Science.gov

Sample records for air conditioned buildings

  1. Concentrated Solar Air Conditioning for Buildings Project

    NASA Technical Reports Server (NTRS)

    McLaughlin, Rusty

    2010-01-01

    This slide presentation reviews project to implement the use of solar power to provide air conditioning for NASA buildings. Included is an overall conceptual schematic, and an diagram of the plumbing and instrumentation for the project. The use of solar power to power air conditioning in buildings, particularly in the Southwest, could save a significant amount of money. DOD studies have concluded that air conditioning accounts for 30-60% of total energy expenditures.

  2. BEETIT: Building Cooling and Air Conditioning

    SciTech Connect

    2010-09-01

    BEETIT Project: The 14 projects that comprise ARPA-E’s BEETIT Project, short for “Building Energy Efficiency Through Innovative Thermodevices,” are developing new approaches and technologies for building cooling equipment and air conditioners. These projects aim to drastically improve building energy efficiency and reduce greenhouse gas emissions such as carbon dioxide (CO2) at a cost comparable to current technologies.

  3. Multivariate analysis comparing microbial air content of an air-conditioned building and a naturally ventilated building over one year

    NASA Astrophysics Data System (ADS)

    Parat, Sylvie; Perdrix, Alain; Fricker-Hidalgo, Hélène; Saude, Isabelle; Grillot, Renee; Baconnier, Pierre

    Heating, ventilation and air-conditioning (HVAC) may be responsible for the production and spread of airborne microorganisms in office buildings. In order to compare airborne microbiological flora in an air-conditioned building with that in a naturally ventilated building, eight sets of measurements were made over a 1-year period. Concurrently with other environmental measurements, air samples were collected in each building, from three offices and from the outdoor air, using the Andersen single-stage sampler. Three different media were used to culture fungi, staphylococci and mesophilic bacteria. Multivariate analysis revealed a group of offices more contaminated than others, and a marked seasonal variation in fungal concentrations. A comparison of mean levels of microorganisms measured in the two buildings showed that the air microbial content was significantly higher and more variable in the naturally ventilated building than in the air-conditioned building. Moreover, in the naturally ventilated building, the interior fungal content was strongly dependent on the outdoor content, while in the air-conditioned building fungal concentrations remained constant despite significant variations measured outside. This was confirmed by a statistical comparison of the correlation coefficients between indoor and outdoor concentrations. No difference was observed regarding gaseous pollutants and temperature, but relative humidity was significantly higher in the air-conditioned building. The effect of HVAC was to prevent the intake of outdoor particles and to dilute the indoor concentrations. These results are consistent with the presence of high-efficiency filters and a steam humidifier in the HVAC system under study.

  4. Indoor air quality and energy performance of air-conditioned office buildings in Singapore.

    PubMed

    Sekhar, S C; Tham, K W; Cheong, K W

    2003-12-01

    An integrated indoor air quality (IAQ)-energy audit methodology has been developed in this study in Singapore, which provides a rigorous and systematic method of obtaining the status-quo assessment of an 'IAQ signature' in a building. The methodology entails a multi-disciplinary model in obtaining measured data pertaining to different dimensions within the built environment such as the physical, chemical, biological, ventilation, and occupant response characteristics. This paper describes the audit methodology and presents the findings from five air-conditioned office buildings in Singapore. The research has also led to the development of an indoor pollutant standard index (IPSI), which is discussed in this paper. Other performance indicators such as, the ventilation index and the energy index as well as the building symptom index (BSI) are also presented and discussed in the context of an integrated approach to IAQ and energy. Several correlation attempts were made on the various symptoms, indoor air acceptability, thermal comfort, BSI and IPSI, and while BSI values are found to correlate among them as well as with IAQ and THERMAL COMFORT acceptability, no such correlation was observed between BSI and IPSI. This would suggest that the occupants' perception of symptoms experienced as well as environmental acceptability is quite distinct from IAQ acceptability determined from empirical measurements of indoor pollutants, which reinforces the complex nature of IAQ issues. PMID:14636226

  5. Summertime Temperatures in Buildings Without Air-Conditioning.

    ERIC Educational Resources Information Center

    Loudon, A. G.

    Many modern buildings become uncomfortably warm during sunny spells in the summer, and until recently there was no simple, reliable method of assessing at the design stage whether a building would become overheated. This paper describes a method of calculating summertime temperatures which was developed at the Building Research Station, and gives…

  6. Study of indoor radon levels in high-rise air-conditioned office buildings.

    PubMed

    Chao, C Y

    1999-12-01

    A series of measurements were conducted to study the indoor radon pollution in air-conditioned high-rise office buildings. Continuous monitoring of indoor radon levels in nine air-conditioned premises located in six office buildings in Hong Kong was conducted from August 1996 to February 1998. Each of the tests lasted for at least 48 hours. The measurement covered both day time monitoring while the air-conditioning was on and night time monitoring while the air-conditioning was off. The indoor radon level followed inversely the operation pattern of the mechanical ventilation systems in the buildings. During office hours when the mechanical ventilation was on, the indoor radon level decayed and after the mechanical ventilation was off during non-office hours, the radon level increased. The average indoor radon level during office hours on the nine premises varied from 87 Bq/m3 to 296 Bq/m3, and the indoor averaged radon levels over both day time and night time periods without mechanical ventilation were about 25 percent higher. The air infiltration rate and the radon emission characteristics from the building materials were estimated from the radon build-up curves which were observed after the mechanical ventilation was off. The radon decay curve observed after the mechanical ventilation system was turned on was used to calculate the total fresh air intake rate. Average radon emanation rates of the building materials in the six buildings varied from 0.0019 to 0.0033 Bq/m2s. It has been found that building infiltration rate accounted for about 10-30 percent of the total building ventilation rate in the buildings depending on building tightness. PMID:10633952

  7. An Investigation of Energy Consumption and Cost in Large Air-Conditioned Buildings. An Interim Report.

    ERIC Educational Resources Information Center

    Milbank, N. O.

    Two similarly large buildings and air conditioning systems are comparatively analyzed as to energy consumption, costs, and inefficiency during certain measured periods of time. Building design and velocity systems are compared to heating, cooling, lighting and distribution capabilities. Energy requirements for pumps, fans and lighting are found to…

  8. Consistent pattern of elevated symptoms in air-conditioned office buildings: a reanalysis of epidemiologic studies.

    PubMed Central

    Mendell, M J; Smith, A H

    1990-01-01

    Published studies of the relation between type of building ventilation system and work-related symptom prevalence in office workers have been contradictory. A reanalysis was performed of six studies meeting specific eligibility criteria, combining published data with unpublished information obtained from study authors. Five eligible studies were from the United Kingdom, and one was from Denmark. Standardized categories of building ventilation type were created to allow comparison of effects across studies. Within each study, prevalence odds ratios (PORs) were calculated for symptoms in each ventilation category relative to a baseline category of naturally ventilated buildings. Air-conditioned buildings were consistently associated with increased prevalence of work-related headache (POR = 1.3-3.1), lethargy (POR = 1.4-5.1), and upper respiratory/mucus membrane symptoms (POR = 1.3-4.8). Humidification was not a necessary factor for the higher symptom prevalence associated with air-conditioning. Mechanical ventilation without air-conditioning was not associated with higher symptom prevalence. The consistent associations found between type of building ventilation and reported symptom prevalence have potentially important public health and economic implications. PMID:2400029

  9. Solar Absorption Refrigeration System for Air-Conditioning of a Classroom Building in Northern India

    NASA Astrophysics Data System (ADS)

    Agrawal, Tanmay; Varun; Kumar, Anoop

    2015-10-01

    Air-conditioning is a basic tool to provide human thermal comfort in a building space. The primary aim of the present work is to design an air-conditioning system based on vapour absorption cycle that utilizes a renewable energy source for its operation. The building under consideration is a classroom of dimensions 18.5 m × 13 m × 4.5 m located in Hamirpur district of Himachal Pradesh in India. For this purpose, cooling load of the building was calculated first by using cooling load temperature difference method to estimate cooling capacity of the air-conditioning system. Coefficient of performance of the refrigeration system was computed for various values of strong and weak solution concentration. In this work, a solar collector is also designed to provide required amount of heat energy by the absorption system. This heat energy is taken from solar energy which makes this system eco-friendly and sustainable. A computer program was written in MATLAB to calculate the design parameters. Results were obtained for various values of solution concentrations throughout the year. Cost analysis has also been carried out to compare absorption refrigeration system with conventional vapour compression cycle based air-conditioners.

  10. Energy Performance Comparison of Heating and Air Conditioning Systems for Multi-Family Residential Buildings

    SciTech Connect

    Wang, Weimin; Zhang, Jian; Jiang, Wei; Liu, Bing

    2011-07-31

    The type of heating, ventilation and air conditioning (HVAC) system has a large impact on the heating and cooling energy consumption in multifamily residential buildings. This paper compares the energy performance of three HVAC systems: a direct expansion (DX) split system, a split air source heat pump (ASHP) system, and a closed-loop water source heat pump (WSHP) system with a boiler and an evaporative fluid cooler as the central heating and cooling source. All three systems use gas furnace for heating or heating backup. The comparison is made in a number of scenarios including different climate conditions, system operation schemes and applicable building codes. It is found that with the minimum code-compliant equipment efficiency, ASHP performs the best among all scenarios except in extremely code climates. WSHP tends to perform better than the split DX system in cold climates but worse in hot climates.

  11. Thermal comfort in the humid tropics: Field experiments in air conditioned and naturally ventilated buildings in Singapore

    NASA Astrophysics Data System (ADS)

    de Dear, R. J.; Leow, K. G.; Foo, S. C.

    1991-12-01

    Thermal comfort field experiments were conducted in Singapore in both naturally ventilated highrise residential buildings and air conditioned office buildings. Each of the 818 questionnaire responses was made simultaneously with a detailed set of indoor climatic measurements, and estimates of clothing insulation and metabolic rate. Results for the air conditioned sample indicated that office buildings were overcooled, causing up to one-third of their occupants to experience cool thermal comfort sensations. These observations in air conditioned buildings were broadly consistent with the ISO, ASHRAE and Singapore indoor climatic standards. Indoor climates of the naturally ventilated apartments during the day and early evening were on average three degrees warmer than the ISO comfort standard prescriptions, but caused much less thermal discomfort than expected. Discrepancies between thermal comfort responses in apartment blocks and office buildings are discussed in terms of contemporary perceptual theory.

  12. Modelica Library for Building Heating, Ventilation and Air-Conditioning Systems

    SciTech Connect

    Wetter, Michael

    2009-06-17

    This paper presents a freely available Modelica library for building heating, ventilation and air conditioning systems. The library is based on the Modelica.Fluid library. It has been developed to support research and development of integrated building energy and control systems. The primary applications are controls design, energy analysis and model-based operation. The library contains dynamic and steady-state component models that are applicable for analyzing fast transients when designing control algorithms and for conducting annual simulations when assessing energy performance. For most models, dimensional analysis is used to compute the performance for operating points that differ from nominal conditions. This allows parameterizing models in the absence of detailed geometrical information which is often impractical to obtain during the conceptual design phase of building systems. In the first part of this paper, the library architecture and the main classes are described. In the second part, an example is presented in which we implemented a model of a hydronic heating system with thermostatic radiator valves and thermal energy storage.

  13. Thermal comfort in air-conditioned buildings in hot and humid climates--why are we not getting it right?

    PubMed

    Sekhar, S C

    2016-02-01

    While there are plenty of anecdotal experiences of overcooled buildings in summer, evidence from field studies suggests that there is indeed an issue of overcooling in tropical buildings. The findings suggest that overcooled buildings are not a consequence of occupant preference but more like an outcome of the HVAC system design and operation. Occupants' adaptation in overcooled indoor environments through additional clothing cannot be regarded as an effective mitigating strategy for cold thermal discomfort. In the last two decades or so, several field studies and field environmental chamber studies in the tropics provided evidence for occupants' preference for a warmer temperature with adaptation methods such as elevated air speeds. It is important to bear in mind that indoor humidity levels are not compromised as they could have an impact on the inhaled air condition that could eventually affect perceived air quality. This review article has attempted to track significant developments in our understanding of the thermal comfort issues in air-conditioned office and educational buildings in hot and humid climates in the last 25 years, primarily on occupant preference for thermal comfort in such climates. The issue of overcooled buildings, by design intent or otherwise, is discussed in some detail. Finally, the article has explored some viable adaptive thermal comfort options that show considerable promise for not only improving thermal comfort in tropical buildings but are also energy efficient and could be seen as sustainable solutions. PMID:25626476

  14. Energy Savings Potential and Research, Development, & Demonstration Opportunities for Commercial Building Heating, Ventilation, and Air Conditioning Systems

    SciTech Connect

    none,

    2011-09-01

    This report covers an assessment of 182 different heating, ventilation, and air-conditioning (HVAC) technologies for U.S. commercial buildings to identify and provide analysis on 17 priority technology options in various stages of development. The analyses include an estimation of technical energy-savings potential, description of technical maturity, description of non-energy benefits, description of current barriers for market adoption, and description of the technology’s applicability to different building or HVAC equipment types. From these technology descriptions, are suggestions for potential research, development and demonstration (RD&D) initiatives that would support further development of the priority technology options.

  15. Energy Savings Potential and Research, Development, & Demonstration Opportunities for Residential Building Heating, Ventilation, and Air Conditioning Systems

    SciTech Connect

    Goetzler, William; Zogg, Robert; Young, Jim; Schmidt, Justin

    2012-10-01

    This report is an assessment of 135 different heating, ventilation, and air-conditioning (HVAC) technologies for U.S. residential buildings to identify and provide analysis on 19 priority technology options in various stages of development. The analyses include an estimation of technical energy-savings potential, descriptions of technical maturity, descriptions of non-energy benefits, descriptions of current barriers for market adoption, and descriptions of the technology's applicability to different building or HVAC equipment types. From these technology descriptions, are suggestions for potential research, development and demonstration (RD&D) initiatives that would support further development of the priority technology options.

  16. Air Conditioning Does Reduce Air Pollution Indoors

    ERIC Educational Resources Information Center

    Healy, Bud

    1970-01-01

    Report of the winter meeting of the American Society of Heating, Refrigerating and Air-Conditioning Engineers. Subjects covered are--(1) title subject, (2) predictions for the human habitat in 1994, (3) fans, and (4) fire safety in buildings. (JW)

  17. Energy audits reveal significant energy savings potential in India`s commercial air-conditioned building sector

    SciTech Connect

    Singh, G.; Presny, D.; Fafard, C.

    1997-12-31

    The United States Agency for International Development (USAID) began its Energy Management Consultation and Training (EMCAT) project in India. The EMCAT project began in 1991 as a six-year (1991--1997) project to improve India`s technological and management capabilities for both the supply of energy and its efficient end use. The end-use component of EMCAT aims for efficient energy utilization by industries and other sectors such as the commercial sector. A specific task under the end-use component was to conduct energy surveys/audits in high energy-use sectors, such as air-conditioned (AC) buildings in the commercial sector, and to identify investment opportunities that could improve energy utilization. This article presents results of pre-investment surveys that were conducted at four commercial air-conditioned facilities in 1995. The four facilities included two luxury hotels in New Delhi, and one luxury hotel and a private hospital in Bombay. Energy conservation opportunities (ECOs) were explored in three major energy-using systems in these buildings: air-conditioning, lighting, and steam and domestic hot water systems.

  18. REACH. Air Conditioning Units.

    ERIC Educational Resources Information Center

    Garrison, Joe; And Others

    As a part of the REACH (Refrigeration, Electro-Mechanical, Air-Conditioning, Heating) electromechanical cluster, this student manual contains individualized instructional units in the area of air conditioning. The instructional units focus on air conditioning fundamentals, window air conditioning, system and installation, troubleshooting and…

  19. Building Air Quality. Action Plan.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC. Indoor Air Div.

    Building managers and owners often confront competing demands to reduce operating costs and increase revenues that can siphon funds and resources from other building management concerns such as indoor air quality (IAQ). This resource booklet, designed for use with the "Building Air Quality Guide," provides building owners and managers with an…

  20. Air-Conditioning Mechanic.

    ERIC Educational Resources Information Center

    Marine Corps Inst., Washington, DC.

    This student guide, one of a series of correspondence training courses designed to improve the job performance of members of the Marine Corps, deals with the skills needed by air conditioning mechanics. Addressed in the four chapters, or lessons, of the manual are the following topics: principles of air conditioning, refrigeration components as…

  1. Building Air Monitoring Networks

    ERIC Educational Resources Information Center

    Environmental Science and Technology, 1977

    1977-01-01

    The different components of air monitoring networks, the status of air monitoring in the United States, and the services and activities of the three major American network builders are detailed. International air monitoring networks and alert systems are identified, with emphasis on the Dutch air monitoring network. (BT)

  2. Building pressurization control with rooftop air conditioners

    SciTech Connect

    Winter, S.

    1982-10-01

    The modulated exhaust fan appears to be the most cost effective positive means to maintain close building pressure control with rooftop air conditioning, but because building construction and applications vary, every building's pressure control needs must be analyzed. Requirements will vary from no relief to barometric dampers to return fans to modulated exhaust fans. As heating and cooling costs continue to rise and tighter building codes prevail, proper selection of building pressure control is one area that must be monitored more carefully by the HVAC system designer.

  3. Risk Factors in Heating, Ventilating, and Air-Conditioning Systemsfor Occupant Symptoms in U.S. Office Buildings: the EPA BASE Study

    SciTech Connect

    Mendell, M.J.; Lei-Gomez, Q.; Mirer, A.; Seppanen, O.; Brunner, G.

    2006-10-01

    Nonspecific building-related symptoms among occupants of modern office buildings worldwide are common and may be associated with important reductions in work performance, but their etiology remains uncertain. Characteristics of heating, ventilating, and air-conditioning (HVAC) systems in office buildings that increase risk of indoor contaminants or reduce effectiveness of ventilation may cause adverse exposures and subsequent increase in these symptoms among occupants. We analyzed data collected by the U.S. EPA from a representative sample of 100 large U.S. office buildings--the Building Assessment and Survey Evaluation (BASE) study--using multivariate logistic regression models with generalized estimating equations adjusted for potential personal and building confounders. We estimated odds ratios (ORs) and 95% confidence intervals (CIs) for associations between seven building-related symptom outcomes and selected HVAC system characteristics. Among factors of HVAC design or configuration: Outdoor air intakes less than 60 m above the ground were associated with approximately doubled odds of most symptoms assessed. Sealed (non-operable) windows were associated with increases in skin and eye symptoms (ORs= 1.9, 1.3, respectively). Outdoor air intake without an intake fan was associated with an increase in eye symptoms (OR=1.7). Local cooling coils were associated with increased headache (OR=1.5). Among factors of HVAC condition, maintenance, or operation: the presence of humidification systems in good condition was associated with an increase in headache (OR=1.4), whereas the presence of humidification systems in poor condition was associated with increases in fatigue/difficulty concentrating, as well as upper respiratory symptoms (ORs=1.8, 1.5). No regularly scheduled inspections for HVAC components was associated with increased eye symptoms, cough and upper respiratory symptoms (ORs=2.2, 1.6, 1.5). Less frequent cleaning of cooling coils or drip pans was associated

  4. High efficiency air cycle air conditioning system

    SciTech Connect

    Rannenberg, G. C.

    1985-11-19

    An air cycle air conditioning system is provided with regenerative heat exchangers upstream and downstream of an expansion turbine. A closedloop liquid circulatory system serially connects the two regenerative heat exchangers for regeneration without the bulk associated with air-to-air heat exchange. The liquid circulatory system may also provide heat transport to a remote sink heat exchanger and from a remote load as well as heat exchange within the sink heat exchanger and load for enhanced compactness and efficiency.

  5. Breakthrough Video: Desiccant Enhanced Evaporative Air Conditioning

    SciTech Connect

    2012-01-01

    Researchers at the National Renewable Energy Laboratory (NREL) invented a breakthrough technology that improves air conditioning in a novel way—with heat. NREL combined desiccant materials, which remove moisture from the air using heat, and advanced evaporative technologies to develop a cooling unit that uses 90% less electricity and up to 80% less total energy than traditional air conditioning (AC). This solution, called the desiccant enhanced evaporative air conditioner (DEVAP), also controls humidity more effectively to improve the comfort of people in buildings.

  6. Outdoor air pollution, meteorological conditions and indoor factors in dwellings in relation to sick building syndrome (SBS) among adults in China.

    PubMed

    Lu, Chan; Deng, Qihong; Li, Yuguo; Sundell, Jan; Norbäck, Dan

    2016-08-01

    Indoor environment is associated with the sick building syndrome (SBS), but little is known about the contribution of outdoor air pollution and meteorological conditions to SBS. We studied associations between outdoor air pollution, meteorological parameters and selected indoor exposure and building characteristics at home and weekly SBS symptoms in a standardized questionnaire study among 3485 randomly selected adults in China. Outdoor factors included particulate matters with diameter <10μm (PM10), sulfur dioxide (SO2), nitrogen dioxide (NO2), outdoor temperature (T), relative air humidity (RH), and wind speed (WS) during last three months. Multiple logistic regression was applied calculating odds ratios (OR) with 95% confidence interval (95% CI). Asthma or allergic rhinitis (atopy) was associated with all types of SBS symptoms except fatigue. Indoor factors played a major role in SBS symptoms. Mold/dampness on the floor/ceiling was associated with fatigue OR=1.60 (1.11-2.30) and headache OR=1.80 (1.07-3.04). Moldy odor was associated with fatigue OR=1.59 (1.07-2.37) and dermal symptoms OR=1.91 (1.21-3.02). Window pane condensation in winter was associated with fatigue OR=1.73 (1.30-2.31) and throat symptoms OR=1.53 (1.01-2.31). Damp bed clothing was related with throat symptom OR=1.62 (1.09-2.40). Home redecoration was associated with fatigue OR=1.49 (1.07-2.06). Frequent window opening was associated with less nose symptoms OR=0.54 (0.36-0.82) and mechanical ventilation in the bathroom reduced dermal symptoms OR=0.66 (0.44-0.99). Females were more susceptible to redecoration and window pane condensation than men. No associations with SBS were observed for outdoor air pollutants or meteorological parameters in the final models combining indoor and outdoor factors, although SO2, T, and RH were associated with some SBS symptoms (fatigue, eyes and nose symptoms) in the separate outdoor models. In conclusion, indoor mold/dampness, air pollution from redecoration

  7. General collaboration offer of Johnson Controls regarding the performance of air conditioning automatic control systems and other buildings` automatic control systems

    SciTech Connect

    Gniazdowski, J.

    1995-12-31

    JOHNSON CONTROLS manufactures measuring and control equipment (800 types) and is as well a {open_quotes}turn-key{close_quotes} supplier of complete automatic controls systems for heating, air conditioning, ventilation and refrigerating engineering branches. The Company also supplies Buildings` Computer-Based Supervision and Monitoring Systems that may be applied in both small and large structures. Since 1990 the company has been performing full-range trade and contracting activities on the Polish market. We have our own well-trained technical staff and we collaborate with a series of designing and contracting enterprises that enable us to have our projects carried out all over Poland. The prices of our supplies and services correspond with the level of the Polish market.

  8. 19. SITE BUILDING 002 SCANNER BUILDING AIR POLICE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    19. SITE BUILDING 002 - SCANNER BUILDING - AIR POLICE SITE SECURITY OFFICE WITH "SITE PERIMETER STATUS PANEL" AND REAL TIME VIDEO DISPLAY OUTPUT FROM VIDEO CAMERA SYSTEM AT SECURITY FENCE LOCATIONS. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  9. Air conditioned suit

    NASA Technical Reports Server (NTRS)

    Carl, G. R. (Inventor)

    1973-01-01

    An environmentally controlled suit is described consisting of an airtight outergarment attached by an airtight bellows to the wall of a sterile chamber, an undergarment providing for circulation of air near the skin of the wearer, and a circulation system comprised of air supply and distribution to the extremities of the undegarment and central collection and exhaust of air from the midsection of the undergarment. A workman wearing the undergarment and attached circulation system enters the outer garment through a tunnel in the chamber wall and the attached bellows to work in the chamber without any danger of spreading bacteria.

  10. Air conditioning system

    DOEpatents

    Lowenstein, Andrew; Miller, Jeffrey; Gruendeman, Peter; DaSilva, Michael

    2005-02-01

    An air conditioner comprises a plurality of plates arranged in a successively stacked configuration with portions thereof having a spaced apart arrangement, and defining between successive adjacent pairs of plates at the spaced apart portions a first and second series of discrete alternating passages wherein a first air stream is passed through the first series of passages and a second air stream is passed through the second series of passages; and said stacked configuration of plates forming integrally therewith a liquid delivery means for delivering from a source a sufficient quantity of a liquid to the inside surfaces of the first series of fluid passages in a manner which provides a continuous flow of the liquid from a first end to a second end of the plurality of plates while in contact with the first air stream.

  11. Possible Economies in Air-Conditioning by Accepting Temperature Swings.

    ERIC Educational Resources Information Center

    Loudon, A. G.; Petherbridge, P.

    Public building air conditioning systems, which use constant and varying heat and cooling loads, are compared and investigated. Experiments indicated that constant temperature controls based on outside air temperature alone were inefficient. Ventilating a building with outside air and the methods of doing so are cited as being the most economical…

  12. Air Conditioning Overflow Sensor

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Technology Transfer Office at Stennis Space Center helped a local inventor develop a prototype of an attachment for central air conditioners and heat pumps that helps monitor water levels to prevent condensation overflow. The sensor will indicate a need for drain line maintenance and prevent possible damage caused by drain pan water spillover. An engineer in the Stennis Space Center prototype Development Laboratory used SSC sensor technology in the development of the sensor.

  13. Building air quality: A guide for building owners and facility managers

    SciTech Connect

    Not Available

    1991-12-01

    The guide was intended to help those individuals responsible for air quality control in buildings to prevent indoor air quality problems from developing and resolving such problems quickly should they develop. Background information and guidance on dealing with indoor air quality problems were provided. Specific topics included: factors which affect indoor air quality; sources of indoor air contaminants; heating, ventilation and air conditioning (HVAC) systems; the role of building occupants; effective communication between managers and others involved; developing an indoor air quality (IAQ) profile; managing a building for good IAQ; diagnosing IAQ problems; mitigating IAQ problems, hiring professional assistance to solve an IAQ problem; common IAQ measurements; HVAC systems and IAQ; moisture with resultant mold and mildew conditions; asbestos (1332214); radon (10043922); and resources through which additional information can be obtained. Indoor air quality forms were included which can be modified to meet individual needs.

  14. Air tightness of buildings in Finland

    NASA Astrophysics Data System (ADS)

    Kauppinen, Timo T.

    2001-03-01

    There are no requirements of building air tightness in Finland. Buildings always have thermal bridges and air leak routes, whose impact in decreasing comfort depends on the structures and the way of constructing. Uncontrolled air leaks are cooling the structures and causing draft and, in the long run, defects. These air leaks and thermal bridges can be found only by thermal scanning. In Finland building air tightness has been measured for over 20 years. The procedure includes two stages, in which the target is scanned by a thermal imager. The paper is based on the results of over 200 tests of one-family and detached houses. The air tightness level has improved, but there are still problems in the structural details. The monitoring procedure for therm scanning of buildings should be further developed (there is no generally accepted practice at the moment), as well as air tightness requirements should be created.

  15. Air conditioning and refrigeration engineering

    SciTech Connect

    Kreith, F.

    1999-12-01

    This book supplies the basics of design, from selecting the optimum system and equipment to preparing the drawings and specifications. It discusses the four phases of preparing a project: gathering information, developing alternatives, evaluating alternatives, and selling the best solution. In addition, the author breaks down the responsibilities of the engineer design documents, computer aided design, and government codes and standards. It provides you with an easy reference to all aspects of the topic. This resource addresses the most current areas of interest, such as computer aided design and drafting, desiccant air conditioning and energy conservation. It is a thorough and convenient guide to air conditioning and refrigeration engineering. Contents include: introduction; psychrometrics; air-conditioning processes and cycles; refrigerants and refrigeration cycles; outdoor design conditions and indoor design criteria; load calculations; air handling units and packaged units; refrigeration components and evaporative coolers; water systems; heating systems; refrigeration systems; thermal storage system; air system basics; absorption systems; air-conditioning systems and selection; and desiccant dehumidification and air-conditioning.

  16. Building America Top Innovations 2012: Outside Air Ventilation Controller

    SciTech Connect

    none,

    2013-01-01

    venThis Building America Top Innovations profile describes Building America research showing how automated night ventilation can reduce cooling energy costs up to 40% and peak demand up to 50% in California’s hot-dry central valley climates and can eliminate the need for air conditioning altogether in the coastal marine climate.

  17. Computer Developments in Air Conditioning.

    ERIC Educational Resources Information Center

    Pancoast, Ferendino, Grafton and Skeels, Architects, Miami, FL.

    Proceedings of a conference on the present and future uses of computer techniques in the air conditioning field. The recommendation of this report is, for the most part, negative insofar as it applies to the use of computers for design by the small office. However, there should be an awareness of their usefulness in controlling the environmental…

  18. Field Validation of ICF Residential Building Air-Tightness

    SciTech Connect

    Sacs, I.; Ternes, M.P.

    2001-01-01

    Recent advances in home construction methods have made considerable progress in addressing energy savings issues. Certain methods are potentially capable of tightening the building envelope, consequently reducing air leakage and minimizing heating and air conditioning related energy losses. Insulated concrete form (ICF) is an economically viable alternative to traditional woodframe construction. Two homes, one of wood-frame, the other of ICF construction, were studied. Standard air leakage testing procedures were used to compare air tightness characteristics achieved by the two construction types. The ICF home showed consistently lower values for air leakage in these tests. The buildings otherwise provided similar data during testing, suggesting that the difference in values is due to greater airtight integrity of the ICF construction method. Testing on more homes is necessary to be conclusive. However, ICF construction shows promise as a tighter building envelope construction method.

  19. Building ventilation and indoor air quality

    SciTech Connect

    Hollowell, C.D.; Berk, J.V.; Boegel, M.L.; Miksch, R.R.; Nazaroff, W.W.; Traynor, G.W.

    1980-01-01

    Rising energy prices, among other factors, have generated an incentive to reduce ventilation rates and thereby reduce the cost of heating and cooling buildings. Reduced infiltration and ventilation in buildings may significantly increase exposure to indoor contaminants and perhaps have adverse effects on occupant health and comfort. Four indoor air contaminants - carbon monoxide and nitrogen dioxide from gas appliances; formaldehyde from particleboard, plywood, urea-formaldehyde foam insulation, and gas appliances; and radon from building materials, soil, and ground water - are currently receiving considerable attention in the context of potential health risks associated with reduced infiltration and ventilation rates. These air contaminants in conventional and energy efficient buildings were measured and analyzed with a view to assessing their potential health risks and various control strategies capable of lowering pollutant concentrations. Preliminary findings suggest that further intensive studies are needed in order to develop criteria for maintaining acceptable indoor air quality without compromising energy efficiency.

  20. Alternative Air Conditioning Technologies: Underfloor AirDistribution (UFAD)

    SciTech Connect

    Webster, Tom

    2004-06-01

    Recent trends in today's office environment make it increasingly more difficult for conventional centralized HVAC systems to satisfy the environmental preferences of individual officer workers using the standardized approach of providing a single uniform thermal and ventilation environment. Since its original introduction in West Germany during the 1950s, the open plan office containing modular workstation furniture and partitions is now the norm. Thermostatically controlled zones in open plan offices typically encompass relatively large numbers of workstations in which a diverse work population having a wide range of preferred temperatures must be accommodated. Modern office buildings are also being impacted by a large influx of heat-generating equipment (computers, printers, etc.) whose loads may vary considerably from workstation to workstation. Offices are often reconfigured during the building's lifetime to respond to changing tenant needs, affecting the distribution of within-space loads and the ventilation pathways among and over office partitions. Compounding this problem, there has been a growing awareness of the importance of the comfort, health, and productivity of individual office workers, giving rise to an increased demand among employers and employees for a high-quality work environment. During recent years an increasing amount of attention has been paid to air distribution systems that individually condition the immediate environments of office workers within their workstations to address the issues outlined above. As with task/ambient lighting systems, the controls for the ''task'' components of these systems are partially or entirely decentralized and under the control of the occupants. Typically, the occupant has control over the speed and direction, and in some cases the temperature, of the incoming air supply. Variously called ''task/ambient conditioning,'' ''localized thermal distribution,'' and ''personalized air conditioning'' systems, these

  1. Thermal Environment for Classrooms. Central System Approach to Air Conditioning.

    ERIC Educational Resources Information Center

    Triechler, Walter W.

    This speech compares the air conditioning requirements of high-rise office buildings with those of large centralized school complexes. A description of one particular air conditioning system provides information about the system's arrangement, functions, performance efficiency, and cost effectiveness. (MLF)

  2. 44. CAPE COD AIR STATION PAVE PAWS FACILITY BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    44. CAPE COD AIR STATION PAVE PAWS FACILITY - BUILDING ELEVATION WITH BUILDING METAL SIDING BEING APPLIED ON "B" FACE. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  3. High Energy Efficiency Air Conditioning

    SciTech Connect

    Edward McCullough; Patrick Dhooge; Jonathan Nimitz

    2003-12-31

    This project determined the performance of a new high efficiency refrigerant, Ikon B, in a residential air conditioner designed to use R-22. The refrigerant R-22, used in residential and small commercial air conditioners, is being phased out of production in developed countries beginning this year because of concerns regarding its ozone depletion potential. Although a replacement refrigerant, R-410A, is available, it operates at much higher pressure than R-22 and requires new equipment. R-22 air conditioners will continue to be in use for many years to come. Air conditioning is a large part of expensive summer peak power use in many parts of the U.S. Previous testing and computer simulations of Ikon B indicated that it would have 20 - 25% higher coefficient of performance (COP, the amount of cooling obtained per energy used) than R-22 in an air-cooled air conditioner. In this project, a typical new R-22 residential air conditioner was obtained, installed in a large environmental chamber, instrumented, and run both with its original charge of R-22 and then with Ikon B. In the environmental chamber, controlled temperature and humidity could be maintained to obtain repeatable and comparable energy use results. Tests with Ikon B included runs with and without a power controller, and an extended run for several months with subsequent analyses to check compatibility of Ikon B with the air conditioner materials and lubricant. Baseline energy use of the air conditioner with its original R-22 charge was measured at 90 deg F and 100 deg F. After changeover to Ikon B and a larger expansion orifice, energy use was measured at 90 deg F and 100 deg F. Ikon B proved to have about 19% higher COP at 90 deg F and about 26% higher COP at 100 deg F versus R-22. Ikon B had about 20% lower cooling capacity at 90 deg F and about 17% lower cooling capacity at 100 deg F versus R-22 in this system. All results over multiple runs were within 1% relative standard deviation (RSD). All of these

  4. Control of Air Leakage in Buildings.

    ERIC Educational Resources Information Center

    Wilson, A. Grant

    This discussion of air leakage emphasizes cause and provides suggestions for elimination of undesirable effects. Cause parameters described are--(1) pressure differential, (2) building shape, (3) temperature differential, (4) opening sizes, (5) mechanical system pressures, and (6) climatic factors. Effects discussed are--(1) increased mechanical…

  5. Building air quality: Action plan, June 1998

    SciTech Connect

    1998-11-01

    To promote the use of these straightforward practices to improve IAQ, EPA and other leaders in the IAQ field developed this 8-step plan. This additional resource meets the needs of building owners and managers who want an easy-to-understand path for taking their building from current conditions and practices to the successful institutionalization of good IAQ management practices.

  6. New Air Cleaning Strategies for Reduced Commercial Building Ventilation Energy

    SciTech Connect

    Sidheswaran, Meera; Destaillats, Hugo; Sullivan, Douglas P.; Fisk, William J.

    2010-10-27

    Approximately ten percent of the energy consumed in U.S. commercial buildings is used by HVAC systems to condition outdoor ventilation air. Reducing ventilation rates would be a simple and broadly-applicable energy retrofit option, if practical counter measures were available that maintained acceptable concentrations of indoor-generated air pollutants. The two general categories of countermeasures are: 1) indoor pollutant source control, and 2) air cleaning. Although pollutant source control should be used to the degree possible, source control is complicated by the large number and changing nature of indoor pollutant sources. Particle air cleaning is already routinely applied in commercial buildings. Previous calculations indicate that particle filtration consumes only 10percent to 25percent of the energy that would otherwise be required to achieve an equivalent amount of particle removal with ventilation. If cost-effective air cleaning technologies for volatile organic compounds (VOCs) were also available, outdoor air ventilation rates could be reduced substantially and broadly in the commercial building stock to save energy. The research carried out in this project focuses on developing novel VOC air cleaning technologies needed to enable energy-saving reductions in ventilation rates. The minimum required VOC removal efficiency to counteract a 50percent reduction in ventilation rate for air cleaning systems installed in the HVAC supply airstream is modest (generally 20percent or less).

  7. A systematic indoor air quality audit approach for public buildings.

    PubMed

    Asadi, Ehsan; da Silva, Manuel C Gameiro; Costa, J J

    2013-01-01

    Good indoor air quality (IAQ) in buildings provides a comfortable and healthy environment for the occupants to work, learn, study, etc. Therefore, it is important to ascertain the IAQ status in the buildings. This study is aimed to establish and demonstrate the comprehensive IAQ audit approach for public buildings, based on Portugal national laws. Four public buildings in Portugal are used to demonstrate the IAQ audit application. The systematic approach involves the measurement of physical parameters (temperature, relative humidity, and concentration of the suspended particulate matter), monitoring of the concentrations of selected chemical indicators [carbon dioxide (CO(2)), carbon monoxide, formaldehyde, ozone, and total volatile organic compounds], and the measurements of biological indicators (bacteria and fungi). In addition, air exchange rates are measured by the concentration decay method using metabolic CO(2) as the tracer gas. The comprehensive audits indicated some situations of common IAQ problems in buildings, namely: (1) insufficient ventilation rate, (2) too high particle concentration; and (3) poor filtration effectiveness and hygienic conditions in most of the air handling units. Accordingly, a set of recommendations for the improvement of IAQ conditions were advised to the building owner/managers. PMID:22437322

  8. THE EFFECTS OF BUILDING FEATURES ON INDOOR AIR AND POLLUTANT MOVEMENTS

    EPA Science Inventory

    The paper discusses full-scale residential building tests to determine the effects of building features on indoor air and pollutant movement. It was found that the activated heating and air-conditioning (HAC) system served as a conductor that enhanced the indoor air movement and ...

  9. Climate conditions in bedded confinement buildings

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Confinement buildings are utilized for finishing cattle to allow more efficient collection of animal waste and to buffer animals against adverse climatic conditions. Environmental data were obtained from a 29 m wide x 318 m long bedded confinement building with the long axis oriented east to west. T...

  10. Solar powered absorption air conditioning

    NASA Astrophysics Data System (ADS)

    Vardon, J. M.

    1980-04-01

    Artificial means of providing or removing heat from the building are discussed along with the problem of the appropriate building design and construction for a suitable heat climate inside the building. The use of a lithium bromide-water absorption chiller, powered by a hot water store heated by an array of stationary flat collectors, is analyzed. An iterative method of predicting the cooling output from a LiBr-water absorption refrigeration plant having variable heat input is described and a model allowing investigation of the performance of a solar collector and thermal storage system is developed.

  11. Energy-Efficient Air Conditioning

    SciTech Connect

    Krigger, J.; Stewart, K.

    1999-06-30

    Many people buy or use air conditioners without understanding their designs, components, and operating principles. Proper sizing, selection, installation, maintenance, and correct use are keys to cost-effective operation and lower overall costs. This publication discusses both central and room air conditioners. Heat pumps, which provide both home cooling and heating, are not covered in this publication. Contact www.eren.doe.gov/consumerinfo for more information.

  12. Measure Guideline: Air Sealing Attics in Multifamily Buildings

    SciTech Connect

    Otis, C.; Maxwell, S.

    2012-06-01

    This Building America Measure Guideline is intended for owners, builders, contractors, homeowners, and other stakeholders in the multifamily building industry, and focuses on challenges found in existing buildings for a variety of housing types. It explains why air sealing is desirable, explores related health and safety issues, and identifies common air leakage points in multifamily building attics. In addition, it also gives an overview of materials and techniques typically used to perform air sealing work.

  13. Measure Guideline. Air Sealing Attics in Multifamily Buildings

    SciTech Connect

    Otis, Casey; Maxwell, Sean

    2012-06-01

    This Building America Measure Guideline is intended for owners, builders, contractors, homeowners, and other stakeholders in the multifamily building industry, and focuses on challenges found in existing buildings for a variety of housing types. It explains why air sealing is desirable, explores related health and safety issues, and identifies common air leakage points in multifamily building attics. In addition, it also gives an overview of materials and techniques typically used to perform air sealing work.

  14. No-reheat air-conditioning

    NASA Technical Reports Server (NTRS)

    Obler, H. D.

    1980-01-01

    Air conditioning system, for environmentally controlled areas containing sensitive equipment, regulates temperature and humidity without wasteful and costly reheating. System blends outside air with return air as dictated by various sensors to ensure required humidity in cooled spaces (such as computer room).

  15. Indoor air quality and work-environment study. Library of Congress, Madison Building. Volume 3. Association between health and comfort concerns and environmental conditions

    SciTech Connect

    Not Available

    1991-03-01

    A systematic study was designed to assess the nature and spatial distribution of employee health symptoms and comfort concerns in the Madison Building of the Library of Congress (LOC), Washington, DC. This report presented the multivariate analyses of all the study results. The primary associations observed in all the gathered data both in consistency and magnitude, were observed between health symptoms and both the perception of thermal comfort and the perception of odors. Few associations were demonstrated between symptom occurrence and objective environmental measurements. No environmental contaminants were identified at levels above any relevant criteria or standards with the exception of one location at which an elevated level of fungi was detected. A variety of workstation risk factors were identified for symptoms associated with ergonomic stresses. These included uncomfortable chairs, hours working at video display terminals, and inadequate lighting. Several recommendations are made to improve building maintenance and ventilation, and reduce job stress.

  16. Air Conditioning. Performance Objectives. Intermediate Course.

    ERIC Educational Resources Information Center

    Long, William

    Several intermediate performance objectives and corresponding criterion measures are listed for each of seven terminal objectives for an intermediate air conditioning course. The titles of the seven terminal objectives are Refrigeration Cycle, Job Requirement Skills, Air Conditioning, Trouble Shooting, Performance Test, Shop Management, and S.I.E.…

  17. HEATING AND AIR CONDITIONING EDUCATIONAL PROGRAM.

    ERIC Educational Resources Information Center

    Lennox Industries, Inc., Marshalltown, IA.

    INCREASED MOTIVATION, INCREASED INITIAL COMPREHENSION, AND INCREASED RETENTION ARE THE PRIME GOALS OF THE LENNOX HEATING AND AIR CONDITIONING EDUCATION PROGRAM. IT IS A COMPLETE PROGRAM WITH ALL THE TEACHING TOOLS REQUIRED TO PRODUCE A KNOWLEDGEABLE HEATING AND AIR-CONDITIONING INSTALLER OR SERVICE MAN. THIS INSTRUCTIONAL PROGRAM IS DESIGNED…

  18. Air Conditioning. FOS: Fundamentals of Service.

    ERIC Educational Resources Information Center

    Employment and Training Administration (DOL), Washington, DC. Office of Youth Programs.

    This manual on air conditioning is one of a series of power mechanics texts and visual aids covering theory of operation, diagnosis, and repair. Information is presented for use by vocational students and teachers as well as shop servicemen and laymen. Focus is on air conditioning systems for mobile machines, but most of the information also…

  19. Air Conditioning and Heating Technology--II.

    ERIC Educational Resources Information Center

    Gattone, Felix

    Twenty-eight chapters and numerous drawings provide information for instructors and students of air conditioning and heating technology. Chapter 1 lists the occupational opportunities in the field. Chapter 2 covers the background or development of the industry of air conditioning and heating technology. Chapter 3 includes some of the principle…

  20. 164. GENERAL VIEW OF BUILDING 60 (AIR REWORK FACILITY) AND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    164. GENERAL VIEW OF BUILDING 60 (AIR REWORK FACILITY) AND ENVIRONS. ROBERT AND CO., ARCHITECT-ENGINEERS FOR BUILDING 60. DISTANT VIEW NORTH TOWARD BUILDING 60 FROM THE INTERSECTION OF QUONSET RD. AND 1ST AVE., AIRFIELD VISIBLE ON RIGHT. - Quonset Point Naval Air Station, Roger Williams Way, North Kingstown, Washington County, RI

  1. 45. CAPE COD AIR STATION PAVE PAWS FACILITY BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    45. CAPE COD AIR STATION PAVE PAWS FACILITY - BUILDING ELEVATION VIEW WITH BUILDING METAL SIDING BEING APPLIED ON "A" FACE (LEFT) AND "B" FACE (RIGHT). NOTE THAT NORTH IS GENERALLY TO RIGHT OF VIEW. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  2. Building America Top Innovations 2012: Attic Air Sealing Guidelines

    SciTech Connect

    none,

    2013-01-01

    This Building America Top Innovations profile describes the DOE-sponsored Guide to Attic Air Sealing by Building America research partner Building Science Corporation, which provides best practices for attic air sealing. The guide has had 21,000 views and 13,000 downloads since it was posted.

  3. Indoor air quality study in Agency Building Two, Empire State Plaza, Albany, New York

    SciTech Connect

    Not Available

    1992-04-01

    The quality of the indoor environment and potential health conquences have become major concerns for occupants of office buildings. Increasing ventilation rates are often recommended as a potential solution for indoor air quality (IAQ) problems, whether real or perceived as real by occupants. To date, limited quantitative data have been collected to relate increased outdoor-air intake to commonly measured IAQ or comfort parameters. The purpose of this study, conducted by GEOMET Technologies, Inc. for the New York State Energy Research and Development Authority, was to quantitatively assess the effect of ventilation rate on indoor air quality and associated parameters in an occupied office building, and occupant perceptions of air quality and comfort in the building. The building studied, a 20-story office tower located at the Empire State Plaza in Albany, New York, has a total floor area of approximately 100,000 ft. The building is operated by the New York State Office of General Services (OGS). The air-distribution component of the heating, ventilating, and air-conditioning (HVAC) system for the building consists of two air-handling units that serve the perimeter of the building through induction supply-air units and two other units that serve the core area of the building through ceiling diffusers. The perimeter system has separate zones that serve the north and south sides of the building, and the core system is zoned to individually serve the upper and lower halves of the building.

  4. Mine ventilation and air conditioning. 3. edition

    SciTech Connect

    Hartman, H.L.; Mutmansky, J.M.; Ramani, R.V.; Wang, Y.J.

    1998-12-31

    This revised edition presents an engineering design approach to ventilation and air conditioning as part of the comprehensive environmental control of the mine atmosphere. It provides an in-depth look, for practitioners who design and operate mines, into the health and safety aspects of environmental conditions in the underground workplace. The contents include: Environmental control of the mine atmosphere; Properties and behavior of air; Mine air-quality control; Mine gases; Dusts and other mine aerosols; Mine ventilation; Airflow through mine openings and ducts; Mine ventilation circuits and networks; Natural ventilation; Fan application to mines; Auxiliary ventilation and controlled recirculation; Economics of airflow; Control of mine fires and explosions; Mine air conditioning; Heat sources and effect in mines; Mine air conditioning systems; Appendices; References; Answers to selected problems; and Index.

  5. 8. Overview of Building 1009, looking south Naval Air ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. Overview of Building 1009, looking south - Naval Air Station Chase Field, Building 1009, Essex Street, .68 mile South-southeast of intersection of Texas State Highway 202 & Independence Street, Beeville, Bee County, TX

  6. CONTROL BUILDING, WEST FRONT SHOWING ENTRANCE Edwards Air Force ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    CONTROL BUILDING, WEST FRONT SHOWING ENTRANCE - Edwards Air Force Base, X-15 Engine Test Complex, Firing Control Building, Rogers Dry Lake, east of runway between North Base & South Base, Boron, Kern County, CA

  7. Office Building Occupant's Guide to Indoor Air Quality

    MedlinePlus

    ... building ventilation systems; moisture and humidity; and occupant perceptions and susceptibilities. In addition, there are many other factors that affect comfort or perception of indoor air quality. Controlling indoor air quality ...

  8. 4. BUILDING 8767, INTERIOR. Looking west. Edwards Air Force ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    4. BUILDING 8767, INTERIOR. Looking west. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Observation Bunkers for Test Stand 1-A, Test Area 1-120, north end of Jupiter Boulevard, Boron, Kern County, CA

  9. 71. INTERIOR VIEW OF THE LIQUID AIR BUILDING, LOOKING AT ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    71. INTERIOR VIEW OF THE LIQUID AIR BUILDING, LOOKING AT A BANK OF AIR COMPRESSORS. JANUARY 29, 1919. - United States Nitrate Plant No. 2, Reservation Road, Muscle Shoals, Muscle Shoals, Colbert County, AL

  10. Troubleshooting the residential air conditioning system

    SciTech Connect

    Puzio, H.

    1996-01-01

    In order to effectively diagnose problems in a residential air conditioning system, the technician should develop and follow a logical step-by-step troubleshooting procedure. A list of problems, along with possible causes and solutions, that a technician may encounter when servicing a residential air conditioner is presented.

  11. Indoor air quality and health in two office buildings with different ventilation systems

    SciTech Connect

    Hedge, A. ); Sterling, T.D. ); Sterling, E.M.; Collett, C.W. ); Sterling, D.A. ); Nie, V. )

    1989-01-01

    Measurements of indoor air pollutants were taken in (1) an air conditioned and (2) an adjacent, naturally ventilated office of a public sector organization. Self-administered questionnaires on the work environment and health were distributed to all workers. No differences in concentrations of carbon monoxide, carbon dioxide, ozone, and total oxidants were found between buildings. Concentrations of formaldehyde, volatile organic compounds, and respirable particulates were higher in the air conditioned offices. Symptoms of sleepiness, nasal irritation, concentration difficulties, cold/flu-like symptoms, and eye focusing problems were significantly more prevalent in the air conditioned offices. In the air conditioned offices, most symptoms were significantly more prevalent among women than men. Passive smoking was associated with symptom prevalence, but alcohol, tea, and coffee consumption was unrelated. No significant correlations between pollutant concentrations and symptom prevalence were found, however, recalled reports of leaving work early because of feeling ill were significantly correlated with formaldehyde levels in the air conditioned building.

  12. Reduced bleed air extraction for DC-10 cabin air conditioning

    NASA Technical Reports Server (NTRS)

    Newman, W. H.; Viele, M. R.; Hrach, F. J.

    1980-01-01

    It is noted that a significant fuel savings can be achieved by reducing bleed air used for cabin air conditioning. Air in the cabin can be recirculated to maintain comfortable ventilation rates but the quality of the air tends to decrease due to entrainment of smoke and odors. Attention is given to a development system designed and fabricated under the NASA Engine Component Improvement Program to define the recirculation limit for the DC-10. It is shown that with the system, a wide range of bleed air reductions and recirculation rates is possible. A goal of 0.8% fuel savings has been achieved which results from a 50% reduction in bleed extraction from the engine.

  13. 46. CAPE COD AIR STATION PAVE PAWS FACILITY BUILDING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    46. CAPE COD AIR STATION PAVE PAWS FACILITY - BUILDING ELEVATION VIEW WITH ALL METAL SIDING INSTALLED AND WITH EMITTER/ANTENNA ARRAY SYSTEM NEARING OCMPLETION ON "B" FACE (RIGHT). VIEW ALSO SHOWS TRAVELING "CLEANING" SYSTEM ON "B" FACE - NOW REMOVED. - Cape Cod Air Station, Technical Facility-Scanner Building & Power Plant, Massachusetts Military Reservation, Sandwich, Barnstable County, MA

  14. 18. VIEW OF THE SECOND FLOOR OF BUILDING 707. AIR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. VIEW OF THE SECOND FLOOR OF BUILDING 707. AIR EXHAUST FANS ARE USED TO MAINTAIN PRESSURE DIFFERENTIALS WITHIN THE BUILDING. (5/70) - Rocky Flats Plant, Plutonium Manufacturing Facility, North-central section of Plant, just south of Building 776/777, Golden, Jefferson County, CO

  15. Thermal analysis of car air conditioning

    NASA Astrophysics Data System (ADS)

    Trzebiński, Daniel; Szczygieł, Ireneusz

    2010-10-01

    Thermodynamic analysis of car air cooler is presented in this paper. Typical refrigerator cycles are studied. The first: with uncontrolled orifice and non controlled compressor and the second one with the thermostatic controlled expansion valve and externally controlled compressor. The influence of the refrigerant decrease and the change of the air temperature which gets to exchangers on the refrigeration efficiency of the system; was analysed. Also, its effectiveness and the power required to drive the compressor were investigated. The impact of improper refrigerant charge on the performance of air conditioning systems was also checked.

  16. Indoor air quality issues related to the acquisition of conservation in commercial buildings

    SciTech Connect

    Baechler, M.C.; Hadley, D.L.; Marseille, T.J.

    1990-09-01

    The quality of indoor air in commercial buildings is dependent on the complex interaction between sources of indoor pollutants, environmental factors within buildings such as temperature and humidity, the removal of air pollutants by air-cleaning devices, and the removal and dilution of pollutants from outside air. To the extent that energy conservation measures (ECMs) may affect a number of these factors, the relationship between ECMs and indoor air quality is difficult to predict. Energy conservation measures may affect pollutant levels in other ways. Conservation measures, such as caulking and insulation, may introduce sources of indoor pollutants. Measures that reduce mechanical ventilation may allow pollutants to build up inside structures. Finally, heating, ventilation, and air-conditioning (HVAC) systems may provide surface areas for the growth of biogenic agents, or may encourage the dissemination of pollutants throughout a building. Information about indoor air quality and ventilation in both new and existing commercial buildings is summarized in this report. Sick building syndrome and specific pollutants are discussed, as are broader issues such as ventilation, general mitigation techniques, and the interaction between energy conservation activities and indoor air quality. Pacific Northwest Laboratory (PNL) prepared this review to aid the Bonneville Power Administration (Bonneville) in its assessment of potential environmental effects resulting from conservation activities in commercial buildings. 76 refs., 2 figs., 19 tabs.

  17. The mathematical simulation of the temperature fields of building envelopes under permanent frozen soil conditions

    NASA Astrophysics Data System (ADS)

    Anisimov, M. V.; Babuta, M. N.; Kuznetsova, U. N.; Safonova, E. V.; Minaeva, O. M.

