, the circumferential contractile pressure increased by 35%. The adaptive thermodynamic regulation was useful for the selection of alternative thresholds of the surface temperature of the graft. The system could achieve effective contraction for the pulsatile flow generation by the device. PMID:25894077

  12. Air Revitalization System Enables Excursions to the Stratosphere

    NASA Technical Reports Server (NTRS)

    2015-01-01

    Paragon Space Development Corporation, based in Tucson, Arizona has had a long history of collaboration with NASA, including developing a modular air purification system under the Commercial Crew Development Program, designed to support the commercial space sector. Using that device and other NASA technology, startup company World View is now gearing up to take customers on helium balloon rides to the stratosphere.

  13. Experimental Air Pressure Tank Systems for Process Control Education

    ERIC Educational Resources Information Center

    Long, Christopher E.; Holland, Charles E.; Gatzke, Edward P.

    2006-01-01

    In process control education, particularly in the field of chemical engineering, there is an inherent need for industrially relevant hands-on apparatuses that enable one to bridge the gap between the theoretical content of coursework and real-world applications. At the University of South Carolina, two experimental air-pressure tank systems have…

  14. Compressed air system upgrade results in substantial energy savings

    SciTech Connect

    None, None

    2002-01-01

    This case study highlights a compressed air system upgrade at BWX Technologies manufacturing plant in Lynchburg, Virginia, which replaced antiquated compressors and dryers and implemented an improved control strategy, resulting in improved energy efficiency and savings in energy and maintenance costs.

  15. New Compressor Added to Glenn's 450- psig Combustion Air System

    NASA Technical Reports Server (NTRS)

    Swan, Jeffrey A.

    2000-01-01

    In September 1999, the Central Process Systems Engineering Branch and the Maintenance and the Central Process Systems Operations Branch, released for service a new high pressure compressor to supplement the 450-psig Combustion Air System at the NASA Glenn Research Center at Lewis Field. The new compressor, designated C-18, is located in Glenn s Central Air Equipment Building and is remotely operated from the Central Control Building. C-18 can provide 40 pounds per second (pps) of airflow at pressure to our research customers. This capability augments our existing system capacity (compressors C 4 at 38 pps and C-5 at 32 pps), which is generated from Glenn's Engine Research Building. The C-18 compressor was originally part of Glenn's 21-Inch Hypersonic Tunnel, which was transferred from the Jet Propulsion Laboratory to Glenn in the mid-1980's. With the investment of construction of facilities funding, the compressor was modified, new mechanical and electrical support equipment were purchased, and the unit was installed in the basement of the Central Air Equipment Building. After several weeks of checkout and troubleshooting, the new compressor was ready for long-term, reliable operations. With a total of 110 pps in airflow now available, Glenn is well positioned to support the high-pressure air test requirements of our research customers.

  16. 15. VIEW OF THE SPECIAL SHROUDING AND AIR HANDLING SYSTEM ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. VIEW OF THE SPECIAL SHROUDING AND AIR HANDLING SYSTEM USED IN BERYLLIUM PRODUCTION. (3/30/89) - Rocky Flats Plant, Non-Nuclear Production Facility, South of Cottonwood Avenue, west of Seventh Avenue & east of Building 460, Golden, Jefferson County, CO

  17. APPCD - INTEGRATED AIR POLLUTION CONTROL SYSTEM (IAPCS)COST MODEL

    EPA Science Inventory

    The Integrated Air Pollution Control System (IAPCS)Cost Model is a compiled model written in FORTRAN and C language which is designed to be used on an IBM or compatible PC with 640K or lower RAM and at least 1.5 Mb of hard drive space. It was developed over the past several years...

  18. PHASE I PILOT AIR CONVEYANCE SYSTEM DESIGN, CLEANING, AND CHARACTERIZATION

    EPA Science Inventory

    The report gives results of a project to develop and refine surface and airborne contamination
    measurement techniques that can be used to evaluate air conveyance system (ACS) cleaning.
    (NOTE: ACS cleaning is advertized to homeowners as a service having a number of benefits...