    2016-04-01

    The physical-mathematical model of the thermal state of the aired technical underground taking into account the air exchange and design features of construction under permanent frozen soil conditions has been suggested. The computational scheme of the temperature fields prediction of building envelopes of projected buildings and soil under and nearby buildings has been developed. The numerical simulation of the temperature fields of building envelopes changes was conducted during a year. The results of the numerical simulation showed that the heat coming from the technical undergrounds and through the walls does not influence the temperature field of the soil neither under a building nor at a distance from it.

  18. The Effect of Computers on School Air-Conditioning.

    ERIC Educational Resources Information Center

    Fickes, Michael

    2000-01-01

    Discusses the issue of increased air-conditioning demand when schools equip their classrooms with computers that require enhanced and costlier air-conditioning systems. Air-conditioning costs are analyzed in two elementary schools and a middle school. (GR)

  19. ALTERNATIVE TECHNOLOGIES FOR REFRIGERATION AND AIR-CONDITIONING APPLICATIONS

    EPA Science Inventory

    The report gives results of an assessment of refrigeration technologies that are alternatives to vapor compression refrigeration for use in five application categories: domestic air conditioning, commercial air conditioning, mobile air conditioning, domestic refrigeration, and co...

  20. Measuring Outdoor Air Intake Rates into Existing Building

    SciTech Connect

    Fisk, William; Sullivan, Douglas; Cohen, Sebastian; Han, Hwataik

    2009-04-16

    Practical and accurate technologies are needed for continuously measuring and controlling outdoor air (OA) intake rates in commercial building heating, ventilating, and air conditioning (HVAC) systems. This project evaluated two new measurement approaches. Laboratory experiments determined that OA flow rates were measurable with errors generally less than 10 percent using electronic air velocity probes installed between OA intake louver blades or at the outlet face of louvers. High accuracy was maintained with OA flow rates as low as 15 percent of the maximum for the louvers. Thus, with this measurement approach HVAC systems do not need separate OA intakes for minimum OA supply. System calibration parameters are required for each unique combination of louver type and velocity sensor location but calibrations are not necessary for each system installation. The research also determined that the accuracy of measuring OA flow rates with velocity probes located in the duct downstream of the intake louver was not improved by installing honeycomb airflow straighteners upstream of the probes. Errors varied with type of upstream louver, were as high as 100 percent, and were often greater than 25 percent. In conclusion, use of electronic air velocity probes between the blades of OA intake louvers or at the outlet face of louvers is a highly promising means of accurately measuring rates of OA flow into HVAC systems. The use of electronic velocity probes downstream of airflow straighteners is less promising, at least with the relatively small OA HVAC inlet systems employed in this research.

  1. Utility Building Plan, elevations and sections. March Air Force Base, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Utility Building Plan, elevations and sections. March Air Force Base, Riverside, California, COmbat Operations Center, Utility Building. By Moffatt and Nichol, Engineers, 122 West Fifth Street, Long Beach, California; for the Corps of Engineers, U.S. Army, Office of the District Engineer, Los Angeles, California. Drawing no. AW-60-02-03, sheet no. 57, approved March, 1962; specifications no. ENG-04-353-62-66; D.O. series AW 1596/57, Rev. "B"; file drawer 1290. Last revised 3 October 1966 "drawings updated." Various scales. 29 x 41 inches. pencil on paper - March Air Force Base, Strategic Air Command, Utility Building, 5220 Riverside Drive, Moreno Valley, Riverside County, CA

  2. Automobile air-conditioning unit. Final report

    SciTech Connect

    Schaetzle, W.J.

    1982-12-01

    In this study the refrigerant in the automobile air-conditioner is compressed by thermal energy in a unique compression system rather than by work in a standard compressor. The compression uses an intermittent compression process with a solid absorbent. The vapor is absorbed by an absorbent at relatively low temperature and ejected as the absorbent temperature is raised. A set of one way valves limits flow to one direction. Major contributions are heat transfer requirements, molecular sieve-refrigerant matching, minimizing non-producing mass, solving thermal fatigue and shock problems, and applying this to automobile air-conditioning. The performance study shows energy savings up to fifty percent are possible, depending on engine load. A twenty percent energy savings with the vehicle tested with the air-conditioner in operation is average. The study also showed that less fuel is used with the windows open than with the air-conditioner operating.

  3. Building Air Quality: A Guide for Building Owners and Facility Managers.

    ERIC Educational Resources Information Center

    Agle, Elizabeth; Galbraith, Susan

    The past two decades have witnessed increased concerns over the health and comfort of indoor air quality (IAQ), but little indoor air-related information has been targeted at building owners and facility managers of public and commercial buildings. This manual, specifically created for such a population, provides guidance on preventing,…

  4. MOBILE AIR-CONDITIONING RECYCLING MANUAL

    EPA Science Inventory

    The report gives guidelines on the recovery and recycle of the chlorofluorocarbon (CFC), dichlorodifluoromethane (CFC-12), from mobile air conditions. It is intended for wide distribution internationally and is especially for use by developing countries and the World Bank to ass...

  5. Standardized Curriculum for Heating and Air Conditioning.

    ERIC Educational Resources Information Center

    Mississippi State Dept. of Education, Jackson. Office of Vocational, Technical and Adult Education.

    Standardized vocational education course titles and core contents for two courses in Mississippi are provided: heating and air conditioning I and II. The first course contains the following units: (1) orientation; (2) safety; (3) refrigeration gauges and charging cylinder; (4) vacuum pump service operations; (5) locating refrigerant leaks; (6)…

  6. Solar powered desiccant air conditioning system

    NASA Astrophysics Data System (ADS)

    1981-07-01

    A solar-powered desiccant air conditioning system using silica gel was developed, and modifications to the existing unit and additional testing are proposed to demonstrate the feasibility of the unit. Conversion from a rotating bed to a fixed bed of silica gel is proposed. Some general plans for commercialization are briefly discussed.

  7. Air Conditioning and Refrigeration Book IV.

    ERIC Educational Resources Information Center

    Eckes, William; Fulkerson, Dan

    This publication is the concluding text in a four-part curriculum for air conditioning and refrigeration. Materials in Book 4 are designed to complement theoretical and functional elements in Books 1-3. Instructional materials in this publication are written in terms of student performance using measurable objectives. The course includes six…

  8. Air Conditioning and Refrigeration Supplementary Units.

    ERIC Educational Resources Information Center

    Winston, Del; And Others

    This document contains supplemental materials for special needs high school students intended to facilitate their mainstreaming in regular air conditioning and refrigeration courses. Teacher's materials precede the materials for students and include general notes for the instructor, additional suggestions, two references, a questionnaire on the…

  9. Readings in Air Conditioning and Refrigeration.

    ERIC Educational Resources Information Center

    Uberto, Jeffrey A.

    Designed to encourage vocational high school students to read by offering reading materials relevant to their vocational goals, this document contains thirty-seven articles related to air conditioning and refrigeration which have been selected from trade journals, magazines, and newspapers and adapted to the students' reading capabilities. A…

  10. Fundamentals of Air Conditioning and Refrigeration.

    ERIC Educational Resources Information Center

    Clemons, Mark

    This set of instructional materials provides secondary and postsecondary students with a state-of-the-art curriculum for the air conditioning and refrigeration industry that includes the many changes brought by new Environmental Protection Agency (EPA) regulations. Introductory materials explain the use of this publication and provide the…

  11. Air Conditioning and Refrigeration. Book One.

    ERIC Educational Resources Information Center

    Wantiez, Gary W.

    Designed to provide students with the basic skills for an occupation in air conditioning and refrigeration, this curriculum guide includes seven major areas, each consisting of one or more units of instruction. These areas and their respective units are titled as follows: Orientation (history and development, and job opportunities), Safety…

  12. Air Conditioning and Refrigeration Book III.

    ERIC Educational Resources Information Center

    Eckes, William; Fulkerson, Dan

    Designed to present theory as a functional aspect, this air conditioning and refrigeration curriculum guide is comprised of nine units of instruction. Unit titles include (1) Job Orientation, (2) Applying for a Job, (3) Customer Relations, (4) Business Management, (5) Psychometrics, (6) Residential Heat Loss and Heat Gain, (7) Duct Design and…

  13. Air Conditioning and Refrigeration. Book Two.

    ERIC Educational Resources Information Center

    Wantiez, Gary W.

    This curriculum guide (book II), along with book I, is designed to provide students with the basic skills for an occupation in air conditioning and refrigeration. Six major areas are included, each consisting of one or more units of instruction. These areas and their respective units are titled as follows: Electricity (fundamentals of electricity,…

  14. Metrics for Air Conditioning & Refrigeration, Heating, Ventilating.

    ERIC Educational Resources Information Center

    Cooper, Gloria S., Ed.; Magisos, Joel H., Ed.

    Designed to meet the job-related metric measurement needs of the air conditioning and refrigeration, heating and ventilating student, this instructional package is one of three for the construction occupations cluster, part of a set of 55 packages for metric instruction in different occupations. The package is intended for students who already…

  15. Thermal conditions and perceived air quality in an air-conditioned auditorium

    NASA Astrophysics Data System (ADS)

    Polednik, Bernard; Guz, Łukasz; Skwarczyński, Mariusz; Dudzińska, Marzenna R.

    2016-07-01

    The study reports measurements of indoor air temperature (T) and relative humidity (RH), perceived air quality (PAQ) and CO2, fine aerosol particle number (PN) and mass (PM1) concentrations in an air conditioned auditorium. The measurements of these air physical parameters have been carried out in the unoccupied auditorium with the air conditioning system switched off (AC off mode) and in the unoccupied and occupied auditorium with the air conditioning system switched off during the night and switched on during the day (AC on/off mode). The average indoor air thermal parameters, CO2 concentration and the PAQ value (in decipols) were elevated, while average PM1 concentration was lower in the AC on/off mode. A statistically significant (p < 0.001) positive correlation has been observed between T and PAQ values and CO2 concentrations (r = 0.66 and r = 0.59, respectively) in that AC mode. A significant negative correlation has been observed between T and PN and PM1 concentrations (r = -0.38 and r = -0.49, respectively). In the AC off mode the above relations between T and the particle concentrations were not that unequivocal. These findings may be of importance as they indicate that in certain AC operation modes the indoor air quality deteriorates along with the variation of the indoor air microclimate and room occupation. This, in turn, may adversely affect the comfort and productivity of the users of air conditioned premises.

  16. Smart Sensors Enable Smart Air Conditioning Control

    PubMed Central

    Cheng, Chin-Chi; Lee, Dasheng

    2014-01-01

    In this study, mobile phones, wearable devices, temperature and human motion detectors are integrated as smart sensors for enabling smart air conditioning control. Smart sensors obtain feedback, especially occupants' information, from mobile phones and wearable devices placed on human body. The information can be used to adjust air conditioners in advance according to humans' intentions, in so-called intention causing control. Experimental results show that the indoor temperature can be controlled accurately with errors of less than ±0.1 °C. Rapid cool down can be achieved within 2 min to the optimized indoor capacity after occupants enter a room. It's also noted that within two-hour operation the total compressor output of the smart air conditioner is 48.4% less than that of the one using On-Off control. The smart air conditioner with wearable devices could detect the human temperature and activity during sleep to determine the sleeping state and adjusting the sleeping function flexibly. The sleeping function optimized by the smart air conditioner with wearable devices could reduce the energy consumption up to 46.9% and keep the human health. The presented smart air conditioner could provide a comfortable environment and achieve the goals of energy conservation and environmental protection. PMID:24961213

  17. Smart sensors enable smart air conditioning control.

    PubMed

    Cheng, Chin-Chi; Lee, Dasheng

    2014-01-01

    In this study, mobile phones, wearable devices, temperature and human motion detectors are integrated as smart sensors for enabling smart air conditioning control. Smart sensors obtain feedback, especially occupants' information, from mobile phones and wearable devices placed on human body. The information can be used to adjust air conditioners in advance according to humans' intentions, in so-called intention causing control. Experimental results show that the indoor temperature can be controlled accurately with errors of less than ±0.1 °C. Rapid cool down can be achieved within 2 min to the optimized indoor capacity after occupants enter a room. It's also noted that within two-hour operation the total compressor output of the smart air conditioner is 48.4% less than that of the one using On-Off control. The smart air conditioner with wearable devices could detect the human temperature and activity during sleep to determine the sleeping state and adjusting the sleeping function flexibly. The sleeping function optimized by the smart air conditioner with wearable devices could reduce the energy consumption up to 46.9% and keep the human health. The presented smart air conditioner could provide a comfortable environment and achieve the goals of energy conservation and environmental protection. PMID:24961213

  18. View of building 11070 showing vents and forced air system ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    View of building 11070 showing vents and forced air system on east side, looking southwest. - Naval Ordnance Test Station Inyokern, China Lake Pilot Plant, Maintenance Shop, C Street, China Lake, Kern County, CA

  19. Scanner Buildings Clear Air Force Station, Ballistic Missile Early ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Scanner Buildings - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  20. 16. Photograph of Structural Building Plans. Naval Air Station ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. Photograph of Structural Building Plans. - Naval Air Station Fallon, 100-man Fallout Shelter, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  1. 15. Photograph of Architectural Building Plans. Naval Air Station ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    15. Photograph of Architectural Building Plans. - Naval Air Station Fallon, 100-man Fallout Shelter, 800 Complex, off Carson Road near intersection of Pasture & Berney Roads, Fallon, Churchill County, NV

  2. 1. VIEW LOOKING SOUTH AT BUILDING 881 AIR STACK DURING ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. VIEW LOOKING SOUTH AT BUILDING 881 AIR STACK DURING CONSTRUCTION. (8/25/52) - Rocky Flats Plant, General Manufacturing, Support, Records-Central Computing, Southern portion of Plant, Golden, Jefferson County, CO

  3. A strategy for oxygen conditioning at high altitude: comparison with air conditioning.

    PubMed

    West, John B

    2015-09-15

    Large numbers of people live or work at high altitude, and many visit to trek or ski. The inevitable hypoxia impairs physical working capacity, and at higher altitudes there is also cognitive impairment. Twenty years ago oxygen enrichment of room air was introduced to reduce the hypoxia, and this is now used in dormitories, hotels, mines, and telescopes. However, recent advances in technology now allow large amounts of oxygen to be obtained from air or cryogenic oxygen sources. As a result it is now feasible to oxygenate large buildings and even institutions such as hospitals. An analogy can be drawn between air conditioning that has improved the living and working conditions of millions of people who live in hot climates and oxygen conditioning that can do the same at high altitude. Oxygen conditioning is similar to air conditioning except that instead of cooling the air, the oxygen concentration is raised, thus reducing the equivalent altitude. Oxygen conditioning on a large scale could transform living and working conditions at high altitude, where it could be valuable in homes, hospitals, schools, dormitories, company headquarters, banks, and legislative settings. PMID:26139219

  4. Air Conditioning System using Rankine Cycle

    NASA Astrophysics Data System (ADS)

    Nagatomo, Shigemi; Yamaguchi, Hiroichi; Hattori, Hitoshi; Futamura, Motonori

    Natural gas is used as the energy source to cope with the recent situation of increasing demand for electricity especially in summer. In this paper, the performance of a Rankine cycle air conditioning system driven by natural gas was studied. The following results were obtained : (1) Basic equations of performance, refrigerant mass flow rate and expander volume were developed by using the values of heating efficiency, regeneration efficiency, expander efficiency and compressor efficiency. (2) R134a refrigerant has been considered to be suitable for the Rankine cycle air conditioning system, compared with other refrigerants. (3)A Rankine cycle cooling system using R134a refrigerant as a single working fluid was developed. System COP of 0.47 was attained at typical operating condition.

  5. 72. BUILDING NO. 555, AIR DRY HOUSE FOR DOUBLE BASE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    72. BUILDING NO. 555, AIR DRY HOUSE FOR DOUBLE BASE RIFLE AND CANNON POWDERS, LOOKING SOUTHWEST AT NORTH CORNER. 3 FT. GUAGE RAILROAD TRACK IN FOREGROUND. WOODEN RAILS SUBSTITUTED FOR STEEL RAILS FOR TRACKS ENTERING BUILDING TO PREVENT SPARKING. EXPLOSION-PROOF LIGHTING MOUNTED ON BUILDING EXTERIOR. - Picatinny Arsenal, 500 Area, Powder Factory & Power House, State Route 15 near I-80, Dover, Morris County, NJ

  6. 225. BUILDING 60. (AIR REWORK FACILITY) 194041; ALTERED 194849. GIBBS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    225. BUILDING 60. (AIR REWORK FACILITY) 1940-41; ALTERED 1948-49. GIBBS AND HALL, ARCHITECTS (WORKING FROM PLANS BY ROBERT AND CO. FOR NAS JACKSONVILLE). GENERAL VIEW FROM WEST. - Quonset Point Naval Air Station, Roger Williams Way, North Kingstown, Washington County, RI

  7. 224. BUILDING 60. (AIR REWORK FACILITY) 194041; ALTERED 194849 GIBBS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    224. BUILDING 60. (AIR REWORK FACILITY) 1940-41; ALTERED 1948-49 GIBBS AND HALL, ARCHITECTS, WORKING FROM PLANS BY ROBERT AND CO. FOR NAS JACKSONVILLE; SOUTH END OF THE HANGAR WING. VIEW FROM SOUTHEAST. - Quonset Point Naval Air Station, Roger Williams Way, North Kingstown, Washington County, RI

  8. Influence of indoor air quality (IAQ) objectives on air-conditioned offices in Hong Kong.

    PubMed

    Hui, Pui-Shan; Mui, Kwok-Wai; Wong, Ling-Tim

    2008-09-01

    It is costly to sample all air pollutants of a general community. Air sampling should be conducted based on a practical assessment strategy and monitoring plan. In Hong Kong, the Environmental Protection Department (HKEPD) launched an Indoor Air Quality (IAQ) certification scheme to grade workplace IAQ as 'Excellent' or 'Good' by measuring the levels of nine common indoor air pollutants, namely carbon dioxide (CO(2)), carbon monoxide (CO), respirable suspended particulates (RSP), nitrogen dioxide (NO(2)), ozone (O(3)), formaldehyde (HCHO), total volatile organic compounds (TVOC), radon (Rn), and airborne bacteria count (ABC). Although average office IAQ performance has been improved since the implementation of this certification scheme, there are still resource issues and technical difficulties. To streamline the assessment of office IAQ performance, this study proposes a simple index of IAQ benchmarks formulated in compliance with the HKEPD requirements. In particular, three of the nine listed common air pollutants were selected as the 'representatives' for the overall satisfactory IAQ. Together with the assessment results of 422 Hong Kong air-conditioned offices, the index was evaluated in terms of test sensitivity, specificity and predictive values. Proved to be feasible to describe the IAQ of some air-conditioned offices, this IAQ index would be a useful tool for policymakers, building owners and professionals to quantify IAQ performance in offices and to make decisions on resources and manpower management for efficient mitigation actions. PMID:17973197

  9. Innovative Air Conditioning and Climate Control

    NASA Technical Reports Server (NTRS)

    Graf, John

    2015-01-01

    NASA needed to develop a desiccant wheel based humidity removal system to enable the long term testing of the Orion CO2 scrubber on the International Space Station. In the course of developing that system, we learned three things that are relevant to energy efficient air conditioning of office towers. NASA developed a conceptual design for a humidity removal system for an office tower environment. We are looking for interested partners to prototype and field test this concept.

  10. Numerical simulation and nasal air-conditioning

    PubMed Central

    Keck, Tilman; Lindemann, Jörg

    2011-01-01

    Heating and humidification of the respiratory air are the main functions of the nasal airways in addition to cleansing and olfaction. Optimal nasal air conditioning is mandatory for an ideal pulmonary gas exchange in order to avoid desiccation and adhesion of the alveolar capillary bed. The complex three-dimensional anatomical structure of the nose makes it impossible to perform detailed in vivo studies on intranasal heating and humidification within the entire nasal airways applying various technical set-ups. The main problem of in vivo temperature and humidity measurements is a poor spatial and time resolution. Therefore, in vivo measurements are feasible only to a restricted extent, solely providing single temperature values as the complete nose is not entirely accessible. Therefore, data on the overall performance of the nose are only based on one single measurement within each nasal segment. In vivo measurements within the entire nose are not feasible. These serious technical issues concerning in vivo measurements led to a large number of numerical simulation projects in the last few years providing novel information about the complex functions of the nasal airways. In general, numerical simulations merely calculate predictions in a computational model, e.g. a realistic nose model, depending on the setting of the boundary conditions. Therefore, numerical simulations achieve only approximations of a possible real situation. The aim of this review is the synopsis of the technical expertise on the field of in vivo nasal air conditioning, the novel information of numerical simulations and the current state of knowledge on the influence of nasal and sinus surgery on nasal air conditioning. PMID:22073112

  11. Seminar 14 - Desiccant Enhanced Air Conditioning: Desiccant Enhanced Evaporative Air Conditioning (Presentation)

    SciTech Connect

    Kozubal, E.

    2013-02-01

    This presentation explains how liquid desiccant based coupled with an indirect evaporative cooler can efficiently produce cool, dry air, and how a liquid desiccant membrane air conditioner can efficiently provide cooling and dehumidification without the carryover problems of previous generations of liquid desiccant systems. It provides an overview to a liquid desiccant DX air conditioner that can efficiently provide cooling and dehumidification to high latent loads without the need for reheat, explains how liquid desiccant cooling and dehumidification systems can outperform vapor compression based air conditioning systems in hot and humid climates, explains how liquid desiccant cooling and dehumidification systems work, and describes a refrigerant free liquid desiccant based cooling system.

  12. Evaluation of various activated carbons for air cleaning - Towards design of immune and sustainable buildings

    NASA Astrophysics Data System (ADS)

    Haghighat, Fariborz; Lee, Chang-Seo; Pant, Bhuvan; Bolourani, Golnoush; Lakdawala, Ness; Bastani, Arash

    There are increased demands for security, sustainability and indoor air quality in today's building design, construction, operation and maintenance. Installation of air cleaning systems can improve the indoor air quality by reducing the air pollution levels, and enhance the building security against sudden release of chemical and/or biological agents. At the same time, air cleaning techniques may reduce the building energy consumption by reducing the outdoor air supply rate, hence lowering the needs for conditioning of outdoor air. While the air filtration of particulate matter is well standardized, the standards against which the performance of air cleaning for gaseous contaminants is measured or classified are still under development. This study examined the performance of various granular activated carbons (GACs) for the removal of volatile organic compounds (VOCs) from mechanically ventilated buildings. Eight different GACs (three virgin and five impregnated) were tested against toluene using a dynamic test system. The virgin GACs showed better performance than impregnated ones, the percentage and the type of impregnation affected the removal efficiencies. Tests were also conducted with selected GACs against toluene, cyclohexane and ethyl acetate at relative humidity (RH) values of 30%, 50% and 70%. The effect of humidity was dependant on the VOC used. Both for toluene and cyclohexane, the removal efficiency decreased as RH increased. However, higher humidity showed a positive impact on the removal of ethyl acetate.

  13. Indoor environmental and air quality characteristics, building-related health symptoms, and worker productivity in a federal government building complex.

    PubMed

    Lukcso, David; Guidotti, Tee Lamont; Franklin, Donald E; Burt, Allan

    2016-01-01

    Building Health Sciences, Inc. (BHS), investigated environmental conditions by many modalities in 71 discreet areas of 12 buildings in a government building complex that had experienced persistent occupant complaints despite correction of deficiencies following a prior survey. An online health survey was completed by 7,637 building occupants (49% response rate), a subset of whom voluntarily wore personal sampling apparatus and underwent medical evaluation. Building environmental measures were within current standards and guidelines, with few outliers. Four environmental factors were consistently associated with group-level building-related health complaints: physical comfort/discomfort, odor, job stress, and glare. Several other factors were frequently commented on by participants, including cleanliness, renovation and construction activities, and noise. Low relative humidity was significantly associated with lower respiratory and "sick building syndrome"-type symptoms. No other environmental conditions (including formaldehyde, PM10 [particulate matter with an aerodynamic diameter <10 μm], or mold levels, which were tested by 7 parameters) correlated directly with individual health symptoms. Indicators of atopy or allergy (sinusitis, allergies, and asthma), when present singly, in combinations of 2 conditions, or together, were hierarchically associated with the following: increased absence, increased presenteeism (presence at work but at reduced capacity), and increase in reported symptom-days, including symptoms not related to respiratory disease. We found that in buildings without unusual hazards and with environmental and air quality indicators within the range of acceptable indoor air quality standards, there is an identifiable population of occupants with a high prevalence of asthma and allergic disease who disproportionately report discomfort and lost productivity due to symptoms and that in "normal" buildings these outcome indicators are more closely

  14. Building America Case Study: Evaluating Through-Wall Air Transfer Fans, Pittsburgh, Pennsylvania (Fact Sheet)

    SciTech Connect

    Not Available

    2014-10-01

    In this project, Building America team IBACOS performed field testing in a new construction unoccupied test house in Pittsburgh, Pennsylvania to evaluate heating, ventilating, and air conditioning (HVAC) distribution systems during heating, cooling, and midseason conditions. Four air-based HVAC distribution systems were assessed:-a typical airflow ducted system to the bedrooms, a low airflow ducted system to the bedrooms, a system with transfer fans to the bedrooms, and a system with no ductwork to the bedrooms. The relative ability of each system was considered with respect to relevant Air Conditioning Contractors of America and ASHRAE standards for house temperature uniformity and stability, respectively.

  15. Build Your Own Solar Air Heater.

    ERIC Educational Resources Information Center

    Conservation and Renewable Energy Inquiry and Referral Service (DOE), Silver Spring, MD.

    The solar air heater is a simple device for catching some of the sun's energy to heat a home. Procedures for making and installing such a heater are presented. Included is a materials list, including tools needed for constructing the heater, sources for obtaining further details, and a list of material specifications. (JN)

  16. Quantifying the impact of traffic-related air pollution on the indoor air quality of a naturally ventilated building.

    PubMed

    Tong, Zheming; Chen, Yujiao; Malkawi, Ali; Adamkiewicz, Gary; Spengler, John D

    2016-01-01

    Improper natural ventilation practices may deteriorate indoor air quality when in close proximity to roadways, although the intention is often to reduce energy consumption. In this study, we employed a CFD-based air quality model to quantify the impact of traffic-related air pollution on the indoor air quality of a naturally ventilated building. Our study found that the building envelope restricts dispersion and dilution of particulate matter. The indoor concentration in the baseline condition located 10m away from the roadway is roughly 16-21% greater than that at the edge of the roadway. The indoor flow recirculation creates a well-mixed zone with little variation in fine particle concentration (i.e., 253nm). For ultrafine particles (<100nm), a noticeable decrease in particle concentrations indoors with increasing distance from the road is observed due to Brownian and turbulent diffusion. In addition, the indoor concentration strongly depends on the distance between the roadway and building, particle size, wind condition, and window size and location. A break-even point is observed at D'~2.1 (normalized distance from the roadway by the width of the road). The indoor particle concentration is greater than that at the highway where D'<2.1, and vice versa. For new building planning, the distance from the roadway and the ambient wind condition need to be considered at the early design stage whereas the size and location of the window openings, the interior layout, and the placement of fresh air intakes are important to the indoor air quality of existing buildings adjacent to roadways. PMID:26829764

  17. Indoor-Outdoor Air Leakage of Apartments and Commercial Buildings

    SciTech Connect

    Price, P.N.; Shehabi, A.; Chan, R.W.; Gadgil, A.J.

    2006-06-01

    We compiled and analyzed available data concerning indoor-outdoor air leakage rates and building leakiness parameters for commercial buildings and apartments. We analyzed the data, and reviewed the related literature, to determine the current state of knowledge of the statistical distribution of air exchange rates and related parameters for California buildings, and to identify significant gaps in the current knowledge and data. Very few data were found from California buildings, so we compiled data from other states and some other countries. Even when data from other developed countries were included, data were sparse and few conclusive statements were possible. Little systematic variation in building leakage with construction type, building activity type, height, size, or location within the u.s. was observed. Commercial buildings and apartments seem to be about twice as leaky as single-family houses, per unit of building envelope area. Although further work collecting and analyzing leakage data might be useful, we suggest that a more important issue may be the transport of pollutants between units in apartments and mixed-use buildings, an under-studied phenomenon that may expose occupants to high levels of pollutants such as tobacco smoke or dry cleaning fumes.

  18. Building America Top Innovations 2012: Unvented, Conditioned Crawlspaces

    SciTech Connect

    none,

    2013-01-01

    This Building America Top Innovations profile describes Building America research which influenced code requirements by demonstrating that unvented, conditioned crawlspaces use 15% to 18% less energy for heating and cooling while reducing humidity over 20% in humid climates.

  19. Building America Top Innovations 2012: Ducts in Conditioned Space

    SciTech Connect

    none,

    2013-01-01

    This Building America Top Innovations profile describes Building America field testing that found moving ductwork into the home’s conditioned space can save 8%-15% on energy costs, improve comfort, reduce moisture problems, and even reduce installation costs.

  20. Low-Flow Liquid Desiccant Air Conditioning: General Guidance and Site Considerations

    SciTech Connect

    Kozubal, E.; Herrmann, L.; Deru, M.; Clark, J.

    2014-09-01

    Dehumidification or latent cooling in buildings is an area of growing interest that has been identified as needing more research and improved technologies for higher performance. Heating, ventilating, and air-conditioning (HVAC) systems typically expend excessive energy by using overcool-and-reheat strategies to dehumidify buildings. These systems first overcool ventilation air to remove moisture and then reheat the air to meet comfort requirements. Another common strategy incorporates solid desiccant rotors that remove moisture from the air more efficiently; however, these systems increase fan energy consumption because of the high airside pressure drop of solid desiccant rotors and can add heat of absorption to the ventilation air. Alternatively, liquid desiccant air-conditioning (LDAC) technology provides an innovative dehumidification solution that: (1) eliminates the need for overcooling and reheating from traditional cooling systems; and (2) avoids the increased fan energy and air heating from solid desiccant rotor systems.

  1. The Design of Research Laboratories. Part I: A General Assessment. Part II: Air Conditioning and Conditioned Rooms.

    ERIC Educational Resources Information Center

    Legget, R. F.; Hutcheon, N. B.

    Design factors in the planning of research laboratories are described which include--(1) location, (2) future expansion, (3) internal flexibility, (4) provision of services, (5) laboratory furnishing, (6) internal traffic, (7) space requirements, and (8) building costs. A second part discusses air-conditioning and conditioned rooms--(1)…

  2. Alternative non-CFC mobile air conditioning

    SciTech Connect

    Mei, V.C.; Chen, F.C.; Kyle, D.M.

    1992-09-01

    Concern about the destruction of the global environment by chlorofluorocarbon (CFC) fluids has become an impetus in the search for alternative, non-CFC refrigerants and cooling methods for mobile air conditioning (MAC). While some alternative refrigerants have been identified, they are not considered a lasting solution because of their high global warming potential, which could result in their eventual phaseout. In view of this dilemma, environmentally acceptable alternative cooling methods have become important. This report, therefore, is aimed mainly at the study of alternative automotive cooling methodologies, although it briefly discusses the current status of alternative refrigerants. The alternative MACs can be divided into work-actuated and heat-actuated systems. Work-actuated systems include conventional MAC, reversed Brayton air cycle, rotary vane compressor air cycle, Stirling cycle, thermoelectric (TE) cooling, etc. Heat-actuated MACs include metal hydride cooling, adsorption cooling, ejector cooling, absorption cycle, etc. While we are better experienced with some work-actuated cycle systems, heat-actuated cycle systems have a high potential for energy savings with possible waste heat applications. In this study, each altemative cooling method is discussed for its advantages and its limits.

  3. Indoor air quality measurements in 38 Pacific Northwest commercial buildings

    SciTech Connect

    Turk, B.H.; Brown, J.T.; Geisling-Sobotka, K.; Froehlich, D.A.; Grimsrud, D.T.; Harrison, J.; Revzan, K.L.

    1986-06-01

    A Bonneville Power Administration-funded study monitored ventilation rates and a variety of indoor air pollutants in 38 Pacific Northwest commercial buildings. The buildings ranged in age from 6 months to 90 years, in size from 864 to 34,280 m/sup 2/, and occupancy from 25 to 2500 people. Building average formaldehyde (HCHO) concentrations were below the 20 ppB detection limit in 48% of the buildings. Nitrogen dioxide (NO/sub 2/) concentration averages ranged from 5 ppB to 43 ppB and were lower than outdoor concentrations in 8 of 13 buildings. At only one site, an elementary school classroom, did carbon dioxide (CO/sub 2/) exceed 1000 ppM. Radon (Rn) levels were elevated in one building with an average concentration of 7.4 pCiL/sup -1/. Respirable particles (RSP) concentrations in smoking areas in 32 buildings had a geometric mean of 44 ..mu..g m/sup -3/ and ranged up to 308 ..mu..g m/sup -3/ at one site. In non-smoking areas the geometric mean RSP was 15 ..mu..g m/sup -3/. Outside air ventilation rates did not appear to be the single dominant parameter in determining indoor pollutant concentrations. Measured pollutant concentrations in 2 ''complaint'' buildings were below accepted guidelines. The cause of the complaints was not identified.

  4. Conditions for free-air laser communications in Buenos Aires

    NASA Astrophysics Data System (ADS)

    Sica, D. S.; Castro, E. H.

    2005-08-01

    The wavelength, availability, range and power budget of an infrared free-space laser communication system critically depend on the atmospheric channel, which in turn is closely related to local weather conditions. As a result, the atmospheric propagation characteristics of the transmission medium must be taken into account from the beginning in the design of a free-space laser communication link. The most important linear effects that affect the attenuation of laser beam propagation through the atmosphere are absorption, scattering and turbulence. Weather parameters such as humidity, temperature and visibility are essential in determining the performance of a free-space laser communication system. Based on weather data recorded in Buenos Aires city (Argentina) at every hour during two years and made available to us by the Servicio Meteorologico Nacional (National Meteorological Service of the Argentinean Air Force), we calculate attenuation of laser radiation for an horizontal transmission path of 1 km for a near infrared direct detection optical communication system. Then, with these results, we estimate link availability and draw conclusions about when it is more convenient to transfer information.

  5. 71. BUILDING NO. 555, AIR DRY HOUSE FOR DOUBLE BASE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    71. BUILDING NO. 555, AIR DRY HOUSE FOR DOUBLE BASE RIFLE AND CANNON POWDERS, LOOKING SOUTH AT NORTH CORNER, WITH DRAIN BOX FROM BUILDING FLOOR DRAIN IN FOREGROUND. TROUGH IS LEAD-LINED. BOX PRESUMABLY SETTLED OUT ANY NITRO-COTTON OR POWDER FROM WASTE WATER FROM RECOVERY PURPOSES. - Picatinny Arsenal, 500 Area, Powder Factory & Power House, State Route 15 near I-80, Dover, Morris County, NJ

  6. 2. GENERAL VIEW OF SLC3 AIR FORCE BUILDING (BLDG. 761) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    2. GENERAL VIEW OF SLC-3 AIR FORCE BUILDING (BLDG. 761) FROM THE NORTHWEST - Vandenberg Air Force Base, Space Launch Complex 3, SLC-3 Air Force Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  7. 1. GENERAL VIEW OF SLC3 AIR FORCE BUILDING (BLDG. 761) ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. GENERAL VIEW OF SLC-3 AIR FORCE BUILDING (BLDG. 761) FROM THE SOUTHWEST - Vandenberg Air Force Base, Space Launch Complex 3, SLC-3 Air Force Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  8. Temperature and Humidity Independent Control Research on Ground Source Heat Pump Air Conditioning System

    NASA Astrophysics Data System (ADS)

    Chen, G.; Wang, L. L.

    Taking green demonstration center building air conditioning system as an example, this paper presents the temperature and humidity independent control system combined with ground source heat pump system, emphasis on the design of dry terminal device system, fresh air system and ground source heat pump system.

  9. Indoor Air Quality Assessment of the San Francisco Federal Building

    SciTech Connect

    Apte, Michael; Bennett, Deborah H.; Faulkner, David; Maddalena, Randy L.; Russell, Marion L.; Spears, Michael; Sullivan, Douglas P; Trout, Amber L.

    2008-07-01

    An assessment of the indoor air quality (IAQ) of the San Francisco Federal Building (SFFB) was conducted on May 12 and 14, 2009 at the request of the General Services Administration (GSA). The purpose of the assessment was for a general screening of IAQ parameters typically indicative of well functioning building systems. One naturally ventilated space and one mechanically ventilated space were studied. In both zones, the levels of indoor air contaminants, including CO2, CO, particulate matter, volatile organic compounds, and aldehydes, were low, relative to reference exposure levels and air quality standards for comparable office buildings. We found slightly elevated levels of volatile organic compounds (VOCs) including two compounds often found in"green" cleaning products. In addition, we found two industrial solvents at levels higher than typically seen in office buildings, but the levels were not sufficient to be of a health concern. The ventilation rates in the two study spaces were high by any standard. Ventilation rates in the building should be further investigated and adjusted to be in line with the building design. Based on our measurements, we conclude that the IAQ is satisfactory in the zone we tested, but IAQ may need to be re-checked after the ventilation rates have been lowered.

  10. 70. BUILDING NO. 555, AIR DRY HOUSE FOR DOUBLE BASE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    70. BUILDING NO. 555, AIR DRY HOUSE FOR DOUBLE BASE RIFLE AND CANNON POWDERS, LOOKING NORTH AT SOUTH CORNER. FAN ROOM WITH STEAM HEATER IN FOREGROUND RIGHT. COOPER ELBOW VENTS ON ROOF ARE FROM DRYING ROOMS. STEAM LINE IN FOREGROUND, POWDER WAS DRIED ON RACKS IN DRYING ROOMS VENTILATED WITH HOT AIR. - Picatinny Arsenal, 500 Area, Powder Factory & Power House, State Route 15 near I-80, Dover, Morris County, NJ

  11. 75. BUILDING NO. 555, AIR DRY HOUSE FOR DOUBLE BASE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    75. BUILDING NO. 555, AIR DRY HOUSE FOR DOUBLE BASE RIFLE AND CANNON POWDERS, INTERIOR OF DRYING ROOM NO. 2, SHOWING COPPER EXHAUST VENT DUCT IN CORNER, HOT AIR INLET VENT IN CEILING. TWO TYPICAL DRYING RACKS LEANING AGAINST WALL, BOTTOM SIDE SHOWING ON LEFT RACK, TOP SIDE ON RIGHT RACK. - Picatinny Arsenal, 500 Area, Powder Factory & Power House, State Route 15 near I-80, Dover, Morris County, NJ

  12. Air pollutant penetration through airflow leaks into buildings

    SciTech Connect

    Liu, De-Ling

    2002-09-01

    The penetration of ambient air pollutants into the indoor environment is of concern owing to several factors: (1) epidemiological studies have shown a strong association between ambient fine particulate pollution and elevated risk of human mortality; (2) people spend most of their time in indoor environments; and (3) most information about air pollutant concentration is only available from ambient routine monitoring networks. A good understanding of ambient air pollutant transport from source to receptor requires knowledge about pollutant penetration across building envelopes. Therefore, it is essential to gain insight into particle penetration in infiltrating air and the factors that affect it in order to assess human exposure more accurately, and to further prevent adverse human health effects from ambient particulate pollution. In this dissertation, the understanding of air pollutant infiltration across leaks in the building envelope was advanced by performing modeling predictions as well as experimental investigations. The modeling analyses quantified the extent of airborne particle and reactive gas (e.g., ozone) penetration through building cracks and wall cavities using engineering analysis that incorporates existing information on building leakage characteristics, knowledge of pollutant transport processes, as well as pollutant-surface interactions. Particle penetration is primarily governed by particle diameter and by the smallest dimension of the building cracks. Particles of 0.1-1 {micro}m are predicted to have the highest penetration efficiency, nearly unity for crack heights of 0.25 mm or higher, assuming a pressure differential of 4 Pa or greater and a flow path length of 3 cm or less. Supermicron and ultrafine particles (less than 0.1 {micro}m) are readily deposited on crack surfaces by means of gravitational settling and Brownian diffusion, respectively. The fraction of ozone penetration through building leaks could vary widely, depending

  13. Fungal colonization of fiberglass insulation in the air distribution system of a multi-story office building: VOC production and possible relationship to a sick building syndrome

    NASA Technical Reports Server (NTRS)

    Ahearn, D. G.; Crow, S. A.; Simmons, R. B.; Price, D. L.; Noble, J. A.; Mishra, S. K.; Pierson, D. L.

    1996-01-01

    Complaints characteristic of those for sick building syndrome prompted mycological investigations of a modern multi-story office building on the Gulf coast in the Southeastern United States (Houston-Galveston area). The air handling units and fiberglass duct liner of the heating, ventilating and air conditioning system of the building, without a history of catastrophic or chronic water damage, demonstrated extensive colonization with Penicillium spp and Cladosporium herbarum. Although dense fungal growth was observed on surfaces within the heating-cooling system, most air samples yielded fewer than 200 CFU m-3. Several volatile compounds found in the building air were released also from colonized fiberglass. Removal of colonized insulation from the floor receiving the majority of complaints of mouldy air and continuous operation of the units supplying this floor resulted in a reduction in the number of complaints.

  14. 6. Soft support building, view towards south Ellsworth Air ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. Soft support building, view towards south - Ellsworth Air Force Base, Delta Flight, Launch Facility D-6, 4 miles north of Badlands National Park Headquarters, 4.5 miles east of Jackson County line on county road, Interior, Jackson County, SD

  15. Locating and sealing air leaks in multiroomed buildings

    NASA Technical Reports Server (NTRS)

    Britton, J. M.

    1968-01-01

    Industrial, nontoxic smoke bombs are used in multiroomed buildings to locate and fill discovered leak areas with polyurethane foam. All obvious air escape routes are sealed and the room is then pressurized to a minimum of 0.1 inch water above the pressure of adjoining rooms.

  16. 73. BUILDING NO. 555, AIR DRY HOUSE FOR DOUBLE BASE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    73. BUILDING NO. 555, AIR DRY HOUSE FOR DOUBLE BASE RIFLE AND CANNON POWDERS, NORTHEAST ELEVATION, EACH COOPER ELBOW VENT ON THE ROOF COMES FROM A DRYING ROOM. - Picatinny Arsenal, 500 Area, Powder Factory & Power House, State Route 15 near I-80, Dover, Morris County, NJ

  17. Air Dispersion Modeling for Building 3026C/D Demolition

    SciTech Connect

    Ward, Richard C; Sjoreen, Andrea L; Eckerman, Keith F

    2010-06-01

    This report presents estimates of dispersion coefficients and effective dose for potential air dispersion scenarios of uncontrolled releases from Oak Ridge National Laboratory (ORNL) buildings 3026C, 3026D, and 3140 prior to or during the demolition of the 3026 Complex. The Environmental Protection Agency (EPA) AERMOD system1-6 was used to compute these estimates. AERMOD stands for AERMIC Model, where AERMIC is the American Meteorological Society-EPA Regulatory Model Improvement Committee. Five source locations (three in building 3026D and one each in building 3026C and the filter house 3140) and associated source characteristics were determined with the customer. In addition, the area of study was determined and building footprints and intake locations of air-handling systems were obtained. In addition to the air intakes, receptor sites consisting of ground level locations on four polar grids (50 m, 100 m, 200 m, and 500 m) and two intersecting lines of points (50 m separation), corresponding to sidewalks along Central Avenue and Fifth Street. Three years of meteorological data (2006 2008) were used each consisting of three datasets: 1) National Weather Service data; 2) upper air data for the Knoxville-Oak Ridge area; and 3) local weather data from Tower C (10 m, 30 m and 100 m) on the ORNL reservation. Annual average air concentration, highest 1 h average and highest 3 h average air concentrations were computed using AERMOD for the five source locations for the three years of meteorological data. The highest 1 h average air concentrations were converted to dispersion coefficients to characterize the atmospheric dispersion as the customer was interested in the most significant response and the highest 1 h average data reflects the best time-averaged values available from the AERMOD code. Results are presented in tabular and graphical form. The results for dose were obtained using radionuclide activities for each of the buildings provided by the customer.7

  18. Refrigeration, Heating & Air Conditioning. Post Secondary Curriculum Guide.

    ERIC Educational Resources Information Center

    Garrison, Joe C.; And Others

    This curriculum guide was designed for use in postsecondary refrigeration, heating and air conditioning education programs in Georgia. Its purpose is to provide for the development of entry level skills in refrigeration, heating, and air conditioning in the areas of air conditioning knowledge, theoretical structure, tool usage, diagnostic ability,…

  19. Absorption and adsorption chillers applied to air conditioning systems

    NASA Astrophysics Data System (ADS)

    Kuczyńska, Agnieszka; Szaflik, Władysław

    2010-07-01

    This work presents an application possibility of sorption refrigerators driven by low temperature fluid for air conditioning of buildings. Thermodynamic models were formulated and absorption LiBr-water chiller with 10 kW cooling power as well as adsorption chiller with silica gel bed were investigated. Both of them are using water for desorption process with temperature Tdes = 80 °C. Coefficient of performance (COP) for both cooling cycles was analyzed in the same conditions of the driving heat source, cooling water Tc = 25 °C and temperature in evaporator Tevap = 5 °C. In this study, the computer software EES was used to investigate the performance of absorption heat pump system and its behaviour in configuration with geothermal heat source.

  20. High Technology Centrifugal Compressor for Commercial Air Conditioning Systems

    SciTech Connect

    Ruckes, John

    2006-04-15

    R&D Dynamics, Bloomfield, CT in partnership with the State of Connecticut has been developing a high technology, oil-free, energy-efficient centrifugal compressor called CENVA for commercial air conditioning systems under a program funded by the US Department of Energy. The CENVA compressor applies the foil bearing technology used in all modern aircraft, civil and military, air conditioning systems. The CENVA compressor will enhance the efficiency of water and air cooled chillers, packaged roof top units, and other air conditioning systems by providing an 18% reduction in energy consumption in the unit capacity range of 25 to 350 tons of refrigeration The technical approach for CENVA involved the design and development of a high-speed, oil-free foil gas bearing-supported two-stage centrifugal compressor, CENVA encompassed the following high technologies, which are not currently utilized in commercial air conditioning systems: Foil gas bearings operating in HFC-134a; Efficient centrifugal impellers and diffusers; High speed motors and drives; and System integration of above technologies. Extensive design, development and testing efforts were carried out. Significant accomplishments achieved under this program are: (1) A total of 26 builds and over 200 tests were successfully completed with successively improved designs; (2) Use of foil gas bearings in refrigerant R134a was successfully proven; (3) A high speed, high power permanent magnet motor was developed; (4) An encoder was used for signal feedback between motor and controller. Due to temperature limitations of the encoder, the compressor could not operate at higher speed and in turn at higher pressure. In order to alleviate this problem a unique sensorless controller was developed; (5) This controller has successfully been tested as stand alone; however, it has not yet been integrated and tested as a system; (6) The compressor successfully operated at water cooled condensing temperatures Due to temperature

  1. Heating, ventilation and air conditioning systems

    SciTech Connect

    Kyle, D.M.; Sullivan, R.A.

    1993-02-01

    A study is made of several outstanding issues concerning the commercial development of environmental control systems for electric vehicles (EVs). Engineering design constraints such as federal regulations and consumer requirements are first identified. Next, heating and cooling loads in a sample automobile are calculated using a computer model available from the literature. The heating and cooling loads are then used as a basis for estimating the electrical consumption that is to be expected for heat pumps installed in EVs. The heat pump performance is evaluated using an automobile heat pump computer model which has been developed recently at Oak Ridge National Laboratory (ORNL). The heat pump design used as input to the model consists of typical finned-tube heat exchangers and a hermetic compressor driven by a variable-speed brushless dc motor. The simulations suggest that to attain reasonable system efficiencies, the interior heat exchangers that are currently installed as automobile air conditioning will need to be enlarged. Regarding the thermal envelope of the automobile itself, calculations are made which show that considerable energy savings will result if steps are taken to reduce {open_quote}hot soak{close_quote} temperatures and if the outdoor air ventilation rate is well controlled. When these changes are made, heating and cooling should consume less than 10% of the total stored electrical energy for steady driving in most U.S. climates. However, this result depends strongly upon the type of driving: The fraction of total power for heating and cooling ({open_quote}range penalty{close_quote}) increases sharply for driving scenarios having low average propulsion power, such as stop-and-go driving.

  2. Report of the Building 9207 air bag test

    SciTech Connect

    Huff, T.E.; Fricke, K.E.; Jones, W.D.

    1992-12-01

    As part of a major testing program now underway at the Department of Energy`s (DOE) Oak Ridge Y-12 Plant, managed by Martin Marietta Energy Systems, Inc. (MMES), a full-scale air bag test was conducted in Building 9207. The test program, supported and managed by the Center for Natural Phenomena Engineering (CNPE), is intended to determine the stiffness and strength of unreinforced hollow clay tile walls (HCTVS) in order to more accurately analyze and predict the response of buildings containing these type of walls, especially when subjected to seismic and high wind loadings. The air bag test was a very large undertaking that started more than a year before the test was actually performed. Preparation for the test included the following activities: (1) preparation of the wall and the adjacent building areas; (2) design and field fabrication of test supporting structures; (3) procurement of equipment and instrumentation; (4) development of supporting test procedures and checklists; (5) installation of over seventy linear variable differential transformers (LVDTs) and strain gages; (6) development of computer programs for use in the data acquisition systems; (7) extensive review into the existing engineering literature; (8) discussions with researchers with prior experience performing air bag tests; (9) coordination with the building operators; (10) plant safety reviews; and (11) dry runs of the test itself.

  3. 74. BUILDING NO. 555, AIR DRY HOUSE FOR DOUBLE BASE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    74. BUILDING NO. 555, AIR DRY HOUSE FOR DOUBLE BASE RIFLE AND CANNON POWDERS, DETAIL OF WOODEN DRYING ROOM DOORS WITH WOODEN HINGES AND BOLTS FOR SPARK PREVENTION. RINGS BY DOORS TURN ON HOT AIR FLOW TO DRYING ROOMS. NOTE GROUNDING WIRE FROM RING BRACKETS. RECORDING MACHINES BY DOORS RECORD HUMIDITY IN DRYING ROOMS. DRYING ROOMS ILLUMINATED ONLY BY EXPLOSION-PROOF LIGHTING LOCATED OUTSIDE OF ROOMS. NOTE WOODEN RAILROAD RAILS IN BACKGROUND FOR 3 FT. GUAGE CARS. - Picatinny Arsenal, 500 Area, Powder Factory & Power House, State Route 15 near I-80, Dover, Morris County, NJ

  4. Understanding the Dehumidification Performance of Air-Conditioning Equipment at Part-Load Conditions

    SciTech Connect

    Don B. Shirey III; Hugh I. Henderson Jr; Richard A. Raustad

    2006-01-01

    Air conditioner cooling coils typically provide both sensible cooling and moisture removal. Data from a limited number of field studies (Khattar et al. 1985; Henderson and Rengarajan 1996; Henderson 1998) have demonstrated that the moisture removal capacity of a cooling coil degrades at part-load conditions--especially when the supply fan operates continuously while the cooling coil cycles on and off. Degradation occurs because moisture that condenses on the coil surfaces during the cooling cycle evaporates back into air stream when the coil is off. This degradation affects the ability of cooling equipment to maintain proper indoor humidity levels and may negatively impact indoor air quality. This report summarizes the results of a comprehensive project to better understand and quantify the moisture removal (dehumidification) performance of cooling coils at part-load conditions. A review of the open literature was initially conducted to learn from previous research on this topic. Detailed performance measurements were then collected for eight cooling coils in a controlled laboratory setting to understand the impact of coil geometry and operating conditions on transient moisture condensation and evaporation by the coils. Measurements of cooling coil dehumidification performance and space humidity levels were also collected at seven field test sites. Finally, an existing engineering model to predict dehumidification performance degradation for single-stage cooling equipment at part-load conditions (Henderson and Rengarajan 1996) was enhanced to include a broader range of fan control strategies and an improved theoretical basis for modeling off-cycle moisture evaporation from cooling coils. The improved model was validated with the laboratory measurements, and this report provides guidance for users regarding proper model inputs. The model is suitable for use in computerized calculation procedures such as hourly or sub-hourly building energy simulation programs (e

  5. Air Conditioner Charging. Automotive Mechanics. Air Conditioning. Instructor's Guide [and] Student Guide.

    ERIC Educational Resources Information Center

    Spignesi, B.

    This instructional package, one in a series of individualized instructional units on automobile air conditioning, consists of a student guide and an instructor guide dealing with air conditioning charging. Covered in the module are checking the air conditioning system for leaks, checking and adding refrigerant oil as needed, evacuating the system,…

  6. Refrigeration and Air-Conditioning Technology Workshop

    NASA Astrophysics Data System (ADS)

    Lewis, P. J.; Counce, D. M.

    1993-12-01

    The Alternative Fluorocarbon Environmental Acceptability Study (AFEAS), a consortium of fluorocarbon manufacturers, and the U.S. Department of Energy (DOE) are collaborating on a project to evaluate the energy use and global warming impacts of CFC alternatives. The goal of this project is to identify technologies that could replace the use of CFC's in refrigeration, heating, and air-conditioning equipment; to evaluate the direct impacts of chemical emissions on global warming; and to compile accurate estimates of energy use and indirect CO2 emissions of substitute technologies. The first phase of this work focused on alternatives that could be commercialized before the year 2000. The second phase of the project is examining not-in-kind and next-generation technologies that could be developed to replace CFC's, HCFC's, and HFC's over a longer period. As part of this effort, Oak Ridge National Laboratory held a workshop on June 23-25, 1993. The preliminary agenda covered a broad range of alternative technologies and at least one speaker was invited to make a brief presentation at the workshop on each technology. Some of the invited speakers were unable to participate, and in a few cases other experts could not be identified. As a result, those technologies were not represented at the workshop. Each speaker was asked to prepare a five to seven page paper addressing six key issues concerning the technology he/she is developing. These points are listed in the sidebar. Each expert also spoke for 20 to 25 minutes at the workshop and answered questions from the other participants concerning the presentation and area of expertise. The primary goal of the presentations and discussions was to identify the developmental state of the technology and to obtain comparable data on system efficiencies.

  7. Building GSM network in extreme conditions

    NASA Astrophysics Data System (ADS)

    Mikulec, M.; Voznak, M.; Fajkus, M.; Partila, P.; Tovarek, J.; Chmelikova, Z.

    2015-05-01

    The paper is focused on the building ad-hoc GSM network based on open source software and low-cost hardware. The created Base Transmission Station can be deployed and put into operation in a few minutes in a required area to ensure private communication between connected GSM mobile terminals. The convergence between BTS station and the other networks is possible through IP network. The paper tries to define connection parameters to provide sufficient quality of voice service between the GSM network and IP Multimedia Subsystem. The paper brings practical results of voice call quality measurement between users inside BTS station mobile network and users inside IP Multimedia Subsystem network. The calls are simulated by low-cost embedded solution for speech quality measurement in GSM network. This tool is under development of our laboratory and allows automatic speech quality measurement of any GSM or UMTS mobile network. The Perceptual Evaluation of Speech Quality method is used to get final comparable results. The communication between BTS station and connected networks has to be secured against the interception from the third party. The influence of the securing method for quality of service is presented in detail. Paper, apart from the quality of service measurement section, describes technical requirements for successful interconnection between BTS and IMS networks. The authentication, authorization and accounting methods in roaming between BTS and IMS system are presented too.

  8. Mitigating the Impacts of Uncontrolled Air Flow on Indoor Environmental Quality and Energy Demand in Non-Residential Buildings

    SciTech Connect

    Hugh I. Henderson; Jensen Zhang; James B. Cummings; Terry Brennan

    2006-07-31

    This multi-faceted study evaluated several aspects of uncontrolled air flows in commercial buildings in both Northern and Southern climates. Field data were collected from 25 small commercial buildings in New York State to understand baseline conditions for Northern buildings. Laboratory wall assembly testing was completed at Syracuse University to understand the impact of typical air leakage pathways on heat and moisture transport within wall assemblies for both Northern and Southern building applications. The experimental data from the laboratory tests were used to verify detailed heat and moisture (HAM) simulation models that could be used to evaluate a wider array of building applications and situations. Whole building testing at FSEC's Building Science Laboratory (BSL) systematically evaluated the energy and IAQ impacts of duct leakage with various attic and ceiling configurations. This systematic test carefully controlled all aspects of building performance to quantify the impact of duct leakage and unbalanced flow. The newest features of the EnergyPlus building simulation tool were used to model the combined impacts of duct leakage, ceiling leakage, unbalanced flows, and air conditioner performance. The experimental data provided the basis to validate the simulation model so it could be used to study the impact of duct leakage over a wide range of climates and applications. The overall objective of this project was to transfer work and knowledge that has been done on uncontrolled air flow in non-residential buildings in Florida to a national basis. This objective was implemented by means of four tasks: (1) Field testing and monitoring of uncontrolled air flow in a sample of New York buildings; (2) Detailed wall assembly laboratory measurements and modeling; (3) Whole building experiments and simulation of uncontrolled air flows; and (4) Develop and implement training on uncontrolled air flows for Practitioners in New York State.

  9. [A trouble in air conditioning in the operating area].

    PubMed

    Katsumata, Kiyoshi; Kaneko, Takehiko; Owaki, Akira

    2004-07-01

    We experienced malfunction of air conditioning system in the operating area. Rust inside the circulating pipe to the operating area was an obstacle to inflow of cold and hot water. Installing an additional air conditioning system and treatment with chemicals to remove the dust made it possible to adjust room temperature appropriately. Anesthesiologists should be interested and understand equipments used in the operation area such as air conditioning system. PMID:15298259

  10. Ice storage rooftop retrofit for rooftop air conditioning

    SciTech Connect

    Tomlinson, J.J.; Jennings, L.W.

    1997-09-01

    A significant fraction of the floor space in commercial and federal buildings is cooled by single-package rooftop air conditioning units. These units are located on flat roofs and usually operate during the day under hot conditions. They are usually less energy efficient than a chiller system for building cooling. Several U.S. companies are developing systems that employ ice storage in conjunction with chillers to replace older, inefficient rooftop units for improved performance and minimal use of on-peak electricity. Although the low evaporator temperatures needed for ice making tend to reduce the efficiency of the chiller, the overall operating costs of the ice storage system may be lower than that of a packaged, conventional rooftop installation. One version of this concept, the Roofberg{reg_sign} System developed by the Calmac Corporation, was evaluated on a small building at Oak Ridge National Laboratory in Oak Ridge, Tennessee. The Roofberg system consists of a chiller, an ice storage tank, and one or more rooftop units whose evaporator coils have been adapted to use a glycol solution for cooling. The ice storage component decouples the cooling demand of the building from the operation of the chiller. Therefore, the chiller can operate at night (cooler, more efficient condensing temperatures) to meet a daytime cooling demand. This flexibility permits a smaller chiller to satisfy a larger peak cooling load. Further, the system can be operated to shift the cooling demand to off-peak hours when electricity from the utility is generated more efficiently and at lower cost. This Roofberg system was successfully installed last year on a small one-story office building in Oak Ridge and is currently being operated to cool the building. The building and system were sufficiently instrumented to allow a determination of the performance and efficiency of the Roofberg system. Although the energy efficiency of a simulated Roofberg storage/chiller concept operating in the

  11. Infrared survey of 50 buildings constructed during 100 years: thermal performances and damage conditions

    NASA Astrophysics Data System (ADS)

    Ljungberg, Sven-Ake

    1995-03-01

    Different building constructions and craftsmanship give rise to different thermal performance and damage conditions. The building stock of most industrial countries consists of buildings of various age, and constructions, from old historic buildings with heavy stone or wooden construction, to new buildings with heavy or light concrete construction, or modern steel or wooden construction. In this paper the result from a detailed infrared survey of 50 buildings from six Swedish military camps is presented. The presentation is limited to a comparison of thermal performance and damage conditions of buildings of various ages, functions, and constructions, of a building period of more than 100 years. The result is expected to be relevant even to civilian buildings. Infrared surveys were performed during 1992-1993, with airborne, and mobile short- and longwave infrared systems, out- and indoor thermography. Interpretation and analysis of infrared data was performed with interactive image and analyzing systems. Field inspections were carried out with fiber optics system, and by ocular inspections. Air-exchange rate was measured in order to quantify air leakages through the building envelope, indicated in thermograms. The objects studied were single-family houses, barracks, office-, service-, school- and exercise buildings, military hotels and restaurants, aircraft hangars, and ship factory buildings. The main conclusions from this study are that most buildings from 1880 - 1940 have a solid construction with a high quality of craftsmanship, relatively good thermal performance, due to extremely thick walls, and adding insulation at the attic floor. From about 1940 - 1960 the quality of construction, thermal performance and craftsmanship seem to vary a lot. Buildings constructed during the period of 1960 - 1990 have in general the best thermal performance due to a better insulation capacity, however, also one finds here the greatest variety of problems. The result from this

  12. Building America Best Practices Series, Volume 10: Retrofit Techniques and Technologies: Air Sealing

    SciTech Connect

    Baechler, Michael C.; Gilbride, Theresa L.; Hefty, Marye G.; Cole, Pamala C.; Williamson, Jennifer L.; Love, Pat M.

    2010-04-12

    This report was prepared by PNNL for the U.S. Department of Energy Building America Program. The report provides information to home owners who want to make their existing homes more energy efficient by sealing leaks in the building envelope (ceiling, walls, and floors) that let in drafts and let conditioned air escape. The report provides descriptions of 19 key areas of the home where air sealing can improve home performance and energy efficiency. The report includes suggestions on how to find a qualified weatherization or home performance contractor, what to expect in a home energy audit, opportune times for performing air sealing, and what safety and health concerns to be aware of. The report describes some basic building science concepts and topics related to air sealing including ventilation, diagnostic tools, and code requirements. The report will be available for free download from the DOE Building America website. It is a suitable consumer education tool for home performance and weatherization contractors to share with customers to describe the process and value of home energy retrofits.

  13. Air conditioning in a tropical climate: Impacts upon European residents in Darwin, Australia

    NASA Astrophysics Data System (ADS)

    Auliciems, A.; Dedear, R.

    1986-09-01

    The efficacy of current practices in air conditioning is investigated in the two monsoonal seasons in Darwin. Assessment is made of atmospheric parameters, clothing, metabolic rate. Some 1000 questionnaires are applied dealing with adaptations, health perceptions and preferences as related to air cooling and ventilation. The findings are discussed with reference to energy balance calculations and current models of psychological control in thermoregulation. The results indicate that Darwin's population is considerably overcooled, and contrary to assumptions and practice, air conditioning is not desired in office buildings during the “Dry”. In the home, air conditioning is not regarded as essential. The indications are that a rationalization of air cooling to comply with natural variability in warmth would lead to a significant reduction in energy consumption, and an overall enhancement to the health and comfort of the population through the greater ventilation rates that would be economically feasible were design temperatures lifted.

  14. Repair Air Conditioning, COC Bldg 2605, Basement Plan. By Strategic ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Repair Air Conditioning, COC Bldg 2605, Basement Plan. By Strategic Air Command, Civil Engineering. Drawing no. R-156, sheet no. 1 of 4, 15 August 1968; project no. MAR-125-8;CE-572; file drawer 2605-5. Last revised 31 August 1968?. Scale one-eighth inch and one-quarter inch to one foot. 29x41 inches. pencil on paper - March Air Force Base, Strategic Air Command, Combat Operations Center, 5220 Riverside Drive, Moreno Valley, Riverside County, CA

  15. Repair Air Conditioning, COC Bldg 2605, First Floor Plan. By ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Repair Air Conditioning, COC Bldg 2605, First Floor Plan. By Strategic Air Command, Civil Engineering. Drawing no. R-156, sheet no. 2 of 4, 15 August 1968; project no. MAR-125-8;CE-572; file drawer 2605-6. Scale one-eighth inch to one foot. 29x41 inches. pencil on paper 405 - March Air Force Base, Strategic Air Command, Combat Operations Center, 5220 Riverside Drive, Moreno Valley, Riverside County, CA

  16. Solar-powered air-conditioning

    NASA Technical Reports Server (NTRS)

    Clark, D. C.; Rousseau, J.

    1977-01-01

    Report focuses on recent study on development of solar-powered residential air conditioners and is based on selected literature through 1975. Its purposes are to characterize thermal and mechanical systems that might be useful in development of Rankine-cycle approach to solar cooling and assessment of a Lithium Bromide/Water absorption cycle system.

  17. The Influence of Meteorological Conditions on Air Pollution

    ERIC Educational Resources Information Center

    Campbell, N. A.; Gipps, J.

    1975-01-01

    Explains the distribution of air pollutants as related to such meteorological conditions as temperature inversions, ground inversion, and wind velocity. Uses a power station to illustrate the effect of some of the meteorological conditions mentioned. (GS)

  18. The Maintenance of Heating, Ventilating and Air-Conditioning Systems and Indoor Air Quality in Schools: A Guide for School Facility Managers. Technical Bulletin.

    ERIC Educational Resources Information Center

    Wheeler, Arthur E.

    To help maintain good indoor air quality (IAQ) in schools, guidance for the development and implementation of an effective program for maintenance and operation of heating, ventilating, and air-conditioning (HVAC) systems are discussed. Frequently, a building's occupants will complain about IAQ when the temperature or humidity are at uncomfortable…

  19. Technology evaluation of heating, ventilation, and air conditioning for MIUS application

    NASA Technical Reports Server (NTRS)

    Gill, W. L.; Keough, M. B.; Rippey, J. O.

    1974-01-01

    Potential ways of providing heating, ventilation, and air conditioning for a building complex serviced by a modular integrated utility system (MIUS) are examined. Literature surveys were conducted to investigate both conventional and unusual systems to serve this purpose. The advantages and disadvantages of the systems most compatible with MIUS are discussed.

  20. Heating, Ventilation, and Air Conditioning Series. Duty Task List.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This task list is intended for use in planning and/or evaluating a competency-based course in heating, ventilation, and air conditioning. The guide outlines the tasks entailed in eight different duties typically required of employees in the following occupations: residential installer, domestic refrigeration technician, air conditioning and…

  1. Air Conditioning and Refrigeration Program Articulation, 1981-1982.

    ERIC Educational Resources Information Center

    Dallas County Community Coll. District, TX.

    Based on a survey of high school programs and courses in the Dallas County Community College District (DCCCD), this articulated program is designed to prepare students for entry-level employment in the air conditioning and refrigeration industry, including residential and commercial air conditioning and commercial refrigeration. The skills and…

  2. Mountain Plains Learning Experience Guide: Heating, Refrigeration, & Air Conditioning.

    ERIC Educational Resources Information Center

    Carey, John

    This Heating, Refrigeration, and Air Conditioning course is comprised of eleven individualized units: (1) Refrigeration Tools, Materials, and Refrigerant; (2) Basic Heating and Air Conditioning; (3) Sealed System Repairs; (4) Basic Refrigeration Systems; (5) Compression Systems and Compressors; (6) Refrigeration Controls; (7) Electric Circuit…

  3. Residential Heat and Air Conditioning. Florida Vocational Program Guide.

    ERIC Educational Resources Information Center

    University of South Florida, Tampa. Dept. of Adult and Vocational Education.

    The program guide for residential heat and air conditioning courses in Florida identifies primary considerations for the organization, operation, and evaluation of a vocational education program. Following an occupational description for the job title for air-conditioning installer-servicer, window unit, and its Dictionary of Occupational Titles…

  4. The influence of air-conditioning on street temperatures in the city of Paris

    NASA Astrophysics Data System (ADS)

    de Munck, C. S.; Pigeon, G.; Masson, V.; Marchadier, C.; Meunier, F.; Tréméac, B.; Merchat, M.

    2010-12-01

    A consequence of urban heat islands in summer is the increased use of air-conditioning during extreme heat events : the use of air-conditioning systems, while cooling the inside of buildings releases waste heat (as latent and sensible heat) in the lower part of the urban atmosphere, hence potentially increasing air street temperatures where the heat is released. This may lead locally to a further increase in air street temperatures, therefore increasing the air cooling demand, while at the same time lowering the efficiency of air-conditioning units. A coupled model consisting of a meso-scale meteorological model (MESO-NH) and an urban energy balance model (TEB) has been implemented with an air-conditioning module and used in combination to real spatialised datasets to understand and quantify potential increases in temperature due to air-conditioning heat releases for the city of Paris . In a first instance, the current types of air-conditioning systems co-existing in the city were simulated (underground chilled water network, wet cooling towers and individual air-conditioning units) to study the effects of latent and sensible heat releases on street temperatures. In a third instance, 2 scenarios were tested to characterise the impacts of likely future trends in air-conditioning equipment in the city : a first scenario for which current heat releases were converted to sensible heat, and a second based on 2030s projections of air-conditioning equipment at the scale of the city. All the scenarios showed an increase in street temperature which, as expected, was greater at night time than day time. For the first two scenarios, this increase in street temperatures was localised at or near the sources of air-conditioner heat releases, while the 2030s air-conditioning scenario impacted wider zones in the city. The amplitude of the increase in temperature varied from 0,25°C to 1°C for the air-conditioning current state, between 0,25°C and 2°C for the sensible heat

  5. Building America Case Study: Air Leakage and Air Transfer Between Garage and Living Space, Waldorf, Maryland (Fact Sheet)

    SciTech Connect

    Not Available

    2014-11-01

    This research project focused on evaluation of air transfer between the garage and living space in a single-family detached home constructed by a production homebuilder in compliance with the 2009 International Residential Code and the 2009 International Energy Conservation Code. The project gathered important information about the performance of whole-building ventilation systems and garage ventilation systems as they relate to minimizing flow of contaminated air from garage to living space. A series of 25 multi-point fan pressurization tests and additional zone pressure diagnostic testing characterized the garage and house air leakage, the garage-to-house air leakage, and garage and house pressure relationships to each other and to outdoors using automated fan pressurization and pressure monitoring techniques. While the relative characteristics of this house may not represent the entire population of new construction configurations and air tightness levels (house and garage) throughout the country, the technical approach was conservative and should reasonably extend the usefulness of the results to a large spectrum of house configurations from this set of parametric tests in this one house. Based on the results of this testing, the two-step garage-to-house air leakage test protocol described above is recommended where whole-house exhaust ventilation is employed. For houses employing whole-house supply ventilation (positive pressure) or balanced ventilation (same pressure effect as the Baseline condition), adherence to the EPA Indoor airPLUS house-to-garage air sealing requirements should be sufficient to expect little to no garage-to-house air transfer.

  6. Measurement of air exchange rates in residential and commercial buildings in the northwest: techniques and results

    SciTech Connect

    Parker, G.B.

    1985-04-01

    In a study of air exchange rates in commercial and residential buildings, several techniques were employed to measure the air exchange: analysis of sulfur hexafluoride tracer gas decay using a portable gas chromatograph; analysis of carbon monoxide decay using a continuous infrared analyzer; analysis of nitrogen oxides decay using a continuous oxides of nitrogen analyzer; and analysis of perfluorocarbon tracer (PFT) gas using a programmable automatic sampler, and a passive capillary tube sampler. Using sulfur hexafluoride tracer gas with real-time chromatography was the most labor-intensive method, requiring constant attention for several hours; whereas, analyzing the decay of PFT tracer gas using small capillary tubes required little setup time and virtually no attention. However, the analysis of tracer gas captured by the capillary tubes was difficult and was performed using special analysis equipment. The air exchange rate measured in the commercial buildings ranged from 5 to 0.04 air changes per hour (ACH) depending on the type of heating, ventilation, and air conditioning (HVAC) system. Air exchange in the residential structures ranged from about 1 ACH to about 0.3 ACH. 6 refs., 5 tabs., 3 figs.

  7. Energy and air quality implications of passive stack ventilation in residential buildings

    SciTech Connect

    Mortensen, Dorthe Kragsig; Walker, Iain S.; Sherman, Max

    2011-01-01

    Ventilation requires energy to transport and condition the incoming air. The energy consumption for ventilation in residential buildings depends on the ventilation rate required to maintain an acceptable indoor air quality. Historically, U.S. residential buildings relied on natural infiltration to provide sufficient ventilation, but as homes get tighter, designed ventilation systems are more frequently required particularly for new energy efficient homes and retrofitted homes. ASHRAE Standard 62.2 is used to specify the minimum ventilation rate required in residential buildings and compliance is normally achieved with fully mechanical whole-house systems; however, alternative methods may be used to provide the required ventilation when their air quality equivalency has been proven. One appealing method is the use of passive stack ventilation systems. They have been used for centuries to ventilate buildings and are often used in ventilation regulations in other countries. Passive stacks are appealing because they require no fans or electrical supply (which could lead to lower cost) and do not require maintenance (thus being more robust and reliable). The downside to passive stacks is that there is little control of ventilation air flow rates because they rely on stack and wind effects that depend on local time-varying weather. In this study we looked at how passive stacks might be used in different California climates and investigated control methods that can be used to optimize indoor air quality and energy use. The results showed that passive stacks can be used to provide acceptable indoor air quality per ASHRAE 62.2 with the potential to save energy provided that they are sized appropriately and flow controllers are used to limit over-ventilation.

  8. Quantification of vapor intrusion pathways into a slab-on-ground building under varying environmental conditions.

    PubMed

    Patterson, Bradley M; Davis, Greg B

    2009-02-01

    Potential hydrocarbon-vapor intrusion pathways into a building through a concrete slab-on-ground were investigated and quantified under a variety of environmental conditions to elucidate the potential mechanisms for indoor air contamination. Vapor discharge from the uncovered open ground soil adjacent to the building and subsequent advection into the building was unlikely due to the low soil-gas concentrations at the edge of the building as a result of aerobic biodegradation of hydrocarbon vapors. When the building's interior was under ambient pressure, a flux of vapors into the building due to molecular diffusion of vapors through the building's concrete slab (cyclohexane 11 and methylcyclohexane 31 mg m(-2) concrete slab day(-1)) and short-term (up to 8 h) cyclical pressure-driven advection of vapors through an artificial crack (cyclohexane 4.2 x 10(3) and methylcyclohexane 1.2 x 10(4) mg m(-2) cracks day(-1)) was observed. The average subslab vapor concentration under the center of the building was 25,000 microg L(-1). Based on the measured building's interiorvapor concentrations and the building's air exchange rate of 0.66 h(-1), diffusion of vapors through the concrete slab was the dominantvapor intrusion pathway and cyclical pressure exchanges resulted in a near zero advective flux. When the building's interior was under a reduced pressure (-12 Pa), advective transport through cracks or gaps in the concrete slab (cyclohexane 340 and methylcyclohexane 1100 mg m(-2) cracks day(-1)) was the dominant vapor intrusion pathway. PMID:19244997

  9. Air conditioning system with supplemental ice storing and cooling capacity

    DOEpatents

    Weng, Kuo-Lianq; Weng, Kuo-Liang

    1998-01-01

    The present air conditioning system with ice storing and cooling capacity can generate and store ice in its pipe assembly or in an ice storage tank particularly equipped for the system, depending on the type of the air conditioning system. The system is characterized in particular in that ice can be produced and stored in the air conditioning system whereby the time of supplying cooled air can be effectively extended with the merit that the operation cycle of the on and off of the compressor can be prolonged, extending the operation lifespan of the compressor in one aspect. In another aspect, ice production and storage in great amount can be performed in an off-peak period of the electrical power consumption and the stored ice can be utilized in the peak period of the power consumption so as to provide supplemental cooling capacity for the compressor of the air conditioning system whereby the shift of peak and off-peak power consumption can be effected with ease. The present air conditioning system can lower the installation expense for an ice-storing air conditioning system and can also be applied to an old conventional air conditioning system.

  10. Air-conditioning in the human nasal cavity.

    PubMed

    Elad, David; Wolf, Michael; Keck, Tilman

    2008-11-30

    Healthy humans normally breathe through their nose even though its complex geometry imposes a significantly higher resistance in comparison with mouth breathing. The major functional roles of nasal breathing are defense against infiltrating particles and conditioning of the inspired air to nearly alveolar conditions in order to maintain the internal milieu of the lung. The state-of-the-art of the existing knowledge on nasal air-conditioning will be discussed in this review, including in vivo measurements in humans and computational studies on nasal air-conditioning capacity. Areas where further studies will improve our understanding and may help medical diagnosis and intervention in pathological states will be introduced. PMID:18565805

  11. 241-U-701 new compressor building and instrument air piping analyses

    SciTech Connect

    Huang, F.H.

    1994-08-25

    Building anchorage analysis is performed to qualify the design of the new compressor building foundation given in the ECN ``241-U-701 New Compressor Building.`` Recommendations for some changes in the ECN are made accordingly. Calculations show that the 6-in.-slab is capable of supporting the pipe supports, and that the building foundation, air compressor and dryer anchorage, and electric rack are adequate structurally. Analysis also shows that the instrument air piping and pipe supports for the compressed air system meet the applicable code requirements and are acceptable. The building is for the U-Farm instrument air systems.

  12. Air Liquide builds H{sub 2} plant in Portugal

    SciTech Connect

    1996-06-19

    Air Liquide will spend $18 million to build a naphtha steam reforming unit in Estarreja, Portugal that will produce 3,700 cu meters/hour of hydrogen (H{sub 2}). The new plant will raise Air Liquide`s H{sub 2} capacity at the site to 8,000 cu meters/hour. The company supplies Anilina de Portugal with H{sub 2}. In addition, Air Liquide supplies Dow Chemical with carbon monoxide used in its methylene di-para-phenylene isocyanate plant at the site. Anilina is spending Esc1.8 billion ($11.3 million) to expand aniline capacity from 60,000 m.t./year to 95,000 m.t./year by the end of 1997 and nitrobenzene from 100,000 m.t./year to 170,000 m.t./year. This year Dow will buy more than 50,000 m.t./year of aniline from the Portuguese firm for its MDI production.

  13. Indoor air quality large building characterization project planning. Report for September 1992--May 1997

    SciTech Connect

    Menetrez, M.Y.; Kulp, R.N.; Pyle, B.; Williamson, A.; McDonough, S.

    1998-08-01

    Three buildings were characterized in this project by examining radon concentrations and indoor air quality (IAQ) levels as affected by building ventilation dynamics. IAQ data collection stations (IAQDS) for monitoring and data logging, remote switches (pressure and sail switches), and a weather station were installed. Measurements of indoor radon carbon dioxide, particle concentrations, temperature, humidity, pressure differentials, ambient and sub-slab radon concentrations, and outdoor air (OA) intake flow rates were collected. The OA intake was adjusted when possible, and fan cycles were controlled while tracer gas measurements were taken in all zones and IAQDS data were collected. Ventilation, infiltration, mixing rates, radon entry, pressure/temperature convective driving forces, CO{sub 2} generation/decay rates, and IAQ levels were established for baseline and OA-adjusted conditions.

  14. Desiccant Enhanced Evaporative Air Conditioning: Parametric Analysis and Design; Preprint

    SciTech Connect

    Woods, J.; Kozubal, E.

    2012-10-01

    This paper presents a parametric analysis using a numerical model of a new concept in desiccant and evaporative air conditioning. The concept consists of two stages: a liquid desiccant dehumidifier and a dew-point evaporative cooler. Each stage consists of stacked air channel pairs separated by a plastic sheet. In the first stage, a liquid desiccant film removes moisture from the process (supply-side) air through a membrane. An evaporatively-cooled exhaust airstream on the other side of the plastic sheet cools the desiccant. The second-stage indirect evaporative cooler sensibly cools the dried process air. We analyze the tradeoff between device size and energy efficiency. This tradeoff depends strongly on process air channel thicknesses, the ratio of first-stage to second-stage area, and the second-stage exhaust air flow rate. A sensitivity analysis reiterates the importance of the process air boundary layers and suggests a need for increasing airside heat and mass transfer enhancements.

  15. Assessing summertime urban air conditioning consumption in a semiarid environment

    NASA Astrophysics Data System (ADS)

    Salamanca, F.; Georgescu, M.; Mahalov, A.; Moustaoui, M.; Wang, M.; Svoma, B. M.

    2013-09-01

    Evaluation of built environment energy demand is necessary in light of global projections of urban expansion. Of particular concern are rapidly expanding urban areas in environments where consumption requirements for cooling are excessive. Here, we simulate urban air conditioning (AC) electric consumption for several extreme heat events during summertime over a semiarid metropolitan area with the Weather Research and Forecasting (WRF) model coupled to a multilayer building energy scheme. Observed total load values obtained from an electric utility company were split into two parts, one linked to meteorology (i.e., AC consumption) which was compared to WRF simulations, and another to human behavior. WRF-simulated non-dimensional AC consumption profiles compared favorably to diurnal observations in terms of both amplitude and timing. The hourly ratio of AC to total electricity consumption accounted for ˜53% of diurnally averaged total electric demand, ranging from ˜35% during early morning to ˜65% during evening hours. Our work highlights the importance of modeling AC electricity consumption and its role for the sustainable planning of future urban energy needs. Finally, the methodology presented in this article establishes a new energy consumption-modeling framework that can be applied to any urban environment where the use of AC systems is prevalent.

  16. Low-Flow Liquid Desiccant Air-Conditioning: Demonstrated Performance and Cost Implications

    SciTech Connect

    Kozubal, E.; Herrmann, L.; Deru, M.; Clark, J.; Lowenstein, A.

    2014-09-01

    Cooling loads must be dramatically reduced when designing net-zero energy buildings or other highly efficient facilities. Advances in this area have focused primarily on reducing a building's sensible cooling loads by improving the envelope, integrating properly sized daylighting systems, adding exterior solar shading devices, and reducing internal heat gains. As sensible loads decrease, however, latent loads remain relatively constant, and thus become a greater fraction of the overall cooling requirement in highly efficient building designs, particularly in humid climates. This shift toward latent cooling is a challenge for heating, ventilation, and air-conditioning (HVAC) systems. Traditional systems typically dehumidify by first overcooling air below the dew-point temperature and then reheating it to an appropriate supply temperature, which requires an excessive amount of energy. Another dehumidification strategy incorporates solid desiccant rotors that remove water from air more efficiently; however, these systems are large and increase fan energy consumption due to the increased airside pressure drop of solid desiccant rotors. A third dehumidification strategy involves high flow liquid desiccant systems. These systems require a high maintenance separator to protect the air distribution system from corrosive desiccant droplet carryover and so are more commonly used in industrial applications and rarely in commercial buildings. Both solid desiccant systems and most high-flow liquid desiccant systems (if not internally cooled) add sensible energy which must later be removed to the air stream during dehumidification, through the release of sensible heat during the sorption process.

  17. Synthesizing the Effect of Building Condition Quality on Academic Performance

    ERIC Educational Resources Information Center

    Gunter, Tracey; Shao, Jing

    2016-01-01

    Since the late 1970s, researchers have examined the relationship between school building condition and student performance. Though many literature reviews have claimed that a relationship exists, no meta-analysis has quantitatively examined this literature. The purpose of this review was to synthesize the existing literature on the relationship…

  18. Extreme conditions in a dissolving air nanobubble

    NASA Astrophysics Data System (ADS)

    Yasui, Kyuichi; Tuziuti, Toru; Kanematsu, Wataru

    2016-07-01

    Numerical simulations of the dissolution of an air nanobubble in water have been performed taking into account the effect of bubble dynamics (inertia of the surrounding liquid). The presence of stable bulk nanobubbles is not assumed in the present study because the bubble radius inevitably passes the nanoscale in the complete dissolution of a bubble. The bubble surface is assumed to be clean because attachment of hydrophobic materials on the bubble surface could considerably change the gas diffusion rate. The speed of the bubble collapse (the bubble wall speed) increases to about 90 m/s or less. The shape of a bubble is kept nearly spherical because the amplitude of the nonspherical component of the bubble shape is negligible compared to the instantaneous bubble radius. In other words, a bubble never disintegrates into daughter bubbles during the dissolution. At the final moment of the dissolution, the temperature inside a bubble increases to about 3000 K due to the quasiadiabatic compression. The bubble temperature is higher than 1000 K only for the final 19 ps. However, the Knudsen number is more than 0.2 for this moment, and the error associated with the continuum model should be considerable. In the final 2.3 ns, only nitrogen molecules are present inside a bubble as the solubility of nitrogen is the lowest among the gas species. The radical formation inside a bubble is negligible because the probability of nitrogen dissociation is only on the order of 10-15. The pressure inside a bubble, as well as the liquid pressure at the bubble wall, increases to about 5 GPa at the final moment of dissolution. The pressure is higher than 1 GPa for the final 0.7 ns inside a bubble and for the final 0.6 ns in the liquid at the bubble wall. The liquid temperature at the bubble wall increases to about 360 K from 293 K at the final stage of the complete dissolution.

  19. Extreme conditions in a dissolving air nanobubble.

    PubMed

    Yasui, Kyuichi; Tuziuti, Toru; Kanematsu, Wataru

    2016-07-01

    Numerical simulations of the dissolution of an air nanobubble in water have been performed taking into account the effect of bubble dynamics (inertia of the surrounding liquid). The presence of stable bulk nanobubbles is not assumed in the present study because the bubble radius inevitably passes the nanoscale in the complete dissolution of a bubble. The bubble surface is assumed to be clean because attachment of hydrophobic materials on the bubble surface could considerably change the gas diffusion rate. The speed of the bubble collapse (the bubble wall speed) increases to about 90 m/s or less. The shape of a bubble is kept nearly spherical because the amplitude of the nonspherical component of the bubble shape is negligible compared to the instantaneous bubble radius. In other words, a bubble never disintegrates into daughter bubbles during the dissolution. At the final moment of the dissolution, the temperature inside a bubble increases to about 3000 K due to the quasiadiabatic compression. The bubble temperature is higher than 1000 K only for the final 19 ps. However, the Knudsen number is more than 0.2 for this moment, and the error associated with the continuum model should be considerable. In the final 2.3 ns, only nitrogen molecules are present inside a bubble as the solubility of nitrogen is the lowest among the gas species. The radical formation inside a bubble is negligible because the probability of nitrogen dissociation is only on the order of 10^{-15}. The pressure inside a bubble, as well as the liquid pressure at the bubble wall, increases to about 5 GPa at the final moment of dissolution. The pressure is higher than 1 GPa for the final 0.7 ns inside a bubble and for the final 0.6 ns in the liquid at the bubble wall. The liquid temperature at the bubble wall increases to about 360 K from 293 K at the final stage of the complete dissolution. PMID:27575216

  20. A study of energy use for ventilation and air-conditioning systems in Hong Kong

    NASA Astrophysics Data System (ADS)

    Yu, Chung Hoi Philip

    Most of the local modern buildings are high-rise with enclosed structure. Mechanical ventilation and air conditioning (MVAC) systems are installed for thermal comfort. Various types of MVAC systems found in Hong Kong were critically reviewed with comments on their characteristics in energy efficiency as well as application. The major design considerations were also discussed. Besides MVAC, other energy-consuming components in commercial buildings were also identified, such as lighting, lifts and escalators, office equipment, information technology facilities, etc. A practical approach has been adopted throughout this study in order that the end results will have pragmatic value to the heating, ventilating and air-conditioning (HVAC) industry in Hong Kong. Indoor Air Quality (IAQ) has become a major issue in commercial buildings worldwide including Hong Kong. Ventilation rate is no doubt a critical element in the design of HVAC systems, which can be realized more obviously in railway train compartments where the carbon dioxide level will be built up quickly when the compartments are crowded during rush hours. A study was carried out based on a simplified model using a train compartment that is equipped with an MVAC system. Overall Thermal Transfer Value (OTTV) is a single-value parameter for controlling building energy use and is relatively simple to implement legislatively. The local government has taken a first step in reacting to the worldwide concern of energy conservation and environmental protection since 1995. Different methods of OTTV calculation were studied and the computation results were compared. It gives a clear picture of the advantages and limitations for each method to the building designers. However, due to the limitations of using OTTV as the only parameter for building energy control, some new approaches to a total control of building energy use were discussed and they might be considered for future revision of the building energy codes in Hong

  1. Application of solar energy to air conditioning systems

    NASA Technical Reports Server (NTRS)

    Nash, J. M.; Harstad, A. J.

    1976-01-01

    The results of a survey of solar energy system applications of air conditioning are summarized. Techniques discussed are both solar powered (absorption cycle and the heat engine/Rankine cycle) and solar related (heat pump). Brief descriptions of the physical implications of various air conditioning techniques, discussions of status, proposed technological improvements, methods of utilization and simulation models are presented, along with an extensive bibliography of related literature.

  2. Building America Top Innovations 2012: Thermal Bypass Air Barriers in the 2009 International Energy Conservation Code

    SciTech Connect

    none,

    2013-01-01

    This Building America Top Innovations profile describes Building America research supporting Thermal Bypass Air Barrier requirements. Since these were adopted in the 2009 IECC, close to one million homes have been mandated to include this vitally important energy efficiency measure.

  3. MICROBIOLOGICAL SCREENING OF THE INDOOR AIR QUALITY IN THE POLK COUNTY ADMINISTRATION BUILDING

    EPA Science Inventory

    The report gives results of a microbiological screening of the indoor air quality in the Polk County (Bartow, FL) Administration Building (PCAB), a large, negatively pressured building not known to be biocontaminated. The microbiological screening included bioaerosol, bulk materi...

  4. Influence of Ventilation Ratio on Desiccant Air Conditioning System's Efficiency Performance

    NASA Astrophysics Data System (ADS)

    Tran, Thien Nha; Akisawa, Atsushi; Kashiwagi, Takao; Hamamoto, Yoshinori

    Ventilation air is a concern for engineers since ventilated air controls indoor air contamination; additional ventilation, however, increases the energy consumption of buildings. The study investigates the energy efficiency performance of the desiccant dehumidification air conditioning system in the context of ventilation for a hot-humid climate such as summer in Japan. The investigation focuses on the variable ratio of ventilation air as required by the application of air conditioning system. The COP of the desiccant air conditioning system is determined. The evaluation is subsequently performed by comparing the desiccant based system with the conventional absorption cooling system and the vapor compression cooling system. Based on 12 desiccant rotor simulations, it is found that the desiccant regeneration temperature required varies between 47°C to 85°C as ventilation ratio increases from 0. 0 to 100%, and up to 52. 5°C as the ventilation ratio achieves 14%. The heat required for regenerating desiccant accounts for 55% and higher of the system's total heat consumption; the system is expected to be energy efficient by using wasted heat from the absorption chiller for desiccant regeneration; and its energy efficiency expands as the ratio of ventilation air rises above 15% compared with the conventional absorption cooling system. The energy efficiency also benefits as the ratio rises beyond 70% against the conventional vapor compression cooling system.

  5. Influence of indoor air conditions on radon concentration in a detached house.

    PubMed

    Akbari, Keramatollah; Mahmoudi, Jafar; Ghanbari, Mahdi

    2013-02-01

    Radon is released from soil and building materials and can accumulate in residential buildings. Breathing radon and radon progeny for extended periods hazardous to health and can lead to lung cancer. Indoor air conditions and ventilation systems strongly influence indoor radon concentrations. This paper focuses on effects of air change rate, indoor temperature and relative humidity on indoor radon concentrations in a one family detached house in Stockholm, Sweden. In this study a heat recovery ventilation system unit was used to control the ventilation rate and a continuous radon monitor (CRM) was used to measure radon levels. FLUENT, a computational fluid dynamics (CFD) software package was used to simulate radon entry into the building and air change rate, indoor temperature and relative humidity effects using a numerical approach. The results from analytical solution, measurements and numerical simulations showed that air change rate, indoor temperature and moisture had significant effects on indoor radon concentration. Increasing air change rate reduces radon level and for a specific air change rate (in this work Ach = 0.5) there was a range of temperature and relative humidity that minimized radon levels. In this case study minimum radon levels were obtained at temperatures between 20 and 22 °C and a relative humidity of 50-60%. PMID:23159846

  6. ADDRESSING HUMAN EXPOSURES TO AIR POLLUTANTS AROUND BUILDINGS IN URBAN AREAS WITH COMPUTATIONAL FLUID DYNAMICS MODELS

    EPA Science Inventory

    This paper discusses the status and application of Computational Fluid Dynamics (CFD) models to address challenges for modeling human exposures to air pollutants around urban building microenvironments. There are challenges for more detailed understanding of air pollutant sour...

  7. Sick Building Syndrome by Indoor Air Pollution in Dalian, China

    PubMed Central

    Guo, Peng; Yokoyama, Kazuhito; Piao, Fengyuan; Sakai, Kiyoshi; Khalequzzaman, Md; Kamijima, Michihiro; Nakajima, Tamie; Kitamura, Fumihiko

    2013-01-01

    This study assessed subjective symptoms related to indoor concentrations of chemicals among residents in a housing estate in Dalian, China, where indoor air pollution by interior decoration materials has recently become a major health problem. Fifty-nine males and 50 females were surveyed for their symptoms related to sick building syndrome. Formaldehyde (HCHO), NO2, and volatile organic compounds (VOCs) in their dwellings were collected using a diffusion sampler and measured by GC/MS. For residents with one or more symptoms in the past, HCHO, butanol or 1,2-dichloroethane concentrations were significantly greater in their bedrooms or kitchens compared with those of subjects without previous symptoms. For residents with one or more symptoms at the time of the study, 1,1,1-trichloroethane, xylene, butanol, methyl isobutyl ketone, and styrene concentrations in their bedrooms or kitchens were significantly greater compared with those of residents without symptoms. HCHO, NO2, and VOCs were detected in all rooms, but their levels were lower than the guideline values except for HCHO in two rooms. Chemical substances from interior decoration materials at indoor air levels lower than their guideline values might have affected the health status of residents. PMID:23579877

  8. Microbial investigation of the air in an apartment building.

    PubMed Central

    Simard, C.; Trudel, M.; Paquette, G.; Payment, P.

    1983-01-01

    The microbial and viral flora in the ventilating ducts of an apartment building was evaluated. Several types of sampler (slit sampler, Andersen sampler, large volume air sampler) were used to evaluate the hourly, weekly and seasonal variation of this flora. The mean bacterial concentration was 17.2 e.f.u./m3 with a maximum level at 07.30 h (41.3 c.f.u./m3) and a minimal concentration in the early afternoon (8 c.f.u./m3). The bacterial concentration observed correlated with the relative humidity in the air-ducts although there were no seasonal differences. The bacteria were mainly gram-positive cocci (73.5%) represented by a large number of Micrococcaceae (47.1%); gram-positive bacilli accounted for 14.2% of the isolates, gram-negative bacilli 12.0% and gram-negative cocci 0.3%. The majority of the bacteria-carrying particles were in the respirable range with 80.4% of them being less than 5 microns. The methods used did not result in the isolation of viruses during the winter sampling period. PMID:6358346

  9. Energy-Efficient Supermarket Heating, Ventilation, and Air Conditioning in Humid Climates in the United States

    SciTech Connect

    Clark, J.

    2015-03-01

    Supermarkets are energy-intensive buildings that consume the greatest amount of electricity per square foot of building of any building type in the United States and represent 5% of total U.S. commercial building primary energy use (EIA 2005). Refrigeration and heating, ventilation, and air-conditioning (HVAC) systems are responsible for a large proportion of supermarkets’ total energy use. These two systems sometimes work together and sometimes compete, but the performance of one system always affects the performance of the other. To better understand these challenges and opportunities, the Commercial Buildings team at the National Renewable Energy Laboratory investigated several of the most promising strategies for providing energy-efficient HVAC for supermarkets and quantified the resulting energy use and costs using detailed simulations. This research effort was conducted on behalf of the U.S. Department of Energy (DOE) Commercial Building Partnerships (CBP) (Baechler et al. 2012; Parrish et al. 2013; Antonopoulos et al. 2014; Hirsch et al. 2014). The goal of CBP was to reduce energy use in the commercial building sector by creating, testing, and validating design concepts on the pathway to net zero energy commercial buildings. Several CBP partners owned or operated buildings containing supermarkets and were interested in optimizing the energy efficiency of supermarket HVAC systems in hot-humid climates. These partners included Walmart, Target, Whole Foods Market, SUPERVALU, and the Defense Commissary Agency.

  10. Experimental investigation on performance of ice storage air-conditioning system with separate heat pipe

    SciTech Connect

    Fang, Guiyin; Liu, Xu; Wu, Shuangmao

    2009-11-15

    An experimental study on operation performance of ice storage air-conditioning system with separate helical heat pipe is conducted in this paper. The experimental system of ice storage air-conditioning system with separate heat pipe is set up. The performance parameters such as the evaporation pressure and the condensation pressure of refrigeration system, the refrigeration capacity and the COP (coefficient of performance) of the system, the IPF (ice packing factor) and the cool storage capacity in the cool storage tank during charging period, and the cool discharge rate and the cool discharge capacity in the cool storage tank, the outlet water temperature in the cool storage tank and the outlet air temperature in room unit during discharging period are investigated. The experimental results show that the ice storage air-conditioning system with separate helical heat pipe can stably work during charging and discharging period. This indicates that the ice storage air-conditioning system with separate helical heat pipe is well adapted to cool storage air-conditioning systems in building. (author)

  11. Performance and evaluation of gas engine driven rooftop air conditioning equipment at the Willow Grove (PA) Naval Air Station

    SciTech Connect

    Armstrong, P.R.; Conover, D.R.

    1993-05-01

    In a field evaluation conducted for the US Department of Energy (DOE) Office of Federal Energy Management Program (FEMP), the Pacific Northwest Laboratory (PNL) examined the performance of a new US energy-related technology under the FEMP Test Bed Demonstration Program. The technology was a 15-ton natural gas engine driven roof top air conditioning unit. Two such units were installed on a naval retail building to provide space conditioning to the building. Under the Test Bed Demonstration Program, private and public sector interests are focused to support the installation and evaluation of new US technologies in the federal sector. Participating in this effort under a Cooperative Research and Development Agreement (CRADA) with DOE were the American Gas Cooling Center, Philadelphia Electric Company, Thermo King Corporation, and the US Naval Air Station at Willow Grove, Pennsylvania. Equipment operating and service data as well as building interior and exterior conditions were secured for the 1992 cooling season. Based on a computer assessment of the building using standard weather data, a comparison was made with the energy and operating costs associated with the previous space conditioning system. Based on performance during the 1992 cooling season and adjusted to a normal weather year, the technology will save the site $6,000/yr in purchased energy costs. An additional $9,000 in savings due to electricity demand ratchet charge reductions will also be realized. Detailed information on the technology, the installation, and the results of the technology test are provided to illustrate the advantages to the federal sector of using this technology. A history of the CRADA development process is also reported.

  12. Combination Of Thermography And Pressure Tests To Combat Air Leakage Problems In Building Enclosures

    NASA Astrophysics Data System (ADS)

    Spruin, W. G.

    1987-05-01

    Uncontrolled air leakage in a building enclosure is the main component of space heating and cooling costs. In Atlantic Canada, Public Works Canada has combined thermography and pressure testing to identify design and construction problems in new construction and to identify specific areas of air leakage in existing housing stock. A study case shows how thermography and pressure testing has been utilized to locate and compare specific areas of air leakage in a residence before and after air sealing. The study provides both quantitative and qualitative evidence of how air sealing increases the air tightness in building enclosures.

  13. The microbiological quality of air improves when using air conditioning systems in cars

    PubMed Central

    2010-01-01

    Background Because of better comfort, air conditioning systems are a common feature in automobiles these days. However, its impact on the number of particles and microorganisms inside the vehicle - and by this its impact on the risk of an allergic reaction - is yet unknown. Methods Over a time period of 30 months, the quality of air was investigated in three different types of cars (VW Passat, VW Polo FSI, Seat Alhambra) that were all equipped with a automatic air conditioning system. Operation modes using fresh air from outside the car as well as circulating air from inside the car were examined. The total number of microorganisms and the number of mold spores were measured by impaction in a high flow air sampler. Particles of 0.5 to 5.0 μm diameter were counted by a laser particle counter device. Results Overall 32 occasions of sampling were performed. The concentration of microorganisms outside the cars was always higher than it was inside the cars. Few minutes after starting the air conditioning system the total number of microorganisms was reduced by 81.7%, the number of mold spores was reduced by 83.3%, and the number of particles was reduced by 87.8%. There were no significant differences neither between the types of cars nor between the types of operation mode of the air conditioning system (fresh air vs. circulating air). All parameters that were looked for in this study improved during utilization of the car's air conditioning system. Conclusions We believe that the risk of an allergic reaction will be reduced during use also. Nevertheless, we recommend regular maintenance of the system and replacement of older filters after defined changing intervals. PMID:20515449

  14. Talaromyces rubrifaciens, a new species discovered from heating, ventilation and air conditioning systems in China.

    PubMed

    Luo, Yi; Lu, Xiaohong; Bi, Wu; Liu, Fan; Gao, Weiwei

    2016-01-01

    A new Talaromyces species, T. rubrifaciens, was isolated from supply air outlets of heating, ventilation and air conditioning (HVAC) systems in three kinds of public building in Beijing and Nanjing, China. Morphologically it exhibits many characters of section Trachyspermi but is distinguished from other species of this section by restricted growth and broad and strictly biverticillate conidiophores. Phylogenetic analyses based on the internal transcribed spacer rDNA (ITS), β-tubulin (BenA), calmodulin (CaM) and RNA polymerase second largest subunit (RPB2) genes reveal that T. rubrifaciens is a distinct species in section Trachyspermi. PMID:27055570

  15. Pioneer developments in self-contained air conditioning

    SciTech Connect

    Steinfeld, H.K.

    1986-01-01

    This is a story covering a chapter in the air conditioning industry when that industry was young. It had created the science through the inventions of Dr. Carrier and had developed the art of large systems to a high degree. But prior to 1930, only big jobs were installed, in all of which the air was pre-conditioned by sprays of water. Air conditioning solely for the benefit of the ordinary citizen was not available, and the progress of developing small equipment was lacking. It was only with the invention of ''Freon 12'' in 1930 by Thomas Midgley that all pieces seemed to fall into place for the design of self-contained units. Large companies and small entrepreneurs were ready to enter the field and combine newly developed components like hermetic compressors, improved electrical equipment, capacitors, etc., and lightweight finned coils.

  16. The effects of reduced ventilation on indoor air quality in an office building

    NASA Astrophysics Data System (ADS)

    Turiel, I.; Hollowell, C. D.; Miksch, R. R.; Rudy, J. V.; Young, R. A.; Coye, M. J.

    Indoor air quality was monitored at an office building in San Francisco, CA where occupants had registered eye, nose and throat irritation complaints. Portable air pollution monitoring equipment was placed on site to monitor air outdoors and at three indoor sites (a waiting room, an interview room and an office room), and data were taken under two different ventilation rates. The parameters measured were outside air flow rates, temperature, relative humidity, odor perception, microbial burden, particulate mass, formaldehyde and other organics, carbon dioxide, carbon monoxide and nitrogen dioxide. Carbon dioxide concentrations increased as the ventilation rate decreased; odor perceptibility increased slightly at the lowest ventilation rate, and other pollutants generally showed very low concentrations, which increased when ventilation was reduced. In no case, however, did levels exceed current health standards for outdoor air, nor was any one contaminant found to be responsible for the medical symptoms reported by occupants. It is possible that a synergistic effect of the various contaminants and environmental conditions may account for the discomfort of occupants.

  17. Evaluation of the indoor air quality minimum ventilation rate procedure for use in California retail buildings.

    PubMed

    Dutton, S M; Mendell, M J; Chan, W R; Barrios, M; Sidheswaran, M A; Sullivan, D P; Eliseeva, E A; Fisk, W J

    2015-02-01

    This research assesses benefits of adding to California Title-24 ventilation rate (VR) standards a performance-based option, similar to the American Society of Heating, Refrigerating, and Air Conditioning Engineers 'Indoor Air Quality Procedure' (IAQP) for retail spaces. Ventilation rates and concentrations of contaminants of concern (CoC) were measured in 13 stores. Mass balance models were used to estimate 'IAQP-based' VRs that would maintain concentrations of all CoCs below health- or odor-based reference concentration limits. An intervention study in a 'big box' store assessed how the current VR, the Title 24-prescribed VR, and the IAQP-based VR (0.24, 0.69, and 1.51 air changes per hour) influenced measured IAQ and perceived of IAQ. Neither current VRs nor Title 24-prescribed VRs would maintain all CoCs below reference limits in 12 of 13 stores. In the big box store, the IAQP-based VR kept all CoCs below limits. More than 80% of subjects reported acceptable air quality at all three VRs. In 11 of 13 buildings, saving energy through lower VRs while maintaining acceptable IAQ would require source reduction or gas-phase air cleaning for CoCs. In only one of the 13 retail stores surveyed, application of the IAQP would have allowed reduced VRs without additional contaminant-reduction strategies. PMID:24809924

  18. SUBSURFACE SOIL CONDITIONS BENEATH AND NEAR BUILDINGS AND THE POTENTIAL EFFECTS ON SOIL VAPOR INTRUSION

    EPA Science Inventory

    Migration of volatile chemicals from the subsurface into overlying buildings is called vapor intrusion. Volatile organic chemicals in contaminated soils or groundwater can emit vapors that may migrate through subsurface soils and enter indoor air spaces of overlying buildings. T...

  19. Non-CFC air conditioning for transit buses

    SciTech Connect

    Pesaran, A.A.; Parent, Y.O.; Bharathan, D.

    1992-11-01

    In the United Sates, more than 80% of transit city buses are air conditioned. Vapor compression refrigeration systems are standard for air conditioning buses and account for up to 25% of fuel consumption in the cooling season. Vapor compression devices use chlorofluorocarbons (CFCs), chemicals that contributes to Earths`s ozone depletion and to global warming. Currently, evaporative cooling is an economical alternative to CFC vapor compression refrigeration for air conditioning buses. It does not use CFCs but is restricted in use to arid climates. This limitation can be eliminated by dehumidifying the supply air using desiccants. We studied desiccant systems for cooling transit buses and found that the use of a desiccant-assisted evaporative cooling system is feasible and can deliver the required cooling. The weight and the size of the desiccant system though larger than vapor compression systems, can be easily accommodated within a bus. Fuel consumption for naming desiccant systems was about 70% less than CFC refrigeration system, resulting in payback periods of less than 2.5 years under most circumstances. This preliminary study indicated that desiccant systems combined with evaporative cooling is a CFC-free option to vapor compression refrigeration for air conditioning of transit buses. The concept is ready to be tested in a fun prototype scale in a commercial bus.

  20. Non-CFC air conditioning for transit buses

    SciTech Connect

    Pesaran, A.A.; Parent, Y.O.; Bharathan, D.

    1992-11-01

    In the United Sates, more than 80% of transit city buses are air conditioned. Vapor compression refrigeration systems are standard for air conditioning buses and account for up to 25% of fuel consumption in the cooling season. Vapor compression devices use chlorofluorocarbons (CFCs), chemicals that contributes to Earths's ozone depletion and to global warming. Currently, evaporative cooling is an economical alternative to CFC vapor compression refrigeration for air conditioning buses. It does not use CFCs but is restricted in use to arid climates. This limitation can be eliminated by dehumidifying the supply air using desiccants. We studied desiccant systems for cooling transit buses and found that the use of a desiccant-assisted evaporative cooling system is feasible and can deliver the required cooling. The weight and the size of the desiccant system though larger than vapor compression systems, can be easily accommodated within a bus. Fuel consumption for naming desiccant systems was about 70% less than CFC refrigeration system, resulting in payback periods of less than 2.5 years under most circumstances. This preliminary study indicated that desiccant systems combined with evaporative cooling is a CFC-free option to vapor compression refrigeration for air conditioning of transit buses. The concept is ready to be tested in a fun prototype scale in a commercial bus.

  1. Evaluation of Annual Performance of Multi-type Air-Conditioners for Buildings

    NASA Astrophysics Data System (ADS)

    Hirota, Masafumi; Watanabe, Choyu; Furukawa, Masahide; Nagamatsu, Katsuaki

    The partial load performance tests of multi-type package air-conditioners for buildings powered by electric motors, the rating cooling performance of which was 56 kW, were carried out by using the air-enthalpy method testing apparatus. The coefficient of performance (COP) and annual energy consumption measured by those tests were closely compared with those estimated from the current calculating method (JIS B 8616:2006). It was found that the performance of the air-conditioner changes depending on the outdoor air temperature and the indoor thermal load. The current calculating method could not reproduce the deteriorations of COP that appeared under the low thermal load condition in both the cooling and heating seasons. As a result it seriously underestimated the annual energy consumption; the error amounted to as large as about 20 % of the measured annual electric power consumption. Based on these results, we have proposed new testing conditions for the performance evaluation and a calculation method of the annual energy consumption that can improve the accuracy of the estimation of the annual energy consumption.