  19. Novel air-based system transfers large salmon during harvest

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In April of 2015, near the end of our last harvest of 4-6 kg Atlantic salmon, we evaluated an exciting new fish transport technology from Whooshh Innovations (Bellevue, WA) that uses air to move live Atlantic salmon from our growout tank to a finishing/purging tank. The Whooshh system uses a combina...

  20. TETHERED BALLOON SAMPLING SYSTEMS FOR MONITORING AIR POLLUTION

    EPA Science Inventory

    The paper is an overview of recent studies in which balloons, usually tethered, have been used to investigate the structure and air quality of the planetary boundary layer. It also describes a number of lightweight tethered balloon sampling systems, developed to investigate parti...

  1. Pressure Regulator With Internal Ejector Circulation Pump, Flow and Pressure Measurement Porting, and Fuel Cell System Integration Options

    NASA Technical Reports Server (NTRS)

    Vasquez, Arturo

    2011-01-01

    An advanced reactant pressure regulator with an internal ejector reactant circulation pump has been developed to support NASA's future fuel cell power systems needs. These needs include reliable and safe operation in variable-gravity environments, and for exploration activities with both manned and un manned vehicles. This product was developed for use in Proton Exchange Membrane Fuel Cell (PEMFC) power plant reactant circulation systems, but the design could also be applied to other fuel cell system types, (e.g., solid-oxide or alkaline) or for other gas pressure regulation and circulation needs. The regulator design includes porting for measurement of flow and pressure at key points in the system, and also includes several fuel cell system integration options. NASA has recognized ejectors as a viable alternative to mechanical pumps for use in spacecraft fuel cell power systems. The ejector motive force is provided by a variable, high-pressure supply gas that travels through the ejector s jet nozzle, whereby the pressure energy of the fluid stream is converted to kinetic energy in the gas jet. The ejector can produce circulation-to-consumption-flow ratios that are relatively high (2-3 times), and this phenomenon can potentially (with proper consideration of the remainder of the fuel cell system s design) be used to provide completely for reactant pre-humidification and product water removal in a fuel cell system. Specifically, a custom pressure regulator has been developed that includes: (1) an ejector reactant circulation pump (with interchangeable jet nozzles and mixer sections, gas-tight sliding and static seals in required locations, and internal fluid porting for pressure-sensing at the regulator's control elements) and (2) internal fluid porting to allow for flow rate and system pressure measurements. The fluid porting also allows for inclusion of purge, relief, and vacuum-breaker check valves on the regulator assembly. In addition, this regulator could also

  2. Operation of a breadboard liquid-sorbent/membrane-contactor system for removing carbon dioxide and water vapor from air

    NASA Technical Reports Server (NTRS)

    Mccray, Scott B.; Ray, Rod; Newbold, David D.; Millard, Douglas L.; Friesen, Dwayne T.; Foerg, Sandra

    1992-01-01

    Processes to remove and recover carbon dioxide (CO2) and water vapor from air are essential for successful long-duration space missions. This paper presents results of a developmental program focused on the use of a liquid-sorbent/membrane-contactor (LSMC) system for removal of CO2 and water vapor from air. In this system, air from the spacecraft cabin atmosphere is circulated through one side of a hollow-fiber membrane contactor. On the other side of the membrane contactor is flowed a liquid sorbent, which absorbs the CO2 and water vapor from the feed air. The liquid sorbent is then heated to desorb the CO2 and water vapor. The CO2 is subsequently removed from the system as a concentrated gas stream, whereas the water vapor is condensed, producing a water stream. A breadboard system based on this technology was designed and constructed. Tests showed that the LSMC breadboard system can produce a CO2 stream and a liquid-water stream. Details are presented on the operation of the system, as well as the effects on performance of variations in feed conditions.

  3. a Mesoscale Atmospheric Dispersion Modeling System for Simulations of Topographically Induced Atmospheric Flow and Air Pollution Dispersion.