  2. Trend of Refrigeration and Air-Conditioning Technology in Korea

    NASA Astrophysics Data System (ADS)

    Oh, Hoo-Kyu; Papk, Ki-Won

    It can be said that refrigeration and air-conditioning technology in Korea dates back to the ancient dynasty, all the way up to the Sokkuram(700s) and Seokbinggo(1700s), But modern refrigeration and air-conditioning technology was first developed in and introduced to Korea in the1960swith the modernization of Korea, Today it is at a level which meets that of advanced countries in both the industrial and domestic fields. As of 2003, there were about 700 companies that owned cold storage/freezing/refrigeration facilities, with cold storage capacity of about 2,000, 000tons and capacity per company of about 3,000 tons. These facilities most are continuously expanding and automating their facilities. 62 million units of refrigeration and air-conditioning machinery and equipment were produced in 2003, worth a total of 7.7 trillion won(about 7.7 thousand million US). On the academic side there are 9 universities and 12 junior colleges with courses in either refrigeration and air-conditioning or architectural equipment. Academic societies such as the Society of Air-conditioning and Refrigerating Engineers of Korea(SAREK), and industrial societies like the Korean Association of Refrigeration(KAR) are active members of the refrigeration and air-conditioning industry. The1eare also national/government-established research institutions such as the Korea Institute of Science and Technology(KIST), the Korea Institute of Machinery and Materials (KIMM), the Korea Institute of Energy Research(KIER), and the Korea Institute of Industrial Technology (KITECH).

  3. Experimental simulation of air quality in street canyon under changes of building orientation and aspect ratio.

    PubMed

    Yassin, Mohamed F; Ohba, Masaake

    2012-09-01

    To assist validation of numerical simulations of urban pollution, air quality in a street canyon was investigated using a wind tunnel as a research tool under neutral atmospheric conditions. We used tracer gas techniques from a line source without buoyancy. Ethylene (C(2)H(4)) was used as the tracer gas. The street canyon model was formed of six parallel building rows of the same length. The flow and dispersion field was analyzed and measured using a hot-wire anemometer with split fiber probe and fast flame ionization detector. The diffusion flow field in the boundary layer within the street canyon was examined at different locations, with varying building orientations (θ=90°, 112.5°, 135° and 157.5°) and street canyon aspect ratios (W/H=1/2, 3/4 and 1) downwind of the leeward side of the street canyon model. Results show that velocity increases with aspect ratio, and with θ>90°. Pollutant concentration increases as aspect ratio decreases. This concentration decreases exponentially in the vertical direction, and decreases as θ increases from 90°. Measured pollutant concentration distributions indicate that variability of building orientation and aspect ratio in the street canyon are important for estimating air quality in the canyon. The data presented here can be used as a comprehensive database for validation of numerical models. PMID:22760437

  4. Effects of building roof greening on air quality in street canyons

    NASA Astrophysics Data System (ADS)

    Baik, Jong-Jin; Kwak, Kyung-Hwan; Park, Seung-Bu; Ryu, Young-Hee

    2012-12-01

    Building roof greening is a successful strategy for improving urban thermal environment. It is of theoretical interest and practical importance to study the effects of building roof greening on urban air quality in a systematic and quantitative way. In this study, we examine the effects of building roof greening on air quality in street canyons using a computational fluid dynamics (CFD) model that includes the thermodynamic energy equation and the transport equation of passive, non-reactive pollutants. For simplicity, building roof greening is represented by specified cooling. Results for a simple building configuration with a street canyon aspect ratio of one show that the cool air produced due to building roof greening flows into the street canyon, giving rise to strengthened street canyon flow. The strengthened street canyon flow enhances pollutant dispersion near the road, which decreases pollutant concentration there. Thus, building roof greening improves air quality near the road. The degree of air quality improvement near the road increases as the cooling intensity increases. In the middle region of the street canyon, the air quality can worsen when the cooling intensity is not too strong. Results for a real urban morphology also show that building roof greening improves air quality near roads. The degree of air quality improvement near roads due to building roof greening depends on the ambient wind direction. These findings provide a theoretical foundation for constructing green roofs for the purpose of improving air quality near roads or at a pedestrian level as well as urban thermal environment. Further studies using a CFD model coupled with a photochemistry model and a surface energy balance model are required to evaluate the effects of building roof greening on air quality in street canyons in a more realistic framework.

  5. ANALYSIS OF BASELINE INDOOR AIR QUALITY PARAMETERS IN U.S. OFFICE BUILDINGS

    EPA Science Inventory

    The U.S. EPA's Office of Radiation and Indoor Air studied 100 public and private offices buildings across the U.S. from 1994-1998. The purpose of the study, entitled the Building Assessment Survey and Evaluation Study (BASE), was to: a) provide a distribution of IAQ, building, a...

  6. Underfloor air distribution systems: Benefits and when to use the system in building design

    SciTech Connect

    McCarry, B.T.

    1995-12-31

    Underfloor air distribution systems are a viable option for mechanical system building design. They are comprised of raised floor panels with a supply air plenum in the void between the raised floor and the concrete structure. Supply air grilles are flush mounted to the floor to create a flat floor and walking surface. The engineering challenge is to determine when to use underfloor air distribution systems and how to effectively apply them. The best places to use this system are in owner-occupied buildings with a high churn rate and/or frequent technology changes. The benefits of this system include fresh air at the level where building occupants are located, forgiveness for variations in internal cooling loads, easy relocation of the supply air grilles to suit revised layouts, a reduction in energy costs for the mechanical system, and an improvement in indoor air quality.

  7. Winter weather conditions vs. air quality in Tricity, Poland

    NASA Astrophysics Data System (ADS)

    Nidzgorska-Lencewicz, Jadwiga; Czarnecka, Małgorzata

    2015-02-01

    The principal aim of this paper is to assess the influence of meteorological conditions on the variability of sulfur dioxide and PM10 particulate matter concentration of pollutants during winter with consideration of an excess of admissible standards. The basis for the analysis were hourly concentrations of PM10 and sulfur dioxide as well as the basic meteorological elements automatically recorded at five stations located in the Tricity agglomeration, and operating within the weather station network belonging to the Agency of Regional Air Quality Monitoring in the Gdańsk Metropolitan Area (ARMAAG). The analysis covers the calendar winters (December-February) in the years 2004/2005 through 2009/2010. The variability of the concentrations of both pollutants under certain weather conditions, i.e. air temperature and relative humidity, atmospheric pressure, as well as wind speed and direction, were evaluated by means of cluster analysis using k-means belonging to a group of non-hierarchical cluster analysis method. The composite effect of meteorological conditions on the variability of sulfur dioxide and PM10 concentrations in isolated clusters were determined by multiple linear regression, using a stepwise procedure, at the significance level α = 0.05 and α = 0.01. The effect of individual weather elements on the pattern of concentration levels was determined using partial regression coefficients. Clusters grouping the highest concentrations of pollutants were characterised, in most cases, by the lowest air temperature and a lower wind speed, and often a higher pressure, and sometimes slightly lower relative air humidity, i.e. the conditions of anticyclonic weather. Weather conditions had a statistically significant effect on the concentrations of both pollutants in all clusters; however, air temperature and wind speed had the crucial role. Thermal conditions were the decisive factor in the winter season 2005/2006 with the most frequent, overnormative daily

  8. Indoor air quality in public buildings. Volume 2

    SciTech Connect

    Sheldon, L.; Zelon, H.; Sickles, J.; Eaton, C.; Hartwell, T.

    1988-08-01

    Two separate but closely related studies of exposures to volatile organic compounds (VOCs) in buildings where people spend long periods of time were conducted. This report summarizes results obtained in six buildings: a new hospital, office and nursing home and another office, office/school, and nursing home. At each building sampling was performed at three indoor locations and a single outdoor location.

  9. Study of long term options for electric vehicle air conditioning

    SciTech Connect

    Dieckmann, J.; Mallory, D. , Inc., Cambridge, MA )

    1991-07-01

    There are strong incentives in terms of national energy and environmental policy to encourage the commercialization of electrically powered vehicles in the U.S. Among these incentives are reduced petroleum consumption, improved electric generation capacity utilization, reduced IC engine emissions, and, depending on the primary fuel used for electric power generation, reduced emissions of carbon dioxide. A basic requirement for successfully commercializing any motor vehicle in the US is provision of adequate passenger comfort heating and air conditioning (cooling). Although air conditioning is generally sold as optional equipment, in excess of 80% of the automobiles and small trucks sold in the US have air conditioning systems. In current, pre-commercial electric vehicles, comfort heating is provided by a liquid fuel fired heater that heats water which is circulated through the standard heater core in the conventional interior air handling unit. Air conditioning is provided by electric motor driven compressors, installed in a system having, perhaps, an [open quotes]upsized[close quotes] condenser and a standard evaporator (front and rear evaporators in some instances) installed in the conventional interior air handler. Although this approach is adequate in the near term for initial commercialization efforts, a number of shortcomings of this arrangement, as well as longer range concerns need to be addressed. In this project, the long term alternatives for cooling and heating electric vehicles effectively, efficiently (with minimum range penalties), and without adverse environmental impacts have been examined. Identification of options that can provide both heating and cooling is important, in view of the disadvantages of carrying separate heating and cooling systems in the vehicle.

  10. Study of long term options for electric vehicle air conditioning

    SciTech Connect

    Dieckmann, J.; Mallory, D.

    1991-07-01

    There are strong incentives in terms of national energy and environmental policy to encourage the commercialization of electrically powered vehicles in the U.S. Among these incentives are reduced petroleum consumption, improved electric generation capacity utilization, reduced IC engine emissions, and, depending on the primary fuel used for electric power generation, reduced emissions of carbon dioxide. A basic requirement for successfully commercializing any motor vehicle in the US is provision of adequate passenger comfort heating and air conditioning (cooling). Although air conditioning is generally sold as optional equipment, in excess of 80% of the automobiles and small trucks sold in the US have air conditioning systems. In current, pre-commercial electric vehicles, comfort heating is provided by a liquid fuel fired heater that heats water which is circulated through the standard heater core in the conventional interior air handling unit. Air conditioning is provided by electric motor driven compressors, installed in a system having, perhaps, an {open_quotes}upsized{close_quotes} condenser and a standard evaporator (front and rear evaporators in some instances) installed in the conventional interior air handler. Although this approach is adequate in the near term for initial commercialization efforts, a number of shortcomings of this arrangement, as well as longer range concerns need to be addressed. In this project, the long term alternatives for cooling and heating electric vehicles effectively, efficiently (with minimum range penalties), and without adverse environmental impacts have been examined. Identification of options that can provide both heating and cooling is important, in view of the disadvantages of carrying separate heating and cooling systems in the vehicle.

  11. State Skill Standards: Heating, Ventilation, Air Conditioning, and Refrigeration

    ERIC Educational Resources Information Center

    Ball, Larry; Soukup, Dennis

    2006-01-01

    The Department of Education has undertaken an ambitious effort to develop statewide career and technical education skill standards. The standards in this document are for Heating, Ventilation, Air Conditioning and Refrigeration (HVAC&R) programs and are designed to clearly state what the student should know and be able to do upon completion of an…

  12. Advanced Print Reading. Heating, Ventilation and Air Conditioning.

    ERIC Educational Resources Information Center

    Oregon State Dept. of Education, Salem.

    This is a workbook for students learning advanced blueprint reading for heating, ventilation, and air conditioning applications. The workbook contains eight units covering the following material: architectural working drawings; architectural symbols and dimensions; basic architectural electrical symbols; wiring symbols; basic piping symbols;…

  13. Air Conditioning, Heating, and Refrigeration. Competency-Based Curriculum Manual.

    ERIC Educational Resources Information Center

    Gourley, Frank A., Jr.

    This manual was developed to serve as an aid to administrators and instructors involved with postsecondary air conditioning, heating, and refrigeration programs. The first of six chapters contains general information on program implementation, the curriculum design, facilities and equipment requirements, and textbooks and references. Chapter 2…

  14. Heating, Air-Conditioning, and Refrigeration Technician. National Skill Standards.

    ERIC Educational Resources Information Center

    Vocational Technical Education Consortium of States, Decatur, GA.

    This guide contains information on the knowledge and skills identified by industry as essential to the job performance of heating, air-conditioning, and refrigeration technicians. It is intended to assist training providers in public and private institutions, as well as in industry, to develop and implement training that will provide workers with…

  15. An Analysis of the Air Conditioning, Refrigerating and Heating Occupation.

    ERIC Educational Resources Information Center

    Frass, Melvin R.; Krause, Marvin

    The general purpose of the occupational analysis is to provide workable, basic information dealing with the many and varied duties performed in the air conditioning, refrigerating, and heating occupation. The document opens with a brief introduction followed by a job description. The bulk of the document is presented in table form. Six duties are…

  16. Air Conditioning, Heating, and Refrigeration: Scope and Sequence.

    ERIC Educational Resources Information Center

    Nashville - Davidson County Metropolitan Public Schools, TN.

    This scope and sequence guide, developed for an air conditioning, heating, and refrigeration vocational education program, represents an initial step in the development of a systemwide articulated curriculum sequence for all vocational programs within the Metropolitan Nashville Public School System. It was developed as a result of needs expressed…

  17. Heating and Air Conditioning Specialist. Teacher Edition. Automotive Service Series.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This instructor's guide contains materials for teaching the heating and air conditioning specialist component of a competency-based instructional program for students preparing for employment in the automotive service trade. It is based on the National Institute of Automotive Service Excellence task lists. The six instructional units presented…

  18. Heating, Ventilating, and Air Conditioning. Energy Technology Series.

    ERIC Educational Resources Information Center

    Center for Occupational Research and Development, Inc., Waco, TX.

    This course in heating, ventilating, and air conditioning is one of 16 courses in the Energy Technology Series developed for an Energy Conservation-and-Use Technology curriculum. Intended for use in two-year postsecondary technical institutions to prepare technicians for employment, the courses are also useful in industry for updating employees in…

  19. Careers for the 70's in Heating and Air Conditioning

    ERIC Educational Resources Information Center

    Toner, James P.

    1974-01-01

    In a trade encompassing all others in construction, installation foremen for heating/air conditioning firms spend a varied day (repairing a water heater, overseeing installation crews). Decision-makers who must think while using their hands, they rely heavily on preparation in math, mechanical drawing, blueprint reading, physics, and electicity.…

  20. Modelling and simulation of air-conditioning cycles

    NASA Astrophysics Data System (ADS)

    Rais, Sandi; Kadono, Yoshinori; Murayama, Katsunori; Minakuchi, Kazuya; Takeuchi, Hisae; Hasegawa, Tatsuya

    2016-05-01

    The heat-pump cycle for air conditioning was investigated both numerically and experimentally by evaluating the coefficient of performance (COP) under Japanese Industrial Standard (JIS B 8619:1999) and ANSI/AHRI standard 750-2007 operating conditions. We used two expansion valve coefficients Cv_{(\\varphi )} = 0.12 for standard operating conditions (Case 1) approaching 1.3 MPa at high pressure and 0.2 MPa at low pressure, and Cv_{(\\varphi )} = 0.06 namely poor operating conditions (Case 2). To improve the performance of the air conditioner, we compared the performance for two outside air temperatures, 35 and 40 °C (Case 3). The simulation and experiment comparison resulted the decreasing of the COP for standard operating condition is equal to 14 %, from 3.47 to 2.95 and a decrease of the cooling capacity is equal to 18 %, from 309.72 to 253.53 W. This result was also occurred in poor operating condition which the COP was superior at 35 °C temperature.

  1. Hollow Fiber Membrane Dehumidification Device for Air Conditioning System.

    PubMed

    Zhao, Baiwang; Peng, Na; Liang, Canzeng; Yong, Wai Fen; Chung, Tai-Shung

    2015-01-01

    In order to provide a comfortable living and working environment indoors in tropical countries, the outdoor air often needs to be cooled and dehumidified before it enters the rooms. Membrane separation is an emerging technology for air dehumidification and it is based on the solution diffusion mechanism. Water molecules are preferentially permeating through the membranes due to its smaller kinetic diameter and higher condensability than the other gases. Compared to other dehumidification technologies such as direct cooling or desiccation, there is no phase transition involved in membrane dehumidification, neither the contact between the fresh air stream and the desiccants. Hence, membrane dehumidification would not only require less energy consumption but also avoid cross-contamination problems. A pilot scale air dehumidification system is built in this study which comprises nine pieces of one-inch PAN/PDMS hollow fiber membrane modules. A 150 h long-term test shows that the membrane modules has good water vapor transport properties by using a low vacuum force of only 0.78 bar absolute pressure at the lumen side. The water vapor concentration of the feed humid air decreases dramatically from a range of 18-22 g/m³ to a range of 13.5-18.3 g/m³. Most importantly, the total energy saving is up to 26.2% compared with the conventional air conditioning process. PMID:26580660

  2. Hollow Fiber Membrane Dehumidification Device for Air Conditioning System

    PubMed Central

    Zhao, Baiwang; Peng, Na; Liang, Canzeng; Yong, Wai Fen; Chung, Tai-Shung

    2015-01-01

    In order to provide a comfortable living and working environment indoors in tropical countries, the outdoor air often needs to be cooled and dehumidified before it enters the rooms. Membrane separation is an emerging technology for air dehumidification and it is based on the solution diffusion mechanism. Water molecules are preferentially permeating through the membranes due to its smaller kinetic diameter and higher condensability than the other gases. Compared to other dehumidification technologies such as direct cooling or desiccation, there is no phase transition involved in membrane dehumidification, neither the contact between the fresh air stream and the desiccants. Hence, membrane dehumidification would not only require less energy consumption but also avoid cross-contamination problems. A pilot scale air dehumidification system is built in this study which comprises nine pieces of one-inch PAN/PDMS hollow fiber membrane modules. A 150 h long-term test shows that the membrane modules has good water vapor transport properties by using a low vacuum force of only 0.78 bar absolute pressure at the lumen side. The water vapor concentration of the feed humid air decreases dramatically from a range of 18–22 g/m3 to a range of 13.5–18.3 g/m3. Most importantly, the total energy saving is up to 26.2% compared with the conventional air conditioning process. PMID:26580660

  3. TEWI Evaluation for Household Refrigeration and Air-Conditioning Systems

    NASA Astrophysics Data System (ADS)

    Sobue, Atsushi; Watanabe, Koichi

    In the present study, we have quantitatively evaluated the global warming impact by household refrigerator and air-conditioning systems on the basis of reliable TEWI information. In TEWI evaluation of household refrigerators, the percentage of the impact by refrigerant released to the atmosphere (direct effect) is less than 18.6% in TEWI. In case of room air-conditioners, however, the percentage of direct effect is less than 5.4% in TEWI. Therefore, it was confirmed that impact by CO2 released as a result of the energy consumed to drive the refrigeration or air-conditioning systems throughout their lifetime (indirect effect) is far larger than direct effect by the entire system. A reduction of indirect effect by energy saving is the most effective measure in reducing the global warming impact by refrigeration and air-conditioning systems, For a realization of the energy saving, not only the advanced improvement in energy efficiency by household appliance manufacturers but also the improvement of consumer's mind in selecting the systems and a way of using are concluded important.

  4. Towards energy efficient operation of Heating, Ventilation and Air Conditioning systems via advanced supervisory control design

    NASA Astrophysics Data System (ADS)

    Oswiecinska, A.; Hibbs, J.; Zajic, I.; Burnham, K. J.

    2015-11-01

    This paper presents conceptual control solution for reliable and energy efficient operation of heating, ventilation and air conditioning (HVAC) systems used in large volume building applications, e.g. warehouse facilities or exhibition centres. Advanced two-level scalable control solution, designed to extend capabilities of the existing low-level control strategies via remote internet connection, is presented. The high-level, supervisory controller is based on Model Predictive Control (MPC) architecture, which is the state-of-the-art for indoor climate control systems. The innovative approach benefits from using passive heating and cooling control strategies for reducing the HVAC system operational costs, while ensuring that required environmental conditions are met.

  5. Field study of the impact of a desktop task/ambient conditioning system in office buildings

    SciTech Connect

    Bauman, F.S.; Carter, T.G.; Baughman, A.V.; Arens, E.A.

    1998-10-01

    A field study was carried out to assess the impact of installing a desktop task/ambient conditioning (TAC) system at 42 selected workstations within three San Francisco office buildings occupied by a large financial institution. In this study, field measurements, including subjective surveys and physical monitoring, were performed both before and after the TAC system installation to evaluate the impact of the TAC system on occupant satisfaction and thermal comfort, as well as the thermal environments within the office buildings. For comparative purposes within each building, a control group, consisting of workers who did not receive a desktop TAC unit, was studied concurrently. During the follow-up field tests, performed three months after the TAC system installation, measurements were repeated under three different room temperature setpoint conditions (normal, set-up, and set-down) to investigate the ability of the occupants to use the desktop TAC units to control their local environment in response to a wider range of ambient temperatures. Survey results show that among the six building assessment categories investigated, installation of the desktop TAC system provided the largest increases in overall occupant satisfaction for thermal quality, acoustical quality, and air quality.

  6. Unique, low-energy air-conditioning system using naturally-frozen ice

    SciTech Connect

    Kirkpatrick, D.L.; Masoero, M.; Socolow, R.H.; Taylor, T.B.

    1981-01-01

    An effective low-energy-consumption air-conditioning system, using naturally-frozen ice as the heat sink, has been successfully demonstrated. During the summer of 1980, a test building at Princeton University was cooled using ice frozen during the previous winter. The ice is produced outdoors by spraying water into winter air, and stored until summer in an excavated reservoir under an insulating blanket. During the air-conditioning season, melt water from the bottom of the lined, ice-filled reservoir is pumped through a conventional water-to-air heat exchanger within the conditioned space, to provide air cooling and dehumidification. The water warmed in the exchange is returned to the reservoir, to be recooled to 0/sup 0/C by the remaining ice. This approach not only significantly reduces the total energy required to produce a given cooling effect relative to other means in current use, but also shifts the time of major energy use away from the electric utility's summer load peak period.

  7. Performance Analysis of Air-to-Water Heat Pump in Latvian Climate Conditions

    NASA Astrophysics Data System (ADS)

    Kazjonovs, Janis; Sipkevics, Andrejs; Jakovics, Andris; Dancigs, Andris; Bajare, Diana; Dancigs, Leonards

    2014-12-01

    Strategy of the European Union in efficient energy usage demands to have a higher proportion of renewable energy in the energy market. Since heat pumps are considered to be one of the most efficient heating and cooling systems, they will play an important role in the energy consumption reduction in buildings aimed to meet the target of nearly zero energy buildings set out in the EU Directive 2010/31/EU. Unfortunately, the declared heat pump Coefficient of Performance (COP) corresponds to a certain outdoor temperature (+7 °C), therefore different climate conditions, building characteristics and settings result in different COP values during the year. The aim of this research is to investigate the Seasonal Performance factor (SPF) values of air-to-water heat pump which better characterize the effectiveness of heat pump in a longer selected period of time, especially during the winter season, in different types of residential buildings in Latvian climate conditions. Latvia has four pronounced seasons of near-equal length. Winter starts in mid-December and lasts until mid-March. Latvia is characterized by cold, maritime climate (duration of the average heating period being 203 days, the average outdoor air temperature during the heating period being 0.0 °C, the coldest five-day average temperature being -20.7 °C, the average annual air temperature being +6.2 °C, the daily average relative humidity being 79 %). The first part of this research consists of operational air-towater heat pump energy performance monitoring in different residential buildings during the winter season. The second part of the research takes place under natural conditions in an experimental construction stand which is located in an urban environment in Riga, Latvia. The inner area of this test stand, where air-to-water heat pump performance is analyzed, is 9 m2. The ceiling height is 3 m, all external wall constructions (U = 0.16 W/(m2K)) have ventilated facades. To calculate SPF, the

  8. Prediction of Indoor Air Exposure from Outdoor Air Quality Using an Artificial Neural Network Model for Inner City Commercial Buildings.

    PubMed

    Challoner, Avril; Pilla, Francesco; Gill, Laurence

    2015-12-01

    NO₂ and particulate matter are the air pollutants of most concern in Ireland, with possible links to the higher respiratory and cardiovascular mortality and morbidity rates found in the country compared to the rest of Europe. Currently, air quality limits in Europe only cover outdoor environments yet the quality of indoor air is an essential determinant of a person's well-being, especially since the average person spends more than 90% of their time indoors. The modelling conducted in this research aims to provide a framework for epidemiological studies by the use of publically available data from fixed outdoor monitoring stations to predict indoor air quality more accurately. Predictions are made using two modelling techniques, the Personal-exposure Activity Location Model (PALM), to predict outdoor air quality at a particular building, and Artificial Neural Networks, to model the indoor/outdoor relationship of the building. This joint approach has been used to predict indoor air concentrations for three inner city commercial buildings in Dublin, where parallel indoor and outdoor diurnal monitoring had been carried out on site. This modelling methodology has been shown to provide reasonable predictions of average NO₂ indoor air quality compared to the monitored data, but did not perform well in the prediction of indoor PM2.5 concentrations. Hence, this approach could be used to determine NO₂ exposures more rigorously of those who work and/or live in the city centre, which can then be linked to potential health impacts. PMID:26633448

  9. Prediction of Indoor Air Exposure from Outdoor Air Quality Using an Artificial Neural Network Model for Inner City Commercial Buildings

    PubMed Central

    Challoner, Avril; Pilla, Francesco; Gill, Laurence

    2015-01-01

    NO2 and particulate matter are the air pollutants of most concern in Ireland, with possible links to the higher respiratory and cardiovascular mortality and morbidity rates found in the country compared to the rest of Europe. Currently, air quality limits in Europe only cover outdoor environments yet the quality of indoor air is an essential determinant of a person’s well-being, especially since the average person spends more than 90% of their time indoors. The modelling conducted in this research aims to provide a framework for epidemiological studies by the use of publically available data from fixed outdoor monitoring stations to predict indoor air quality more accurately. Predictions are made using two modelling techniques, the Personal-exposure Activity Location Model (PALM), to predict outdoor air quality at a particular building, and Artificial Neural Networks, to model the indoor/outdoor relationship of the building. This joint approach has been used to predict indoor air concentrations for three inner city commercial buildings in Dublin, where parallel indoor and outdoor diurnal monitoring had been carried out on site. This modelling methodology has been shown to provide reasonable predictions of average NO2 indoor air quality compared to the monitored data, but did not perform well in the prediction of indoor PM2.5 concentrations. Hence, this approach could be used to determine NO2 exposures more rigorously of those who work and/or live in the city centre, which can then be linked to potential health impacts. PMID:26633448

  10. INDOOR AIR QUALITY IN PUBLIC BUILDINGS. VOLUME 2

    EPA Science Inventory

    Two separate but closely related studies of exposures to volatile organic compounds (VOCs) in buildings where people spend long periods of time were conducted. The report summarizes results obtained in six buildings: a new hospital, office and nursing home and another office, off...

  11. Magnetic Refrigeration Technology for High Efficiency Air Conditioning

    SciTech Connect

    Boeder, A; Zimm, C

    2006-09-30

    Magnetic refrigeration was investigated as an efficient, environmentally friendly, flexible alternative to conventional residential vapor compression central air conditioning systems. Finite element analysis (FEA) models of advanced geometry active magnetic regenerator (AMR) beds were developed to minimize bed size and thus magnet mass by optimizing geometry for fluid flow and heat transfer and other losses. Conventional and magnetocaloric material (MCM) regenerator fabrication and assembly techniques were developed and advanced geometry passive regenerators were built and tested. A subscale engineering prototype (SEP) magnetic air conditioner was designed, constructed and tested. A model of the AMR cycle, combined with knowledge from passive regenerator experiments and FEA results, was used to design the regenerator beds. A 1.5 Tesla permanent magnet assembly was designed using FEA and the bed structure and plenum design was extensively optimized using FEA. The SEP is a flexible magnetic refrigeration platform, with individually instrumented beds and high flow rate and high frequency capability, although the current advanced regenerator geometry beds do not meet performance expectations, probably due to manufacturing and assembly tolerances. A model of the AMR cycle was used to optimize the design of a 3 ton capacity magnetic air conditioner, and the system design was iterated to minimize external parasitic losses such as heat exchanger pressure drop and fan power. The manufacturing cost for the entire air conditioning system was estimated, and while the estimated SEER efficiency is high, the magnetic air conditioning system is not cost competitive as currently configured. The 3 ton study results indicate that there are other applications where magnetic refrigeration is anticipated to have cost advantages over conventional systems, especially applications where magnetic refrigeration, through the use of its aqueous heat transfer fluid, could eliminate intermediate

  12. Volatile Compounds Originating from Mixed Microbial Cultures on Building Materials under Various Humidity Conditions

    PubMed Central

    Korpi, Anne; Pasanen, Anna-Liisa; Pasanen, Pertti

    1998-01-01

    We examined growth of mixed microbial cultures (13 fungal species and one actinomycete species) and production of volatile compounds (VOCs) in typical building materials in outside walls, separating walls, and bathroom floors at various relative humidities (RHs) of air. Air samples from incubation chambers were adsorbed on Tenax TA and dinitrophenylhydrazine cartridges and were analyzed by thermal desorption-gas chromatography and high-performance liquid chromatography, respectively. Metabolic activity was measured by determining CO2 production, and microbial concentrations were determined by a dilution plate method. At 80 to 82% RH, CO2 production did not indicate that microbial activity occurred, and only 10% of the spores germinated, while slight increases in the concentrations of some VOCs were detected. All of the parameters showed that microbial activity occurred at 90 to 99% RH. The microbiological analyses revealed weak microbial growth even under drying conditions (32 to 33% RH). The main VOCs produced on the building materials studied were 3-methyl-1-butanol, 1-pentanol, 1-hexanol, and 1-octen-3-ol. In some cases fungal growth decreased aldehyde emissions. We found that various VOCs accompany microbial activity but that no single VOC is a reliable indicator of biocontamination in building materials. PMID:9687450

  13. Interaction of Failed Fuel Rods Under Air Ingress Conditions

    SciTech Connect

    Hozer, Zoltan; Windberg, Peter; Nagy, Imre; Maroti, Laszlo; Matus, Lajos; Horvath, Marta; Csordas, Anna Pinter; Balasko, Marton; Czitrovszky, Aladar; Jani, Peter

    2003-03-15

    In the late phase of a severe reactor accident, the molten corium interacts with the vessel wall, and it can lead to the failure of the lower head. Through the failed bottom wall, part of the corium can flow into the cavity, and air can enter the primary circuit. The residual fuel in the core periphery will be further oxidized in air atmosphere. The degradation process will accelerate, and new chemical species will be formed, which can have an impact on the release of radioactive materials.Two experiments were carried out with electrically heated nine-rod pressurized water reactor-type bundles in the CODEX (COre Degradation EXperiment) facility to provide experimental data on the behavior of real fuel bundles under air oxidation conditions. The main objective of the tests was the investigation of oxidation phenomena, and some other important aspects (e.g., enhanced fission product release) were not addressed.The CODEX air ingress tests indicated the acceleration of oxidation phenomena and core degradation processes during the late phase of the vessel melt through accident, when air can have access to the residual fuel bundles in the reactor core. The degradation process was accompanied with zirconium-nitride formation and release of uranium-rich aerosols.

  14. Do residential air-conditioning rebates miss the mark?

    SciTech Connect

    Stickney, B.; Shepard, M.

    1994-12-31

    The rebates utilities provide for residential central air conditioners and heat pumps to encourage improved cooling efficiency may inadvertently reward higher peak demand in many cases. This problem could be avoided by using both efficiency and peak performance to determine eligibility for rebates. Such changes to incentive formulas would better align the utilities` DSM programs with the dual goals of improved efficiency and peak demand reduction. Improved peak performance would be especially advantageous for sunbelt utilities whose residential cooling load is highly coincident with the summer peak. Air conditioning has been called the utilities` ``load from hell,`` because it is intermittent, unpredictable, and is the largest contributor to summer peak demand, requiring massive investments in power generation and delivery capacity. It is no wonder then that more DSM programs are targeted at space cooling than at any other end use. Ironically, however, all of the residential rebate programs the authors examined for central air conditioners and heat pumps are based on the seasonal energy efficiency ratio (SEER), which provides a valuable measure of seasonal energy efficiency but is not a good indicator of peak demand. Residential central air conditioning incentive programs for eight major utilities are based exclusively on SEER and most ratchet up the incentive levels with increasing SEER. None include the measure for peak demand for residential cooling equipment, which is the so-called energy efficiency ratio, or EER.

  15. Effects of building-roof cooling on flow and air temperature in urban street canyons

    NASA Astrophysics Data System (ADS)

    Kim, Jae-Jin; Pardyjak, Eric; Kim, Do-Yong; Han, Kyoung-Soo; Kwon, Byung-Hyuk

    2014-05-01

    The effects of building-roof cooling on flow and air temperature in 3D urban street canyons are numerically investigated using a computational fluid dynamics (CFD) model. The aspect ratios of the building and street canyon considered are unity. For investigating the building-roof cooling effects, the building-roof temperatures are systematically changed. The traditional flow pattern including a portal vortex appears in the spanwise canyon. Compared with the case of the control run, there are minimal differences in flow pattern in the cases in which maximum building-roof cooling is considered. However, as the building roof becomes cooler, the mean kinetic energy increases and the air temperature decreases in the spanwise canyon. Building-roof cooling suppresses the upward and inward motions above the building roof, resultantly increasing the horizontal velocity near the roof level. The increase in wind velocity above the roof level intensifies the secondarily driven vortex circulation as well as the inward (outward) motion into (out of) the spanwise canyon. Finally, building-roof cooling reduces the air temperature in the spanwise canyon, supplying much relatively cool air from the streamwise canyon into the spanwise canyon.

  16. SICK BUILDING SYNDROME: POSSIBLE ASSOCIATIONS WITH EXPOSURE TO MYCOTOXINS FROM INDOOR AIR FUNGI.

    EPA Science Inventory

    Introduction. Chronic human illness associated with residential or occupational buildings, commonly referred to as sick building syndrome (SBS), may be a multifactorial condition, involving in some cases volatile organic compounds, CO or CO2, pesticides, biologic agents, temperat...

  17. Solar air conditioning with solid absorbents and earth cooling

    NASA Astrophysics Data System (ADS)

    Mayer, E.

    An experimental design is described for an efficient desiccant cooling system using natural cold sink to reduce the moisture content of the ambient air. Used in a warm, humid, tropical climate, the unit is shown to provide up to 0.77 ton of refrigeration under extreme conditions with an average daily coefficient of performance of 0.5. Solar heat is applied to regenerate the silica gel.

  18. [Simulation and air-conditioning in the nose].

    PubMed

    Keck, T; Lindemann, J

    2010-05-01

    Heating and humidification of the respiratory air are the main functions of the nasal airways in addition to cleansing and olfaction. Optimal nasal air conditioning is mandatory for an ideal pulmonary gas exchange in order to avoid dessication and adhesion of the alveolar capillary bed. The complex three-dimensional anatomical structure of the nose makes it impossible to perform detailed in vivo studies on intranasal heating and humidification within the entire nasal airways applying various technical set-ups. The main problem of in vivo temperature and humidity measurements is a poor spatial and time resolution. Therefore, in vivo measurements are feasible to a restricted extent, only providing single temperature values as the complete nose is not entirely accessible. Therefore, data on the overall performance of the nose are only based on one single measurement within each nasal segment. In vivo measurements within the entire nose are not feasible. These serious technical issues concerning in vivo measurements led to a large number of numerical simulation projects in the last few years providing novel information about the complex functions of the nasal airways. In general, numerical simulations only calculate predictions in a computational model, e. g. realistic nose model, depending on the setting of the boundary conditions. Therefore, numerical simulations achieve only approximations of a possible real situation. The aim of this report is the synopsis of the technical expertise on the field of in vivo nasal air conditioning, the novel information of numerical simulations and the current state of knowledge on the influence of nasal and sinus surgery on nasal air conditioning. PMID:20352565

  19. Solar air-conditioning-active, hybrid and passive

    SciTech Connect

    Yellott, J. I.

    1981-04-01

    After a discussion of summer air conditioning requirements in the United States, active, hybrid, and passive cooling systems are defined. Active processes and systems include absorption, Rankine cycle, and a small variety of miscellaneous systems. The hybrid solar cooling and dehumidification technology of desiccation is covered as well as evaporative cooling. The passive solar cooling processes covered include convective, radiative and evaporative cooling. Federal and state involvement in solar cooling is then discussed. (LEW)

  20. Off-site air monitoring following methyl bromide chamber and building fumigations and evaluation of the ISCST air dispersion model

    SciTech Connect

    Barry, T.; Swgawa, R.; Wofford, P.

    1995-12-31

    The Department of Pesticide Regulation`s preliminary risk characterization of methyl bromide indicated an inadequate margin of safety for several exposure scenarios. Characterization of the air concentrations associated with common methyl bromide use patterns was necessary to determine specific scenarios that result in an unacceptable margin of safety. Field monitoring data were used in conjunction with the Industrial Source Complex, Short Tenn (ISCST) air dispersion model to characterize air concentrations associated with various types of methyl bromide applications. Chamber and building fumigations were monitored and modelled. For each fumigation the emission rates, chamber or building specifications and on-site meteorological data were input into the ISCST model. The model predicted concentrations were compared to measured air concentrations. The concentrations predicted by the ISCST model reflect both the pattern and magnitude of the measured concentrations. Required buffer zones were calculated using the ISCST output.

  1. Influence of indoor air quality and personal factors on the sick building syndrome (SBS) in Swedish geriatric hospitals.

    PubMed Central

    Nordström, K; Norbäck, D; Akselsson, R

    1995-01-01

    OBJECTIVES--Sick building syndrome (SBS) involves symptoms such as irritation to the eyes, skin, and upper airways, headache, and fatigue. The relations between such symptoms and both personal and environmental factors were studied in 225 female hospital workers, working in eight hospital units in the south of Sweden. METHODS--Symptoms of SBS and personal factors were measured by means of a standardised self administered questionnaire. The technical investigation comprised a building survey and measurements of room temperature, supply air temperature, air humidity, and exhaust air flow. RESULTS--The prevalence of symptoms differed from one unit to another. The mean value of weekly complaints of fatigue was 30%, of eye irritation 23%, and of dry facial skin 34%. Eye irritation was related to work stress, self reported exposure to static electricity, and was also more common in buildings with a high ventilation flow and a high noise level (55 dB(A)) from the ventilation system. Nasal symptoms were related to asthma and hay fever only. Throat symptoms were more common in smokers, subjects with asthma or hay fever, new buildings, and in buildings with a high ventilation flow. Facial skin irritation was related to a lack of control of the work conditions, and was more common in new buildings, and buildings with a high ventilation flow and ventilation noise. General symptoms, such as headache and fatigue, were related to current smoking, asthma or hay fever, work dissatisfaction, and static electricity. CONCLUSION--As the prevalence of symptoms was high, there is a need to improve the indoor environment as well as the psychosocial environment in hospitals. These improvements could include a reduction of ventilation noise, minimised smoking, and improvements in the psychosocial climate. Further research is needed to identify indoor climatic factors that cause the increased prevalence of symptoms of SBS in new buildings. PMID:7735389

  2. Evaluation of Annual Performance of Multi-type Air-Conditioners for Buildings

    NASA Astrophysics Data System (ADS)

    Watanabe, Choyu; Ohashi, Ei-Ichiro; Nagamatsu, Katsuaki; Nakayama, Hiroshi; Hirota, Masafumi

    In this paper, firstly the results of the partial thermal load performance tests of multi-type air-conditioners for buildings were shown. Tests were conducted by using the air-enthalpy method testing apparatus. Two types of air-conditioners, heat pump driven by electric motors (EHP) and that driven by gas engines (GHP), with a rated cooling capacity of 56 kW were tested. The coefficient of performance (COP) and the annual energy consumption measured by the above mentioned tests were closely compared with those predicted by JIS. In EHP,the measured COP indicates the maximum when the indoor thermal load is about 50% of the rated capacity, while COP in GHP decreases gradually as the thermal load is decreased. Based on these results, we examined the accuracies of COP and the annual energy consumption predicted by JIS. It was found that in both EHP and GHP the current calculating method prescribed in JIS could not duplicate the COP decrease that appeared under the low thermal load conditions. As a result, the annual energy consumption is seriously underestimated by JIS. The prediction errors of the annual energy consumption amounted to about 17% for EHP and 38% for GHP

  3. 22. BUILDING 24C, LOOKING NORTH (1992). WrightPatterson Air Force ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    22. BUILDING 24C, LOOKING NORTH (1992). - Wright-Patterson Air Force Base, Area B, Buildings 25 & 24,10-foot & 20-foot Wind Tunnel Complex, Northeast side of block bounded by K, G, Third, & Fifth Streets, Dayton, Montgomery County, OH

  4. 23. BUILDING 24C, LOOKING NORTH (1992). WrightPatterson Air Force ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    23. BUILDING 24C, LOOKING NORTH (1992). - Wright-Patterson Air Force Base, Area B, Buildings 25 & 24,10-foot & 20-foot Wind Tunnel Complex, Northeast side of block bounded by K, G, Third, & Fifth Streets, Dayton, Montgomery County, OH

  5. Bacterial constituents of indoor air in a high throughput building in the tropics.

    PubMed

    Li, Tee Chin; Ambu, Stephen; Mohandas, Kavitha; Wah, Mak Joon; Sulaiman, Lokman Hakim; Murgaiyah, Malathi

    2014-09-01

    Airborne bacteria are significant biotic constituents of bioaerosol. Bacteria at high concentrations in the air can compromise indoor air quality (IAQ) and result in many diseases. In tropical environments like Malaysia that extensively utilize air-conditioning systems, this is particularly significant due to continuous recirculation of indoor air and the potential implications for human health. Currently, there is a lack of knowledge regarding the impact of airborne bacteria on IAQ in Malaysia. This study was prompted by a need for reliable baseline data on airborne bacteria in the indoor environment of tropical equatorial Malaysia, that may be used as a reference for further investigations on the potential role played by airborne bacteria as an agent of disease in this region. It was further necessitated due to the threat of bioterrorism with the potentiality of release of exotic pathogenic microorganisms into indoor or outdoor air. Before scientists can detect the latter, a gauge of the common microorganisms in indoor (as well as outdoor) air needs to be ascertained, hence the expediency of this study. Bacterial counts from the broad-based and targeted study were generally in the order of 10(2) colony-forming units (CFU) per m(3) of air. The most prevalent airborne bacteria found in the broad-based study that encompassed all five levels of the building were Gram-positive cocci (67.73%), followed by Gram-positive rods (24.26%) and Gram-negative rods (7.10%). Gram-negative cocci were rarely detected (0.71%). Amongst the genera identified, Kytococcus sp., Micrococcus sp., Staphylococcus sp., Leifsonia sp., Bacillus sp. and Corynebacterium sp. predominated in indoor air. The most dominant bacterial species were Kytococcus sedentarius, Staphylococcus epidermidis and Micrococcus luteus. The opportunistic and nosocomial pathogen, Stenotrophomonas maltophilia was also discovered at a high percentage in the cafeteria. The bacteria isolated in this study have been

  6. Effect of Intake Air Filter Condition on Vehicle Fuel Economy

    SciTech Connect

    Norman, Kevin M; Huff, Shean P; West, Brian H

    2009-02-01

    The U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy and the U.S. Environmental Protection Agency (EPA) jointly maintain a fuel economy website (www.fueleconomy.gov), which helps fulfill their responsibility under the Energy Policy Act of 1992 to provide accurate fuel economy information [in miles per gallon (mpg)] to consumers. The site provides information on EPA fuel economy ratings for passenger cars and light trucks from 1985 to the present and other relevant information related to energy use such as alternative fuels and driving and vehicle maintenance tips. In recent years, fluctuations in the price of crude oil and corresponding fluctuations in the price of gasoline and diesel fuels have renewed interest in vehicle fuel economy in the United States. (User sessions on the fuel economy website exceeded 20 million in 2008 compared to less than 5 million in 2004 and less than 1 million in 2001.) As a result of this renewed interest and the age of some of the references cited in the tips section of the website, DOE authorized the Oak Ridge National Laboratory (ORNL) Fuels, Engines, and Emissions Research Center (FEERC) to initiate studies to validate and improve these tips. This report documents a study aimed specifically at the effect of engine air filter condition on fuel economy. The goal of this study was to explore the effects of a clogged air filter on the fuel economy of vehicles operating over prescribed test cycles. Three newer vehicles (a 2007 Buick Lucerne, a 2006 Dodge Charger, and a 2003 Toyota Camry) and an older carbureted vehicle were tested. Results show that clogging the air filter has no significant effect on the fuel economy of the newer vehicles (all fuel injected with closed-loop control and one equipped with MDS). The engine control systems were able to maintain the desired AFR regardless of intake restrictions, and therefore fuel consumption was not increased. The carbureted engine did show a decrease in

  7. Building America Top Innovations 2014 Profile: HVAC Cabinet Air Leakage Test Method

    SciTech Connect

    none,

    2014-11-01

    This 2014 Top Innovation profile describes Building America-funded research by teams and national laboratories that resulted in the development of an ASHRAE standard and a standardized testing method for testing the air leakage of HVAC air handlers and furnace cabinets and has spurred equipment manufacturers to tighten the cabinets they use for residential HVAC systems.

  8. In-Cab Air Quality of Trucks Air Conditioned and Kept in Electrified Truck Stop

    SciTech Connect

    Lee, Doh-Won; Zietsman, Josias; Farzaneh, Mohamadreza; Li, Wen-Whai; Olvera, Hector; Storey, John Morse; Kranendonk, Laura

    2009-01-01

    At night, long-haul truck drivers rest inside the cabins of their vehicles. Therefore, the in-cab air quality while air conditioning (A/C) is being provided can be a great concern to the drivers health. The effect of using different A/C methods [truck's A/C, auxiliary power unit (APU), and truck stop electrification (TSE) unit] on in-cab air quality of a heavy-duty diesel vehicle was investigated at an electrified truck stop in the El Paso, Texas, area. The research team measured the in-cabin and the ambient air quality adjacent to the parked diesel truck as well as emissions from the truck and an APU while it was providing A/C. The measured results were compared and analyzed. On the basis of these results, it was concluded that the TSE unit provided better in-cab air quality while supplying A/C. Furthermore, the truck and APU exhaust emissions were measured, and fuel consumption of the truck (while idling) and the APU (during operation) were compared. The results led to the finding that emissions from the APU were less than those from the truck's engine idling, but the APU consumed more fuel than the engine while providing A/C under given conditions.

  9. Effects of ceiling-mounted HEPA-UV air filters on airborne bacteria concentrations in an indoor therapy pool building.

    PubMed

    Kujundzic, Elmira; Zander, David A; Hernandez, Mark; Angenent, Largus T; Henderson, David E; Miller, Shelly L

    2005-02-01

    The purpose of this study was to assess the effectiveness of a new generation of high-volume, ceiling-mounted high-efficiency particulate air (HEPA)-ultraviolet (UV) air filters (HUVAFs) for their ability to remove or inactivate bacterial aerosol. In an environmentally controlled full-scale laboratory chamber (87 m3), and an indoor therapy pool building, the mitigation ability of air filters was assessed by comparing concentrations of total bacteria, culturable bacteria, and airborne endotoxin with and without the air filters operating under otherwise similar conditions. Controlled chamber tests with pure cultures of aerosolized Mycobacterium parafortuitum cells showed that the HUVAF unit tested provided an equivalent air-exchange rate of 11 hr(-1). Using this equivalent air-exchange rate as a design basis, three HUVAFs were installed in an indoor therapy pool building for bioaerosol mitigation, and their effectiveness was studied over a 2-year period. The HUVAFs reduced concentrations of culturable bacteria by 69 and 80% during monitoring periods executed in respective years. The HUVAFs reduced concentrations of total bacteria by 12 and 76% during the same monitoring period, respectively. Airborne endotoxin concentrations were not affected by the HUVAF operation. PMID:15796111

  10. Performance of Desiccant Particle Dispersion Type Air Conditioning System

    NASA Astrophysics Data System (ADS)

    Hatano, Hiroyuki; Suzuki, Koichi; Kojima, Hiromitsu

    An investigation of desiccant air conditioning system is performed to demonstrate its performance in a dispersed desiccant particle systems, based on its higher gas solid contacting efficiency and isothermal dehumidification. Particle dispersion is achieved using the risers of a circulating fluidized bed, CFB, or of a pneumatic conveyer. The risers used for dehumidification are 1390 mm in height and 22 mm in diameter. The former is used to evaluate the overall dehumidification performance and the latter is used to measure the axial humidity distribution under 0.88 m/s of a superficial air velocity. Based on the results of the overall performance by changing solid loading rates, Gs, from 0.4 kg/m2s up to 6 kg/m2s, desiccant particle dispersion shows higher performance in dehumidification, while axial humidity distribution shows very rapid adsorption rate in the entrance zone of the riser. Removal of adsorption heat accelerates dehumidification rate compared to the adiabatic process.

  11. Indoor Air Quality: Federal and State Actions To Address the Indoor Air Quality Problems of Selected Buildings.

    ERIC Educational Resources Information Center

    Guerrero, Peter F.

    U.S. House of Representative members requested that the General Accounting Office determine what federal and state actions have been taken in addressing indoor air quality (IAQ) concerns raised in certain school, state, and federal buildings within Vermont, Maryland, and the District of Columbia. This report responds to this request and describes…

  12. Particulate composition characteristics under different ambient air quality conditions.

    PubMed

    Tsai, Jiun-Horng; Chang, Lisa Tzu-Chi; Huang, Yao-Sheng; Chiang, Hung-Lung

    2011-07-01

    Particulate compositions including elemental carbon (EC), organic carbon (OC), water-soluble ionic species, and elemental compositions were investigated during the period from 2004 to 2006 in southern Taiwan. The correlation between the pollutant standard index (PSI) of ambient air quality and the various particle compositions was also addressed in this study. PSI revealed a correlation with fine (r = 0.74) and coarse (r = 0.80) particulate matter (PM). PSI manifested a significant correlation with the amount of analyzed ionic species (r approximately 0.80) in coarse and fine particles and a moderate correlation with carbon content (r = 0.63) in fine particles; however, it showed no correlation with elemental content. Although the ambient air quality ranged from good to moderate, the ionic species including chloride (Cl-), nitrate (NO3-), sulfate (SO4(2-)), sodium (Na+), ammonium (NH4+), magnesium (Mg2+), and calcium (Ca2+) increased significantly (1.5-3.7 times for Daliao and 1.8-6.9 times for Tzouying) in coarse PM. For fine particles, NO3-, SO4(2-), NH4+, and potassium (K+) also increased significantly (1.3-2.4 times for Daliao and 2.8-9.6 times for Tzouying) when the air quality went from good to moderate. For meteorological parameters, temperature evidenced a slightly negative correlation with PM concentration and PSI value, which implied a high PM concentration in the low-temperature condition. This reflects the high frequency of PM episodes in winter and spring in southern Taiwan. In addition, the mixing height increase from 980 to 1450 m corresponds to the air quality condition changing from unhealthy to good. PMID:21850835

  13. Impact of Air Leakage on the Thermal and Moisture Performance of the Building Envelope

    SciTech Connect

    Karagiozis, A

    2001-08-15

    The air tightness of building envelopes systems is critical to the performance of a building. Uncontrolled airflow movements can cause moisture-induced damage by transporting large amounts of moisture, and may also impact occupant health and safety, sound control, fire control and energy efficiency. Building envelopes are often designed to control airflow by providing a resistance to the bulk flow. Implementation of air barrier systems to restrict airflow is commonly used to reduce the quantity of airflow movement between the exterior and interior environments through the wall. This paper presents a preliminary assessment of the influence of airflow on the moisture performance of a residential building envelope system. The combined heat, air and moisture (hygrothermal) transport in a selected wall is numerically investigated. Vapor diffusion, liquid transport and temperature dependent sorption isotherms are included in the investigation.

  14. Can airborne fungal allergens pass through an air-conditioning system. [Aspergillus fumigatus

    SciTech Connect

    Elixmann, J.H. ); Linskens, H.F.; Schata, M.; Jorde, W. )

    1989-01-01

    Fungal spores, an important fraction of aeroplankton particles, can be filtered in an air-conditioning system, resulting in a drastic reduction of the spore count in the air-conditioned rooms. Nevertheless, using the EISA inhibition test against Aspergillus fumigatus, it was found that air samples from air-conditioned rooms show inhibition of the serum activity of a highly sensitized patient. There is evidence that airborne allergens can pass both coarse and fine filters of an air-conditioning system.

  15. Air tightness of buildings in the Arctic Circle housing fair, Rovaniemi, Finland

    NASA Astrophysics Data System (ADS)

    Ryynanen, Kai

    2001-03-01

    Air leak through the external envelope leads to many inconveniences. Higher consumption of heating energy, draft and possible moisture defects are the result of air infiltration. The automatic ventilation system of the house can also be thrown off balance. The factors mentioned above, together with poor knowledge of airtightness of houses, was reason to start this project airtightness of the buildings in the arctic circle housing fair in Rovaniemi, Finland. The airtightness of houses measured by using the fan pressurization method, according to international standard ISO DIS 9972. The fan pressurization method means that in building caused negative air-pressure from normal approximately 0 Pa up to 50 Pa over the buildings envelope. The air leakage points are searched by using thermal camera. In this project made research differences between materials, structures and production styles. The method and equipment for measuring airtightness are tested and developed in project.

  16. Air Tight: Building Inflatables/Inflatable Construction: Planning and Details

    NASA Technical Reports Server (NTRS)

    Kennedy, Kriss J.

    2016-01-01

    A design-build seminar consisting of students from Physics, Mechanical and Civil Engineering, Robotic, Material Science, Art, and Architecture who will work together on a deployable "closed-loop" inflatable greenhouse for Mars in theory, and an Earth analogue physical mockup on campus.

  17. Analysis of non-CFC automotive air conditioning

    SciTech Connect

    Mei, V.C.; Chen, F.C. ); Sullivan, R.A. )

    1991-01-01

    Concern about the destruction of the global environment by chlorofluorocarbon (CFC) fluids has become an impetus in searching for alternative non-CFC refrigerants and cooling methods for mobile air conditioning (MAC). While some alternative refrigerants have been identified, they are not considered a lasting solution because of their high global warming potential (GWP), which could result in their eventual phase-out. In view of this dilemma, environmentally acceptable alternative cooling methods have become important. This study discusses the advantages and the limits of some of the alternative automotive cooling methodologies. 19 refs., 6 figs.