    NASA Astrophysics Data System (ADS)

    Boybeyi, Zafer

    A mesoscale atmospheric dispersion modeling system has been developed to investigate mesoscale circulations and associated air pollution dispersion, including effects of terrain topography, large water bodies and urban areas. The system is based on a three-dimensional mesoscale meteorological model coupled with two dispersion models (an Eulerian dispersion model and a Lagrangian particle dispersion model). The mesoscale model is hydrostatic and based on primitive equations formulated in a terrain-following coordinate system with a E-varepsilon turbulence closure scheme. The Eulerian dispersion model is based on numerical solution of the advection-diffusion equation to allow one to simulate releases of non-buoyant pollutants (especially from area and volume sources). The Lagrangian particle dispersion model allows one to simulate releases of buoyant pollutants from arbitrary sources (particularly from point and line sources). The air pollution dispersion models included in the system are driven by the meteorological information provided by the mesoscale model. Mesoscale atmospheric circulations associated with sea and lake breezes have been examined using the mesoscale model. A series of model sensitivity studies were performed to investigate the effects of different environmental parameters on these circulations. It was found that the spatial and temporal variation of the sea and lake breeze convergence zones and the associated convective activities depend to a large extent on the direction and the magnitude of the ambient wind. Dispersion of methyl isocyanate gas from the Bhopal accident was investigated using the mesoscale atmospheric dispersion modeling system. A series of numerical experiments were performed to investigate the possible role of the mesoscale circulations on this industrial gas episode. The temporal and spatial variations of the wind and turbulence fields were simulated with the mesoscale model. The dispersion characteristics of the accidental

  4. Coupling of wave and circulation models in coastal-ocean predicting systems: a case study for the German Bight

    NASA Astrophysics Data System (ADS)

    Staneva, J.; Wahle, K.; Günther, H.; Stanev, E.

    2015-12-01

    This study addresses the impact of coupling between wind wave and circulation models on the quality of coastal ocean predicting systems. This is exemplified for the German Bight and its coastal area known as the Wadden Sea. The latter is the area between the barrier islands and the coast. This topic reflects the increased interest in operational oceanography to reduce prediction errors of state estimates at coastal scales, which in many cases are due to unresolved nonlinear feedback between strong tidal currents and wind-waves. In this study we present analysis of wave and hydrographic observations, as well as results of numerical simulations. A nested-grid modelling system is used to producing reliable nowcasts and short-term forecasts of ocean state variables, including wind waves and hydrodynamics. The data base includes ADCP observations and continuous measurements from data stations. The individual and collective role of wind, waves and tidal forcing are quantified. The performance of the forecast system is illustrated for the cases of several extreme events. Effects of ocean waves on coastal circulation and sea level are investigated by considering the wave-dependent stress and wave breaking parameterization. Also the effects which the circulation exerts on the wind waves are tested for the coastal areas using different parameterizations. The improved skill of the coupled forecasts compared to the non-coupled ones, in particular during extreme events, justifies the further enhancements of coastal operational systems by including wind wave models.

  5. Mathematical model of one-man air revitalization system

    NASA Technical Reports Server (NTRS)

    1976-01-01

    A mathematical model was developed for simulating the steady state performance in electrochemical CO2 concentrators which utilize (NMe4)2 CO3 (aq.) electrolyte. This electrolyte, which accommodates a wide range of air relative humidity, is most suitable for one-man air revitalization systems. The model is based on the solution of coupled nonlinear ordinary differential equations derived from mass transport and rate equations for the processes which take place in the cell. The boundary conditions are obtained by solving the mass and energy transport equations. A shooting method is used to solve the differential equations.

  6. Closed loop air cooling system for combustion turbines

    DOEpatents

    Huber, D.J.; Briesch, M.S.

    1998-07-21

    Convective cooling of turbine hot parts using a closed loop system is disclosed. Preferably, the present invention is applied to cooling the hot parts of combustion turbine power plants, and the cooling provided permits an increase in the inlet temperature and the concomitant benefits of increased efficiency and output. In preferred embodiments, methods and apparatus are disclosed wherein air is removed from the combustion turbine compressor and delivered to passages internal to one or more of a combustor and turbine hot parts. The air cools the combustor and turbine hot parts via convection and heat is transferred through the surfaces of the combustor and turbine hot parts. 1 fig.

  7. Closed loop air cooling system for combustion turbines

    DOEpatents

    Huber, David John; Briesch, Michael Scot

    1998-01-01

    Convective cooling of turbine hot parts using a closed loop system is disclosed. Preferably, the present invention is applied to cooling the hot parts of combustion turbine power plants, and the cooling provided permits an increase in the inlet temperature and the concomitant benefits of increased efficiency and output. In preferred embodiments, methods and apparatus are disclosed wherein air is removed from the combustion turbine compressor and delivered to passages internal to one or more of a combustor and turbine hot parts. The air cools the combustor and turbine hot parts via convection and heat is transferred through the surfaces of the combustor and turbine hot parts.