  18. Liquid over-feeding air conditioning system and method

    DOEpatents

    Mei, V.C.; Chen, F.C.

    1993-09-21

    A refrigeration air conditioning system utilizing a liquid over-feeding operation is described. A liquid refrigerant accumulator-heat exchanger is placed in the system to provide a heat exchange relationship between hot liquid refrigerant discharged from condenser and a relatively cool mixture of liquid and vaporous refrigerant discharged from the evaporator. This heat exchange relationship substantially sub-cools the hot liquid refrigerant which undergoes little or no evaporation across the expansion device and provides a liquid over-feeding operation through the evaporator for effectively using 100 percent of evaporator for cooling purposes and for providing the aforementioned mixture of liquid and vaporous refrigerant. 1 figure.

  19. Liquid over-feeding air conditioning system and method

    DOEpatents

    Mei, Viung C.; Chen, Fang C.

    1993-01-01

    A refrigeration air conditioning system utilizing a liquid over-feeding operation is described. A liquid refrigerant accumulator-heat exchanger is placed in the system to provide a heat exchange relationship between hot liquid refrigerant discharged from condenser and a relatively cool mixture of liquid and vaporous refrigerant discharged from the evaporator. This heat exchange relationship substantially sub-cools the hot liquid refrigerant which undergoes little or no evaporation across the expansion device and provides a liquid over-feeding operation through the evaporator for effectively using 100 percent of evaporator for cooling purposes and for providing the aforementioned mixture of liquid and vaporous refrigerant.

  20. Use of waste heat for automotive air conditioning

    SciTech Connect

    Hamner, R.M.

    1981-01-01

    The ejector-compression refrigeration system, a heat powered system which can be operated as a heat pump, is described. The operation of the system is discussed in general and the ejector itself is described in more detail. The central thrust of the paper is the application of the system to comfort air conditioning of automobiles. The advantages, limitations, and recommendations for future research and development are given. Several analyses of the theoretical cycle are made and equations describing the operation of the ejector are derived. A brief bibliography is listed.

  1. Do-It-Yourself Additives Recharge Auto Air Conditioning

    NASA Technical Reports Server (NTRS)

    2010-01-01

    In planning for a return mission to the Moon, NASA aimed to improve the thermal control systems that keep astronauts comfortable and cool while inside a spacecraft. Goddard Space Flight Center awarded a Small Business Innovation Research (SBIR) contract to Mainstream Engineering Corporation, of Rockledge, Florida, to develop a chemical/mechanical heat pump. IDQ Inc., of Garland, Texas, exclusively licensed the technology and incorporates it into its line of Arctic Freeze products for automotive air conditioning applications. While working on the design, Mainstream Engineering came up with a unique liquid additive called QwikBoost to enhance the performance of the advanced heat pump design.

  2. Control of Computer Room Air Conditioning using IT Equipment Sensors

    SciTech Connect

    Bell, Geoffrey C.; Storey, Bill; Patterson, Michael K.

    2009-09-30

    The goal of this demonstration was to show how sensors in IT equipment could be accessed and used to directly control computer room air conditioning. The data provided from the sensors is available on the IT network and the challenge for this project was to connect this information to the computer room air handler's control system. A control strategy was developed to enable separate control of the chilled water flow and the fans in the computer room air handlers. By using these existing sensors in the IT equipment, an additional control system is eliminated (or could be redundant) and optimal cooling can be provided saving significant energy. Using onboard server temperature sensors will yield significant energy reductions in data centers. Intel hosted the demonstration in its Santa Clara, CA data center. Intel collaborated with IBM, HP, Emerson, Wunderlich-Malec Engineers, FieldServer Technologies, and LBNL to install the necessary components and develop the new control scheme. LBNL also validated the results of the demonstration.

  3. On the impact of entrapped air in infiltration under ponding conditions. Part a: Preferential air flow path effects on infiltration

    NASA Astrophysics Data System (ADS)

    Mizrahi, Guy; Weisbrod, Noam; Furman, Alex

    2015-04-01

    Entrapped air effects on infiltration under ponding conditions could be important for massive infiltration of managed aquifer recharge (MAR) or soil aquifer treatment (SAT) of treated wastewater. Earlier studies found that under ponding conditions, air is being entrapped and compressed until it reaches a pressure which will enable the air to escape (unstable air flow). They also found that entrapped air could reduce infiltration by 70-90%. Most studies have dealt with entrapped air effects when soil surface topography is flat. The objective of this study is to investigate, under ponding conditions, the effects of: (1) irregular surface topography on preferential air flow path development (stable air flow); (2) preferential air flow path on infiltration; and (3) hydraulic head on infiltration when air is trapped. Column experiments were used to investigate these particular effects. A 140 cm deep and 30 cm wide column packed with silica sand was used under two boundary conditions: in the first, air can only escape vertically upward through the soil surface; in the second, air is free to escape through 20 ports installed along the column perimeter. The surface was flooded with 13 liters of water, with ponding depth decreasing with time. Two soil surface conditions were tested: flat surface and irregular surface (high and low surface zones). Additionally, Helle-show experiments were conducted in order to obtain a visual observation of preferential air flow path development. The measurements were carried out using a tension meter, air pressure transducers, TDR and video cameras. It was found that in irregular surfaces, stable air flow through preferential paths was developed in the high altitude zones. Flat surface topography caused unstable air flow through random paths. Comparison between irregular and flat surface topography showed that the entrapped air pressure was lower and the infiltration rate was about 40% higher in the irregular surface topography than in the

  4. Air pollution levels reflected in deposits on building stone

    NASA Astrophysics Data System (ADS)

    Nord, Anders G.; Svärdh, Anna; Tronner, Kate

    About 1400 samples of building stone have been collected in Sweden and other European countries, mainly from polluted areas but also from countryside districts. All samples have been analysed by SEM/EDS, and some selected by other techniques like XRPD, GC/MS, or ICP. In particular, we have determined concentrations of gypsum, iron and some other metals; chlorine, phosphorus, soot (carbon), and organic components. The results confirm a positive correlation between SO 2 concentrations and gypsum formation on calcareous stone. Polluted areas generate more metal particles and particles of soot, asphalt, car-tyre rubber, fly-ash, quartz, calcite, gypsum, and chlorides. On building façades in polluted cities about 100 constituents have been identified, including carcinogeneous organic compounds like benzopyrene.

  5. Guidelines on Thermal Comfort of Air Conditioned Indoor Environment

    NASA Astrophysics Data System (ADS)

    Miura, Toyohiko

    The thermal comfort of air conditioned indoor environment for workers depended, of course, on metabolic rate of work, race, sex, age, clothing, climate of the district and state of acclimatization. The attention of the author was directed to the seasonal variation and the sexual difference of comfortable temperature and a survey through a year was conducted on the thermal comfort, and health conditions of workers engaged in light work in a precision machine factory, in some office workers. Besides, a series of experiments were conducted for purpose of determinning the optimum temperature of cooling in summer time in relation to the outdoor temperature. It seemed that many of workers at present would prefer somewhat higher temperature than those before the World War II. Forty years ago the average homes and offices were not so well heated as today, and clothing worn on the average was considerably heavier.

  6. Analysis of bidirectional PWM converter for application of residential solar air conditioning system

    SciTech Connect

    Kim, H.S.; Choe, G.H.; Yu, G.J.; Song, J.S.

    1994-12-31

    In the conventional solar air conditioning system the diode rectifier is used to build up DC link voltage from ac utility source. The diode rectifier is simple and cheap but the reverse of power flow cannot be made. It can derate the utilization of solar cell and also there have occurred the problems of low power factor and plentiful harmonics at the ac input side. Hence in addition to peak power cutting in summer, some advantages can be obtained by adopting the PWM converter to the solar air conditioner. As a result, obtained are the characteristics of the PWM converter such as low distorted current waveform, unity power factor. Also the proposed system is verified by examining the dynamics to step load change and also power reversal testing.

  7. Building America Top Innovations 2012: Unvented, Conditioned Attics

    SciTech Connect

    none,

    2013-01-01

    This Building America Top Innovations profile describes Building America research showing an unvented attic insulated along the roof line provides better energy performance than a vented attic when HVAC ducts are located in the attic and there are numerous penetrations through the ceiling deck.

  8. Experimental validation of coupled heat, air and moisture transfer modeling in multilayer building components

    NASA Astrophysics Data System (ADS)

    Ferroukhi, M. Y.; Abahri, K.; Belarbi, R.; Limam, K.; Nouviaire, A.

    2015-12-01

    The present paper lies to study the coupled heat, air and moisture transfer in multi-layer building materials. Concerning the modeling part, the interest is to predict the hygrothermal behavior, by developing a macroscopic model that incorporates simultaneously the diffusive, convective and conductive effects on the building elements. Heat transfer is considered in the strongly coupled situation where the mass and heat flux are temperature, vapor pressure and total pressure dependents. The model input parameters are evaluated experimentally through the development of various experimental prototypes in the laboratory. Thereafter, an experimental setup has been established in order to evaluate the hygrothermal process of several multilayer walls configurations. The experimental procedure consists to follow the temperature and relative humidity evolutions within the samples thickness, submitted to controlled and fixed boundary conditions. This procedure points out diverging conclusion between different testing materials combinations (e.g. red-brick and polystyrene). In fact, the hygrothermal behavior of the tested configurations is completely dependent on both materials selection and their thermophysical properties. Finally, comparison between numerical and experimental results showed good agreement with acceptable errors margins with an average of 3 %.

  9. Asbestos in the air of public buildings: a public health risk?

    PubMed

    Whysner, J; Covello, V T; Kuschner, M; Rifkind, A B; Rozman, K K; Trichopoulos, D; Williams, G M

    1994-01-01

    The Environmental Health and Safety Council of the American Health Foundation has examined current estimates of cancer risks associated with the presence of asbestos-containing materials (ACM) in public buildings. The Council finds that even complete removal of asbestos from all of these buildings will provide no measurable benefit to public health. The removal of nonfriable ACM only can be postulated to protect the public against a small hypothetical risk that cannot be measured epidemiologically. Moreover, examination of the assumptions used in the risk assessment calculations leads to the conclusion that these small calculated risks are likely to represent overestimates. In recent surveys, the measured asbestos levels in indoor air cast some doubt on whether occupant exposure to asbestos levels are contributed to significantly by ACM even when some of the material is friable or in bad condition. Furthermore, the models used for cancer risk estimates assume no threshold level for cancer and conclude that any exposure is carcinogenic. This may be unjustified in light of information on the mechanisms for some asbestos-caused disease. Based on the best available data, it is very unlikely that cancer will result from indoor asbestos exposure, especially where ACM is well maintained. PMID:8016027

  10. Detailed description and performance of a passive perfluorocarbon tracer system for building ventilation and air exchange measurements

    SciTech Connect

    Dietz, R.N.; Goodrich, R.W.; Cote, E.A.; Wieser, R.F.

    1985-02-01

    The manufacturing procedures and performance of a building air infiltration kit consisting of miniature passive perfluorocarbon tracer (PFT) permeation sources and passive adsorption tube samplers are described. Having four PFT-types available, homes and buildings with up to four separate zones can be fully evaluated under steady state conditions for the air infiltration and exfiltration rates from each zone as well as the air exchange rates between zones using this inexpensive and non-obtrusive field kit. Complete details on deployment in homes and on gas chromatographic analysis of the passive samplers are presented. Examples of total air changes per hour (ACH) results in several studies showed average values between 0.25 to 0.64 h/sup -1/. A generalized correlation was used to characterize the leakiness of eleven homes in the US and Canada, showing ACH dependency only on inside-outside temperature difference, wind speed to the 1.5 power, and a subjective terrain factor; the approach has application in evaluating weatherization performance. Details of multizone measurements in four homes provided insight into the role of attics, crawl-spaces, and basements on the indoor air quality and weatherization needs for the living zone. 26 refs., 15 figs., 23 tabs.

  11. Energy Savings and Economics of Advanced Control Strategies for Packaged Air-Conditioning Units with Gas Heat

    SciTech Connect

    Wang, Weimin; Katipamula, Srinivas; Huang, Yunzhi; Brambley, Michael R.

    2011-12-31

    Pacific Northwest National Laboratory (PNNL) with funding from the U.S. Department of Energy's Building Technologies Program (BTP) evaluated a number of control strategies that can be implemented in a controller, to improve the operational efficiency of the packaged air conditioning units. The two primary objectives of this research project are: (1) determine the magnitude of energy savings achievable by retrofitting existing packaged air conditioning units with advanced control strategies not ordinarily used for packaged units and (2) estimating what the installed cost of a replacement control with the desired features should be in various regions of the U.S. This document reports results of the study.

  12. Sampling Point Compliance Tests for 325 Building at Set-Back Flow Conditions

    SciTech Connect

    Ballinger, Marcel Y.; Glissmeyer, John A.; Barnett, J. M.; Recknagle, Kurtis P.; Yokuda, Satoru T.

    2011-05-31

    The stack sampling system at the 325 Building (Radiochemical Processing Laboratory [RPL]) was constructed to comply with the American National Standards Institute’s (ANSI’s) Guide to Sampling Airborne Radioactive Materials in Nuclear Facilities (ANSI N13.1-1969). This standard provided prescriptive criteria for the location of radionuclide air-sampling systems. In 1999, the standard was revised (Sampling and Monitoring Releases of Airborne Radioactive Substances From the Stacks and Ducts of Nuclear Facilities [ANSI/Health Physics Society [HPS] 13.1-1999]) to provide performance-based criteria for the location of sampling systems. Testing was conducted for the 325 Building stack to determine whether the sampling system would meet the updated criteria for uniform air velocity and contaminant concentration in the revised ANSI/HPS 13.1-1999 standard under normal operating conditions (Smith et al. 2010). Measurement results were within criteria for all tests. Additional testing and modeling was performed to determine whether the sampling system would meet criteria under set-back flow conditions. This included measurements taken from a scale model with one-third of the exhaust flow and computer modeling of the system with two-thirds of the exhaust flow. This report documents the results of the set-back flow condition measurements and modeling. Tests performed included flow angularity, uniformity of velocity, gas concentration, and particle concentration across the duct at the sampling location. Results are within ANSI/HPS 13.1-1999 criteria for all tests. These tests are applicable for the 325 Building stack under set-back exhaust flow operating conditions (980 - 45,400 cubic feet per minute [cfm]) with one fan running. The modeling results show that criteria are met for all tests using a two-fan configuration exhaust (flow modeled at 104,000 cfm). Combined with the results from the earlier normal operating conditions, the ANSI/HPS 13.1-1999 criteria for all tests

  13. Gas Engine-Driven Heat Pump Chiller for Air-Conditioning and Hot Water Supply Systems

    NASA Astrophysics Data System (ADS)

    Fujita, Toshihiko; Mita, Nobuhiro; Moriyama, Tadashi; Hoshino, Norimasa; Kimura, Yoshihisa

    In Part 1 of this study, the performance characteristics of a 457kW gas engine-driven heat pump (GHP) chiller have been obtained from a simulation model analysis for both cooling and heating modes and it has been found that the part-load characteristics of the GHP chiller are fairly well. On the back of Part 1, a computer simulation program has been developed for the evaluation of GHP chiller systems to compare with the other types of heat source systems for air-conditioning and hot water supply applications. The simulation program can be used to estimate annual energy consumption, annual CO2 emission, etc. of the systems with the data of monthly and hourly thermal loads on various buildings, outdoor air conditions, and characteristics of various components comprising the systems. By applying this to some cases of medium-scale hotel, office, shop, and hospital buildings, it has been found that the GHP chiller systems have advantages particularly in the cases of hotels and hospitals where a lot of hot water demand exists. It has also been found that the combination of a GHP chiller and a direct-fired absorption water chiller boiler (hot and chilled water generator) appears promising.

  14. Economic analysis of air-conditioning systems with off-peak chilled-water storage. Master's thesis

    SciTech Connect

    McMullen, B.J.; Papaprokopiou, N.D.

    1981-09-01

    This thesis investigates current methods of chilled-water storage for air conditioning applications and the economics of chilled-water storage with time-of-use electric utility rates. Current methods of chilled-water storage are investigated by comparing costs of construction materials for storage tanks and effectiveness and costs of anti-blending systems. The economics of chilled-water storage are analyzed by computing total life cycle costs of alternative air conditioning systems for two different sized buildings. Computer simulation is used to determine electric consumption for the buildings. The simulation of each building contains three options: no chilled-water storage, chiller operated only at night, and a small chiller supplemented by stored chilled-water. A gunite or Styrofoam tank with a moving partition anti-blending system is the least expensive and most effective storage system. The economics of chilled-water storage are sensitive to the size of the building analyzed. Operating the small chiller with supplemental chilled-water is economical in the smaller building. No chilled-water storage is the most economical option in the larger building. Operation of the chiller only at night was never economical.

  15. A new procedure to analyze the effect of air changes in building energy consumption

    PubMed Central

    2014-01-01

    Background Today, the International Energy Agency is working under good practice guides that integrate appropriate and cost effective technologies. In this paper a new procedure to define building energy consumption in accordance with the ISO 13790 standard was performed and tested based on real data from a Spanish region. Results Results showed that the effect of air changes on building energy consumption can be defined using the Weibull peak function model. Furthermore, the effect of climate change on building energy consumption under several different air changes was nearly nil during the summer season. Conclusions The procedure obtained could be the much sought-after solution to the problem stated by researchers in the past and future research works relating to this new methodology could help us define the optimal improvement in real buildings to reduce energy consumption, and its related carbon dioxide emissions, at minimal economical cost. PMID:24456655

  16. Evaluation of Annual Performance of Multi-type Air-conditioners for Buildings

    NASA Astrophysics Data System (ADS)

    Watanabe, Choyu; Ohashi, Ei-Ichiro; Hirota, Masafumi; Nagamatsu, Katsuaki; Nakayama, Hiroshi

    The partial thermal load performance tests of electric-motor driven multi-type air-conditioners for buildings, the rated cooling and heating capacities of which were 56 kW and 63 kW, respectively, were carried out using the air-enthalpy method testing apparatus. Based on the results of those tests, the applicability of JIS B 8616: 2006, which was developed for the estimation of the annual electricity consumption of packaged air-conditioners with rated cooling capacities less than 28 kW, to the multi-type air-conditioners with larger capacities were examined. It was found that JIS B 8616: 2006 generally overestimates COP under a relatively low thermal load operation. As a result, the annual electricity consumption is underestimated by JIS. The prediction error changes depending of the building uses, and it amounted to -17 % in the case of office and -6 % in the detached shop.

  17. Spatial and temporal variations in indoor environmental conditions, human occupancy, and operational characteristics in a new hospital building

    SciTech Connect

    Ramos, Tiffanie; Dedesko, Sandra; Siegel, Jeffrey A.; Gilbert, Jack A.; Stephens, Brent

    2015-03-02

    The dynamics of indoor environmental conditions, human occupancy, and operational characteristics of buildings influence human comfort and indoor environmental quality, including the survival and progression of microbial communities. A suite of continuous, long-term environmental and operational parameters were measured in ten patient rooms and two nurse stations in a new hospital building in Chicago, IL to characterize the indoor environment in which microbial samples were taken for the Hospital Microbiome Project. Measurements included environmental conditions (indoor dry-bulb temperature, relative humidity, humidity ratio, and illuminance) in the patient rooms and nurse stations; differential pressure between the patient rooms and hallways; surrogate measures for human occupancy and activity in the patient rooms using both indoor air CO₂ concentrations and infrared doorway beam-break counters; and outdoor air fractions in the heating, ventilating, and air-conditioning systems serving the sampled spaces. Measurements were made at 5-minute intervals over consecutive days for nearly one year, providing a total of ~8×10⁶ data points. Indoor temperature, illuminance, and human occupancy/activity were all weakly correlated between rooms, while relative humidity, humidity ratio, and outdoor air fractions showed strong temporal (seasonal) patterns and strong spatial correlations between rooms. Differential pressure measurements confirmed that all patient rooms were operated at neutral pressure. The patient rooms averaged about 100 combined entrances and exits per day, which suggests they were relatively lightly occupied compared to higher traffic environments (e.g., retail buildings) and more similar to lower traffic office environments. There were also clear differences in several environmental parameters before and after the hospital was occupied with patients and staff. Characterizing and understanding factors that influence these building dynamics is vital for

  18. Spatial and Temporal Variations in Indoor Environmental Conditions, Human Occupancy, and Operational Characteristics in a New Hospital Building

    PubMed Central

    Ramos, Tiffanie; Dedesko, Sandra; Siegel, Jeffrey A.; Gilbert, Jack A.; Stephens, Brent

    2015-01-01

    The dynamics of indoor environmental conditions, human occupancy, and operational characteristics of buildings influence human comfort and indoor environmental quality, including the survival and progression of microbial communities. A suite of continuous, long-term environmental and operational parameters were measured in ten patient rooms and two nurse stations in a new hospital building in Chicago, IL to characterize the indoor environment in which microbial samples were taken for the Hospital Microbiome Project. Measurements included environmental conditions (indoor dry-bulb temperature, relative humidity, humidity ratio, and illuminance) in the patient rooms and nurse stations; differential pressure between the patient rooms and hallways; surrogate measures for human occupancy and activity in the patient rooms using both indoor air CO2 concentrations and infrared doorway beam-break counters; and outdoor air fractions in the heating, ventilating, and air-conditioning systems serving the sampled spaces. Measurements were made at 5-minute intervals over consecutive days for nearly one year, providing a total of ∼8×106 data points. Indoor temperature, illuminance, and human occupancy/activity were all weakly correlated between rooms, while relative humidity, humidity ratio, and outdoor air fractions showed strong temporal (seasonal) patterns and strong spatial correlations between rooms. Differential pressure measurements confirmed that all patient rooms were operated at neutral pressure. The patient rooms averaged about 100 combined entrances and exits per day, which suggests they were relatively lightly occupied compared to higher traffic environments (e.g., retail buildings) and more similar to lower traffic office environments. There were also clear differences in several environmental parameters before and after the hospital was occupied with patients and staff. Characterizing and understanding factors that influence these building dynamics is vital for

  19. Spatial and temporal variations in indoor environmental conditions, human occupancy, and operational characteristics in a new hospital building

    DOE PAGESBeta

    Ramos, Tiffanie; Dedesko, Sandra; Siegel, Jeffrey A.; Gilbert, Jack A.; Stephens, Brent

    2015-03-02

    The dynamics of indoor environmental conditions, human occupancy, and operational characteristics of buildings influence human comfort and indoor environmental quality, including the survival and progression of microbial communities. A suite of continuous, long-term environmental and operational parameters were measured in ten patient rooms and two nurse stations in a new hospital building in Chicago, IL to characterize the indoor environment in which microbial samples were taken for the Hospital Microbiome Project. Measurements included environmental conditions (indoor dry-bulb temperature, relative humidity, humidity ratio, and illuminance) in the patient rooms and nurse stations; differential pressure between the patient rooms and hallways; surrogatemore » measures for human occupancy and activity in the patient rooms using both indoor air CO₂ concentrations and infrared doorway beam-break counters; and outdoor air fractions in the heating, ventilating, and air-conditioning systems serving the sampled spaces. Measurements were made at 5-minute intervals over consecutive days for nearly one year, providing a total of ~8×10⁶ data points. Indoor temperature, illuminance, and human occupancy/activity were all weakly correlated between rooms, while relative humidity, humidity ratio, and outdoor air fractions showed strong temporal (seasonal) patterns and strong spatial correlations between rooms. Differential pressure measurements confirmed that all patient rooms were operated at neutral pressure. The patient rooms averaged about 100 combined entrances and exits per day, which suggests they were relatively lightly occupied compared to higher traffic environments (e.g., retail buildings) and more similar to lower traffic office environments. There were also clear differences in several environmental parameters before and after the hospital was occupied with patients and staff. Characterizing and understanding factors that influence these building dynamics is

  20. Air ventilation impacts of the "wall effect" resulting from the alignment of high-rise buildings

    NASA Astrophysics Data System (ADS)

    Yim, S. H. L.; Fung, J. C. H.; Lau, A. K. H.; Kot, S. C.

    The objective of this study is to investigate the air ventilation impacts of the so called "wall effect" caused by the alignment of high-rise buildings in complex building clusters. The research method employs the numerical algorithm of computational fluid dynamics (CFD - FLUENT) to simulate the steady-state wind field in a typical Hong Kong urban setting and investigate pollutant dispersion inside the street canyon utilizing a pollutant transport model. The model settings of validation study were accomplished by comparing the simulation wind field around a single building block to wind tunnel data. The results revealed that our model simulation is fairly close to the wind tunnel measurements. In this paper, a typical dense building distribution in Hong Kong with 2 incident wind directions (0° and 22.5°) is studied. Two performance indicators are used to quantify the air ventilation impacts, namely the velocity ratio ( VR) and the retention time ( T r) of pollutants at the street level. The results indicated that the velocity ratio at 2 m above ground was reduced 40% and retention time of pollutants increased 80% inside the street canyon when high-rise buildings with 4 times height of the street canyon were aligned as a "wall" upstream. While this reduction of air ventilation was anticipated, the magnitude is significant and this result clearly has important implications for building and urban planning.

  1. 40 CFR 86.162-03 - Approval of alternative air conditioning test simulations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... alternative air conditioning test simulations. (a) Upon petition from a manufacturer or upon the Agency's own initiative, the Administrator will approve a simulation of the environmental cell for air conditioning test... the tailpipe emissions, air conditioning compressor load, and fuel economy. (2) For any...

  2. 24 CFR 3280.813 - Outdoor outlets, fixtures, air-conditioning equipment, etc.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Electrical Systems § 3280.813 Outdoor outlets, fixtures, air-conditioning equipment, etc. (a) Outdoor.../or air conditioning equipment located outside the manufactured home, shall have permanently affixed, adjacent to the outlet, a metal tag which reads: This Connection Is for Air Conditioning Equipment Rated...

  3. Prediction of Air Conditioning Load Response for Providing Spinning Reserve - ORNL Report

    SciTech Connect

    Kueck, John D; Kirby, Brendan J; Ally, Moonis Raza; Rice, C Keith

    2009-02-01

    This report assesses the use of air conditioning load for providing spinning reserve and discusses the barriers and opportunities. Air conditioning load is well suited for this service because it often increases during heavy load periods and can be curtailed for short periods with little impact to the customer. The report also provides an appendix describing the ambient temperature effect on air conditioning load.

  4. 14 CFR 203.5 - Compliance as condition on operations in air transportation.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Compliance as condition on operations in... DEFENSES § 203.5 Compliance as condition on operations in air transportation. It shall be a condition on... 18900 as fully as if that air carrier or foreign air carrier had in fact filed a properly...

  5. 14 CFR 203.5 - Compliance as condition on operations in air transportation.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Compliance as condition on operations in... DEFENSES § 203.5 Compliance as condition on operations in air transportation. It shall be a condition on... 18900 as fully as if that air carrier or foreign air carrier had in fact filed a properly...

  6. 14 CFR 203.5 - Compliance as condition on operations in air transportation.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Compliance as condition on operations in... DEFENSES § 203.5 Compliance as condition on operations in air transportation. It shall be a condition on... 18900 as fully as if that air carrier or foreign air carrier had in fact filed a properly...

  7. 14 CFR 203.5 - Compliance as condition on operations in air transportation.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Compliance as condition on operations in... DEFENSES § 203.5 Compliance as condition on operations in air transportation. It shall be a condition on... 18900 as fully as if that air carrier or foreign air carrier had in fact filed a properly...

  8. Building America Case Study: Ventilation System Effectiveness and Tested Indoor Air Quality Impacts, Tyler, Texas

    SciTech Connect

    2015-08-01

    ?Ventilation system effectiveness testing was conducted at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the Exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four System Factor Categories: Balance, Distribution, Outside Air Source, and Recirculation Filtration. Recommended System Factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy.

  9. Heating, ventilating, and air conditioning deactivation thermal analysis of PUREX Plant

    SciTech Connect

    Chen, W.W.; Gregonis, R.A.

    1997-08-01

    Thermal analysis was performed for the proposed Plutonium Uranium Extraction Plant exhaust system after deactivation. The purpose of the analysis was to determine if enough condensation will occur to plug or damage the filtration components. A heat transfer and fluid flow analysis was performed to evaluate the thermal characteristics of the underground duct system, the deep-bed glass fiber filter No. 2, and the high-efficiency particulate air filters in the fourth filter building. The analysis is based on extreme variations of air temperature, relative humidity, and dew point temperature using 15 years of Hanford Site weather data as a basis. The results will be used to evaluate the need for the electric heaters proposed for the canyon exhaust to prevent condensation. Results of the analysis indicate that a condition may exist in the underground ductwork where the duct temperature can lead or lag changes in the ambient air temperature. This condition may contribute to condensation on the inside surfaces of the underground exhaust duct. A worst case conservative analysis was performed assuming that all of the water is removed from the moist air over the inside surface of the concrete duct area in the fully developed turbulent boundary layer while the moist air in the free stream will not condense. The total moisture accumulated in 24 hours is negligible. Water puddling would not be expected. The results of the analyses agree with plant operating experiences. The filters were designed to resist high humidity and direct wetting, filter plugging caused by slight condensation in the upstream duct is not a concern. 19 refs., 2 figs.

  10. NIOSH (National Institute for Occupational Safety and Health) indoor air quality in office buildings

    SciTech Connect

    Wallingford, K.M.

    1987-01-01

    A total of 356 indoor-air-quality health-hazard evaluations were completed by NIOSH from 1971 through December of 1985. Most of these studies concerned government and private office buildings where there were worker complaints. Worker complaints resulted from contamination from inside the building (19% of the cases), contamination from outside (11 percent), contamination from the building fabric (4%), biological contamination (5%), inadequate ventilation (50%), and unknown causes (11%). Health complaints addressed by investigative efforts included eye irritation, dry throat, headache, fatigue, sinus congestion, skin irritation, shortness of breath, cough, dizziness, and nausea.

  11. Comparison of air distribution system alternatives serving a classroom-office portion of a school building

    NASA Astrophysics Data System (ADS)

    Jordan, Stillman D., III

    An effective air distribution design accomplishes both comfort and ventilation requirements while consuming as little energy as possible. This paper analyzes four different air distribution systems and technologies including single duct variable air volume air handlers, chilled beam cooling systems, total energy recovery wheels, displacement ventilation, and dedicated outside air systems in an effort to compare air distribution systems for a representative section of a school in hot and humid climate. Distribution effectiveness and energy consumption are weighed against considerations such as system complexity and cost. Energy modeling calculations show that the Energy Utilization Index (EUI) of all of the analyzed designs are significantly less than the median EUI of schools in south Texas. Chilled beams are not well suited for schools because of the large amount of outside air required by the space and the sophisticated design and operation needed to prevent condensation from occurring at the chilled beam. Payback calculations show that even though new technologies like displacement ventilation and dedicated outside air systems reduce total energy consumption, they are not realistic design solutions because they have paybacks that exceed 100 years. The calculations also show the total energy recovery wheels result in a 16% energy savings over a baseline central variable air volume distribution system because of the large amount of outside air required in school buildings.

  12. NREL's Energy-Saving Technology for Air Conditioning Cuts Peak Power Loads Without Using Harmful Refrigerants (Fact Sheet)

    SciTech Connect

    Not Available

    2012-07-01

    This fact sheet describes how the DEVAP air conditioner was invented, explains how the technology works, and why it won an R&D 100 Award. Desiccant-enhanced evaporative (DEVAP) air-conditioning will provide superior comfort for commercial buildings in any climate at a small fraction of the electricity costs of conventional air-conditioning equipment, releasing far less carbon dioxide and cutting costly peak electrical demand by an estimated 80%. Air conditioning currently consumes about 15% of the electricity generated in the United States and is a major contributor to peak electrical demand on hot summer days, which can lead to escalating power costs, brownouts, and rolling blackouts. DEVAP employs an innovative combination of air-cooling technologies to reduce energy use by up to 81%. DEVAP also shifts most of the energy needs to thermal energy sources, reducing annual electricity use by up to 90%. In doing so, DEVAP is estimated to cut peak electrical demand by nearly 80% in all climates. Widespread use of this cooling cycle would dramatically cut peak electrical loads throughout the country, saving billions of dollars in investments and operating costs for our nation's electrical utilities. Water is already used as a refrigerant in evaporative coolers, a common and widely used energy-saving technology for arid regions. The technology cools incoming hot, dry air by evaporating water into it. The energy absorbed by the water as it evaporates, known as the latent heat of vaporization, cools the air while humidifying it. However, evaporative coolers only function when the air is dry, and they deliver humid air that can lower the comfort level for building occupants. And even many dry climates like Phoenix, Arizona, have a humid season when evaporative cooling won't work well. DEVAP extends the applicability of evaporative cooling by first using a liquid desiccant-a water-absorbing material-to dry the air. The dry air is then passed to an indirect evaporative

  13. Cooling System Using Natural Circulation for Air Conditioning

    NASA Astrophysics Data System (ADS)

    Okazaki, Takashi; Seshimo, Yu

    In this paper, Cooling systems with natural circulation loop of refrigerants are reviewed. The cooling system can largely reduce energy consumption of a cooling system for the telecommunication base site. The cooling system consists of two refrigeration units; vapor compression refrigeration unit and sub-cooling unit with a natural-circulation loop. The experiments and calculations were carried out to evaluate the cycle performance of natural circulation loop with HFCs and CO2. The experimental results showed that the cooling capacity of R410A is approximately 30% larger than that of R407C at the temperature difference of 20K and the cooling capacity of CO2 was approximately 4-13% larger than that of R410A under the two-phase condition. On the other hand, the cooling capacity of CO2 was approximately 11% smaller than that of R410A under the supercritical condition. The cooling capacity took a maximum value at an amount of refrigerant and lineally increased as the temperature difference increases and the slightly increased as the height difference. The air intake temperature profile in the inlet of the heat exchangers makes the reverse circulation under the supercritical state and the driving head difference for the reverse circulation depends on the density change to temperature under the supercritical state. Also, a new fan control method to convert the reverse circulation into the normal circulation was reviewed.

  14. PBF Reactor Building (PER620) basement. Camera facing north. Cooling air ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    PBF Reactor Building (PER-620) basement. Camera facing north. Cooling air compressor for control rods; inner cooler and after cooler; associated piping. Photographer: John Capek. Date: August 21, 1970. INEEL negative no. 70-3493 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID

  15. DEVELOPMENT AND APPLICATIONS OF CFD SIMULATIONS IN SUPPORT OF AIR QUALITY STUDIES INVOLVING BUILDINGS

    EPA Science Inventory

    There is a need to properly develop the application of Computational Fluid Dynamics (CFD) methods in support of air quality studies involving pollution sources near buildings at industrial sites. CFD models are emerging as a promising technology for such assessments, in part due ...

  16. MTR BUILDING, TRA603. SOUTH ELEVATION. PRECAST INSULATED PANEL DETAILS. AIR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    MTR BUILDING, TRA-603. SOUTH ELEVATION. PRECAST INSULATED PANEL DETAILS. AIR DUCT PLENUM CHAMBER. BLAW-KNOX 3150-80-5, 9/1950. INL INDEX NO. 531-0603-00-098-100564, REV. 4. - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  17. On the impact of entrapped air in infiltration under ponding conditions: Part a: Preferential air flow path effects on infiltration

    NASA Astrophysics Data System (ADS)

    Weisbord, N.; Mizrahi, G.; Furman, A.

    2015-12-01

    Entrapped air effects on infiltration under ponding conditions could be important for massive infiltration of managed aquifer recharge or soil aquifer treatment. Earlier studies found that under ponding conditions air could reduce infiltration by 70-90%. Most studies have dealt with entrapped air effects when soil surface topography is flat. The objective of this study is to investigate the effects of: (1) irregular surface topography on preferential air flow path development; (2) preferential air flow path on infiltration; and (3) hydraulic head on infiltration when air is trapped. Column experiments were used to investigate these particular effects. A 140 cm deep and 30 cm wide column packed with silica sand was used under two boundary conditions: in the first, air can only escape vertically upward through the soil surface; in the second, air is free to escape. The surface was flooded with 13 liters of water, with ponding depth decreasing with time. Two soil surface conditions were tested: flat surface and irregular. It was found that in irregular surfaces, stable air flow through preferential paths was developed in the high altitude zones. Flat surface topography caused unstable air flow through random paths. Comparison between irregular and flat surface topography showed that the entrapped air pressure was lower and the infiltration rate was about 40% higher in the irregular surface topography than in the flat surface topography. No difference of infiltration rate between flat and irregular surface topography was observed when air was free to escape along the infiltration path. It was also found that at the first stage of infiltration, higher hydraulic heads caused higher entrapped air pressures and lower infiltration rates. In contrast, higher hydraulic head results in higher infiltration rate, when air was free to escape. Our results suggest that during ponding conditions: (1) preferential air flow paths develop at high surface zones of irregular topography

  18. Spacecraft Cabin Air Quality Control and Its Application to Tight Buildings

    NASA Technical Reports Server (NTRS)

    Perry, J. L.; Graf, J. C.

    1995-01-01

    Air quality is an important consideration not only for the external environment, but also for the indoor environment. Most people spend a majority of their lives indoors and the air that they breathe is important to their physical and emotional well being. Since most modern building designs have focused on energy efficiency, less fresh air is brought from the outside. As a result, pollutants from building materials, furniture, cleaning, and cooking have no place to go. To make matters worse, most ventilation systems do not include any means for removing pollutants from the recycled air. Unfortunately, pollution at even a small level can result in eye, throat, and lung irritation in addition to chronic headaches, nausea, and fatigue. A spacecraft cabin, which represents the worst case in tight building design, requires special consideration of air quality since any effects pollutants may have on a crewmember can potentially place a mission or other crewmembers at risk. A detailed approach has been developed by the National Aeronautics and Space Administration (NASA) to minimize cabin atmosphere pollution and provide the crew with an environment which is as free of pollutants as possible. This approach is a combination of passive and active contamination control concepts involving the evaluation and selection of materials to be used onboard the spacecraft, the establishment of air quality standards to ensure crew health, and the use of active control means onboard the spacecraft to further ensure an acceptable atmosphere. This approach has allowed NASA to prevent illness by providing crewmembers with a cabin atmosphere which contains pollutant concentrations up to 100 times lower than those specified for terrestrial indoor environments. Standard building construction, however, does not take into account the potentially harmful effects of materials used in the construction process on the health of future occupants and relies primarily on remedial rather than

  19. Liquid Desiccant in Air Conditioners: Nano-Engineered Porous Hollow Fiber Membrane-Based Air Conditioning System

    SciTech Connect

    2010-09-02

    BEETIT Project: UTRC is developing an air conditioning system that is optimized for use in warm and humid climates. UTRC’s air conditioning system integrates a liquid drying agent or desiccant and a traditional vapor compression system found in 90% of air conditioners. The drying agent reduces the humidity in the air before it is cooled, using less energy. The technology uses a membrane as a barrier between the air and the liquid salt stream allowing only water vapor to pass through and not the salt molecules. This solves an inherent problem with traditional liquid desiccant systems—carryover of the liquid drying agent into the conditioned air stream—which eliminates corrosion and health issues

  20. Validation of two air quality models for Indian mining conditions.

    PubMed

    Chaulya, S K; Ahmad, M; Singh, R S; Bandopadhyay, L K; Bondyopadhay, C; Mondal, G C

    2003-02-01

    All major mining activity particularly opencast mining contributes to the problem of suspended particulate matter (SPM) directly or indirectly. Therefore, assessment and prediction are required to prevent and minimize the deterioration of SPM due to various opencast mining operations. Determination of emission rate of SPM for these activities and validation of air quality models are the first and foremost concern. In view of the above, the study was taken up for determination of emission rate for SPM to calculate emission rate of various opencast mining activities and validation of commonly used two air quality models for Indian mining conditions. To achieve the objectives, eight coal and three iron ore mining sites were selected to generate site specific emission data by considering type of mining, method of working, geographical location, accessibility and above all resource availability. The study covers various mining activities and locations including drilling, overburden loading and unloading, coal/mineral loading and unloading, coal handling or screening plant, exposed overburden dump, stock yard, workshop, exposed pit surface, transport road and haul road. Validation of the study was carried out through Fugitive Dust Model (FDM) and Point, Area and Line sources model (PAL2) by assigning the measured emission rate for each mining activity, meteorological data and other details of the respective mine as an input to the models. Both the models were run separately for the same set of input data for each mine to get the predicted SPM concentration at three receptor locations for each mine. The receptor locations were selected such a way that at the same places the actual filed measurement were carried out for SPM concentration. Statistical analysis was carried out to assess the performance of the models based on a set measured and predicted SPM concentration data. The value of coefficient of correlation for PAL2 and FDM was calculated to be 0.990-0.994 and 0

  1. Refinement of a SPR sensor for application within air-tight buildings

    NASA Astrophysics Data System (ADS)

    Bryce, Emma; Sommerville, James; Aidoo, Kofi

    2009-08-01

    The development of air-tight buildings to significantly reduce the carbon emissions from buildings is a relatively new building technique. However the side effects of the new approach have not been fully investigated. One potential issue arising is from insufficient ventilation resulting in an increase in poor indoor air quality from exacerbated microbial growth through elevated humidity and temperature. At the moment there is no in situ real-time sensor for the detection of multiple microbes within the built environment. Developing a sensor utilizing the phenomena of Surface Plasmon Resonance as its detection method to continuously monitor in situ multiple microbial species and fungi is being undertaken. The research involves the refinement of the specialised instruments commercially available, simplifying the components and advancing the architecture of the interface allowing for the monitoring of multiple species and a novel output detection method.

  2. Building Intuitive Arguments for the Triangle Congruence Conditions

    ERIC Educational Resources Information Center

    Piatek-Jimenez, Katrina

    2008-01-01

    The triangle congruence conditions are a central focus to nearly any course in Euclidean geometry. The author presents a hands-on activity that uses straws and pipe cleaners to explore and justify the triangle congruence conditions. (Contains 4 figures.)

  3. Experimental and Numerical Analysis of Air Flow, Heat Transfer and Thermal Comfort in Buildings with Different Heating Systems

    NASA Astrophysics Data System (ADS)

    Sabanskis, A.; Virbulis, J.

    2016-04-01

    Monitoring of temperature, humidity and air flow velocity is performed in 5 experimental buildings with the inner size of 3×3×3 m3 located in Riga, Latvia. The buildings are equipped with different heating systems, such as an air-air heat pump, air-water heat pump, capillary heating mat on the ceiling and electric heater. Numerical simulation of air flow and heat transfer by convection, conduction and radiation is carried out using OpenFOAM software and compared with experimental data. Results are analysed regarding the temperature and air flow distribution as well as thermal comfort.

  4. Effect of fee-for-service air-conditioning management in balancing thermal comfort and energy usage

    NASA Astrophysics Data System (ADS)

    Chen, Chen-Peng; Hwang, Ruey-Lung; Shih, Wen-Mei

    2014-02-01

    Balancing thermal comfort with the requirement of energy conservation presents a challenge in hot and humid areas where air-conditioning (AC) is frequently used in cooling indoor air. A field survey was conducted in Taiwan to demonstrate the adaptive behaviors of occupants in relation to the use of fans and AC in a school building employing mixed-mode ventilation where AC use was managed under a fee-for-service mechanism. The patterns of using windows, fans, and AC as well as the perceptions of students toward the thermal environment were examined. The results of thermal perception evaluation in relation to the indoor thermal conditions were compared to the levels of thermal comfort predicted by the adaptive models described in the American Society of Heating, Refrigerating, and Air-Conditioning Engineers Standard 55 and EN 15251 and to that of a local model for evaluating thermal adaption in naturally ventilated buildings. A thermal comfort-driven adaptive behavior model was established to illustrate the probability of fans/AC use at specific temperature and compared to the temperature threshold approach to illustrate the potential energy saving the fee-for-service mechanism provided. The findings of this study may be applied as a reference for regulating the operation of AC in school buildings of subtropical regions.

  5. Effect of fee-for-service air-conditioning management in balancing thermal comfort and energy usage.

    PubMed

    Chen, Chen-Peng; Hwang, Ruey-Lung; Shih, Wen-Mei

    2014-11-01

    Balancing thermal comfort with the requirement of energy conservation presents a challenge in hot and humid areas where air-conditioning (AC) is frequently used in cooling indoor air. A field survey was conducted in Taiwan to demonstrate the adaptive behaviors of occupants in relation to the use of fans and AC in a school building employing mixed-mode ventilation where AC use was managed under a fee-for-service mechanism. The patterns of using windows, fans, and AC as well as the perceptions of students toward the thermal environment were examined. The results of thermal perception evaluation in relation to the indoor thermal conditions were compared to the levels of thermal comfort predicted by the adaptive models described in the American Society of Heating, Refrigerating, and Air-Conditioning Engineers Standard 55 and EN 15251 and to that of a local model for evaluating thermal adaption in naturally ventilated buildings. A thermal comfort-driven adaptive behavior model was established to illustrate the probability of fans/AC use at specific temperature and compared to the temperature threshold approach to illustrate the potential energy saving the fee-for-service mechanism provided. The findings of this study may be applied as a reference for regulating the operation of AC in school buildings of subtropical regions. PMID:24510118

  6. 32 CFR 809a.9 - Conditions for use of Air Force resources.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 6 2014-07-01 2014-07-01 false Conditions for use of Air Force resources. 809a.9 Section 809a.9 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE... Disturbance Intervention and Disaster Assistance § 809a.9 Conditions for use of Air Force resources. This...

  7. 32 CFR 809a.9 - Conditions for use of Air Force resources.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 6 2012-07-01 2012-07-01 false Conditions for use of Air Force resources. 809a.9 Section 809a.9 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE... Disturbance Intervention and Disaster Assistance § 809a.9 Conditions for use of Air Force resources. This...

  8. 32 CFR 809a.9 - Conditions for use of Air Force resources.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 6 2010-07-01 2010-07-01 false Conditions for use of Air Force resources. 809a.9 Section 809a.9 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE... Disturbance Intervention and Disaster Assistance § 809a.9 Conditions for use of Air Force resources. This...

  9. 32 CFR 809a.9 - Conditions for use of Air Force resources.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 6 2011-07-01 2011-07-01 false Conditions for use of Air Force resources. 809a.9 Section 809a.9 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE... Disturbance Intervention and Disaster Assistance § 809a.9 Conditions for use of Air Force resources. This...

  10. 32 CFR 809a.9 - Conditions for use of Air Force resources.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 6 2013-07-01 2013-07-01 false Conditions for use of Air Force resources. 809a.9 Section 809a.9 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE... Disturbance Intervention and Disaster Assistance § 809a.9 Conditions for use of Air Force resources. This...

  11. Study on the Efficient Drive of a Desiccant Air Conditioning System

    NASA Astrophysics Data System (ADS)

    Jeong, Jong-Soo; Saito, Kiyoshi; Kawai, Sunao

    This paper constructs the static simulation model of a desiccant air conditioning system and gives the guidelines for the efficient drive of the desiccant air conditioning system. The desiccant air conditioning system is composed of a desiccant wheel, a heat exchanger, two evaporative coolers and a heater. The process air and regeneration air are supplied to this system. The desiccant is Silica gel. In the simulation model, two-dimensional model in space is adopted for the desiccant wheel. As the simulation result, it is clarified that optimum outlet temperature of the regeneration air in the heater, rotational speed of the desiccant wheel, the rejected air flow rate of the regeneration air, the process and regeneration air flow rate that maximize COP exist. For example, in case that the regeneration temperature is 63°C and relative humidity is 55% maximum COP is about 0.62.

  12. Performance and evaluation of gas engine driven rooftop air conditioning equipment at the Willow Grove (PA) Naval Air Station. Interim report, 1992 cooling season

    SciTech Connect

    Armstrong, P.R.; Conover, D.R.

    1993-05-01

    In a field evaluation conducted for the US Department of Energy (DOE) Office of Federal Energy Management Program (FEMP), the Pacific Northwest Laboratory (PNL) examined the performance of a new US energy-related technology under the FEMP Test Bed Demonstration Program. The technology was a 15-ton natural gas engine driven roof top air conditioning unit. Two such units were installed on a naval retail building to provide space conditioning to the building. Under the Test Bed Demonstration Program, private and public sector interests are focused to support the installation and evaluation of new US technologies in the federal sector. Participating in this effort under a Cooperative Research and Development Agreement (CRADA) with DOE were the American Gas Cooling Center, Philadelphia Electric Company, Thermo King Corporation, and the US Naval Air Station at Willow Grove, Pennsylvania. Equipment operating and service data as well as building interior and exterior conditions were secured for the 1992 cooling season. Based on a computer assessment of the building using standard weather data, a comparison was made with the energy and operating costs associated with the previous space conditioning system. Based on performance during the 1992 cooling season and adjusted to a normal weather year, the technology will save the site $6,000/yr in purchased energy costs. An additional $9,000 in savings due to electricity demand ratchet charge reductions will also be realized. Detailed information on the technology, the installation, and the results of the technology test are provided to illustrate the advantages to the federal sector of using this technology. A history of the CRADA development process is also reported.

  13. Allergies to molds caused by fungal spores in air conditioning equipment

    SciTech Connect

    Schata, M.; Jorde, W. ); Elixmann, J.H.; Linskens, H.F. )

    1989-01-01

    People suffering from various symptoms while in air-conditioned rooms often show sensitizations to fungi that can be isolated when the fungi are removed from air conditioners. By using specific challenge tests it was shown that fungal spores in air conditioners can evoke allergic symptoms. Hyposensitization was the specific therapy prescribed for such allergic reactions. After hyposensitization therapy, more than 70% of the patients so treated could live and work again in air-conditioned rooms without developing specific symptoms.

  14. Use of Source Term and Air Dispersion Modeling in Planning Demolition of Highly Alpha-Contaminated Buildings

    SciTech Connect

    Droppo, James G.; Napier, Bruce A.; Rishel, Jeremy P.; Bloom, Richard W.

    2011-06-22

    The current cleanup of structures related to cold-war production of nuclear materials includes the need to demolish a number of highly alpha-contaminated structures. The process of planning for the demolition of such structures includes unique challenges related to ensuring the protection of both workers and the public. Pre-demolition modeling analyses were conducted to evaluate potential exposures resulting from the proposed demolition of a number of these structures. Estimated emission rates of transuranic materials during demolition are used as input to an air-dispersion model. The climatological frequencies of occurrence of peak air and surface exposures at locations of interest are estimated based on years of hourly meteorological records. The modeling results indicate that downwind deposition is the main operational limitation for demolition of a highly alpha-contaminated building. The pre-demolition modeling directed the need for better contamination characterization and/or different demolition methods—and in the end, provided a basis for proceeding with the planned demolition activities. Post-demolition modeling was also conducted for several contaminated structures, based on the actual demolition schedule and conditions. Comparisons of modeled and monitoring results are shown. Recent monitoring data from the demolition of a UO3 plant shows increments in concentrations that were previously identified in the pre-demolition modeling predictions; these comparisons confirm the validity and value of the pre-demolition source-term and air dispersion computations for planning demolition activities for other buildings with high levels of radioactive contamination.

  15. Apparatus for supplying conditioned air at a substantially constant temperature and humidity

    NASA Technical Reports Server (NTRS)

    Obler, H. D. (Inventor)

    1980-01-01

    The apparatus includes a supply duct coupled to a source of supply air for carrying the supply air therethrough. A return duct is coupled to the supply duct for carrying return conditioned air therethrough. A temperature reducing device is coupled to the supply duct for decreasing the temperature of the supply and return conditioned air. A by-pass duct is coupled to the supply duct for selectively directing portions of the supply and return conditioned air around the temperature reducing device. Another by-pass duct is coupled to the return duct for selectively directing portions of the return conditioned air around the supply duct and the temperature reduction device. Controller devices selectively control the flow and amount of mixing of the supply and return conditioned air.

  16. Diagnosis of surface damage induced by air pollution on 20th-century concrete buildings

    NASA Astrophysics Data System (ADS)

    Ozga, I.; Bonazza, A.; Bernardi, E.; Tittarelli, F.; Favoni, O.; Ghedini, N.; Morselli, L.; Sabbioni, C.

    2011-09-01

    The present work focuses on the impact of anthropogenic multi-pollutants on modern concrete buildings exposed in two different European urban areas: Centennial Hall in Wroclaw (Poland) and Casa Galleria Vichi in Florence (Italy). Through a range of analytical techniques the complete characterization of the damage layer collected from the buildings under study has been achieved for the first time, including quantitative measurements of the carbon content. The experimental results allow the identification and prioritization of the air pollutants responsible for the surface deterioration, finding gypsum to be the main damage product on surfaces sheltered from rain runoff, with embedded particulate matter, especially carbonaceous particles, responsible for darkening of the building walls. The discrimination of carbon fractions shows different concentrations of elemental and organic carbon within the damage layers, depending on the location of the buildings. This step is essential for identifying the anthropogenic sources causing deterioration on the buildings, including the aesthetic impairment of surfaces. The contribution of air pollutants is also reflected by the elements found in the damage layers, while the evaluation of the enrichment factors is useful for identifying the elements of anthropogenic origin.

  17. Air quality monitoring during building demolition activities at the Rocky Mountain Arsenal

    SciTech Connect

    Armstrong, J.A.; Ley, T.J.; Edson, H.; Edrich, J.A.; Huston, K.H.; Kutchenreiter, M.C.; Lucas, P.M.

    1997-12-31

    Rocky Mountain Arsenal (RMA) is a former production site for chemical and incendiary munitions as well as industrial chemicals, including pesticides, insecticides, and herbicides. Several contaminated areas, including former production facilities and many support buildings, currently remain on this 27-square-mile facility located just northeast of Denver, Colorado. From February 1, 1995, through June 1, 1995, a feasibility study for building demolition at RMA was conducted. This study, the Pilot Building Demolition Project (PBDP), was completed to evaluate the applicability and effectiveness of selected building remediation, emission control, and demolition techniques that may be utilized in the future during full-scale site remediation. Four buildings were demolished using a variety of strategies and techniques. The US Army conducted intensive ambient air monitoring in the vicinity of demolition activity throughout the PBDP. Monitoring was conducted for total suspended particulates (TSP), particulate matter less than 10 micrometers in diameter (PM-10), heavy metals, mercury, volatile organic compounds (VOCs), and organochlorine pesticides (OCPs). Mobile sampling platforms were placed in the four cardinal directions around each demolition area to provide intensive close-in monitoring coverage. Additional samplers, which are part of a larger, RMA-wide monitoring network, were also used to provide more distant sampling locations in the vicinity of each area. The objective of the monitoring program was to characterize the effects of demolition activities on the surrounding air quality.

  18. Report on sampling and analysis of exhaust air at the 221-T and 2706-T buildings

    SciTech Connect

    Stauffer, M.

    1997-09-22

    This report presents analytical results from exhaust air samples collected at stacks 221-T and 2706-T of the T-Plant. The samples were collected with SUMMA canisters over a 24 hour interval and were analyzed by gas chromatography-mass spectrometry using a modified EPA TO-14 procedure. The data suggest that the buildings had generally low concentrations of volatile organic compounds (< 40 ppbv). However, samples from building 2706-T did have significant amounts of non-target higher-boiling hydrocarbons, probably from a petroleum destination fraction.

  19. Measurements of VOC emissions from three building materials using small environmental chamber under defined standard test conditions

    SciTech Connect

    Zhu, J.; Zhang, J.; Lusztyk, E.; Magee, R.J.

    1998-12-31

    VOC emission profile is an important parameter to describe the building materials and consumer products for their impact on indoor air quality (IAQ). Emission profiles are dependent on the test conditions. It is therefore very important to standardize testing conditions in order to compare emission factors and decay constants reported by various testing laboratories. Standard chamber test conditions (Chamber temperature of 23 C, relative humidity of 50 %, air change rate of 1 ACH, and specimen loading ratio of 0.4 m{sup 2}/m{sup 3}) have been proposed for using small environment chamber (0.05 m{sup 3}) by an international consortium research program led by the Institute for Research in Construction, NRCC. VOC emissions (excluding formaldehyde) from three building materials, a particleboard, a carpet with rubber backing and a vinyl floor tile were measured under above defined test conditions. Samples of the chamber air were collected using multi-sorbent tubes during the chamber tests, and analyzed by thermal desorption (TD) GC/FID. GC peaks were identified using TD/GC/MS. Major VOCs emitted were solvents, aldehydes, C10-and C15-terpenes for the particleboard, alkanes, alkenes and 4-phenyl cyclohexene for the carpet. VOC emissions from vinyl floor tile were dominated by a mixture of two alkyl propanoates, which eluted late (at about 230 C) on GC column. Total VOCs in the chamber air reached at 1100, 210 and 2400 m g/m3 for the particleboard, carpet and vinyl floor tile respectively. The analytical variation was around 5 to 10 % judged by a number of duplicates analyzed during the tests. First order exponential decay model and power law decay model were used to describe the emission factor decay from 12 h after the start of dynamic chamber tests. The power law model was found to better fit the experimental data than the first order decay model.

  20. CAN SORBENT-BASED GAS PHASE AIR CLEANING FOR VOCS SUBSTITUTE FOR VENTILATION IN COMMERCIAL BUILDINGS?

    SciTech Connect

    Fisk, William; Fisk, William J.

    2007-08-01

    This paper reviews current knowledge about the suitability of sorbent-based air cleaning for removing volatile organic compounds (VOCs) from the air in commercial buildings, as needed to enable reductions in ventilation rates and associated energy savings. The principles of sorbent air cleaning are introduced, criteria are suggested for sorbent systems that can counteract indoor VOC concentration increases from reduced ventilation, major findings from research on sorbent performance for this application are summarized, and related priority research needs are identified. Major conclusions include: sorbent systems can remove a broad range of VOCs with moderate to high efficiency, sorbent technologies perform effectively when challenged with VOCs at the low concentrations present indoors, and there is a large uncertainty about the lifetime and associated costs of sorbent air cleaning systems when used in commercial buildings for indoor VOC control. Suggested priority research includes: experiments to determine sorbent system VOC removal efficiencies and lifetimes considering the broad range and low concentration of VOCs indoors; evaluations of in-situ regeneration of sorbents; and an updated analysis of the cost of sorbent air cleaning relative to the cost of ventilation.

  1. Sorbent-Based Gas Phase Air Cleaning for VOCs in CommercialBuildings

    SciTech Connect

    Fisk, William J.

    2006-05-01

    This paper provides a review of current knowledge about the suitability of sorbent-based air cleaning for removing volatile organic compounds (VOCs) from the air in commercial buildings as needed to enable reductions in ventilation rates and associated energy savings. The fundamental principles of sorbent air cleaning are introduced, criteria are suggested for sorbent systems that can counteract indoor VOC concentration increases from reduced ventilation, major findings from research on sorbent performance for this application are summarized, novel sorbent technologies are described, and related priority research needs are identified. Major conclusions include: sorbent systems can remove a broad range of VOCs with moderate to high efficiency, sorbent technologies perform effectively when challenged with VOCs at the low concentrations present indoors, and there is a large uncertainty about the lifetime and associated costs of sorbent air cleaning systems when used in commercial buildings for indoor VOC control. Suggested priority research includes: experiments to determine sorbent system VOC removal efficiencies and lifetimes considering the broad range and low concentration of VOCs indoors; evaluations of in-situ regeneration of sorbents; and an updated analysis of the cost of sorbent air cleaning relative to the cost of ventilation.

  2. Methods to reduce the CO(2) concentration of educational buildings utilizing internal ventilation by transferred air.

    PubMed

    Kalema, T; Viot, M

    2014-02-01

    The aim of this study is to develop internal ventilation by transferred air to achieve a good indoor climate with low energy consumption in educational buildings with constant air volume (CAV) ventilation. Both measurements of CO2 concentration and a multi-room calculation model are presented. The study analyzes how to use more efficiently the available spaces and the capacity of CAV ventilation systems in existing buildings and the impact this has on the indoor air quality and the energy consumption of the ventilation. The temperature differences can be used to create natural ventilation airflows between neighboring spaces. The behavior of temperature-driven airflows between rooms was studied and included in the calculation model. The effect of openings between neighboring spaces, such as doors or large apertures in the walls, on the CO2 concentration was studied in different classrooms. The air temperatures and CO2 concentrations were measured using a wireless, internet-based measurement system. The multi-room calculation model predicted the CO2 concentration in the rooms, which was then compared with the measured ones. Using transferred air between occupied and unoccupied spaces can noticeably reduce the total mechanical ventilation rates needed to keep a low CO2 concentration. PMID:23841677

  3. A tracer method for quantifying contamination of building supply air: reentrainment of laboratory hood exhausts.

    PubMed

    Barnett, J L; Richard, M L; Rose, V E

    1983-08-01

    A method is described for quantifying the reentrainment of exhaust air contaminants into a building's fresh-air supply system. The method relies on the "tracer" gas, sulfur hexafluoride (SF6), which Is detected by infrared (IR) absorption analysis. This method of analysis differs from the conventional gas chromatography, electron capture detection method due to the MIRAN-1 A's portability, direct-reading capabilities, ease of operation and modest cost. Specific instrument settings for the MIRAN-1 A are given such that detection of SF6 will be optimized without interference. Calculations for quantifying reentrainment are presented and discussed for the "worst case" reentrainment observed. PMID:6624644

  4. 40 CFR 86.162-03 - Approval of alternative air conditioning test simulations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... conditioning test simulations. 86.162-03 Section 86.162-03 Protection of Environment ENVIRONMENTAL PROTECTION... alternative air conditioning test simulations. (a) Upon petition from a manufacturer or upon the Agency's own initiative, the Administrator will approve a simulation of the environmental cell for air conditioning...

  5. Technology data characterizing space conditioning in commercial buildings: Application to end-use forecasting with COMMEND 4.0

    SciTech Connect

    Sezgen, O.; Franconi, E.M.; Koomey, J.G.; Greenberg, S.E.; Afzal, A.; Shown, L.

    1995-12-01

    In the US, energy consumption is increasing most rapidly in the commercial sector. Consequently, the commercial sector is becoming an increasingly important target for state and federal energy policies and also for utility-sponsored demand side management (DSM) programs. The rapid growth in commercial-sector energy consumption also makes it important for analysts working on energy policy and DSM issues to have access to energy end-use forecasting models that include more detailed representations of energy-using technologies in the commercial sector. These new forecasting models disaggregate energy consumption not only by fuel type, end use, and building type, but also by specific technology. The disaggregation of space conditioning end uses in terms of specific technologies is complicated by several factors. First, the number of configurations of heating, ventilating, and air conditioning (HVAC) systems and heating and cooling plants is very large. Second, the properties of the building envelope are an integral part of a building`s HVAC energy consumption characteristics. Third, the characteristics of commercial buildings vary greatly by building type. The Electric Power Research Institute`s (EPRI`s) Commercial End-Use Planning System (COMMEND 4.0) and the associated data development presented in this report attempt to address the above complications and create a consistent forecasting framework. This report describes the process by which the authors collected space-conditioning technology data and then mapped it into the COMMEND 4.0 input format. The data are also generally applicable to other end-use forecasting frameworks for the commercial sector.

  6. COMPOSITION CHANGES IN REFRIGERANT BLENDS FOR AUTOMOTIVE AIR CONDITIONING

    EPA Science Inventory

    Three refrigerant blends used to replace CFC-12 in automotive air conditioners were evaluated for composition changes due to typical servicing and leakage. When recommended service procedures were followed, changes in blend compositions were relatively small. Small changes in b...

  7. [Design, equipment, and management for air conditioning in operating room].

    PubMed

    Fuji, Kumiko; Mizuno, Ju

    2011-11-01

    In order to maintain air cleanliness in the operating room (OR) permanently, air exchange rate in the OR should be more than 15 times x hr(-1), the laminar air flow should be kept, and the numbers of the persons in the OR and the numbers of opening and closing OR door should be limited. High efficiency particulate air (HEPA) filter is effective in collection and removal of airborne microbes, and is used in the biological clean room. We need to design, equip, and manage the OR environment according to Guideline for Design and Operation of Hospital HVAC Systems HEAS-02-2004 established by Healthcare Engineering Association of Japan and Guideline for Prevention of Surgical Site Infection (SSI) established by the Center for Disease Control and Prevention (CDC) in the USA. PMID:22175178

  8. Results of the Housing Building Condition Evaluation Survey at the University of Georgia.

    ERIC Educational Resources Information Center

    Casey, John M.

    A complete campus building condition evaluation survey was conducted at the University of Georgia in 1989 and results for the housing department were analyzed. The survey design was based on a model developed by Harlan Bareither at the University of Illinois that separates building deficiencies into seven general headings. Data were collected at…

  9. ETR COMPRESSOR BUILDING, TRA643. CAMERA FACES NORTH. AIR HEATERS LINE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    ETR COMPRESSOR BUILDING, TRA-643. CAMERA FACES NORTH. AIR HEATERS LINE UP AGAINST WALL, TO BE USED IN CONNECTION WITH ETR EXPERIMENTS. EACH HAD A HEAT OUTPUT OF 8 MILLION BTU PER HOUR, OPERATED AT 1260 DEGREES F. AND A PRESSURE OF 320 PSI. NOTE METAL WALLS AND ROOF. INL NEGATIVE NO. 56-3709. R.G. Larsen, Photographer, 11/13/1956 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID

  10. Factors influencing indoor air quality in an urban high rise apartment building (retitled as "Air Pollution and air exchange in an urban high rise apartment building")

    EPA Science Inventory

    The National Exposure Research Laboratory (NERL) Human Exposure and Atmospheric Sciences Division (HEASD) conducts research in support of EPA mission to protect human health and the environment. HEASD research program supports Goal 1 (Clean Air) and Goal 4 (Healthy People) of EP...

  11. Heating, Ventilating, and Air-Conditioning: Recent Advances in Diagnostics and Controls to Improve Air-Handling System Performance

    SciTech Connect

    Wray, Craig; Wray, Craig P.; Sherman, Max H.; Walker, I.S.; Dickerhoff, D.J.; Federspiel, C.C.

    2008-02-01

    The performance of air-handling systems in buildings needs to be improved. Many of the deficiencies result from myths and lore and a lack of understanding about the non-linear physical principles embedded in the associated technologies. By incorporating these principles, a few important efforts related to diagnostics and controls have already begun to solve some of the problems. This paper illustrates three novel solutions: one rapidly assesses duct leakage, the second configures ad hoc duct-static-pressure reset strategies, and the third identifies useful intermittent ventilation strategies. By highlighting these efforts, this paper seeks to stimulate new research and technology developments that could further improve air-handling systems.

  12. Method and apparatus for measuring the rate at which air infiltrates into and out of buildings

    SciTech Connect

    Dempsey, J. C.

    1985-01-15

    Tracer emission sources which emit tracer gas at a predetermined constant known rate are distributed throughout a building. The preferred source is a small vessel containing a vaporous perfluorocarbon tracer (PFT) substance having a very small bore hole in the top through which the PFT vapor can escape. Time is permitted for the tracer gas to mix uniformly throughout the building and for its concentration to equilibrate with infiltrating air. The concentration of the tracer is then measured and compared to the known volume of air in the building to determine the infiltration rate. In the preferred mode, the concentration is integrated and measured by continuously sampling the tracer gas at a constant rate on activated charcoal adsorbent over a period of several weeks. The amount of tracer substance accumulated on the adsorbent at the end of the test is directly related to the average tracer gas concentration which existed in the building during the sampling period and it can therefore be used to calculate an average infiltration rate during that period.

  13. 32 CFR 855.7 - Conditions for use of Air Force airfields.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 32 National Defense 6 2013-07-01 2013-07-01 false Conditions for use of Air Force airfields. 855.7 Section 855.7 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE AIRCRAFT CIVIL AIRCRAFT USE OF UNITED STATES AIR FORCE AIRFIELDS Civil Aircraft Landing Permits §...

  14. 32 CFR 855.7 - Conditions for use of Air Force airfields.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 32 National Defense 6 2012-07-01 2012-07-01 false Conditions for use of Air Force airfields. 855.7 Section 855.7 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE AIRCRAFT CIVIL AIRCRAFT USE OF UNITED STATES AIR FORCE AIRFIELDS Civil Aircraft Landing Permits §...

  15. 32 CFR 855.7 - Conditions for use of Air Force airfields.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 32 National Defense 6 2014-07-01 2014-07-01 false Conditions for use of Air Force airfields. 855.7 Section 855.7 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE AIRCRAFT CIVIL AIRCRAFT USE OF UNITED STATES AIR FORCE AIRFIELDS Civil Aircraft Landing Permits §...

  16. 32 CFR 855.7 - Conditions for use of Air Force airfields.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 32 National Defense 6 2010-07-01 2010-07-01 false Conditions for use of Air Force airfields. 855.7 Section 855.7 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE AIRCRAFT CIVIL AIRCRAFT USE OF UNITED STATES AIR FORCE AIRFIELDS Civil Aircraft Landing Permits §...

  17. 32 CFR 855.7 - Conditions for use of Air Force airfields.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 32 National Defense 6 2011-07-01 2011-07-01 false Conditions for use of Air Force airfields. 855.7 Section 855.7 National Defense Department of Defense (Continued) DEPARTMENT OF THE AIR FORCE AIRCRAFT CIVIL AIRCRAFT USE OF UNITED STATES AIR FORCE AIRFIELDS Civil Aircraft Landing Permits §...

  18. Effects of air tightness of the building envelope as witnessed through an energy efficiency retrofit program

    NASA Astrophysics Data System (ADS)

    Ryzak, Adam

    Air leakage through the building envelope has been identified as a major factor affecting the energy consumption of buildings. This study explored homes located in Central Indiana that were recipients of government-sponsored grants to perform energy efficient upgrades. To combat the issue of air leakage, many homes were retrofitted with air sealing packages. A certified energy auditor performed before and after blower door tests to measure the air leakage of each home. An analysis of the 63 homes measured resulted in the conclusion that the overall improvement in blower door test results was greater than 20%. In addition to blower door tests, the energy auditor inspected each home and generated a list of recommended energy efficient upgrades (within the scope of the grant) as well as their respective installation costs. An analysis was performed investigating the auditor's accuracy at estimating these costs. Based on data from 33 homes, the conclusion was made that the energy auditor was not proficient in the role of a construction estimator. The disparity between estimated and actual costs was not within the 10-15% target range.

  19. Development of a Ventilation and Air-conditioning System using Fixed Bed Desiccant Units

    NASA Astrophysics Data System (ADS)

    Miyazaki, Takahiko; Akisawa, Atsushi; Ueda, Yuki; Shindoh, Shinji; Godo, Masazumi; Takatsuka, Takeshi

    The study investigated fixed bed desiccant units for ventilation and air-conditioning. The role of the system is the dehumidification of the outdoor fresh air to be supplied to an air-conditioned room. Hence, the latent heat load of the air-conditioner in the room can be mitigated. The system consisted of two pairs of a desiccant unit and a heat storage unit. The microwave irradiation to the desiccant unit was examined as a candidate of the regeneration method of the system, and the performance of the microwave regeneration was compared with that of the hot air regeneration in terms of the supply air humidity ratio, outdoor air based COP, and the process air temperatures. The results revealed the effects of the switching time and the irradiation timing on the performance of the microwave irradiation.

  20. Comprehensive Assessment of Influence of Enhanced Component in Vapor Compression Air Conditioning System on Performance

    NASA Astrophysics Data System (ADS)

    Shinomiya, Naruaki; Nishimura, Nobuya; Iyota, Hiroyuki

    System performance prediction model for air-cooled air conditioner has been developed, and influences of Grooved tubes on performance of air conditioners with R410A were quantitatively investigated. Calculated results with simulation model correspond approximately to measured results by the authors and other researchers. After that, performances of air conditioners with grooved tubes were predicted. Results show that condensation heat transfer coefficients decrease with the rise of air conditioning load rate, and boiling heat transfer coefficients increase with the rise of air conditioning load rate. On the other hand, pressure drops increase 1.2-1.4 times in evaporator. Then, COPs of air conditioners with the grooved tube are 1.16 times higher than COP of air-conditioners with the smooth tube.

  1. Development of cold seawater air conditioning systems for application as a demand side management tool for Hawaii and other subtropical climates

    SciTech Connect

    Kaya, M.H.

    1996-10-01

    Because of the proximity to deep cold seawater for many coastal regions in Hawaii and the high demand for air conditioning in large buildings, seawater air conditioning (SWAC) is a major potential sustainable energy resource for Hawaii and other subtropical regions of the world. The basic concept of seawater air conditioning is the use deep cold seawater to cool the chilled water in one or more air conditioned buildings as opposed to using energy intensive refrigeration systems. The economic viability of the seawater air conditioning is determined by comparing the construction and operating costs of the seawater supply system to the construction and operating costs of conventional air conditioning systems. The State of Hawaii commissioned an analysis to identify the technical and economic opportunities and limitations in the use of SWAC in Hawaii. The result of this work is a feasibility analysis of SWAC systems in the state and the potential associated energy savings. The study looked at the prospects of installing such a system at a major new resort development on Oahu called West Beach.

  2. Research on precise modeling of buildings based on multi-source data fusion of air to ground

    NASA Astrophysics Data System (ADS)

    Li, Yongqiang; Niu, Lubiao; Yang, Shasha; Li, Lixue; Zhang, Xitong

    2016-03-01

    Aims at the accuracy problem of precise modeling of buildings, a test research was conducted based on multi-source data for buildings of the same test area , including top data of air-borne LiDAR, aerial orthophotos, and façade data of vehicle-borne LiDAR. After accurately extracted the top and bottom outlines of building clusters, a series of qualitative and quantitative analysis was carried out for the 2D interval between outlines. Research results provide a reliable accuracy support for precise modeling of buildings of air ground multi-source data fusion, on the same time, discussed some solution for key technical problems.

  3. Optimum Installation of Sorptive Building Materials Using Contribution Ratio of Pollution Source for Improvement of Indoor Air Quality

    PubMed Central

    Park, Seonghyun; Seo, Janghoo

    2016-01-01

    Reinforcing the insulation and airtightness of buildings and the use of building materials containing new chemical substances have caused indoor air quality problems. Use of sorptive building materials along with removal of pollutants, constant ventilation, bake-out, etc. are gaining attention in Korea and Japan as methods for improving such indoor air quality problems. On the other hand, sorptive building materials are considered a passive method of reducing the concentration of pollutants, and their application should be reviewed in the early stages. Thus, in this research, activated carbon was prepared as a sorptive building material. Then, computational fluid dynamics (CFD) was conducted, and a method for optimal installation of sorptive building materials was derived according to the indoor environment using the contribution ratio of pollution source (CRP) index. The results show that a method for optimal installation of sorptive building materials can be derived by predicting the contribution ratio of pollutant sources according to the CRP index. PMID:27043605

  4. Optimum Installation of Sorptive Building Materials Using Contribution Ratio of Pollution Source for Improvement of Indoor Air Quality.

    PubMed

    Park, Seonghyun; Seo, Janghoo

    2016-04-01

    Reinforcing the insulation and airtightness of buildings and the use of building materials containing new chemical substances have caused indoor air quality problems. Use of sorptive building materials along with removal of pollutants, constant ventilation, bake-out, etc. are gaining attention in Korea and Japan as methods for improving such indoor air quality problems. On the other hand, sorptive building materials are considered a passive method of reducing the concentration of pollutants, and their application should be reviewed in the early stages. Thus, in this research, activated carbon was prepared as a sorptive building material. Then, computational fluid dynamics (CFD) was conducted, and a method for optimal installation of sorptive building materials was derived according to the indoor environment using the contribution ratio of pollution source (CRP) index. The results show that a method for optimal installation of sorptive building materials can be derived by predicting the contribution ratio of pollutant sources according to the CRP index. PMID:27043605

  5. Performance of a photovoltaically powered air-conditioning system

    SciTech Connect

    Kern, Jr, E. C.; Millner, A. R.

    1980-01-01

    A vapor-compression air conditioner coupled directly to a photovoltaic array is discussed. Previous analyses of such a system are reviewed, and a development system designed to test the concept is described. Preliminary experiments indicate that the performance of this initial system falls considerably short of analytic expectations.

  6. Retrofitting Air Conditioning and Duct Systems in Hot, Dry Climates

    SciTech Connect

    Shapiro, Carl; Aldrich, Robb; Arena, Lois

    2012-07-01

    This technical report describes CARB's work with Clark County Community Resources Division in Las Vegas, Nevada, to optimize procedures for upgrading cooling systems on existing homes in the area to implement health, safety, and energy improvements. Detailed monitoring of five AC systems showed that three of the five systems met or exceeded air flow rate goals.

  7. Ultraviolet germicidal irradiation: future directions for air disinfection and building applications.

    PubMed

    Miller, Shelly L; Linnes, Jacqueline; Luongo, Julia

    2013-01-01

    Ultraviolet germicidal irradiation (UVGI) for air disinfection applications has relied on low-pressure mercury vapor lamps for decades. New design requirements have generated the need for alternatives in some uses. This study describes the current state of UVGI technology and describes future directions for technology development, including the use of lamps produced from nontoxic materials and light-emitting diode lamps. Important applications are discussed such as the use of ultraviolet germicidal lamps in developing countries, in heating, ventilating and air-conditioning systems to improve energy efficiency and indoor air quality, and for whole room disinfection. PMID:23581680

  8. Simulation of air gap vibration on aerostatic bearing under flow/structure coupled conditions

    NASA Astrophysics Data System (ADS)

    Wang, Qian; Wu, Jianjin; Li, Dongsheng

    2008-10-01

    The vibration of aerostatic bearing air gap is one of the main factors, which restricts the precision of nano-processing and nano-measurement. Finite volume method was employed to obtain the air gap steady flow of different air gap thicknesses for the demonstration of vibrations under flow/structure coupled conditions. The unsteady flow of air gap was analyzed numerically by using the air gap flow & boundary movement control equations to get the pressure distribution on the slide surface and the amplitude of air gap for further study on the self-excited vibration of aerostatic bearings. Numerical analyses show that the highest aerostatic bearing amplitude is relative to the difference between load capacity and gravity at the initial moment as air gap rises, and the final air gap thickness has nothing to do with the initial air gap thickness. The results presented a new analytic demonstration for the research on the reduction of aerostatic bearing vibration.

  9. The Effect of Air-Conditioning on Student and Teacher Performance.

    ERIC Educational Resources Information Center

    Phoenix Union High School District, AZ. Dept. of Research and Planning.

    The literature is reviewed to see if research shows a relationship between student and teacher performance and air conditioning of classrooms. The benefits of air conditioning in promoting learning are substantiated by studies that are summarized but not cited. The relationship of the report to the Phoenix Union High School System Advisory…

  10. Automotive Air Conditioning and Heating; Automotive Mechanics (Advanced): 9047.04.

    ERIC Educational Resources Information Center

    Dade County Public Schools, Miami, FL.

    This document presents an outline for a 135-hour course designed to provide the student with all the foundations necessary to become employable in the automotive air conditioning and heating trade. The course of study includes an orientation to the world of work, the elementary physics of air conditioning and heating, and laboratory experiments…

  11. Criterion-Referenced Test (CRT) Items for Air Conditioning, Heating and Refrigeration.

    ERIC Educational Resources Information Center

    Davis, Diane, Ed.

    These criterion-referenced test (CRT) items for air conditioning, heating, and refrigeration are keyed to the Missouri Air Conditioning, Heating, and Refrigeration Competency Profile. The items are designed to work with both the Vocational Instructional Management System and Vocational Administrative Management System. For word processing and…

  12. 10 CFR 71.74 - Accident conditions for air transport of plutonium.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Accident conditions for air transport of plutonium. 71.74 Section 71.74 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PACKAGING AND TRANSPORTATION OF RADIOACTIVE MATERIAL Package, Special Form, and LSA-III Tests 2 § 71.74 Accident conditions for air transport...

  13. 10 CFR 71.74 - Accident conditions for air transport of plutonium.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 2 2014-01-01 2014-01-01 false Accident conditions for air transport of plutonium. 71.74 Section 71.74 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PACKAGING AND TRANSPORTATION OF RADIOACTIVE MATERIAL Package, Special Form, and LSA-III Tests 2 § 71.74 Accident conditions for air transport of plutonium. (a) Test conditions—Sequence...

  14. 10 CFR 71.74 - Accident conditions for air transport of plutonium.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 2 2011-01-01 2011-01-01 false Accident conditions for air transport of plutonium. 71.74 Section 71.74 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PACKAGING AND TRANSPORTATION OF RADIOACTIVE MATERIAL Package, Special Form, and LSA-III Tests 2 § 71.74 Accident conditions for air transport of plutonium. (a) Test conditions—Sequence...

  15. 10 CFR 71.74 - Accident conditions for air transport of plutonium.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 2 2013-01-01 2013-01-01 false Accident conditions for air transport of plutonium. 71.74 Section 71.74 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PACKAGING AND TRANSPORTATION OF RADIOACTIVE MATERIAL Package, Special Form, and LSA-III Tests 2 § 71.74 Accident conditions for air transport of plutonium. (a) Test conditions—Sequence...

  16. 10 CFR 71.74 - Accident conditions for air transport of plutonium.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 2 2012-01-01 2012-01-01 false Accident conditions for air transport of plutonium. 71.74 Section 71.74 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PACKAGING AND TRANSPORTATION OF RADIOACTIVE MATERIAL Package, Special Form, and LSA-III Tests 2 § 71.74 Accident conditions for air transport of plutonium. (a) Test conditions—Sequence...

  17. 40 CFR 86.162-03 - Approval of alternative air conditioning test simulations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... initiative, the Administrator will approve a simulation of the environmental cell for air conditioning test... environmental cell test data for the range of vehicles to be covered by the simulation including items such as the tailpipe emissions, air conditioning compressor load, and fuel economy. (2) For any...

  18. 40 CFR 86.166-12 - Method for calculating emissions due to air conditioning leakage.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... determine a refrigerant leakage rate in grams per year from vehicle-based air conditioning units. The... using the following equation: Grams/YRTOT = Grams/YRRP + Grams/YRSP + Grams/YRFH + Grams/YRMC + Grams/YRC Where: Grams/YRTOT = Total air conditioning system emission rate in grams per year and rounded...

  19. Interactions between lighting and space conditioning energy use in U.S. commercial buildings

    SciTech Connect

    Sezgen, O.; Koomey, J.G.

    1998-04-01

    Reductions in lighting energy have secondary effects on cooling and heating energy consumption. In general, lighting energy reductions increase heating and decrease cooling requirements of a building. The net change in a building`s annual energy requirements, however, is difficult to quantify and depends on the building characteristics, operating conditions, and climate. This paper characterizes the effects of lighting/HVAC interactions on the annual heating/cooling requirements of prototypical US commercial buildings through computer simulations using the DOE-2.1E building energy analysis program. Twelve building types of two vintages and five climates are chosen to represent the US commercial building stock. For each combination of building type, vintage, and climate, a prototypical building is simulated with varying lighting power densities, and the resultant changes in heating and cooling loads are recorded. These loads are used together with market information on the saturation of the different HVAC equipment in the commercial buildings to determine the changes i energy use and expenditures for heating and cooling. Results are presented by building type for the US as a whole. Therefore, the data presented in this paper can be utilized to assess the secondary effects of lighting-related federal policies with widespread impacts, like minimum efficiency standards. Generally, in warm climates the interactions will induce monetary savings and in cold climates the interactions will induce monetary penalties. For the commercial building stock in the US, a reduction in lighting energy that is well distributed geographically will induce neither significant savings nor significant penalties from associated changes in HVAC primary energy and energy expenditures.

  20. OPERATIONAL LIMITATIONS FOR DEMOLITION OF A HIGHLY ALPHA CONTAMINATED BUILDING MODLES VERSUS MEASURED AIR & SURFACE ACTIVITY CONCENTRATIONS

    SciTech Connect

    LLOYD, E.R.

    2006-11-02

    The demolition of a facility historically used for processing and handling transuranic materials is considered. Residual alpha emitting radionuclide contamination poses an exposure hazard if released to the local environment during the demolition. The process of planning for the demolition of this highly alpha contaminated building, 232-Z, included a predemolition modeling analysis of potential exposures. Estimated emission rates were used as input to an air dispersion model to estimate frequencies of occurrence of peak air and surface exposures. Postdemolition modeling was also conducted, based on the actual demolition schedule and conditions. The modeling results indicated that downwind deposition is the main operational limitation for demolition of a highly alpha-contaminated building. During the demolition of 232-Z, airborne radiation and surface contamination were monitored. The resultant non-detect monitoring results indicate a significant level of conservatism in the modeled results. This comparison supports the use of more realistic assumption in the estimating emission rates. The resultant reduction in modeled levels of potential exposures has significant implications in terms of the projected costs of demolition of such structures.

  1. Prototype of a computer method for designing and analyzing heating, ventilating and air conditioning proportional, electronic control systems

    NASA Astrophysics Data System (ADS)

    Barlow, Steven J.

    1986-09-01

    The Air Force needs a better method of designing new and retrofit heating, ventilating and air conditioning (HVAC) control systems. Air Force engineers currently use manual design/predict/verify procedures taught at the Air Force Institute of Technology, School of Civil Engineering, HVAC Control Systems course. These existing manual procedures are iterative and time-consuming. The objectives of this research were to: (1) Locate and, if necessary, modify an existing computer-based method for designing and analyzing HVAC control systems that is compatible with the HVAC Control Systems manual procedures, or (2) Develop a new computer-based method of designing and analyzing HVAC control systems that is compatible with the existing manual procedures. Five existing computer packages were investigated in accordance with the first objective: MODSIM (for modular simulation), HVACSIM (for HVAC simulation), TRNSYS (for transient system simulation), BLAST (for building load and system thermodynamics) and Elite Building Energy Analysis Program. None were found to be compatible or adaptable to the existing manual procedures, and consequently, a prototype of a new computer method was developed in accordance with the second research objective.

  2. Application of calcium chloride as an additive for secondary refrigerant in the air conditioning system type chiller to minimized energy consumption

    NASA Astrophysics Data System (ADS)

    Suwono, A.; Indartono, Y. S.; Irsyad, M.; Al-Afkar, I. C.

    2015-09-01

    One way to resolve the energy problem is to increase the efficiency of energy use. Air conditioning system is one of the equipment that needs to be considered, because it is the biggest energy user in commercial building sector. Research currently developing is the use of phase change materials (PCM) as thermal energy storage (TES) in the air conditioning system to reduce energy consumption. Salt hydrates have been great potential to be developed because they have been high latent heat and thermal conductivity. This study has used a salt hydrate from calcium chloride to be tested in air conditioning systems type chiller. Thermal characteristics were examined using temperature history (T-history) test and differential scanning calorimetry (DSC). The test results showed that the thermal characteristics of the salt hydrate has been a high latent heat and in accordance with the evaporator temperature. The use of salt hydrates in air conditioning system type chiller can reduce energy consumption by 51.5%.

  3. Supporting Air-Conditioning Controller Design Using Evolutionary Computation

    NASA Astrophysics Data System (ADS)

    Kojima, Kazuyuki; Watanuki, Keiichi

    In recent years, as part of the remarkable development of electronic techniques, electronic control has been applied to various systems. Many sensors and actuators have been implemented into those systems, and energy efficiency and performance have been greatly improved. However, these systems have been complicated, and much time has been required to develop system controllers. In this paper, a method of automatic controller design for those systems is described. In order to automate the design of an electronic controller, an evolutionary hardware is applied. First, the framework for applying the genetic algorithm to the automation of controller design is described. In particular, the coding of a chromosome is shown in detail. Then, how to make a fitness function is represented, with an air conditioner as an example, and the controller of the air conditioner is developed automatically using our proposed framework. Finally, an evolutionary simulation is performed to confirm our framework.

  4. Reduction of air ion mobility to standard conditions

    NASA Astrophysics Data System (ADS)

    Tammet, H.

    1998-06-01

    The Langevin rule of the reduction of air ion mobility is adequate in case of zero-size ions. An alternative is the Stokes-Millikan equation that is adequate in the limit of macroscopic charged particles. The temperature variation of air ion mobility predicted by the Stokes-Millikan equation radically contradicts the Langevin rule. The temperature and pressure variation of air ion mobility is examined by using a new semiempirical model that describes the transition from the kinetic theory to the Stokes-Millikan equation. The model is valid in full mobility range. It allows to calculate at first the size of an ion according to the measured mobility and then the standard mobility according to the size. The ascent of the temperature-mobility curve on a logarithmic chart approaches the Langevin value of 1 only at very high mobilities not found in the atmosphere. The value of the ascent is 0.6 in the case of small ions of the mobility of 1.5 cm2 V-1 s-1 which brings about a considerable error when using the Langevin rule. It is recommended to store the natural values of the mobility in databases together with the values of temperature and pressure and to definitely indicate the method when the reduced mobilities are presented in publications.

  5. Reducing indoor air pollution by air conditioning is associated with improvements in cardiovascular health among the general population.

    PubMed

    Lin, Lian-Yu; Chuang, Hsiao-Chi; Liu, I-Jung; Chen, Hua-Wei; Chuang, Kai-Jen

    2013-10-01

    Indoor air pollution is associated with cardiovascular effects, however, little is known about the effects of improving indoor air quality on cardiovascular health. The aim of this study was to explore whether improving indoor air quality through air conditioning can improve cardiovascular health in human subjects. We recruited a panel of 300 healthy subjects from Taipei, aged 20 and over, to participate in six home visits each, to measure a variety of cardiovascular endpoints, including high sensitivity-C-reactive protein (hs-CRP), 8-hydroxy-2'-deoxyguanosine (8-OHdG), fibrinogen in plasma and heart rate variability (HRV). Indoor particles and total volatile organic compounds (VOCs) were measured simultaneously at the participant's home during each visit. Three exposure conditions were investigated in this study: participants were requested to keep their windows open during the first two visits, close their windows during the next two visits, and close the windows and turn on their air conditioners during the last two visits. We used linear mixed-effects models to associate the cardiovascular endpoints with individual indoor air pollutants. The results showed that increases in hs-CRP, 8-OHdG and fibrinogen, and decreases in HRV indices were associated with increased levels of indoor particles and total VOCs in single-pollutant and two-pollutant models. The effects of indoor particles and total VOCs on cardiovascular endpoints were greatest during visits with the windows open. During visits with the air conditioners turned on, no significant changes in cardiovascular endpoints were observed. In conclusion, indoor air pollution is associated with inflammation, oxidative stress, blood coagulation and autonomic dysfunction. Reductions in indoor air pollution and subsequent improvements in cardiovascular health can be achieved by closing windows and turning on air conditioners at home. PMID:23803502

  6. Mitigating the cooling need and improvement of indoor conditions in Mediterranean educational buildings, by means of green roofs. Results of a case study

    NASA Astrophysics Data System (ADS)

    Ascione, F.; Bianco, N.; De Masi, R. F.; de Rossi, F.; Vanoli, G. P.

    2015-11-01

    Indoor overheating risk and increased energy demand for cooling are becoming more and more frequent in the building sector of the Mediterranean area. In detail, for the reduction of the energy consumption of educational buildings, characterized by high endogenous gains, the particular boundary conditions affecting their use should be taken in consideration, and thus schedules of occupancy, wide necessity of air-changes for air quality. This paper, with reference to a case study, proposes deep investigations aimed at optimizing the annual energy performance of an educational building of the University of Sannio, located in the Southern Italy. A numerical model of the building has been designed and validated according to monitored data. Starting from the present scenario, after a complete refurbishment of the building envelope, the potentialities of several typologies of green roofs - by considering also the implementation of the adaptive approach in the comfort standard - have been tested. The scope is the optimization of the energy demand for the annual microclimatic control, by avoiding an energy-intensive operation of the air-conditioning devices during the warm season.

  7. Energy Efficiency in Buildings as an Air Quality Compliance Approach: Opportunities for the U.S. Department of Energy

    SciTech Connect

    Vine, Edward

    2002-05-01

    Increasing the energy efficiency of end-use equipment in the residential, commercial, and industrial sectors can reduce air pollution emissions and greenhouse gases significantly. Because energy efficiency is an effective means of reducing multi-pollutant emissions, it is important to ensure that energy efficiency is a fully engaged component of emission-reduction programs. However, while energy-efficiency measures are perceived by many stakeholders to be important options for improving air quality, some members in the air quality community are concerned about the ability of these measures to fit in a regulatory framework-in particular, the ability of emissions reductions from energy-efficiency measures to be real, quantifiable, certifiable, and enforceable. Hence, there are few air quality programs that include energy efficiency as a tool for complying with air quality regulations. This paper describes the connection between energy consumption and air quality, the potential role of energy-efficiency measures to meet air quality regulations, the barriers and challenges to the use of these measures in the air quality regulatory environment, and the potential role that the U.S. Department of Energy's (USDOE) Energy Efficiency and Renewable Energy's Building Technology, State and Community Programs (EERE-Buildings) could play in this area. EERE-Buildings can play a very important role in promoting energy efficiency in the air quality community, in ways that are fully consistent with its overall mission. EERE-Buildings will need to work with other stakeholders to aggressively promote energy efficiency via multiple means: publications, analytical tools, pilot programs, demonstrations, and program and policy analysis and evaluation. EERE-Buildings and state energy officials have considerable experience in implementing and monitoring energy-savings projects, as well as in designing documentation and verification requirements of energy-efficiency improvements. The

  8. Combustion of Gaseous Fuels with High Temperature Air in Normal- and Micro-gravity Conditions

    NASA Technical Reports Server (NTRS)

    Wang, Y.; Gupta, A. K.

    2001-01-01

    The objective of this study is determine the effect of air preheat temperature on flame characteristics in normal and microgravity conditions. We have obtained qualitative (global flame features) and some quantitative information on the features of flames using high temperature combustion air under normal gravity conditions with propane and methane as the fuels. This data will be compared with the data under microgravity conditions. The specific focus under normal gravity conditions has been on determining the global flame features as well as the spatial distribution of OH, CH, and C2 from flames using high temperature combustion air at different equivalence ratio.

  9. [Working ability between air and trimix breathing gas under 8 ATA air condition].

    PubMed

    Shibayama, M; Kosugi, S; Mohri, M; Yamamura, I; Oda, S; Kimura, A; Takeuchi, J; Mano, Y

    1990-04-01

    Pneumatic caisson work in Japan has come into operation since 1924. Afterward, this technique of compressed air work has been widely utilized in the construction of foundation basements, shafts of the bottom tunnel shields for subway and so forth. While using this technique of compressed air work means that workers have to be exposed to hyperbaric environment, this technique has risks of not only decompression sickness (DCS) but also toxicity of poisonous gas and/or oxygen deficiency. However, this technique is independent of city construction work and the operation of compressed air work higher than 5ATA (4.0 kg/cm2G) is actually been planning recently. Accordingly unmanned caisson work is considered as a better technique for such higher pressurized work, even though workers must enter into hyperbaric working fields for maintenance or repair of unmanned operated machinery and materials. This research is to establish the safe work under hyperbaric air environment at 8ATA. PMID:2400467

  10. Case study of odor and indoor air quality assessment in the dewatering building at the Stickney Water Reclamation Plant.

    PubMed

    Sharma, Manju; O'Connell, Susan; Garelli, Brett; Sattayatewa, Chakkrid; Moschandreas, Demetrios; Pagilla, Krishna

    2012-01-01

    Indoor air quality (IAQ) and odors were determined using sampling/monitoring, measurement, and modeling methods in a large dewatering building at a very large water reclamation plant. The ultimate goal was to determine control strategies to reduce the sensory impacts on the workforce and achieve odor reduction within the building. Study approaches included: (1) investigation of air mixing by using CO(2) as an indicator, (2) measurement of airflow capacity of ventilation fans, (3) measurement of odors and odorants, (4) development of statistical and IAQ models, and (5) recommendation of control strategies. The results showed that air quality in the building complies with occupational safety and health guidelines; however, nuisance odors that can increase stress and productivity loss still persist. Excess roof fan capacity induced odor dispersion to the upper levels. Lack of a local air exhaust system of sufficient capacity and optimum design was found to be the contributor to occasional less than adequate indoor air quality and odors. Overall, air ventilation rate in the building has less effect on persistence of odors in the building. Odor/odorant emission rates from centrifuge drops were approximately 100 times higher than those from the open conveyors. Based on measurements and modeling, the key control strategies recommended include increasing local air exhaust system capacity and relocation of exhaust hoods closer to the centrifuge drops. PMID:22277239

  11. Building America Case Study: Challenges of Achieving 2012 IECC Air Sealing Requirements in Multifamily Dwellings, Upstate New York (Fact Sheet)

    SciTech Connect

    Not Available

    2014-11-01

    While previous versions of the International Energy Conservation Code (IECC) have included provisions to improve the air tightness of dwellings, for the first time, the 2012 IECC mandates compliance verification through blower door testing. Simply completing the Air Barrier and Insulation Installation checklist through visual inspection is no longer sufficient by itself. In addition, the 2012 IECC mandates a significantly stricter air sealing requirement. In Climate Zones 3 through 8, air leakage may not exceed 3 ACH50, which is a significant reduction from the 2009 IECC requirement of 7 ACH50. This requirement is for all residential buildings, which includes low-rise multifamily dwellings. While this air leakage rate requirement is an important component to achieving an efficient building thermal envelope, currently, the code language doesn't explicitly address differences between single family and multifamily applications. In addition, the 2012 IECC does not provide an option to sample dwellings for larger multifamily buildings, so compliance would have to be verified on every unit. With compliance with the 2012 IECC air leakage requirements on the horizon, several of CARB's multifamily builder partners are evaluating how best to comply with this requirement. Builders are not sure whether it is more practical or beneficial to simply pay for guarded testing or to revise their air sealing strategies to improve compartmentalization to comply with code requirements based on unguarded blower door testing. This report summarizes CARB's research that was conducted to assess the feasibility of meeting the 2012 IECC air leakage requirements in 3 multifamily buildings.

  12. Potential damage to modern building materials from 21st century air pollution.

    PubMed

    Brimblecombe, Peter; Grossi, Carlota Maria

    2010-01-01

    The evolution of damage to building materials has been estimated for the 21st century, with a particular focus on aluminum, zinc, copper, plastic, paint, and rubber in urban areas. We set idealized air pollution and climates to represent London and Prague across the period 1950-2100. Environmental parameters were used to estimate future recession, corrosion, and loss of properties through published damage or dose-response functions. The 21st century seems to provide a less aggressive environment for stone and metals than recent times. Improvements in air quality are the most relevant drivers for this amelioration. Changes in climate predicted for the 21st century do not alter this picture. On the other hand, polymeric materials, plastic, paint, and rubber might show slightly increased rates of degradation, to some extent the result of enhanced oxidant concentrations, but also the possibility of contributions from more solar radiation. PMID:20098955

  13. Composition changes in refrigerant blends for automotive air conditioning

    SciTech Connect

    Jetter, J.J.; Delafield, F.R.; Ng, A.S.; Ratanaphruks, K.; Tufts, M.W.

    1999-07-01

    Three refrigerant blends used to replace the chlorofluorocarbon R-12 in automotive air conditioners were evaluated for composition changes due to typical servicing and leakage. When recommended service procedures were followed, changes in blend compositions were relatively small. Small changes in blend compositions caused no significant changes in refrigeration capacities. However, when recommended procedures were not followed, changes in compositions were relatively large. The amount of change in composition and the resulting effect on performance varied among the three refrigerant blends that were tested. Of the three blends, a quaternary blend containing hydrochlorofluorocarbon R-22 had the greatest changes in composition, while a binary blend containing hydrofluorocarbon R-134a had the smallest changes in composition.

  14. Air Conditioning Stall Phenomenon Testing, Model Development, and Simulation

    SciTech Connect

    Irminger, Philip; Rizy, D Tom; Li, Huijuan; Smith, Travis; Rice, C Keith; Li, Fangxing; Adhikari, Sarina

    2012-01-01

    Electric distribution systems are experiencing power quality issues of extended reduced voltage due to fault-induced delayed voltage recovery (FIDVR). FIDVR occurs in part because modern air conditioner (A/C) and heat pump compressor motors are much more susceptible to stalling during a voltage sag or dip such as a sub-transmission fault. They are more susceptible than older A/C compressor motors due to the low inertia of these newer and more energy efficient motors. There is a concern that these local reduced voltage events on the distribution system will become more frequent and prevalent and will combine over larger areas and challenge transmission system voltage and ultimately power grid reliability. The Distributed Energy Communications and Controls (DECC) Laboratory at Oak Ridge National Laboratory (ORNL) has been employed to (1) test, (2) characterize and (3) model the A/C stall phenomenon.

  15. Alternate working fluids for solar air conditioning applications

    NASA Technical Reports Server (NTRS)

    Evans, R. D.; Beck, J. K.

    1978-01-01

    An experimental investigation of sixteen different refrigerant-absorbent fluid pairs has been carried out in order to determine their suitability as the working fluid in a solar-powered absorption cycle air conditioner. The criteria used in the initial selection of a refrigerant-absorbent pair included: high affinity (large negative deviation from Raoult's Law), high solubility, low specific heat, low viscosity, stability, corrosive properties, safety, and cost. For practical solar considerations of a fluid pair, refrigerants were selected with low boiling points whereas absorbent fluids were selected with a boiling point considerably above that of the refrigerant. Additional restrictions are determined by the operating temperatures of the absorber and the generator; these temperatures were specified as 100 F (39 C) and 170 F (77 C). Data are presented for a few selected pressures at the specified absorber and generator temperatures.

  16. Thermal and Energy Performance of Conditioned Building Due To Insulated Sloped Roof

    NASA Astrophysics Data System (ADS)

    Irwan, Suhandi Syiful; Ahmed, Azni Zain; Zakaria, Nor Zaini; Ibrahim, Norhati

    2010-07-01

    For low-rise buildings in equatorial region, the roof is exposed to solar radiation longer than other parts of the envelope. Roofs are to be designed to reject heat and moderate the thermal impact. These are determined by the design and construction of the roofing system. The pitch of roof and the properties of construction affect the heat gain into the attic and subsequently the indoor temperature of the living spaces underneath. This finally influences the thermal comfort conditions of naturally ventilated buildings and cooling load of conditioned buildings. This study investigated the effect of insulated sloping roof on thermal energy performance of the building. A whole-building thermal energy computer simulation tool, Integrated Environmental Solution (IES), was used for the modelling and analyses. A building model with dimension of 4.0 m × 4.0 m × 3.0 m was designed with insulated roof and conventional construction for other parts of the envelope. A 75 mm conductive insulation material with thermal conductivity (k-value) of 0.034 Wm-1K-1 was installed underneath the roof tiles. The building was modelled with roof pitch angles of 0° , 15°, 30°, 45°, 60° and simulated for the month of August in Malaysian climate conditions. The profile for attic temperature, indoor temperature and cooling load were downloaded and evaluated. The optimum roof pitch angle for best thermal performance and energy saving was identified. The results show the pitch angle of 0° is able to mitigate the thermal impact to provide the best thermal condition with optimum energy savings. The maximum temperature difference between insulated and non-insulted roof for attic (AtticA-B) and indoor condition (IndoorA-B) is +7.8 °C and 0.4 °C respectively with an average energy monthly savings of 3.9 %.

  17. Impaired Air Conditioning within the Nasal Cavity in Flat-Faced Homo.

    PubMed

    Nishimura, Takeshi; Mori, Futoshi; Hanida, Sho; Kumahata, Kiyoshi; Ishikawa, Shigeru; Samarat, Kaouthar; Miyabe-Nishiwaki, Takako; Hayashi, Misato; Tomonaga, Masaki; Suzuki, Juri; Matsuzawa, Tetsuro; Matsuzawa, Teruo

    2016-03-01

    We are flat-faced hominins with an external nose that protrudes from the face. This feature was derived in the genus Homo, along with facial flattening and reorientation to form a high nasal cavity. The nasal passage conditions the inhaled air in terms of temperature and humidity to match the conditions required in the lung, and its anatomical variation is believed to be evolutionarily sensitive to the ambient atmospheric conditions of a given habitat. In this study, we used computational fluid dynamics (CFD) with three-dimensional topology models of the nasal passage under the same simulation conditions, to investigate air-conditioning performance in humans, chimpanzees, and macaques. The CFD simulation showed a horizontal straight flow of inhaled air in chimpanzees and macaques, contrasting with the upward and curved flow in humans. The inhaled air is conditioned poorly in humans compared with nonhuman primates. Virtual modifications to the human external nose topology, in which the nasal vestibule and valve are modified to resemble those of chimpanzees, change the airflow to be horizontal, but have little influence on the air-conditioning performance in humans. These findings suggest that morphological variation of the nasal passage topology was only weakly sensitive to the ambient atmosphere conditions; rather, the high nasal cavity in humans was formed simply by evolutionary facial reorganization in the divergence of Homo from the other hominin lineages, impairing the air-conditioning performance. Even though the inhaled air is not adjusted well within the nasal cavity in humans, it can be fully conditioned subsequently in the pharyngeal cavity, which is lengthened in the flat-faced Homo. Thus, the air-conditioning faculty in the nasal passages was probably impaired in early Homo members, although they have survived successfully under the fluctuating climate of the Plio-Pleistocene, and then they moved "Out of Africa" to explore the more severe climates of

  18. Impaired Air Conditioning within the Nasal Cavity in Flat-Faced Homo

    PubMed Central

    Nishimura, Takeshi; Mori, Futoshi; Hanida, Sho; Kumahata, Kiyoshi; Ishikawa, Shigeru; Samarat, Kaouthar; Miyabe-Nishiwaki, Takako; Hayashi, Misato; Tomonaga, Masaki; Suzuki, Juri; Matsuzawa, Tetsuro; Matsuzawa, Teruo

    2016-01-01

    We are flat-faced hominins with an external nose that protrudes from the face. This feature was derived in the genus Homo, along with facial flattening and reorientation to form a high nasal cavity. The nasal passage conditions the inhaled air in terms of temperature and humidity to match the conditions required in the lung, and its anatomical variation is believed to be evolutionarily sensitive to the ambient atmospheric conditions of a given habitat. In this study, we used computational fluid dynamics (CFD) with three-dimensional topology models of the nasal passage under the same simulation conditions, to investigate air-conditioning performance in humans, chimpanzees, and macaques. The CFD simulation showed a horizontal straight flow of inhaled air in chimpanzees and macaques, contrasting with the upward and curved flow in humans. The inhaled air is conditioned poorly in humans compared with nonhuman primates. Virtual modifications to the human external nose topology, in which the nasal vestibule and valve are modified to resemble those of chimpanzees, change the airflow to be horizontal, but have little influence on the air-conditioning performance in humans. These findings suggest that morphological variation of the nasal passage topology was only weakly sensitive to the ambient atmosphere conditions; rather, the high nasal cavity in humans was formed simply by evolutionary facial reorganization in the divergence of Homo from the other hominin lineages, impairing the air-conditioning performance. Even though the inhaled air is not adjusted well within the nasal cavity in humans, it can be fully conditioned subsequently in the pharyngeal cavity, which is lengthened in the flat-faced Homo. Thus, the air-conditioning faculty in the nasal passages was probably impaired in early Homo members, although they have survived successfully under the fluctuating climate of the Plio-Pleistocene, and then they moved “Out of Africa” to explore the more severe climates of

  19. Desiccant Enhanced Evaporative Air-Conditioning (DEVap): Evaluation of a New Concept in Ultra Efficient Air Conditioning

    SciTech Connect

    Kozubal, E.; Woods, J.; Burch, J.; Boranian, A.; Merrigan, T.

    2011-01-01

    NREL has developed the novel concept of a desiccant enhanced evaporative air conditioner (DEVap) with the objective of combining the benefits of liquid desiccant and evaporative cooling technologies into an innovative 'cooling core.' Liquid desiccant technologies have extraordinary dehumidification potential, but require an efficient cooling sink. DEVap's thermodynamic potential overcomes many shortcomings of standard refrigeration-based direct expansion cooling. DEVap decouples cooling and dehumidification performance, which results in independent temperature and humidity control. The energy input is largely switched away from electricity to low-grade thermal energy that can be sourced from fuels such as natural gas, waste heat, solar, or biofuels.

  20. A packed bed dehumidifier/regenerator for solar air conditioning with liquid desiccants

    NASA Astrophysics Data System (ADS)

    Factor, H. M.; Grossman, G.

    1980-01-01

    A packed column air-liquid contactor has been studied in application to air dehumidification and regeneration in solar air conditioning with liquid desiccants. A theoretical model has been developed to predict the performance of the device under various operating conditions. Computer simulations based on the model are presented which indicate the practical range of air to liquid flux ratios and associated changes in air humidity and desiccant concentration. An experimental apparatus has been constructed and experiments performed with Monoethylene Glycol (MEG) and Lithium Bromide as desiccants. MEG experiments have yielded inaccurate results and have pointed out some practical problems associated with the use of Glycols. LiBr experiments show very good agreement with the theoretical model. Preheating of the air is shown to greatly enhance desiccant regeneration. The packed column yields good results as a dehumidifier/regenerator, provided pressure drop can be reduced with the use of suitable packing.