  8. Developments in skirt systems for air cushion vehicles

    NASA Astrophysics Data System (ADS)

    Inch, Peter; Prentice, Mark E.; Lewis, Carol Jean

    The present evaluation of the development status of air-cushion vehicle (ACV) skirts emphasizes the materials employed, with a view to the formulation of materials-performance requirements for next-generation AVCs and, in particular, an 'air-cushion catamaran' surface-effect ship (SES). Attention is given to novel skirt-design features which furnish substantial savings in maintenance costs. The employment of extant test rig data and the use of CAD methods are discussed, and the features of a novel system for the direct fixing of a bow finger onto an SES structure are noted.

  9. Dynamics of mononuclear phagocyte system Fc receptor function in systemic lupus erythematosus. Relation to disease activity and circulating immune complexes.

    PubMed

    Kimberly, R P; Parris, T M; Inman, R D; McDougal, J S

    1983-02-01

    Seventeen pairs of longitudinal studies of mononuclear phagocyte system (MPS) Fc receptor function in 15 patients with systemic lupus were performed to explore the dynamic range of Fc receptor dysfunction in lupus and to establish the relationships between MPS function, clinical disease activity and circulating immune complexes (CIC). Fc receptor function was measured by the clearance of IgG sensitized autologous erythrocytes. At the time of first study the degree of MPS dysfunction was correlated with both clinical activity (P less than 0.05) and CIC (P less than 0.05). At follow-up patients with a change in clinical status show significantly larger changes in clearance function compared to clinically stable patients (206 min vs 7 min; P less than 0.001). MPS function changed concordantly with a change in clinical status in all cases (P = 0.002). Longitudinal assessments did not demonstrate concordance of changes in MPS function and CIC, measured by three different assays. The MPS Fc receptor defect in systemic lupus is dynamic and closely associated with disease activity. The lack of concordance of the defect with changes in CIC suggests that either CIC does not adequately reflect receptor site saturation or that other factors may also contribute to the magnitude of MPS dysfunction. PMID:6839542

  10. Disinfecting Filters For Recirculated Air

    NASA Technical Reports Server (NTRS)

    Pilichi, Carmine A.

    1992-01-01

    Simple treatment disinfects air filters by killing bacteria, algae, fungi, mycobacteria, viruses, spores, and any other micro-organisms filters might harbor. Concept applied to reusable stainless-steel wire mesh filters and disposable air filters. Treatment used on filters in air-circulation systems in spacecraft, airplanes, other vehicles, and buildings to help prevent spread of colds, sore throats, and more-serious illnesses.

  11. CLASSIFICATION OF THE MGR SITE COMPRESSED AIR SYSTEM

    SciTech Connect

    J.A. Ziegler

    1999-08-31

    The purpose of this analysis is to document the Quality Assurance (QA) classification of the Monitored Geologic Repository (MGR) site compressed air system structures, systems and components (SSCs) performed by the MGR Safety Assurance Department. This analysis also provides the basis for revision of YMP/90-55Q, Q-List (YMP 1998). The Q-List identifies those MGR SSCs subject to the requirements of DOE/RW-0333P, ''Quality Assurance Requirements and Description'' (QARD) (DOE 1998).

  12. CLASSIFICATION OF THE MGR SUBSURFACE COMPRESSED AIR SYSTEM

    SciTech Connect

    R. Garrett

    1999-08-31

    The purpose of this analysis is to document the Quality Assurance (QA) classification of the Monitored Geologic Repository (MGR) subsurface compressed air system structures, systems and components (SSCs) performed by the MGR Safety Assurance Department. This analysis also provides the basis for revision of YMP/90-55Q, Q-List (YMP 1998). The Q-List identifies those MGR SSCs subject to the requirements of DOE/RW-0333P, ''Quality Assurance Requirements and Description'' (QARD) (DOE 1998).

  13. Ocean circulation

    NASA Astrophysics Data System (ADS)

    Thompson, Andrew F.; Rahmstorf, Stefan

    The ocean moderates the Earth's climate due to its vast capacity to store and transport heat; the influence of the large-scale ocean circulation on changes in climate is considered in this chapter. The ocean experiences both buoyancy forcing (through heating/cooling and evaporation/precipitation) and wind forcing. Almost all ocean forcing occurs at the surface, but these changes are communicated throughout the entire depth of the ocean through the meridional overturning circulation (MOC). In a few localized regions, water become sufficiently dense to penetrate thousands of meters deep, where it spreads, providing a continuous source of deep dense water to the entire ocean. Dense water returns to the surface and thus closes the MOC, either through density modification due to diapycnal mixing or by upwelling along sloping isopycnals across the Southern Ocean. Determination of the relative contributions of these two processes in the MOC remains an active area of research. Observations obtained primarily from isotopic compositions in ocean sediments provide substantial evidence that the structure of the MOC has changed significantly in the past. Indeed, large and abrupt changes to the Earth's climate during the past 120,000 years can be linked to either a reorganization or a complete collapse of the MOC. Two of the more dramatic instances of abrupt change include Dansgaard-Oeschger events, abrupt warmings that could exceed 10°C over a period as short as a few decades, and Heinrich events, which are associated with massive freshwater fluxes due to rapid iceberg discharges into the North Atlantic. Numerical models of varying complexity that have captured these abrupt transitions all underscore that the MOC is a highly nonlinear system with feedback loops, multiple equilibria, and hysteresis effects. Prediction of future abrupt shifts in the MOC or "tipping points" remains uncertain. However, the inferred behavior of the MOC during glacial climates suggests that

  14. Modeling and simulation of liquid-solid circulating fluidized bed ion exchange system for continuous protein recovery.

    PubMed

    Mazumder, Jahirul; Zhu, Jingxu; Bassi, Amarjeet S; Ray, Ajay K

    2009-09-01

    Liquid-solid circulating fluidized bed (LSCFB) is an integrated two-column (downcomer and riser) system which can accommodate two separate processes (adsorption and desorption) in the same unit with continuous circulation of the solid particles between the two columns. In this study, a mathematical model based on the assumption of homogeneous fluidization was developed considering hydrodynamics, adsorption-desorption kinetics and liquid-solid mass transfer. The simulation results showed good agreement with the available experimental results for continuous protein recovery. A parametric sensitivity study was performed to better understand the influence of different operating parameters on the BSA adsorption and desorption capacity of the system. The model developed can easily be extended to other applications of LSCFB. PMID:19466748

  15. An integrated regenerative air revitalization system for spacecraft

    NASA Technical Reports Server (NTRS)

    Noyes, G. P.; Heppner, D. B.; Schubert, F. H.; Quattrone, P. D.

    1982-01-01

    Progress towards development of an air revitalization system (ARS) for spacecraft breathable atmosphere regeneration is assessed, and a preliminary design for a one-person ARS is described. The ARS is considered a necessary component of any permanently manned orbital station, and studies have demonstrated that penalties for expendable air supplies justify an ARS for missions longer than 40 days. CO2 must be removed and O2 returned along with N2, which can be extracted from hydrazine, with the H2 component returning to the operation of the CO2 reduction subsystem. An experimental ARS (ARX-1) features a cabin humidity control unit, a CO2 concentrator, an air-cooled CO2 reduction reactor, an oxygen generator (electrolysis), the hydrazine N2 generator, and a water handling unit. A 120-day test demonstrated one-button startup and 480 hr operation in a normal mode.

  16. Prefeasibility study on compressed air energy storage systems

    NASA Astrophysics Data System (ADS)

    Elmahgary, Y.; Peltola, E.; Sipilae, K.; Vaeaetaeinen, A.