  1. SCHOOL AIR CONDITIONING/CASE STUDY, MCPHERSON HIGH SCHOOL.

    ERIC Educational Resources Information Center

    OSTENBERG, JOE W.

    THE STANFORD UNIVERSITY SCHOOL PLANNING LABORATORIES CONDUCTED AN EDUCATIONAL SURVEY OF THE EDUCATIONAL NEEDS OF THE MCPHERSON CITY SCHOOLS BY STUDYING THE EXISTING CONDITIONS, LOCAL ECONOMIES, AND POTENTIAL POPULATION GROWTH. IT WAS RECOMMENDED THAT A NEW SENIOR HIGH BE BUILT TO HOUSE 700-750 STUDENTS, THE ANTICIPATED ENROLLMENT 10 YEARS AFTER…

  2. System and method for conditioning intake air to an internal combustion engine

    SciTech Connect

    Sellnau, Mark C.

    2015-08-04

    A system for conditioning the intake air to an internal combustion engine includes a means to boost the pressure of the intake air to the engine and a liquid cooled charge air cooler disposed between the output of the boost means and the charge air intake of the engine. Valves in the coolant system can be actuated so as to define a first configuration in which engine cooling is performed by coolant circulating in a first coolant loop at one temperature, and charge air cooling is performed by coolant flowing in a second coolant loop at a lower temperature. The valves can be actuated so as to define a second configuration in which coolant that has flowed through the engine can be routed through the charge air cooler. The temperature of intake air to the engine can be controlled over a wide range of engine operation.

  3. The role of the US Department of Energy in indoor air quality and building ventilation policy development

    SciTech Connect

    Traynor, G.W.; Talbott, J.M.; Moses, D.O.

    1993-07-01

    Building ventilation consumes about 5.8 exajoules of energy each year in the US The annual cost of this energy, used for commercial building fans (1.6 exajoules) and the heating and cooling of outside air (4.2 exajoules), is about $US 33 billion per year. Energy conservation measures that reduce heating and cooling season ventilation rates 15 to 35% in commercial and residential buildings can result in a national savings of about 0.6 to 1.5 exajoules ($US 3-8 billion) per year assuming no reduction of commercial building fan energy use. The most significant adverse environmental impact of reduced ventilation and infiltration is the potential degradation of the buildings indoor air quality. Potential benefits to the US from the implementation of sound indoor air quality and building ventilation reduction policies include reduced building-sector energy consumption; reduced indoor, outdoor, and global air pollution; reduced product costs; reduced worker absenteeism; reduced health care costs; reduced litigation; increased worker well-being and productivity; and increased product quality and competitiveness.

  4. Legionella detection and subgrouping in water air-conditioning cooling tower systems in Kuwait.

    PubMed

    Al-Matawah, Qadreyah; Al-Zenki, Sameer; Al-Azmi, Ahmad; Al-Waalan, Tahani; Al-Salameen, Fadila; Hejji, Ahmad Ben

    2015-07-01

    The main aim of the study was to test for the presence of Legionnaires' disease-causing microorganisms in air-conditioned buildings in Kuwait using molecular technologies. For this purpose, 547 samples were collected from 38 cooling towers for the analysis of Legionella pneumophila. These samples included those from water (n = 178), air (n = 231), and swabs (n = 138). Out of the 547 samples, 226 (41%) samples were presumptive positive for L. pneumophila, with L. pneumophila viable counts in the positive water samples ranging from 1 to 88 CFU/ml. Of the Legionella culture-positive samples, 204 isolates were examined by latex agglutination. These isolates were predominately identified as L. pneumophila serogroup (sg) 2-14. Using the Dresden panel of monoclonal antibodies, 74 representatives isolates were further serogrouped. Results showed that 51% of the isolates belonged to serogroup 7 followed by 1 (18%) and 3 (18%). Serogroups 4 (4%) and 10 (7%) were isolated at a lower frequency, and two isolates could not be assigned to a serogroup. These results indicate the wide prevalence of L. pneumophila serogroup 7 as the predominant serogroup at the selected sampling sites. Furthermore, the 74 L. pneumophila (sg1 = 13; sg3 = 13; sg4 = 3; sg7 = 38; sg10 = 5; sgX = 2) isolates were genotyped using the seven gene protocol sequence-based typing (SBT) scheme developed by the European Working Group for Legionella Infections (EWGLI). The results show that Legionella isolates were discriminated into nine distinct sequence typing (ST) profiles, five of which were new to the SBT database of EWGLI. Additionally, all of the ST1 serogroup 1 isolates were of the OLDA/Oxford subgroup. These baseline data will form the basis for the development of a Legionella environmental surveillance program and used for future epidemiological investigations. PMID:25701245

  5. Colonization by Cladosporium spp. of painted metal surfaces associated with heating and air conditioning systems

    NASA Technical Reports Server (NTRS)

    Ahearn, D. G.; Simmons, R. B.; Switzer, K. F.; Ajello, L.; Pierson, D. L.

    1991-01-01

    Cladosporium cladosporioides and C. hebarum colonized painted metal surfaces of covering panels and register vents of heating, air conditioning and ventilation systems. Hyphae penetrated the paint film and developed characteristic conidiophores and conidia. The colonies were tightly appressed to the metal surface and conidia were not readily detectable via standard air sampling procedures.

  6. 40 CFR 86.161-00 - Air conditioning environmental test facility ambient requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... to simulate the impact of an ambient heat load on the power requirements of the vehicle's air... elements that are discussed are ambient air temperature and humidity, minimum test cell size, solar heating... be shown that all of the ambient test condition performance requirements are satisfied. (d)...

  7. 40 CFR 86.161-00 - Air conditioning environmental test facility ambient requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Air conditioning environmental test facility ambient requirements. 86.161-00 Section 86.161-00 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations...

  8. 40 CFR 86.161-00 - Air conditioning environmental test facility ambient requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... to simulate the impact of an ambient heat load on the power requirements of the vehicle's air... elements that are discussed are ambient air temperature and humidity, minimum test cell size, solar heating... be shown that all of the ambient test condition performance requirements are satisfied. (d)...

  9. 40 CFR 86.161-00 - Air conditioning environmental test facility ambient requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 19 2013-07-01 2013-07-01 false Air conditioning environmental test facility ambient requirements. 86.161-00 Section 86.161-00 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations...

  10. 40 CFR 86.161-00 - Air conditioning environmental test facility ambient requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 19 2014-07-01 2014-07-01 false Air conditioning environmental test facility ambient requirements. 86.161-00 Section 86.161-00 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations...

  11. 40 CFR 86.167-17 - AC17 Air Conditioning Emissions Test Procedure.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 19 2013-07-01 2013-07-01 false AC17 Air Conditioning Emissions Test Procedure. 86.167-17 Section 86.167-17 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1977 and Later...

  12. 40 CFR 86.166-12 - Method for calculating emissions due to air conditioning leakage.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Method for calculating emissions due to air conditioning leakage. 86.166-12 Section 86.166-12 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for...

  13. 40 CFR 86.166-12 - Method for calculating emissions due to air conditioning leakage.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Method for calculating emissions due to air conditioning leakage. 86.166-12 Section 86.166-12 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for...

  14. 40 CFR 86.165-12 - Air conditioning idle test procedure.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Air conditioning idle test procedure. 86.165-12 Section 86.165-12 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY VEHICLES AND ENGINES Emission Regulations for 1977 and Later Model Year...

  15. Air Conditioning, Heating, and Ventilating: Construction, Supervision, and Inspection. Course of Study.

    ERIC Educational Resources Information Center

    Messer, John D.

    This course of study on air conditioning, heating, and ventilating is part of a construction, supervision, and inspection series, which provides instructional materials for community or junior college technical courses in the inspection program. Material covered pertains to: piping and piping systems; air movers; boilers; heat exchangers; cooling…

  16. Ultrafine particle removal by residential heating, ventilating, and air-conditioning filters.

    PubMed

    Stephens, B; Siegel, J A

    2013-12-01

    This work uses an in situ filter test method to measure the size-resolved removal efficiency of indoor-generated ultrafine particles (approximately 7-100 nm) for six new commercially available filters installed in a recirculating heating, ventilating, and air-conditioning (HVAC) system in an unoccupied test house. The fibrous HVAC filters were previously rated by the manufacturers according to ASHRAE Standard 52.2 and ranged from shallow (2.5 cm) fiberglass panel filters (MERV 4) to deep-bed (12.7 cm) electrostatically charged synthetic media filters (MERV 16). Measured removal efficiency ranged from 0 to 10% for most ultrafine particles (UFP) sizes with the lowest rated filters (MERV 4 and 6) to 60-80% for most UFP sizes with the highest rated filter (MERV 16). The deeper bed filters generally achieved higher removal efficiencies than the panel filters, while maintaining a low pressure drop and higher airflow rate in the operating HVAC system. Assuming constant efficiency, a modeling effort using these measured values for new filters and other inputs from real buildings shows that MERV 13-16 filters could reduce the indoor proportion of outdoor UFPs (in the absence of indoor sources) by as much as a factor of 2-3 in a typical single-family residence relative to the lowest efficiency filters, depending in part on particle size. PMID:23590456

  17. Building characteristics, indoor air quality and recurrent wheezing in very young children (BAMSE).

    PubMed

    Emenius, G; Svartengren, M; Korsgaard, J; Nordvall, L; Pershagen, G; Wickman, M

    2004-02-01

    This study was conducted to examine the impact of building characteristics and indoor air quality on recurrent wheezing in infants. We followed a birth cohort (BAMSE) comprising 4089 children, born in predefined areas of Stockholm, during their first 2 years of life. Information on exposures was obtained from parental questionnaires when the children were 2 months and on symptoms and diseases when the children were 1 and 2 years old. Children with recurrent wheezing, and two age-matched controls per case, were identified and enrolled in a nested case-control study. The homes were investigated and ventilation rate, humidity, temperature and NO2 measured. We found that living in an apartment erected after 1939, or in a private home with crawl space/concrete slab foundation were associated with an increased risk of recurrent wheezing, odds ratio (OR) 2.5 (1.3-4.8) and 2.5 (1.1-5.4), respectively. The same was true for living in homes with absolute indoor humidity >5.8 g/kg, OR 1.7 (1.0-2.9) and in homes where windowpane condensation was consistently reported over several years, OR 2.2 (1.1-4.5). However, air change rate and type of ventilation system did not seem to affect the risk. In conclusion, relatively new apartment buildings, single-family homes with crawl space/concrete slab foundation, elevated indoor humidity, and reported wintertime windowpane condensation were associated with recurrent wheezing in infants. Thus, improvements of the building quality may have potential to prevent infant wheezing. PMID:14756844

  18. Influence of Boundary Conditions on Simulated U.S. Air Quality

    EPA Science Inventory

    One of the key inputs to regional-scale photochemical models frequently used in air quality planning and forecasting applications are chemical boundary conditions representing background pollutant concentrations originating outside the regional modeling domain. A number of studie...

  19. Evaluating Membrane Processes for Air Conditioning; Highlights in Research and Development, NREL (National Renewable Energy Laboratory)

    SciTech Connect

    2015-06-01

    This NREL Highlight discusses a recent state-of-the-art review of membrane processes for air conditioning that identifies future research opportunities. This highlight is being developed for the June 2015 S&T Alliance Board meeting.

  20. Fuel Savings and Emission Reductions from Next-Generation Mobile Air Conditioning Technology in India: Preprint

    SciTech Connect

    Chaney, L.; Thundiyil, K.; Chidambaram, S.; Abbi, Y. P.; Anderson, S.

    2007-05-01

    This paper quantifies the mobile air-conditioning fuel consumption of the typical Indian vehicle, exploring potential fuel savings and emissions reductions these systems for the next generation of vehicles.

  1. Solar technology assessment project. Volume 4: Solar air conditioning: Active, hybrid and passive

    NASA Astrophysics Data System (ADS)

    Yellott, J. I.

    1981-04-01

    The status of absorption cycle solar air conditioning and the Rankine cycle solar cooling system is reviewed. Vapor jet ejector chillers, solar pond based cooling, and photovoltaic compression air conditioning are also briefly discussed. Hybrid solar cooling by direct and indirect evaporative cooling, and dehumidification by desiccation are described and discussed. Passive solar cooling by convective and radiative processes, evaporative cooling by passive processes, and cooling with roof ponds and movable insulation are reviewed. Federal and state involvement in solar cooling is discussed.

  2. Modeling the Air Flow in the 3410 Building Filtered Exhaust Stack System

    SciTech Connect

    Recknagle, Kurtis P.; Barnett, J. Matthew; Suffield, Sarah R.

    2013-01-23

    Additional ventilation capacity has been designed for the 3410 Building filtered exhaust stack system. The updated system will increase the number of fans from two to three and will include ductwork to incorporate the new fan into the existing stack. Stack operations will involve running various two-fan combinations at any given time. The air monitoring system of the existing two-fan stack was previously found to be in compliance with the ANSI/HPS N13.1-1999 standard, however it is not known if the modified (three-fan) system will comply. Subsequently, a full-scale three-dimensional (3-D) computational fluid dynamics (CFD) model of the modified stack system has been created to examine the sampling location for compliance with the standard. The CFD modeling results show good agreement with testing data collected from the existing 3410 Building stack and suggest that velocity uniformity and flow angles will remain well within acceptance criteria when the third fan and associated ductwork is installed. This includes two-fan flow rates up to 31,840 cfm for any of the two-fan combinations. For simulation cases in which tracer gas and particles are introduced in the main duct, the model predicts that both particle and tracer gas coefficients of variance (COVs) may be larger than the acceptable 20 percent criterion of the ANSI/HPS N13.1-1999 standard for each of the two-fan, 31,840 cfm combinations. Simulations in which the tracers are introduced near the fans result in improved, though marginally acceptable, COV values for the tracers. Due to the remaining uncertainty that the stack will qualify with the addition of the third fan and high flow rates, a stationary air blender from Blender Products, Inc. is considered for inclusion in the stack system. A model of the air blender has been developed and incorporated into the CFD model. Simulation results from the CFD model that includes the air blender show striking improvements in tracer gas mixing and tracer particle

  3. Innovative Building Material - Reduction of Air Pollution through TioCem®

    NASA Astrophysics Data System (ADS)

    Bolte, G.

    In many European cities air quality is a massive problem. Besides the particulate matter, nitrogen oxides (NOX) and volatile organic compounds (VOC) are mainly responsible for the heavy pollution. Motivation to “do something” to protect the environment and climate is increasing constantly. Pollutants such as nitrogen oxides can be oxidized by means of photolysis. With the help of photocatalytic active particles this effect can be accelerated extensively. Photocatalytic active particles dispersed in the concrete turn it into an air pollutant reducing surface. Pollutants getting in contact with the concrete surface are decomposed or oxidized and therewith rendered harmless. This brand new technique is introduced into building industry with a new label “TX Active®“. A premium brand cement for the production of photo catalytically active concrete products - TX Active® products - is now available in the form of TioCem®. This cement can effectively contribute to air purification by using in numerous concrete components such as pavement, roof tiles, facade plates, concrete road surfaces, mortars etc.

  4. On the potential importance of transient air flow in advective radon entry into buildings

    SciTech Connect

    Narasimhan, T.N.; Tsang, Y.W.; Holman, H.Y. )

    1990-05-01

    The authors have investigated, using a mathematical model, the temporal variations of air flux within the soil mass surrounding a basement in the presence of time dependent periodic variations of barometric pressure and a persistent under-pressure at the basement. The results of transient air flow show that for a homogeneous soil medium, the effects of barometric fluctuations are most significant in the cases where soil permeability to air is low and the fluctuation frequency is high. In these cases, the barometric fluctuation can greatly enhance the magnitude of fluxes as well as introduce flow direction reversals from surrounding soil into the basement. These large fluxes with direction reversals have strong implications in regard to advective transport of radon. The results suggest that the transient oscillations have to be accounted for in quantifying radon entry into buildings. In the actual field set up, the transient behavior will be further influenced by soil permeability heterogeneity, by soil moisture variations, and by the effects of multiple periodic components in the barometric pressure fluctuations.

  5. Fungal colonization of air filters and insulation in a multi-story office building: production of volatile organics

    NASA Technical Reports Server (NTRS)

    Ahearn, D. G.; Crow, S. A.; Simmons, R. B.; Price, D. L.; Mishra, S. K.; Pierson, D. L.

    1997-01-01

    Secondary air filters in the air-handling units on four floors of a multi-story office building with a history of fungal colonization of insulation within the air distribution system were examined for the presence of growing fungi and production of volatile organic compounds. Fungal mycelium and conidia of Cladosporium and Penicillium spp. were observed on insulation from all floors and both sides of the air filters from one floor. Lower concentrations of volatile organics were released from air filter medium colonized with fungi as compared with noncolonized filter medium. However, the volatiles from the colonized filter medium included fungal metabolites such as acetone and a carbonyl sulfide-like compound that were not released from noncolonized filter medium. The growth of fungi in air distribution systems may affect the content of volatile organics in indoor air.

  6. Contribution of air conditioning adoption to future energy use under global warming.

    PubMed

    Davis, Lucas W; Gertler, Paul J

    2015-05-12

    As household incomes rise around the world and global temperatures go up, the use of air conditioning is poised to increase dramatically. Air conditioning growth is expected to be particularly strong in middle-income countries, but direct empirical evidence is scarce. In this paper we use high-quality microdata from Mexico to describe the relationship between temperature, income, and air conditioning. We describe both how electricity consumption increases with temperature given current levels of air conditioning, and how climate and income drive air conditioning adoption decisions. We then combine these estimates with predicted end-of-century temperature changes to forecast future energy consumption. Under conservative assumptions about household income, our model predicts near-universal saturation of air conditioning in all warm areas within just a few decades. Temperature increases contribute to this surge in adoption, but income growth by itself explains most of the increase. What this will mean for electricity consumption and carbon dioxide emissions depends on the pace of technological change. Continued advances in energy efficiency or the development of new cooling technologies could reduce the energy consumption impacts. Similarly, growth in low-carbon electricity generation could mitigate the increases in carbon dioxide emissions. However, the paper illustrates the enormous potential impacts in this sector, highlighting the importance of future research on adaptation and underscoring the urgent need for global action on climate change. PMID:25918391

  7. Contribution of air conditioning adoption to future energy use under global warming

    PubMed Central

    Davis, Lucas W.; Gertler, Paul J.

    2015-01-01

    As household incomes rise around the world and global temperatures go up, the use of air conditioning is poised to increase dramatically. Air conditioning growth is expected to be particularly strong in middle-income countries, but direct empirical evidence is scarce. In this paper we use high-quality microdata from Mexico to describe the relationship between temperature, income, and air conditioning. We describe both how electricity consumption increases with temperature given current levels of air conditioning, and how climate and income drive air conditioning adoption decisions. We then combine these estimates with predicted end-of-century temperature changes to forecast future energy consumption. Under conservative assumptions about household income, our model predicts near-universal saturation of air conditioning in all warm areas within just a few decades. Temperature increases contribute to this surge in adoption, but income growth by itself explains most of the increase. What this will mean for electricity consumption and carbon dioxide emissions depends on the pace of technological change. Continued advances in energy efficiency or the development of new cooling technologies could reduce the energy consumption impacts. Similarly, growth in low-carbon electricity generation could mitigate the increases in carbon dioxide emissions. However, the paper illustrates the enormous potential impacts in this sector, highlighting the importance of future research on adaptation and underscoring the urgent need for global action on climate change. PMID:25918391

  8. Modeling Validation and Control Analysis for Controlled Temperature and Humidity of Air Conditioning System

    PubMed Central

    Lee, Jing-Nang; Lin, Tsung-Min

    2014-01-01

    This study constructs an energy based model of thermal system for controlled temperature and humidity air conditioning system, and introduces the influence of the mass flow rate, heater and humidifier for proposed control criteria to achieve the controlled temperature and humidity of air conditioning system. Then, the reliability of proposed thermal system model is established by both MATLAB dynamic simulation and the literature validation. Finally, the PID control strategy is applied for controlling the air mass flow rate, humidifying capacity, and heating, capacity. The simulation results show that the temperature and humidity are stable at 541 sec, the disturbance of temperature is only 0.14°C, 0006 kgw/kgda in steady-state error of humidity ratio, and the error rate is only 7.5%. The results prove that the proposed system is an effective controlled temperature and humidity of an air conditioning system. PMID:25250390

  9. Numerical evaluation of the effect of traffic pollution on indoor air quality of a naturally ventilated building.

    PubMed

    Chang, Tsang-Jung

    2002-09-01

    A computational fluid dynamics technique was used to evaluate the effect of traffic pollution on indoor air quality of a naturally ventilated building for various ventilation control strategies. The transport of street-level nonreactive pollutants emitted from motor vehicles through the indoor environment was simulated using the large eddy simulation (LES) of the turbulent flows and the pollutant transport equations. The numerical model developed herein was verified by available wind-tunnel measurements. Good agreement with the measured velocity and concentration data was found. Twelve sets of numerical scenario simulations for various roof- and side-vent openness and outdoor wind speeds were carried out. The effects of the air change rate, the indoor airflow pattern, and the external pollutant dispersion on indoor air quality were investigated. The control strategies of ventilation rates and paths for reducing incoming vehicle pollutants and maintaining a desirable air change rate are proposed to reduce the impact of outdoor traffic pollution during traffic rush hours. It was concluded that the windward side vent is a significant factor contributing to air change rate and indoor air quality. Air intakes on the leeward side of the building can effectively reduce the peak and average indoor concentration of traffic pollutants, but the corresponding air change rate is relatively low. Using the leeward cross-flow ventilation with the windward roof vent can effectively lower incoming vehicle pollutants and maintain a desirable air change rate during traffic rush hours. PMID:12269665

  10. On-site application of air cleaner emitting plasma ion to reduce airborne contaminants in pig building

    NASA Astrophysics Data System (ADS)

    Cho, Man Su; Ko, Han Jong; Kim, Daekeun; Kim, Ki Youn

    2012-12-01

    The objective of this field study is to evaluate temporal reduction efficiency of air cleaner emitting plasma ion on airborne pollutants emitted from pig building. The operation principle of air cleaner based on plasma ion is that hydrogen atoms and oxygen ions combine to form hydroperoxyl radicals (HOO-), which surround and attach to surface of airborne microorganisms and eliminate them by breaking the hydrogen bond in their protein structure. In gaseous pollutants, it was found that there is no reduction effect of the air cleaner on ammonia and hydrogen sulfide (p > 0.05). In particulate pollutants, the air cleaner showed mean 79%(±6.1) and 78%(±3.0) of reduction efficiency for PM2.5. and PM1, respectively, compared to the control without air cleaner (p < 0.05). However, there is no significant difference in TSP and PM10 between the treatment with air cleaner and the control without air cleaner (p > 0.05). In biological pollutants, the mean reduction efficiencies for airborne bacteria and fungi by application of air cleaner were 22%(±6.6) and 25%(±8.7), respectively (p < 0.05). Based on the results obtained from this study, it was concluded that the air cleaner had a positive reduction effect on PM2.5, PM1, airborne bacteria and airborne fungi among airborne pollutants distributed in pig building while it did not lead to significant reduction of ammonia and hydrogen sulfide.

  11. Demolition of a hospital building by controlled explosion: the impact on filamentous fungal load in internal and external air.

    PubMed

    Bouza, E; Peláez, T; Pérez-Molina, J; Marín, M; Alcalá, L; Padilla, B; Muñoz, P; Adán, P; Bové, B; Bueno, M J; Grande, F; Puente, D; Rodríguez, M P; Rodríguez-Créixems, M; Vigil, D; Cuevas, O

    2002-12-01

    The demolition of a maternity building at our institution provided us with the opportunity to study the load of filamentous fungi in the air. External (nearby streets) and internal (within the hospital buildings) air was sampled with an automatic volumetric machine (MAS-100 Air Samplair) at least daily during the week before the demolition, at 10, 30, 60, 90,120, 180, 240, 420, 540 and 660 min post-demolition, daily during the week after the demolition and weekly during weeks 2, 3 and 4 after demolition. Samples were duplicated to analyse reproducibility. Three hundred and forty samples were obtained: 115 external air, 69 'non-protected' internal air and 156 protected internal air [high efficiency particulate air (HEPA) filtered air under positive pressure]. A significant increase in the colony count of filamentous fungi occurred after the demolition. Median colony counts of external air on demolition day were significantly higher than from internal air (70.2 cfu/m(3) vs 35.8 cfu/m(3)) (P < 0.001). Mechanical demolition on day +4 also produced a significant difference between external and internal air (74.5 cfu/m(3) vs 41.7 cfu/m(3)). The counts returned to baseline levels on day +11. Most areas with a protected air supply yielded no colonies before demolition day and remained negative on demolition day. The reproducibility of the count method was good (intra-assay variance: 2.4 cfu/m(3)). No episodes of invasive filamentous mycosis were detected during the three months following the demolition. Demolition work was associated with a significant increase in the fungal colony counts of hospital external and non-protected internal air. Effective protective measures may be taken to avoid the emergence of clinical infections. PMID:12473466

  12. Laboratory Buildings.

    ERIC Educational Resources Information Center

    Barnett, Jonathan

    The need for flexibility in science research facilities is discussed, with emphasis on the effect of that need on the design of laboratories. The relationship of office space, bench space, and special equipment areas, and the location and distribution of piping and air conditioning, are considered particularly important. This building type study…

  13. Urban air quality simulation in a high-rise building area using a CFD model coupled with mesoscale meteorological and chemistry-transport models

    NASA Astrophysics Data System (ADS)

    Kwak, Kyung-Hwan; Baik, Jong-Jin; Ryu, Young-Hee; Lee, Sang-Hyun

    2015-01-01

    An integrated urban air quality modeling system is established by coupling a computational fluid dynamics (CFD) model with mesoscale meteorological and chemistry-transport models. The mesoscale models used are the weather research and forecasting (WRF) model and the community multiscale air quality (CMAQ) model, which provide the initial and time-dependent boundary conditions for the CFD model. For the consistency of chemical processes in the CFD and CMAQ models, the same chemical mechanism used in the CMAQ model is implemented in the CFD model. Urban air quality simulations are performed from 0900 to 1800 LT on 3 June 2010 in a high-rise building area of Seoul, Republic of Korea, where mobile emission sources are concentrated. The NO2 and O3 concentrations in the CFD simulation are evaluated with data measured at a roadside air quality monitoring station, showing better agreements than those in the CMAQ simulation. The NO2 and O3 concentration fields exhibit high spatial variabilities in the high-rise building area. The spatial variabilities near the surfaces are strongly associated with the heterogeneity of mobile emission on roads, whereas the spatial variabilities near the top of high-rise buildings are strongly associated with the heterogeneity of building geometry. The average NO2 and O3 concentrations (46 and 30 ppb, respectively, at z = 30 m) near the surfaces are considerably different from the NO2 and O3 concentrations in the CMAQ simulation (17 and 44 ppb, respectively, at z = 30 m), implying the insufficient urban surface representation in the CMAQ simulation. The heterogeneity of building geometry is found to enhance the vertical pollutant transport, whereas the heterogeneity of mobile emission is found to confine emitted pollutants near the surfaces. When the vertical mixing is efficient, the O3 concentration decreases in substantial vertical ranges with the same amount of NOx emission. The integrated urban air quality modeling system realistically

  14. Correction of Temperatures of Air-Cooled Engine Cylinders for Variation in Engine and Cooling Conditions

    NASA Technical Reports Server (NTRS)

    Schey, Oscar W; Pinkel, Benjamin; Ellerbrock, Herman H , Jr

    1939-01-01

    Factors are obtained from semiempirical equations for correcting engine-cylinder temperatures for variation in important engine and cooling conditions. The variation of engine temperatures with atmospheric temperature is treated in detail, and correction factors are obtained for various flight and test conditions, such as climb at constant indicated air speed, level flight, ground running, take-off, constant speed of cooling air, and constant mass flow of cooling air. Seven conventional air-cooled engine cylinders enclosed in jackets and cooled by a blower were tested to determine the effect of cooling-air temperature and carburetor-air temperature on cylinder temperatures. The cooling air temperature was varied from approximately 80 degrees F. to 230 degrees F. and the carburetor-air temperature from approximately 40 degrees F. to 160 degrees F. Tests were made over a large range of engine speeds, brake mean effective pressures, and pressure drops across the cylinder. The correction factors obtained experimentally are compared with those obtained from the semiempirical equations and a fair agreement is noted.

  15. Improving the Energy Performance of Multi-Unit Residential Buildings Using Air-Source Heat Pumps and Enclosed Balconies

    NASA Astrophysics Data System (ADS)

    Touchie, Marianne

    Existing multi-unit residential buildings (MURBs) are important assets for urban regions such as Toronto, Canada. These buildings provide high-density housing and allow for the efficient provision of public services and utilities. However, MURB energy-use imposes a significant environmental burden. A preliminary part of the study presented here found that the median energy intensity of MURBs in Toronto is 300ekWh/m2 and that this energy-use accounts for 17% of residential greenhouse gas (GHG) emissions in the City. To reduce this environmental burden, this work explores a novel energy retrofit strategy involving a suite-based air-source heat pump (ASHP) operating in an enclosed balcony space which serves as a thermal buffer zone (TBZ) to improve the cold-weather ASHP performance in a heating-dominated climate. More broadly, a methodology for assessing the impact of an energy retrofit measure is developed. First, energy-use and interior condition data were collected from a 1960s MURB over the course of one year. The subject building was found to have a higher-than-average energy intensity of 374ekWh/m2 and other operational issues including overheating of suites. These data were then used to calibrate an energy model so that the proposed retrofit strategy could be modeled. Next, the proposed retrofit strategy was tested in a mock apartment unit constructed in a climate-controlled chamber. The testing showed that the coefficient of performance of the ASHP could be improved by operating it in a TBZ with access to heat from solar gains. This finding was used to modify the subject building energy model which showed that applying the proposed retrofit could reduce the annual energy intensity and GHG emissions of the building by 39% and 45%, respectively. An estimate of the impact of applying this retrofit strategy to Toronto MURBs with energy intensities greater than the median results in a median sector energy intensity of 236ekWh/m 2.

  16. Solar driven nitrous acid formation on building material surfaces containing titanium dioxide: A concern for air quality in urban areas?

    NASA Astrophysics Data System (ADS)

    Langridge, Justin M.; Gustafsson, R. Joel; Griffiths, Paul T.; Cox, R. Anthony; Lambert, Richard M.; Jones, Roderic L.

    The photoenhanced uptake of nitrogen dioxide (NO 2) to the surface of commercially available self-cleaning window glass has been studied under controlled laboratory conditions. This material is one of an array of modern building products which incorporate titanium dioxide (TiO 2) nanoparticles and are finding increasing use in populated urban areas. Amongst the principal drivers for the use of these materials is that they are thought to facilitate the irreversible removal of pollutants such as NO 2 and organic molecules from the atmosphere and thus act to remediate air quality. While it appears that TiO 2 materials do indeed remove organic molecules from built environments, in this study we show that the photoenhanced uptake of NO 2 to one example material, self-cleaning window glass, is in fact accompanied by the substantial formation (50-70%) of gaseous nitrous acid (HONO). This finding has direct and serious implications for the use of these materials in urban areas. Not only is HONO a harmful respiratory irritant, it is also readily photolysed by solar radiation leading to the formation of hydroxyl radicals (OH) together with the re-release of NO x as NO. The net effect of subsequent OH initiated chemistry can then be the further degradation of air quality through the formation of secondary pollutants such as ozone and VOC oxidation products. In summary, we suggest that a scientifically conceived technical strategy for air quality remediation based on this technology, while widely perceived as universally beneficial, could in fact have effects precisely opposite to those intended.

  17. Air

    MedlinePlus

    ... do to protect yourself from dirty air . Indoor air pollution and outdoor air pollution Air can be polluted indoors and it can ... this chart to see what things cause indoor air pollution and what things cause outdoor air pollution! Indoor ...

  18. Improving forecast skill by assimilation of quality-controlled AIRS temperature retrievals under partially cloudy conditions

    NASA Astrophysics Data System (ADS)

    Reale, O.; Susskind, J.; Rosenberg, R.; Brin, E.; Liu, E.; Riishojgaard, L. P.; Terry, J.; Jusem, J. C.

    2008-04-01

    The National Aeronautics and Space Administration (NASA) Atmospheric Infrared Sounder (AIRS) on board the Aqua satellite is now recognized as an important contributor towards the improvement of weather forecasts. At this time only a small fraction of the total data produced by AIRS is being used by operational weather systems. In fact, in addition to effects of thinning and quality control, the only AIRS data assimilated are radiance observations of channels unaffected by clouds. Observations in mid-lower tropospheric sounding AIRS channels are assimilated primarily under completely clear-sky conditions, thus imposing a very severe limitation on the horizontal distribution of the AIRS-derived information. In this work it is shown that the ability to derive accurate temperature profiles from AIRS observations in partially cloud-contaminated areas can be utilized to further improve the impact of AIRS observations in a global model and forecasting system. The analyses produced by assimilating AIRS temperature profiles obtained under partial cloud cover result in a substantially colder representation of the northern hemisphere lower midtroposphere at higher latitudes. This temperature difference has a strong impact, through hydrostatic adjustment, in the midtropospheric geopotential heights, which causes a different representation of the polar vortex especially over northeastern Siberia and Alaska. The AIRS-induced anomaly propagates through the model's dynamics producing improved 5-day forecasts.

  19. Improving Forecast Skill by Assimilation of Quality-controlled AIRS Temperature Retrievals under Partially Cloudy Conditions

    NASA Technical Reports Server (NTRS)

    Reale, O.; Susskind, J.; Rosenberg, R.; Brin, E.; Riishojgaard, L.; Liu, E.; Terry, J.; Jusem, J. C.

    2007-01-01

    The National Aeronautics and Space Administration (NASA) Atmospheric Infrared Sounder (AIRS) on board the Aqua satellite has been long recognized as an important contributor towards the improvement of weather forecasts. At this time only a small fraction of the total data produced by AIRS is being used by operational weather systems. In fact, in addition to effects of thinning and quality control, the only AIRS data assimilated are radiance observations of channels unaffected by clouds. Observations in mid-lower tropospheric sounding AIRS channels are assimilated primarily under completely clear-sky conditions, thus imposing a very severe limitation on the horizontal distribution of the AIRS-derived information. In this work it is shown that the ability to derive accurate temperature profiles from AIRS observations in partially cloud-contaminated areas can be utilized to further improve the impact of AIRS observations in a global model and forecasting system. The analyses produced by assimilating AIRS temperature profiles obtained under partial cloud cover result in a substantially colder representation of the northern hemisphere lower midtroposphere at higher latitudes. This temperature difference has a strong impact, through hydrostatic adjustment, in the midtropospheric geopotential heights, which causes a different representation of the polar vortex especially over northeastern Siberia and Alaska. The AIRS-induced anomaly propagates through the model's dynamics producing improved 5-day forecasts.

  20. Impact of height and shape of building roof on air quality in urban street canyons

    NASA Astrophysics Data System (ADS)

    Yassin, Mohamed F.

    2011-09-01

    A building's roof shape and roof height play an important role in determining pollutant concentrations from vehicle emissions and its complex flow patterns within urban street canyons. The impact of the roof shape and height on wind flow and dispersion of gaseous pollutants from vehicle exhaust within urban canyons were investigated numerically using a Computational Fluid Dynamics (CFD) model. Two-dimensional flow and dispersion of gaseous pollutants were analyzed using standard κ- ɛ turbulence model, which was numerically solved based on Reynolds Averaged Navier-Stokes (RANS) equations. The diffusion fields in the urban canyons were examined with three roof heights ( Z H/ H = 0.17, 0.33 and 0.5) and five roof shapes: (1) flat-shaped roof, (2) slanted-shaped roof, (3) downwind wedge-shaped roof, (4) upwind wedge-shaped roof, and (5) trapezoid-shaped roof. The numerical model was validated against the wind tunnels results in order to optimize the turbulence model. The numerical simulations agreed reasonably with the wind tunnel results. The results obtained indicated that the pollutant concentration increased as the roof height decreases. It also decreased with the slanted and trapezoid-shaped roofs but increased with the flat-shaped roof. The pollutant concentration distributions simulated in the present work, indicated that the variability of the roof shapes and roof heights of the buildings are important factors for estimating air quality within urban canyons.

  1. Improvement of energy efficiency: the use of thermography and air-tightness test in verification of thermal performance of school buildings

    NASA Astrophysics Data System (ADS)

    Kauppinen, Timo; Siikanen, Sami

    2011-05-01

    The improvement of energy efficiency is the key issue after the energy performance of buildings directive came into the force in European Union countries. The city of Kuopio participate a project, in which different tools will be used, generated and tested to improve the energy efficiency of public buildings. In this project there are 2 schools, the other consuming much more heating energy than the other same type of school. In this paper the results of the thermography in normal conditions and under 50 Pa pressure drop will be presented; as well as the results of remote controlled air tightness test of the buildings. Thermography combined with air tightness test showed clearly the reasons of specific consumption differences of heating energy - also in the other hand, the measurements showed the problems in the performance of ventilation system. Thermography, air tightness test and other supporting measurements can be used together to solve energy loss problems - if these measurements will be carried out by proper way.

  2. Indoor air quality in green buildings: A case-study in a residential high-rise building in the northeastern United States.

    PubMed

    Xiong, Youyou; Krogmann, Uta; Mainelis, Gediminas; Rodenburg, Lisa A; Andrews, Clinton J

    2015-01-01

    Improved indoor air quality (IAQ) is one of the critical components of green building design. Green building tax credit (e.g., New York State Green Building Tax Credit (GBTC)) and certification programs (e.g., Leadership in Energy & Environmental Design (LEED)) require indoor air quality measures and compliance with allowable maximum concentrations of common indoor air pollutants. It is not yet entirely clear whether compliance with these programs results in improved IAQ and ultimately human health. As a case in point, annual indoor air quality measurements were conducted in a residential green high-rise building for five consecutive years by an industrial hygiene contractor to comply with the building's GBTC requirements. The implementation of green design measures resulted in better IAQ compared to data in references of conventional homes for some parameters, but could not be confirmed for others. Relative humidity and carbon dioxide were satisfactory according to existing standards. Formaldehyde levels during four out of five years were below the most recent proposed exposure limits found in the literature. To some degree, particulate matter (PM) levels were lower than that in studies from conventional residential buildings. Concentrations of Volatile Organic Compounds (VOCs) with known permissible exposure limits were below levels known to cause chronic health effects, but their concentrations were inconclusive regarding cancer health effects due to relatively high detection limits. Although measured indoor air parameters met all IAQ maximum allowable concentrations in GBTC and applicable LEED requirements at the time of sampling, we argue that these measurements were not sufficient to assess IAQ comprehensively because more sensitive sampling/analytical methods for PM and VOCs are needed; in addition, there is a need for a formal process to ensure rigor and adequacy of sampling and analysis methods. Also, we suggest that a comprehensive IAQ assessment should

  3. Air Conditioning with Magnetic Refrigeration : An Efficient, Green Compact Cooling System Using Magnetic Refrigeration

    SciTech Connect

    2010-09-01

    BEETIT Project: Astronautics is developing an air conditioning system that relies on magnetic fields. Typical air conditioners use vapor compression to cool air. Vapor compression uses a liquid refrigerant to circulate within the air conditioner, absorb the heat, and pump the heat out into the external environment. Astronautics’ design uses a novel property of certain materials, called “magnetocaloric materials”, to achieve the same result as liquid refrigerants. These magnetocaloric materials essentially heat up when placed within a magnetic field and cool down when removed, effectively pumping heat out from a cooler to warmer environment. In addition, magnetic refrigeration uses no ozone-depleting gases and is safer to use than conventional air conditioners which are prone to leaks.

  4. Development of a Ventilation and Air-conditioning System using Fixed Bed Desiccant Units

    NASA Astrophysics Data System (ADS)

    Miyazaki, Takahiko; Akisawa, Atsushi; Shindoh, Shinji; Masazumi, Godo; Takeshi, Takatsuka; Hamamoto, Yoshinori; Mori, Hideo

    The study investigated fixed bed desiccant units for ventilation and air-conditioning. The system mainly dehumidifies the outdoor fresh air to be supplied to an air-conditioned room. Hence, the airconditioning load of the air-conditioner in the room can be mitigated. Several adsorbents were compared from the viewpoints of humidity ratio at the outlet of the desiccant unit, dehumidified quantity per unit volume, and dehumidified quantity per unit adsorbent mass. The performance of the desiccant unit was predicted by simulation which was validated by comparison with experiment. The results revealed the most suitable adsorbent to reduce the desiccant unit size. It was also found that the humidity ratio at the outlet of the desiccant unit could be lowered by shortening the dimensionless switching time.

  5. Heterogeneous copper-catalyzed hydroxylation of aryl iodides under air conditions.

    PubMed

    Ding, Guodong; Han, Hongling; Jiang, Tao; Wu, Tianbin; Han, Buxing

    2014-08-21

    In this work, the ligand-free heterogeneous copper Cu-g-C3N4 was synthesized and used for the hydroxylation of aryl iodides to synthesize phenols using cheap bases. The catalyst was conveniently prepared, air-tolerant, reusable and scalable, and is very efficient for a wide range of substrates. The synthesis of substituted phenols can be carried out under air conditions and has great potential for practical applications. PMID:24947007

  6. Impact of the electric compressor for automotive air conditioning system on fuel consumption and performance analysis

    NASA Astrophysics Data System (ADS)

    Zulkifli, A. A.; Dahlan, A. A.; Zulkifli, A. H.; Nasution, H.; Aziz, A. A.; Perang, M. R. M.; Jamil, H. M.; Misseri, M. N.

    2015-12-01

    Air conditioning system is the biggest auxiliary load in a vehicle where the compressor consumed the largest. Problem with conventional compressor is the cooling capacity cannot be control directly to fulfill the demand of thermal load inside vehicle cabin. This study is conducted experimentally to analyze the difference of fuel usage and air conditioning performance between conventional compressor and electric compressor of the air conditioning system in automobile. The electric compressor is powered by the car battery in non-electric vehicle which the alternator will recharge the battery. The car is setup on a roller dynamometer and the vehicle speed is varied at 0, 30, 60, 90 and 110 km/h at cabin temperature of 25°C and internal heat load of 100 and 400 Watt. The results shows electric compressor has better fuel consumption and coefficient of performance compared to the conventional compressor.

  7. An Expert Fault Diagnosis System for Vehicle Air Conditioning Product Development

    NASA Astrophysics Data System (ADS)

    Tan, C. F.; Tee, B. T.; Khalil, S. N.; Chen, W.; Rauterberg, G. W. M.

    2015-09-01

    The paper describes the development of the vehicle air-conditioning fault diagnosis system in automotive industries with expert system shell. The main aim of the research is to diagnose the problem of new vehicle air-conditioning system development process and select the most suitable solution to the problems. In the vehicle air-conditioning manufacturing industry, process can be very costly where an expert and experience personnel needed in certain circumstances. The expert of in the industry will retire or resign from time to time. When the expert is absent, their experience and knowledge is difficult to retrieve or lost forever. Expert system is a convenient method to replace expert. By replacing the expert with expert system, the accuracy of the processes will be increased compared to the conventional way. Therefore, the quality of product services that are produced will be finer and better. The inputs for the fault diagnosis are based on design data and experience of the engineer.

  8. Carbon Dioxide and Ionic Liquid Refrigerants: Compact, Efficient Air Conditioning with Ionic Liquid-Based Refrigerants

    SciTech Connect

    2010-10-01

    BEETIT Project: Notre Dame is developing an air-conditioning system with a new ionic liquid and CO2 as the working fluid. Synthetic refrigerants used in air conditioning and refrigeration systems are potent GHGs and can trap 1,000 times more heat in the atmosphere than CO2 alone—making CO2 an attractive alternative for synthetic refrigerants in cooling systems. However, operating cooling systems with pure CO2 requires prohibitively high pressures and expensive hardware. Notre Dame is creating a new fluid made of CO2 and ionic liquid that enables the use of CO2 at low pressures and requires minimal changes to existing hardware and production lines. This new fluid also produces no harmful emissions and can improve the efficiency of air conditioning systems— enabling new use of CO2 as a refrigerant in cooling systems.

  9. Experimental Evaluation of Indoor Air Distribution in High-Performance Residential Buildings: Part I. General Descriptions and Qualification Tests

    SciTech Connect

    Jalalzadeh, A. A.; Hancock, E.; Powell, D.

    2007-12-01

    The main objective of this project is to experimentally characterize an air distribution system in heating mode during a period of recovery from setback. The specific air distribution system under evaluation incorporates a high sidewall supply-air register/diffuser and a near-floor wall return air grille directly below. With this arrangement, the highest temperature difference between the supply air and the room can occur during the recovery period and create a favorable condition for stratification. The experimental approach will provide realistic input data and results for verification of computational fluid dynamics modeling.

  10. Potential Evaluation of Solar Heat Assisted Desiccant Hybrid Air Conditioning System

    NASA Astrophysics Data System (ADS)

    Tran, Thien Nha; Hamamoto, Yoshinori; Akisawa, Atsushi; Kashiwagi, Takao

    The solar thermal driven desiccant dehumidification-absorption cooling hybrid system has superior advantage in hot-humid climate regions. The reasonable air processing of desiccant hybrid air conditioning system and the utility of clean and free energy make the system environment friendly and energy efficient. The study investigates the performance of the desiccant dehumidification air conditioning systems with solar thermal assistant. The investigation is performed for three cases which are combinations of solar thermal and absorption cooling systems with different heat supply temperature levels. Two solar thermal systems are used in the study: the flat plate collector (FPC) and the vacuum tube with compound parabolic concentrator (CPC). The single-effect and high energy efficient double-, triple-effect LiBr-water absorption cooling cycles are considered for cooling systems. COP of desiccant hybrid air conditioning systems are determined. The evaluation of these systems is subsequently performed. The single effect absorption cooling cycle combined with the flat plate collector solar system is found to be the most energy efficient air conditioning system.

  11. Semi-volatile organic compounds in heating, ventilation, and air-conditioning filter dust in retail stores.

    PubMed

    Xu, Y; Liang, Y; Urquidi, J R; Siegel, J A

    2015-02-01

    Retail stores contain a wide range of products that can emit a variety of indoor pollutants. Among these chemicals, phthalate esters and polybrominated diphenyl ethers (PBDEs) are two important categories of semi-volatile organic compounds (SVOCs). Filters in heating, ventilation, and air-conditioning (HVAC) system collect particles from large volumes of air and thus potentially provide spatially and temporally integrated SVOC concentrations. This study measured six phthalate and 14 PBDE compounds in HVAC filter dust in 14 retail stores in Texas and Pennsylvania, United States. Phthalates and PBDEs were widely found in the HVAC filter dust in retail environment, indicating that they are ubiquitous indoor pollutants. The potential co-occurrence of phthalates and PBDEs was not strong, suggesting that their indoor sources are diverse. The levels of phthalates and PBDEs measured in HVAC filter dust are comparable to concentrations found in previous investigations of settled dust in residential buildings. Significant correlations between indoor air and filter dust concentrations were found for diethyl phthalate, di-n-butyl phthalate, and benzyl butyl phthalate. Reasonable agreement between measurements and an equilibrium model to describe SVOC partitioning between dust and gas-phase is achieved. PMID:24766478

  12. SUMMARY OF ELECTRIC SERVICE COSTS FOR TOTALLY AIR CONDITIONED SCHOOLS PREPARED FOR HOUSTON INDEPENDENT SCHOOL DISTRICT, MAY 31, 1967.

    ERIC Educational Resources Information Center

    WHITESIDES, M.M.

    THIS REPORT IS A COMPILATION OF DATA ON ELECTRIC AIR CONDITIONING COSTS, OPERATIONS AND MAINTENANCE. AIR CONDITIONING UNITS ARE COMPARED IN TERMS OF ELECTRIC VERSUS NON-ELECTRIC, AUTOMATIC VERSUS OPERATED, AIR COOLED VERSUS WATER COOLED, RECIPROCATING VERSUS CENTRIFUGAL COMPRESSORS, SPACE AND NOISE, REHEAT, MAINTENANCE AND ORIGINAL COST. DATA ARE…

  13. Minimum Energy type of Air Conditioning Controlby Switching Equilibrium Point of Control Variables

    NASA Astrophysics Data System (ADS)

    Takahata, Akihiko; Uchida, Kenko; Taira, Utaro

    In this paper, we propose an algorithm realizing minimum energy control for air conditioning. In the air conditioning system, control inputs are valve-open-value of cooler, heater and humidifier, and controlled variables are indoor temperature and humidity. That is, this system has three inputs and two outputs. The main step of the minimum energy algorithm is to switch two of the three actuators, depending on setpoints, for minimizing consumption energy. We apply this algorithm to a real plant, and show validity of the algorithm.

  14. Indoor air quality and work-environment study. Library of Congress, Madison Building. Volume 2. Results of indoor air environmental monitoring

    SciTech Connect

    Not Available

    1990-07-01

    A systematic study was designed to assess the nature and spatial distribution of employee health symptoms and comfort concerns in the Madison Building of the Library of Congress (LOC), Washington, DC. Environmental monitoring was conducted at more than 100 sites within the building. The mean temperature for the building was 73.1 F, with a general trend for the temperature to increase throughout the building on all days from morning to afternoon. The mean relative humidity was 49.2 percent. Mean carbon-dioxide (124389) measurements increased at all sampling locations throughout the morning. Whole building air exchanges were relatively constant averaging between 0.85 and 0.79 air changes per hour. The real time respirable particle measurement mean value was 5.5 micrograms/cubic meter (microg/cu m). Nicotine (54115) was detected in several areas of the building ranging as high as 18.5 microg/cu m. Formaldehyde (50000) concentration was very low as was the acetaldehyde (75070) concentration. The mean acetone (67641) concentration was 32.5 microg/cu m. Volatile organic compounds ranged as high as 2ppm with the most predominant ones being xylene (1330207). The mean benzene (71432) concentration was 2 parts per billion. Total volatile organic compounds averaged 1.1 parts per million (ppm). Chlorpyrifos (2921882) was the only targeted pesticide observed above the analytical limit of detection and was documented in only one sample at 0.004 microg/cu m. Whole building carbon-monoxide (630080) (CO) levels averaged between 1 and 2ppm.

  15. Optimization of microwave-assisted hot air drying conditions of okra using response surface methodology.

    PubMed

    Kumar, Deepak; Prasad, Suresh; Murthy, Ganti S

    2014-02-01

    Okra (Abelmoschus esculentus) was dried to a moisture level of 0.1 g water/g dry matter using a microwave-assisted hot air dryer. Response surface methodology was used to optimize the drying conditions based on specific energy consumption and quality of dried okra. The drying experiments were performed using a central composite rotatable design for three variables: air temperature (40-70 °C), air velocity (1-2 m/s) and microwave power level (0.5-2.5 W/g). The quality of dried okra was determined in terms of color change, rehydration ratio and hardness of texture. A second-order polynomial model was well fitted to all responses and high R(2) values (>0.8) were observed in all cases. The color change of dried okra was found higher at high microwave power and air temperatures. Rehydration properties were better for okra samples dried at higher microwave power levels. Specific energy consumption decreased with increase in microwave power due to decrease in drying time. The drying conditions of 1.51 m/s air velocity, 52.09 °C air temperature and 2.41 W/g microwave power were found optimum for product quality and minimum energy consumption for microwave-convective drying of okra. PMID:24493879

  16. Preliminary verification of instantaneous air temperature estimation for clear sky conditions based on SEBAL

    NASA Astrophysics Data System (ADS)

    Zhu, Shanyou; Zhou, Chuxuan; Zhang, Guixin; Zhang, Hailong; Hua, Junwei

    2016-03-01

    Spatially distributed near surface air temperature at the height of 2 m is an important input parameter for the land surface models. It is of great significance in both theoretical research and practical applications to retrieve instantaneous air temperature data from remote sensing observations. An approach based on Surface Energy Balance Algorithm for Land (SEBAL) to retrieve air temperature under clear sky conditions is presented. Taking the meteorological measurement data at one station as the reference and remotely sensed data as the model input, the research estimates the air temperature by using an iterative computation. The method was applied to the area of Jiangsu province for nine scenes by using MODIS data products, as well as part of Fujian province, China based on four scenes of Landsat 8 imagery. Comparing the air temperature estimated from the proposed method with that of the meteorological station measurement, results show that the root mean square error is 1.7 and 2.6 °C at 1000 and 30 m spatial resolution respectively. Sensitivity analysis of influencing factors reveals that land surface temperature is the most sensitive to the estimation precision. Research results indicate that the method has great potentiality to be used to estimate instantaneous air temperature distribution under clear sky conditions.

  17. Building America Case Study: Duct in Conditioned Space in a Dropped Ceiling or Fur-down, Gainesville, Florida (Fact Sheet)

    SciTech Connect

    Not Available

    2014-09-01

    Forced air distribution systems (duct systems) typically are installed out of sight for aesthetic reasons, most often in unconditioned areas such as an attic or crawlspace. Any leakage of air to or from the duct system (duct leakage) in unconditioned space not only loses energy, but impacts home and equipment durability and indoor air quality. An obvious solution to this problem is to bring the duct system into the interior of the house, either by sealing the area where the ducts are installed (sealed attic or crawlspace) or by building an interior cavity or chase above the ceiling plane (raised ceiling or fur-up chase) or below the ceiling plane (dropped ceiling or fur-down) for the duct system. This case study examines one Building America builder partner's implementation of an inexpensive, quick and effective method of building a fur-down or dropped ceiling chase.

  18. Prediction of air temperature in the aircraft cabin under different operational conditions

    NASA Astrophysics Data System (ADS)

    Volavý, F.; Fišer, J.; Nöske, I.

    2013-04-01

    This paper deals with the prediction of the air temperature in the aircraft cabin by means of Computational Fluid Dynamics. The simulations are performed on the CFD model which is based on geometry and cabin interior arrangement of the Flight Test Facility (FTF) located at Fraunhofer IBP, Germany. The experimental test flights under three different cabin temperatures were done in FTF and the various data were gathered during these flights. Air temperature in the cabin was measured on probes located near feet, torso and head of each passenger and also surface temperature and air temperature distributed from inlets were measured. The data were firstly analysed in order to obtain boundary conditions for cabin surfaces and inlets. Then the results of air temperature from the simulations were compared with measured data. The suitability and accuracy of the CFD approach for temperature prediction is discussed.

  19. Volatile organic compounds associated with microbial growth in automobile air conditioning systems.

    PubMed

    Rose, L J; Simmons, R B; Crow, S A; Ahearn, D G

    2000-09-01

    Volatile organic compounds from Penicillium viridicatum and Methylobacterium mesophilicum growing on laboratory media and on component materials of automobile air conditioners were analyzed with gas chromatography and mass spectrometry. P. viridicatum produced compounds such as 4-methyl thiazole, terpenes and alcohols, whereas M. mesophilicum produced dimethyl disulfide, dimethyl trisulfide, and chlorophenol with growth on laboratory media. In comparison with laboratory media, fewer volatiles were detected from colonized foam insulation materials. Biofilms of M. mesophilicum on aluminum evaporator components produced mainly dimethyl disulfide. These biofilms, after inoculation with P. viridicatum, produced offensive smelling alcohols and esters such as 2-methyl propanol, 3-penten-2-ol, and the ethyl ester of butanoic acid. The moisture and substrates innate to the automobile air conditioning systems provided an environment suitable for microbial biofilm development and odor production. Reduction of retained moisture in the air conditioning system coupled with use of less susceptible or antimicrobial substrates are advised for remediation of the noxious odors. PMID:10915209

  20. Assessment method of accessibility conditions: how to make public buildings accessible?

    PubMed

    Andrade, Isabela Fernandes; Ely, e Vera Helena Moro Bins

    2012-01-01

    The enforcement of accessibility today has faced several difficulties, such as intervention in historic buildings that now house public services and cultural activities, such as town halls, museums and theaters and should allow access, on equal terms to all people. The paper presents the application of a method for evaluating the spatial accessibility conditions and their results. For this, we sought to support the theoretical foundation about the main issue involved and legislation. From the method used--guided walks--it was possible to identify the main barriers to accessibility in historic buildings. From the identified barriers, possible solutions are presented according to the four components of accessibility: spatial orientation, displacement, use and communication. It is hoped also that the knowledge gained in this research contributes to an improvement of accessibility legislation in relation to the listed items. PMID:22317296

  1. [Study on air quality and pollution meteorology conditions of Guangzhou during the 2010 Asian games].

    PubMed

    Li, Ting-Yuan; Deng, Xue-Jiao; Fan, Shao-Jia; Wu, Dui; Li, Fei; Deng, Tao; Tan, Hao-Bo; Jiang, De-Hai

    2012-09-01

    Based on the monitoring data of NO2, O3, SO2, PM, visibility, regional air quality index (RAQI) and the atmospheric transport and diffusion data from Nov. 4, 2010 to Dec. 10, 2010 in Guangzhou area, the variations of air quality and meteorological conditions during the Guangzhou Asian Games were analyzed. It was found that, during the Asian Games, the air quality was better than the air quality before or after the Asian Games. The visibility was greater than the visibility before or after the Asian Games, while the concentrations of PM1 and PM2.5 were lower. The correlation coefficient between visibility and the concentrations of PM1, PM2.5 indicated anti-correlation relationships. Daily and hourly concentrations of NO2 and SO2 met the primary ambient air quality standards, whereas the daily concentration of PM10 and hourly concentration of O3 met the secondary ambient air quality standards. Pollutants had been well controlled during the Asian Games. The concentration of SO2 in Guangzhou was influenced by local sources and long distance transmission, while the concentration of NO2 was significantly influenced by local sources. The emissions of NO2, SO2 and PM10 surrounding Guangzhou had a trend to affect the concentrations in Guangzhou, but the situation of O3 was opposite, the relatively high concentration of O3 in Guangzhou had tendency to be transported to the surrounding areas. The pollution meteorology conditions in the period of Asian Games were better than the conditions before or after the Asian Games. The decrease in the concentrations during the Asian Games did not only benefit from the emission control by the government, but also from the good meteorological conditions. PMID:23243841

  2. 24 CFR 3280.813 - Outdoor outlets, fixtures, air-conditioning equipment, etc.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 24 Housing and Urban Development 5 2012-04-01 2012-04-01 false Outdoor outlets, fixtures, air-conditioning equipment, etc. 3280.813 Section 3280.813 Housing and Urban Development Regulations Relating to Housing and Urban Development (Continued) OFFICE OF ASSISTANT SECRETARY FOR HOUSING-FEDERAL HOUSING COMMISSIONER, DEPARTMENT OF HOUSING AND...

  3. Geothermal as a heat sink application for raising air conditioning efficency

    NASA Astrophysics Data System (ADS)

    Ibrahim, Hesham Safwat Osman Mohamed

    2016-04-01

    Objective: Geothermal applications in heating, ventilation, air-conditioning is a US technology for more than 30 years old ,which saves more than 30% average energy cost than the traditional air-conditioning systems systems. Applying this technology in Middle East and African countries would be very feasible specially in Egypt specially as it suffers Electric crisis --The temperature of the condensers and the heat rejecting equipment is much higher than the Egyptian land at different depth which is a great advantages, and must be measured, recorded, and studied accurately -The Far goal of the proposal is to construct from soil analysis a temperature gradient map for Egypt and , African countries on different depth till 100 m which is still unclear nowadays and must be measured and recorded in databases through researches - The main model of the research is to study the heat transfer gradient through the ground earth borehole,grout,high density polyethylene pipes , and water inlet temperature which affect the electric efficiency of the ground source heat pump air conditioning unit Impact on the Region: Such research result will contribute widely in Energy saving sector specially the air conditioning sector in Egypt and the African countries which consumes more than 30% of the electric consumption of the total consumption . and encouraging Green systems such Geothermal to be applied

  4. Refrigeration and Air Conditioning Mechanic: Apprenticeship Course Outline. Apprenticeship and Industry Training. 1411.2

    ERIC Educational Resources Information Center

    Alberta Advanced Education and Technology, 2011

    2011-01-01

    The graduate of the Refrigeration and Air Conditioning Mechanic apprenticeship training is a journeyman who will: (1) supervise, train and coach apprentices; (2) use and maintain hand and power tools to the standards of competency and safety required in the trade; (3) have a thorough knowledge of the principle components of refrigeration systems,…

  5. 40 CFR 86.162-03 - Approval of alternative air conditioning test simulations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... initiative, the Administrator will approve a simulation of the environmental cell for air conditioning test... approvals will be granted, the Administrator will consider data showing how well the simulation matches environmental cell test data for the range of vehicles to be covered by the simulation including items such...

  6. 40 CFR 86.162-03 - Approval of alternative air conditioning test simulations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... initiative, the Administrator will approve a simulation of the environmental cell for air conditioning test... approvals will be granted, the Administrator will consider data showing how well the simulation matches environmental cell test data for the range of vehicles to be covered by the simulation including items such...

  7. Introduction to Heating, Ventilation and Air Conditioning (HVAC). Instructor Edition. Introduction to Construction Series.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This instructor's guide contains the materials required to teach a competency-based introductory course in heating, ventilating, and air conditioning (HVAC) to students who have chosen to explore careers in construction. It contains three units: HVAC materials, HVAC tools, and applied skills. Each instructional unit includes some or all of the…

  8. Getting Down to Business: Air Conditioning and Heating Service, Module 36. [Student Guide]. Entrepreneurship Training Components.

    ERIC Educational Resources Information Center

    Sanderson, Barbara

    This module on owning and operating an air conditioning and heating service is one of 36 in a series on entrepreneurship. The introduction tells the student what topics will be covered and suggests other modules to read in related occupations. Each unit includes student goals, a case study, and a discussion of the unit subject matter. Learning…

  9. Environmental Control System Installer/Servicer (Residential Air Conditioning Mechanic). V-TECS Guide.

    ERIC Educational Resources Information Center

    Meyer, Calvin F.; Benson, Robert T.

    This guide provides job relevant tasks, performance objectives, performance guides, resources, learning activitites, evaluation standards, and achievement testing in the occupation of environmental control system installer/servicer (residential air conditioning mechanic). It is designed to be used with any chosen teaching method. The course…

  10. PIC (PRODUCTS OF INCOMPLETE COMBUSTION) FORMATION UNDER PYROLYTIC AND STARVED AIR CONDITIONS

    EPA Science Inventory

    A comprehensive program of laboratory studies based on the non-flame mode of thermal decomposition produced much data on PIC (Products of Incomplete Combustion) formation, primarily under pyrolytic and starved air conditions. Most significantly, laboratory results from non-flame ...

  11. Instructional Guide for Air Conditioning and Refrigeration. V & TECC Curriculum Guide.

    ERIC Educational Resources Information Center

    Duenk, Lester G.; And Others

    This trade and industrial curriculum guide is intended for use in vocational programs that prepare students to enter the air conditioning/refrigeration field. The introductory section provides a statement of philosophy, objectives, block time schedule, and recommended facilities and equipment. Following the introductory section, eighteen blocks of…

  12. Refrigeration and Air Conditioning Equipment, 11-9. Military Curriculum Materials for Vocational and Technical Education.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This military-developed text consists of three blocks of instructional materials for use by those studying to become refrigeration and air conditioning specialists. Covered in the individual course blocks are the following topics: refrigeration and trouble analysis, thermodynamics, and principles of refrigeration; major components and domestic and…

  13. Military Curricula for Vocational & Technical Education. Refrigeration & Air Conditioning Specialist, Blocks I-II.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This plan of instruction, study guides, workbooks, and programmed texts for a secondary-postsecondary-level course in refrigeration and air conditioning are one of a number of military-developed curriculum packages selected for adaptation to vocational instruction and curriculum development in a civilian setting. It is the first section of a…

  14. Heating, Air Conditioning and Refrigeration. Vocational Education Curriculum Guide. Industrial and Technical Education.

    ERIC Educational Resources Information Center

    West Virginia State Vocational Curriculum Lab., Cedar Lakes.

    This curriculum guide contains 17 units that provides the basic curriculum components required to develop lesson plans for the heating, air conditioning, and refrigeration curriculum. The guide is not intended to be a complete, self-contained curriculum, but instead provides the teacher with a number of informational items related to the learning…

  15. Heating, Ventilation, Air-conditioning, and Refrigeration. Ohio's Competency Analysis Profile.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. Vocational Instructional Materials Lab.

    Developed through a modified DACUM (Developing a Curriculum) process involving business, industry, labor, and community agency representatives in Ohio, this document is a comprehensive and verified employer competency profile for heating, ventilation, air conditioning, and refrigeration occupations. The list contains units (with and without…

  16. Military Curricula for Vocational & Technical Education. Refrigeration and Air Conditioning Specialist, Blocks VI-IX.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This plan of instruction, study guides, and workbooks for a secondary-postsecondary-level course in refrigeration and air conditioning are one of a number of military-developed curriculum packages selected for adaptation to vocational instruction and curriculum development in a civilian setting. It is the third section of a three-part course (see…

  17. Introduction to Heating, Ventilation and Air Conditioning (HVAC). Introduction to Construction Series. Instructor Edition.

    ERIC Educational Resources Information Center

    Associated General Contractors of America, Washington, DC.

    This module on introductory heating, ventilating, and air conditioning (HVAC) is one of a series of modules designed to teach basic skills necessary for entry-level employment in this field. The module contains four instructional units that cover the following topics: (1) HVAC materials; (2) HVAC tools; (3) HVAC layout; and (4) HVAC basic skills.…

  18. A laser Doppler system for the remote sensing of boundary layer winds in clear air conditions

    NASA Technical Reports Server (NTRS)

    Lawrence, T. R.; Krause, M. C.; Craven, C. E.; Morrison, L. K.; Thomson, J. A. L.; Cliff, W. C.; Huffaker, R. M.

    1975-01-01

    The system discussed uses a laser Doppler radar in combination with a velocity azimuth display mode of scanning to determine the three-dimensional wind field in the atmospheric boundary layer. An attractive feature of this CW monostatic system is that the ambient aerosol provides a 'sufficient' scattering target to permit operation under clear air conditions. Spatial resolution is achieved by focusing.

  19. Heating, Air Conditioning and Refrigeration Curriculum Guide. Michigan Trade and Industrial Education.

    ERIC Educational Resources Information Center

    Michigan State Univ., East Lansing. Coll. of Agriculture and Natural Resources Education Inst.

    This task-based curriculum guide for heating, air conditioning, and refrigeration is intended to help the teacher develop a classroom management system where students learn by doing. Introductory materials include a Dictionary of Occupational Titles job code and title sheet, a career ladder, a matrix relating duty/task numbers to job titles, and a…

  20. V-TECS Guide for Automobile Air Conditioning and Electrical System Technician.

    ERIC Educational Resources Information Center

    Meyer, Calvin F.; Benson, Robert T.

    This curriculum guide provides an outline for an eight-unit course to train automobile air conditioning and electrical system technicians. Each unit focuses on a duty that is composed of a number of performance objectives. For each objective, these materials are provided: a task, a standard of performance of task, source of standard, conditions…

  1. 14 CFR 203.5 - Compliance as condition on operations in air transportation.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Compliance as condition on operations in air transportation. 203.5 Section 203.5 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF TRANSPORTATION (AVIATION PROCEEDINGS) ECONOMIC REGULATIONS WAIVER OF WARSAW CONVENTION LIABILITY LIMITS...

  2. A GUIDE FOR USE IN DEVELOPING TRAINING PROGRAMS IN VOCATIONAL REFRIGERATION AND AIR CONDITIONING (DOMESTIC).

    ERIC Educational Resources Information Center

    Mississippi State Univ., State College.

    THE MATERIAL IN THIS CURRICULUM GUIDE WAS DEVELOPED TO HELP THE INSTRUCTOR TRAIN STUDENTS TO MEET THE ENTRY REQUIREMENTS FOR REFRIGERATION AND AIR CONDITIONING TRADESMEN. EXPERIENCED TEACHERS DETERMINED OBJECTIVES, DEVELOPED A JOB ANALYSIS, IDENTIFIED THE INSTRUCTIONAL CONTENT, SEQUENCED LEARNING EXPERIENCES, AND SELECTED PERTINENT LITERATURE. THE…

  3. Non-Print Instructional Materials for the Air Conditioning and Refrigeration Maintenance Field.

    ERIC Educational Resources Information Center

    Golitko, Raymond L., Ed.; And Others

    This catalog contains a listing of air conditioning/refrigeration maintenance audiovisual training materials from the Houston Community College System library media collection. The material is organized by subject heading. The media titles are listed in alphabetical order by title under each subject heading in the catalog. The citation for each…

  4. LINKING ETA MODEL WITH THE COMMUNITY MULTISCALE AIR QUALITY (CMAQ) MODELING SYSTEM: OZONE BOUNDARY CONDITIONS

    EPA Science Inventory

    A prototype surface ozone concentration forecasting model system for the Eastern U.S. has been developed. The model system is consisting of a regional meteorological and a regional air quality model. It demonstrated a strong prediction dependence on its ozone boundary conditions....

  5. Design of a test facility for gas-fired desiccant-based air conditioning systems

    SciTech Connect

    Jalalzadeh-Azar, A.A.; Steele, W.G.; Hodge, B.K.

    1996-12-31

    The design of a facility for testing desiccant-based air conditioning systems is presented. The determination of the performance parameters of desiccant systems is discussed including moisture removal capacity, latent and total cooling capacities, and efficiency indexes. The appropriate procedures and key measurements for determining these parameters are identified using uncertainty analysis.

  6. Urban air quality assessment using monitoring data of fractionized aerosol samples, chemometrics and meteorological conditions.

    PubMed

    Yotova, Galina I; Tsitouridou, Roxani; Tsakovski, Stefan L; Simeonov, Vasil D

    2016-01-01

    The present article deals with assessment of urban air by using monitoring data for 10 different aerosol fractions (0.015-16 μm) collected at a typical urban site in City of Thessaloniki, Greece. The data set was subject to multivariate statistical analysis (cluster analysis and principal components analysis) and, additionally, to HYSPLIT back trajectory modeling in order to assess in a better way the impact of the weather conditions on the pollution sources identified. A specific element of the study is the effort to clarify the role of outliers in the data set. The reason for the appearance of outliers is strongly related to the atmospheric condition on the particular sampling days leading to enhanced concentration of pollutants (secondary emissions, sea sprays, road and soil dust, combustion processes) especially for ultra fine and coarse particles. It is also shown that three major sources affect the urban air quality of the location studied-sea sprays, mineral dust and anthropogenic influences (agricultural activity, combustion processes, and industrial sources). The level of impact is related to certain extent to the aerosol fraction size. The assessment of the meteorological conditions leads to defining of four downwind patterns affecting the air quality (Pelagic, Western and Central Europe, Eastern and Northeastern Europe and Africa and Southern Europe). Thus, the present study offers a complete urban air assessment taking into account the weather conditions, pollution sources and aerosol fractioning. PMID:26942452

  7. VESL for Heating and Air Conditioning: A Competency-based Curriculum Guide. Project OSCAER.

    ERIC Educational Resources Information Center

    Lopez-Valadez, Jeanne, Ed.; Pankratz, David, Ed.

    This guide is intended for vocational educators developing the vocational English as a second language (VESL) component of a course in heating and air conditioning. The introductory section examines assumptions about second language learning and instruction and VESL classes, local adaptations of the curriculum, and sample VESL lessons. The chapter…

  8. Principles of Refrigeration. Automotive Mechanics. Air Conditioning. Instructor's Guide [and] Student Guide.

    ERIC Educational Resources Information Center

    Spignesi, B.

    This instructional package, one in a series of individualized instructional units on automobile air conditioning, consists of a student guide and an instructor guide dealing with the principles of refrigeration. Covered in the module are defining the term heat, defining the term British Thermal Unit (BTU), defining the term latent heat, listing…

  9. Heating, Ventilation, Air Conditioning. Resource Manual for Custodial Training Course #3.

    ERIC Educational Resources Information Center

    Florida State Dept. of Education, Tallahassee. School Plant Management Section.

    Intended as a manual to provide school custodians with some understanding of basic functions of heating, ventilating, and air conditioning equipment for safe, efficient operation. Contains general rules and specifications for providing custodians with a more complete awareness of their equipment and the field of "Climate Control" within the…

  10. Proceedings of the 1993 non-fluorocarbon insulation, refrigeration and air conditioning technology workshop

    SciTech Connect

    Not Available

    1994-09-01

    Sessions included: HFC blown polyurethanes, carbon dioxide blown foam and extruded polystyrenes, plastic foam insulations, evacuated panel insulation, refrigeration and air conditioning, absorption and adsorption and stirling cycle refrigeration, innovative cooling technologies, and natural refrigerants. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  11. A Pilot Study of the Effectiveness of Indoor Plants for Removal of Volatile Organic Compounds in Indoor Air in a Seven-Story Office Building

    SciTech Connect

    Apte, Michael G.; Apte, Joshua S.

    2010-04-27

    The Paharpur Business Centre and Software Technology Incubator Park (PBC) is a 7 story, 50,400 ft{sup 2} office building located near Nehru Place in New Delhi India. The occupancy of the building at full normal operations is about 500 people. The building management philosophy embodies innovation in energy efficiency while providing full service and a comfortable, safe, healthy environment to the occupants. Provision of excellent Indoor Air Quality (IAQ) is an expressed goal of the facility, and the management has gone to great lengths to achieve it. This is particularly challenging in New Delhi, where ambient urban pollution levels rank among the worst on the planet. The approach to provide good IAQ in the building includes a range of technical elements: air washing and filtration of ventilation intake air from rooftop air handler, the use of an enclosed rooftop greenhouse with a high density of potted plants as a bio-filtration system, dedicated secondary HVAC/air handling units on each floor with re-circulating high efficiency filtration and UVC treatment of the heat exchanger coils, additional potted plants for bio-filtration on each floor, and a final exhaust via the restrooms located at each floor. The conditioned building exhaust air is passed through an energy recovery wheel and chemisorbent cartridge, transferring some heat to the incoming air to increase the HVAC energy efficiency. The management uses 'green' cleaning products exclusively in the building. Flooring is a combination of stone, tile and 'zero VOC' carpeting. Wood trim and finish appears to be primarily of solid sawn materials, with very little evidence of composite wood products. Furniture is likewise in large proportion constructed from solid wood materials. The overall impression is that of a very clean and well-kept facility. Surfaces are polished to a high sheen, probably with wax products. There was an odor of urinal cake in the restrooms. Smoking is not allowed in the building. The

  12. Statistical modeling of urban air temperature distributions under different synoptic conditions

    NASA Astrophysics Data System (ADS)

    Beck, Christoph; Breitner, Susanne; Cyrys, Josef; Hald, Cornelius; Hartz, Uwe; Jacobeit, Jucundus; Richter, Katja; Schneider, Alexandra; Wolf, Kathrin

    2015-04-01

    Within urban areas air temperature may vary distinctly between different locations. These intra-urban air temperature variations partly reach magnitudes that are relevant with respect to human thermal comfort. Therefore and furthermore taking into account potential interrelations with other health related environmental factors (e.g. air quality) it is important to estimate spatial patterns of intra-urban air temperature distributions that may be incorporated into urban planning processes. In this contribution we present an approach to estimate spatial temperature distributions in the urban area of Augsburg (Germany) by means of statistical modeling. At 36 locations in the urban area of Augsburg air temperatures are measured with high temporal resolution (4 min.) since December 2012. These 36 locations represent different typical urban land use characteristics in terms of varying percentage coverages of different land cover categories (e.g. impervious, built-up, vegetated). Percentage coverages of these land cover categories have been extracted from different sources (Open Street Map, European Urban Atlas, Urban Morphological Zones) for regular grids of varying size (50, 100, 200 meter horizonal resolution) for the urban area of Augsburg. It is well known from numerous studies that land use characteristics have a distinct influence on air temperature and as well other climatic variables at a certain location. Therefore air temperatures at the 36 locations are modeled utilizing land use characteristics (percentage coverages of land cover categories) as predictor variables in Stepwise Multiple Regression models and in Random Forest based model approaches. After model evaluation via cross-validation appropriate statistical models are applied to gridded land use data to derive spatial urban air temperature distributions. Varying models are tested and applied for different seasons and times of the day and also for different synoptic conditions (e.g. clear and calm

  13. LARGE BUILDING RADON MANUAL

    EPA Science Inventory

    The report summarizes information on how bilding systems -- especially the heating, ventilating, and air-conditioning (HVAC) system -- inclurence radon entry into large buildings and can be used to mitigate radon problems. It addresses the fundamentals of large building HVAC syst...

  14. Total environmental warming impact (TEWI) calculations for alternative automative air-conditioning systems

    SciTech Connect

    Sand, J.R.; Fischer, S.K.

    1997-01-01

    The Montreal Protocol phase-out of chlorofluorocarbons (CFCs) has required manufacturers to develop refrigeration and air-conditioning systems that use refrigerants that can not damage stratospheric ozone. Most refrigeration industries have adapted their designs to use hydrochlorofluorocarbon (HCFC) or hydrofluorocarbon (HFC) refrigerants; new automobile air- conditioning systems use HFC-134a. These industries are now being affected by scientific investigations of greenhouse warming and questions about the effects of refrigerants on global warming. Automobile air-conditioning has three separate impacts on global warming; (1) the effects of refrigerant inadvertently released to the atmosphere from accidents, servicing, and leakage; (2) the efficiency of the cooling equipment (due to the emission of C0{sub 2} from burning fuel to power the system); and (3) the emission of C0{sub 2} from burning fuel to transport the system. The Total Equivalent Warming Impact (TEWI) is an index that should be used to compare the global warming effects of alternative air-conditioning systems because it includes these contributions from the refrigerant, cooling efficiency, and weight. This paper compares the TEWI of current air-conditioning systems using HFC-134a with that of transcritical vapor compression system using carbon dioxide and systems using flammable refrigerants with secondary heat transfer loops. Results are found to depend on both climate and projected efficiency of C0{sub 2}systems. Performance data on manufacturing prototype systems are needed to verify the potential reductions in TEWI. Extensive field testing is also required to determine the performance, reliability, and ``serviceability`` of each alternative to HFC-134a to establish whether the potential reduction of TEWI can be achieved in a viable consumer product.

  15. Waking the sleeping giant: Introducing new heat exchanger technology into the residential air-conditioning marketplace

    SciTech Connect

    Chapp, T.; Voss, M.; Stephens, C.

    1998-07-01

    The Air Conditioning Industry has made tremendous strides in improvements to the energy efficiency and reliability of its product offerings over the past 40 years. These improvement can be attributed to enhancements of components, optimization of the energy cycle, and modernized and refined manufacturing techniques. During this same period, energy consumption for space cooling has grown significantly. In January of 1992, the minimum efficiency requirement for central air conditioning equipment was raised to 10 SEER. This efficiency level is likely to increase further under the auspices of the National Appliance Energy Conservation Act (NAECA). A new type of heat exchanger was developed for air conditioning equipment by Modine Manufacturing Company in the early 1990's. Despite significant advantages in terms of energy efficiency, dehumidification, durability, and refrigerant charge there has been little interest expressed by the air conditioning industry. A cooperative effort between Modine, various utilities, and several state energy offices has been organized to test and demonstrate the viability of this heat exchanger design throughout the nation. This paper will review the fundamentals of heat exchanger design and document this simple, yet novel technology. These experiences involving equipment retrofits have been documented with respect to the performance potential of air conditioning system constructed with PF{trademark} Heat Exchangers (generically referred to as microchannel heat exchangers) from both an energy efficiency as well as a comfort perspective. The paper will also detail the current plan to introduce 16 to 24 systems into an extended field test throughout the US which commenced in the Fall of 1997.

  16. Using Hydrated Salt Phase Change Materials for Residential Air Conditioning Peak Demand Reduction and Energy Conservation in Coastal and Transitional Climates in the State of California

    NASA Astrophysics Data System (ADS)

    Lee, Kyoung Ok

    The recent rapid economic and population growth in the State of California have led to a significant increase in air conditioning use, especially in areas of the State with coastal and transitional climates. This fact makes that the electric peak demand be dominated by air conditioning use of residential buildings in the summer time. This extra peak demand caused by the use of air conditioning equipment lasts only a few days out of the year. As a result, unavoidable power outages have occurred when electric supply could not keep up with such electric demand. This thesis proposed a possible solution to this problem by using building thermal mass via phase change materials to reduce peak air conditioning demand loads. This proposed solution was tested via a new wall called Phase Change Frame Wall (PCFW). The PCFW is a typical residential frame wall in which Phase Change Materials (PCMs) were integrated to add thermal mass. The thermal performance of the PCFWs was first evaluated, experimentally, in two test houses, built for this purpose, located in Lawrence, KS and then via computer simulations of residential buildings located in coastal and transitional climates in California. In this thesis, a hydrated salt PCM was used, which was added in concentrations of 10% and 20% by weight of the interior sheathing of the walls. Based on the experimental results, under Lawrence, KS weather, the PCFWs at 10% and 20% of PCM concentrations reduced the peak heat transfer rates by 27.0% and 27.3%, on average, of all four walls, respectively. Simulated results using California climate data indicated that PCFWs would reduce peak heat transfer rates by 8% and 19% at 10% PCM concentration and 12.2% and 27% at 20% PCM concentration for the coastal and transitional climates, respectively. Furthermore, the PCFWs, at 10% PCM concentration, would reduce the space cooling load and the annual energy consumption by 10.4% and 7.2%, on average in both climates, respectively.

  17. Effect of Intake Air Filter Condition on Light-Duty Gasoline Vehicles

    SciTech Connect

    Thomas, John F; Huff, Shean P; West, Brian H; Norman, Kevin M

    2012-01-01

    Proper maintenance can help vehicles perform as designed, positively affecting fuel economy, emissions, and the overall drivability. This effort investigates the effect of one maintenance factor, intake air filter replacement, with primary focus on vehicle fuel economy, but also examining emissions and performance. Older studies, dealing with carbureted gasoline vehicles, have indicated that replacing a clogged or dirty air filter can improve vehicle fuel economy and conversely that a dirty air filter can be significantly detrimental to fuel economy. The effect of clogged air filters on the fuel economy, acceleration and emissions of five gasoline fueled vehicles is examined. Four of these were modern vehicles, featuring closed-loop control and ranging in model year from 2003 to 2007. Three vehicles were powered by naturally aspirated, port fuel injection (PFI) engines of differing size and cylinder configuration: an inline 4, a V6 and a V8. A turbocharged inline 4-cylinder gasoline direct injection (GDI) engine powered vehicle was the fourth modern gasoline vehicle tested. A vintage 1972 vehicle equipped with a carburetor (open-loop control) was also examined. Results reveal insignificant fuel economy and emissions sensitivity of modern vehicles to air filter condition, but measureable effects on the 1972 vehicle. All vehicles experienced a measured acceleration performance penalty with clogged intake air filters.

  18. Field Demonstration of a High-Efficiency Packaged Rooftop Air Conditioning Unit at Fort Gordon, Augusta, GA

    SciTech Connect

    Armstrong, Peter R.; Sullivan, Gregory P.; Parker, Graham B.

    2006-03-31

    As part of a larger program targeting the market transformation of packaged rooftop air conditioning, five high-efficiency rooftop air conditioning products were selected in 2002 by the U.S. Department of Energy (DOE) under the Unitary Air Conditioner (UAC) Technology Procurement (http://www.pnl.gov/uac). In February 2003, Fort Gordon in Augusta, Georgia was chosen as the demonstration site. With the goal of validating the field performance and operation of one of the awarded products, a 10-ton high-efficiency packaged rooftop unit (RTU) manufactured by Global Energy Group (GEG) was installed at Fort Gordon in October 2003. Following equipment installation, power metering, air- and refrigerant-side instrumentation was installed on the GEG RTU and a 4-year old typical-efficiency 20-ton RTU manufactured by AAON . The GEG and AAON units were instrumented identically and operated May through July, 2005, to observe performance under a range of conditions. Based on the data collected as part of this demonstration, the GEG equipment performed at least 8% better in stage-1 (single compressor running) cooling and at least 16% better in stage-2 (both compressors running) than the baseline AAON equipment. Performance comparisons are based on what we call application EER normalized to equivalent specific fan power. The full-load, specific-fan-power-normalized application EERs at ARI design conditions were 10.48 Btu/Wh for the GEG and 9.00 Btu/Wh for the baseline machine. With a cost premium of nearly 50%, and slightly higher maintenance costs, the life-cycle cost analysis shows that the GEG technology pays for itself--a positive net-present value (NPV)--only in climates and buildings with long cooling seasons. Manufacture of this equipment on a larger scale can be expected to reduce costs to the point where it is more broadly cost-effective. The assumed 10-ton baseline and new-technology unit costs are $3824.00 and $5525.00 respectively. If the new technology cost is assumed

  19. Comparison of Air Impaction and Electrostatic Dust Collector Sampling Methods to Assess Airborne Fungal Contamination in Public Buildings.

    PubMed

    Normand, Anne-Cécile; Ranque, Stéphane; Cassagne, Carole; Gaudart, Jean; Sallah, Kankoé; Charpin, Denis-André; Piarroux, Renaud

    2016-03-01

    Many ailments can be linked to exposure to indoor airborne fungus. However, obtaining a precise measurement of airborne fungal levels is complicated partly due to indoor air fluctuations and non-standardized techniques. Electrostatic dust collector (EDC) sampling devices have been used to measure a wide range of airborne analytes, including endotoxins, allergens, β-glucans, and microbial DNA in various indoor environments. In contrast, viable mold contamination has only been assessed in highly contaminated environments such as farms and archive buildings. This study aimed to assess the use of EDCs, compared with repeated air-impactor measurements, to assess airborne viable fungal flora in moderately contaminated indoor environments. Indoor airborne fungal flora was cultured from EDCs and daily air-impaction samples collected in an office building and a daycare center. The quantitative fungal measurements obtained using a single EDC significantly correlated with the cumulative measurement of nine daily air impactions. Both methods enabled the assessment of fungal exposure, although a few differences were observed between the detected fungal species and the relative quantity of each species. EDCs were also used over a 32-month period to monitor indoor airborne fungal flora in a hospital office building, which enabled us to assess the impact of outdoor events (e.g. ground excavations) on the fungal flora levels on the indoor environment. In conclusion, EDC-based measurements provided a relatively accurate profile of the viable airborne flora present during a sampling period. In particular, EDCs provided a more representative assessment of fungal levels compared with single air-impactor sampling. The EDC technique is also simpler than performing repetitive air-impaction measures over the course of several consecutive days. EDC is a versatile tool for collecting airborne samples and was efficient for measuring mold levels in indoor environments. PMID:26491105

  20. Fault tree analysis for exposure to refrigerants used for automotive air conditioning in the United States.

    PubMed

    Jetter, J J; Forte, R; Rubenstein, R

    2001-02-01

    A fault tree analysis was used to estimate the number of refrigerant exposures of automotive service technicians and vehicle occupants in the United States. Exposures of service technicians can occur when service equipment or automotive air-conditioning systems leak during servicing. The number of refrigerant exposures of service technicians was estimated to be 135,000 per year. Exposures of vehicle occupants can occur when refrigerant enters passenger compartments due to sudden leaks in air-conditioning systems, leaks following servicing, or leaks caused by collisions. The total number of exposures of vehicle occupants was estimated to be 3,600 per year. The largest number of exposures of vehicle occupants was estimated for leaks caused by collisions, and the second largest number of exposures was estimated for leaks following servicing. Estimates used in the fault tree analysis were based on a survey of automotive air-conditioning service shops, the best available data from the literature, and the engineering judgement of the authors and expert reviewers from the Society of Automotive Engineers Interior Climate Control Standards Committee. Exposure concentrations and durations were estimated and compared with toxicity data for refrigerants currently used in automotive air conditioners. Uncertainty was high for the estimated numbers of exposures, exposure concentrations, and exposure durations. Uncertainty could be reduced in the future by conducting more extensive surveys, measurements of refrigerant concentrations, and exposure monitoring. Nevertheless, the analysis indicated that the risk of exposure of service technicians and vehicle occupants is significant, and it is recommended that no refrigerant that is substantially more toxic than currently available substitutes be accepted for use in vehicle air-conditioning systems, absent a means of mitigating exposure. PMID:11332544

  1. Air Pollution modifies the association between successful and pathological aging throughout the frailty condition.

    PubMed

    Fougère, Bertrand; Vellas, Bruno; Billet, Sylvain; Martin, Perrine J; Gallucci, Maurizio; Cesari, Matteo

    2015-11-01

    The rapid growth in the number of older adults has many implications for public health, including the need to better understand the risks posed by environmental exposures. Aging leads to a decline and deterioration of functional properties at the cellular, tissue and organ level. This loss of functional properties yields to a loss of homeostasis and decreased adaptability to internal and external stress. Frailty is a geriatric syndrome characterized by weakness, weight loss, and low activity that is associated with adverse health outcomes. Frailty manifests as an age-related, biological vulnerability to stressors and decreased physiological reserves. Ambient air pollution exposure affects human health, and elderly people appear to be particularly susceptible to its adverse effects. The aim of this paper is to discuss the role of air pollution in the modulation of several biological mechanisms involved in aging. Evidence is presented on how air pollution can modify the bidirectional association between successful and pathological aging throughout the frailty conditions. PMID:26462883

  2. Foundation conditions of buildings in undermined areas: An example of evaluation

    NASA Astrophysics Data System (ADS)

    Kaláb, Zdeněk; Lednická, Markéta

    2012-04-01

    Evaluation of a set of individual geological and petrophysical parameters is necessary in many geoscientific studies or those with constructional purposes. However, correlation and mutual evaluation of these parameters are very complicated. Our methodology, which is part of the expert evaluation, is based on compilation of four significant effects: local subsurface geology, groundwater table (and accumulation of surface water), deformation of the surface due to mining (subsidence), and landslides. Different values of specified significances were assigned to all four selected effects. The class of foundation conditions was selected according to the summary of values of specified significances for a given point. This value describes how the selected parameters influence vibration effect on the surface and resistance of buildings to this seismic loading. The pilot map of foundation conditions, which was elaborated as part of the evaluation of Stonava area in 2008, is presented.

  3. Maximum mixing times of methane and air under non-reacting and reacting conditions

    SciTech Connect

    Brasoveanu, D.; Gupta, A.K.

    1998-07-01

    Mixing times between methane and air under non-reacting or reacting conditions in the presence of rates of temperature and pressure and velocity gradients are examined using a mixing model based on the ideal gas law and the equation of continuity. The model is valid for low pressure combustors under non-reacting conditions. The model is also valid under reacting conditions for the fresh mixture which contains only trace amounts of combustion products. The effects of initial pressure, temperature and fluid composition on mixing time are also analyzed. In general, the exact mixing time has to be determined numerically. Nevertheless maximum values of mixing times can be determined analytically for a broad range of operational conditions. Results show that under both reacting and non-reacting conditions, the maximum mixing time is directly proportional to the initial pressure and temperature of mixture and inversely proportional to rates of pressure and temperature, and to velocity divergence. Mixing through fuel dispersion into the surrounding air is shown to be faster than via air penetration into the fuel flow. Rates of pressure of less than 1 atm/s acting along provide a mixing time in excess of one second which is unacceptably long for many applications, in particular gas turbine combustion. Rates of temperature produced by flame may provide mixing times shorter than 0.1 s. Mixing times of the order of a few milliseconds for efficient combustion and low emission, require high velocity gradients at the fuel-air boundary. Results show that enhanced mixing is achieved by combining temperature and velocity gradients. This analysis of mixing time is intended to provide important design guidelines for the development of high intensity, high efficiency and low emission combustors.

  4. Children's well-being at schools: Impact of climatic conditions and air pollution.

    PubMed

    Salthammer, Tunga; Uhde, Erik; Schripp, Tobias; Schieweck, Alexandra; Morawska, Lidia; Mazaheri, Mandana; Clifford, Sam; He, Congrong; Buonanno, Giorgio; Querol, Xavier; Viana, Mar; Kumar, Prashant

    2016-09-01

    Human civilization is currently facing two particular challenges: population growth with a strong trend towards urbanization and climate change. The latter is now no longer seriously questioned. The primary concern is to limit anthropogenic climate change and to adapt our societies to its effects. Schools are a key part of the structure of our societies. If future generations are to take control of the manifold global problems, we have to offer our children the best possible infrastructure for their education: not only in terms of the didactic concepts, but also with regard to the climatic conditions in the school environment. Between the ages of 6 and 19, children spend up to 8h a day in classrooms. The conditions are, however, often inacceptable and regardless of the geographic situation, all the current studies report similar problems: classrooms being too small for the high number of school children, poor ventilation concepts, considerable outdoor air pollution and strong sources of indoor air pollution. There have been discussions about a beneficial and healthy air quality in classrooms for many years now and in recent years extensive studies have been carried out worldwide. The problems have been clearly outlined on a scientific level and there are prudent and feasible concepts to improve the situation. The growing number of publications also highlights the importance of this subject. High carbon dioxide concentrations in classrooms, which indicate poor ventilation conditions, and the increasing particle matter in urban outdoor air have, in particular, been identified as primary causes of poor indoor air quality in schools. Despite this, the conditions in most schools continue to be in need of improvement. There are many reasons for this. In some cases, the local administrative bodies do not have the budgets required to address such concerns, in other cases regulations and laws stand in contradiction to the demands for better indoor air quality, and sometimes

  5. ONE ATMOSPHERE MODELING FOR AIR QUALITY: BUILDING PARTNERSHIPS THAT TRANSITION RESEARCH INTO APPLICATIONS

    EPA Science Inventory

    The Community Miultiscale Air Quality (CMAQ) modeling system is a "one atmosphere" chemical transport model that simulates the transport and fate of air pollutants from urban to continental scales and from daily to annual time intervals.

  6. Air conditioning impact on the dynamics of radon and its daughters concentration.

    PubMed

    Kozak, Krzysztof; Grządziel, Dominik; Połednik, Bernard; Mazur, Jadwiga; Dudzińska, Marzenna R; Mroczek, Mariusz

    2014-12-01

    Radon and its decay products are harmful pollutants present in indoor air and are responsible for the majority of the effective dose due to ionising radiation that people are naturally exposed to. The paper presents the results of the series of measurements of radon and its progeny (in unattached and attached fractions) as well as indoor air parameters: temperature, relative humidity, number and mass concentrations of fine aerosol particles. The measurements were carried out in the auditorium (lecture hall), which is an indoor air quality laboratory, in controlled conditions during two periods of time: when air conditioning (AC) was switched off (unoccupied auditorium) and when it was switched on (auditorium in normal use). The significant influence of AC and of students' presence on the dynamics of radon and its progeny was confirmed. A decrease in the mean value of radon and its attached progeny was found when AC was working. The mean value of radon equilibrium factor F was also lower when AC was working (0.49) than when it was off (0.61). The linear correlations were found between attached radon progeny concentration and particle number and mass concentration only when the AC was switched off. This research is being conducted with the aim to study the variability of radon equilibrium factor F which is essential to determine the effective dose due to radon and its progeny inhalation. PMID:24375376

  7. [The main ways of improvement of medical support of the Air Forces in modern conditions].

    PubMed

    Blaginin, A A; Grebeniuk, A N; Lizogub, I N

    2014-02-01

    Blaginin A.A., Grebenyuk A.N., Lizogub LN. - The main ways of improvement of medical support of the Air Forces in modern conditions. Aircrew conducting active hostilities suffers from the whole spectrum of factors and conditions of the combat situation. The main task for the medical service of the Air Force is to carry out preventive and curative action for aviation specialists who are responsible for the combat capability of aircraft formations. The medical service of the Air Force must have forces and facilities for planning, organization and implementation of the treatment of lightly wounded and sick aviation professionals with short periods of recovery, medical rehabilitation of aircrew qfter suffering injuries, diseases, sanatorium therapy of aircrew with partial failure of health, outpatient and inpatient medical examination aircrew - flight commissions, preventive rest of aviation specialists with symptoms of chronic fatigue. Should be trained aviation physicians, including both basic military medical education and in-depth study of the medical aspects of various fields of personnel of the Air Force. PMID:25046924

  8. Effect of green roofs on air temperature; measurement study of well-watered and dry conditions

    NASA Astrophysics Data System (ADS)

    Solcerova, Anna; van de Ven, Frans; Wang, Mengyu; van de Giesen, Nick

    2016-04-01

    Rapid urbanization and increasing number and duration of heat waves poses a need for understanding urban climate and ways to mitigate extremely high temperatures. One of repeatedly suggested and often investigated methods to moderate the so called urban heat island are green roofs. This study investigates several extensive green roofs in Utrecht (NL) and their effect on air temperature right above the roof surface. Air temperature was measured 15 and 30 cm above the roof surface and also in the substrate. We show that under normal condition is air above green roof, compared to white gravel roof, colder at night and warmer during day. This suggest that green roofs might help decrease air temperatures at night, when the urban heat island is strongest, but possibly contribute to high temperatures during daytime. We also measured situation when the green roofs wilted and dried out. Under such conditions green roof exhibits more similar behavior to conventional white gravel roof. Interestingly, pattern of soil temperature remains almost the same for both dry and well-prospering green roof, colder during day and warmer at night. As such, green roof works as a buffer of diurnal temperature changes.

  9. Radioisotope Deposition on Interior Building Surfaces: Air Flow and Surface Roughness Influences

    SciTech Connect

    Leonard, Bobby E

    2005-12-15

    Interior surface deposition effects of vaporized radioactive aerosols are important in understanding their behavior in accident conditions such as the Japanese nuclear laboratory accident in 1999 and the Chernobyl nuclear power plant accident in 1986, where entire communities had to be abandoned because of surface contamination, and the hopefully unlikelihood of a terrorist dirty nuclear bomb attack. Airborne radon progeny offers an opportunity to study radioisotope surface deposition. A significant annual lung cancer rate is also attributed to airborne radon progeny in the interior domestic environment. Surface deposition rates influence the airborne progeny levels. Here, we report extensive {sup 218}Po deposition rates over typical air change rates (ACHs) from 0.02 to 1.0 h{sup -1} for interior furnishings surfaces in a 0.283-m{sup 3} test chamber to supplement earlier reported deposition rates for interior wall, ceiling, and floor surfaces. In analyzing the deposition results from the different materials, it is found that they correlate in terms of roughness with relative static friction and aerodynamic shear stress. Extrapolation to perfectly smooth surfaces provides a good estimate of the Fick's law value. Contrary to prior radon analysis at higher air flow, where the Crump and Seinfeld (CS) turbulent deposition models seemed to fit, at low ACH below 0.5 h{sup -1} the deposition data found excellent agreement with a new Brownian diffusive deposition model for laminar flow. A composite model using the Brownian diffusive laminar flow and the CS turbulent flow models provides an excellent fit to all data. These results provide insight into contamination issues relative to other airborne radioisotopes, with the relative effects being dependent on the airborne contaminant particle sizes and their respective diffusion coefficients as seen in the two deposition models.

  10. An efficient new automobile air-conditioning system based on CO{sub 2} vapor compression

    SciTech Connect

    Pettersen, J.

    1994-12-31

    A new, efficient, and environmentally safe automobile air-conditioning system based on carbon dioxide (CO{sub 2}) vapor compression has been developed. Although working pressures and component design are different, the basic principles are similar to those of current chlorofluorocarbon/hydrofluorocarbon (CFC/HFC) units. With the construction and testing of a laboratory prototype, it has been documented that the new system is highly competitive with current CFC-12 and HFC-134a units in terms of efficiency, capacity, cost, weight, and dimensions. The CO{sub 2} concept thus offers a solution to the environmental problem associated with automobile air conditioning and eliminates all uncertainties with respect to possible unforeseen effects from new refrigerant compounds. Further advantages of the natural fluid CO{sub 2} as a refrigerant are: no need for recycling or recovery, low cost of fluid, excellent availability, well-known properties, and more compact machinery and components.

  11. Characterization of Francisella species isolated from the cooling water of an air conditioning system.

    PubMed

    Gu, Quan; Li, Xunde; Qu, Pinghua; Hou, Shuiping; Li, Juntao; Atwill, Edward R; Chen, Shouyi

    2015-01-01

    Strains of Francisella spp. were isolated from cooling water from an air conditioning system in Guangzhou, China. These strains are Gram negative, coccobacilli, non-motile, oxidase negative, catalase negative, esterase and lipid esterase positive. In addition, these bacteria grow on cysteine-supplemented media at 20 °C to 40 °C with an optimal growth temperature of 30 °C. Analysis of 16S rRNA gene sequences revealed that these strains belong to the genus Francisella. Biochemical tests and phylogenetic and BLAST analyses of 16S rRNA, rpoB and sdhA genes indicated that one strain was very similar to Francisella philomiragia and that the other strains were identical or highly similar to the Francisella guangzhouensis sp. nov. strain 08HL01032 we previously described. Biochemical and molecular characteristics of these strains demonstrated that multiple Francisella species exist in air conditioning systems. PMID:26413079

  12. Retrofitting Inefficient Rooftop Air-Conditioning Units Reduces U.S. Navy Energy Use (Fact Sheet)

    SciTech Connect

    Not Available

    2014-04-01

    As part of the U.S. Navy's overall energy strategy, the National Renewable Energy Laboratory (NREL) partnered with the Naval Facilities Engineering Command (NAVFAC) to demonstrate market-ready energy efficiency measures, renewable energy generation, and energy systems integration. One such technology - retrofitting rooftop air-conditioning units with an advanced rooftop control system - was identified as a promising source for reducing energy use and costs, and can contribute to increasing energy security.

  13. The feasibility study of the waste heat air-conditioning system for automobile

    NASA Astrophysics Data System (ADS)

    Lin, Gui-Ping; Yuan, Xiu-Gan; Mei, Zhi-Guang

    1994-06-01

    In this paper, the feasibility of application of a solid-absorption system using ammonia and chlorides as working pair to automobile air-conditioning system is investigated. This system has the advantages of minimum environmental problem and utilizing waste heat from the automobile engine as thermal energy input. Analyses show that the main problem associated with the application of solid-absorption system is the size of the reactors. Techniques to solve this problem are discussed.

  14. Industry sector analysis, Hong Kong: Air conditioning equipment. Export trade information

    SciTech Connect

    Not Available

    1993-01-01

    The market survey covers the air conditioning equipment market in Hong Kong. The analysis contains statistical and narrative information on projected market demand, end-users; receptivity of Hong Kong consumers to U.S. products; the competitive situation, and market access (tariffs, non-tariff barriers, standards, taxes, distribution channels). It also contains key contact information and information on upcoming trade events related to the industry.

  15. Application information on typical hygrometers used in heating, ventilating and air conditioning (HVAC) systems

    SciTech Connect

    Kao, J.Y.; Snyder, W.J.

    1982-01-01

    Hygrometer selection information is provided for application in heating, ventilating and air-conditioning (HVAC) systems. A general review of hygrometer literature has been provided and the most commonly used ones for HVAC are discussed. Typical hygrometer parameters are listed to indicate the type of performance that can be expected. Laboratory test results of self-regulating, salt-phase transition hygrometers are presented and discussed in detail.

  16. Potential emission savings from refrigeration and air conditioning systems by using low GWP refrigerants

    DOE PAGESBeta

    Beshr, Mohamed; Aute, Vikrant; Abdelaziz, Omar; Fricke, Brian; Radermacher, Reinhard

    2016-08-24

    Refrigeration and air conditioning systems have high, negative environmental impacts due to refrigerant charge leaks from the system and their corresponding high global warming potential. Thus, many efforts are in progress to obtain suitable low GWP alternative refrigerants and more environmentally friendly systems for the future. In addition, the system’s life cycle climate performance (LCCP) is a widespread metric proposed for the evaluation of the system’s environmental impact.

  17. New Air Cleaning Strategies for Reduced Commercial Building Ventilation Energy ? FY11 Final Report

    SciTech Connect

    Sidheswaran, Meera; Destaillats, Hugo; Cohn, Sebastian; Sullivan, Douglas P.; Fisk, William J.

    2011-10-31

    The research carried out in this project focuses on developing novel volatile organic compounds (VOCs) air cleaning technologies needed to enable energy-saving reductions in ventilation rates. we targeted a VOC air cleaning system that could enable a 50% reduction in ventilation rates. In a typical commercial HVAC system that provides a mixture of recirculated and outdoor air, a VOC air cleaner in the supply airstream must have a 15% to 20% VOC removal efficiency to counteract a 50% reduction in outdoor air supply.

  18. Validation of the criteria for initiating the cleaning of heating, ventilation, and air-conditioning (HVAC) ductwork under real conditions.

    PubMed

    Lavoie, Jacques; Marchand, Geneviève; Cloutier, Yves; Lavoué, Jérôme

    2011-08-01

    Dust accumulation in the components of heating, ventilation, and air-conditioning (HVAC) systems is a potential source of contaminants. To date, very little information is available on recognized methods for assessing dust buildup in these systems. The few existing methods are either objective in nature, involving numerical values, or subjective in nature, based on experts' judgments. An earlier project aimed at assessing different methods of sampling dust in ducts was carried out in the laboratories of the Institut de recherche Robert-Sauvé en santé et en sécurité du travail (IRSST). This laboratory study showed that all the sampling methods were practicable, provided that a specific surface-dust cleaning initiation criterion was used for each method. However, these conclusions were reached on the basis of ideal conditions in a laboratory using a reference dust. The objective of this present study was to validate these laboratory results in the field. To this end, the laboratory sampling templates were replicated in real ducts and the three sampling methods (the IRSST method, the method of the U.S. organization National Air Duct Cleaner Association [NADCA] and that of the French organization Association pour la Prévention et l'Étude de la Contamination [ASPEC]) were used simultaneously in a statistically representative number of systems. The air return and supply ducts were also compared. Cleaning initiation criteria under real conditions were found to be 6.0 mg/100 cm(2) using the IRSST method, 2.0 mg/100 cm(2) using the NADCA method, and 23 mg/100 cm(2) using the ASPEC method. In the laboratory study, the criteria using the same methods were 6.0 for the IRSST method, 2.0 for the NADCA method, and 3.0 for the ASPEC method. The laboratory criteria for the IRSST and NADCA methods were therefore validated in the field. The ASPEC criterion was the only one to change. The ASPEC method therefore allows for the most accurate evaluation of dust accumulation in HVAC

  19. Tourists’ attitudes towards ban on smoking in air-conditioned hotel lobbies in Thailand

    PubMed Central

    Viriyachaiyo, V; Lim, A

    2009-01-01

    Background: Thailand is internationally renowned for its stringent tobacco control measures. In Thailand, a regulation banning smoking in air-conditioned hotel lobbies was issued in late 2006, causing substantial apprehension within the hospitality industry. A survey of tourists’ attitudes toward the ban was conducted. Methods: A cross-sectional survey of 5550 travellers staying in various hotels in Bangkok, Surat Thani, Phuket, Krabi and Songkhla provinces, October 2005 to December 2006. Travellers aged 15 years or older with a check-in duration of at least one day and willing to complete the questionnaire were requested by hotel staff to fill in the 5-minute questionnaire at check-in or later at their convenience. Results: Secondhand cigarette smoke was recognised as harmful to health by 89.7% of respondents. 47.8% of travellers were aware of the Thai regulation banning smoking in air-conditioned restaurants. 80.9% of the respondents agreed with the ban, particularly female non-smokers. 38.6% of survey respondents indicated that they would be more likely to visit Thailand again because of the regulation, 53.4% that the regulation would not affect their decision and 7.9% that they would be less likely to visit Thailand again. Conclusion: Banning smoking in air-conditioned hotel lobbies in Thailand is widely supported by tourists. Enforcement of the regulation is more likely to attract tourists than dissuade them from holidaying in Thailand. PMID:19364754

  20. Validation of Building Energy Modeling Tools Under Idealized and Realistic Conditions

    SciTech Connect

    Ryan, Emily M.; Sanquist, Thomas F.

    2012-04-02

    Building energy models provide valuable insight into the energy use of commercial and residential buildings based on the building architecture, materials and thermal loads. They are used in the design of new buildings and the retrofitting to increase the efficiency of older buildings. The accuracy of these models is crucial to reducing the energy use of the United States and building a sustainable energy future. In addition to the architecture and thermal loads of a building, building energy models also must account for the effects of the building's occupants on the energy use of the building. Traditionally simple schedule based methods have been used to account for the effects of the occupants. However, newer research has shown that these methods often result in large differences between the modeled and actual energy use of buildings. In this paper we discuss building energy models and their accuracy in predicting building energy use. In particular we focus on the different types of validation methods which have been used to investigate the accuracy of building energy models and how they account for (or do not account for) the effects of occupants. We also review some of the newer work on stochastic methods for estimating the effects of occupants on building energy use and discuss the improvements necessary to increase the accuracy of building energy models.