    1991-08-01

    A prefeasibility study on compressed air energy storage (CALS) systems was launched in VTT in the course of the year 1990. The study was undertaken partly in the Laboratory of Electrical and Automation Engineering and partly in the Road, Traffic and Geotechnical Laboratory. Information on existing mines in Finland which could be used as storage caverns were collected (part 2). The costs of excavating rock caverns for compressed air storage and those for forming suitable storage caverns in existing mines were also estimated. This information was used in the first (and present) part of the report to calculate the economics of CAES. In the present part (part 1) of the study, an analysis of the different possible systems was given following a review of literature on CAES. This was followed by an economic analysis which comprised two separate systems. The first consisted of conventional oil fueled gas turbine plants provided with the CALS system. In the second system, wind turbines were used to run the compressors which are used in charging the compressed air storage cavern. The results of the current prefeasibility study confirmed the economic attractiveness of the CAES in the first system. Wind turbines still seem, however, to be too expensive to compete with coal power plants. More accurate and straight-forward results could be obtained only in a more comprehensive study.

  17. Calibration of NASA Turbulent Air Motion Measurement System

    NASA Technical Reports Server (NTRS)

    Barrick, John D. W.; Ritter, John A.; Watson, Catherine E.; Wynkoop, Mark W.; Quinn, John K.; Norfolk, Daniel R.

    1996-01-01

    A turbulent air motion measurement system (TAMMS) was integrated onboard the Lockheed 188 Electra airplane (designated NASA 429) based at the Wallops Flight Facility in support of the NASA role in global tropospheric research. The system provides air motion and turbulence measurements from an airborne platform which is capable of sampling tropospheric and planetary boundary-layer conditions. TAMMS consists of a gust probe with free-rotating vanes mounted on a 3.7-m epoxy-graphite composite nose boom, a high-resolution inertial navigation system (INS), and data acquisition system. A variation of the tower flyby method augmented with radar tracking was implemented for the calibration of static pressure position error and air temperature probe. Additional flight calibration maneuvers were performed remote from the tower in homogeneous atmospheric conditions. System hardware and instrumentation are described and the calibration procedures discussed. Calibration and flight results are presented to illustrate the overall ability of the system to determine the three-component ambient wind fields during straight and level flight conditions.

  18. THE EMISSION PROCESSING SYSTEM FOR THE ETA/CMAQ AIR QUALITY FORECAST SYSTEM

    EPA Science Inventory

    NOAA and EPA have created an Air Quality Forecast (AQF) system. This AQF system links an adaptation of the EPA's Community Multiscale Air Quality Model with the 12 kilometer ETA model running operationally at NOAA's National Center for Environmental Predication (NCEP). One of th...

  19. AUTOMOTIVE DIESEL MAINTENANCE 1. UNIT II, MAINTAINING THE AIR SYSTEM--DETROIT DIESEL ENGINES.

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 30-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF THE DIESEL ENGINE AIR SYSTEM. TOPICS ARE (1) OPERATION AND FUNCTION, (2) AIR CLEANER, (3) AIR SHUT-DOWN HOUSING, (4) EXHAUST SYSTEM, (5) BLOWER, (6) TURBOCHARGER, AND (7) TROUBLE-SHOOTING TIPS ON THE AIR SYSTEM. THE MODULE CONSISTS OF A…

  20. A Vision of the Future Air Traffic Control System

    NASA Technical Reports Server (NTRS)

    Erzberger, Heinz

    2000-01-01

    The air transportation system is on the verge of gridlock, with delays and cancelled flights this summer reaching all time highs. As demand for air transportation continues to increase, the capacity needed to accommodate the growth in traffic is falling farther and farther behind. Moreover, it has become increasingly apparent that the present system cannot be scaled up to provide the capacity increases needed to meet demand over the next 25 years. NASA, working with the Federal Aviation Administration and industry, is pursuing a major research program to develop air traffic management technologies that have the ultimate goal of doubling capacity while increasing safety and efficiency. This seminar will describe how the current system operates, what its limitations are and why a revolutionary "shift in paradigm" is needed to overcome fundamental limitations in capacity and safety. For the near term, NASA has developed a portfolio of software tools for air traffic controllers, called the Center-TRACON Automation System (CTAS), that provides modest gains in capacity and efficiency while staying within the current paradigm. The outline of a concept for the long term, with a deployment date of 2015 at the earliest, has recently been formulated and presented by NASA to a select group of industry and government stakeholders. Automated decision making software, combined with an Internet in the sky that enables sharing of information and distributes control between the cockpit and the ground, is key to this concept. However, its most revolutionary feature is a fundamental change in the roles and responsibilities assigned to air traffic controllers.